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Abstract. We study the facility location games with candidate loca-
tions from a mechanism design perspective. Suppose there are n agents
located in a metric space whose locations are their private informa-
tion, and a group of candidate locations for building facilities. The
authority plans to build some homogeneous facilities among these can-
didates to serve the agents, who bears a cost equal to the distance
to the closest facility. The goal is to design mechanisms for minimiz-
ing the total/maximum cost among the agents. For the single-facility
problem under the maximum-cost objective, we give a deterministic 3-
approximation group strategy-proof mechanism, and prove that no deter-
ministic (or randomized) strategy-proof mechanism can have an approx-
imation ratio better than 3 (or 2). For the two-facility problem on a
line, we give an anonymous deterministic group strategy-proof mecha-
nism that is (2n − 3)-approximation for the total-cost objective, and 3-
approximation for the maximum-cost objective. We also provide (asymp-
totically) tight lower bounds on the approximation ratio.

Keywords: Facility location · Social choice · Mechanism design.

1 Introduction

We consider a well-studied facility location problem of deciding where some pub-
lic facilities should be built to serve a population of agents with their locations
as private information. For example, a government needs to decide the locations
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of public supermarkets or hospitals. It is often modeled in a metric space or a
network, where there are some agents (customers or citizens) who may bene-
fit by misreporting their locations. This manipulation can be problematic for
a decision maker to find a system optimal solution, and leads to the mecha-
nism design problem of providing (approximately) optimal solutions while also
being strategy-proof (SP), i.e., no agent can be better off by misreporting their
locations, regardless of what others report.

This setup, where the agents are located in a network that is represented
as a contiguous graph, is initially studied by Schummer and Vohra [18], and
has many applications (e.g., traffic network). Alon et al. [1] give an example
of telecommunications networks such as a local computer network or the Inter-
net. In these cases, the agents are the network users or service providers, and
the facility can be a filesharing server or a router. Interestingly, in computer
networks, an agent’s perceived network location can be easily manipulated, for
example, by generating a false IP address or rerouting incoming and outgoing
communication, etc. This explains the incentive of agents for misreporting, and
thus a strategy-proof mechanism is necessary.

In the classic model [12,17], all points in the metric space or the network
are feasible for building facilities. However, this is often impractical in many
applications. For example, due to land use restrictions, the facilities can only be
built in some feasible regions, while other lands are urban green space, residential
buildings and office buildings, etc. Therefore, we assume that there is a set
of candidate locations, and study the facility location games with candidate
locations in this paper.

We notice that our setting somewhat coincides a metric social choice problem
[8], where the voters (agents) have their preferences over the candidates, and all
participants are located in a metric space, represented as a point. The voters
prefer candidates that are closer to them to the ones that are further away.
The goal is to choose a candidate as a winner, such that the total distance to
all voters is as small as possible. When the voters are required to report their
locations, this problem is the same with the facility location game with candidate
locations.

Our setting is sometimes referred to as the “constrained facility location”
problems [20], as the feasible locations for facilities are constrained. Sui and
Boutilier [20] provide possibility and impossibility results with respect to (addi-
tive) approximate individual and group strategy-proofness, whereas do not con-
sider the approximation ratios for system objectives.

Our Results
In this paper we study the problem of locating one or two facilities in a metric
space, where there are n agents and a set of feasible locations for building the
facilities. For the single-facility problem, we consider the objective of minimizing
the maximum cost among the agents, while the social-cost (i.e., the total cost
of agents) objective has been well studied in [8] as a voting process. We present
a mechanism that deterministically selects the closest candidate location to an
arbitrary dictator agent, and prove that it is group strategy-proof (GSP, no group
of agents being better off by misreporting) and 3-approximation. In particular,
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when the space is a line, the mechanism that selects the closest candidate location
to the leftmost agent is additionally anonymous, that is, the outcome is the same
for all permutations of the agents’ locations on the line. We provide a lower bound
3 for deterministic SP mechanisms, and 2 for randomized SP mechanisms; both
lower bounds hold even on a line.

For the two-facility problem on a line, we present an anonymous GSP mech-
anism that deterministically selects two candidates closest to the leftmost and
rightmost agents, respectively. It is (2n − 3)-approximation for the social-cost
objective, and 3-approximation for the maximum-cost objective. On the nega-
tive side, we prove that, for the maximum-cost objective, no deterministic (resp.
randomized) strategy-proof mechanism can have an approximation ratio better
than 3 (resp. 2).

Our results for deterministic mechanism on a line are summarized in Table 1
in bold font, where a “�” indicates that the upper bound holds for general metric
spaces. All inapproximability results are obtained on a line, and thus hold for
more general metric spaces.

Table 1. Results for deterministic strategyproof mechanisms on a line.

Objective Social cost Maximum cost

Single-facility UB: 3� [8] UB: 3�

LB: 3 [8] LB: 3

Two-facility UB: 2n− 3 UB: 3

LB: n− 2 [9] LB: 3

Related Work
A range of works on social choice study the constrained single-facility location
games for the social-cost objective, where agents can be placed anywhere, but
only a subset of locations is valid for the facility. The random dictatorship (RD)
mechanism, which selects each candidate with probability equal to the fraction
of agents who vote for it, obtains an approximation ratio of 3 − 2/n, and this
is tight for all strategyproof mechanisms [8,15]. The upper bound holds for any
metric spaces, whereas the lower bound requires specific constructions on the
n-dimensional binary cube. Anshelevich and Postl [2] show a smooth transition
of the RD approximation ratio from 2 − 2/n to 3 − 2/n as the location of the
facility becomes more constrained. Meir [14] (Sect. 5.3) provides an overview of
approximation results for the single-facility problem.

Approximate Mechanism Design in the Classic Setting. For the classic facility
location games wherein the locations have no constraint, Procaccia and Ten-
nenholtz [17] first consider it from the perspective of approximate mechanism
design. For single-facility location on a line, they give a “median” mechanism
that is GSP and optimal for minimizing the social cost. Under the maximum-cost



Mechanism Design for Facility Location Games 443

objective, they provide a deterministic 2-approximation and a randomized 1.5
approximation GSP mechanisms; both bounds are best possible. For two-facility
location, they give a 2-approximation mechanism that always places the facilities
at the leftmost and the rightmost locations of agents. Fotakis and Tzamos [9]
characterize deterministic mechanisms for the problem of locating two facilities
on the line, and prove a lower bound of n − 2. Randomized mechanisms are
considered in [12,13].

Characterizations. Dokow et al. [7] study SP mechanisms for locating a facility
in a discrete graph, where the agents are located on vertices of the graph, and
the possible facility locations are exactly the vertices of the graph. They give a
full characterization of SP mechanisms on lines and sufficiently large cycles. For
continuous lines, the set of SP and onto mechanisms has been characterized as
all generalized median voting schemes [4,18].

Other Settings. There are many different settings for facility location games
in recent years. Aziz et al. [3] study the mechanism design problem where the
public facility is capacity constrained, where the capacity constraints limit the
number of agents who can benefit from the facility’s services. Chen et al. [6]
study a dual-role game where each agent can allow a facility to be opened at his
place and he may strategically report his opening cost. By introducing payment,
they characterize truthful mechanisms and provide approximate mechanisms.
After that, Li et al. [11] study a model with payment under a budget constraint.
Kyropoulou et al. [10] initiate the study of constrained heterogeneous facility
location problems, wherein selfish agents can either like or dislike the facility
and facilities can be located in a given feasible region of the Euclidean plane.
Other works on heterogeneous facilities can be found in [5,19,21].

2 Model

Let k be the number of facilities to be built. In an instance of facility location
game with candidate locations, the agent set is N = {1, . . . , n}, and each agent
i ∈ N has a private location xi ∈ S in a metric space (S, d), where d : S2 → R

is the metric (distance function). We denote by x = (x1, . . . , xn) the location
profile of agents. The set of m candidate locations is M ⊆ S. A deterministic
mechanism f takes the reported agents’ location profile x as input, and outputs a
facility location profile y = (y1, . . . , yk) ∈ Mk, that is, selecting k candidates for
building facilities. A randomized mechanism outputs a probability distribution
over Mk. Given an outcome y, the cost of each agent i ∈ N is the distance to
the closest facility, i.e., ci(y) = d(xi,y) := min1≤j≤k d(xi, yj).

A mechanism f is strategy-proof (SP), if no agent i ∈ N can decrease his
cost by misreporting, regardless of the location profile x−i of others, that is, for
any x′

i ∈ S, ci(f(xi,x−i)) ≤ ci(f(x′
i,x−i)). Further, f is group strategy-proof

(GSP), if no coalition G ⊆ N of agent can decrease the cost of every agent in
G by misreporting, regardless of the location profile x−G of others, that is, for
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any x′
G, there exists an agent i ∈ G such that ci(f(xG,x−G)) ≤ ci(f(x′

G,x−G)).
A mechanism f is anonymous, if for every profile x and every permutation of
agents π : N → N , it holds that f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)).

Denote an instance by I(x,M) or simply I. We consider two objective func-
tions, minimizing the social cost and minimizing the maximum cost.

Social Cost. Given a location profile x, the social cost of solution y is the total
distance to all agents, that is,

SC(x,y) =
∑

i∈N

ci(y) =
∑

i∈N

d(xi,y).

Maximum Cost. Given a location profile x, the maximum cost of solution y
is the maximum distance to all agents, that is,

MC(x,y) = max
i∈N

ci(y) = max
i∈N

d(xi,y).

When evaluating a mechanism’s performance, we use the standard worst-
case approximation notion. Formally, given an instance I(x,M), let opt(x) ∈
arg miny∈Mk C(x,y) be an optimal facility location profile, and OPT (x) be the
optimum value. We say that a mechanism f provides an α-approximation if for
every instance I(x,M),

C(x, f(x)) ≤ α · C(x, opt(x)) = α · OPT (x),

where the objective function C can be SC or MC. The goal is to design deter-
ministic or randomized strategy-proof mechanisms with small approximation
ratios.

3 Single-Facility Location Games

In this section, we study the single-facility location games, i.e., k = 1. Feldman
et al. [8] thoroughly study this problem for the social-cost objective. When the
space is a line, they prove tight bounds on the approximations: the Median
mechanism that places the facility at the nearest candidate of the median agent
is SP and 3-approximation, and no deterministic SP mechanism can do better.
They also propose a randomized SP and 2-approximation mechanism (called the
Spike mechanism) that selects the nearest candidate of each agent with specific
probabilities, and prove that this approximation ratio is the best possible for
any randomized SP mechanism. When it is a general metric space, they show
that random dictatorship has a best possible approximation ratio of 3 − 2

n .
Hence, we only consider the objective of minimizing the maximum cost among

the agents. We study the problem on a line and in a general metric space,
respectively.
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3.1 Line Space

Suppose that the space is a line. Let xl (resp. xr) be the location of the leftmost
(resp. rightmost) agent with respect to location profile x. Consider the following
mechanism.

Mechanism 1. Given a location profile x, select the candidate location which
is closest to the leftmost agent, that is, select a candidate in location
arg miny∈M |y − xl|, breaking ties in any deterministic way.

Theorem 1. For the single-facility problem on a line, Mechanism1 is an anony-
mous GSP and 3-approximation mechanism, under the maximum-cost objective.

Proof. Denoted by f Mechanism 1. It is clearly anonymous, because the outcome
depends only on the agent locations, not on their identities. Namely, for any
permutation of the agent locations on the line, the facility locations do not
change. Let y = f(x) be the outcome of the mechanism, and define L = |xr −xl|.
We discuss three cases with respect to the location of y.

Case 1: xl − L/2 ≤ y ≤ xr. The maximum cost of y is MC(x, y) = max{|y −
xl|, |y −xr|} ≤ 3L/2, and the optimal maximum cost is at least L/2. So we have
MC(x,y)
OPT (x) ≤ 3.

Case 2: y > xr. It is easy to see that y is an optimal solution with maximum
cost |y−xl|, because the closest candidate y′ to the left of xl induces a maximum
cost of at least |y − xl| + L, and there is no candidate between y′ and y.

Case 3: y < xl − L/2. The maximum cost of y is MC(x, y) = xr − y. The
optimal candidate has a distance at least xl − y to xl. So we have

MC(x, y)
OPT (x)

≤ xr − y

xl − y
=

xl + L − y

xl − y
= 1 +

L

xl − y
< 1 +

L

L/2
= 3,

which establishes the proof for approximation ratio.
It remains to show the group strategy-proofness. For any group of agents G,

we want to show at least one agent in G cannot gain by misreporting. Clearly
the agent located at xl has no incentive to join G, because he already attains the
minimum possible cost. The only way for G to influence the output of mechanism
f is someone reporting a location to the left of xl. However, this cannot move the
facility location to the right, and thus no agent in G can benefit by misreporting.

��
Let ε > 0 be a sufficiently small number. We prove lower bounds for the

approximation ratio of (deterministic and randomized) SP mechanisms, match-
ing the upper bound in Theorem1.

Theorem 2. For the single-facility problem on a line, no deterministic (resp.
randomized) SP mechanism can have an approximation ratio better than 3 (resp.
2), under the maximum-cost objective.
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Proof. Suppose f is a deterministic strategy-proof mechanism with approxima-
tion ratio 3 − δ for some δ > 0. Consider an instance I (as shown in Fig. 1)
with agents’ location profile x = (1 − ε, 1 + ε), and M = {0, 2}. By symmetry,
assume w.l.o.g. that f(x) = 0. The cost of agent 2 is c2(0) = |1 + ε − 0| = 1 + ε.
Now consider another instance I ′ with agents’ location profile x′ = (1−ε, 3), and
M = {0, 2}. The optimal solution is candidate 2, and the optimal maximum cost
is 1+ε. The maximum cost induced by candidate 0 is 3. Since the approximation
ratio of f is 3 − δ and ε → 0, it must select f(x′) = 2. It indicates that, under
instance I, agent 2 located at x2 = 1 + ε can decrease his cost from c2(0) to
c2(f(x′)) = |1 + ε − 2| = 1 − ε, by misreporting his location as x′

2 = 3. This is a
contradiction with strategy-proofness.

Fig. 1. Two instances I and I ′, where hollow squares indicate candidates, and solid
circles indicate agents.

Suppose f is a randomized strategy-proof mechanism with approximation
ratio 2−δ for some δ > 0. Also consider instance I. W.l.o.g. assume that f(x) = 0
with probability at least 1

2 . The cost of agent 2 is c2(f(x)) ≥ 1
2 (1+ε)+ 1

2 (1−ε) =
1. Then consider instance I ′. Let P ′

2 be the probability of f(x′) = 2. Since the
approximation ratio of f is 2 − δ, we have

P ′
2 · MC(x′, 2)

OPT (x′)
+ (1 − P ′

2) · MC(x′, 0)
OPT (x′)

= P ′
2 + (1 − P ′

2) · 3
1 + ε

≤ 2 − δ,

which implies that P ′
2 > 1

2 as ε → 0. Hence, under instance I, agent 2 located at
x2 = 1+ε can decrease his cost to c2(f(x′)) < 1

2 (1−ε)+ 1
2 (1+ε) = 1 ≤ c2(f(x)),

by misreporting his location as x′
2 = 3. ��

Remark 1. For randomized mechanisms, we have shown that the lower bound
is 2, and we are failed to find a matching upper bound. We are concerned with
weighted percentile voting (WPV) mechanisms (see [8]), which locate the facility
on the i-th percentile agent’s closest candidate with some probability pi, where
pi does not depend on the location profile x. For example, Mechanism 1 is WPV
by setting p0 = 1 and pi = 0 for i > 0. We remark that no WPV mechanism
can beat the ratio of 3. Consider an instance with agents’ location profile (1, 3)
and candidates’ location profile (ε, 2, 4 − ε). The optimal maximum cost is 1,
attained by selecting candidate 2, while any WPV mechanism must select either
candidate ε or 4 − ε, inducing a maximum cost of 3 − ε. The ratio approaches 3
when ε tends to 0. It leaves an open question to narrow this gap.
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3.2 General Metric Spaces

In this subsection, we extend the model from a line to a general metric space.
In this setting, the locations of all agents and facility candidates are in a metric
space (S, d). Our objective is to minimize the maximum cost of agents. We give
the following dictatorial mechanism, in which the dictator can be an arbitrary
agent.

Mechanism 2 (Dictatorship). Given a location profile x, for an arbitrary
agent k ∈ N , select the closest candidate location to agent k, that is,
arg miny∈M d(xk, y), breaking ties in any deterministic way.

Theorem 3. For the single-facility problem in a metric space, Mechanism2 is
GSP and 3-approximation, under the maximum-cost objective.

Proof. Denote f by Mechanism 2. Let y = fk(x) for a fixed k, and y∗ = opt(x)
be the optimal solution. Then we have d(xi, y

∗) ≤ OPT (x) for each agent i ∈ N .
As the distance function has the triangle inequality property in a metric space,
we derive the following for each i ∈ N :

d(xi, y) ≤ d(y∗, y) + d(xi, y
∗)

≤ d(xk, y) + d(xk, y∗) + d(xi, y
∗)

≤ 2d(xk, y∗) + d(xi, y
∗)

≤ 3 OPT,

(1)

The group strategy-proofness is trivial, because Mechanism 2 is dictatorial.
��

One can find that, though losing the anonymity, Mechanism 2 is indeed a
generalization of Mechanism 1, and the approximation ratio in Theorem3 implies
that in Theorem 1.

Recall that random dictatorship locates the facility on agent i’s closest can-
didate with probability 1/n for all i ∈ N . It has an approximation ratio of 3− 2

n
for the social-cost objective in any metric space [2]. However, it does not help to
improve the deterministic upper bound 3 in Theorem3, even if on the line.

4 Two-Facility Location Games

In this section, we consider the two-facility location games on a line, under both
objectives of minimizing the social cost and minimizing the maximum cost. We
give a linear approximation for the social-cost objective, which asymptotically
tight, and a 3-approximation for the maximum-cost objective, which is best
possible.
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4.1 Social-Cost Objective

For the classic (unconstrained) facility location games in a continuous line under
the social-cost objective, Fotakis and Tzamos [9] prove that no deterministic
mechanism has an approximation ratio less than n − 2. Note that the lower
bound n − 2 also holds in our setting, because when all points on the line are
candidates, our problem is equivalent to the classic problem. For the same setting
in [9], Procaccia et al. [16] give a GSP (n − 2)-approximation mechanism, which
selects the two extreme agent locations. We generalize this mechanism to our
setting.

Mechanism 3. Given a location profile x on a line, select the candidate location
which is closest to the leftmost agent, (i.e., arg miny∈M |y − xl|), breaking ties
in favor of the candidate to the right; and select the one closest to the rightmost
agent (i.e., arg miny∈M |y − xr|), breaking ties in favor of the candidate to the
left.

Lemma 4. Mechanism 3 is GSP.

Proof. For any group G of agents, we want to show at least one agent in G cannot
gain by misreporting. Clearly the agent located at xl or xr has no incentive to
join the coalition G, because he already attains the minimum possible cost.
The only way for G to influence the output of the mechanism is some member
reporting a location to the left of xl or the right of xr. However, this can move
neither of the two facility locations closer to the members. So no agent in G can
benefit by misreporting. ��
Theorem 5. For the two-facility problem on a line, Mechanism3 is GSP,
anonymous, and (2n − 3)-approximation under the social-cost objective.

Proof. The group strategy-proofness is given in Lemma4. Let y∗ = (y∗
1 , y

∗
2) be

an optimal solution with y∗
1 ≤ y∗

2 , and y = (y1, y2) with y1 ≤ y2 be the solution
output by Mechanism3. Let N1 = {i ∈ N |d(xi, y

∗
1) ≤ d(xi, y

∗
2)} be the set of

agents who are closer to y∗
1 in the optimal solution, and N2 = {i ∈ N |d(xi, y

∗
1) >

d(xi, y
∗
2)} be the complement set. Renaming if necessary, we assume xl = x1 ≤

· · · ≤ xn = xr. If |N1| = 0, then y∗
2 must be the closest candidate to every

agent in N , including x1 (i.e., y∗
2 ∈ arg miny∈M d(x1, y)). By the specific way

of tie-breaking, Mechanism3 must select y∗
2 , and achieve the optimality. The

symmetric analysis holds for the case when |N2| = 0.
So we only need to consider the case when |N1| ≥ 1 and |N2| ≥ 1. Clearly,

1 ∈ N1 and n ∈ N2. The social cost of the outcome y by Mechanism 3 is
∑

i∈N

min{d(xi, y1), d(xi, y2)} ≤
∑

i∈N1

d(xi, y1) +
∑

i∈N2

d(xi, y2)

≤
∑

i∈N1\{1}
[ d(xi, y

∗
1) + d(y∗

1 , y1) ] +
∑

i∈N2\{n}
[ d(xi, y

∗
2) + d(y∗

2 , y2) ]

+ d(xl, y
∗
1) + d(xr, y

∗
2)
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= OPT +
∑

i∈N1\{1}
d(y∗

1 , y1) +
∑

i∈N2\{n}
d(y∗

2 , y2)

≤ OPT +
∑

i∈N1\{1}
[ d(xl, y

∗
1) + d(xl, y1) ] +

∑

i∈N2\{n}
[ d(xr, y

∗
2) + d(xr, y2) ]

≤ OPT + 2(|N1| − 1) · d(xl, y
∗
1) + 2(|N2| − 1) · d(xr, y

∗
2)

≤ OPT + 2(max{|N1|, |N2|} − 1) · OPT

≤ (2n − 3) · OPT,

where the second last inequality holds because OPT ≥ d(xl, y
∗
1)+d(xr, y

∗
2), and

the last inequality holds because max{|N1|, |N2|} ≤ n − 1. ��
Next we give an example to show that the analysis in Theorem 5 for the

approximation ratio of Mechanism3 is tight.

Example 1. Consider an instance on a line with agents’ location profile x =
(1, 4

3 , . . . , 4
3 , 2) and candidates’ location profile (23 + ε, 4

3 , 2). The optimal social
cost is 1

3 , attained by solution (43 , 2). Mechanism 3 outputs solution (23 +ε, 2), and
the social cost is ( 43 − 2

3 − ε) · (n−2)+ 1
3 − ε. Then we have (2/3−ε)·(n−2)+1/3−ε

1/3 →
2n − 3, when ε tends to 0.

4.2 Maximum-Cost Objective

Next, we turn to consider the maximum-cost objective.

Theorem 6. For the two-facility problem on a line, Mechanism3 is GSP,
anonymous, and 3-approximation under the maximum-cost objective.

Proof. The group strategy-proofness is given in Lemma 4. For any location profile
x, let y∗ = (y∗

1 , y
∗
2) be an optimal solution with y∗

1 ≤ y∗
2 , and y = (y1, y2) with

y1 ≤ y2 be the solution output by Mechanism3. Assume w.l.o.g. that x1 ≤ · · · ≤
xn. Let N1 = {i ∈ N |d(xi, y

∗
1) ≤ d(xi, y

∗
2)} be the set of agents who are closer

to y∗
1 in the optimal solution, and N2 = {i ∈ N |d(xi, y

∗
1) > d(xi, y

∗
2)} be the

complement set. Let n1 = |N1| and n2 = |N2|. Define C1 = maxi∈N1 d(xi, y
∗
1)

and C2 = maxi∈N2 d(xi, y
∗
2). It is easy to see that the optimal maximum cost is

max{C1, C2}.
Next, we consider a restricted instance (x1, . . . , xn1) of the single-facility loca-

tion problem. By the definition of Mechanism3, candidate y1 is the closest one
to agent 1. By Theorem 1, we have maxi∈N1 d(y1, xi) ≤ 3C1. Similarly, consider
another restricted instance (xn1+1, . . . , xn), we have maxi∈N2 d(y2, xi) ≤ 3C2.
Therefore,

max
i∈N

d(xi,y) ≤ 3max{C1, C2},

which completes the proof. ��
In the following we give a lower bound 2 for randomized SP mechanisms,

and a lower bound 3 for deterministic SP mechanisms, matching the bound
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Fig. 2. There is an agent and a candidate in a very far away location L.

in Theorem 6. We use the same construction as in the proof of Theorem 2 for 2
agents, and locate an additional agent at a very far away point in all the location
profiles used in the proof.

Theorem 7. For the two-facility problem on a line, no deterministic (resp. ran-
domized) SP mechanism can have an approximation ratio better than 3 (resp.
2), under the maximum-cost objective.

Proof. Suppose f is a deterministic SP mechanism with approximation ratio
3 − δ for some δ > 0. Consider an instance I (as shown in Fig. 2) with agents’
location profile x = (1 − ε, 1 + ε, L), and M = {0, 2, L}, where L is sufficiently
large and ε > 0 is sufficiently small. Note that candidate L must be selected (to
serve agent 3) by any mechanism that has a good approximation ratio. We can
assume w.l.o.g. that 0 ∈ f(x). The cost of agent 2 is c2(f(x)) = |1+ε−0| = 1+ε.
Now consider another instance I ′ with agents’ location profile x′ = (1 − ε, 3, L),
and M = {0, 2, L}. The optimal maximum cost is 1 + ε, attained by selecting
candidates 2 and L. The maximum cost induced by any solution that selects
candidate 0 is at least 3. Since the approximation ratio of f is 3 − δ and ε → 0,
it must select candidate 2, i.e., 2 ∈ f(x′). It indicates that, under instance
I, agent 2 located at 1 + ε can decrease his cost from c2(f(x)) = 1 + ε to
c2(f(x′)) = |1 + ε − 2| = 1 − ε, by misreporting his location as x′

2 = 3. This is a
contradiction with the strategy-proofness.

Suppose f is a randomized SP mechanism with approximation ratio 2− δ for
some δ > 0. Also consider instance I. Note that candidate L must be selected
with probability 1 by any mechanisms that have a good approximation ratio,
since L tends to ∞. We can assume w.l.o.g. that 0 ∈ f(x) with probability at
least 1

2 . The cost of agent 2 is c2(f(x)) ≥ 1
2 (1 + ε) + 1

2 (1 − ε) = 1. Then consider
instance I ′. The optimal maximum cost is 1 + ε, which is attained by selecting
candidates 2 and L. Let P ′

2 be the probability of f selecting candidate 2. The
maximum cost induced by any solution that selects candidate 0 is at least 3.
Since the approximation ratio of f is 2 − δ, we have

P ′
2 · 1 + (1 − P ′

2) · 3
1 + ε

≤ 2 − δ,

which implies that P ′
2 > 1

2 as ε → 0. Hence, under instance I, agent 2 located
at 1 + ε can decrease his cost to c2(f(x′)) < 1

2 (1 − ε) + 1
2 (1 + ε) ≤ c2(f(x)), by

misreporting his location as x′
2 = 3. ��
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5 Conclusion

For the classic k-facility location games, Fotakis and Tzamos [9] show that for
every k ≥ 3, there do not exist any deterministic anonymous SP mechanisms
with a bounded approximation ratio for the social-cost objective on the line,
even for simple instances with k + 1 agents. It directly follows a corollary that
there exists no such mechanism with a bounded approximation ratio for the
maximum-cost objective. Therefore, in our constrained setting with candidate
locations, we cannot expect to beat such lower bounds when k ≥ 3.

In this paper we are concerned with designing truthful deterministic mecha-
nisms for the setting with candidates. It remains an open question to find ran-
domized mechanisms matching the lower bound 2 in Theorems 2 and 7, though
we have excluded the possibility of WPV mechanisms.
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