
Progress in Soil Science

Alexandre M.J.-C. Wadoux
Brendan Malone · Budiman Minasny
Mario Fajardo · Alex B. McBratney

Soil Spectral
Inference
with R
Analysing Digital Soil Spectra using
the R Programming Environment

Progress in Soil Science

Series Editors:

Alfred E. Hartemink, Soil Science, University of Wisconsin, Madison, WI, USA
Alex. B. McBratney, Sydney Institute of Agriculture School of Life and

Environmental Sciences, The University of Sydney, Sydney, NSW, Australia

Aims and Scope

Progress in Soil Science series aims to publish books that contain novel approaches
in soil science in its broadest sense – books should focus on true progress in a
particular area of the soil science discipline. The scope of the series is to publish
books that enhance the understanding of the functioning and diversity of soils
in all parts of the globe. The series includes multidisciplinary approaches to soil
studies and welcomes contributions of all soil science subdisciplines such as: soil
genesis, geography and classification, soil chemistry, soil physics, soil biology,
soil mineralogy, soil fertility and plant nutrition, soil and water conservation,
pedometrics, digital soil mapping, proximal soil sensing, soils and land use change,
global soil change, natural resources and the environment.

More information about this series at http://www.springer.com/series/8746

http://www.springer.com/series/8746

Alexandre M.J.-C. Wadoux
Brendan Malone • Budiman Minasny
Mario Fajardo • Alex B. McBratney

Soil Spectral Inference
with R
Analysing Digital Soil Spectra
using the R Programming Environment

Alexandre M.J.-C. Wadoux
The University of Sydney
Sydney, NSW, Australia

Brendan Malone
CSIRO
Canberra, ACT, Australia

Budiman Minasny
The University of Sydney
Sydney, NSW, Australia

Mario Fajardo
The University of Sydney
Sydney, NSW, Australia

Alex B. McBratney
The University of Sydney
Sydney, NSW, Australia

ISSN 2352-4774 ISSN 2352-4782 (electronic)
Progress in Soil Science
ISBN 978-3-030-64895-4 ISBN 978-3-030-64896-1 (eBook)
https://doi.org/10.1007/978-3-030-64896-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-64896-1

Foreword

The soil, a key factor in agricultural production and in particular in agro-ecology,
is a phenomenon that is still largely under-measured. It is essential to develop
methods to know the soil better, understand how it works, assess its potential, and
estimate its state in order to guide corrective actions or estimate the ecosystem
services it provides (carbon storage, geochemical cycle closing, etc.). These data
will be indispensable in the development of a ‘digital agro-ecology’, which is
largely based on understanding the interactions between all factors of production
– soil, climate, species, varieties and their interactions (the basis of agro-ecology!),
and other inputs – in order to optimize them. These soil analysis methods must
be quantitative, fast, easy to implement, precise, and, if possible, realized with
devices that can be easily transported by operators, on-ground machines, or drones
for in-field measurements with minimum disturbance and handling of soil samples.
Spectral methods meet several of these criteria and can therefore revolutionize the
quantitative characterization of soils, for the development and realization of ‘digital
agro-ecology’. Their main advantage is their ease of implementation with, for some
of them, minimal sample preparation. Moreover, while the basic principle is the
same for all of these methods (i.e. based on the interaction of electromagnetic
radiation with the object of analysis – here the soil), the wide electromagnetic
range (UV, visible, NIR, MIR, LIBS, Raman, XRF, etc.) produces various types
of digital spectra, which give access to a range of soil properties. Their main
drawback is that they are indirect methods which need a calibration – that is, a
model – to be constructed between the spectrum and the soil property of interest.
Conventionally, these calibrations are built by ‘black-box’ software, based on
algorithms which are generally not known or understood and which are limited
in terms of adjustment capacities. Initiatives are emerging to help researchers
to better master chemometric techniques in order to build processing pipelines
in which they control everything: for example, here in Montpellier, INRAE has
launched such an initiative, Chemhouse, led by Jean-Michel Roger. No doubt,
there are similar initiatives around the world. Indeed, this book, which focuses
on quantitative chemometric methods, is another eagerly awaited response to this

v

vi Foreword

need for knowledge-guided spectral analyses to make the most of digital spectra
and improve the quality and usefulness of information from soil spectroscopy.

Véronique Bellon-Maurel

Director of #DigitAg, the Digital Agriculture Convergence Laboratory, Mont-
pellier, France
Deputy head of the Mathnum Department, INRAE (mathematics, computer
and data sciences, digital technologies)

Preface

Digital spectroscopy is one of the new tools of the state-of-the-art soil scientist.
Properly processed spectral data satiate the demand for cheap and accurate soil
information required for precision agriculture and food production, earth system
modelling, climate change mitigation, and general soil process parametrization. Our
understanding of soil spectroscopy has advanced rapidly in the last two decades. The
technological developments of cheaper and more accurate sensors coupled with the
advent of new numerical tools have contributed to this significant improvement.

The focus of the book is on the techniques of using spectral data for character-
izing soil. Spectral data may come from different sensors and wavelengths, γ rays,
X rays, and infrared, among others, and from scans made either close to the soil
material – in the field or laboratory, or remotely, for example, when the sensor is
mounted on a plane or satellite. Most of the examples here are based on the infrared
part of the spectrum, largely because of its demonstrated utility for soil science.
We present explanation and code in a didactic way that can handle all kinds of
spectral data however, in the hope that this book will contribute to the development
of common procedures for soil spectral analysis and data sharing whatever the
wavelength range. We also hope that this book can be used for developing training
courses and capacity building.

Sydney, NSW, Australia Alexandre M.J-C. Wadoux
July 2020 Brendan Malone

Budiman Minasny
Mario Fajardo

Alex B. McBratney

vii

Acknowledgements

We thank those who have contributed, directly or indirectly, to the development of
the materials presented in this book. Leonardo Ramirez-Lopez (BUCHI Labortech-
nik, Zurich) is pretty much solely responsible for building and maintaining packages
for spectral similarity and modelling of complex spectral datasets using local
calibration algorithms. Colleagues at the University of Sydney, especially Edward
Jones, have given feedback and helped in the development of materials over
the years. Finally, we thank also the students and the workshop participants for
continuous feedbacks and questions.

ix

Endorsements

Soil Spectral Inference with R offers an introduction and hands-on practical
approach on soil spectroscopy for anyone who wants to extend their understanding
and capabilities in soil spectroscopy. Since the basics of soil spectral analysis but
also new developments are addressed, the book is suitable for beginners and more
experienced scientists, either as study material or as a basis for capacity building.

As such, it addresses an important step in the entire soil spectroscopy work-
flow that stretches from sampling, wet and dry chemistry measurements, quality
assessment and control, spectral library development, calibration transfer, spectral
data analysis, and use of the resulting soil data for monitoring or mapping of soil
properties and functions to data serving. This entire workflow (and best practice
guidelines for its parts) is currently addressed in two international initiatives. The
initiative to build a Global Soil Spectral Calibration Library and Estimation Service
by the Global Soil Laboratory Network (GLOSOLAN), for now mainly focused
on mid-infrared lab analysis and prediction including capacity building for both,
and the IEEE initiative P4005 Standard Protocol and Scheme for Measuring Soil
Spectroscopy, focusing on near-infrared lab analysis. The GLOSOLAN initiative
aims to provide a standard global dataset and easy-to-use tools for labs and scientists
for spectral data processing. This book can foster understanding of the spectral
analysis used and as such can be instrumental to a proper use of the tool or service
and help in correct interpretation of the results.

Fenny van Egmond, ISRIC – World Soil Information, Wageningen – the
Netherlands, co-lead of the GLOSOLAN initiative for a Global Soil Spectral
Calibration Library and Estimation Service

Soil Spectral Inference with R provides a step-by-step description on how soil
spectroscopic data can be modelled in the R modelling environment. Starting with
a detailed description on soil spectroscopy, this book provides a comprehensive
set of tools and techniques used in diffuse reflectance spectroscopy approach for
assessing soils. Theoretical concepts and equations are presented in each chapter
along with relevant R codes and sample outputs both in the form of data and
figures. The references used in this book are up to date and the parts on (a) noise

xi

http://www.fao.org/global-soil-partnership/glosolan/soil-analysis/dry-chemistry-spectroscopy/en/
https://sagroups.ieee.org/4005/

xii Endorsements

removal, (b) different similarity measures, (c) subsampling approaches, and (d)
spectral transformations are going to help students and soil professionals explore
new ways and means of analyzing spectral data. With the graphical illustrations
of results from almost every segment of example R codes, this book retains its
visual presentation style and is expected to serve as a perfect sequel to the earlier
book Using R for Digital Soil Mapping published from the same group. I highly
recommend this book to my students and researchers who are exploring the use of
diffuse reflectance spectroscopy for soil analysis.

Bhabani S. Das, Agricultural and Food Engineering Department, Indian
Institute of Technology Kharagpur-India

This timely and opportune book will help readers to deal with the increasingly
complex kaleidoscope of tools and lines of codes applied to soil spectroscopy. It
touches aspects of conversion from wavelength to wavenumber up to the sharing of
soil spectral libraries and the need for spectral standardization between laboratories.
In this way, the text comes in handy for neophytes and professionals alike. Within
its concise contents, the book covers a getting started with R, a list of useful
spectroscopy packages, and data handling parts. Yet, it also covers topics from
pre-processing to exploratory soil spectral analysis, which will be of interest to
competent users, leading towards more proficient levels. Model calibration and
estimating soil properties are also implemented and will allow readers to develop
their skills up to the expert level with full application of soil spectroscopy. Besides
ready-to-use lines of code, datasets with soil spectra and laboratory analytical data
were also made available through computer coding. And authors have also compiled
all data and functions, used in the book, in a single R package called soilspec,
available in the open source software development environment and social network
GitHub. Therefore, it’s my pleasure to endorse the book Soil Spectral Inference
with R, which embodies a complete guidance for lecturing and learning soil spectral
inference using the statistical computing environment R.

Alexandre ten Caten, Department of Agriculture, Biodiversity and Forests,
Federal University of Santa Catarina-Brazil

Soil Spectral Inference with R can help us to build an integrated application
of a soil spectral inference system from scratch using the R platform. This book
elaborates on the whole process of soil spectral inference with detailed and practical
R codes, from importing and pre-processing of spectra to model calibration and
validation. There are many valuable routines in this book, especially for the vis-NIR
spectra, such as bagging PLSR for calibration and EPO for the removal of moisture
effect. These methods can be examined via the use of example datasets and readily
transferred to real-life applications. I, thus, highly recommend this book to anyone
who is engaged in the exploration and application of soil spectra.

Changkun Wang, Institute of Soil Science, Chinese Academy of Sciences,
Nanjing-China

Contents

1 Introduction . 1
1.1 Spectroscopy in Soil Science . 2
1.2 Populating a Soil Database . 5
1.3 Objectives of This Book . 7
References . 7

2 Getting Started with R . 11
2.1 Use of R and RStudio . 11
2.2 Simple Manipulations . 14
2.3 Data Structure . 16
2.4 Programming Tools . 19
2.5 Plotting. 21
2.6 Documentation and Help. 24
References . 25

3 Materials . 27
3.1 Datasets . 27
3.2 R Packages. 29
3.3 The soilspec Book Package . 34
References . 36

4 Data Handling of Spectra . 37
4.1 Importing Data . 37
4.2 Loading ASD Data . 39
4.3 Plotting the Spectra . 41
4.4 Averaging the Replicates. 43
4.5 Converting Units of Measurement. 45
4.6 Exporting the Spectra . 47
References . 48

5 Pre-processing of Spectra . 49
5.1 Noise Removal . 52
5.2 Scatter Correction . 58

xiii

xiv Contents

5.3 Derivatives . 64
5.4 Centring and Standardizing . 66
5.5 Spectral or Dimension Reduction . 67
5.6 Other Specific Transformations. 73
References . 78

6 Exploratory Soil Spectral Analysis . 81
6.1 Feature Selection . 82
6.2 Principal Component Analysis . 97
6.3 Spectral Prediction Domain. 104
6.4 Soil Colour . 108
References . 113

7 Similarity Between Spectra and the Detection of Outliers 115
7.1 Similarity/Dissimilarity Measures . 117
7.2 Detecting Outlier Spectra . 128
References . 140

8 Selection of the Samples for Laboratory Analysis . 143
8.1 Sampling Design . 145
8.2 Sample Size. 155
References . 164

9 Estimating Soil Properties and Classes from Spectra 165
9.1 Goodness of Fit Measures . 166
9.2 Models for Quantitative Variables . 174
9.3 Models for Categorical Variables . 204
9.4 Soil Spectral Inference Systems . 211
References . 213

10 Spectral Transfer and Transformation . 215
10.1 Spectral Transfer Between Instruments

Using a Standard Sample . 216
10.2 Direct Standardization . 225
10.3 Piecewise Direct Standardization . 229
10.4 Removing External Effects, such as Soil Moisture (EPO) 232
References . 246

About the Authors

Alexandre Wadoux is research associate in soil science
at the University of Sydney and member of the Sydney
Institute of Agriculture, Australia.

Brendan Malone is a senior research scientist in soil science at CSIRO Canberra,
Australia.

Budiman Minasny is professor of soil-landscape modelling at the University of
Sydney, Australia.

Mario Fajardo is a postdoctoral research fellow at the Precision Agriculture
Laboratory, University of Sydney, Australia.

Alex McBratney is professor of digital agriculture and soil science at the University
of Sydney and director of the Sydney Institute of Agriculture, Australia.

xv

Chapter 1
Introduction

Soil provides a multitude of key ecosystem services such as food production, climate
change adaptation, nutrient and water cycling and carbon sequestration (Dominati
et al. 2010). Ongoing global environmental change has put unprecedented pressure
on soil, resulting in significant and widespread degradation and erosion. The soil
science community is tasked to deliver timely, nuanced and high-quality thematic
soil data and knowledge to assess and monitor soil change (Sanchez et al. 2009).
This is reflected by recent initiatives to provide soil information to populate
regional, national and worldwide soil databases (Grunwald et al. 2011). Soil data are
conventionally acquired through soil surveys coupled with laboratory analyses. The
methods to obtain soil information are often impractical because they are expensive,
require time-consuming field campaigns and use chemical reagents for soil analysis
(McCarty et al. 2002; Brown et al. 2006; Ben-Dor et al. 2009; Stenberg et al.
2010). The use of sensors for characterizing chemical, mineralogical, biological
and physical properties of the soil has thus gained lots of traction in soil research.
Advances in sensors and software are occurring at a rapid pace. Soil sensing, in
particular the use of soil spectroscopy, is now widely available using a range of
modalities and wavelengths across the electromagnetic spectrum.

Soil spectroscopy can characterize soil properties efficiently. Soil spectroscopy
can be simply defined as the study of the spectral signature of a soil material (Nocita
et al. 2015). The spectral signature relates to soil characteristics such as organic and
mineral components. Spectroscopic measurements are fast, cost-effective and non-
destructive and can be made both in the laboratory and in situ in the field. Soil
composition and characteristics are encoded in the spectrum at specific wavelengths
of the electromagnetic spectrum. For example, mid-infrared spectra have encoded
information on soil mineralogy or soil organic matter composition, which can be
assessed quantitatively or qualitatively using the absorption or reflectance at specific
wavelengths (Viscarra-Rossel et al. 2016).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. M. J.-C. Wadoux et al., Soil Spectral Inference with R, Progress in Soil Science,
https://doi.org/10.1007/978-3-030-64896-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64896-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-64896-1_1

2 1 Introduction

Figure 1.1 summarizes the electromagnetic spectrum over an extensive range of
wavelengths and frequencies. The electromagnetic spectrum ranges from the γ rays
to radiowaves. The visible (to the human) portion of the electromagnetic spectrum
is between 0.4 and 0.75µm. Radiowaves have long wavelengths that can reach
several hundreds of metres, while high-energy γ rays have wavelengths shorter
than 10-13 m. Each portion of the electromagnetic spectrum relates to specific soil
properties or characteristics. For example, the visible part contains information on
soil colour, while the γ rays, X rays and infrared spectra are useful to estimate soil
properties, especially elemental composition and soil mineralogy.

Fig. 1.1 Components of the electromagnetic spectrum. (After Lillesand et al. 2015)

1.1 Spectroscopy in Soil Science

Interest in spectroscopy for soil started as early as the 1920s with studies analysing
the mineral (Hendricks and Fry 1930) and later organic composition (e.g. Hunt et al.
1950 or Holmes and Toth 1957) of soils, but it was in the 1970s that scientists
started to investigate the direct relationships between soil spectral information and
soil properties. Condit (1970), for instance, developed a soil spectral library which
quickly became a classical tool for soil scientists (Ben-Dor et al. 2009). The large
use of spectral information in soil science was made possible with the advancement
of computer and information technology. A big change came in the 1980s and
1990s when spectral instruments were transformed from analogue (chart-recording)
to digital devices producing long bivariate data streams of wavelength (or its
homologue) and intensity representing the analogue spectra. These data streams are
digital spectra usually of length 29 to 212.

Spectroscopy is currently used in a large number of applications: to characterize
soil minerals (Viscarra-Rossel and Webster 2012), organic matter (Gerzabek et al.
2006; Ertlen et al. 2010), colour (Viscarra-Rossel and Webster 2011), but also
texture (Minasny et al. 2008), iron oxides (Malengreau et al. 1996), carbonates
(Grinand et al. 2012), salinity (Nawar et al. 2014) and soil quality indicators

1.1 Spectroscopy in Soil Science 3

(Cécillon et al. 2009). Soil colloids such as clay minerals are also detected by
X ray (~10 nm–10 pm) diffraction (Wilson and Cradwick 1972), by detection of
peaks in the pure minerals and comparing them to those recorded on the soil sample.
Soil aggregates can be characterized by visible, near and mid-infrared spectroscopy
(Cañasveras et al. 2010; Askari et al. 2015). At a larger spatial scale, soil variation
and diversity can be characterized by γ rays or microwaves such as radar remote
sensing (Cook et al. 1996; Weihermüller et al. 2007).

0

500

1000

1500

1000 2000 3000
Wavenumber /cm−1

C
ou

nt

0

20

40

60

80

0 1 2 3
Energy /MeV

C
ou

nt

0

5,000

10,000

15,000

20,000

10 20 30 40
Energy /keV

C
ou

nt

50 keV
40 keV
15 keV

a)

c)

b)

Fig. 1.2 Examples of Raman (a), γ rays (b) and X ray fluorescence (c) spectra of a soil sample
from the Geeves (Geeves et al. 1994) dataset. The x-axis unit is in either wavenumber (cm−1),
megaelectron volts (Mev) or kiloelectron volts (keV)

Figure 1.2 is an example of three spectra from Raman, γ ray and X ray
fluorescence (XRF) spectroscopies. Raman vibrational spectroscopy is useful to
characterize soil substances and requires minimal soil sample preparation. γ ray
spectroscopy relates to soil mineralogical properties and geochemistry of the soil
sample by measuring the natural emission of γ rays and anthropogenic radionu-
clides, e.g. Caesium-137. An XRF spectrum relates to soil elemental composition.

The visible and infrared range of the electromagnetic spectrum has garnered
much interest in soil science. The measurement of the infrared spectrum of soil
samples enables the quantification of several soil properties from their spectral
response in a faster and cheaper way than by conventional methods of soil analyses

4 1 Introduction

(Stenberg et al. 2010; Bellon-Maurel and McBratney 2011). In addition, recording
an infrared spectrum does not make use of any chemical reagents and can be
done both in the laboratory or for in-field soil analysis (Ramirez-Lopez et al.
2019). Infrared spectra are sensitive to both organic and inorganic soil materials,
making them an excellent tool for quantitative soil assessment. The mid-infrared
(MIR) range of the spectrum, in particular, contains more information and direct
information on soil organic and mineral components of the soil than the visible and
near-infrared (vis-NIR) range. For example, various components of the soil organic
matter have very distinct spectral signature in the mid-infrared range. The reason is
that the fundamental molecular vibrations occur in the mid-infrared range, while the
overtones and combinations occur in the vis-NIR (McCarty et al. 2002). In practice,
this means that the absorption features detected in the vis-NIR are fewer, broader
and more complex than those recorded in the mid-infrared (Islam et al. 2003).

While spectroscopy has been used in soil science since the 1950s, the last
two decades have seen an increase in its use, in particular vis-NIR and MIR
spectroscopy, to replace and complement soil analyses. This increase was supported
by the development of chemometrics (the application of mathematical and statistical
methods to the analysis of chemical data (Varmuza and Filzmoser 2016)), multi-
variate statistical analysis and the increase in computer resources. Soil properties
have complex absorption patterns. Infrared spectral bands are largely non-specific
(i.e. they are not linearly related to a single soil property) and overlap between
properties (Ben-Dor and Banin 1995). This is particularly significant in the vis-
NIR range of the spectra (Soriano-Disla et al. 2014). To extract these complex
patterns and obtain quantitative estimates of a soil property, soil scientists have used
mathematical transfer functions to correlate spectral wavelengths to soil properties
(Viscarra-Rossel et al. 2008). The transfer function is calibrated using the spectral
wavelengths as independent variables and the laboratory measured values of the
soil properties as the dependent variable. Once calibrated on the spectra, the soil
property can be predicted using the spectral information only.

Relatively simple statistical models can be built to transfer the spectra to soil
information. Early studies on soil spectroscopy used linear regression models on
specific wavelengths. For example, Dalal and Henry (1986) fitted a linear model
on three user-defined wavelengths to predict soil moisture, organic carbon and total
nitrogen. The large number of wavelengths to consider and the correlation between
them made the use of linear models complicated. Techniques for variable selection,
such as stepwise variable selection or dimension reduction such as principal compo-
nent regression, quickly emerged as valuable to handle the multivariate spectral data.
A variant of principal component regression called partial least squares regression
(PLSR, Abdi 2003) is now routinely used. PLSR relates the soil property values and
the principal component scores (a dimension reduction analysis) of the spectra. The
PLSR models can handle the full spectra as predictors (not only a few wavelengths)
and are not sensitive to the correlation between wavelengths (Janik et al. 2007).
In addition, they are substantially faster to calibrate than stepwise linear regression
models. In the last two decades, other multivariate analysis techniques have been
used, in particular machine learning algorithms. For example, Nawar and Mouazen
(2019) used random forest to estimate soil organic carbon on soil samples collected

1.2 Populating a Soil Database 5

in six fields in the United Kingdom. Viscarra-Rossel and Behrens (2010) compared
several linear and non-linear (machine learning) models to calibrate soil spectra on
soil properties. Other methods to derive soil information from a spectrum are based
on the discrimination on the soil spectral signature such as in absorption feature
analysis (Clark and Roush 1984). This book provides implementation to derive soil
information from using both multivariate statistical models and absorption feature
analysis.

1.2 Populating a Soil Database

The opportunity to retrieve cheap soil information from a spectrum has resulted in
the development of soil spectral libraries for the quantification of soil properties at
local (Guerrero et al. 2016), regional (Gogé et al. 2012) or global (Viscarra-Rossel
et al. 2016) scales. Nowadays, several institutions provide spectral libraries with
spectra scanned on pure materials, for example, minerals, vegetation or rocks. The
United States Geological Survey (USGS) spectral library version 7 (Kokaly et al.
2017) contains several thousands of spectra of different materials for the ultraviolet
to the far infrared (0.2 to 200 microns [µm]). Other libraries are exclusive to soil
samples, like the Land Use/Cover Area statistical Survey (LUCAS) compiled in
Europe (Orgiazzi et al. 2018). By 2018, this soil spectral library had approximately
45,000 soil samples with spectra in the vis-NIR regions and soil attributes such as
pH, organic carbon and cation exchange capacity, among others.

Legacy soil samples

Scan the soil

Outlier analysis

Multivariate calibration

Define study area

Define a sampling design

Collect soil samples

Scan the soil

Select subsample for
laboratory analysis

Outlier analysis

Outlier?

no

yes Rescan

Outlier?

Outlier?

no

yes Rescan

Outlier?

New targeted
soil sampling

Laboratory
analysis

New targeted
soil sampling

Measure
laboratory
accuracy

Collect soil samples

Scan the soil

Does it fit in the
spectral domain of the

library?

yes

Laboratory
analysis

Predict soil properties

no

b)a)
BUILDING USING

yes
yes

Fig. 1.3 Simplified scheme for building a soil spectral library. (Adapted from Viscarra-Rossel and
McBratney 2008). The steps describe how to build a spectral library using (a) legacy soil samples
or (b) a new soil sampling. The scheme explains both the development and the use of the soil
spectral library

6 1 Introduction

To build a conventional soil spectral library, Viscarra-Rossel et al. (2008) defined
three key requirements: 1. it should contain as many and as representative as
possible soil samples to represent the soil spatial variability in the study area, 2.
the soil sampling and scanning should be made with caution as all change in the soil
sample and scanning procedure is embodied in the spectrum and 3. the laboratory
measurement of the soil properties should be accurate. Figure 1.3 illustrates the
steps to build a soil spectral library using either legacy soil samples (a) or a new soil
sampling (b) and to both build and use the spectral library.

Using legacy soil samples, Fig. 1.3a shows that all soil samples are scanned and
the spectra analysed for outliers. If a spectrum is considered as an outlier, the soil
is re-scanned. When the re-scanned soil sample is still considered as an outlier, one
should consider a new targeted soil sampling for this specific outlier soil sample.
After the outlier detection, the spectra are correlated to the values of laboratory-
analysed soil properties (e.g. soil organic carbon) using a multivariate statistical
model. When, conversely, a spectral library is built using new soil sampling, the
sampling design plays a key role. The soil samples are collected in the study area
of interest, using a sampling design and for a given sample size. The sample size
is decided with budget constraints. The soil samples are then scanned and analysed
for outliers. When the spectra contain outliers, they can be re-scanned or analysed in
the laboratory. The spectral dataset is subsampled to determine which soil samples
are sent to the laboratory for conventional analyses. After this step, the spectra and
values of the soil properties are correlated using a multivariate statistical model.

In both cases, when the multivariate statistical model is validated and has
sufficiently high accuracy, it can be used for prediction on new soil sample spectra.
When new soil samples are scanned and added to the library, they should belong
to the same population as the soils in the library. If otherwise, it is likely that the
calibrated multivariate models will be inefficient at predicting the soil properties of
interest. This book provides implementation for all these steps.

To date, most soil spectral libraries have been built for conventional soil
properties. They have been shown a useful means of organizing spectra for small
farms or individual fields but also larger, regional areas or continents. Under the
scheme shown in Fig. 1.3, it is in principle also possible to build a soil spectral
library for properties previously unknown at the time of the soil sampling, provided
that the properties are identifiable by spectroscopic techniques. For example, this
is the case for microbial biomass carbon (i.e. the carbon contained within the
living component of soil organic matter) (Mirzaeitalarposht and Kambouzia 2020),
polluting chemicals (Paradelo et al. 2016) or microplastic in soil (Corradini et al.
2019) which are now dynamic research areas but were not considered until recently.
This means that spectral libraries and the collection of soil spectra might have use
in the future for purposes which we currently disregard.

When soil scientists build a model to link soil properties to the spectra, it is
done by using software for statistical analysis. One of the claims made with the
availability of spectroscopic measurement devices is the provision of easy-to-follow
commercialized software and numerical implementation, which make complicated
statistical treatment practicable. While these implementations have provided the

References 7

majority with tools to produce soil information, they are often used at the expense
of a deeper understanding of the techniques required to treat a specific soil spectral
library. Useful research has been made in developing functions and code to perform
these tasks in open-source software, such as in R (R Core Team 2018). This book
will provide a step towards the implementation of spectroscopic analysis techniques
and their use in an open, accessible and comprehensible manner and with a view to
improving these methods.

1.3 Objectives of This Book

This book is a step-by-step guide to processing soil spectra, particularly from the
visible and infrared range of the electromagnetic spectrum. This book is fully
reproducible and can serve as a basis for teaching soil spectroscopy to undergraduate
students. The examples are implemented in the R programming language, for
which the reader is expected to have some basic knowledge. All the data used in
the examples, together with the R functions, are provided in a book-associated R
package freely accessible online. Instructions to obtain and install the package are
provided further on.

Specific topics covered in this book are:

• Importing and plotting spectra in R.
• Pre-processing the spectra.
• Using dimension reduction techniques to visualize the spectra.
• Obtaining soil information (mineralogy, colour) directly from the spectra.
• Outlier detection in the spectral space.
• Similarity measures between spectra.
• Sampling designs and determining the optimal number of soil samples for

laboratory analysis.
• Multivariate calibration.
• Soil spectral inference systems.

We also included examples and code for additional (more specific) spectral
treatments such as:

• Transferring spectra between instruments.
• Removing the effect of external factors affecting the spectrum, such as soil

moisture.

References

Abdi H (2003) Partial least square regression (PLS regression). Encycl Res Methods Soc Sci
6:792–795

Askari MS, Cui J, O’Rourke SM, Holden NM (2015) Evaluation of soil structural quality using
VIS–NIR spectra. Soil Tillage Res 146:108–117

8 1 Introduction

Bellon-Maurel V, McBratney AB (2011) Near-infrared (NIR) and mid-infrared (MIR) spectro-
scopic techniques for assessing the amount of carbon stock in soils–Critical review and research
perspectives. Soil Biol Biochem 43:1398–1410

Ben-Dor E, Banin A (1995) Near infrared analysis (NIRA) as a method to simultaneously evaluate
spectral featureless constituents in soils. Soil Sci 159:259–270

Ben-Dor E, Chabrillat S, Demattê JAM, Taylor GR, Hill J, Whiting ML, Sommer S (2009) Using
imaging spectroscopy to study soil properties. Remote Sens Environ 113:S38–S55

Brown DJ, Shepherd KD, Walsh MG, Mays MD, Reinsch TG (2006) Global soil characterization
with VNIR diffuse reflectance spectroscopy. Geoderma 132:273–290

Cañasveras JC, Barrón V, Del Campillo MC, Torrent J, Gómez JA (2010) Estimation of aggre-
gate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma
158:78–84

Cécillon L, Barthès BG, Gomez C, Ertlen D, Génot V, Hedde M, Stevens A, Brun J-J (2009)
Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS).
Eur J Soil Sci 60:770–784

Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote
sensing applications. J Geophys Res Solid Earth 89:6329–6340

Condit HR (1970) The spectral reflectance of American soils. Photogramm Eng 36:955–966
Cook SE, Corner RJ, Groves PR, Grealish GJ (1996) Use of airborne gamma radiometric data for

soil mapping. Soil Res 34:183–194
Corradini F, Bartholomeus H, Lwanga EH, Gertsen H, Geissen V (2019) Predicting soil microplas-

tic concentration using vis-NIR spectroscopy. Sci Total Environ 650:922–932
Dalal RC, Henry RJ (1986) Simultaneous determination of moisture, organic carbon, and total

nitrogen by near infrared reflectance spectrophotometry. Soil Sci Soc Am J 50:120–123
Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the

natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868
Ertlen D, Schwartz D, Trautmann M, Webster R, Brunet D (2010) Discriminating between organic

matter in soil from grass and forest by near-infrared spectroscopy. Eur J Soil Sci 61:207–216
Geeves GW, Cresswell HP, Murphy BW, Gessler PI, Chartres CJ, Little IP, Bowman GM (1994)

Physical, chemical and morphological properties of soils in the wheat-belt of southern NSW
and northern Victoria. NSW Department of Conservation; Land Management/CSIRO Division
of Soils Occasional Report, CSIRO

Gerzabek MH, Antil RS, Kögel-Knabner I, Knicker H, Kirchmann H, Haberhauer G (2006) How
are soil use and management reflected by soil organic matter characteristics: a spectroscopic
approach. Eur J Soil Sci 57:485–494

Gogé F, Joffre R, Jolivet C, Ross I, Ranjard L (2012) Optimization criteria in sample selection step
of local regression for quantitative analysis of large soil NIRS database. Chemom Intell Lab
Syst 110:168–176

Grinand C, Barthes BG, Brunet D, Kouakoua E, Arrouays D, Jolivet C, Caria G, Bernoux M (2012)
Prediction of soil organic and inorganic carbon contents at a national scale (France) using mid-
infrared reflectance spectroscopy (MIRS). Eur J Soil Sci 63:141–151

Grunwald S, Thompson JA, Boettinger JL (2011) Digital soil mapping and modeling at continental
scales: finding solutions for global issues. Soil Sci Soc Am J 75:1201–1213

Guerrero C, Wetterlind J, Stenberg B, Mouazen AM, Gabarrón-Galeote MA, Ruiz-Sinoga JD,
Zornoza R, Viscarra-Rossel RA (2016) Do we really need large spectral libraries for local scale
SOC assessment with NIR spectroscopy? Soil Tillage Res 155:501–509

Hendricks SB, Fry WH (1930) The results of X-ray and microscopical examinations of soil
colloids. Soil Sci Soc Am J 11:194–195

Holmes RM, Toth SJ (1957) Physico-chemical behavior of clay-conditioner complexes. Soil Sci
84:479–488

Hunt JM, Wisherd MP, Bonham LC (1950) Infrared absorption spectra of minerals and other
inorganic compounds. Anal Chem 22:1478–1497

Islam K, Singh B, McBratney AB (2003) Simultaneous estimation of several soil properties by
ultra-violet, visible, and near-infrared reflectance spectroscopy. Soil Res 41:1101–1114

References 9

Janik LJ, Skjemstad J, Shepherd K, Spouncer L (2007) The prediction of soil carbon fractions
using mid-infrared-partial least square analysis. Soil Res 45:73–81

Kokaly RF, Clark RN, Swayze GA, Livo KE, Hoefen TM, Pearson NC, Wise RA, Benzel WM,
Lowers HA, Driscoll RL, others (2017) USGS spectral library version 7. US Geological Survey

Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation. Wiley, New
York

Malengreau N, Bedidi A, Muller J-P, Herbillon AJ (1996) Spectroscopic control of iron oxide
dissolution in two ferralitic soils. Eur J Soil Sci 47:13–20

McCarty GW, Reeves JB, Reeves VB, Follett RF, Kimble JM (2002) Mid-infrared and near-
infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci Soc Am J
66:640–646

Minasny B, McBratney AB, Tranter G, Murphy BW (2008) Using soil knowledge for the
evaluation of mid-infrared diffuse reflectance spectroscopy for predicting soil physical and
mechanical properties. Eur J Soil Sci 59:960–971

Mirzaeitalarposht R, Kambouzia J (2020) Development of mid-infrared spectroscopic feature-
based indices to quantify soil carbon fractions. Eurasian Soil Sci 53:73–81

Nawar S, Buddenbaum H, Hill J, Kozak J (2014) Modeling and mapping of soil salinity with
reflectance spectroscopy and landsat data using two quantitative methods (PLSR and MARS).
Remote Sens 6:10813–10834

Nawar S, Mouazen AM (2019) On-line vis-NIR spectroscopy prediction of soil organic carbon
using machine learning. Soil Tillage Res 190:120–127

Nocita M, Stevens A, van Wesemael B, Aitkenhead M, Bachmann M, Barthès B, Dor EB, Brown
DJ, Clairotte M, Csorba A, others (2015) Soil spectroscopy: an alternative to wet chemistry for
soil monitoring. In: Advances in agronomy. Elsevier, Burlington, pp 139–159

Orgiazzi A, Ballabio C, Panagos P, Jones A, Fernandez-Ugalde O (2018) LUCAS soil, the largest
expandable soil dataset for Europe: a review. Eur J Soil Sci 69:140–153

Paradelo M, Hermansen C, Knadel M, Moldrup P, Greve MH, Jonge LW de (2016) Field-scale
predictions of soil contaminant sorption using visible–near infrared spectroscopy. J Near
Infrared Spectrosc 24:281–291

Ramirez-Lopez L, Wadoux AMJ-C, Franceschini MHD, Terra FS, Marques KPP, Sayão VM,
Demattê JAM (2019) Robust soil mapping at the farm scale with vis–NIR spectroscopy. Eur J
Soil Sci 70:378–393

R Core Team (2018) R: a language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria

Sanchez PA, Ahamed S, Carré F, Hartemink AE, Hempel J, Huising J, Lagacherie P, McBratney
AB, McKenzie NJ, Lourdes Mendonça-Santos M de, others (2009) Digital soil map of the
world. Science 325:680–681

Soriano-Disla JM, Janik LJ, Viscarra-Rossel RA, Macdonald LM, McLaughlin MJ (2014) The
performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil
physical, chemical, and biological properties. Appl Spectrosc Rev 49:139–186

Stenberg B, Viscarra-Rossel RA, Mouazen AM, Wetterlind J (2010) Visible and near infrared
spectroscopy in soil science. In: Advances in agronomy. Elsevier, Burlington, pp 163–215

Varmuza K, Filzmoser P (2016) Introduction to multivariate statistical analysis in chemometrics.
CRC press, Boca Raton

Viscarra-Rossel RA, Behrens T (2010) Using data mining to model and interpret soil diffuse
reflectance spectra. Geoderma 158:46–54

Viscarra-Rossel RA, Behrens T, Ben-Dor E, Brown D, Demattê J, Shepherd KD, Shi Z, Stenberg
B, Stevens A, Adamchuk V, others (2016) A global spectral library to characterize the world’s
soil. Earth-Sci Rev 155:198–230

Viscarra-Rossel RA, Jeon YS, Odeh IOA, McBratney AB (2008) Using a legacy soil sample to
develop a mid-IR spectral library. Soil Res 46:1–16

Viscarra-Rossel RA, McBratney AB (2008) Diffuse reflectance spectroscopy as a tool for digital
soil mapping. In: Digital soil mapping with limited data. Springer, Berlin, pp 165–172

10 1 Introduction

Viscarra-Rossel RA, Webster R (2012) Predicting soil properties from the Australian soil visible–
near infrared spectroscopic database. Eur J Soil Sci 63:848–860

Viscarra-Rossel RA, Webster R (2011) Discrimination of Australian soil horizons and classes from
their visible–near infrared spectra. Eur J Soil Sci 62:637–647

Weihermüller L, Huisman JA, Lambot S, Herbst M, Vereecken H (2007) Mapping the spatial
variation of soil water content at the field scale with different ground penetrating radar
techniques. J Hydrol 340:205–216

Wilson MJ, Cradwick PD (1972) Occurrence of interstratified kaolinite-montmorillonite in some
Scottish soils. Clay Miner 9:435–437

Chapter 2
Getting Started with R

R provides a convenient and flexible data-analytic environment for soil spectral
data. R is a programming language and a software facility for data manipulation,
statistical analysis and graphics. R is an implementation of the S language developed
at Bell Laboratories (Venables et al. 2009) in the 1980s. While R is an integrated
environment for data manipulation, it is mostly used for statistical analyses. R builds
is a so-called ‘GNU’ project, i.e. it is public domain and all resources are freely
accessible, unlike some other programming languages such as Matlab.

The development of R for statistical analyses relies on the users who develop
and maintain a large variety of packages. A few of them are built into the R-base
system, but all existing packages are accessible online (see Sect. 2.6). One of the
main advantages of R is the amount of information and resources that any user can
find on the Internet and the constant evolution of resources.

This chapter is a very short introduction to the use of R and to one of the
user-friendly graphical user interfaces (GUI) called RStudio. This chapter provides
explanations of the main commands, programming tools and graphical functions
needed to understand and follow the content of the book. This chapter is written for
users with little or without any previous programming experience but is not enough
by itself to be proficient in programming using R. In the latter case, the reader is
redirected to Sect. 2.6 or to Venables et al. (2009) for further references.

2.1 Use of R and RStudio

Installing R Installing the latest version of R is freely and legally accessible from
the Comprehensive R Archive Network (CRAN) website https://cloud.r-project.org/
with the following steps.

1. Click on Download R for Windows assuming you work on Windows; otherwise,
select the platform Linux or (Mac) OS X.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. M. J.-C. Wadoux et al., Soil Spectral Inference with R, Progress in Soil Science,
https://doi.org/10.1007/978-3-030-64896-1_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64896-1_2&domain=pdf
https://cloud.r-project.org/
https://doi.org/10.1007/978-3-030-64896-1_2

12 2 Getting Started with R

2. Click on base or install R for the first time which redirects to the base package
page for the latest version of R available.

3. Click on Download R 3.6.2 for Windows (Note that at the moment of writing,
version 3.6.2 is the latest) and save the executable file.

4. Locate and click on the executable file. Select the default answers for all
questions. R installs itself automatically. You should see an R icon on your
desktop. If you click on this icon, R will open as a command windows, and
you can start using it. Most users, however, will find it hard to use R in this way
as it does not have a GUI. Many freeware GUI are available for R. In this book,
we recommend to use one of the most common, called RStudio.

Installing RStudio RStudio is an interface developed to improve the R user
experience. RStudio builds the interface on the background R installation and
includes some core functionalities such as visualization and code editor panels and
of course the R console. Installing the latest version of RStudio is freely accessible
on the RStudio website with the following steps:

1. Go to https://rstudio.com/products/rstudio/ and click on RStudio Desktop.
2. Choose the Open Source Edition (free) of RStudio and click on Download

RStudio Desktop.
3. Click on Download under the RStudio Desktop icon.
4. Choose the correct platform. Assuming you work on Windows, click on RStudio-

1.2.5033.exe (Note that at the moment of writing, the version 1.2 is the latest),
and save the executable file on your computer.

5. Locate and click on the executable file. Select the default answers for all
questions. RStudio installs itself automatically. RStudio should now be installed
in your computer. Click on the RStudio icon to open the interface presented in
Fig. 2.1.

Fig. 2.1 The RStudio interface with the four windows. The upper left window is hidden by default
but can be opened by clicking the file menu, then New File and then R script

https://cloud.r-project.org/bin/windows/base/
https://rstudio.com/
https://rstudio.com/products/rstudio/

2.1 Use of R and RStudio 13

The RStudio interface is composed of four windows (Fig. 2.1) called Source
(upper left window), Environment and history (upper right window), Console
(bottom left window) and Files, Plots, Packages, Help (bottom right window). R
code is executed in the console window. When typing commands in the console
window, the output is printed directly. The Source window is a built-in text editor
and enables the user to edit and save the R scripts. Writing an R script in this window
does not run it. For this you need to click Run for R to execute the command. In the
Environment and history window, you can see the data and variables that RStudio
has in the memory (loaded into R), and you can click on them to display the values
they contain. The history tab tells you what has already been executed. Finally, the
Files, Plots, Packages, Help window provides display of the plots, location of the
files as well as help and loading facilities for R packages.

R packages The R base package contains the basic functions which lets R
function as a language: arithmetic, input/output, basic programming support, etc.
When one downloads R for the first time, in addition to base, a number of other
packages are also installed that add to the core R functionality and collectively
provide an extensive suite of functions that enables generic data analysis tasks. The
great thing about R, however, is that it is also very much contributor driven. It is the
collective of user contributions via functions and packages development that have
made R such a rich computing environment for any manner data analysis tasks. And
this extended functionality continues to grow where to date (viz. June 2020) there
are over 15,000 packages available from CRAN.

If you have developed a collection of functions and packaged them up, it is
possible to share the package on CRAN so that all other R users can also use
them. Alternatively, it is increasingly becoming popular for people to share their R
packages via code repositories such as R-forge, GitHub and Bitbucket. Not only do
these repository services provide a platform to evolve your code in a collaborative
project-based way, but some also provide tools to test and compile your packages
and to ensure they meet quality specifications to ensure others can use the functions
without major difficulties. The advantage of getting your R packages into CRAN
however is that they will be easier to find during Internet searches and consequently
will get more exposure and a greater number of users. CRAN does substantive
testing of the packages prior to publishing. So a fair amount of code improvement
is often required after the initial creation to meet the standards set by CRAN. Such
standards are mainly around code integrity, documentation clarity and establishing
package dependencies.

For packages that are stored and listed in the CRAN website, you can display
in R the available packages to download by typing available.packages().
Alternatively, you can browse packages by topic in the official CRAN website
https://cran.r-project.org/web/views/. The packages already installed in your R
session default library can be displayed by using the function library().

In most cases, one is interested in a specific function available in a package. To
use this function, you would need to:

https://r-forge.r-project.org/
https://github.com/
https://bitbucket.org/product
https://kbroman.org/pkg_primer/pages/cran.html
https://cran.r-project.org/web/views/

14 2 Getting Started with R

1. Install the package, using install.packages() and by typing the
name of you package inside this function. For example, you will type
install.packages("soilspec") to install the package associated with
this book to your personal library.

2. Load the package into your current R session. It is not sufficient to install the
package into your library; you must then load it using the function library()
or require(). For example, you can type library(soilspec) in your R
console to load the soilspec package.

3. The functions are now accessible in your current R session. You can access the
functions by typing the name of the function in your console directly. When
a function has the same name as existing ones, you can access the function
you wish from the specific loaded package by typing the operator :: after
the package name and before the package function. For example, you can type
soilspec::epo to access the epo function from the soilspec package.

2.2 Simple Manipulations

Calculator R can be used as a calculator by entering the expression to evaluate in
the console and executing. For example, by typing:

19 + 90

R will return the following:

[1] 109

where + is used for addition, * for multiplication, - for subtraction and ˆ for
exponentiation. As conventionally accepted, the order of doing the arithmetic
operations is left to right, and parentheses can be used to force the priority of the
operations.

Vector and matrices R is organized as many programming languages upon the
organization of numbers into scalars (a single number), vectors (a series of numbers)
and matrices (several series of numbers).

A vector is created by using the function c(). In the following example, we store
the vector into a variable name. This is useful to make operation on the vector or
matrix in a later step. To assign a vector or matrix to a variable name, we use the
symbols <- which is a combination of < (less than) and - (minus or hyphen). Let
us assign a vector or two numbers into the variable name al.

al <- c(19, 90)

2.2 Simple Manipulations 15

The content of the vector can be retrieved simply by typing the variable name
into the console.

al

[1] 19 90

The creation of a matrix is explained later in this chapter.

Functions Calculations on vectors or matrices are time-consuming. For example,
if you like to take the sum of all numbers contained in the vector al, you can use R
as a calculator and type:

al[1] + al[2]

which will return the sum of the first and second numbers contained in al. Here
the double bracket [] is used to access a value of the al vector. This operation
is impossible for very large vectors, and one should rather use functions instead.
Several basic functions are comprised in the base R package, and many others are
available in contributed packages. You can also create your own functions. A core
function is sum() which, as the name suggests, sums all numbers contained in a
vector such as al by:

sum(al)

Within the brackets of sum() are specified the arguments. In this case, the
function sum() takes a single compulsory argument, that is, a vector of numbers.

Plots R offers a diverse suite of functionality to make graphs. The base package
has plotting options which are sufficient in most cases. Let us, for example, define a
vector of ten numbers, which we call al2.

al2 <- c(0.24, -0.43, 0.80, -0.39, -0.49, -0.77, 0.18,

-1.17, 1.43, -1.71)

We can plot the vector al2 simply by using the function plot(), for example:

plot(al2)

which will return on the x-axis the index (position in the vector) of each value and
on the y-axis the values of the number for this index. More information on graphs is
provided in Sect. 2.5.

16 2 Getting Started with R

2.3 Data Structure

The data structures that follow are routinely used in R and also throughout this book.
It is therefore suggested to understand the basic differences between them and their
potential applications.

Vectors Vectors are one of the most important types of objects in R; we introduce
several other ways to combine or create them. Let us come back to the vector of two
numbers called al2 and use it in combination with another vector of three numbers
called at.

at <- c(2, 41, 5)

We can combine the two vectors using the same combine c() function than
before.

newVec <- c(al2, at)

where each number in the new vector newVec accessed via the command [],
for example, using newVec[3] accesses the third number in the vector.

To create a vector, one can rely on other functions. We introduce two of them.
The first is the seq() (sequence) function which creates a sequence of numbers
stored in a vector. The second is the rnorm() function which creates a sample of
values from the normal distribution. The script below shows the use of both of them,
which return a vector as output. We first create a sequence of number between 1 and
10 by interval of 1.

vec <- seq(1, 10, by = 1)
vec

[1] 1 2 3 4 5 6 7 8 9 10

The vec vector returns a sequence of ten numbers. In the second case, we sample
ten values from the normal distribution. The normal distribution is characterized
by two parameters, its mean and standard deviation. We can specify them using
the mean and sd arguments. If we do not specify them, they are kept to their
default value of 0 and 1, respectively. Let us sample ten numbers from the normal
distribution with mean 0 and standard deviation of 1.

vec2 <- rnorm(10)
vec2

[1] -0.6208766 -0.9332151 -1.7487639 -0.5684577 1.1218191 0.9277536
[7] -1.5258586 1.9416747 1.0649083 0.9723708

The vector printed above shows ten numbers sampled from the normal distribu-
tion. We will use it later in this chapter to provide an example of plotting.

2.3 Data Structure 17

Factors Factors are characters which provide a way to handle categorical data.
When dealing with categorical variables, it is necessary to ensure that the data are
stored as factors. The factor function is used to create factors. Both numeric data
and characters can be converted to factors. Let us take an example with a vector of
seven sampling locations which comprise three possible soil texture classes, called
types 1, 2 and 3. Since soil classes are categorical variables, we convert the numeric
values to factor.

create a vector of numbers
soilText <- c(1, 2, 3, 3, 2, 3, 1)

convert the numerics to factors
soilTextF <- factor(soilText)
soilTextF

[1] 1 2 3 3 2 3 1
Levels: 1 2 3

Printing the soilTextF variable name shows three levels which are, in
this case, the three possible soil texture classes. This might be useful, but we may
want to make our dataset easier to understand and name the soil texture classes
according their real classification, which in our case is according to the French
‘Aisne’ classification (Moeys 2018). The three classes are AS, LSA and LAS.

levels(soilTextF) <- c("AS", "LSA", "LAS")
soilTextF

[1] AS LSA LAS LAS LSA LAS AS
Levels: AS LSA LAS

Matrices Matrices are multi-dimensional generalizations of vectors. Matrices can
be seen as a table with vectors in their rows or columns. Matrices contain numeric
values. Let us create a square matrix with dimensions of two rows and two columns.

sqMat <- matrix(data = c(5, 21, 15, 65), nrow = 2, ncol = 2)
sqMat

[,1] [,2]
[1,] 5 15
[2,] 21 65

The argument data specifies the elements of the matrix. Arguments nrow and
ncol specify the number of row and columns of the matrix. We can access specific
values of the matrix, for example, by sqMat[1, 2] to access the value of the first
row, second column, or by sqMat[,1] to access all values of the first column.
This type of selection is called indexing.

18 2 Getting Started with R

Data frames Data frames are matrix-like structures. A substantial difference
between matrices and data frames is that data frames permit both numeric and
categorical variables. Data frames can also have column and row names. This
is convenient for many purposes. Let us create a dataframe object with two
columns and two rows. The first column is numeric and called clay, the second
is categorical and called class.

datFr <- data.frame(clay = c(25, 12, 56), class = c("AS", "LSA", "LAS"))
datFr

clay class
1 25 AS
2 12 LSA
3 56 LAS

One can access specific value of the data frame in the same way as for matrices.
A specific column can be accessed by typing the operator $, for example, by
datFr$clay.

Lists A convenient way to store irregular data is to make use of list objects. A list
is a vector-like object which takes as input all types of objects. Let us create a list of
size 2, i.e. with two elements. The first is a vector, and the second is the data frame
called datFr.

create a vector of size 3
clay <- c(25, 12, 56)

make the list
lisFr <- list(clay = clay, datFr = datFr)

print the list
lisFr

$clay
[1] 25 12 56
##
$datFr
clay class
1 25 AS
2 12 LSA
3 56 LAS

Each element in the list can be accessed with the operator [[]], for example,
to access the first element of lisFr, one can use the command lisFr[[1]].
Alternatively, the name of the element (if it has one) can be used, for example,
lisFr$clay, to access the element called clay.

2.4 Programming Tools 19

2.4 Programming Tools

This section describes some useful programming tools used in this book. Several of
the following programming statements are routinely used and correspond to basic
programming skills.

Selecting and subsetting data To manipulate data frames, the most convenient
way is to use the bracket notation [row, column] or to select by the specific
column name. In some cases, however, one would like more advanced options to
select or subset data from a data frame. This is the case, for example, when one
wants to perform an analysis (e.g. the sum of some properties) for a given category
in the data frame. Let us provide an example of subsetting a data frame that we
use in this book. We first create a data frame with two columns, one numeric (the
content in percent of the soil clay) and another categorical (the soil texture class).

datFr <- data.frame(clay = c(25, 12, 56, 22, 6, 31, 45, 65),
class = c("LAS", "AS", "LSA", "LSA", "LAS","AS", "AS", "LAS"))

datFr

clay class
1 25 LAS
2 12 AS
3 56 LSA
4 22 LSA
5 6 LAS
6 31 AS
7 45 AS
8 65 LAS

Now we would like to subset the data frame to perform an operation on the clay
values larger or equal to 45%. We can apply the following command.

datFr[datFr$clay >= 45,]

clay class
3 56 LSA
7 45 AS
8 65 LAS

Now we see that three rows are selected. The command >= means ‘equal or
greater than’. We can repeat the same operation by selecting the clay values for a
given soil texture class.

datFr[datFr$class == "LAS",]

20 2 Getting Started with R

clay class
1 25 LAS
5 6 LAS
8 65 LAS

In this case, we use the operator == which means ‘is exactly equal to’. This type
of operation can be applied also to columns (instead of rows). In this case, we place
the , at the beginning of the brackets.

For-loop For-loops are routinely used in programming to repeat a sequence of
instructions. Instead of printing manually some commands, we can iterate over all
commands to make the operation faster. You need to specify what has to be done
and for how many iterations. For example, we want to create a list containing ten
of the same object. The object is the matrix called datFr. Instead of creating a list
using list() and adding manually the objects using list[[1]] <- datFr,
list[[2]] <- datFr, etc., we create a for-loop.

create an empty list
listAll <- list()

make the for loop for each i from 1 to 10
for(i in 1:10){

add the object to the list
listAll[[i]] <- datFr

}

print the length of the list
length(listAll)

[1] 10

The object listAll contains ten elements, each containing a matrix. The
function length() returns the length of an object, in our case the number of
elements in the list.

Writing a function A large set of functions are available in R packages. Some
basic functions are also available in the base package. In some cases, one also
wants to create customized functions to repeat a specific set of tasks or to simplify
large R scripts. In this book, we provide many bespoke functions that are necessary
for performing custom workflows for analysis of soil and spectroscopic data. To
create a function, it is necessary to specify the input arguments. Let us, for example,
create a function that raises to the power of x a vector. We create a function called
pow() with two arguments to specify. The first is y, the numeric vector, and the
second is x, the power. To create a function, we need to use function().

2.5 Plotting 21

pow <- function(y, x){
output <- y^x
return(output)

}

Our pow() function returns an object called output that is the numeric vector
with same length as the input vector y. Note that inside a function, we must provide
the return() function to print the output. We can now apply our function to a
numeric vector. We take a power 6 of a vector of size 4.

create a vector of length 4
vec <- c(2, 1, 3, 0)

apply our pow() function
pow(y = vec, x = 6)

[1] 64 1 729 0

2.5 Plotting

Plotting data and making graphs is very easy in R. The function plot() is generic
(the type of plot depends on the class of the first argument) and applies to many
packages. Plotting can also be made using several additional packages such as
ggplot2 but is out of the scope of the book. In this book, we use the plot(), the
matplot() and the histogram() functions.

Plot In the simplest case, we plot a numeric vector x using plot(x). In this case,
it produces a time-series plot, i.e. it produces a plot of the index on the x-axis and
the value on the y-axis. In this book, we are rather interested in doing scatterplots.
For example, we like to know how far from the 1:1 line are the predicted against
observed values. We can do so by using plot(x, y) where x is a numeric vector
of observed and y is a numeric vector of predicted values. We create two vectors to
produce a scatterplot of x against y.

vector of the ’observed’ values
x <- seq(1, 100, by = 0.5)

vector of predicted values
y <- x + rnorm(length(x), mean = 0, sd = 5)

scatterplot x against y
plot(x, y)

22 2 Getting Started with R

0 20 40 60 80 100

0
20

40
60

80
10

0

x

y

Fig. 2.2 Scatterplot of x against y using the plot() function

Figure 2.2 shows what the basic plot function displays. One can make this plot
look much better using additional arguments that are set to defaults in Fig. 2.2. The
main argument provides a title; the xlab and ylab arguments provide the x-axis
and y-axis names, respectively. The col argument is the colour and type is the
way of displaying the observations (e.g. lines or dots). If type="p", i.e. to display
dots, the argument pch can also be specified as the type of points that one wants.
We now improve the figure by setting these additional arguments (Fig. 2.3).

plot(x, y,
main = "Example plot",
xlab = "Observed /%",
ylab = "Predicted /%",
type = "p",
pch = 16,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.7))

0 20 40 60 80 100

0
20

40
60

80
10

0

Example plot

Observed /%

P
re

di
ct

ed
 /%

Fig. 2.3 Scatterplot of x against y using the plot() function and additional arguments

2.5 Plotting 23

Matplot The matplot() function is similar to plot() but plots the columns of
a matrix against the columns of another. This is convenient in infrared spectroscopy
where one wants to plot the wavelength (a numeric vector) against a matrix con-
taining the spectra. The matplot() function has the same additional arguments
than the plot() function. We take an example plotting the vector of the observed
values against realizations of the predictions, in this case three.

make three realizations of the predictions
y1 <- x + rnorm(length(x), mean = 0, sd = 2)
y2 <- x + rnorm(length(x), mean = 0, sd = 4)
y3 <- x + rnorm(length(x), mean = 0, sd = 6)

yAll <- cbind(y1, y2, y3)

plot using matplot()
matplot(x, yAll,

xlab = "Observed /%",
ylab = "Predicted /%",
type = "p",
pch = 16)

0 20 40 60 80 100

0
20

40
60

80
10

0

Observed /%

P
re

di
ct

ed
 /%

Fig. 2.4 Scatterplot of x against three realizations of y using the matplot() function and
additional arguments

Figure 2.4 shows the three realizations of y plotted against x. Each y has different
colours. The colours can be specified by adding a col argument and by adding a
vector of colour equal to the number of y variables.

Another type of figure that we use in this book is the histogram. The histogram
represents the range of the data against the frequency of the data for each specific

24 2 Getting Started with R

interval. The hist() function can be used for this purpose. Like the plot()
function, additional arguments can be provided to complement the default plotting
options. We can make a histogram of a vector of numeric values sampled from a
normal distribution with mean 0 and standard deviation of 1 (Fig. 2.5).

create a vector of size 100
vec <- rnorm(100)

hist(vec,
main = "Example histogram",
xlab = "Data range")

Example histogram

Data range

Fr
eq

ue
nc

y

−2 −1 0 1 2 3

0
5

10
15

20
25

Fig. 2.5 Example histogram from a sample of size 100 of the normal distribution

2.6 Documentation and Help

It is common to ask for help when writing or implementing R codes. One of the
great advantages of R is the large network of people using it and providing books,
tutorials, examples and forum to answer questions. Within each package, some
help is provided. The documentation related to a specific function is attained by
typing help() in the console, for example, help(rnorm) provides help on the
rnorm function by displaying the default package information on the function. In
the package information, each argument of the function is describe along with the

References 25

object requirement (e.g. it must be a matrix or data frame). For specific packages, the
authors may provide a vignette, which are guided scripts with extended descriptions
and examples to use the functions and data of the package. To obtain a list of
available vignettes, you can type vignette() into the console. Vignettes are
open from R using the operator ?? in front of a package name and then clicking
the vignette if available.

More general resources are found online, for example, by typing a description
of the problem in a search engine. It is very likely that someone already found an
answer to your question.

For documentation, you can find the official R manuals and other specific
documentation under https://cran.r-project.org/other-docs.html or Quick-R. The R
community is also very active on forum, and after searching that your question
has not yet been answered, you can potentially ask one in the Stackoverflow R
community.

References

Moeys J (2018) The soil texture wizard: R functions for plotting, classifying, transforming and
exploring soil texture data. R package soiltexture Vignette, version 1.5.1.

Venables WN, Smith DM, Team RDC (2009) An introduction to R. Network Theory Limited,
Bristol

https://cran.r-project.org/manuals.html
https://cran.r-project.org/other-docs.html
https://www.statmethods.net/index.html
https://stackoverflow.com/questions/tagged/r

Chapter 3
Materials

This chapter describes the datasets and R packages used in the book. A total of
five datasets are provided and described. They originate from several studies and
are made available through a book-associated R package. Most R functions used
in this book are either provided in the text or available online in R packages. For
some large and complicated functions, we included them in the book-associated R
package, which is called soilspec. The package contains also the data that are
described in the next section. Further instructions to install the package and the set
of functions it contains are provided at the end of this chapter.

3.1 Datasets

3.1.1 The Geeves Dataset

The Geeves dataset (Geeves et al. 1994) is a soil survey containing 391 soil samples
collected in the wheatbelt of southern New South Wales and northern Victoria,
Australia. The area is about 5000 km2 with a cool temperate climate. The elevation
ranges from about 40 to 320 metres above sea level. The main soil types are
Chromosols, Dermosols, Kandosols and Sodosols according to the Australian soil
classification system or Luvisols, Lixisols and Solonetz according to the WRB
system (Minasny et al. 2009). The soil samples were collected between 0 and 100 cm
during the year 1994. A map of the spatial locations of the soil samples is provided
in the supplementary material in Tang et al. (2020). Each soil sample was air-dried
(40◦C), crushed and passed through a 2 mm sieve.

The reflectance spectra was obtained in the range 350–2500 nm at 1 nm reso-
lution using an AgriSpecTM instrument with a contact probe (Analytical Spectral
Devices, Boulder, Colorado, USA). A Spectralon (Labsphere Inc., North Sutton,
N.H., USA) was used as reflectance standard. Each spectrum in the dataset is a

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. M. J.-C. Wadoux et al., Soil Spectral Inference with R, Progress in Soil Science,
https://doi.org/10.1007/978-3-030-64896-1_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64896-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-64896-1_3

28 3 Materials

wavelength-average of 40 scans. Besides averaging, the spectra used in this book
have not been pre-processed.

Soil organic carbon (SOC), clay, silt and sand were analysed in the laboratory
using standard methods. SOC was analysed by the dry-combustion method (Nelson
and Sommers 1996) and is reported in g 100 g−1. The values of the SOC range from
0.06 to 12.74 g 100 g−1. The soil does not contain inorganic carbon. The hydrometer
method (Gee and Bauder 1986) was used for the particle size distribution, and their
relative quantity was converted to mass percent. Clay content varies from 5% to
74%, silt content from 2% to 54% and sand content from 14% to 91%.

3.1.2 Soil Mineral Reference Spectra

The soil mineral reference spectra used in this book is a set of 12 spectra of specific
mineral compounds measured by diffuse-reflectance laboratory spectrometers in
the wavelength range 350–2500 nm. The reference spectra (Kokaly et al. 2017)
are made freely available by the USGS through their website. The minerals are
purified material so that each reference spectrum contains unique spectro-chemical
links related to chemical structure of the mineral. We collected the reference spectra
at the Base Spectra library for clay minerals including kaolinite (KGa-2), illite
(GDS4), smectite (SWy-1), kaolinite-smectite 50/50 mixture (H89-FR-2), goethite
(GDS240) and haematite (GDS576) (Clark et al. 2007). We did not apply any pre-
processing to the spectra. The full specifications and methods for scanning are
detailed in Kokaly et al. (2017).

3.1.3 Soil Spectra and Colour

The soil spectra and colour dataset is a small set of vis-NIR spectra (wavelength
range 350–2500 nm) collected during the Summer of 2013 from a soil profile located
at the DEDJTR Rutherglen Centre. The Rutherglen area, situated North-East of
Australia in the state of Victoria, is best known for its viticulture industry. The vis-
NIR spectra were collected in situ with measurements made every 10 cm down to
profile. In addition to the spectra, a coloured picture of each soil sample was taken
in the laboratory.

3.1.4 Spectra for Standardization

This dataset comprises vis-NIR spectra of a standard material described in Ben
Dor et al. (2015). The specific sample is called ‘Lucky Bay’ and contains (white-
coloured) sand material collected from a homogeneous sand dune situated at

https://crustal.usgs.gov/speclab/QueryAll07a.php

3.2 R Packages 29

Lucky Bay in southwestern Australia. This standard material can be requested
from the authors of (Ben Dor et al. 2015) and comes with an associated vis-NIR
spectrum measured with their instrumentation and using their published protocol.
The instrument and protocol are used to benchmark other spectrometers. The first
spectrum of this dataset is the benchmark spectrum. The other two spectra of the
dataset were collected with two different vis-NIR spectrometers: (1) Analytical
Spectral Devices (ASD) AgricSpecTM spectroradiometer and (2) Spectral Evolution
PSR+ 3500 field portable spectroradiometer. Both spectrometers collect high-
resolution vis-NIR spectra at 1 nm resolution with a spectral range of 350–2500 nm.

3.1.5 Spectra with Moisture

This dataset contains a subset of the Geeves soil survey data in which the soil
samples were scanned at different soil moisture contents. This dataset can be used
to illustrate how to remove the moisture effect from infrared spectra using the study
of Minasny et al. (2011). A total of 100 soil samples were randomly selected (out
of 391) and wetted to reach a sticky point. The samples were then dried in the
laboratory for 24 hours. There are three sets of spectra data with different moisture
content, categorized as follows:

• absorbance spectra for soil after being wetted (average moisture 12%).
• absorbance spectra for wetted soil after being air-dried for 1 day (average

moisture 9%).
• absorbance spectra for soil under air-dried condition (average moisture 5%).

3.2 R Packages

Recall that a package is installed by the install.packages(" ") function
and loaded by library(). Once loaded into the R session, it is possible to obtain
information of the packages and help on the functions using:

display the description of the stats package
packageDescription("stats")

open the documentation and information on the package
help(package = "stats")

In addition to soilspec, to follow the contents of this book, some other
existing packages also need to be installed and loaded. This can be done with the
following code.

http://www.asdi.com/about-us/news/asd-introduces-agrispec
http://www.spectralevolution.com/portable_spectroradiometer_remote_sensing.html

30 3 Materials

specify all the packages used in the book
myPackages <- c("asdreader", "RColorBrewer","wavethresh", "MASS",

"pracma", "plyr", "signal", "SDMTools",
"tripack", "resemble", "splancs", "sp",
"scatterplot3d", "prospectr", "RcppArmadillo", "matrixStats",
"clhs", "viridis", "viridisLite", "caret",
"ggplot2", "soiltexture","randomForest","pls",
"Cubist", "lattice", "robustbase", "mvoutlier",
"devtools")

define which packages are not installed in the current computer
notInstalled <- myPackages[!(myPackages%in%installed.packages()[, "Package"])]

install the missing packages
if(length(notInstalled)>0) install.packages(notInstalled)

3.2.1 Soil Science and Pedometrics

aqp The aqp package stands for algorithms for quantitative pedology (Beaudette
et al. 2013) and was first released in CRAN in 2010. It is the most active pedometrics
R package and has had more than 20 updates since its creation. The package has
functions to represent the soil profile in three dimensions (spatially and by depth) in
a systematic way and functions for numerical classification (e.g. by attribute-space
distance), discrimination, clustering and visualization.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/aqp/.

soiltexture The soiltexture package contains functions for soil texture plot-
ting, categorization and transformation. The package aims at providing tools for
converting soil particle size fractions to texture classes, to transform soil texture
classes between classification systems around the world and to plot a soil texture
triangle.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/soiltexture/.

3.2.2 Spectroscopy

ChemoSpec The ChemoSpec package was created by Bryan A. Hanson from
DePauw University in 2011. ChemoSpec brings together a set of functions for
analysis of spectral data from different spectrometers such as nuclear magnetic
resonance, infrared or Raman. The package provides functions for exploratory
analysis, visualization, basic spectra correction, hierarchical clustering and other
dimensional reduction tools. One objective of the package is to be user-friendly by
providing large sets of examples.

https://cran.r-project.org/web/packages/aqp/
https://cran.r-project.org/web/packages/aqp/
https://cran.r-project.org/web/packages/soiltexture/
https://cran.r-project.org/web/packages/soiltexture/

3.2 R Packages 31

The package description and documentation is available online at https://cran.r-
project.org/web/packages/ChemoSpec/.

spectacles The spectacles package was previously called inspectr.
spectacles brings together a set of functions for dealing with spectral data
(with and emphasis in soil data). This package implements the Spectra and
SpectraDataFrame object classes in an object-oriented programming (OOP;
see Bengtsson 2003) framework. The package focuses on the manipulation of
spectral data and their associated laboratory measurements and enables the user
to apply their own algorithms, pre-processing and filtering as well as exporting
visualizations as ggplot objects that can be customized afterwards.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/spectacles/.

chemometrics The chemometrics package is the companion to the book
Introduction to Multivariate Statistical Analysis in Chemometrics (Varmuza and
Filzmoser 2016). This package includes a selection of functions covering different
aspects of spectral data manipulation, including sampling considering the multivari-
ate nature of spectra, outlier detection, filtering, pre-processing and visualization.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/chemometrics/.

ChemometricsWithR The ChemometricsWithR package was written as a
companion of the book Chemometrics with R – Multivariate Data Analysis in the
Natural Sciences and Life Sciences (Wehrens 2011). The package was removed
from CRAN for some time but reappeared in 2019 as the second edition of the
book was soon to be released.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/ChemometricsWithR/.

prospectr The prospectr package is written entirely by soil scientists and
provides a large set of functions for spectra correction and pre-processing. The
package is also an important reference for the implementation of sampling designs
applied to infrared spectra.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/prospectr/.

hyperSpec The hyperSpec package covers different types of algorithms for
hyperspectral, visible, near- and mid-infrared, nuclear magnetic resonance or X-
ray fluorescence spectroscopy, among others. This package also offers an OOP
framework with S4 classes objects called hyperSpec. As with many other
packages, the main functionality of the package covers pre-processing, sampling,
dimensional reduction, plotting and modelling.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/hyperSpec/.

https://cran.r-project.org/web/packages/ChemoSpec/
https://cran.r-project.org/web/packages/ChemoSpec/
https://cran.r-project.org/web/packages/spectacles/
https://cran.r-project.org/web/packages/spectacles/
https://cran.r-project.org/web/packages/chemometrics/
https://cran.r-project.org/web/packages/chemometrics/
https://cran.r-project.org/web/packages/ChemometricsWithR/
https://cran.r-project.org/web/packages/ChemometricsWithR/
https://cran.r-project.org/web/packages/prospectr/
https://cran.r-project.org/web/packages/prospectr/
https://cran.r-project.org/web/packages/hyperSpec/
https://cran.r-project.org/web/packages/hyperSpec/

32 3 Materials

resemble Implementation of a memory-based learning algorithm, where close
samples (based on a particular type of distance, usually Mahalanobis) are selected
for the modelling operation to create a local model. The package resemble has
also functions to compute spectral similarity/dissimilarity, e.g. cosine dissimilarity
or spectral angle mapper.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/resemble/.

simplerspec The package provides a set of functions for spectral data handling
and processing using the newly developed R pipe %>% operator. The package
simplerspec contains most common functions for spectra loading and pre-
processing, multivariate calibration and plotting. The functions can be combined
and integrated in a modelling workflow.

The package description and documentation is available online at https://github.
com/philipp-baumann/simplerspec.

mvoutlier The mvoutlier package has been developed by the author of the
chemometrics package. It contains function for multivariate outlier detection
based on robust statistics.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/mvoutlier/.

3.2.3 Modelling

pls The package pls has functions for both principal component analysis and
partial least squares (PLS) regression. PLS is probably the most used model for
linear dimension reduction.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/pls/.

Cubist This package was created by Ross Quinlan as a successor of C4.5 and
C5 software packages. The cubist model implemented in Cubist is a tree-based
model which has each terminal leaves fitted by a linear regression. Cubist has been
successfully implemented in spectroscopy for building a model between infrared
spectra and associated values of a soil property.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/Cubist/.

e1071 The e1071 package is the first and leading implementation of support
vector machines in R. e1071 also brings together a set of statistical techniques
including clustering, multivariate distance calculation and plotting tools.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/e1071/.

https://cran.r-project.org/web/packages/resemble/
https://cran.r-project.org/web/packages/resemble/
https://github.com/philipp-baumann/simplerspec
https://github.com/philipp-baumann/simplerspec
https://cran.r-project.org/web/packages/mvoutlier/
https://cran.r-project.org/web/packages/mvoutlier/
https://cran.r-project.org/web/packages/pls/
https://cran.r-project.org/web/packages/pls/
https://cran.r-project.org/web/packages/Cubist/
https://cran.r-project.org/web/packages/Cubist/
https://cran.r-project.org/web/packages/e1071/
https://cran.r-project.org/web/packages/e1071/

3.2 R Packages 33

RandomForest The package provides an implementation of the random forest
algorithm, an extension of decision trees. It follows the original implementa-
tion from Breiman (2001) and additionally provides functions for computing the
model variable importance and to tune the hyperparameters. Note that many
implementations of the random forest algorithm are available in R (e.g. ranger,
randomForestSRC, xgboost or Rborist), each providing different function-
alities.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/RandomForest/.

signal The signal package implements several digital signal processing algo-
rithms originally created in Matlab and its gnu version (Octave). This package is
used in spectroscopy for its smoothing filters functions such as the Savitzky-Golay
filter.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/signal/.

caret The package name is an acronym for classification and regression training.
caret is a package that implements a unified modelling framework capable of
interacting with several other modelling packages. The package activity dates to
2007, and it has been consistently updated over the years. By 2020, this package
enables the implementation of more than 230 modelling algorithms.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/caret/.

3.2.4 Plotting

base The base package is the default plotting set of function in R. The package
has a set of plotting functionalities to create high-quality and reproducible two-
dimensional visualization with many formatting options.

The package description and documentation is available online at https://cran.r-
project.org/web/packages/base/.

ggplot2 The ggplot2 package is the R implementation of Leland Wilkinson’s
‘Grammar of Graphics’. This package offers visualization functions based on a
structured way of plotting using overlapping layers. It is currently considered as one
of the leading plotting packages for data visualization in R. The package description
and documentation is available online at https://cran.r-project.org/web/packages/
ggplot2/.

https://cran.r-project.org/web/packages/RandomForest/
https://cran.r-project.org/web/packages/RandomForest/
https://cran.r-project.org/web/packages/signal/
https://cran.r-project.org/web/packages/signal/
https://cran.r-project.org/web/packages/caret/
https://cran.r-project.org/web/packages/caret/
https://cran.r-project.org/web/packages/base/
https://cran.r-project.org/web/packages/base/
https://cran.r-project.org/web/packages/ggplot2/
https://cran.r-project.org/web/packages/ggplot2/

34 3 Materials

3.3 The soilspec Book Package

The data and functions used in this book have been compiled into a single R package
made available in a GitHub repository. This section explains how to install the
package, a brief description of the functions and the datasets it contains.

3.3.1 Installing the Package

This R package will have a permanent online public copy on a GitHub repository.
The user can download and install this package by using the install_github()
function from the devtools package as follows.

load the required package
library(devtools)

install the soilspec package from GitHub
devtools::install_github("AlexandreWadoux/soilspec", force = FALSE)

This package has a set of documented functions with examples and datasets. As
any other package, the user can refer to the documentation by using the help()
function in the R Console. The datasets used in the book also have a description in
their respective help files and are briefly described in the following sections.

3.3.2 Functions

• chBLCext: function to fit a convex hull to the region of interest. The regions
of interest are absorbance or reflectance of some secondary clay minerals
or iron oxides from vis-NIR spectra. The function contains three arguments
and returns five values. The function argument description is obtained by
?soilspec::chBLCext.

• css: function to determine the optimal number of spectra to be sent to the
laboratory for soil analysis. This function works by comparing the probability
density function (pdf) of the population to that of the sample set to assess
the representativeness of the sample. The two pdfs are compared based on
the mean Euclidean distance (msd). The function contains eight arguments
and returns three values. The function argument description is obtained by
?soilspec::css.

• eval: function to compute of a set of accuracy measures between observed
and predicted continuous values or classes. The user must specify the type of
variable, either quantitative or categorical. For both types of variable, a set
of accuracy measures is reported. The list of accuracy measures is provided
by writing ?soilspec::eval. The function contains three arguments and
returns a number of accuracy measures.

3.3 The soilspec Book Package 35

• myImagePlot: function to plot an image from a matrix. This simple function
takes as single argument a matrix and returns a plot of this matrix. The function
details are accessed by writing ?soilspec::myImagePlot.

• spectra2colour: this function converts spectra reflectance into RGB and
Munsell colours. The function takes a single argument as input, a matrix
or data frame of the spectra and returns the colour for both RGB and
Munsell charts. The function returns a data frame where each row is the
spectrum followed by the colour. The function description is obtained by
?soilspec::spectra2colour.

3.3.3 Datasets

• datEPO: subset of the Geeves soil survey data in which the soil samples have
been scanned at varying moisture contents. The dataset is a list with four data
frames. Description of each data frame is provided in the R documentation
by writing ?soilspec::datEPO and in Sect. 3.1.5. This dataset is used in
Chap. 10.

• datsoilspc: spectra and associated values of laboratory-analysed soil prop-
erties from the soil samples described in Geeves et al. (1994). The data provided
is a data frame with 5 columns and 391 rows. The first four columns contain
values of the clay, silt, sand and total carbon (described in Sect. 3.1.1). The fifth
column is a matrix with the infrared spectra. The documentation can be accessed
by writing ?soilspec::datsoilspc. The datsoilspc dataset is used in
almost all chapters of the book.

• datStand: vis-NIR spectra of a standard material as described in Ben Dor et al.
(2015). The data are provided as a list with four data frames. The documentation
and description of each of them are provided in Sect. 3.1.4 and by writing
?soilspec::datStand. The datStand dataset is used in Chap. 10.

• mineralRef: a data frame containing specific mineral compounds mea-
sured by laboratory spectrometers. This dataset is used in Chap. 6. The data
frame contains 13 columns. The first is the wavelength and the others are 12
spectra from mineral compounds. The full description is provided by writing
?soilspec::mineralRef or by reading Sect. 3.1.2.

• rutherglenNIR: small set of vis-NIR spectra collected in the Rutherglen area.
The spectra provided in this dataset are used to derive their mineral composition
in Chap. 6. The documentation is provided in ?soilspec::rutherglenNIR.

• specSoilCol: small set of vis-NIR spectra with value of the soil horizon and
soil type. In addition to the spectra, coloured pictures of the soil samples were
made. They are provided in Chap. 6. This enables the comparison of the colour
retrieved from the spectra and that from the picture of the soil samples. The
documentation is provided in ?soilspec::specSoilCol.

36 3 Materials

References

Beaudette DE, Roudier P, O’Geen AT (2013) Algorithms for quantitative pedology: a toolkit for
soil scientists. Comput Geosci 52:258–268

Ben Dor E, Ong C, Lau IC (2015) Reflectance measurements of soils in the laboratory: standards
and protocols. Geoderma 245–246:112–124

Bengtsson H (2003) The R. oo package-object-oriented programming with references using
standard R code. In: Hornik K, Leisch F, Zeileis A (eds) Proceedings of the 3rd international
workshop on distributed statistical computing (DSC 2003), Vienna

Breiman L (2001) Random forests. Mach Learn 45:5–32
Clark RN, Swayze GA, Wise RA, Livo KE, Hoefen TM, Kokaly RF, Sutley SJ (2007) USGS digital

spectral library splib06a. US Geological Survey
Gee GW, Bauder JW (1986) Particle-size analysis. In: Methods of soil analysis: part 1 Physical

and mineralogical methods, vol 5. American Society of Agronomy, Madison, pp 383–411
Geeves GW, Cresswell HP, Murphy BW, Gessler PI, Chartres CJ, Little IP, Bowman GM (1994)

Physical, chemical and morphological properties of soils in the wheat-belt of southern NSW
and northern Victoria. NSW Department of Conservation; Land Management/CSIRO Division
of Soils Occasional Report, CSIRO

Kokaly RF, Clark RN, Swayze GA, Livo KE, Hoefen TM, Pearson NC, Wise RA, Benzel WM,
Lowers HA, Driscoll RL, others (2017) USGS spectral library version 7. US Geological Survey

Minasny B, McBratney AB, Bellon-Maurel V, Roger J-M, Gobrecht A, Ferrand L, Joalland S
(2011) Removing the effect of soil moisture from NIR diffuse reflectance spectra for the
prediction of soil organic carbon. Geoderma 167:118–124

Minasny B, McBratney AB, Pichon L, Sun W, Short MG (2009) Evaluating near infrared
spectroscopy for field prediction of soil properties. Soil Res 47:664–673

Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. Methods Soil
Anal Part 3 Chem Methods 5:961–1010

Tang Y, Jones E, Minasny B (2020) Evaluating low-cost portable near infrared sensors for rapid
analysis of soils from south eastern australia. Geoderma Reg 20:e00240

Varmuza K, Filzmoser P (2016) Introduction to multivariate statistical analysis in chemometrics.
CRC Press, Boca Raton

Wehrens R (2011) Chemometrics with R: multivariate data analysis in the natural sciences and life
sciences. Springer Science & Business Media, Berlin

Chapter 4
Data Handling of Spectra

This chapter explains with examples how to load and handle spectroscopic data
in R. Most spectroscopic data are stored in universal and easily readable formats.
Once loaded into R, the user must perform some basic data cleaning, visual
examination and filtering of redundant information. Once all these basic operations
are performed, the user can save the data in a format that will allow subsequent
analyses to be implemented.

The set of packages used in this chapter are installed using the lines below. The
book-associated soilspec package is also required; see Chap. 3 for information
on its installation.

#specify all the packagesused in the chapter and installthem if theyare not already
myPackages <- c("asdreader", "RColorBrewer")

define which packages are not installed in the current computer
notInstalled <- myPackages[!(myPackages %in% installed.packages()[, "Package"])]

install the missing packages
if(length(notInstalled)) install.packages(notInstalled)

4.1 Importing Data

Spectroscopic data are most often saved in the tabular format, either with the .csv
or .txt extension. The .csv extension represents tabular where each value from
a cell in a row is separated by a comma. The .csv is often preferred over other
formats because there is no need to specify how one wants to separate the values
when saving the file or how to load the table. The .txt extension, conversely, is
a standard text document. For spectroscopic data, it requires the user to specify the
nature of separation between values. They are most often separated by a comma, a
semicolon or a tab character (a space), but any separation can be used.

Let us make an example by loading data from a .csv or .txt document.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. M. J.-C. Wadoux et al., Soil Spectral Inference with R, Progress in Soil Science,
https://doi.org/10.1007/978-3-030-64896-1_4

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64896-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-64896-1_4

38 4 Data Handling of Spectra

require(soilspec)

add the path to the .csv data
path <- system.file("extdata", "soilspec.csv", package = "soilspec")

read a .csv file
soilspec <- read.csv(path)

display the first ten column names
names(soilspec)[1:10]

[1] "X" "clay" "silt" "sand" "Total_Carbon"
[6] "X350" "X351" "X352" "X353" "X354"

add the path to the .txt data
path <- system.file("extdata", "soilspec.txt", package = "soilspec")

read a .txt file, using the tab delimiter
soilspec <- read.delim(path,

header = TRUE,
sep = "\t")

display the first ten column names
names(soilspec)[1:10]

[1] "X" "clay" "silt" "sand" "Total_Carbon"
[6] "X350" "X351" "X352" "X353" "X354"

We see that the spectra column names start by X. This has been added when
saving because the column names cannot be numeric. We also notice that the first
column is the row number that was saved with the table. This can easily be removed.

delete the first column
soilspec <- soilspec[,-1]

To facilitate further processing and visualization of the spectra in the table, we
coerce the spectra into a single data frame that we coerce to a single column.

put the spectra into a single dataframe
spec <- soilspec[grep("X", names(soilspec), value = TRUE)]

remove the spectra from the current dataframe
soilspec <- soilspec[, -which(names(soilspec) %in% grep("X", names(soilspec),

value = TRUE))]

add the spectra to the dataframe
soilspec$spc <- spec

The dataset is now much easier to read.

names(soilspec)

[1] "clay" "silt" "sand" "Total_Carbon" "spc"

4.2 Loading ASD Data 39

We would like to remove the X in front of the column names of the spectra
wavelengths. This will make easier plotting in a later step.

take each column name from the spectra dataset
oldNames <- grep("X", names(soilspec$spc), value = TRUE)

remove the "X" and make a numeric vector
wavelength <- as.numeric(substring(grep("X", names(soilspec$spc), value = T), 2, 20))

change the name of the columns of the spectra
colnames(soilspec$spc) <- wavelength

display the first ten column names
colnames(soilspec$spc)[1:10]

[1] "350" "351" "352" "353" "354" "355" "356" "357" "358" "359"

4.2 Loading ASD Data

Spectroscopic data may be collected and stored in a specific format. One of the most
common is the .asd format for spectra collected using ASD spectrometers. The
acronym ASD stands for analytical spectral devices, and data stored in the .asd
format can be loaded in R using specific functions. The .asd files contain both
the spectra and the metadata. We use the implementation provided in the package
asdreader (Roudier 2017). The package provides some files for the example
(Fig. 4.1).

load the required package
require(asdreader)

load the path to some example files
pathExampFiles <- asd_file()
print(pathExampFiles) # print author’s path to file

[1] "C:/Users/awad2791/Documents/R/win-library/3.6/asdreader/extdata/soil.asd"

run the function to read the ".asd" files onto R
spec <- get_spectra(pathExampFiles, type = "reflectance")

plot the spectrum
plot(as.numeric(spec),

type = "l",
ylab = "Reflectance",
xlab = "Index")

40 4 Data Handling of Spectra

0 500 1000 1500 2000

0.
1

0.
2

0.
3

0.
4

0.
5

Index

R
ef

le
ct

an
ce

Fig. 4.1 Example spectrum after loading the data with the asdreader function. Note that the
x-axis is the index and not the wavelength. The information on the wavelength is accessed in the
metadata file

We can also obtain the metadata stored along the spectra.

obtain the metadata stored in the ".asd" file
specMeta <- get_metadata(pathExampFiles)

display the information contained in the metadata
names(specMeta)

[1] "co" "comments" "when"
[4] "program_version" "file_version" "dc_corr"
[7] "dc_time" "data_type" "ref_time"
[10] "ch1_wavel" "wavel_step" "data_format"
[13] "channels" "it" "fo"
[16] "dcc" "calibration" "instrument_num"
[19] "ip_numbits" "flags" "dc_count"
[22] "ref_count" "sample_count" "instrument"
[25] "bulb" "swir1_gain" "swir2_gain"
[28] "swir1_offset" "swir2_offset" "splice1_wavelength"
[31] "splice2_wavelength"

Note that other functions exist for loading .asd data into R. Some functions
are specific to a spectrometer. This means that the asdreader function may not
work for all files saved in the .asd format and that adaptation of the source codes
is sometimes required. As an example, the package prospectr provides another
function called readASD for loading .asd data, but only for the spectra acquired
with an ASD FieldSpec Pro (ASDI, Boulder, CO) spectroradiometer.

4.3 Plotting the Spectra 41

4.3 Plotting the Spectra

We now want to plot the spectra contained in soilspec$spc. This can be done
using the graphics package with the matplot function. The matplot function
plots the columns of one vector (i.e. the wavelength) against the columns of a matrix,
in our case the spectral reflectance values.

The data soilspec$spc have already been prepared in a file and are saved in
the soilspec package. We can load it using data("datsoilspc") and plot
the spectra (Fig. 4.2).

load the example data
data("datsoilspc")

plot example spectra
matplot(x = colnames(datsoilspc$spc), y = t(datsoilspc$spc),

xlab = "Wavelength /nm",
ylab = "Reflectance",
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

Wavelength /nm

R
ef

le
ct

an
ce

Fig. 4.2 Example set of 391 soil spectra collected by an ASD FieldSpec in the wheatbelt of
Australia, covering approximately a 5,000 km2 area (see also Geeves et al. 1994)

In the matplot function, the arguments x and y represent the variables to be
plotted on the x- and y-axes. The xlab and ylab arguments specify the names of
the x- and y-axes, type = "l" stands for line (type = "p" for points), lty =
1 means that we plot solid lines, and col is the colour of the lines. In our case, we
use the additional rgb function to specify the exact colour that we want, given the

42 4 Data Handling of Spectra

rgb values and a transparency value (alpha = 0.3). We would like to add colours
to differentiate spectra with high or low values of the clay content. The clay content
is in the column datsoilspc$clay and ranges from 5% (low clay content)
to 74% (high clay content). We use the colour palette from the RColorBrewer
package (Fig. 4.3).

library(RColorBrewer)

take three colours from the "RdBu" colour scale
cols = brewer.pal(3, "RdBu")

make a function which convert the three colours to a gradient of colours
pal = colorRampPalette(cols)

order the values of clay from the dataframe to find their increasing order
order = findInterval(datsoilspc$clay, sort(datsoilspc$clay))

plot spectra
matplot(x = colnames(datsoilspc$spc), y = t(datsoilspc$spc),

xlab = "Wavelength /nm",
ylab = "Reflectance",
type = "l",
lty = 1,
col = pal(nrow(datsoilspc))[order])

add a legend to the plot
legend("topleft",

col = pal(2),
pch = 19,
legend = c("Low clay content", "High clay content"))

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

Wavelength /nm

R
ef

le
ct

an
ce

Low clay content
High clay content

Fig. 4.3 Reflectance soil spectra from Geeves et al. (1994) where the colour represents the amount
of clay (low to high clay content) derived from conventional laboratory soil analysis

4.4 Averaging the Replicates 43

We can further plot a specific area of the spectra by specifying the argument
ylim. Let us plot the wavelength range of kaolinite (a clay mineral) at around 2078–
2267 nm with red for low clay content and blue for high clay content (Fig. 4.4).

#Plot Kaolin bands
matplot(x = colnames(datsoilspc$spc), y = t(datsoilspc$spc),

xlab = "Wavelength /nm",
ylab = "Reflectance",
type = "l",
lty = 1,
col = pal(nrow(datsoilspc))[order],
xlim = c(2078, 2267))

2100 2150 2200 2250

0.
0

0.
2

0.
4

0.
6

0.
8

Wavelength /nm

R
ef

le
ct

an
ce

Fig. 4.4 Spectral reflectance range of the kaolinite absorption (2078–2267 nm). The colour
represents the amount of clay (low to high clay content) contained in the soil sample associated to
the spectra

4.4 Averaging the Replicates

In many cases, each soil sample may be scanned several times (replicates). It
is generally good practice to do this to account for soil heterogeneity, natural
instrument measurement variations and human error during data collection. In
practice, one may want to merge the replicates to smooth out the spectrometer error.
Several packages provide functions to aggregate the replicates of the spectra, such
as the spectacles package. In this example, we will aggregate the spectra using
the base stats package and the aggregate function.

44 4 Data Handling of Spectra

Let us try the function by taking the mean of replicates. Since our dataset does
not have replicates, we make an example by assuming that our dataset is composed
of spectra collected on 23 different soil samples (23 is convenient because it is
a multiple of 391, the total number of spectra available). We therefore start by
assigning a number related to each soil sample.

prepare an example, assign 23 different id to our spectral data
each id is a soil sample
sampId <- rep(1:23, each=nrow(datsoilspc)/23)
datsoilspc$id <- sampId

in this example, we assume that we have spectra from 23 different soil samples
unique(datsoilspc$id)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

In this example, each id (soil sample) has several replicates of the spectra.

show number of replicates for the first soil sample
nrow(datsoilspc[datsoilspc$id == 1,])

[1] 17

Now that we have an example dataset containing replicates, we can average these
replicates using the aggregate function.

average the replicates of the spectra by soil sample id
datsoilspcAvSpc <- aggregate(datsoilspc$spc,

average using the id as variable
by = list(datsoilspc$id),
specify the data
data = datsoilspc$spc,
specify the function
we take the mean of the replicates
FUN = mean)

ensure that the number of row is equal the number of soil samples
nrow(datsoilspcAvSpc)

[1] 23

We can now plot the replicate-averaged spectra (Fig. 4.5).

plot spectra averaged by replicates
matplot(x = colnames(datsoilspcAvSpc[,-1]), y = t(datsoilspcAvSpc[,-1]),

xlab = "Wavelength /nm",
ylab = "Reflectance",
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))

4.5 Converting Units of Measurement 45

500 1000 1500 2000 2500

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Wavelength /nm

R
ef

le
ct

an
ce

Fig. 4.5 Example set of 23 reflectance spectra (one for each soil sample) obtained after averaging
17 replicates that were available for each soil sample

4.5 Converting Units of Measurement

Spectrometers quantify the amount of energy absorbed by a soil sample. This is
measured in terms of light intensity as a function of the wavelength. Spectra are
usually provided in terms of the latter. Depending on the type of spectra, one may
encounter differ units of measurements. For example, the vis-NIR spectrum is often
reported in micrometre (µm) or nanometre (nm). Conversion is made as follows:

• 1 micrometre (µm) = 1000 nanometres (nm)
• 1 nanometre (nm) = 0.001 micrometre (µm)

Let us, for example, convert the aggregated spectra from nm to µm. The values
of the column names need to be divided by 1000.

take column names as a numeric vector
namesNm <- as.numeric(colnames(datsoilspcAvSpc[,-1]))

convert from nanometer to micrometer
namesUm <- namesNm/1000

Let us now plot the spectra with the new units of measurement in µm (Fig. 4.6).

plot spectra averaged by replicates
matplot(x = namesUm, y = t(datsoilspcAvSpc[,-1]),

xlab = expression("Wavelength /" * mu * m),
ylab = "Reflectance",
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))

46 4 Data Handling of Spectra

0.5 1.0 1.5 2.0 2.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Wavelength /µm

R
ef

le
ct

an
ce

Fig. 4.6 Example set of 23 reflectance spectra with the measurement units in µm

In addition to the wavelength, some spectra are reported in wavenumber. The
wavenumber is the reciprocal of the wavelength, i.e. how many wavelengths fit into
one unit of distance (i.e. cm). Mid-infrared spectra are usually reported in inverse
wavelength (i.e. cm−1). Conversion from wavelength to wavenumber is made by
λ = 1/k where λ is the wavelength and k is the wavenumber, while conversion
from wavenumber to wavelength is made by k = 1/λ. The wavenumber k has units
of distance (e.g. cm−1). What is important to realize is that the conversion does not
change the distance measure. If the wavenumber is in cm−1, then the wavelength
will be in cm, or if the wavelength is in nm, the wavenumber will be in nm−1. For
example, to convert the wavelength 350 nm to cm−1, the nm unit should first be
converted to cm: 1 nm = 1−7 cm; hence, 350 × 1−7 = 0.000035. 350 nm is equal to
0.000035 cm which in cm−1 is 1/0.000035 = 28571.43. Let use convert the nm to
cm−1 from the aggregated spectra.

take column names as a numeric vector
namesNm <- as.numeric(colnames(datsoilspcAvSpc[,-1]))

convert from nanometre to cm-1
namescm <- namesNm*1e-7
namescmInv <- 1/namescm

Let us now plot the spectra with the new units measurement in cm−1 (Fig. 4.7).

plot spectra averaged by replicates
matplot(x = namescmInv, y = t(datsoilspcAvSpc[,-1]),

xlab = expression("Wavenumber /" * cm^-1),
ylab = "Reflectance",
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))

4.6 Exporting the Spectra 47

5000 10000 15000 20000 25000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Wavenumber /cm−1

R
ef

le
ct

an
ce

Fig. 4.7 Example set of 23 reflectance spectra with the measurement units in cm−1

4.6 Exporting the Spectra

Once the basic steps of loading the spectra into R and visualizing and averaging
the replicates are completed, if necessary, one can also save the spectra to use it
at later stage. Several options exist to save the spectra. We present three of them:
exporting as a .txt, .csv or .Rdata file. The .txt and .csv have already
been presented earlier in this chapter. We use the same base package to export the
spectra (data frame or matrix format).

export the spectra (data) to a .txt file
write.table(datsoilspcAvSpc,

path and name of the file (with extension .txt)
file = "./datsoilspcavspc.txt",
tab-separated values
sep = "\t",
decimal separator
dec = ".",
write also the column name
col.names = TRUE)

export the spectra (data) to a .csv file
write.csv(datsoilspcAvSpc,

file = "./datsoilspcavspc.csv")

A convenient way to export datasets in R is to use the .Rdata extension.
Multiple objects can be saved (with the specified .Rdata file formats) and will not
be altered in any way when loading them back in R. One drawback is that files with
.Rdata extensions are difficult to open from another software (such as Matlab).

48 4 Data Handling of Spectra

The files are saved using the save() function and loaded in R using the load()
function.

save a file using the .Rdata extension
save(datsoilspcAvSpc,

file = "./datsoilspcavspc.Rdata")

References

Geeves GW, Cresswell HP, Murphy BW, Gessler PI, Chartres CJ, Little IP, Bowman GM (1994)
Physical, chemical and morphological properties of soils in the wheat-belt of southern NSW
and northern Victoria. NSW Department of Conservation; Land Management/CSIRO Division
of Soils Occasional Report, CSIRO

Roudier P (2017) Asdreader: Reading ASD Binary Files in R package version 0.1–3

Chapter 5
Pre-processing of Spectra

Spectral pre-processing techniques aim at improving the quality of the spec-
tra before using them for qualitative analysis or calibration and estimation of
soil properties. When scanning the soil, the sample volume, sample preparation,
measurement method and measuring parameters such as the choice of scanning
time and scanning resolution bring inevitable errors to the recorded spectral data.
Further, when scanning a material with non-uniform particle sizes such as soils, the
reflectance spectrum is often accompanied by scattering noise.

There are several spectral pre-processing methods available in the literature to
ensure that we can use the spectra for inference. The few that are described in this
chapter are most often used in soil spectroscopy. A useful reference that describes
in more detail each of these pretreatments is Buddenbaum and Steffens (2012).

Spectral pre-processing is the first step of spectral data analysis, and possibly the
most important. The reader must be aware that there is no single best method or
sequence of methods for spectral pre-processing. The most suitable methods will
depend, among others, on the quality of the generated (i.e. raw) spectra and on the
sensitivity of the subsequent analysis to random variation in the spectra. A standard
analysis is an iterative procedure in which the impact of the spectral pre-processing
technique is tested jointly with the subsequent analysis (e.g. output of a multivariate
calibration).

In this chapter, we provide examples based on various R packages available
for the purpose of signal and spectral pre-processing. The techniques presented
range from trimming, simple noise removal and derivative techniques to
specific peak removal, baseline correction or continuum removal. This topic
has already been extensively covered in the literature, either in textbooks
(e.g. Wehrens 2011, Chapter 3) or in R package specific vignettes (e.g. in Stevens
and Ramirez-Lopez 2014).

The set of packages used in this chapter are installed using the lines below. The
book-associated soilspec package is also required; see Chap. 3 for information
on its installation.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. M. J.-C. Wadoux et al., Soil Spectral Inference with R, Progress in Soil Science,
https://doi.org/10.1007/978-3-030-64896-1_5

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64896-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-64896-1_5

50 5 Pre-processing of Spectra

specify all the packages used in the chapter and install them if they are
not already
myPackages <- c("wavethresh", "MASS", "pracma", "plyr",

"signal", "prospectr", "RcppArmadillo")

define which packages are not installed in the current computer
notInstalled <- myPackages[!(myPackages %in% installed.packages()[, "Package"])]

install the missing packages
if(length(notInstalled)) install.packages(notInstalled)

In this chapter, we use the raw visible and near-infrared (vis-NIR) spectra
provided by the book-associated soilspec package.

load the required package
library(soilspec)

load the data
data("datsoilspc")

Some important details about these spectra are available when executing the
script: ?datsoilspc. Recall that these spectra are vis-NIR spectra of soils
collected from the agricultural zone of southern New South Wales and northern
Victoria in Australia (Geeves et al. 1994). We get some sense of the data we are
working with by plotting them (Fig. 5.1).

plot the spectra using matplot
matplot(x = colnames(datsoilspc$spc), y = t(datsoilspc$spc),

xlab = "Wavelength /nm",
ylab = "Reflectance",
ylim = c(0, 1),
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wavelength /nm

R
ef

le
ct

an
ce

Fig. 5.1 Example set of 391 reflectance vis-NIR soil spectra from the soilspec package

5 Pre-processing of Spectra 51

Converting data from reflectance values to absorbance values
When the spectra are used to extract soil information by means of modelling, the
spectra are better expressed in terms of absorbance rather than reflectance units
(Gobrecht et al. 2015) so that the chemical components are linearly related to
the spectral wavelengths. Transforming from reflectance to absorbance units is a
non-linear calculation that is expressed as either log(1/XR) or − log(XR) (natural
logarithms are used here) where XR is a matrix of size n×b containing the measured
reflectance, where n is the number of spectra (rows) and b is the number of digital
spectral wavelengths (columns). The script below does the conversion for every
spectrum xi in the dataset. We call the new matrix XA (which means the absorbance
values of the spectra) as datsoilspc$spcA (Fig. 5.2).

change from reflectance to absorbance
datsoilspc$spcA <- log(1/datsoilspc$spc)

plot first spectra
matplot(x = colnames(datsoilspc$spcA), y = t(datsoilspc$spcA),

xlab = "Wavelength /nm",
ylab = "Absorbance",
ylim = c(0, 4),
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))

500 1000 1500 2000 2500

0
1

2
3

4

Wavelength /nm

A
bs

or
ba

nc
e

Fig. 5.2 Example set of 391 absorbance soil spectra from the soilspec package

52 5 Pre-processing of Spectra

5.1 Noise Removal

5.1.1 Spectral Trimming

Trimming spectra is a generic procedure where wavelength ranges with high signal-
to-noise ratio are removed. For example, it is a common convention with vis-NIR
spectra to remove the wavelengths from 350 to 499 nm (ultraviolet to green) and
2451 to 2500 nm because these do not contain much soil information since they
are at the boundary of the range recorded by the sensor. Effectively we want to
retain the wavelengths in the spectral range of 500–2450 nm. Without a common
procedure for performing such an operation, we need to customize a function or
routine ourselves so that this procedure can be easily automated. The function also
needs to be generalizable, i.e. the specification of wavelength regions of interest
needs to be flexible, and complimentary to the input spectral data.

We plot a single spectrum to see whether we need to remove the noisy spectra at
wavelengths from 350 to 499 nm and 2451 to 2500 nm.

plot(colnames(datsoilspc$spcA), datsoilspc$spcA[1,],
type = "l",
ylab = "Absorbance", xlab = "Wavelength /nm",
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 1))

identify the area with large noise
rect(xleft = 300, xright = 450,

ybottom = 2.3, ytop = 2.58,
border = "red", lwd = 1, lty = "dashed")

500 1000 1500 2000 2500

0.
5

1.
0

1.
5

2.
0

2.
5

Wavelength /nm

A
bs

or
ba

nc
e

Fig. 5.3 First spectrum of the dataset provided in the soilspec package. The red rectangle
is an example of area with low signal-to-noise ratio carrying little to no information on soil
properties

5.1 Noise Removal 53

Figure 5.3 clearly shows some noise at the higher and lower range of this
spectrum. In the next step, we build a function to remove these noisy portions.

A function is just a set of general instructions for given specific inputs that when
executed will return a given output or outputs. For R beginners, there is no need
to try to interpret the function below. Note, however, that it requires two inputs:
spectra (the dataset upon which we want to apply the spectral trimming) and
wavlimits (the region of interest that we want to extract). The trimming function
is called trimSpec.

function for trimming spectra or targeting a specific spectral region of interest
trimSpec <- function(spectra, wavlimits){

datawavs <- as.numeric(colnames(spectra))
set the limits
limits <- which(datawavs %in% wavlimits)

mention the index that we keep from the matrix
keptIndex <- seq(limits[1], limits[2], 1)

keep the index selected previously
trimmedSpectra <- spectra[, keptIndex]

return the trimmed spectra
keptNames <- datawavs[keptIndex]
colnames(trimmedSpectra) <- keptNames

return(trimmedSpectra)
}

For our purposes, we want to extract all the spectral data between and including
500 and 2451 nm. Note that we specify this region of interest (wavlimits) as
range(500:2451) which equates simply the integers 500 and 2451.

trimming the absorbance spectra
datsoilspc$spcAT <- trimSpec(spectra = datsoilspc$spcA, wavlimits = range(500:2451))

Plotting the spectrum as before is the same, except that now we need to specify
the new wavelength sequence of the trimmed spectra (Fig. 5.4).

create a new wavelength sequence
wavs <- seq(500, 2451, by = 1)

plot the trimmed spectra
plot(wavs, datsoilspc$spcAT[1,], type = "l",

ylab = "Absorbance", xlab = "Wavelength /nm",
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 1))

54 5 Pre-processing of Spectra

500 1000 1500 2000 2500

0.
6

1.
0

1.
4

1.
8

Wavelength /nm

A
bs

or
ba

nc
e

Fig. 5.4 First absorbance spectrum of the dataset provided in the soilspec package. This
spectrum is obtained after removing the wavelengths smaller than 500 nm and greater than 2451 nm

5.1.2 Moving Window Average

In a moving window average operation, each wavelength value is taken as the
average of the neighbouring wavelengths. The original spectra are smoothed, which
reduces the information content but also the noise that it contains too. The user
must specify the size of the window, i.e. over how many wavelengths the values
are averaged. The larger the window size, the more important the smoothing of the
whole spectrum. Note that the wavelengths at the beginning and end of the spectra
will be lost in the process. The number of wavelengths lost is obtained by (w−1)/2
where w is the window size.

To illustrate the smoothing effect, we add random noise to the trimmed spectrum
derived in the previous section.

add some random noise to simulate an example of noisy spectra
datsoilspc$spcAtNoisy <- datsoilspc$spcAT + rnorm(ncol(datsoilspc$spcAT), 0, 0.003)

The package prospectr offers a fast computation of the moving average.

load the required package
library(prospectr)

specify the window size
windowMa <- 11

apply the moving average
datsoilspc$spcAtMa <- movav(X = datsoilspc$spcAtNoisy, w = windowMa)

5.1 Noise Removal 55

We can now plot the smoothed spectrum obtained using a moving window of
size 11. For illustration, we colour the original noisy spectra as red (Fig. 5.5).

plot the noisy spectrum
plot(names(datsoilspc$spcAtNoisy[1,]), datsoilspc$spcAtNoisy[1,],

type = "l",
ylab = "Absorbance", xlab = "Wavelength /nm",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1))

add the smoothed spectrum
lines(names(datsoilspc$spcAtMa[1,]), datsoilspc$spcAtMa[1,],

col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 1))

add a legend
legend("topright",

legend = c("raw", "moving average"),
lty = c(1, 1),
col = 2:1)

500 1000 1500 2000 2500

0.
6

1.
0

1.
4

1.
8

Wavelength /nm

A
bs

or
ba

nc
e

raw
moving average

Fig. 5.5 Noisy (red line) and smoothed (black line) first absorbance spectrum of the
datsoilspec dataset. The smoothed spectrum is obtained by a moving window average of
size 11

We can zoom in to highlight the effect of the smoothing (Fig. 5.6).

plot the noisy spectrum
plot(names(datsoilspc$spcAtNoisy[1,]), datsoilspc$spcAtNoisy[1,],

type = "l",
ylab = "Absorbance", xlab = "Wavelength /nm",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1),

56 5 Pre-processing of Spectra

xlim = c(1250,1750), ylim = c(0.4,0.8))

add the smoothed spectrum
lines(names(datsoilspc$spcAtMa[1,]), datsoilspc$spcAtMa[1,],

col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 1))

add a legend
legend("topright",

legend = c("raw", "moving average"),
lty = c(1, 1),
col = 2:1)

1300 1400 1500 1600 1700

0.
4

0.
5

0.
6

0.
7

0.
8

Wavelength /nm

A
bs

or
ba

nc
e

raw
moving average

Fig. 5.6 Noisy (red line) and smoothed (black line) first absorbance spectrum in the range 1250–
1750 nm of the datsoilspec dataset. The smoothed spectrum is obtained by a moving window
average of size 11

5.1.3 Savitzky-Golay Filtering

The Savitzky-Golay filter (Savitzky and Golay 1964) fits a local polynomial
regression (of order k) on a series of spectral values to determine the smoothed
value for each wavelength, for a given filter length (also called the window size).

In the following example, we use a second-order polynomial and a filter length
of 11. Note that the type of polynomial and window size can be changed to suit
user specifications. The general R scripting form of the Savitzky-Golay filter is
shown below. It is one of the most widely used pre-processing techniques, and
it is therefore implemented in most packages on spectroscopic analysis, e.g. the
savitzkyGolay function in prospectr (Stevens and Ramirez-Lopez 2014).

5.1 Noise Removal 57

function for applying Savitzky-Golay smoothing filter
filterSg <- function(spectra, w, k, m) {

spectra <- as.matrix(spectra)

run filter, the window size in the sgolayfilt function is called n and
the polynomial order is called p
sg <- aaply(spectra, 1, sgolayfilt, n = w, p = k, m = m)

arrange appropriately if a single sample
if (nrow(spectra) == 1) {

sg <- matrix(sg, dim(spectra))
}

return data frame
sg <- as.data.frame(sg)
colnames(sg) <- colnames(spectra)

return(sg)
}

Essentially this function uses the sgolayfilt function from the signal
package. It uses the aaply function from the plyr package to apply the filter
over the entire spectra collection. The parameters include the spectra; a value for w,
i.e. the window size; a value for k, i.e. the polynomial order; and a value for m which
is whether the derivative of the polynomial is returned. To return the first derivative,
we would set the value of m to 1. However, we just want to filter our spectra without
returning the derivatives, in which case we set m to 0. We can now run the function.

load R libraries necessary to use filterSg function
library(signal)
library(plyr)

filter spectra dataset
datsoilspc$spcAtSg <- filterSg(datsoilspc$spcAtNoisy,

w = 11,
k = 2,
m = 0)

We can plot the smoothed spectrum on top of the original noisy trimmed spectra
(Fig. 5.7).

plot the noisy spectrum
plot(names(datsoilspc$spcAtNoisy[1,]), datsoilspc$spcAtNoisy[1,],

type = "l",
ylab = "Absorbance", xlab = "Wavelength /nm",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1))

add the smoothed spectrum
lines(names(datsoilspc$spcAtSg[1,]), datsoilspc$spcAtSg[1,],

col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 1))

add a legend
legend("topright",

legend = c("raw", "Savitzky-Golay"),
lty = c(1, 1),
col = 2:1)

58 5 Pre-processing of Spectra

500 1000 1500 2000 2500

0.
6

1.
0

1.
4

1.
8

Wavelength /nm

A
bs

or
ba

nc
e

raw
Savitzky−Golay

Fig. 5.7 Noisy (red line) and smoothed (black line) first absorbance spectrum of the
datsoilspec dataset. The smoothed spectrum is obtained by a Savitzky-Golay smoothing filter
with a window size of 11 and a polynomial of order 2

5.2 Scatter Correction

Light scattered by soil samples results in deviations dependent on the wavelength,
path length and sensitivity of the detector (Siesler et al. 2008). The deviations are
difficult to quantify during soil scanning. Most often, a pre-processing step is used
to correct for deviations due to light scattering. The simplest method is to centre
each individual spectrum to zero and to then divide each spectral band value by the
standard deviation of the whole spectrum. It is assumed that the standard deviation
correlates with deviations due to light scattering (e.g. path length). A different
approach is multiplicative light scattering (MSC), where each spectrum is shifted
and scaled to an ideal reference spectrum. A reference spectrum is, for example,
a ‘correct’ scan of the sample not affected by light scattering. In practice, this
reference spectrum is unknown, and we use the mean spectrum of the spectra as
a reference. Finally, a trend can be removed from each spectrum, which leaves out
the unexplained variation of the model for the analysis. These three techniques are
described in the next section with their implementation in R.

5.2.1 Standard Normal Variate

Standard normal variate transform (SNV) corrects for single light scattering (Barnes
et al. 1989). SNV which is also known as z-transformation or as centring and scaling
(operating per spectrum or row-wise) normalizes each spectrum (which we defined

5.2 Scatter Correction 59

xi) to zero mean and unit variance by subtracting the mean of the spectrum (μxi
)

and dividing the difference by its standard deviation (σxi
):

xsnv
i = xi − μxi

σxi

, (5.1)

where xsnv
i is the SNV corrected spectrum. This equation can be applied to each soil

spectrum one at a time. Merged into a function, it can be scripted as follows:

function for applying standard normal variate transformation
snvBLC <- function(spectra) {

spectra <- as.matrix(spectra)
snvMat <- matrix(NA, ncol = ncol(spectra), nrow = nrow(spectra))

apply the standardization to each row
for (i in 1:nrow(spectra)) {

snvMat[i,] <- (spectra[i,] - mean(spectra[i,]))/sd(spectra[i,])
}
snvMat<- as.data.frame(snvMat)
colnames(snvMat) <- colnames(spectra)

return(snvMat)
}

This function performs SNV for all the spectra in the collection and outputs a
new SNV transformed spectra dataset. All it requires is the spectra table for input.

apply the standard normal variate transformation
datsoilspc$specSnvC <- snvBLC(datsoilspc$spcAT)

We can plot the scatter-corrected spectra (Fig. 5.8).

plot the scatter-corrected spectra
plot(names(datsoilspc$specSnvC[1,]), datsoilspc$specSnvC[1,],

type = "l",
ylab = " ", xlab = "Wavelength /nm",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1))

plot the original spectra
lines(names(datsoilspc$spcAT[1,]), datsoilspc$spcAT[1,],

col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 1))

add a legend
legend("topright",

legend = c("raw", "SNV"),
lty = c(1, 1), col = 1:2)

60 5 Pre-processing of Spectra

500 1000 1500 2000 2500

−1
0

1
2

3
4

5

Wavelength /nm

raw
SNV

Fig. 5.8 Scatter-corrected (red line) and original (black line) first absorbance spectrum of the
datsoilspec dataset

Note that Fearn (2008) recommends applying SNV scatter correction after
filtering the noise from the spectra (see previous section).

5.2.2 Multiplicative Scatter Correction

Multiplicative scatter correction (MSC) is used to compensate for multiplicative
deviations dependent from the wavelength. The correction aligns each spectrum to a
reference spectrum so that baseline and amplification effects are at the same average
level in every spectrum (Isaksson and Næs 1988; Naes et al. 1990). As this reference
spectrum is unknown, the mean spectrum of a given spectral library, denoted xref
hereafter, is used. This spectrum represents the mean scattering and offset (Helland
et al. 1995). Each spectrum xi is then fitted to the reference spectrum using the least
squares method:

xi = ai + bixref + εi , (5.2)

where a and b are the intercept and slope of the linear model and ε are the
residuals for a spectrum i. Ideally εi contains the important information, because
scattering and offset are represented by the coefficients a and b. The MSC spectrum
is calculated by determining the coefficients for each spectrum and then performing
the transformation as follows:

xmsc
i = xi − ai

bi

, (5.3)

5.2 Scatter Correction 61

where xmsc
i is the spectrum corrected for multiplicative scatter. The MSC function

can be scripted as follows:

function for applying multiplicative scatter correction
mscBLC <- function(spectra) {

first calculate a mean spectrum.
meanSpec <- as.matrix(colMeans(spectra))
mscMat <- matrix(NA, ncol = ncol(spectra), nrow = nrow(spectra))
spectra <- as.matrix(spectra)

make a loop over each row
for (i in 1:nrow(spectra)) {

determine the slope and intercept coefficients
specLM <- lm(spectra[i,] ~ meanSpec)
specCE <- t(as.matrix(specLM$coefficients))

adjust the spectra
mscMat[i,] <- t(as.matrix((spectra[i,] - specCE[1, 1])/specCE[1,2]))

}
mscMat <- as.data.frame(mscMat)
colnames(mscMat) <- colnames(spectra)

return(mscMat)
}

As you may note, the first part of this function generates the mean spectrum
meanSpec. Then for each spectrum, we derive the coefficients using the lm
function from the stats package. The coefficients are saved in the specCE object,
which are then used for the correction calculation.

apply the multiplicative scatter correction
datsoilspc$specMscC <- mscBLC(datsoilspc$spcAT)

We can plot the scatter-corrected spectra (Fig. 5.9).

plot the multiplicative scatter-corrected spectra
plot(names(datsoilspc$specMscC[1,]), datsoilspc$specMscC[1,],

type = "l",
ylab = " ", xlab = "Wavelength /nm",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1))

add the original spectra to the plot
lines(names(datsoilspc$spcAT[1,]), datsoilspc$spcAT[1,],

col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 1))

add a legend
legend("topright",

legend = c("MSC", "raw"),
lty = c(1, 1), col = 2:1)

62 5 Pre-processing of Spectra

500 1000 1500 2000 2500

0.
5

1.
0

1.
5

2.
0

2.
5

Wavelength /nm

MSC
raw

Fig. 5.9 Multiplicative scatter-corrected (red line) and original (black line) first absorbance
spectrum of the datsoilspec dataset

In general, both SNV and MSC lead to similar results. The advantage of SNV is
that there is no requirement to provide a reference spectrum. MSC, in contrast, is
less prone to the spectra noise (Rinnan et al. 2009). A detailed comparison of SNV
and MSC is provided by Dhanoa et al. (1994).

5.2.3 Detrending

A practical alternative to SNV and MSC is to remove the mean value or a linear
trend from the spectra. This method is called detrending. This method can be
used in combination with SNV or MSC. Let us make a function and apply it to
each spectrum separately in the matrix. The workhorse function inside our own
detrendSpc function is the detrend function which comes from the pracma
package.

function for detrending a matrix of spectra
detrendSpc <- function(spectra) {

load the required package
require(pracma)

detrendMat <- matrix(NA, ncol = ncol(spectra), nrow = nrow(spectra))
spectra <- as.matrix(spectra)

5.2 Scatter Correction 63

make a loop over each row
for (i in 1:nrow(spectra)) {

detrend each spectra, specify the linear model
specLM <- pracma::detrend(spectra[i,], tt = "linear")

take the values and store in the matrix
detrendMat[i,] <- as.numeric(specLM[,1])

}
detrendMat<- as.data.frame(detrendMat)
colnames(detrendMat) <- colnames(spectra)

return(detrendMat)
}

We can now apply it to each individual spectrum. Note that in the above function
we specify pracma::detrend to force R to use the detrend function from the
pracma package. The detrend function is also implemented in the propectr
package but in a different way. In prospectr, detrending involves applying a
SNV transform and fitting a second-order polynomial model to return the residuals
of this model (Mark 1989). In this section, we provide a simpler example.

We can apply the function detrendSpc to our matrix as follows (Fig. 5.10).

detrend the spectra
datsoilspc$specDT <- detrendSpc(datsoilspc$spcAT)

plot the detrended spectra
plot(names(datsoilspc$specDT[1,]), datsoilspc$specDT[1,],

type = "l",
ylab = " ", xlab = "Wavelength /nm",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1),
ylim=c(-0.3, 2))

add the original spectra
lines(names(datsoilspc$spcAT[1,]), datsoilspc$spcAT[1,],

col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 1))

add the remove linear trend
lines(names(datsoilspc$spcAT[1,]),

datsoilspc$spcAT[1,] - datsoilspc$specDT[1,],
lty = 5)

add a legend
legend("topright",

legend = c("raw", "detrended", "linear trend"),
lty = c(1, 1, 5), col = c(1, 2, 1))

64 5 Pre-processing of Spectra

500 1000 1500 2000 2500

0.
0

0.
5

1.
0

1.
5

2.
0

Wavelength /nm

raw
detrended
linear trend

Fig. 5.10 Detrend (red line) and original (black line) first absorbance spectrum of the
datsoilspec dataset

Performing a detrending before a SNV transform is not recommended (Barnes
et al. 1989), but as was mentioned previously, it is possible to apply SNV first and
detrend after. In this case, it is better to use MSC because both transformations are
applied simultaneously.

5.3 Derivatives

Converting the spectra to first- or second-order derivatives aims at accentuating the
absorbance features contained in the spectra. Derivatives also remove both additive
and multiplicative effects on the spectra (Rinnan et al. 2009). Taking the first-order
derivative detrends the spectrum (see previous section), while taking the second-
order derivative both detrends and removes a linear trend (as in the MSC example).
Computing the derivative of a spectrum is usually performed after a trimming or
initial smoothing. When computing the first- and second-order derivatives with the
Savitzky-Golay filter, an initial smoothing is not necessary.

Stevens and Ramirez-Lopez (2014) provide two methods for taking the deriva-
tives. The first is by taking the finite difference between two consecutive wavelength
values. This is achieved with the base package in R. This method has the major
drawback that it tends to increase noise in the spectra. The second method builds on
the Savitzky-Golay filtering, by taking the derivative of the smoothing functions

5.3 Derivatives 65

to provide means of accentuating the regions of absorbance. The latter method
is preferred; we provide a simple implementation below. Alternatively, a third
method exists based on the Norris-Williams derivation. This method yields similar
derivation to the popular Savitzky-Golay filtering. For parsimony, we will not
implement the Norris-Williams method in this chapter.

5.3.1 First- and Second-Order Derivatives

The first- and second-order derivatives of the smoothed spectra are computed using
the filterSg function, by specifying this time m = 1 or m = 2 to indicate
whether we want to take the first- or second-order derivative of the smoothed
spectra, respectively. The window size w also needs to be specified. We use the
trimmed spectra obtained from the previous section.

take first derivative of spectra
datsoilspc$specDeriv1 <- filterSg(datsoilspc$spcAT,

w = 11,
k = 2,
m = 1)

take second derivative of spectra
datsoilspc$specDeriv2 <- filterSg(datsoilspc$spcAT,

w = 11,
k = 2,
m = 2)

We can make a plot of the two derivatives of the smoothed spectra (Fig. 5.11).

plot the first order derivative spectra
plot(names(datsoilspc$specDeriv1[1,]), datsoilspc$specDeriv1[1,],

type = "l",
ylab = " ",
xlab = "Wavelength /nm",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1))

plot the second order derivative spectra
lines(names(datsoilspc$specDeriv2[1,]), datsoilspc$specDeriv2[1,],

col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 1))

add a legend
legend("topleft",

legend = c("First order derivative", "Second order derivative"),
lty = c(1, 1), col = 2:1)

66 5 Pre-processing of Spectra

500 1000 1500 2000 2500

−0
.0

10
0.

00
0

0.
01

0

Wavelength /nm

First order derivative
Second order derivative

Fig. 5.11 First (red line)- and second (black line)-order derivative of one absorbance spectrum
from the datsoilspc dataset. The derivative spectra are obtained by the filterSg function
which uses the Savitzky-Golay filtering

5.4 Centring and Standardizing

Centring and standardizing transforms the spectral values in each wavelength to zero
mean or zero mean and unit variance, respectively. Unlike the SNV transformation
which standardizes each individual spectrum, centring and standardizing is applied
for each wavelength of the spectra (column-wise). Centring of a wavelength is
obtained by subtracting the spectral wavelength value by the mean of all the spectra
values for this wavelength. Standardization is obtained by subtracting each spectral
wavelength value by the mean of all the spectra values for this wavelength and
dividing by their standard deviation. It can be simply implemented in the scale
function from the base package.

centre the spectra wavelengths
datsoilspc$specNorm <- scale(datsoilspc$spcAT, center = TRUE, scale = FALSE)

standardize the spectra wavelengths
datsoilspc$specSdt <- scale(datsoilspc$spcAT, center = TRUE, scale = TRUE)

We can now plot with their original spectra (Fig. 5.12).

plot the original spectra
plot(colnames(datsoilspc$spcAT), datsoilspc$spcAT[1,],

type = "l",
ylab = " ",
xlab = "Wavelength /nm",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1),

5.5 Spectral or Dimension Reduction 67

ylim= c(-1.5, 2.2))

add to the plot the centred spectra
lines(names(datsoilspc$specNorm[1,]), datsoilspc$specNorm[1,],

col = rgb(red = 0.3, green = 1, blue = 0.3, alpha = 1))

add to the plot the standardized spectra
lines(names(datsoilspc$specSdt[1,]), datsoilspc$specSdt[1,],

col = rgb(red = 0.3, green = 0.3, blue = 1, alpha = 1))

add a legend
legend("topright",

legend = c("raw", "centred", "standardized"),
lty = c(1, 1, 1),
col = 2:4)

500 1000 1500 2000 2500

−1
0

1
2

Wavelength /nm

raw
centred
standardized

Fig. 5.12 Centred (green line), standardized (blue line) and original (red line) first absorbance
spectrum of the datsoilspec dataset

5.5 Spectral or Dimension Reduction

5.5.1 Resampling

Despite all the filtering and baseline corrections we may perform, some models
we try to use for calibrating soil data with spectra are difficult to fit and validate
when each individual spectrum has many wavelengths to consider. We may want to
reduce the dimensions of our spectra while keeping the more important absorbance
features. One such technique that could be used in tandem with baseline corrections

68 5 Pre-processing of Spectra

is simple aggregation through resampling and averaging. Essentially with a moving
window of given size or wavelength, we calculate the average. The larger the
window, the more detail is lost from the spectrum. This approach differs only
slightly from the averaging approach described previously in that here the window
movement across a spectrum is non-overlapping. Ultimately this means wavebands
are removed after calculation of the average, thus reducing the actual dimensions of
the spectra.

We provide the following function.

reduce the column dimension of the spectra by averaging
compSpec <- function(spectra, w) {

ensure that the number of columns can be divided by the window size
if(ncol(spectra)%%w != 0)
{stop("Error: choose a compatible window size")
}else{

compMat <- matrix(NA, ncol = (ncol(spectra))/w, nrow = nrow(spectra))
cc <- 1

loop over each column
for (i in 1:ncol(compMat)) {

compMat[, i] <- rowMeans(spectra[, cc:(cc + (w - 1))])
cc <- cc + w

}

provide the new column name (wavelength)
colab = seq(as.numeric(colnames(spectra)[1]),

as.numeric(colnames(spectra)[ncol(spectra)]), by = w)
compMat <- as.data.frame(compMat)
colnames(compMat) <- colab

}

return(compMat)
}

The resampling and averaging function is called compSpec and is also imple-
mented in the spectracus package. It requires two inputs: the spectra that we
want to resample and average and the window size w. The window size can be
arbitrarily selected. However, if the spectra range (though more importantly the
number of columns) is not divisible by the window size, an error will be produced.
In this case, you need either to find an appropriate window size or to implement
spectral trimming to modify the number of wavelengths. In the following example,
we use the datsoilspc$spcAT spectra dataset (number of columns b = 1952)
and use a window size of 8 to reduce the column-wise dimension of the spectra
library to 244.

apply the resampling
datsoilspc$specComp <- compSpec(spectra = datsoilspc$spcAT, w = 8)

dimension of spectra library
dim(datsoilspc$spcAT); dim(datsoilspc$specComp)

5.5 Spectral or Dimension Reduction 69

[1] 391 1952

[1] 391 244

Note that resampling is also implemented in prospectr. In prospectr, the
resample function uses an interpolation (spline or linear regression) to resample
the original spectra to new coordinates. This function is particularly suited to match
the resolution from one instrument to another because the user must specify the
exact resolution to which the spectra have to be resampled.

We can try to resample the trimmed spectra using the resample function from
prospectr.

define the current resolution
oldWavs <- as.numeric(colnames(datsoilspc$spcAT))

define the new resolution, resample every 8 wavelengths
newWavs <- seq(from = min(oldWavs), to = max(oldWavs), by = 8)

apply the resampling
specResam <- prospectr::resample(X = datsoilspc$spcAT,

wav = oldWavs,
new.wav = newWavs,
interpol = "linear")

dimension of spectra library
dim(datsoilspc$spcAT); dim(datsoilspc$specComp)

[1] 391 1952

[1] 391 244

We can plot and compare the resampling techniques from our function or that
from the prospectr package (Fig. 5.13).

plot the original spectra
plot(colnames(datsoilspc$spcAT), datsoilspc$spcAT[1,],

type = "l",
ylab = "Absorbance", xlab = "Wavelength /nm",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1))

add to the plot the resampled spectra by our function
lines(names(datsoilspc$specComp[1,]), datsoilspc$specComp[1,],

col = rgb(red = 0.3, green = 1, blue = 0.3, alpha = 1))

add to the plot the resampled spectra from prospectr
lines(names(datsoilspc$specResam[1,]), datsoilspc$specResam[1,],

col = rgb(red = 0.3, green = 0.3, blue = 1, alpha = 1))

add a legend
legend("topright",

legend = c("raw", "spectracus resampled", "prospectr resampled"),
lty = c(1, 1, 1), col = 2:4)

70 5 Pre-processing of Spectra

500 1000 1500 2000 2500

0.
6

1.
0

1.
4

1.
8

Wavelength /nm

A
bs

or
ba

nc
e

raw
spectracus resampled
prospectr resampled

Fig. 5.13 Original (red line), resampled with the compSpec function (green line) and resampled
using the resample function from prospectr package (blue line) first absorbance spectrum
of the datsoilspec dataset

The two methods yield very similar resampled spectra, but a few minor differ-
ences are observed.

5.5.2 Wavelets

Wavelets are a naturally useful tool for processing spectra in terms of filtering
and dimension reduction. More importantly, with wavelets, we can investigate
distinct scales of variation within each spectrum by changing the support of the
wavelet filtering function. Some further background on wavelets can be found in
Lark and Webster (1999). In the example below, we reduce our spectra down
to a few important elements without losing the important absorbance features.
We can run the wavelet function over the spectra for which it will compute the
wavelet coefficients and a smoothed approximation of the data at each scale. Scale
is represented as the support of the filter, where, for example, the increasing
dilation of the support will result in smoother and more general representations
of the original spectra (Viscarra-Rossel and Lark 2009). However, if we want
to, we could reconstruct the original spectra from any scale by multiplying the
wavelet coefficients and the smoother signal at each scale. The wavelet function
is used to reduce the dimensions of the original spectra down to a few com-
ponents, i.e. to return the smoothed or more generalized spectra. Here we use
the wavethresh package and its wd or wavelet function. The help file for the

5.5 Spectral or Dimension Reduction 71

wd function describes in more detail the parameters necessary for the wavelet
filtering.

We have made a customized function that runs on top of the wd function so
that it returns spectra at the requested scale. To run the wavelet implementation,
we need to ensure our spectra in terms of numbers of wavebands (the columns) are
dyadic. In other words, we just need a number for x in 2x . In the case of vis-NIR
spectra instrumentation where we might expect output to 1 nm spectral resolution
data within the 350–2500 nm range (2151 wavelengths), it is most appropriate to
find the nearest dyadic number which is 2048 or 2(11). A viable spectral range
with which we may work could be between and including 404 and 2451 nm with
this particular vis-NIR data. Essentially, we need to do this procedure because the
support of the wavelets is dilated by a factor of 2x for each increasing scale.

Let us first define the function.

function for the wavelet transform of the spectra
filterWl <- function(spectra, res){

nm2 <- 2^c(1:100)
vs <- ncol(spectra)
if (sum(nm2 == vs) != 1) {

stop("Error: Number of columns in spectra table needs to be power of two")
}
waveSpectra <- matrix(NA, ncol = 2^res, nrow = nrow(spectra))
for (i in 1:nrow(spectra)){

wds <- wd(as.matrix(spectra[i,]),
bc = "symmetric",
filter.number = 10,
family = "DaubExPhase",
min.scale = 2)

waveSpectra[i,] <- accessC.wd(wds, level = res)
}
wavs <- as.numeric(colnames(spectra))
colnames(waveSpectra) <- seq((wavs[1] + 0.5 * (length(wavs)/(2^res))),

rev(wavs)[1],
by = length(wavs)/(2^res))

return(waveSpectra)
}

With the appropriately trimmed spectra, the filterWl function requires two
inputs: the spectra and an integer (less than 11 in this case) for res which indicates
the scale that we want to output the smoothed spectra. The example below uses the
original unfiltered absorbance spectra datsoilspc$spcA from the beginning of
this chapter. We will set the resolution res to 8. Keep in mind that setting res to
11 in this case will potentially return the original spectra table, yet the function does
not allow this to occur because it is a redundant operation.

require(wavethresh)

first trimming the datsoilspc$spcA object to 404-2451 spectral range
datsoilspc$spcAT2 <- trimSpec(datsoilspc$spcA, wavlimits = range(404:2451))

the resolution of the decomposed spectra
res <- 8
if you want to return the original data specWavelet
res = 11

72 5 Pre-processing of Spectra

run wavelet smooth function
datsoilspc$spcAT2Wl <- filterWl(datsoilspc$spcAT2, res = 8)

dimension of the wavelet transform dataset
dim(datsoilspc$spcAT2Wl)

[1] 391 256

We can now plot the original and wavelet transformed spectra (Fig. 5.14).

plot the original spectra
plot(names(datsoilspc$spcAT2[1,]), datsoilspc$spcAT2[1,],

type = "l",
ylab = "Wavelet values", xlab = "Wavelength /nm",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1),
ylim = c(0.2,7))

add the wavelet transform spectra
lines(names(datsoilspc$spcAT2Wl[1,]), datsoilspc$spcAT2Wl[1,],

col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 1))

add a legend
legend("topright",

legend = c("Wavelet transformed", "original"),
lty = c(1, 1),
col = 2:1)

500 1000 1500 2000 2500

0
1

2
3

4
5

6
7

Wavelength /nm

W
av

el
et

 v
al

ue
s

Wavelet transformed
original

Fig. 5.14 Original (black line) and wavelet transformed (red line) first absorbance spectra of the
datsoilspec dataset

5.6 Other Specific Transformations 73

5.6 Other Specific Transformations

5.6.1 Splice Correction

Some spectra come with a measurement error visible on the spectra. This is common
in ASD spectrometers, for example, where there is a transition between different
detectors. These transitions commonly occur at 1000 and 1800 nm. Correcting this
measurement error is not straightforward because we do not have information about
it (otherwise we would have corrected it in the device). This measurement error is
often a shift of a specific spectral range. Let us illustrate this (Fig. 5.15).

plot the ten first spectra of the dataset for illustration
matplot(colnames(datsoilspc$spcAT), t(datsoilspc$spcAT[c(1:10),]),

type = "l",
ylab = "Absorbance", xlab = "Wavelength /nm",
col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 0.8))

identify the area with a systematic shift
rect(xleft = 950, xright = 1050,

ybottom = 0.2, ytop = 1.2,
border ="red", lwd=1, lty="dashed")

identify the area with a systematic shift
rect(xleft = 1800, xright = 1900,

ybottom = 0.2, ytop = 1.2,
border ="red", lwd=1, lty="dashed")

500 1000 1500 2000 2500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Wavelength /nm

A
bs

or
ba

nc
e

Fig. 5.15 The first ten absorbance spectra of the datsoilspc data from the soilspec
package. The red rectangles identify the spectral range with known systematic shift due to the
spectrometer

74 5 Pre-processing of Spectra

These shifts are localized between the wavelengths at 1000 and 1800 nm
(Fig. 5.16).

plot the spectra around 1000nm
matplot(colnames(datsoilspc$spcAT), t(datsoilspc$spcAT[c(1:10),]),

type = "l",
ylab = "Absorbance", xlab = "Wavelength /nm",
col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 0.8),
xlim = c(950,1050),
ylim = c(0.2,1.2))

960 980 1000 1020 1040

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Wavelength /nm

A
bs

or
ba

nc
e

Fig. 5.16 The first ten absorbance spectra of the datsoilspc data from the soilspec
package in the range 950–1050 nm. At around 1000 nm exists a known systematic shift due to
the spectrometer

We can use a splice correction implemented in the prospectr package with
the function spliceCorrection. This function performs a linear interpolation
from the values located at the edges of the specified shifts.

indicate the exact wavelengths at which the shits are located
sshifts <- c(1000, 1800)

correct the spectral ’shifts’ using the spliceCorrection function
datsoilspc$spcAtSplc <- spliceCorrection(X = datsoilspc$spcAT,

wav = wavs,
splice = sshifts)

We can plot the corrected spectra (Fig. 5.17).

matplot(x = colnames(datsoilspc$spcAT), y = t(datsoilspc$spcAtSplc),
xlab = "Wavelength /nm",
ylab = "Absorbance",
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))

5.6 Other Specific Transformations 75

500 1000 1500 2000 2500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Wavelength /nm

A
bs

or
ba

nc
e

Fig. 5.17 Splice corrected absorbance spectra of the datsoilspc dataset from the soilspec
package

We now plot the corrected spectra around 1000 nm to show the difference with
previous plot (Fig. 5.18).

plot the spectra around 1000nm
matplot(colnames(datsoilspc$spcAT), t(datsoilspc$spcAtSplc[c(1:10),]),

type = "l",
ylab = "Absorbance", xlab = "Wavelength /nm",
col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 0.8),
xlim = c(950,1050), ylim = c(0.2,1.2))

960 980 1000 1020 1040

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Wavelength /nm

A
bs

or
ba

nc
e

Fig. 5.18 Splice corrected absorbance spectra at the range 950–1050 nm of the datsoilspc
dataset from the soilspec package

76 5 Pre-processing of Spectra

5.6.2 Continuum Removal

Convex hull or continuum removal (CR) is one type of baseline method that works
by fitting a convex hull to each spectrum and computing the deviations from the hull
(Clark and Roush 1984). For absorbance spectra, CR gives value of 0 to all parts of
the spectrum that lie on the convex hull and values between 0 and 1 to regions
inside absorption bands. The opposite is true if we are dealing with reflectance data.
Essentially CR accentuates the absorption bands in the spectra while minimizing
brightness differences (Buddenbaum and Steffens 2012). The function for applying
CR involves a number of internal processes that are not important for understanding
the main points of this algorithm, so we just apply the function and plot the
first spectrum for illustrative purposes. An additional parameter also needs to be
specified, which we indicate as either A if the data is in absorbance units or R if the
data is in reflectance units.

Note that the convex hull does not always work as intended if applied to the full
spectral range of the data because of an issue with defining the hull points and then
approximating the associated continuum line. The convex hull is usually applied
when we are dealing with discrete regions of a spectrum. In the example below, we
will use a function upon a specific NIR wavelength region where the secondary clay
mineral kaolinite can be detected. This region is between 2079 and 2277 nm (Clark
et al. 2007). We will apply this function to the reflectance data. First we trim the
spectral library to the specified region and then apply the continuumRemoval
function (Fig. 5.19).

first trim reflectance spectra to region
datsoilspc$spcAtR <- trimSpec(spectra = datsoilspc$spc, wavlimits = range(2079:2277))

apply CR function
datsoilspc$specChcSub <- continuumRemoval(X = datsoilspc$spcAtR, type = "R")

plot first spectrum
plot(seq(from = 2079,to = 2277,by = 1), datsoilspc$specChcSub[1,],

type = "l",
ylab = "CR units", xlab = "Wavelength /nm",
lty = 1,
col = rgb(red = 0, green = 0, blue = 0, alpha = 0.8))

5.6 Other Specific Transformations 77

2100 2150 2200 2250

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Wavelength /nm

C
R

 u
ni

ts

Fig. 5.19 Example of a continuum removed spectra for the range 2079–2277 nm. The continuum
removed spectra is obtained with the continuumRemoval function from the prospectr
package

We can also compute it for the whole spectra, but be mindful not to try and
interpret anything meaningful from the output as this is just done for illustrative
purposes (Fig. 5.20).

apply CR function to the trimmed absorbance spectra (hence type = "A")
datsoilspc$specChC <- continuumRemoval(X = datsoilspc$spcAT, type = "A")

plot original spectra
plot(wavs, datsoilspc$spcAT[1,],

type = "l",
ylab="Absorbance", xlab= "Wavelength /nm",
lty = 1,
col = rgb(red = 1, green = 0, blue = 0, alpha = 1),
ylim=c(0, 2))

add to the plot hte continuum removed spectra
lines(wavs, datsoilspc$specChC[1,],

col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 1))

add a legend
legend("topright",

legend = c("raw", "continuum removal"),
lty = c(1, 1),
col = 2:1)

78 5 Pre-processing of Spectra

500 1000 1500 2000 2500

0.
0

0.
5

1.
0

1.
5

2.
0

Wavelength /nm

A
bs

or
ba

nc
e

raw
continuum removal

Fig. 5.20 Original (red line) and continuum removed (black line) absorbance spectra from the
datsoilspc dataset from the soilspec package

References

Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending
of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772–777

Buddenbaum H, Steffens M (2012) The effects of spectral pretreatments on chemometric analyses
of soil profiles using laboratory imaging spectroscopy. Appl Environ Soil Sci 2012:274903

Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote
sensing applications. J Geophys Res Solid Earth 89:6329–6340

Clark RN, Swayze GA, Wise RA, Livo KE, Hoefen TM, Kokaly RF, Sutley SJ (2007) USGS digital
spectral library splib06a. US Geological Survey

Dhanoa MS, Lister SJ, Sanderson R, Barnes RJ (1994) The link between multiplicative scatter
correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. J Near
Infrared Spectrosc 2:43–47

Fearn T (2008) The interaction between standard normal variate and derivatives. NIR News
19:16–17

Geeves GW, Cresswell HP, Murphy BW, Gessler PI, Chartres CJ, Little IP, Bowman GM (1994)
Physical, chemical and morphological properties of soils in the wheat-belt of southern NSW
and northern Victoria. NSW Department of Conservation; Land Management/CSIRO Division
of Soils Occasional Report, CSIRO

Gobrecht A, Bendoula R, Roger J-M, Bellon-Maurel V (2015) Combining linear polarization
spectroscopy and the representative layer theory to measure the Beer-Lambert law absorbance
of highly scattering materials. Anal Chim Acta 853:486–494

Helland IS, Næs T, Isaksson T (1995) Related versions of the multiplicative scatter correction
method for preprocessing spectroscopic data. Chemom Intell Lab Syst 29:233–241

Isaksson T, Næs T (1988) The effect of multiplicative scatter correction (MSC) and linearity
improvement in NIR spectroscopy. Appl Spectrosc 42:1273–1284

Lark RM, Webster R (1999) Analysis and elucidation of soil variation using wavelets. Eur J Soil
Sci 50:185–206

References 79

Mark H (1989) Chemometrics in near-infrared spectroscopy. Anal Chim Acta 223:75–93
Naes T, Isaksson T, Kowalski B (1990) Locally weighted regression and scatter correction for

near-infrared reflectance data. Anal Chem 62:664–673
Rinnan Å, Van Den Berg F, Engelsen SB (2009) Review of the most common pre-processing

techniques for near-infrared spectra. TrAC Trends Anal Chem 28:1201–1222
Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares

procedures. Anal Chem 36:1627–1639
Siesler HW, Ozaki Y, Kawata S, Heise HM (2008) Near-infrared spectroscopy: principles,

instruments, applications. Wiley, Weinheim
Stevens A, Ramirez-Lopez L (2014) An introduction to the prospectr package
Viscarra-Rossel RA, Lark RM (2009) Improved analysis and modelling of soil diffuse reflectance

spectra using wavelets. Eur J Soil Sci 60:453–464
Wehrens R (2011) Chemometrics with R: multivariate data analysis in the natural sciences and life

sciences. Springer Science & Business Media, Berlin

Chapter 6
Exploratory Soil Spectral Analysis

The previous chapters focused on loading into R, organizing and pre-processing
the spectra. Once these steps are accomplished, the spectra are ready for further
exploratory analysis. In this chapter, we do not make use of ancillary laboratory
soil analysis and focus only on the information that can be obtained directly from
the spectra. This involves the study of the patterns and peaks present in the spectra,
which can be achieved in different ways.

We first describe relatively simple methods to identify physical and chemical
properties of soils directly from soil visible and near-infrared (vis-NIR) spectra. This
is possible because absorption of visible and infrared energy in soils is a response
of its constituent physical and chemical properties. Also exploited is the fact that
certain physical and chemical properties have diagnostic responses in the vis-NIR
range. With examination of a soil spectrum, one can infer the presence or absence
of certain properties and to an extent their relative abundances. In this chapter, we
describe specifically the detection of secondary clay minerals and iron oxides. An
emphasis is given to their detection in the vis-NIR region of the spectrum, but much
of the foundational work on assessing the absorbance properties of particular clays
and minerals was done using mid-infrared spectra analysis (see Farmer 1974). These
foundational efforts have been subject to updates and improvements, summarized in
Madejova et al. (2017).

When conducting exploratory analysis of spectral data, we are immediately
burdened with the issue of high dimensionality. It is such that we may be dealing
with (using NIR spectra data as an example) over 2000 individual wavelengths
for each spectrum. When one wants to investigate patterns in the data, spectral
similarities and differences, or to detect spectral outliers, it is necessary to reduce the
dimension of the spectra while keeping the important features. A natural candidate
of this is principal component analysis (PCA). PCA has been used extensively
in many varied fields of research. Since there are many literature contributions
describing its theoretical underpinnings (e.g. Wold et al. 1987, Abdi and Williams

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. M. J.-C. Wadoux et al., Soil Spectral Inference with R, Progress in Soil Science,
https://doi.org/10.1007/978-3-030-64896-1_6

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64896-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-64896-1_6

82 6 Exploratory Soil Spectral Analysis

2010 or Varmuza and Filzmoser 2016), this chapter focuses only on applications
using spectral data.

Finally, we provide examples on how to use these exploratory analyses in the two
last sections of this chapter. In the first example, we define the spectral prediction
domain of the existing spectral library with respect to new recorded spectra. In the
second example, we derive soil colour from the spectra using specific wavelengths
in the visible range of the spectrum.

The set of packages used in this chapter are installed using the lines below. The
book-associated soilspec package is also required; see Chap. 3 for information
on its installation.

#specify allthe packages usedin the chapterand install them if they are not already
myPackages <- c("SDMTools", "tripack", "resemble", "splancs", "sp")

define which packages are not installed in the current computer
notInstalled <- myPackages[!(myPackages %in% installed.packages()[, "Package"])]

install the missing packages
if(length(notInstalled)) install.packages(notInstalled)

6.1 Feature Selection

6.1.1 Identifying Secondary Clay Minerals and Iron Oxides

Clay minerals and iron oxides absorb at specific wavelengths in the vis-NIR
range of the electromagnetic spectrum (Clark et al. 1990). Previous studies have
demonstrated the use of soil vis-NIR spectra in soil compositional studies with
notable success (Brown et al. 2006; Viscarra-Rossel et al. 2009). The idea behind
assessing the mineral composition of soils with vis-NIR spectroscopy is to compare
the reflectance of the diagnostic wavelengths from a given reference spectra with
the reflectance at the same wavelengths of the soil samples. The major diagnostic
wavelengths for detecting some clay minerals and iron oxides are summarized in
Table 6.1. A useful repository of reference material with corresponding measured
spectra is the U.S. Geological Survey digital spectral library (Clark et al. 2007).

Table 6.1 Some diagnostic vis-NIR wavelength ranges of selected secondary clay minerals and
iron oxides

Mineral Diagnostic wavelength range(s)/nm

Kaolinite 2078–2267

Smectite 2118–2287

Kaolinite-smectite 50-50 mixture 2128–2258

Illite 2155–2266, 2306–2385

Goethite 457–563, 776–1266

Hematite 455–612, 765–1050

http://speclab.cr.usgs.gov/spectral.lib06/ds231/datatable.html

6.1 Feature Selection 83

To initiate the comparison between the reference material spectrum xref and soil
spectrum xi , first (for each of the reference spectrum and individual soil spectrum),
the specific wavelength ranges diagnostic to each clay mineral and iron oxide
specimen is isolated. Each range is then normalized using the continuum removal
technique. One method of continuum removal fits a convex hull to the reflectance
spectra over the diagnostic range. This convex hull provides the continuum, and
the relative deviation from this continuum is used to calculate the continuum-
removed spectrum (Clark and Roush 1984). With the continuum-removed spectra,
the presence of each clay mineral and iron oxide in each spectrum can be estimated
when it is compared to that of the continuum-removed reference spectrum. The
approach is exemplified by the US Geological Survey and their Tetracorder
decision-making framework for identifying minerals and inorganic compounds
(Clark et al. 2003). Fundamentally, Tetracorder uses a shape-fitting algorithm, which
essentially reduces down to a correlation between the reference and observed soil
spectra. The correlation coefficient (r; see Sect. 9.1) is a quantitative estimate of
the shape similarity between the reference and soil spectra. Other criteria used
for estimating similarity to the reference spectrum are the relative band depth and
relative area of the soil spectral feature (with respect to the reference). The slope of
the continuum is also used, particularly for the positive identification of iron oxides.

The band depth of a spectral feature for a given clay mineral or iron oxide is
defined by (Clark and Roush 1984):

d = 1 − scr

sl
(6.1)

where d is the band depth of the spectral feature, scr is the reflectance value at the
minimum of the continuum-removed spectrum of xref for the diagnostic wavelength
range and sl is the reflectance value of the continuum line at the same wavelength. A
relative depth d ′ can be calculated as the ratio of the band depth of an unknown soil
sample to that of a reference spectrum. The area between the continuum-removed
spectrum of xref for the diagnostic wavelength range and continuum line at the same
range is estimated by the conventional area calculation method. The relative area a′
between the area of a soil spectrum and the area of a reference spectrum is calculated
as the ratio between the two. Finally, the relative abundance of a clay mineral or iron
oxide in a particular soil sample can be derived by:

relative abundance = r × d ′ × a′, (6.2)

where d ′ is the relative depth of the spectral feature for the diagnostic wavelength
for a given reference mineral or iron oxide and a′ is the relative spectral feature area.
In the case where there is more than one diagnostic spectral feature such as for illite
or both the iron oxide hematite and goethite, the relative abundance is derived by:

84 6 Exploratory Soil Spectral Analysis

relative abundance =
nb∑

i=1

ci × ri × d ′
i × a′

i , (6.3)

where nb is the number of diagnostic spectral features and ci is the proportional
area of the reference spectral feature i to the total summed area of the (reference
mineral) spectral features.

To put what has just been described into a more practical learning, the following
exercise will demonstrate:

1. How to use one of the reference material spectra extracted from the USGS
repository and compute the continuum removal of this spectrum within the
specified diagnostic wavelengths.

2. How to use this continuum-removed reference material spectrum to estimate
a number of parameters (shape, area, depth, slope) that quantitatively describe
absorption features within the diagnostic wavelength range.

3. How to estimate the relative abundance of clay minerals and iron oxides from
your own spectra.

The USGS spectral library is a database of spectra together with sample descrip-
tions of many hundreds of samples and reference materials. We have extracted
and post-processed a few of these spectra that correspond to the clay minerals
and iron oxides mentioned previously. These are collectively contained in the file
mineralRef from the book package soilspec.

load the book package
require(soilspec)

load the reference spectra
data("mineralRef")

inspect the object
str(mineralRef)

’data.frame’: 2151 obs. of 13 variables:
$ wavelength : int 350 351 352 353 354 355 356 357 358 359 ...
$ Geothite : num 0.0191 0.0191 0.0189 0.0187 0.0185 0.0183 0.0181 0.018

0.0179 0.0178 ...
$ hematite : num 0.0199 0.019 0.0182 0.0176 0.0172 0.017 0.017 0.0171

0.0172 0.0174 ...
$ gypsum : num 0.872 0.873 0.874 0.874 0.874 ...
$ calcite : num 0.796 0.798 0.799 0.799 0.798 ...
$ kaolinite_114 : num 0.324 0.329 0.334 0.339 0.343 ...
$ kaolinite_113 : num 0.386 0.392 0.399 0.405 0.411 ...
$ montmorillinite_126: num 0.32 0.322 0.324 0.325 0.327 ...
$ monmorillinite_127 : num 0.502 0.504 0.505 0.507 0.508 ...
$ illite_121 : num 0.355 0.356 0.358 0.359 0.36 ...
$ illite_120 : num 0.154 0.154 0.153 0.153 0.153 ...
$ kaol_smect_124 : num 0.114 0.116 0.118 0.121 0.123 ...
$ kaol_smect_125 : num 0.136 0.138 0.14 0.142 0.144 ...

http://speclab.cr.usgs.gov/spectral.lib06/ds231/datatable.html

6.1 Feature Selection 85

You will note that for some minerals there is more than one spectrum. In fact,
as you will note from the USGS spectral library, there can be many tens of samples
of the same reference material. They may differ in terms of provenance and grain
size. Collectively these differences will result in changes to the absorbance features
within the diagnostic wavelengths. The actual range of the diagnostic wavelengths
may differ slightly from reference material to reference material too. This does not
present a serious problem because when a sample is presented to a diagnostic engine
such as the USGS Tetracorder (as an example), the presented sample spectrum is
compared to the whole spectral library where the comparison criteria are estimated
for every sample in the library. It is such that one reference material may indicate
absence of a specified clay mineral, while a different sample of the same type of
reference material may indicate that the clay mineral is in abundance. If there is a
high likelihood that a clay mineral is in abundance from at least one of the reference
materials, it would be considered as confirmatory that clay mineral is in fact present
in the undiagnosed sample being evaluated.

As a first step, we plot the two spectra that correspond to the kaolinite reference
material. An identifying characteristic of kaolinite is the doublet spectra feature
in the 2200 nm region. A similar doublet feature is also present in the 1400 nm
region. The absorption feature near 1400 nm is due to overtones of the O-H stretch
vibration near 2778 nm (3600 cm−1), while those near 2200 nm are due to Al-OH
bend plus O-H stretch combinations (Stenberg et al. 2010). Subsequently water or
soil moisture could have a stronger attenuating effect on the spectra in the 1400 nm
region compared to 2200 nm region because of these different overtone properties.

create a sequence of numbers to represent the wavelength
wavelength <- seq(350, 2500, by = 1)

plot the kaolinite spectrum number 114
plot(wavelength, (t(mineralRef$kaolinite_114)),

type = "l",
col = "blue",
ylim = c(0.2, 1.2),
xlab = "Wavelength /nm",
ylab = "Reflectance")

add to the plot the kaolinite spectrum number 113
lines(wavelength, (t(mineralRef$kaolinite_113)),

type = "l",
col = "red")

add a legend
legend("topright",

legend = c("kaolinite_114", "kaolinite_113"),
lty = c(1, 1),
col = c("blue", "red"))

86 6 Exploratory Soil Spectral Analysis

500 1000 1500 2000 2500

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Wavelength /nm

R
ef

le
ct

an
ce

kaolinite_114
kaolinite_113

Fig. 6.1 Example of two reflectance reference spectra for kaolinite, called kaolinite_114 and
kaolinite_113 in the USGS spectral library

Using the diagnostic wavelengths indicated for kaolinite in Fig. 6.1, we can
trim the spectrum accordingly using the trimSpec function defined in Sect. 5.1
(Fig. 6.2).

select reference mineral
kaolRef <- as.data.frame(t(mineralRef$kaolinite_114))
colnames(kaolRef) <- wavelength

diagnostic wavelength range
lower <- 2078
upper <- 2267

spectrum trimming
kaolDiog1 <- trimSpec(kaolRef,

wavlimits = c(lower,upper))

plot the trimmed reflectance spectrum between the wavelengths 2078 and 2267nm
plot(colnames(kaolDiog1[1,]), kaolDiog1[1,],

type = "l",
xlab = "Wavelength /nm",
ylab = "Reflectance")

Next we use a continuum removal procedure to normalize the spectra. The
function to be used here is called chBLCext from the book package soilspec. In
addition to returning the continuum-removed spectra, the chBLCext function also
returns the fitted continuum, plus the vertices needed for calculating the area of the

http://speclab.cr.usgs.gov/spectral.lib06/ds231/datatable.html

6.1 Feature Selection 87

2100 2150 2200 2250

0.
45

0.
55

0.
65

0.
75

Wavelength /nm

R
ef

le
ct

an
ce

Fig. 6.2 Trimmed spectra for the region of interest of reflectance wavelengths for kaolinite

diagnostic spectral feature. Essentially, we need to input the spectra, together with
the upper and lower bounds of the diagnostic range. The type argument needs
also to be specified, to tell the function if we are providing either an absorbance or
reflectance spectrum.

We can apply this function to the reference spectra (Fig. 6.3).

continuum removal function
kaolDiog1CR <- chBLCext(spectra = kaolDiog1,

wav = as.numeric(colnames(kaolDiog1)),
type = "R")

plot the trimmed reflectance spectrum between the wavelengths 2078 and 2267nm
plot(colnames(kaolDiog1[1,]), kaolDiog1[1,],

type = "l",
xlab = "Wavelength /nm",
ylab = "Reflectance")

add the convex hull derived continuum
lines(colnames(kaolDiog1[1,]), kaolDiog1CR$continuum,

col = "red")

88 6 Exploratory Soil Spectral Analysis

2100 2150 2200 2250

0.
45

0.
55

0.
65

0.
75

Wavelength /nm

R
ef

le
ct

an
ce

Fig. 6.3 Continuum fitted to reference material spectrum for the diagnostic wavelength range of
kaolinite_113

We can then plot the continuum-removed spectrum which is calculated as
ref lectance
continuum

across the diagnostic wavelength range.
Continuum fitted to reference material spectrum for the diagnostic wavelength

range of kaolinite_113. Continuum-removed spectrum for the diagnostic
wavelength range of kaolinite_113 (Fig. 6.4).

plot continuum-removed spectra
plot(colnames(kaolDiog1[1,]), kaolDiog1CR$cHull,

type = "l",
xlab = "Wavelength /nm",
ylab = "Continuum-removed reflectance")

6.1 Feature Selection 89

2100 2150 2200 2250

0.
65

0.
75

0.
85

0.
95

Wavelength /nm

C
on

tin
uu

m
−r

em
ov

ed
 re

fle
ct

an
ce

Fig. 6.4 Continuum-removed spectrum for the diagnostic wavelength range of
kaolinite_113

Quantitative parameters of absorbance features
Now we wish to estimate specifically the absorbance feature’s depth, area and

slope. Following from Equation (6.1), the estimation of band depth can be scripted
as below. All we are doing here is searching for the minimum reflectance value
of the continuum-removed spectrum and then searching for the corresponding
value (scr) of the raw reflectance and the convex hull continuum (sl) at the same
wavelength.

find wavelength corresponding to minimum continuum-removed reflectance
waveId <- which(kaolDiog1CR$cHull==min(kaolDiog1CR$cHul))[1]

identify raw reflectance reading
Scr <- kaolDiog1CR$rawSpec[waveId]

identify continuum reading
Sl <- kaolDiog1CR$continuum[waveId]

calculate band depth, Eq. 7.1
featureDepth <- 1 - (Scr/Sl)

display band depth
featureDepth

2205
1 0.3474705

Estimating the area of the polygon is relatively straightforward. The vertices
of the spectral feature have been stored as an element within the kaolDiog1CR
object. We can configure these vertices to make a polygon after which we calculate
the area. For the area calculation, we use the areapl function from the splancs
package (Fig. 6.5).

90 6 Exploratory Soil Spectral Analysis

plot continuum-removed spectra
plot(colnames(kaolDiog1[1,]), kaolDiog1CR$cHull,

type = "l",
xlab = "Wavelength /nm",
ylab = "Continuum-removed reflectance")

polygon covering the absorbance feature
polygon(kaolDiog1CR$polygon,

col = "red",
border = NA)

2100 2150 2200 2250

0.
65

0.
75

0.
85

0.
95

Wavelength /nm

C
on

tin
uu

m
−r

em
ov

ed
 re

fle
ct

an
ce

Fig. 6.5 Area (in red) of the absorbance feature of the kaolinite for the region of interest

load the required package
require(splancs)

calculate area of the polygon
featureArea <- areapl(kaolDiog1CR$polygon)

display area of the polygon
featureArea

[1] 21.23712

Finally calculating the slope of the continuum is just the value of the continuum
at the smallest wavelength subtracted from the value of the continuum at the largest
wavelength.

6.1 Feature Selection 91

calculate slope of the continuum
featureSlope <- tail(kaolDiog1CR$continuum, 1) - kaolDiog1CR$continuum[1]

display value of the slope
featureSlope

[1] -0.1471

For future reference and for the later comparison, it is handy to store all the
pertinent information that has been gathered regarding each reference material
as one object. Below all the information we have gathered about the kaolinite
reference material are stored in a list object called kaolin1141summary. This
is effectively the procedure we have followed for all the other reference materials
to build a library of summaries that we use in the next section to analyse some soil
spectra.

save a summary of all the information gathered about the reference material
kaolin1141summary <- list(name = "kaolinite114material",

wave = as.numeric(colnames(kaolDiog1[1,])),
CRspectra = kaolDiog1CR$cHull,
bandDepth = featureDepth,
featureArea = featureArea,
featureSlope = featureSlope,
continuum = kaolDiog1CR$continuum,
contiuumPolygon = kaolDiog1CR$polygon,
rawSpectrum = kaolDiog1CR$wave)

6.1.2 Comparing Soil Spectra with Spectra of Reference
Materials

This section is dedicated to implementing the task of comparing diagnostic spectral
features of the reference material to the corresponding features of collected soil
spectra. The previously saved kaolin1141summary contains the objects or
reference material summaries of the kaolinite soil clay mineral described earlier. The
process of creating these summaries is described previously. For the comparative
work, we load in an undiagnosed set of soil spectra. The context of these spectra
collection is described in Chap. 3.

load the unknown soil spectra
data("rutherglenNIR")

Then we do some curation to prepare these spectra for analysis. It is at this stage
where we decide whether we implement spectral smoothing of the raw spectra or
not. In the following example, this option is not taken.

92 6 Exploratory Soil Spectral Analysis

curation
nc <- ncol(rutherglenNIR)

remove first column (labels)
rutherglenNIR <- rutherglenNIR[, 2:nc]

wavelength sequence
wavelength <- seq(350, 2500, by = 1)

append column names
colnames(rutherglenNIR) <- wavelength

It is possible to automate the procedure of checking each sample for the presence
or relative abundance of each reference material that we have summary information
for. In fact, this would be a good advanced exercise to try and implement in R.

The following is an example of checking, one spectrum at a time, the relative
abundance compared with a single selected reference material. In this case, the
selected material is one of the kaolinite samples. The example script below however
is flexible. We can change the reference material and soil spectrum to which we
make the comparison.

select the reference material you want to compare soil spectra too
minSelect <- kaolin1141summary

region of Interest
lower <- min(minSelect$wave)
upper <- max(minSelect$wave)

select the spectrum
speczz <- 1

Spectral trimming is next. The next script using the specTrim function given
in Chap. 5 will actually perform the trimming upon the whole spectral dataset in one
go (Fig. 6.6).

spectral trimming
specTrim <- trimSpec(spectra = rutherglenNIR,

wavlimits = range(lower:upper))

plot single spectrum
plot(colnames(specTrim), specTrim[speczz,],

type = "l",
xlab = "Wavelength /nm",
ylab = "Reflectance")

6.1 Feature Selection 93

2100 2150 2200 2250

0.
66

0.
68

0.
70

0.
72

Wavelength /nm

R
ef

le
ct

an
ce

Fig. 6.6 First reflectance spectrum of the Rutherglen subset of data from the soilspec book
package for the region of interest between 2079 and 2267 nm

Then we can fit the continuum to this spectrum using the chBLCext function
(Fig. 6.7). This function takes as input a matrix containing the reflectance spectra
and the lower and upper limits of the diagnostic ranges. In the example below, this
range corresponds to kaolinite.

convex Hull and continuum
specCR <- chBLCext(specTrim[speczz,],

wav=as.numeric(colnames(specTrim)),
type = "R")

plot spectrum for the region of interest
plot(colnames(specTrim[speczz,]), specTrim[speczz,],

type = "l",
xlab = "Wavelength /nm",
ylab = "Reflectance")

add line of the continuum fitted
lines(colnames(specTrim[speczz,]), specCR$continuum,

col="red")

94 6 Exploratory Soil Spectral Analysis

2100 2150 2200 2250

0.
66

0.
68

0.
70

0.
72

Wavelength /nm

R
ef

le
ct

an
ce

Fig. 6.7 Continuum fitted to reference material spectrum for the region of interest of reflectance
bands for kaolinite

We can then calculate the various quantitative parameters that describe the
absorbance features within this spectral range.

band depth
sCr <- specCR$rawSpec[which(specCR$cHull==min(specCR$cHull))]
sL <- specCR$continuum[which(specCR$cHull==min(specCR$cHull))]
specd <- 1 - (sCr/sL)
specd

2207
1 0.07127731

area of spectral feature
specArea <- areapl(specCR$polygon)
specArea

[1] 3.843102

slope of continuum
specSlope <- specCR$continuum[length(specCR$continuum)] - specCR$continuum[1]
specSlope

[1] -0.03755679

Now we can start comparing the spectral feature of this spectrum to that of
the reference material. First, we estimate the correlation between the continuum-
removed spectra of the reference material to the soil spectrum. This measure
provides an indicator of the similarity in shape between both features.

6.1 Feature Selection 95

correlation
specFit <- as.numeric(cor(t(specCR$cHull), t(minSelect$CRspectra)))
specFit

[1] 0.9048102

Then we calculate the relativity parameters to spectral depth and area of the
reference material. We can then also estimate relative abundance of the target
mineral by applying Equation (6.3).

relative depth
relativeDepth <- as.numeric(specd/minSelect$bandDepth)
relativeDepth

[1] 0.205132

relative area
relativeArea <- as.numeric(specArea/minSelect$featureArea)
relativeArea

[1] 0.1809616

fit x relative depth
specFit*relativeDepth

[1] 0.1856055

fit x depth x area
specFit*relativeDepth*relativeArea

[1] 0.03358746

The relative abundance of kaolinite in this sample seems small, although there is
quite a strong correlation between the spectral absorbance shapes in this region. A
helpful plot is to overlay the continuum-removed plot of the soil spectrum upon the
reference material. This plot confirms the low abundance. However, it is important
to reiterate that the abundance values are not useful on their own. Abundance is
not a quantitative estimate of concentration per se. However, abundance values are
useful when assessing relative abundances among a group of minerals and when
comparing values (of a given metric and combination thereof) between different
samples (Fig. 6.8).

plot reference material for the specific wavelengths
plot(minSelect$wave, minSelect$CRspectra,

type = "l",
col = "blue",
ylab = "Continuum-removed reflectance",
xlab = "Wavelength /nm")

add to the plot the spectrum of the sample with low kaolinite content
lines(specCR$wave, specCR$cHull,

col = "red")

96 6 Exploratory Soil Spectral Analysis

2100 2150 2200 2250

0.
65

0.
75

0.
85

0.
95

Wavelength /nm

C
on

tin
uu

m
−r

em
ov

ed
 re

fle
ct

an
ce

Fig. 6.8 Reference (blue) spectrum for kaolinite and example (red) spectrum in the region of
kaolinite absorbance. The example spectrum shows relatively low content of kaolinite compared
to the reference spectrum

In a spatial context, the estimation of relative abundances provides the oppor-
tunity to assess their variability across landscapes. Understanding the spatial
variability of secondary clay minerals via the tools of digital soil mapping (McBrat-
ney et al. 2003) provides an understanding of the soil behaviour and function in
a given environment. Some prior examples of such work includes Viscarra-Rossel
(2011) who digitally mapped the relative abundances and distributions of kaolinite,
illite and smectite in Australian soil. This work continues to inform and improve
ongoing efforts to develop a consistent digital soil infrastructure for Australia
(Grundy et al. 2015). At a much smaller spatial extent, Malone et al. (2014) digitally
mapped secondary clay minerals and iron oxides across the Lower Hunter Valley,
Australia, to aid in the much wider analysis of distinguishing viticulture terroirs in
that region.

The feature identification procedures described previously are very much gener-
alizable and potentially applied to other spectral data applications and contexts. In
an interesting study, Ng et al. (2017) used the feature selection approach to select
regions in MIR and NIR spectra that help quantify soil contaminants, specifically
total recoverable hydrocarbons (TRHs). The authors found that predictive models
of TRH concentration could be skilfully predicted when models were trained with

6.2 Principal Component Analysis 97

selected spectral regions where there is sensitivity to TRHs. Such work could
potentially inform the development of custom sensors and improve the efficiency
of modelling to target on specific spectral regions rather than using the full
wavenumber spectral range for model calibrations.

6.2 Principal Component Analysis

Principal component analysis (PCA) is a statistical technique used to examine the
interrelations among a set of variables and to identify their underlying structure. In a
PCA, the original variables are transformed into a (smaller) number of uncorrelated
variables called principal components. The first principal component accounts for
most of the variability in the data, and each succeeding component accounts for a
sequentially decreasing amount of the remaining variability in the data. Thus with a
few components, we may be able to explain most of the variation in the spectra. With
a lower dimension dataset, we can perform outlier detection or select the spectra in
which to perform laboratory-based chemical analysis so as to calibrate soil attribute
predictive functions. In the following, we will examine how to use PCA for spectral
data and examine or interpret some of the results.

In this section, we use the raw spectra datsoilspc provided by our book
soilspec package (Fig. 6.9). The steps for pre-processing are explained in
Chap. 5.

load the required package
require(soilspec)

load the data
data("datsoilspc")

convert reflectance to absorbance
spectraA <- log(1/datsoilspc$spc)

plot first spectrum
matplot(x = colnames(spectraA), y = t(spectraA),

xlab = "Wavelength /nm",
ylab = "Absorbance",
ylim = c(0, 4),
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))

98 6 Exploratory Soil Spectral Analysis

500 1000 1500 2000 2500

0
1

2
3

4

Wavelength /nm

A
bs

or
ba

nc
e

Fig. 6.9 Absorbance spectra from the book package soilspec dataset called datsoilspc

Principal component analysis (PCA) aims at approximating the matrix contain-
ing the spectra X by a product of two matrices, called loading and score matrices,
as follows:

X = TPT , (6.4)

where X is the matrix of size n × b containing the spectra, where n is the number
of spectra and b is the number of spectral bands (wavelengths); T = XP is the
matrix of scores (projection of X) of size n × d, where d is the number of principal
components; and P is the loading matrix of size d × b. The superscript T means the
transpose of the matrix. PCA aims to solve for matrix P so that the scores t1, . . . , td
are arranged in a decreasing variance order and uncorrelated. The use of the loadings
and scores is explained later in this section.

PCA in R can be implemented through the prcomp function which is part
of the base stats package. This function essentially requires the spectra table,
which in our case is the absorbance spectra. Several parameters may be defined,
for which the most important are whether you want to centre and/or standardize the
spectra. Centring means adjusting each of the spectra so that they are zero centred.
Standardizing means adjusting the spectra to ensure they have unit variance. In this
example, we do PCA in default mode which does not perform any prior centring or
scaling to the spectra. All steps for spectral pre-processing are explained in more
details in Chap. 5.

6.2 Principal Component Analysis 99

#principal component of the processed spectra
pcspectra <- prcomp(spectraA)

#amount of variance explained by each component 1to10
summary(pcspectra)[[6]][,1:10]

PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 11.22897 4.205422 2.407908 1.249613 0.6380026 0.5032785
Proportion of Variance 0.82859 0.116220 0.038100 0.010260 0.0026700 0.0016600
Cumulative Proportion 0.82859 0.944810 0.982910 0.993170 0.9958500 0.9975100
PC7 PC8 PC9 PC10
Standard deviation 0.3910278 0.2012169 0.1678252 0.1480202
Proportion of Variance 0.0010000 0.0002700 0.0001900 0.0001400
Cumulative Proportion 0.9985200 0.9987800 0.9989700 0.9991100

Alternatively, the PCA can be performed with the pc_projection function
from the resemble package. In this case, the user must first decide what is the
maximum amount of cumulative variance that needs to be retained by the PCs. In
the next chapters, we will use both the base function prcomp and the resemble
function pc_projection interchangeably.

load the required package
require(resemble)

specify amount of cumulative variance that needs to be retained by the PCs.
note that in most cases 0.99 is sufficient
maxexplvar <- 0.99

perform the PCA
pcspectraRs <- pc_projection(Xr = spectraA,

pc_selection = list("cumvar", maxexplvar),
method = "pca",
center = TRUE, scale = FALSE)

display the information contained in the pcspectraRs object
print(pcspectraRs)

##
Method: pca (svd)
Number of components retained: 3
Number of observations and number of original variables: 391 2151
##
Standard deviations, cumulative variance explained, individual variance explained:
##
Explained variance in X {Xr; Xu}:
pc_1 pc_2 pc_3
sd 11.229 4.205 2.4079
cumulative_explained_var 0.829 0.945 0.9829
explained_var 0.829 0.116 0.0381

It is possible to plot the amount of variance explained for each of the principal
component using the screeplot function (Fig. 6.10).

plot the variances explained by each component
screeplot(pcspectra,

npcs = 10,
main = " ",
type = "lines")

100 6 Exploratory Soil Spectral Analysis

Va
ria

nc
es

0
20

40
60

80
10

0

1 2 3 4 5 6 7 8 9 10

Fig. 6.10 Amount of variance retained for each of the principal components. Only the ten first
components are displayed

The scree plot illustrates the amount of variance in the spectra that is described
by each component. It is always the case that the first component explains most
of the variation. Each successive component decreasingly explains a little bit less
of the variation. Here the first five components describe over 99% of the spectral
variation. Alone the first component describes 83%. We have reduced what was a
very high dimensional spectral dataset down to just a few components.

Biplots are a useful output of PCA, where they visually show both individual
points and the variables. PCA scores are the original spectra in a rotated coordinate
system. Relation between scores and the original data are determined via the
loadings. The loadings can be understood as the weights for each original variable
(here wavelength) when calculating the principal component. By multiplying the
transpose of the variable loadings by the PCA scores, the original spectra table
will be returned. By plotting the PCA scores, we can evaluate visually any
relationships among the different spectra and wavelengths, for example, whether
there is clustering or grouping among the spectra. The loadings are used to interpret
relationships between variables, which is aided by the use of arrows on the plot. The
length of the lines approximates the variances of our variables (the wavelengths).
The longer the line, the higher the variance. The angle between the lines (actually
cosine of the angle) approximates the correlations between the variables. The closer
the angle is to 90 or 270 degrees, the smaller the correlation. An angle of 0 or 180
degrees reflects a correlation of 1 or −1, respectively. By plotting the biplot of our
first two principal components, we see (Fig. 6.11):

make a biplot of the first two principal components scores and loadings
biplot(pcspectra,

col = c(rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 1),
rgb(red = 1, green = 0, blue = 0, alpha = 0.5)),

xlab = "PC 1",
ylab = "PC 2")

6.2 Principal Component Analysis 101

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10

−0
.2

0
−0

.1
5

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

PC 1

P
C

 2
−8 −6 −4 −2 0 2 4

−8
−6

−4
−2

0
2

4

Fig. 6.11 Biplot of the first two principal components of the datsoilspc data. The grey
numbers indicate the location of the score values in the principal component space, and the red
numbers indicate the loadings

This plot is a little difficult to interpret because there are so many variables
(wavelengths) under consideration, but the numbers (in grey) are the individual
spectra (projected onto the first two components), while the arrows are the loadings.
Many of the wavelengths are correlated with each other, and some are more variable
than others. Similarly, there do appear to be some groupings within our spectra
collection, and there also appear to be some spectra that could be outliers too (we
will investigate this Chap. 7).

Individually we may just first want to look at the loadings plot of the first two
principal components which as we know collectively explains just over 94% of the
spectral variance:

102 6 Exploratory Soil Spectral Analysis

plot the first loading of the PC of the absorbance spectra
plot(colnames(spectraA), pcspectra$rotation[,1],

type ="l",
ylab ="Loading",
xlab ="Wavelength /nm",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1),
ylim = c(-0.06, 0.06))

add to the plot the second loading of the PC of the absorbance spectra
lines(colnames(spectraA), pcspectra$rotation[,2],

type ="l",
ylab ="Loading",
xlab ="Wavelength /nm",
col = rgb(red = 0, green = 0, blue = 1, alpha = 1))

add a legend
legend("topright",

legend = c("First loading", "Second loading"),
lty = c(1, 1),
col = c("red", "blue"))

500 1000 1500 2000 2500

−0
.0

6
−0

.0
2

0.
02

0.
06

Wavelength /nm

Lo
ad

in
g

First loading
Second loading

Fig. 6.12 First two loadings of the principal components of the absorbance spectra

Figure 6.12 shows the value of the coefficients for each wavelength and each of
the principal component. Red and blue lines indicate the first and second principal
component loadings, respectively. These coefficients, when multiplied by the PCA
scores, recreate the original spectra. Each of the loadings describes a different part
of the spectral structure. We can compare these loadings with that of the last or

6.2 Principal Component Analysis 103

389th principal component. With this principal component, essentially there is little
to interpret, and there are no discernible patterns or features in the loading spectrum.
The signal is just describing noise (Fig. 6.13).

plot last principal component loading
plot(colnames(spectraA), pcspectra$rotation[,ncol(pcspectra$rotation)],

type = "l",
ylab = "Loading",
xlab = "Wavelength /nm",
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),
ylim = c(-0.1, 0.1))

500 1000 1500 2000 2500

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Wavelength /nm

Lo
ad

in
g

Fig. 6.13 Last (391st) loading of the principal components of the absorbance spectra

Similarly, we can plot the scores of the first two principal components, which
display what was shown on Fig. 6.11 but without the loadings (Fig. 6.14).

principal component scores
pcsscores <- pcspectra$x
plot(x = pcsscores[,1],

y = pcsscores[,2],
xlab ="PCA 1",
ylab ="PCA 2",
pch = 16,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5))

104 6 Exploratory Soil Spectral Analysis

−40 −30 −20 −10 0 10 20

−1
5

−1
0

−5
0

5

PCA 1

P
C

A
 2

Fig. 6.14 First two principal component scores of the absorbance spectra

6.3 Spectral Prediction Domain

In our example, we know that the first two principal components describe much of
the variability (94.5%) of the entire spectra. If we define a convex hull around these
points, we are effectively defining a domain of prediction. It is possible to evaluate
whether a prediction model based on our spectral library can realistically infer soil
attribute values on new, exogenous and undiagnosed spectra. The new spectra can be
projected onto the first two principal components of the original spectral library. If
the points lie inside the convex hull of our spectral library, we can be confident that
the spectral library and the new spectra have similar characteristics. On the other
hand, if the projected spectra are outside this convex hull, it indicates that the new
spectra are unlike the others in the library and as such, making conclusions about
the new spectra based on the original spectral library is to be made with caution.

Using the tri.mesh and convex.hull functions from the tripack
package, we can fit the convex hull around the PCA scores of the first two principal
components. We can then visualize this as below (Fig. 6.15):

load the required package
require(tripack)

perform a triangulation of the PCA scores
randTr <- tri.mesh(pcsscores[,1], pcsscores[,2])

from triangulation returns the nodes that are on boundary i.e. convex hull
randCh <- convex.hull(randTr, plot.it = F)

save the convex hull vertices
prPoly = cbind(x = c(randCh$x), y = c(randCh$y))

6.3 Spectral Prediction Domain 105

plot PCA scores
plot(pcsscores[,1], pcsscores[,2],

xlab ="PCA 1",
ylab ="PCA 2",
xlim = c(min(pcsscores[,1:2]), max(pcsscores[,1:2])),
ylim = c(min(pcsscores[,1:2]), max(pcsscores[,1:2])),
pch = 16,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5))

draw convex hull
lines(c(randCh$x, randCh$x[1]), c(randCh$y,randCh$y[1]),

col="red",
lwd=1)

−40 −30 −20 −10 0 10 20

−4
0

−2
0

0
10

20

PCA 1

P
C

A
 2

Fig. 6.15 First two principal component scores of the absorbance spectra (grey dots) and fitted
convex hull (red line)

We have now defined our domain of prediction, and it is clear from the plot that
there is a grouping of spectra around the high score values for PCA 1 and relatively
high score values for PCA 2. For now, we will not take this further. Later on in
this book, we will use this domain of prediction to determine whether a particular
spectral library is appropriate for prediction of soil properties given some exogenous
or introduced spectra.

One can import some new spectra and determine whether they fit inside the
domain of prediction of our spectral library. The exogenous spectra are raw NIR
spectra collected using the same type of instrument which the spectra making up
our spectral library were collected with. After importing into R, we then need to
carry out the same pretreatments as we did for our spectral library and then project
them onto the principal components. We can then implement a simple procedure
whereby we determine whether each exogenous spectrum fits inside the convex hull
or prediction domain of our spectral library.

106 6 Exploratory Soil Spectral Analysis

For the example, we modify the current spectra to simulate exogenous spectra.
In a real-world case study, the exogenous spectra often come from a different case
study (Fig. 6.16).

set the seed to make a reproducible example
set.seed(19101991)

create a function to apply a systematic shift to each spectrum
FUN <- function(x){

add a random systematic shift to each spectra
x <- x + rnorm(1, 0, 0.1)
return(x)

}

apply the function to each spectra
spectraAMod <- apply(spectraA, 1, FUN)

plot original spectrum
matplot(x = colnames(spectraA), y = t(spectraA)[,1:10],

xlab = "Wavelength /nm",
ylab = "Absorbance",
ylim = c(-0.1, 4),
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))

plot modified ’exogenous’ spectra
matlines(x = colnames(spectraA), y = spectraAMod[,1:10],

xlab = "Wavelength /nm",
ylab = "Absorbance",
type = "l",
lty = 1,
col = rgb(red = 1, green = 0, blue = 0, alpha = 0.3))

500 1000 1500 2000 2500

0
1

2
3

4

Wavelength /nm

A
bs

or
ba

nc
e

Fig. 6.16 Original (grey) and modified (exogenous, in red) first ten absorbance spectra of the
datsoilspc data

6.3 Spectral Prediction Domain 107

Then we project the pretreated exogenous spectra onto the principal components
that we derived for our original spectral library. This is done using the predict
function.

project the exogenous spectra onto the PC space of the original spectra
PCAProjection <- predict(pcspectra, t(spectraAMod))

Then we plot the PCA scores of the first two principal components for our
exogenous spectra and see whether they fit within the convex hull that was
created previously. Key to this procedure is a function from SDMTools called
pnt.in.poly which as suggested works out if points lie within the boundaries of
a defined polygon (Fig. 6.17).

load required package
require(SDMTools)

check whether the spectra fit in the polygon PCA scores of exogenous spectra
newScores = cbind(x = PCAProjection[,1], y = PCAProjection[,2])

plot the polygon and all points to be checked
plot(newScores,

xlab ="PCA 1",
ylab ="PCA 2",
xlim = c(min(pcsscores[,1:2]),max(pcsscores[,1:2])),
ylim = c(min(pcsscores[,1:2]),max(pcsscores[,1:2])),
col= rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),
pch = 16)

polygon(prPoly,
col = rgb(red = 0.3, green = 0.3, blue = 0.3, alpha = 0.3))

check which points fall within the polygon
specMatch = pnt.in.poly(newScores, prPoly)
points(specMatch[which(specMatch$pip==0),1:2],

pch = "X",
col = rgb(red = 1, green = 0, blue = 0, alpha = 1))

−40 −30 −20 −10 0 10 20

−4
0

−2
0

0
10

20

PCA 1

P
C

A
 2

X
XXX

X

X

X
XX X

X
XX

X
X X XX
X

XX XX

X

X

X
X

X X
X

X

X
X

XXX

XX
X

X X
XX XX XX

X

XX X

X

XX
X

X

Fig. 6.17 Exogenous spectra projected onto the principal component space of the original spectra.
The points lying outside the convex hull of the original spectra (grey area) are in red

108 6 Exploratory Soil Spectral Analysis

Check the percentage of points falling inside the polygon.

percent of points falling outside the polygon
sum(specMatch$pip)/nrow(specMatch)*100

[1] 84.65473

From this plot, we can see that about 85% of our spectra fit inside the convex hull.
For the remaining 15%, we should take any prediction of soil properties based on
these spectra with care, as the spectral library and or its spectral prediction domain
does not extend to these observations.

6.4 Soil Colour

Some soil properties can be estimated directly from the spectra without the need for
further pretreatments or statistics. For example, as can be expected, the visible part
of the vis-NIR spectrum contains information about colour. This information can be
used to predict soil colour directly from the spectra (Mouazen et al. 2007; Summers
et al. 2011).

To achieve this, we identify the average reflectance in the red (600–690 nm),
green (520–600 nm) and blue (420–520 nm) colour bands. This data is used to
predict colour in RGB colour space which can then be converted to Munsell notation
and other colour spaces.

Let us load some data as example. They are in the book package soilspec and
are called specSoilCol.

load required package
require(soilspec)

load the spectra for this example
data("specSoilCol")

plot each spectrum separately
par(mfcol = c(3, 4))
for(i in 1:nrow(specSoilCol)){

plot(x = colnames(specSoilCol[-c(1:2)]), y = specSoilCol[i,-(1:2)],
type = "l",
ylim = c(0, 1),
main = paste0("Soil - ", specSoilCol[i,1], ", Horizon - ", specSoilCol[i,2]),
ylab = "Reflectance",
xlab = "Wavelength /nm")

}

6.4 Soil Colour 109

50
0

10
00

15
00

20
00

25
00

0.00.20.40.60.81.0

S
o

il
−

A
, H

o
ri

zo
n

 −
 H

1

W
av

el
en

gt
h

/n
m

Reflectance

50
0

10
00

15
00

20
00

25
00

0.00.20.40.60.81.0

S
o

il
−

A
, H

o
ri

zo
n

 −
 H

2

W
av

el
en

gt
h

/n
m

Reflectance

50
0

10
00

15
00

20
00

25
00

0.00.20.40.60.81.0

S
o

il
−

A
, H

o
ri

zo
n

 −
 H

3

W
av

el
en

gt
h

/n
m

Reflectance

50
0

10
00

15
00

20
00

25
00

0.00.20.40.60.81.0

S
o

il
−

B
, H

o
ri

zo
n

 −
 H

1

W
av

el
en

gt
h

/n
m

Reflectance

50
0

10
00

15
00

20
00

25
00

0.00.20.40.60.81.0

S
o

il
−

B
, H

o
ri

zo
n

 −
 H

2

W
av

el
en

gt
h

/n
m

Reflectance

50
0

10
00

15
00

20
00

25
00

0.00.20.40.60.81.0

S
o

il
−

B
, H

o
ri

zo
n

 −
 H

3

W
av

el
en

gt
h

/n
m

Reflectance

50
0

10
00

15
00

20
00

25
00

0.00.20.40.60.81.0

S
o

il
−

C
, H

o
ri

zo
n

 −
 H

1

W
av

el
en

gt
h

/n
m

Reflectance

50
0

10
00

15
00

20
00

25
00

0.00.20.40.60.81.0

S
o

il
−

C
, H

o
ri

zo
n

 −
 H

2

W
av

el
en

gt
h

/n
m

Reflectance
50

0
10

00
15

00
20

00
25

00
0.00.20.40.60.81.0

S
o

il
−

C
, H

o
ri

zo
n

 −
 H

3

W
av

el
en

gt
h

/n
m

Reflectance

50
0

10
00

15
00

20
00

25
00

0.00.20.40.60.81.0

S
o

il
−

D
, H

o
ri

zo
n

 −
 H

1

W
av

el
en

gt
h

/n
m

Reflectance

50
0

10
00

15
00

20
00

25
00

0.00.20.40.60.81.0

S
o

il
−

D
, H

o
ri

zo
n

 −
 H

2

W
av

el
en

gt
h

/n
m

Reflectance

50
0

10
00

15
00

20
00

25
00

0.00.20.40.60.81.0

S
o

il
−

D
, H

o
ri

zo
n

 −
 H

3

W
av

el
en

gt
h

/n
m

Reflectance

F
ig

.6
.1

8
E

xa
m

pl
e

re
fle

ct
an

ce
sp

ec
tr

a
re

co
rd

ed
in

fo
ur

di
ff

er
en

ts
oi

ls
an

d
th

re
e

di
ff

er
en

td
ep

th
s

110 6 Exploratory Soil Spectral Analysis

Each of these spectra comes from a different soil sample. In total there are
12 samples (four different soils and three depths; see Fig. 6.18). Each spectrum
has been recorded by an ASD vis-NIR spectrometer. The spectra provided in this
exercise have already been pre-processed, and the replicates have been averaged.
The soil colours corresponding to the spectra presented in Fig. 6.18 are presented in
Fig. 6.19.

Fig. 6.19 Image of soils used in this example. Left to right by column: Soil A, Brown Sodosol;
Soil B, Red Chromosol; Soil C, Black Vertosol; and Soil D, Brown Vertosol. Top to bottom by
row: Horizons 1–3

To derive the soil colour from the spectra, we must define the wavelengths
representing each colour. The specific wavelength intervals for each colour are
provided by Viscarra-Rossel et al. (2009).

provide the intervals for each colour
colourBands <- data.frame(red = c(600,690),

green = c(520,600),
blue = c(450,520))

Now we can plot a spectrum and the associated colour for the intervals. In
addition, we add to the colour the mean of each interval. The mean of the interval is
useful in the next step (Fig. 6.20).

6.4 Soil Colour 111

#plot a spectrum so that we can identify the colour bands on the spectrum
matplot(x = colnames(specSoilCol[-c(1:2)]), y = t(specSoilCol[1,-c(1:2)]),

type = "l",
ylim = c(0, 1),
ylab = "Reflectance",
xlab = "Wavelength /nm")

#loop through each of the3 RGB colour bands to identify the mean reflectance for each
for(i in 1:ncol(colourBands)){

#provide the colour code
cols <- col2rgb(colnames(colourBands[i]))[,1]/255

plot the colour band over the spectra
polygon(c(colourBands[1,i], colourBands[1,i], colourBands[2,i], colourBands[2,i]),

c(0,1,1,0),
col = rgb(cols[1], cols[2], cols[3], 0.25))

isolate reflectance values within the colour band
colSpec <- specSoilCol[1, as.character(colourBands[1, i]:colourBands[2, i])]

find the mean on the reflectance values
meanReflectance <- rowMeans(colSpec)

plot the mean as a horizontal line
lines(y = rep(meanReflectance, 2), x = c(colourBands[1,i], colourBands[2,i]),

col = colnames(colourBands[i]),
lwd = 3)

}

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wavelength /nm

R
ef

le
ct

an
ce

Fig. 6.20 Example reflectance spectra for the soil type A and Horizon H1, with associated blue,
green and red colour intervals. The horizontal coloured lines represent the mean of the spectrum
within the colour interval

Now that we understand how to extract RGB colours from vis-NIR spectra, we
can use these values to estimate colour. We use the function spectra2colour
from the book package soilspec to do this.

112 6 Exploratory Soil Spectral Analysis

return the argument of the spectra2colour function
args(soilspec::spectra2colour)

function (spectra, ...)
NULL

As seen above, the function spectra2colour takes as argument the
reflectance spectra.

the first two columns contain sample ID information that we do not want
we create a new data frame with those columns removed
colDf <- specSoilCol[,-(1:2)]

correct for underprediction
correction factor of 3
colDf <- colDf * 3

if the correction factor pushed an reflectance values above 1
needs to be lowered or the function will not run
colDf[colDf > 1] <- 1

run the spectra2colour() function
cols <- soilspec::spectra2colour(colDf, wavelengths = colnames(colDf))

set plot parameters to produce an output window
contains 3 rows, 4 columns and plot consecutively down the column
par(mfcol=c(3,4))

plot the colours
for(i in 1:nrow(cols)){

plot(1,
col = as.character(cols$colour)[i],
pch = 16,
cex = 15,
xlab = NA,
ylab = NA,
axes = FALSE)

}

Fig. 6.21 Predicted colours from the visible wavelengths of the spectra. The predicted colours
have to be compared with the true colours presented in Fig. 6.19

Figure 6.21 shows a very good representation of the colour of each soil sample.
In general, the top soil samples are darker due to increased organic matter content.

References 113

References

Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat
2:433–459

Brown DJ, Shepherd KD, Walsh MG, Mays MD, Reinsch TG (2006) Global soil characterization
with VNIR diffuse reflectance spectroscopy. Geoderma 132:273–290

Clark RN, King TVV, Klejwa M, Swayze GA, Vergo N (1990) High spectral resolution reflectance
spectroscopy of minerals. J Geophys Res Solid Earth 95:12653–12680

Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote
sensing applications. J Geophys Res Solid Earth 89:6329–6340

Clark RN, Swayze GA, Livo KE, Kokaly RF, Sutley SJ, Dalton JB, McDougal RR, Gent CA
(2003) Imaging spectroscopy: earth and planetary remote sensing with the USGS tetracorder
and expert systems. J Geophys Res Planets 108:E12

Clark RN, Swayze GA, Wise RA, Livo KE, Hoefen TM, Kokaly RF, Sutley SJ (2007) USGS digital
spectral library splib06a. US Geological Survey

Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society of Great Britain, Ireland
Grundy MJ, Viscarra-Rossel RA, Searle RD, Wilson PL, Chen C, Gregory LJ (2015) Soil and

landscape grid of Australia. Soil Res 53:835–844
Madejova J, Gates WP, Petit S (2017) Developments in clay science. Elsevier Ltd., pp 107–149.

Amsterdam, NL.
Malone BP, Hughes P, McBratney AB, Minasny B (2014) A model for the identification of terrons

in the Lower Hunter Valley, Australia. Geoderma Reg 1:31–47
McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil mapping. Geoderma

117:3–52
Mouazen AM, Karoui R, Deckers J, De Baerdemaeker J, Ramon H (2007) Potential of visible

and near-infrared spectroscopy to derive colour groups utilising the munsell soil colour charts.
Biosyst Eng 97:131–143

Ng W, Malone BP, Minasny B (2017) Rapid assessment of petroleum-contaminated soils with
infrared spectroscopy. Geoderma 289:150–160

Stenberg B, Viscarra-Rossel RA, Mouazen AM, Wetterlind J (2010) Visible and near infrared
spectroscopy in soil science. In: Advances in agronomy. Elsevier, Burlington, pp 163–215

Summers D, Lewis M, Ostendorf B, Chittleborough D (2011) Visible near-infrared reflectance
spectroscopy as a predictive indicator of soil properties. Ecol Indic 11:123–131

Varmuza K, Filzmoser P (2016) Introduction to multivariate statistical analysis in chemometrics.
CRC Press, Boca Raton

Viscarra-Rossel RA (2011) Fine-resolution multiscale mapping of clay minerals in Australian soils
measured with near infrared spectra. J Geophys Res Earth Surf 116:F04023

Viscarra-Rossel RA, Cattle SR, Ortega A, Fouad Y (2009) In situ measurements of soil colour,
mineral composition and clay content by vis–NIR spectroscopy. Geoderma 150:253–266

Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst
2:37–52

Chapter 7
Similarity Between Spectra
and the Detection of Outliers

In digital soil spectroscopy, similarity or distance metrics between soil spectra are
necessary for a large number of applications, such as for assessing the reliability
of a spectrometer over repeated scans, to search for a similar soil sample based on
spectra from a large database, to classify spectra into groups of similar characteris-
tics or more generally for detecting outlier spectra. To assess similarity, we usually
compare two spectra wavelength by wavelength and compute the distance between
them. The distance between the two spectra is averaged into a single similarity
metric. It is assumed that the closer two spectra are to one to another, the higher
is the similarity between the soil properties that they characterize. In the infrared
spectroscopy and remote sensing literature, a wide variety of metrics have been
deployed. These metrics are based on distances computed directly on the spectra or
indirectly from derived information from the spectra.

In this section, we provide an example of distance metrics used to assess the
similarity between spectra. For more information on the methods, the reader is
redirected to Brereton (2003), to the summary article of Ramirez-Lopez et al. (2013)
or to the relevant literature provided in the next pages. Distance metrics are also the
basis of several methods described in this chapter (e.g. for outlier detection) or in
the next chapters of this book. The metrics described in this section are:

• Euclidean and Mahalanobis distance
• Correlation similarity
• Spectral angle mapper (dot-product cosine distance)
• Spectral information divergence

In addition to describing distance metrics, we show how they are used in com-
bination with principal component analysis (Sect. 6.2) to detect outliers. Distance
metrics are useful to determine data points further away from the centre of the
spectral principal component space. An outlier is defined as being exceptionally
far away from the bulk of the data in the multi-dimensional space of the scores
(hence the term multivariate outlier). A multivariate outlier can also be detected as a

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. M. J.-C. Wadoux et al., Soil Spectral Inference with R, Progress in Soil Science,
https://doi.org/10.1007/978-3-030-64896-1_7

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64896-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-64896-1_7

116 7 Similarity Between Spectra and the Detection of Outliers

function of the squared Mahalanobis distance against the chi-square statistic using
a multivariate cumulative probability plot. Both procedures, using distance from the
centre measures and probability plots, are described using examples.

The set of packages used in this chapter are installed using the lines below. The
book-associated soilspec package is also required; see Chap. 3 for information
on its installation.

specify all the packages used in the chapter and install them if they are not already
myPackages <- c("scatterplot3d", "prospectr", "RcppArmadillo", "resemble",

"robustbase", "mvoutlier")

#define which packages are not installed in the current computer
notInstalled <- myPackages[!(myPackages %in% installed.packages()[, "Package"])]

#install the missing packages
if(length(notInstalled)) install.packages(notInstalled)

In this section, we use the raw spectra provided by the book-associated
soilspec package (Fig. 7.1). The steps for pre-processing are explained in the
previous chapter.

library(soilspec)
data("datsoilspc")

convert reflectance to absorbance
spectraA <- log(1/datsoilspc$spc)

plot first spectrum
matplot(x = colnames(spectraA), y = t(spectraA),

xlab = "Wavelength /nm",
ylab = "Absorbance",
ylim = c(0, 4),
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))

500 1000 1500 2000 2500

0
1

2
3

4

Wavelength /nm

A
bs

or
ba

nc
e

Fig. 7.1 Example set of 391 absorbance soil spectra from the soilspec package

7.1 Similarity/Dissimilarity Measures 117

Note that in most cases, one would be interested to compute the similarity
measures between the principal components of the spectra or between the spectra in
a reference dataset and a test set. We provide an example of practical application in
the use of distance metrics in Sect. 7.1.6.

7.1 Similarity/Dissimilarity Measures

7.1.1 Euclidean Distance

Euclidean distance is the most common way of representing the distance between
two points or objects. It is calculated by taking the square root of the differences
between two points. In our case, we compute the pairwise Euclidean distance d

between the two spectra xa and xb with b bands, as follows (Brereton 2003):

dEU(xa, xb) =
√

(xb − xa)I−1(xb − xa)T , (7.1)

where I is the identity matrix. The smaller the distance between the two spectra,
the larger the similarity between them. The distance is always positive and has no
limit. A small value of the Euclidean distance (i.e. close to zero) indicates strong
similarity between the two spectra under study.

The Euclidean distance between spectra can be computed using the fDiss
function from the resemble package. In the following example, we compute the
distance between all pairs of spectra contained in the dataset.

load the required package
require(resemble)

compute Euclidean distance between spectra
EucD <- f_diss(Xr = spectraA,

Xu = spectraA,
diss_method = "euclid",
center = TRUE, scale = TRUE)

We can then display the pairwise distance between the first three spectra of the
dataset.

print the pairwise distance between the three first spectra
EucD[1:3,1:3]

Xu_1 Xu_2 Xu_3
Xr_1 0.000000 1.645742 1.352906
Xr_2 1.645742 0.000000 2.941434
Xr_3 1.352906 2.941434 0.000000

118 7 Similarity Between Spectra and the Detection of Outliers

The values of the Euclidean distance displayed above show that the third
spectrum of the dataset is more similar to the first spectrum than it is to the second
spectrum.

7.1.2 Mahalanobis Distance

Mahalanobis distance (Mahalanobis 1936) is similar to the Euclidean distance but
includes a covariance term between spectra, which means that it accounts for the
fact that two spectra may measure similar properties due to the correlation between
specific bands of the spectra. The Mahalanobis distance between spectra xa and xb

is defined by:

dMB(xa, xb) =
√

(xb − xa)C−1(xb − xa)T , (7.2)

where C is the variance-covariance matrix between the spectra. The variance-
covariance matrix is used as a scaling factor of the relationships between two
spectra. The use of the covariance matrix introduces additional considerations.
In particular, the matrix does not have an inverse when the number of spectra
is smaller than the number of wavebands in the dataset. This problem has long
been recognized in infrared spectroscopy (see Clark et al. 1993 and Mark and
Workman 2010). A simple way around this is to compute the Mahalanobis distance
on the first few principal components of the spectra. Principal component analysis
is described in Chap. 6.2 and is not repeated here. In this chapter, we use the
implementation provided by the function pc_projection in the resemble
package for computing the principal components. The pc_projection function
requires the user to provide the maximum amount of cumulative variance explained
that needs to be retained in the principal components.

specify the maximum amount of variance explained the one want to have retained
maxexplvar <- 0.99

Now we can compute the principal components of the absorbance spectra.

compute the principal components
pcspectraA <- pc_projection(Xr = spectraA,

pc_selection = list("cumvar", maxexplvar),
method = "pca",
center = TRUE, scale = FALSE)

obtain the names of the sub-objects in the PC object created
names(pcspectraA)

[1] "scores" "X_loadings" "variance" "scores_sd" "n_components"
[6] "pc_selection" "center" "scale" "method"

The Mahalanobis distance between spectra can be computed by the fDiss
function, using the PC scores as input.

7.1 Similarity/Dissimilarity Measures 119

compute the Mahalanobis distance between spectra scores
mahD <- f_diss(Xr = pcspectraA$scores,

Xu = pcspectraA$scores,
diss_method = "mahalanobis",
center = FALSE, scale = FALSE)

We can then display the pairwise distance between the first three scores of the
absorbance spectra.

print pairwise distance between the three first spectra
mahD[1:3,1:3]

Xu_1 Xu_2 Xu_3
Xr_1 0.000000 1.291966 1.074744
Xr_2 1.291966 0.000000 1.848724
Xr_3 1.074744 1.848724 0.000000

Note that the Mahalanobis distance is always positive. A small value between two
spectra indicates that they are similar. For example, the pairwise distance between
the first three spectra displayed above shows that the third spectrum of the dataset
is more similar to the first spectrum than it is to the second spectrum. The first
spectrum is about equally similar to the second and third spectra. This result is
similar to that obtained by computing the Euclidean distance, which indicates that
the first three spectra are not strongly correlated.

An important note is that the Mahalanobis distance is equivalent to the Euclidean
distance computed on the standardized (zero mean and unit variance) principal
component scores if the variables are uncorrelated (see Deza and Deza 2009,
p. 303). We can test it by specifying center = TRUE and scaled = TRUE
in the fDiss function.

compute the Euclidean distance between standardized spectra scores
eucPcD <- f_diss(Xr = pcspectraA$scores,

Xu = pcspectraA$scores,
diss_method = "euclid",
standardize the PC scores (zero mean and unit variance)
center = TRUE, scale = TRUE)

check that the two distance metrics have same result
all.equal(mahD, eucPcD)

[1] TRUE

7.1.3 Correlation Similarity

Correlation dissimilarity is based on Pearson’s r correlation coefficient between
spectra (see also Chap. 9). Pearson’s r is not a distance metric, and while two spectra
can be strongly correlated, they can have very different reflectance or absorbance
values. The value of Pearson’s r varies between −1 and 1. A correlation of 1

120 7 Similarity Between Spectra and the Detection of Outliers

indicates that the two spectra under study have identical characteristics (i.e. they
are similar). A values of −1, conversely, indicates that the two spectra are strongly
negatively correlated, which in spectroscopy implies that the two spectra are
dissimilar (Brereton 2003). The correlation similarity scales the values between 0
and 1, where the higher the values, the more dissimilar the two spectra are. The
correlation dissimilarity (cd) between two spectra can be applied as follows:

cd(xa, xb) = 1 − r(xa, xb)

2
. (7.3)

This function can be applied manually to the data frame containing the spectra.

compute correlation between spectra
scorrelation <- cor(t(spectraA))

compute correlation similarity between spectra
cd1 <- (1 - scorrelation)/2

print the correlation between three first spectra
round(x = cd1[1:3,1:3], digits = 5)

[,1] [,2] [,3]
[1,] 0.00000 0.04103 0.00368
[2,] 0.04103 0.00000 0.04700
[3,] 0.00368 0.04700 0.00000

The cd values show that the first spectrum is more similar to the third spectrum
than it is to the second spectrum. The largest value is found between the second and
third spectra, which means that these two spectra are the most dissimilar between
the three first spectra of the dataset.

The same results is obtained by the resemble package with the corDiss
function.

compute correlation similarity with the resemble package
cd2 <- cor_diss(Xr = spectraA,

Xu = spectraA,
center = FALSE, scale = FALSE)

check that the two methods have similar results
round(x = cd2[1:3,1:3], digits = 5)

Xu_1 Xu_2 Xu_3
Xr_1 0.00000 0.04103 0.00368
Xr_2 0.04103 0.00000 0.04700
Xr_3 0.00368 0.04700 0.00000

Alternatively, the correlation similarity can be computed using a moving window.
In this case, the correlation similarity is computed by averaging the moving window

7.1 Similarity/Dissimilarity Measures 121

correlation measures. It can be computationally demanding for large datasets. We
start by defining a window size.

the moving window value must be an odd number
w4cd <- 51

Now we can use it in the corDiss function in resemble.

compute the correlation similarity with a moving window
mwcd <- cor_diss(Xr = spectraA,

Xu = spectraA,
ws = w4cd,
center = FALSE, scale = FALSE)

check the first three correlation similarity values
mwcd[1:3,1:3]

Xu_1 Xu_2 Xu_3
Xr_1 0.0000000 0.18195370 0.07498450
Xr_2 0.1819537 0.00000000 0.09979849
Xr_3 0.0749845 0.09979849 0.00000000

Using the moving window to compute the correlation similarity measure pro-
vides much different values than when computed on the whole spectrum. While the
values are different, the first spectrum is still more similar to the second spectrum
than it is to the third spectrum. The second spectrum seems not to be strongly
correlated to the third spectrum. This is different from the values obtained using
the correlation similarity measure computed on the whole spectra.

7.1.4 Spectral Angle Mapper

The spectral angle mapper (SAM) also called dot-product cosine distance (Yuhas
et al. 1992; Farifteh et al. 2007) has been extensively applied in remote sensing
as a tool for unsupervised classification and spectral similarity analysis. The SAM
algorithm derives an angular difference (in radians) between two spectra, which
means that the larger the angle is, the more dissimilar the two spectra are. The SAM
distance between two spectra (xa and xb) is calculated as:

SAM(xa, xb) = cos−1

∑b
j=1 xa,j xb,j

∑b
j=1(x

2
a,j)

1/2
∑b

j=1(x
2
a,j)

1/2
. (7.4)

where j = 1, ..., b is the number of spectral bands. The values range between 0
and π/2 (about 1.57), where small values indicates strong similarity. The range of
values can be scaled between 0 and 1 by dividing π/2 to π (Schwarz and Staenz
2001).

122 7 Similarity Between Spectra and the Detection of Outliers

This is implemented in the fDiss function in the resemble package.

compute the pairwise SAM similarity
samD <- f_diss(Xr = spectraA,

Xu = spectraA,
diss_method = "cosine",
center = FALSE, scale = FALSE)

show the first three similarity values
samD[1:3,1:3]

Xu_1 Xu_2 Xu_3
Xr_1 0.0000000 0.3293496 0.1252271
Xr_2 0.3293496 0.0000000 0.4131082
Xr_3 0.1252271 0.4131082 0.0000000

The values displayed above show that the first spectrum is more similar to the
third spectrum than it is to the second one. The largest dissimilarity between the
three first spectra is obtained between the second and third spectra.

7.1.5 Spectral Information Divergence

Spectral information divergence (SID) was introduced by Chang (2000) to measure
the similarity between spectra based on their spectral signature probability distribu-
tion. In other words, it measures the distance between the probability distribution
produced by the spectral signature of two vectors (Chang 2003). To measure the
distance, the Kullback-Leibler (KL) divergence (Kullback and Leibler 1951) or
cross-entropy is used. The SID is defined by (Chang 2003):

SID(xa, xb) = KL(xa||xb) + KL(xb||xa) (7.5)

=
b∑

j=1

pj log
pj

qj

+
b∑

j=1

qj log
qj

pj

(7.6)

where b is the total number of bands and p = xa/
∑b

j=1 xa,j and q =
xb/

∑b
j=1 xb,j are the probability vectors (vector with non-negative entries that

add up to one) of xa and xb, respectively. KL(xa||xb) is the Kullback-Leibler
(1951) information measure. The higher the value, the larger is the difference (the
dissimilarity) between the two spectra.

This is implemented in the sid function in the resemble package.

7.1 Similarity/Dissimilarity Measures 123

compute the pairwise SID similarity
sidD <- sid(Xr = spectraA,

Xu = spectraA,
mode = "density",
center = FALSE, scale = TRUE)

show the first three similarity values
sidD$sid[1:3,1:3]

Xu_1 Xu_2 Xu_3
Xr_1 0.000000 5.525884 5.707669
Xr_2 5.525884 0.000000 5.844254
Xr_3 5.707669 5.844254 0.000000

The values displayed above show that the first spectrum is more similar to the
second spectrum than it is to the third one. The largest dissimilarity between the
three first spectra is obtained between the second and third spectra. Note that by
specifying mode = "density", the Kullback-Leibler information measure is
computed on the probability density of the spectra (default), while by specifying
mode = "feature", the Kullback-Leibler information measure is computed
directly on the spectra.

Several other similarity or distance measures can evaluate the discrepancy
between spectra. In particular, a combination of the SAM and SID (referred to as a
SAM-SID measure) has been developed by Du et al. (2004):

SAMSIDtan(xa, xb) = SID(xa, xb) tan(SAM(xa, xb)) (7.7)

samsidTAN <- sidD$sid*tan(samD)
samsidTAN[1:3, 1:3]

Xu_1 Xu_2 Xu_3
Xr_1 0.0000000 1.888738 0.7185146
Xr_2 1.8887382 0.000000 2.5617209
Xr_3 0.7185146 2.561721 0.0000000

or:

SAMSIDsin(xa, xb) = SID(xa, xb) sin(SAM(xa, xb)) (7.8)

samsidSIN <- sidD$sid*sin(samD)
samsidSIN[1:3, 1:3]

Xu_1 Xu_2 Xu_3
Xr_1 0.0000000 1.787224 0.7128881
Xr_2 1.7872240 0.000000 2.3462224
Xr_3 0.7128881 2.346222 0.0000000

124 7 Similarity Between Spectra and the Detection of Outliers

The values of SAMSIDtan or SAMSIDsin displayed above show that the first
spectrum is more similar to the third spectrum than it is to the second one. The
strongest dissimilarity is found between the second and third spectra. The product
of SAM and SID is supposed to increase the spectral discriminability. Small values
of SAMSIDtan or SAMSIDsin indicate similarity between the spectra. More detailed
description of the measures is provided in the Chang (2003) textbook.

7.1.6 A Practical Example

We provide an example on the use of the similarity/dissimilarity measures similar
to the one in Ramirez-Lopez et al. (2013) using the resemble package. Ramirez-
Lopez et al. (2013) argued that the similarity measures between the spectra should
be able to reflect their similarity also in terms of ancillary information, for example,
the soil properties associated with the spectra. To test this, the authors proposed
(Fig. 3 in Ramirez-Lopez et al. (2013)) to:

1. Compute the principal components for the whole set of spectra.
2. Compute a distance matrix based on the principal components.
3. Split randomly the dataset into two subsets. The first subset is called xuData and

contains about 25% of the original spectra and associated measured soil property.
The second subset is called xrData and contains 75% of the spectra and the soil
properties.

4. For each spectrum in xuData, select the closest spectrum in xrData.
5. Compare the value of the soil property from subset xuData to the values of the

soil property for the closest spectra selected at step 4.

For this example, we use the reflectance spectra and associated values of the
total carbon contained in the soilspec package. The dataset information can be
accessed by ?soilspec::datsoilspc.

We start by loading the data.

load the required package
require(soispec)

take the organic carbon values and the associated spectra (stored in a matrix).
specACarbon <- datsoilspc[,c("TotalCarbon", "spc")]

create a vector containing the wavelength
wavs <- as.numeric(colnames(specACarbon$spc))

To test the approach, we start by dividing the dataset into two disjoint subsets.
They are divided by random selection of their row number.

take a number of rows (i.e., number of spectra)
ns <- nrow(specACarbon)

indicate the percentage that you want to select
pd <- 0.25

7.1 Similarity/Dissimilarity Measures 125

compute the integer number corresponding to the 25% of the samples
nsamples2select <- round(x = ns * pd, digits = 0)

compute the vector of sample indexes
origIndexes <- 1:ns

randomly select the samples
set.seed(19)
selSampleIndx <- sample(x = origIndexes, size = nsamples2select)

first the indexes randomly found
xuData <- specACarbon[selSampleIndx,]

then the rest (i.e. the ones that were not selected)
xrData <- specACarbon[-selSampleIndx,]

To compute the Mahalanobis distance between the spectra, we first need to
compute their principal components. Since we only need the spectra to compute
the principal components, we can do it on the combined xuData and xrData
data.

combine the spectral data of xrData and xuData (by rows) into one single dataset
combX <- rbind(xrData$spc, xuData$spc)

compute the PCs of the combined spectra
maxexplvar <- 0.999

compute the principal components
pcspectra <- pc_projection(Xr = combX,

pc_selection = list("cumvar", maxexplvar),
method = "pca",
center = TRUE, scale = FALSE)

obtain the names of the sub-objects in the PC object created
names(pcspectra)

[1] "scores" "X_loadings" "variance" "scores_sd" "n_components"
[6] "pc_selection" "center" "scale" "method"

Note here that the first 293 rows of the score matrix correspond to the scores
of the spectra of xrData and the remaining ones correspond to the scores of the
spectra for xuData.

We can now plot the two first scores of each dataset.

plot(x = pcspectra$scores[1:nrow(xrData), 1],
y = pcspectra$scores[1:nrow(xrData), 2],
xlab = "PC 1",
ylab = "PC 2",
type = "p",
pch = 16,
col = rgb(red = 0, green = 0.4, blue = 0.8, alpha = 0.5))

grid()

add to the plot the first two scores of the PCs of the xuData
points(x = pcspectra$scores[-c(1:nrow(xrData)), 1],

y = pcspectra$scores[-c(1:nrow(xrData)),2],
xlab = "PC 1",
ylab = "PC 2",
pch = 16,
col = rgb(red = 0.8, green = 0.4, blue = 0, alpha = 0.5))

126 7 Similarity Between Spectra and the Detection of Outliers

−10 −5 0 5 10

−
4

−
3

−
2

−
1

0
1

2

PC 1

P
C

 2

Fig. 7.2 First two principal components of the absorbance spectra. The blue dots correspond to
the spectra from xrData and the orange dots to the spectra from xuData

Now that we have the principal components, we can compute the Mahalanobis
pairwise distance matrix for the spectral data.

compute the Mahalanobis pairwise distance from the xrData dataset
mdXr <- f_diss(Xr = pcspectra$scores,

Xu = pcspectra$scores,
diss_method = "mahalanobis",
center = FALSE, scale = FALSE)

Note here that mdXr is the dissimilarity matrix of the spectra computed in its
PC space. Now we can select for each spectrum in xuData its closest (the most
spectrally similar) spectra in xrData using the dissimilarity measures stored in
mdXr.

first create an empty object to store the results of the indices of nearest neighbours
nearestN <- NULL

use a for loop to iterate over each of the columns in the mdXr matrix
use only the rows of xuData
for(i in (nrow(xrData)+1):nrow(mdXr)){

order the values from smallest distance to the largest
take the second one (first value is the spectrum itself)
nn_i <- order(x = mdXr[1:nrow(xrData),][,i])[2]

store the results in the nearestN object
nearestN <- c(nearestN, nn_i)

}

The resulting nearestN object is a vector containing the indices of the nearest
neighbours for each of the spectra in xrData.

7.1 Similarity/Dissimilarity Measures 127

show the ten most similar spectra
nearestN[1:10]

[1] 7 241 274 190 205 156 193 24 264 155

We can now compare the soil property value (i.e. total carbon) of each spectrum
to the soil property value for the associated closest sample. If the original dataset is
sufficiently large and the similarity measures are reliable, the soil property values
from both sources should be similar.

We first want to obtain the soil property value of the nearest neighbours found
in xrData for each spectrum in xrData by xrData[nearestN,"Organic
carbon"]. We can plot the soil property values contained in xrData and in the
associated closest neighbour (Fig. 7.2).

plot(x = xuData[,"TotalCarbon"],
y = xrData[nearestN,"TotalCarbon"],
xlab = "Total carbon reference spectra, /%",
ylab = "Total carbon from nearest neighbour, /%",
pch = 16,
col = rgb(red = 1, green = 0.2, blue = 0.2, alpha = 0.5))

grid()

0 2 4 6 8 10 12

0
2

4
6

8

Total carbon reference spectra, /%

To
ta

l c
ar

bo
n

fr
om

 n
ea

re
st

 n
ei

gh
bo

ur
, /

%

Fig. 7.3 Scatterplot of the values of the carbon content from xrData against the values of carbon
content found from its closest spectra in the xuData dataset

The eval function from the soilspec package can be used to assess the
reliability of the dissimilarity measures by computing a set of accuracy measures.

128 7 Similarity Between Spectra and the Detection of Outliers

require(soilspec)

use the eval function to get a set of accuracy measures
dEval <- eval(obs = xrData[nearestN,"TotalCarbon"],

pred = xuData$"TotalCarbon", obj = "quant")

print the results
dEval

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.01 0.91 0.44 0.46 0.77 1.36 1.19

We can see that there is a strong correlation, as assessed by the square of
Pearson’s r correlation coefficient (r2). This means that the Mahalanobis distance is
efficient in detecting neighbouring spectra. The selected neighbouring spectra carry
similar information as shown in Fig. 7.3.

7.2 Detecting Outlier Spectra

An outlier spectrum is a spectrum that is significantly distant (dissimilar) from the
population of spectra. It is important to identify distant spectra and to decide whether
they must be included in subsequent analyses. Spectral outliers may be due to
variations related to sample heterogeneity, to spectral measurement error (e.g. noise
in the spectrometer, improper optical set-up) or to chemical/physical variation
in the sample (e.g. the soil sample has been taken by mistake from a different
area). We stress here that it is important to define the cause of the dissimilarity
of the spectra before taking any decision on whether removing it from further
analysis.

In this section, we focus only on multivariate outliers, i.e. we do not present
univariate outlier detection methods (e.g. using the inter-quartile range of the data),
which are of less relevance in digital soil spectroscopy.

7.2.1 Distance from the Average Spectrum

To detect outliers, we first show how to use the distance from the centre of the
multi-dimensional space as an estimate of the dissimilarity between spectra. If
a spectrum is far away from the average spectrum, it is a potential outlier. In
spectroscopy outlier detection is usually applied in the principal component space.
The distances are then computed in the multi-dimensional space of the principal
component scores with respect to the underlying covariance matrix. The origin of
this multi-dimensional space is the mean of the principal component scores.

7.2 Detecting Outlier Spectra 129

We start by applying principal component analysis before computing the dis-
tances. We will apply the Mahalanobis distance and the H distance to identify a
spectrum as an outlier. Note that the Mahalanobis distance is based on the arithmetic
mean and sample covariance structure, which are both sensitive to outliers. In most
cases, the distance should be robust, i.e. computed using a robust estimate of the
mean and covariance structure. We provide an example later in this chapter.

We use the absorbance spectra from the previous example (soilspec package)
and apply the standard normal variate pre-processing (Sect. 5.2).

load the require package
require(prospectr)

apply a standard normal variate transformation
spectraASnv <- standardNormalVariate(spectraA)

We can compute the principal components of the spectra as before, choosing the
minimum amount of variance that we want to retain. In our case, we have chosen
the amount of variance to retain so that we obtain three principal components. We
made this choice for illustrative purposes.

choose the amount of variance explained
maxexplvar <- 0.99

compute the principal components
pcspectraA <- pc_projection(Xr = spectraASnv,

pcSelection = list("cumvar", maxexplvar),
center = TRUE, scale = FALSE)

pcspectraA

##
Method: pca (svd)
Number of components retained: 6
Number of observations and number of original variables: 391 2151
##
Standard deviations, cumulative variance explained, individual variance explained:
##
Explained variance in X {Xr; Xu}:
pc_1 pc_2 pc_3 pc_4 pc_5 pc_6
sd 7.128 3.192 1.7067 1.0180 0.75933 0.50000
cumulative_explained_var 0.763 0.916 0.9602 0.9758 0.98446 0.98822
explained_var 0.763 0.153 0.0438 0.0156 0.00866 0.00376

In the next step, we want to derive the mean of each PC scores. The mean of each
PC score will be the average of the spectra, our reference for the outlier detection.

calculate the average of the PC scores
pcspectraACentre <- colMeans(pcspectraA$scores)

since the result of the ’colMeans’ function is a vector
reformat it to a matrix of 1 row
pcspectraACentre <- t(as.matrix(pcspectraACentre))

print the results
print(pcspectraACentre)

130 7 Similarity Between Spectra and the Detection of Outliers

pc_1 pc_2 pc_3 pc_4 pc_5
[1,] 2.168804e-16 -2.387796e-16 1.627357e-17 -1.770217e-16 -1.347062e-16
pc_6
[1,] -1.099021e-16

Three components retain 96% of the variance in this set of infrared spectra. The
centre of the three PC scores is now used to calculate the dissimilarity between each
spectrum and the average values of the spectra. All this is done in the principal
component space of the spectra.

The Mahalanobis Distance

The description of the Mahalanobis distance is provided in Sect. 7.1.2. We start by
computing the Mahalanobis distance between the centre and all principal component
scores of the spectra.

compute Mahalanobis distance between scores centre and the scores of the spectra
wmahald <- f_diss(Xr = pcspectraA$scores,

Xu = pcspectraACentre,
diss_method = "mahalanobis",
center = FALSE, scale = FALSE)

The critical step is to decide whether a spectrum can be considered as an outlier.
Most methods use an arbitrary distance beyond which a spectrum is considered an
outlier. Again, the major reason to consider a spectrum as an outlier should not be
based on an arbitrary limit but on critical reasoning.

We generally consider spectra with a Mahalanobis distance larger than 3 as an
outlier. We can plot the dissimilarity scores vs the index of the sample (Fig. 7.4).

plot the index of the spectra against the Mahalanobis distance
plot(wmahald,

pch = 16,
col = rgb(red = 0, green = 0.4, blue = 0.8, alpha = 0.5),
ylab = "Mahalanobis distance")

add a horizontal line
visualize the spectra with Mahalanobis dissimilarity scores larger than 3
(arbitrary threshold)
abline(h = 3, col = "red")

7.2 Detecting Outlier Spectra 131

0 100 200 300 400

1
2

3
4

5

Index

M
ah

al
an

ob
is

 d
is

ta
nc

e

Fig. 7.4 Index of the spectra against the Mahalanobis distance between the spectra principal
component scores and the centre of the scores. The points above the horizontal red line have a
Mahalanobis distance from the mean of the PC scores greater than 3

We can identify the number of samples with a value of the Mahalanobis distance
larger than 3.

obtain the indices of the outliers
indxOutM <- which(wmahald > 3)

how many potential outliers?
length(indxOutM)

[1] 2

To visualize if this outlier detection limits is realistic, we can plot the potential
outliers in the PC space of the three principal component scores (Fig. 7.5).

load the required package
require(scatterplot3d)

plot the first three PCs along the identified outliers
sct3d <-scatterplot3d(pcspectraA$scores[,1],

pcspectraA$scores[,2],
pcspectraA$scores[,3],
xlab = "PC 1",
ylab = "PC 2",
zlab = "PC 3",
color=rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),
pch = 16, grid=TRUE, angle=50)

add location of the outliers in red
sct3d$points3d(pcspectraA$scores[indxOutM,1],

pcspectraA$scores[indxOutM,2],
pcspectraA$scores[indxOutM,3],
pch = "X",
col = "red")

132 7 Similarity Between Spectra and the Detection of Outliers

−30 −20 −10 0 10

−6
−4

−2
 0

 2
 4

 6
 8

10

−10
 −5

 0
 5

 10
 15

PC 1

P
C

 2P
C

 3

X

X

Fig. 7.5 Location of the potential outliers from the three first principal component score spaces of
the absorbance spectra

The selected outliers have a red cross. The selected outliers seem to be far away
from the bulk of the data in the principal component space.

H Distance

Similar to the Mahalanobis distance, the H distance (Mark 1986; Shenk and
Westerhaus 1991) can be used to detect outliers. The H distance is the square root of
the product between the squared Mahalanobis distance and the number of principal
components.

compute the H distance
hs <- (wmahald^2 * pcspectraA$n_components)^0.5

Like the arbitrary number of 3 for detecting outlier using the Mahalanobis
distance, we use a number of 6 to detect possible outliers using the H distance.
We can plot the H score value and the index of the spectra as before (Fig. 7.6).

plot the index of the spectra against the H distance
plot(hs,

pch = 16,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),
ylab = "H distance")

add a horizontal line
visualize the spectra with H distance larger than 6 (arbitrary threshold)
abline(h = 6, col = "red")

7.2 Detecting Outlier Spectra 133

0 100 200 300 400

2
4

6
8

10
12

Index

H
 d

is
ta

nc
e

Fig. 7.6 Index of the spectra against the H distance. The points above the horizontal red line have
a H distance greater than 6

We can identify how many spectra have a value of the H distance larger than 3
(Mark 1986).

obtain the indices of the outliers
indxOutH <- which(hs > 6)

how many potential outliers?
length(indxOutH)

[1] 4

We can plot the potential outliers in the PC scores space (Fig. 7.7).

load the required package
require(scatterplot3d)

plot the first three PCs along the identified outliers
sct3d <-scatterplot3d(pcspectraA$scores[,1],

pcspectraA$scores[,2],
pcspectraA$scores[,3],
xlab = "PC 1",
ylab = "PC 2",
zlab = "PC 3",
color=rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),
pch = 16, grid=TRUE, angle=50)

sct3d$points3d(pcspectraA$scores[indxOutH,1],
pcspectraA$scores[indxOutH,2],
pcspectraA$scores[indxOutH,3],
pch = "X",
col = "red")

134 7 Similarity Between Spectra and the Detection of Outliers

−30 −20 −10 0 10

−6
−4

−2
 0

 2
 4

 6
 8

10

−10
 −5

 0
 5

 10
 15

PC 1

P
C

 2P
C

 3

X

X

X

X

Fig. 7.7 Location of the potential outliers from the three first principal component score spaces of
the absorbance spectra

Using the H distance, it seems that similar points are selected to those chosen
with the Mahalanobis distance. It also appears that one point is close to the arbitrary
limit of 6. The visualization shows that this spectrum is probably not an outlier as it
is well contained in the bulk of the data.

7.2.2 Multivariate Outliers

The Mahalanobis distance methods have some drawbacks. In particular, the user
must choose an arbitrary cutoff value above which a spectrum is considered an
outlier. These simple methods are based on the distance in the multivariate space, but
do not distinguish between extremes of a distribution and outliers, which potentially
come from a different distribution (Rousseeuw and Driessen 1999).

To detect multivariate outliers, it is possible to assume that the multivariate distri-
bution of the principal component scores follows a multivariate normal distribution
with a given mean and covariance matrix. Garrett (1989) showed that the squared
Mahalanobis distance follows a χ2

m distribution with m degrees of freedom, where m

is the number of principal components. Values of the squared Mahalanobis distance
higher than the 97.5% quantile of the χ2

m distribution are considered exceptionally
high and likely to be outliers. This method is largely interactive as the user must
define manually what makes a good cutoff value (if not using the 97.5% quantile).
Similar adaptive methods which account for different sample sizes have also been
proposed, and they are discussed later in this section.

With the scripts below, this is implemented first by calculation of the Maha-
lanobis distance between the spectra using the Mahalanobis function from the base

7.2 Detecting Outlier Spectra 135

stats package. Note that this is different from the previous methods where the
distances are computed between the centre and all the principal component scores.
Both the arithmetic mean and sample covariances are sensitive to outliers in the
data. Garrett (1989) proposed using a robust estimate of the mean and sample
covariance matrix of the principal component scores. Ideally, we can also use a
robust computation of the principal components. How to compute robust principal
components is not covered in this book, and the reader is redirected to Varmuza and
Filzmoser (2016), Section 3.6, for an introduction and the associated R codes.

load the required packages
library(robustbase)

how many components are we using?
ncomp <- pcspectraA$n_components

calculate the average of the PC scores
pcspectraACentre <- covMcd(pcspectraA$scores)$center
pcspectraACentre

pc_1 pc_2 pc_3 pc_4 pc_5 pc_6
4.52142968 -0.32311440 0.14471836 -0.10692539 0.06974600 0.05176857

derive the covariance between of the principal component scores
pcspectraACov <- covMcd(pcspectraA$scores)$cov
pcspectraACov

pc_1 pc_2 pc_3 pc_4 pc_5 pc_6
pc_1 3.829571811 2.25153074 1.4546086 0.004683711 0.0747860 0.35268376
pc_2 2.251530742 6.70624805 -0.4502221 -0.286918035 0.2241723 0.06238531
pc_3 1.454608568 -0.45022213 3.0697179 0.172406599 0.1677416 -0.41200932
pc_4 0.004683711 -0.28691803 0.1724066 0.444332846 0.2649986 -0.07467132
pc_5 0.074785997 0.22417227 0.1677416 0.264998554 0.2821209 -0.11547914
pc_6 0.352683758 0.06238531 -0.4120093 -0.074671319 -0.1154791 0.21651079

create an empty matrix
chiMat <- matrix(NA, ncol = 2, nrow = nrow(spectraA))

compute squared Mahalanobis distance
chiMat[,1] <- sqrt(mahalanobis(pcspectraA$scores,

pcspectraACentre,
pcspectraACov))

sort the distance
chiMat[,1] <- sort(chiMat[,1])

Then we derive the cumulative χ2 probability function of the Mahalanobis
distances. Here we use the base pchisq function. This is followed by estimation
of the cutoff value for specifying which spectra are and are not possible outliers.
The value in cutoff corresponds to a value of χ2

m=6,0.975 = 14.45

chi squared distribution with ncomp degrees of freedom (df = ncomp)
chiMat[,2] <- pchisq(chiMat[,1], df = ncomp)

136 7 Similarity Between Spectra and the Detection of Outliers

take the 0.975 quantile of the chi square distribution with m = 5
cutoff <- qchisq(0.975, ncomp)

which spectra are outliers
outliers <- which(chiMat[,1] >= cutoff)

how many outliers?
length(outliers)

[1] 97

This method detects a large number of outliers. Plotting the cumulative χ2

function against Mahalanobis distance gives the plot below (Fig. 7.8). The points
marked with the red crosses are the outliers, and the green line is the cutoff distance.

plot the cumulative chi^2 function against the Mahalanobis distance
plot(chiMat[,1],

chiMat[,2],
xlab = "Mahalanobis distance",
ylab = "Cumulative probability",
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),
pch = 16)

add cross to the points that can be considered as outliers
points(chiMat[outliers,],

pch="X",
col="red")

add the 0.975 cutoff limit
abline(v = cutoff,

col = "#3333CC")
text(x = cutoff, y = 0.4, "97.5% quantile", col = "#3333CC",

pos = 4, srt = 90, cex = 0.8)

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mahalanobis distance

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

XX XXXXXXX X XX X

97
.5

%
 q

ua
nt

ile

Fig. 7.8 Plot of the cumulative χ2
m function against Mahalanobis distance. The red crosses indicate

possible outliers, and the blue line is the 97.5% quantile cutoff distance

7.2 Detecting Outlier Spectra 137

The plot below is the three-dimensional plot of the principal component scores
where the points marked with the red cross are the outliers. Intuitively however,
without performing this outlier removal procedure, we could probably ascertain
most of these outlier points (Fig. 7.9).

load the required package
require(scatterplot3d)

plot the first three PCs along the identified outliers
sct3d <-scatterplot3d(pcspectraA$scores[,1],

pcspectraA$scores[,2],
pcspectraA$scores[,3],
xlab = "PC 1",
ylab = "PC 2",
zlab = "PC 3",
color= rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),
pch = 16, grid=TRUE, angle=50)

add red cross to potential outliers
sct3d$points3d(pcspectraA$scores[,1][outliers],

pcspectraA$scores[,2][outliers],
pcspectraA$scores[,3][outliers],
pch = "X",
col = "red")

−30 −20 −10 0 10

−
6

−
4

−
2

 0
 2

 4
 6

 8
10

−10
 −5

 0
 5

 10
 15

PC 1

P
C

 2P
C

 3 X
X

XX
X
X

XX

X

X
X XX

X

X

X
X

X

X

X X

X
X

X
X

XX

X

XX
XX

XX X
X XX

XX
XX

XX

X X
XXX X

X

X

X

X

XX
X

X
XXX

X

X XX
X

X X
X

X X
X X

X XX

X

X

XX
X

X

XX XXXXX

X
XX

X
XX

XX

Fig. 7.9 Location of the potential outliers from the three first principal component score spaces of
the absorbance spectra

The example based on the approach by Garrett (1989) suffers from several
drawbacks. In particular, the cutoff value is arbitrary and must be adjusted to
the dataset. The method also does not adjust for the sample size. To solve this,
an adaptive method was proposed by Filzmoser et al. (2005) where the cutoff
value is defined by a measure of deviation of the empirical distribution function
of Mahalanobis distance from the theoretical distribution function, defined by
Filzmoser et al. (2005) and implemented in the mvoutlier package by the arw
function.

138 7 Similarity Between Spectra and the Detection of Outliers

load the required package
require(mvoutlier)

compute the distance for the threshold
distCutoff <- mvoutlier::arw(pcspectraA$scores,

m0 = pcspectraACentre,
c0 = pcspectraACov,
alpha = 0.05)$cn

distCutoff

[1] 17.77791

From the distance, we can obtain the cutoff value from the χ2 distribution.

compute the cutoff value at the threshold distance
AdjCutoff <- pchisq(distCutoff, df = ncomp)
AdjCutoff

[1] 0.9931882

We see that the value of the cutoff is more conservative than the usual or non-
adaptive 0.975 cutoff, which means that some values were previously considered as
outliers are not considered so; they are only extremes of the distribution.

Now that we know both the threshold distance and cutoff value of the χ2

distribution, we can do as before and find the outliers.

which spectra are outliers
outliers <- which(chiMat[,1] >= distCutoff)

how many outliers?
length(outliers)

[1] 87

Less spectra are considered outliers. This number is still considerable, and one
should try to understand why many spectra are considered as outliers. Perhaps using
a robust estimate of the principal components or by applying some smoothing and
other pre-processing to the spectra would markedly reduce this number.

We can plot the Mahalanobis distance against the empirical distribution function
of the distance. We add both the adjusted cutoff value and the original 97.5%
quantile value for illustration (Fig. 7.10).

plot the cumulative chi^2 function against the Mahalanobis distance
plot(chiMat[,1],

chiMat[,2],
xlab = "Mahalanobis distance",
ylab = "Cumulative probability",
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),

7.2 Detecting Outlier Spectra 139

pch = 16)

add cross to the points that can be considered as outliers
points(chiMat[outliers,],

pch="X",
col="red")

add the adjusted cutoff limit
abline(v = distCutoff,

col ="#006600")
text(x = distCutoff, y = 0.4, "Adjusted Quantile", col = "#006600",

pos = 4, srt = 90, cex = 0.8)

add the 0.975 cutoff limit
abline(v = cutoff,

col ="#3333CC")
text(x = cutoff, y = 0.4, "97.5% quantile", col = "#3333CC",

pos = 4, srt = 90, cex = 0.8)

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mahalanobis distance

C
um

la
tiv

e
pr

ob
ab

ili
ty

XX XXXXXXX X XX X

A
dj

us
te

d
Q

ua
nt

ile
97

.5
%

 q
ua

nt
ile

Fig. 7.10 Plot of the cumulative χ2
m function against Mahalanobis distance. The red crosses

indicate possible outliers. The blue line is the 97.5% quantile, and the green line is the adjusted
cutoff distance

We can now display (Fig. 7.11) the points selected as outliers using the adjusted
cutoff value. As before, only three dimensions can be displayed, but the principal
component space contains six dimensions.

load the required package
require(scatterplot3d)

plot the first three PCs along the identified outliers
sct3d <-scatterplot3d(pcspectraA$scores[,1],

pcspectraA$scores[,2],
pcspectraA$scores[,3],
xlab = "PC 1",
ylab = "PC 2",
zlab = "PC 3",
color = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),

140 7 Similarity Between Spectra and the Detection of Outliers

pch = 16,grid=TRUE, angle=50)

add red cross to potential outliers
sct3d$points3d(pcspectraA$scores[,1][outliers],

pcspectraA$scores[,2][outliers],
pcspectraA$scores[,3][outliers],
pch = "X",
col = "red")

−30 −20 −10 0 10

−6
−4

−2
 0

 2
 4

 6
 8

10

−10
 −5

 0
 5

 10
 15

PC 1

P
C

 2P
C

 3

X XX
X

X

X
X

X

X

X X

X
X

X
X

XX

X

XX
XX

XX X
X XX

XX
XX

XX

X X
XXX X

X

X

X

X

XX
X

X
XXX

X

X XX
X

X X
X

X X
X X

X XX

X

X

XX
X

X

XX XXXXX

X
XX

X
XX

XX

Fig. 7.11 Location of the potential outliers from the three first principal component score spaces
of the absorbance spectra

References

Brereton RG (2003) Chemometrics: data analysis for the laboratory and chemical plant. Wiley,
Chichester

Chang C-I (2000) An information-theoretic approach to spectral variability, similarity, and
discrimination for hyperspectral image analysis. IEEE Trans Inf Theory 46:1927–1932

Chang C-I (2003) Hyperspectral imaging: techniques for spectral detection and classification.
Springer Science & Business Media, Boston

Clark BJ, Frost T, Russell MA (1993) UV spectroscopy: techniques, instrumentation and data
handling. Springer Science & Business Media, Berlin

Deza MM, Deza E (2009) Encyclopedia of distances. In: Encyclopedia of distances. Springer,
Berlin/Heidelberg, pp 1–583

Du Y, Chang C-I, Ren H, Chang C-C, Jensen JO, D’Amico FM (2004) New hyperspectral
discrimination measure for spectral characterization. Opt Eng 43:1777–1787

Farifteh J, Van Der Meer F, Carranza EJM (2007) Similarity measures for spectral discrimination
of salt-affected soils. Int J Remote Sens 28:5273–5293

Filzmoser P, Garrett RG, Reimann C (2005) Multivariate outlier detection in exploration geochem-
istry. Comput Geosci 31:579–587

Garrett RG (1989) The chi-square plot: a tool for multivariate outlier recognition. J Geochem
Explor 32:319–341

Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

References 141

Mahalanobis PC (1936) On the generalized distance in statistics. In: Proceedings of the national
institute of science, India. National Institute of Science of India

Mark H (1986) Normalized distances for qualitative near-infrared reflectance analysis. Anal Chem
58:379–384

Mark H, Workman Jr J (2010) Chemometrics in spectroscopy. Elsevier, Boston
Ramirez-Lopez L, Behrens T, Schmidt K, Viscarra-Rossel RA, Demattê JAM, Scholten T (2013)

Distance and similarity-search metrics for use with soil vis–NIR spectra. Geoderma 199:43–53
Rousseeuw PJ, Driessen KV (1999) A fast algorithm for the minimum covariance determinant

estimator. Technometrics 41:212–223
Schwarz J, Staenz K (2001) Adaptive threshold for spectral matching of hyperspectral data. Can J

Remote Sens 27:216–224
Shenk JS, Westerhaus MO (1991) Population definition, sample selection, and calibration proce-

dures for near infrared reflectance spectroscopy. Crop Sci 31:469–474
Varmuza K, Filzmoser P (2016) Introduction to multivariate statistical analysis in chemometrics.

CRC Press, Boca Raton
Yuhas RH, Goetz AFH, Boardman JW (1992) Discrimination among semi-arid landscape end-

members using the spectral angle mapper (SAM) algorithm. In: Summaries 3rd annu. JPL
airborne geoscience workshop, pp 147–149

Chapter 8
Selection of the Samples for Laboratory
Analysis

Usually, spectra are obtained for all the soil samples available, but only a subset
of these samples are sent to the laboratory for chemical and physical analysis. The
reason is that spectra are fast and cheap to retrieve, while a single soil analysis
(e.g. for soil clay) is relatively slow, and significantly more costly, to obtain. One
must select a ‘representative’ subset of soil samples to be sent to the laboratory
(Daszykowski et al. 2002). The spectra and the associated soil property values
obtained by laboratory analysis are used to calibrate a regression model (see
Chap. 9). The sampling design and sample size of the subsample to be sent for
laboratory analysis will play a key role in the resulting calibrated model accuracy.

There are several available sampling designs to select a subset of representative
soil samples using the spectra. In this chapter, we describe a few of them often used
in spectroscopic research. Some references that describe such sampling designs in
more detail include Daszykowski et al. (2002), De Gruijter et al. (2006) and Brus
(2019). In theory, the sampling design can be based on the value of the property
of interest (e.g. the soil clay content) or on the spectra. Usually, the value of the
soil property is obtained from the spectra, and thus it is not realistic to generate a
subsample based on the yet-to-be-determined response value. We therefore focus in
this section on the selection of the calibration sample using the soil spectral data.

In addition to the sampling design, this chapter also considers the size of the
subsample to be sent to the laboratory. Ideally, one would like to send the smallest
number of soil samples, to save costs, without compromising model prediction
accuracy. To select a subsample, it is necessary to assess the representativeness of
this subsample. Several approaches have been developed, in particular by Ramirez-
Lopez et al. (2014) where the representativity of the subsample is assessed by
computing the difference between the probability density function of the subsample
to that of the whole set of available spectra. We follow this approach in this chapter.

The sampling designs illustrated in this chapter are simple random sampling,
Kennard-Stone, k-means clustering and conditioned Latin hypercube sampling. We
further show the effect of outlier on selecting the sampling design. Finally, we use

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. M. J.-C. Wadoux et al., Soil Spectral Inference with R, Progress in Soil Science,
https://doi.org/10.1007/978-3-030-64896-1_8

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64896-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-64896-1_8

144 8 Selection of the Samples for Laboratory Analysis

the method proposed by Ramirez-Lopez et al. (2014) to select an optimal subsample
size.

The set of packages used in this chapter are installed using the lines below. The
book-associated soilspec package is also required; see Chap. 3 for information
on its installation.

specify all the packages used in the chapter and install them
myPackages <- c("matrixStats", "clhs", "viridis", "viridisLite",

"prospectr", "RcppArmadillo", "scatterplot3d", "resemble")

define which packages are not installed in the current computer
notInstalled <- myPackages[!(myPackages %in% installed.packages()[, "Package"])]

install the missing packages
if(length(notInstalled)) install.packages(notInstalled)

We use the raw spectra used in the previous chapters. These spectra are provided
through the book-associated soilspec R package.

load the package
require(soilspec)

load the data
data("datsoilspc")

convert the reflectance to absorbance spectra
spectraA <- log(1/datsoilspc$spc)

To select a calibration sample, we transform the original spectra using a dimen-
sion reduction routine such as principal component analysis. Principal component
analysis is presented in Sect. 6.2.

library(resemble)

indicate the maximum amount of cumulative variance explained
that needs to be retained in the PCs
maxexplvar <- 0.999

perform PCA
pcspectraA <- pc_projection(Xr = spectraA,

pc_selection = list("cumvar", maxexplvar),
center = TRUE, scale = FALSE)

print(pcspectraA)

##
Method: pca (svd)
Number of components retained: 9
Number of observations and number of original variables: 391 2151
##
Standard deviations, cumulative variance explained, individual variance explained:
##
Explained variance in X {Xr; Xu}:
pc_1 pc_2 pc_3 pc_4 pc_5 pc_6 pc_7
sd 11.229 4.205 2.4079 1.2496 0.63800 0.50328 0.391
cumulative_explained_var 0.829 0.945 0.9829 0.9932 0.99585 0.99751 0.999

8.1 Sampling Design 145

explained_var 0.829 0.116 0.0381 0.0103 0.00267 0.00166 0.001
pc_8 pc_9
sd 0.201217 0.167825
cumulative_explained_var 0.998782 0.998968
explained_var 0.000266 0.000185

8.1 Sampling Design

From the sample of spectra of size n, the objective is to select a subsample, in our
case 25, that will be sent to the laboratory for chemical and physical analysis.

SampleSize <- 25

8.1.1 Simple Random Sampling

Simple random sampling is the simplest form of sampling design where a sample of
fixed size (here 25) is selected randomly from the population (all available spectra).
No restriction is imposed other than the sample size. Simple random sampling is a
probability sampling design in that the selection probability of each spectrum can be
calculated beforehand. In simple random sampling, each unit has equal probability
of being included in the sample (De Gruijter et al. 2006). When the sample is
collected with replacement, a unit can be selected more than once in the sample. In
this book, we use sampling without replacement, which means that each spectrum
is unique in the subsample.

set the seed for reproducibility
set.seed(19101991)

select the row number using simple random sampling
randId <- sample(1:nrow(pcspectraA$scores),

size = SampleSize)

load the required package
require(scatterplot3d)

plot the first three PCs
sct3d <-scatterplot3d(pcspectraA$scores[,1],

pcspectraA$scores[,2],
pcspectraA$scores[,3],
xlab = "PC 1",
ylab = "PC 2",
zlab = "PC 3",
color= rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),
pch = 16, grid=TRUE, angle=50)

plot the selected calibration sample
sct3d$points3d(pcspectraA$scores[,1][randId],

pcspectraA$scores[,2][randId],
pcspectraA$scores[,3][randId],
pch = 1,
col = "red",
cex = 1.5)

146 8 Selection of the Samples for Laboratory Analysis

−40 −30 −20 −10 0 10 20 30−1
0

 −
5

 0
 5

 1
0

−20
−15

−10
 −5

 0
 5

 10

PC 1

P
C

 2

P
C

 3

Fig. 8.1 Plot of the three first principal component scores (grey dots) and the selected sample of
size 25 (red circles). The sample is selected with simple random sampling

It is important to note that by repeating the selection of the calibration subsample
with simple random sampling, the algorithm will select a different subsample for
each repetition. In R this can be avoided by setting the argument set.seed()
before the selection of the sample.

The 3-D plot in Fig. 8.1 shows the spread of the selected subsample relative to
the whole dataset. Ideally, the subsample covers the space of the whole dataset. The
main disadvantage of simple random sampling is that the coverage of the whole
dataset space might be poor, that is, the selected subsample is not representative.
This is illustrated in Fig. 8.1, where the spread of the subsample is not uniform and
some spaces are not covered.

8.1.2 Kennard-Stone

The Kennard-Stone algorithm is an iterative sample selection algorithm. In a
first step, the algorithm takes the pair of points that are the furthest away from
one another in the multivariate space of the principal component scores. The
distance metrics often used are the Euclidean distance or, when working with
correlated variables, the Mahalanobis distance (Mahalanobis 1936; see Chap. 7).
The algorithm then selects sequentially the sampling points that maximize the
distance metric between the points already selected. The process is repeated until
the sample size is reached.

8.1 Sampling Design 147

The algorithm has two main drawbacks. First, it will always select points that
are far away from the average in the principal component space, and thus outlier
detection as a prior step is almost always necessary (see also Sect. 8.1.5). Second,
the algorithm is time-consuming because each allocation requires testing different
combinations.

We use the prospectr package and the kenStone function to select a sample
with Kennard-Stone.

load the required package
require(prospectr)

set the seed
set.seed(19101991)

select a subsample of size 25 using the Mahalanobis distance as criterion
kssS <- kenStone(X = pcspectraA$scores,

k = SampleSize,
metric = "mahal",
.center = TRUE, .scale = FALSE)

summary of the kssS object created with the kenStone function
str(kssS)

List of 2
$ model: int [1:25] 376 372 261 120 168 67 264 206 361 247 ...
$ test : int [1:366] 1 2 3 4 5 6 7 8 9 10 ...

We can plot the space of the principal component scores and the associated
selected subsample (Fig. 8.2).

load the required package
require(scatterplot3d)

plot the first three PCs
sct3d <-scatterplot3d(pcspectraA$scores[,1],

pcspectraA$scores[,2],
pcspectraA$scores[,3],
xlab = "PC 1",
ylab = "PC 2",
zlab = "PC 3",
color= rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),
pch = 16, grid=TRUE, angle=50)

plot the selected calibration sample
sct3d$points3d(pcspectraA$scores[,1][kssS$model],

pcspectraA$scores[,2][kssS$model],
pcspectraA$scores[,3][kssS$model],
pch = 1,
col = "red",
cex = 1.5)

148 8 Selection of the Samples for Laboratory Analysis

−40 −30 −20 −10 0 10 20 30−1
0

 −
5

 0
 5

 1
0

−20
−15

−10
 −5

 0
 5

 10

PC 1

P
C

 2

P
C

 3

Fig. 8.2 Plot of the three first principal component score values (grey dots) and the selected
subsample of size 25 (red circles). The sample is selected with Kennard-Stone. Note that a
number of points appear on the peripheral area of this plot, rather than distributed throughout the
population. This could be considered a drawback of using this algorithm for subsample selection

8.1.3 K-Means Clustering

K-means clustering is a very popular unsupervised classification algorithm. The
underlying theory of this algorithm can be found in textbooks on multivariate
data analysis (e.g. Hair et al. 2013) or machine learning. The algorithm starts by
a random selection of the cluster centroids which are used as starting point to
compute the clusters. The number of clusters is usually smaller than the sample
size. For example, one might want to select more than one sample (at random)
from each cluster, thereby reducing the overall cluster number. Whichever the case,
the algorithm then performs an iterative process in which the cluster centroids are
optimized to minimize an objective function. This objective function is the sum
of square distances between the sample and the corresponding cluster centroids
(MacQueen 1967). A number of distance metrics may be considered here depending
on the data that is being clustered, including Euclidean or Mahalanobis distance
which have been described previously.

Once the clusters have been defined, it is possible to take a point from each of
them (if the sample size is equal to the number of clusters). This point is the closest
to the centre of the cluster, randomly inside the cluster or the farthest away from the
centre of the cluster.

We use the implementation provided by the prospectr package with the naes
function. We set the argument method = 0, which means that we select the

8.1 Sampling Design 149

sample in the cluster centre. By setting the method argument to 1 or 2, we would
select the sample the farthest away from the cluster centre or randomly inside the
cluster, respectively (Fig. 8.3).

load the required packages
require(prospectr)
require(viridis)

set the seed
set.seed(19101991)

we select the calibration sample with k-means clustering
note that method = 1 takes the sample in the centre of the clusters
kmsS <- naes(X = pcspectraA$scores,

k = SampleSize,
method = 0,
iter.max = 1000,
.center = TRUE, .scale = FALSE)

summary of the kmsS object created with the naes function
str(kmsS)

List of 4
$ model : int [1:25] 105 223 255 236 158 136 312 11 91 318 ...
$ test : int [1:366] 1 2 3 4 5 6 7 8 9 10 ...
$ cluster: Named int [1:391] 8 11 7 16 2 16 25 25 12 18 ...
..- attr(*, "names")= chr [1:391] "Xr_1" "Xr_2" "Xr_3" "Xr_4" ...
$ centers: num [1:25, 1:9] -5.7997 -15.0755 -0.0982 -27.2959 2.7034 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:25] "1" "2" "3" "4" ...
.. ..$: chr [1:9] "pc_1" "pc_2" "pc_3" "pc_4" ...

load the required package
require(scatterplot3d)

plot the first three PCs and use colours for the clusters
sct3d <-scatterplot3d(pcspectraA$scores[,1],

pcspectraA$scores[,2],
pcspectraA$scores[,3],
xlab = "PC 1",
ylab = "PC 2",
zlab = "PC 3",
color= viridis(25)[kmsS$cluster],
pch = 16, grid=TRUE, angle=50)

plot the selected calibration sample
sct3d$points3d(pcspectraA$scores[,1][kmsS$model],

pcspectraA$scores[,2][kmsS$model],
pcspectraA$scores[,3][kmsS$model],
pch = 1,
col = "red",
cex = 1.5)

150 8 Selection of the Samples for Laboratory Analysis

−40 −30 −20 −10 0 10 20 30−1
0

 −
5

 0
 5

 1
0

−20
−15

−10
 −5

 0
 5

 10

PC 1

P
C

 2

P
C

 3

Fig. 8.3 Plot of the three first principal component score values (dots). The colour of each dot is
according to the cluster each was assigned to using k-means clustering (here 25 classes). The dots
with red circles are the selected samples which correspond to a sample from each cluster

8.1.4 Conditioned Latin Hypercube Sampling

Conditioned Latin hypercube (cLHS) is a sampling design which aims at covering
equally the empirical distribution of a variable. For a single dimension, the cumu-
lative distribution of the variable is divided into a number of strata whose number
corresponds to the sample size. One single point is then selected in each stratum
using simple random sampling. In a multivariate space, the sample is selected using
an optimization algorithm to minimize an objective function which is a weighted
sum of two components for quantitative variables. The first component called O1
ensures that each variable contains one unit per stratum in the multi-dimensional
feature space, while O2 accounts for the correlation between the variable value
in the sample and in the population. More information is found in Minasny and
McBratney (2006).

Several implementations of cLHS are available in R. They are different in
the way they compute the O1 criterion so as to remove the dominance of O1
over O2 during the optimization. For example, the spsann package provides
three implementations, each giving a different weight to the O1 component. See
also the description of the package. In this section, we provide an example
based on the clhs package, which follows the implementation provided by the
original publication of Minasny and McBratney (2006). Note however that the two
components O1 and O2 will have different scale and the optimization algorithm
will mostly reduce the value of the O1 component (Fig. 8.4). More discussion of
the differences between cLHS algorithms is provided by Brus (2019) and Wadoux
et al. (2019).

8.1 Sampling Design 151

load the required package
require(clhs)

set the seed
set.seed(19101991)

since the clhs function accepts only ’data.frame’ objects as input variables, we can
transform our matrix of scores to ’data.frame’ using the as.data.frame function
clhsS <- clhs(x = as.data.frame(pcspectraA$scores),

size = SampleSize,
iter = 1000,
simple = FALSE)

let ensure visually that the objective function was correctly minimized
plot(clhsS)

90

110

130

150

0 250 500 750 1000
Iteration

O
bj

ec
tiv

e
fu

nc
tio

n

Evolution of the objective function

Fig. 8.4 Evolution of the cLHS objective function minimization

summary of the clhs object created with the clhs function
str(clhsS)

We can now plot the selected sample (Fig. 8.5).

load the required package
require(scatterplot3d)

plot the first three PCs
sct3d <-scatterplot3d(pcspectraA$scores[,1],

pcspectraA$scores[,2],
pcspectraA$scores[,3],

152 8 Selection of the Samples for Laboratory Analysis

xlab = "PC 1",
ylab = "PC 2",
zlab = "PC 3",
color= rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5),
pch = 16, grid=TRUE, angle=50)

plot the selected calibration sample
sct3d$points3d(pcspectraA$scores[,1][clhsS$index_samples],

pcspectraA$scores[,2][clhsS$index_samples],
pcspectraA$scores[,3][clhsS$index_samples],
pch = 1,
col = "red",
cex = 1.5)

−40 −30 −20 −10 0 10 20 30−1
0

 −
5

 0
 5

 1
0

−20
−15

−10
 −5

 0
 5

 10

PC 1

P
C

 2

P
C

 3

Fig. 8.5 Plot of the three first principal component score values (grey dots) and the selected
sample of size 25 (red circles). The sample is selected with conditioned Latin hypercube sampling

8.1.5 Presence of Outliers in the Data

In the examples presented in the previous section, it is not obvious how well the
different sampling designs perform in the presence of outliers in the data. Other
than some purely qualitative assessments, the plot in three dimensions makes it
also difficult to see where the sampling points are selected. We present here a
two-dimensional case based on synthetic data to highlight the differences between
designs.

Let us create some synthetic data (Fig. 8.6): a space with two variables, called x1
and x2. Each variable ranges from 1 to 30. The first grid does not contain outliers.
In the second grid, an outlier is positioned at the coordinates c(35, 35) of the
two-dimensional space.

8.1 Sampling Design 153

create two sequences of number between 1 and 30
x1 <- seq(from = 1, to = 30, by = 1)
x2 <- seq(from = 1, to = 30, by = 1)

make a grid from the generated data
griddata <- expand.grid(x1 = x1, x2 = x2)

add random noise
griddata[,1] <- griddata[,1] + rnorm(length(griddata[,1]), 0, 0.05)
griddata[,2] <- griddata[,2] + rnorm(length(griddata[,2]), 0, 0.05)

add an outlier
griddata <- rbind(c(35,35), griddata)

plot the grid without and with the outlier
par(mfrow=c(1,2))

plot the first grid without the outlier
plot(griddata$x1[-1], griddata$x2[-1],

pch = 16,
xlab = "x1",
ylab = "x2",
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5))

plot the second grid with the outlier
plot(griddata$x1, griddata$x2,

pch = 16,
xlab = "x1",
ylab = "x2",
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.5))

0 5 10 15 20 25 30

0
5

10
15

20
25

30

x1

x2

0 5 10 15 20 25 30 35

0
5

10
15

20
25

30
35

x1

x2

Fig. 8.6 Plot of the synthetic data generated without (left) or with an outlier (right)

create a copy of the grid without the outlier
griddataNo <- griddata[-1,]

Now we can select a sample with each of the sampling designs that were
examined previously. We can plot each of them for both cases, with or without the
outlier (Fig. 8.7).

154 8 Selection of the Samples for Laboratory Analysis

0 5 10 15 20 25 30

0
5

10
15

20
25

30

random
x1

x2

0 5 10 15 20 25 30 35

0
5

10
15

20
25

30
35

random
x1

x2

0 5 10 15 20 25 30

0
5

10
15

20
25

30

Kennard−Stone
x1

x2

0 5 10 15 20 25 30 35

0
5

10
15

20
25

30
35

Kennard−Stone
x1

x2

0 5 10 15 20 25 30

0
5

10
15

20
25

30

k−means
x1

x2

0 5 10 15 20 25 30 35

0
5

10
15

20
25

30
35

k−means
x1

x2

0 5 10 15 20 25 30

0
5

10
15

20
25

30

cLHS
x1

x2

0 5 10 15 20 25 30 35

0
5

10
15

20
25

30
35

cLHS
x1

x2

Fig. 8.7 Plot of the synthetic data generated without (left column) or with an outlier (right column)
and with the selected samples in red. The sample size is 15. The samples are selected using
simple random sampling (first row), Kennard-Stone (second row), k-means clustering (third row)
and conditioned Latin hypercube sampling (fourth row). In the third row, the colours indicate
the clusters. In the fourth row, the horizontal and vertical black lines indicate the breaks of the
multivariate strata

8.2 Sample Size 155

Figure 8.7 shows that Kennard-Stone sampling is particularly sensitive to the
outliers in the data as it selects the points that are the furtherest away. Simple random
sampling did not select the outlier, but due to its randomness, it may well happen if
we select another sample with a different seed. Both k-means sampling and cLHS
did not select the outlier. For k-means, the cluster centre of the case with outlier
is similar to that without outlier. In cLHS, the sampling in the multivariate stratum
covering the outlier is covered by sampling in another stratum.

8.2 Sample Size

8.2.1 Assessing the Representativeness of the Sample

To select an optimal sample size, Ramirez-Lopez et al. (2014) (and others,
e.g. Stumpf et al. 2016) suggested comparing the selected sample and the whole
population on the basis of the probability density function computed on the scores
of the principal components. A sample of a given size is representative of the whole
population if the density of the sample is similar to that of the whole population. To
reduce dimensionality, the density is computed on the principal component scores.

Let us take an example with the NIRsoil data from prospectr.

load the required packages
require(prospectr)
require(resemble)

load the data
data(NIRsoil)

take the spectra (stored in a matrix called ’spc’).
spectraA <- NIRsoil[,c("spc")]

wavs <- as.numeric(colnames(spectraA))

choose the maximum cumulative variance explained
maxexplvar <- 0.999

make the PCA
pcspectra <- pc_projection(Xr = spectraA,

pc_selection = list("cumvar", maxexplvar),
center = TRUE, scale = FALSE)

print the results of the PCA
print(pcspectra)

##
Method: pca (svd)
Number of components retained: 3
Number of observations and number of original variables: 825 700
##
Standard deviations, cumulative variance explained, individual variance explained:
##
Explained variance in X {Xr; Xu}:
pc_1 pc_2 pc_3
sd 2.260 0.3041 0.10320

156 8 Selection of the Samples for Laboratory Analysis

cumulative_explained_var 0.978 0.9960 0.99806
explained_var 0.978 0.0177 0.00204

We take three samples from the whole population using simple random sampling.

set the seed
set.seed(19101991)

select a sample of size 100 using simple random sample
sampleA <- sample(1:nrow(pcspectra$scores), size = 100)
sampleB <- sample(1:nrow(pcspectra$scores), size = 100)
sampleC <- sample(1:nrow(pcspectra$scores), size = 100)

Now the density can be derived using the density function from the stats
package.

density of the scores for the whole population
densAll <- density(pcspectra$scores)$y

density of the scores for the samples
densSampleA <- density(pcspectra$scores[sampleA,])$y
densSampleB <- density(pcspectra$scores[sampleB,])$y
densSampleC <- density(pcspectra$scores[sampleC,])$y

plot the density of the population
par(mfrow=c(1,3))
plot(densAll,

type = "l",
xlab = "Index",
ylab = "Density",
main = "Sample A",
col = rgb(red = 0.1, green = 0.1, blue = 0.1, alpha = 1))

Add the line of the sample A density
lines(densSampleA,

col = rgb(red = 1, green = 0, blue = 0, alpha = 1))

plot the density of the population
plot(densAll,

type = "l",
xlab = "Index",
ylab = "Density",
main = "Sample B",
col = rgb(red = 0.1, green = 0.1, blue = 0.1, alpha = 1))

Add the line of the sample B density
lines(densSampleB,

col = rgb(red = 0, green = 1, blue = 0, alpha = 1))

plot the density of the population
plot(densAll,

type = "l",
xlab = "Index",
ylab = "Density",
main = "Sample C",
col = rgb(red = 0.1, green = 0.1, blue = 0.1, alpha = 1))

Add the line of the sample C density

8.2 Sample Size 157

lines(densSampleC,
col = rgb(red = 0, green = 0, blue = 1, alpha = 1))

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

Sample A

Index

D
en

si
ty

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

Sample B

Index

D
en

si
ty

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

Sample C

Index

D
en

si
ty

Fig. 8.8 Density of the principal component scores for three selected samples (in colour)
compared to the density of the whole dataset principal component scores (in black). The samples
are selected by simple random sampling

Figure 8.8 shows that the density of sample A is very close to that of the whole
population, while densities of samples B and C are quite different.

Ramirez-Lopez et al. (2014) quantified the similarity between probability density
functions (pdfs) by computing the mean square Euclidean distance (msd) between
the pdfs. Probably a more standard approach for comparing empirical distribution
functions is the Kullback & Leibler (also called relative entropy) divergence (Kull-
back and Leibler 1951) which is specifically designed for comparing distributions.
For the Ramirez-Lopez et al. (2014) approach, the msd is computed as the mean
squared Euclidean distance (see Sect. 7.1.1) between estimates of the pdfs of the
principal component scores and that of the subsample.

This is computed as follows:

mean square distance between the population and sample pdfs
sample A
mean((densAll - densSampleA)^2, na.rm = T)

[1] 0.01382066

sample B
mean((densAll - densSampleB)^2, na.rm = T)

[1] 0.09982772

sample C
mean((densAll - densSampleC)^2, na.rm = T)

[1] 0.1170962

The values confirm the visual assessment, i.e. the pdf of sample A is closer
than the pdf of the population, while the pdfs of samples B and C are the second

158 8 Selection of the Samples for Laboratory Analysis

and third closest from the pdf of the population. This means that sample A is
more representative of the whole population than sample B or C. For a calibration
exercise, we would therefore favour (sub)sample A over B and C.

8.2.2 Optimal Sample Size Based on the Spectra

Now that we know how to assess the representativity of a sample, we can perform
this analysis for different sampling designs and sample sizes. In R it would require
to make a nested for loop. Instead, we build a function that can be loaded from the
book-associated soilspec package. This function is called css() and comes
from the codes associated to the paper of Ramirez-Lopez et al. (2019). The codes
are freely accessible online.

load the required package
require(soilspec)

This function enables to compare three different designs (viz. Kennard-Stone,
k-means clustering and cLHS) for different user-defined sample sizes.

display the arguments of the css function
args(css)

function (S, k, method = "kms", repetitions = 10, n = 512, from,
to, bw, ...)
NULL

• S: A matrix of the scores of the principal components.
• k: A vector containing the sample set sizes to be evaluated.
• method: The sampling algorithm. Options are (1) "kss" (Kennard-Stone

sampling); (2) "kms" (k-means sampling), the default; and (3) "clhs" (condi-
tioned Latin hypercube sampling).

• repetitions: The number of times that the sampling must be carried out
for each sample size to be evaluated. The result of the final msd is the average
of the ones obtained at each iteration. Note that since the "kss" method is
deterministic and always returns the same results, there is no need for repetitions.

• n: The number of equally spaced points at which the probability densities are to
be estimated (see density function of the package stats).

• from, to: A vector of the left- and right-most points of the grid at which the
densities are to be estimated. Default is the minimums and maximums of the
variables in S.

• bw: A vector containing the smoothing bandwidth to be used for the probability
densities (see density function of the package stats).

• ...: arguments to be passed to the calibration sampling algorithms, i.e. addi-
tional arguments to be used for the clhs, kenStone or naes functions which
run inside this function.

We can use this function to compare the probability density functions of the
population to that of the sample selected by the designs, for different sample sizes.

8.2 Sample Size 159

We start by standardizing (zero mean and unit variance) the principal component
scores from the NIRsoil data that we used at the previous section.

scale the PC scores
scaledPcs <- scale(pcspectra$scores, center = TRUE, scale = TRUE)

load the required package
require(matrixStats)

show the standard deviation of the columns
colSds(scaledPcs)

[1] 1 1 1

show the mean of the columns
colMeans(scaledPcs)

pc_1 pc_2 pc_3
5.925395e-18 6.335420e-18 -8.061207e-18

We then define a vector indicating the different sample sizes to be evaluated.

sequence of sample size from 30 up to 360 in step of 30
sss <- seq(from = 30, to = 360, by = 30)

We can now use the css function to evaluate different sample size (Fig. 8.9 and
8.10).

run the css function for Kennard-Stone sampling design
ksSs <- css(S = scaledPcs,

k = sss,
method = "kss",
repetitions = 1)

show the results
print(ksSs)

css msd
1 30 0.029741853
2 60 0.021756504
3 90 0.017475285
4 120 0.014930065
5 150 0.014494793
6 180 0.013138603
7 210 0.011974236
8 240 0.010896802
9 270 0.010035836
10 300 0.008964971
11 330 0.008193682
12 360 0.007538720

160 8 Selection of the Samples for Laboratory Analysis

plot the results
plot(x = ksSs$css,

y = ksSs$msd,
xlab = "Sample size",
ylab = "msd",
type = "b",
col = rgb(red = 0, green = 0.4, blue = 0.8, alpha = 0.5))

50 100 150 200 250 300 350

0.
01

0
0.

02
0

0.
03

0

Sample size

m
sd

Fig. 8.9 Values of the mean squared Euclidean distance between the probability density function
of the sample and that of the population. The samples are selected by Kennard-Stone sampling

run the css function for a sample selected by k-means clustering
kmSs <- css(S = scaledPcs,

k = sss,
method = "kms",
repetitions = 3)

show the results
print(kmSs)

css msd msd_sd
1 30 0.0062405805 0.0035807958
2 60 0.0024765784 0.0014263296
3 90 0.0016699215 0.0009625250
4 120 0.0007047638 0.0004066092
5 150 0.0006171237 0.0003560769
6 180 0.0008057661 0.0004648350
7 210 0.0005004857 0.0002888111
8 240 0.0005580265 0.0003219971

8.2 Sample Size 161

9 270 0.0003103580 0.0001791297
10 300 0.0003981636 0.0002297884
11 330 0.0002100591 0.0001212522
12 360 0.0002345960 0.0001354123

plot the results
plot(x = kmSs$css,

y = kmSs$msd,
xlab = "Sample size",
ylab = "msd",
type = "b",
col = rgb(red = 0, green = 0.4, blue = 0.8, alpha = 0.5))

50 100 150 200 250 300 350

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Sample size

m
sd

Fig. 8.10 Values of the mean squared Euclidean distance between the probability density function
of the sample and that of the population. The samples are selected by k-means clustering

We use it also for cLHS (Fig. 8.11), but this time we pass the iter argument
to the clhs function (which is executed internally) to set the number of iterations
to 1,000 (the default of the clhs function is 10,000, but for the example, we set it
to 1,000). To avoid convergence issues, we recommend to have a large number of
iterations in the annealing schedule.

run the css function for a sample selected by clhs
lhSs <- css(S = scaledPcs,

k = sss,
method = "clhs",
repetitions = 3,
iter = 1000)

show the results
print(lhSs)

162 8 Selection of the Samples for Laboratory Analysis

css msd msd_sd
1 30 0.0009644352 5.562810e-04
2 60 0.0006845639 3.949629e-04
3 90 0.0006694690 3.862597e-04
4 120 0.0007448093 4.296961e-04
5 150 0.0004972384 2.869381e-04
6 180 0.0002391695 1.380515e-04
7 210 0.0002829130 1.632937e-04
8 240 0.0001901029 1.097351e-04
9 270 0.0002247748 1.297447e-04
10 300 0.0001366639 7.889217e-05
11 330 0.0001687036 9.738467e-05
12 360 0.0001185249 6.842230e-05

plot the results
plot(x = lhSs$css,

y = lhSs$msd,
xlab = "Sample size",
ylab = "msd",
type = "b",
col = rgb(red = 0, green = 0.4, blue = 0.8, alpha = 0.5))

50 100 150 200 250 300 350

2e
−0

4
6e

−0
4

Sample size

m
sd

Fig. 8.11 Values of the mean squared Euclidean distance between the probability density function
of the sample and that of the population. The samples are selected by conditioned Latin hypercube
sampling

8.2 Sample Size 163

We now can plot the three results in one single plot (Fig. 8.12).

plot all the three results in one graph
plot(x = ksSs$css,

y = ksSs$msd,
ylim = c(0, 0.03),
xlab = "Sample size",
ylab = "msd",
type = "b",
col = rgb(red = 1, green = 0, blue = 0, alpha = 0.9))

add the points corresponding to the k-means sampling
points(x = kmSs$css,

y = kmSs$msd,
type = "b",
col = rgb(red = 0, green = 1, blue = 0, alpha = 0.9))

add the points corresponding to the conditioned Latin hypercube
points(x = lhSs$css,

y = lhSs$msd,
type = "b",
col = rgb(red = 0, green = 0, blue = 1, alpha = 0.9))

add a legend
legend(150, 0.030,

legend = c("Kennard-Stone", "k-means", "conditioned Latin Hypercube"),
col = c("red","green" ,"blue"),
lty = 4,
cex = 1)

50 100 150 200 250 300 350

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Sample size

m
sd

Kennard−Stone
k−means
conditioned Latin Hypercube

Fig. 8.12 Values of the mean squared Euclidean distance between the probability density function
of the sample and that of the population. The samples are selected by Kennard-Stone sampling, k-
means clustering or conditioned Latin hypercube sampling

Figure 8.12 shows that for larger sample sizes, the difference in terms of
Euclidean distance between the probability density function of the sample and that
of the population decreases. In all cases, sampling with Kennard-Stone yields the

164 8 Selection of the Samples for Laboratory Analysis

largest differences, while they are relatively small for cLHS and sampling with
k-means clustering. Sampling with k-means clustering offers a good compromise
between speed of the algorithm and small difference between the sample and
population pdfs. Note that these results are case-specific and that for each spectral
library one should carry out this experiment to assess the optimal sample size and
sampling design to select them.

References

Brus DJ (2019) Sampling for digital soil mapping: a tutorial supported by R scripts. Geoderma
338:464–480

Daszykowski M, Walczak B, Massart DL (2002) Representative subset selection. Anal Chim Acta
468:91–103

De Gruijter JJ, Brus DJ, Bierkens MFP, Knotters M (2006) Sampling for natural resource
monitoring. Springer Science & Business Media, Dordrecht

Hair JF, Black WC, Babin BJ, Anderson RE (2013) Multivariate data analysis. Pearson Education
Limited, Upper Saddle River

Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86
MacQueen J (1967) Some methods for classification and analysis of multivariate observations.

In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
volume 1: statistics. University of California Press, Berkeley, pp 281–297

Mahalanobis PC (1936) On the generalized distance in statistics. In: Proceedings of the national
institute of science, India. National Institute of Science of India

Minasny B, McBratney AB (2006) A conditioned Latin hypercube method for sampling in the
presence of ancillary information. Comput Geosci 32:1378–1388

Ramirez-Lopez L, Schmidt K, Behrens T, Van Wesemael B, Demattê JA, Scholten T (2014)
Sampling optimal calibration sets in soil infrared spectroscopy. Geoderma 226:140–150

Ramirez-Lopez L, Wadoux AMJ-C, Franceschini MHD, Terra FS, Marques KPP, Sayão VM,
Demattê JAM (2019) Robust soil mapping at the farm scale with vis–NIR spectroscopy. Eur J
Soil Sci 70:378–393

Stumpf F, Schmidt K, Behrens T, Schónbrodt-Stitt S, Buzzo G, Dumperth C, Wadoux A, Xiang W,
Scholten T (2016) Incorporating limited field operability and legacy soil samples in a hypercube
sampling design for digital soil mapping. J Plant Nutr Soil Sci 179:499–509

Wadoux AMJ-C, Brus DJ, Heuvelink GBM (2019) Sampling design optimization for soil mapping
with random forest. Geoderma 355:113913

Chapter 9
Estimating Soil Properties and Classes
from Spectra

The most common way of estimating soil properties from pre-processed spectra
is by calibrating a statistical model. If the response of the spectra at a particular
wavelength follows the Beer-Lambert law, the degree of reflectance at a particular
wavelength is proportional to the concentration of a soil property. In this case, a
linear model can be fitted between this wavelength and the measured values of a soil
property. In most cases, however, the response of the spectrum follows a complex
form, i.e. the concentration of a soil property is related to several interacting
wavelengths and overlapping regions of the spectrum. In recent years, chemometric
methods based on multivariate statistical models and machine learning algorithms
have considered the entire spectrum as a predictor. When there are many hundreds
of predictor variables (wavelengths), the methods can be described as multivariate.
Multivariate models can be calibrated using the whole spectrum, with the target
variables being measured values of soil properties.

Predictions made by a calibrated model need to be validated. Three common
validation methods exist: data splitting, cross-validation and additional probability
sampling. In digital soil spectroscopy, one most often has only a single dataset
for both calibration and validation. Collecting an additional probability sample to
independently validate soil spectral models is generally not feasible. Both data
splitting and cross-validation are sub-optimal compared to collecting an additional
probability sample because the information contained in the dataset cannot be fully
exploited during calibration. In most cases, unfortunately, this is the only option.

In data splitting, the dataset is split into two subsets, generally containing 75%
and 25% of the data, which are used for calibration and validation, respectively. In
cross-validation, the dataset is split into K subsamples, where the K −1 subsamples
are used for calibration, and validation statistics are computed from the subsample
left aside. Each soil sample is used once for validation. Cross-validation should be
preferred over simple data splitting, especially when the dataset is small (Brus et al.
2011).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. M. J.-C. Wadoux et al., Soil Spectral Inference with R, Progress in Soil Science,
https://doi.org/10.1007/978-3-030-64896-1_9

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64896-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-64896-1_9

166 9 Estimating Soil Properties and Classes from Spectra

In this chapter, we use data-splitting for the sake of demonstration. More
information on validation methods can be found in the statistical (e.g. Friedman
et al. 2001, Chapter 7) or pedometrics (e.g. Brus et al. 2011) literature.

The set of packages used in this chapter are installed using the lines below. The
book-associated soilspec package is also required; see Chap. 3 for information
on its installation.

specify all the packages used in the chapter and install them if they are not already
myPackages <- c("caret", "ggplot2", "soiltexture", "resemble",

"randomForest", "Cubist", "lattice", "pls",
"prospectr", "RcppArmadillo")

define which packages are not installed in the current computer
notInstalled <- myPackages[!(myPackages %in% installed.packages()[, "Package"])]

install the missing packages
if(length(notInstalled)>0) install.packages(notInstalled)

9.1 Goodness of Fit Measures

The process of creating a model begins first with a calibration. After a model is
calibrated, we can use it to make a prediction on new samples. An important step
in the analysis is to evaluate the calibrated model by predicting the value of the soil
property and to comparing it with its associated measured value.

In the following sections, we will review the most common indicators of the
quality of a prediction made by a calibrated model. These indicators are routinely
employed in soil spectroscopy and in the general statistical modelling literature.

Root mean square error (RMSE) The root mean square error (RMSE) is the
standard deviation of the residuals between observed and predicted values of a
variable. The RMSE evaluates the dispersion of the residuals. In other words,
the RMSE tells how concentrated the data are around the line of the best fit
between observed and predicted values. RMSE values are non-negatives; a value
of 0 indicates a perfect fit between observed and predicted values. The RMSE value
depends on the scale of the data and is therefore not suitable for comparison between
datasets. In general, the lower the RMSE, the better the fit between observed and
predicted values. The RMSE is computed as follows:

RMSE =
√√√√1

n

n∑

i=1

(obsi − predi)
2, (9.1)

where n is the validation sample size and obs and pred are vectors of observed
and predicted values of the soil properties, respectively. The RMSE can simply be
derived in R by:

9.1 Goodness of Fit Measures 167

RMSE <- function(obs, pred){
sqrt(mean((pred - obs)^2, na.rm = TRUE))

}

Mean error (ME) or bias The mean error (ME) is often computed along with the
RMSE to assess the bias of the predictions. The ME is simply the average of all
the errors between predictions and observations. Ideally, the value of the ME is zero
which indicates no bias in the prediction. Note that a ME of zero does not indicate
that there is no error (the positive and negative errors cancel out), but that there is
no systematic bias in the predictions made by the model. The ME is computed as
follows:

ME = 1

n

n∑

i=1

(obsi − predi), (9.2)

which in R gives:

ME <- function(obs, pred){
mean(pred - obs, na.rm = TRUE)

}

Squared correlation coefficient (r2) Pearson’s squared correlation coefficient
(r2) is commonly used to assess the dispersion around the regression line. In other
words, the r2 represents the strength of the linear association between observed and
predicted values with respect to the fitted regression line. The r2 is such that the
values are between 0 and 1. It is computed as follows:

r2 =
⎛

⎝
∑n

i=1(obsi − obs)(predi − pred)
√∑n

i=1(obsi − obs)2
√∑n

i=1(predi − pred)2

⎞

⎠
2

. (9.3)

In R, this can be efficiently derived using the cor function from the stats
package:

r2 <- function(obs, pred){
cor(pred, obs, method = "spearman", use = "pairwise.complete.obs")^2

}

While the r2 is widely used, there is a general confusion in the literature about
what a r2 is and how to compute it. When the r2 is computed as the squared
Pearson’s r correlation coefficient, it measures the closeness of fit to the fitted linear
regression line between observed and predicted, but does not indicate the closeness
against a 1:1 line (observed versus predicted) which is of interest when validating.
The r2 is not sensitive to the departure of fitted regression line to the 45 degree line
of agreement. In many cases, it is therefore not recommended to compute the r2 as
the squared correlation coefficient, in particular when predictions are biased.

168 9 Estimating Soil Properties and Classes from Spectra

Coefficient of determination (R2) The coefficient of determination (R2) is the
amount of variance explained by the model. The R2 quantifies the improvement
made by the model over simply using the mean of the observations as prediction
(Janssen and Heuberger 1995). In the literature, the R2 is sometimes referred to as
the amount of variance explained, a modelling efficiency coefficient (Wadoux et al.
2018), a skill score (Nussbaum et al. 2017) or a Nash-Sutcliffe model efficiency
coefficient (Nash and Sutcliffe 1970). As for the r2, its optimal value is 1, but it can
be negative if the root mean square error exceeds the standard deviation of the data.
It is computed as follows:

R2 = 1 −
∑n

i=1(obsi − predi)
2

∑n
i=1(obsi − obs)2

(9.4)

which is equal to 1 − SSE/SST where SSE is the sum of the squared error and
SST of the total sum of squares. The R2 is derived in R by:

R2 <- function(obs, pred){
sum of the squared error
SSE <- sum((pred - obs) ^ 2, na.rm = T)
total sum of squares
SST <- sum((obs - mean(obs, na.rm = T)) ^ 2, na.rm = T)
R2 <- 1 - SSE/SST
return(R2)

}

Lin’s concordance coefficient (ρc) The concordance correlation coefficient (ρc)
was introduced by Lawrence and Lin (1989) to assess the agreement between
observed and predicted values with respect to the 1:1 line. If the predictions are
in perfect agreement with the observations, all the points fall on the 1:1 line. The ρc

is given by:

ρc = 2rσpredσobs

σ 2
obs + σ 2

pred + (μobs − μpred)2
= rCb, (9.5)

where r is Pearson’s correlation coefficient, σ is the standard deviation (rσpredσobs is
the covariance between observed and predicted values) and μ is the mean. Lawrence
and Lin (1989) have shown that ρc reduces to rCb where Cb is the bias correction
factor defined as:

Cb =
(

v + 1/v + u2

2

)−1

, (9.6)

with v = σpred/σobs being the scale shift and u = (μpred − μobs)/
√

σpredσobs being
the location shift relative to the scale. In other terms, ρc assesses the correlation

9.1 Goodness of Fit Measures 169

between observed and predicted values, with a bias correction. The ρc can be
implemented in R by:

rhoC <- function(obs, pred) {
n <- length(pred)
sdPred <- sd(pred, na.rm = T)
sdObs <- sd(obs, na.rm = T)
r <- stats::cor(pred, obs, method = "pearson", use = "pairwise.complete.obs")
scale shift
v <- sdPred / sdObs
sPred2 <- var(pred, na.rm = T) * (n - 1) / n
sObs2 <- var(obs, na.rm = T) * (n - 1) / n
location shift relative to scale
u <- (mean(pred, na.rm = T) - mean(obs, na.rm = T)) / ((sPred2 * sObs2)^0.25)
Cb <- ((v + 1 / v + u^2)/2)^-1
rCb <- r * Cb
return(rCb)

}

There are several implementations for computing ρc with associated confidence
intervals and p-value, and the reader can find examples in the DescTools package
with the CCC function or in the epiR package with the epi.ccc function.

Ratio of performance to deviation (RPD) The ratio of performance to deviation
(RPD) was proposed by Williams and Thompson (1978) as the ratio of standard
error in prediction to the standard deviation. The objective of the RPD is to scale the
error in prediction with the standard deviation of the property. It is widely used in
the infrared spectroscopy literature as a way to assess the goodness of fit of infrared
spectroscopy models.

The RPD is calculated as follows:

RPD =
√

1
n−1

∑n
i=1(obsi − obs)2

√
1
n

∑n
i=1(obsi − predi)

2
, (9.7)

which is equivalent to sd(obs)/RMSE(obs, pred). This metric and its
systematic use have been criticized, in particular because the standard deviation
of the soil property used to scale the error is misleading in the case of skewed or
non-normal observations. The RPD is computed in R by:

RPD <- function(obs, pred){
sdObs <- sd(obs)
RMSE <- sqrt(mean((pred - obs)^2))
rpd <- sdObs/RMSE
return(rpd)

}

It can be seen that RPD is proportionally related to the coefficient of determi-
nation (or R2). R2 is based on variance, while RPD is based on standard error. If
we assume a normal distribution, then RPD = 1/sqrt(1-R2). We can test it
(Fig. 9.1).

170 9 Estimating Soil Properties and Classes from Spectra

create a sequence of number from 0 to 1
R2val <- seq(0, 1, by = 0.02)
RPDval = 1/sqrt(1 - R2val)

plot the R2 and RPD
plot(R2val, RPDval, type = "l")

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

7

R2val

R
P

D
va

l

Fig. 9.1 Values of the R2 (x-axis) against those of the RPD (y-axis) computed on the validation
dataset

Note that when R2 > 0.8, the RPD rapidly increases for larger R2 values. This
suggests that a small increase in accuracy could be interpreted as a large boost in
RPD.

Ratio of performance to inter-quartile distance (RPIQ) The ratio of perfor-
mance to inter-quartile distance (RPIQ) has been proposed by Bellon-Maurel et al.
(2010) to account for possibly non-normal distribution of the observations. The
RPIQ is similar to the RPD, but it uses the inter-quartile range to represent the
spread of the observations. It is therefore not sensitive to the statistical distribution
of the observations. The values obtained by the RPIQ can be interpreted the same
way than the RPD. The RPIQ is given by:

RPIQ = (Q3(obs) − Q1(obs))√
1
n

∑n
i=1(obsi − predi)

2
, (9.8)

9.1 Goodness of Fit Measures 171

where Q1(obs) and Q3(obs) are the first (25%) third (75%) quantiles of the
observations (Q3(obs)−Q1(obs) is the inter-quartile distance) and the denominator
is the RMSE. In R, it can be computed as follows:

RPIQ <- function(obs, pred){
q25 <- as.numeric(quantile(obs)[2])
q75 <- as.numeric(quantile(obs)[4])
iqDist <- q75 - q25
RMSE <- sqrt(mean((pred - obs)^2))
rpiq <- iqDist/RMSE
return(rpiq)

}

From the literature, it appears that various arbitrary limits of RPD were set to
characterize a good model performance. For example, in agricultural products, it
was quoted by Batten (1998) that RPD values greater than 3 are useful for screening,
values greater than 5 can be used for quality control and values greater than 8 can be
used for any application. In soil science, the paper by Chang et al. (2001) made other
three categories: Category A, RDP > 2.0; Category B, RDP 1.4–2.0; and Category
C, RDP < 1.4. This was interpreted by other authors as the reference standard in
model performance: excellent if RPD > 2 and non-reliable models when RPD < 1.4.
Other authors also have slightly modified this to justify the quality of prediction.

A soil scientist would say their model is excellent as it has RPD > 2, while a plant
scientist would disagree as an excellent model should have RPD > 3. Limitations of
RPD are described in Minasny and McBratney (2013), and the myth of RPD as a
single measure of accuracy is summarized in the article of Esbensen et al. (2014): ‘It
is a myth that the RPD statistics furthers an objective, across-model, comparative,
unambiguous prediction validation figure-of-merit’.

We warn against using an arbitrary classification system to justify the model
performance, as RPD and R2 and other measures can be easily affected by the
distribution of the data. We can illustrate how these accuracy measures are sensitive
to the data distribution. Consider a set of random numbers (Fig. 9.2):

set the seed for repeatability
set.seed(1)

generate 100 numbers from an uniform distribution between 0 and 1
x = runif(100)
y = runif(100)

plot the numbers
plot(x, y)

add a 1:1 line to the plot
abline(a = 0, b = 1)

172 9 Estimating Soil Properties and Classes from Spectra

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Fig. 9.2 Set of 100 randomly generated values between 0 and 1

Obviously the accuracy measure should say there is no clear relationship between
the two random variables. We use the eval function from the book-associated
soilspec package for this.

evaluate the results
soilspec::eval(x, y, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0 0.38 0 -1 0.02 0.71 1.18

Let us now see the effect of adding two extreme observations to the data
(Fig. 9.3).

generate two numbers from an uniform distribution between 8 and 10
x1 = runif(2, min = 8, max = 10)
y1 = runif(2, min = 8, max = 10)

add the two new numbers to the vector of existing numbers
x = c(x, x1)
y = c(y, y1)

plot the numbers
plot(x, y)

add a 1:1 line to the plot
abline(a = 0, b = 1)

9.1 Goodness of Fit Measures 173

0 2 4 6 8

0
2

4
6

8

x

y

Fig. 9.3 Set of 100 randomly generated values between 0 and 1 and 2 values between 8 and 10

evaluate the results
soilspec::eval(x, y, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.01 0.38 0 0.89 0.95 3.04 1.19

It is now visible that we can achieve RPD > 3, ρc > 0.9 and R2 = 0.9 indicating
we have created an excellent model. The RPIQ seems not being much affected by
outliers.

For categorical variables, the overall accuracy The overall accuracy (OA)
measures the fraction of predictions that are correctly classified. Its optimal value
is 1 (all if the predicted class equal the observed class) and falls to 0 if none of the
predicted classes equal the observed classes. It is formally calculated as follows:

OA = Number of correct prediction

Total number of prediction
, (9.9)

where the numerator is an indicator having 1 if the predicted class equals the
observed class and 0 otherwise and the denominator is the validation sample size.
In R it is computed as follows:

OA <- function(obs, pred){
create a confusion matrix between observed and predicted classes
cm = as.matrix(table(obs = obs, pred = pred))
n <- length(obs)
diag = diag(cm)
OA <- sum(diag) / n
return(OA)

}

174 9 Estimating Soil Properties and Classes from Spectra

As OA only calculates the overall accuracy, if the data is imbalanced. i.e. one
class dominates over the others, a predictive model will only predict the dominant
class and could provide high accuracy. To solve this problem, Cohen’s kappa
statistic is used.

For categorical variables, Cohen’s kappa statistic Cohen’s kappa statistic
(Cohen 1960) is another measure of the agreement between predicted and observed
classes. It is often referred to as the comparison of the overall accuracy to the
expected random chance accuracy. Cohen’s kappa is defined as the difference
between the overall accuracy and the random chance accuracy divided by 1 minus
the random chance accuracy. The statistic can be negative, but is more often
comprised between 0 and 1, where 1 shows a perfect agreement between the
predicted and observed classes and 0 no more agreement than what is expected by
chance. It is derived as follows:

Cohen’s kappa = OA − pe

1 − pe

, (9.10)

where OA is the overall accuracy derived previously and pe is the expected
probability of chance agreement. In other words, pe is the expected random chance
accuracy. In R Cohen’s kappa statistic is computed as follows:

kappa <- function(obs, pred){
create a confusion matrix between observed and predicted classes
cm = as.matrix(table(obs = obs, pred = pred))
number of observations per class
rowsums = apply(cm, 1, sum)
number of predictions per class
colsums = apply(cm, 2, sum)
n <- length(obs)
diag = diag(cm)
accuracy <- sum(diag) / n
p = rowsums / n # distribution of points over the actual classes
q = colsums / n # distribution of points over the predicted classes
expAccuracy = sum(p*q)

kappa = (accuracy - expAccuracy) / (1 - expAccuracy)
return(kappa)

}

9.2 Models for Quantitative Variables

A general problem in spectroscopy data is the large number of predictors, i.e. the
number of spectral bands. The machine learning literature will describe this as a
‘large p and small n’ problem. In addition, the spectral bands are highly correlated.

9.2 Models for Quantitative Variables 175

One way of handling data with a high number of predictor variables such as in
infrared spectroscopy is variable reduction. Another way is to select only relevant
variables to use in the model (variable selection). Principal components and partial
least squares regression (PLSR) methods are routinely used in chemometrics for
variable reduction. Both models boil down to linear regression and principal
component analysis. The PLSR model is particularly useful for prediction purposes.
We will first explore these linear models and then continue with machine learning
with cubist and random forest models.

In this section, we use the raw spectra described in Chap. 3 (Fig. 9.4). The steps
for pre-processing are explained in the previous chapters.

load the required packages
require(prospectr)
require(soilspec)

load the data
data("datsoilspc")

convert reflectance to absorbance
spectraA <- log(1/datsoilspc$spc)

embed the soil property and the spectra in one single table
datsoilspc$spcA <- spectraA

apply some smoothing to the spectra
oldWavs <- as.numeric(colnames(datsoilspc$spcA))
newWavs <- seq(min(oldWavs), max(oldWavs), by = 5)
datsoilspc$spcARs <- prospectr::resample(datsoilspc$spcA,

wav = oldWavs,
new.wav = newWavs,
interpol = "linear")

apply a standard normal variate transformation for baseline correction
datsoilspc$spcASnv <- standardNormalVariate(datsoilspc$spcARs)

apply a moving average window to the standard normal variate spectra
datsoilspc$spcAMovav <- movav(datsoilspc$spcASnv, w = 11)

convert the column names from integer to numeric
wavs <- as.numeric(colnames(datsoilspc$spcAMovav))

plot first spectrum
matplot(x = wavs, y = t(datsoilspc$spcAMovav),

xlab = "Wavelength /nm",
ylab = "Absorbance",
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.3))

176 9 Estimating Soil Properties and Classes from Spectra

500 1000 1500 2000 2500

−1
0

1
2

3
4

Wavelength /nm

A
bs

or
ba

nc
e

Fig. 9.4 Pre-processed absorbance spectra from the datsoilspc dataset provided in the book
package soilspec

For the example, we further separate the data into calibration (75%) and
validation (25%) by splitting randomly the dataset (Fig. 9.5).

set the seed
set.seed(19101991)

id of the rows to be used for calibration
calId <- sample(1:nrow(datsoilspc), size = round(0.75*nrow(datsoilspc)))

separate the dataset into calibration and validation
datC <- datsoilspc[calId,]
datV <- datsoilspc[-calId,]

plot the value of the Total Carbon content for both calibration and validation
par(mfrow=c(1,2))

calibration
hist(datC$TotalCarbon,

main = "",
xlab = "Total carbon")

validation
hist(datV$TotalCarbon,

main = "",
xlab = "Total carbon")

9.2 Models for Quantitative Variables 177

Total carbon

F
re

qu
en

cy

0 2 4 6 8 10 12

0
50

10
0

15
0

Total carbon

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40
50

Fig. 9.5 Histograms of the soil total carbon content from the Geeves et al. (1994) dataset provided
in the book package soilspec for both calibration (left) and validation (right)

The observation of the total carbon content is slightly skewed to the left. In a
real-world case study, we might want to test whether a transformation makes the
carbon values look normally distributed. The slight skewness is not critical in this
case study.

9.2.1 Principal Component Regression

Principal component regression (PCR) boils down to principal component analysis
(Sect. 6.2) and multiple linear regression by taking the principal component of the
spectra and by building a linear regression on the component scores. Recall the
matrix of scores T obtained by PCA of the matrix of spectral variables X. In PCR,
a linear regression model is fitted between the scores of the PC of X and the soil
property (response variable) y (if only one soil property is predicted) or Y of size
n×c where c is the number of soil properties of interest (c = 1 for a single response).
The PCR model takes the following form:

Y = Tβ + E, (9.11)

where β denotes the vector of regression coefficients, found by solving β =
(XT X)−1XT Y, and E is a matrix of residuals, the same size than Y.

The user must then decide how many components to use in the model. Usually,
the optimal number of components is defined by cross-validation. The cross-
validation can be done by using the pls package, but for illustration we will use
the princomp and lm functions.

178 9 Estimating Soil Properties and Classes from Spectra

first we perform a PCA on the spectra
pcspectra <- prcomp(datC$spcAMovav,

center = TRUE, scale = TRUE)

calculate the percent of the variances explained by the PC
v <- pcspectra$sdev*pcspectra$sdev

percentage of cumulative variances
cumv <- 100*cumsum(v)/sum(v)

plot cumulative percentage of variances explained by the PCs
plot(cumv[1:20],

type = "b",
xlab = "PC",
ylab = "% Cumulative variance")

5 10 15 20

65
70

75
80

85
90

95

PC

%
 C

um
ul

at
iv

e
va

ri
an

ce

Fig. 9.6 Percentage of variance explained by the principal components against number of
components

Figure 9.6 shows that around nine components capture more than 99% of the
variation.

One can now fit a simple PC regression. First we specify the number of principal
components to use in the model and then form the PC scores as the independent
variables and soil property as the dependent variable in a linear model.

specify number of components
npc <- 9

select PC scores
sdata <- as.data.frame(pcspectra$x[,1:npc])

fit a linear model Total C = PC1 + PC2 + ...
soilCPcrModel <- lm(datC$TotalCarbon ~ ., data = sdata)

9.2 Models for Quantitative Variables 179

obtain a summary of the fit
summary(soilCPcrModel)

##
Call:
lm(formula = datC$TotalCarbon ~ ., data = sdata)
##
Residuals:
Min 1Q Median 3Q Max
-2.2051 -0.4448 -0.0744 0.3529 4.5404
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.214198 0.046704 25.998 < 2e-16 ***
PC1 0.027437 0.002848 9.635 < 2e-16 ***
PC2 0.059561 0.004554 13.080 < 2e-16 ***
PC3 0.001337 0.009975 0.134 0.89348
PC4 0.157447 0.013955 11.282 < 2e-16 ***
PC5 0.303688 0.018495 16.420 < 2e-16 ***
PC6 0.014171 0.032577 0.435 0.66389
PC7 0.115872 0.036931 3.138 0.00188 **
PC8 0.400682 0.053989 7.422 1.36e-12 ***
PC9 -0.043479 0.076195 -0.571 0.56871

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 0.7994 on 283 degrees of freedom
Multiple R-squared: 0.7196, Adjusted R-squared: 0.7107
F-statistic: 80.7 on 9 and 283 DF, p-value: < 2.2e-16

We can now assess the goodness of the fit by plotting the observed versus
predicted values of the total carbon, for both the calibration and validation datasets
(Fig. 9.7).

predict on the calibration dataset
soilCPcrPred <- predict(soilCPcrModel, sdata)

predict on the validation dataset
pcspectraV <- predict(pcspectra, datV$spcAMovav)
sdataNew <- as.data.frame(pcspectraV[, 1:npc])
soilVPcrPred <- predict(soilCPcrModel, sdataNew)

par(mfrow = c(1, 2))

plot calibration
plot(datC$TotalCarbon, soilCPcrPred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

plot validation
plot(datV$TotalCarbon, soilVPcrPred,

180 9 Estimating Soil Properties and Classes from Spectra

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

Fig. 9.7 Scatterplot of observed versus predicted value of the total carbon. The predictions are
made by principal component regression

Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCPcrPred, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0 0.79 0.57 0.72 0.84 1.89 1.46

and for validation.

accuracy measures for validation
soilspec::eval(datV$TotalCarbon, soilVPcrPred, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.08 0.74 0.42 0.36 0.7 1.26 1.63

9.2.2 Partial Least Squares Regression

Partial least squares regression (PLSR) is a technique that attempts to combine PCA
and multiple regression (Wold et al. 2001). It aims to predict a set of dependent

9.2 Models for Quantitative Variables 181

variables (soil properties) by extracting from the spectra a set of ‘orthogonal’ factors
(or latent variables) which give the best prediction. The components in partial least
squares are determined by the predictor variables X (as in PCR) but also by the
response variable(s) (y or Y if multiple responses). The PLSR model takes the
following form:

X = TPT + E, (9.12)

Y = UQT + F, (9.13)

where X, T and P are defined previously. Both T and U are score matrices of size
n × p for X or Y, respectively, and P (size d × b) and Q (size d × c) are loading
matrices for X or Y. Finally, E is the matrix of residuals of size n × b for X and
F is the matrix of residuals of size n × c for Y. A regression between X and Y is
obtained by:

U = Tβ, (9.14)

where β is the vector of regression coefficients of the linear model. Substituting this
relationship from the original model, predictions are obtained by:

Y = UQT = TβQT . (9.15)

This is implemented in R with the plsr function from the pls package, made
by Wehrens and Mevik (2007). As for the PCA and PCR, we must choose the
optimal number of principal components (Fig. 9.8).

load required package
require(pls)

maximum number of components in the PLS model
maxc <- 30

generate a PLS model based on calibration data
soilCPlsModel <- plsr(TotalCarbon ~ spcAMovav,

data = datC,
method = "oscorespls",
ncomp = maxc,
validation = "CV")

this is the plsr function, using cross validation to evaluate the RMSEP
as a function of number of components from one until maxc
plot(soilCPlsModel, "val",

main = " ",
xlab = "Number of components")

182 9 Estimating Soil Properties and Classes from Spectra

0 5 10 15 20 25 30

0.
8

1.
0

1.
2

1.
4

Number of components

R
M

S
E

P

Fig. 9.8 Root mean square error of the prediction (RMSEP, black line) and bias-adjusted RMSEP
(red dashed line) obtained by cross-validation against the number of components used in the PLSR
model

More information on the RMSEP and bias-adjusted RMSEP values are obtained
in the vignette of the pls package. Note that we use method = oscorespls,
which is not the default of the plsr function. It is discussed later in this section.
This figure from a 10-fold cross-validation on the calibration data shows that 14
components seem to produce a minimal RMSEP. So we use this number.

number of components to use
nc <- 14

It is also possible to plot directly the predicted and observed values of the
soil properties. The predictions are made using the fitted pls_model using nc
principal components (Fig. 9.9).

plot of cross-validated predictions
plot(soilCPlsModel,

ncomp = nc,
main = " ",
xlab = "Observed",
ylab = "Predicted")

9.2 Models for Quantitative Variables 183

0 2 4 6 8 10 12

0
2

4
6

8

Observed

P
re

di
ct

ed

Fig. 9.9 Scatterplot of observed against predicted values of the total carbon. The predictions are
made by partial least squares regression

This method plots observed against predicted based on the cross-validated
predictions using nc number of components. Additional figures can be derived from
the soilCPlsModel object. Note that the values in the x-axis are the indices of
the wavelength (Fig. 9.10).

the three first loadings
plot(soilCPlsModel,

"loadings",
comps = 1:3,
xlab = "Index of the wavelength",
ylab = "Loading value")

0 100 200 300 400

−0
.1

0
0.

00
0.

05
0.

10

Index of the wavelength

Lo
ad

in
g

va
lu

e

Fig. 9.10 First three loadings of the principal components of the spectra

184 9 Estimating Soil Properties and Classes from Spectra

Figure 9.10 shows the three first loadings of the PLS components of the spectra. It
gives an idea which wavelengths have the most influence on each of the components,
which can be used for spectral interpretation. In addition to the loadings of the PC,
in PLSR the regression coefficients can be plotted. We do not use the default plot
function of the plsr package and select instead manually the regression coefficient
for the case of nc = 14 (Fig. 9.11).

plot the coefficient
plot(wavs, soilCPlsModel$coefficients[,1,nc],

main = " ",
type = "l",
xlab = "Wavelength /nm",
ylab = "Regression coefficient")

abline(h = 0)

500 1000 1500 2000 2500

−3
−2

−1
0

1
2

3

Wavelength /nm

R
eg

re
ss

io
n

co
ef

fic
ie

nt

Fig. 9.11 Standardized regression coefficient of the PLSR model for predicting total carbon

This gives a more meaningful interpretation, the standardized coefficients of the
regression. Wavelengths with a large (positive or negative) value of the regression
coefficient are more influential in the prediction.

Alternative to the regression coefficients and the principal component loadings,
one can use the variable importance on projection (VIP) proposed by Wold et al.
(1993). It measures the importance of each wavelength in the projection of the
components. It is calculated as a weighted sum of the squares of the PLS weights

9.2 Models for Quantitative Variables 185

(Ng et al. 2019). Influential variables have a variable importance on projection value
greater than 1. As there is no direct implementation in the pls package, we provide
the code below. For more information, the reader is redirected to the article of Wold
et al. (1993). Note that the VIP calculation is valid only for the orthogonal score
algorithm (method = "oscorespls" in the pls package) and for a single
response PLSR model. By default, the plsr function in R uses the kernelpls
algorithm.

take the loadings, loading weights and scores
W <- soilCPlsModel$loading.weights
Q <- soilCPlsModel$Yloadings
TT <- soilCPlsModel$scores

compute the variable importance, see Wold et al., (1993)
Q2 <- as.numeric(Q) * as.numeric(Q)
Q2TT <- Q2[1:nc] * diag(crossprod(TT))[1:nc]
WW <- W * W/apply(W, 2, function(x) sum(x * x))
vip <- sqrt(length(wavs) * apply(sweep(WW[, 1:nc], 2, Q2TT, "*"),

1, sum)/sum(Q2TT))

display the variable importance
plot(wavs, vip,

xlab = "Wavelength /nm",
ylab = "Importance",
type = "l",
lty = 1,
col = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 1))

abline(h = 1)

500 1000 1500 2000 2500

0.
5

1.
0

1.
5

2.
0

Wavelength /nm

Im
po

rt
an

ce

Fig. 9.12 Importance of each wavelength on projection of the principal components

Figure 9.12 shows that the important wavelengths in the projection of the PLS
components to predict the total soil carbon are similar to the wavelengths found

186 9 Estimating Soil Properties and Classes from Spectra

important in the previous figures using the standardized regression coefficient or the
first three principal component loadings.

Now that we have created the PLS model, we can use the model to predict using
the spectra on the calibration and validation datasets (Fig. 9.13).

predict on the calibration dataset
soilCPlsPred <- predict(soilCPlsModel, ncomp = nc, newdata = datC$spcAMovav)

predict on the validation dataset
soilVplsPred <- predict(soilCPlsModel, ncomp = nc, newdata = datV$spcAMovav)

par(mfrow = c(1, 2))

plot calibration
plot(datC$TotalCarbon, soilCPlsPred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

plot validation
plot(datV$TotalCarbon, soilVplsPred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

Fig. 9.13 Scatterplot of observed against predicted values of the total carbon. Predictions are made
by a PLSR model. The left-hand side plot shows the observed against predicted values for the
calibration dataset, while the right-hand side plot shows the observations against predictions for
the validation dataset

Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

9.2 Models for Quantitative Variables 187

accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCPlsPred, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0 0.56 0.8 0.86 0.92 2.63 2.04

and for validation.

accuracy measures for validation
soilspec::eval(datV$TotalCarbon, soilVplsPred, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.02 0.52 0.64 0.69 0.85 1.81 2.34

Bagging PLSR
One way of ‘strengthening’ the PLSR prediction is to generate multiple models
and average the prediction (making an ensemble model). Bootstrap aggregating
or bagging (Breiman 1996) manipulates the calibration data to generate different
models. The bootstrap is a general statistical method used to assess the accuracy
of a prediction by sampling the calibration data with replacement. Suppose the
calibration data of size n is composed of predictors and response; we randomly
generate B datasets based on the calibration data by sampling with replacement.
For each of the bootstrap datasets, we fit a PLSR model. The bagging estimate is
calculated as the average of all the model predictions.

Therefore, it combines the outputs of many models to produce a powerful
‘committee’, which is useful when dealing with data with high variation, as each
realization will produce a model that fits a particular set of the data which may differ
from other realizations. The important element of bagging is that by perturbing
the calibration, it can cause significant changes in the predictor. The aggregated
predictor averages the prediction over a collection of bootstrap samples, therefore
reducing the variance of prediction. The accuracy of the prediction is increased
when the prediction method is unstable, i.e. small changes in the calibration data
used in bootstrap can result in large changes in the resulting predictor. It was used
by McBratney et al. (2006) for soil prediction and quantifying its uncertainty. The
improvement over a single PLSR could be small, but it may be more robust against
noise in the spectra, and it is also possible to obtain uncertainty intervals of the
prediction (Mevik et al. 2004).

A function called fitBagPlsr was created for this.

fitBagPlsr <- function (soilv, spec, nbag, maxc){
nc <- maxc
n <- length(soilv)
vPls <- vector(nbag, mode = "list")
calRmse <- matrix(0, nrow = nbag, ncol = 1)
oobRmse <- matrix(0, nrow = nbag, ncol = 1)

for (ibag in 1:nbag){
take a bootstrap sample with replacement
s <- sample.int(n, replace = TRUE)

188 9 Estimating Soil Properties and Classes from Spectra

#build a plsr model
vPls[[ibag]] <- plsr(soilv[s] ~ spec[s,], maxc)

compute calibration RMSE
predV <- predict(vPls[[ibag]], ncomp = nc, newdata = spec[s,])
err2 <- (soilv[s] - predV)^2
calRmse[ibag] <- sqrt(mean(err2))

compute out-of-bag RMSE
predC <- predict(vPls[[ibag]], ncomp = nc, newdata = spec[-s,])
err2 <- (soilv[-s] - predC)^2
oobRmse[ibag] <- sqrt(mean(err2))

}

average the results
avCalRmse <- mean(calRmse)
avOobRmse <- mean(oobRmse)

return the results
list(modelBpls = vPls, oobRmse = avOobRmse, calRmse = avCalRmse)

}

Based on our previous single PLS model, we use bagging to generate 50
bootstrapped models.

number of bootstrap
nbag <- 50

maximum number of components
maxc <- 14

number of components used in the PLSR model, set to equal to maxc
nc <- maxc

make the bootstrap
bagPlsr <- fitBagPlsr(datC$TotalCarbon, datC$spcAMovav,

nbag,
maxc)

The output of the function contains model which is the bootstrapped PLSR
models, oobRmse which is the mean out-of-bag RMSE and calRmse which is
the mean calibration RMSE.

Out of bag is the internal validation used in bootstrap. At each bootstrap, a sample
of size n of the original data was sampled with replacement. That means that for
each bootstrap about one-third of the data are not used in the calibration. This oob
(out-of-bag) data are used to estimate the error of the model.

average RMSE from oob estimates
bagPlsr$oobRmse

[1] 0.7093668

average RMSE from calibration
bagPlsr$calRmse

[1] 0.5187187

9.2 Models for Quantitative Variables 189

Now that we have created the bagged PLS model, we can use the model to predict
using the spectra on the calibration and validation datasets using the following
function.

predictBagPlsr <- function(modelBpls, newspec, nbag, nc){

n <- nrow(newspec)
predV <- matrix(0, nrow = n, ncol = nbag)

for (ibag in 1:nbag) {
predV[,ibag] <- predict(modelBpls[[ibag]], ncomp = nc, newdata = newspec)

}
predAve <- apply(predV, 1, mean)
predStd <- apply(predV, 1, sd)

return(list(bagPred = predV, predAve = predAve, predStd = predStd))
}

In the function predictBagPlsr, the argument modelBpls is the bagged
PLSR model, newspec is the spectra of the validation set, nbag is the number
of bootstrap samples, and nc is the number of PCs used in PLSR. The function
returns bagPred that is the bagged predicted values, predAve that is the mean
of the predictions and predStd that is the standard deviation of the predictions
(Fig. 9.14).

predict on the calibration dataset
soilCBagplsPred <- predictBagPlsr(bagPlsr$modelBpls, datC$spcAMovav,

nbag,
nc)

predict on the validation datset
soilVBagplsPred <- predictBagPlsr(bagPlsr$modelBpls, datV$spcAMovav,

nbag,
nc)

par(mfrow = c(1, 2))

plot calibration
plot(datC$TotalCarbon, soilCBagplsPred$predAve,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

plot validation
plot(datV$TotalCarbon, soilVBagplsPred$predAve,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

190 9 Estimating Soil Properties and Classes from Spectra

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed
Fig. 9.14 Scatterplot of observed against predicted values of the total carbon. Predictions are made
using a bagged partial least squares regression model

Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCBagplsPred$predAve, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0 0.56 0.79 0.86 0.92 2.64 2.04

and for validation.

accuracy measures for validation
soilspec::eval(datV$TotalCarbon, soilVBagplsPred$predAve, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.01 0.5 0.66 0.7 0.86 1.85 2.39

9.2.3 Cubist

Another way of handling large dimensional data is using variable selection tech-
niques to find the best predictors. When the high dimensional data has been reduced
to several components or important variables have been selected, they are used
for prediction using either linear regression or data-mining tools. Regression trees,
neural networks and support vector machines have been used for such predictions.

There are also data-mining tools which are designed to extract information on
data containing large number of variables and large number of samples. This is
potentially useful as the data reduction step need not be taken. Models that improve
regression trees have been proposed, including random forest. While RF has been
used successfully for prediction, the model form is complex, and interpretation can
be difficult as no explicit formulae can be given.

9.2 Models for Quantitative Variables 191

Other forms of data-mining tools based on the idea of decision trees are the
regression rules, rule-based regression or cubist model. This is in effect transforming
regression into a classification problem, the model consists of a set of rules, and
each rule consists of a linear model. The idea is similar to the regression tree
algorithm; while regression trees have a value at each ‘leaf’, regression rules build a
multivariate linear function. Regression rules are also analogous to piecewise linear
functions.

The cubist model takes the form of:
Rule 1: [10 cases, mean -0.96, range -1.77 to 0.66, est err 0.27]

if
R880 <= 0.0144
R1610 > -0.921

then
outcome = -4.06 + 1.27 * R540 + 1.61 * R1610

The model has several rules. Each rule has a ‘condition’ (reflectance at 880 nm
<= 0.0144 & at 1610 nm > -0.921); if this condition is met by the data, then the
prediction is the given linear function. The program also informs the statistics of
each rule which refers to the range of values of the predicted and also the error of
the model.

Cubist initially was a commercial regression-rules program, but now a public
GNU code has been provided and ported in Cubist R package by Kuhn et al.
(2012). The model of cubist is a set of comprehensible rules, where each rule has
an associated linear model. Whenever a situation matches a rule’s conditions, the
associated model is used to calculate the predicted value. The first use of cubist for
soil spectroscopy modelling was made by Minasny and McBratney (2008).

load required package
require(Cubist)

make a Cubist model on calibration dataset
soilCCubistModel <- cubist(x = datC$spcAMovav, y = datC$TotalCarbon)

summary of the model
summary(soilCCubistModel)

##
Call:
cubist.default(x = datC$spcAMovav, y = datC$TotalCarbon)
##
##
Cubist [Release 2.07 GPL Edition] Tue Aug 25 15:51:17 2020

##
Target attribute ‘outcome’
##
Read 293 cases (422 attributes) from undefined.data
##
Model:
##
Rule 1: [106 cases, mean 0.347, range 0.06 to 1.94, est err 0.120]
##
if
1415 > -0.4015094
then
outcome = 4.663 - 447.07 850 + 1223.8 1410 - 1089.7 1400 + 326.8 860
- 240.31 2305 + 277.82 845 + 220.88 2310 - 493.2 1415
- 162.2 865 + 133.4 2165 + 458.8 1395 - 111.19 2170
+ 150.9 2075 - 60 810 + 56.88 825 - 119.1 2100 - 36.37 625

192 9 Estimating Soil Properties and Classes from Spectra

+ 35.28 630 - 55.7 2015 - 70.4 1815 + 65.8 1805 - 131.6 1455
+ 32.19 2285 - 94.3 1405 + 22.26 800 + 95.1 1465 + 13.9 1940
+ 39.6 1365 - 12.23 2380 + 54.4 1435 - 12.34 790 - 47.2 1430
+ 9.65 2345 - 9.11 2350 - 9 2120 - 6 885 + 2.69 645
- 14.6 1445 + 5.7 2145 + 3.3 910
etc... [shortened]

The summary of the model provides the full model. It also informs the rules in
the model and the number of times (frequency) certain variables (wavelengths) are
used as conditions and as predictors. We can plot these as an indicator of which
wavelengths are useful in the model, which we will describe later.

The calibrated cubist model is then used to predict, on both the calibration and
validation data (Fig. 9.15).

predict on the calibration data
soilCCubistPredict <- predict(soilCCubistModel, datC$spcAMovav)

predict on the calibration data
soilVCubistPredict <- predict(soilCCubistModel, datV$spcAMovav)

par(mfrow = c(1, 2))

plot calibration
plot(datC$TotalCarbon, soilCCubistPredict,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

plot validation
plot(datV$TotalCarbon, soilVCubistPredict,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

Fig. 9.15 Scatterplot of observed against predicted values of the total carbon. Predictions are made
using a cubist model

9.2 Models for Quantitative Variables 193

Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCCubistPredict, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 -0.02 0.27 0.91 0.97 0.98 5.46 4.23

and for validation.

accuracy measure for validation
soilspec::eval(datV$TotalCarbon, soilVCubistPredict, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.03 0.39 0.8 0.82 0.92 2.4 3.11

Note that the validation statistics show that the calibrated cubist model actually
gives us a worse prediction compared to PLS. From the model summary, we can
also see that rules 4, 7 and 8 are only fitted to eight, five and seven observations.
This could make the model overfit the data. So we need to simplify the model, by
setting fewer rules. We re-run the model using two rules by adding the following
options: control = cubistControl(rules = 2).

make a Cubist model on calibration dataset with 2 rules
soilCCubistModel2 <- cubist(x = datC$spcAMovav, y = datC$TotalCarbon,

control = cubistControl(rules = 2))

summary of the model
summary(soilCCubistModel)

##
Call:
cubist.default(x = datC$spcAMovav, y = datC$TotalCarbon)
##
##
Cubist [Release 2.07 GPL Edition] Tue Aug 25 15:51:17 2020

##
Target attribute ‘outcome’
##
Read 293 cases (422 attributes) from undefined.data
##
Model:
##
Rule 1: [106 cases, mean 0.347, range 0.06 to 1.94, est err 0.120]
##
if
1415 > -0.4015094
then
outcome = 4.663 - 447.07 850 + 1223.8 1410 - 1089.7 1400 + 326.8 860
- 240.31 2305 + 277.82 845 + 220.88 2310 - 493.2 1415
- 162.2 865 + 133.4 2165 + 458.8 1395 - 111.19 2170
+ 150.9 2075 - 60 810 + 56.88 825 - 119.1 2100 - 36.37 625
+ 35.28 630 - 55.7 2015 - 70.4 1815 + 65.8 1805 - 131.6 1455
+ 32.19 2285 - 94.3 1405 + 22.26 800 + 95.1 1465 + 13.9 1940
+ 39.6 1365 - 12.23 2380 + 54.4 1435 - 12.34 790 - 47.2 1430
+ 9.65 2345 - 9.11 2350 - 9 2120 - 6 885 + 2.69 645
- 14.6 1445 + 5.7 2145 + 3.3 910

194 9 Estimating Soil Properties and Classes from Spectra

##
Rule 2: [155 cases, mean 1.263, range 0.31 to 3.5, est err 0.280]
etc... [shortened]

The calibrated cubist model is then used to predict, on both the calibration and
validation data (Fig. 9.16).

predict on the calibration data
soilCCubist2Predict <- predict(soilCCubistModel2, datC$spcAMovav)

predict on the calibration data
soilVCubist2Predict <- predict(soilCCubistModel2, datV$spcAMovav)

par(mfrow = c(1, 2))

plot calibration
plot(datC$TotalCarbon, soilCCubist2Predict,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

plot validation
plot(datV$TotalCarbon, soilVCubist2Predict,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

Fig. 9.16 Scatterplot of observed against predicted values of the total carbon. Predictions are made
using a cubist model with only two rules

9.2 Models for Quantitative Variables 195

Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCCubist2Predict, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 -0.01 0.4 0.86 0.93 0.96 3.76 2.91

and for validation.

accuracy measures for validation
soilspec::eval(datV$TotalCarbon, soilVCubist2Predict, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.06 0.39 0.79 0.82 0.91 2.38 3.08

We can also infer which wavelengths are useful in the model based on the model
summary. The following plot shows which variables are important as predictors and
as ‘conditions’ (Fig. 9.17).

plot the variables used as predictors
plot(soilCCubistModel$usage[, 3], soilCCubistModel$usage[, 2],

type = "h",
col = "plum",
xlab = "Wavelength /nm",
ylab = "Model usage /%")

plot the conditions in blue
lines(soilCCubistModel$usage[, 3], soilCCubistModel$usage[, 1],

type = "h",
col = "blue") # see which variables are important

add to the existing plot
par(new = T)

add a spectra for visualization
plot(colnames(datC$spcAMovav), datC$spcAMovav[1,],

axes = F,
ylim = c(-2, 2),
xlab = " ", ylab = " ",
type = "l",
main = " ",
xlim = c(500, 2450))

196 9 Estimating Soil Properties and Classes from Spectra

500 1000 1500 2000 2500

0
20

40
60

80
10

0

Wavelength /nm

M
od

el
 u

sa
ge

 /%

Fig. 9.17 Important variables of the cubist model to predict total carbon. The black line is an
example pre-processed absorbance spectrum from the datsoilspc dataset, the pink vertical
lines are the variables (wavelength) used as predictors in the cubist model, and the vertical blue
lines are the cubist model conditions

9.2.4 Random Forest

Random forest (RF) is a widely used algorithm for data science applications in a
broad array of scientific domains. A RF model is an ensemble of decision trees
organized as set of structured classifiers or trees and can be used for both regression
and classification purposes (Breiman 2001). The advantage of RF over its much
simpler data-mining counterpart, the CART (Classification and Regression Tree)
model, is its ensemble approach. Rather than a single tree in the case of CART, the
RF model has many trees, where each is constructed using different perturbations
of the data – in terms of both calibration cases and explanatory variables. During
RF model development of the ensemble trees, two-thirds of cases are sampled
(bootstrap sampling with replacement) and are used to grow a regression tree,
and the other one-third is used to perform a cross-validation in parallel with the
calibration step. These samples are called out-of-bag samples (oob samples) which
are used to obtain an estimate of the model performance. For regression the final
prediction is the average of the individual tree or classifier outputs, whereas in
classification the trees vote by majority on the correct classification (mode). You
might note the similarity of this cross-validation procedure in the earlier described
section about the bootstrap PLSR model.

Random forest has three tuning parameters: mtry, number of trees and minimum
node size. The first parameter mtry is the number of input variables that are
randomly selected for each bootstrap, which can range from 1 to n (sample size).

9.2 Models for Quantitative Variables 197

The second parameter is the number of trees, which must be sufficiently large for
the oob error stabilization. In general, 500 trees are sufficient, but if a large number
of trees are chosen, the results will not differ significantly, but more time will be
necessary to model fitting. The last tuning parameter is the minimum node size,
which determines the minimum size of nodes which no split will be attempted; the
default value is 5 for regression and 1 for classification.

The RF model is a natural candidate for soil spectral inference work because
of the high dimension status of the soil spectral wavelengths, for example, with
vis-NIR or MIR data. Ideally it would be used in situations where the number
of spectra is also large, as this model has a tendency to overfit, particularly if the
tunable parameters previously mentioned are not optimized. The issue here is about
generalization when the model is extended to new data, which is not a strong feature
of the RF model. Naturally its wide use in data science has also resulted in some
researchers experimenting with this model approach for soil spectral data with good
results, e.g. Santana et al. (2018) and Hobley et al. (2017) as some relatively recent
examples.

In this example, we use the randomForest package.

load the required package
require(randomForest)

prepare the data, the column name cannot be numeric, add ’spec.’ in front
datCSub <- data.frame(TotalCarbon = datC$TotalCarbon, datC$spcAMovav)
colnames(datCSub) <- c("TotalCarbon", paste0("spec.", colnames(datC$spcAMovav)))

run random forest algorithm
soilCRFModel <- randomForest(TotalCarbon ~ .,

data = datCSub,
ntree = 1000,
mtry = 10,
importance = TRUE,
na.action = na.omit)

summary of the model
soilCRFModel

##
Call:
randomForest(formula = TotalCarbon ~ ., data = datCSub, ntree = 1000,

mtry = 10, importance = TRUE, na.action = na.omit)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 10
##
Mean of squared residuals: 0.4582793
% Var explained: 79.18

The randomForest function saves the important variables that were used to
explain the variance of the soil property. For this, we specified importance =
TRUE, and we can now plot the important variables of the soilCRFModel model.
Two methods are proposed, the change in terms of MSE or in terms of node purity.
The reader is redirected to statistical learning book (e.g. Friedman et al. 2001) for
more information on these methods. Figure 9.18 shows the most important variables
sorted in order of importance.

198 9 Estimating Soil Properties and Classes from Spectra

plot the most important bands of the spectra
varImpPlot(soilCRFModel,

main = " ")

spec.2130
spec.690
spec.1390
spec.580
spec.745
spec.590
spec.650
spec.595
spec.625
spec.615
spec.2100
spec.1880
spec.605
spec.685
spec.635
spec.715
spec.575
spec.700
spec.2105
spec.1440
spec.670
spec.1435
spec.1420
spec.1395
spec.1410
spec.1430
spec.1400
spec.1415
spec.1425
spec.1405

5 6 7 8

%IncMSE

spec.690
spec.670
spec.620
spec.570
spec.645
spec.610
spec.605
spec.580
spec.1445
spec.665
spec.650
spec.595
spec.1455
spec.600
spec.630
spec.1390
spec.1450
spec.635
spec.575
spec.1440
spec.590
spec.1425
spec.1435
spec.1420
spec.1395
spec.1430
spec.1405
spec.1410
spec.1415
spec.1400

0 5 10 15

IncNodePurity

Fig. 9.18 Important variables used by the random forest model to explain the variability of the
total carbon. The two methods are the mean decrease in accuracy (left) and mean decrease in node
impurity (right). The first variables (bands) are the most important ones

Using the fitted RF model, we can generate predictions on the validation set and
validate the predictions (Fig. 9.19).

predict on the calibration data
soilCRFPred <- predict(soilCRFModel, datCSub)

prepare the validation data
datVSub <- data.frame(TotalCarbon = datV$TotalCarbon, datV$spcAMovav)
colnames(datVSub) <- c("TotalCarbon", paste0("spec.", colnames(datV$spcAMovav)))

predict on the validation data
soilVRFPred <- predict(soilCRFModel, datVSub)

par(mfrow = c(1, 2))

plot calibration
plot(datC$TotalCarbon, soilCRFPred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

plot validation
plot(datV$TotalCarbon, soilVRFPred,

9.2 Models for Quantitative Variables 199

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

Fig. 9.19 Scatterplot of observed against predicted values of the total carbon. Predictions are made
using a random forest model

Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

accuracy measures for calibration
soilspec::eval(datC$TotalCarbon, soilCRFPred, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0 0.3 0.94 0.96 0.98 5.03 3.89

and for validation.

accuracy measures for validation
soilspec::eval(datV$TotalCarbon, soilVRFPred, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.1 0.52 0.57 0.69 0.81 1.8 2.33

9.2.5 Memory-Based Learning

Memory-based learning (MBL) is a local calibration algorithm presented in
Ramirez-Lopez et al. (2013a) and implemented in the package resemble. MBL

200 9 Estimating Soil Properties and Classes from Spectra

has been developed to deal with complex, often continental or global, soil (infrared)
spectral datasets. Instead of building a single (global) function to link the soil
property and the spectra (as in PLSR or RF), the spectra are split into a number
of subsets sharing similar spectral characteristics. In this sense, this technique
is closely related to Chap. 7 because it makes use of distance metrics in the
principal component space to select the closest points for building a local model.
Subsequently, MBL can deal with complex non-linear relationships between the
spectra and a particular soil property.
MBL works in the following stages:

1. Build a p-dimensional space of the spectra where p is the number of principal
components.

2. For each point of the validation dataset, select its k-nearest neighbours from the
calibration sample.

3. Fit a local model for each point of the validation dataset using its nearest
neighbours spectra found in the calibration dataset. Several models are available
for the fit.

Some aspects are therefore particularly important in any MBL algorithm. One
must choose the similarity/dissimilarity metric used to select the closest point in
the spectra space (see also Chap. 7). A second important point is the number of
neighbours that one wants to use in the fitting process. This number must be
sufficiently large to build a realistic model, but increasing too much the number of
points might also decrease prediction accuracy. The package resemble provides
options to optimize the number of neighbours.

In the function mbl, the user must then decide:

• the similarity metric diss_method, in this example the Mahalanobis distance
in the PC space (diss_method = "pca").

• the choice of the optimal number of PCs under the argument pc_selection;
in this example, the PCs are selected based on the cumulative amount of variance
explained.

• the model for fitting, in our example the weighted average PLS model (method
= "local_fit_wapls(min_pls_c = 4, max_pls_c = 17)").

• the validation method used, in this example the leave-nearest-neighbour-out
cross-validation (validation_type = "NNv" in the mbl_control
argument).

We further decide a sequence of nearest neighbours k to test (in order to find the
optimal number of neighbours in local model fitting). Here we test a sequence from
20 up to 120 in steps of 10.

define the sequence of neighbours
k2t <- seq(from = 20, to = 120, by = 10)

9.2 Models for Quantitative Variables 201

We can now perform the model fitting using MBL and the mbl function. We use
the object control which contains the parameters of the mbl function. We make
use of a regression function called weighted average partial least square (wapls1).
It uses multiple models generated by multiple PLS components (i.e. between a
minimum and a maximum number of PLS components). At each local partition,
the final predicted value is a weighted average of all the predicted values generated
by the multiple PLS models. See the package documentation for more details.

load the required package
require(resemble)

maximum cumulative variance explained to be retained by the PCs
maxexplvar <- 0.99

run the mbl algorithm
mblResults1 <- mbl(Xr = datC$spcAMovav,

Yr = datC$TotalCarbon,
we assume we do not know the total carbon content of the testing

dataset
Yu = NULL,
Xu = datV$spcAMovav,
diss_method = "pca",
control = mbl_control(validation_type = "NNv"),
diss_usage = "none",
k = k2t,
define the number of minimum and maximum components for "wapls1"
method = local_fit_wapls(min_pls_c = 4, max_pls_c = 17),
pc_selection = list("cumvar", maxexplvar),
scale = FALSE, center = TRUE)

We can summarize the information derived and plot the results.

print a summary of the model
mblResults1

##
Call:
##
mbl(Xr = datC$spcAMovav, Yr = datC$TotalCarbon, Xu = datV$spcAMovav,
Yu = NULL, k = k2t, method = local_fit_wapls(min_pls_c = 4,
max_pls_c = 17), diss_method = "pca", diss_usage = "none",
pc_selection = list("cumvar", maxexplvar), control = mbl_control(validation_

type = "NNv"),
center = TRUE, scale = FALSE)
##

##
Total number of observations predicted: 98

##
Nearest neighbor validation statistics
##
k rmse st_rmse r2
1: 20 0.530 0.0833 0.784
2: 30 0.444 0.0699 0.843
3: 40 0.523 0.0823 0.846
4: 50 0.542 0.0853 0.850
5: 60 0.527 0.0829 0.848
6: 70 0.556 0.0874 0.829
7: 80 0.549 0.0863 0.828
8: 90 0.568 0.0894 0.834
9: 100 0.549 0.0863 0.850

202 9 Estimating Soil Properties and Classes from Spectra

10: 110 0.550 0.0864 0.848
11: 120 0.535 0.0841 0.851

plot the RMSE against number of neighbours
matplot(mblResults1$validation_results$nearest_neighbor_validation$k,

mblResults1$validation_results$nearest_neighbor_validation$rmse,
type = "b",
xlab = "K-neighbours",
ylab = "RMSE",
pch = 1,
col = "dodgerblue")

20 40 60 80 100 120

0.
44

0.
48

0.
52

0.
56

K−neighbours

R
M

S
E

Fig. 9.20 Values of the root mean square error against number of neighbours in the memory-based
learning algorithm

Figure 9.20 shows the number of neighbours against the RMSE. The optimal
number of neighbours that minimizes the RMSE is 30.

rmse values
rmseMBL <- mblResults1$validation_results$nearest_neighbor_validation$rmse

minimum rmse value
minRmseMBL <- min(mblResults1$validation_results$nearest_neighbor_validation$rmse)

number of neighbours values
neighNumber <- mblResults1$validation_results$nearest_neighbor_validation

select the optimal number of neighbours
optNn <- neighNumber[rmseMBL == minRmseMBL,]$k

Instead of assuming that the total carbon content in the validation set is unknown
(the NULL in the Yu argument), we can use the actual total carbon content values

9.2 Models for Quantitative Variables 203

of this dataset. Note that they are not used at all during computations and they are
only used for validation purposes (i.e. comparing what it was predicted to the actual
values).

run the mbl algorithm specifying the Yu argument
mblResults1Val <- mbl(Xr = datC$spcAMovav,

Yr = datC$TotalCarbon,
Yu = datV$TotalCarbon,
Xu = datV$spcAMovav,
diss_method = "pca",
control = mbl_control(validation_type = "NNv"),
diss_usage = "none",
k = optNn,
definethe numberof minimum and maximum components for "wapls1"
method = local_fit_wapls(min_pls_c = 4, max_pls_c = 17),
pc_selection = list("cumvar", maxexplvar),
scale = FALSE, center = TRUE)

We can plot the predicted and observed values of the total carbon as done before
for the other calibration algorithms (Fig. 9.21).

plot validation
plot(datV$TotalCarbon, mblResults1Val$results$k_30$pred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

Fig. 9.21 Scatterplot of observed against predicted values of the total carbon. The predictions are
made by MBL using a weighted local PLS model

204 9 Estimating Soil Properties and Classes from Spectra

Derive some accuracy measures, for the example using the eval function and
specifying the argument obj = "quant" for continuous variables:

accuracy measures for validation
soilspec::eval(datV$TotalCarbon, mblResults1Val$results$k_30$pred, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.13 0.5 0.65 0.71 0.85 1.86 2.42

9.3 Models for Categorical Variables

Soil properties such as organic carbon or clay are continuous. Some other soil
properties or attributes are categorical, that is, they are assigned to a finite number
of groups. Discrete values can also be considered as categorical if their number
is limited. Examples of categorical soil properties are soil texture classes, mineral
categories or soil types.

For prediction of categorical soil properties, the models need to be adapted. Since
predicting categorical properties with spectroscopy is relatively rare in soil science,
we will present two models, which are adaptations of models already presented in
the previous section on modelling continuous properties.

As an example, we use the continuous values of clay, silt and sand provided
in the book-associated Geeves dataset and convert it to soil texture classes. The
dataset originates from Australia (see also Chap. 3), hence the use of the Australian
soil texture triangle (Northcote 1971; National Committee on Soil and Terrain
(Australia) and CSIRO Publishing 2009) to define the class names. The Australian
soil texture triangle has 11 classes. We show below how to convert the soil clay, silt
and sand content to soil texture classes using the soiltexture R package.

We start by plotting the Australian soil texture triangle and the points from our
dataset (Fig. 9.22).

load the require package
require(soiltexture)

we create the tables
datCsub <- data.frame(CLAY = datC$clay,

SILT = datC$silt,
SAND = datC$sand)

datVsub <- data.frame(CLAY = datV$clay,
SILT = datV$silt,
SAND = datV$sand)

we normalize the data so that the sum of clay, silt and sand is 100
datCsub <- TT.normalise.sum(tri.data = datCsub)
datVsub <- TT.normalise.sum(tri.data = datVsub)

plot the soil texture triangle for the calibration data
TextPlot <- TT.plot(class.sys = "AU.TT",

tri.data = datCsub,
main = " ",
pch = 16,

9.3 Models for Categorical Variables 205

cex.axis = 0.7,
cex.lab = 0.7)

add to the soil texture triangle the validation data
TT.points(tri.data = datVsub,

geo = TextPlot,
col = "red",
pch = 16)

Cl

SiCl

SiClLo

SiLo

ClLo

Lo

LoSa

SaCl

SaClLo

SaLo

Sa

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

[%] Sand 20−2000 μm

[%
] C

la
y

0−
2

μm

[%] Silt 2−20 μm

Fig. 9.22 Australian soil texture triangle with location of the calibration (black dots) and
validation (red dots) soil texture classes within the triangle

We can assign the name of the Australian soil texture class to the calibration
and validation datasets. By default, the points that are at the border of two classes
are assigned the name of the two classes. For the demonstration, we remove
these points. In most cases, however, it would be more judicious to make further
diagnostics on the soil samples and to assign a class to these samples.

make soil texture classes for the calibration dataset
datC$textclass <- TT.points.in.classes(tri.data = datCsub,

class.sys = "AU.TT",
text.tol = 1,
PiC.type = "t",
collapse = "_")

206 9 Estimating Soil Properties and Classes from Spectra

The points that fall into two classes are removed.
datC <- datC[-grep("_", datC$textclass),]

make soil texture classes for the validation dataset
datV$textclass <- TT.points.in.classes(tri.data = datVsub,

class.sys = "AU.TT",
text.tol = 1,
PiC.type = "t",
collapse = "_")

The points that fall into two classes are removed.
datV <- datV[-grep("_", datV$textclass),]

show the derived categories of soil classes in the calibration dataset
unique(datC$textclass)

[1] "Cl" "Lo" "SiLo" "SaLo" "ClLo" "LoSa" "SiClLo" "SaClLo"
[9] "SiCl" "SaCl"

Now we will show how to use two models for predicting soil texture classes.

9.3.1 Partial Least Squares Discriminant Analysis

Partial least squares discriminant analysis (PLS-DA, Barker and Rayens 2003) is a
linear classification model which builds on the conventional PLS regression. PLS-
DA is a PLS regression between two matrices. The first is the matrix X of size
n × b containing the spectra, where n is the sample size and b is the number of
spectral bands. The second is a dummy matrix Y of size n × c where c is the total
number of classes (e.g. soil texture classes). The columns in Y represent a class
membership, that is, a value of 1 or 0 is applied depending on whether the soil
sample belongs to the class. The PLS-DA model is then calibrated like PLS, by
a linear regression between the rotated scores of the X and Y matrices principal
components. The calibrated model predicts a value between 0 and 1, which is
assigned to the closest class by a softmax function. A discussion on PLS-DA is
further provided by Brereton and Lloyd (2014).

In this example, we use the caret package which provides functionalities for
cross-validation.

load the require package
require(caret)

create a subset of the calibration dataset
datCSub <- data.frame(soiltext = datC$textclass, datC$spcAMovav)
colnames(datCSub) <- c("textclass", paste0("spec.", colnames(datC$spcAMovav)))

we do a k-fold cross validation repeated three times
ctrl <- trainControl(method = "repeatedcv",

repeats = 3)

set the seed
set.seed(123)

build the PLS-DA model using the caret package
soilCPlsdaModel <- train(textclass ~ .,

9.3 Models for Categorical Variables 207

data = datCSub,
method = "pls",
preProc = c("center", "scale"),
metric = c("Accuracy"),
tuneLength = 30,
trControl = ctrl)

We can display a summary of the fitted PLS-DA model.

summary of the fitted model
soilCPlsdaModel

Partial Least Squares
##
290 samples
421 predictors
10 classes: ’Cl’, ’ClLo’, ’Lo’, ’LoSa’, ’SaCl’, ’SaClLo’, ’SaLo’, ’SiCl’, ’SiClLo’,

’SiLo’
##
Pre-processing: centered (421), scaled (421)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 260, 258, 260, 261, 263, 263, ...
Resampling results across tuning parameters:
##
ncomp Accuracy Kappa
1 0.5534921 0.3461652
2 0.5593630 0.3558506
3 0.5593189 0.3567091
4 0.5650486 0.3656058
5 0.5650045 0.3654928
6 0.5650045 0.3660005
7 0.5708395 0.3736145
8 0.5744451 0.3835748
9 0.5823474 0.3970096
10 0.5640763 0.3746830
11 0.5738831 0.3908864
12 0.5758560 0.3937251
13 0.5850061 0.4117775
14 0.5668808 0.3889140
15 0.5726905 0.3977221
16 0.5853583 0.4178228
17 0.5868221 0.4213265
18 0.5960500 0.4360405
19 0.6052095 0.4509891
20 0.6046920 0.4543307
21 0.6234867 0.4825286
22 0.6270725 0.4894305
23 0.6304389 0.4948148
24 0.6418556 0.5108486
25 0.6484922 0.5213268
26 0.6416819 0.5124769
27 0.6437369 0.5150439
28 0.6414408 0.5116607
29 0.6357714 0.5035562
30 0.6295964 0.4961511
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was ncomp = 25.

The train function of the caret package automatically selects the optimal
number of principal components based on the overall accuracy evaluated by the
cross-validation subset left out (Fig. 9.23).

208 9 Estimating Soil Properties and Classes from Spectra

plot the cross-validation results
plot(soilCPlsdaModel)

#Components

A
cc

ur
ac

y
(R

ep
ea

te
d

C
ro

ss
−V

al
id

at
io

n)

0.56

0.58

0.60

0.62

0.64

0 5 10 15 20 25 30

Fig. 9.23 Number of components used in the partial least squares discriminant analysis model
against accuracy computed from a repeated cross-validation

The train function selected 25 components as the optimal number. The fitted
PLS-DA model can now be applied to unseen data.

create a validation dataset
datVSub <- data.frame(soiltext = datV$textclass, datV$spcAMovav)
colnames(datVSub) <- c("textclass", paste0("spec.", colnames(datV$spcAMovav)))

show the probability of each class
head(predict(soilCPlsdaModel,

newdata = datVSub,
type="prob"))

Cl ClLo Lo LoSa SaCl SaClLo SaLo
1 0.1201323 0.16463553 0.07922130 0.09377720 0.08920005 0.08531693 0.08447906
2 0.2054752 0.10797734 0.06762277 0.10687099 0.08748491 0.08216171 0.07374156
3 0.1930218 0.09038021 0.08228958 0.09765407 0.08766723 0.08802700 0.09041075
4 0.1163598 0.07402499 0.11089104 0.14420159 0.08809790 0.08977505 0.10009583
5 0.2927797 0.05545218 0.09967716 0.07337192 0.08037484 0.08205305 0.07691914
6 0.1025771 0.06678866 0.23378266 0.08995787 0.08500366 0.08440278 0.08189733
SiCl SiClLo SiLo
1 0.09069487 0.09012774 0.10241505
2 0.08595896 0.08518364 0.09752289
3 0.08966126 0.09750844 0.08337970
4 0.08502138 0.08641169 0.10512070
5 0.08054953 0.07722688 0.08159563
6 0.08272078 0.08220722 0.09066194

9.3 Models for Categorical Variables 209

Here we can see that the output is a number between 0 and 1. As mentioned
previously, the PLS-DA model returns a probability-like value of the assignment to
a class. For example, the fifth soil sample is more likely to belong to the class Cl
(probability of 0.20) than it is to the other classes (probability below 0.1 in all other
classes). To obtain the final results, the softmax function is applied on the probability
values to return the single value, that is, the membership to a class. This is done by
default in the caret package.

We can now visualize the prediction and validate against measured value of the
classes.

predict the classes on the validation dataset using the fitted PLS-DA model
plsClasses <- predict(soilCPlsdaModel, newdata = datVSub)

create a confusion matrix of the predicted versus observed soil texture classes
confMat <- confusionMatrix(datVSub$textclass, plsClasses)

show confusion matrix computed on the validation dataset
confMat$table

Reference
Prediction Cl ClLo Lo LoSa SaCl SaClLo SaLo SiCl SiClLo SiLo
Cl 21 1 2 0 0 0 0 0 0 0
ClLo 6 5 7 0 0 0 0 0 0 0
Lo 0 2 24 0 0 0 0 0 0 0
LoSa 0 0 5 7 0 0 0 0 0 0
SaCl 0 0 0 0 0 0 0 0 0 0
SaClLo 0 1 0 0 0 0 0 0 0 0
SaLo 0 1 3 2 0 0 0 0 0 0
SiCl 2 0 1 0 0 0 0 0 0 0
SiClLo 0 0 0 0 0 0 0 0 0 0
SiLo 0 0 6 1 0 0 0 0 0 0

show accuracy and Cohen’s kappa
confMat$overall[1:2]

Accuracy Kappa
0.5876289 0.4584787

The confusion matrix confMat shows that there is on average a good agreement
between predicted and measured soil texture classes. For example, 22 of the
reference Cl values are correctly classified, and 11 are assigned to a different class,
8 of which are to the most similar class (ClLo). The overall accuracy and Cohen’s
kappa values show that the predictions are accurate.

9.3.2 Random Forest

Random forest applied to categorical variables is similar to the same model applied
to continuous variables. Note that parameter tuning is not performed in this example
and that, for example, mtry is held constant. The reader will find a large number
of examples on how to make parameter tuning in the package vignette. Parameter

210 9 Estimating Soil Properties and Classes from Spectra

tuning will be a key element of the modelling, in particular to avoid overfitting of the
model or to avoid an excessive number of trees without compromising on prediction
accuracy.

we start by defining the control parameters for the caret function
we do a k-fold cross validation repeated three times
trainControl <- trainControl(method = "repeatedcv",

number = 10,
repeats = 3)

define the random forest parameter mtry (to its default)
mtry <- sqrt(ncol(datCSub))

hold the mtry parameter constant (not parameter tuning)
tunegrid <- expand.grid(.mtry = mtry)

set the seed
set.seed(123)

build the random forest model using the caret package
soilCRFModel <- train(textclass ~ .,

data = datCSub,
method = "rf",
metric = c("Accuracy"),
tuneGrid = tunegrid,
trControl = trainControl,
verbose = FALSE)

print a summary of the model
print(soilCRFModel)

Random Forest
##
290 samples
421 predictors
10 classes: ’Cl’, ’ClLo’, ’Lo’, ’LoSa’, ’SaCl’, ’SaClLo’, ’SaLo’, ’SiCl’, ’SiClLo’,

’SiLo’
##
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 260, 258, 260, 261, 263, 263, ...
Resampling results:
##
Accuracy Kappa
0.6269545 0.5055345
##
Tuning parameter ’mtry’ was held constant at a value of 20.54264

Let us now apply the calibrated random forest model to the validation data
and display the overall accuracy and Cohen’s kappa statistics. Note that the same
statistics can be obtained by using the book-associated package soilspec with
the eval function.

predict the classes on the validation dataset using the fitted random forest model
RFClasses <- predict(soilCRFModel,

newdata = datVSub)

create a confusion matrix of the predicted versus observed soil texture classes
confMat <- confusionMatrix(datVSub$textclass, RFClasses)

show confusion matrix computed on the validation dataset
confMat$table

9.4 Soil Spectral Inference Systems 211

Reference
Prediction Cl ClLo Lo LoSa SaCl SaClLo SaLo SiCl SiClLo SiLo
Cl 22 2 0 0 0 0 0 0 0 0
ClLo 8 8 2 0 0 0 0 0 0 0
Lo 0 1 20 4 0 0 1 0 0 0
LoSa 0 0 0 12 0 0 0 0 0 0
SaCl 0 0 0 0 0 0 0 0 0 0
SaClLo 0 1 0 0 0 0 0 0 0 0
SaLo 0 0 6 0 0 0 0 0 0 0
SiCl 3 0 0 0 0 0 0 0 0 0
SiClLo 0 0 0 0 0 0 0 0 0 0
SiLo 0 0 4 1 0 0 0 0 0 2

show accuracy and Cohen’s kappa
confMat$overall[1:2]

Accuracy Kappa
0.6597938 0.5641933

9.4 Soil Spectral Inference Systems

Another way to estimate soil properties is to combine the spectra with pedotransfer
functions (PTF, Bouma 1989), in a soil spectral inference system (McBratney et al.
2006). Several soil physical, chemical and biological properties cannot be estimated
directly from the spectra, as it done in Sects. 9.2 and 9.3. The reasons are that i)
some soil properties do not have a clear spectral response in the spectrum and that
ii) the development of calibration functions of a soil property from soil spectral
libraries is not always possible due, for example, to budget constraints. McBratney
et al. (2006) thus proposed a two-step approach to estimate a large range of soil
properties by combining spectroscopy and PTFs, as follows:

• Step 1, calibration: a multivariate model is built between the spectra and
the measured values of some basic soil properties (that have been shown to
demonstrate a spectral response in the spectral region of interest). In the infrared,
the basic soil properties are, for example, clay, silt, sand, organic carbon, pH
and cation exchange capacity. This step can be implemented using one of the
methods presented in Sects. 9.2 or 9.3. When a model is calibrated, it can be used
to predict soil properties of a soil sample where only the spectrum is available.

• Step 2, inference: the basic soil properties estimated in Step 1 are used as input
in a PTF to predict a set of different soil properties, such as the permanent soil
wilting point or field capacity. The PTF can be found in the literature or derived
using a large soil database. Ideally, a PTF developed on similar soil is used to
derive the soil properties. A number of PTFs have been published, for example,
by McBratney et al. (2002) or Pachepsky and Rawls (2004). The PTFs can be
concatenated into a network structure to create an inference system that estimates
the target soil property or properties and also propagates the uncertainty of the
estimate.

212 9 Estimating Soil Properties and Classes from Spectra

So one of the main features of soil spectral inference systems is the quantification
and propagation of uncertainty. Model uncertainty, for example, can be quantified
using an ensemble model by bootstrap and aggregating, for which an example using
partial least squares regression is provided in Sect. 9.2.2.

Since Step 1 is already presented in Sects. 9.2 or 9.3, we do not repeat it here
and make a simple example of Step 2. Note also that uncertainty quantification and
propagation is discussed elsewhere in the literature (e.g. in Tranter et al. 2010, Van
der Klooster et al. 2011 or Brodský et al. 2013).

Take the following PTF from Rab et al. (2011) to estimate the volumetric field
capacity (FC, m3/m3, %) as a function of basic soil properties. We chose this PTF
because it has been derived using data from a case study in Australia, for an area
in which the soils are similar to those of the Geeves dataset. The Geeves dataset is
provided by the book-associated soilspec package. The PTF makes use of the
soil clay and silt content.

Field capacity = 7.759+0.7165×clay+0.9708×silt −(0.01729×clay)×silt

(9.16)
We can use the Geeves dataset provided in the soilspec package. It contains

values of the soil clay and silt content.

load the required package
require(soilspec)

load the data
data("datsoilspc")

show the available soil properties
colnames(datsoilspc)

[1] "clay" "silt" "sand" "TotalCarbon" "spc"

Note here the soil properties are available in our dataset but that in many cases
they can be estimated using the spectra (Step 1) or using a soil spectral library
(Viscarra-Rossel et al. 2008). We can now derive the field capacity using the basic
soil properties clay and silt (Fig. 9.24).

estimate field capacity using a PTF
FC <- 7.759 +

0.7165*datsoilspc["clay"] + 0.9708*datsoilspc["silt"] -
(0.01729*datsoilspc["clay"])*datsoilspc["silt"]

plot the distribution of the estimated field capacity
boxplot(FC,

ylab = "Field capacity")

References 213

20
30

40
50

60

F
ie

ld
 c

ap
ac

ity

Fig. 9.24 Boxplot of the estimated values of the field capacity (in m3/m3, %) of the Geeves dataset

References

Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemometr J Chemometrics
Soc 17:166–173

Batten GD (1998) Plant analysis using near infrared reflectance spectroscopy: the potential and the
limitations. Aust J Exp Agric 38:697–706

Bellon-Maurel V, Fernandez-Ahumada E, Palagos B, Roger J-M, McBratney AB (2010) Critical
review of chemometric indicators commonly used for assessing the quality of the prediction of
soil attributes by NIR spectroscopy. TrAC Trends Anal Chem 29:1073–1081

Bouma J (1989) Using soil survey data for quantitative land evaluation. In: Advances in soil
science. Springer, Berlin, pp 177–213

Breiman L (2001) Random forests. Mach Learn 45:5–32
Breiman L (1996) Bagging predictors. Mach Learn 24:123–140
Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: taking the magic away.

J Chemometr 28:213–225
Brodský L, Vasat R, Klement A, Zadorova T, Jaksik O (2013) Uncertainty propagation in VNIR

reflectance spectroscopy soil organic carbon mapping. Geoderma 199:54–63
Brus DJ, Kempen B, Heuvelink GBM (2011) Sampling for validation of digital soil maps. Eur J

Soil Sci 62:394–407
Chang C-W, Laird DA, Mausbach MJ, Hurburgh CR (2001) Near-infrared reflectance

spectroscopy–principal components regression analyses of soil properties. Soil Sci Soc Am
J 65:480–490

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46
Esbensen KH, Geladi P, Larsen A (2014) The RPD myth. . . . NIR News 25:24–28
Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer series in

statistics, New York
Geeves GW, Cresswell HP, Murphy BW, Gessler PI, Chartres CJ, Little IP, Bowman GM (1994)

Physical, chemical and morphological properties of soils in the wheat-belt of southern NSW
and northern Victoria. NSW Department of Conservation; Land Management/CSIRO Division
of Soils Occasional Report, CSIRO

Hobley EU, Brereton AJLEG, Wilson B (2017) Soil charcoal prediction using attenuated total
reflectance mid-infrared spectroscopy. Soil Res 55:86–92

214 9 Estimating Soil Properties and Classes from Spectra

Janssen PHM, Heuberger PSC (1995) Calibration of process-oriented models. Ecol Model 83:55–
66

Kuhn M, Weston S, Keefer C, Coulter N (2012) Cubist models for regression. R package Vignette
R package version 00 18

Lawrence I, Lin K (1989) A concordance correlation coefficient to evaluate reproducibility.
Biometrics 45:255–268

McBratney AB, Minasny B, Cattle SR, Vervoort RW (2002) From pedotransfer functions to soil
inference systems. Geoderma 109:41–73

McBratney AB, Minasny B, Viscarra-Rossel RA (2006) Spectral soil analysis and inference
systems: A powerful combination for solving the soil data crisis. Geoderma 136:272–278

Mevik B-H, Segtnan VH, Næs T (2004) Ensemble methods and partial least squares regression. J
Chemometr J Chemometr Soc 18:498–507

Minasny B, McBratney AB (2013) Why you don’t need to use RPD. Pedometron 33:14–15
Minasny B, McBratney AB (2008) Regression rules as a tool for predicting soil properties from

infrared reflectance spectroscopy. Chemom Intell Lab Syst 94:72–79
Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—A

discussion of principles. J Hydrol 10:282–290
National Committee on Soil and Terrain (Australia) and CSIRO Publishing (2009) Australian soil

and land survey field handbook. CSIRO Publishing
Ng W, Minasny B, Malone BP, Sarathjith MC, Das BS (2019) Optimizing wavelength selection by

using informative vectors for parsimonious infrared spectra modelling. Comput Electron Agric
158:201–210

Northcote KH (1971) Factual key for the recognition of Australian soils
Nussbaum M, Walthert L, Fraefel M, Greiner L, Papritz A (2017) Mapping of soil properties at

high resolution in Switzerland using boosted geoadditive models. Soil 3:191–210
Pachepsky Y, Rawls WJ (2004) Development of pedotransfer functions in soil hydrology. Elsevier,

Amsterdam
Rab MA, Chandra S, Fisher PD, Robinson NJ, Kitching M, Aumann CD, Imhof M (2011)

Modelling and prediction of soil water contents at field capacity and permanent wilting point
of dryland cropping soils. Soil Res 49:389–407

Ramirez-Lopez L, Behrens T, Schmidt K, Stevens A, Demattê JAM, Scholten T (2013a) The
spectrum-based learner: a new local approach for modeling soil vis–NIR spectra of complex
datasets. Geoderma 195:268–279

Santana FB de, Souza AM de, Poppi RJ (2018) Visible and near infrared spectroscopy coupled to
random forest to quantify some soil quality parameters. Spectrochim Acta Part A Mol Biomol
Spectrosc 191:454–462

Tranter G, Minasny B, McBratney AB (2010) Estimating pedotransfer function prediction limits
using fuzzy k-means with extragrades. Soil Sci Soc Am J 74:1967–1975

Van der Klooster E, Van Egmond FM, Sonneveld MPW (2011) Mapping soil clay contents in
Dutch marine districts using gamma-ray spectrometry. Eur J Soil Sci 62:743–753

Viscarra-Rossel RA, Jeon YS, Odeh IOA, McBratney AB (2008) Using a legacy soil sample to
develop a mid-IR spectral library. Soil Res 46:1–16

Wadoux AMJ-C, Brus DJ, Heuvelink GBM (2018) Accounting for non-stationary variance in
geostatistical mapping of soil properties. Geoderma 324:138–147

Wehrens R, Mevik B-H (2007) The pls package: principal component and partial least squares
regression in R. J Stat Softw 18:1–24

Williams PC, Thompson BN (1978) Influence of whole meal granularity on analysis of HRS
wheat for protein and moisture by near infrared reflectance spectroscopy (NRS). Cereal Chem
55:1014–1037

Wold S, Johansson E, Cocchi M (1993) PLS: partial least squares projections to latent structures.
In: 3D qsar in drug design: theory, methods and applications. Kluwer ESCOM Science,
Dordrecht, pp 523–550

Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom
Intell Lab Syst 58:109–130

Chapter 10
Spectral Transfer and Transformation

Measurement protocols for the same material often vary from laboratory to lab-
oratory. Similarly, while the same spectrometer or sensor can be used between
laboratories, the difference in terms of sensor or spectrometer manufacturer is
likely to introduce additional variation in the recorded spectrum. These issues are
relevant in soil spectroscopy, where there is a growing base of practitioners together
with a growing number of available spectrometers to use. Despite a development
of soil spectral libraries, the sharing of such libraries is not too common, which
makes collaborative work difficult to coordinate. Importantly, soil spectral inference
models calibrated at one laboratory are likely to be non-applicable to spectra
collected from another laboratory.

There have been some efforts to compile large-scale libraries that are populated
from locally derived sources and then building subsequent ‘globally’ calibrated
models. To contribute to such projects, there is a need to adhere to certain minimum
requirements and a measurement protocol for consistent measurement of spectra
in the laboratory. However for the same soil sample, different spectrometers could
produce different reflectance spectra because of the scanning protocol, lighting
condition, instrumentation setting, sensors or white reference (Viscarra-Rossel et al.
2016). Similarly, external factors influencing the spectra, such as soil moisture, need
to be accounted for in the modelling. This chapter provides examples to standardize
the spectra scanned from different instruments, using either a standard spectrum as
baseline or a reference spectrometer. An example on how to account for external
factors affecting the spectra is also provided. Because this chapter makes use of
model calibration described in Chap. 9, it is not considered as a pre-processing.
Note, however, that the steps described in this chapter are most often used prior to
or in combination with model calibration.

The set of packages used in this chapter are installed using the lines below. The
book-associated soilspec package is also required; see Chap. 3 for information
on its installation.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. M. J.-C. Wadoux et al., Soil Spectral Inference with R, Progress in Soil Science,
https://doi.org/10.1007/978-3-030-64896-1_10

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64896-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-64896-1_10

216 10 Spectral Transfer and Transformation

specify all the packages used in the chapter and install them if they are not
already

myPackages <- c("Cubist", "lattice", "prospectr", "RcppArmadillo",
"pls", "MASS")

define which packages are not installed in the current computer
notInstalled <- myPackages[!(myPackages %in% installed.packages()[, "Package"])]

install the missing packages
if(length(notInstalled)) install.packages(notInstalled)

10.1 Spectral Transfer Between Instruments Using a
Standard Sample

Irrespective of whether one wants to contribute to data collation projects, mea-
surement standardization methods are quite common. The idea of standardization
entails an approach to minimize systematic effects between laboratories where an
agreed-upon and well-known (species and concentration) material is used to align
the readings of any method. This idea hails from the wet chemistry discipline (Willis
1972) and was drawn upon by Pimstein et al. (2011) who proposed a material
internal soil standard (ISS) approach to be used for soil spectroscopic studies.
Their work demonstrated that well-known and agreed-upon reference material that
is measured under any set-up in any laboratory can be used to align one laboratory’s
spectral measurements to another’s. Pimstein et al. (2011) described that an ideal
ISS should be inexpensive, simple to use, easily delivered overseas, homogeneous,
stable in space and time and useful for both radiometric and spectral calibration. The
ISS also has to be as similar as possible to soil grain size (shape, size and nature),
and if possible, it should have stable (and preferably chemically featureless) spectral
performance across the entire spectral region. Ben Dor et al. (2015) proposed a
couple of ISS that fulfil such criteria. These samples or the sites they were collected
were characterized as bright, homogeneous sand dunes and situated along the
coastline of Wylie Bay (WB) and Lucky Bay (LB) in southwestern Australia.

Ben Dor et al. (2015) describes the protocol for the collection of the spectra
for each ISS to minimize potential measurement errors. Spectra were collected in
both contact probe and dark box modes. When a request is made, the authors share
the ISS material, together with the associated benchmark soil spectra, and suggest
measurement protocol to perform an alignment. The user will then measure the
ISS material with their own instrument following the suggested protocol for either
contact probe or dark mode and then perform an alignment to match the benchmark
spectra. The alignment is essentially the calculation of correction factors that when
applied to newly collected soil spectra from the users’ instrument will adjust the
spectra as though it were collected from the instrument that was used to collect the
benchmark spectra. Once the alignment is made, it will be possible to compare and
share spectra from different laboratories that have also used the same ISS material
and performed the alignment. This in turn also provides the opportunity to share
associated soil spectral inference models.

10.1 Spectral Transfer Between Instruments Using a Standard Sample 217

The following exercise describes the key steps in the process for spectral
standardization. The ISS material used for the standardization in this exercise is the
LB sample. We will demonstrate the process used for standardizing spectra collected
from two different vis-NIR instruments.

The necessary files for this section are provided in the book package soilspec
in data("datStand") and described in Chap. 3.

require(soilspec)
load the package data
data("datStand")

show the content of the data
names(datStand)

[1] "CSIRO.s" "ISS_subordinates" "asd.soil" "se.soil"

Lucky Bay ISS
The ISS are provided by Ben Dor et al. (2015). The benchmark spectra (as measured
by contact probe) for both samples are found in the file datStand$CSIRO.s.
This object is called CSIROs. The benchmark LB spectra is shown in Fig. 10.1.

take data for this section
CSIROs <- datStand$CSIRO.s

take the wavelength
wavelength <- as.numeric(colnames(CSIROs))

#Make plot
matplot(wavelength, t(CSIROs),

type= "l",
ylab = "Reflectance",
xlab = "Wavelength /nm",
ylim = c(0.2, 1.2),
lty = 1)

add a legend
legend("topleft",

legend = c("Lucky Bay", "Wilie Bay"),
lty = c(1, 1),
col = c("black", "red"))

218 10 Spectral Transfer and Transformation

500 1000 1500 2000 2500

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Wavelength /nm

R
ef

le
ct

an
ce

Lucky Bay
Wilie Bay

Fig. 10.1 Benchmark Lucky Bay (black line) and Wylie Bay (red line) spectra as measured by
contact probe

Spectral collection The Lucky Bay ISS was measured with two different vis-NIR
instruments:

1. Analytical Spectral Devices (ASD) AgricSpecTM spectroradiometer.
2. Spectral Evolution PSR+ 3500 field portable spectroradiometer.

Both instruments collect high-resolution vis-NIR data and output the data to 1 nm
resolution with spectral range of 350–2500 nm. Ben Dor et al. (2015) suggested a
protocol for collecting the spectra of the ISS material. We followed the protocol for
contact probe measurement. The spectra collected from each instrument are saved
to the file datStand$ISS_subordinates. Figure 10.2 shows the benchmark
spectra (black), with the corresponding spectra collected from the ASD (red) and
Spectral Evolution instruments (blue).

take the data
ISSsubordinates <- datStand$ISS_subordinates

plot the benchmark spectra
plot(wavelength, CSIROs[1,],

type= "l",
ylab="Reflectance",
ylim = c(0.5, 1.2),
xlab = "Wavelength /nm")

add line for ASD instrument
lines(wavelength, ISSsubordinates[1,2:ncol(ISSsubordinates)],

col="red")

add line for Spectral Evolution instrument
lines(wavelength, ISSsubordinates[2,2:ncol(ISSsubordinates)],

col="blue")

10.1 Spectral Transfer Between Instruments Using a Standard Sample 219

add a legend
legend("topleft",

legend = c("Lucky Bay", "ASD", "Spectral Evolution"),
lty = c(1, 1),
col = c("black", "red", "blue"))

500 1000 1500 2000 2500

0.
5

0.
7

0.
9

1.
1

Wavelength /nm

R
ef

le
ct

an
ce

Lucky Bay
ASD
Spectral Evolution

Fig. 10.2 Benchmark Lucky Bay spectra (black), with the corresponding spectra collected from
the ASD (red) and Spectral Evolution (blue) instruments

Spectral alignment Aligning the spectral reading to the benchmark spectra is an
important step. It is based on Pimstein et al. (2011) and described in Ben Dor
et al. (2015). The first step is the estimation of correction factors that will align
the collected spectra with the benchmark spectra. This is done using the following
equation:

cλ = 1 − ((xsub − xref)/xsub), (10.1)

where cλ is the spectral correction factor vector; xsub is the reflectance of the
subordinate reference, or the ISS spectra from the users’ instrument; and xref is
the reflectance of the reference, or the benchmark ISS spectra (Fig. 10.3).

correction factors for ASD instrument
xSub1 <- ISSsubordinates[1,2:ncol(ISSsubordinates)]
ASDcf <- 1- ((xSub1 - CSIROs[1,])/xSub1)

correction factors for Spectral Evolution instrument
xSub2 <- ISSsubordinates[2,2:ncol(ISSsubordinates)]
seCf <- 1- ((xSub2 - CSIROs[1,])/xSub2)

220 10 Spectral Transfer and Transformation

plot correction factors for ASD instrument
plot(wavelength, ASDcf,

type = "l",
ylab = "Correction factor",
xlab = "Wavelength /nm",
col = "red",
ylim = c(0.9,1.3))

plot correction factors for Spectral Evolution instrument
lines(wavelength, seCf,

col = "blue")

add a legend
legend("topleft",

legend = c("ASD", "Spectral Evolution"),
lty = c(1, 1),
col = c("red", "blue"))

500 1000 1500 2000 2500

0.
9

1.
0

1.
1

1.
2

1.
3

Wavelength /nm

C
or

re
ct

io
n

fa
ct

or

ASD
Spectral Evolution

Fig. 10.3 Correction factors for the ASD (red) and Spectral Evolution (blue) instruments

The correction factors are then used to align newly collected spectra from each
instrument to the benchmark using the following equation:

x′
sub = xsub × cλ, (10.2)

where x′
sub is the corrected sample reflectance and xsub is the original sample

reflectance. We can use this equation to align the collected ISS spectra to the
benchmark spectra to assess whether the correction was a success.

10.1 Spectral Transfer Between Instruments Using a Standard Sample 221

align ASD spectra
asd.a <- xSub1 * ASDcf

align Spectral Evolution spectra
se.a <- xSub2 * seCf

difference between benchmark and ASD spectra
sum(abs(CSIROs[1,] - asd.a))

[1] 7.693846e-14

difference between benchmark and Spectra Evolution spectra
sum(abs(CSIROs[1,] - se.a))

[1] 7.072121e-14

Soil spectra Two soil samples were scanned by both instruments. These
are called HVb21 and HVd13. The ASD scanned soils are in the file
datStand$asd.soil, while those measured with the Spectral Evolution
instrument are in datStand$se.soil which we will call asdSoil and
seSoil, respectively (Figs. 10.4 and 10.5).

rename the datasets
asdSoil <- datStand$asd.soil
seSoil <- datStand$se.soil

plot spectrum of first sample scanned by ASD
plot(wavelength, asdSoil[1,2:ncol(asdSoil)],

type = "l",
ylim = c(0, 0.5),
col = "red",
ylab ="Reflectance",
xlab = "Wavelength /nm")

spectral Evolution measured
lines(wavelength, seSoil[1,2:ncol(seSoil)],

col = "blue")

add a legend
legend("topleft",

legend = c("ASD", "Spectral Evolution"),
lty = c(1, 1),
col = c("red", "blue"))

222 10 Spectral Transfer and Transformation

500 1000 1500 2000 2500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Wavelength /nm

R
ef

le
ct

an
ce

ASD
Spectral Evolution

Fig. 10.4 Soil sample HVb21 reflectance spectra scanned by the ASD (red) or Spectral Evolution
(blue) instruments

plot spectrum of first sample scanned by ASD
plot(wavelength, asdSoil[2,2:ncol(asdSoil)],

type = "l",
ylim = c(0, 0.6),
col = "red",
ylab = "Reflectance",
xlab = "Wavelength /nm")

spectral Evolution measured
lines(wavelength, seSoil[2,2:ncol(seSoil)],

col="blue")

add a legend
legend("topleft",

legend = c("ASD", "Spectral Evolution"),
lty = c(1, 1),
col = c("red", "blue"))

10.1 Spectral Transfer Between Instruments Using a Standard Sample 223

500 1000 1500 2000 2500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Wavelength /nm

R
ef

le
ct

an
ce

ASD
Spectral Evolution

Fig. 10.5 Soil sample HVd13 reflectance spectra scanned by the ASD (red) or Spectral Evolution
(blue) instruments

Then we perform the alignments using the correction factors that were derived
for each instrument before (Figs. 10.6 and 10.7).

alignment sample 1 (HVb21)
alignSam1Asd <- asdSoil[1,2:ncol(asdSoil)] * ASDcf
alignSam1Se <- seSoil[1,2:ncol(seSoil)] * seCf

plotting the aligned ASD spectrum
plot(wavelength, alignSam1Asd,

type = "l",
col = "red",
ylim = c(0, 0.5),
ylab = "Reflectance",
xlab = "Wavelength /nm")

adding line for the aligned Spectra Evolution
spectrum

lines(wavelength, alignSam1Se,
col = "blue")

add a legend
legend("topleft",

legend = c("ASD", "Spectral Evolution"),
lty = c(1, 1),
col = c("red", "blue"))

224 10 Spectral Transfer and Transformation

500 1000 1500 2000 2500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Wavelength /nm

R
ef

le
ct

an
ce

ASD
Spectral Evolution

Fig. 10.6 Aligned ASD (red) and Spectral Evolution (blue) spectra for the soil sample HVb21

alignment sample 2 (HVd13)
alignSam2Asd <- asdSoil[2,2:ncol(asdSoil)] * ASDcf
alignSam2Se <- seSoil[2,2:ncol(seSoil)] * seCf

plotting the aligned ASD spectrum
plot(wavelength, alignSam2Asd,

type = "l",
ylim = c(0, 0.6),
col = "red",
ylab = "Reflectance",
xlab = "Wavelength /nm")

adding line for the aligned Spectra Evolution
spectrum

lines(wavelength, alignSam2Se,
col = "blue")

add a legend
legend("topleft",

legend = c("ASD", "Spectral Evolution"),
lty = c(1, 1),
col = c("red", "blue"))

10.2 Direct Standardization 225

500 1000 1500 2000 2500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Wavelength /nm

R
ef

le
ct

an
ce

ASD
Spectral Evolution

Fig. 10.7 Aligned ASD (red) and Spectral Evolution (blue) spectra for the soil sample HVd13

After the correction or alignment is done, one can exchange, compare or share
spectra data with other users who used the exact ISS.

10.2 Direct Standardization

The approach outlined in the previous section used one or several standard samples
for spectra standardization. It mostly corrects for the shift in the reflectance and
does not deal with spectral narrowing or broadening in different instruments. A
more general approach in standardization of spectra is called the multivariate
standardization. The direct standardization (DS) method was developed for this
purpose (Wang et al. 1991) but can also be used to correct for other external factors
influencing the spectra.

In this example, we will illustrate the use of direct standardization by assum-
ing that spectra1snv and spectra0snv come from two different instru-
ments, where spectra0Snv are the spectra from the reference instrument and
spectra1Snv are the spectra from the subordinate instrument which need to be
standardized. Both spectra0snv and spectra1snv are pre-processed spectra
of two sets of spectra found in the datEPO dataset of the soilspec package. In
practice, a small set of samples are scanned in both instruments, while we have a
larger number of samples to standardize. In this example, we assume that 20 samples
have been scanned with both instruments and that the we want to apply the transfer
function to a larger number of samples, which we call subordinateSpec.

226 10 Spectral Transfer and Transformation

load the required packages
require(soilspec)
require(prospectr)

load the EPO dataset from the soilspec package
data("datEPO")

take the data from EPO, as an example between subordinate and reference spectra
spectra0 <- datEPO$spectra0
spectra1 <- datEPO$spectra1

apply Savitzky-Golay filter
spectra0_sg <- savitzkyGolay(spectra0, w = 11, p = 2, m = 0)
spectra1_sg <- savitzkyGolay(spectra1, w = 11, p = 2, m = 0)

resample the spectra
new.wavs <- seq(500, 2450, by = 1)
spectra0_rs <- prospectr::resample(spectra0_sg,

wav = as.numeric(colnames(spectra0_sg)),
new.wav = new.wavs,
interpol = "linear")

spectra1_rs <- prospectr::resample(spectra1_sg,
wav = as.numeric(colnames(spectra1_sg)),
new.wav = new.wavs,
interpol = "linear")

apply a standard normal variate transformation for baseline correction
spectra0Snv <- standardNormalVariate(spectra0_rs)
spectra1Snv <- standardNormalVariate(spectra1_rs)
define the samples scanned in both instruments
referenceSpecSub <- spectra0Snv[1:20,]
subordinateSpecSub <- spectra1Snv[1:20,]

the unstandardized spectra are called subordinateSpec
referenceSpec <- spectra0Snv
subordinateSpec <- spectra1Snv

plot the reference and subordinate spectra used to build the transfer function
matplot(colnames(referenceSpecSub), t(referenceSpecSub),

main = " ",
xlab = "Wavelength /nm",
ylab = "Absorbance",
type = "l",
col = "blue",
lty = 1)

add the subordinate spectra to the plot
matlines(colnames(subordinateSpecSub), t(subordinateSpecSub),

col="pink")

add a legend
legend("topright",

legend = c("reference", "subordinate"),
lty = c(1, 1),
col = c("blue", "pink"))

10.2 Direct Standardization 227

500 1000 1500 2000 2500

−1
0

1
2

3
4

5

Wavelength /nm

A
bs

or
ba

nc
e

reference
subordinate

Fig. 10.8 Reference and subordinate spectra used to build the transfer function

Figure 10.8 shows that spectra from the subordinate instrument have a higher
reflectance in the region between 1200 and 1500 nm and between 1850 and 2100 nm.

The basis of the direct standardization transformation is based on a simple matrix
operation. We can write the subordinate soil spectra Xsub (spectra1Snv) as a
function of the reference instrument spectra Xref (spectra0Snv):

Xref = XsubP + e, (10.3)

where e is an independent error vector and P is a transformation matrix, which can
be obtained by taking the generalized inverse of Xsub:

P = Xg

subXref, (10.4)

where Xg

sub is the generalized inverse of Xsub. We can implement it in R using
the following lines. The function takes as argument Xs which is the subordinate
spectra and Xm which is the reference spectra. The function output is the matrix
transformation P.

define the DS function
DS <- function(reference, subordinate){

load the required package
library(MASS)

subordinateI is the generalized inverse of spectra
Xs

subordinateI = ginv(subordinate)

228 10 Spectral Transfer and Transformation

T is the transformation matrix from Xs to Xm
P = subordinateI%*%reference
return(P)

}

We can now apply the DS function to the datasets.

P <- DS(reference = referenceSpecSub, subordinate = subordinateSpecSub)

Matrix P, denoted P, is the transfer matrix. The next step is to transfer the
subordinate spectra so it is equivalent to the reference spectra. We do so by applying
a matrix multiplication between the subordinate spectra and P.

Dspec <- as.matrix(subordinateSpec) %*% P

We can now visualize the spectra from the subordinate device corrected by the
reference instrument using the matrix P.

plot the reference and standardized subordinate spectra via DS
matplot(colnames(referenceSpec), t(referenceSpec),

xlab = "Wavelength /nm",
ylab = "Absorbance",
type = "l",
col = "blue",
lty = 1)

add the corrected subordinate spectra to the plot
matlines(colnames(Dspec), t(Dspec), col = "red")

add a legend
legend("topright",

legend = c("reference", "corrected subordinate"),
lty = c(1, 1),
col = c("blue", "red"))

500 1000 1500 2000 2500

−1
0

1
2

3
4

5
6

Wavelength /nm

A
bs

or
ba

nc
e

reference
corrected subordinate

Fig. 10.9 Spectra from the reference (blue) and corrected spectra (red) from the subordinate
instrument

10.3 Piecewise Direct Standardization 229

A visual assessment of Fig. 10.9 shows that the transformed spectra mimic the
spectra from the reference instrument.

The DS approach is a simple method to transfer spectra between instruments;
however, the transformation matrix P is often an over-determined system, which
means that the number of parameters is larger than the number of observations. In
this example, the size of matrix P is 1951 where we only have 20 observations,
i.e. 20 × 1951 values. This also means that to transform a spectrum at a particular
wavelength, the information of the whole spectrum is used. In the next section, the
piecewise direct standardization is used to perform a local transformation, where
only the information from a local window is used to transform the spectrum at a
particular wavelength.

10.3 Piecewise Direct Standardization

Piecewise direct standardization (PDS) tackles the over-determined system of
the direct standardization transformation, i.e. the transformation matrix in direct
standardization uses the whole spectrum to standardize a particular wavelength.
PDS, proposed by Wang et al. (1991), makes the transformation of the value at
a particular wavelength using only its neighbouring values defined by a moving
window on the spectrum, which restricts P to be a banded matrix.

PDS only calculates transformation coefficients along the diagonal of P. For
example, for wavelength i, a transfer function is determined by linear regression
using the neighbouring values as independent variables in the model. In other
words, the transfer function relates reflectance or absorbance of spectra from the
subordinate instrument at wavelength i, xref,i with reflectance values of spectra
from reference instrument surrounding i with window size w, Xsub,i : (xi −
w, . . . , xi, . . . , xi + w):

xref,i = Xsub,ibi + a + e, (10.5)

where bi is the vector of linear regression coefficients at wavelength i and a is the
intercept of the model. The linear model is fitted for each wavelength separately,
and coefficients b are stored in matrix P:

P = diag(bT
1 , bT

2 , . . . , bT
i , . . . , bT

b), (10.6)

where b is the number of wavelengths in the spectra. Elements of most of the off-
diagonal elements are set to zero. To calculate the standardized subordinate spectra
X̃sub, we can use a matrix operation:

X̃sub = XsubP. (10.7)

230 10 Spectral Transfer and Transformation

Since an intercept is also calculated to account for bias of the spectra, the intercept
needs to be applied to each of the transformed spectra x̃sub:

x̃T
sub = x̃sub + aT , (10.8)

where x̃T
sub is the bias-adjusted PDS transformed spectrum and a is the vector of

intercept values.
The PDS function can be scripted as follows (courtesy of Guillaume Hans,

FPInnovations, Canada).

define the PDS function
PDS <- function(reference, subordinate, ws, ncomp){

load the required package
require(pls)

define the variables
nc <- ncol(reference)
windowSize <- (ws -1)/2
k <- windowSize-1

create an empty Transformation matrix P and Intercep matrix
P <- matrix(0, nrow = nc, ncol = nc-(2*windowSize)+2)
Intercep <- matrix(0, nrow = nc, ncol = 1)
np <- windowSize*2 # no parameters of PLSR
loop <- windowSize:(nc-k)

for(i in loop){

#PLS regression:
pls.mod <- plsr(reference[,i] ~ as.matrix(subordinate[,(i-k):(i+k)]), ncomp)

#extract PLSR coefficients
coefPLS <- as.numeric(coef(pls.mod, ncomp, intercept = TRUE))

Save intercept
Intercep[i] <- coefPLS[1]

Save coefficients to matrix P
P[(i-k):(i+k), i-k] <- t(coefPLS[2:np])

}

account for the edges by adding 0 values
P <- data.frame(matrix(0,nrow = ncol(reference), ncol = k), P,

matrix(0, nrow = ncol(reference), ncol = k))

colnames(P) <- colnames(reference)
PDSpar <-list(P = P, Intercep = Intercep)

return(PDSpar)
}

The PDS function takes as argument the spectra from subordinate and reference
instruments, the window size (must be an odd number) and the number of
components. A partial least square (PLS) model (see Sect. 9.2) is used to relate the
spectrum at wavelength i of the subordinate instrument to the bands of the reference
instrument, for a given window size.

10.3 Piecewise Direct Standardization 231

The following shows how the PDS is applied to the example we described
previously, using referenceSpecSub and subordinateSpecSub spectra
presented in Fig. 10.8:

define the window size (must be odd number)
##note that here the spectra is resampled at every 5nm
so that a window size of 3 is equal to 15nm
ws = 3

apply the PDS function
PDSpar <- PDS(reference = referenceSpecSub,

subordinate = subordinateSpecSub,
ws,
ncomp = 1)

The PDSpar variable contains the matrix P and matrix with a single column con-
taining the intercept values of the PLS model. We can now apply Equations (10.7)
and (10.8) to the subordinate spectra.

multiply spectra with transformation matrix
tSpec <- subordinateSpec %*% as.matrix(PDSpar$P)

add to each row the intercept values
for (i in 1:nrow(tSpec)){
tSpec[i,] <- tSpec[i,] + as.numeric(t(PDSpar$Intercep))
}

The corrected subordinate spectra can then be plotted.

plot the reference and subordinate spectra
matplot(as.numeric(colnames(referenceSpec)), t(referenceSpec),

col = "blue",
lty = 1,
xlab = "Wavelength /nm",
ylab = "Absorbance",
type = "l")

add the corrected subordinate to the plot
matlines(as.numeric(colnames(tSpec)), t(tSpec),

col = "red")

add a legend
legend("topright",

legend = c("reference", "corrected subordinate"),
lty = c(1, 1),
col = c("blue", "red"))

232 10 Spectral Transfer and Transformation

500 1000 1500 2000 2500

−1
0

1
2

3
4

5
6

Wavelength /nm

A
bs

or
ba

nc
e

reference
corrected subordinate

Fig. 10.10 Reference (blue) and corrected (red) subordinate spectra. The corrected spectra in red
has been corrected using piecewise direct standardization

Figure 10.10 shows both the spectra from the reference instrument and the
corrected by PDS spectra from the subordinate instrument. Note that the edges
should be removed because of the application of a moving window operation to
the spectra. The use of a moving window on the spectra is discussed previously in
Chap. 5.

10.4 Removing External Effects, such as Soil Moisture (EPO)

Spectra in the infrared range are sensitive to external environmental conditions,
such as soil moisture. The absorbance spectrum of a soil increases with increasing
moisture content. In the laboratory, soil is usually scanned under standard air-dried
conditions, but in the field it is difficult to control the water content. Although
many studies have successfully used spectra collected in field conditions to calibrate
against measured soil properties (e.g. SOC), the variation of soil moisture content
can really have an important impact on the prediction of soil properties.

This section presents the external parameter orthogonalization (EPO) method
to remove the moisture effect from the spectral calibration. The EPO algorithm
projects all soil spectra orthogonal to the space of unwanted variation (i.e. moisture),
and thus the variations due to soil moisture can be effectively removed.

10.4 Removing External Effects, such as Soil Moisture (EPO) 233

load the required packages
require(prospectr)
require(soilspec)

load the package data
data("datsoilspc")

convert reflectance to absorbance
spectraA <- log(1/datsoilspc$spc)

embed the soil property and the spectra in one single table
datsoilspc$spcA <- spectraA

apply a Savitzky-Golay filter
datsoilspc$spcASg <- savitzkyGolay(datsoilspc$spcA, w = 11, p = 2, m = 0)

apply some smoothing to the spectra
old.wavs <- as.numeric(colnames(datsoilspc$spcASg))
new.wavs <- seq(500, 2450, by = 5)
datsoilspc$spcARs <- prospectr::resample(datsoilspc$spcASg,

wav = old.wavs,
new.wav = new.wavs,
interpol = "linear")

apply a standard normal variate transformation for baseline correction
datsoilspc$spcASnv <- standardNormalVariate(datsoilspc$spcARs)

In this example, from Minasny et al. (2011), we have 100 soil samples (a subset
of the larger dataset) under 3 different moisture conditions. So we have three sets of
spectra data with different moisture contents.

• spectra0 is absorbance spectra for soil under air-dried condition (average
moisture 5%).

• spectra1 is absorbance spectra for soil after being wetted (average moisture
12%).

• spectra2 is absorbance spectra for wetted soil after being air-dried for 1 day
(average moisture 9%).

They are comprised in the dataset called datEPO from the book package
soilspec. Let us first load the data and rename the objects.

import the data
data("datEPO")

show names
names(datEPO)

[1] "soilC" "spectra0" "spectra1" "spectra2"

234 10 Spectral Transfer and Transformation

extract the objects from datEPO
soilC <- datEPO$soilC
spectra0 <- datEPO$spectra0
spectra1 <- datEPO$spectra1
spectra2 <- datEPO$spectra2

We can apply some pre-processing to the spectra the same way as for the
datsoilspc spectra.

apply Savitzky-Golay filter
spectra0_sg <- savitzkyGolay(spectra0, w = 11, p = 2, m = 0)
spectra1_sg <- savitzkyGolay(spectra1, w = 11, p = 2, m = 0)
spectra2_sg <- savitzkyGolay(spectra2, w = 11, p = 2, m = 0)

make some preprocessing to the spectra
spectra0_rs <- prospectr::resample(spectra0_sg,

wav = old.wavs,
new.wav = new.wavs,
interpol = "linear")

spectra1_rs <- prospectr::resample(spectra1_sg,
wav = old.wavs,
new.wav = new.wavs,
interpol = "linear")

spectra2_rs <- prospectr::resample(spectra2_sg,
wav = old.wavs,
new.wav = new.wavs,
interpol = "linear")

apply a standard normal variate transformation for baseline correction
spectra0Snv <- standardNormalVariate(spectra0_rs)
spectra1Snv <- standardNormalVariate(spectra1_rs)
spectra2Snv <- standardNormalVariate(spectra2_rs)

As an example, we can see the spectra for sample 1 under three (spectra0Snv,
spectra1Snv and spectra2Snv) different moisture conditions.

plot the spectra0
plot(colnames(spectra0Snv), spectra0Snv[1,],

type = "l",
xlab = "Wavelength /nm",
ylab = "Absorbance",
col = "blue")

add line for spectra2
lines(colnames(spectra2Snv), spectra2Snv[1,],

col = "red")

add line for spectra1
lines(colnames(spectra1Snv), spectra1Snv[1,],

col = "green")

add a legend
legend("topright",

legend = c("average moisture 5%", "average moisture 9%", "average moisture 12%"),
col = c("blue","red" ,"green"),
lty = 1,
cex = 1)

10.4 Removing External Effects, such as Soil Moisture (EPO) 235

500 1000 1500 2000 2500

−1
0

1
2

3
4

Wavelength /nm

A
bs

or
ba

nc
e

average moisture 5%
average moisture 9%
average moisture 12%

Fig. 10.11 Three example spectra scanned with different levels of soil moisture for low (5%, blue
line), moderate (9%, red line) and high (12%, green line) soil moisture content

Figure 10.11 shows the influence of moisture content on the spectra.
Usually, one makes a model based on the library (of dried samples) and then uses

the model built from the library to predict soil properties from spectra collected in
the field (with varying moisture content). We now want to investigate the effect of
moisture content on the prediction. Note the moisture bands at wavelengths around
1400 and 1900 nm (Fig. 10.12).

load required package
require(Cubist)

compute the integer number corresponding to the 25% of the samples
nsamples2select <- round(x = nrow(datsoilspc$spcASnv) * 0.75, digits = 0)

separate between calibration and validation
isrow <- sample(1:nrow(datsoilspc$spcASnv), size = nsamples2select)

datsoilspcC <- datsoilspc[isrow,]
datsoilspcV <- datsoilspc[-isrow,]

generate a Cubist model
soilcCubistModel <- cubist(x = datsoilspcC$spcASnv, y = datsoilspcC$TotalCarbon)

predict on the calibration dataset
soilvCubistPred <- predict(soilcCubistModel, datsoilspcV$spcASnv)

plot the predicted calibration data
plot(datsoilspcV$TotalCarbon, soilvCubistPred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

236 10 Spectral Transfer and Transformation

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

Fig. 10.12 Scatterplot of observed against predicted values of total carbon. Predictions are made
by the cubist model on the calibration dataset for the example

We evaluate the prediction using the eval function from the book-associated
soilspec package.

soilspec::eval(datsoilspcV$TotalCarbon, soilvCubistPred, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 -0.09 0.56 0.86 0.85 0.91 2.6 2.12

predict the values from spectra at different moisture content
soilvCubistPredDry <- predict(soilcCubistModel, spectra0Snv)
soilvCubistPredWet <- predict(soilcCubistModel, spectra1Snv)
soilvCubistPredWet2 <- predict(soilcCubistModel, spectra2Snv)

par(mfrow = c(1, 3))

plot the prediction on low soil moisture content spectra
plot(soilC$TotalC, soilvCubistPredDry,

xlab = "Observed",
ylab = "Predicted",
main = "Moisture = 5%",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

plot the prediction on moderate soil moisture content spectra
plot(soilC$TotalC, soilvCubistPredWet2,

xlab = "Observed",
ylab = "Predicted",
main = "Moisture = 9%",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

10.4 Removing External Effects, such as Soil Moisture (EPO) 237

abline(0, 1)

plot the prediction on high soil moisture content spectra
plot(soilC$TotalC, soilvCubistPredWet,

xlab = "Observed",
ylab = "Predicted",
main = "Moisture = 12%",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Moisture = 5%

Observed

P
re

di
ct

ed

0 2 4 6 8 10 12

0
2

4
6

8
10

12
Moisture = 9%

Observed

P
re

di
ct

ed

0 2 4 6 8 10 12
0

2
4

6
8

10
12

Moisture = 12%

Observed

P
re

di
ct

ed

Fig. 10.13 Scatterplot of predicted against observed values of total carbon. Predictions are made
using a cubist model on three varying levels of soil moisture from low (left) to high (right) soil
moisture content

We also derive the accuracy measures (Sect. 9.1) between predicted and observed
values of total carbon for the three datasets with varying levels of moisture.

print accuracy measures for the three predictions
soilspec::eval(soilC$TotalC, soilvCubistPredDry, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 -0.25 0.79 0.79 0.84 0.91 2.54 1.62

soilspec::eval(soilC$TotalC, soilvCubistPredWet2, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.31 1.08 0.64 0.71 0.84 1.86 1.18

soilspec::eval(soilC$TotalC, soilvCubistPredWet, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 1.81 2.61 0.14 -0.72 0.16 0.77 0.49

Figure 10.13 and the accuracy measures show that the prediction on the dry
samples are accurate, whereas C content is underpredicted when the soil sample
contains more moisture.

238 10 Spectral Transfer and Transformation

External Parameter Orthogonalization (EPO) An algorithm can be used to
remove the ‘unwanted’ (external parameter influence) signal from the spectra. EPO
(external parameter orthogonalization), developed by Roger et al. (2003), finds
the areas in the spectra affected by external conditions (such as moisture) and
projects the spectra orthogonal to this variation so that the unwanted components
can be removed. This analysis is analogous to principal component analysis (PCA,
Chap. 6), where the orthogonalization takes into account the variability which due
to an external factor (i.e. moisture). The algorithm was developed by Roger et al.
(2003) to remove the effect of temperature from the spectra for the prediction of
measurement of the sugar content of fruit.

In EPO, it is assumed that the information contained in a spectrum can be
decomposed into three components. The first component is the useful chemical
spectral responses (also called spectra chromophores); the second component of
the spectrum is caused by external factors independent of the first part. The last
component is a residual.

In matrix form, the spectra X (size n × b) can be written as:

X = XP + XQ + R, (10.9)

where P is the projection matrix (size b × b) of the useful part of the spectra, X̃ =
XP; Q is the projection matrix (size b × m) of the unwanted (i.e. influenced by
moisture) part of the spectra, XT = XQ; and R is the residual matrix of size n × b.

The aim of EPO is to obtain the useful part of the spectra:

X̃ = X(I − Q), (10.10)

while matrix Q is written as Q = GGT . Matrix G is the uninformative part
of the spectra that is orthogonal to the useful part of the spectra; Roger et al.
(2003) suggested using the principal component of the difference spectra D as an
approximation.

Here, we define D as the difference between the moist and air-dried (standard)
conditions. In this example, we calculate D as the difference in spectra in the moist
conditions (average w = 12%) and spectra at air-dried condition.

difference matrix (spectra difference between wet and dry)
D = as.matrix(spectra0Snv - spectra1Snv)

The next step is to apply a PCA on D to extract the variation subspace. We do
this by defining the EPO function in R, following Roger et al. (2003), and with
two arguments. The first argument, npc, is the number of components to use. The
second argument D is the difference matrix. The epo() function estimates Q by
using a principal component analysis on DT D via a singular value decomposition
(SVD) to obtain USVT , where U is an upper triangular matrix of size n × n, S is a
diagonal matrix of size n × b and V is a matrix of size b × b. See Wall et al. (2003)
for the relationship between PCA and SVD.

10.4 Removing External Effects, such as Soil Moisture (EPO) 239

We need to define the number of factors npc to be used in EPO. This allows us
to estimate Q (the uninformative part of the spectra) from the PC subset. Thus we
can calculate the projection matrix as P = I − Q.

The function epo() requires D and npc and returns P, that is, the projection
matrix.

define the EPO function
epo <- function(D, npc){

npc is the number of components to use
return: P: the projection matrix
D <- as.matrix(D)
n <- nrow(D)
p <- ncol(D)

dtd <- t(D) %*% (D)
singular value decomposition of the D(n x n)matrix
s <- svd(dtd)
extract the no. factors
ld <- s$v[, 1:npc]
projection matrix
P <- diag(p) - ld %*% t(ld)

return(P)
}

In this example, we decide to use three principal components. More information
on how to select an optimal number of PC is provided in the next section.

define number of principal components
npc <- 3

Using the epo() function, one can now obtain the projection matrix P.

compute the projection matrix P:
P <- epo(D, npc)

The projection matrix P is visualized by the function myImagePlot of the
book-associated soilspec package, which needs to be loaded first.

load required package
require(soilspec)

plot the projection matrix P
myImagePlot(P,

zlim = c(-0.1,0.1))

240 10 Spectral Transfer and Transformation

1 21 44 67 90 116 145 174 203 232 261 290 319 348 377

391
379
367
355
343
331
319
307
295
283
271
259
247
235
223
211
199
187
175
163
151
139
127
115
103
91
79
67
55
43
31
19

7

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Fig. 10.14 Projection matrix computed using three components. The axes are the indices of the
wavelength

The projection matrix displayed in Fig. 10.14 shows the wavelengths affected by
moisture or external conditions. The areas with large positive or negative values
indicate spectra regions that are going to be transformed. This corresponds to
the parts of the spectra affected by moisture. The transformed spectra where the
unwanted features have been removed are called Z: Z = XP. These transformed
spectra are not affected by moisture and can be used in modelling.

We use matrix P to project the spectra.

EPO projected spectra of spec0
Z0 <- as.matrix(spectra0Snv) %*% P
colnames(Z0) <- colnames(spectra0Snv)

EPO projected spectra of spec1
Z1 <- as.matrix(spectra1Snv) %*% P
colnames(Z1) <- colnames(spectra1Snv)

EPO projected spectra of spec2
Z2 <- as.matrix(spectra2Snv) %*% P
colnames(Z2) <- colnames(spectra2Snv)

10.4 Removing External Effects, such as Soil Moisture (EPO) 241

If we plot the EPO transformed spectra Z, taking the spectrum of the first soil
sample as example, it gives:

plot corrected spectra0
plot(colnames(spectra0Snv), Z0[1,],

type = "l",
xlab = "Wavelength /nm",
ylab = "Absorbance",
col = "blue")

add line for corrected spectra2
lines(colnames(spectra2Snv), Z2[1,],

col = "red")

add line for corrected spectra1
lines(colnames(spectra1Snv), Z1[1,],

col = "green")

add a legend
legend("topright",

legend = c("average moisture 5%", "average moisture 9%", "average moisture 12%"),
col = c("blue","red" ,"green"),
lty = 1,
cex = 1)

500 1000 1500 2000 2500

−0
.5

0.
0

0.
5

1.
0

Wavelength /nm

A
bs

or
ba

nc
e

average moisture 5%
average moisture 9%
average moisture 12%

Fig. 10.15 Soil spectra corrected for soil moisture

Figure 10.15 shows that all three spectra are quite similar (they are from the
same soil sample but at different moisture content), as opposed to what we see in
Fig. 10.11. The next step consists in projecting the library spectra into transformed
spectra using the P matrix and calibrating the new spectra to the required soil
properties (Fig. 10.16).

242 10 Spectral Transfer and Transformation

project the whole calibration spectra
specZ <- datsoilspc$spcASnv %*% P
colnames(specZ) <- colnames(datsoilspc$spcASnv)

specZC <- specZ[isrow,]
specZV <- specZ[-isrow,]

make a Cubist model from EPO transformed dry spectra
epoCubistModel <- cubist(x = specZC, y = datsoilspcC$TotalCarbon)

predict on the calibration dataset
soilvCubistPred <- predict(epoCubistModel, specZV)

plot the predicted calibration data
plot(datsoilspcV$TotalCarbon, soilvCubistPred,

xlab = "Observed",
ylab = "Predicted",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Observed

P
re

di
ct

ed

Fig. 10.16 Scatterplot of observed against predicted values of total carbon. Predictions are made
by the cubist model on the calibration dataset for the example

We can evaluate the prediction using the evaluation measures.

soilspec::eval(datsoilspcV$TotalCarbon, soilvCubistPred, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 -0.11 0.62 0.79 0.82 0.89 2.38 1.94

10.4 Removing External Effects, such as Soil Moisture (EPO) 243

predict the values from spectra at different moisture content
soilvCubistPredDry <- predict(epoCubistModel, Z0)
soilvCubistPredWet <- predict(epoCubistModel, Z1)
soilvCubistPredWet2 <- predict(epoCubistModel, Z2)

par(mfrow = c(1, 3))

plot the prediction on low soil moisture content spectra
plot(soilC$TotalC, soilvCubistPredDry,

xlab = "Observed",
ylab = "Predicted",
main = "Moisture = 5%",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

plot the prediction on moderate soil moisture content spectra
plot(soilC$TotalC, soilvCubistPredWet2,

xlab = "Observed",
ylab = "Predicted",
main = "Moisture = 9%",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

plot the prediction on high soil moisture content spectra
plot(soilC$TotalC, soilvCubistPredWet,

xlab = "Observed",
ylab = "Predicted",
main = "Moisture = 12%",
xlim = c(0, 12),
ylim = c(0, 12),
pch = 16)

abline(0, 1)

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Moisture = 5%

Observed

P
re

di
ct

ed

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Moisture = 9%

Observed

P
re

di
ct

ed

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Moisture = 12%

Observed

P
re

di
ct

ed

Fig. 10.17 Scatterplot of predicted against observed values of total carbon. Predictions are made
using a cubist model on three varying levels of soil moisture from low (left) to high (right) soil
moisture content. Spectra are corrected for soil moisture

Figure 10.17 shows the prediction on spectra corrected for moisture, to be
compared to Fig. 10.13.

244 10 Spectral Transfer and Transformation

We also derive the accuracy measures (Sect. 9.1) between predicted and observed
values of the total carbon for the three datasets with varying levels of moisture.

soilspec::eval(soilC$TotalC, soilvCubistPredDry, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.4 0.82 0.64 0.83 0.91 2.43 1.55

soilspec::eval(soilC$TotalC, soilvCubistPredWet2, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 1.29 1.83 0.5 0.15 0.66 1.09 0.69

soilspec::eval(soilC$TotalC, soilvCubistPredWet, obj = "quant")

ME RMSE r2 R2 rhoC RPD RPIQ
1 0.26 1.83 0.23 0.16 0.42 1.09 0.69

The accuracy measures show that removing the effect of moisture remarkably
improves prediction accuracy.

In summary, the steps are:

1. EPO calibration

• Calculate difference spectra D as the difference between moist and dry
spectra.

• Perform a principal component analysis (PCA) on D using the EPO function
by defining c number of factors.

• Obtain the projection matrix P from the epo() function.

2. Model calibration

• Transform the spectra X from a library into the EPO space (Z) which is not
affected by moisture, Z = XP.

• Calibrate a model using the transformed spectra Z to predict a soil property.

3. Model prediction

• Transform the spectrum of an unknown sample x: z = xP.
• Use z in the model to predict a soil property based on a calibrated model.

The only parameter that needs to be chosen in EPO is npc, the number of
dimensions of the principal components, which represents the unwanted part that
needs to be removed. One way of determining npc is by cross-validation of a
calibration model based on the transformed spectra. This means that npc may vary
between different models for soil properties. Another solution is discussed in the
next section using Wilks’ �.

10.4 Removing External Effects, such as Soil Moisture (EPO) 245

Determining number of components based on Wilks’ �

Roger et al. (2003) suggested a simple way of determining the number of com-
ponents npc by calculating how similar the transformed spectra of two or more
moisture content compared to between sample spectra. This can be measured using
a cluster separation metric called Wilks’ �, which is the ratio between inter-group
variance and the total variance (Webster 1971).

In this case, � = tr(B)/tr(T), where tr(.) is the trace, B is the inter-group
variance-covariance matrix of the aggregated transformed spectra (i.e. EPO trans-
formed spectra averaged across all moisture levels) and T is the variance-covariance
matrix of the EPO transformed spectra.

Before EPO transformation, the spectra of a sample at different moisture contents
(intra-sample variation) differ more than the spectra of two different samples (inter-
sample variation). After EPO transformation, different samples should be well
separated in the spectral space (Wijewardane et al. 2016). Wilks’ � = 1 indicates a
perfect separation of samples, while a value of 0 indicates no separation.

The following code calculates Wilks’ � as a function of number of components.
We assign npc = 0 for no transformation (Fig. 10.18).

D = as.matrix(spectra0Snv - spectra1Snv)
SC <- (spectra0Snv + spectra1Snv)/2
B <- cov(SC)
TrB <- sum(diag(B))
T <- cov(spectra1Snv)

nc <- 20
xc <- seq(0:nc)
wilks <- matrix(0, nrow = nc + 1, ncol = 1) # create

no transformation
wilks[1] <- TrB/sum(diag(T))

make a for loop to estimate the Wilks" lambda
for (i in 1:nc) {

npc <- i
P <- epo(D, npc)
Z0 <- as.matrix(spectra0Snv) %*% P
Z1 <- as.matrix(spectra1Snv) %*% P
T <- cov(Z1)

SC <- (Z0+Z1)/2
B <- cov(SC)
TrB <-sum(diag(B))

wilks[i+1] <- TrB/sum(diag(T))
}

246 10 Spectral Transfer and Transformation

plot the Wilks" lambdas against number of component
plot(xc, wilks,

type = "l",
xlab = "Number of components",
ylab = expression(paste("Wilks", ~Lambda)))

5 10 15 20

0.
75

0.
85

0.
95

Number of components

W
ilk

s
Λ

Fig. 10.18 Number of principal components used against values of Wilks’ �

The first maximum of Wilks’ � is at npc = 3. The three components that we
used previously seemed a good choice.

Note that the DS and PDS methods can also be used to correct for other
external factors influencing the spectra such as soil moisture. However, it is not
recommended as the moisture content of soil in the field can be variable and not just
at one moisture content. The DS method was shown efficient to correct for moisture
in paddy soil in the field (which we assume to be always wet) by Ji et al. (2015).

References

Ben Dor E, Ong C, Lau IC (2015) Reflectance measurements of soils in the laboratory: standards
and protocols. Geoderma 245–246:112–124

Ji W, Viscarra-Rossel RA, Shi Z (2015) Accounting for the effects of water and the environment
on proximally sensed vis–NIR soil spectra and their calibrations. Eur J Soil Sci 66:555–565

Minasny B, McBratney AB, Bellon-Maurel V, Roger J-M, Gobrecht A, Ferrand L, Joalland S
(2011) Removing the effect of soil moisture from NIR diffuse reflectance spectra for the
prediction of soil organic carbon. Geoderma 167:118–124

References 247

Pimstein A, Notesco G, Ben-Dor E (2011) Performance of three identical spectrometers in
retrieving soil reflectance under laboratory conditions. Soil Sci Soc Am J 75:746–759

Roger J-M, Chauchard F, Bellon-Maurel V (2003) EPO–PLS external parameter orthogonalisation
of PLS application to temperature-independent measurement of sugar content of intact fruits.
Chemom Intell Lab Syst 66:191–204

Viscarra-Rossel RA, Behrens T, Ben-Dor E, Brown D, Demattê J, Shepherd KD, Shi Z, Stenberg
B, Stevens A, Adamchuk V, others (2016) A global spectral library to characterize the world’s
soil. Earth-Sci Rev 155:198–230

Wall ME, Rechtsteiner A, Rocha LM (2003) Singular value decomposition and principal com-
ponent analysis. In: A practical approach to microarray data analysis. Springer, Boston, pp
91–109

Wang Y, Veltkamp DJ, Kowalski BR (1991) Multivariate instrument standardization. Anal Chem
63:2750–2756

Webster R (1971) Wilks’s criterion: a measure for comparing the value of general purpose soil
classifications. J Soil Sci 22:254–260

Wijewardane NK, Ge Y, Morgan CLS (2016) Moisture insensitive prediction of soil properties
from VNIR reflectance spectra based on external parameter orthogonalization. Geoderma
267:92–101

Willis DE (1972) Internal standard method calculations. Chromatographia 5:42–43

	Foreword
	Preface
	Acknowledgements
	Endorsements
	Contents
	About the Authors
	1 Introduction
	1.1 Spectroscopy in Soil Science
	1.2 Populating a Soil Database
	1.3 Objectives of This Book
	References

	2 Getting Started with R
	2.1 Use of R and RStudio
	2.2 Simple Manipulations
	2.3 Data Structure
	2.4 Programming Tools
	2.5 Plotting
	2.6 Documentation and Help
	References

	3 Materials
	3.1 Datasets
	3.1.1 The Geeves Dataset
	3.1.2 Soil Mineral Reference Spectra
	3.1.3 Soil Spectra and Colour
	3.1.4 Spectra for Standardization
	3.1.5 Spectra with Moisture

	3.2 R Packages
	3.2.1 Soil Science and Pedometrics
	3.2.2 Spectroscopy
	3.2.3 Modelling
	3.2.4 Plotting

	3.3 The soilspec Book Package
	3.3.1 Installing the Package
	3.3.2 Functions
	3.3.3 Datasets

	References

	4 Data Handling of Spectra
	4.1 Importing Data
	4.2 Loading ASD Data
	4.3 Plotting the Spectra
	4.4 Averaging the Replicates
	4.5 Converting Units of Measurement
	4.6 Exporting the Spectra
	References

	5 Pre-processing of Spectra
	5.1 Noise Removal
	5.1.1 Spectral Trimming
	5.1.2 Moving Window Average
	5.1.3 Savitzky-Golay Filtering

	5.2 Scatter Correction
	5.2.1 Standard Normal Variate
	5.2.2 Multiplicative Scatter Correction
	5.2.3 Detrending

	5.3 Derivatives
	5.3.1 First- and Second-Order Derivatives

	5.4 Centring and Standardizing
	5.5 Spectral or Dimension Reduction
	5.5.1 Resampling
	5.5.2 Wavelets

	5.6 Other Specific Transformations
	5.6.1 Splice Correction
	5.6.2 Continuum Removal

	References

	6 Exploratory Soil Spectral Analysis
	6.1 Feature Selection
	6.1.1 Identifying Secondary Clay Minerals and Iron Oxides
	6.1.2 Comparing Soil Spectra with Spectra of Reference Materials

	6.2 Principal Component Analysis
	6.3 Spectral Prediction Domain
	6.4 Soil Colour
	References

	7 Similarity Between Spectra and the Detection of Outliers
	7.1 Similarity/Dissimilarity Measures
	7.1.1 Euclidean Distance
	7.1.2 Mahalanobis Distance
	7.1.3 Correlation Similarity
	7.1.4 Spectral Angle Mapper
	7.1.5 Spectral Information Divergence
	7.1.6 A Practical Example

	7.2 Detecting Outlier Spectra
	7.2.1 Distance from the Average Spectrum
	The Mahalanobis Distance
	H Distance

	7.2.2 Multivariate Outliers

	References

	8 Selection of the Samples for Laboratory Analysis
	8.1 Sampling Design
	8.1.1 Simple Random Sampling
	8.1.2 Kennard-Stone
	8.1.3 K-means Clustering
	8.1.4 Conditioned Latin Hypercube Sampling
	8.1.5 Presence of Outliers in the Data

	8.2 Sample Size
	8.2.1 Assessing the Representativeness of the Sample
	8.2.2 Optimal Sample Size Based on the Spectra

	References

	9 Estimating Soil Properties and Classes from Spectra
	9.1 Goodness of Fit Measures
	9.2 Models for Quantitative Variables
	9.2.1 Principal Component Regression
	9.2.2 Partial Least Squares Regression
	9.2.3 Cubist
	9.2.4 Random Forest
	9.2.5 Memory-Based Learning

	9.3 Models for Categorical Variables
	9.3.1 Partial Least Squares Discriminant Analysis
	9.3.2 Random Forest

	9.4 Soil Spectral Inference Systems
	References

	10 Spectral Transfer and Transformation
	10.1 Spectral Transfer Between Instruments Using a Standard Sample
	10.2 Direct Standardization
	10.3 Piecewise Direct Standardization
	10.4 Removing External Effects, such as Soil Moisture (EPO)
	References

