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Preface

Active inference is a theory of behavior and learning that originated in neuroscience.
The basic assumption is that intelligent agents entertain a generative model of their
environment, and their main goal is to minimize surprise or, more formally, their free
energy. Active inference not only offers an interesting framework for understanding
behavior and the brain, but also to develop artificial intelligent agents and to investigate
novel machine learning algorithms.

This volume presents some recent developments in active inference and its appli-
cations. These papers were presented and discussed at the First International Workshop
on Active Inference (IWAI 2020), which was held in conjunction with the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD) in Ghent, Belgium. The workshop took place fully online
on September 14, 2020, due to the COVID-19 pandemic. Out of 25 submissions, 13
full papers and 6 poster papers were selected through a double-blind review process.

The papers are clustered in three sections. The first section is on the application of
active inference for continuous system control. The second section bundles papers on
the cross-section between active inference and machine learning. Finally, the third
section presents some work on active inference in biology and more theoretical aspects.

The IWAI 2020 organizers would like to thank the Program Committee for their
valuable review work, all authors for their contributions, all attendees for the fruitful
discussions, and Philipp Schwartenbeck, Sindy Löwe, and Rosalyn Moran for their
outstanding invited talks.

September 2020 Tim Verbelen
Pablo Lanillos

Christopher L. Buckley
Cedric De Boom
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On the Relationship Between Active
Inference and Control as Inference

Beren Millidge1(B), Alexander Tschantz2,3, Anil K. Seth2,3,4,
and Christopher L. Buckley3

1 School of Informatics, University of Edinburgh, Edinburgh, UK
beren@millidge.name

2 Sackler Center for Consciousness Science, Brighton, UK
3 Evolutionary and Adaptive Systems Research Group, University of Sussex,

Brighton, UK
4 CIFAR Program on Brain, Mind, and Consciousness, Toronto, Canada

Abstract. Active Inference (AIF) is an emerging framework in the
brain sciences which suggests that biological agents act to minimise a
variational bound on model evidence. Control-as-Inference (CAI) is a
framework within reinforcement learning which casts decision making as
a variational inference problem. While these frameworks both consider
action selection through the lens of variational inference, their relation-
ship remains unclear. Here, we provide a formal comparison between
them and demonstrate that the primary difference arises from how the
notion of rewards, goals, or desires is incorporated into their generative
models. We highlight how the encoding of value leads to subtle differences
in the respective objective functionals and discuss how these distinctions
lead to different exploratory behaviours.

1 Introduction

Active Inference (AIF) is an emerging framework from theoretical neuroscience
which proposes a unified account of perception, learning, and action [11,13–15].
This framework posits that agents embody a generative model of their environ-
ment and that perception and learning take place through a process of varia-
tional inference on this generative model, achieved by minimizing an information-
theoretic quantity – the variational free energy [5,11,16,36]. Moreover, AIF argues
that action selection can also be cast as a process of inference, underwritten by the
same mechanisms which perform perceptual inference and learning. Implementa-
tions of this framework have a degree of biological plausibility [37] and are sup-
ported by considerable empirical evidence [12,34]. Recent work has demonstrated
that active inference can be applied to high-dimensional tasks and environments
[10,21,22,25,29,32,33,35].

The field of reinforcement learning (RL) is also concerned with understanding
adaptive action selection. In RL, agents look to maximise the expected sum of
rewards. In recent years, the framework of control as inference (CAI) [1,2,7,
20,26,28] has recast the problem of RL in the language of variational inference,
c© Springer Nature Switzerland AG 2020
T. Verbelen et al. (Eds.): IWAI 2020, CCIS 1326, pp. 3–11, 2020.
https://doi.org/10.1007/978-3-030-64919-7_1
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4 B. Millidge et al.

generalising and contextualising earlier work in stochastic optimal control on the
general duality between control and inference under certain conditions [6,30,31].
Instead of maximizing rewards, agents must infer actions that lead to the optimal
trajectory. This reformulation enables the use of powerful inference algorithms in
RL, as well as providing a natural method for promoting exploratory behaviour
[1,17,18].

Both AIF and CAI view adaptive action selection as a problem of infer-
ence. However, despite these similarities, the formal relationship between the
two frameworks remains unclear. In this work, we attempt to shed light on this
relationship. We present both AIF and CAI in a common language, highlighting
connections between them which may have otherwise been overlooked. We then
move on to consider the key distinction between the frameworks, namely, how
‘value’, ‘goals’ or ‘desires’ are encoded into the generative model. We discuss how
this distinction leads to subtle differences in the objectives that both schemes
optimize, and suggest how these differences may impact behaviour.

2 Formalism

1 2 3

a1 a2 a3

s1 s2 s3

o1 o2 o3 …

…

…
T

aT

sT

oT

(a) Control-as-Inference

a1 a2 a3

s1 s2 s3

…

…

… aT

sT

õ1 õ2 õ3 õT

(b) Active Inference

Fig. 1. Graphical models for CAI and AIF. CAI augments the standard POMDP
structure with biased (grey-shaded) optimality variables Ot:T . AIF simply biases the
observation nodes of the POMDP directly.

Both AIF and CAI can be formalised in the context of a partially observed
Markov Decision Process (POMDP). Let a denote actions, s denote states and
o denote observations. In a POMDP setting, state transitions are governed by
st`1 „ penv(st`1|st,at) whereas observations are governed by ot „ penv(ot|st).
We also assume that the environment possess a reward function r : S ˆA → R

1

which maps from state-action pairs to a scalar reward. Agents encode (and
potentially learn) a generative model p(st:T ,at:T ,ot:T ) that describes the rela-
tionship between states, actions, observations. AIF and CAI are both concerned
with inferring the posterior distribution over latent variables p(at:T , st:T |ot:T ).
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However, solving this ‘value-free’ inference problem will not lead to adaptive
behaviour. Instead, some additional assumptions are required to bias inference
towards inferring actions that lead to ‘valuable’ states (Fig. 1).

3 Control as Inference

CAI incorporates the notion of value by introducing an additional ‘optimal-
ity’ variable Ot, where Ot “ 1 implies that time step t was optimal. In
what follows, we simplify notation by assuming p(Ot) :“ p(Ot “ 1). The
goal of CAI is then to recover the posterior over states and actions, given the
belief that the agent will observe itself being optimal, i.e. p(st,at|ot,Ot). By
including the optimality variable we can write the agent’s generative model as
p(st,at,ot,Ot) “ p(Ot|st,at)p(ot|st)p(at|st)p(st|st´1,at´1)1. Inferring the pos-
terior p(st,at|ot,Ot) is generally intractable, but it can approximated by intro-
ducing an auxillary distribution qφ(st,at) “ qφ(at|st)q(st), where φ are the
parameters of the variational policy distribution qφ(at|st), and then optimising
the variational bound L(φ):

L(φ) “ DKL

(
qφ(st,at)‖p(st,at,ot,Ot)

)

“ ´Eqφ(st,at)

[
ln p(Ot|st,at)

]
︸ ︷︷ ︸

Extrinsic Value

`DKL

(
q(st)‖p(st|st´1,at´1)

)
︸ ︷︷ ︸

State divergence

` Eq(st)

[
DKL

(
qφ(at|st)‖p(at|st)

)]
︸ ︷︷ ︸

Action Divergence

´Eqφ(st,at)

[
ln p(ot|st)

]
︸ ︷︷ ︸
Observation Ambiguity

(1)

where DKL is a Kullback-Leibler divergence. Minimising Eq. 1 – a process known
as variational inference – will cause the approximate posterior qφ(st,at) to tend
towards the true posterior p(st,at|ot,Ot), and cause the variational free energy
to approach the marginal-likelihood of optimality p(Ot).

The second equality in Eq. 1 demonstrates that this variational bound can
be decomposed into four terms. The first term (extrinsic value) quantifies the
likelihood that some state-action pair is optimal. In the CAI literature, the
likelihood of optimality is usually defined as p(Ot|st,at) :“ er(st,at), such that
ln p(Ot|st,at) “ r(st,at). Extrinsic value thus quantifies the expected reward of
some state-action pair, such that minimising L(φ) maximises expected reward.
The state divergence and action divergence terms quantify the degree to which
beliefs about states and actions diverge from their respective priors. The approx-
imate posterior over states and the agent’s model of state dynamics are assumed
to be equal q(st) :“ p(st|st´1,at´1), such that the agent believes it has no con-
trol over the dynamics except through action. This assumption eliminates the

1 Note that CAI is usually formulated in the context of an MDP rather than a POMDP.
We have presented the POMDP case to maintain consistency with AIF, but both
frameworks can be applied in both MDPs and POMDPs.
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second term (state divergence) from the bound. Moreover, under the assump-
tion that the action prior is uniform p(at|st) :“ 1

|A| , the action divergence term
reduces to the negative entropy of actions. Maximising both reward and an action
entropy term provides several benefits, including a mechanism for offline learn-
ing, improved exploration and increased algorithmic stability [17,18]. The fourth
term (observation ambiguity), which only arises in a POMDP setting, encour-
ages agents to seek out states which have a precise mapping to observations,
thus driving agents to regions of observation space where the latent space can
be easily inferred, and to avoid regions where the likelihood mapping is highly
uncertain.

Traditionally, CAI has been concerned with inferring policies, or time-
dependent state-action mappings. Here, we reformulate the standard CAI app-
roach to instead infer fixed action plans π “ {at, ...,aT }. Specifically, we
derive an N-step planning variational bound for CAI and show that it can
be used to derive an expression for the optimal plan. We adapt the gener-
ative model and approximate posterior to account for a temporal sequence
of variables p(st:T , π,ot:T ,Ot:T ) “ ∏T

t p(Ot|st, π)p(ot|st)p(st|st´1, π)p(π) and
q(st:T , π) “ ∏T

t q(st|π)q(π). The optimal plan can then be retrieved as:

L “ DKL

(
q(st:T , π)‖p(st:T , π,ot:T ,Ot:T )

)

“ DKL

(
q(π)

T∏
t

q(st|π)‖p(π)
T∏
t

p(Ot|st, π)p(ot|st)p(st|st´1, π)
)

“ DKL

(
q(π)

T∑
t

DKL

[
q(st|π)‖p(Ot|st, π)p(ot|st)p(st|st´1, π)

]‖p(π)
)

“ DKL

(
q(π)‖p(π) exp(´

T∑
t

Lt(π))
)

“⇒ q∗(π) “ σ
(
p(π) ´

T∑
t

Lt(π)
)

(2)

The optimal plan is thus a path integral of Lt(π), which can be written as:

Lt(π) “ Eq(st|π)

[
ln q(st|π) ´ ln p(st, π,ot,Ot)]

“ ´Eq(st |π)

[
ln p(Ot|st, π)

]

︸ ︷︷ ︸
Extrinsic Value

`DKL

(
q(st|π)‖p(st|st´1, π)

)

︸ ︷︷ ︸
State divergence

´Eq(st|π)

[
ln p(ot|st)

]

︸ ︷︷ ︸
Observation Ambiguity

(3)

which is equivalent to Eq. 1 except that it omits the action-divergence term.

4 Active Inference

Unlike CAI, AIF does not introduce additional variables to incorporate ‘value’
into the generative model. Instead, AIF assumes that the generative model
is intrinsically biased towards valuable states or observations. For instance,
we might assume that the prior distribution over observations is biased
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towards observing rewards, ln p̃(ot:T )9er(ot:T ), where we use notation p̃(·) to
denote a biased distribution2. Let the agent’s generative model be defined as
p̃(st:T ,ot:T , π) “ p(π)

∏T
t p(st|ot, π)p̃(ot|π), and the approximate posterior as

q(st:T , π) “ q(π)
∏T

t q(st|π).
It is then possible to derive an analytical expression for the optimal plan:

´F(π) “ Eq(ot:T ,st:T ,π)

[
ln q(st:T , π) ´ ln p̃(ot:T , st:T , π)

]

“⇒ q∗(π) “ σ
(
ln p(π) ´

T∑
t

Ft(π)
) (4)

where ´Ft(π) is referred to as the expected free energy (note that other func-
tionals are also consistent with AIF [23]). Given a uniform prior over policies,
behaviour is determined by the expected free energy functional, which decom-
poses into:

´Ft(π) “ ´Eq(ot,st|π)
[
ln q(st|π) ´ ln p̃(ot, st|π)

]

“ ´Eq(ot,st|π)
[
ln p̃(ot|π)

]
︸ ︷︷ ︸

Extrinsic Value

´Eq(ot|π)
[
DKL

(
q(st|ot, π)‖q(st|π)

)]
︸ ︷︷ ︸

Intrinsic Value

(5)

where we have made the assumption that the inference procedure is approx-
imately correct, such that q(st|ot, π) ≈ p(st|ot, π). This assumption is
not unreasonable since it merely presupposes that action selection occurs
after perceptual inference, which directly attempts to minimize the diver-
gence DKL

(
q(st|ot, π)‖p(st|ot, π)

)
between the approximate and true posterior.

Because agents are required to minimise Eq. 5, they are required to maximise
both extrinsic and intrinsic value. Extrinsic value measures the degree to which
expected observations are consistent with prior beliefs about favourable observa-
tions. Under the assumption that ln p̃(ot:T )9er(ot:T ), this is equivalent to seeking
out rewarding observations. Intrinsic value is equivalent to the expected infor-
mation gain over states, which compels agents to seek informative observations
which maximally reduce uncertainty about hidden states.

While AIF is usually formulated in terms of fixed action sequences (i.e. plans),
it can also be formulated in terms of policies (i.e. state-action mappings). Let the
agent’s generative model be defined as p̃(st,ot,at) “ p(st|ot,at)p(at|st)p̃(ot|at),
and the approximate posterior as qφ(st,at) “ qφ(at|st)q(st). We can now write
the expected free energy functional in terms of the policy parameters φ:

2 AIF is usually formulated solely in terms of observations, such that some observations
are more ‘favourable’ than others. We introduced the notion of rewards to retain
consistency with CAI.
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´Ft(φ) “ Eq(ot,st,at)

[
ln qφ(at, st) ´ ln p̃(st,ot,at)

]

“ ´Eq(ot|at)

[
ln p̃(ot|at)

]
︸ ︷︷ ︸

Extrinsic Value

´Eq(ot,at|st)

[
DKL

(
q(st|ot,at)‖q(st|at)

)]
︸ ︷︷ ︸

Intrinsic Value

` Eq(st)

[
DKL

(
qφ(at|st)‖p(at|st)

)]
︸ ︷︷ ︸

Action Divergence

(6)

Inferring policies with AIF thus requires minimizing an action divergence term.

5 Encoding Value

The previous sections demonstrate that both AIF and CAI can be formulated as
variational inference, for both fixed action sequences (i.e. plans) and policies (i.e.
state-action mappings). We now move on to consider the key difference between
these frameworks – how they encode ‘value’. AIF encodes value directly into the
generative model as a prior over observations, whereas in CAI, extrinsic value
is effectively encoded into the likelihood which, by Bayes rule, relates to the
prior as p(o|s) “ p(o) p(s)

p(s|o) . When applied within a KL divergence, this fraction
becomes a negative information gain. We elucidate this distinction by intro-
ducing a further variant of active inference, which here we call likelihood-AIF,
where instead of a biased prior over rewards the agent has a biased likelihood
p̃(ot, st) “ p̃(ot|st)p(st). The likelihood-AIF objective functional F̂(φ) becomes:

´F̂t(φ) “ Eqφ(st,ot,at)

[
ln qφ(st,at) ´ ln p̃(ot, st,at)

]

“ ´Eqφ(st,at)

[
ln p̃(ot|st)

]

︸ ︷︷ ︸
Extrinsic Value

`DKL

(
q(st)‖p(st|st´1,at´1)

)

︸ ︷︷ ︸
State divergence

`DKL

(
qφ(at|st)‖p(at|st)

)

︸ ︷︷ ︸
Action Divergence

If we set ln p̃(ot|st) “ ln p(Ot|st,at), this is exactly equivalent to the CAI objec-
tive in the case of MDPs. The fact that likelihood AIF on POMDPs is equiva-
lent to CAI on MDPs is due to the fact that the observation modality in AIF is
‘hijacked’ by the encoding of value, and thus effectively contains one less degree-
of-freedom compared to CAI, which maintains a separate veridical representation
of observation likelihoods. A further connection is that AIF on MDPs is equiva-
lent to KL control [8,26–28], and the recently proposed state-marginal-matching
[19] objectives. We leave further exploration of these similarities to future work.

6 Discussion

In this work, we have highlighted the large degree of overlap between the frame-
works of active inference (AIF) and control as inference (CAI), and we have
explored the major way in which they differ - which is in terms of how they
encode value into their generative models, thus turning a value-free inference



On the Relationship Between Active Inference and Control as Inference 9

problem into one that can serve the purposes of adaptive action. While CAI
augments the ‘natural’ probabilistic graphical model with exogenous optimal-
ity variables.3, AIF leaves the structure of the graphical model unaltered and
instead encodes value into the generative model directly. These two approaches
lead to significant differences between their respective functionals. AIF, by con-
taminating its generative model with value-imbuing biases, loses a degree of
freedom compared to CAI, which maintains a strict separation between an ide-
ally veridical generative model of the environment and the goals of the agent. In
POMDPs, this approach results in CAI incorporating an ‘observation-ambiguity’
term which is absent in the AIF formulation. Secondly, the different methods
for encoding the probability of goals – likelihoods in CAI and priors in AIF –
lead to different exploratory terms in the objective functionals. Specifically, AIF
is endowed with an expected information gain that CAI lacks. AIF approaches
thus lend themselves naturally to goal-directed exploration whereas CAI induces
only random, entropy-maximizing exploration. Moreover, when AIF is applied to
infer actions directly, it also obtains the same action-entropy terms as CAI, while
additionally requiring AIF agents to maximize exploratory terms. When CAI
is extended to the POMDP setting, it gives rise to an additional observation-
ambiguity term to be minimized, which drives agent to seek out states with
highly precise likelihood mappings, which in effect penalizes exploration. Thus,
AIF encourages exploration while maintaining a biased perceptual system, while
CAI explores randomly but maintains a principled separation between veridical
perception and control.

These different ways of encoding goals into probabilistic models also lend
themselves to more philosophical interpretations. By viewing goals as an addi-
tional exogenous factor in an otherwise unbiased inference process, CAI main-
tains the modularity thesis of separate perception and action modules [3]. This
makes CAI approaches deeply consonant with the mainstream view in machine
learning that sees the goal of perception as recovering veridical representations of
the world, and control as using this world-model to plan actions. In contrast, AIF
elides these clean boundaries between unbiased perception and action by instead
positing that biased perception is crucial to adaptive action. Rather than main-
taining an unbiased world model that predicts likely consequences, AIF instead
maintains a biased generative model which preferentially predicts the agent’s
preferences being fulfilled. Active Inference thus aligns closely with enactive and
embodied approaches [4,9] to cognition, which view the action-perception loop
as a continual flow rather than a sequence of distinct stages.

We have thus seen how two means of encoding preferences into inference
problems leads to two distinct families of algorithms, each optimising subtly dif-
ferent functionals, resulting in differing behaviour. This raises the natural ques-
tions of which method should be preferred, and whether these are the only two

3 Utilising optimality variables is not strictly necessary for CAI. In the case of undi-
rected graphical models, an additional undirected factor can be appended to each
node [38]. Interestingly, this approach bears similarities to the procedure adopted in
[24], suggesting a further connection between generalised free energy and CAI.
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possible methods. One can imagine explicitly modelling the expected reward, and
biasing inferences with priors over the reward. Alternatively, agents could main-
tain desired distributions over states, observations, and actions, which would
maximize the flexibility in specifying goals intrinsic to the variational control
framework. These potential extensions to the framework, their relation to one
another, and the objective functionals they induce, are topics for future work.
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Abstract. Active inference (AI) is a persuasive theoretical framework
from computational neuroscience that seeks to describe action and per-
ception as inference-based computation. However, this framework has
yet to provide practical sensorimotor control algorithms that are com-
petitive with alternative approaches. In this work, we frame active infer-
ence through the lens of control as inference (CaI), a body of work that
presents trajectory optimization as inference. From the wider view of
‘probabilistic numerics’, CaI offers principled, numerically robust opti-
mal control solvers that provide uncertainty quantification, and can scale
to nonlinear problems with approximate inference. We show that AI may
be framed as partially-observed CaI when the cost function is defined
specifically in the observation states.

Keywords: Active inference · Control · Approximate inference

1 Introduction

Active inference (AI) [2,4,5] is a probabilistic framework for sensorimotor behav-
ior that enjoyed sustained interest from computational neuroscientists. However,
its formulation has been criticized for its opacity and similarity to optimal control
[7–9], but is seemingly difficult to translate into an equally effective algorithmic
form. In this work, we offer a critical analysis of AI from the view of control as
inference (CaI) [1,11,14,21,24,28], the synthesis of optimal control and approxi-
mate inference. The goal is to appreciate the insights from the AI literature, but
in a form with computational and theoretical clarity.

2 Background

Here we outline the foundational theory and assumptions in this work.
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2.1 Problem Formulation

We specifically consider a known stochastic, continuous, discrete-time, partially-
observed, nonlinear, dynamical system with state x ∈ R

dx , observations y ∈ R
dy

and control inputs u ∈ R
du , operating over a time horizon T . We define

the states in upper case to denote the variables over the time horizon, i.e.
U = {u0, . . . ,uT−1}. The joint distribution (generative model) p(Y ,X,U) over
these variables factorizes into several interpretable distributions: The dynamics
p(xt+1|xt,ut), observation model p(yt | xt,ut), and behavior policy p(ut | xt).

2.2 Variational Inference for Latent Variable Models

Inference may be described by minimizing the distance between the ‘true’ data
distribution p(·) and a parameterized family qθ (·) [17]. A popular approach is to
minimize the Kullback-Liebler (KL) divergence, e.g. min DKL[qθ || p] w.r.t. θ.
More complex inference tasks can be described by observations y influenced by
unseen latent variables x. Given an observation y∗, maximizing the likelihood
involves integrating over the hidden states, and so is termed the marginal likeli-
hood p(y∗) =

∫
p(y = y∗,x)dx. Unfortunately this marginalization is typically

intractable in closed-form. A more useful objective may be obtained by applying
a variational approximation of latent state qθ (x | y∗) = qθ (x | y = y∗) to the
log marginal likelihood and obtaining a lower bound via Jensen’s inequality [17]

log
∫

p(y∗,x)dx = log
∫

p(y∗,x) qθ (x|y∗)
qθ (x|y∗)dx = logEx∼qθ (·|y∗)

[
p(y∗,x)
qθ (x|y∗)

]
, (1)

≥ Ex∼qθ (·|y∗)

[
log p(y∗,x)

qθ (x|y∗)

]
= −DKL[qθ (x | y∗)||p(x,y∗))],

(2)

= Ex∼qθ (·|y∗)[log p(y∗ | x)] − DKL[qθ (x | y∗) || p(x)], (3)

where Eqs. 2, 3 are variations of the ‘evidence lower bound objective’ (ELBO).
The expectation maximization algorithm (EM) [17], can be understood via Eq. 3
as iteratively estimating the latent states (minimizing the KL term via q) in the
E step and maximizing the likelihood term in the M step.

3 Active Inference

Active Inference frames sensorimotor behaviour as the goal of equilibrium
between its current and desired observations, which in practice can be expressed
as the minimization of a distance between these two quantities. This distance is
expressed using the KL divergence, resulting in a variational free energy objec-
tive as described in Sect. 2.2. Curiously, AI is motivated directly by the ELBO,
whose negative is referred to in the AI literature as the ‘free energy’ F(·). The
minimization of this quantity, F(y∗,x,u) = DKL[qθ (x,u | y∗) || p(x,u,y∗)], as
a model of behavior (i.e. state estimation and control), has been coined the ‘free
energy principle’.
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3.1 Free Energy of the Future

Despite the ELBO not being temporally restricted, AI delineates a ‘future’ free
energy. This free energy is used to describe the distance between future predicted
and desired observations, where u is directly represented as a policy u = π(x),
so F(y∗

t ,xt | π) over the future trajectory is minimized. In active inference, π is
commonly restricted to discrete actions or an ensemble of fixed policies, so infer-
ring p(π) can be approximated through a softmax σ(·) applied to the expected
‘future’ free energies for each policy over t = [τ, . . . , T − 1], with temperature γ
and prior p(π)

p(π | Y ∗) ≈ σ(log p(π) + γ
∑T−1

t=τ F(y∗
t ,xt, | π)). (4)

Moreover, for the ‘past’ where t = [0, . . . , τ − 1], minimizing F(·) amounts for
state estimation of x given y. Another consideration is whether the dynamic
and observation models are known or unknown. In this work we assume they are
given, but AI can also include estimating these models from data.

3.2 Active Inference in Practice

Initial AI work was restricted to discrete domains and evaluated on simple grid-
world environments [5,6]. Later work on continuous state spaces use various
black-box approaches such as cross-entropy [25], evolutionary strategies [26],
and policy gradient [16] to infer π. A model-based method was achieved by
using stochastic VI on expert data [3]. Connections between AI and CaI, per-
forming inference via message passing, have been previously discussed [13,27].
AI has been applied to real robots for kinematic planning, performing gradient
descent on the free energy using the Laplace approximation every timestep [18].
Despite these various approaches, AI has yet to demonstrate the sophisticated
control achieved by advanced optimal methods, such as differential dynamic
programming [20].

4 Control as Inference

From its origins in probabilistic control design [12], defining a state z ∈ R
dz to

describe the desired system trajectory1 p(Z), optimal control can be expressed as
finding the state-action distribution that minimizes the distance for a generative
model parameterized by θ, which can be framed as a likelihood objective [17]

min DKL[p(Z) || qθ (Z)] ≡ max EZ∼p(·)[log
∫

qθ (Z,X,U)dXdU ]. (5)

When p(Z) simply describes a desired state z∗
t , so p(zt) = δ(zt − z∗

t ), and the
latent state-action trajectory is approximated by qφ(X,U), the objective (Eq. 5)
can be expressed as an ELBO where the ‘data’ is Z∗

maxEX ,U∼qφ (·|Z ∗)[log qθ (Z∗ | X,U)]−DKL[qφ(X,U | Z∗) | qθ (X,U)], (6)

1 While z could be defined from [x, u]ᵀ, it could also include a transformation, e.g.
applying kinematics to joint space-based control for a cartesian space objective.
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where φ captures the latent state parameterization and θ defines the remaining
terms, i.e. the priors on the system parameters and latent states. This objective
can be optimized using EM, estimating the latent state-action trajectory φ in the
E step and optimizing the remaining unknowns θ in the M step. By exploiting
the temporal structure, qφ(X,U | Z∗) can be inferred efficiently in the E step
by factorizing the joint distribution (Eq. 7) and applying Bayes rule recursively

qφ(Z∗,X,U) = qφ(x0)
∏T−1

t=0 qφ(xt+1|xt,ut)
∏T

t=0 qφ(z∗
t |xt,ut)qφ(ut|xt),

(7)

qφ(xt,ut | z∗
0:t) ∝ qφ(z∗

t | xt,ut) qφ(xt,ut | z∗
0:t−1), (8)

qφ(xt,ut | z∗
0:T ) ∝ qφ(xt,ut | xt+1) qφ(xt+1 | z∗

0:T ). (9)

Eqs. 8, 9 are commonly known as Bayesian filtering and smoothing [19]. The key
distinction of this framework from state estimation is the handling of u during
the forward pass, as qφ(xt,ut) = qφ(ut | xt)qφ(xt), control is incorporated
into the inference. We can demonstrate this in closed-form with linear Gaussian
inference and linear quadratic optimal control.

4.1 Linear Gaussian Inference and Linear Quadratic Control

While the formulation above is intentionally abstract, it can be grounded
clearly by unifying linear Gaussian dynamical system inference (LGDS, i.e.
Kalman filtering and smoothing) and linear quadratic Gaussian (LQG) opti-
mal control [22]. While both cases have linear dynamical systems, here LQG
is fully-observed2 and has a quadratic control cost, while the LGDS is par-
tially observed and has a quadratic log-likelihood due to the Gaussian additive
uncertainties. These two domains can be unified by viewing the quadratic con-
trol cost function as an Gaussian observation likelihood. For example, given
zt = xt + ξ, ξ ∼ N (0,Σ) and z∗

t = 0 ∀ t,

log qθ (z∗
t |xt,ut) = − 1

2 (dz log 2π + log |Σ| + xᵀ
t Σ-1xt) = αxᵀ

t Qxt + β (10)

where (α, β) represents the affine transformation mapping the quadratic control
cost xᵀQx to the Gaussian likelihood. As convex objectives are invariant to
affine transforms, this mapping preserves the control problem while translating
it into an inference one. The key unknown here is α, which incorporates Q
into the additive uncertainty ξ, Σ = αQ-1. Moreover, inference is performed
by using message passing [15] in the E step to estimate X and U , while α is
optimized in the M step. This view scales naturally to not just the typical LQG

2 Confusingly, LQG can refer to both Gaussian disturbance and/or observation noise.
While all varieties share the same optimal solution as LQR, the observation noise
case results in a partially observed system and therefore requires state estimation.
i2c is motivated by the LQR solution and therefore does not consider observation
noise, but it would be straightforward to integrate.
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cost xᵀQx + uᵀRu, but also nonlinear mappings to z by using approximate
inference. While the classic LQG result includes the backward Ricatti equations
and an optimal linear control law, the inference setting derives direct parallels to
the backward pass during smoothing [22] and the linear conditional distribution
of the Gaussian, qθ (ut | xt) = N (Ktxt + kt,Σkt

) [10] respectively. As the
conditional distribution is linear, updating the prior joint density p(xt,ut) in
the forward pass with updated state estimate x′

t corresponds to linear feedback
control w.r.t. the prior

p(u′
t) =

∫
p(ut|xt = x′

t)p(x′
t)dx′

t, (11)

μu ′
t
= μut

+ Kt(μxt
− μx′

t
), (12)

Σuu ′
t
= Σuut

− Σuxt
Σ-1

xxt
Σᵀ

xut
+ KtΣxx′

t
Kᵀ

t , (13)

Kt = Σuxt
Σ-1

xxt
. (14)

From Eq. 14, it is evident that the strength of the feedback control depends on
both the certainty in the state and the correlation between the optimal state
and action.

The general EM algorithm for obtaining qθ (x,u) from p(Z) is referred to
as input inference for control (i2c) [28] due to its equivalence with input esti-
mation. Note that for linear Gaussian EM, the ELBO is tight as the variational
distribution is the exact posterior. For nonlinear filtering and smoothing, mature
approximate inference methods such as Taylor approximations, quadrature and
sequential Monte Carlo may be used for efficient and accurate computation [19].

Another aspect to draw attention to is the inclusion of z compared to alter-
native CaI formulations, which frame optimality as the probability for some
discrete variable o, p(o = 1 | x,u) [14]. Previous discussion on CaI vs AI have
framed this discrete variable as an important distinction. However, it is merely
a generalization to allow for a general cost function C(·) to be framed as a log-
likelihood, i.e. p(o = 1 | x,u) ∝ exp(−αC(x,u)). For the typical state-action
cost functions that are a distance metric in some transformed space, the key
consideration is the choice of observation space z and corresponding exponen-
tial density.

5 The Unifying View: Control of the Observations

A key distinction to the AI and CaI formulations described above is that, while
AI combines state estimation and control with a unified objective, CaI focuses
on trajectory optimization. However, this need not be the case. In a similar
fashion to the partially-observed case of LQG, CaI also naturally incorporates
observations [23]. As Sect. 4 describes i2c through a general Bayesian dynamical
system, the formulation can be readily adapted to include inference using past
measurements. Moreover, as i2c frames the control objective as an observation
likelihood, when z and y are the same transform of x and u, the objective can
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also be unified and directly compared to active inference. For ‘measurements’
Y ∗ = {y∗

0 , . . . ,y
∗
τ -1,z

∗
τ , . . . ,z∗

T−1}, following Eq. 5 using the F(·) notation

min DKL[p(Y )||qθ (Y )]= min
∑τ -1

t=0 Fψ (y∗
t ,xt,ut)

︸ ︷︷ ︸
state estimation

+
∑T -1

t=τ Fψ (z∗
t ,xt,ut),

︸ ︷︷ ︸
optimal control

(15)

where ψ = {θ,φ}. Here, p(yt) = δ(yt − y∗
t ) now also describes the empirical

density of past measurements y∗
<τ . The crucial detail for this representation is

that the observation model qθ (yt | xt,ut, t) is now time dependent, switching
from estimation to control at t = τ . For the Gaussian example in Sect. 4.1,
Σ<τ is the measurement noise and Σ-1

≥τ = αQ. A benefit of this view is that
the computation of active inference can now be easily compared to the classic
results of Kalman filtering and LQG (Fig. 1), and also scaled to nonlinear tasks
through approximate inference. Moreover, obtaining the policy π(·) using the
joint distribution qθ (xt,ut) is arguably a more informed approach compared to
direct policy search on an arbitrary policy class.

Prior Posterior y∗ z∗ lqr

x
1

x
2

0 20 40 60 80 100
t

u

Fig. 1. Linear Gaussian i2c performing state estimation and control following Sect. 5,
with state x = [x1, x2]

ᵀ, action u and [x, u]ᵀ as the observation space. With τ = 50,
for t < τ i2c performs state estimation under random controls. For t ≥ τ , i2c switches
to optimal control. This example is in the low noise setting, with a large prior on u,
to illustrate that i2c returns the LQR solution for the same initial state and planning
horizon.
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6 Conclusion

We have derived an equivalent formulation to active inference by consider-
ing partially-observed, inference-based optimal control, which has a principled
derivation and is well-suited for approximate inference. While we have delin-
eated state estimation as operating on past measurement and control as plan-
ning future actions (Eq. 15), both AI and i2c demonstrate the duality between
estimation and control due to the mathematical similarity when both are treated
probabilistically. We hope the inclusion of the CaI literature enables a greater
theoretical understanding of AI and more effective implementations through
approximate inference.
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Abstract. We present a fault tolerant control scheme for robot manip-
ulators based on active inference. The proposed solution makes use of
the sensory prediction errors in the free-energy to simplify the residu-
als and thresholds generation for fault detection and isolation and does
not require additional controllers for fault recovery. Results validating
the benefits in a simulated 2DOF manipulator are presented and the
limitations of the current approach are highlighted.

Keywords: Fault-tolerant control · Fault recovery · Active inference ·
Free-energy · Robot manipulator

1 Introduction

Developing fault tolerant (FT) control schemes is of vital importance to bring
robots outside controlled laboratories. The area of fault tolerant control has
become increasingly more important in recent years, and several methods have
been developed in different fields. An extensive bibliographical review and clas-
sification of FT methods can be found in [25]. Model-based FT techniques are
amongst the most promising approaches [8]. For fault detection, they rely on
mathematical models to generate residual signals to be compared to a threshold.
Fault recovery is then often performed by switching among different available
fault-specific controllers [17]. The two main challenges to design FT schemes are
the definition of residuals and thresholds, and the design of a fault specific recov-
ery strategy. We present a novel FT scheme for sensory faults [19,23] based on
an active inference controller (AIC) [20], which is inspired by the active inference
framework. Active inference is prominent in the neuroscientific literature as a
general theory of the brain [9–11] and several recent approaches in robotics have
c© Springer Nature Switzerland AG 2020
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taken inspiration from it [1–3,15,16,18,20–22,24]. In this work we investigate the
utility of the active inference framework for fault-tolerant control with sensory
faults. In the presented scheme, we exploit the properties of the framework to
simplify the definition of both residuals and thresholds, and we provide a simple
and general mechanism for sensory fault recovery. Our approach is validated on
a simulated 2DOF manipulator.

2 Problem Statement

We consider a robot controlled in joint space with torque commands, using
an active inference controller (AIC) [1,20]. In the following, we highlight the
necessary elements and assumptions to derive an expression for the free-energy
of the system, and the equations for state estimation and control. This study
considers a 2-DOF robot arm (Fig. 1), equipped with a vision system to retrieve
the end effector Cartesian position yv = [yvx

, yvz
]�, and with position and

velocity sensors yq, yq̇ ∈ R
2 for the two joints. Thus, we define y = [yq, yq̇, yv].

The proprioceptive sensors and the camera are affected by zero mean Gaussian
noise η = [ηq, ηq̇, ηv]. Additionally, the camera is affected by barrel distortion.
The states x to be controlled are set as the joint positions q of the robot arm.
We define the generative model of the state dynamics f(·) such that the robot
will be steered to a desired joint configuration μd following the dynamics of a
first order linear system with time constant τ .

Fig. 1. 2-DOF robot arm and general AIC control scheme.

f(μ) = (μd − μ)τ−1 (1)

The relation between μ and y is expressed through the generative model of the
sensory input g = [gq, gq̇, gv]. Since we set x = [q1, q2]� and we can directly
measure joint positions, gq and gq̇ and their partial derivatives are [7,20]:

gq(μ) = μ, gq̇(μ) = μ′, ∂gq(μ)/∂μ = 1, ∂gq̇(μ)/∂μ′ = 1 (2)

Note that μ′ is the first order generalised motion of μ. To define gv(μ), instead,
we use a Gaussian Process Regression (GPR) as in [16]. The training data is
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composed by a set of observations of the camera output [ȳvx
, ȳvz

]� in several
robot configurations ȳq. We use a squared exponential kernel k of the form:

k(yqi ,yqj ) = σ2
f exp

(− 1
2 (yqi − yqj )

�Λ(yqi − yqj )
)

+ σ2
ndij

where yqi , yqj ∈ ȳq, and dij is the Kronecker delta function. Λ is a diagonal
matrix of hyperparameters to be optimised. It holds then:

gv(yq∗) =
[
K∗K−1ȳvx

K∗K−1ȳvz

]
gv(yq∗)′ =

[−Λ−1(yq∗ − ȳq)�[k(yq∗ , ȳq)� · αx]
−Λ−1(yq∗ − ȳq)�[k(yq∗ , ȳq)� · αz]

]
(3)

where · means element-wise multiplication, αx = K−1ȳvx
and αz = K−1ȳvz

,
with K being the covariance matrix.

Given the generative models f and g as before, we can define an expression
for the free-energy F . Under Laplace approximation, and considering normally
distributed uncorrelated noise and generalised motions up to second order, the
free-energy for the 2-DOF robot arm can be expressed as:

F =
1
2

∑

i

(
ε�

i Piεi + ln |Pi|
)

+ C, i ∈ {yq, yq̇, yv, μ, μ′} (4)

where and C is a constant and Pi defines a precision (or inverse covariance)
matrix. Note that we set τ = 1 as in [20]. The terms εi = (yi − gi(μ)) with i ∈
{yq, yq̇, yv} are the Sensory Prediction Errors (SPE), representing the difference
between observed sensory input and expected one. The model prediction errors
are instead defined considering the desired state dynamics as εμ = (μ′ − f(μ))
and εμ′ = (μ′′ −∂f (μ)/∂μμ′). In particular, for the 2-DOF example it results that
εq = (yq − μ), εq̇ = (yq̇ − μ′), εv = (yv − gv (μ)), and εμ = (μ′ + μ − μd),
εμ′ = (μ′′ + μ′). For more details on the derivation of Eq. (4), an interested
reader can refer to [6,7,20].

Finally, one can compute the generalised state estimates μ, μ′, and μ′′, and
control actions u by minimizing F through gradient descent [11]:

μ̇ = μ′ − κμ
∂F
∂μ

, μ̇′ = μ′′ − κμ
∂F
∂μ′ , μ̇′′ = −κμ

∂F
∂μ′′ (5)

u̇ = −κa
∂yq

∂u
Pyq

(yq − μ) − κa
∂yq̇

∂u
Pyq̇

(yq̇ − μ′) − κa
∂yv

∂u
Pyv

(yv − gv(μ)) (6)

Note that Pyq
, Pyq̇

and Pyv
are the precision matrices representing the confidence

about sensory inputs. The higher the confidence in a sensor, the more reliable its
measurements are assumed to be. Following [18,20], we set ∂yq/∂u and ∂yq̇/∂u
to the identity, approximating the true relationships with only their sign. Similar
considerations can be made for the relation between commanded torques and
Cartesian displacements. The sign of ∂yv/∂u depends on the combination of the
two joint angles. For instance, operating the end effector in the fourth quadrant
with −π/2 ≤ q1 ≤ 0, a positive u1 will lead to positive increments of both x and
z coordinates. More advanced methods to determine these partial derivatives are
out of the scope of this work, but definitely possible and encouraged.
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3 A Fault Tolerant Scheme Based on Active Inference

In this section we define a fault tolerant scheme as in Fig. 2, using the SPE to
build residuals for fault detection. We also show how the sensory redundancy
and precision matrices can be used for fault recovery, such that we do not need
to generate extra signals for detection as in conventional approaches, and we
simplify fault recovery.

Fig. 2. AIC with additional elements (in gray) for fault tolerant control.

Threshold for Fault Detection and Isolation (FDI). Even though the
SPE can be seen as residuals for fault detection purposes, there is a substantial
difference. In active inference, the belief μ is biased towards a given goal, so
the SPE can also increase for causes which are not related to sensory faults
(i.e. the robot is stuck due to a collision). This precludes the use of established
fault detection techniques to define a threshold ψm for FDI. To solve this issue
we consider the quadratic form ε�

mPym
εm, where εm = ym − gm(μ) with m ∈

{q, q̇, v}. The core idea is to compute an upper bound on this quadratic term.
The first step is to compute an estimate for the prediction errors using the
generative model as ε̂m = gm(x̂) − gm(μ). The estimate of the joint positions x̂
is obtained through a filter using position and velocity measurements. Defining
ẋ = z, we can write:

˙̂x = ẑ + H1(yq − x̂) ˙̂z = H2(yq̇ − ẑ) (7)

where H1,H2 are diagonal positive definite matrices. The estimation error can
be made arbitrary small by choosing high gains H1 and H2 [12].

We can represent the sensory input y as a function of the ground truth x as:

y = g(x) + γ + η, (8)

where γ ∈ R
6 is a vector representing the process uncertainties introduced by

the generative models g, and η is the measurement noise. The sensory prediction
error for a generic sensor m can then be written as:

εm = ε̂m + gm(x) − gm(x̂) + γm + ηm︸ ︷︷ ︸
δm

= ε̂m + δm (9)
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where δm is the total uncertainty including process and measurement noise. The
j-th entry δm(j) is a scalar total uncertainty associated with a specific sensor.
Since we operate the robot in a finite workspace, with specific physical limits,
the states of the system x, the sensory input y and the internal belief μ remain
bounded in a compact region R = Rx×Ry×Rμ ⊂ R

2×R
6×R

2, before and after
the occurrence of a fault. We also suppose that the noise η affecting the position
and velocity sensors, and the camera, can be bounded. This means ||η(t)||2 ≤ η̄,
where η̄ is a known value. Since the AIC does not require the full dynamical
model of the robot arm, the characterization of the model uncertainties γ due
to g(·) is straightforward: gq(·) and gq̇(·) are just an identity, so no uncertainty
is introduced, while for gv(·) we can retrieve the model uncertainty from the
covariance matrix of the GPR. The sensory prediction errors εm and ε̂m are
then bounded quantities, thus we can define an upper bound for the quadratic
term ε�

mPym
εm.

Definition 1. Given a maximum uncertainty δ̄m such that |δm(j)| ≤ δ̄m(j) ∀j,
we define a threshold for fault detection for sensor m as:

ψm = ε̂�
mPym

ε̂m + 2|ε̂�
ym

Pym
δ̄m| + δ̄�

mPym
δ̄m (10)

Lemma 1. In a faultless case, the quadratic form of the sensory prediction
errors for a sensor m will remain below the threshold ψm:

ε�
mPym

εm ≤ ψm (11)

Proof. Once δ̄m is given, and since Pym
is diagonal positive definite, Eq. (11)

follows from applying the triangular inequality, considering εm as in Eq. (9).

Using Lemma 1, a fault in a generic sensor m is detected and isolated whenever
Eq. (11) is violated, that is when a fault will produce an anomaly in the sensory
input bigger than δ̄m. The value for the maximum uncertainty is chosen accord-
ing to the standard deviation of the noise present in the sensors. Note that, in
theory, a bound η̄ may not be finite or could be very large making fault detec-
tion difficult or even impossible. In practice, using multiples of the variance, we
reach an acceptable compromise between false alarms and detectability. Thus,
each entry of δ̄m is set to 5σm where ηm ∼ N (0, σ2

mI). Doing so, the probability
of having a false alarm due to the noise is less that 10−6.

Fault Recovery. To recover from a fault we exploit the fact that the con-
troller encodes the precision matrices Pyq

, Pyq̇
and Pyv

. Once a fault is detected
and isolated, fault recovery can be implemented simply by setting the precision
matrix of the faulty sensor to zero, that is Pfm = 0. This is a simple and generic
mechanism to recover for any kind of sensory fault once detected.

4 Simulation Results

We control the robot from the initial position q = [−π/2, 0] (rad) to the desired
position μd = [−0.6, 0.5] (rad). A fault is injected either in the encoders or in
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the camera during the motion of the robot, at time tf = 2 (s). The maximum
uncertainties are set to δ̄q = [5σq, 5σq]� and δ̄v = [5σv, 5σv]�, where σq = 0.001
and σv = 0.01. Figure 3A reports the single normalised SPE ε�

mσ−1
m εm/ψm, that

we call Nεm. Doing so, a fault is detected when the ratio is bigger than one. We
assume two kinds of possible faults: 1) A fault in the encoders: the output related
to the first joint freezes so yq(t) = [q1(tf ), q2(t)]� +ηq for t ≥ tf , and 2) A fault
in the camera: a misalignment is injected as bias in yv. Figure 3A shows fault
detection and isolation at tDI , when the normalised residual is bigger than 1.
The recovered and non-recovered response of the robot in case of encoder fault
is depicted in Fig. 3B. A similar response is found for camera faults.

Fig. 3. A) Normalised SPE for FDI in case of encoder fault (left) or camera fault
(right). B) Step response with and without recovery action in case of encoder fault.

5 Discussion and Conclusion

Consider now Eq. (1). The time constant τ influences the generative model of
the state dynamics f(·), so the desired evolution of the states. As explained in
[1], the AIC has two extremes depending on the value of τ−1 in the generative
model. If τ−1 → 0, the estimation step has zero bias towards the target. The
control action in this case will never steer the system towards the target. On the
other hand, if τ−1 → ∞ the system is completely biased towards the target. That
case is equivalent to a PID controller [1,4,5]. For any value in between, there
is a compromise between estimation and control. The estimation and control
are thus ‘coupled’. This has a few limitations. First, the actions are not explicit
in the model, so only sensory faults can be detected, isolated, and recovered.
Second, the estimated state is always biased towards the desired state. Finally,
biasing the state hinders learning model (hyper-)parameters.
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What does this mean for the FT scheme presented so far? The bias could
increase the SPE for reasons unrelated to sensory faults, for instance if the
current target state changes to another which is further away from the current
position. This prevents the direct use of the SPE as residuals in combination with
established fault detection techniques, since it would cause several false positives.
It would then be beneficial to decouple estimation and control. In addition, a
decoupled system could facilitate learning the hyperparameters. This could allow
us to optimise the precision matrices for the SPE instead of setting Pfm to zero,
since the precision matrices would represent the physical noise affecting the
sensors. Decoupling can also help relaxing the assumption on the maximum δ̄m

which now has to be known a priori for the determination of the fault detection
threshold. Approaches where the estimation and control are decoupled (similar
to [3,13,14,24]) for fault tolerance will be explored in future work.

To conclude, in this paper we present a novel approach for FT control based
on active inference. The main novelty is the definition of an on-line threshold
for FDI based on the SPE defined in the free-energy. Fault recovery is achieved
by reducing the precision of faulty sensor to zero, providing a generic recovery
mechanism which significantly simplifies the synthesis of reliable FT controllers.
The main limitation of the proposed approach is that only sensory faults can
be detected and recovered. Simulation results validated the theoretical findings.
Future work will explore FT control with decoupled state-estimation and control.
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Abstract. The Free Energy Principle (FEP) and its corollary active
inference describe a complex theoretical framework with a substantial
statistical mechanics foundation that is often expressed in terms of the
Fokker-Planck equation. Easy-to-follow examples of this formalism are
scarce, leaving a high barrier of entry to the field. In this paper we provide
a worked example of an active inference agent as a hierarchical Gaussian
generative model. We proceed to write its equations of motion explicitly
as a Fokker-Planck equation, providing a clear mapping between theo-
retical accounts of FEP and practical implementation. Code is available
at github.com/biaslab/ai workshop 2020.

Keywords: Active inference · Free energy · Fokker-Planck equation

1 Introduction

Theoretical treatments of the free energy principle (FEP) and active inference
are often framed in terms of the Fokker-Planck equation [5,6,10,12] and related
flows. In this paper we aim to bridge a gap between theory and simulation by
providing a worked example of an active inference agent written directly in terms
of its Fokker-Planck equation. We provide a brief introduction to the Fokker-
Planck description of dynamical systems and implement an agent based on a
generative model structure common across the active inference literature. We
then successfully apply the agent to a context switching task where it learns to
track a harmonic oscillator.

2 The Fokker-Planck Equation for Dynamical Systems

The Fokker-Planck description of dynamical systems [5,6] starts by assuming
that the system dynamics can be described by stochastic Langevin equations
[5,8] of the form

This work is part of the research programme Efficient Deep Learning with project
number P16-25 project 5, which is (partly) financed by the Netherlands Organisation
for Scientific Research (NWO).
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ẋ =
dx
dt

= f(x) +
√

2Γ (x)W(t), (1)

where x denotes the N -dimensional state of the system, Γ (x) an N ×M positive
semi-definite diffusion matrix and W(t) is a standard M -dimensional Wiener
process. Equation 1 describes the evolution of a system under deterministic state-
dependent dynamics f(x) and a stochastic fluctuation (diffusion) term W(t).
Equivalently, we can consider the time derivative of the distribution generated
by Eq. 1 in terms of the Fokker-Planck equation

∂p(x, t)
∂t

= −
I∑

i=1

∂

∂xi
fi(x)p(x, t) +

I,J∑

i=1,j=1

∂2

∂xi∂xj
Γi,j(x)p(x, t) (2)

where both i and j index over dimensions in x. The Fokker-Planck equation
describes the time derivative of the distribution p(x, t) generated by Eq. 1 by a
deterministic drift component or drag force (the first term) and a random diffu-
sion process (the second term). The core move here is the switch from stochastic
realisations of the SDE in Eq. 1 to the deterministic dynamics of the distribution
over realisations of the same process in Eq. 2. A steady-state solution to the
dynamics of Eq. 2 constitutes a vector field and can be written in potential form
[1,5,6,8,10] as

f(x) = (Q(x) − Γ (x))∇J(x), (3)

where Q(x) denotes an anti-symmetric (Q = −QT ) curl matrix and Γ (x) a
positive semi-definite diffusion matrix. We use ∇ to denote the gradient and
J(x) is a potential function. For a proof of this relation, see [1,8]. Writing f(x)
in this form, the anti-symmetric structure of Q(x) describes a solenoidal flow
that is orthogonal to gradients of J(x). The positive semi-definiteness of Γ (x)
on the other hand leads to dissipative flow along gradients of J(x).

3 Laplace-Encoded Free Energy and Generative Models

To apply the Fokker-Planck equation to active inference, we follow [5,6] and
let J(x) denote a variational free energy functional. We now need to specify
a generative model. A common choice in active inference literature [3,6] is a
hierarchical generative model of the form

μ1 = h1(μ0) + ω1 φ0 = g1(μ0) + w0

μ2 = h2(μ1) + ω2 φ1 = g2(μ1) + w1 (4)
...

...

We let μn denote internal states of the agent, φn sensory states and let hn(·) and
gn(·) denote arbitrary link functions. Further assuming all noise terms wn, ωn



30 M. T. Koudahl and B. de Vries

are iid Gaussian, we can rewrite each layer of the hierarchical generative model
p(μ0:n, φ0:n) as

p(μn+1|μn) = N (μn+1|μn, σ2
μn+1

) =
1

√
2πσ2

μn+1

exp

(

− (μn+1 − hn+1(μn))2

2σ2
μn+1

)

p(φn|μn) = N (φn|μn, σ2
φn

) =
1

√
2πσ2

φn

exp

(

− (φn − gn(μn))2

2σ2
φn

)

(5)

where σ2
•n

denotes prior variance at the n-th level of • ∈ {μ, φ}. Once the gen-
erative model has been specified, we need to constrain the recognition factors
in order to compute the required gradients. Following [3,6] we assume a fully
factorised Gaussian recognition density, also known as the mean-field variational
Laplace approximation. Under these assumptions the free energy reduces to a
sum of precision-weighted prediction errors between internal states at each level
μn and the level above μn+1, and internal μn and sensory states φn. This chain
can theoretically continue forever. To terminate the chain, we can assume exces-
sive variance (i.e., negligible precision) at the highest level under consideration
which renders higher order contributions to the free energy negligible. For a
thorough derivation we refer to [2,3]. Ignoring constant terms and summing
over levels, the free energy thus takes the form

J(μ0:n, φ0:n, a) =
∑

n

(
1

2σ2
μn+1

(μn+1 − hn+1(μn))2 +
1

2σ2
φn

(φn(a) − gn(μn))2
)

.

(6)

Note that we additionally assume that φn depends on active states a. This
is the inverse model assumption that augments the generative model [3,4]. The
purpose of the inverse model is to update active states by allowing the derivative
∂J
∂a through

ȧ =
∂a

∂t
= −∂J(μ0:n, φ0:n)

∂a
= −∂J(μ0:n, φ0:n)

∂φ0:n

∂φ0:n

∂a
(7)

where we explicitly mediate the effects of action on free energy through the
agents sensory states φn [3,4,6]. This move is usually justified by an appeal to
reflex arcs in a neuroscience context [3,4,9] and has successfully been applied in
simulation [3,6] as well as robotics [9]. Note that Eq. 7 is effectively a gradient
flow on free energy, following the functional form of Eq. 3.

4 A Worked Example

We proceed by defining an environmental process as a harmonic oscillator with
an added friction term. The environmental system dynamics are described by a
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Hamiltonian (a potential function) that decomposes into potential and kinetic
energy terms, plus added friction administered by the agent through action

H(x, ẋ, a) =
1

2m
x2

︸ ︷︷ ︸
potential

+
1
2
kẋ2

︸ ︷︷ ︸
kinetic

− ẋu tanh(a)
︸ ︷︷ ︸

friction

. (8)

Here x denotes the position of the system, ẋ the velocity, m the mass, k is
a constant, u is a force term that bounds the amount of friction the agent can
administer and a still represents action. The system obeys standard Hamiltonian
dynamics

dx

dt
= −∂H

∂ẋ
,
dẋ

dt
=

∂H

∂x
. (9)

Hamiltonian dynamics are commonly applied to the description of conservative
systems [5]. However in the present example the additional friction term in Eq. 8
means the system no longer conserves energy. In other words, introducing action
dependent friction allows the agent to systematically add or subtract energy
from the system. If no action is taken (a = 0) the third term vanishes and
the environmental process describes a standard conservative simple harmonic
oscillator.

We let J(μ0:1, φ0, a) denote the free energy of a two-layer model that receives
observations only at the first level. The agent thus only observes position and not
velocity. Formally this means setting φ0 = x and omitting higher orders of φ. We
then define a new potential vector J ′ as the concatenation of the Hamiltonian of
the environmental process H(x, ẋ, a) and the free energy functional J(μ0:1, φ0, a)
of the agent

J ′ =
[

H(x, ẋ, a)
J(μ0:1, φ0, a)

]
⇒ ∇J ′ =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

x
m

kẋ − u tanh(a)
1

σ2
μ1

(μ1 − h1(μ0)) + 1
σ2

φ0

(x − g0(μ0))
1

σ2
μ1

(h1(μ0) − μ1)

− 1
σ2

φ0

(
x − g0(μ0)

)
usech2(a)

⎤

⎥⎥⎥
⎥⎥⎥
⎦

. (10)

We further assume an accurate inverse model for the effect of action a on obser-
vations φ0. Concretely this means the agent is able to accurately calculate the
gradient flow described in Eq. 7 which is given by

ȧ = −∂J(μ0:1, φ0)
∂φ0

∂φ0

∂a
=

1
σ2

φ0

(
x − g0(μ0)

)
u sech2(a) (11)

where sech(·) is the hyperbolic secant. This derivative can be found in 5th row
of ∇J ′. Note that the sign is opposite before multiplication by −Γ . Since the
agent does not observe velocity ẋ, the corresponding sensory prediction error
involving φ1 is absent at the second level (4th row of ∇J ′).

Concatenating the vector J ′ allows for simultaneous integration of the
agent and the environment by using block matrices for Q and Γ . Assuming
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Hamiltonian dynamics for the agent as well, we can write the block system
matrices as

Q =

⎡

⎢⎢
⎢⎢
⎣

0 −1 0 0 0
1 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

⎤

⎥⎥
⎥⎥
⎦

, Γ =

⎡

⎢⎢
⎢⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 γ1 0 0
0 0 0 γ2 0
0 0 0 0 γ3

⎤

⎥⎥
⎥⎥
⎦

, x =

⎡

⎢⎢
⎢⎢
⎣

x
ẋ
μ0

μ1

a

⎤

⎥⎥
⎥⎥
⎦

. (12)

Here x denotes the state vector of the combined system similarly to Eq. 3 and
Q encodes two blocks of Hamiltonian dynamics. Internal states of the agent
additionally perform gradient descent on J(μ0:1, φ0, a) with learning rates γ1
and γ2. Action is updated by gradient descent on J(μ0:1, φ0, a) with learning
rate γ3. Note that by virtue of the Fokker-Planck formalism, the learning rates
acquire an interpretation in terms of the amplitude of random fluctuations. In
other words, maintaining nonequilibrium steady state in a noisy environment
mandates high learning rates. Substituting Eq. 10 and 12 into Eq. 3 now finishes
the dynamics that underwrite active inference for a partition of states (evolving
under the dynamics of Eq. 3) into external states, internal states, sensory states
and action.

5 Results

We simulated the system for 50 timesteps with γ1 = γ2 = 0.1, γ3 = 1, σ2
•n = 0.1,

hn(μn) = gn(μn) = μn, m = k = 1,u = 0.5 and initial state x = 2, ẋ = 2, μ0 = 0,
μ1 = 0, a = 0. Note that the initial states of the agent and the environment are
different. At t = 25, we change the parameters of the environmental process,
setting m = 10, k = 0.1 and resetting the states of the environment to x =
10, ẋ = 2. This results in an abrupt change in the environmental process. The
task of the agent is then twofold: (1) it needs to learn environmental dynamics
to accurately predict incoming observations and (2) it needs to flexibly adapt
to a change in previously learnt dynamics. Results are shown in Fig. 1. After
an initial learning period we observe that the agent accurately learns to track
the environmental process. The agents active states settle into an oscillatory
pattern to smooth out the trajectory and dampen noise. When the environmental
process changes, we observe a new learning period as the agent adapts to the
context switch. Prediction errors are quickly attenuated and the agent resumes
accurately tracking the environmental process.

6 Discussion

In this paper we showed a worked example of an agent in the form of a common
model structure and specified its equations of motion directly in terms of a
Fokker-Planck equation. Writing the agent as a Fokker-Planck equation renders
the coupling between theory such as [5,6] immediate, with the goal of providing
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Fig. 1. Trajectory of agent and environmental process. Note the close correspondence
between the blue and green lines (x and µ0), showing that the agent succesfully learns
to predict the environmental process. (Color figure online)

an entry point for researchers interested in FEP. A second and more subtle
point speaks to the Fokker-Planck equation as a way of writing equations of
motion. Writing system dynamics in terms of the Fokker-Planck equation allows
for interpreting the equations of motion as a “mechanics” The agent presented
here operates under Hamiltonian mechanics but [5] opens up the possibility of
investigating quantum- or electro-mechanical agents as well since these can also
be written in terms of Q and Γ . Additionally, FEP literature offers a number
of alternative free energies that are available as alternatives for the potential
function J(x), for example the Expected, Generalised and constrained Bethe
free energies [7,11,13]. By combining choices for Q, Γ and J(x) it is immediately
clear that Fokker-Planck-based agents represent a sizeable class of agents that
are mostly unexplored in practical applications.
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Dynamics of a Bayesian Hyperparameter
in a Markov Chain
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Abstract. The free energy principle which underlies active inference
attempts to explain the emergence of Bayesian inference in stochastic
processes under the assumption of (non-equilibrium) steady state distri-
butions. We contribute a study of the dynamics of an exact Bayesian
inference hyperparameter embedded in a Markov chain that infers the
dynamics of an observed process. This system does not have a steady-
state but still contains exact Bayesian inference. Our study may con-
tribute to future generalizations of the free energy principle to non-steady
state systems.

Our treatment uses well-known constructions in Bayesian inference.
The main contribution is that we take a different perspective than that of
standard treatments. We are interested in how the dynamics of Bayesian
inference look from the outside.

Keywords: Free energy principle · Active inference · Markov
blankets · Bayesian inference

1 Introduction

One of the most fundamental components of the free energy principle is the
approximate Bayesian inference lemma [1]. It claims to provide a sufficient con-
dition for (possibly approximate) Bayesian inference to occur within an ergodic
multivariate Markov process. The condition is that there is a partitioning of
the variables into internal, active, sensory, and external variables such that the
steady-state distribution factorizes in a particular way. If we write μ for internal,
a for active, s for sensory, η for external variables and p∗ for the steady state
density then the required factorization is the conditional independence relation

p∗(μ, η|s, a) = p∗(μ|s, a)p∗(η|s, a). (1)

This means that (S,A) form a Markov blanket for μ and also for η. However,
Bayesian inference can also happen inside processes that don’t have steady-
state densities. We will illustrate this with two examples below. This explicitly
shows that ergodicity and the corresponding Markov blanket condition are only
sufficient for Bayesian inference and not necessary.

c© Springer Nature Switzerland AG 2020
T. Verbelen et al. (Eds.): IWAI 2020, CCIS 1326, pp. 35–41, 2020.
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Often, the dynamics of the hyperparameters1 of Bayesian inference are rele-
gated to the background and the focus is on how to compute posteriors for a given
hyperparameter or prior. The embedding of both the observed process as well as
the hyperparameter into a Markov chain converts standard results into a setting
very similar to that of the free energy principle in [1]. The differences are that
we have a discrete countably infininte state space instead of a continuous one,
discrete instead of continuous time, and in the current version no actions. We
will include actions into our setting in future work. Methods for transitioning to
continuous systems are well studied so that we are optimistic that insights from
the discrete setting can eventually be carried over to the continuous domain. In
general we think that the method of embedding Bayesian inference and possibly
also approximate Bayesian inference processes into Markov chains can provide
rigorously defined examples of interesting systems whose properties can then be
studied from an external point of view. The present work exhibits how this can
be done in principle.

We observe that the dynamics of the Bayesian hyperparameter can be spec-
ified directly in dependence on the last hyperparameter and the observation.
This highlights the fact that the probability distributions representing the belief
that is being updated are in some sense unnecessary for the dynamics of the
process. They have no effect that isn’t captured by the hyperparameter itself.
This is similar to the situation of the approximate inference lemma where the
most likely internal state only “appears” to engage in approximate Bayesian
inference with respect to the external state. If we forgot how we derived the
hyperparameter dynamics then all we could say is that they appear to engage in
Bayesian inference since there is a belief updating process compatible with their
dynamics.

2 IID Parameter Inference

Assume as given an identically and independently distributed (IID) random
process (Xt)t∈N with sample space X specified by a categorical distribution with
parameter φ = (φx)x∈X which is a vector of the probabilities of the different
outcomes i.e. φx ∈ [0, 1] and

∑

x∈X
φx = 1. (2)

For each t ∈ N we then have

p(xt|φ) =
∏

x

φ
δxxt
x (3)

where δxxt
is the Kronecker delta.

1 For example, the pseudo-counts that are accumulated as the parameters of a Dirichlet
posterior over the categorical states of a generative process.
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Ξ1 Ξ2

X1 X2

ξ0

X0

φ

Fig. 1. Bayesian network of the hyperparameter updating process for an IID process
with parameter φ and initial hyperparameter ξ0.

We then assume another process (Ξt)t∈N whose dynamics are those of a
Bayesian hyperparameter (specifically a parameter of a Dirichlet distribution
over parameters of categorical distributions) that updates to parameterize the
posterior after each sample from (Xt)t∈N. More precisely, we imagine that for all
t ∈ N the outcome ξt parameterizes a Dirichlet distribution q(φ̂|ξt) over possible
(values of/categorical distribution parameters) φ.2 After observing a new sample
xt the posterior q(φ̂|xt, ξt) is then well defined. To update ξt to ξt+1 we require
that ξt+1 is the parameter of the posterior. For this we must assume that there
exists ξ ∈ Ξ such that q(φ̂|xt, ξt) = q(φ̂|ξ). More generally, we can require that

p(ξt+1|ξt, xt) := δf(ξt,xt)(ξt+1) (4)

with

f(ξt, xt) := arg min
ξ

KL[q(Φ̂|ξ)||q(Φ̂|xt, ξt)]. (5)

In the case we chose where ξt is the parameter of a Dirichlet distribution over
categorical parameters the solution to this optimisation is3

ξt+1 = ξt + δxt
(6)

since ξt are vectors with |X | components we can also write this (maybe more
clearly) componentwise, i.e. for each component x ∈ X :

(ξt+1)x := (ξt)x + (δxt
)x (7)

2 We add a hat to variables that the beliefs encoded by ξt range over. This is to
highlight that the hatted variables can take different values from the actual ones e.g.
when we have a fixed φ that defines the IID process then in general the encoded
belief q(φ̂|ξt) still ranges over φ̂ �= φ. A more technical reason is that the hatted
variables are in some sense virtual. This should become clearer in the following. A
rigorous definition of what “virtual” means is beyond the scope of this paper.

3 This is the solution because it leads to the KL divergence being zero which means
q(Φ̂|f(ξt, xt)) = q(Φ̂|xt, ξt). See e.g. [2] for properties of Dirichlet priors for categor-
ical distributions.
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Here (δxt
)x := δxtx with δxtx the Kronecker delta. In other words, δxt

is a one-hot
encoding of xt. This defines all the mechanisms/kernels in the Bayesian network
Fig. 1 which illustrates our setting. We make two observations:

– Note that while we defined the dynamics of ξt via Bayesian infer-
ence/updating, the resulting dynamics are just those of a counter of occur-
rences. There is no reference anymore to the belief q(Φ̂|ξt).

– The resulting Markov chain is not ergodic. The Markov chain state at time t is
defined (ξt, xt). A Markov chain can only be ergodic if all states are recurrent.
However, since each component (ξt)x of ξt is non-decreasing and one of the
components increases at every timestep we can never have ξt = ξt+n for any
integer n > 0.

2.1 Fully Observable Markov Chain

Ξ1 Ξ2ξ0 Ξ3

Y1 Y2y0 Y3

X1 X2x0 X3

φ

Fig. 2. Bayesian networks of the hyperparameter updating process for a fully observ-
able Markov chain with Markov matrix specified by φ, initial Markov chain state x0,
initial stored state y0, and initial hyperparameter ξ0. The storage variable Yt stores
the values of Xt−1 so that Ξt+1 can use the pair (xt−1, xt) = (yt, xt) which indicates
the transition that occurred from t − 1 to t to update.

In order to get an intuition for how to generalise the simple IID case to more
interesting cases we look at possibly the next most simple case of inferring the
transition probabilities of a time-homogenous Markov chain. Assume as given
a time-homogenous finite (discrete-time) Markov chain (Xt)t∈N with sample
space X , initial state x0 ∈ X , and Markov matrix (transition probabilities)
p(xt+1|xt) = φxt+1xt

. Here (φxt+1xt
)xt+1,xt∈X is a matrix of probabilities whose

columns sum to one i.e. φxt+1xt
∈ [0, 1] and for all xt ∈ X
∑

xt+1∈X
φxt+1xt

= 1. (8)

For each t ∈ N we then have

p(xt+1|xt, φ) : =
∏

x′x

φ
(δxt+1⊗xt )x′x

x′x (9)



Dynamics of a Bayesian Hyperparameter in a Markov Chain 39

where we define for x, y ∈ X , δx⊗y is a |X | × |X | matrix with

(δx⊗y)ij :=

{
1 if i = x and j = y

0 else.
(10)

We now assume two other processes (Ξt)t∈N and (Yt)t∈N. Similar to Sect. 2
dynamics of (Ξt)t∈N are those of a Bayesian hyperparameter (a parameter of
a Dirichlet distribution over parameters of |X | categorical distributions) that
updates to parameterize the posterior after each transition from xt−1 to xt.
Since xt−1 is not available to ξt+1 directly it gets stored in yt. So the update
depends on both xt and yt. More precisely, we imagine that for all t ∈ N the
outcome ξt parameterizes a Dirichlet distribution q(φ̂|ξt) over possible (values
of/categorical distribution parameters) φ. At each timestep ξt+1 is updated in
response to the pair (yt, xt) where xt is a new sample from the Markov chain and
yt is the stored previous sample xt−1 from the Markov chain. At the same time
yt+1 is updated by setting it equal to xt. In this way all values/data necessary
for the next update are explicitly present at t + 1.

The posterior q(φ̂|xt, yt, ξt) which corresponds to q(φ̂|xt, xt+1, ξt) is then
well defined. To update ξt to ξt+1 we require that ξt+1 is the parameter of
the posterior. For this we must assume that there exists ξ ∈ Ξ such that
q(φ̂|xt, yt, ξt) = q(φ̂|ξ). More generally, we can require that

p(ξt+1|ξt, xt, yt) := δf(ξt,xt,yt)(ξt+1) (11)

with

f(ξt, xt, yt) := arg min
ξ

KL[q(Φ̂|ξ)||q(Φ̂|xt, yt, ξt)]. (12)

When ξt is the parameter of a Dirichlet distribution over categorical param-
eters this is equivalent to (cmp. [2])

f(ξt, xt, yt) : = ξt + δxt⊗yt
. (13)

The update of yt is just the copying of xt:

p(yt+1|xt) := δxt
(yt+1) (14)

With this, all the mechanisms/kernels in the Bayesian network Fig. 2 which
illustrates our setting are defined.

We make two observations:

– Again the dynamics of ξt are just those of a counter of occurrences (of tran-
sitions now). There is no reference anymore to a belief.

– The resulting Markov chain is also not ergodic.
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Ξ1 Ξ2ξ0 Ξ3

Q1 Q2Q0 Q3

Y1 Y2y0 Y3

X1 X2x0 X3

φ

Fig. 3. Bayesian networks of the hyperparameter updating process for a fully observ-
able Markov chain. Here we include the belief distribution as a single random variable
Qt. This random variable takes values in the joint probability distributions over Φ̂×X N

as explained in the text.

Internal Belief Dynamics. We can make the internal belief more explicit by
viewing it as a coarse-graining of the Markov chain state (ξt, yt, xt).

Let Q be the set of internal belief distributions that each pair (yt, ξt) is
mapped to and write Qt as the random variable that represents the internal
belief distribution at time t (see Fig. 3). An instance of such a belief distribution
is then denote by qt.

For a particular (external) timestep t the joint distribution qt is written

qt(φ̂, x̂−1:∞) :=
∞∏

τ=0

q(x̂τ |x̂τ−1, φ̂)qt(x̂t−1)qt(φ̂) (15)

where the “intitial” distributions qt(x̂t−1) and qt(φ̂) will be determined from
(yt, ξt) via the two functions we discuss below:

qt(x̂t−1) := bY (yt)(x̂−1) qt(φ̂) := bΞ(ξt)(φ̂). (16)

First define the functions bΞ : Ξ → ΔΦ̂ and bY : Y → ΔX̂ via

bΞ(ξ)(φ̂) :=
1

B(ξ)

∏

x′x

φ̂
(ξ)x′x−1
x′x bY (y)(x̂−1) := δy(x̂−1), (17)

where B(ξ) is the beta function.
Using these two distributions as building blocks we can define a third function

bY,Ξ : Y × Ξ → ΔΘ×XN .

bY,Ξ(y, ξ)(φ̂, x̂−1:∞) : =
∞∏

τ=0

q(xτ |xτ−1, φ̂)bY (y)(x−1)bΞ(ξ)(φ̂) (18)

=
1

B(ξ)

∏

x′x

φ̂
(ξ+c(x−1:∞))x′x−1
x′x δy(x−1). (19)
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where

c(x0:t) :=
t−1∑

τ=1

δxτ
⊗ δxτ −1. (20)

With this we can define the dependence of Qt on the external variables (yt, ξt):

p(qt|yt, ξt) := δbY,Ξ(yt,ξt)(qt). (21)

With this the Bayesian network of Fig. 3 is fully defined.
This shows that Qt for each t is a function of the pair (yt, ξt) and therefore

a coarse-graining of the Markov chain state. This highlights the virtual or inter-
pretational nature of the beliefs in this setting. They have no consequence for
the next state of the Markov chain.
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Abstract. Online system identification is the estimation of parameters
of a dynamical system, such as mass or friction coefficients, for each mea-
surement of the input and output signals. Here, the nonlinear stochastic
differential equation of a Duffing oscillator is cast to a generative model
and dynamical parameters are inferred using variational message passing
on a factor graph of the model. The approach is validated with an exper-
iment on data from an electronic implementation of a Duffing oscillator.
The proposed inference procedure performs as well as offline prediction
error minimisation in a state-of-the-art nonlinear model.

Keywords: Online system identification · Duffing oscillator · Free
energy minimisation · Variational message passing · Forney factor
graphs

1 Introduction

Natural agents are believed to develop an internal model of their motor system
by generating actions in muscles and observing limb movements [11]. It has been
suggested that forming this internal model is analogous to a form of online system
identification [24]. System identification, i.e. estimating dynamical parameters
from observed input and output signals, has a rich history in engineering. But
there might still be much to gain from considering biologically-plausible proce-
dures. Here, I explore online system identification using a leading theory of how
brains process information: free energy minimisation [3,8].

To test free energy minimisation for use in engineering applications, I consider
a specific benchmark1 problem called a Duffing oscillator. Duffing oscillators are
relatively well-behaved nonlinear differential equations, making them excellent
toy problems for methodological research. Its differential equation is cast to a
generative model, with a corresponding factor graph. The factor graph admits
a recursive parameter estimation procedure through message passing [12,14].
Specifically, variational message passing minimises free energy [5,13,18]. Here,
I infer the parameters of a Duffing oscillator using online variational message
passing. Experiments show that it performs as well as a nonlinear ARX model
with parameters trained offline using prediction error minimisation [2].
1 http://nonlinearbenchmark.org/.
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2 System

Consider a rigid frame with two prongs facing rightwards (see Fig. 1 left). A
steel beam is attached to the top prong. If the frame is driven by a periodic
forcing term, the beam will displace horizontally as a driven damped harmonic
oscillator. Two magnets are attached to the bottom prong, with the steel beam
suspended in between. These act as a nonlinear feedback term on the beam’s
position, attracting or repelling it as it gets closer [15].

Fig. 1. (Left) Example of a physical implementation of a Duffing oscillator. (Right)
Example of input and output signals.

Let y(t) be the observed displacement, x(t) the true displacement, and u(t)
the observed driving force. The position of the beam is described as follows [25]:

m
d2x(t)

dt2
+ c

dx(t)
dt

+ ax(t) + bx3(t) = u(t) + w(t) (1a)

y(t) = x(t) + v(t), (1b)

where m is mass, c is damping, a the linear and b the nonlinear spring stiffness
coefficient. Both the state transition as well as the observation likelihood contain
noise terms, which are assumed to be Gaussian distributed: w(t) ∼ N (0, τ−1)
(process noise) and v(t) ∼ N (0, ξ−1) (measurement noise). The challenge is to
estimate m, c, a, b, τ and ξ such that the output of the system can be predicted
as accurately as possible.

3 Identification

First, I discretise the state transition of Eq. 1 using a central difference for the
second derivative and a forward difference for the first derivative. Re-arranging
to form an expression in terms of xt+1 yields:

xt+1 =
2m + cδ − aδ2

m + cδ
xt +

−bδ2

m + cδ
x3

t +
−m

m + cδ
xt−1 +

δ2

m + cδ
(ut + wt) , (2)
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where δ is the sample time step. Secondly, to ease inference at a later stage, I
perform the following variable substitutions:

θ1 =
2m+cδ−aδ2

m+cδ
, θ2 =

−bδ2

m+cδ
, θ3 =

−m

m+cδ
, η =

δ2

m+cδ
, γ =

τ(m+cδ)2

δ4
, (3)

where the square in the numerator for γ stems from absorbing the coefficient
into the noise term (V[ηwt] = η2

V[wt]). Note that the mapping between φ =
(m, c, a,b, τ) and ψ = (θ1, θ2, θ3, η, γ) can be inverted to recover point estimates:

m =
−θ3δ

2

η
, c =

(1 + θ3)δ
η

, a =
1 − θ1 − θ3

η
, b =

−θ2
η

, τ = γη2 . (4)

Thirdly, the state transition can be cast to a multivariate first-order form:[
xt+1

xt

]
︸ ︷︷ ︸

zt

=
[
0 0
1 0

]
︸ ︷︷ ︸

S

[
xt

xt−1

]
︸ ︷︷ ︸

zt−1

+
[
1
0

]
︸︷︷︸

s

g(θ, zt−1) +
[
1
0

]
ηut +

[
1
0

]
w̃t , (5)

where g(θ, zt−1) = θ1xt + θ2x
3
t + θ3xt−1 and w̃t ∼ N (0, γ−1). The system is now

a nonlinear autoregressive process. Lastly, integrating out w̃t and vt produces a
Gaussian state transition and a Gaussian likelihood, respectively:

zt ∼ N (f(θ, zt−1, η, ut), V ) (6a)

yt ∼ N (s�zt, ξ
−1) , (6b)

where f(θ, zt−1, η, ut) = Szt−1 + sg(θ, zt−1) + sηut and V =
[
γ−1 0 ; 0 ε

]
. The

number ε represents a small noise injection to stabilise inference [6].
To complete the generative model description, priors must be defined. Mass

m and process precision τ are known to be strictly positive parameters, while
the damping and stiffness coefficients can be both positive and negative. By
examining the variable substitutions, it can be seen that θ1, θ2, θ3 and η can be
both positive and negative, but γ can only be positive. As such, the following
parametric forms can be chosen for the priors:

θ ∼ N (m0
θ, V

0
θ ) , η ∼ N (m0

η, v0
η) , γ ∼ Γ (a0

γ , b0γ) , ξ ∼ Γ (a0
ξ , b

0
ξ) . (7)

3.1 Free Energy Minimisation

Given the generative model, a free energy functional with a recognition model q
can be formed as follows:

− log p(y,u) ≤
∫∫

q(ψ, z)
q(ψ, z)

p(y,u, z, ψ)
dzdψ = F [q] (8)

where z = (z1, . . . , zT ), y = (y1, . . . , yT ) and u = (u1, . . . , uT ). I assume the
states factor over time and that the parameters are largely independent:

q(ψ, z) = q(θ)q(η)q(γ)q(ξ)
T∏

t=1

q(zt). (9)
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All recognition densities are Gaussian distributed, except for q(γ) and q(ξ), which
are Gamma distributed. In free energy minimisation, the parameters of the recog-
nition distributions depend on each other and are iteratively updated.

3.2 Factor Graphs and Message Passing

In online system identification, parameter estimates should be updated at each
time-step. That puts time constraints on the inference procedure. Message pass-
ing is an ideal inference procedure due to its efficiency in factorised generative
models [12]. Figure 2 is a graphical representation of the generative model, with
nodes for factors and edges for variables. Square nodes with Greek letters rep-
resent stochastic operations while · and = represent deterministic operations.
The node marked “NLARX” represents the state transition described in Eq. 6a.

NLARX

=

=

=

. . .

. . .

. . .

. . .

. . .

. . .

. . .

= . . .

4 ↓ 8↑
3 ↓ 7↑

2 ↓ 6↑
zt−1

1

→
9

→
5

← zt

12
→

γ

η

θ

· s

N

yt

=. . . . . .
ξ

10
→
11←

ut

N

N
N
Γ

Γ

Fig. 2. Forney-style factor graph of the generative model of a Duffing oscillator. Nodes
represent conditional distributions and edges represent variables. Nodes send messages
to connected edges. When two messages on an edge collide, the marginal belief q for the
corresponding variable is updated. Each belief update reduces free energy. By iterating
message passing, free energy is minimised.

The terminal nodes on the left represent the initial priors for the
states and dynamical parameters. Inference starts when these nodes
pass messages. The subgraph - separated by columns of dots - rep-
resents the structure of a single time step, recursively applied. Mes-
sages 1 , 2 , 3 , 4 and 10 represent beliefs q from previous time-steps.
Message 5 , arriving at the state transition node, originates from the likeli-
hood node attached to observation yt. Messages 6 , 7 , 8 , 9 and 11 combine
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priors from previous time steps and likelihoods of observations, and are used to
update beliefs q. Message 12 is the current state belief and becomes message 1
in the next time step.

The graph actually contains more messages, such as those sent by equal-
ity nodes. I have hidden them to avoid complicating the figure. Their form has
been extensively described in the literature and can be looked up easily [12,14].
Modern message passing toolboxes, such as Infer.NET and ForneyLab.jl, auto-
matically incorporate them. However, the NLARX node is new. Its messages can
be computed with2:

6 −→ν (θ) = exp
(
Eq(zt)q(zt−1)q(η)q(γ)

[
log N (f(θ, zt−1, η, ut), V )

])
(10a)

7 −→ν (η) = exp
(
Eq(zt)q(zt−1)q(θ)q(γ)

[
log N (f(θ, zt−1, η, ut), V )

])
(10b)

8 −→ν (γ) = exp
(
Eq(zt)q(zt−1)q(θ)q(η)

[
log N (f(θ, zt−1, η, ut), V )

])
(10c)

9 −→ν (zt) = exp
(
Eq(zt−1)q(θ)q(η)q(γ)

[
log N (f(θ, zt−1, η, ut), V )

])
, (10d)

where I use a first-order Taylor expansion to approximate the expected value of
the nonlinear autoregressive function g(θ, zt−1).

Loeliger et al. (2007) have written an accessible introduction on message pass-
ing in factor graphs [14]. Variational message passing in autoregressive processes
has been described in detail as well [5,19].

4 Experiment

The Duffing oscillator has been implemented in an electronic system called Sil-
verbox [25]. It consists of T = 131702 samples, gathered with a sampling fre-
quency of 610.35 Hz. Figure 3 shows the time-series, plotted at every 80 time
steps. There are two regimes: the first 40000 samples are subject to a linearly
increasing amplitude in the input (left of the black line in Fig. 3) and the remain-
ing samples are subject to a constant amplitude but contain only odd harmonics
(right of the black line). The second regime is used as a training data set, where
both input and output data were given and parameters needed to be inferred.
The first regime is used as a validation data set, where the inferred parameters
are fixed and the model needs to make predictions for the output signal.

I performed two experiments3: a 1-step ahead prediction error and a simula-
tion error setting. I used ForneyLab.jl, with NLARX as a custom node, to run the
message passing inference procedure [4]. I call the model above FEM-NLARX,

2 Derivations at https://github.com/biaslab/IWAI2020-onlinesysid.
3 Experiment notebooks at https://github.com/biaslab/IWAI2020-onlinesysid.

https://github.com/biaslab/IWAI2020-onlinesysid
https://github.com/biaslab/IWAI2020-onlinesysid
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Fig. 3. Silverbox data set, sampled at every 80 time steps for visualisation. The black
line splits it into validation data (left) and training data (right).

for Nonlinear Latent Autoregressive model with eXogenous input using Free
Energy Minimisation. I implemented two baselines: the first is NLARX without
the nonlinearity (i.e. the nonlinear spring coefficient b = 0), dubbed FEM-
LARX. The second is a standard NARX model, implemented using MATLAB’s
System Identification Toolbox. I modelled the static nonlinearity with a sigmoid
network of 4 units (in line with the 4 coefficients used by NLARX and LARX).
Parameters were inferred offline using Prediction Error Minimisation. Hence,
this baseline is called PEM-NARX.

I chose uninformative priors for the coefficients θ and η: Gaussians centred
at 1 with precisions of 0.1. The authors of Silverbox indicate that the signal-
to-noise ratio at measurement time was high [25]. I therefore chose informative
priors for the noise parameters: a0

ξ = 1e8 and a0
γ = 1e3 (shape parameters) and

b0ξ = 1e3 and b0γ = 1e1 (scale parameters).

4.1 1-Step Ahead Prediction Error

At each time-step in the validation data, the models were given the previous
output signal yt−1, yt−2 and the current input signal ut and had to infer the cur-
rent output yt. It is a relatively easy task, which is reflected in all three models’
performance. The top row in Fig. 4 shows the predictions of all three models in
purple and their squared error with respect to the true output signal in black.
The left column shows the offline NARX baseline (PEM-NARX), the middle
column the linear online latent autoregressive baseline (FEM-LARX) and the
right column the nonlinear online latent autoregressive model (FEM-NLARX).
Note that the errors in the top row seem completely flat. The bottom row in the
figure plots the errors on a log-scale. PEM-NARX has a mean squared error of
5.831e−5, FEM-LARX one of 5.945e−5 and FEM-NLARX one of 5.830e−5.

4.2 Simulation Error

In this experiment, the models were not given the previous output signal, but had
to use their predictions from the previous time-step. This is a much harder task,
because errors will accumulate. The top row in Fig. 5 again shows the predictions
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Fig. 4. 1-step ahead prediction errors. (Left) Offline NARX model with sigmoid net
(PEM-NARX), (middle) online linear model (FEM-LARX) and (right) online nonlinear
model (FEM-NLARX). (Top) Predictions (purple) and squared error (black). (Bottom)
Squared prediction errors in log-scale. (Color figure online)

of all three models (purple) and their squared error (black). It can already be
seen that the errors increase as the input signal’s amplitude rises. The bottom
row plots the errors on a log-scale. PEM-NARX has a mean squared error of
1.000e−3, FEM-LARX one of 1.002e−3 and FEM-NLARX one of 0.926e−3.

5 Discussion

The experimental results seem to justify looking to nature for inspiration. Free
energy minimisation, in the form of variational message passing, seems a gener-
ally applicable and well-performing inference technique. The difficulties mostly
lie in deriving variational messages (i.e. Eqs. 10).

Improvements in the proposed procedure could be made with a richer approx-
imation of the nonlinear autoregressive function (e.g. unscented transform) [20].
Alternatively, a hierarchy of latent Gaussian filters or autoregressive processes
could be used to obtain time-varying noise parameters or time-varying coeffi-
cients [19,22]. Furthermore, instead of discretising such that an auto-regressive
model is obtained, one could express the evolution of the states in generalised
coordinates. Lastly, black-box models could be explored for further performance
improvements.

A natural next step is for an active inference agent to determine the control
signal regime (i.e. optimal design). Unfortunately, this is not straightforward:
the current formulation relies on variational free energy which does not produce
an epistemic term in the objective. The epistemic term is needed to encourage
exploration; i.e. try sub-optimal inputs to reduce uncertainty. To arrive at an
epistemic term, one would need to work with expected free energy [17]. But it
is unclear how expected free energy could be incorporated into factor graphs.
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Fig. 5. Simulation errors. (Left) Offline NARX model with sigmoid net (PEM-NARX),
(middle) online linear model (FEM-LARX) and (right) online nonlinear model (FEM-
NLARX). (Top) Predictions (purple) and squared error (black). (Bottom) Squared
prediction errors in log-scale. (Color figure online)

5.1 Related Work

Online system identification procedures typically employ recursive least-squares
or maximum likelihood inference, with nonlinearities modelled by basis expan-
sions or neural networks [7,16,23]. Online Bayesian identification procedures
come in two flavours: sequential Monte Carlo samplers [1,10] and online varia-
tional Bayes [9,26]. This work is novel in the use of variational message passing
as an efficient implementation of online variational Bayes and its application to
a nonlinear autoregressive model.

6 Conclusion

I have presented a free energy minimisation procedure for online system identifi-
cation. Experimental results showed comparable performance to a state-of-the-
art nonlinear model with parameters estimated offline. This indicates that the
procedure performs well enough to be deployed in engineering applications.

Future work should test variational message passing in more challenging
nonlinear identification settings, such as a Wiener-Hammerstein benchmark
[21]. Furthermore, problems with time-varying dynamical parameters, such as a
robotic arm picking up objects with mass, would be interesting for their connec-
tion to natural agents.

Acknowledgements. The author thanks Magnus Koudahl, Albert Podusenko and
Thijs van de Laar for insightful discussions and the reviewers for their constructive
feedback.
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Abstract. Active inference relies on state-space models to describe the
environments that agents sample with their actions. These actions lead
to state changes intended to minimize future surprise. We show that
surprise minimization relying on Bayesian inference can be achieved by
filtering of the sufficient statistic time series of exponential family input
distributions, and we propose the hierarchical Gaussian filter (HGF) as
an appropriate, efficient, and scalable tool for active inference agents to
achieve this.

Keywords: Active inference · Exponential families · Message passing ·
Precision-weighted prediction errors · Hierarchical Gaussian filter

1 Introduction

Active inference [3] is a framework for modelling and programming the behaviour
of agents negotiating their continued existence in a given environment. Under
active inference, an agent chooses its actions such that they minimize the free
energy of its model of the environment. In order to do this, the agent needs to
perform inference on the state of the environment and its own internal control
states which generate actions.

The agent performing active inference and the researcher modelling such an
agent have a converging interest in a simple, modular, and automated algorithm
that allows them to perform free energy minimization with complex hierarchi-
cal models. Accordingly, there have recently been advances in developing an
automated algorithmic framework for free energy minimization in active infer-
ence [1,7].

In this paper, we are concerned with the filtering of environmental input
which reaches the agent through its Markov blanket. We show that exponential-
family input distributions can be inferred by tracking the mean of the suffi-
cient statistics of the inputs by passing simple update messages which amount
c© Springer Nature Switzerland AG 2020
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to precision-weighted prediction errors. For stationary input distributions, this
implements exact Bayesian inference. In the more common case of non-stationary
input distributions, we propose to apply hierarchical Gaussian filtering [4,5] to
the sufficient statistic time series, resulting in approximate Bayesian inference
with a dynamic learning rate.

2 Bayesian Inference Reduced to Mean-Tracking

2.1 Mean Tracking and Exponential Weighting

As a preliminary, we note that the arithmetic mean x̄n := 1
n

∑n
i=1 xi of a time

series {x1, x2, . . . , xn} can be updated sequentially from x̄n to x̄n+1 when a new
observation xn+1 occurs.

x̄n+1 = x̄n +
1

n + 1
(xn+1 − x̄n) (1)

If we take the previous mean x̄n to be a prediction for the new observation
xn+1, then the difference xn+1 − x̄n is a prediction error. The update to x̄n then
amounts to adding the prediction error weighted by 1/(n + 1). As n grows, the
weight of prediction errors approaches zero, which ensures the equal weighting
of all observations in the mean.

As a further preliminary, we note that if we replace the weight 1/(n + 1) of
the prediction error with a constant learning rate α ∈ [0, 1], we no longer get
the mean x̄n of the time series but the exponentially weighted average qn.

qn+1 = qn + α (xn+1 − qn) (2)

With q0 := 0 and γ := 1 − α, this can be written in closed form,

qn = (1 − γ)
n−1∑

i=0

γixn−i, (3)

which makes apparent the exponential downweighting of observations xi as they
lie further in the past.

2.2 A Conjugate Prior Which Reduces Bayesian Inference to Mean
Tracking for Exponential Families

Exponential families of probability distributions are those which can be written
in the form

p (x|ϑ) = fx(ϑ) := h(x) exp (η(ϑ) · t(x) − b(ϑ)) , (4)

where x is a (possibly) vector-valued observation, ϑ is a parameter vector, h(x)
is a normalization constant, η(ϑ) is the so-called ‘natural’ parameter vector,
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t(x) is the sufficient statistic vector, and b(ϑ) is a scalar function. If we choose
as our prior

p (ϑ|ξ, ν) = gξ,ν(ϑ) := z (ξ, ν) exp (ν (η (ϑ) · ξ − b(ϑ))) , (5)

where ξ is a hyperparameter vector, ν > 0 a scalar hyperparameter, and z(ξ, ν)
the normalization constant

z(ξ, ν) :=
(∫

exp (ν (η (ϑ) · ξ − b(ϑ))) dϑ

)−1

, (6)

then the posterior has the same form as the prior (i.e., it is conjugate) with
updated hyperparameters

ν ← ν + 1 (7)

ξ ← ξ +
1

ν + 1
(t(x) − ξ) . (8)

A proof of this is in the Appendix.
In other words, with the prior introduced in Eq. 5, Bayesian inference with

exponential family models reduces to tracking the mean of the sufficient statis-
tic t(xi) of the observations {x1,x2, . . .}. For a single observation x, inference
amounts to updating the hyperparameter ξ with the sufficient statistic t(x)
under the assumption that there have been ν previous observations with suffi-
cient statistic ξ.

3 Predictive Distributions

Agents performing active inference minimize the free energy of their model of
the environment by minimizing prediction errors regarding their observations
(in the long run; in the short run, it is necessary to risk surprises that won’t
kill us in order to gain the information needed to avoid being dead in the long
run). Therefore, the decisive goal and outcome of model-based inference is the
predictive distribution f̂ of inputs x. In the present framework, this is

f̂ξ,ν(x) :=
∫

fx(ϑ)gξ,ν(ϑ)dϑ. (9)

For the univariate Gaussian with unknown mean and precision, we will call this
the Gaussian-predictive distribution NP:

f̂ξ,ν(x) = NP (x; ξ, ν)

:=

√
1

π(ν + 1) (ξx2 − ξ2x)
Γ

(
ν+2
2

)

Γ
(

ν+1
2

)

(

1 +
(x − ξx)2

(ν + 1) (ξx2 − ξ2x)

)− ν+2
2

(10)



Hierarchical Gaussian Filtering for Active Inference 55

For ξx = 0 and ξx2 = 1, this becomes a Student’s-t distribution with ν+1 degrees
of freedom. Figure 1 shows how the Gaussian-predictive distribution NP works
in practice, i.e., how it adapts as ν, ξx, and ξx2 are updated sequentially according
to Eqs. 7 and 8.

Fig. 1. Sequential updates to the Gaussian-predictive distribution NP in response to
1024 samples drawn from a Gaussian with mean 5 and standard deviation 1/4 (red).
Initial hyperparameters were ξx = 0, ξx2 = 1/8, and ν = 1, corresponding to the initial
NP in black. Updated predictive distributions after 2, 4, 8, . . . , 1024 samples are shown
in grey. (Color figure online)

4 Filtering of Sufficient Statistics for Non-stationary
Input Distributions

Active inference agents find themselves in environments where the distributions
underlying their observations are non-stationary. In such a setting, older obser-
vations have less value for inference about the present than newer ones. Using the
hyperparameter update scheme introduced above is then inappropriate because
it leads to predictive distributions which rely on outdated information and are
overconfident because they overestimate the amount of good information they
have. However, since our update scheme relies on tracking the mean of the suf-
ficient statistics of the observations, that is, simply on filtering the sufficient
statistic time series, we can apply any known filtering method to this time series
and use its output to construct predictive distributions. For example, instead
of applying Eq. 1, we could use Eq. 2, which amounts to an exponential down-
weighting of observations into the past. Using a constant learning rate in this
way corresponds to holding ν constant in Eq. 8. As is evident from Eq. 10, this
means that the predictive distribution retains its fat tails, meaning that an agent
will experience much less surprise at observations far from the predictive mean.
However, keeping ν constant raises the question what value to choose for it, and
when to change it.

A solution to this is the application of a hierarchical Gaussian filter
(HGF) [4,5] to the sufficient statistic time series. The HGF, which contains the
Kalman filter as a special case, allows for filtering with an adaptive learning rate
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which is adjusted according to a continually updated prediction about the volatil-
ity of the environment. Updates in the HGF are precision-weighted prediction
errors derived from a hierarchical volatility model by variational approximation.
For example, in the case of a Gaussian input distribution as in Fig. 1, input x
would be filtered by an HGF, allowing for a posterior predictive distribution that
dynamically adapts to a volatile input distribution. Figure 2 shows an example
of how this procedure yields an adaptive ν, which falls in response to changes
in the input distribution and so ensures that the predictive distribution remains
fat-tailed at all times.
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Fig. 2. Example of a time series (input x, top panel, fine blue line) filtered with an
HGF (posterior mean ξx, top panel, red line), which infers the ground truth μ (top
panel, yellow line) well in a volatile environment. Comparison of the HGF updates with
Eq. 8 yields implied ν (bottom panel). This never rises above 12, ensuring a fat-tailed
predictive distribution. In stable phases, implied ν rises; in volatile phases, it falls.
(Color figure online)

5 Discussion

We have shown a way to do exact Bayesian inference with exponential-family
models simply by tracking the mean of the sufficient statistic function as obser-
vations occur. For this to work, the prior introduced in Eq. 5 is crucial, but its
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significance has not been recognized before. The approach introduced here is
novel. While our prior appears in [2] and seems to have been forgotten since,
the resulting updates are there written in a form that obscures their meaning
as (precision-)weighted prediction errors and makes it obvious that the relation
to mean-tracking was not seen. However, once this is apparent, it supports a fil-
tering perspective on hyperparameter updates, which opens up new possibilities
such as the HGF filtering proposed in Sect. 4. Additionally, our prior has the
benefit of a ready interpretation: ν virtual previous observations with sufficient
statistic ξ.

For active inference agents, it is critical to predict observations in a way
that allows for non-stationary generative processes in the environment. In the
framework we propose, this can be achieved by filtering the sufficient statistics
of the input distribution using an HGF. This allows predictive distributions to
keep a shape (precise but fat-tailed and able to adapt quickly in response to
prediction errors) that optimally serves the purpose of minimizing surprise in
the long run.

This perspective can be expanded to include networks of HGF nodes where
the input distribution and its associated filter are the window into the deeper
layers of the network. These deeper layers encode the agent’s model of its envi-
ronment, and it is the free energy of this model that the agent endeavours to
minimize by active inference. The present work is therefore a natural comple-
ment to recent work on an automated algorithmic framework for free energy
minimization in active inference [1,6,7]. The simple message-passing nature of
the hyperparameter updates we are proposing fits naturally into message passing
schemes in deep networks.

Appendix: Proof of Eqs. 7 and 8

By Bayes’ theorem we have

p (ϑ|x, ξ, ν) ∝ p (x|ϑ) p (ϑ|ξ, ν)
= fx(ϑ)gξ,ν(ϑ)
= h(x) exp (η(ϑ) · t(x) − b(ϑ))

z (ξ, ν) exp (ν (η (ϑ) · ξ − b(ϑ)))
∝ exp (η(ϑ) · (t(x) + νξ) − (ν + 1)b(ϑ))

We only need to prove that the argument of the exponential function has the
required form. Normalization takes care of the rest. Rearranging the argument
gives us

η(ϑ) · (t(x) + νξ) − (ν + 1)b(ϑ)

= (ν + 1)
(

η(ϑ) · 1
ν + 1

(t(x) + νξ) − b(ϑ)
)

= (ν + 1)
(

η(ϑ) ·
(

ξ +
1

ν + 1
(t(x) − ξ)

)

− b(ϑ)
)

.
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From this, it follows that

p (ϑ|x, ξ, ν) = gξ′,ν′(ϑ)

with

ν′ = ν + 1

ξ′ = ξ +
1

ν + 1
(t(x) − ξ)
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Abstract. Deep active inference has been proposed as a scalable app-
roach to perception and action that deals with large policy and state
spaces. However, current models are limited to fully observable domains.
In this paper, we describe a deep active inference model that can learn
successful policies directly from high-dimensional sensory inputs. The
deep learning architecture optimizes a variant of the expected free energy
and encodes the continuous state representation by means of a variational
autoencoder. We show, in the OpenAI benchmark, that our approach has
comparable or better performance than deep Q-learning, a state-of-the-
art deep reinforcement learning algorithm.

Keywords: Deep active inference · Deep learning · POMDP · Control
as inference

1 Introduction

Deep active inference (dAIF) [1–6] has been proposed as an alternative to Deep
Reinforcement Learning (RL) [7,8] as a general scalable approach to perception,
learning and action. The active inference mathematical framework, originally
proposed by Friston in [9], relies on the assumption that an agent will perceive
and act in an environment such as to minimize its free energy [10]. Under this
perspective, action is a consequence of top-down proprioceptive predictions com-
ing from higher cortical levels, i.e., motor reflexes minimize prediction errors [11].

On the one hand, works on dAIF, such as [2,12,13], have focused on scal-
ing the optimization of the Variational Free-Energy bound (VFE), as described
in [9,14], to high-dimensional inputs such as images, modelling the generative
process with deep learning architectures. This type of approach preserves the
optimization framework (i.e., dynamic expectation maximization [15]) under
the Laplace approximation by exploiting the forward and backward passes of

1st International Workshop on Active inference, European Conference on Machine
Learning (ECML/PCKDD 2020).

c© Springer Nature Switzerland AG 2020
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the neural network. Alternatively, pure end-to-end solutions to VFE optimiza-
tion can be achieved by approximating all the probability density functions with
neural networks [1,3].

On the other hand, Expected Free Energy (EFE) and Generalized Free
Energy (GFE) were proposed to extend the one-step ahead implicit action com-
putation into an explicit policy formulation, where the agent is able to compute
the best action taking into account a time horizon [16]. Initial agent implemen-
tations of these approaches needed the enumeration over every possible policy
projected forward in time up to the time horizon, resulting in significant scaling
limitations. As a solution, deep neural networks were also proposed to approxi-
mate the densities comprising the agent’s generative model [1–6], allowing active
inference to be scaled up to larger and more complex tasks.

However, despite the general theoretical formulation, current state-of-the-art
dAIF, has only been successfully tested in toy problems with fully observable
state spaces (Markov Decision Processes, MDP). Conversely, Deep Q-learning
(DQN) approaches [7] can deal with high-dimensional inputs such as images.

Here, we propose a dAIF model1 that extends the formulation presented in [3]
to tackle problems where the state is not observable2 (i.e. Partially Observable
Markov Decision Processes, POMDP), in particular, the environment state has
to be inferred directly high-dimensional from visual input. The agent’s objective
is to minimize its EFE into the future up to some time horizon T similarly
as a receding horizon controller. We compared the performance of our proposed
dAIF algorithm in the OpenAI CartPole-v1 environment against DQN. We show
that the proposed approach has comparable or better performance depending
on observability.

2 Deep Active Inference Model

Fig. 1. Observations-state neural network architecture. The VAE encodes the visual
features that are relevant to reconstruct the input images. The encoder network encodes
observations to a state representation of the environment. The decoder reconstructs
the input observations from this representation.

1 The code is available on: https://github.com/Grottoh/Deep-Active-Inference-for-
Partially-Observable-MDPs.

2 We formulate image-based estimation and control as a POMDP—see [17] for a dis-
cussion.

https://github.com/Grottoh/Deep-Active-Inference-for-Partially-Observable-MDPs
https://github.com/Grottoh/Deep-Active-Inference-for-Partially-Observable-MDPs
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We define the active inference agent’s objective as optimizing its variational free
energy (VFE) at time t, which can be expressed as:

−Ft =DKL[q(s, a)‖p(ot, s0:t, a0:t)] (1)
= − Eq(st)[ln p(ot|st)] + DKL[q(st)‖p(st|st−1, at−1)]

+ DKL[q(at|st‖p(at|st)] (2)

where ot is the observation at time t, st is the state of the environment, at is the
agent’s action and Eq(st) is the expectation over the variational density q(st).

We approximate the densities of Eq. 2 with deep neural networks as proposed
in [1,3,4]. The first term, containing densities q(st) and p(ot|st) concerns the
mapping of observations to states, and vice-versa. We capture this objective
with a variational autoencoder (VAE). A graphical representation of this part
of the neural network architecture is depicted in Fig. 1 – see the appendix for
network details.

We can use an encoder network qθ(st|ot−3:t) with parameters θ to model
q(st), and we can use a decoder network pϑ(ot−3:t|zt) with parameters ϑ to
model p(ot|st). The encoder network encodes high-dimensional input as a dis-
tribution over low-dimensional latent states, returning the sufficient statistics of
a multivariate Gaussian, i.e. the mean sμ and variance sΣ. The decoder net-
work consequently reconstructs the original input from reparametrized sufficient
statistics z. The distribution over latent states can be used as a model of the
environment in case the true state of an environment is inaccessible to the agent
(i.e. in a POMDP).

The second term of Eq. 2 can be interpreted as state prediction error, which
is expressed as the Kullback-Leibler (KL) divergence between the state derived
at time t and the state that was predicted for time t at the previous time
point. In order to compute this term the agent must, in addition to the already
addressed q(st), have a transition model p(st|st−1, at−1), which is the probability
of being in a state given the previous state and action. We compute the MAP
estimate with a feedforward network ŝt = fφ(sμ,t−1, at−1). To compute the state
prediction error, instead of using the KL-divergence over the densities, we use
the Mean-Squared-Error (MSE) between the encoded mean state sμ and the
predicted state ŝ returned by fφ

The third and final term contains the last two unaddressed densities q(at|st)
and p(at|st). We model variational density q(at|st) using a feedforward neu-
ral network qξ(at|sμ,t, sΣ) parameterized by ξ, which returns a distribution over
actions given a multivariate Gaussian over states. Finally, we model action condi-
tioned by the state or policy p(at|st). According to the active inference literature,
if an agent that minimizes the free energy does not have the prior belief that
it selects policies that minimize its (expected) free energy (EFE), it would infer
policies that do not minimize its free energy [16]. Therefore, we can assume that
our agent expects to act as to minimize its EFE into the future. The EFE of a
policy π after time t onwards can be expressed as:
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Fig. 2. Computing the gradient of the value network with the aid of a bootstrapped
EFE estimate.

Gπ =
∑

τ>t

Gπ,t

Gπ,τ = − ln p(oτ )︸ ︷︷ ︸
−rτ

+DKL[q(sτ |π)‖q(sτ |oτ )]
(3)

Note that the EFE has been transformed into a RL instance by substituting
the negative log-likelihood of an observation − ln p(oτ ) (i.e. surprise) by the
reward rτ [3,18]. Since under this formulation minimizing one’s EFE involves
computing one’s EFE for each possible policy π for potentially infinite time
points τ , a tractable way to compute Gπ is required. Here we estimate Gπ

via bootstrapping, as proposed in [3]. To this end the agent is equipped with
an EFE-value (feedforward) network fψ(sμ,t, sΣ,t) with parameters ψ, which
returns an estimate G̃t that specifies an estimated EFE for each possible action.
This network is trained with the aid of a bootstrapped EFE estimate Ĝt, which
consists of the free energy for the current time step, and a β ∈ (0, 1] discounted
value net approximation of the free energy expected under q(a|s) for the next
time step:

Ĝt = −rt + DKL[q(st)‖q(st|ot)] + βEq(at+1|st+1)G̃t (4)

In this form the parameters of fψ(sμ,t, sΣ,t) can be optimized through gradient
descent on (see Fig. 2):

Lt = MSE(G̃t, Ĝt) (5)

The distribution over actions can then at last be modelled as a precision-weighted
Boltzmann distribution over our EFEs estimate [3,16]:

p(at|st) = σ(−γG̃t) (6)
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Finally, Eq. 2 is computed with the neural network density approximations as –
see Fig. 3.

−Ft = − Eqθ(st|ot−3:t)[ln pϑ(ot−3:t|zt)]

+ MSE(sμ,t, fφ(sμ,t−1, at−1))
+ DKL[qξ(at|sμ,t, sΣ,t)‖σ(−γfψ(sμ,t, sΣ,t))] (7)

where sμ,t and sΣ,t are encoded by qθ(st|ot−3:t).

Fig. 3. Variational Free Energy computation using the approximated densi-
ties. The VAE encodes high-dimensional input as a latent state space, which
is used as input to the other networks. Note that the third term of Eq. 7
(DKL[qξ(at|sμ,t, sΣ,t)‖σ(−γfψ(sμ,t, sΣ,t))]) has been split into an energy and an
entropy term (Any KL divergence can be split into an energy term and an entropy).

3 Experimental Setup

To evaluate the proposed algorithm we used the OpenAI Gym’s CartPole-v1, as
depicted in Fig. 4. In the CartPole-v1 environment, a pole is attached to a cart
that moves along a track. The pole is initially upright, and the agent’s objective
is to keep the pole from tilting too far to one side or the other by increasing or
decreasing the cart’s velocity. Additionally, the position of the cart must remain
within certain bound. An episode of the task terminates when the agent fails

Fig. 4. Cartpole-v1 benchmark (left) and cropped visual input used (right).
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either of these objectives, or when it has survived for 500 time steps. Each time
step the agent receives a reward of 1.

The CartPole state consists of four continuous values: the cart position, the
cart velocity, the pole angle and the velocity of the pole at its tip. Each run the
state values are initialized at random within a small margin to ensure variability
between runs. The agent can exact influence on the next state through two
discrete actions, by pushing the cart to the left, or by pushing it to the right.

Tests were conducted in two scenarios: 1) an MDP scenario in which the agent
has direct access to the state of the environment, and 2) a POMDP scenario in
which the agent does not have direct access the environment state, and instead
receives pixel value from which it must derive meaningful hidden states. By
default, rendering the CartPole-v1 environment returns a 3 × 400 × 600 (color,
height, width) array of pixel values. In our experiments we provide the POMDP
agents with a downscaled and cropped image. There the agents receive a 3 ×
37 × 85 pixel value array in which the cart is centered until it comes near the
left or right border.

4 Results

The performance of our dAIF agents was compared against DQN agents for the
MDP and the POMDP scenarios, and against an agent that selects it actions at
random. Each agent was equipped with a memory buffer and a target network
[19]. The memory buffer stores transitions from which the agent can sample
random batches on which to perform batch gradient descent. The target network
is a copy of the value network of which the weights are not updated directly
through gradient descent, but are instead updated periodically with the weights
of the value network. In between updates this provides the agent with fixed EFE-
value or Q-value targets, such that the value network does not have to chase a
constantly moving objective.

Fig. 5. Average reward comparison for the CartPole-v1 problem.
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The VAE of the POMDP dAIF agent is pre-trained to deconstruct input
images into a distribution over latent states and to subsequently reconstruct
them as accurately as possible.

Figure 5 shows the mean and standard deviation of the moving average
reward (MAR) over all runs for the five algorithms at each episode. Each agent
performed 10 runs of 5000 episodes. The moving average reward for an episode
e is calculated using an smoothing average:

MARe = 0.1CRe + 0.9MARe−1 (8)

Where CRe is the cumulative reward of episode e and MARe−1 is the MAR of
the previous episode.

The dAIF MDP agent results closely resemble those presented in [3] and
outperforms the DQN MDP agent by a significant margin. Further, the standard
deviation shadings show that the dAIF MDP is agent is more consistent between
runs than the DQN agent. The POMDP agents are both demonstrated to be
capable of learning successful policies, attaining comparable performance.

We have exploited probabilistic model based control through a VAE that
encodes the state. On the one hand, this allows the tracking of an internal
state which can be used for a range of purposes, such the planning of rewarding
policies and the forming of expectations about the future. On the other hand,
it makes every part of the algorithm dependent on the proper encoding of the
latent space, conversely to the DQN that did not require a state representation
to achieve the same performance. However, we expect our approach to improve
relative to DQN in more complex environments where the world state encoding
can play a more relevant role.

5 Conclusion

We described a dAIF model that tackles partially observable state problems, i.e.,
it learns the policy from high-dimensional inputs, such as images. Results show
that in the MDP case the dAIF agent outperforms the DQN agent, and performs
more consistently between runs. Both agents were also shown to be capable of
learning (less) successful policies in the POMDP version, where the performance
between dAIF and DQN models was found to be comparable. Further work will
focus on validating the model on a broader range of more complex problems.
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Appendix

Deep Q Agent MDP

Networks & params. Description

Ns Number of states.

Na Number of actions.

Q-value network Fully connected network using an Adam optimizer with
a learning rate of 10−3, of the form: Ns × 64 × Na.

γ Discount factor set to 0.98

Memory size Maximum amount of transition that can be stored in
the memory buffer: 65,536

Mini-batch size 32

Target network freeze
period

The amount of time steps the target network’s parame-
ters are frozen, until they are updated with the param-
eters of the value network: 25

Deep Q Agent POMDP

Networks & params. Description

Na Number of actions.

Q-value network Consists of three 3D convolutional layers (each followed
by batch normalization and a rectified linear unit) with
5×5×1 kernels and 2×2×1 strides with respectively 3,
16 and 32 input channels, ending with 32 output chan-
nels. The output is fed to a 2048× 1024 fully connected
layer which leads to a 1024 × Na fully connected layer.
Uses an Adam optimizer with the learning rate set to
10−5.

γ Discount factor set to 0.99

Memory size Maximum amount of transition that can be stored in
the memory buffer: 65,536

Mini-batch size 32

Target network freeze
period

The amount of time steps the target network’s parame-
ters are frozen, until they are updated with the param-
eters of the value network: 25
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Deep Active Inference Agent MDP

Networks & params. Description

Ns Number of states.

Na Number of actions.

Transition network Fully connected network using an Adam optimizer with
a learning rate of 10−3, of the form: (Ns + 1)× 64×Ns.

Policy network Fully connected network using an Adam optimizer with
a learning rate of 10−3, of the form: Ns × 64 × Na, a
softmax function is applied to the output.

EFE-value network Fully connected network using an Adam optimizer with
a learning rate of 10−4, of the form: Ns × 64 × Na.

γ Precision parameter set to 1.0

β Discount factor set to 0.99

Memory size Maximum amount of transition that can be stored in
the memory buffer: 65,536

Mini-batch size 32

Target network freeze
period

The amount of time steps the target network’s parame-
ters are frozen, until they are updated with the param-
eters of the value network: 25
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Deep Active Inference Agent POMDP

Networks & params. Description

Nl Size of the VAE latent space, here set to 32.

Na Number of actions.

Encoder-network
qθ(st|ot−3:t)

Consists of three 3D convolutional layers (each followed
by batch normalization and a rectified linear unit) with
5×5×1 kernels and 2×2×1 strides with respectively 3,
16 and 32 input channels, ending with 32 output chan-
nels. The output is fed to a 2048× 1024 fully connected
layer which splits to two additional 1024×Nl fully con-
nected layers. Uses an Adam optimizer with the learning
rate set to 10−5.

Decoder-network
pϑ(ot−3:t|zt)

Consists of a Nl × 1024 fully connected layer leading to
a 1024 × 2048 fully connected layer leading to three 3D
transposed convolutional layers (each followed by batch
normalization and a rectified linear unit) with 5× 5× 1
kernels and 2×2×1 strides with respectively 32, 16 and
3 input channels, ending with 3 output channels. Uses
an Adam optimizer with the learning rate set to 10−5.

Transition-network
fφ(sμ,t, at)

Fully connected network using an Adam optimizer with
a learning rate of 10−3, of the form: (2Nl +1)×64×Nl.

Policy-network
qξ(sμ,t, sΣ,t)

Fully connected network using an Adam optimizer with
a learning rate of 10−3, of the form: 2Nl × 64 × Na, a
softmax function is applied to the output.

EFE-value-network
fψ(sμ,t, sΣ,t)

Fully connected network using an Adam optimizer with
a learning rate of 10−4, of the form: 2Nl × 64 × Na.

γ Precision parameter set to 12.0

β Discount factor set to 0.99

α A constant that is multiplied with the VAE loss to take
it to the same scale as the rest of the VFE terms, set to
4 × 10−5

Memory size Maximum amount of transition that can be stored in
the memory buffer: 65,536

Mini-batch size 32

Target network freeze
period

The amount of time steps the target network’s parame-
ters are frozen, until they are updated with the param-
eters of the value network: 25
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1. Ueltzhöffer, K.: Deep active inference. Biol. Cybern. 112(6), 547–573 (2018).
https://doi.org/10.1007/s00422-018-0785-7

2. Sancaktar, C., van Gerven, M., Lanillos, P.: End-to-end pixel-based deep active
inference for body perception and action. arXiv preprint arXiv:2001.05847 (2019)

3. Millidge, B.: Deep active inference as variational policy gradients. J. Math. Psychol.
96, 102348 (2020). https://doi.org/10.1016/j.jmp.2020.102348

4. Tschantz, A., Baltieri, M., Seth, A.K., Buckley, C.L.: Scaling active inference.
arXiv Prepr. arXiv:1911.10601v1 (2019)
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Abstract. Sleep is one of the most important states of the human mind
and body. Sleep has various functions, such as restoration, both physi-
cally and mentally, and memory processing. The theory of active infer-
ence frames sleep as the minimization of complexity and free energy in
the absence of sensory information. In this paper, we propose a method
for model reduction of neural networks that implement the active infer-
ence framework. The proposed method suggests initializing the network
with a high latent space dimensionality and pruning dimensions subse-
quently. We show that reduction of latent space dimensionality decreases
complexity without increasing free energy.

Keywords: Active inference · Model reduction · Sleep

1 Introduction

Sleep is a phenomenon that occurs in most animals [10]. It is a topic of intensive
research as it has been shown to be important for both the mind [12,18] and
the body [14]. In particular, sleep and learning have been connected in many
hypotheses [3,17], as well as mental health [4] and memory [20].

Active inference is a theory of behaviour and learning that originated in neu-
roscience [8]. The basic assumption is that intelligent agents attempt to minimize
their variational free energy. Variational free energy—named for its counterpart
in statistical physics i.e. Helmholtz free energy—is also known as the evidence
lower bound (ELBO) in variational Bayesian methods.

Since its conception, active inference has been explored in multiple subfields
of neuroscience and biology [5,6,11] and eventually found its way into the field
of computer science [2,15,19]. In particular, Ueltzhöffer [19] and Çatal et al. [2]
have made developments in deep active inference, i.e. the use of deep neural
networks to implement active inference.

Recent work [7,9,13] has pointed out the relation between the function of
removing redundant connections during sleep and Bayesian model reduction
(BMR) in active inference, i.e. complexity minimization through elimination
c© Springer Nature Switzerland AG 2020
T. Verbelen et al. (Eds.): IWAI 2020, CCIS 1326, pp. 72–83, 2020.
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of redundant parameters. In this work, we propose a method for reducing com-
plexity in the deep active inference framework. We evaluate the method through
simulation experiments.

2 Deep Active Inference

Currently, using deep neural networks in active inference to learn state spaces,
in addition to policy and posterior, is becoming increasingly popular, which
contrasts with active inference on discrete state spaces as described in [9]. In
this approach, the dimensionality of the state space is a hyperparameter, i.e. it
must be specified before training and cannot change along the way. Here, we
briefly introduce the method provided by Çatal et al. [2].

Assuming the policy π may be broken up into a sequence of actions at and the
current state depends on the previous action instead of the policy, a generative
model with observations ot and states st is defined as

P (õ, s̃, ã) = P (s0)P (ã)
T∏

t=1

P (ot|st)P (st|st−1,at−1), (1)

where x̃ = (x0,x1,x2, . . . ,xT ).
Deep neural networks are used to parameterize the prior, likelihood and

approximate posterior distributions: pθ(st|st−1,at−1), pφ(ot|st) and qξ(st|st−1,
at−1,ot), respectively. With this, minimization of free energy consists of mini-
mizing the loss function

Posterior

Likelihood

Posterior

Sample

Prior

Prior

Fig. 1. Information flow of neural networks. The posterior network takes in previous
state and action, and current observation. The prior network takes in previous state
and action. The likelihood network takes in current state. The state st illustrates that
dimensions may be pruned, if they are unused.
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L(θ, φ, ξ;ot, st−1,at−1) =
DKL(qξ(st|st−1,at−1,ot)||pθ(st|st−1,at−1)) − log pφ(ot|st). (2)

Prior, likelihood and posterior distributions are chosen to be multivariate nor-
mal distributions. As opposed to the standard VAE, optimization is done over
sequences in time. Additionally, empirical priors are learned, instead of using
fixed priors. A chart on the information flow can be found in Fig. 1.

3 Latent Space Dimensionality Reduction and Sleep

The size of the latent space vector s is an important hyperparameter. On the
one hand, this must be large enough to explain observations in the generative
model. On the other hand, it must be kept minimal to reduce complexity as to
minimize the required resources, such as memory and power (both computational
and electrical). In general, one does not know the optimal size of s. A typical
way of finding a well-performing value is a hyperparameter sweep. Parameter
sweeps, however, are resource intensive and require many unnecessary training
runs. Therefore, we propose a method for dimensionality reduction in the deep
active inference framework.

The basic idea is to prune dimensions in the latent space vector s. A popular
method for inspecting informative dimensions of a vector space is singular value
decomposition (SVD). This technique is used to factorize an m × n matrix A
into three matrices USV ∗, where a common geometrical interpretation is that
the decomposition gives 2 rotation matrices U and V ∗, and a scaling matrix S.

Algorithm 1 lines out the method in the form of pseudo-code. Let n be the
dimensionality of the latent space. We sample a latent space vector from m

Algorithm 1: Sleep
input : A trained model model with dimensionality n

The number of repetitions N and number of sequences m
A threshold α

output: The new latent space dimensionality ν
while i < N do

A ← [] // make a matrix

while j < m do
a ← GenerateSequence(model) // generate a new sequence

v ← Sample(a) // sample a latent space vector

A ← [A, v] // insert vector as a new column in matrix

j ← j + 1

S ← SVD(A) // apply SVD to matrix

ci ← #(Skk > α) for 0 < k < n // count sv’s over threshold

c ← [c, ci] // add number to list of outcomes

i ← i + 1

ν ← Avg(c) // average over all outcomes
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different sequences to construct the column vectors of a matrix A. The column
space of A, denoted C(A), forms a subspace of the latent space. Applying SVD
to A gives the scaling matrix S. The values on the diagonal of S are the singular
values of A, and suggest a size for the dimensions of C(A) after rotation with U .
Dimensions with small singular values are assumed to be unused. To this end,
we define a threshold α for which dimensions corresponding to singular values
smaller than α can be pruned. We repeat this procedure N times—by generating
m new sequences each time—and average the number of pruned dimensions, in
order to obtain a relatively robust outcome.

It is important to stress, here, that SVD does not allow one to find which
dimensions can be pruned. Instead, it is used to converge to the optimal number
of dimensions. SVD provides the size of dimensions of the column space of A,
i.e. C(A), described in a basis of the latent space after a rotation with U . The
actual basis vectors are a linear combination of the rotated basis vectors. In
other words, having a zero dimension in rotated latent space, does not necessarily
mean there is one in latent space. However, it does indicate that it is possible
to reduce dimensionality by choosing a different rotation, since it shows that
there is an orientation of the basis vectors which requires less dimensions to
describe the column space. Returning to the model, by retraining with a lower
dimensionality n, we essentially force the model to learn the latent space with a
different orientation which requires less dimensions.

We have dubbed the method sleep, since it replicates synapse pruning, as well
as Bayesian model reduction. From an active inference perspective, the proposed
method is analogous to BMR in that it considers a generative model with a large
number of latent factors and optimizes this number post hoc [16]. In other words,
both the goals of the proposed method and BMR are to consider alternative
models which may give simpler explanations for the same observations. That
said, in both cases, the balance between accuracy and complexity is crucial,
i.e. accuracy should not suffer due to simplicity. Indeed, the measure for this
trade-off is free energy.

Since latent space in deep active inference is learned using deep neural net-
works, there is no guarantee that each latent space dimension represents an
individual feature. Without knowing what is contained in latent space, it is not
possible to target specific parameters to turn off as in BMR. Because of this,
Algorithm 1 must be succeeded by retraining to obtain a reduced model. In this
sense, the earlier analogy is incomplete, since BMR allows one to obtain the
reduced model parameters from the full model, i.e. it allows one to find which
dimensions can be pruned.

In the end, the purpose of the sleep method is to reduce complexity whenever
an application (e.g.. a robot running a deep active inference implementation) has
downtime. The overall sequence of events, then, proceeds as follows. Start with
a large value for the latent space dimensionality and train the model. Deploy the
model on the application. Each time there is downtime in the application (e.g..
the robot is charging), reduce the model by sleeping and retraining. Continue
this pattern of sleeping and retraining until the model cannot reduce any further.
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4 Experimental Setup

Experiments were performed using two environments from the OpenAI Gym
[1]. The first experiment employs a modified version of the MountainCar envi-
ronment, where noise is added to the observation and only the position can be
observed. The goal of this environment is to drive up a steep mountain using
an underpowered car that starts in a valley. The car is underpowered in the
sense that it cannot produce enough force to go against gravity and drive up
the mountain in one go. It must first build up enough momentum by driving up
the side(s) of the valley. In this experiment, we know upfront that the model
only needs 2 dimensions in latent space: position and velocity. Details about the
neural networks used for this experiment can be found in Appendix B.1.

The second experiment employs the CarRacing environment. The goal of this
environment is to stay in the middle of a race track using a race car. The car and
track are viewed from a top-down perspective. The car must steer left and right
to stay on track. Compared to the MountainCar, the CarRacing environment
utilizes more complicated dynamics and produces higher dimensional observa-
tions. Examples of the environments can be found in Appendix A. Details about
the neural networks used for this experiment can be found in Appendix B.2.

5 Results

Figure 2 shows the evolution of the free energy of MountainCar during training
with a fixed number of latent space dimensions (see Appendix C.1 for a similar
figure for CarRacing). It suggests that free energy decreases as more state space
dimensions are added. However, it also shows that free energy does not visibly
decrease beyond a certain number of dimensions. For the MountainCar, we see
that the free energy does not decrease for more than 2 dimensions, while for
the CarRacing (Appendix C.1), we see that the free energy does not decrease
for more than 4 dimensions. In essence, there appears to be a critical value of
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Fig. 2. (Left) Free energy during training of MountainCar for different state space
sizes. Curves show smoothed data (LOESS, span 0.02) with 95% standard error bands.
(Right) Boxplot of singular values while sleeping at 8 latent space dimensions (N = 104).
(Color figure online)
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the latent space size. For latent spaces larger than this critical value, the free
energy does not reduce. This critical value corresponds to the optimal value for
the dimensionality with respect to the accuracy/complexity trade-off.

Fig. 3. Reconstructions of CarRacing track over time with different latent space dimen-
sions. From top to bottom: ground truth, 32, 16, 8, 4, 2, 1.

Figure 3 demonstrates how latent space dimensionality affects reconstruc-
tion and how too few dimensions can lead to aspects of the environment not
being learned. It shows reconstructions of the CarRacing track for latent space
dimensions of 32, 16, 8, 4, 2 and 1 (top to bottom with ground truth in the top
sequence). Note how the curvature of the track is not accurately reconstructed
through 1 dimension, especially at early time steps. Also, 2 dimensions still seem
to lack accuracy (see curvature in second time step). Furthermore, note how the
feedback bar is incorrectly encoded by dimensions lower than 4.

Figure 2 also shows a boxplot for the singular values obtained for the Moun-
tainCar with 8 latent space dimensions for N = 104 iterations (plots for different
latent space dimensions can be found in Appendix C.2). The red line shows a
threshold α = 0.25. The figure suggests that there is a difference in sizes in
the latent space dimensions. Indeed, the first four singular values are on aver-
age larger than α, while the remaining values are on average smaller than α.
This indicates that certain dimensions are very small, therefore, contain less
information, and may be pruned subsequently.



78 S. T. Wauthier et al.

3180

3182

3184

3186

0e+00 1e+05 2e+05 3e+05 4e+05
iteration

fr
ee

 e
ne

rg
y

4

5

6

7

8

16

Fig. 4. Free energy over 7 sleep cycles of CarRacer. Setting threshold α = 0.25 gives
the reduction: 16 → 8 → 7 → 6 → 5 → 4, after which it cannot reduce further. Curves
show smoothed data (LOESS, span 0.02) with 95% standard error bands.

Figure 4 illustrates the algorithm put into practice with different sleep cycles
for the CarRacer with threshold set at α = 0.25, where we started with 16
latent space dimensions. In this example, we initiated sleep every 5×104 training
iterations and checked if dimensionality could be reduced. If so, we pruned and
restarted training with lower dimensionality, else we continued training for 5×104

iterations, until reduction was possible. We stopped the process after 7 sleep
cycles. As expected, the sleep sequence manages to reduce the complexity of the
model, without impacting the free energy negatively.

When compared to Fig. 8 in Appendix C.2, the previous result is exactly as
expected. Following the steps described there, the state space can effectively be
pruned down to 4 dimensions. Observe that if we were to repeat the experiment
for the MountainCar, Fig. 7 in Appendix C.2 shows that setting the threshold
at α = 0.25 would return a state space dimensionality of 2.

6 Conclusion

Our results show that it is possible to train a deep active inference model by
setting a large number of latent space dimensions and subsequently sleeping until
minimal complexity is reached. However, the method proposed in this paper is
not optimal. A few caveats remain. First of all, the current method requires
retraining. After applying SVD, the entire model must be retrained from scratch.
Second of all, there exist limitations to SVD. For instance, SVD does not take
into account nonlinear transformations. Therefore, relations between different
dimensions may remain and the optimal dimensionality may never be reached.

In future work, we will investigate the effects of sleeping at regular intervals
during training. For example, we may sleep after every 104 time steps to check
if we can already reduce the latent space. Another option we will investigate, is
to prune both unnecessary dimensions and weights. This way, we may be able to
maintain the trained neural network, while reducing complexity. In addition, we
want to experiment with different methods for dimensionality reduction, such
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as nonlinear methods. Another option to be explored is to learn and set unused
dimensions to 0 during training.

Acknowledgments. This research received funding from the Flemish Govern-
ment under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”
programme.

Appendix A OpenAI Gym Examples

Figure 5 shows snapshots of the MountainCar and CarRacing environments from
the OpenAI Gym [1]. Note that observations in the MountainCar environment
consist of position and velocity values, while CarRacing provides RGB pixels.

Fig. 5. (Top) Example of MountainCar environment [1]. (Bottom) Example of Car-
Racing environment [1].

Appendix B Neural Network Definitions

Appendix B.1 Mountain Car

Table 1 shows the neural architecture of the network used in the MountainCar
experiments.
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Table 1. Specifications of the MountainCar neural network with s latent space dimen-
sions.

Layer Neurons/Filters Activation function

Posterior Linear 20 Leaky ReLU

Linear 2 × s Leaku ReLU

Likelihood Linear 20 Leaky ReLU

Linear 2 Leaky ReLU

Prior Linear 20 Leaky ReLU

Linear 2 × s Leaky ReLU

Appendix B.2 Car Racing

Table 2 shows the neural architecture of the network used in the CarRacing
experiments. All filters have 3 × 3 kernel, as well as stride and padding of 1.

Table 2. Specifications of the CarRacing neural network with s latent space dimen-
sions.

Layer Neurons/Filters Activation function

Posterior Convolutional 8 Leaky ReLU

Convolutional 16 Leaky ReLU

Convolutional 32 Leaky ReLU

Convolutional 64 Leaky ReLU

Convolutional 128 Leaky ReLU

Convolutional 256 Leaky ReLU

concat N/A N/A

Linear 2 × s Leaku ReLU

Likelihood Linear 128 × 2 × 9 Leaky ReLU

Convolutional 128 Leaky ReLU

Convolutional 64 Leaky ReLU

Convolutional 32 Leaky ReLU

Convolutional 16 Leaky ReLU

Convolutional 8 Leaky ReLU

Convolutional 3 Leaky ReLU

Prior LSTM cell 128 Leaky ReLU

Linear 2 × s Softplus

Appendix C Additional Plots

Appendix C.1 Free Energy During Training

Figure 6 shows the evolution of the free energy during training for CarRacing
similar to the left plot in Fig. 2. Note how the free energy does not visibly decrease
when using more than 4 dimensions.
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Fig. 6. Free energy during training of CarRacer for different state space sizes. Curves
show smoothed data (LOESS, span 0.02) with 95% standard error bands.

Appendix C.2 Boxplots for Different Latent Space Dimensions

Figure 7 shows boxplots for the singular values obtained for the MountainCar with
different latent space dimensions for 104 iterations, while Fig. 8 shows the same for
the CarRacing. The red line in each plot indicates the threshold α = 0.25.

One can do the following mental exercise. Choose a boxplot and count the
amount of dimensions that are above threshold on average. This number will be
the new dimensionality. Go to the boxplot for that dimensionality and, again,
count the amount of dimensions. Repeat this until the dimensionality does not
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Fig. 7. Boxplots of singular values while sleeping at different latent space dimensions
for the MountainCar (N = 104).
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Fig. 8. Boxplots of singular values while sleeping at different latent space dimensions
for the CarRacing (N = 104). (Color figure online)
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reduce further. Using this process, we can see that the MountainCar will not
reduce below 2 and the CarRacing will not reduce below 4.
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Abstract. Understanding how perception and action deal with senso-
rimotor conflicts, such as the rubber-hand illusion (RHI), is essential to
understand how the body adapts to uncertain situations. Recent results
in humans have shown that the RHI not only produces a change in
the perceived arm location, but also causes involuntary forces. Here, we
describe a deep active inference agent in a virtual environment, which
we subjected to the RHI, that is able to account for these results. We
show that our model, which deals with visual high-dimensional inputs,
produces similar perceptual and force patterns to those found in humans.

Keywords: Active inference · Rubber-hand Illusion · Free-energy
optimization · Deep learning

1 Introduction

The complex mechanisms underlying perception and action that allow seam-
less interaction with the environment are largely occluded from our conscious-
ness. To interact with the environment in a meaningful way, the brain must
integrate noisy sensory information from multiple modalities into a coherent
world model, from which to generate and continuously update an appropriate
action [13]. Especially, how the brain-body deals with sensorimotor conflicts
[8,16], e.g., conflicting information from different senses, is an essential question
for both cognitive science and artificial intelligence. Adaptation to unobserved
events and changes in the body and the environment during interaction is a key
characteristic of body intelligence that machines still fail at.

The rubber-hand illusion (RHI) [2] is a well-known experimental paradigm
from cognitive science that allows the investigation of body perception under
conflicting information in a controlled setup. During the experiment, human
participants cannot see their own hand but rather perceive an artificial hand
placed in a different location (e.g. 15 cm from their current hand). After a minute
of visuo-tactile stimulation [10], the perceived location of the real hand drifts
towards the location of the artificial arm and suddenly the new hand becomes
part of their own.

c© Springer Nature Switzerland AG 2020
T. Verbelen et al. (Eds.): IWAI 2020, CCIS 1326, pp. 84–91, 2020.
https://doi.org/10.1007/978-3-030-64919-7_10
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We can find some RHI modelling attempts in the literature; see [12] for an
overview until 2015. In [18], a Bayesian causal inference model was proposed to
estimate the perceived hand position after stimulation. In [8] a model inspired by
the free-energy principle [5] was used to synthetically test the RHI in a robot. The
perceptual drift (mislocalization of the hand) was compared to that of humans
observations.

Recent experiments have shown that humans also generate meaningful force
patterns towards the artificial hand during the RHI [1,16], adding the action
dimension to this paradigm. We hypothesise that the strong interdependence
between perception and action can be accounted for by mechanisms underlying
active inference [7].

In this work, we propose a deep active inference model of the RHI, based
on [14,17,19], where an artificial agent directly operates in a 3D virtual reality
(VR) environment1. Our model 1) is able to produce similar perceptual and
active patterns to human observations during the RHI and 2) provides a scalable
approach for further research on body perception and active inference, as it
deals with high-dimensional inputs such as visual images originated from the 3D
environment.

2 Deep Active Inference Model

We formalise body perception and action as an inference problem [3,7,11,17].
The unobserved body state is inferred from the senses (observations) while taking
into account its state prior information. To this end, the agent makes use of two
sensory modalities. The visual input sv is described by a pixel matrix (image)
and the proprioceptive information sp represents the angle of every joint of the
arm – See Fig. 1a.

Computation of the body state is performed by optimizing the variational
free-energy bound [7,17]. Under the mean-field and Laplace approximations and
defining μ as the brain variables that encode the variational density that approx-
imates the body state distribution and defining a as the action exerted by the
agent, perception and action are driven by the following system of differential
equations (see [4,6,19] for a derivation):

μ̇ = −∂μF = −∂μeT
p Σ−1

p ep − ∂μeT
v Σ−1

v ev − ∂μeT
f Σ−1

μ ef (1)

ȧ = −∂aF = −∂aeT
p Σ−1

p ep (2)

ep = sp − gp(μ) (3)
ev = sv − gv(μ) (4)
ef = −f(μ) (5)

Note that this model is a specific instance of the full active inference model
[5] tailored to the RHI experiment. We wrote the variational free-energy bound
1 Code will be publicly available at https://github.com/thomasroodnl/active-

inference-rhi.

https://github.com/thomasroodnl/active-inference-rhi
https://github.com/thomasroodnl/active-inference-rhi


86 T. Rood et al.

(a) Deep Active inference

(b) Convolutional decoder

(c) VAE (encoder only)

Fig. 1. Deep active inference model for the virtual rubber-hand illusion. (a) The brain
variables μ that represent the body state are inferred through proprioceptive ep and
visual ev prediction errors and their own dynamics f(μ). During the VR immersion, the
agent only sees the VR arm. The ensuing action is driven by proprioceptive prediction
errors. The generative visual process is approximated by means of a deep neural network
that encodes the sensory input into the body state through a bottleneck. (b, c) Visual
generative architectures tested.

in terms of the prediction error e and for clarity, we split it into three terms
that correspond to the visual, proprioceptive and dynamical component of the
body state. The variances Σv, Σp, Σμ encode the reliability of the visual, propri-
oceptive and dynamics information, respectively, that is used to infer the body
state. The dynamics of the prediction errors are governed by different generative
processes. Here, gv(μ) is the generative process of the visual information (i.e.
the predictor of the visual input given the brain state variables), gp(μ) is the
proprioceptive generative process and f(μ) denotes internal state dynamics (i.e.
how the brain variables evolve in time)2.

Due to the static characteristics of the passive RHI experiment we can sim-
plify the model. First, the generative dynamics model does not affect body
update because the experimental setup does not allow for body movement. Sec-
ond, we fully describe the body state by the joint angles. This means that the sp

and the body state match. Thus, g(μ) = μ plus noise and the inverse mapping
∂μgp(μ) becomes an all-ones vector. Relaxing these two assumptions is out of
the scope of this paper. We can finally write the differential equations with the
generative models as follows:

μ̇ = Σ−1
p (sp − gp(μ)) + ∂μgv(μ)T γΣ−1

v (sv − gv(μ)) (6)

ȧ = −ΔtΣ
−1
p (sp − gp(μ)) (7)

2 Note that in Eq. (5), the prediction error with respect to the internal dynamics
ef = μ′ − f(μ) was simplified to ef = −f(μ) under the assumption that μ′ = 0. In
other words, we assume no dynamics on the internal variables.
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where γ has been included in the visual term to modulate the level of causality
regarding whether the visual information has been produced by our body in the
RHI – see Subsect. 2.2. Equation 7 is only valid if the action is the velocity of the
joint. Thus, the sensor change given the action corresponds to the time interval
between each iteration ∂as = Δt.

We scale up the model to high-dimensional inputs such as images by approx-
imating the visual generative model gv(μ) and the partial derivative of the error
with respect to the brain variables ∂μev by means of deep neural networks,
inspired by [19].

2.1 Generative Model Learning

We learn the forward and inverse generative process of the sensory input by
exploiting the representational capacity of deep neural networks. Although in
this work we only address the visual input, this method can be extended to
any other modality. To learn the visual forward model gv(μ) we compare two
different deep learning architectures, that is, a convolutional decoder (Fig. 1b)
and a variational autoencoder (VAE, Fig. 1c).

The convolutional decoder was designed in similar fashion to the architecture
used in [19]. After training the relation between the visual input and the body
state, the visual prediction can be computed through the forward pass of the
network and its inverse ∂g(μ)/∂μ by means of the backward pass. The VAE
was designed using the same decoding structure as the convolutional decoder
to allow a fair performance comparison. This means that these models mainly
differed in the way they were trained. In the VAE approach we train using the
full architecture and we just use the decoder to compute the predictions in the
model.

2.2 Modelling Visuo-Tactile Stimulation Synchrony

To synthetically replicate the RHI we need to model both synchronous and
asynchronous visuo-tactile stimulation conditions. We define the timepoints at
which a visual stimulation event and the corresponding tactile stimulation take
place, denoted tv and tt respectively. Inspired by the Bayesian causal model [18],
we distinguish between two causal explanations of the observed data. That is,
C = c1 signifies that the observed (virtual) hand produced both the visual and
the tactile events whereas C = c2 signifies that the observed hand produced the
visual event and our real hand produced the tactile event (visual and tactile input
come from two different sources). The causal impact of the visual information
on the body state is represented by

γ = p(c1 | tv, tt) =
p(tv, tt | c1)p(c1)

p(tv, tt | c1)p(c1) + p(tv, tt | c2)p(c2)
(8)

where p(tv, tt | c1) is defined as a zero-mean Gaussian distribution over the
difference between the timepoints (p(tv − tt | c1)) and p(tv, tt | c2) is defined as
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a uniform distribution since under c2, no relation between tv and tt is assumed.
This yields the update rule

γt+1 =

{ p(tv,tt|c1)γt

p(tv,tt|γt)·γt+p(tv,tt|c2)(1−γt)
if visuo-tactile event

γt · exp(− (t−max(tv,tt))
2

Δ−1
t

· rdecay), otherwise
(9)

Note that γ is updated only in case of visuo-tactile events. Otherwise, an expo-
nential decay is applied.

Virtual arm: 
Left

Real arm: 
Center

CameraVisuo-tactile
stimulation

Fig. 2. Virtual environment and experimental setup modelled in the Unity engine.

3 Experimental Setup

We modelled the RHI in a virtual environment created in Unity, as depicted
in Fig. 2. This environment was build to closely match the experimental setup
used in the human study described in [16]. This experiment exposed human
participants to a virtual arm located to the left and right of their real arm, and
applied visuo-tactile stimulation by showing a virtual ball touching the hand
and applying a corresponding vibration to the hand. Here, the agent’s control
consisted of two degrees of freedom: shoulder adduction/abduction and elbow
flexion/extension. The environment provided proprioceptive information on the
shoulder and elbow joint angles to the agent. Visual sensory input to the model
originated from a camera located between the left and the right eye position,
producing 256× 256 pixel grayscale images. Finally, the ML-Agents toolkit was
used to interface between the Unity environment and the agent in Python [9].
The agent arm was placed in a forward resting position such that the hand was
located 30 cm to the left of the body midline (center position). Three virtual
arm location conditions were evaluated: Left, Center and Right. The Center
condition matched the information given by proprioceptive input. Visuo-tactile
stimulation was applied by generating a visual event at a regular interval of two
seconds, followed by a tactile event after a random delay sampled in the range
[0, 0.1) for synchronous stimulation and in the range [0, 1) for asynchronous
stimulation. The initial γ value was set to 0.01 and we ran N = 5 trials each for
30 s (1500 iterations).
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(a) Perception all (b) Percept. Sync. (c) Percept. Async.

(d) Action all (e) Action Sync. (f) Action Async.

(g) Human recorded forces

(h) Jacobian ∂µg(μ) learnt for both visual models.

Fig. 3. Model results. (a, b, c) Mean perceptual end-effector drift (in cm). (d,e,f) Mean
horizontal end-effector acceleration. (g) Mean forces exerted by human participants in
a virtual rubber-hand experiment (from [16]). (h) Visual representation of the Jacobian
learnt for the visual models.

4 Results

We observed similar patterns in the drift of the perceived end-effector location
(Fig. 3a) and the end-effector action (Fig. 3). These agree with the behavioural
data obtained in human experiments (Fig. 3g). For the left and right condition,
we observed forces in the direction of the virtual hand during synchronous stim-
ulation (Fig. 3e). However, non-meaningful forces were produced using the con-
volutional decoder for the right condition. For the center condition, both models
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produced near-zero average forces. Lastly, asynchronous stimulation produced,
with both models, attenuated forces (Fig. 3f). The learnt visual representation
differed between the VAE and the Convolutional decoder approaches (Fig. 3h).
The VAE obtained smoother and more bounded visual Jacobian values, likely
due to its probabilistic latent space.

5 Conclusion

In this work, we described a deep active inference model to study body per-
ception and action during sensorimotor conflicts, such as the RHI. The model,
operating as an artificial agent in a virtual environment, was able to produce sim-
ilar perceptual and active patterns to those found in humans. Further research
will address how this model can be employed to investigate the construction of
the sensorimotor self [15].
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Abstract. Active vision considers the problem of choosing the optimal
next viewpoint from which an autonomous agent can observe its environ-
ment. In this paper, we propose to use the active inference paradigm as a
natural solution to this problem, and evaluate this on a realistic scenario
with a robot manipulator. We tackle this problem using a generative
model that was learned unsupervised purely from pixel-based observa-
tions. We show that our agent exhibits information-seeking behavior,
choosing viewpoints of regions it has not yet observed. We also show
that goal-seeking behavior emerges when the agent has to reach a target
goal, and it does so more efficiently than a systematic grid search.

Keywords: Active vision · Active inference · Deep generative
modelling · Robotic planning

1 Introduction

Active vision considers an observer that can act by controlling the geometric
properties of the sensor in order to improve the quality of the perceptual results
[1]. This problem becomes apparent when considering occlusions, a limited field
of view or a limited resolution of the used sensor [2]. In many cases, select-
ing the next viewpoint should be done as efficiently as possible due to limited
resources for processing the new observations and the time it takes to reach
the new observation pose. This problem is traditionally solved with frontier-
based methods [21] in which the environment is represented as an occupancy
grid. These approaches rely on evaluating engineered utility functions that esti-
mate the amount of new information provided for all potential viewpoints [8,21].
Usually this utility function represents the amount of unobserved voxels that a
given viewpoint will uncover. Instead of using hand-crafted heuristics, this func-
tion can also be learned from data [8,9]. A different approach is to predict the
optimal viewpoint with respect to reducing uncertainty and ambiguity directly
from a reconstructed volumetric grid [3,13]. A different bio-inspired method for
active vision is proposed by Rasouli et al. [17] in which the action is driven by a
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visual attention mechanism in conjunction with a non-myopic decision-making
algorithm that takes previous observations at different locations in account.

Friston et al. [7,14] cast the active vision problem as a low dimensional,
discrete state-space Markov decision process (MDP) that can be solved using the
active inference framework. In this paradigm, agents act in order to minimize
their surprise, i.e. their free energy. In this paper, instead of using an explicit
3D representation, or a simple MDP formulation of the environment, we learn a
generative model and latent state distribution purely from observations. Previous
work also used deep learning techniques to learn the generative model in order to
engage in active inference [22], while other work has created an end-to-end active
inference pipeline using pixel-based observations [20]. Similar to Friston et al.
[6,7,14], we then use the expected free energy to drive action selection. Similar
to the work of Nair, Pong et al. [15] where the imagined latent state is used to
compute the reward value for optimizing reinforcement learning tasks and the
work of Finn and Levine [5], where a predictive model is used that estimates
the pixel observations for different control policies, we employ the imagined
observations form the generative model to compute the expected free energy.
We evaluate our method on a grasping task with a robotic manipulator with an
in-hand camera. In this task, we want the robot to get to the target object as
fast as possible. For this reason we consider the case of best viewpoint selection.
We show how active inference yields information-seeking behavior, and how the
robot is able to reach goals faster than random or systematic grid search.

2 Active Inference

Active inference posits that all living organisms minimize free energy (FE) [6].
The variational free energy is given by:

F = EQ[log Q(s̃) − log P (õ, s̃, π)]
= DKL[Q(s̃)||P (s̃, π)] − EQ[log P (õ|s̃, π)],

(1)

where õ is a sequence of observations, s̃ the sequence of corresponding model
belief states, π the followed policy or sequence of actions taken, and Q(s̃) the
approximate posterior of the joint distribution P (õ, s̃, π). Crucially, in active
inference, policies are selected that minimize the expected free energy G(π, τ)
for future timesteps τ [6]:

G(π, τ) ≈ −EQ(oτ |π)[DKL[Q(sτ |oτ , π)||Q(sτ |π)]] − EQ(oτ |π)[log P (oτ )]. (2)

This can be viewed as a trade-off between an epistemic, uncertainty-reducing
term and an instrumental, goal-seeking term. The epistemic term is the Kullback-
Leibler divergence between the expected future belief over states when following
policy π and observing oτ and the current belief. The goal-seeking term is the
likelihood that the goal will be observed when following policy π.
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3 Environment and Approach

In this paper, we consider a simulated robot manipulator with an in-hand cam-
era which can actively query observations from different viewpoints or poses
by moving its gripper, as shown in Fig. 1. The robotic agent acts in a static
workspace, in which we randomly spawn a red, green and blue cube of fixed size.
Each such configuration of random cube positions is dubbed a scene, and the
goal of the robot is to find a cube of a particular color in the workspace. The
agent initially has no knowledge about the object positions and has to infer this
information from multiple observations at different poses. Example observations
for different downward facing poses are given in Fig. 2.

Fig. 1. Franka Emika Panda robot in
the CoppeliaSim simulator in a random
scene with three colored cubes. (Color
figure online)

Fig. 2. Sampled observations on a grid
of potential poses used for evaluating
the expected free energy. (Color figure
online)

To engage in active inference, the agent needs to be equipped with a genera-
tive model. This generative model should be able to generate new observations
given an action or in this particular case, the new robot pose. In contrast with
[7,14], we do not fix the generative model upfront, but learn it from data. We
generate a dataset of 250 different scenes consisting of approximately 25 discrete
time steps in which the robot observes the scene from a different viewpoint.
Using this dataset we train two deep neural networks to approximate the likeli-
hood distribution P (ot|st, π) and approximate posterior distribution Q(st|ot, π)
as multivariate Gaussian distributions. In our notation, ot and st respectively
represent the observation and latent state at discrete timestep t. Both distribu-
tions are conditioned by the policy π, the action that the robot should take in
order to acquire a new observation, or equivalently, the new observation view-
point. The models are optimized by minimizing the free energy from Eq. 1, with
a zero-mean isotropic Gaussian prior P (st|π) = N (0, 1). Hence the system is
trained as an encoder-decoder to predict scene observations from unseen poses,
given a number of observations from the same scene at different poses. This is
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similar to a Generative Query Network (GQN) [4]. For more details on the model
architecture and training hyperparameters, we refer to AppendixA.

At inference time, the policy π, or equivalently the next observer pose, is
selected by evaluating Eq. (2) for a number of candidate policies and selecting
the policy that evaluates to the lowest expected free energy. These candidate
policies are selected by sampling a grid of poses over the workspace. The trained
decoder extracts the imagined observation for each of the candidate policies
and the state vector acquired through encoding the initial observations. The
corresponding expected posterior distributions are computed by forwarding these
imagined observations together with the initial observations through the encoder.
For the goal-seeking term, we provide the robot with a preferred observation,
i.e. the image of the colored cube to fetch, and we evaluate log P (oτ ). The
epistemic term is evaluated by using the likelihood model to imagine what the
robot would see from the candidate pose, and then calculating the KL divergence
between the state distributions of the posterior model before and after “seeing”
this imagined observation. The expectation terms are approximated by drawing
a number of samples for each candidate pose.

4 Experiments

We evaluate our system in two scenarios. In the first scenario, only the epistemic
term is taken into account, which results in an exploring agent that actively
queries information of the scene. In the second scenario, we add the instrumental
term by which the agent makes an exploration-exploitation trade-off to reach the
goal state as fast as possible.

4.1 Exploring Behaviour

First, we focus on exploratory or information-seeking behaviour, i.e. actions are
chosen based on the minimization of only the epistemic term of the expected
free energy. For evaluation we restrict the robot arm to a fixed number of poses
at a fixed height close to the table, so it can only observe a limited area of the
workspace. The ground truth observations corresponding to the candidate poses
are shown in a grid in Fig. 2.

Initially, the agent has no information about the scene, and the initial state
distribution Q(s) is a zero-mean isotropic Gaussian. The expected observation is
computed over 125 samples and visualized in the top row of Fig. 3a. Clearly, the
agent does not know the position of any of the objects in the scene, resulting in
a relatively low value of the epistemic term from Eq. (2) for all candidate poses.
This is plotted in the bottom row of Fig. 3a. The agent selects the upper left
pose as indicated by the green hatched square in Fig. 3b. After observing the
blue cube in the upper left corner, the epistemic value of the left poses drops,
and the robot queries a pose at the right side of the workspace. Finally, the robot
queries one of the central poses, and the epistemic value of all poses becomes
relatively high, as new observations do not yield more information. Notice that
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at this point, the robot can also accurately reconstruct the correct cubes from
any pose as shown in the top row of Fig. 3d.

4.2 Goal Seeking Behaviour

In this experiment, we use the same scene and grid of candidate poses, but now
we provide the robot with a preferred observation from the red cube, indicated
by the red hatched square in the bottom row of Figs. 4a through 4d.

Initially, the agent has no information on the targets position and the same
information-seeking behaviour from Sect. 4.1 can be observed in the first steps
as the epistemic value takes the upper hand. However, after the second step, the
agent has observed the red cube and knows which pose will reach the preferred
state. The instrumental value takes the upper hand as indicated by the red
values in Figs. 4a through 4d. This is reflected by a significantly lower expected
free energy. Even though the agent has not yet observed the green cube and
is unable to create correct reconstructions as shown in Fig. 4d, it will drive
itself towards the preferred state. The trade off between exploratory and goal
seeking behaviour can clearly be observed. In Fig. 4c, the agent still has low
epistemic values for the candidate poses to the left, but they do not outweigh
the low instrumental value to reach the preferred state. The middle column of
potential observations has a lower instrumental value, which is the result of using
independent Gaussians for estimating likelihood on each pixel.

The number of steps to reach the preferred state is computed on 30 different
validation scenes not seen in training, where the preferred state is chosen ran-
domly. On average, the agent needs 3.7 steps to reach its goal. This is clearly more
efficient than a systematic grid search which would take on average 12.5 steps.

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3

Fig. 3. The top row represents the imagined observations, i.e. the observations gen-
erated by the generative model, for each of the considered potential poses at a given
step, the bottom row represents the epistemic value for the corresponding poses. Darker
values represent a larger influence of the epistemic value. The green hatched squares
mark the observed poses. (Color figure online)
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(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3

Fig. 4. The top row shows the imagined observations for each of the considered poten-
tial poses at a given time step. The bottom row shows the expected free energy for
the corresponding poses. Blue is used to represent the epistemic value, while red is
used to represent the instrumental value. The values of both terms are shown in the
legend. The green hatched squares mark the observed poses, while the red hatched
square marks the preferred state. (Color figure online)

5 Conclusion

This work shows promising results in using the active inference framework for
active vision. The problem is tackled with a generative model learned unsuper-
vised from pure pixel data. The proposed approach can be used for efficiently
exploring and solving robotic grasping scenarios in complex environments where
a lot of uncertainty is present, for example in cases with a limited field of view
or with many occlusions.

We show that it is possible to use learned latent space models as genera-
tive models for active inference. We show that both exploring and goal-seeking
behaviour surfaces when using active inference as an action-selection policy. We
demonstrated our approach in a realistic robot simulator and plan to extend this
to a real world setup as well.

Acknowledgments. This research received funding from the Flemish Govern-
ment under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”
programme.

A The Generative Model

The generative model, described in this paper, is approximated by a neural net-
work that predicts a multivariate Gaussian distribution with a diagonal covari-
ance matrix. We consider a neural network architecture from the family of the
variational autoencoders (VAE) [11,18] which is very similar to the Genera-
tive Query Network (GQN) [4]. In contrast to the traditional autoencoders,
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this model encodes multiple observations into a single latent distribution that
describes the scene. Given a query viewpoint, new unseen views can be generated
from the encoded scene description. A high level description of the architecture
is shown in Fig. 5.

We represent the camera pose as 3D point and the orientation as a quaternion
as this representation does not suffer from Gimbal lock. The encoder encodes
each observation in a latent distribution which we choose to model by a multi-
variate Gaussian of 32 dimensions with a diagonal covariance matrix. The latent
distributions of all observations are combined into a distribution over the entire
scene in a similar way as the update step from the Kalman filter [10]. No pre-
diction step is necessary as the agent does not influence the environment. In
the decoder, the input is a concatenated vector of both the scene representation
and the query viewpoint. Intuitively, both are important as the viewpoint deter-
mines which area of the scene is observed and the representation determines
which objects are visible at each position. Between the convolutional layers, the
intermediate representation is transformed using a FiLM layer, conditioned on
the input vector, this allows the model to learn which features are relevant at
different stages of the decoding process.

A dataset of 250 scenes, each consisting of approximately 25 (image, view-
point) pairs has been created in a simulator in order to train this model. To
limit the complexity of this model, all observations consist of the same fixed
downward orientation.

Table 1. Training implementation details.

Optimizer Adam

Learning rate 0.0001

Batch size 10

Number of observations 3–10

Tolerance 75.0

λmax 100.0

λinit 20.0

The neural network is optimized using the Adam optimizer algorithm with
parameters shown in Table 1. For each scene between 3 and 10 randomly picked
observations are provided to the model, from which it is tasked to predict a new
one. The model is trained end-to-end using the GECO algorithm [19] on the
following loss function:

Lλ = DKL[Q(s̃ss|õoo)||N (000, III)] + λ · C(ooo, ô̂ôo) (3)
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Fig. 5. Schematic view of the generative model. The left part is the encoder that
produces a latent distribution for every observation, viewpoint pair. This encoder con-
sists of 4 convolutional layers interleaved with FiLM [16] layers that condition on the
viewpoint. This transforms the intermediate representation to encompass the spatial
information from the viewpoint. The latent distributions are combined to form an
aggregated distribution over the latent space. A sampled vector is concatenated with
the query viewpoint from which the decoder generates a novel view. The decoder mim-
icks the encoder architecture and has 4 convolutional cubes (upsamples the image and
processes it with two convolutional layers) interleaved with a FiLM layer that conditions
on the concatenated information vector. Each layer is activated with a LeakyReLU [12]
activation function.

The constraint C is applied to a MSE loss on the reconstructed and ground
truth observation. This constraint simply means that the MSE should stay below
a fixed tolerance. λ is a Lagrange multiplier and the loss is optimized using a
min-max scheme [19]. Specific implementation values are shown in Table 1.

The expected free energy is computed for a set of potential poses. The gener-
ative model is first used to estimate the expected view for each considered pose.
The expected value of the posterior with this expected view is computed for a
large number of samples. This way, the expected epistemic term is computed.
For numerical stability, we clamp the variances of the posterior distributions
to a value of 0.25. The instrumental value is computed as the MSE between
the preferred state and the expected observation. This essentially boils down to
computing the log likelihood of every pixel is modelled by a Gaussian with a
fixed variance of 1.
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Abstract. We revisit the role of instrumental value as a driver of adap-
tive behavior. In active inference, instrumental or extrinsic value is quan-
tified by the information-theoretic surprisal of a set of observations mea-
suring the extent to which those observations conform to prior beliefs
or preferences. That is, an agent is expected to seek the type of evi-
dence that is consistent with its own model of the world. For reinforce-
ment learning tasks, the distribution of preferences replaces the notion of
reward. We explore a scenario in which the agent learns this distribution
in a self-supervised manner. In particular, we highlight the distinction
between observations induced by the environment and those pertaining
more directly to the continuity of an agent in time. We evaluate our
methodology in a dynamic environment with discrete time and actions.
First with a surprisal minimizing model-free agent (in the RL sense) and
then expanding to the model-based case to minimize the expected free
energy.

Keywords: Perception-action loop · Active inference · Reinforcement
learning · Self-regulation · Anticipatory systems · Instrumental value

1 Introduction

The continual interaction that exists between an organism and the environment
requires an active form of regulation of the mechanisms safeguarding its integrity.
There are several aspects an agent must consider, ranging from assessing various
sources of information to anticipating changes in its surroundings. In order to
decide what to do, an agent must consider between different courses of action
and factor in the potential costs and benefits derived from its hypothetical future
behavior. This process of selection among different value-based choices can be
formally described as an optimization problem. Depending on the formalism, the
cost or utility functions optimized by the agent presuppose different normative
interpretations.

In reinforcement learning (RL) for instance, an agent has to maximize the
expected reward guided by a signal provided externally by the environment in
an oracular fashion. The reward in some cases is also complemented with an
intrinsic contribution, generally corresponding to an epistemic deficiency within
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the agent. For example prediction error [24], novelty [3,5,23] or ensemble dis-
agreement [25]. It is important to note that incorporating these surrogate rewards
into the objectives of an agent is often regarded as one of many possible enhance-
ments to increase its performance, rather than been motivated by a concern with
explaining the roots of goal-directed behavior.

In active inference [14], the optimization is framed in terms of the minimiza-
tion of the variational free energy to try to reduce the difference between sensa-
tions and predictions. Instead of rewards, the agent holds a prior over preferred
future outcomes, thus an agent minimizing its free energy acts to maximize the
occurrence of these preferences and to minimize its own surprisal. Value arises
not as an external property of the environment, but instead it is conferred by the
agent as a contextual consequence of the interplay of its current configuration
and the interpretation of stimuli.

There are recent studies that have successfully demonstrated how to reformu-
late RL and control tasks under the active inference framework. While for living
processes it is reasonable to assume that the priors emerge and are refined over
evolutionary scales and during a lifetime, translating this view into a detailed
algorithmic characterization raises important considerations because there is no
evolutionary prior to draw from. Thus the approaches to specify a distribution
of preferences have included for instance, taking the reward an RL agent would
receive and encoding it as the prior [16,21,29,32–34], connecting it to task objec-
tives [29] or through expert demonstrations [6,7,30].

In principle this would suggest that much of the effort that goes into reward
engineering in RL is relocated to that of specifying preferred outcomes or to
the definition of a phase space. Nonetheless active inference provides important
conceptual adjustments that could potentially facilitate conceiving more princi-
pled schemes towards a theory of agents that could provide a richer account of
autonomous behavior and self-generation of goals, desires or preferences. These
include the formulation of objectives and utilities under a common language
residing in belief space, and appealing to a worldview in which utility is not
treated as independent or detached from the agent. In particular the latter
could encourage a more organismic perspective of the agent in terms of the
perturbations it must endure and the behavioral policies it attains to maintain
its integrity [11].

Here we explore this direction by considering how a signal acquires functional
significance as the agent identifies it as a condition necessary for its viability and
future continuity in the environment. Mandated by an imperative to minimize
surprisal, the agent learns to associate sensorimotor events to specific outcomes.
First, we start by introducing the surprise minimizing RL (SMiRL) specification
[4] before we proceed with a brief overview of the expected free energy. Then
we motivate our approach from the perspective of a self-regulatory organism.
Finally, we present results from our case study and close with some observations
and further potential directions.
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2 Preliminaries

2.1 Model-Free Surprisal Minimization

Consider an environment whose generative process produces a state st ∈ S at
each time step t resulting in an agent observing ot ∈ O. The agent acts on the
environment with at ∈ A according to a policy π, obtaining the next observation
ot+1. Suppose the agent performs density estimation on the last t−k observations
to obtain a current set of parameter(s) θt summarizing pθ(o). As these sufficient
statistics contain information about the agent-environment coupling, they are
concatenated with the observations into an augmented state xt = (ot, θt). Every
time step, the agent computes the surprisal generated by a new observation given
its current estimate and then updates it accordingly. In order to minimize sur-
prisal under this model-free RL setting, the agent should maximize the expected
log of the model evidence E[

∑
t γt ln pθt

(ot)] [4]. Alternatively, we maintain con-
sistency with active inference by expressing the optimal surprisal Q-function
as,

Qπ∗(x, a) = Eπ[− ln pθ(o) + γ min
a′

Qπ∗(x′, a′)] (1)

estimated via DQN [22] or any function approximator with parameters φ
such that Qπ∗(x, a) ≈ Q(x, a;φ).

2.2 Expected Free Energy

The free energy principle (FEP) [15] has evolved from an account of message
passing in the brain to propose a probabilistic interpretation of self-organizing
phenomena [13,27,28]. Central to current discourse around the FEP is the notion
of the Markov blanket to describe a causal separation between the internal states
of a system from external states, as well as the interfacing blanket states (i.e.
sensory and active states). The FEP advances the view that a system remains
far from equilibrium by maintaining a low entropy distribution over the states it
occupies during its lifetime. Accordingly, the system attempts to minimize the
surprisal of an event at a particular point in time.

This can be more concretely specified if we consider a distribution p(o) encod-
ing the states, drives or desires the system should fulfil. Thus the system strives
to obtain an outcome o that minimizes the surprisal − ln p(o). Alternatively,
we can also state this as the agent maximizing its model evidence or marginal
likelihood p(o). For most cases estimating the actual marginal is intractable,
therefore a system instead minimizes the free energy [10,18] which provides an
upper bound on the log marginal [19],

F = Eq(s)[ln q(s) − ln p(o, s)] (2)

where p(o, s) is the generative model and q(s) the variational density approx-
imating hidden causes. Equation 2 is used to compute a static form of free energy
and infer hidden causes given a set of observations. However if we instead con-
sider an agent that acts over an extended temporal dimension, it must infer and
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select policies that minimize the expected free energy (EFE) G [14] of a policy
π for a future step τ > t. This can be expressed as,

G(π, τ) = Eq(oτ ,sτ |π)[ln q(sτ |π) − ln p(oτ , sτ |π)] (3)

where p(oτ , sτ |π) = q(sτ |oτ , π)p(oτ ) is the generative model of the future.
Rearranging G as,

G(π, τ) = − Eq(oτ |π)[ln p(oτ )]
︸ ︷︷ ︸
instrumental value

−Eq(oτ |π)
[
DKL[ln q(sτ |oτ , π)|| ln q(sτ |π)]

]

︸ ︷︷ ︸
epistemic value

(4)

which illustrates how the EFE entails a pragmatic, instrumental or goal-
seeking term that realizes preferences and an epistemic or information seek-
ing term that resolves uncertainty. An agent selects a policy with probability
q(π) = σ(−β

∑
τ Gτ (π)) where σ is the softmax function and β is the inverse

temperature. In summary, an agent minimizes its free energy via active inference
by changing its beliefs about the world or by sampling the regions of the space
that conforms to its beliefs.

3 Adaptive Control via Self-regulation

The concept of homeostasis has played a crucial role in our understanding
of physiological regulation. It describes the capacity of a system to maintain
its internal variables within certain bounds. Recent developments in the FEP
describing the behavior of self-organizing systems under the framework, can be
interpreted as an attempt to provide a formalization of this concept [28]. From
this point of view, homeostatic control in an organism refers to the actions nec-
essary to minimize the surprisal of the values reported by interoceptive channels,
constraining them to those favored by a viable set of states. Something that is
less well understood is how these attracting states come into existence. That is,
how do they emerge from the particular conditions surrounding the system and
how are they discovered among the potential space of signals.

Recently, it has been shown that complex behavior may arise by minimizing
surprisal in observation space (i.e. sensory states) without pre-encoded fixed
prior distributions in large state spaces [4]. Here we consider an alternative angle
intended to remain closer to the homeostatic characterization of a system. In our
scenario, we assume that given the particular dynamics of an environment, if an
agent is equipped only with a basic density estimation capacity, then structuring
its behavior around the type of regularities in observation space that can sustain
it in time will be difficult. In these situations with fast changing dynamics, rather
than minimizing free energy over sensory signals, the agent may instead leverage
them to maintain a low future surprisal of another target variable. That implies
that although the agent may have in principle access to multiple signals it might
be interested in maintaining only some of them within certain expected range.

Defining what should constitute the artificial physiology in simulated agents
is not well established. Therefore we assume the introduction of an information
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channel representing in abstract terms the interoceptive signals that inform the
agent about its continuity in the environment. We can draw a rudimentary com-
parison, and think of this value in a similar way in which feelings agglutinate and
coarse-grain the changes of several internal physical responses [9]. In addition,
we are interested in the agent learning to determine whether it is conductive to
its self-preservation in the environment or not.

3.1 Case Study

We assess the behavior of an agent in the Flappy Bird environment (Fig. 1 left).
This is a task where a bird must navigate between obstacles (pipes) at different
positions while stabilizing its flight. Despite the apparent simplicity, the envi-
ronment offers a fundamental aspect present in the physical world. Namely, the
inherent dynamics leads spontaneously to the functional disintegration of the
agent. If the agent stops propelling, it succumbs to gravity and falls. At the
same time the environment has a constant scrolling rate, which implies that the
agent cannot remain floating at a single point and cannot survive simply by
flying aimlessly. Originally, the task provides a reward every time the bird tra-
verses in between two pipes. However for our case study the information about
the rewards is never propagated and therefore does not have any impact on
the behavior of the agent. The agent receives a feature vector of observations
indicating its location and those of the obstacles. In addition, the agent obtains
a measurement v indicating its presence in the task (i.e. 1 or 0). This mea-
surement does not represent anything positive or negative by itself, it is simply
another signal that we assume the agent is able to calculate. Similarly to the
outline in Sect. 2.1, the agent monitors the last t− k values of this measurement
and estimates the density to obtain θt. These become the statistics describing
the current approximated distribution of preferences p(v|θt) or pθt

(v), which
are also used to augment the observations to xt = (ot, θt). When the agent
takes a new measurement vt, it evaluates the surprisal against pθt−1(vt). In
this particular case it is evaluated via a Bernoulli density function such that
− ln pθt−1(vt) = −(vt ln θt−1 + (1 − vt) ln(1 − θt−1)). First, we train a baseline
model-free surprisal minimizing DQN as specified in Sect. 2.1 parameterized by
a neural network (NN). Then we examine the behavior of a second agent that
minimizes the expected free energy. Thus the agent learns an augmented state
transition model of the world, parameterized by an ensemble of NNs, and an
expected surprisal model, also parameterized by another NN. In order to identify
an optimal policy we apply rolling horizon evolution [26] to generate candidate
policies π = (aτ , ..., aT ) and to associate them to an expected free energy given
by (Appendix A)

G(π, τ) ≈ −Eq(oτ ,vτ ,θ|π)DKL[q(sτ |, oτ , vτ , π)||q(sτ |π)] − Eq(vτ ,θ,sτ |π)[ln pθ(vτ )]
(5)
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If we explicitly consider the model parameters φ, Eq. 5 can be decomposed
as (Appendix B),

G(π, τ) ≈ −Eq(oτ ,vτ ,φ|π)DKL[q(sτ |oτ , vτ , π)||q(sτ |π)]
︸ ︷︷ ︸

salience

− Eq(oτ ,vτ ,sτ |π)DKL[q(φ|sτ , oτ , vτ , π)||q(φ)]
︸ ︷︷ ︸

novelty

− Eq(oτ ,vτ ,sτ ,φ|π)[ln pθ(vτ )]
︸ ︷︷ ︸

instrumental value

(6)

The expression unpacks further the epistemic contributions to the EFE in
terms of salience and novelty [17]. These terms refer to the expected reduction
in uncertainty about hidden causes and in the parameters respectively. For this
task o = s, thus only the first and third term are considered.

3.2 Evaluation

The plot on Fig. 1 (center) tracks the performance of an EFE agent in the envi-
ronment (averaged over 10 seeds). The dotted line represents the surprisal min-
imizing DQN agent after 1000 episodes. The left axis corresponds to the (unob-
served) task reward while the right axis indicates the approximated number of
time steps the agent survives. During the first trials, and before the agent exhibits
any form of competence, it was observed that the natural coupling between agent
and environment grants the agent a life expectancy of roughly 19–62 time steps
in the task. This is essential as it starts to populate the statistics of v. Measuring
a specific quantity v, although initially representing just another signal, begins
to acquire certain value due to the frequency that it occurs. In turn, this starts
to dictate the preferences of the agent as it hints that measuring certain sig-
nal correlates with having a stable configuration for this particular environment
as implied by its low surprisal. Right Fig. 1 shows the evolution of parameter
θ (averaged within an episode) corresponding to the distribution of preferred
measurements pθ(v) which determines the level of surprisal assigned when receiv-
ing the next v. As the agent reduces its uncertainty about the environment it
also becomes more capable of associating sensorimotor events to specific mea-
surements. The behavior becomes more consistent with seeking less surprising
measurements, and as we observe, this reinforces its preferences, exhibiting the
circular self-evidencing dynamics that characterize an agent minimizing its free
energy.

4 Discussion

Learning Preferences in Active Inference: The major thesis in active infer-
ence is the notion of an agent acting in order to minimize its expected surprise.
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Fig. 1. Left : The Flappy Bird environment. Center : Performance of an EFE agent.
The left axis indicates the unobserved rewards as reported by the task and the right
axis the number of time steps it survives in the environment. The dotted line shows the
average performance of an SM-DQN after 1000 episodes. Right : Parameter θ in time,
summarizing the intra-episode sufficient statistics of pθ(v).

This implies that the agent will exhibit a tendency to seek for the sort of out-
comes that have high prior probability according to a biased model of the world,
giving rise to goal-directed behavior. Due to the difficulty of modeling an agent
to exhibit increasing levels of autonomy, the agent based simulations under this
framework, and similarly to how it has largely occurred in RL, have tended to
concentrate on the generation of a particular expected behavior in the agent.
That is, on how to make the agent perform a task by encoding predefined goals
[16,21,29,32–34] or providing guidance [6,7,30]. However there has been recent
progress trying to mitigate this issue. For example, in some of the simulations in
[29] the authors included a distribution over prior preferences to account for each
of the cells in Frozen Lake, a gridworld like environment. Over time the prior
preferences are tuned, leading to habit formation. Most related to our work, are
the studies on surprise minimizing RL (SMiRL) by [4], where model-free agents
performed density estimation on their observation space and acquired complex
behavior in various tasks by maximizing the model evidence of their observa-
tions. Here we have also opted for this approach, however we have grounded it
on organismic based considerations of viability as inspired by insights on the
nature of agency and adaptive behavior [1,11,12]. It has been suggested that
even if some of these aspects are defined exogenously they could capture general
components of all physical systems and could potentially be derived in a more
objective manner compared to task based utilities [20]. Moreover these views
suggest that the inherent conditions of precariousness and the perturbations an
agent must face are crucial ingredients for the emergence of purpose generating
mechanisms. In that sense, our main concern has been to explore an instance of
the conditions in which a stable set of attracting states arises, conferring value to
observations and leading to what seemed as self-sustaining dynamics. Although
all measurements lacked any initial functional value, the model presupposes the
capacity of the agent to measure its operational integrity as it would occur in an
organism monitoring its bodily states. This raises the issue of establishing more
principled protocols to define what should constitute the internal milieu of an
agent.
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Agent-Environment Coupling: A matter of further analysis, also motivated
by results in [4], is the role of the environment to provide structure to the behav-
ior of the agent. For instance, in the environments in [4], a distribution of pref-
erences spontaneously built on the initial set of visual observations tends to
correlate with good performance on the task. In the work presented here the
initial set of internal measurements afforded by the environment contributes to
the formation of a steady state, with the visual features informing the actions
necessary to maintain it. Hence similarly to [4], the initial conditions of the
agent-environment coupling that furnish the distribution p(v) provide a starting
solution for the problem of self-maintenance as long as the agent is able to pre-
serve the statistics. Thus if the agent lacks a sophisticated sensory apparatus,
the capacity to extract invariances or the initial statistics of sensory data do not
favor the emergence of goal-seeking behavior, tracking its internal configuration
may suffice for some situations. However this requires further unpacking, not
only because as discussed earlier it remains uncertain how to define the inter-
nal aspects of an agent, but also because often simulations do not capture the
essential characteristics of real environments either [8].

Drive Decomposition: While here we have afforded our model certain levels of
independence between the sensory data and the internal measurements, it might
be sensible to imagine that internal states would affect perception and perceptual
misrepresentation would affect internal states. Moreover, as the agent moves
from normative conditions based entirely on viability to acquire other higher
level preferences, it learns to integrate and balance different drives and goals.
From Eq. 8 it is also possible to conceive a simplified scenario and establish the
following expression (Appendix D),

G(π, τ) ≈ Eq(oτ ,vτ ,θ,sτ |π)[ln q(sτ |π) − ln p(sτ |oτ , π)]
︸ ︷︷ ︸

epistemic value

− Eq(oτ ,vτ ,θ,sτ |π)[ln p(oτ )]
︸ ︷︷ ︸

high level value

+ Eq(oτ ,sτ |π)H[p(vτ |sτ , oτ , π)]
︸ ︷︷ ︸

regulatory value

(7)

Where the goal-seeking value is decomposed into a component that considers
preferences encoded in a distribution p(o) and another element estimating the
expected entropy of the distribution of essential variables. Policies would balance
the contributions resolving for hypothetical situations, such as a higher level goal
being at odds with the viability of the system.
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A Expected Free Energy with Measurements v

We consider a generative model p(s, o, v|π) for the EFE equation and obtain
a joint distribution of preferences p(o, v). If we are interested exclusively in v,
assuming and treating o and v as if they were independent modalities, and
ignoring o we obtain:

G(π, τ) = Eq(oτ ,vτ ,θ,sτ |π)[ln q(sτ |π) − ln p(sτ , oτ , vτ |π)] (8)
≈ Eq(oτ ,vτ ,θ,sτ |π)[ln q(sτ |π) − ln q(sτ |, oτ , vτ , π) − ln p(oτ , vτ )]
≈ Eq(oτ ,vτ ,θ,sτ |π)[ln q(sτ |π) − ln q(sτ |, oτ , vτ , π) − ln p(oτ ) − ln pθ(vτ )]
≈ Eq(oτ ,vτ ,θ,sτ |π)[ln q(sτ |π) − ln q(sτ |, oτ , vτ , π) − ln pθ(vτ )]
≈ −Eq(oτ ,vτ ,θ|π)DKL[q(sτ |, oτ , vτ , π)||q(sτ |π)] − Eq(vτ ,θ,sτ |π)[ln pθ(vτ )]

(9)

B Novelty and salience

The derivation is equivalent to those found in the classical tabular descriptions
of active inference where instead of learning transitions via a function approxi-
mator, a mapping from hidden states to observations is encoded by a likelihood
matrix A. In the tabular case the beliefs of the probability of an observation
given a state are contained in the parameters aij , which are updated as the
agent obtains a particular observation.

G(π, τ) = Eq(oτ ,sτ ,vτ ,φ|π)[ln q(sτ , φ|π) − ln p(oτ , vτ , sτ , φ|π)]
= Eq(oτ ,sτ ,vτ ,φ|π)[ln q(φ) + ln q(sτ |π)

− ln p(φ|sτ , oτ , vτ , π) − ln p(sτ |oτ , vτ , π) − ln p(oτ , vτ )]
≈ Eq(oτ ,sτ ,vτ ,φ|π)[ln q(φ) + ln q(sτ |π)

− ln q(φ|sτ , oτ , vτ , π) − ln q(sτ |oτ , vτ , π) − ln pθ(vτ )]
≈ Eq(oτ ,sτ ,vτ ,φ|π)[ln q(sτ |π) − ln q(sτ |oτ , vτ , π)]

+ Eq(oτ ,sτ ,vτ φ|π)[ln q(φ) − ln q(φ|sτ , oτ , vτ , π)]
− Eq(oτ ,sτ ,vτ ,φ|π)[ln p(vτ )]

≈ −Eq(oτ ,sτ ,vτ ,φ|π)[ln q(sτ |oτ , vτ , π) − ln q(sτ |π)]
− Eq(oτ ,sτ ,vτ ,φ|π)[ln q(φ|sτ , oτ , vτ , π) − ln q(φ)]
− Eq(oτ ,sτ ,vτ ,φ|π)[ln p(vτ )]

≈ −Eq(oτ ,vτ ,φ|π)
[
DKL[q(sτ |oτ , vτ , π)||q(sτ |π)]

]

︸ ︷︷ ︸
salience

− Eq(oτ ,vτ ,sτ |π)
[
DKL[q(φ|sτ , oτ , vτ , π)||q(φ)]

]

︸ ︷︷ ︸
novelty

− Eq(oτ ,vτ ,sτ ,φ|π)[ln p(vτ )]
︸ ︷︷ ︸

instrumental value

(10)
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C Implementation

We tested on the Flappy Bird environment [31]. The environment sends a non-
visual vector of features containing:

– the bird y position
– the bird velocity.
– next pipe distance to the bird
– next pipe top y position
– next pipe bottom y position
– next next pipe distance to the bird
– next next pipe top y position
– next next pipe bottom y position

The parameter θ of the Bernoulli distribution p(v) was estimated from a
measurement buffer (i.e. queue) containing the last N values of v gathered by the
agent. We tested the agents with large buffers (e.g.. 206) as well as small buffers
(e.g.. 20) without significant change in performance. The results reported in
Fig. 1 were obtained with small sized buffers as displayed in the hyperparameter
table below.

The DQN agent was trained to approximate with a neural network a Q-
function Qφ({s, θ}, .). For our case study s = o which contains the vector
of features, while θ is the parameter corresponding to the current estimated
statistics of p(v). An action is sampled uniformly with probability ε otherwise
at = mina Qφ({st, θt}, a). ε decays during training.

For the EFE agent, the transition model p(st|st−1, φ, π) is implemented as
a N ({st, θt}; fφ(st−1, θt−1, at−1), fφ(st−1, θt−1, at−1)). Where a is an action of
a current policy π with one-hot encoding and fφ is an ensemble of K neural
networks which predicts the next values of s and θ. The surprisal model is also
implemented with a neural network and trained to predict directly the surprisal
in the future as fξ(st−1, θt−1, at−1) = − ln pθt−1(vt).

In order to calculate the expected free energy in Eq. 6 from a simulated
sequence of future steps, we follow the approach described in appendix G in [33]
where they show that an information gain of the form Eq(s|φ)DKL[q(φ|s)||q(φ)]
can be decomposed as,

Eq(s|φ)DKL[q(φ|s)||q(φ)] = −Eq(φ)H[q(s|φ)] + H[Eq(φ)q(s|φ)] (11)

with the first term computed analytically from the ensemble output and the
second term approximated with a k-NN estimator [2].
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Hyperparameters DQN EFE

Measurement v buffer size 20 20

Replay buffer size 106 106

Batch size 64 50

Learning rate 1−3 1−3

Discount rate 0.99 –

Final ε 0.01 –

Seed episodes 5 3

Ensemble size – 25

Planning horizon – 15

Number of candidates – 500

Mutation rate – 0.5

Shift buffer – True

D Drive decomposition

G(π, τ) = Eq(oτ ,vτ ,θ,sτ |π)[ln q(sτ |π) − ln p(sτ , oτ , vτ |π)]
= Eq(oτ ,vτ ,θ,sτ |π)[ln q(sτ |π) − ln p(vτ |sτ , oτ , π) − ln p(sτ , oτ |π)]
= Eq(oτ ,vτ ,θ,sτ |π)[ln q(sτ |π) − ln p(sτ |oτ , π) − ln p(oτ ) − ln p(vτ |sτ , oτ , π)]
≈ Eq(oτ ,vτ ,θ,sτ |π)[ln q(sτ |π) − ln p(sτ |oτ , π)] − Eq(oτ ,vτ ,θ,sτ |π)[ln p(oτ )]

+ Eq(oτ ,sτ |π)H[p(vτ |sτ , oτ , π)] (12)
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Abstract. Stemming on the idea that a key objective in reinforcement
learning is to invert a target distribution of effects, end-effect drives are
proposed as an effective way to implement goal-directed motor learn-
ing, in the absence of an explicit forward model. An end-effect model
relies on a simple statistical recording of the effect of the current pol-
icy, here used as a substitute for the more resource-demanding forward
models. When combined with a reward structure, it forms the core of
a lightweight variational free energy minimization setup. The main dif-
ficulty lies in the maintenance of this simplified effect model together
with the online update of the policy. When the prior target distribution
is uniform, it provides a ways to learn an efficient exploration policy,
consistently with the intrinsic curiosity principles. When combined with
an extrinsic reward, our approach is finally shown to provide a faster
training than traditional off-policy techniques.

Keywords: Reinforcement learning · Intrinsic reward · Model-based
exploration · Motor learning

1 Introduction

Recent developments in artificial intelligence have produced important qualita-
tive leaps in the field of pattern recognition, in video games and assisted driving.
However, a number of tasks considered as simple, are struggling to find a con-
vincing artificial implementation... This is the field of action selection and motor
control. For instance, the fine manipulation of objects, as well as movement in
natural environments, and their combination through real time motor control,
remain major scientific challenges at present. Compared to the case of video
games, reinforcement learning, for instance, remains rather limited in the field
of robotic and motor control. The huge improvements “from-scratch” obtained
in virtual environments are difficult to transfer to real robotics, where millions
of plays can not be engaged under risk of breakage, and simulators are expensive
to develop. The brain capability to develop motor skills in a very wide range of
areas has thus no equivalent in the field of artificial learning.
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In short, learning a motor command, or a motor skill, happens to become
difficult when considering a moderately complex set of effectors, like a multi-
joint arm for instance, operating in the physical world. One aspect of the prob-
lem is that the set of circuits that process the sensory signals and produce a
motor response is composed of digital units, the neurons, operating at fast pace,
and adapting rapidly, while, on the other side, the operation space is made of
many joints, rigid elements and muscles covering a wide, continuous domain of
responses with many degrees of freedom and much longer response times.

The reinforcement learning framework [16] provides a very generic setup to
address the question of learning, both from a machine learning and the brain
modelling perspectives. It contains many of the interesting constraints that an
agent is facing in order to learn a motor act. The theory, however, is constructed
around digital (discrete) control principles. The aim of a digital controller is to
establish a one to one correspondence between stimuli and actions, by matching
the input with a template action. Given a set of pre-defined actions, an agent is
expected to pick the one that matches the most the input. In order to learn how
to act, the agent is guided by a reward signal, that is much cheaper to extract
than an exact set point. Then the choice of the action is monitored by a scalar
quantity, the utility, that is the long term sum of rewards [16]. A Reinforcement
Learning agent is agnostic about what the world is. It is just acting so as to
maximize the utility. Supported by the solid principles of dynamic programming,
this agent is expected to end-up in an optimal motor behavior with regards to
the reward constraints provided by the environment. A hidden difficulty however
lies in finding a good training dataset for the agent. A classical problem in that
case is the lack of sampling efficacy due to the sparsity of the rewards, or to the
closed-loop structure of the control task, where the examples encountered are
statistically dependent on the controller parameters, providing a risk of a self
referential loop and local optimum.

The counterpart to digital control is analog control, corresponding to the
“classic” way to design a controller in the majority of real-world scenarios. In
the analog control case, both the controller and the environment are dynamical
systems. The control of a dynamic system generally relies on a model [14]. The
controller is capable to mimic the behavior of the environment, and know the
effect of its actions on the environment. When a certain objective is given, the
controller can act so as to reach the objective through model inversion, though,
in most cases of interest (like the control of an articulated body), the models
are not invertible and no single definite control can be established from a given
objective [7] without setting up additional and task-specific regularization con-
straints. This kind of controller needs a forward model, that is generally given,
containing a large engineering knowledge about the agent’s effector structure
and its environment. A problem arises when the learning of a motor command is
considered. Such controllers generally lack in adaptivity, and motor adaptation
is generally hard to train when the environmental conditions change.

There is thus an apparent trade-off between, on one side, maintaining a
model, that may include the many mechanical, environmental and sensory data
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interactions, and, on the other side, being guided by a simplistic reward, con-
centrating all the complexity of the external world constraints in a single scalar.
The main difference between both approaches appears to be the presence (or
the absence) of a definite model of the external world. Knowing the effect of our
own actions in the world provides ways to anticipate and do planning to reach
an objective, at the cost of maintaining and updating a model of the world [11].
At present time, the trade-off between model-free and model-based control has
provoked many debates in the reinforcement learning community, with a prefer-
ence toward model-free approaches for they are cheaper to maintain and easier
to control, leaving unsolved the problem of the sampling efficacy and causing
very long training sessions in moderately complex environments.

Our argument here is that the sampling efficacy is bound to the problem of
training a model, and one can not expect to have an efficient sampling without a
minimal model of the effect of action. This model does not need to be perfectly
accurate, but it needs to be good enough to allow the agent to efficiently sample
its environment in order to grab all the disposable information in relation to the
task at hand. We assert here that a simple effect model is enough to provide all
the needed variability in probing the effect of an action or a policy.

2 Method

2.1 A Probabilistic View to Motor Supervision

The probabilistic view to learning cause-effect relationships is at the core of many
recent developments in machine learning, with a body of optimization techniques
known as “variational inference” implementing model training from data [10].
We assume for simplicity that the environment is not hidden to the agent, i.e.
the environment is fully observable. We also assume a discrete updating of states
and actions, like in classic reinforcement learning. Then, if s is the state of the
environment (or a context), and a an action performed by the agent, consider e
as the effect of the action performed by the agent in that particular state.

The effect may reflect, to some point, the result, or the outcome, of the action.
Modelling an effect thus supposes that an action should come to an end, a final
point, from which it is possible to evaluate or record a result. Consistently with
a bunch of neurological observations [5], a simple end-effector open-loop control
is here assumed to take place, with a compositional motor command [8] driving
a multi-joint effector toward a fixed point, without feedback during the motor
realization.

The effect can be a short-term effect, like reading a new state from the
environment. It can also be a long term effect, like winning or loosing a game, or
reaching an objective s∗ in the future. Because there is a lot of uncertainty on
the effect of an action, it is modeled as a probability distribution p(E|s, a). When
the effect is not dependent on a context, it can be noted more simply p(E|a).
Given a certain policy π(a|s), one can also consider the average distribution of
effects obtained when applying that specific policy, namely

p(E|s) = Ea∼π(A|s)p(E|s, a) (1)
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This marginal distribution is said the effect distribution. By construction, it is
dependent on a particular policy (possibly stochastic) over states and actions,
and may, for instance, represent the invariant measure of an MDP under that
given policy. In our case however, we mostly consider the open-loop control
case. The policy is defined over the elements of a compositional action, that is
choosing the components of an action. The end-effect of such a compositional
action is the terminal state attained at the end of the action, without reading
the intermediate states.

In goal-directed control, if e is an expected effect, an inverse control policy,
whose role is to maximize the chance to reach the effect, can be defined using
Bayes rule as:

π(a|s, e) =
p(e|s, a)π(a|s)

p(e|s) (2)

That is the inversion of the model in a probabilistic setup [1]. Here the marginal
effect distribution plays the role of a set point, that fixates the distribution of
states toward which the action should head for.

Assume now p∗(e|s) be a target distribution of effects. This distribution is
distinct from p(e|s) that is the distribution of effects under the current policy.
It is assumed to be realizable from an (unknown) target policy π∗(a|s), that can
be decomposed into:

π∗(a|s) = Ee∼p(E|s,a)π
∗(a|s, e) p∗(e|s)

p(e|s, a)
(3)

The right side of the equation provides an estimation of the optimal policy
based on a sample e of the effect of the action. Unfortunately, the optimal inverse
control policy π∗(a|s, e) is unknown. A shortcut is to approximate it with the
current inverse control policy π(a|s, e). In that case, it happens from Eq. (2)
that the formula simplifies to :

π∗(a|s) � Ee∼p(E|s,a)π(a|s, e) p∗(e|s)
p(e|s, a)

(4)

= π(a|s)Ee∼p(E|s,a)
p∗(e|s)
p(e|s) (5)

This formula shows that a correction term can be applied to the current pol-
icy without owning an explicit forward model, but rather through reading the
average effect of the policy. This forms the basis of a supervised approach to
motor learning, allowing to update a policy so as to reach a target marginal
distribution.

For instance, in a dicrete setup, assuming there exists a Z(s) ∈ R such that
log π(a|s) = βQ(s, a)+Z(s) (softmax policy) makes it possible to update Q(s, a)
with the last effect sample e like:

Q(s, a) ←Q(s, a) − α

β
(log p(e|s) − log p∗(e|s)) (6)
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This update renders the current policy closer to the optimal one. A side effect of
this update is that it also changes the effect model that includes the contribution
of the policy (see Eq. (1)). Repeating the operation with a small α and different
samples of a and e should, on average, reduce the divergence between π and π∗.
Equation (6) also provides an interesting identity when considering the classical
(reward-based) TD-error, with 1

β (log p(e|s) − log p∗(e|s)) taking the role of the
TD error, i.e. being identified with Q(s, a) − R̃(e) (with R̃(e) a putative sum of
rewards up to e), making it possible, for instance, to set up an intrinsic reward
implementing a policy that realizes a known prior on the effects. This intrinsic
reward is called here the “End-Effect Drive”.

This supervised approach to policy relies on an effect model p(e|s) that is
less detailed than a forward model. Various kinds of approximate forward models
can be found in goal-directed motor control literature, like dynamic goals [9] and
distal teacher [7], though generally learning to associate the current action with
a distal effect [11,15]. In our case, the model knows nothing about the actions
that are performed by the agent. Only the end-effects are recorded to build the
model. This “action-agnostic” forward model is close to the concept of state-visit
counter, as it is proposed in [2].

2.2 A Uniform Exploration Drive

An important special case is when the objective is not to reach a certain effect,
but rather to explore uniformly the range of all possible effects. In that case,
the objective effect distribution p∗ is uniform over the effect space. This kind of
supervision can be seen as a generalization of multiple-goal supervision [6] toward
defining each possible effect as a goal. The expected outcome of this uniform
drive is to provide a uniform sampling over the effect space, i.e. implement a
uniform exploration policy. This intrinsic reward is called here the “End-Effect
Exploration Drive” (E3D in short). It is consistent with the pseudo-count bonus
proposed in [2]. A similar drive was also proposed in a recent draft as the “state
marginal matching” drive [12].

By construction, the E3D is positive when e is rarely visited under the current
policy (p(e|s) < p∗(e)), and negative the other way. It thus tries to promote
rare and “surprising” effects, and lower the occurrence of habitual “boring”
effects. It must be noticed that the promotion of rare effects tends to make
them less rare, and the rejection of habitual effects tends to make them less
habitual, up to an equilibrium where the log-probability ratio should be close to
zero. Though the circular dependence between the policy update and the effect
model update can provoke some convergence issues, and the equilibrium may
not be reached in the case of too fast fluctuations of both distributions during
the training process. Some form of regularization is needed in most cases, and,
most importantly, should be counterbalanced with some form of utility drive, in
order to implement policy optimization through reward maximization. This is
the reason why a variational inference setup is particularly well suited in that
case, with the distal uniform drive taking the role of a prior under a variational
formulation.
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2.3 Link with Variational Inference

A key intuition in Friston’s “unified brain theory” paper [4] is interpreting the
utility, as it is defined in economy and reinforcement learning, as a measure of
the negative surprise (i.e the log probability over the sensory data distribution).
Combined with a prior distribution in the control space, the action takes the
role of a latent variable that is updated so as to reduce the prediction error with
regards to the prior, much like in predictive coding.

The unified approach proposed by Friston and colleagues is more gener-
ally consistent with the variational auto-encoder principles, in which a latent
description of the data is constructed so as to implement a trade-off between
the complexity of the description and the accuracy of the prediction. Variational
reinforcement learning was recently proposed as a way to reconcile the discrete
view to motor control with the continuous processing of the latent variable in
variational auto-encoders [3,6,13], with the motor command playing the role of
a latent code for the reward data. In our simplified writing, the utility maxi-
mization (or surprise minimization) rests on minimizing:

− Ea∼π(a|s);e∼p(e|s,a)βR(e) + KL(π(a|s)||π∗(a)) (7)

with R(e) here a measure of the sum of (extrinsic) rewards, up to e. Interest-
ingly, the current policy π(a|s) lies at the crossroad of a reference (maximum
entropy) policy π∗ and reward maximization, with the softmax policy represent-
ing a compromise between both tendencies in the discrete case.

Extending toward a uniform prior over the space of effects can be written
when both considering the motor command and the effect as latent variables
that may both explain the current observation, that writes:

− Ea,e∼p(a,e|s))βR(e) + KL(p(a, e|s))||p∗(a, e)) (8)

For the purpose of illustration, we propose here an additional simplification,
that is assuming an independence of both factors (e and a) on causing the current
data (Näıve Bayes assumption), dividing the KL term in two parts:

− Ea∼π(a|s);e∼p(e|s,a)βR(e) + KL(π(a|s))||π∗(a)) + KL(p(e|s))||p∗(e)) (9)

This forms the baseline of our variational policy update setup. The optimization,
that is done on π(a|s), obeys in that case on a triple constraint, that is maximiz-
ing the reward through minimizing both the distance to a baseline policy and
the distance of the effect to a reference (supposedly uniform) effect distribution.

In a discrete setup, the uniform prior on the action is supposed implemented
with the softmax decision rule. It is then sufficient to assume the following update
for the action-value function. After reading e, the TD-error should be defined
as:

TD(s, a, e) = λ(Q(s, a) − R(e)) +
1
β

(log p(e|s) − log p∗(e))) (10)
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With λ a precision hyperparameter accounting for the different magnitudes
of rewards, allowing to manipulate the balance between reward seeking and
exploration-seeking drives. Interestingly, the reward R(e) has here the role
of a regularizer with regards to the current Q-value. The sum of the future
rewards can be estimated using the classical Bellman recurrence equation, i.e.
Q(s, a) ∼ r(s, a)+Q(s′, a′), in which case the training procedure needs to main-
tain an estimate of a standard action-value function Qref(s, a) to update the
actual parameters of the policy Q(s, a).

3 Results

We present in simulation a pilot implementation of the principle presented in
the previous section. The principal idea is to illustrate an important feature of
biological motor control, that is the control of an effector showing many degrees
of freedom, like e.g.. an articulated limb with many joints.

Let A a control space accounting for a single degree of freedom (here a discrete
set of actions i.e. A = {E,S,W,N}), each motor command owning n degrees
of freedom, i.e. a1:n = a1, ..., an ∈ An. The effect space is expected to be much
smaller, like it is the case in end-effector control, where only the final set point
of a movement in the peripheral space is considered as the result of the action.
Each degree of freedom is supposed to be independent, i.e. the choice of ai does
not depend on the choice of aj , so that π(a1:n|s0) = π(a1|s0) × ... × π(an|s0).
When a single context s0 is considered, the policy writes simply π(a1:n). The
size of the action space is thus combinatorially high, and one can not expect to
enumerate every possible action in reasonable computational time. In contrast,
the effect space is bounded, and the number of all final states can be enumerated.
However, the environment is constructed in such a way that some final states
are very unlikely to be reached under a uniform sampling of the action space.

The environment we consider is a grid world with only 18 states and two
rooms, with a single transition allowing to pass from room A to room B (see
Fig. 1). Starting in the upper left corner of room A, the agent samples a trajec-
tory a1:7 ∈ A from a policy π, that trajectory being composed of 7 elementary
displacements. The agent does not have the capability to read the intermediate
states it is passing through, it can only read the final state after the full trajec-
tory is realized. In such an environment, a baseline uniform exploration does not
provide a uniform distribution of the final states. In particular, when acting at
random, the chance to end-up in the first room is significantly higher than the
chance to end up in the second room.

The agent starts from scratch, and has to build a policy π(a) and an effect
model p(sn), with sn the final state. There are two task at hand. A first task
is a simple exploration task and the objective is to uniformly sample the effect
space, which should imply a non-uniform sampling policy. A second task consists
in reaching the lower-right corner, the state that shows the lowest probability
with a uniform sampling. For that, a reward of 1 is given when the agent reaches
the lower corner, and 0 otherwise.
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START

Fig. 1. A simple two-rooms environment. Starting from the upper-left corner, the agent
is asked to plan a full sequence made of 7 elementary actions a1, ..., a7, each elementary
action being in (E,S,W,N). The only read-out from the environment is the final state,
and a reward, that is equal to 1 if the final state is the lower-right corner, and 0
otherwise.

The update procedure is made of a single loop (see Algorithm 1). The update
is done online at each trial. Both the policy and the effect model are updated,
with different training parameters. The general idea is to train the effect model
a little more “slowly” than the policy, for the policy improvement to firmly take
place before they are passed on the effect model.

Stemming from a uniform policy, the effect of the E3D drive is to render the
“rare” states more attractive, for they are bound with a positive intrinsic reward,
while the more commonly visited states are bound with a negative reward, that
reflects a form of “boredom”. Marking a rare state as “attractive” tends to
increase the number of visits, and finally lower the initial positive reward. In the
case of a “gradient” in the likelihood of the final states, with a number of final
visits inversely proportional to the distance to the initial state, the E3D drive
favors a progressive “expansion” of the visiting territory, for each peripheral
state attained will increase the probability to reach its further neighbors, up to
the final limit of the state space. In small environment like the one proposed
here, the limit is rapidly attained and a rapid alternation of visits is observed
over the full state space.

The final distribution of states is compared in Fig. 2 in the case of a uniform
policy and the E3D drive. In that specific setup, a strong bias in favor of the first
room is observed, and a gradient of likelihood is observed from the initial state
toward the lower right corner (Fig. 2A). In contrast, a time consistent uniform
pattern of visit is observed in the second case, that illustrates the capability of
the E3D drive to set up specific polices devoted to the wide exploration of the
environment.

When a reward r is provided by the environment, the question comes whether
to balance the policy update procedure in favor of seeking for rewards or seek-
ing for novel effects. By construction, the exploration drive is insensitive to the
value of β, for the update is exactly proportional to 1

β . A high β is associate
with a small update and vice versa. this is not the case for the leftmost part
of the update (Eq. 10). A high β render the agent more sensitive to the extrin-
sic rewards. In practice, while no reward (or a uniform reward) is provided
by the environment, the agent is only guided by the exploration drive. Once
a reward is encountered, it tends to overtake the initial uniform exploration,
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Algorithm 1. End-Effect Exploration Drive (E3D)
Require: α, β, λ, η

Q ← 0|A|×n

p ← Uniform
p∗ ← Uniform
while number of trials not exceeded do

sample a1:n ∼ π(A1:n)
read sn, r
p ← (1 − η)p + η1S=sn

for i ∈ 1..n do
Q(ai) ← (1 − αλ)Q(ai) + αλr − α

β
(log p(sn) − log p∗(sn))

end for
end while

Fig. 2. (a) Task 1 : no reward is pro-
vided by the environment. Empirical
distribution of the final states, after
5000 trials. A. Uniform policy. B. End-
Effect Exploration Drive (E3D) algo-
rithm. α = 0.3, β = 1, λ = 0.03,
η = 10−2.

Fig. 3. (b) Task 2 : a reward r = 1 is
provided by the environment when the
agent reaches the lower-right corner.
Cumulative sum of rewards over 5000
trials, on 10 training sessions. The E3D
algorithm is compared with state-of-
the-art epsilon-greedy update. α = 0.3,
β = 100, λ = 0.03, η = 10−2, ε = 0.1.

providing a firm tendency toward a reward-effective selection of action. This is
in contrast with the standard epsilon-greedy strategy, imposing to balance the
exploration/exploitation trade-off by hand.

The E3D approach finally provides an Online/on-Policy training procedure
that conforms to the main requirements of efficient reinforcement learning, show-
ing both an efficient exploration policy when the rewards are sparse, and the
capability to monitor the exploration/exploitation tradeoff with the inverse tem-
perature β in function of the magnitude of the rewards.

The cumulative rewards obtained with the E3D update and a state-of-the
art off-policy/epsilon greedy update are compared in Fig. 3, with ε set to 0.1. If
both techniques manage to reach a reward-efficient policy in the long run, the
exploration strategy developed in E3D makes it easier to reach the rewarding
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state, providing the reward earlier in time and developing a fast-paced reward-
seeking strategy that overtakes the baseline approaches.

4 Conclusions

Despite its simplicity, our pilot training setup allows to illustrate the main fea-
tures expected from the inversion of a target distribution of effects, that is the
capability to rapidly explore the environment through a reciprocal update of the
policy and the effect model. We found in practice that the update of the model
needs to be a bit slower than that of the policy to allow for the policy to improve
over time and increase the extent of the effect space in a step by step manner.
By balancing the effect of the rewards with the inverse temperature parameter,
it is possible to catch and exploit very sparse rewards in large environments.

The model is developed here as a first draft in an “end-effect” setup, with
very little influence of the context or the states visited in the monitoring of the
policy. Extensions toward closed-loop state-action policies is not far from reach,
for Eq. (10) allows to exploit the Bellman recurrence to guide the exploration-
driven policy with a reference action-value function, that should be updated
in parallel to the model and the current policy. Extensions toward continuous
action spaces are also needed in order to address effective motor control learning,
which resorts to a deeper interpretation of our approach toward the variational
inference setup.
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Abstract. We consider active inference as a novel approach to the
design of synthetic autonomous agents. In order to assess active infer-
ence’s feasibility for real-world applications, we developed an agent that
controls a ground-based robot. The agent contains a generative dynamic
model for the robot’s position and for performance appraisals by an
observer of the robot. Our experiments show that the agent is capable
of learning the target parking position from the observer’s feedback and
robustly steer the robot toward the learned target position.

Keywords: Active inference · Robotics · Variational Bayesian learning

1 Introduction

The idea of autonomously operating synthetic agents is an active research area in
the machine learning community. Development of these agents involves a number
of hard challenges, for instance the need for agents to be capable of adaptively
updating their goals in dynamic real-world settings.

In this project we investigated a novel solution approach to the design of
autonomous agents. We recognize that any “intelligent” autonomous agent needs
to be minimally capable of realizing three tasks:

– Perception: online tracking of the state of the world.
– Learning: updating its world model in case real-world dynamics are poorly

predicted.
– Decision making and control: executing purposeful behavior by taking advan-

tage of its knowledge of the state of the world.

Active Inference (ActInf) is a powerful computational theory of how biological
agents accomplish the above mentioned task palette. ActInf relies on formulat-
ing all tasks (perception, learning and control) as inference tasks in a biased
generative model of the agent’s sensory inputs [8].

In order to assess the feasibility and capabilities of active inference as a
framework for the design of synthetic agents in a real-world setting, we develop
here an agent for a ground-based robot that learns to navigate to an initially
undisclosed location. The agent can only learn where to park through situated
interactions with a human observer who is aware of the target location.
c© Springer Nature Switzerland AG 2020
T. Verbelen et al. (Eds.): IWAI 2020, CCIS 1326, pp. 125–132, 2020.
https://doi.org/10.1007/978-3-030-64919-7_14
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2 Problem Statement

In this design study, we are particularly interested in two issues:

1. Can the agent learn the correct target position from situated binary appraisals
by a human observer?

2. Can the agent robustly steer the robot to the inferred target position?

3 Model Specification

Active inference, a corollary of the free energy principle, brings together per-
ception, learning and control in a unifying theory [8]. Active inference agents
comprise a biased generative model that encodes assumptions about the causes
of the agent’s sensory signals. The generative model is biased in the sense that
the agent’s goals are encoded as priors over future states or observations.

Following [11,12], the agent’s model at time step t in this paper takes the
form of a state-space model

pt(o, s, u) ∝ p(st−1)
t+T∏

k=t

p(ok|sk)︸ ︷︷ ︸
observation

p(sk|sk−1, uk)︸ ︷︷ ︸
state transition

p(uk)︸ ︷︷ ︸
control

p′(ok)︸ ︷︷ ︸
goal

, (1)

where o, s and u refer to the agent’s observations, internal states and control
signals respectively. Note that the model includes states and observations for T
time steps in the future.

The agent’s generative model consists of two interacting sub-models: a phys-
ical model for the robot’s position and orientation and a target model for user
appraisals, see Fig. 1. Initially, the physical model has no explicit goal priors.
However, the agent’s target model infers desired future locations from appraisals
and relays this information to the physical model. Thus, as time progresses, the
physical model acquires increasingly accurate information about desired future
positions.

3.1 The Physical Model

The physical model is responsible for inferring the controls necessary for navigat-
ing the agent from any position a to position b. Observations are noisy samples
of the robot’s position and orientation. The inferred controls are translation and
rotation velocities that are used in a differential steering scheme [7].

The states of the physical model are given by sk = (xk, yk, φk) where (xk, yk)
specify the (latent) position of the agent and φk the orientation. Controls are
given by uk = (Δφk,Δdk), where Δφk specifies rotation velocity and Δdk spec-
ifies translation velocity. The transition dynamics are specified as

p(sk|sk−1, uk) = N (sk | g(sk−1, uk), 10−1I) (2)
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Fig. 1. The information processing architecture of the active inference agent and its
environmental interactions. The environment consists of a robot and a human observer
that (wirelessly) casts performance appraisals.

where

g(sk−1, uk) =

⎛

⎝
φk−1 + Δφk

xk−1 + Δdk · cos(φk)
yk−1 + Δdk · sin(φk)

⎞

⎠ . (3)

In these expressions, N (·|m, v) is a Normal distribution with mean m and
variance v, and I denotes an identity matrix (of appropriate dimension). To
couple the observations to internal states, we specify an observation model as

p(ok|sk) = N (ok | sk, 10−1I) (4)

We choose the following controls and state priors:

p(uk) = N (uk | [0, 0], 10−2I) (5a)
p(s0) = N (s0 | [0, 0, π/2], 10−2I) (5b)

Finally, the goal priors are specified as a prior on observations:

p′(ok) = N (ok | ô, 10−2I) . (6)

where we denote ô as a “target parameter” of the physical model.

3.2 The Target Model

The target model is responsible for inferring beliefs about the intended target
location ô by observing user feedback. The inferred beliefs about the target
location are subsequently used as a prior belief for the physical model’s target
parameter ô. The idea of learning a goal prior by a second generative model
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for additional sensory inputs is further explored in [11]. Technically, the target
model is a generative model for user appraisals. In order to reason about the
target location, the target model will also be aware of the robot’s current and
previous position.

Specifically, we use a target model at time step t given by

p(rt, bt,bt−1, λ, ô | yt, yt−1) =
p(rt | bt, bt−1, λ, ô)︸ ︷︷ ︸

appraisal

· p(bt | yt)p(bt−1|yt−1)︸ ︷︷ ︸
position

· p(λ)︸︷︷︸
precision

· p(ô)︸︷︷︸
target

(7)

where

p(rt | ô, bt, bt−1, λ) = Bernoulli(rt |σ(U(bt, bt−1, ô, λ))) (8a)
p(bt | yt) = N (bt | yt, 10I) (8b)

p(bt−1 | yt−1) = N (bt−1 | yt−1, 10I) (8c)
p(λ) = N (λ | [2, 2], 5I) (8d)
p(ô) = N (ô | o0, 100I) (8e)

The model for binary user appraisals uses a “utility” function

U(bt, bt−1, ô, λ) = f(yt, ô, λ) − f(yt−1, ô, λ) (9)

with
f(y, ô, λ) = −

√
(y − ô)T eλ(y − ô) (10)

to score the current position yt to the previous position yt−1, given the current
belief over the target ô. λ is a precision parameter governing the width of the
utility function. The utility is passed through a sigmoid σ(x) = 1/(1 + e−x) to
parameterize a Bernoulli distribution over binary user appraisals rt. The user
provides appraisals by observing the current and previous positions of the robot.
The observed user appraisal is set to 1 if the user thinks that the current robot
position is closer to the target than the previous assessment, and otherwise the
appraisal is set to 0 (zero). The model was validated in a simulation environment
first and later ported to the robot.

The physical model and the target model are linked by drawing a sample
from the posterior belief about the intended target location in the target model.
This sample is used to parameterize the goal prior of the physical model, i.e.,
p′(ok) = N (ok | ô∗, 10−2I) with ô∗ sampled from q(ô|mtarget), see Fig. 2 for the
factor graphs of both models.

4 Experimental Validation

4.1 Setup

In this study we design an active inference-based control agent for a two-wheeled
robot made by Parallax, Inc. [14]. The actuators of the robot are two continuous-
rotation servo motors (one for each wheel) and the robot’s sensors include a
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ô

ô∗
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Fig. 2. (a) A Forney-style factor graph (FFG) of the physical model. (b) FFG of the
Target model. Note that the mean of the future target position in the physical model
(ô∗) is sampled from the posterior belief by the Target model about that position.

gyroscope and two angular position feedback sensors. The agent’s control signals
are independent (delta) velocity signals to the servo motors. While the gyroscope
reports the current orientation of the robot, the angular position feedback sensors
are used for determining how many degrees the wheels have rotated. The current
position of the robot is calculated by dead reckoning. Dead reckoning is an
infrastructure-free localization method where the current position of a mobile
entity is calculated by advancing a previously known position using estimated
speed over time and course [5].

We employed a Raspberry Pi 4 [9] as a platform for executing free energy
minimization (coded in Julia [3], running on Raspberry Pi’s Linux variant) and
an Arduino Uno [1] for gathering sensor readings and actuating the motors. The
Raspberry Pi is wirelessly connected to a PC and user appraisals are provided
using this wireless connection.

Inference algorithms were automatically generated using the probabilistic
programming toolboxes ForneyLab [4] and Turing [10].

We use an online active inference simulation scheme that comprises three
phases per time step: (1) act-execute-observe, (2) infer, (3) slide, as described in
[15]. The simulation ran for 30 time steps with a horizon T = 2.

4.2 Results

Typical simulation results of the trajectory of the robot are shown in Fig. 3.
The results show that the agent is capable of steering the robot to the intended
target.
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Fig. 3. Simulation results of the physical model. Green arrows show the orientation of
the agent and the red arrows show the proposed motion for the next iteration. (Color
figure online)

Figure 4 depicts a typical evolution of the agent’s belief about the intended
target location. The mean of the belief ô comes within 2 cm of the target location
in approximately 60 iterations.

We also tested the performance of the agent after interventions such as
physically changing the orientation of the agent en route. The following video
fragment demonstrates how the active inference agent immediately corrects a
severe manual interruption and continues its path towards the target location:
https://youtu.be/AJevoOmKMO8.

5 Related Work

Prior work on agent-based models within the active inference framework has
mainly focused on simulated agents, with a few real-world implementations only
recently emerging. In [2] a simulated photo-taxis agent is introduced with a
focus on performance evaluation based on achieving goal-directed tasks rather
than accurately describing world dynamics. In our work, we followed a similar
approach. The physical model introduced in Sect. 3.1 encodes information about
world dynamics. A major difference between [2] and this paper is the way goal-
directed behavior is induced. In [2] a goal state is not explicitly specified, but
rather is a consequence of how priors relating to observations and controls are
implemented. In our formulation, a goal state is defined as a prior distribution
over future observations.

More recent work, notably [13], addresses the gap between simulated agent
implementations and real-world applications. In [13] an active inference model
for body perception and actions in a humanoid robot is implemented with a
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Fig. 4. Simulation results of the target model with a user in the loop. The agent
converges to the target location on a 2D plane by observing binary user appraisals.
The initial position of the agent is (0,0) and the target location specified by the user
is (15,30). The user provides a binary appraisal in each time step.

comparison to classical inverse kinematics. Their results show improved accuracy
without an increase in computational complexity providing further evidence for
active inference’s promise for real-world applications.

6 Conclusions

In order to assess active inference’s feasibility for real-world applications, we
developed an agent that controls a ground-based robot. The experiments provide
support for the notion that active inference is a viable method for constructing
synthetic agents that are capable of learning new goals in a dynamic world. More
details about this project are available in [6].
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financed by the Netherlands Organisation for Scientific Research (NWO).
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Abstract. Integrated World Modeling Theory (IWMT) is a synthetic model that
attempts to unify theories of consciousness within the Free Energy Principle and
Active Inference framework, with particular emphasis on Integrated Information
Theory (IIT) and Global Neuronal Workspace Theory (GNWT). IWMT further
suggests predictive processing in sensory hierarchies may be well-modeled as
(folded, sparse, partially disentangled) variational autoencoders, with beliefs dis-
cretely updated via the formation of synchronous complexes—as self-organizing
harmonic modes (SOHMs)—potentially entailing maximal a posteriori (MAP)
estimation via turbo coding. In this account, alpha-synchronized SOHMs across
posterior cortices may constitute the kinds of maximal complexes described by
IIT, as well as samples (or MAP estimates) from multimodal shared latent space,
organized according to egocentric reference frames, entailing phenomenal con-
sciousness asmid-level perceptual inference.When these posterior SOHMscouple
with frontal complexes, this may enable various forms of conscious access as a
kind ofmental act(ive inference), affording higher order cognition/control, includ-
ing the kinds of attentional/intentional processing and reportability described by
GNWT. Across this autoencoding heterarchy, intermediate-level beliefs may be
organized into spatiotemporal trajectories by the entorhinal/hippocampal system,
so affording episodic memory, counterfactual imaginings, and planning.

“The formal distinction between the FEP and IIT is that the free energy principle is articulated in
terms of probabilistic beliefs about some (external) thing, while integrated information theory deals
with probability distributions over the states of some system… On the other hand, both the FEP
and IIT can be cast in terms of information theory and in particular functionals (e.g., variational
free energy and ‘phi’). Furthermore, they both rest upon partitions (e.g., Markov blankets that
separate internal from external states and complexes that constitute conscious entities and can be
distinguished from other entities). This speaks to the possibility of, at least, numerical analyses
that show that minimising variational free energy maximises ‘phi’ and vice versa… This supports
the (speculative) hypothesis that adding further constraints on generative models—entailed by
systems possessing a Markov blanket—might enable us to say which systems are conscious, and
which are not.” - Friston et al. [1], Sentience and the Origins of Consciousness: From Cartesian
Duality to Markovian Monism.
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1 Integrated World Modeling Theory (IWMT) Summarized:
Combining the Free Energy Principle and Active Inference
(FEP-AI) Framework with Integrated Information Theory (IIT)
and Global Neuronal Workspace Theory (GNWT)

The Hard problem of consciousness asks, how can it be that there is “something that
it is like” to be a physical system [2]? This is usually distinguished from the “easy
problems” of addressing why different biophysical and computational phenomena cor-
respond to different qualities of experience. IWMT attempts to address consciousness’
enduring problems with the Free Energy Principle [3] and Active Inference [4] (FEP-AI)
framework. FEP-AI begins with the understanding that persisting systems must regu-
late environmental exchanges and prevent entropic accumulation (cf. Good Regulator
Theorem from cybernetics) [5]. In this view, minds and brains are predictive controllers
for autonomous systems, where action-driven perception is realized via probabilistic
inference. FEP-AI has been used to address consciousness in multiple ways [1, 6], with
IWMT representing one such attempt. Below I briefly summarize the major claims of
IWMT via modified excerpts from the original publication of the theory in Frontiers in
Artificial Intelligence [7], as well as the accompanying preprint, “IWMT Revisited” [8].
Please see these longer works for further discussion.

IWMT’s primary claims are as follows (originally published in [7]):

1. Basic phenomenal consciousness is what it is like to be the functioning of a
probabilistic generative model for the sensorium of an embodied–embedded agent
[9].

2. Higher order and access consciousness are made possible when this information
can be integrated into a world model with spatial, temporal, and causal coherence.
Here, coherence is broadly understood as sufficient consistency to enable functional
closure and semiotics/sense-making [10–12]. That is, for there to be the experience of
aworld, the things that constitute thatworldmust be able to be situated and contrasted
with other things in some kind of space, with relative changes constituting time, and
with regularities of change constituting cause. These may also be preconditions
for basic phenomenality, especially if consciousness (as subjectivity) requires an
experiencing subject with a particular point of view on the world [13–15].

3. Conscious access, or awareness/knowledge of experience—and possibly phenom-
enal consciousness—likely requires generative processes capable of counterfactual
modeling with respect to selfhood and self-generated actions [16, 17].

IIT begins with considering the preconditions for systems to exist intrinsically from
their own perspectives, as is observed with the privately-experienced 1st person ontology
of consciousness as subjectivity [18]. IIT speaks to the Hard problem by grounding
itself in phenomenological axioms, and then goes on to postulate mechanisms that could
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realize such properties. While IWMT focuses on explaining the functional, algorithmic,
and implementational properties that may give rise to consciousness—or experience
as a subjective point of view—it also considers ways in which FEP-AI and IIT can be
combined as general systems theories and models of causal emergence [19–21]. In brief,
IWMT argues that complexes of integrated information (as irreducible self-cause-effect
power) are also Markov-blanket-bound networks of effective connectivity associated
with high marginal likelihoods and capacity for “self-evidencing” [22].

GNWT has a more restricted scope than IIT and FEP-AI, instead focusing on the
properties of computational systems that could realize the functions of consciousness
as a means of globally integrating and broadcasting information from otherwise dis-
connected mental systems [23]. GNWT suggests that workspaces help to select partic-
ular interpretations of events, potentially understandable as Bayesian model selection
[23, 24], which is highly compatible with IWMT. However, IWMT also potentially dif-
fers from the theories it attempts to combine, suggesting that complexes of integrated
information and global workspaces only entail subjective experience when applied to
systems capable of functioning asBayesian belief networks and cybernetic controllers for
embodied agents [25]. That is, IWMT argues that integration andwidespread availability
of information are necessary, but not sufficient, preconditions for enabling conscious-
ness. Specifically, IWMT claims that consciousness is what integrated world-modeling
is like, when generative processes are capable of jointly integrating information into
models with coherence with respect to space, time, and cause for systems and their
relationships with their environments. These coherences are stipulated to be required
for situating modeled entities relative to each other with specific properties, without
which there would be no means of generating an experienceable world. IWMT fur-
ther introduces a mechanism for generating complexes of integrated information and
global workspaces via (Markov-blanket-bound) meta-stable synchronous complexes—
or “self-organizing harmonicmodes” (SOHMs)—wherein synchrony both emerges from
and facilitates the integration of information via “communication-through-coherence”
[26, 27]. IWMT further suggests that the stream of experience (Fig. 1) is constituted by a
series of SOHM-formation events, computationally understood as entailing loopy belief
propagation, so generating joint posterior distributions (or maximal estimates derived
thereof) over sensoriums of embodied agents as they engage with the environments in
which they are embedded.

While parallels can be identified between GNWT and IIT, present discussions and
ongoing adversarial collaborations emphasize their differences, such as IIT’s claim that
consciousness is primarily located in a “posterior hot zone” [28], and GNWT’s claim
that consciousness requires frontal-lobe engagement for realizing “global availability”
of information. IWMT considers both positions to be accurate, but with respect to phe-
nomenal consciousness and conscious access (and other higher-order forms of conscious
experience), respectively. That is, frontal cortices are likely required formental processes
such as manipulating and reporting on the contents of consciousness, and so modifying
these phenomena in qualitatively/functionally important ways. However, the stream of
experience itself may always be generated within hierarchies centered on the posterior
cortices, as described in greater detail below.
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Fig. 1. Depiction of experience with components mapped onto EEG frequency bands.

2 Integrated World Modeling Theory (IWMT) Implemented

2.1 Mechanisms of Predictive Processing: Folded Variational Autoencoders
(VAEs) and Self-organizing Harmonic Modes (SOHMs)

IWMT understands cortex using principles from predictive coding [29–31], specifi-
cally viewing cortical hierarchies as analogous to VAEs [32, 33], where encoding and
generative decoding networks have been folded over at their reduced-dimensionality
bottlenecks such that corresponding hierarchical levels are aligned. In this view, hierar-
chies of superficial pyramidal neurons constitute encoding networks, whose bottom-up
observations would be continually suppressed (or “explained away”) by predictions
from hierarchies of deep pyramidal neurons (and thalamic relays) [34, 35], with only
prediction-errors being passed upwards. This is similar to other recent proposals [16],
except beliefs are specifically communicated and updated via synchronous dynamics,
wherein prediction-errors may be quantized via fast gamma-synchronized complexes
[36, 37], and where predictions may take the form of a nested hierarchy of more slowly
evolving synchronization manifolds, so affording hierarchical modeling of spatiotem-
poral events in the world [38] (Fig. 1). More specifically, self-organizing harmonic
modes (SOHMs) are suggested to implement loopy belief propagation for approxi-
mate inference (cf. turbo coding) [39–41], as well as marginalization over synchronized
sub-networks, so instantiating marginal message passing regimes [42].

Combined with mechanisms of divisive normalization and spike-timing dependent
plasticity [43–45], this predictive coding setup should induce increasingly sparse con-
nectivity with experience, with all of the functional benefits sparsity provides [46]. These
mechanisms (and entailed algorithms) may converge on near-optimal training protocols
[47]. With respect to suggestions that the brain may indirectly realize backprop-like
computations [48] (Appendix 2), these models view cortical hierarchies as “stacked
autoencoders” [49], as opposed to being constituted by a single (folded) VAE. These
interpretations of neural computation may be non-mutually exclusive, depending on the
granularity with which relevant phenomena evolve. That is, we could think of sepa-
rate VAEs for each cortical region (e.g. V1, V2, V4, IT), or each cortical macrocolumn
[50, 51], and perhaps even each cortical minicolumn. Depending on the timescales over
which we are evaluating the system, we might coarse-grain differently [19], with con-
sciousness representing a single joint belief at the broadest level of integration, with
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the perceptual heterarchy considered as a single VAE. However, a more fine-grained
analysis might allow for further factorization, where component subnetworks could be
viewed as entailing separate VAEs, with separate Bayesian beliefs. In this view, the
cortical heterarchy could be viewed as a single VAE (composed of nested VAEs), as
well as a single autoregressive model, where latent beliefs between various VAEs are
bound together via synchronous activity, potentially entailing normalizing flows across
coupled latent space dynamics [52, 53].

2.2 A Model of Episodic Memory and Imagination

With respect to consciousness, SOHM-formation involving deep pyramidal neurons is
suggested to correspond to both “ignition” events as described by GNWT [54], as well
as implementation of semi-stochastic sampling from the latent space of VAEs (cf. the
“reparameterization trick”) [55], including via latent (work)spaces shared by multiple
VAEs. If these samples are sequentially orchestrated according to spatiotemporal trajec-
tories of the entorhinal/hippocampal system [56], this may generate a coherent stream
of experience. However, coherent sequence transitions between quale states may also
potentially be realizable even in individuals without functioning medial temporal lobes,
if prior histories of experience allow frontal lobes to enable coherent action-selection
and action-driven perception—including with respect to mental acts—in which pos-
terior dynamics may be driven either through overt enaction or via efference copies
accompanying covert partial deployment of “forward models” [25].

In this view of the brain in terms of machine learning architectures, the hippocam-
pal complex could be thought of as the top of the cortical heterarchy [57, 58] and
spatiotemporally-organized memory register [59]. IWMT suggests this spatial and tem-
poral organization may be essential for coherent world modeling. With respect to
grid/place cells of the entorhinal/hippocampal system [60], this organization appears
to take the form of 2D trajectories through space, wherein organisms situate themselves
according to a kind of simultaneous localization and mapping via Kalman filtering [61].
Anatomically speaking, this dynamic (and volatile) memory system has particularly
strong bi-directional linkages with deeper portions of cortical generative models (i.e.,
reduced-dimensionality latent feature spaces), so being capable of both storing infor-
mation and shaping activity for these core auto-associative networks. Because of the
predictive coding setup—and biasing via neuromodulatory value signals [62, 63]—only
maximally informative, novel, unexplained observations will tend to be stored in this
spatiotemporally organizedmemory register. Indeed, thismaybeoneof the primary func-
tions of the hippocampus: temporarily storing information that could not be predicted
elsewhere, and then using replay to train relevant subnetworks to be more successfully
predictive of likely observations.

As the hippocampus—and cortical systemswithwhich it couples via “big loop recur-
rence” [64, 65]—re-instantiates trajectories of the organism through space, pointers to
prediction errors will be sequentially activated, with the generative model inferring a
more complete sensorium based on its training from a lifetime of experience. Compu-
tationally speaking, this setup would correspond to a Kalman variational auto-encoder
[66]. Experientially speaking, this integration of organismic spatiotemporal trajectories
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with auto-associative filling-in could provide not just a basis for forming episodic mem-
ories, but also the imagination of novel scenarios [67, 68]. Importantly, memories and
imaginings can be generated by cortex on its own—given a lifetime of experience with
a functioning entorhinal/hippocampal system—but medial temporal lobe involvement
appears to be required for these dynamics to be shaped in novel directions that break free
of past experience [69–72]. The hippocampal system may further allow for contrasting
of anticipated and present estimated states in the process of orchestrating goal-oriented
behavior [25, 73] (Appendix 1).

2.3 Brains as Hybrid Machine Learning Architectures

Figure 2 provides a depiction of the human brain in terms of phenomenological cor-
respondences, as well as Marr’s computational (or functional), algorithmic, and imple-
mentational levels of analysis [74]. On the computational level, various brain functions
are identified according to their particular modal character, either with respect to per-
ception (both unconscious and conscious) or action (both unconscious and potentially
conscious, via perceptual generative models). On the algorithmic level, these functions
are mapped onto variants of machine learning architectures—e.g. autoencoders and gen-
erative adversarial networks (Appendix 2), graph neural networks, recurrent reservoirs
and liquid state machines—organized according to their potential realization by var-
ious systems in the brain. On the implementational level, realizations of algorithmic
processes are depicted as corresponding to flows of activity and interactions between
neuronal populations, canalized by the formation of SOHMs as metastable synchronous
complexes. While the language of predictive processing is used here to help provide
bridges to the algorithmic level, descriptions such as vector/tensor fields and attracting
manifolds could have alternatively been used in order to remain agnostic as to which
algorithms may be entailed by physical dynamics.

Fig. 2. Depiction of the human brain in terms of phenomenological correspondences, as well as
computational (or functional), algorithmic, and implementational levels of analysis.
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A phenomenological level is specified to provide mappings between consciousness
and these complementary/supervenient levels of analysis. These modal depictions are
meant to connotate the inherently embodied nature of experience, but not all images
are meant to correspond to the generation of consciousness. That is, it may be the
case that consciousness is solely generated by posterior hierarchies centered on the
precuneus, lateral parietal cortices, and temporoparietal junction (TPJ) as respective
visuospatial (cf. consciousness as projective geometric modeling) [13, 14], somatic (cf.
grounded cognition and intermediate level theory) [75–77], and attentional/intentional
phenomenology (cf. Attention Schema Theory) [78].

Graph neural networks (GNNs) are identified as a potentially important machine
learning architectural principle [79], largely due to their efficiency in emulating physi-
cal processes [80–82], and also because the message passing protocols during training
and inference may have correspondences with loopy belief propagation and turbo codes
suggested by IWMT. Further, grid graphs—potentially hexagonally organized, possi-
bly corresponding to cortical macrocolumns [50], with nested microcolumns that may
also be organized as hexagonal grid GNNs, or “capsule networks”) [83] —are adduced
for areas contributing to quasi-Cartesian spatial modeling (and potentially experience)
[84, 85], including the posterior medial cortices, dorsomedial and ventromedial pre-
frontal cortices, and the hippocampal complex. With respect to AI systems, such rep-
resentations could be used to implement not just modeling of external spaces, but of
consciousness as internal space (or blackboard), which could potentially be leveraged
for reasoning processes with correspondences to category theory, analogy making via
structured representations, and possibly causal inference.

Neuroimaging evidence suggests these grids may be dynamically coupled in various
ways [68], with these aspects of higher-order cognition being understood as a kind of
generalized navigation/search process [86, 87]. A further GNN is speculatively adduced
in parietal cortices as a mesh grid placed on top of a transformed representation of the
primary sensorimotor homunculus (cf. body schemas for the sake of efficient motor
control/inference), which is here suggested to have some correspondence/scaling to
the body as felt from within, but which may potentially be further morphed to better
correspond with externally viewed embodiments (potentially both resulting from and
enabling “mirroring” with the bodies of other agents for the sake of coordination and
inference) [88]. This partial translation into an allocentric coordinate system is suggested
to provide more effective couplings (or information-sharing) with semi-topographically
organized representations in posterior medial cortices. The TPJ is depicted as containing
a ring-shaped GNN to reflect a further level of abstraction and hierarchical control over
action-oriented body schemas—which may influence more somatic-like geometries—
functionally entailing vectors/tensors over attentional/intentional processes [89].

Frontal homologues to posterior GNNs are also depicted, which may pro-
vide a variety of higher-order modeling abilities, including epistemic access for
extended/distributed self-processes and intentional control mechanisms. These higher-
order functionalities may be achieved via frontal cortices being more capable of
temporally-extended generative modeling [90], and also potentially by virtue of being
located further from primary sensory cortices, so affording (“counterfactually rich”)
dynamics that are more decoupled from immediate sensorimotor contingencies. Further,
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these frontal control hierarchies afford multi-scale goal-oriented behavior via bidirec-
tional effective connectivity with the basal ganglia (i.e., winner-take-all dynamics and
facilitation of sequential operations) and canalization via diffuse neuromodulator nuclei
of the brainstem (i.e., implicit policies and value signals) [91–95]. Finally, the frontal
pole is described as a highly non-linear recurrent system capable of shaping overall
activity via bifurcating capacities [96, 97] —with potentially astronomical combina-
torics—providing sources of novelty and rapid adaptation via situation-specific attractor
dynamics.

While the modal character of prefrontal computation is depicted at the phenomeno-
logical level of analysis, IWMTproposes frontal corticesmight only indirectly contribute
to consciousness via influencing dynamics in posterior cortices [8]. Speculatively, func-
tional analogues for ring-shapedGNN salience/relevancemapsmay potentially be found
in the central complexes of insects and the tectums of all vertebrates [98], although it
is unclear whether those structures would be associated with any kind of subjective
experience. Even more speculatively, if these functional mappings were realized in a
human-mimetic, neuromorphic AI, then it may have both flexible general intelligence
and consciousness. In this way, this figure can be considered to be a sort of pseudocode
for potentially conscious (partially human-interpretable)AGIwith “System2” capacities
[99–101].

2.4 Conclusion: Functions of Basic Phenomenal Consciousness?

According to IWMT, whenever we have self-organizing harmonic modes (SOHMs),
then we also have entailed joint marginal probability distributions (where synchrony
selects or discretely updates Bayesian beliefs), some of which may entail consciousness.
Functionally speaking, potentially experience-entailing SOHMs—as Markov-blanket-
bound subnetworks of effective connectivity and complexes with high integrated infor-
mation, functioning as workspaces—over coupled visuospatial, attentional/intentional,
and somatic hierarchies could provide holistic discriminations between different classes
of events in ways that would greatly facilitate coherent action selection and credit assign-
ment. That is, a series of coherently estimated system-world states (even without higher-
order awareness or explicit/reflexive knowledge) would be extremely adaptive if it could
generate these joint posteriors (orMAPestimates derived thereof) on timescales allowing
this information to shape (and be shaped by) action-perception cycles. Since there should
be substantial auto-associative linkages across visuospatial, attentional/intentional, and
somatic modalities, then the consistency of this mutual information may accelerate the
formation of SOHMs, such that beliefs can be updated quickly and coherently enough
to have actual organismic-semiotic content (i.e., relevance for the organism and its envi-
ronment). Further, reentrant signaling across different sources of data may provide a)
inferential synergy via knowledge fusion from combiningmodalities, b) enhanced trans-
fer learning and representational invariance via perspectival diversity (i.e., flexible rep-
resentation from multiple modalities), and c) sensitivity to higher-order relational infor-
mation, potentially including causal and contextual factors identified by comparing and
contrasting constancies/inconstancies across modalities [102]. Even more, these sources
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of (mutual) information have natural correspondences with subjectivity in terms of pro-
viding a particular point of view on a world, centered on the experience of having/being
a body.

Thus, when we identify the kinds of information that could enable adaptive func-
tional synergy in ‘processing’ sensory data, it becomes somewhat less surprising that
there might be “something that it is like.” However, such inferential dynamics might
require a multi-level hierarchy, with a higher (or deeper) inner-loop capable of itera-
tively forming and vitiating attracting states [103], so instantiating a kind of “dual phase
evolution” [104]. A shallow hierarchy might be overly enslaved to immediate envi-
ronmental couplings/contingencies [105], and would potentially constitute unconscious
inference, with consciousness-entailing states never being generated on any level of
abstraction. However, the precise functional boundaries of phenomenal consciousness
remain unclear, and is a direction for future work for IWMT.

3 Appendices

3.1 Appendix 1: A Model of Goal-Oriented Behavior with Hippocampal
Orchestration

Figure 3 depicts memory and planning (as inference) via predictive processing, orches-
trated via the spatiotemporal trajectories of the entorhinal/hippocampal system. In this
model, precision-weighting/gain-amplification takes place via “big loop recurrence”
with the frontal lobes [64], with the more specific suggestion that selection/biasing of
policies over forward models cause efference copies to be projected to posterior genera-
tive models. In line with recent proposals [106], the hippocampus can operate with either
“predictive-suppressive” or “fictive prediction error” modes, which are here suggested
to correspond to degree of coupling with respective posterior vs. frontal cortices, with
the former corresponding to direct suppression of observations, and the latter facilitat-
ing the ‘reinstatement’ of memories, and novel imaginings for the sake of planning and
causal reasoning [68, 107]. This frontal coupling is hypothesized to be a source of “suc-
cessor representations” (i.e., population vectors forming predictive anticipatory sweeps
of where the organism is likely to go next) via integration of likely policies and action
models (via dorsal prefrontal cortex) and evaluations of likely outcomes (via ventral
prefrontal cortex).

In this model of generalized navigation, the hippocampal system iteratively contrasts
predictive representations with (either sensory-coupled or imaginative) present state-
estimates (from coupling with posterior cortices), where prediction-errors both modify
future paths, and also allow for encoding of novel informationwithin likely (generalized)
spatiotemporal trajectories, given the meta-prior (or inductive bias) that organisms are
likely to be pursuing valued goals as they navigate/forage-through physical and concep-
tual spaces. This alternation may occur at different phases of theta oscillations [108],
so affording iterative contrasting of desired and current-estimated states, so canalizing
neural activity for goal realization [109], potentially including the formation of complex
action sequences (either physical or virtual) via (conscious) back-chaining from poten-
tial desired states (i.e., goals) to presently-inferred realities [25]. Theoretically, this kind
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Fig. 3. Hippocampally-orchestrated imaginative planning and action selection via generalized
navigation/search.

of iterated contrasting mechanism may also provide a source of high-level analogical
(and potentially causal) reasoning [107, 110–112].

By orchestrating alternating counterfactual simulations [73], the hippocampal sys-
tem may allow for evaluation of possible futures, biased on a moment-to-moment basis
by integrated (spatialized) value representations from ventromedial prefrontal cortex
[113], and also via “as-if-body loops” with interoceptive hierarchies [114, 115]. In this
view of thought as generalized navigation, alternating exploration/sampling of coun-
terfactuals could also be understood as implementing Markov chain Monte Carlo tree
search over policy/value space for planning [109, 116]. Theoretically, similar processes
could be involved in generating particular actions, if visualization of acts is accompanied
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by a critical mass of model-evidence (as recurrent activity) accumulating in interocep-
tive/salience hierarchies [117]. Speculatively, this threshold crossing (or phase transition)
may represent a source of readiness potentials [118–120], potentially understood as a
kind of “ignition” event and driver of workspace dynamics (understood as high-level
Bayesian model selection), corresponding to explosive percolation, triggered by the
accumulation of recurrent-activity/model-evidence within upper levels of frontoparietal
control hierarchies for enacting/inferring a particular (virtual or physical) proprioceptive
state, or pose [121].

3.2 Appendix 2: The VAE-GAN Brain?

Gershman [122] has presented an intriguing account of neural functioning in terms
of a powerful class of generative models known as generative adversarial networks
(GANs). GANs have many similar use cases to variational-encoders (VAEs) and can
even be used in combination for enhanced training as in the case of VAE-GANs [123].
In Gershman’s proposal, sensory cortices act as generators which are trained via Turing
learning with frontal cortex, which functions as a discriminator and source of (higher-
order) consciousness.

IWMT, in contrast, suggests that predictive coding can be understood as generating
(basic phenomenal) consciousness via folded VAEs in the ways described above. From
this perspective, the ascending and descending streams for each modality constitute
respective encoding and generative decoding networks. This is not necessarily inconsis-
tent with Gershman’s proposal, in that a sensory hierarchy as a whole can be viewed as
a generative network, which relative to the entire brain may provide a VAE-GAN setup.
Alternatively, the ascending streamcould be interpreted as acting as a discriminator in the
GAN sense, in that it is attempting to evaluate the degree to which the descending stream
generates veridical images. In this view, folded autoencoders might also be understood
as folded GANs, but with folds taking place at output layers of generative decoders and
input layers of discriminative encoders. The ascending stream is well-poised to serve
this kind of discriminative function in terms of being more directly in touch with the
ground truth of sensation and the generative processes of the world, which are the ulti-
mate referents and selection criteria for neural dynamics. This is somewhat different
from Gershman’s proposal, in that consciousness (as experience) would correspond to
generative processes in posterior sensory areas (including multi-modal association cor-
tices), trained via embodied-embedded interaction with the world, with frontal cortices
functioning as an elaboration of the generative process in multiple ways, including con-
scious access via the stabilization and alteration of dynamics within posterior networks,
and also via simulated actions and inter-temporal modeling [124].

However, frontal cortex could also be viewed as serving a discriminator function
in terms of attentional biasing based on the reliability of information (i.e., precision
weighting), mechanistically achieved by altering the gain on excitatory activity from
ascending (‘discriminative’) encoding networks. Thus, frontal cortex could provide a
discriminatory function via tuning the sensitivity of ascending perceptual streams. Other
non-mutually exclusive possibilities could also be envisioned for a discriminator-like role
for frontal cortices:
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1. Comparison with memory: “Is what I am perceiving consistent with what I have
previously experienced?” This might be particularly important early in development
for teaching patterns of attention that promote perceptual coherence.

2. Comparison with causal reasoning: “Is what I am perceiving consistent with what
is plausible?” This is closer to Gershman’s proposal, wherein failing to establish
this discriminatory capacity could increase the probability of delusions and possibly
lowered hallucination thresholds in some conditions.

3. Comparison with goal-attainment (a combination of 1 and 2): “Is what I am perceiv-
ing consistent with my normal predictions of working towards valued goals?” This
could have the effect of adaptively shaping conscious states in alignment with per-
sonal (and ultimately organismic) value. According to FEP-AI, all discriminator-like
functionality may represent special cases of this highest-level objective: to reduce
uncertainty (or accumulate model evidence) with respect to organismic value via
perceptual and active inference. Mechanistically, cingulate cortices may have the
greatest contributions to generating discrimination signals with respect to overall
value [125–130], both through the integrative properties of the cingulum bundle
[131, 132], as well as via close couplings with allostatic-organismic interoceptive
insular hierarchies [133].

In all of these cases, frontal cortices (broadly construed to include the anterior cingu-
late) could be viewed as being in an adversarial (but ultimately cooperative) relationship
with sensory hierarchies, whose recognition densities would optimize for minimizing
perceptual prediction error (i.e., what is likely to be, given data), and where frontally-
informed generative densities would optimize for future-oriented (counterfactual) adap-
tive policy selection (i.e., what ought to be, given prior preferences). In these ways,
action and perceptual hierarchies would compete with respect to the ongoing minimiza-
tion of free energy, while at the same time being completely interdependent for overall
adaptive functioning, with both competitive and cooperative dynamics being required
for adaptively navigating the world via action-perception cycles. An interesting hybrid
of competitive and cooperative dynamics may be found in “learning to learn” via cre-
ative imagination and play (including self-play), in which learners may specifically try
to maximize surprise/information-gain [134].

With respect to frontal predictions, these may be productively viewed with a 3-fold
factorization:

1. A ventral portion representing affectively-weighted sensory outcomes associated
with various actions.

2. A dorsal portion representing forwardmodels for enacting sequences that bring about
desirable outcomes.

3. A recurrent anterior pole portion that mediates between affect and action selection
via its evolving/bifurcating/non-linear attractor dynamics [96, 135, 136].

(1) and (2) would be frontal analogues to the “what” and “where” pathways for
vision [90, 137]—with macroscale connectivity reflecting these functional relation-
ships—except here we are dealing with (1) what-where (via coupling with the hip-
pocampal complex) and (2) how-where (via coupling with the parietal lobes). Taken



Integrated World Modeling Theory (IWMT) 147

together (which is how these systems are likely to work under most circumstances),
these different parts of frontal cortices could all be understood in a unified sense as
implementing policy selection via predictions and precision-weighting.

In Gershman’s proposal, he further suggests that predictive coding can be viewed as
an efficient way of passing predictions up the cortical hierarchy while removing redun-
dant information. This is consistent with proposals in which the descending stream is
interpreted as constituting a means for communicating the backwards propagation of
error signals to apical dendrites in cortical layer 1 [138]. Although this (potentially
insightfully) inverts the way predictive coding is normally understood, with prediction
errors being communicated via the ascending stream, these accounts could potentially
be reconciled if we understand perception as involving a circular-causal process of iter-
ative Bayesian model selection. When we consider the capacity for looping effects in
networks on the scale of nervous systems—for even the largest deep learning systems,
the number of parameters is dwarfed (for now) by those found in a cubic centime-
ter of cortex—with potentially multiple levels of qualitatively different ‘beliefs’ (e.g.
unconscious sensorimotor, conscious embodiment, and implicit schemas), then it can be
difficult to straightforwardly interpret the flow of inference in terms of a clear distinction
between predictions and prediction errors. Indeed, hierarchical predictive processing can
be viewed as converging on optimal backprop-like functionality via proposals such as
“target propagation” and “natural gradient descent” [47, 48]. However, we would also
do well to not be overly ecumenical with respect to this potential reconciliation, as more
classical accounts of predictive coding induce sparsity on multiple levels, so creating
many highly desirable computational properties such as energy efficiency, robustness,
and sensitivity to coincidence detection [46, 139]. As such, framing the descending
stream as a backpropagation signal may be an account that is both misleading and
impoverished with respect to biological realities.

In terms of the potential complexity of cortical generative models, we may want to
think of at least three coupled systems that are ultimately integrated as parts of a unified
control hierarchy, but which can temporally evolve independently:

1. Unconscious/preconscious lower-level sensorimotor hierarchies with fast fine-
grained dynamics for coupling with the environment [96].

2. Conscious mid-level sensorimotor representations with more coarse-grained spatial
and temporal dynamics [75].

3. Higher-level abstract re-representations over recognition and generative densities,
with unconscious/preconscious dynamics [140], and which may bidirectionally
couple with lower and middle levels.

In this way, we could potentially dissect the brain into multiple competing and coop-
erating generative models, whose synergistic interactions may be productively consid-
ered as implementing GAN-type setups. Very speculatively, it may even be the case
that perception-action cycles, hemispheric interactions, and interpersonal communica-
tion could all be understood as implementing CycleGAN-like dynamics. That is, to
what extent could relationships between hemispheres (or between individuals) be analo-
gous to a paired GAN setup, where each system may evaluate the output of the other, so
promoting the formation of usefully disentangled representations of features in reduced
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dimensionality latent spaces [100, 101], thereby promoting controllability and combi-
natorial power in imagination? These are only some of the many ways that Gershman’s
intriguing proposal of a “generative adversarial brain” may lead to innovative directions
for trying to understand functional relationships within and between minds.
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Abstract. Theoretical proposals have previously been put forward regarding the
computational basis of interoception. Following on this,we recently reported using
an active inference approach to 1) quantitatively simulate interoceptive computa-
tion, and 2) fit the model to behavior on a cardiac awareness task. In the present
work, we attempted to replicate our previous results in an independent group of
healthy participants. We provide evidence confirming our previous finding that
healthy individuals adaptively adjust prior expectations and interoceptive sensory
precision estimates based on task context. This offers further support for the util-
ity of computational approaches to characterizing the dynamics of interoceptive
processing.

Keywords: Interoception · Active inference · Precision · Prior expectations ·
Bayesian perception · Computational modeling

1 Introduction

Multiple neurocomputational models of interoceptive processing have recently been put
forward (e.g., [1, 2]). These models have focused largely on understanding interoception
within the framework of Bayesian predictive processing models of perception. A central
component of such models is the brain’s ability to update its model of the body in the
face of interoceptive prediction errors (i.e., mismatches between afferent interoceptive
signals from the body and prior expectations). To do so adaptively, the brain must also
continuously update estimates of both its prior expectations and the reliability (precision)
of afferent sensory signals arising from the body. In a recent study [3], we described a
formal generative model based on the active inference framework that simulated approx-
imate Bayesian perception within a cardiac perception (heartbeat tapping) task. We fit
this model to behavioral data and found evidence that healthy individuals successfully
adapted their prior expectations and sensory precision estimates during different task
contexts, particularly under conditions of interoceptive perturbation. In contrast, a trans-
diagnostic psychiatric sample showed a more rigid pattern in which precision estimates
remained stable across task conditions. As this study was the first to present such evi-
dence, confirmatory evidence is lacking. In the present study, we attempted to replicate
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the previous finding in healthy participants by fitting our model to behavior on the
same task in a new sample. As in our previous study, we assessed cardiac interoceptive
awareness under resting conditions with different instruction sets where 1) guessing was
allowed, and 2) guessing wasn’t allowed; we also 3) assessed performance during an
interoceptive perturbation (inspiratory breath-hold) condition expected to increase the
precision of the afferent cardiac signal (while also under the no-guessing instruction).
We predicted that prior expectations for feeling a heartbeat would be reduced under
the no-guessing instruction and that sensory precision estimates would increase in the
breath-hold condition relative to the resting conditions. We also sought to confirm con-
tinuous relationships we previously observed between these model parameters and two
facets of interoceptive awareness: self-reported heartbeat intensity (positive relationship
with both parameters) and self-reported task difficulty (negative relationship with both
parameters).

2 Methods

Data were collected from a community sample of 63 participants (47 female; mean age
= 24.94, SD = 6.09) recruited via advertisements and from an existing database of
participants in previous studies. Participants were screened using the Mini International
Neuropsychiatric Inventory 6 or 7 (MINI) and did not meet criteria for any disorder.
Our initial assessment identified some participants with poor electrocardiogram (EKG)
traces, which were removed from our analyses. Final sample sizes for each condition
are shown in Table 1.

Participants completed the same cardiac perception (“heartbeat tapping”) task as in
our previous study [3], wherein participants were asked to close their eyes and press
down on a key each time they felt their heartbeat, and to try to mirror their heartbeat as
closely as possible. Participants were not permitted to take their pulse (e.g., hold their
finger to their wrist or neck) or to hold their hand against their chest. Thus, they could
only base their choice to tap on their internally felt sensations. The task was repeated
under multiple conditions designed to assess the influence of cognitive context and phys-
iological perturbation on performance. In the first condition, participants were told that,
even if theyweren’t sure aboutwhat they felt, they should take their best guess (“guessing
condition”). This condition was included because it matches a standard instruction given
during heartbeat counting tasks [4]. In the second condition, they were told to only press
the key when they actually felt their heartbeat, and if they did not feel their heartbeat
then they should not press the key (the “no-guessing” condition). In other words, unlike
the first time they completed the task, they were specifically instructed not to guess if
they didn’t feel anything. This condition can be seen as placing an additional cognitive
demand on the participant to monitor their own confidence in whether a heartbeat was
actually felt; such instructions have been reported to substantially influence performance
on the heartbeat counting task [5, 6]. Finally, in the perturbation condition, participants
were again instructed not to guess but were also asked to first empty their lungs of all air
and then inhale as deeply as possible and hold it for as long as they could tolerate (up to
the length of the one-minute trial) while reporting their perceived heartbeat sensations.
This third condition (the “breath-hold” condition) was used in an attempt to increase the



158 R. Smith et al.

Table 1. Mean and standard deviation of study variables by task condition.

Guessing No-guessing Breath-hold Tone p-value*

n 50 50 49 50

Demographic variables

Age 24.42 (5.93) 24.42 (5.93) 24.55 (5.91) 24.42 (5.93) ns

Gender (Male) 13 (26.0%) 13 (26.0%) 13 (26.5%) 13 (26.0%) ns

BMI 24.15 (3.31) 24.15 (3.31) 24.13 (3.35) 24.15 (3.31) ns

Task variables

Heart rate 70.94 (9.9) 69.76 (9.43) 70.06 (9.62) 71.1 (9.74) ns

Taps 51.26 (19.90) 16.12 (19.18) 27.14 (21.32) 77.60 (1.69) <0.001****

IP 0.04 (0.03) 0.05 (0.05) 0.07 (0.07) 0.17 (0.12) 0.005***

pHB 0.32 (0.12) 0.12 (0.10) 0.18 (0.12) 0.50 (0.01) <0.001****

Difficulty 51.42 (27.60) 50.88 (33.83) 48.43 (28.89) 20.06 (19.02) ns

Confidence 26.24 (19.96) 44.42 (31.51) 52.49 (27.37) 74.50 (16.59) <0.001**

Intensity 19.70 (17.89) 15.54 (15.95) 42.12 (28.30) 83.26 (16.48) <0.001***

Counting accuracy 0.67 (0.23) 0.23 (0.27) 0.39 (0.31) 0.99 (0.02) <0.001****

*These p-values are based on linearmixed effects analyses (LMEs) that exclude theTone condition.
For task variables (except heart rate), analyses also included age, gender, BMI, precision estimates
in the tone condition, heart rate, and its interaction with task condition as covariates.
**Guessing condition significantly differed from the other heartbeat tapping conditions.
***Breath-hold condition significantly differed from the other heartbeat tapping conditions.
****All heartbeat tapping conditions were significantly different from one another.

strength of the afferent cardiac signal by increasing physiological arousal. We expected
1) that cardiac perception would be poor in the guessing condition (i.e., as only roughly
35% of individuals appear to accurately perceive their heartbeats under resting condi-
tions [7]), 2) that tapping would be more conservative in the no-guessing condition, and
3) that the breath-hold condition would result in improved performance on average (i.e.,
as interoceptive accuracy has been shown to increase under conditions of heightened
cardiorespiratory arousal [8–10]). Directly after completing each task condition, partic-
ipants were asked to rate subjective task difficulty, performance, and heartbeat intensity
from 0 to 100. Participants also completed a control condition in which they tapped
every time they heard a 1000 Hz auditory tone presented for 100 ms (78 tones, randomly
jittered by ±10% and presented in a pattern following a sine curve with a frequency of
13 cycles/minute, mimicking the range of respiratory sinus arrhythmia during a normal
breathing rate of 13 breaths per minute). This was completed between the first (guessing)
and second (no-guessing) heartbeat tapping conditions. As body mass index (BMI) is a
potential confound, we also measured this for each participant.

A three-lead EKG was used to assess the objective timing of participants’ heart-
beats throughout the task. The pulse oximeter signal was also gathered using a pulse
plethysmography (PPG) device attached to the ear lobe. These signals were acquired
simultaneously on a Biopac MP150 device. Response times were collected using a task
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implemented in PsychoPy, with data collection synchronized via a parallel port interface.
EKG and response data were scored using in-house developed MATLAB code.

To model behavior, we divided each task time series into intervals corresponding
to windows equally dividing the time period between each heartbeat, based on each
participant’s EKG recording. Potentially perceivable heartbeats were specifically based
on the timing of the peak of the EKG R-wave (signaling electrical depolarization of the
atrioventricular neurons of the heart)+200 milliseconds (ms). This 200 ms interval was
considered a reasonable estimate of participants’ pulse transit time (PTT) according to
previous estimates for the ear PTT [11], which signals themechanical transmission of the
systolic pressure wave to the earlobe – andwas considered a lower bound on how quickly
a heartbeat could be felt (and behaviorally indicated) after it occurred.We also confirmed
this by measuring the PTT of each participant, defined as the distance between the peak
of the EKG R-wave and the onset of the peak of the PPG waveform (usable quality
median PTT values were available in 45 participants; mean= 200 ms, SD= 2 ms). The
length of each heartbeat interval (i.e., the “before-beat interval” and “after-beat interval”)
depended on the heart rate. For example, if two heartbeats were 1 s apart, the “after-
beat interval” would include the first 500 ms after the initial beat and the “before-beat
interval” would correspond to the 2nd 500 ms. The after-beat intervals were considered
the time periods in which the systole (heart muscle contraction) signal was present and
in which a tap should be chosen if it was felt. The before-beat intervals were treated as
the time periods where the diastole (heart muscle relaxation) signal was present and in
which tapping should not occur (i.e., assuming taps are chosen in response to detecting
a systole; e.g., as supported by [12]). This allowed us to formulate each interval as a
“trial” in which either a tap or no tap could be chosen and in which a systole or diastole
signal was present (see Fig. 1). Each trial formally consisted of two time points. At
the first time point, the model always began in a “start” state with an uninformative
“start” observation. At the second time point, either a systole or diastole observation
was presented, based on whether that trial corresponded to the time window before or
after a systole within the participant’s EKG signal (as described above). The model then
inferred the probability of the presence vs. absence of a heartbeat (corresponding to the
probability of choosing whether or not to tap). At this point, the trial ended, and the next
trial began with the model again beginning in the “start” state and being presented with
a new systole or diastole signal, and so forth. For further details on all methods, see [3].

To model behavior, we used a Bayesian generative model of perception (see Fig. 1)
derived from the Markov decision process (MDP) formulation of active inference [13].
Unlike the full MDP model, however, we only explicitly included a generative model
of perception. Observations (o) included systole, diastole, and a “start” observation
(i.e., based on each individual’s EKG recording). These observations were generated
by hidden (perceptual) states (s) that included either feeling one’s heartbeat or not, as
well as a “start” state. The probability of choosing to tap on each trial was assumed to
correspond to the posterior probability of the heartbeat state on each trial. Here, a trial
formally included two timesteps: 1) a “start” time point, followed by 2) the possibility of
either a systole or diastole. The matrices and equations defining the model are specified
in Fig. 1. This model was used in conjunction with the standard SPM_MDP_VB_X
routine (within the freely available SPM12 software package; Wellcome Trust Centre
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Fig. 1. (Upper Right) A graphical depiction of the computational model. This is a simplified
version of a commonly used active inference formulation of partially observable Markov decision
processes [13], which does not explicitly model action. Systole/diastole signals (derived from
EKG; Upper Left) were modeled as observations, and beliefs about the presence or absence of a
heartbeat weremodeled as hidden states. For simplicity, model-fitting assumed that the probability
of choosing to tap corresponded to the posterior distribution over states (s̄) – that is, the relative
confidence in the presence vs. absence of a heartbeat: P(HB) and P(nHB), respectively. Estimated
model parameters included: 1) interoceptive precision (IP) – the precision of the mapping from
systole/diastole to beliefs about heartbeat/no heartbeat in the A matrix, which can be associated
with the weight assigned to sensory prediction errors; and 2) prior expectations for the presence of
a heartbeat (pHB). Because minimal precision corresponds to an IP value of 0.5, and both higher
and lower values indicate that taps more reliably track systoles (albeit in an anticipatory or reactive
manner), our ultimate measure of precision subtracted 0.5 from raw IP values and then took their
absolute value. On each trial, beliefs about the probability of a heartbeat (corresponding to the
probability of choosing to tap) relied on Bayesian inference as implemented in the “heartbeat
perception” equations (Bottom Right). Note that, by convention in active inference, the dot
product (·) applied to matrices here indicates transposed matrix multiplication, and σ denotes a
softmax (normalized exponential) function (see text for details).

for Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm) to simulate cardiac
response data.

The precision of the likelihood matrix A was controlled by an “interoceptive pre-
cision” (IP) parameter. Prior expectations were controlled by a parameter pHB within
the transition matrix B. Note that, because each “trial” was based on equally dividing
the time periods before and after each heartbeat (i.e., based on each individual’s EKG;
resulting in alternating “systole” and “diastole” trials), this entails that the “correct” pHB
value would be 0.5. Both IP and pHB were estimated for each participant by finding
values that maximized the likelihood of their responses using variational Laplace – that
is, values that maximized the posterior probability of the heartbeat state on trials in
which they chose to tap (implemented by the spm_nlsi_Newton.m parameter estimation
routine available within SPM). Prior means and variances for each parameter were both

http://www.fil.ion.ucl.ac.uk/spm
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set to 0.5. Because “raw” IP values (IPraw) both above and below 0.5 indicate higher
precision (i.e., values approaching 0 indicate reliable anticipatory tapping, whereas val-
ues approaching 1 indicate reliable tapping after a systole), our ultimate measure of
precision was recalculated by centering IPraw on 0 and taking its absolute value.

Primary confirmatory analyses included linear mixed effects analyses (LMEs)
assessing the main effect of task condition on each parameter, while accounting for
age, gender, BMI, heart rate, and its interaction with task condition. To help rule out
the possibility that IP estimates were driven by differences in motor stochasticity, we
also included precision estimates for the tone condition as an additional covariate. This
was based on the assumption that, because the sensory signal in the tone condition is
highly precise, any variability in precision estimates in the tone condition would be bet-
ter explained by individual differences in random influences on behavior as opposed to
perception.

3 Results

As in our previous study, an LME (excluding the tone condition) revealed a main effect
of task condition on IP (F(2,95) = 5.65, p = .005), after accounting for age, gender,
BMI, precision in the tone condition, heart rate, and its interaction with task condition
(Fig. 2). Post-hoc Tukey comparisons indicated that IP was significantly greater in
the breath-hold condition than in the guessing (p = .006) and no-guessing (p = .028)
conditions. An identical analysis focused on pHB revealed the expected effect of task
condition (F(2,95) = 56.18, p < .001), in which 1) pHB was significantly lower in the
no-guessing and breath-hold conditions than in the guessing condition (ps < .001; note
that the breath-hold condition still included the no-guessing instruction), and 2) it was
higher in the breath-hold condition than in the no-guessing condition (p = .01).

Secondary analyses examined the relationships betweenmodel parameters and other
task variables at a threshold of p < .01, uncorrected (shown in Fig. 3). These results
largely confirmed the relationships observed in our earlier study [3], including positive
relationships between both IP and pHB parameters and self-reported heartbeat intensity,
and negative relationships between these parameters and self-reported task difficulty.
Note that expected relationships with difficulty in the breath-hold condition were not
significant in this sample at our stated threshold of p < .01, but were significant at a
more liberal threshold of p < .05 and had very similar correlation magnitudes as in our
previous results, which were significant in that larger sample. We also confirmed that
model parameters were not correlated with individual differences in median PTT.
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Fig. 2. Bottom: Mean and standard error for prior expectations (pHB; Left) and interoceptive
precision (IP) estimates (Right) by condition. Top: Raincloud plots depicting the same results
in terms of individual datapoints, boxplots (median and upper/lower quartiles), and distributions.
pHB was significantly lower in the no-guessing and breath-hold conditions than in the guessing
condition (ps < .001) and it was higher in the breath-hold condition than in the no-guessing
condition (p= .01). IP was significantly greater in the breath-hold condition than in the guessing
(p = .006) and no-guessing (p = .028) conditions.

Fig. 3. Pearson correlations between model parameters and self-report and other task-relevant
variables for each task condition across all participants. IP = interoceptive precision parameter,
pHB = prior expectation for heartbeat parameter, pT = prior expectation for tone parameter, AP
= auditory precision, #HBs= number of heartbeats during the task condition, BMI= body mass
index. For reference, correlations at p < .01 (uncorrected) are marked with red asterisks.
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4 Discussion

In this study we sought, and found, confirmatory evidence that an interoceptive (inspi-
ratory breath-hold) perturbation increased the precision estimates assigned to cardiac
signals in healthy individuals. The effectiveness of the perturbation was further vali-
dated by the finding that participants reported more intense heartbeat sensations in the
breath-hold condition (see Table 1).We further confirmed that prior expectations to feel a
heartbeat were reduced when individuals were given a no-guessing instruction, and that
both parameters correlated with self-report measures in predicted directions. This repli-
cation represents an important step towards empirically advancing our understanding of
the computational dynamics underlying interoception. Future work remains to confirm
our other previous finding – that interoceptive precision is not adjusted across condi-
tions within psychiatric disorders [3]. If this latter result is replicated in future work, it
would support the use of our novel interoceptive modelling and model-fitting approach
as an important new avenue for computationally phenotyping patient populations at the
individual level.
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Abstract. Visual search is an essential cognitive ability, offering a pro-
totypical control problem to be addressed with Active Inference. Under a
Naive Bayes assumption, the maximization of the information gain objec-
tive is consistent with the separation of the visual sensory flow in two
independent pathways, namely the “What” and the “Where” pathways.
On the “What” side, the processing of the central part of the visual
field (the fovea) provides the current interpretation of the scene, here
the category of the target. On the “Where” side, the processing of the
full visual field (at lower resolution) is expected to provide hints about
future central foveal processing given the potential realization of saccadic
movements. A map of the classification accuracies, as obtained by such
counterfactual saccades, defines a utility function on the motor space,
whose maximal argument prescribes the next saccade. The comparison
of the foveal and the peripheral predictions finally forms an estimate
of the future information gain, providing a simple and resource-efficient
way to implement information gain seeking policies in active vision. This
dual-pathway information processing framework is found efficient on a
synthetic visual search task with a variable (eccentricity-dependent) pre-
cision. More importantly, it is expected to draw connections toward a
more general actor-critic principle in action selection, with the accuracy
of the central processing taking the role of a value (or intrinsic reward)
of the previous saccade.

Keywords: Object detection · Active Inference · Visual search ·
Visuomotor control · Deep learning

1 Introduction

Moving fast the eye toward relevant regions of the scene interestingly combines
elements of action selection (moving the eye) with visual information process-
ing. Noteworthy, the visual sensors have evolved during natural selection toward
maximizing their efficiency under strong energy constraints. Vision in most mam-
mals, for instance, has evolved toward a foveated sensor, maintaining a high den-
sity of photoreceptors at the center of the visual field, and a much lower density
at the periphery. This limited bandwidth transmission is combined with a high
mobility of the eye, that allows to displace the center of sight toward different
c© Springer Nature Switzerland AG 2020
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Fig. 1. Computational graph. Based on the anatomy of mammals’ visual pathways,
we define the following stream of information to implement visual search, one stream for
localizing the object in visual space (“Where?”), the other for identifying it (“What?”).
(A) The visual display is a stack of three layers: first a natural-like background noise is
generated, characterized by noise contrast, mean spatial frequency and bandwidth [1].
Then, a sample digit is selected from the MNIST dataset [2], rectified, multiplied by
a contrast factor and overlaid at a random position. Last, a circular, gray mask is put
on. (B) The visual display is then transformed in a retinal input which is fed to the
“Where” pathway. This observation is generated by a bank of filters whose centers are
positioned on a log-polar grid and whose size increases proportionally with the eccen-
tricity. The “Where” network outputs a collicular-like accuracy map. It is implemented
by a three-layered neural network consisting of the retinal log-polar input, two hidden
layers (fully-connected linear layers combined with a ReLU non-linearity) with 1000
units each. This map has a similar log-polar (retinotopic) organization and predicts
the accuracy at the counter-factual positions of affordable saccades. The position of
maximal activity in the “Where” pathway serves to generate a saccade denoted which
displaces the center of gaze at a new position. (C) This generates a new sensory input
in the fovea which is fed to a classification network (“What” pathway). This network
is implemented using the three-layered LeNet neural network [2]. This network out-
puts a vector predicting the accuracy of detecting the correct digit. (D) Depending
on the (binary) success of this categorical identification, we can first reinforce the
What network, by supervisedly learning to associate the output with the ground truth
through back-propagation. Then, we similarly train the “Where” network by updating
its approximate prediction of the accuracy map.

parts of the visual scene, at up to 900 degrees per second in humans. Beyond
the energetic efficiency, foveated vision improves the performance of agents by
allowing them to focus on relevant vs. irrelevant information [3]. As such, this
action perception loop uniquely specifies an AI problem [4,5].

Indeed, Friston [6] proposed the FEP as a general explanatory principle
behind the puzzling diversity of the mechanistic processes taking place in the
brain and the body. One key ingredient to this process is the (internal) represen-
tation of counterfactual predictions, that is, the probable consequences of possi-
ble hypothesis as they would be realized into actions (here, saccades). Equipping
the agent with the ability to actively sample the visual world allows to interpret
saccades as optimal experiments, by which the agent seeks to confirm predictive
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models of the (hidden) world [4,7]) Following such an active inference scheme,
numerical simulations reproduce sequences of eye movements that fit well with
empirical data [8,9].

In particular, we focus here on visual search which is the cognitive ability
to locate a single visual object in cluttered visual scene by placing the fovea
on the object, in order to identify it [10–12]. As such, visual search intimately
links the sampling of visual space (as it is done by the sensory apparatus) to the
behavior which directs this sampling through the action of moving the direction
of gaze. Note that the retina samples visual information predominantly on the
fovea, though the target may lie in the periphery, where the acuity is lower.
It is therefore commonplace that the target is not identifiable with the current
information contained on the retinal image. As a consequence, visual search
involves the problem that, given a limited observability, the object has to be
localized before being identified.

Compared to earlier modelling studies, such as [13], we are concerned with
the problem of both locating and identifying the target. This implies the capabil-
ity to process the visual data and extract features from a complex (non-uniform)
retinotopic visual sampling. This observation highlights an important hypothesis
for solving the visual search problem. The semantic content of a visual scene is
indeed defined by the positions and identities of the many objects that it con-
tains. In all generality, the identity of an object is independent from its position
in retinotopic space which is contingent on the observer’s point of view. We thus
consider the assumption that the visual system of mammals is built around such
an independence hypothesis. The independence assumption, largely exploited in
machine learning, is also known as the “Näıve Bayes” assumption. It simply
considers as independent the different factors (or latent features) that explain
the data. This implies here that inferring the identity and the position can be
performed independently, and thus, could be processed sequentially. Selecting an
object and identifying both its position and category may thus be the elemen-
tary bricks of visual processing. It may moreover explain the general separation
of visual processing into the ventral and dorsal pathways. These two specific
processing pathways are devoted to the processing of the stream of visual infor-
mation, either to identify the semantic content of the visual field (the “What”
pathway), or to decide where to orient next the line of sight (the “Where” path-
way). They may operate in a continual and incremental turn-taking fashion,
contributing to understand and exploit at best the visual information.

2 Problem Statement: Formalizing Visual Search as
Accuracy Seeking

2.1 Visual Search Task

In this manuscript, we built upon an existing model [14] by precisely defining
the mathematical framework under the Active Inference formalism. This model
is based on a simplified generative model for a visual search task and a proposed

http://www.scholarpedia.org/article/Visual_search
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algorithm to implement the task. First, in order to implement those principles
into a concrete image processing task, we construct a simple yet ecological virtual
experiment: After a fixation period of 200 ms, an observer is presented with a
luminous 128 × 128 display showing a single target overlaid on a realistic noisy
background (see Fig. 1A). This target is drawn in our case from the MNIST
database of manuscript digits consisting of 60000 grayscale images of size 28 ×
28 [2]. This image is displayed for a short period of about 500 ms which allows
to perform (at most) one saccade toward the (unique) target. The goal of the
agent is ultimately to correctly identify the digit.

2.2 Central Processing

Following the Free Energy minimization principle (FEP) [6], engaging in a sac-
cade stems on maintaining the visual field within the least surprising possible
state. This implies, for instance, the capability to predict the next visual input
through a generative model, and to orient the sight toward regions that mini-
mize the agent’s predicted model surprise [4]. Due to their limited memory and
processing capabilities, living brains do not afford to predict or simulate their
sensory environment exhaustively. Given the vast diversity of possible visual
fields, one should assume that only the foveated part should deserve predictive
coding. This implies that the saccadic motor control should be tightly optimized
in order to provide a foveal data that should allow to accurately identify (and
predict) the target.

In our model, we divide the retina into the fovea, which constitutes the
center of the retina, and the peripheral region, which provides a visual informa-
tion with a decreasing precision as a function of eccentricity. When considering
the full visual field, the exponential decrease of the density of photo-receptors
with respect to eccentricity [15] must be reflected in a non-uniform sampling of
the visual data. It is here implemented as a log-polar conformal mapping, as
it provides a good fit with observations in mammals and has a long history in
computer vision and robotics [16]. These coordinates are denoted as the cou-
ple u = (ε, θ) corresponding respectively to the log-eccentricity and azimuth in
(spherical) polar coordinate by ρ(u) def.= (R · exp(ε) · cos θ,R · exp(ε) · sin θ) with
R the maximal eccentricity.

Let us define as x a spatial coordinate in the input image cartesian referential
(with x0

def.= (0, 0) defining the center of the image), with xt the position of the
target and kt ∈ {0, . . . , 9} its identity. The content of the fovea is considered
as spatially uniform, here defined by extracting the 28 × 28 sub-image f t(x)
at gaze direction x (initially x0). At any given trial t drawn from the set T of
trials of our virtual experiment, knowing the corresponding position xt of the
object, the problem of identifying the object can be solved, for instance, by a
deep neural network [2] which infers its category. This network takes f t(x) as
an input and returns a multinomial distribution vector a(f t(x)) ∈ R

10 (with∑
k ak(f

t(x)) = 1). This network takes here the role of the “What” pathway.
Knowing the correct label kt (and position xt) for this trial t, this network is
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trained using a gradient descent with a categorical Cross Entropy loss. This loss
is by definition:

Lt
K = − log akt(f t(x)) (1)

The gradient descent is computed at each trial and the process is iterated over the
set T of trials which give pairs of inputs f t(x) and outputs kt for this supervised
learning scheme. The accuracy of this classic neural network is known to exceed
98% over the genuine MNIST database [2], on par with human performance. Due
to the max-pooling layers used between the convolutional layers, it also shows
a robust translation invariance. In our experimental conditions, the network is
trained over an augmented MNIST digits dataset, having a variable contrast, a
variable shift (from 0 to 15 pixels away from the center) and a variable (randomly
generated) background.

Knowing f t(x), the categorical response is kt = arg maxk ak(f t(x)). This
response can be correct or incorrect. The correctness of the response is noted
o(f t(x)) as we test our model. This value, that is 1 for a correct response and 0
otherwise, can be interpreted as a binary random variable. This random variable
can be sampled at different t, with different success or failures depending on the
actual target position xt.

2.3 Accuracy Map

The “What” neural network is constructed such that it can provide an estimate
of the chance of success for every possible category by processing the central
part of the visual field, i.e. the fovea. This chance of success could in principle
be estimated the same way at any peripheral position x �= x0, through making
a saccade and estimating the chance of success at gaze direction x. Then, for
any target position xt, and under an ergodic assumption, it could provide a
belief on the average success that would be obtained at all positions x, i.e.
At(x) def.= akt(f t(x)) ≈ Pr(kt|f t(x)). This accuracy being defined for any gaze
direction x, one could thus construct a map providing the expected probability
of classification success knowing a potential future eye direction x afforded by
a saccade. From the definition of the “What” network, this could be simply
approximated by the accuracy of the selected class:

At(x) ≈ max
k

ak(f t(x)) (2)

In principle, one could extract all possible sub-images f t(x) at all positions
x, and estimate At(x) directly. Moving the eye toward x̂ = arg maxx At(x) and
finding the object’s identity at location x̂ would solve the problem of both iden-
tifying and locating the target. This brute-force solution is of course computa-
tionally prohibitive, but provides a baseline toward a more biologically-relevant
processing.

The belief in the success or the failure of identifying the target at different
positions being, by construction, an output of the “What” pathway, it is essential
for a visual search task to estimate the correctness of the test prior to a saccade,
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that is, to predict the statistics of o(f t(x)) from At(x). The eye next position x
being the result of a motor displacement u, with x = x0 +ρ(u) = ρ(u), it should
be governed by a policy, i.e. a method that selects the next movement from the
available visual input. The set of all possible displacements forms a motor map,
and such a policy can be formalized as a mapping from the visual input space
toward the motor map. Following the classical reinforcement learning literature,
the motor map is expected to provide a value over the space of actions. We
postulate here that the value of the motor displacement u is identified with the
classification accuracy obtained at position x = ρ(u). Moreover, we will show
that, with minimal simplifying assumptions, this postulate can be framed into
the more general framework of Active Inference.

3 Principles: Supervised Learning of Action Selection

3.1 Peripheral Visual Processing

On the visual side, local visual features are extracted as oriented edges as a
combination of the retinotopic transform with filters resembling that found in
the primary visual cortex [17]. The centers of these filters are radially organized
around the center of fixation, with small receptive fields at the center and more
large and scarce receptive fields at the periphery. The size of the filters increases
proportionally with the eccentricity. To cover the visual space from the periphery
to the fovea, we used 10 spatial eccentricity scales ε ∈ [−4,−1] such that the
filters are placed at about 2, 3, 4.5, 6.5, 9, 13, 18, 26, 36.5, and 51.3 pixels from
the center of gaze. There are 24 different azimuth angles allowing them to cover
most of the original 128 × 128 image. At each of these positions, 6 different
edge orientations and 2 different phases (symmetric and anti-symmetric) are
computed.

This finally implements a bank of linear filters which models the receptive
fields of the primary visual cortex. Assuming this log-polar arrangement, the
resulting retinal visual data at this trial is noted as the feature vector st(x).
For simplicity, it is noted st further on. The length of this vector is 2880, such
that this retinal processing compresses the original image by about 83%, with
high spatial frequencies preserved at the center and only low spatial frequencies
conserved at the periphery. In practice, the bank of filters is pre-computed and
placed into a matrix for a rapid transformation of input batches into feature
vectors.

3.2 Motor Control

Assuming the motor control is independent from the identity pathway, we take
the classification success, as measured at the output of the “What” pathway,
as the principal outcome of the “Where” pathway. It is assumed, in short, that
the surprise should be higher in case of failure than in case of success, and
that minimizing the surprise through active inference should be consistent with
maximizing the likelihood of success.
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On the motor side, a possible saccade location is defined as u
def.= (ε, θ). Each

coordinate of the visual field, except for the center, is mapped on a saccadic
motor map. The motor map is also organized radially in a log-polar fashion,
making the control more precise at the center and coarser at the periphery.
This modeling choice is reminiscent of the approximate log-polar organization
of the superior colliculus (SC) motor map [18]. Given a saccade command u, the
corresponding classification success is noted o(f t(ρ(u))). This success (or failure)
being measured after the saccade, it must be guessed from a model. We posit
here that the principle underlying the “Where” processing pathway is to predict
the probability of success for every possible saccade command. This success is
considered a realization of the likelihood p(o|u, st). It is important here to note
the dependence on the (peripheral) visual observation st. Our likelihood function
p can be seen as a mapping from st to the set U of possible saccade commands.
Following these definitions, the objective of the “Where” processing pathway is
to allow a saccadic decision by training such a likelihood function w(u|st) from
observing failures and success from different saccades selection.

Now, the optimization being done on u, our saccade selection process relies
on maximizing the likelihood of success, i.e. arg maxu p(o = 1|u, st), that is
consistent with assuming that a prior is put on observing a success, whatever
the saccade. Computing a good approximation of the likelihood p(o = 1|u, st) is
therefore crucial to perform visual search:

w(u|st) ≈ p(o = 1|u, st) = At(ρ(u)) (3)

where ρ(u) is the future position of gaze for a saccade u, and st is the feature
vector representing the present peripheral observation. The model predicts the
accuracy of the “What” pathway, given the action u (saccade).

The choice of a saccade given the likelihood may be obtained from the max-
imum a posteriori rule :

πmax(st) = arg max
u

p(o = 1|u, st) · Pr(u) (4)

With for instance Pr(u) = Unif(u) a uniform prior probability on saccade selec-
tion, that is, uniformly on motor space, we obtain the policy (approximate in
probability):

πmax(st) ≈ π̂max(st)
def.= arg max

u
w(u|st) (5)

Similarly, another strategy would be to use the approximate conditional expec-
tation on action space:

π̂avg(st)
def.=

∫

u

u · w(u|st) · Pr(u) · du (6)

Note that this conditional expectation is different from that that would operate
in cartesian coordinates. In particular, using a log-polar accuracy map comes
with an intrinsic prior for the saccades to be closer to the fixation point (see
Fig. 2).
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Incidentally, the unimodal shape of the accuracy map indicates that a highest
chance of success is found when the target is centered on the fovea, and for that
reason the active inference mechanism should privilege saccades that will place
the visual target at the center of the fovea. This is equivalent to identifying the
location of the target in the retinotopic space, and thus inferring the spatial
information from the visual field, with the future saccade taking the role of a
latent variable explaining the current visual field st.

From the active inference perspective, choosing the accuracy map as a like-
lihood function is like putting a prior on observing a success. In other words,
the agent is more “surprised” in case of classification failure than in case of clas-
sification success. Taking the classification success as the principal outcome of
the “Where” pathway, the action selection process now relies on minimizing the
surprise as upper-bounded by the free-energy:

− log p(o = 1|st) ≤ F with F
def.
= Eq [− log p(o = 1|π, st) + log q(π|st,o = 1) − log p(π|st)]

(7)

with π the policy taking the role of a latent variable predicting the (future) clas-
sification success, and q being a probability distribution function on action selec-
tion policy. Finally, the visual search problem can be summarized as optimizing
the function q which would define a saccade selection policy from a maximum
success evidence perspective.

3.3 Higher Level Inference: Choosing the Processing Pathway

Inferring the target location and identity sums up in our case to select a saccade
in order to infer the target category from the future visual field. It is likely,
however, that a saccade may not provide the expected visual data, and that
a corrective saccade may be needed to improve the visual recognition. More
generally, choosing to move the eye or to issue a categorical response from the
available data resorts to select one processing pathway over the other: either
realize the saccade or guess the category from the current foveal data. In order
to make this choice, one must guess whether the chance of success is higher in the
present, given the current visual field, or in the future, after the next saccade.

This, again, can be expressed under the active inference setup. Let p(o|f(x0))
the probability of success when processing the foveal data, as provided by the
“What” network. Under the policy π (provided by the “Where” network), the
decision decomposes into a binary choice between issuing a saccade or not.
This decision should rely on comparing p(o|f(ρ(π(s)) (the future accuracy) and
p(o|f(x0)) (the current accuracy). The active inference comes down here to a
binary choice between actuating a saccade or “actuating” (testing) the categor-
ical response.

Interestingly, the log difference of the two probabilities

log p(o|f t(ρ(π(st)) − log p(o|f t(x0)) ∼ log At(ρ(π(st))) − log At(x0) (8)

can be seen as an estimator of the information gain provided by the saccade.
Choosing to actuate a saccade is thus equivalent to maximising the information
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gain provided by the new visual data, consistently with the classic “Bayesian sur-
prise” metric [19]. Expanding over purely phenomenological models, our model
finally provides a biologically interpretation of the information gain metric as a
high-level decision criterion, linked to the comparison of the output of the two
principal visual processing pathways.

3.4 Learning the Accuracy Map

Neural Networks are known to be in theory universal value function approxima-
tors and in practice, we will use a network architecture, alike to that used for
the “What” pathway. This will provide a sufficient argument for showing that it
is possible to learn such a mapping, while leaving open the possibility that other
architectures may be actually implemented in the brain. The parametric neural
network consists of the input feature vector st (of dimension 2880), followed by
two fully-connected hidden layers of size 1000 with rectified linear activation
units (ReLUs). A final fully-connected output layer with a sigmoid nonlinearity
ensures that the output is compatible with a likelihood function. In accordance
with observations [18,20], the same log-polar compression pattern is defined at
the retinal input and at the motor output (see Fig. 1).

To learn the mapping provided by the “Where” network, we use the BCE
cost as the Kullback-Leibler divergence between the tested accuracy and its
approximation:

Lt
S = −[o(f t(ρ(ut))) · log w(ut|st) + (1 − o(f t(ρ(ut))) · log(1 − w(ut|st))] (9)

We then optimize the parameters of the neural network implementing the
“Where” pathway such as to optimize the approximation of the likelihood func-
tion. This can be achieved in our feed-forward model using back-propagation [2]
with the input-output pairs (st, ut) and the classification result as it is given by
the “What” pathway. The role of the “What” pathway is here that of a critic
of the output of the “Where” pathway (which takes the role of the actor). This
separation of visuo-spatial processing into an actor and a critic is reminiscent
of a more general actor-critic organization of motor learning in the brain, as
postulated by Joel, Niv, and Ruppin [21].

The natural way to collect such supervision data is to draw data one by one
in our virtual experiment, iteratively generating a saccade and computing the
success of the detection. This is what would be performed by an agent which
would sequentially learn by trial-and-error, using the actual recognition accuracy
(after the saccade) to grade the action selection and leading to a reinforcement
scheme. For instance, we could use corrective saccades to compute (a posteriori)
the probability of a correct localization. In a computer simulation however, this
calculation is slow and not amenable. To accelerate the learning in our scheme
defined by a synthetic generative model, there exists however a computational
shortcut to obtain more supervision pairs. Indeed, the learning of the where
pathway may be done after that of the what pathway. Such a computational
shortcut is allowed by the independence of the categorical performance with
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position. Moreover, for each input image, we know the true position in extrinsic
(xt) and intrinsic (ut def.= ρ−1(xt)) and identify kt of the target. As such, one can
compute the average accuracy map over the dataset and optimize equivalently

Lt
S = −

∑

u∈S
[A0(u − ut) · log w(u|st) + (1 − A0(u − ut)) · log(1 − w(u|st)] (10)

where A0(Δu) stands for the accuracy map with respect to the true position,
that is, of the accuracy when the input image to the “What” pathway is system-
atically shifted by ρ(Δu). In our setting, this function varied little for different
identities and we averaged it over all possible identities. Combining this trans-
lational shift and the shift-dependent accuracy map of the “What” classifier,
the actual accuracy map at each trial can be thus predicted under an ergodic
assumption by shifting the central accuracy map on the true position of the
target (that is with Δx = ρ(u) − xt). Then, this full accuracy map is a prob-
ability distribution function which can be computed on the rectangular grid of
the visual display. We project this distribution on a log-polar grid to provide the
expected accuracy of each hypothetical saccade in a retinotopic space similar to
a collicular map. Applied to the full sized ground truth accuracy map computed
in metric space, this gives an accuracy map at the different positions of the
retinotopic motor space S. This accelerate learning as it scales up both the set
of tested saccade positions and gives the analog bias value instead of the binary
outcome of the detection. Future work should explore if similar results will still
hold when both networks are learned at the same time and with a trial-and-error
strategy.

4 Results

After training, we observed that the “Where” pathway can correctly predict an
accuracy map, whose maximal argument can be chosen to drive the eye toward
a new viewpoint with a single saccade. There, a central snippet is extracted,
that is processed through the “What” pathway, allowing to predict the digit’s
label. The full scripts for reproducing the figures and explore the results to
the full range of parameters is available at https://github.com/laurentperrinet/
WhereIsMyMNIST (under a GPLv3 license). The network is trained on 60
epochs of 60000 samples, with a learning rate equal to 10−4 and the Adam
optimizer [22] with standard momentum parameters. An improvement in con-
vergence speed was obtained by using batch normalization. One full training
takes about 1 hour on a laptop. The code is written in Python (version 3.7.6)
with the pyTorch library [23] (version 1.1.0).

Saccades distributions and classification success statistics resulting from this
simple sequence are presented in Fig. 2. Figure 2A-C provides an example of
our active visual processing setup. The initial visual field (Fig. 2A) is processed
through the “Where” pathway, providing a predicted accuracy map (compared
with the true accuracy map in Fig. 2B)). The maximal argument of the accu-
racy map allows to actuate a saccade. The resulting visual field is provided in

https://github.com/laurentperrinet/WhereIsMyMNIST
https://github.com/laurentperrinet/WhereIsMyMNIST
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Fig. 2. Example of active vision after training the “Where” network. Digit contrast
set to 70%. From left to right: (A) Magnified reconstruction of the visual input, as
reconstructed from the primary visual feature vector through an inverse log-polar trans-
form. (B) Color-coded radial representation of the output accuracy maps, with dark
blue for the lower accuracy values, and yellow for higher values. The network output
(“Predicted”) is visually compared with the ground truth (“True”). (C) Visual field
shift obtained after doing a saccade: The digit (the number 4) can now be recognized
within the foveal region. (D) The final classification rate is plotted in function of the
target eccentricity. The transparent orange corresponds to the pre-saccadic accuracy
from the central classifier (‘no saccade’). The blue bars correspond to the post-saccadic
accuracy (‘one saccade’), averaged over 1000 trials per eccentricity. Red line: empirical
information gain, estimated from the accuracy difference. (E) Saccades distribution
for different target eccentricities. The same saccades are plotted in (pixel) Cartesian
coordinates on the left, and in log-polar coordinates on the right. The Cartesian coor-
dinates correspond to the effector space while the log-polar coordinates correspond to
the motor control space. In both cases, the empirical marginal distributions over one
axis are shown on the right side. (Color figure online)

Fig. 2C, and the classification is done on the central part of the visual field
only (red square). To generalize results, 1000 saccades are sampled for differ-
ent sequences of input visual fields containing a target with a fixed eccentricity,
but a variable identity, a variable azimuth and a variable background clutter.
The digit contrast parameter is set to 70% and the eccentricity varies between
4 and 40 pixels. The empirical classification accuracies are provided in Fig. 2D,
for different eccentricities. These are averaged over all trials both on the ini-
tial central snippet and the final central snippet (that is, at the landing of the
saccade). The (transparent) orange bars provide the initial classification rate
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(without saccade) and the blue bars provide the final classification rate (after
saccade). As expected, the accuracy decreases in both cases with the eccentric-
ity, for the targets become less and less visible in the periphery. The decrease
is rapid in the pre-saccadic case: the accuracy drops to the baseline level for a
target distance of approximately 20 pixels from the center of gaze, consistent
with the size of the target. The post-saccadic accuracy provides a much wider
recognition range, with a slow decrease from about 90% recognition rate up to
up to about 60% recognition when the target is put at 40 pixels away from the
center. An estimate of the information gain provided is provided through a direct
comparison of the empirical accuracies (red line). Here an optimal information
gain is obtained in the 25–35 eccentricity range.

The lower accuracy observed at larger ranges is an effect of the visual signal
bandwidth reduction at the larger eccentricities, that do not allow to accurately
separate the target from the background. The spatial spreading of the saccades
obtained at different eccentricities is represented on Fig. 2E. The same sac-
cades have been represented in Cartesian (pixel) coordinates (left figure) and
in log-polar coordinates (right figure). By construction, the log-polar process-
ing, implemented in the “Where” visuo-spatial pathway, leads to a decrease in
saccade precision with respect to the eccentricity. This decreasing precision is
illustrated by the higher variance of the saccades distribution observed at higher
eccentricities, in the Cartesian space of the saccade realization. Interestingly,
the variance of the marginal distribution of the saccades along the eccentricity
axis is close to constant when represented in the log-polar space, that is, in the
space of the (collicular) motor command. From 10 to 30 pixels away from the
center, the precision of the command is invariant with respect to the eccentricity.
The lower precision observed at about 40 pixels eccentricity only reflects a lower
detection rate. Due to the log-polar construction of the motor map, the motor
command (falsely) appears to display the same precision at various eccentrici-
ties. As it would be the case with a more detailed model of the motor noise, this
log-polar organization of the control space can be interpreted as a natural re-
normalization, helping to counteract the precision loading that would otherwise
be attached with the larger saccades, helping to provide a more uniform spread
of the motor command in the effector space.

5 Discussion and Perspectives

We proposed a computer-based framework allowing to implement visual search
under bio-realistic constraints, using a foveated retina and a log-polar visuo-
motor control map. A simple “Näıve Bayes” assumption justifies the separation
of the processing in two pathway, the “What” visuo-semantic pathway and the
“Where” visuo-spatial pathway. The predicted classification rate (or classifica-
tion accuracy), serves as a guiding principle throughout the paper. It provides a
way to link and compare the output of both pathways, serving either to select
a saccade, in order to improve the chance of success, or to test a categorical
response on the current visual data.
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Future work should explore the application of this architecture to more com-
plex tasks, and in particular to a more ecological virtual experiment consisting in
classifying natural images. In particular, it would be possible to generalize this
to a sequence of saccades, that is, mapping out an entire sequence of saccades by
the where pathway, given the current field of view [24]. Finally, we used here the
log-polar retinotopic mapping as a constraint originating from the anatomy of
the visual pathways and have shown in Fig. 2 that this implicitly generate a uni-
form action selection probability. At the temporal scale of natural selection, one
could also consider this mapping as the emergence of an optimal solution con-
sidering an ecological niche, explaining for instance why foveal regions are more
concentrated in predators than in preys, as shown for instance in avians [25].
As can be observed in the comparative study of pupils’ shapes [26], this may
justify the differences observed between preys (with a less sparse cone density
at the periphery) and predators (with a tendency toward denser foveal regions)
as a form. The compromise between the urgency to detect and the need to be
accurate may justify the different balances which may exist in different species
and thus as long term form of homeostasis [27].
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Abstract. In this paper, we combine sophisticated and deep-parametric active
inference to create an agent whose affective states change as a consequence of
its Bayesian beliefs about how possible future outcomes will affect future beliefs.
To achieve this, we augment Markov Decision Processes with a Bayes-adaptive
deep-temporal tree search that is guided by a free energy functional which recur-
sively scores counterfactual futures. Our model reproduces the common phe-
nomenon of rumination over a situation until unlikely, yet aversive and arous-
ing situations emerge in one’s imagination. As a proof of concept, we show how
certain hyperparameters give rise to neurocognitive dynamics that characterise
imagination-induced anxiety.

Keywords: Affect · Counterfactuals · Anxiety · Active inference · Anticipation

1 Introduction

A common aspect of human experience is that imagined, counterfactual events can have
a significant impact on our affective states. In its extreme form, people suffering from a
variety of psychiatric conditions, such as generalised anxiety disorder (Gale and David-
son 2007), consistently report experiencing repetitively imagined “what-if” scenarios
that have a significant impact on their real-time affective dynamics. This type of mal-
adaptive, repetitive thinking about (often unlikely) negative future outcomes is referred

© Springer Nature Switzerland AG 2020
T. Verbelen et al. (Eds.): IWAI 2020, CCIS 1326, pp. 179–186, 2020.
https://doi.org/10.1007/978-3-030-64919-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64919-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-64919-7_18


180 C. Hesp et al.

to as rumination. Clinically validated therapeutic interventions for disorders involv-
ing rumination (e.g., cognitive-behavioural therapy [CBT], acceptance and commitment
therapy [ACT]) also typically aim to reduce confidence in catastrophic imagined future
events and ground patients in the here and now (e.g., see Barlow et al. 2017; Hayes
et al. 2006). Although the effectiveness of such therapies is well established, their mech-
anisms of action remain poorly understood. Gaining a more detailed understanding of
the specific neurocomputational mechanisms that underpin prospection-induced affect
in general – and excessive rumination-induced anxiety in particular – is an important
direction for future research.

In this paper, we aim to provide a mechanistic account of how affective responses
can be generated by imagined future outcomes – and how this can become dysfunctional
during rumination. By combining two recent developments in active inference, we pro-
vide a formal model of these phenomena and simulate how ‘overthinking a situation’
can occur – continuing to the point where unlikely, yet aversive and arousing situations
emerge in one’s imagination. We employ an affective-inference agent (Hesp et al. 2020)
equipped with the recursive belief-updating scheme of sophisticated inference (Friston
et al. 2020). This powerful combination allows us – for the first time – to create an
agent whose affective states change as a consequence of its internal machinations about
possible future events. In this short paper, we present the underlying generative model
and discuss its implications. We also show some brief illustrative simulations. We leave
a more elaborate analysis of computational results for a variety of parametrisations for
a future piece.

2 Methods

Here, we show how one can augment the Markov Decision Process formalism that
underwrites the standard active inference scheme with a Bayes-adaptive deep-temporal
tree search that is guided by a free energy functional as it scores counterfactual futures.
By combining the ensuing recursive update scheme of sophisticated inference (Friston
et al. 2020) with deep-parametric, affective inference (Hesp et al. 2020), we can derive
a general-purpose generative model of the following mathematical form, summarised
graphically in Fig. 1 and in tabular format in Table 1:
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In brief, the (higher-level) affective-contextual states s(2) entail three hidden-state fac-
tors: arousal, valence, and context. These factors map (through the likelihood matrix
A(2)) onto three lower-level model variables: the latent states s(1)1 , actions uτ (i.e., possi-
ble state transitions at time τ), andGτ -precision γτ (i.e., action confidence at time τ). The
latter is a scalar precision that scales the contribution of the expected free energy Gτ to
posterior beliefs about actions. This precision term can be read as a subjective estimate
of confidence in model-based beliefs about action outcomes (Hesp et al. 2020). This
estimate is updated when posterior beliefs about action depart from one’s prior expecta-
tions such that it produces a con-comitant change in the action-averaged expected free
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Fig. 1. A directed acyclic Bayes graph showing a generative model for sophisticated affective
inference about higher-level valence, arousal and context states (s(2)) based on (imagined) lower-

level action-model precision (γτ ), actions (uτ ), states (s
(1)
τ ), and outcomes (oτ ) over four suc-

cessive time points, thus combining sophisticated active inference (Friston et al. 2020) with
deep-parametric affective inference (Hesp et al. 2020).

energy. The ensuing update term—named “affective charge” or AC—reflects changes
in the confidence in one’s action model.

The lower-level state space s̃(1) comprises three hidden-state factors: location, con-
text, and time, which map (through A(1)) onto two outcome modalities representing
cues (e.g., visual) and rewards (e.g., gustatory). Following Hesp et al. (2020), each
of the higher-level states can be associated with different combinations of lower-level
parameters for s(1)1 (in terms of the initial prior D(1)), ut (in terms of the baseline action
prior Et), and γt (in terms of the rate parameter βτ ) through a higher-level likelihood
mapping A(2). For example, imagine you experience a pleasant low arousal state when
you arrive home after a day’s hard work. This higher-level belief about your current
state can then inform your lower-level action beliefs, e.g., by increasing the prior prob-
ability of actions associated with getting ready to sleep. Conversely, imagining yourself
getting ready to sleep can further increase your experienced sleepiness. It is the latter
type of reaction that we would like to model in general: affective responses (in this case,
arousal-reducing responses) generated by imagined (internally simulated) future events.

The specifics of the lower level generative model are not terribly important, but
for the sake of our demonstration, we introduce a simple state space (within a stable
context) that comprises four states (see Fig. 2), each with its own observable outcome
and associated preference C:
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Fig. 2. An illustration of the state-space of the task with four states (left side, arrows indicating
likely transitions) as it unfolds over four time steps (right side). The agent always starts in state 1
(grey), can get a small but safe reward in state 2 (light green), and a large but dangerous reward
in state 3 (dark green). The latter is dangerous because it entails a larger probability of transition
to the absorbing painful state 4 (red). The right side of the figure depicts the decision tree through
which the agent searches to evaluate the expected consequences of each possible action sequence.
(Color figure online)

The agent always starts in neutral state 1 and can move towards any of the four states
by selecting up to three moves. Furthermore, a notion of safety is introduced by making
state 2 a safer option than state 3: transitioning towards the latter has a higher probability
of failure and can accidentally lead to painful state 4, which cannot be left until the end
of the (4 time-step) trial. If we liken a trial to a working day, state 1 could be seen as the
agent’s home base, state 2 as a safe activity with a small yet certain reward (e.g., picking
berries), state 3 as a dangerous activity with a large yet uncertain reward (e.g., hunting
prey), and state 4 as an unpreferred state that cannot be left for the rest of the day (e.g.,
being wounded).

An important twist introduced in this model is that higher-level state beliefs can be
updated recursively through pre-taskmental deliberation, based on a deep tree search that
unfolds pre-emptively on the lower-level. All the equations presented in Table 1 can be
evaluated without presenting any actual outcomes to the agent in question – that is, belief
updating is guided by the probabilistic exploration of possible futures. This tree search
involves recursive updating of lower-level action beliefs based on the counterfactual
outcomes of actions that are sampled from predictive posteriors at each branching point
of the tree. Because we equip the generative model with action-dependentGτ -precision
estimation, we can see how each counterfactual future elicits an expected affective charge
(eAC; see the first row of Table 1), which provides an ascending message to inform
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Table 1. This table lists the predictive posteriors that provide the empirical priors for our
generative model.

higher-level affective inference. The equation for eAC deserves further unpacking:

eACτ = (
uoτ − uoτ

) ·G(uτ , oτ ) (2)

Where uoτ is the empirical prior for a particular action and outcome at time τ , and uoτ is
a particular outcome-action sequence drawn from the predictive posteriors. The eACτ

term thus scores imagined departures from the model-averaged expected free energy for
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an imagined future at time τ . This eAC term is the anticipatory analogue of the affective
charge term proposed by Hesp and colleagues (2020) as a plausible source of evidence
for different valence states (i.e., pleasant/unpleasant states). The two main innovations
afforded by sophisticated inference are that: (i) in e AC, the action sequences consider
all combinations of individual actions and (ii) eAC is elicited in response to imagined,
counterfactual actions (as opposed to events that have already been observed).

Simulating all possible sequences of actions and outcomes would quickly become
intractable due to a combinatorial explosion (right side of Fig. 2). For example, with 4
possible outcomes, actions, and time steps, the number of imaginable future possibilities
would exceed 16,000. To solve this problem, sophisticated inference (Friston et al. 2020)
provides a principledwayof exploring the tree using the certainty of predictive posteriors.
In terms of state estimation, these can be seen as empirical priors – as they are derived
entirely from prior beliefs, which inform sampling of possible futures. In this work,
every path has a probability of being selected, however small. Obviously, the number
of explored possibilities will tend to increase with each iteration. By manipulating the
number of iterations of such self-directed, recursive sampling of the future we canmodel
traditional speed-accuracy tradeoffs for split-second decisions (i.e., too few iterations)
as well as the detrimental effects of excessive deliberation (i.e., too many iterations),
which characterises the phenomenon of rumination or ‘overthinking’.

3 Results

An exemplar result from our simulations is shown in Fig. 3 below. It provides a simple
demonstration of how sophisticated affective inference naturally underwrites affective
responses to internally imagined futures. We simulated how particular hyperparameters
give rise to neurocognitive dynamics that characterise imagination-induced anxiety or
pessimism about the future. In particular, in Fig. 3 we show how iterating the tree search
too often (i.e., ‘overthinking’) can trigger recursive reductions in Gτ -precision as the
agent enters the following vicious cycle: (1) Every time they end up imagining a very neg-
ative outcome, their action-model confidence is reduced. (2) Every reduction in expected
precision γτ (for simplicity assumed to be the same for all τ ) will reduce reliance on
one’s action-model for subsequent explorations of the future because these are sampled
from the predictive posterior over action (see the fourth entry of Table 1). This type
of excessive, negatively biased prospection (i.e., rumination) will subsequently influ-
ence the higher-level affective state, which recursively affects the lower-level sampling
algorithm in multiple ways.

Crucially for these simulations of rumination, a negative affective state can bias the
agent’s expectations towards negative outcomes and reduce lower-level Gτ -precision
even further, leading to increasingly pessimistic exploration of the tree. Such affective
decision-tree pruning has been observed in a number of previous studies (Dayan and
Huys 2008; Huys et al. 2012; Huys et al. 2015; Níally et al. 2017). Our work shows
how this phenomenon can be cast as a form of belief-updating under sophisticated
affective inference (Hesp et al. 2020; Friston et al. 2020). Furthermore, the aetiology of
many other psychiatric conditions seems to be intimately related to affective responses
to imagined events: cravings in addiction, intrusive thoughts in obsessive-compulsive
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Fig. 3. An example of simulation results showing detrimental effects of overthinking (i.e., rumi-
nation) when considering affective responses to imagined future events. Horizontal axes indicate
the number of iterations and, implicitly, the amount of time allowed for internal deliberation. The
top panel shows Bayesian beliefs about good and bad valence states (blue and orang, respectively);
the second panel shows expected precision (blue); the third panel shows the predictive posterior
for each possible first action: moving to either the neutral location (grey), the small reward (light
green), the large one (dark green), or the painful absorbing state (red); the bottom panel shows
the fraction of imagined events that were negative. Initially, exploration gives rise to an optimistic
phase of increasingly positive valence (blue line in top panel), increasing action-model precision
(second panel), increasingly positive expectations about future state transitions (dark green line in
third panel) and a relatively small fraction of imagined negative events (red line in bottom panel).
However, after roughly 500 iterations of the deep tree search, the agent devolves into a state of
negative affect, reduced action-model precision, pessimistic expectations about future rewards,
and a much higher fraction of imagined negative events. (Color figure online)
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disorder, flashbacks in post-traumatic stress disorder, hallucinations and delusions in
schizophrenia, fear of gaining weight in anorexia, excessive monitoring of self-states in
anxiety, and so forth. As such, this type of formalmodel of imagination-induced affective
responses could represent an important step forward in computational psychiatry and
might one day be extended to aid in diagnosis or treatment for a variety of affective
disorders – thus working towards computational nosology and precision psychiatry (see
Friston et al. 2017).
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Abstract. We introduce a novel framework to identify perception-
action loops (PALOs) directly from data based on the principles of com-
putational mechanics. Our approach is based on the notion of causal blan-
ket, which captures sensory and active variables as dynamical sufficient
statistics—i.e. as the “differences that make a difference.” Furthermore,
our theory provides a broadly applicable procedure to construct PALOs
that requires neither a steady-state nor Markovian dynamics. Using our
theory, we show that every bipartite stochastic process has a causal blan-
ket, but the extent to which this leads to an effective PALO formulation
varies depending on the integrated information of the bipartition.
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1 Introduction

The perception-action loop (PALO) is one of the most important constructs of
cognitive science, and plays a fundamental role in many other disciplines includ-
ing reinforcement learning and computational neuroscience. Despite its impor-
tance and pervasiveness, fundamental questions about what kind of systems can
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be properly described by a PALO are still to a large extent unanswered. The
aim of this paper is to introduce a framework that allows us to identify PALOs
directly from data, which complements existent approaches and serves to deepen
our understanding of the essential elements that make a PALO.

1.1 Markov Blankets

One of the most encompassing accounts of PALOs can be found in the Free
Energy Principle (FEP) literature, which formalises them via Markov blankets
(MBs) [14]. An interesting contribution of this literature is to characterise “sen-
sory” (S) and “active” (A) variables as having two defining properties: (i) they
mediate the interactions between internal variables of the agent (M) and external
variables of its environment (E), and (ii) they impose a specific causal structure
on these interactions—e.g. sensory variables may affect internal variables, but
are not (directly) affected by them [14].

Formally, MBs were originally introduced by Pearl [21] for Markov and
Bayesian networks. Within the FEP literature, MBs are usually employed in mul-
tivariate stochastic processes with ergodic Markovian dynamics, with a steady-
state distribution p∗ that is required to satisfy [20] (Fig. 1a)

p∗(et,mt|st, at) = p∗(et|st, at)p∗(mt|st, at) . (1)

However, Eq. (1) does not suffice to guarantee a PALO structure, as noted in
Ref. [7]. In effect, the MB condition is insufficient to establish requirement (ii):
its symmetry with respect to internal and external variables makes it impossible
to infer the direction of the loop; additionally, the fact that the condition holds
across variables synchronously makes it unsuitable to guarantee a causal rela-
tionship [22]. Recent reports [11] acknowledge that this synchronous condition
needs to be complemented with additional diachronic restrictions on the system’s
dynamics, which can be written, for instance, as a set of coupled stochastic dif-
ferential equations of the form (Fig. 1b)

ṁt = fin(mt, at, st) + ωin
t , ȧt = fa(mt, at, st) + ωa

t ,

ėt = fex(et, at, st) + ωex
t , ṡt = fs(et, at, st) + ωs

t .
(2)

Above, the functions fin, fa, fex, fs determine the flow, and ωin
t , ωa

t , ωex
t , ωs

t denote
additive Gaussian noise. Interestingly, it has been shown that Eq. (2) implies
Eq. (1) under additional assumptions: either block diagonality conditions over
the solenoidal flow [11], or strong dissipation [12, Appendix].1 Hence, PALOs
could be interpreted as coupled stochastic dynamical systems of the form in
Eq. (2), as long as the flow satisfies any of the two mentioned conditions.

Despite its elegance, this formalisation of PALOs has important limitations.
First, this formulation relies strongly on Langevin dynamics, making it difficult
to extend it to PALOs appearing in discrete systems. Secondly, this approach
1 However, in the general case neither Eqs. (1) or (2) imply each other [7]—hence they

need to be taken as complementary conditions.
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Fig. 1. Two visualisations of PALOs in the FEP literature, either based on (a) Markov
blankets according to Eq. (1) or (b) Langevin dynamics following Eq. (2).

depends on a set of assumptions—for one, the aforementioned conditions over
the flow and the restriction to systems in their steady-state—that might be too
restrictive for some scenarios of interest. Finally, and perhaps most importantly,
Eq. (1) forces all interactions between Mt and Et to be accountable by (St, At),
which imposes—due to the data processing inequality [9]—an information bottle-
neck of the form I(Mt;Et) ≤ I(Mt;At, St). Therefore, the MB formalism forbids
interdependencies induced by past events that are kept in memory, but may not
directly influence the present state of the blankets.2 This information kept in
memory arguably plays an important role in many PALOs, and includes uncon-
troversial features of cognition (such as old memories that an agent retains but
is neither caused by a sensation nor causing an action at the current moment),
yet are forbidden by MBs.

1.2 Computational Mechanics, Causal States, and Epsilon-Machines

Computational mechanics is a method for studying patterns and statistical regu-
larities observed in stochastic processes by uncovering their hidden causal struc-
ture [24,25]. A key insight is that an optimal, minimimal representation of a
process can be revealed by grouping past trajectories according to their fore-
casting abilities into so-called causal states. More precisely, the causal states
of a (possibly non-Markovian) time series {Zt}t∈Z are the equivalent classes of
trajectories �zt := (. . . , zt−1, zt) given by the relationship

�zt ≡ε �z′
t iff p(zt+1| �zt) = p(zt+1| �z′

t) ∀zt+1 .

It can be shown that the causal states are the coarsest coarse-graining of past
trajectories �xt that retains full predictive power over future variables [10,13].
Moreover, the corresponding process over causal states always has Markovian
dynamics, providing the simplest yet encompassing representation of the sys-
tem’s information dynamics on a latent space—known as the epsilon-machine.
2 We thank Nathaniel Virgo for first noting this issue.
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Please note that the causal states of a system are guaranteed to provide
counterfactual relationships [22] only if the system at hand is fully observed. In
the case of partially observed scenarios, causal states ought to be understood in
the Granger sense, i.e. as states of maximal non-mediated predictive ability [8].

1.3 Contribution

In this paper we introduce an operationalisation of PALOs based on causal
blankets (CB), a construction based on a novel definition of dynamical statis-
tical sufficiency. CB capture properties (i) and (ii) in a single mathematical
construction by applying informational constructs directly to dynamical condi-
tions. Moreover, CBs can be constructed with great generality for any bipartite
system without imposing further conditions, and hence can be applied to non-
ergodic, non-Markovian stochastic processes. This generality allows us to explore
novel connections between PALOs and integrated information. In the rest of the
manuscript, we:

1) Provide a rigorous definition of CBs (Definition 2); and
2) Show every agent-environment partition has a CB, and thus can be described

as a PALO (Proposition 1); although
3) Not all systems are equally well described as a PALO, and this can be quanti-

fied via information geometry and integrated information (Sect. 3)—providing
a principled measure to distinguish preferable candidates for PALO.3

2 Causal Blankets as Informational Boundaries

We consider the perspective of a scientist who repeatedly measures a system
composed of two interacting parts Xt and Yt. We assume that, from these obser-
vations, a reliable statistical model of the corresponding discrete-time stochastic
process can be built—of which all the resulting marginal and conditional distri-
butions are well-defined. Random variables are denoted by capital letters (e.g.
X,Y ) and their realisations by lower case letters (e.g. x, y); stochastic processes
at discrete times (i.e. time series) are represented as bold letters without sub-
script X = {Xt}t∈Z, and �Xt := (. . . , Xt−1,Xt) denotes the infinite past of X
until and including t.

Given two random variables X and Y , a statistic U = f(X) is said to be
Bayesian sufficient of X w.r.t. Y if X ⊥⊥ Y | U , which implies that all the
common variability between X and Y is accounted for by U [9]. The first step
in our construction is to introduce a dynamical version of statistical sufficiency.

3 The proofs of our results can be found in the Appendix.
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Definition 1 (D-BaSS). Given two stochastic processes X,Y , a process U
is a dynamical Bayesian sufficient statistic (D-BaSS) of X w.r.t. Y if, for all
t ∈ Z, the following conditions hold:

i. Precedence: there exists a function F (·) such that Ut = F ( �Xt) for all t ∈ Z.
ii. Sufficiency: Yt+1 ⊥⊥ �Xt | (Ut, �Y t).

Moreover, a stochastic process M is a minimal D-BaSS of X with respect to Y
if it is itself a D-BaSS and for any D-BaSS U there exists a function f(·) such
that f(Ut) = Mt,∀t ∈ Z.

The first condition above states that U is no more than a simpler, coarse-
grained representation of X, and the second implies that the influence of �Xt

on Yt+1 given �Y t is fully mediated by Ut. This has interesting consequences for
transfer entropy, as seen in the next lemma.

Lemma 1. If U is a D-BaSS of X w.r.t. Y , then

TE(X → Y )t := I( �Xt;Yt+1| �Y t) = I(Ut;Yt+1| �Y t) . (3)

There are many such D-BaSS; e.g. Ut = �Xt would be one valid D-BaSS of X
w.r.t. Y . However, Theorem 1 shows that minimal D-BaSS’s are unique (up to
bijective transformations).

Theorem 1 (Existence and uniqueness of the minimal D-BaSS). Given
stochastic processes X,Y , the minimal D-BaSS of X w.r.t. Y corresponds to the
partition of past-trajectories �xt induced by the following equivalence relationship:

�xt ≡p �x′
t iff ∀ �yt, yt+1 p(yt+1| �xt, �yt) = p(yt+1| �x′

t, �yt) .

Therefore, the minimal D-BaSS is always well-defined, and is unique up to an
isomorphism.

This result shows that D-BaSSs can be built irrespective of any other possibly
latent influences on X and Y , as it is defined purely on the joint statistics of
these two processes. Moreover, Theorem 1 provides a recipe to build a D-BaSS:
group together all the past trajectories that lead to the same predictions, which is
a key principle of computational mechanics [10,13,24,25]. Therefore, a minimal
D-BaSS distinguishes only “differences that make a difference” for the future
dynamics, generalising the construction presented in Ref. [6, Definition 1] for
Markovian dynamical systems, and being closely related to the notion of sensory
equivalence presented in Ref. [3]. With these ideas at hand, we can formulate
our definition of causal blanket.
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Fig. 2. Causal blanket {S,A}, which acts as a sufficient statistic mediating the inter-
actions between X and Y .

Definition 2 (Causal blanket). Given two stochastic processes X,Y , a
reciprocal D-BaSS (ReD-BaSS) is a stochastic process R which satisfies:

i. Joint precedence: Rt = F ( �Xt, �Y t) for some function F (·).
ii. Reciprocal sufficiency: R is a D-BaSS of X w.r.t. Y , and also is a D-BaSS

of Y w.r.t. X.

A causal blanket (CB) is a minimal ReD-BaSS: a time series M , itself a ReD-
BaSS, such that for all ReD-BaSSs R there exists a function f(·) such that
Mt = f(Rt),∀t ∈ Z.

This definition satisfies the two key desiderata discussed in Sect. 1.1: (i)
a CB mediates the interactions that take place between X and Y , and (ii)
it assesses causality by focusing on statistical relationships between past and
future. From this perspective, CBs are the “informational layer” that causally
decouples the agent’s and environment’s temporal evolution from each other (see
Proposition 2). Additionally, our next result guarantees that CBs always exist,
and are unique to each bipartite system.

Proposition 1. Given X,Y , their CB always exists and is unique (up to an
isomorphism). Moreover, their CB is isomorphic to a pair {S,A}, where A is
a minimal D-BaSS of X w.r.t. Y , and S is a minimal D-BaSS of Y w.r.t. X.

Proposition 1 has two important consequences: it guarantees that CBs always
exist, and that they naturally resemble a PALO—as visualised in Fig. 2. Please
note that this type of PALO formalisation has a rich history, being studied in
Refs. [4,5] and variations being considered in Refs. [15,16,26]. In contrast, our
framework follows Refs. [3,6] and does not assume active and sensory variables
as given, but discovers them directly from the data. As a matter of fact, the “sen-
sory” (S) and “active” (A) variables of CBs correspond (due to Definition 2) to
minimal sufficient statistics that mediate the interdependencies between the past
and future of X and Y . The construction of CBs imposes no requirements on
the system’s statistics or its structure—beyond the bipartition, holding also for
non-ergodic and also non-stationary systems, and systems with non-Markovian
dynamics.
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It is also possible to build internal and external states Mt, Et such that
(Mt, At) = Xt and (Et, St) = Yt with great generality. This can be done via
an orthogonal completion of the phase space; the details of this procedure will
be made explicit in a future publication. In this way, CBs can be thought as
suggesting implicit “equations of motion” somehow equivalent to Eq. (2), as
shown in Fig. 2. However, it is important to remark that this representation
does not provide counterfactual guarantees for partially observed systems (see
Sect. 1.2).

Example 1. Consider a multivariate stochastic process M ,A,E,S whose
dynamics follows

Mt+1 = fin(Mt, At, St) + Nin, At+1 = fa(Mt, At, St) + Na,

Et+1 = fex(Et, At, St) + Nex, St+1 = fs(Et, At, St) + Ns,
(4)

with N in
t , Na

t , N ex
t , N s

t being independent of Mt, At, Et, St (note that Eq. 4 cor-
responds to a discrete-time version of Eq. (2)). Then, by defining Xt = (Mt, At)
and Yt = (Et, St), one can show using Definition 2 that that {S,A} is the CB
of X,Y —as long as the partial derivatives of fin, fa, fex, fs with respect to their
corresponding arguments are nonzero.

3 Integrated Information Transcends the Blankets

According to Definition 2, CBs don’t depend on the joint distribution
p(xt+1, yt+1| �xt, �yt), but only on the marginals p(xt+1| �xt, �yt) and p(yt+1| �xt, �yt).
Here we study how meaningful the CB (and the description of the system as a
PALO) is when the joint process’s dynamics are different from the product of
these two marginals.

Let us start by introducing the synergistic coefficient ξt ∈ R, which is a
random variable given by

ξt := log
p(Xt+1, Yt+1| �Xt, �Y t)

p(Xt+1| �Xt, �Y t) p(Yt+1| �Xt, �Y t)
. (5)

A process (X,Y ) is said to have factorisable dynamics if ξt = 0 a.s. for all t ∈ Z.

Proposition 2 (Conditional independence of trajectories). If R is a
ReD-BaSS and the dynamics of X,Y is factorisable, then X ⊥⊥ Y | R. Thus,
such system is perfectly described as a PALO, and R is a MB (in Pearl’s sense).

A direct consequence of this Proposition is that a ReD-BaSS does not guar-
antee statistical independence of X,Y at the trajectory level in non-factorisable
systems. Therefore, in such systems there are interactions between X and Y
that are not mediated by the CB. Please note that this is not a weakness of
the CB construction—which is optimal in capturing all the directed influences,
as shown in Proposition 1. Instead, this result suggests that non-factorisable
systems might not be well-suited to be described as a PALO.
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To further understand this, let us explore the integrated information in the
system (X,Y ) using information geometry [19]. For this, consider the manifolds

M1 =
{
qt : q(xt+1, yt+1| �xt, �yt) = q(xt+1| �xt, �yt)q(yt+1| �xt, �yt)

}
,

M2 =
{
qt : q(xt+1, yt+1| �xt, �yt) = q(xt+1| �xt)q(yt+1| �yt)

}
.

Manifold M1 corresponds to all systems with factorisable dynamics, and M2 to
all systems where the dynamics of agent and environment are fully decoupled.
The information-geometric projection of an arbitrary system pt onto M2,

ϕ̃t := min
qt∈M2

D(pt||qt) , (6)

has been proposed as a measure of integrated information [2,18]. Using the
Pythagoras theorem [1] together with the fact that M2 ⊂ M1, one can decom-
pose ϕ̃t as

ϕ̃t

︸ ︷︷ ︸
D(pt‖q

(2)
t )

= E{ξt}
︸ ︷︷ ︸
D(pt||q(1)

t )

+
[
TE(A → Y )t + TE(S → X)t

]

︸ ︷︷ ︸
D(q

(1)
t ||q(2)

t )

, (7)

where q
(k)
t := arg minqt∈Mk

D(pt||qt).4

This decomposition confirms previous results that showed that integrated
information is a construct that combines low-order transfer and high-order syn-
ergies [17]. Thanks to Lemma 1, Eq. (7) states that the transfer component of ϕ̃t

(i.e. D
(
q
(1)
t ||q(2)t

)
) is what is properly mediated by the CB. In contrast, the part

of ϕ̃ related to high-order statistics, i.e. E{ξt} = I(Xt+1;Yt+1| �Xt, �Y t), is not
accounted by the CB. This last term can either refer to spurious synchronous
correlations (due e.g. to sub-sampling), or be due to synergistic dynamics that
are a signature of emergent phenomena [23].

In summary, our results suggest that the dynamics of a system (X,Y ) that
is too synergistically integrated are poorly represented as a PALO, even if the
CB formally still exists. Additionally, the synergistic component of integrated
information can be used as a measure for this mismatch.

4 Conclusion

This manuscript introduced a data-driven method to build PALOs leveraging
principles of computational mechanics. Our construction provides an informa-
tional interpretation of sensory and actuation variables: sensory (resp. active)
variables encode all the changes from “outside” (resp. “inside”) that affect the
future evolution of the “inside” (resp. “outside”). Our framework is broadly
applicable, depending only on the underlying bipartition but not imposing

4 Note that in non-ergodic scenarios the expected values are not calculated over indi-
vidual trajectories, but over the ensemble statistics that define the probability.
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any further conditions on the system’s dynamics or distribution. Furthermore,
we illustrated how this construction allows one to relate—within a PALO
framework—the separation of a system and its environment to the integrated
information encompassing the two.

It is to be noted that the CB construction relies on discrete time, which, while
being immediately applicable to digitally sampled data, might not be natural in
some scenarios. Also, CB theory at this stage does not provide explicit links with
probabilistic inference. As shown in Example 1, CBs provide a natural extension
of Eq. (2) to the discrete-time case, so one possibility would be to combine
them with the MB condition in Eq. (1). The exploration of such “causal Markov
blankets” which would satisfy both Eq. (1) and Definition 2 is an interesting
avenue for future research.

It is our hope that the CB construction may enrich the toolbox of researchers
studying PALOs and help to illuminate further our understanding of the nature
of agency.

A Proofs

Proof (Lemma 1). Let’s consider U to be a D-BaSS of X w.r.t. Y . Then, prop-
erty (ii) of a D-Bass is equivalent to

I( �Xt;Yt+1 | Ut, �Y t) = 0 . (8)

Using this, one can verify that

I( �Xt;Yt+1| �Y t) = I(Ut, �Xt;Yt+1| �Y t) = I(Ut;Yt+1| �Y t) .

Here, the first equality holds because Ut is a deterministic function of �Xt, and
the second equality follows from an application of the chain rule and Eq. (8).

Proof (Theorem 1). Consider the function F (·) that maps each �xt to its cor-
responding equivalence class F ( �xt) established by the equivalence relationship
≡p, and define Mt = F ( �Xt). As this construction satisfies the requirement of
precedence in Definition 1, let us show the sufficiency of M . By definition of Mt,
it is clear that if mt = F ( �xt) then

p(yt+1| �xt, �yt) = p(yt+1|mt, �yt) ,

which implies that H(Yt+1| �Xt, �Y t) = H(Yt+1|Mt, �Y t). As a consequence,

I( �Xt;Yt+1| �Y t) = H(Yt+1| �Y t) − H(Yt+1| �Xt, �Y t)

= H(Yt+1| �Y t) − H(Yt+1|Mt, �Y t)

= I(Mt;Yt+1| �Y t) . (9)
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From this, sufficiency follows from noticing that

I( �Xt;Yt+1|Mt, �Y t) = I( �Xt,Mt;Yt+1| �Y t) − I(Mt;Yt+1| �Y t)

= I( �Xt;Yt+1| �Y t) − I(Mt;Yt+1| �Y t)
= 0 .

Above, the first equality is due to the chain rule, the second follows from the
fact that Mt is a function of �Xt, and the third uses Eq. (9).

To finish the proof, let us show that M is minimal. For this, consider
another U to be another D-BaSS of X w.r.t. Y . As Ut = G( �Xt) for some
function G(·), U corresponds to another partition of the trajectories �xt. If
there exists no function f such that f(Ut) = Mt, that implies that the par-
tition that corresponds to M is not a coarsening of the partition for U ,
and therefore that there exists �xt and �x′

t such that G( �xt) = G( �x′
t) while

p(yt+1| �xt, �yt) 	= p(yt+1| �x′
t, �yt). This, in turn, implies that there exists a �x′

t such
that that p(yt+1|ut, �x′

t, �yt) 	= p(yt+1|ut, �yt) =
∑

�xt
p(yt+1|ut, �xt, �yt)p( �xt|ut, �yt),

showing that �Xt is not conditionally independent of Yt+1 given Ut, �Y t, contra-
dicting the fact that U is a D-BaSS. This contradiction proves that the partition
induced by U is a refinement of the partition induced by M , proving the mini-
mality of the latter.

Proof (Proposition 1). Let’s denote by A the minimal D-BaSS of X w.r.t. Y , and
S the minimal D-BaSS of Y w.r.t. X, which are known to exist and be unique
thanks to Theorem 1. Then, by defining Mt := (St, At), one can directly verify
that M is a ReD-BaSS of (X,Y ). To prove its minimality, let us consider another
ReD-BaSS of (X,Y ) denoted by N . As N is a D-BaSS of X w.r.t. Y , the
minimality of A guarantees the existance of a mapping f(·) such that f(Nt) = St.
Similarly, thanks to the minimality of S, there is another mapping g(·) such that
g(Nt) = At. Therefore, the function F (·) = (f, g) satisfies F (Nt) = Mt, which
confirms the minimality of M .

Proof (Proposition 2). The proof is based on the principle that if p(A,B,C) =
f(A,C)g(B,C) , then A ⊥⊥ B|C. Building on that rationale, a direct calculation
shows that

p(x,y) =
∞∏

τ=−∞
p(xτ+1, yτ+1| �xτ , �yτ )

=
∞∏

τ=−∞
exp{ξτ} p(xτ+1| �xτ , �yτ ) p(yτ+1| �xτ , �yτ ), (10)

where the second equality5 uses Eq. (5). Additionally, if, as per assumption of
the Proposition, R is a ReD-BaSS of (X,Y ), then

p(xτ+1| �xτ , �yτ ) = p(xτ+1| �xτ , �yτ , rτ ) = p(xτ+1| �xτ , rτ ),
5 Note that the infinite products in this proof are just a formal procedure to acknowl-

edge products that can be taken up to arbitrary times.
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where the first equality uses the fact that rτ (by definition) is a function of
( �xτ , �yτ ), and the second uses the sufficiency of D-BaSS’s. Following an analogous
derivation, one can show that p(yτ+1| �xτ , �yτ ) = p(yτ+1|rτ , �yτ ). Then, with the
assumption that the dynamics of (X,Y ) is factorisable and hence ξt = 0, it
follows from Eq. (10) that

p(x,y) =
∞∏

τ=−∞
p(xτ+1|rτ , �yτ ) p(yτ+1|rτ , �yτ ) .

Separating the two product series, this shows that there exist functions f(·) and
g(·) such that p(x,y) = f(x, r)g(y, r), and hence one has X ⊥⊥ Y |R , which
completes the proof.
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