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Abstract

Fatty Acid Binding-Protein 5 (FABP5) is a 
cytoplasmic protein, which binds long-chain 
fatty acids and other hydrophobic ligands. 
This protein is implicated in several physio-
logical processes including mitochondrial 
β-oxidation and transport of fatty acids, mem-
brane phospholipid synthesis, lipid metabo-
lism, inflammation and pain. In the present 
study, we used molecular docking tools to 
determine the possible interaction of FABP5 
with six selected compounds retrieved form 

Drugbank. Our results showed that FABP5 
binding pocket included 31 polar and non- 
polar amino acids, and these residues may be 
related to phosphorylation, acetylation, ubiq-
uitylation, and mono-methylation. Docking 
results showed that the most energetically 
favorable compounds are NADH (−9.12 kcal/
mol), 5′-O-({[(Phosphonatooxy)phosphinato]
oxy}phosphinato)adenosine (−8.62  kcal/
mol), lutein (−8.25  kcal/mol), (2S)-2-[(4-
{[(2-Amino-4-oxo-1,4,5,6,7,8-hexahydro-6- 
pteridinyl)methyl]amino}benzoyl)amino]
pentanedioate (−7.17  kcal/mol), Pteroyl-L- 
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glutamate (−6.86  kcal/mol) and 
(1S,3R,5E,7Z)-9,10-Secocholesta-5,7,10- 
triene- 1,3,25-triol (−6.79 kcal/mol). Common 
interacting residues of FABP5 with nutraceu-
ticals included SER16, LYS24, LYS34, 
LYS40 and LYS17. Further, we used the 
SwissADME server to determine the physico-
chemical and pharmacokinetic characteristics 
and to predict the ADME parameters of the 
selected nutraceuticals after molecular analy-
sis by docking with the FABP5 protein. 
Amongst all compounds, pteroyl-L-glutamate 
is the only one meeting the Lipinski’s rule of 
five criteria, demonstrating its potential phar-
macological use. Finally, our results also sug-
gest the importance of FABP5  in mediating 
the anti-inflammatory activity of the nutraceu-
tical compounds.

Keywords

FABP5 · Molecular docking · Nutraceuticals · 
ADME · Inflammation

29.1  Introduction

Fatty Acid-Binding Protein 5 is a cytoplasmic 
protein belonging to the family Fatty acid- 
binding proteins (FABPs). These proteins are 
structurally conserved cytosolic proteins with a 
broad specificity for ligands including eico-
sanoids, peroxisome proliferators, bile salts, 
long-chain fatty acids and cannabinoids [11, 26]. 
To date, at least 12 of FABP different genes have 
been identified [33]. FABPs have differential 
expression in different tissues and organs, includ-
ing liver (FABP1), intestine (FABP2), heart (e.g 
FABP3), adipocytes and macrophages (FABP4), 
epidermis (FABP5), Ileum (FABP6) and brain 
(FABP7) among others [14, 22, 33].

FABP5 is also known as psoriasis-associated 
fatty acid-binding protein, epidermal, or cutane-
ous fatty acid-binding protein (PA-, E-, or 
C-FABP), has been shown to be present or 
expressed in several tissues including epidermis, 
nociceptive dorsal root ganglia, spinal cord and 

liver [22]. It is a small protein of 135 amino acids, 
with a structural conformation of ten β-strands 
(β1-β10), two α-helices (α1-α2) and ten loops 
(L1-L10, [6]). FABP5 binds to long-chain fatty 
acids and other hydrophobic ligands such as satu-
rated FAs, MUFAs (monounsaturated FAs), n-3, 
and n-6 PUFAs (polyunsaturated FAs) through its 
binding pocket, which includes ARG109, 
ARG129 and TYR131 [3]. Its main functions 
include fatty acid uptake, transport, and metabo-
lism. Moreover, this protein may modulate the 
actions of the PPAR β/δ (nuclear receptor peroxi-
some proliferator-activated receptor), and pro-
mote cell proliferation, survival and migration by 
exhibiting pro-oncogenic activities in colorectal, 
ovarian, breast and prostate cancers [1, 12, 22, 
29]. Finally, FABP5 has been explored as a 
potential pharmacological target for inflamma-
tion, pain and amelioration of drug withdrawal 
symptoms [4, 17, 34].

Previous computational studies have been 
developed to understand the regulation of FABP5 
and other FABPs by different ligands [24, 31]. 
For example, Yan et al. [31] used a bioinformatic 
approach based on molecular dynamics in com-
bination with molecular mechanics generalized 
Born surface area (MM-GBSA) to determine the 
binding selectivity of three FABP4/FABP5 inhib-
itors with therapeutic potential for arteriosclero-
sis and inflammation [31]. Similarly, Shinoda 
et al. [24] reported the affinity of ten polypheno-
lic ligands for FABP3, FABP4 and FABP5. Using 
computational docking simulations and experi-
mental methods, the potential anti-inflammatory 
and protective effects of FABP ligands in neuro-
degenerative disorders and peripheral ischemic 
injury were explored [24]. Briefly, nutraceuticals 
are naturally occurring compounds present in 
food with possible medical benefits, which 
include amino acids like N-acetylcysteine, carot-
enoids, polyphenols, vitamins, minerals and fatty 
acids [27]. Nutraceuticals have been used to 
improve health and prevent chronic diseases 
including diabetes, cardio and cerebrovascular 
diseases, cancer, and the neuroinflammatory dis-
eases Alzheimer and Parkinson [2, 5, 15, 16, 18, 
20, 21, 25, 28, 32]. At this point, targeting FABP5 
using pharmacological approaches could be a 
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potential way to mitigate inflammation and lipid 
metabolism abnormalities in different diseases. 
Therefore, in the present study, we used molecu-
lar docking tools to explore the possible interac-
tion of FABP5 with six selected nutraceutical 
compounds. Identification of the residues impor-
tant for this interaction could pave the way for 
drug design against lipid dysfunction and neuro-
inflammatory diseases.

29.2  Materials and Methods

29.2.1  Ligand Preparation

A list with a total of 60 naturally occurring 
ligands compounds database (version 5.1.7) was 
retrieved from DrugBank (www.drugbank.ca) in 
SDF format and then converted into.mol using 
Molecular Operating Environment (MOE 
2015.10, Chemical Computing Group). Polar 
hydrogens and charges were added before dock-
ing. The molecular structure of all compounds 
was built using the ligand builder plugin in MOE.

29.2.2  Structure Preparation

The 3D structure of the human protein Fatty acid- 
binding protein 5 (FABP5, entry: 5HZ5) were 
downloaded from Protein Data Bank (https://
www.rcsb.org/). The protein structure was pre-
pared using the “Structure preparation” plugin in 
MOE for protonation and energy minimization, 
the protein-associated ligands were removed, and 
the missing hydrogen atoms were added. To 
determine the protein’s binding pocket we used 
the CASTp server (http://sts.bioe.uic.edu/castp).

29.2.3  Molecular Docking of FABP5 
with Nutraceuticals

For docking, chain A of the FABP5 protein was 
used. Initially we performed a blinded docking to 
determine the possible interaction site of the 
ligands to the FABP5 protein using MOE. Based 
on the interaction energy and best conformations, 

we selected 6 compounds (Fig. 29.1) for a more 
exhaustive study. A second docking analysis was 
carried out, now with exhaustiveness of 100 dif-
ferent poses using the GBVI/WSA dG and 
London dG scores as parameters. The analyzed 
docking parameters were: Root-mean-square 
deviation (RMSD), water accessible surface area 
(ASA), potential energy (E), electrostatic poten-
tial energy (E_ele), electrostatic interaction 
energy (E_rele), van der Waals interaction energy 
(E_rvdw), van der Waals potential energy (E_
vdw), total SCF energy (kcal/mol) calculated 
using the MNDO Hamiltonian (MNDO_E), 
energy of the highest occupied molecular orbital 
(HOMO), energy of the lowest unoccupied 
molecular orbital (LUMO) and radius of gyration 
(rgyr). Validation of docking results were per-
formed by running the same experiment using 
Autock Vina on PyRx.

29.2.4  Studies of Toxicity/ADMET 
of Nutraceutical Compounds

The SwissADME server (http://www.swissadme.
ch/) was used to determine the physicochemical 
and pharmacokinetic characteristics and to pre-
dict the ADME parameters of the selected nutra-
ceuticals after molecular analysis by docking 
with the FABP5 protein.

29.3  Results and Discussion

29.3.1  Binding Pocket of FABP5

The use of molecular docking for screening pos-
sible compounds for drug repurposing has been 
rapidly expanding. In a straightforward manner, 
it generates a great amount of data, making it fea-
sible to identify possible sites and/or domains of 
interaction between ligands and target proteins. 
This makes this approach very useful as to selec-
tion of drug candidates and druggable targets. 
Initially, in the present study, using the CASTp 
server we determined that the FABP5 binding 
pocket included the amino acid residues PHE19, 
TYR22, MET23, LEU26, VAL28, LEU32, 
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MET35, GLY36, ALA39, PRO41, CYS43, 
ILE54, THR56, SER5, LYS61, THR62, GLN64, 
PHE65, GLU75, THR76, THR77, ALA78, 
ASP79, ARG81, GLN98, ILE107, ARG109, 
VAL118, CYS120, ARG129, and TYR131. 
Previous structural studies have shown that 
FABP5 binding pocket for linoleic acid consists 
of ARG129, TYR131 (hydroxyl moiety) and 
ARG109 [3], which is consistent with our results. 
Moreover, our results are also in line with previ-
ous studies reporting that the binding site of both 
FABP4 and 5 is within the β-barrel, containing 
the loops β3–β4 and β5–β6, in combination with 
α1-loop-α2 domain forming a sort of like 
 controlling gate to allow the entrance and exit of 
ligands involved in the interaction [13, 31]. This 
study also described that the residues ARG126, 
ARG106 and TYR128 interact in the barrel’s 
cavity through electrostatic interactions [31]. 
Finally, a recent study using molecular dynamics 

approaches showed the energy contributions of 
key residues such as F19, Y22, M23, P41, T56 
and L60 from K61, R109 and R129 to be  
important in the interaction with studied  
ligands [6].

29.3.2  Molecular Docking 
of Nutraceuticals and FABP5

We started from an initial list of 60 different 
ligands of natural origin obtained from the 
DrugBank database, from which by blinded 
docking we selected a few for a more detailed 
analysis. Interestingly, some of the residues that 
make part of the FABP5 binding pocket are 
directly involved in the interaction with some 
ligands, which suggests that they can interact 
with the protein through their active site. In this 
first approximation, the 10 best binding poses 

Fig. 29.1 Molecular structure of naturally occurring 
compounds. (a) NADH(2-); (b) 5′-O-({[(Phosphonatooxy)
phosphinato]oxy}phosphinato)adenosine; (c) lutein; (d) 
(2S)-2-[(4-{[(2-Amino-4-oxo-1,4,5,6,7,8-hexahydro-6- 

pteridinyl)methyl]amino}benzoyl)amino]pentanedioate; 
(e) Pteroyl-L-glutamate; and (f) (1S,3R,5E,7Z)- 
9,10-Secocholesta-5,7,10-triene-1,3,25- triol
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from each ligand were analyzed, from which we 
selected a total of 6 ligands (Fig. 29.1) that pre-
sented the best interaction energy. After this, we 
performed a more exhaustive docking, now with 
100 different poses and found that NADH (2-) 
(−9.12 kcal/mol) presents the greatest interaction 
energy, followed by 5′-O - ({[(Phosphonatooxy) 
phosphinato] oxy} phosphinato) adenosine 
(−8.62 kcal/mol), lutein (−8.25 kcal/mol), (2S) 
-2  - [(4  - {[(2-Amino-4-oxo-1,4,5, 
6,7,8- hexahydro-6-pteridinyl) methyl] amino} 
benzoyl) amino] pentanedioate (−7.17 kcal/mol), 
Pteroyl-L-glutamate (−6.86  kcal/mol) and (1S, 
3R, 5E, 7Z) -9,10-Secocholesta-5,7,10-triene- 
1,3,25-triol (−6.79  kcal/mol) (Table  29.1). 
Interestingly, lutein, which is a xanthophyll-type 
carotenoid found in leafy vegetables and yellow 
fruits, has been shown to exert neuroprotective 
and anti-inflammatory effects in animal models 
of ocular diseases [23] through the suppression 
of reactive oxygen species (ROS) and inflamma-
tory signaling. Moreover, pteroyl-L-glutamate 
(folic acid) is important in the metabolism of 
amino acids and nucleic acids, and has been used 
as an adjuvant to cytotoxic agents in cancer 
 treatment [10], and in the modulation of inflam-
matory response in microglia [8]. Similarly, 

9,10-Secocholesta-5,7,10-triene-1,3,25-triol (the 
active metabolite of vitamin D-3) has potential 
benefits against carcinogenic cells proliferation, 
and anti-inflammatory effects through the inhibi-
tion of NF-κB signaling, and the suppression of 
prostaglandin metabolism [30]. Finally, both 
NADH and ATP (5′-O  - ({[(Phosphonatooxy) 
phosphinato] oxy} phosphinato) adenosine) have 
shown to be important in the regulation of pro- 
inflammatory cytokines, the inflammatory related 
kinases IKKβ, JNK and ERK and enzymes such 
as Sirt1, Sirt6, PARP-1, ART-1 [7, 19]. These 
newly presented results further support the 
importance of FABP5 in the regulation of inflam-
matory processes. However, further research is 
needed in order to establish the physiological and 
molecular mechanisms of this regulatory 
process.

The FABP5 residues that interact through 
H-bonds with NADH (2-) are GLU21, VAL14, 
ASP15, ASP20, SER16, LYS24, LYS34, ARG33, 
and ionically with LYS34 Y LYS24; through 
H-bonds, 5′-O - ({[((Phosphonatooxy) phosphi-
nato] oxy} phosphinato) adenosine interacts with 
GLY18, SER16, PH19, LYS17, LYS40, SER16, 
ALA39, ARG129, and by ionic bonds with 
LYS17, LYS40, ARG129. For the ligand (2S) -2 - 

Table 29.1 Docking results showing the binding and solvation energies (in kcal/mol) and interacting residues in 
FABP5-nutraceuticals complex

Ligand

Binding 
energy 
(kcal/mol)

Solvation 
energy 
(kcal/mol)

Interacting residues

H-bonds
Ionic

pi-H
NADH(2-) −9.12 −73.18 GLU21, VAL14, ASP15, 

ASP20, SER16, LYS24, 
LYS34, ARG33

LYS34, 
LYS24

5′-O-({[(Phosphonatooxy)phosphinato]
oxy}phosphinato)adenosine

−8.62 −73.76 GLY18, SER16, PH19, 
LYS17, LYS40, SER16, 
ALA39, ARG129

LYS17, 
LYS40, 
ARG129

Lutein −8.25 −49.38 GLU71

(2S)-2-[(4-{[(2-Amino-4-oxo-
1,4,5,6,7,8-hexahydro-6-pteridinyl)
methyl]amino}benzoyl)amino]
pentanedioate

−7.17 −54.8 ASP15, MET38, SER16, 
PHE19, ASP20, LYS17, 
GLY18, LYS34, LYS40

LYS34 SER16

Pteroyl-L-glutamate −6.86 −48.23 ASP15, SER16, PHE19, 
GLY18, LYS34, LYS17

LYS34

(1S,3R,5E,7Z)-9,10-Secocholesta- 
5,7,10-triene-1,3,25-triol

−6.79 −42.28 GLU21, LYS40

1. In bold are sites of post-translational modifications

29 In Silico Identification of Novel Interactions for FABP5 (Fatty Acid-Binding Protein 5…
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[(4  - {[(2-Amino-4-oxo-1,4,5,6,7,8-hexahydro- 
6-pteridinyl) methyl] amino} benzoyl) amino] 
pentanedioate the interaction by H-bonds 
includes the residues ASP15, MET38, SER16, 
PHE19, ASP20, LYS17, GLY18, LYS34, LYS40, 
and by ionic with LYS34 and pi-H with SER16. 
The Pteroyl-L-glutamate forms H-bonds with 
ASP15, SER16, PHE19, GLY18, LYS34, LYS17) 
and ionic with LYS34. Finally, the ligand (1S, 
3R, 5E, 7Z) -9,10-Secocholesta-5,7,10-triene- 
1,3,25-triol forms H-bonds with GLU21 and 
LYS40 (Figs.  29.2, and 29.3 and Table  29.1). 
Binding sites of a ligand onto a protein can induce 
post-translational modifications, potentially 
changing the functionality and conformation of 
protein. Interestingly, some of the residues 
through which the ligands interact with FABP5 
are sites of these modifications, suggesting that in 
addition to binding to them, the selected 
 nutraceuticals can modulate their response 
depending on the type of modification. We found 
that the residue SER16 may be related to phos-
phorylation, while LYS17 (site for acetylation, 

ubiquitylation and succinylation), LYS24 (site 
for ubiquitylation and mono-methylation), 
LYS34 (ubiquitylation) and finally LYS40 
might be implicated in acetylation and ubiquity-
lation (Table 29.1).

Based on a more detailed analysis of the inter-
action of six nutraceuticals with FABP5, we cal-
culated different docking scores (Table  29.2), 
noting that 5′-O - ({[((Phosphonatooxy) phosphi-
nato] oxy} phosphinato) adenosine has a lower 
RMSD with a major electrostatic potential 
energy, van der Waals potential energy and over-
all potential energy (E). For the radius of gyra-
tion, a measure that determines the conformation 
of a protein in terms of its stability and folding, 
we observed that 5′-O  - ({[(Phosphonatooxy) 
phosphinato] oxy} phosphinato) adenosine is the 
one with the lowest value, while lutein shows the 
highest value compared with other ligands. ASA 
of a protein, the parameter that denotes the water 
accessible surface, suggests that lutein followed 
by NADH (2-) are the ones that present the high-
est values when compared to the others.

Fig. 29.2 2D representation of the binding interaction of 
FABP5 with selected nutraceuticals. (a) NADH(2-); (b) 
5′-O-({[(Phosphonatooxy)phosphinato]oxy}phosphi-
nato)adenosine; (c) lutein; (d) (2S)-2-[(4-{[(2-Amino-4- 

oxo-1,4,5,6,7,8-hexahydro-6-pteridinyl)methyl]amino}
benzoyl)amino]pentanedioate; (e) Pteroyl-L-glutamate; 
and (f) (1S,3R,5E,7Z)-9,10-Secocholesta-5,7,10-triene- 
1,3,25- triol
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29.3.3  ADME Properties of All 
Nutraceuticals

ADME serves as a score to determine the ligand’s 
physicochemical and pharmacokinetic character-
istics, being useful to determine whether a drug 
could be considered as a potential therapeutic 
agent. The properties that ADME determines 
include absorption, bioavailability, hepatic metab-
olism, and excretion. According to the Lipinski’s 
rule of five, a potential drug must meet the follow-
ing criteria: no more than 5  h-bond donors, no 
more than 10  h-bond acceptors, a molecular 
weight of less than 500 daltons, a logP not exceed-
ing 5 (high lipophilicity) and molar refractivity 
between 40 and 130. Within the selected ligands, 
only pteroyl-L-glutamate fulfilled the criteria, 
which suggests its potential for pharmacological 
therapy (Table 29.3). Importantly, ADME param-
eters (Absorption, Distribution, Metabolism and 
Excretion) are essential in the discovery phase of 

potential drugs as they increase the success rate in 
the search of novel compounds that can pass to 
clinical phases [9].

29.4  Conclusions

In conclusion, the present study evaluated in silico 
interactions of FABP5 with 6 putative ligands 
with nutraceutical properties. Our results suggest 
that NADH (2-) presents the greatest interaction 
energy, followed by 5′-O - ({[(Phosphonatooxy) 
phosphinato] oxy} phosphinato) adenosine, 
lutein, (2S) -2  - [(4  - {[(2-Amino-4- oxo-1,4,5, 
6,7,8-hexahydro-6-pteridinyl) methyl] amino} 
benzoyl) amino] pentanedioate, pteroyl- L- 
glutamate and (1S, 3R, 5E, 7Z) 
-9,10-Secocholesta-5,7,10-triene-1,3,25-triol. 
We further evaluated the physicochemical and 
pharmacokinetic characteristics of the ligands 
and found that only pteroyl-L-glutamate fulfilled 

Fig. 29.3 3D representation of the binding interacting 
site of FBP5 with nutraceuticals. (a) NADH(2-); (b) 
5′-O-({[(Phosphonatooxy)phosphinato]oxy}phosphi-
nato)adenosine; (c) lutein; (d) (2S)-2-[(4-{[(2-Amino-4- 

oxo-1,4,5,6,7,8-hexahydro-6-pteridinyl)methyl]amino}
benzoyl)amino]pentanedioate; (e) Pteroyl-L-glutamate; 
and (f) (1S,3R,5E,7Z)-9,10-Secocholesta-5,7,10-triene- 
1,3,25- triol
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the Lipinski’s criteria, suggesting its potential 
application for pharmacological uses. However, 
additional computational and experimental vali-
dation studies are needed to establish the in vivo 
and in vitro interactions of FABP5 and its regula-
tory mechanisms against anti-inflammatory 
processes.
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