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Abstract. Structural Health Monitoring (SHM) has brought various benefits into
the industry, such as in economic, life-safety and lightweight design aspects. The
recent development of SHM techniques leads to the optimization of the sensor
arrangement, enhancement in the damage identification accuracy and increases in
computational efficiency. Vibration-based SHM has shown to be practical and
requires a relatively small number of sensors. In this approach, the dynamic
responses at vibration nodes (node displacement, or NODIS) are adopted for
damage identification in plate structures. The method utilizes the framework
of Bayesian inference to overcome the drawbacks of traditional deterministic
approaches so that the presence of various uncertainties and errors can be taken
into consideration. Furthermore, the Markov chain Monte Carlo sampling tech-
niquewith adaptiveMetropolis algorithm is integrated into the framework, achiev-
ing a considerable reduction of computational costs. In this paper, the principles
of the NODIS method for plate structure is elaborated. Then, a thorough expla-
nation of the MCMC-based Bayesian framework with NODIS and its theoretical
background are presented. At last, the performance of the proposed method is
evaluated with numerical results.

Keywords: Vibration method · Bayesian inference · Markov Chain Monte
Carlo · Plate structure

1 Introduction

Plate-type structures are key components in many engineering applications [1–3]. The
real-time damage assessment of plate structure is of great importance. Vibration-based
structural health monitoring (SHM) is one of the most promising methods due to the
low-cost and reliable industrialized accelerometers are available on the market [4,5].
Due to the difficulty of accurate damage assessment with a limited number of sensors,
the studies on damage detection for plate structures are relatively limited.
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Typical dynamic parameters used for damage assessment are natural frequency,
modes shape and mode shape curvatures (MSC). Frequency-based methods are more
suitable for the application with a stable environment [6]. On the other hand, mode shape
and MSC based methods are more robust against the environment [7,8]. Nonetheless,
they need a large number of sensors to cover the whole surface of the structure.

Some studies [9,10] showed that the node displacement (NODIS) of vibrational
mode shapes is an efficient damage indicator. The method needs a small number of
sensors attached to the vibrational nodal points. Moreover, the environment has less
influence on the method comparing to frequency. However, due to the limited number
of noisy measurements, the damage detection is often an ill-posed of ill-conditioned
problem. The Bayesian probabilistic approach is widely used to deal with this problem
by describing the uncertainties in damage detection [11–13].

As the posterior probability distribution is intractable due to the computational effort,
the damage parameter can be estimated based on samples drawn numerically using a
Markov chain Monte Carlo (MCMC) sampling technique [14–16]. A candidate sample
is drawn each time and is either accepted or rejected according to a certain acceptance
rate. After sufficient sampling times, the samples automatically form a distribution that
corresponds to the Bayesian posterior of the problem.

This paper proposes an MCMC-based Bayesian probabilistic damage detection
method using NODIS for plate structures. The adaptive Metropolis algorithm is adopted
in the MCMC sampling. The principle of the NODIS method for the plate is first elab-
orated with the response surface. Then the MCMC-based Bayesian framework and the
adaptive Metropolis algorithm are explained in detail. At last, the proposed method is
validated with FE models.

2 Principles of NODIS Method for Plate Structure

In this paper, the NODIS represents the out-of-plane displacement at vibration nodal
points. When a damage is introduced on the plate, the mode shape is changed and
the NODIS is therefore changed. Thus, the damage parameter can be inferred from the
changedNODIS. In this section, the response of NODIS under different damage location
and severity is studied with a four-sides-clamped plate with single damage.

A numerical model of an aluminum plate is simulated in Abaqus, as illustrated in
Fig. 1. The dimension of the plate is 500 mm × 500 mm × 5 mm and four sides are
all clamped. The damage is simulated with a stiffness loss in the highlighted area. The
plate is partitioned into 50 × 50 sections. Each section can have different stiffness. A
Python script is developed to assign different stiffness at different locations. Then, modal
analysis is conducted for each damage case. Thus, the mode shape and NODIS can be
extracted. The range of the damage center

(
ξx, ξy

)
in X- and Y-direction are both from

15mm to 485mmwith an interval of 10mm. The size of the damage is 30mm× 30mm.
The range of the relative stiffness loss ε is from 0.1 to 0.5 with an interval of 0.1. Thus,
a total number of 11520 samples of the NODIS are acquired.
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Fig. 1. A sketch of the plate partition, damage information and location of nodes.

Fig. 2. Mode shape of interest (a) first mode and (b) second mode and the location of selected
nine nodes N1–N9.

The first and second mode of interest are selected, as illustrated in Fig. 2. As the four
nodes in the second mode share the same location as the nodes in the first mode, only
five sensors are needed to acquire the nine NODIS. With the database of NODIS under
different damage parameters, the NODIS response surfaces can be acquired. Figure 3
shows an example under the stiffness loss of 0.1. Each sub-figure represent a response
surface of a node. The X- and Y-axis represent the center coordinates of the damage. The
color represents the amplitude of the out-of-plane displacement. As the pattern of each
NODIS response surface is different, they have the potential to be adopted for damage
characterization.
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Fig. 3. The NODIS response surfaces constructed from FE models with damage location (ε =
0.1) (a)–(i): N1–N9.

3 MCMC-Based Bayesian Framework with NODIS

The goal of theBayesian framework is to obtain a probability distribution of the unknown
damage parameter given a limited number of noisy NODIS measurements. The likeli-
hood function can capture the information implicitly offered by the measurement. Then,
a posterior probability distribution over the damage parameter can be acquired by com-
bining the likelihood function and a prior distribution. However, the integration of the
probability distribution is not feasible. Thus, an MCMC sampling technique is needed
to estimate the distribution of the damage parameter.

3.1 Bayesian Statistical Inference

The Bayesian inference will calculate the probability distribution of damage parameter
� = {

ξx, ξy, ε
}
. Given ameasurementD = {

zei
}N
i=1 which containsN measuredNODIS

values, the posterior probability density function (PDF) can be given as

P(�|D) = P(�)P(D|�)
∫
P(�)P(D|�)d�

(1)

where P(D|�) is the likelihood function which represents the probability of measuring
the data D given a damage parameter �. The denominator, which is the marginal likeli-
hood, can be considered to be a normalization factor. And P(�) is the prior which can
be set based on the expert opinion or practical experience.
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Under a damage parameter �, it is common to assume that the measured NODIS is
polluted with a random noise which is independent and identically distributed according
to a zero-mean normal distribution

zei = zi(�) + ηi, ηi ∼ N (0, σ 2
i ) (2)

where σi is the standard deviation of the i-th measurement. Then, the likelihood function
of each measurement for a given damage parameter can be written as

P
(
zei |�

) = N
(
zi(�), σ 2

i

)
(3)

The likelihood function of the measured NODIS values D can be formulated as a
joint probability

P(D|�) =
N∏

i=1

P
(
zei |�

) =
N∏

i=1

1√
2πσi

exp

(

− (zei − zi(�))
2

2σ 2
i

)

(4)

3.2 The MCMC Sampling Technique

The calculation of the posterior Eq. (1) often involves multidimensional integrals is
intractable. MCMC can be used for sampling high dimensional and complex distri-
butions. After collecting samples drawn from P(�|D), the damage parameter can be
estimated. Most features, such as expectation and variance, can be determined from
expectations of f (�), thus

E
[
f (�)|D ] =

∫
f (�)P(�|D)d� =

∫
f (�)P(�)P(D|�)
∫
P(�)P(D|�)d�

d� (5)

For simplicity, P(�)P(D|�) is replaced with an arbitrary distribution π(X). The
key point of the MCMC sampling technique is to generate a sequence of samples of
X, according to the target distribution π(X). This sequence is denoted as {Xt, t =
1, 2, . . . , n}. After sampling, the distribution π(X) can be visualized by summing up
the frequency of each value of X in the sequence into a histogram. The features can be
determined using Monte-Carlo integration

E
[
f (X)

] =
∫
f (X)π(X)d�
∫

π(X)d�
≈ 1

n

n∑

t=1

f (Xt) (6)

At any step t, a candidateY is first proposed based on the current stateXt according to
a proposal distributionY ∼ q(Y|Xt). Then the candidate Y is acceptedwith a probability
called the acceptance rate α(Xt,Y), or else it will be rejected. The most common choice
of the proposal distribution is called the Metropolis algorithm. Under this condition, the
acceptance rate can be written as

α(X,Y) = min

(
1,

π(Y)

π(X)

)
(7)
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The Gaussian proposal distribution is adopted in this paper

q(Y|X) = 1
√

(2π)n|�|exp
(

− (Y − X)T�−1(Y − X)

2

)

(8)

where n is the dimension of the sampled vector, and � is the covariance matrix of the
Gaussian distribution. � is a free parameter in the algorithm that plays a key role in the
ergodicity performance of the MCMC chain.

Then, the Adaptive Metropolis (AM) MCMC technique to achieve an automatic
adaptation of the covariance matrix during the sampling process. The formula used for
calculating each time’s covariance matrix can be simplified in most practical cases as

�n = sdCov(X0,X1, . . . ,Xn−1) (9)

where sn = 5.76/n is a scaling parameter suggested by a lot of researchers [15].
It can be seen from Eq. (9), that when the covariance of the past samples decreases

(which is mainly because of the repeating of samples due to high rejection rates), the
‘step length’ � automatically becomes smaller to generate more ‘prudent’ proposals in
order to increase the acceptance rate. On the other hand, if the step length is getting
too small, the proposal gradually becomes ‘bolder’ according to the formula. In this
way, an automatic adaptation of the sampling is realized. The algorithm of the adaptive
Metropolis MCMC algorithm is summarized as follows.
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4 Numerical Validations

The MCMC framework is realized with MATLAB, Python and Abaqus. In each step,
a sample of the damage parameters is drawn. In order to calculate the acceptance rate,
the posterior distribution has to be evaluated for the proposed sample. At this point, the
MATLAB code generates a parameter file. A python code reads this file. The python
code organizes the necessary information for an FE simulation, such as the geometry
configuration of the plate and the damage position.

Then the python code starts an FE simulation in Abaqus with the information col-
lected. The results of the simulation are saved in another file. Then, the python code
read this file and extract the node displacement values from it. These values are sent
back to MATLAB, where they are further processed to NODIS indexes and used in the
calculation of the acceptance rate of the proposed sample. Finally, the samples generated
with MCMC are processed in MATLAB to reconstruct the distribution. The calculation
of the distribution features with the samples is also done in MATLAB.

To validate the proposedMCMC framework, four damage cases, as listed in Table 1,
are adopted. The NODIS value acquired from the FE model with a 30% noise is consid-
ered as the measurement. By adopting the proposed MCMC framework, the posterior
distribution of the damage parameter can be acquired, as illustrated in Fig. 4. It can
be seen that that location and severity of the damage can be identified. The estimated
damage parameter is listed in Table 1, and the normalized error is below 12%.

Table 1. Damage parameter and estimates

Damage case Damage parameter Estimate Normalized error

1 (150, 150, 0.20) (161, 153, 0.20) 2%

2 (100, 200, 0.20) (128, 182, 0.19) 7%

3 (350, 350, 0.30) (376, 326, 0.34) 8%

4 (150, 300, 0.30) (209, 308, 0.29) 12%



MCMC-Based Probabilistic Damage Characterization 445

Fig. 4. Posterior distribution under different damage cases (a)–(d): case 1 – case 4.

5 Conclusion

In this paper, an MCMC-based probabilistic damage detection method using NODIS is
proposed for plate structures. First, The NODIS response surfaces are elaborated with
FE models. Then, the MCMC-based Bayesian framework is presented. Furthermore,
the algorithm of the adaptive Metropolis MCMC is explained in detail. Finally, the
validation results show that the proposed method can identify the damage parameter
with a probability distribution and the normalized errors are limited to 12%.
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