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Abstract. Active Inference (AIF) is an emerging framework in the
brain sciences which suggests that biological agents act to minimise a
variational bound on model evidence. Control-as-Inference (CAI) is a
framework within reinforcement learning which casts decision making as
a variational inference problem. While these frameworks both consider
action selection through the lens of variational inference, their relation-
ship remains unclear. Here, we provide a formal comparison between
them and demonstrate that the primary difference arises from how the
notion of rewards, goals, or desires is incorporated into their generative
models. We highlight how the encoding of value leads to subtle differences
in the respective objective functionals and discuss how these distinctions
lead to different exploratory behaviours.

1 Introduction

Active Inference (AIF) is an emerging framework from theoretical neuroscience
which proposes a unified account of perception, learning, and action [11,13–15].
This framework posits that agents embody a generative model of their environ-
ment and that perception and learning take place through a process of varia-
tional inference on this generative model, achieved by minimizing an information-
theoretic quantity – the variational free energy [5,11,16,36]. Moreover, AIF argues
that action selection can also be cast as a process of inference, underwritten by the
same mechanisms which perform perceptual inference and learning. Implementa-
tions of this framework have a degree of biological plausibility [37] and are sup-
ported by considerable empirical evidence [12,34]. Recent work has demonstrated
that active inference can be applied to high-dimensional tasks and environments
[10,21,22,25,29,32,33,35].

The field of reinforcement learning (RL) is also concerned with understanding
adaptive action selection. In RL, agents look to maximise the expected sum of
rewards. In recent years, the framework of control as inference (CAI) [1,2,7,
20,26,28] has recast the problem of RL in the language of variational inference,
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generalising and contextualising earlier work in stochastic optimal control on the
general duality between control and inference under certain conditions [6,30,31].
Instead of maximizing rewards, agents must infer actions that lead to the optimal
trajectory. This reformulation enables the use of powerful inference algorithms in
RL, as well as providing a natural method for promoting exploratory behaviour
[1,17,18].

Both AIF and CAI view adaptive action selection as a problem of infer-
ence. However, despite these similarities, the formal relationship between the
two frameworks remains unclear. In this work, we attempt to shed light on this
relationship. We present both AIF and CAI in a common language, highlighting
connections between them which may have otherwise been overlooked. We then
move on to consider the key distinction between the frameworks, namely, how
‘value’, ‘goals’ or ‘desires’ are encoded into the generative model. We discuss how
this distinction leads to subtle differences in the objectives that both schemes
optimize, and suggest how these differences may impact behaviour.

2 Formalism
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Fig. 1. Graphical models for CAI and AIF. CAI augments the standard POMDP
structure with biased (grey-shaded) optimality variables Ot:T . AIF simply biases the
observation nodes of the POMDP directly.

Both AIF and CAI can be formalised in the context of a partially observed
Markov Decision Process (POMDP). Let a denote actions, s denote states and
o denote observations. In a POMDP setting, state transitions are governed by
st`1 „ penv(st`1|st,at) whereas observations are governed by ot „ penv(ot|st).
We also assume that the environment possess a reward function r : S ˆA → R

1

which maps from state-action pairs to a scalar reward. Agents encode (and
potentially learn) a generative model p(st:T ,at:T ,ot:T ) that describes the rela-
tionship between states, actions, observations. AIF and CAI are both concerned
with inferring the posterior distribution over latent variables p(at:T , st:T |ot:T ).
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However, solving this ‘value-free’ inference problem will not lead to adaptive
behaviour. Instead, some additional assumptions are required to bias inference
towards inferring actions that lead to ‘valuable’ states (Fig. 1).

3 Control as Inference

CAI incorporates the notion of value by introducing an additional ‘optimal-
ity’ variable Ot, where Ot “ 1 implies that time step t was optimal. In
what follows, we simplify notation by assuming p(Ot) :“ p(Ot “ 1). The
goal of CAI is then to recover the posterior over states and actions, given the
belief that the agent will observe itself being optimal, i.e. p(st,at|ot,Ot). By
including the optimality variable we can write the agent’s generative model as
p(st,at,ot,Ot) “ p(Ot|st,at)p(ot|st)p(at|st)p(st|st´1,at´1)1. Inferring the pos-
terior p(st,at|ot,Ot) is generally intractable, but it can approximated by intro-
ducing an auxillary distribution qφ(st,at) “ qφ(at|st)q(st), where φ are the
parameters of the variational policy distribution qφ(at|st), and then optimising
the variational bound L(φ):

L(φ) “ DKL

(
qφ(st,at)‖p(st,at,ot,Ot)

)

“ ´Eqφ(st,at)

[
ln p(Ot|st,at)

]
︸ ︷︷ ︸

Extrinsic Value

`DKL

(
q(st)‖p(st|st´1,at´1)

)
︸ ︷︷ ︸

State divergence

` Eq(st)

[
DKL

(
qφ(at|st)‖p(at|st)

)]
︸ ︷︷ ︸

Action Divergence

´Eqφ(st,at)

[
ln p(ot|st)

]
︸ ︷︷ ︸
Observation Ambiguity

(1)

where DKL is a Kullback-Leibler divergence. Minimising Eq. 1 – a process known
as variational inference – will cause the approximate posterior qφ(st,at) to tend
towards the true posterior p(st,at|ot,Ot), and cause the variational free energy
to approach the marginal-likelihood of optimality p(Ot).

The second equality in Eq. 1 demonstrates that this variational bound can
be decomposed into four terms. The first term (extrinsic value) quantifies the
likelihood that some state-action pair is optimal. In the CAI literature, the
likelihood of optimality is usually defined as p(Ot|st,at) :“ er(st,at), such that
ln p(Ot|st,at) “ r(st,at). Extrinsic value thus quantifies the expected reward of
some state-action pair, such that minimising L(φ) maximises expected reward.
The state divergence and action divergence terms quantify the degree to which
beliefs about states and actions diverge from their respective priors. The approx-
imate posterior over states and the agent’s model of state dynamics are assumed
to be equal q(st) :“ p(st|st´1,at´1), such that the agent believes it has no con-
trol over the dynamics except through action. This assumption eliminates the

1 Note that CAI is usually formulated in the context of an MDP rather than a POMDP.
We have presented the POMDP case to maintain consistency with AIF, but both
frameworks can be applied in both MDPs and POMDPs.
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second term (state divergence) from the bound. Moreover, under the assump-
tion that the action prior is uniform p(at|st) :“ 1

|A| , the action divergence term
reduces to the negative entropy of actions. Maximising both reward and an action
entropy term provides several benefits, including a mechanism for offline learn-
ing, improved exploration and increased algorithmic stability [17,18]. The fourth
term (observation ambiguity), which only arises in a POMDP setting, encour-
ages agents to seek out states which have a precise mapping to observations,
thus driving agents to regions of observation space where the latent space can
be easily inferred, and to avoid regions where the likelihood mapping is highly
uncertain.

Traditionally, CAI has been concerned with inferring policies, or time-
dependent state-action mappings. Here, we reformulate the standard CAI app-
roach to instead infer fixed action plans π “ {at, ...,aT }. Specifically, we
derive an N-step planning variational bound for CAI and show that it can
be used to derive an expression for the optimal plan. We adapt the gener-
ative model and approximate posterior to account for a temporal sequence
of variables p(st:T , π,ot:T ,Ot:T ) “ ∏T

t p(Ot|st, π)p(ot|st)p(st|st´1, π)p(π) and
q(st:T , π) “ ∏T

t q(st|π)q(π). The optimal plan can then be retrieved as:

L “ DKL

(
q(st:T , π)‖p(st:T , π,ot:T ,Ot:T )

)

“ DKL

(
q(π)

T∏
t

q(st|π)‖p(π)
T∏
t

p(Ot|st, π)p(ot|st)p(st|st´1, π)
)

“ DKL

(
q(π)

T∑
t

DKL

[
q(st|π)‖p(Ot|st, π)p(ot|st)p(st|st´1, π)

]‖p(π)
)

“ DKL

(
q(π)‖p(π) exp(´

T∑
t

Lt(π))
)

“⇒ q∗(π) “ σ
(
p(π) ´

T∑
t

Lt(π)
)

(2)

The optimal plan is thus a path integral of Lt(π), which can be written as:

Lt(π) “ Eq(st|π)

[
ln q(st|π) ´ ln p(st, π,ot,Ot)]

“ ´Eq(st |π)

[
ln p(Ot|st, π)

]

︸ ︷︷ ︸
Extrinsic Value

`DKL

(
q(st|π)‖p(st|st´1, π)

)

︸ ︷︷ ︸
State divergence

´Eq(st|π)

[
ln p(ot|st)

]

︸ ︷︷ ︸
Observation Ambiguity

(3)

which is equivalent to Eq. 1 except that it omits the action-divergence term.

4 Active Inference

Unlike CAI, AIF does not introduce additional variables to incorporate ‘value’
into the generative model. Instead, AIF assumes that the generative model
is intrinsically biased towards valuable states or observations. For instance,
we might assume that the prior distribution over observations is biased
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towards observing rewards, ln p̃(ot:T )9er(ot:T ), where we use notation p̃(·) to
denote a biased distribution2. Let the agent’s generative model be defined as
p̃(st:T ,ot:T , π) “ p(π)

∏T
t p(st|ot, π)p̃(ot|π), and the approximate posterior as

q(st:T , π) “ q(π)
∏T

t q(st|π).
It is then possible to derive an analytical expression for the optimal plan:

´F(π) “ Eq(ot:T ,st:T ,π)

[
ln q(st:T , π) ´ ln p̃(ot:T , st:T , π)

]

“⇒ q∗(π) “ σ
(
ln p(π) ´

T∑
t

Ft(π)
) (4)

where ´Ft(π) is referred to as the expected free energy (note that other func-
tionals are also consistent with AIF [23]). Given a uniform prior over policies,
behaviour is determined by the expected free energy functional, which decom-
poses into:

´Ft(π) “ ´Eq(ot,st|π)
[
ln q(st|π) ´ ln p̃(ot, st|π)

]

“ ´Eq(ot,st|π)
[
ln p̃(ot|π)

]
︸ ︷︷ ︸

Extrinsic Value

´Eq(ot|π)
[
DKL

(
q(st|ot, π)‖q(st|π)

)]
︸ ︷︷ ︸

Intrinsic Value

(5)

where we have made the assumption that the inference procedure is approx-
imately correct, such that q(st|ot, π) ≈ p(st|ot, π). This assumption is
not unreasonable since it merely presupposes that action selection occurs
after perceptual inference, which directly attempts to minimize the diver-
gence DKL

(
q(st|ot, π)‖p(st|ot, π)

)
between the approximate and true posterior.

Because agents are required to minimise Eq. 5, they are required to maximise
both extrinsic and intrinsic value. Extrinsic value measures the degree to which
expected observations are consistent with prior beliefs about favourable observa-
tions. Under the assumption that ln p̃(ot:T )9er(ot:T ), this is equivalent to seeking
out rewarding observations. Intrinsic value is equivalent to the expected infor-
mation gain over states, which compels agents to seek informative observations
which maximally reduce uncertainty about hidden states.

While AIF is usually formulated in terms of fixed action sequences (i.e. plans),
it can also be formulated in terms of policies (i.e. state-action mappings). Let the
agent’s generative model be defined as p̃(st,ot,at) “ p(st|ot,at)p(at|st)p̃(ot|at),
and the approximate posterior as qφ(st,at) “ qφ(at|st)q(st). We can now write
the expected free energy functional in terms of the policy parameters φ:

2 AIF is usually formulated solely in terms of observations, such that some observations
are more ‘favourable’ than others. We introduced the notion of rewards to retain
consistency with CAI.
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´Ft(φ) “ Eq(ot,st,at)

[
ln qφ(at, st) ´ ln p̃(st,ot,at)

]

“ ´Eq(ot|at)

[
ln p̃(ot|at)

]
︸ ︷︷ ︸

Extrinsic Value

´Eq(ot,at|st)

[
DKL

(
q(st|ot,at)‖q(st|at)

)]
︸ ︷︷ ︸

Intrinsic Value

` Eq(st)

[
DKL

(
qφ(at|st)‖p(at|st)

)]
︸ ︷︷ ︸

Action Divergence

(6)

Inferring policies with AIF thus requires minimizing an action divergence term.

5 Encoding Value

The previous sections demonstrate that both AIF and CAI can be formulated as
variational inference, for both fixed action sequences (i.e. plans) and policies (i.e.
state-action mappings). We now move on to consider the key difference between
these frameworks – how they encode ‘value’. AIF encodes value directly into the
generative model as a prior over observations, whereas in CAI, extrinsic value
is effectively encoded into the likelihood which, by Bayes rule, relates to the
prior as p(o|s) “ p(o) p(s)

p(s|o) . When applied within a KL divergence, this fraction
becomes a negative information gain. We elucidate this distinction by intro-
ducing a further variant of active inference, which here we call likelihood-AIF,
where instead of a biased prior over rewards the agent has a biased likelihood
p̃(ot, st) “ p̃(ot|st)p(st). The likelihood-AIF objective functional F̂(φ) becomes:

´F̂t(φ) “ Eqφ(st,ot,at)

[
ln qφ(st,at) ´ ln p̃(ot, st,at)

]

“ ´Eqφ(st,at)

[
ln p̃(ot|st)

]

︸ ︷︷ ︸
Extrinsic Value

`DKL

(
q(st)‖p(st|st´1,at´1)

)

︸ ︷︷ ︸
State divergence

`DKL

(
qφ(at|st)‖p(at|st)

)

︸ ︷︷ ︸
Action Divergence

If we set ln p̃(ot|st) “ ln p(Ot|st,at), this is exactly equivalent to the CAI objec-
tive in the case of MDPs. The fact that likelihood AIF on POMDPs is equiva-
lent to CAI on MDPs is due to the fact that the observation modality in AIF is
‘hijacked’ by the encoding of value, and thus effectively contains one less degree-
of-freedom compared to CAI, which maintains a separate veridical representation
of observation likelihoods. A further connection is that AIF on MDPs is equiva-
lent to KL control [8,26–28], and the recently proposed state-marginal-matching
[19] objectives. We leave further exploration of these similarities to future work.

6 Discussion

In this work, we have highlighted the large degree of overlap between the frame-
works of active inference (AIF) and control as inference (CAI), and we have
explored the major way in which they differ - which is in terms of how they
encode value into their generative models, thus turning a value-free inference
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problem into one that can serve the purposes of adaptive action. While CAI
augments the ‘natural’ probabilistic graphical model with exogenous optimal-
ity variables.3, AIF leaves the structure of the graphical model unaltered and
instead encodes value into the generative model directly. These two approaches
lead to significant differences between their respective functionals. AIF, by con-
taminating its generative model with value-imbuing biases, loses a degree of
freedom compared to CAI, which maintains a strict separation between an ide-
ally veridical generative model of the environment and the goals of the agent. In
POMDPs, this approach results in CAI incorporating an ‘observation-ambiguity’
term which is absent in the AIF formulation. Secondly, the different methods
for encoding the probability of goals – likelihoods in CAI and priors in AIF –
lead to different exploratory terms in the objective functionals. Specifically, AIF
is endowed with an expected information gain that CAI lacks. AIF approaches
thus lend themselves naturally to goal-directed exploration whereas CAI induces
only random, entropy-maximizing exploration. Moreover, when AIF is applied to
infer actions directly, it also obtains the same action-entropy terms as CAI, while
additionally requiring AIF agents to maximize exploratory terms. When CAI
is extended to the POMDP setting, it gives rise to an additional observation-
ambiguity term to be minimized, which drives agent to seek out states with
highly precise likelihood mappings, which in effect penalizes exploration. Thus,
AIF encourages exploration while maintaining a biased perceptual system, while
CAI explores randomly but maintains a principled separation between veridical
perception and control.

These different ways of encoding goals into probabilistic models also lend
themselves to more philosophical interpretations. By viewing goals as an addi-
tional exogenous factor in an otherwise unbiased inference process, CAI main-
tains the modularity thesis of separate perception and action modules [3]. This
makes CAI approaches deeply consonant with the mainstream view in machine
learning that sees the goal of perception as recovering veridical representations of
the world, and control as using this world-model to plan actions. In contrast, AIF
elides these clean boundaries between unbiased perception and action by instead
positing that biased perception is crucial to adaptive action. Rather than main-
taining an unbiased world model that predicts likely consequences, AIF instead
maintains a biased generative model which preferentially predicts the agent’s
preferences being fulfilled. Active Inference thus aligns closely with enactive and
embodied approaches [4,9] to cognition, which view the action-perception loop
as a continual flow rather than a sequence of distinct stages.

We have thus seen how two means of encoding preferences into inference
problems leads to two distinct families of algorithms, each optimising subtly dif-
ferent functionals, resulting in differing behaviour. This raises the natural ques-
tions of which method should be preferred, and whether these are the only two

3 Utilising optimality variables is not strictly necessary for CAI. In the case of undi-
rected graphical models, an additional undirected factor can be appended to each
node [38]. Interestingly, this approach bears similarities to the procedure adopted in
[24], suggesting a further connection between generalised free energy and CAI.
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possible methods. One can imagine explicitly modelling the expected reward, and
biasing inferences with priors over the reward. Alternatively, agents could main-
tain desired distributions over states, observations, and actions, which would
maximize the flexibility in specifying goals intrinsic to the variational control
framework. These potential extensions to the framework, their relation to one
another, and the objective functionals they induce, are topics for future work.
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