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Abstract. In big data era, the Web contains a big amount of data,
which is extracted from various sources. Exact query answering on large
amounts of data sources is challenging for two main reasons. First, query-
ing on big data sources is costly and even impossible. Second, due to the
uneven data quality and overlaps of data sources, querying low-quality
sources may return unexpected errors. Thus, it is critical to study approx-
imate query problems on big data by accessing a bounded amount of the
data sources. In this paper, we present an efficient method to select
sources on big data for approximate querying. Our approach proposes
a gain model for source selection by considering sources overlaps and
data quality. Under the proposed model, we formalize the source selec-
tion problem into two optimization problems and prove their hardness.
Due to the NP-hardness of problems, we present two approximate algo-
rithms to solve the problems and devise a bitwise operation strategy
to improve efficiency, along with rigorous theoretical guarantees on their
performance. Experimental results on both real-world and synthetic data
show high efficiency and scalability of our algorithms.

Keywords: Big data · Data quality · Source selection · Query
approximation

1 Introduction

Traditional query processing mainly focuses on efficient computation of exact
answers Q(D) to a query Q in a dataset D. Nowadays, with the dramatic growth
of useful information, dataset can be collected from various sources, i.e., websites,
data markets, and enterprises. In applications with huge amounts of heteroge-
neous and autonomous data sources, exact query answering on big data is not
only infeasible but also unnecessary due to the following reasons.

(1) Query answering is costly, even simple queries that require a single scan
over the entire dataset cannot be answered within an acceptable time bound.
Indeed, a linear-time query processing algorithm may take days on a dataset D
of PB size [1].

(2) Overlaps among data sources are significant. Due to the autonomy of
data sources, data sources are likely to contain overlap information, querying
redundant sources may bring some gain, but with a higher extra cost.
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(3) Data sources are often low-quality. Even for domains such as flight and
stock, which people consider to be highly reliable, a large amount of inconsistency
has been observed in data collected from multiple sources [2], querying low-
quality data sources can even deteriorate the quality of query results.

We next use a real-world example to illustrate these.
We consider the dataset D of all Computer Science books from an online

bookstore aggregator. There are 894 bookstore sources, together providing 1265
Computer Science books. Each of these sources can be viewed as a relation:
Book (ISBN, Name, Author), describing the ISBN, name and author of Book,
and each source identifies a book by its ISBN. Consider the following.

(1) A query Q1 is to find the total number of books in D:
SELECT * FROM Bookstores
It is costly to answer Q1, for not only the number of data sources is large,

but also a data source contains a large volume of data. If we process the sources
in decreasing order of their provide books, and query the total number of books
after adding each new source. We can find that the largest source already pro-
vides 1096 books (86%), and we can obtain all 1265 books after querying 537
sources. In other words, after querying the first 537 sources, the rest of the
sources do not bring any new gain [3].

(2) As another example, consider a query Q2 to find the author lists of the
book with ISBN = 201361205, query Q2 is written as:

SELECT Name FROM Bookstores
WHERE ISBN = 201361205
We observed that D returns 5 different answers for Q2, it shows that sources

may have quality problems and can provide quite different answers for a query.
In fact, in this dataset, each book has 1 to 23 different provided author lists.

These examples show that it is inappropriate to accessing the whole dataset
when querying data from a large number of sources, which motivates us to select
proper data sources before querying. Due to the importance, data source selec-
tion draws attention recently. [3] selects a set of sources for data fusion, and
maximizes the profit by optimizing the gain and cost of integrating sources.
However, it does not consider data self-conflicting and incomplete, and could
hardly scale to big data sources for high time complexity of algorithm. [12] pro-
poses a probabilistic coverage model to evaluate the quality of data and consider
overlaps information. However, this method requires some prior statistics truth
probability of each value, furthermore, this paper adopts a simple greedy method
to solve the problem which is not optimal.

Based on the above discussion, in this paper, given an upper bound on the
amount of data that can be used, we propose efficient source selection methods
for approximate query answering. We propose a gain model for source selection
by measuring the sources according to their coverage, overlaps, quality and cost.
Considering these measures, we formulate the data source selection problem as
two optimization problems from different aspects, both of which are proven to be
NP-hard. Due to the hardness, we present two approximate algorithms to solve
the optimization problems. These algorithms are proved can obtain the best
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possible approximate factor, furthermore, the running time of these methods are
linear or polynomial in source number for the two propose problems, respectively.
To improve the efficiency and scalability, we prestore the coverage information
of each source offline and eliminate overlaps between sources online using bitwise
operation, in this way, we can greatly accelerate the source selection algorithms.

In this paper, we make the following contributions.
First, we propose the gain model for data source selection from big

autonomous data sources. This model take into consideration data quality and
sources overlaps.

Second, under the proposed gain model, We formalize two optimization goals
for source selection, called BNMG and BCMG, respectively. We show these two
problems both are NP-hard.

Third, We present a greedy approximation algorithm for BNMG. We show
that the greedy heuristic algorithm for BCMG has an unbounded approximation
factor, and present a modified greedy algorithm to achieve a constant approx-
imation factor for BCMG. A bitwise operation strategy for our algorithms is
proposed to achieve better performance.

Finally, we conduct experiments on real-life and synthetic data to verify the
effectiveness, efficiency and scalability of our proposed algorithms.

2 Problem Definition

This section first formally defines the basic notions used in the paper, then
formulates the source selection problems, and then analyzes the complexity of
these problems.

2.1 Basic Notions and Quality Metric

Definition 1 (Data source). A dataset D is specified by a relational schema R,
which consists of a collection of relation schemas (R1, · · · , Rm). Each relation
schema Ri is defined over a set of attributes. A dataset consists of a set of
data sources S = {Si|1 ≤ i ≤ m}, where each source Si includes a schema Ri.
We assume that the schemas of sources have been mapped by existing schema
mapping techniques.

Definition 2 (Data item). Consider a data item domain DI. A data item DI ∈
DI represents a particular aspect of a real-world entity in a domain, such as the
name of a book, and each data item should be identified by a key. For each data
item DI ∈ DI, a source Si ∈ S can (but not necessarily) provide a value, and
DIi denotes that a set of data items provided by Si.

Definition 3 (Functional dependency (FD)). An FD ϕ: [A1, · · · , Al] → [B],
where Ai and B are attributes in relational table. The semantic of ϕ is that any
two tuples are equal on the left-hand side attribute of ϕ, they should also be equal
on the right-hand side, otherwise, we say such tuples violate the FD [4].
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Definition 4 (Claim). Let S be a set of sources and C a set of claims, each of
which is triple < S, k, v >, meaning that the source, S, claims a value, v, on a
data item with key, k. Sources often provide claims in the form of tuples.

For example, in Table 1 there are two sources, s1 and s2, providing 3 claim-
tuples. Note that a source can provide conflicting claims for a data item, for
instance, consider data item: ISDN=02013.Name, s1 claims that the name of
ISDN=02013 are Java and C++, respectively. However, only one of the con-
flicting values is true. s2 also miss the value of the author of the book with
ISDN=02014.

Table 1. Claims tuple of books.

Sourceid Tupleid ISDN Name Author

s1 t1 02013 Java Robert

s1 t2 02013 C++ Robert

s2 t3 02014 Analysis of Algorithms

Next, we consider quality metrics. Selecting sources should consider three
sides. First, we wish to select a source that has a high coverage and a low overlap:
such a source would return more answers and contribute more new answers
than another source with the same coverage. Second, the answers returned by a
high-quality source are high reliability. Third, a source with low cost will yield
better performance. We next formally define these measures considered in source
selection.

Definition 5 (Coverage). We define the coverage of source S as the number of
its provided data items, denoted by V (S). Formally,

V (Si) = |DIi|, 1 ≤ i ≤ m (1)

For source set S (a subset of source S), we have

V (S) = ∪Si∈SV (Si) (2)

coverage of the source S reflects the expected number of answers returned by S,
and coverage of the source set S represents the total distinct data items provided
by sources, which has already eliminated the overlap information.

A source may provide self-conflicting or incomplete data, which means that
the source has low reliability, querying low reliability may lead to an unex-
pectedly bad result. Thus, it is non-trivial to select sources according to their
reliability, there can be many different ways to measure source reliability, in this
paper, we measure it as the maximum correct number of claims provided by
source, called the reliability of the source. The reliability of source S is denoted
by R(S).
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In Table 1, s1 claims two different values for the name of book, and no more
than one of these can be correct. The upper bound of correct claims number
provided by source S over key k is

us,k = max
v

(Ns,k,v) (3)

where Ns,k,v is the number of claims provided by S for k with a value v.

Definition 6 (Reliability). The reliability of source S according to the upper
bounds as

R(S) =
∑

k

us,k (4)

For source set S, we have
R(S) =

∑

Si∈S
R(Si) (5)

Collecting sources for querying come with a cost. First, many data sources charge
for their data. Second, collecting and integrating them requires resources and
time.

Definition 7 (Cost). We define the cost of source S as the total number of its
provided claims, denoted by C(S).

C(S) =
∑

k,v

(Ns,k,v) (6)

Similarly, for source set S, we have

C(S) =
∑

Si∈S
C(Si) (7)

Definition 8 (Gain). Now we define the gain model of source selection.

G(S) = αV (S) + (1 − α)R(S) (8)

where α ∈ [0, 1] is a parameter controlling how much coverage and reliability
have to be taken into account.

2.2 Problems

It is impractical to maximize the gain while minimizing the cost. Thus, we define
the following two constrained optimization problems to select sources.

In some scenarios, a query system gives an upper Bound on the Number
of data sources can be accessed, and the optimization goal is to Maximize the
Gain, we call this problem as BNMG.
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Definition 9 (BNMG). Given a source set S and a positive integer K, the
BNMG problem is to find a subset S of S, such that |S| ≤ K, and G(S) is
maximized.

In some scenarios, a query system gives an upper Bound on the Cost as the
constraint, and wishes to obtain the Maximum Gain, we define this problem as
BCMG.

Definition 10 (BCMG). Given a source set S and τc be a budget on cost, the
BCMG problem is to find a subset S of S, such that maximizes G(S) under
C(S) ≤ τc.

2.3 Complexity Results

Theorem 1. The gain function of formulation (8) is non-negative, monotone
and submodular.

Proof. non-negative. Obviously.
monotone. For x ∈ S − S, if G(S ∪ x) ≥ G(S), the gain model is monotone.

αV (S ∪ x) ≥ αV (S), obviously (9)

(1 − α)R(S ∪ x) = (1 − α)R(S) + (1 − α)R(x) ≥ (1 − α)R(S) (10)

According to Eqs. (9) and (10), we get

G(S ∪ x) = αV (S ∪ x) + (1 − α)R(S ∪ x) ≥ αV (S) + (1 − α)R(S) = G(S) (11)

Submodular. For R ⊂ S and x ∈ S−S, if G(S ∪x)−G(S) ≤ G(R∪x)−G(R),
the gain model is submodular.

V (S ∪ x) − V (S) = V (S) + V (x) − V (S ∩ x) − V (S)
= V (x) − V (S ∩ x)

(12)

Similarly,
V (R ∪ x) − V (R) = V (x) − V (R ∩ x) (13)

Since, R ⊂ S, then V (S ∩ x) ≥ V (R ∩ x). Hence

αV (S ∪ x) − αV (S) ≤ αV (R ∪ x) − αV (R) (14)

And

(1 − α)R(S ∪ x) − (1 − α)R(S) = (1 − α)R(S) + (1 − α)R(x) − (1 − α)R(S)
= (1 − α)R(x)

(15)
Similarly, (1 − α)R(R ∪ x) − (1 − α)R(R) = (1 − α)R(x), we have

(1 − α)R(S ∪ x) − (1 − α)R(S) = (1 − α)R(R ∪ x) − (1 − α)R(R) (16)

Combining Eqs. (14) and (16), we get

G(S ∪ x) − G(S) ≤ G(R ∪ x) − G(R) (17)
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Theorem 2. Both BNMG and BCMG are NP-hard problems.

Proof. For a submodular function f , if f only takes non-negative value, and is
monotone. Finding a K-element set S for which f(S) is maximized is an NP-
hard optimization problem [5,6]. For BNMG problem, function f is the gain
model, thus, BNMG is NP-hard.

The BCMG problem is an instance of the Budgeted Maximum Coverage
Problem (BMC) that is proven to be NP-hard [7]. Given an instance of BMC: A
collection of sets S = {S1, S2, · · · , Sm} with associated costs {Ci}mi=1 is defined
over a domain of elements X = {x1, x2, · · · , xn} with associated equivalent-
weights. The goal is to find a collection of sets S ⊆ S, such that the total cost of
elements in S does not exceed a given budget L, and the total weight of elements
covered by S is maximized. BCMG can be captured by the BMC problem in the
following way: 1) the sets in BMC represent the sources in S of BCMG; 2) the
elements in BMC represent the data items in BCMG; 3) the parameter α of the
gain model in BCMG is equal to 1. Since the reduction could be accomplished
in polynomial time, BCMG is an NP-hard problem.

3 Algorithm for Source Selection

Due to the NP-hardness of BNMG and BCMG, in this section, firstly, we devise
a greedy approximation algorithm for BNMG and analyze the complexity and
approximation ratio (Sect. 3.1). Then, we show that a greedy strategy is insuf-
ficient for solving the BCMG problem. Indeed, it can get arbitrary bad results.
Thus, we generate a modified greedy algorithm using the enumeration technique
for BCMG, and demonstrate that such algorithm has the best possible approx-
imation factor (Sect. 3.2). We devise a bitwise operation strategy to accelerate
the running of proposed algorithms (Sect. 3.3).

3.1 Algorithm for BNMG

For a submodular and nondecreasing function f , f satisfies a natural “dimin-
ishing returns” property: The marginal gain from adding a source to a set of
sources S is at least as high as the marginal gain from adding the same source to
a superset of S. Here, the marginal gain (G(S ∪ Si) − G(S) in this algorithm) is
the difference between the gain after and before selecting the new source. Such
problem is well-solved by a simple greedy algorithm, denoted by Greedy (shown
in Algorithm 1), that selects K sources by iteratively picking the source that
provides the largest marginal gain (line 6).
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Algorithm 1. Greedy
Input: S, K
Output: a subset S of S with |S| ≤ K
1: Initialize S ← ∅
2: while |S| < K do
3: for all Si ∈ S do
4: G(S ∪ Si) ← CompGain(S ∪ Si);
5: end for
6: Sopt ← arg maxSi∈S

G(S ∪ Si) − G(S);
7: S ← S ∪ Sopt;
8: S ← S\Sopt;
9: end while

Time Complexity Analysis. The time complexity of Algorithm 1 is determined
by the complexity to compute the gain of (S ∪ Si), this complexity is O(n), n is
the maximal number of data items in Si. Clearly, the complexity of Algorithm1
is O(K ∗n∗m), where K is the number of selected sources, and m is the number
of sources in S.

Theorem 3. Algorithm1 is a (1 − 1/e) − approximation algorithm, where e is
the base of the natural logarithm.

Proof. The greedy algorithm has (1−1/e) approximation ratio for a submodular
and monotone function with a cardinality constraint [6].

3.2 Algorithm for BCMG

The greedy heuristic algorithm that picks at each step a source maximizing the
ratio G(S∪Si)−G(S)

C(Si)
has an unbounded approximation factor. Namely, the worst

case behavior of this algorithm might be very far from the optimal solution. In
Table 2 for example, two sources S1 and S2 are subjected to an FD: key → value.
According to our problem definition, S1 has V (S1) = 1, R(S1) = 1, C(S1) = 1;
S2 has V (S2) = p, R(S2) = p, C(S2) = p+1. Let S = {S1, S2}, α = 0.5, and the
budget of cost τc = p + 1. The optimal solution contains the source S2 and has
gain p, while the solution picked by the greedy heuristic contains the source S1

and has gain 1. The approximation factor of this instance is p, and is therefore
unbounded (since p is not a constant).

Table 2. Two sources for an example
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We modify the greedy heuristic using the enumeration technique, so as to
achieve a constant approximation factor for the BCMG problem. The main idea
is to apply the partial enumeration technique [8] before calling greedy algorithm,
denoted by EnumGreedy (shown in Algorithm2). Let l be a fixed integer. Firstly,
we enumerate all subsets of S of cardinality less than l which have cost at most τc,
and select the subset that has the maximal gain as the candidate solution (line
2). Then, we consider all subsets of S of cardinality l which have cost at most τc,
and we complete each subset to a candidate solution using the greedy heuristic
(line 3–17). The algorithm outputs the candidate solution having the greatest
gain (line 18–22). Time Complexity Analysis. The running time of Algorithm2 is

Algorithm 2. EnumGreedy
Input: S, τc, l
Output: a subset S of S with C(S) ≤ τc
1: Initialize S ← ∅, S ′ ← ∅, S ′′ ← ∅
2: S ′ ← arg maxS′⊆S

{G(S ′)| C(S ′) ≤ τc, |S ′| < l}
3: for all S ′′ ⊆ S, |S ′′| = l, C(S ′′) ≤ τc do
4: S ← S\S ′′

5: for all Si ∈ S do
6: G(S ′′ ∪ Si) ← CompGain(S ′′ ∪ Si);
7: C(Si) ← CompCost(Si);
8: end for
9: Sopt ← arg maxSi

G(S′′∪Si)−G(S′′)
C(Si)

;

10: if C(S ′′) + C(Si) ≤ τc then
11: S ′′ ← S ′′ ∪ Sopt;
12: S ← S\Sopt;
13: end if
14: if G(S ′′) > G(S ′′) then
15: S ′′ ← S ′′;
16: end if
17: end for
18: if G(S ′) > G(S ′′) then
19: S ← S ′;
20: else
21: S ← S ′′;
22: end if

O((n ·m)(l−1)) executions of enumeration and O((n ·m)2l) executions of greedy,
where m is the number of sources, n is the maximal number of data items in Si.
Therefore, for every fixed l, the running time is polynomial in n · m.

Discussion. When l = 1, Algorithm 2 is actually a simple greedy method which
has an unbounded approximation factor as previously mentioned. When l = 2,
Algorithm 2 finds a collection of sources according to the greedy heuristic as the
first candidate for solution. The second candidate is a single set in S for which
gain is maximized. The algorithm outputs the candidate solution having the
maximum gain.
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Theorem 4. For l = 2, Algorithm2 achieves an approximation factor of
1
2 (1 − 1

e ) for the BCMG problem. For l ≥ 3, Algorithm2 achieves a (1 − 1
e )

approximation ratio for the BCMG, and this approximation factor is the best
possible.

Proof. The proof is by generalized the proof of approximation factor for the
BMC problem, presented in [7]. The detail is omitted due to space limitation.

3.3 Improvement for Algorithms

The time complexities of proposed algorithms are determined by the complex-
ity to compute the gain. In fact, the time complexities are dominated by the
computing of coverage since reliability and cost can be computed in constant
time. To reduce the computation time, we transform the process of computing
coverage into building bit vectors and conducting bitwise or operation between
them so that we can compute coverage without accessing original data. We build
a bit vector B(Si) for each Si offline and use them to compute the coverage of
sources online.

Constructing a bit vector for each source in an offline phase. Given S, we
consider all data items of S as bit vector space. For a source Si, we maintain a
bit vector B(Si) = {(b1, b2, · · · , bM )|bi ∈ {0, 1}}, where M is the total number
of data items provided by S, bj equals 1 if Si contains j-th data item of S. The
bit vector building algorithm for each source Si is described in Algorithm 3.

Algorithm 3. Bit Vector Building
Input: S, Σ (FDs set)
Output: {B(Si)|Si ∈ S, 0 ≤ i ≤ m}
1: Initialize B(Si) ← ∅
2: for all Si ∈ S do
3: for all ϕ ∈ Σ do
4: for all Left-hand side Aj of ϕ do
5: if Si contains Aj then
6: bj = 1;
7: else
8: bj = 0;
9: end if

10: Add bj to B(Si);
11: end for
12: end for
13: end for

Then, the coverage of Si is the number of 1 in B(Si), denoted as
B(Si).cardinality.

V (Si) = B(Si).cardinality =
M∑

1

bj (18)
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Computing source coverage online. Given a source set S, the coverage of S
can be easily computed by bitwise or operation:

V (S) = ∪Si∈SV (Si) = (∨Si∈SB(Si)).cardinality (19)

where ∨ is the bitwise or operation.
Time Complexity Analysis. The expected time of Algorithm 3 is O(m ∗ |Σ| ∗

navg), where navg = avg0≤i≤m|Si|. Although the complexity is quite high, such
bit vectors are computed offline. Hence it will not affect the performance of the
algorithm.

We denote the improvement greedy algorithm for BNMG problem which
combines the bit vector operation as BitGreedy, and BitEnumGreedy for BCMG
problem similarly.

4 Experimental Results

In this section, we study the proposed algorithms experimentally. The goals
are to investigate (1) the comparison of performance between Greedy and Bit-
Greedy for BNMG problem, as well as EnumGreedy and BitEnumGreedy for
BCMG problem, and (2) how our algorithms perform in terms of efficiency and
scalability.

4.1 Experiment Setup

We conducted our comparison experiments over a real-world dataset: Book [3].
In addition, to investigate the efficiency and scalability of our algorithm, we eval-
uated the performance of BitGreedy and BitEnumGreedy on synthetic datasets
that yielded more sources and more tuples.

The Book dataset contains 894 data sources. Information on Computer Sci-
ence books was collected from online bookstore aggregator AbeBooks.com, there
are two FDs between the attributes: ISDN → Name and ISDN → Author.

The Synthetic Data is synthetic data sets with various data source number
and data size. We used 10 attributes A1 − A10 and 8 FDs: A1 → A8, A1 → A9,
A1 → A10, A2 → A6, A2 → A7, A3 → A6, A3 → A7, [A4, A5] → A8. Each
data source randomly chose an attribute with 20% probability, and each source
contains at least one of the FDs, and the size of each data source is a random
number in the range of [2000, 10000].

In practical situations, due to the enormous number and volume of sources,
Algorithm 2 needs to consume considerable time even when l = 3 to guarantee
the best approximation ratio. Thus, in this paper, we set l = 2.

In this paper, we focus more on selecting data sources with high coverage,
thus, we set α = 0.9. Users can set different values for α according to their
preferences.

All experiments are implemented in Java and executed on a PC with Win-
dows 7, a 16 GB of RAM and a 3.6 GHz Intel i7-7700U CPU.
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4.2 Comparison

For BNMG problem, we firstly compare the effectiveness of Greedy and Bit-
Greedy with #Bounded Source (K in problem definition) varying from 1 to
10 on Book dataset, shown in Fig. 1(a) and Fig. 1(b), then we vary #Bounded
Source from 10 to 100 on Synthetic Data with #Source = 100, #Tuple = 2000,
shown in Fig. 1(c) and Fig. 1(d).

For BCMG problem, we compare EnumGreedy and BitEnumGreedy with
Bounded cost varying from 5k to 50k on Book dataset and Bounded cost varying
from 5*104 to 5*105 on Synthetic Data, The results are shown in Fig. 1(e)–1(h).

We have the following observations. (1) For BNMG problem, both on real-
world data set and Synthetic data. Greedy and BitGreedy achieve the same
Gain, and with the increase of #Bounded sources, the runtime of Greedy is lin-
ear to #Bounded sources, while the runtime of BitGreedy grows much slowly
with #Bounded and outperforms Greedy significantly. (2) BCMG problem get
a similar result. Whether the data set is Book or Synthetic Data, compare to
EunmGreedy, BitEumGreedy achieves hundreds of speed up while not sacrifice
the Gain. (3) Due to the higher time complexity, the algorithm for BCMG prob-
lem requires much runtime than that of BNMG, it also signifies that algorithm
EnumGreedy, which without improvement strategy, for BCMG problem can not
apply to real-time query systems.

4.3 Efficiency and Scalability

To further test how the number of sources and source size affects efficiency
and scalability, we conduct experiments on synthetic datasets. (1) Fig. 1(i) and
Fig. 1(j) report the runtimes of both algorithms with varying the data size. We
observe that the runtimes of BitGreedy and EnumBitGreedy are very stable, it
shows that the high efficiency and stability of our method when the volume of
data source grows. Figure 1(k) and Fig. 1(l) plot the running time of BitGreedy
and EnumBitGreedy respectively, as we vary the number of data sources from
100 to 1000. These show that the runtimes of both BitGreedy and EnumBit-
Greedy increase nearly linearly. BitGreedy costs 47ms when the source number
reaches 1000, and EnumBitGreedy finishes in 20316ms when the source number
is 1000, showing the great scalability of our methods.

Summary. (1) The sources selected by BitGreedy and BitEnumGreedy are same
as the selections of Greedy and EnumGreedy. (2) The algorithms using bitwise
operation outperform original methods both on efficiency and scalability signif-
icantly. (3) The effectiveness of BitGreedy and BitEnumGreedy are insensitive
to the source size. (4) Our algorithms scale well on both the data size and the
number of sources.

5 Related Work

Source selection [3,9–13] has been recently studied. [3] selects a set of sources for
data fusion, it efficiently estimates fusion accuracy, and maximizes the profit by
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Fig. 1. Experimental results

optimizing the gain and cost of integrating sources. However, it does not consider
data self-conflicting and incomplete, and could hardly scale to big data sources.
[9] studies online ordering sources by estimating overlaps of sources, but this
method requires some prior statistics and neglects data quality. [10] only takes
freshness as quality metric without a comprehensive consideration for the quality
of data sources such as functional dependency, completeness and the required
resources. [11] focuses on finding sources relevant to a given query and does not
take overlap into consideration. [12] proposes a probabilistic coverage model to
evaluate the quality of data and consider overlaps information. However, this
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method requires some prior statistics truth probability of each value, further-
more, this paper adopts a simple greedy method to solve the problem which is
not optimal. [13] selects sources for data inconsistency detection and does not
take quality and cost into consideration.

Fan et al. [1,14–18] proposed a series of work with respect to approximate
query processing with bounded resources, which can answer a specific class of
queries by accessing only a subset of the whole dataset with a bounded number
of tuples. Unlike our study, these works access a portion of data from each data
source instead of selecting sources by considering their coverage, overlap and
quality.

6 Conclusion

This paper studies source selection problem for query approximation taking
efficiency and effectiveness into consideration. We first propose a gain model
to evaluate the coverage, reliability and cost of data source and we formulate
source selection problem to two problems, which are both proven to be NP-
hard. Then we develop a greedy algorithm for bounded source number problem
and a modified greedy for bounded cost problem and show their approximations,
both algorithms come with rigorous theoretical guarantees on their performance.
Finally, we propose an efficient bitwise operation strategy to further improve effi-
ciency. Experimental results on both the real-world and synthetic datasets show
our methods can select sources efficiently and can scale to datasets with up to
thousands of data sources.
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