
Chapter 9
Estimating Soil Properties and Classes
from Spectra

The most common way of estimating soil properties from pre-processed spectra
is by calibrating a statistical model. If the response of the spectra at a particular
wavelength follows the Beer-Lambert law, the degree of reflectance at a particular
wavelength is proportional to the concentration of a soil property. In this case, a
linear model can be fitted between this wavelength and the measured values of a soil
property. In most cases, however, the response of the spectrum follows a complex
form, i.e. the concentration of a soil property is related to several interacting
wavelengths and overlapping regions of the spectrum. In recent years, chemometric
methods based on multivariate statistical models and machine learning algorithms
have considered the entire spectrum as a predictor. When there are many hundreds
of predictor variables (wavelengths), the methods can be described as multivariate.
Multivariate models can be calibrated using the whole spectrum, with the target
variables being measured values of soil properties.

Predictions made by a calibrated model need to be validated. Three common
validation methods exist: data splitting, cross-validation and additional probability
sampling. In digital soil spectroscopy, one most often has only a single dataset
for both calibration and validation. Collecting an additional probability sample to
independently validate soil spectral models is generally not feasible. Both data
splitting and cross-validation are sub-optimal compared to collecting an additional
probability sample because the information contained in the dataset cannot be fully
exploited during calibration. In most cases, unfortunately, this is the only option.

In data splitting, the dataset is split into two subsets, generally containing 75%
and 25% of the data, which are used for calibration and validation, respectively. In
cross-validation, the dataset is split into K subsamples, where the K −1 subsamples
are used for calibration, and validation statistics are computed from the subsample
left aside. Each soil sample is used once for validation. Cross-validation should be
preferred over simple data splitting, especially when the dataset is small (Brus et al.
2011).
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166 9 Estimating Soil Properties and Classes from Spectra

In this chapter, we use data-splitting for the sake of demonstration. More
information on validation methods can be found in the statistical (e.g. Friedman
et al. 2001, Chapter 7) or pedometrics (e.g. Brus et al. 2011) literature.

The set of packages used in this chapter are installed using the lines below. The
book-associated soilspec package is also required; see Chap. 3 for information
on its installation.

# specify all the packages used in the chapter and install them if they are not already
myPackages <- c("caret", "ggplot2", "soiltexture", "resemble",

"randomForest", "Cubist", "lattice", "pls",
"prospectr", "RcppArmadillo")

# define which packages are not installed in the current computer
notInstalled <- myPackages[!(myPackages %in% installed.packages()[ , "Package"])]

# install the missing packages
if(length(notInstalled)>0) install.packages(notInstalled)

9.1 Goodness of Fit Measures

The process of creating a model begins first with a calibration. After a model is
calibrated, we can use it to make a prediction on new samples. An important step
in the analysis is to evaluate the calibrated model by predicting the value of the soil
property and to comparing it with its associated measured value.

In the following sections, we will review the most common indicators of the
quality of a prediction made by a calibrated model. These indicators are routinely
employed in soil spectroscopy and in the general statistical modelling literature.

Root mean square error (RMSE) The root mean square error (RMSE) is the
standard deviation of the residuals between observed and predicted values of a
variable. The RMSE evaluates the dispersion of the residuals. In other words,
the RMSE tells how concentrated the data are around the line of the best fit
between observed and predicted values. RMSE values are non-negatives; a value
of 0 indicates a perfect fit between observed and predicted values. The RMSE value
depends on the scale of the data and is therefore not suitable for comparison between
datasets. In general, the lower the RMSE, the better the fit between observed and
predicted values. The RMSE is computed as follows:

RMSE =
√
√
√
√

1

n

n
∑

i=1

(obsi − predi )
2, (9.1)

where n is the validation sample size and obs and pred are vectors of observed
and predicted values of the soil properties, respectively. The RMSE can simply be
derived in R by:
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RMSE <- function(obs, pred){
sqrt(mean((pred - obs)^2, na.rm = TRUE))

}

Mean error (ME) or bias The mean error (ME) is often computed along with the
RMSE to assess the bias of the predictions. The ME is simply the average of all
the errors between predictions and observations. Ideally, the value of the ME is zero
which indicates no bias in the prediction. Note that a ME of zero does not indicate
that there is no error (the positive and negative errors cancel out), but that there is
no systematic bias in the predictions made by the model. The ME is computed as
follows:

ME = 1

n

n
∑

i=1

(obsi − predi ), (9.2)

which in R gives:

ME <- function(obs, pred){
mean(pred - obs, na.rm = TRUE)

}

Squared correlation coefficient (r2) Pearson’s squared correlation coefficient
(r2) is commonly used to assess the dispersion around the regression line. In other
words, the r2 represents the strength of the linear association between observed and
predicted values with respect to the fitted regression line. The r2 is such that the
values are between 0 and 1. It is computed as follows:

r2 =
⎛

⎝

∑n
i=1(obsi − obs)(predi − pred)

√
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√
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i=1(predi − pred)2

⎞

⎠

2

. (9.3)

In R, this can be efficiently derived using the cor function from the stats
package:

r2 <- function(obs, pred){
cor(pred, obs, method = "spearman", use = "pairwise.complete.obs")^2

}

While the r2 is widely used, there is a general confusion in the literature about
what a r2 is and how to compute it. When the r2 is computed as the squared
Pearson’s r correlation coefficient, it measures the closeness of fit to the fitted linear
regression line between observed and predicted, but does not indicate the closeness
against a 1:1 line (observed versus predicted) which is of interest when validating.
The r2 is not sensitive to the departure of fitted regression line to the 45 degree line
of agreement. In many cases, it is therefore not recommended to compute the r2 as
the squared correlation coefficient, in particular when predictions are biased.
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Coefficient of determination (R2) The coefficient of determination (R2) is the
amount of variance explained by the model. The R2 quantifies the improvement
made by the model over simply using the mean of the observations as prediction
(Janssen and Heuberger 1995). In the literature, the R2 is sometimes referred to as
the amount of variance explained, a modelling efficiency coefficient (Wadoux et al.
2018), a skill score (Nussbaum et al. 2017) or a Nash-Sutcliffe model efficiency
coefficient (Nash and Sutcliffe 1970). As for the r2, its optimal value is 1, but it can
be negative if the root mean square error exceeds the standard deviation of the data.
It is computed as follows:

R2 = 1 −
∑n

i=1(obsi − predi )
2

∑n
i=1(obsi − obs)2

(9.4)

which is equal to 1 − SSE/SST where SSE is the sum of the squared error and
SST of the total sum of squares. The R2 is derived in R by:

R2 <- function(obs, pred){
# sum of the squared error
SSE <- sum((pred - obs) ^ 2, na.rm = T)
# total sum of squares
SST <- sum((obs - mean(obs, na.rm = T)) ^ 2, na.rm = T)
R2 <- 1 - SSE/SST
return(R2)

}

Lin’s concordance coefficient (ρc) The concordance correlation coefficient (ρc)
was introduced by Lawrence and Lin (1989) to assess the agreement between
observed and predicted values with respect to the 1:1 line. If the predictions are
in perfect agreement with the observations, all the points fall on the 1:1 line. The ρc

is given by:

ρc = 2rσpredσobs

σ 2
obs + σ 2

pred + (μobs − μpred)2
= rCb, (9.5)

where r is Pearson’s correlation coefficient, σ is the standard deviation (rσpredσobs is
the covariance between observed and predicted values) and μ is the mean. Lawrence
and Lin (1989) have shown that ρc reduces to rCb where Cb is the bias correction
factor defined as:

Cb =
(

v + 1/v + u2

2

)−1

, (9.6)

with v = σpred/σobs being the scale shift and u = (μpred − μobs)/
√

σpredσobs being
the location shift relative to the scale. In other terms, ρc assesses the correlation
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between observed and predicted values, with a bias correction. The ρc can be
implemented in R by:

rhoC <- function(obs, pred) {
n <- length(pred)
sdPred <- sd(pred, na.rm = T)
sdObs <- sd(obs, na.rm = T)
r <- stats::cor(pred, obs, method = "pearson", use = "pairwise.complete.obs")
# scale shift
v <- sdPred / sdObs
sPred2 <- var(pred, na.rm = T) * (n - 1) / n
sObs2 <- var(obs, na.rm = T) * (n - 1) / n
# location shift relative to scale
u <- (mean(pred, na.rm = T) - mean(obs, na.rm = T)) / ((sPred2 * sObs2)^0.25)
Cb <- ((v + 1 / v + u^2)/2)^-1
rCb <- r * Cb
return(rCb)

}

There are several implementations for computing ρc with associated confidence
intervals and p-value, and the reader can find examples in the DescTools package
with the CCC function or in the epiR package with the epi.ccc function.

Ratio of performance to deviation (RPD) The ratio of performance to deviation
(RPD) was proposed by Williams and Thompson (1978) as the ratio of standard
error in prediction to the standard deviation. The objective of the RPD is to scale the
error in prediction with the standard deviation of the property. It is widely used in
the infrared spectroscopy literature as a way to assess the goodness of fit of infrared
spectroscopy models.

The RPD is calculated as follows:

RPD =
√

1
n−1

∑n
i=1(obsi − obs)2

√

1
n

∑n
i=1(obsi − predi )

2
, (9.7)

which is equivalent to sd(obs)/RMSE(obs, pred). This metric and its
systematic use have been criticized, in particular because the standard deviation
of the soil property used to scale the error is misleading in the case of skewed or
non-normal observations. The RPD is computed in R by:

RPD <- function(obs, pred){
sdObs <- sd(obs)
RMSE <- sqrt(mean((pred - obs)^2))
rpd <- sdObs/RMSE
return(rpd)

}

It can be seen that RPD is proportionally related to the coefficient of determi-
nation (or R2). R2 is based on variance, while RPD is based on standard error. If
we assume a normal distribution, then RPD = 1/sqrt(1-R2). We can test it
(Fig. 9.1).
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# create a sequence of number from 0 to 1
R2val <- seq(0, 1, by = 0.02)
RPDval = 1/sqrt(1 - R2val)

# plot the R2 and RPD
plot(R2val, RPDval, type = "l")
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Fig. 9.1 Values of the R2 (x-axis) against those of the RPD (y-axis) computed on the validation
dataset

Note that when R2 > 0.8, the RPD rapidly increases for larger R2 values. This
suggests that a small increase in accuracy could be interpreted as a large boost in
RPD.

Ratio of performance to inter-quartile distance (RPIQ) The ratio of perfor-
mance to inter-quartile distance (RPIQ) has been proposed by Bellon-Maurel et al.
(2010) to account for possibly non-normal distribution of the observations. The
RPIQ is similar to the RPD, but it uses the inter-quartile range to represent the
spread of the observations. It is therefore not sensitive to the statistical distribution
of the observations. The values obtained by the RPIQ can be interpreted the same
way than the RPD. The RPIQ is given by:

RPIQ = (Q3(obs) − Q1(obs))
√

1
n

∑n
i=1(obsi − predi )

2
, (9.8)
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where Q1(obs) and Q3(obs) are the first (25%) third (75%) quantiles of the
observations (Q3(obs)−Q1(obs) is the inter-quartile distance) and the denominator
is the RMSE. In R, it can be computed as follows:

RPIQ <- function(obs, pred){
q25 <- as.numeric(quantile(obs)[2])
q75 <- as.numeric(quantile(obs)[4])
iqDist <- q75 - q25
RMSE <- sqrt(mean((pred - obs)^2))
rpiq <- iqDist/RMSE
return(rpiq)

}

From the literature, it appears that various arbitrary limits of RPD were set to
characterize a good model performance. For example, in agricultural products, it
was quoted by Batten (1998) that RPD values greater than 3 are useful for screening,
values greater than 5 can be used for quality control and values greater than 8 can be
used for any application. In soil science, the paper by Chang et al. (2001) made other
three categories: Category A, RDP > 2.0; Category B, RDP 1.4–2.0; and Category
C, RDP < 1.4. This was interpreted by other authors as the reference standard in
model performance: excellent if RPD > 2 and non-reliable models when RPD < 1.4.
Other authors also have slightly modified this to justify the quality of prediction.

A soil scientist would say their model is excellent as it has RPD > 2, while a plant
scientist would disagree as an excellent model should have RPD > 3. Limitations of
RPD are described in Minasny and McBratney (2013), and the myth of RPD as a
single measure of accuracy is summarized in the article of Esbensen et al. (2014): ‘It
is a myth that the RPD statistics furthers an objective, across-model, comparative,
unambiguous prediction validation figure-of-merit’.

We warn against using an arbitrary classification system to justify the model
performance, as RPD and R2 and other measures can be easily affected by the
distribution of the data. We can illustrate how these accuracy measures are sensitive
to the data distribution. Consider a set of random numbers (Fig. 9.2):

# set the seed for repeatability
set.seed(1)

# generate 100 numbers from an uniform distribution between 0 and 1
x = runif(100)
y = runif(100)

# plot the numbers
plot(x, y)

# add a 1:1 line to the plot
abline(a = 0, b = 1)
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Fig. 9.2 Set of 100 randomly generated values between 0 and 1

Obviously the accuracy measure should say there is no clear relationship between
the two random variables. We use the eval function from the book-associated
soilspec package for this.

# evaluate the results
soilspec::eval(x, y, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0 0.38 0 -1 0.02 0.71 1.18

Let us now see the effect of adding two extreme observations to the data
(Fig. 9.3).

# generate two numbers from an uniform distribution between 8 and 10
x1 = runif(2, min = 8, max = 10)
y1 = runif(2, min = 8, max = 10)

# add the two new numbers to the vector of existing numbers
x = c(x, x1)
y = c(y, y1)

# plot the numbers
plot(x, y)

# add a 1:1 line to the plot
abline(a = 0, b = 1)
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Fig. 9.3 Set of 100 randomly generated values between 0 and 1 and 2 values between 8 and 10

# evaluate the results
soilspec::eval(x, y, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0.01 0.38 0 0.89 0.95 3.04 1.19

It is now visible that we can achieve RPD > 3, ρc > 0.9 and R2 = 0.9 indicating
we have created an excellent model. The RPIQ seems not being much affected by
outliers.

For categorical variables, the overall accuracy The overall accuracy (OA)
measures the fraction of predictions that are correctly classified. Its optimal value
is 1 (all if the predicted class equal the observed class) and falls to 0 if none of the
predicted classes equal the observed classes. It is formally calculated as follows:

OA = Number of correct prediction

Total number of prediction
, (9.9)

where the numerator is an indicator having 1 if the predicted class equals the
observed class and 0 otherwise and the denominator is the validation sample size.
In R it is computed as follows:

OA <- function(obs, pred){
# create a confusion matrix between observed and predicted classes
cm = as.matrix(table(obs = obs, pred = pred))
n <- length(obs)
diag = diag(cm)
OA <- sum(diag) / n
return(OA)

}
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As OA only calculates the overall accuracy, if the data is imbalanced. i.e. one
class dominates over the others, a predictive model will only predict the dominant
class and could provide high accuracy. To solve this problem, Cohen’s kappa
statistic is used.

For categorical variables, Cohen’s kappa statistic Cohen’s kappa statistic
(Cohen 1960) is another measure of the agreement between predicted and observed
classes. It is often referred to as the comparison of the overall accuracy to the
expected random chance accuracy. Cohen’s kappa is defined as the difference
between the overall accuracy and the random chance accuracy divided by 1 minus
the random chance accuracy. The statistic can be negative, but is more often
comprised between 0 and 1, where 1 shows a perfect agreement between the
predicted and observed classes and 0 no more agreement than what is expected by
chance. It is derived as follows:

Cohen’s kappa = OA − pe

1 − pe

, (9.10)

where OA is the overall accuracy derived previously and pe is the expected
probability of chance agreement. In other words, pe is the expected random chance
accuracy. In R Cohen’s kappa statistic is computed as follows:

kappa <- function(obs, pred){
# create a confusion matrix between observed and predicted classes
cm = as.matrix(table(obs = obs, pred = pred))
# number of observations per class
rowsums = apply(cm, 1, sum)
# number of predictions per class
colsums = apply(cm, 2, sum)
n <- length(obs)
diag = diag(cm)
accuracy <- sum(diag) / n
p = rowsums / n # distribution of points over the actual classes
q = colsums / n # distribution of points over the predicted classes
expAccuracy = sum(p*q)

kappa = (accuracy - expAccuracy) / (1 - expAccuracy)
return(kappa)

}

9.2 Models for Quantitative Variables

A general problem in spectroscopy data is the large number of predictors, i.e. the
number of spectral bands. The machine learning literature will describe this as a
‘large p and small n’ problem. In addition, the spectral bands are highly correlated.
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One way of handling data with a high number of predictor variables such as in
infrared spectroscopy is variable reduction. Another way is to select only relevant
variables to use in the model (variable selection). Principal components and partial
least squares regression (PLSR) methods are routinely used in chemometrics for
variable reduction. Both models boil down to linear regression and principal
component analysis. The PLSR model is particularly useful for prediction purposes.
We will first explore these linear models and then continue with machine learning
with cubist and random forest models.

In this section, we use the raw spectra described in Chap. 3 (Fig. 9.4). The steps
for pre-processing are explained in the previous chapters.

# load the required packages
require(prospectr)
require(soilspec)

# load the data
data("datsoilspc")

# convert reflectance to absorbance
spectraA <- log(1/datsoilspc$spc)

# embed the soil property and the spectra in one single table
datsoilspc$spcA <- spectraA

# apply some smoothing to the spectra
oldWavs <- as.numeric(colnames(datsoilspc$spcA))
newWavs <- seq(min(oldWavs), max(oldWavs), by = 5)
datsoilspc$spcARs <- prospectr::resample(datsoilspc$spcA,

wav = oldWavs,
new.wav = newWavs,
interpol = "linear")

# apply a standard normal variate transformation for baseline correction
datsoilspc$spcASnv <- standardNormalVariate(datsoilspc$spcARs)

# apply a moving average window to the standard normal variate spectra
datsoilspc$spcAMovav <- movav(datsoilspc$spcASnv, w = 11)

# convert the column names from integer to numeric
wavs <- as.numeric(colnames(datsoilspc$spcAMovav))

# plot first spectrum
matplot(x = wavs, y = t(datsoilspc$spcAMovav),

xlab = "Wavelength /nm",
ylab = "Absorbance",
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))
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Fig. 9.4 Pre-processed absorbance spectra from the datsoilspc dataset provided in the book
package soilspec

For the example, we further separate the data into calibration (75%) and
validation (25%) by splitting randomly the dataset (Fig. 9.5).

# set the seed
set.seed(19101991)

# id of the rows to be used for calibration
calId <- sample(1:nrow(datsoilspc), size = round(0.75*nrow(datsoilspc)))

# separate the dataset into calibration and validation
datC <- datsoilspc[calId,]
datV <- datsoilspc[-calId,]

# plot the value of the Total Carbon content for both calibration and validation
par(mfrow=c(1,2))

# calibration
hist(datC$TotalCarbon,

main = "",
xlab = "Total carbon")

# validation
hist(datV$TotalCarbon,

main = "",
xlab = "Total carbon")
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Fig. 9.5 Histograms of the soil total carbon content from the Geeves et al. (1994) dataset provided
in the book package soilspec for both calibration (left) and validation (right)

The observation of the total carbon content is slightly skewed to the left. In a
real-world case study, we might want to test whether a transformation makes the
carbon values look normally distributed. The slight skewness is not critical in this
case study.

9.2.1 Principal Component Regression

Principal component regression (PCR) boils down to principal component analysis
(Sect. 6.2) and multiple linear regression by taking the principal component of the
spectra and by building a linear regression on the component scores. Recall the
matrix of scores T obtained by PCA of the matrix of spectral variables X. In PCR,
a linear regression model is fitted between the scores of the PC of X and the soil
property (response variable) y (if only one soil property is predicted) or Y of size
n×c where c is the number of soil properties of interest (c = 1 for a single response).
The PCR model takes the following form:

Y = Tβ + E, (9.11)

where β denotes the vector of regression coefficients, found by solving β =
(XT X)−1XT Y, and E is a matrix of residuals, the same size than Y.

The user must then decide how many components to use in the model. Usually,
the optimal number of components is defined by cross-validation. The cross-
validation can be done by using the pls package, but for illustration we will use
the princomp and lm functions.
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# first we perform a PCA on the spectra
pcspectra <- prcomp(datC$spcAMovav,

center = TRUE, scale = TRUE)

# calculate the percent of the variances explained by the PC
v <- pcspectra$sdev*pcspectra$sdev

# percentage of cumulative variances
cumv <- 100*cumsum(v)/sum(v)

# plot cumulative percentage of variances explained by the PCs
plot(cumv[1:20],

type = "b",
xlab = "PC",
ylab = "% Cumulative variance")
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Fig. 9.6 Percentage of variance explained by the principal components against number of
components

Figure 9.6 shows that around nine components capture more than 99% of the
variation.

One can now fit a simple PC regression. First we specify the number of principal
components to use in the model and then form the PC scores as the independent
variables and soil property as the dependent variable in a linear model.

# specify number of components
npc <- 9

# select PC scores
sdata <- as.data.frame(pcspectra$x[,1:npc])

# fit a linear model Total C = PC1 + PC2 + ...
soilCPcrModel <- lm(datC$TotalCarbon ~ ., data = sdata)
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# obtain a summary of the fit
summary(soilCPcrModel)

##
## Call:
## lm(formula = datC$TotalCarbon ~ ., data = sdata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2051 -0.4448 -0.0744 0.3529 4.5404
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.214198 0.046704 25.998 < 2e-16 ***
## PC1 0.027437 0.002848 9.635 < 2e-16 ***
## PC2 0.059561 0.004554 13.080 < 2e-16 ***
## PC3 0.001337 0.009975 0.134 0.89348
## PC4 0.157447 0.013955 11.282 < 2e-16 ***
## PC5 0.303688 0.018495 16.420 < 2e-16 ***
## PC6 0.014171 0.032577 0.435 0.66389
## PC7 0.115872 0.036931 3.138 0.00188 **
## PC8 0.400682 0.053989 7.422 1.36e-12 ***
## PC9 -0.043479 0.076195 -0.571 0.56871
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.7994 on 283 degrees of freedom
## Multiple R-squared: 0.7196, Adjusted R-squared: 0.7107
## F-statistic: 80.7 on 9 and 283 DF, p-value: < 2.2e-16

We can now assess the goodness of the fit by plotting the observed versus
predicted values of the total carbon, for both the calibration and validation datasets
(Fig. 9.7).

# predict on the calibration dataset
soilCPcrPred <- predict(soilCPcrModel, sdata)

# predict on the validation dataset
pcspectraV <- predict(pcspectra, datV$spcAMovav)
sdataNew <- as.data.frame(pcspectraV[, 1:npc])
soilVPcrPred <- predict(soilCPcrModel, sdataNew)

par(mfrow = c(1, 2))

# plot calibration
plot(datC$TotalCarbon, soilCPcrPred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

# plot validation
plot(datV$TotalCarbon, soilVPcrPred,
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xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)
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Fig. 9.7 Scatterplot of observed versus predicted value of the total carbon. The predictions are
made by principal component regression

Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

# accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCPcrPred, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0 0.79 0.57 0.72 0.84 1.89 1.46

and for validation.

# accuracy measures for validation
soilspec::eval(datV$TotalCarbon, soilVPcrPred, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0.08 0.74 0.42 0.36 0.7 1.26 1.63

9.2.2 Partial Least Squares Regression

Partial least squares regression (PLSR) is a technique that attempts to combine PCA
and multiple regression (Wold et al. 2001). It aims to predict a set of dependent



9.2 Models for Quantitative Variables 181

variables (soil properties) by extracting from the spectra a set of ‘orthogonal’ factors
(or latent variables) which give the best prediction. The components in partial least
squares are determined by the predictor variables X (as in PCR) but also by the
response variable(s) (y or Y if multiple responses). The PLSR model takes the
following form:

X = TPT + E, (9.12)

Y = UQT + F, (9.13)

where X,T and P are defined previously. Both T and U are score matrices of size
n × p for X or Y, respectively, and P (size d × b) and Q (size d × c) are loading
matrices for X or Y. Finally, E is the matrix of residuals of size n × b for X and
F is the matrix of residuals of size n × c for Y. A regression between X and Y is
obtained by:

U = Tβ, (9.14)

where β is the vector of regression coefficients of the linear model. Substituting this
relationship from the original model, predictions are obtained by:

Y = UQT = TβQT . (9.15)

This is implemented in R with the plsr function from the pls package, made
by Wehrens and Mevik (2007). As for the PCA and PCR, we must choose the
optimal number of principal components (Fig. 9.8).

# load required package
require(pls)

# maximum number of components in the PLS model
maxc <- 30

# generate a PLS model based on calibration data
soilCPlsModel <- plsr(TotalCarbon ~ spcAMovav,

data = datC,
method = "oscorespls",
ncomp = maxc,
validation = "CV")

# this is the plsr function, using cross validation to evaluate the RMSEP
# as a function of number of components from one until maxc
plot(soilCPlsModel, "val",

main = " ",
xlab = "Number of components")
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Fig. 9.8 Root mean square error of the prediction (RMSEP, black line) and bias-adjusted RMSEP
(red dashed line) obtained by cross-validation against the number of components used in the PLSR
model

More information on the RMSEP and bias-adjusted RMSEP values are obtained
in the vignette of the pls package. Note that we use method = oscorespls,
which is not the default of the plsr function. It is discussed later in this section.
This figure from a 10-fold cross-validation on the calibration data shows that 14
components seem to produce a minimal RMSEP. So we use this number.

# number of components to use
nc <- 14

It is also possible to plot directly the predicted and observed values of the
soil properties. The predictions are made using the fitted pls_model using nc
principal components (Fig. 9.9).

# plot of cross-validated predictions
plot(soilCPlsModel,

ncomp = nc,
main = " ",
xlab = "Observed",
ylab = "Predicted")
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Fig. 9.9 Scatterplot of observed against predicted values of the total carbon. The predictions are
made by partial least squares regression

This method plots observed against predicted based on the cross-validated
predictions using nc number of components. Additional figures can be derived from
the soilCPlsModel object. Note that the values in the x-axis are the indices of
the wavelength (Fig. 9.10).

# the three first loadings
plot(soilCPlsModel,

"loadings",
comps = 1:3,
xlab = "Index of the wavelength",
ylab = "Loading value")
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Fig. 9.10 First three loadings of the principal components of the spectra
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Figure 9.10 shows the three first loadings of the PLS components of the spectra. It
gives an idea which wavelengths have the most influence on each of the components,
which can be used for spectral interpretation. In addition to the loadings of the PC,
in PLSR the regression coefficients can be plotted. We do not use the default plot
function of the plsr package and select instead manually the regression coefficient
for the case of nc = 14 (Fig. 9.11).

# plot the coefficient
plot(wavs, soilCPlsModel$coefficients[,1,nc],

main = " ",
type = "l",
xlab = "Wavelength /nm",
ylab = "Regression coefficient")

abline(h = 0)
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Fig. 9.11 Standardized regression coefficient of the PLSR model for predicting total carbon

This gives a more meaningful interpretation, the standardized coefficients of the
regression. Wavelengths with a large (positive or negative) value of the regression
coefficient are more influential in the prediction.

Alternative to the regression coefficients and the principal component loadings,
one can use the variable importance on projection (VIP) proposed by Wold et al.
(1993). It measures the importance of each wavelength in the projection of the
components. It is calculated as a weighted sum of the squares of the PLS weights
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(Ng et al. 2019). Influential variables have a variable importance on projection value
greater than 1. As there is no direct implementation in the pls package, we provide
the code below. For more information, the reader is redirected to the article of Wold
et al. (1993). Note that the VIP calculation is valid only for the orthogonal score
algorithm (method = "oscorespls" in the pls package) and for a single
response PLSR model. By default, the plsr function in R uses the kernelpls
algorithm.

# take the loadings, loading weights and scores
W <- soilCPlsModel$loading.weights
Q <- soilCPlsModel$Yloadings
TT <- soilCPlsModel$scores

# compute the variable importance, see Wold et al., (1993)
Q2 <- as.numeric(Q) * as.numeric(Q)
Q2TT <- Q2[1:nc] * diag(crossprod(TT))[1:nc]
WW <- W * W/apply(W, 2, function(x) sum(x * x))
vip <- sqrt(length(wavs) * apply(sweep(WW[, 1:nc], 2, Q2TT, "*"),

1, sum)/sum(Q2TT))

# display the variable importance
plot(wavs, vip,

xlab = "Wavelength /nm",
ylab = "Importance",
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 1))

abline(h = 1)
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Fig. 9.12 Importance of each wavelength on projection of the principal components

Figure 9.12 shows that the important wavelengths in the projection of the PLS
components to predict the total soil carbon are similar to the wavelengths found



186 9 Estimating Soil Properties and Classes from Spectra

important in the previous figures using the standardized regression coefficient or the
first three principal component loadings.

Now that we have created the PLS model, we can use the model to predict using
the spectra on the calibration and validation datasets (Fig. 9.13).

# predict on the calibration dataset
soilCPlsPred <- predict(soilCPlsModel, ncomp = nc, newdata = datC$spcAMovav)

# predict on the validation dataset
soilVplsPred <- predict(soilCPlsModel, ncomp = nc, newdata = datV$spcAMovav)

par(mfrow = c(1, 2))

# plot calibration
plot(datC$TotalCarbon, soilCPlsPred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

# plot validation
plot(datV$TotalCarbon, soilVplsPred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)
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Fig. 9.13 Scatterplot of observed against predicted values of the total carbon. Predictions are made
by a PLSR model. The left-hand side plot shows the observed against predicted values for the
calibration dataset, while the right-hand side plot shows the observations against predictions for
the validation dataset

Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:



9.2 Models for Quantitative Variables 187

# accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCPlsPred, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0 0.56 0.8 0.86 0.92 2.63 2.04

and for validation.

# accuracy measures for validation
soilspec::eval(datV$TotalCarbon, soilVplsPred, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0.02 0.52 0.64 0.69 0.85 1.81 2.34

Bagging PLSR
One way of ‘strengthening’ the PLSR prediction is to generate multiple models
and average the prediction (making an ensemble model). Bootstrap aggregating
or bagging (Breiman 1996) manipulates the calibration data to generate different
models. The bootstrap is a general statistical method used to assess the accuracy
of a prediction by sampling the calibration data with replacement. Suppose the
calibration data of size n is composed of predictors and response; we randomly
generate B datasets based on the calibration data by sampling with replacement.
For each of the bootstrap datasets, we fit a PLSR model. The bagging estimate is
calculated as the average of all the model predictions.

Therefore, it combines the outputs of many models to produce a powerful
‘committee’, which is useful when dealing with data with high variation, as each
realization will produce a model that fits a particular set of the data which may differ
from other realizations. The important element of bagging is that by perturbing
the calibration, it can cause significant changes in the predictor. The aggregated
predictor averages the prediction over a collection of bootstrap samples, therefore
reducing the variance of prediction. The accuracy of the prediction is increased
when the prediction method is unstable, i.e. small changes in the calibration data
used in bootstrap can result in large changes in the resulting predictor. It was used
by McBratney et al. (2006) for soil prediction and quantifying its uncertainty. The
improvement over a single PLSR could be small, but it may be more robust against
noise in the spectra, and it is also possible to obtain uncertainty intervals of the
prediction (Mevik et al. 2004).

A function called fitBagPlsr was created for this.

fitBagPlsr <- function (soilv, spec, nbag, maxc){
nc <- maxc
n <- length(soilv)
vPls <- vector(nbag, mode = "list")
calRmse <- matrix(0, nrow = nbag, ncol = 1)
oobRmse <- matrix(0, nrow = nbag, ncol = 1)

for (ibag in 1:nbag){
# take a bootstrap sample with replacement
s <- sample.int(n, replace = TRUE)
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#build a plsr model
vPls[[ibag]] <- plsr(soilv[s] ~ spec[s, ], maxc)

# compute calibration RMSE
predV <- predict(vPls[[ibag]], ncomp = nc, newdata = spec[s,])
err2 <- (soilv[s] - predV)^2
calRmse[ibag] <- sqrt(mean(err2))

# compute out-of-bag RMSE
predC <- predict(vPls[[ibag]], ncomp = nc, newdata = spec[-s,])
err2 <- (soilv[-s] - predC)^2
oobRmse[ibag] <- sqrt(mean(err2))

}

# average the results
avCalRmse <- mean(calRmse)
avOobRmse <- mean(oobRmse)

# return the results
list(modelBpls = vPls, oobRmse = avOobRmse, calRmse = avCalRmse)

}

Based on our previous single PLS model, we use bagging to generate 50
bootstrapped models.

# number of bootstrap
nbag <- 50

# maximum number of components
maxc <- 14

# number of components used in the PLSR model, set to equal to maxc
nc <- maxc

# make the bootstrap
bagPlsr <- fitBagPlsr(datC$TotalCarbon, datC$spcAMovav,

nbag,
maxc)

The output of the function contains model which is the bootstrapped PLSR
models, oobRmse which is the mean out-of-bag RMSE and calRmse which is
the mean calibration RMSE.

Out of bag is the internal validation used in bootstrap. At each bootstrap, a sample
of size n of the original data was sampled with replacement. That means that for
each bootstrap about one-third of the data are not used in the calibration. This oob
(out-of-bag) data are used to estimate the error of the model.

# average RMSE from oob estimates
bagPlsr$oobRmse

## [1] 0.7093668

# average RMSE from calibration
bagPlsr$calRmse

## [1] 0.5187187
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Now that we have created the bagged PLS model, we can use the model to predict
using the spectra on the calibration and validation datasets using the following
function.

predictBagPlsr <- function(modelBpls, newspec, nbag, nc){

n <- nrow(newspec)
predV <- matrix(0, nrow = n, ncol = nbag)

for (ibag in 1:nbag) {
predV[,ibag] <- predict(modelBpls[[ibag]], ncomp = nc, newdata = newspec)

}
predAve <- apply(predV, 1, mean)
predStd <- apply(predV, 1, sd)

return(list(bagPred = predV, predAve = predAve, predStd = predStd))
}

In the function predictBagPlsr, the argument modelBpls is the bagged
PLSR model, newspec is the spectra of the validation set, nbag is the number
of bootstrap samples, and nc is the number of PCs used in PLSR. The function
returns bagPred that is the bagged predicted values, predAve that is the mean
of the predictions and predStd that is the standard deviation of the predictions
(Fig. 9.14).

# predict on the calibration dataset
soilCBagplsPred <- predictBagPlsr(bagPlsr$modelBpls, datC$spcAMovav,

nbag,
nc)

# predict on the validation datset
soilVBagplsPred <- predictBagPlsr(bagPlsr$modelBpls, datV$spcAMovav,

nbag,
nc)

par(mfrow = c(1, 2))

# plot calibration
plot(datC$TotalCarbon, soilCBagplsPred$predAve,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

# plot validation
plot(datV$TotalCarbon, soilVBagplsPred$predAve,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)
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Fig. 9.14 Scatterplot of observed against predicted values of the total carbon. Predictions are made
using a bagged partial least squares regression model

Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

# accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCBagplsPred$predAve, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0 0.56 0.79 0.86 0.92 2.64 2.04

and for validation.

# accuracy measures for validation
soilspec::eval(datV$TotalCarbon, soilVBagplsPred$predAve, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0.01 0.5 0.66 0.7 0.86 1.85 2.39

9.2.3 Cubist

Another way of handling large dimensional data is using variable selection tech-
niques to find the best predictors. When the high dimensional data has been reduced
to several components or important variables have been selected, they are used
for prediction using either linear regression or data-mining tools. Regression trees,
neural networks and support vector machines have been used for such predictions.

There are also data-mining tools which are designed to extract information on
data containing large number of variables and large number of samples. This is
potentially useful as the data reduction step need not be taken. Models that improve
regression trees have been proposed, including random forest. While RF has been
used successfully for prediction, the model form is complex, and interpretation can
be difficult as no explicit formulae can be given.
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Other forms of data-mining tools based on the idea of decision trees are the
regression rules, rule-based regression or cubist model. This is in effect transforming
regression into a classification problem, the model consists of a set of rules, and
each rule consists of a linear model. The idea is similar to the regression tree
algorithm; while regression trees have a value at each ‘leaf’, regression rules build a
multivariate linear function. Regression rules are also analogous to piecewise linear
functions.

The cubist model takes the form of:
Rule 1: [10 cases, mean -0.96, range -1.77 to 0.66, est err 0.27]

if
R880 <= 0.0144
R1610 > -0.921

then
outcome = -4.06 + 1.27 * R540 + 1.61 * R1610

The model has several rules. Each rule has a ‘condition’ (reflectance at 880 nm
<= 0.0144 & at 1610 nm > -0.921); if this condition is met by the data, then the
prediction is the given linear function. The program also informs the statistics of
each rule which refers to the range of values of the predicted and also the error of
the model.

Cubist initially was a commercial regression-rules program, but now a public
GNU code has been provided and ported in Cubist R package by Kuhn et al.
(2012). The model of cubist is a set of comprehensible rules, where each rule has
an associated linear model. Whenever a situation matches a rule’s conditions, the
associated model is used to calculate the predicted value. The first use of cubist for
soil spectroscopy modelling was made by Minasny and McBratney (2008).

# load required package
require(Cubist)

# make a Cubist model on calibration dataset
soilCCubistModel <- cubist(x = datC$spcAMovav, y = datC$TotalCarbon)

# summary of the model
summary(soilCCubistModel)

##
## Call:
## cubist.default(x = datC$spcAMovav, y = datC$TotalCarbon)
##
##
## Cubist [Release 2.07 GPL Edition] Tue Aug 25 15:51:17 2020
## ---------------------------------
##
## Target attribute ‘outcome’
##
## Read 293 cases (422 attributes) from undefined.data
##
## Model:
##
## Rule 1: [106 cases, mean 0.347, range 0.06 to 1.94, est err 0.120]
##
## if
## 1415 > -0.4015094
## then
## outcome = 4.663 - 447.07 850 + 1223.8 1410 - 1089.7 1400 + 326.8 860
## - 240.31 2305 + 277.82 845 + 220.88 2310 - 493.2 1415
## - 162.2 865 + 133.4 2165 + 458.8 1395 - 111.19 2170
## + 150.9 2075 - 60 810 + 56.88 825 - 119.1 2100 - 36.37 625
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## + 35.28 630 - 55.7 2015 - 70.4 1815 + 65.8 1805 - 131.6 1455
## + 32.19 2285 - 94.3 1405 + 22.26 800 + 95.1 1465 + 13.9 1940
## + 39.6 1365 - 12.23 2380 + 54.4 1435 - 12.34 790 - 47.2 1430
## + 9.65 2345 - 9.11 2350 - 9 2120 - 6 885 + 2.69 645
## - 14.6 1445 + 5.7 2145 + 3.3 910
## etc... [shortened]

The summary of the model provides the full model. It also informs the rules in
the model and the number of times (frequency) certain variables (wavelengths) are
used as conditions and as predictors. We can plot these as an indicator of which
wavelengths are useful in the model, which we will describe later.

The calibrated cubist model is then used to predict, on both the calibration and
validation data (Fig. 9.15).

# predict on the calibration data
soilCCubistPredict <- predict(soilCCubistModel, datC$spcAMovav)

# predict on the calibration data
soilVCubistPredict <- predict(soilCCubistModel, datV$spcAMovav)

par(mfrow = c(1, 2))

# plot calibration
plot(datC$TotalCarbon, soilCCubistPredict,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

# plot validation
plot(datV$TotalCarbon, soilVCubistPredict,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)
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Fig. 9.15 Scatterplot of observed against predicted values of the total carbon. Predictions are made
using a cubist model
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Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

# accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCCubistPredict, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 -0.02 0.27 0.91 0.97 0.98 5.46 4.23

and for validation.

# accuracy measure for validation
soilspec::eval(datV$TotalCarbon, soilVCubistPredict, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0.03 0.39 0.8 0.82 0.92 2.4 3.11

Note that the validation statistics show that the calibrated cubist model actually
gives us a worse prediction compared to PLS. From the model summary, we can
also see that rules 4, 7 and 8 are only fitted to eight, five and seven observations.
This could make the model overfit the data. So we need to simplify the model, by
setting fewer rules. We re-run the model using two rules by adding the following
options: control = cubistControl(rules = 2).

# make a Cubist model on calibration dataset with 2 rules
soilCCubistModel2 <- cubist(x = datC$spcAMovav, y = datC$TotalCarbon,

control = cubistControl(rules = 2))

# summary of the model
summary(soilCCubistModel)

##
## Call:
## cubist.default(x = datC$spcAMovav, y = datC$TotalCarbon)
##
##
## Cubist [Release 2.07 GPL Edition] Tue Aug 25 15:51:17 2020
## ---------------------------------
##
## Target attribute ‘outcome’
##
## Read 293 cases (422 attributes) from undefined.data
##
## Model:
##
## Rule 1: [106 cases, mean 0.347, range 0.06 to 1.94, est err 0.120]
##
## if
## 1415 > -0.4015094
## then
## outcome = 4.663 - 447.07 850 + 1223.8 1410 - 1089.7 1400 + 326.8 860
## - 240.31 2305 + 277.82 845 + 220.88 2310 - 493.2 1415
## - 162.2 865 + 133.4 2165 + 458.8 1395 - 111.19 2170
## + 150.9 2075 - 60 810 + 56.88 825 - 119.1 2100 - 36.37 625
## + 35.28 630 - 55.7 2015 - 70.4 1815 + 65.8 1805 - 131.6 1455
## + 32.19 2285 - 94.3 1405 + 22.26 800 + 95.1 1465 + 13.9 1940
## + 39.6 1365 - 12.23 2380 + 54.4 1435 - 12.34 790 - 47.2 1430
## + 9.65 2345 - 9.11 2350 - 9 2120 - 6 885 + 2.69 645
## - 14.6 1445 + 5.7 2145 + 3.3 910
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##
## Rule 2: [155 cases, mean 1.263, range 0.31 to 3.5, est err 0.280]
## etc... [shortened]

The calibrated cubist model is then used to predict, on both the calibration and
validation data (Fig. 9.16).

# predict on the calibration data
soilCCubist2Predict <- predict(soilCCubistModel2, datC$spcAMovav)

# predict on the calibration data
soilVCubist2Predict <- predict(soilCCubistModel2, datV$spcAMovav)

par(mfrow = c(1, 2))

# plot calibration
plot(datC$TotalCarbon, soilCCubist2Predict,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

# plot validation
plot(datV$TotalCarbon, soilVCubist2Predict,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)
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Fig. 9.16 Scatterplot of observed against predicted values of the total carbon. Predictions are made
using a cubist model with only two rules
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Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

# accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCCubist2Predict, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 -0.01 0.4 0.86 0.93 0.96 3.76 2.91

and for validation.

# accuracy measures for validation
soilspec::eval(datV$TotalCarbon, soilVCubist2Predict, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0.06 0.39 0.79 0.82 0.91 2.38 3.08

We can also infer which wavelengths are useful in the model based on the model
summary. The following plot shows which variables are important as predictors and
as ‘conditions’ (Fig. 9.17).

# plot the variables used as predictors
plot(soilCCubistModel$usage[, 3], soilCCubistModel$usage[, 2],

type = "h",
col = "plum",
xlab = "Wavelength /nm",
ylab = "Model usage /%")

# plot the conditions in blue
lines(soilCCubistModel$usage[, 3], soilCCubistModel$usage[, 1],

type = "h",
col = "blue") # see which variables are important

# add to the existing plot
par(new = T)

# add a spectra for visualization
plot(colnames(datC$spcAMovav), datC$spcAMovav[1, ],

axes = F,
ylim = c(-2, 2),
xlab = " ", ylab = " ",
type = "l",
main = " ",
xlim = c(500, 2450))
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Fig. 9.17 Important variables of the cubist model to predict total carbon. The black line is an
example pre-processed absorbance spectrum from the datsoilspc dataset, the pink vertical
lines are the variables (wavelength) used as predictors in the cubist model, and the vertical blue
lines are the cubist model conditions

9.2.4 Random Forest

Random forest (RF) is a widely used algorithm for data science applications in a
broad array of scientific domains. A RF model is an ensemble of decision trees
organized as set of structured classifiers or trees and can be used for both regression
and classification purposes (Breiman 2001). The advantage of RF over its much
simpler data-mining counterpart, the CART (Classification and Regression Tree)
model, is its ensemble approach. Rather than a single tree in the case of CART, the
RF model has many trees, where each is constructed using different perturbations
of the data – in terms of both calibration cases and explanatory variables. During
RF model development of the ensemble trees, two-thirds of cases are sampled
(bootstrap sampling with replacement) and are used to grow a regression tree,
and the other one-third is used to perform a cross-validation in parallel with the
calibration step. These samples are called out-of-bag samples (oob samples) which
are used to obtain an estimate of the model performance. For regression the final
prediction is the average of the individual tree or classifier outputs, whereas in
classification the trees vote by majority on the correct classification (mode). You
might note the similarity of this cross-validation procedure in the earlier described
section about the bootstrap PLSR model.

Random forest has three tuning parameters: mtry, number of trees and minimum
node size. The first parameter mtry is the number of input variables that are
randomly selected for each bootstrap, which can range from 1 to n (sample size).
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The second parameter is the number of trees, which must be sufficiently large for
the oob error stabilization. In general, 500 trees are sufficient, but if a large number
of trees are chosen, the results will not differ significantly, but more time will be
necessary to model fitting. The last tuning parameter is the minimum node size,
which determines the minimum size of nodes which no split will be attempted; the
default value is 5 for regression and 1 for classification.

The RF model is a natural candidate for soil spectral inference work because
of the high dimension status of the soil spectral wavelengths, for example, with
vis-NIR or MIR data. Ideally it would be used in situations where the number
of spectra is also large, as this model has a tendency to overfit, particularly if the
tunable parameters previously mentioned are not optimized. The issue here is about
generalization when the model is extended to new data, which is not a strong feature
of the RF model. Naturally its wide use in data science has also resulted in some
researchers experimenting with this model approach for soil spectral data with good
results, e.g. Santana et al. (2018) and Hobley et al. (2017) as some relatively recent
examples.

In this example, we use the randomForest package.

# load the required package
require(randomForest)

# prepare the data, the column name cannot be numeric, add ’spec.’ in front
datCSub <- data.frame(TotalCarbon = datC$TotalCarbon, datC$spcAMovav)
colnames(datCSub) <- c("TotalCarbon", paste0("spec.", colnames(datC$spcAMovav)))

# run random forest algorithm
soilCRFModel <- randomForest(TotalCarbon ~ .,

data = datCSub,
ntree = 1000,
mtry = 10,
importance = TRUE,
na.action = na.omit)

# summary of the model
soilCRFModel

##
## Call:
## randomForest(formula = TotalCarbon ~ ., data = datCSub, ntree = 1000,

mtry = 10, importance = TRUE, na.action = na.omit)
## Type of random forest: regression
## Number of trees: 1000
## No. of variables tried at each split: 10
##
## Mean of squared residuals: 0.4582793
## % Var explained: 79.18

The randomForest function saves the important variables that were used to
explain the variance of the soil property. For this, we specified importance =
TRUE, and we can now plot the important variables of the soilCRFModel model.
Two methods are proposed, the change in terms of MSE or in terms of node purity.
The reader is redirected to statistical learning book (e.g. Friedman et al. 2001) for
more information on these methods. Figure 9.18 shows the most important variables
sorted in order of importance.
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# plot the most important bands of the spectra
varImpPlot(soilCRFModel,

main = " ")
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Fig. 9.18 Important variables used by the random forest model to explain the variability of the
total carbon. The two methods are the mean decrease in accuracy (left) and mean decrease in node
impurity (right). The first variables (bands) are the most important ones

Using the fitted RF model, we can generate predictions on the validation set and
validate the predictions (Fig. 9.19).

# predict on the calibration data
soilCRFPred <- predict(soilCRFModel, datCSub)

# prepare the validation data
datVSub <- data.frame(TotalCarbon = datV$TotalCarbon, datV$spcAMovav)
colnames(datVSub) <- c("TotalCarbon", paste0("spec.", colnames(datV$spcAMovav)))

# predict on the validation data
soilVRFPred <- predict(soilCRFModel, datVSub)

par(mfrow = c(1, 2))

# plot calibration
plot(datC$TotalCarbon, soilCRFPred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

# plot validation
plot(datV$TotalCarbon, soilVRFPred,
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xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

Fig. 9.19 Scatterplot of observed against predicted values of the total carbon. Predictions are made
using a random forest model

Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

# accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCRFPred, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0 0.3 0.94 0.96 0.98 5.03 3.89

and for validation.

# accuracy measures for validation
soilspec::eval(datV$TotalCarbon, soilVRFPred, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0.1 0.52 0.57 0.69 0.81 1.8 2.33

9.2.5 Memory-Based Learning

Memory-based learning (MBL) is a local calibration algorithm presented in
Ramirez-Lopez et al. (2013a) and implemented in the package resemble. MBL
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has been developed to deal with complex, often continental or global, soil (infrared)
spectral datasets. Instead of building a single (global) function to link the soil
property and the spectra (as in PLSR or RF), the spectra are split into a number
of subsets sharing similar spectral characteristics. In this sense, this technique
is closely related to Chap. 7 because it makes use of distance metrics in the
principal component space to select the closest points for building a local model.
Subsequently, MBL can deal with complex non-linear relationships between the
spectra and a particular soil property.
MBL works in the following stages:

1. Build a p-dimensional space of the spectra where p is the number of principal
components.

2. For each point of the validation dataset, select its k-nearest neighbours from the
calibration sample.

3. Fit a local model for each point of the validation dataset using its nearest
neighbours spectra found in the calibration dataset. Several models are available
for the fit.

Some aspects are therefore particularly important in any MBL algorithm. One
must choose the similarity/dissimilarity metric used to select the closest point in
the spectra space (see also Chap. 7). A second important point is the number of
neighbours that one wants to use in the fitting process. This number must be
sufficiently large to build a realistic model, but increasing too much the number of
points might also decrease prediction accuracy. The package resemble provides
options to optimize the number of neighbours.

In the function mbl, the user must then decide:

• the similarity metric diss_method, in this example the Mahalanobis distance
in the PC space (diss_method = "pca").

• the choice of the optimal number of PCs under the argument pc_selection;
in this example, the PCs are selected based on the cumulative amount of variance
explained.

• the model for fitting, in our example the weighted average PLS model (method
= "local_fit_wapls(min_pls_c = 4, max_pls_c = 17)").

• the validation method used, in this example the leave-nearest-neighbour-out
cross-validation (validation_type = "NNv" in the mbl_control
argument).

We further decide a sequence of nearest neighbours k to test (in order to find the
optimal number of neighbours in local model fitting). Here we test a sequence from
20 up to 120 in steps of 10.

# define the sequence of neighbours
k2t <- seq(from = 20, to = 120, by = 10)
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We can now perform the model fitting using MBL and the mbl function. We use
the object control which contains the parameters of the mbl function. We make
use of a regression function called weighted average partial least square (wapls1).
It uses multiple models generated by multiple PLS components (i.e. between a
minimum and a maximum number of PLS components). At each local partition,
the final predicted value is a weighted average of all the predicted values generated
by the multiple PLS models. See the package documentation for more details.

# load the required package
require(resemble)

# maximum cumulative variance explained to be retained by the PCs
maxexplvar <- 0.99

# run the mbl algorithm
mblResults1 <- mbl(Xr = datC$spcAMovav,

Yr = datC$TotalCarbon,
# we assume we do not know the total carbon content of the testing

dataset
Yu = NULL,
Xu = datV$spcAMovav,
diss_method = "pca",
control = mbl_control(validation_type = "NNv"),
diss_usage = "none",
k = k2t,
# define the number of minimum and maximum components for "wapls1"
method = local_fit_wapls(min_pls_c = 4, max_pls_c = 17),
pc_selection = list("cumvar", maxexplvar),
scale = FALSE, center = TRUE)

We can summarize the information derived and plot the results.

# print a summary of the model
mblResults1

##
## Call:
##
## mbl(Xr = datC$spcAMovav, Yr = datC$TotalCarbon, Xu = datV$spcAMovav,
## Yu = NULL, k = k2t, method = local_fit_wapls(min_pls_c = 4,
## max_pls_c = 17), diss_method = "pca", diss_usage = "none",
## pc_selection = list("cumvar", maxexplvar), control = mbl_control(validation_

type = "NNv"),
## center = TRUE, scale = FALSE)
##
## _______________________________________________________
##
## Total number of observations predicted: 98
## _______________________________________________________
##
## Nearest neighbor validation statistics
##
## k rmse st_rmse r2
## 1: 20 0.530 0.0833 0.784
## 2: 30 0.444 0.0699 0.843
## 3: 40 0.523 0.0823 0.846
## 4: 50 0.542 0.0853 0.850
## 5: 60 0.527 0.0829 0.848
## 6: 70 0.556 0.0874 0.829
## 7: 80 0.549 0.0863 0.828
## 8: 90 0.568 0.0894 0.834
## 9: 100 0.549 0.0863 0.850
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## 10: 110 0.550 0.0864 0.848
## 11: 120 0.535 0.0841 0.851
## _______________________________________________________

# plot the RMSE against number of neighbours
matplot(mblResults1$validation_results$nearest_neighbor_validation$k,

mblResults1$validation_results$nearest_neighbor_validation$rmse,
type = "b",
xlab = "K-neighbours",
ylab = "RMSE",
pch = 1,
col = "dodgerblue")
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Fig. 9.20 Values of the root mean square error against number of neighbours in the memory-based
learning algorithm

Figure 9.20 shows the number of neighbours against the RMSE. The optimal
number of neighbours that minimizes the RMSE is 30.

# rmse values
rmseMBL <- mblResults1$validation_results$nearest_neighbor_validation$rmse

# minimum rmse value
minRmseMBL <- min(mblResults1$validation_results$nearest_neighbor_validation$rmse)

# number of neighbours values
neighNumber <- mblResults1$validation_results$nearest_neighbor_validation

# select the optimal number of neighbours
optNn <- neighNumber[rmseMBL == minRmseMBL,]$k

Instead of assuming that the total carbon content in the validation set is unknown
(the NULL in the Yu argument), we can use the actual total carbon content values
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of this dataset. Note that they are not used at all during computations and they are
only used for validation purposes (i.e. comparing what it was predicted to the actual
values).

# run the mbl algorithm specifying the Yu argument
mblResults1Val <- mbl(Xr = datC$spcAMovav,

Yr = datC$TotalCarbon,
Yu = datV$TotalCarbon,
Xu = datV$spcAMovav,
diss_method = "pca",
control = mbl_control(validation_type = "NNv"),
diss_usage = "none",
k = optNn,
# definethe numberof minimum and maximum components for "wapls1"
method = local_fit_wapls(min_pls_c = 4, max_pls_c = 17),
pc_selection = list("cumvar", maxexplvar),
scale = FALSE, center = TRUE)

We can plot the predicted and observed values of the total carbon as done before
for the other calibration algorithms (Fig. 9.21).

# plot validation
plot(datV$TotalCarbon, mblResults1Val$results$k_30$pred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)
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Fig. 9.21 Scatterplot of observed against predicted values of the total carbon. The predictions are
made by MBL using a weighted local PLS model
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Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

# accuracy measures for validation
soilspec::eval(datV$TotalCarbon, mblResults1Val$results$k_30$pred, obj = "quant")

## ME RMSE r2 R2 rhoC RPD RPIQ
## 1 0.13 0.5 0.65 0.71 0.85 1.86 2.42

9.3 Models for Categorical Variables

Soil properties such as organic carbon or clay are continuous. Some other soil
properties or attributes are categorical, that is, they are assigned to a finite number
of groups. Discrete values can also be considered as categorical if their number
is limited. Examples of categorical soil properties are soil texture classes, mineral
categories or soil types.

For prediction of categorical soil properties, the models need to be adapted. Since
predicting categorical properties with spectroscopy is relatively rare in soil science,
we will present two models, which are adaptations of models already presented in
the previous section on modelling continuous properties.

As an example, we use the continuous values of clay, silt and sand provided
in the book-associated Geeves dataset and convert it to soil texture classes. The
dataset originates from Australia (see also Chap. 3), hence the use of the Australian
soil texture triangle (Northcote 1971; National Committee on Soil and Terrain
(Australia) and CSIRO Publishing 2009) to define the class names. The Australian
soil texture triangle has 11 classes. We show below how to convert the soil clay, silt
and sand content to soil texture classes using the soiltexture R package.

We start by plotting the Australian soil texture triangle and the points from our
dataset (Fig. 9.22).

# load the require package
require(soiltexture)

# we create the tables
datCsub <- data.frame(CLAY = datC$clay,

SILT = datC$silt,
SAND = datC$sand)

datVsub <- data.frame(CLAY = datV$clay,
SILT = datV$silt,
SAND = datV$sand)

# we normalize the data so that the sum of clay, silt and sand is 100
datCsub <- TT.normalise.sum(tri.data = datCsub)
datVsub <- TT.normalise.sum(tri.data = datVsub)

# plot the soil texture triangle for the calibration data
TextPlot <- TT.plot(class.sys = "AU.TT",

tri.data = datCsub,
main = " ",
pch = 16,
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cex.axis = 0.7,
cex.lab = 0.7)

# add to the soil texture triangle the validation data
TT.points(tri.data = datVsub,

geo = TextPlot,
col = "red",
pch = 16)
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Fig. 9.22 Australian soil texture triangle with location of the calibration (black dots) and
validation (red dots) soil texture classes within the triangle

We can assign the name of the Australian soil texture class to the calibration
and validation datasets. By default, the points that are at the border of two classes
are assigned the name of the two classes. For the demonstration, we remove
these points. In most cases, however, it would be more judicious to make further
diagnostics on the soil samples and to assign a class to these samples.

# make soil texture classes for the calibration dataset
datC$textclass <- TT.points.in.classes(tri.data = datCsub,

class.sys = "AU.TT",
text.tol = 1,
PiC.type = "t",
collapse = "_")
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# The points that fall into two classes are removed.
datC <- datC[-grep("_", datC$textclass),]

# make soil texture classes for the validation dataset
datV$textclass <- TT.points.in.classes(tri.data = datVsub,

class.sys = "AU.TT",
text.tol = 1,
PiC.type = "t",
collapse = "_")

# The points that fall into two classes are removed.
datV <- datV[-grep("_", datV$textclass),]

# show the derived categories of soil classes in the calibration dataset
unique(datC$textclass)

## [1] "Cl" "Lo" "SiLo" "SaLo" "ClLo" "LoSa" "SiClLo" "SaClLo"
## [9] "SiCl" "SaCl"

Now we will show how to use two models for predicting soil texture classes.

9.3.1 Partial Least Squares Discriminant Analysis

Partial least squares discriminant analysis (PLS-DA, Barker and Rayens 2003) is a
linear classification model which builds on the conventional PLS regression. PLS-
DA is a PLS regression between two matrices. The first is the matrix X of size
n × b containing the spectra, where n is the sample size and b is the number of
spectral bands. The second is a dummy matrix Y of size n × c where c is the total
number of classes (e.g. soil texture classes). The columns in Y represent a class
membership, that is, a value of 1 or 0 is applied depending on whether the soil
sample belongs to the class. The PLS-DA model is then calibrated like PLS, by
a linear regression between the rotated scores of the X and Y matrices principal
components. The calibrated model predicts a value between 0 and 1, which is
assigned to the closest class by a softmax function. A discussion on PLS-DA is
further provided by Brereton and Lloyd (2014).

In this example, we use the caret package which provides functionalities for
cross-validation.

# load the require package
require(caret)

# create a subset of the calibration dataset
datCSub <- data.frame(soiltext = datC$textclass, datC$spcAMovav)
colnames(datCSub) <- c("textclass", paste0("spec.", colnames(datC$spcAMovav)))

# we do a k-fold cross validation repeated three times
ctrl <- trainControl(method = "repeatedcv",

repeats = 3)

# set the seed
set.seed(123)

# build the PLS-DA model using the caret package
soilCPlsdaModel <- train(textclass ~ .,
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data = datCSub,
method = "pls",
preProc = c("center", "scale"),
metric = c("Accuracy"),
tuneLength = 30,
trControl = ctrl)

We can display a summary of the fitted PLS-DA model.

# summary of the fitted model
soilCPlsdaModel

## Partial Least Squares
##
## 290 samples
## 421 predictors
## 10 classes: ’Cl’, ’ClLo’, ’Lo’, ’LoSa’, ’SaCl’, ’SaClLo’, ’SaLo’, ’SiCl’, ’SiClLo’,

’SiLo’
##
## Pre-processing: centered (421), scaled (421)
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 260, 258, 260, 261, 263, 263, ...
## Resampling results across tuning parameters:
##
## ncomp Accuracy Kappa
## 1 0.5534921 0.3461652
## 2 0.5593630 0.3558506
## 3 0.5593189 0.3567091
## 4 0.5650486 0.3656058
## 5 0.5650045 0.3654928
## 6 0.5650045 0.3660005
## 7 0.5708395 0.3736145
## 8 0.5744451 0.3835748
## 9 0.5823474 0.3970096
## 10 0.5640763 0.3746830
## 11 0.5738831 0.3908864
## 12 0.5758560 0.3937251
## 13 0.5850061 0.4117775
## 14 0.5668808 0.3889140
## 15 0.5726905 0.3977221
## 16 0.5853583 0.4178228
## 17 0.5868221 0.4213265
## 18 0.5960500 0.4360405
## 19 0.6052095 0.4509891
## 20 0.6046920 0.4543307
## 21 0.6234867 0.4825286
## 22 0.6270725 0.4894305
## 23 0.6304389 0.4948148
## 24 0.6418556 0.5108486
## 25 0.6484922 0.5213268
## 26 0.6416819 0.5124769
## 27 0.6437369 0.5150439
## 28 0.6414408 0.5116607
## 29 0.6357714 0.5035562
## 30 0.6295964 0.4961511
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 25.

The train function of the caret package automatically selects the optimal
number of principal components based on the overall accuracy evaluated by the
cross-validation subset left out (Fig. 9.23).
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# plot the cross-validation results
plot(soilCPlsdaModel)
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Fig. 9.23 Number of components used in the partial least squares discriminant analysis model
against accuracy computed from a repeated cross-validation

The train function selected 25 components as the optimal number. The fitted
PLS-DA model can now be applied to unseen data.

# create a validation dataset
datVSub <- data.frame(soiltext = datV$textclass, datV$spcAMovav)
colnames(datVSub) <- c("textclass", paste0("spec.", colnames(datV$spcAMovav)))

# show the probability of each class
head(predict(soilCPlsdaModel,

newdata = datVSub,
type="prob"))

## Cl ClLo Lo LoSa SaCl SaClLo SaLo
## 1 0.1201323 0.16463553 0.07922130 0.09377720 0.08920005 0.08531693 0.08447906
## 2 0.2054752 0.10797734 0.06762277 0.10687099 0.08748491 0.08216171 0.07374156
## 3 0.1930218 0.09038021 0.08228958 0.09765407 0.08766723 0.08802700 0.09041075
## 4 0.1163598 0.07402499 0.11089104 0.14420159 0.08809790 0.08977505 0.10009583
## 5 0.2927797 0.05545218 0.09967716 0.07337192 0.08037484 0.08205305 0.07691914
## 6 0.1025771 0.06678866 0.23378266 0.08995787 0.08500366 0.08440278 0.08189733
## SiCl SiClLo SiLo
## 1 0.09069487 0.09012774 0.10241505
## 2 0.08595896 0.08518364 0.09752289
## 3 0.08966126 0.09750844 0.08337970
## 4 0.08502138 0.08641169 0.10512070
## 5 0.08054953 0.07722688 0.08159563
## 6 0.08272078 0.08220722 0.09066194
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Here we can see that the output is a number between 0 and 1. As mentioned
previously, the PLS-DA model returns a probability-like value of the assignment to
a class. For example, the fifth soil sample is more likely to belong to the class Cl
(probability of 0.20) than it is to the other classes (probability below 0.1 in all other
classes). To obtain the final results, the softmax function is applied on the probability
values to return the single value, that is, the membership to a class. This is done by
default in the caret package.

We can now visualize the prediction and validate against measured value of the
classes.

# predict the classes on the validation dataset using the fitted PLS-DA model
plsClasses <- predict(soilCPlsdaModel, newdata = datVSub)

# create a confusion matrix of the predicted versus observed soil texture classes
confMat <- confusionMatrix(datVSub$textclass, plsClasses)

# show confusion matrix computed on the validation dataset
confMat$table

## Reference
## Prediction Cl ClLo Lo LoSa SaCl SaClLo SaLo SiCl SiClLo SiLo
## Cl 21 1 2 0 0 0 0 0 0 0
## ClLo 6 5 7 0 0 0 0 0 0 0
## Lo 0 2 24 0 0 0 0 0 0 0
## LoSa 0 0 5 7 0 0 0 0 0 0
## SaCl 0 0 0 0 0 0 0 0 0 0
## SaClLo 0 1 0 0 0 0 0 0 0 0
## SaLo 0 1 3 2 0 0 0 0 0 0
## SiCl 2 0 1 0 0 0 0 0 0 0
## SiClLo 0 0 0 0 0 0 0 0 0 0
## SiLo 0 0 6 1 0 0 0 0 0 0

# show accuracy and Cohen’s kappa
confMat$overall[1:2]

## Accuracy Kappa
## 0.5876289 0.4584787

The confusion matrix confMat shows that there is on average a good agreement
between predicted and measured soil texture classes. For example, 22 of the
reference Cl values are correctly classified, and 11 are assigned to a different class,
8 of which are to the most similar class (ClLo). The overall accuracy and Cohen’s
kappa values show that the predictions are accurate.

9.3.2 Random Forest

Random forest applied to categorical variables is similar to the same model applied
to continuous variables. Note that parameter tuning is not performed in this example
and that, for example, mtry is held constant. The reader will find a large number
of examples on how to make parameter tuning in the package vignette. Parameter
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tuning will be a key element of the modelling, in particular to avoid overfitting of the
model or to avoid an excessive number of trees without compromising on prediction
accuracy.

# we start by defining the control parameters for the caret function
# we do a k-fold cross validation repeated three times
trainControl <- trainControl(method = "repeatedcv",

number = 10,
repeats = 3)

# define the random forest parameter mtry (to its default)
mtry <- sqrt(ncol(datCSub))

# hold the mtry parameter constant (not parameter tuning)
tunegrid <- expand.grid(.mtry = mtry)

# set the seed
set.seed(123)

# build the random forest model using the caret package
soilCRFModel <- train(textclass ~ .,

data = datCSub,
method = "rf",
metric = c("Accuracy"),
tuneGrid = tunegrid,
trControl = trainControl,
verbose = FALSE)

# print a summary of the model
print(soilCRFModel)

## Random Forest
##
## 290 samples
## 421 predictors
## 10 classes: ’Cl’, ’ClLo’, ’Lo’, ’LoSa’, ’SaCl’, ’SaClLo’, ’SaLo’, ’SiCl’, ’SiClLo’,

’SiLo’
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 260, 258, 260, 261, 263, 263, ...
## Resampling results:
##
## Accuracy Kappa
## 0.6269545 0.5055345
##
## Tuning parameter ’mtry’ was held constant at a value of 20.54264

Let us now apply the calibrated random forest model to the validation data
and display the overall accuracy and Cohen’s kappa statistics. Note that the same
statistics can be obtained by using the book-associated package soilspec with
the eval function.

# predict the classes on the validation dataset using the fitted random forest model
RFClasses <- predict(soilCRFModel,

newdata = datVSub)

# create a confusion matrix of the predicted versus observed soil texture classes
confMat <- confusionMatrix(datVSub$textclass, RFClasses)

# show confusion matrix computed on the validation dataset
confMat$table
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## Reference
## Prediction Cl ClLo Lo LoSa SaCl SaClLo SaLo SiCl SiClLo SiLo
## Cl 22 2 0 0 0 0 0 0 0 0
## ClLo 8 8 2 0 0 0 0 0 0 0
## Lo 0 1 20 4 0 0 1 0 0 0
## LoSa 0 0 0 12 0 0 0 0 0 0
## SaCl 0 0 0 0 0 0 0 0 0 0
## SaClLo 0 1 0 0 0 0 0 0 0 0
## SaLo 0 0 6 0 0 0 0 0 0 0
## SiCl 3 0 0 0 0 0 0 0 0 0
## SiClLo 0 0 0 0 0 0 0 0 0 0
## SiLo 0 0 4 1 0 0 0 0 0 2

# show accuracy and Cohen’s kappa
confMat$overall[1:2]

## Accuracy Kappa
## 0.6597938 0.5641933

9.4 Soil Spectral Inference Systems

Another way to estimate soil properties is to combine the spectra with pedotransfer
functions (PTF, Bouma 1989), in a soil spectral inference system (McBratney et al.
2006). Several soil physical, chemical and biological properties cannot be estimated
directly from the spectra, as it done in Sects. 9.2 and 9.3. The reasons are that i)
some soil properties do not have a clear spectral response in the spectrum and that
ii) the development of calibration functions of a soil property from soil spectral
libraries is not always possible due, for example, to budget constraints. McBratney
et al. (2006) thus proposed a two-step approach to estimate a large range of soil
properties by combining spectroscopy and PTFs, as follows:

• Step 1, calibration: a multivariate model is built between the spectra and
the measured values of some basic soil properties (that have been shown to
demonstrate a spectral response in the spectral region of interest). In the infrared,
the basic soil properties are, for example, clay, silt, sand, organic carbon, pH
and cation exchange capacity. This step can be implemented using one of the
methods presented in Sects. 9.2 or 9.3. When a model is calibrated, it can be used
to predict soil properties of a soil sample where only the spectrum is available.

• Step 2, inference: the basic soil properties estimated in Step 1 are used as input
in a PTF to predict a set of different soil properties, such as the permanent soil
wilting point or field capacity. The PTF can be found in the literature or derived
using a large soil database. Ideally, a PTF developed on similar soil is used to
derive the soil properties. A number of PTFs have been published, for example,
by McBratney et al. (2002) or Pachepsky and Rawls (2004). The PTFs can be
concatenated into a network structure to create an inference system that estimates
the target soil property or properties and also propagates the uncertainty of the
estimate.
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So one of the main features of soil spectral inference systems is the quantification
and propagation of uncertainty. Model uncertainty, for example, can be quantified
using an ensemble model by bootstrap and aggregating, for which an example using
partial least squares regression is provided in Sect. 9.2.2.

Since Step 1 is already presented in Sects. 9.2 or 9.3, we do not repeat it here
and make a simple example of Step 2. Note also that uncertainty quantification and
propagation is discussed elsewhere in the literature (e.g. in Tranter et al. 2010, Van
der Klooster et al. 2011 or Brodský et al. 2013).

Take the following PTF from Rab et al. (2011) to estimate the volumetric field
capacity (FC, m3/m3, %) as a function of basic soil properties. We chose this PTF
because it has been derived using data from a case study in Australia, for an area
in which the soils are similar to those of the Geeves dataset. The Geeves dataset is
provided by the book-associated soilspec package. The PTF makes use of the
soil clay and silt content.

Field capacity = 7.759+0.7165×clay+0.9708×silt −(0.01729×clay)×silt

(9.16)
We can use the Geeves dataset provided in the soilspec package. It contains

values of the soil clay and silt content.

# load the required package
require(soilspec)

# load the data
data("datsoilspc")

# show the available soil properties
colnames(datsoilspc)

## [1] "clay" "silt" "sand" "TotalCarbon" "spc"

Note here the soil properties are available in our dataset but that in many cases
they can be estimated using the spectra (Step 1) or using a soil spectral library
(Viscarra-Rossel et al. 2008). We can now derive the field capacity using the basic
soil properties clay and silt (Fig. 9.24).

# estimate field capacity using a PTF
FC <- 7.759 +

0.7165*datsoilspc["clay"] + 0.9708*datsoilspc["silt"] -
(0.01729*datsoilspc["clay"] )*datsoilspc["silt"]

# plot the distribution of the estimated field capacity
boxplot(FC,

ylab = "Field capacity")
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Fig. 9.24 Boxplot of the estimated values of the field capacity (in m3/m3, %) of the Geeves dataset
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