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Abstract. In this paper, the parameters of numerical models of beam-
like structures are estimated from scalar indicators derived from ambient
vibration measurements. Parameters are estimated through an optimiza-
tion process, in which indicators are taken as objective function. This
approach is developed for an indicator, chosen from literature, derived
from the reference-based covariance-driven stochastic subspace analysis.
The reliability of the parametric identification is further estimated: the
method proposed is numerically tested and then applied to a laboratory
steel beam. Both simulated and measured vibration data are used to
validate the practicability and accuracy of the approach.
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1 Introduction

System identification consists in building mathematical models of dynamical
systems and updating them on data observed from systems themselves [1]. This
process is based on three main elements: the acquisition of system experimental
data, the realization of the numerical representation of the investigated system,
and the choice of a proper loss function, which expresses the discrepancy between
measured data and the simulated response from the mathematical model.

Identification can therefore be considered as an optimization problem in
which the minimization of the objective function C(x) : D ⊂ R

z → R leads
to the identification of the system parameters x̂ ∈ R

z, with z representing the
number of parameters to be identified.

x̂ = arg min
x∈Rz

C(x) (1)

The choice of the objective function is conditioned by the data to be measured:
when performing vibration tests on structures such as civil engineering ones, data
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collection is subjected to important constraints since often tests have to be per-
formed under environmental excitation [2,3]. This is the reason why algorithms
working with output-only measurements, such as the stochastic system identifi-
cation (SSI), became very popular. Within the framework of the SSI, one of the
steps involves the decomposition of the dynamic response into subspaces [4].

Focusing on this concept, it can be noted that the discrepancy between two
different responses, one derived from data relating to the actual structural behav-
ior and that simulated with numerical model, is measurable as a defect of orthog-
onality between the relative subspaces.

In the last decades, this approach has been deepened in the general context
of structural health monitoring (SHM) [5–8], for the investigation of structural
damage detection, through the introduction of sub-space based damage indica-
tors [9–12]. As they are defined, damage indicators are well suited to be used as
objective function in an identification procedure.

In this work, damage indicator from [13] is chosen as objective function to
be minimized and its performance is numerically tested. The method is then
validated through experimental tests on a real suspended steel beam.

Typical nomenclature of the SHM literature is assumed, referring to the
actual structural behavior as referenc state and to the simulated responses as
the reference states.

2 Subspace-Based Damage Indicators for Vibrating
Structures

State-space representation of output-only measured vibration data corresponds
to the following discrete time model, known as discrete-time stochastic state-
space model

xk+1 = Axk + vk
yk = Cxk + wk

(2)

with the states xk ∈ R
n, the outputs yk ∈ R

r, the state transition matrix
A ∈ R

n×n and the observation matrix C ∈ R
r×n, where r is the number

of sensors and n is the system order. The process noise vk is an unmeasured
Gaussian white noise sequence with zero mean and constant covariance matrix
Q = E(vkvT

k ) def= Qδ(k − k′), where E (·) denotes the expectation operator and
wk is the measurement noise.

In [12,14] a residual function was proposed to detect changes in the system
eigenstructure from measurements yk without actually identifying the eigen-
structure in the possibly damaged state. The considered residual is associ-
ated with a covariance-driven output-only subspace identification algorithm. Let
G = E(xk+1y

T
k ) be the cross-covariance between the states and the outputs,

Λi = E(ykyT
k−i) = CAi−1G be the theoretical output covariances, and
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Hp+1,q
def=

⎡
⎢⎢⎢⎣

Λ1 Λ2 . . . Λq

Λ2 Λ3 . . . Λq+1

...
...

. . .
...

Λp+1 Λp+2 . . . Λp+q

⎤
⎥⎥⎥⎦

def= Hank(Λi) (3)

the theoretic block Hankel matrix. Using measured data (yk)k=1,...,n, a consistent
estimate Ĥp+1,q is obtained from the empirical output covariances

Λ̂i =
1
N

n∑
k=1

yky
T
k−1 (4)

Ĥp+1,q = Hank(Λ̂i) (5)

The residual function, originally proposed by [12,14], compares the undamaged
system, called also reference state, with the damaged or current one. The con-
sidered residual matrix can be written as

Rc = ŜT
0 Ĥp+1,q (6)

where ŜT is the left null space of the block Hankel matrix Ĥp+1,q in the refer-
ence state and Ĥp+1,q is the covariance block Hankel matrix in the current one;
subscript c stays for conventional.

In practice, the excitation covariance Q may change between different mea-
surement sessions of the system due to different environmental factors, while
the excitation is still assumed to be stationary during one measurement. A
change in the excitation covariance Q leads to a change in the cross-covariance
between states and outputs G and thus in the Hankel matrix. Some researchers
[13,15] proposed a new residual, which is robust to changing excitation. Let
U1 be the matrix of the left singular vectors obtained from an SVD of Ĥp+1,q.
As U1 is a matrix with orthonormal columns, it can be regarded as indepen-
dent of the excitation Q, which qualifies its use for a residual function that is
robust to changes in the excitation covariance. Then, the residual matrix can be
written as

Rr = ŜT
0 UT

1 (7)

where subscript r stays for robust. A subspace-based damage indicator may be
defined as an arbitrary scalar function of the residual matrix.

Id = f(R) (8)

where Id is a damage indicator, f(.) an arbitrary scalar function and R the
residual matrix. In the current paper, the damage test presented by Yan et al.
[13] is implemented, built on the robust residuals (Eq. (7)):

Iy,r = norm(Rr) (9)

where norm picks the maximum singular value of the matrix Rr.
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3 Setup Description

In order to validate the method and illustrating the performance of the chosen
indicator in guessing the actual values of the parameters involved, numerical
and experimental test have been performed: in both the tests, the optimization
procedure is applied for the identification of the Young modulus E and the mass
density ρ of a suspended steel beam.

Both parameters have been discreetly varied within a range of feasible val-
ues: this allows to graphically represent the trend of the objective function and
verify the possible presence of local minima. The structure considered in both
numerical and experimental tests is a 2.5 m long steel IPE120 beam, with welded
rectangular end plates of 200 mm × 100 mm × 5 mm. The beam is held up by two
steel supports using springs. The structure corresponds to an actual experimen-
tal setup at the Dynamic Laboratory of the DICEAA, Università degli Studi
dell’Aquila, Italy (Fig. 1).

Fig. 1. (a) Experimental setup, (b) Experimental setup with added mass.

The data acquisition system is composed of seven vertical velocimeters,
placed over the beam at equidistant positions and aligned along its longitu-
dinal axis. The input signal is a white noise in the frequency band 0–1000 Hz
applied by means of an electrodynamic shaker at the left end of the beam.

In order to perform the analyses required for the identification process, an
in-plane finite element model of the beam described above has been considered
(Fig. 2).

The beam has been divided in 8 beam finite elements [16], basing on the
disposition of the velocimeters on the real structure. The input signal is simulated
with a white noise vertical displacement, assigned to node 1. The output signals
obtained from the model are the 7 vertical velocities of the nodes in positions
corresponding to that of the 7 velocimeters placed over the experimental beam.
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Fig. 2. Schematic representation of the FE model of the steel beam.

A constant value of 1% is taken for damping ratio for all modes involved in the
analysis. Basing on laboratory experience, this value is adoptable for this kind
of structure; moreover, this assumption is confirmed by results of the modal
identification, described in Sect. 5.

4 Numerical Test

In order to perform the numerical test, the FE model presented in Sect. 3 has
been considered. After assigning to the model a chosen value Ê to the Young
modulus and ρ̂ to the mass density, its dynamic response has been simulated:
this response is considered as the reference state in the identification procedure.

The damaged states are produced by varying E and ρ in a discrete range of
values; the objective function is then estimated comparing the damaged states
to the reference.

The test was repeated several times varying the noise, in order to have a
demonstration that robust indicators are indifferent to changes in noise ampli-
tude.

Fig. 3. Variation of the mean value of the objective function over the selected range of
values for parameters E and ρ: numerical test. On the left, the trend of the objective
function, on the right, the contour plot. The red cross indicates the identified point of
minimum.

Figure 3 shows that the indicator presents a trend in which minima are
arranged along a straight line, whose direction is that given by constant ratio
between E and ρ. From the contour plot it can be seen that, in the valley, the
objective function presents an absolute minimum, right in correspondence of the
chosen pair (ρ̂, Ê): in the best point, the mean value of indicator is close to zero.
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5 Experimental Test

The same methodology tested in the numerical case has been applied to iden-
tify the Modulus E and the mass density ρ of the experimental steel beam
described in Sect. 3. In the optimization process, experimental data are used as
reference state, while simulated data refers to the states produced using attempt
parameters.

The identified parameters Ê and ρ̂ are then compared with the pair Eexp

and ρexp, which are respectively the conventional value of the Young modulus
adopted for the steel and the measured mass density of the beam (Table 1).

Table 1. Beam parameters, frequencies and damping ratios of the first three flexural
modes from modal identification, with their 2σ uncertainty bounds.

Eexp·105 ρexp·10−5 fexp,1 fexp,2 fexp,3 ξexp,1 ξexp,2 ξexp,3

(MPa) (N/mm3) (Hz) (Hz) (Hz) (%) (%) (%)

2.10 7.95 127.3 ± 0.005 337.6 ± 0.010 625.7 ± 0.007 1.28 ± 0.37 1.08 ± 0.49 0.126 ± 0.11

As a preliminary action, vibration data acquired during the experimental
tests has been processed according to the SSI-COV driven algorithm, detecting
the natural frequencies, the damping ratios, and the mode shapes of the steel
beam. In the frequency band 0–1000 Hz, the first three modes are rigid body
ones, followed by the three flexural in-plane described in Table 1 and Fig. 4.

(a) 1st mode 127.3Hz (b) 2nd mode 337.6Hz (c) 3rd mode 625.7Hz

Fig. 4. First three flexural in-plane mode shapes of the steel beam in the frequency
range (0–1000Hz). Full line: mode shapes, dashed line: estimated standard deviation
x200.

5.1 Parametric Identification Results

Results from parametric identification (Fig. 5) show objective functions with
trends similar to that obtained in numerical tests. However, unlike in the numer-
ical case, a clear absolute minimum can’t be found.
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Fig. 5. Experimental test. Variation of the objective function over the selected range
of values for parameters E and ρ: 3d graph (left) and relative contour plot (right).

Fig. 6. Experimental test: mean value of the robust indicator along the valley and its
σ bounds.

This fact can be addressed to practical problems generally relating to an
experimental campaign, such as the uncertainty due to experimental measures,
noise presence or other reasons, like the bias of the model or the computational
uncertainty due to the chosen discretization of the parameters state D (Fig. 6).

Taking into account the sensitivity of the dynamics with respect to a mass
variation [17], an auxiliary case is considered, in order to further constrain the
solution: an additional mass of 1.4 kg/m is distributed along the beam (Fig. 3).
To ensure good results, the value of the masses is chosen in a way that they
produce frequency shift of about 4% [18].

The addition of the mass produces a difference in the response of the dynamic
system and a consequent variation of the trend of the curves described by the
objective functions: in particular, it changes the slope of the straight line that
identifies the alignment of the points of minimum (Fig. 7).

Since the physical parameters to be identified do not change during the pro-
cess (the total mass density is the sum of that to be identified and of a known
term), the point of minimum of the objective functions has to be the same for
both cases.

Therefore, it is logical to think that the pair to be identified is close to
that given by the point of intersection between the two straight lines obtained
(Fig. 7b).
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Fig. 7. (a) Results from experimental test with added mass. (b) Intersection between
the lines of minima identified in the case without mass (Fig. 5) and in that with mass
added (Fig. 7): the cross defines the couple of parameters identified, the circle indicates
the pair (ρexp, Eexp). In the figure, the conventional variation interval for the Young
modulus of the steel is shown.

Table 2. Experimental case: identified parameters and discrepancies with measured
values.

Ind Ê ρ̂ Îd Eexp ρexp ΔE Δρ

(MPa) (N/mm3) (MPa) (N/mm3) (%) (%)

Iy,r 2.19 · 105 7.62 · 10−5 0.109 2.10 · 105 7.925 · 10−5 4.19 −3.81

Table 2 shows the pair of minimum (Ê, ρ̂) obtained from this process for
both the indicators adopted and makes a comparison with the experimental
one. Table 3 compares experimental modal parameters and that obtained from
numerical model in which identified parameters has been applied.

Despite this discrepancy, a very small difference between the numerical
and experimental frequencies and between the relative modal shapes is noted
(Tables 3 and 4, Fig. 8). It’s worth noticing that, while modal shapes and fre-
quencies are almost perfectly matching, the index could be further minimized,
working on the inaccuracies: this suggests that objective function based on indi-
cators could contain more information about the system dynamics than ones
based on modal properties only.

Table 3. Numerical frequencies obtained after the identification procedure and com-
parison with the experimental ones.

Ind f1 fexp,1 Δf1 f2 fexp,2 Δf2 f3 fexp,3 Δf3

(Hz) (Hz) (%) (Hz) (Hz) (%) (Hz) (Hz) (%)

Iy,r 126.6 127.3 −0.55 336.1 337.6 −0.44 625.4 625.7 −4.8 · 10−6
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(a) 1st mode 126.6Hz (b) 2nd mode 336.1Hz (c) 3rd mode 625.4Hz

Fig. 8. Mode shapes obtained from the finite element model updated using Iy,r as
objective function. The dotted line indicates the experimental shape.

Table 4. MAC matrix, calculated between numerical and experimental modes: Iy,r

indicator.

MAC Inum IInum IIInum

Iexp 0.9969 4.048e−04 0.2889

IIexp 3.014e−04 0.9980 8.896e−08

IIIexp 0.2509 4.384e−04 0.9945

6 Conclusions

This paper presented a technique for the parametric identification of a dynami-
cal system, assuming a residual indicator as objective function in a optimization
algorithm. In the first step, the proposed method has been assessed with numer-
ical tests on a finite-element beam model, evaluating its efficiency as objective
function. Secondly, the method has been validated through an experimental test,
carried out to identify the mass density and the elastic modulus of a real steel
beam. Results have shown that the proposed method seems to be more sensi-
tive to the variation of dynamic system properties than techniques which uses
objective functions based only on modal parameters.
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