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Abstract. Given a simple graph G = (V, E), a subset of E is called
a triangle cover if it intersects each triangle of G. Let νt(G) and τt(G)
denote the maximum number of pairwise edge-disjoint triangles in G
and the minimum cardinality of a triangle cover of G, respectively. Tuza
[25] conjectured in 1981 that τt(G)/νt(G) ≤ 2 holds for every graph G.
In this paper, we consider Tuza’s Conjecture on dense random graphs.
We prove that under G(n, p) model with p = Ω(1), for any 0 < ε < 1,
τt(G) ≤ 1.5(1 + ε)νt(G) holds with high probability, and under G(n, m)
model with m = Ω(n2), for any 0 < ε < 1, τt(G) ≤ 1.5(1+ ε)νt(G) holds
with high probability. In some sense, on dense random graphs, these
conclusions verify Tuza’s Conjecture.

Keywords: Triangle cover · Triangle packing · Random graph ·
G(n,p) model · G(n,m) model.

1 Introduction

Graphs considered in this paper are undirected, finite and may have multiple
edges. Given a graph G = (V,E) with vertex set V (G) = V and edge set
E(G) = E, for convenience, we often identify a triangle in G with its edge set.
A subset of E is called a triangle cover if it intersects each triangle of G. Let
τt(G) denote the minimum cardinality of a triangle cover of G, referred to as
the triangle covering number of G. A set of pairwise edge-disjoint triangles in
G is called a triangle packing of G. Let νt(G) denote the maximum cardinality
of a triangle packing of G, referred to as the triangle packing number of G.
It is clear that 1 ≤ τt(G)/νt(G) ≤ 3 holds for every graph G. Our research
is motivated by the following conjecture raised by Tuza [25] in 1981, and its
weighted generalization by Chapuy et al. [7] in 2014.
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Conjecture 1. (Tuza’s Conjecture [25]). τt(G)/νt(G) ≤ 2 holds for every
simple graph G.

To the best of our knowledge, the conjecture is still unsolved in general. If it
is true, then the upper bound 2 is sharp as shown by K4 and K5 – the complete
graphs of orders 4 and 5.

Related Work. The only known universal upper bound smaller than 3 was given
by Haxell [14], who shown that τt(G)/νt(G) ≤ 66/23 = 2.8695... holds for all
simple graphs G. Haxell’s proof [14] implies a polynomial-time algorithm for
finding a triangle cover of cardinality at most 66/23 times that of a maximal
triangle packing. Other results on Tuza’s conjecture concern with special classes
of graphs.

Tuza [26] proved his conjecture holds for planar simple graphs, K5-free
chordal simple graphs and simple graphs with n vertices and at least 7n2/16
edges. The proof for planar graphs [26] gives an elegant polynomial-time algo-
rithm for finding a triangle cover in planar simple graphs with cardinality at
most twice that of a maximal triangle packing. The validity of Tuza’s conjecture
on the class of planar graphs was later generalized by Krivelevich [18] to the class
of simple graphs without K3,3-subdivision. Haxell and Kohayakawa [15] showed
that τt(G)/νt(G) ≤ 2−ε for tripartite simple graphs G, where ε > 0.044. Haxell,
Kostochka and Thomasse [13] proved that every K4-free planar simple graph G
satisfies τt(G)/νt(G) ≤ 1.5.

Regarding the tightness of the conjectured upper bound 2, Tuza [26] noticed
that there exists infinitely many simple graphs G attaining the conjectured upper
bound τt(G)/νt(G) = 2. Cui et al. [11] characterized planar simple graphs G
satisfying τt(G)/νt(G) = 2; these graphs are edge-disjoint unions of K4’s plus
possibly some vertices and edges that are not in triangles. Baron and Kahn [2]
proved that Tuza’s conjecture is asymptotically tight for dense simple graphs.

Fractional and weighted variants of Conjecture 1 were studied in literature.
Krivelevich [18] proved two fractional versions of the conjecture: τt(G) ≤ 2ν∗

t (G)
and τ∗

t (G) ≤ 2νt(G) , where τ∗
t (G) and ν∗

t (G) are the values of an optimal
fractional triangle cover and an optimal fractional triangle packing of simple
graph G, respectively. [16] proved if G is a graph with n vertices, then ν∗

t (G) −
νt(G) = o(n2).

We can regard the classic random graph models G(n, p) and G(n,m) as special
graph classes, and we can also consider the probabilistic properties between
τt(G) and νt(G). Bennett et al. [3] showed that τt(G) ≤ 2νt(G) holds with high
probability in G(n,m) model where m ≤ 0.2403n1.5 or m ≥ 2.1243n1.5. Relevant
studies in random graph models were discussed in [1,19,24]. Other extensions
related to Conjecture 1 can be found in [4–6,8–10,12,17,20–23].

Our Contributions. We consider Tuza’s conjecture on random graph, under two
probability models G(n, p) and G(n,m).

– Given 0 ≤ p ≤ 1, under G(n, p) model, Pr({vi, vj} ∈ G) = p for all vi, vj with
these probabilities mutually independent. Our main theorem is following: If
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G ∈ G(n, p) and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

– Given 0 ≤ m ≤ n(n−1)/2, under G(n,m) model, let G be defined by randomly
picking m edges from all vi, vj pairs. Our main theorem is following: If G ∈
G(n,m) and m = Ω(n2), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

The main content of the article is organized as follows: In Sect. 2, the theorem
in G(n, p) random graph model is proved; In Sect. 3, the theorem in G(n,m)
random graph model is proved; In Sect. 4, the conclusions are summarized and
some future works are proposed. The appendix provides a list of mathematical
symbols and classical theorems.

2 G(n, p) Random Graph Model

In this section, we discuss the probability properties of graphs in G(n, p). Given
0 ≤ p ≤ 1, under G(n, p) model, Pr({vi, vj} ∈ G) = p for all vi, vj with these
probabilities mutually independent. Theorem1 is our main result: If G ∈ G(n, p)
and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

The primary idea behind the theorem is as follows:

– First, in Lemma 2, Lemma 3, we prove that τt(G) ≤ (1+ε)n(n−1)
4 p holds with

high probability by combining the Chernoff’s bounds technique;
– Second, in Lemma 4, Lemma 6, we prove that νt(G) ≥ (1 − ε)n(n−1)

6 p holds
with high probability through combining the Chernoff’s bounds technique
and the relationship between ν∗(G) and νt(G)[16].

– By using the previous two properties, Theorem 1 holds.

The following simple property will be used frequently in our discussions.

Lemma 1. Let A(n) and B(n) be two events related to parameter n. If
Pr[A(n)] = 1 − o(1), then Pr[B(n)] ≥ Pr[B(n)|A(n)] − o(1) where o(1) → 0 as
n → ∞.

Proof. This can be seen from the fact that Pr[A] · Pr[B] = Pr[B] − o(1) ≥
Pr[A ∩ B] − o(1) and o(1)/Pr[A] = o(1).

Denote the edge number of graph G as m. Let b(G) be the maximum number
of edges of sub-bipartite in G. There are four basic properties of graph parame-
ters. The first three holds in every graph, while the last one shows the boundary
condition of triangle-free in G(n, p).
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Lemma 2.

(i) b(G) ≥ m/2 for every graph G.
(ii) τt(G) ≤ m/2 for every graph G.
(iii) νt(G) ≤ m/3 for every graph G.
(iv) If G ∈ G(n, p) and p = o(1/n), then G is triangle-free with high probability.

Proof. Suppose b(G) < m/2 and the corresponding sub-bipartite is B = (V1, V2).
Thus, there exists one vertex, without loss of generality, u ∈ V1 satisfies that
dB(u) < dG(u)/2. We can move vertex u from V1 to V2, and let ˜B = (˜V1, ˜V2)
where ˜V1 = V1\{u}, ˜V2 = V2 ∪ {u}. We have |E( ˜B)| > |E(B)| = b(G), which
contradicts with the definition of b(G). Therefore, statement (i) holds.
Statement (ii) follows from the definition of b(G) and the result of statement (i).
Statement (iii) is trivial.
Applying Union Bound Inequality, Statement (iv) is due to

Pr[G contains at least a triangle] ≤
(

n

3

)

· p3 = o(1)

In view of Lemma 2(iv), we consider henceforth G(n, p) with p = Ω(1/n).
Under this condition, we give the following upper bounds for τt(G) and νt(G)
with high probability.

Lemma 3. If G ∈ G(n, p) and p = Ω(1/n), for any 0 < ε < 1, it holds that

Pr
[

τt(G) ≤ (1 + ε)
n(n − 1)

4
p

]

= 1 − o(1). (1)

Pr
[

νt(G) ≤ (1 + ε)
n(n − 1)

6
p

]

= 1 − o(1). (2)

Proof. For each edge e in complete graph Kn, Let Xe be the random variable
defined by: Xe = 1 if e ∈ E(G) and Xe = 0 otherwise. Then Xe, e ∈ Kn, are
independent 0–1 variables, E[Xe] = p, m =

∑

e∈Kn
Xe and E[m] = n(n−1)p/2 =

Ω(n). By Chernoff’s Inequality, for any 0 < ε < 1 we have

Pr[m ≥ (1 + ε)E[m]] ≤ exp
(

−ε2E[m]
3

)

= o(1).

Thus, it follows from Lemma 2(ii) and (iii) that

Pr
[

τt(G) ≤ (1 + ε)
n(n − 1)

4
p

]

= Pr
[

2τt(G) ≤ (1 + ε)
n(n − 1)

2
p

]

≥ Pr
[

m ≤ (1 + ε)
n(n − 1)

2
p

]

= Pr [m ≤ (1 + ε)E(m)]
= 1 − o(1)
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Similarly,

Pr
[

νt(G) ≤ (1 + ε)
n(n − 1)

6
p

]

= Pr
[

3νt(G) ≤ (1 + ε)
n(n − 1)

2
p

]

≥ Pr
[

m ≤ (1 + ε)
n(n − 1)

2
p

]

= 1 − o(1)

proving the lemma.

Along a different line, we consider the probability result of the lower bounds
of the fractional triangle packing ν∗

t (G) as follows:

Lemma 4. If G ∈ G(n, p) and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr
[

ν∗
t (G) ≥ (1 − ε)

n(n − 1)p
6

]

= 1 − o(1).

Proof. Consider an arbitrary edge uv ∈ Kn. For each w ∈ V (G) \ {u, v}. Let
Xw be the random variable defined by: Xw = 1 if uw, vw ∈ E(G) and Xw = 0
otherwise. Assuming uv ∈ E(G), let Tuv denote the number of triangles of G that
contain uv. Notice that Xw, w ∈ V (G) \ {u, v}, are independent 0–1 variables,
E[Xw] = p2, Tuv =

∑

w∈V (G)\{u,v} Xw, and E[Tuv] = (n − 2)p2. By Chernoff’s
Inequality, we have

Pr
[

Tuv ≥
(

1 +
ε

2

)

(n − 2)p2
]

≤ exp
(

−ε2(n − 2)p2

12

)

,

and by using Union Bound Inequality

Pr
[
Te ≥

(
1 +

ε

2

)
(n − 2)p2 for some e ∈ E(G)

]
≤ n2 · exp

(
− ε2(n − 2)p2

12

)
= o(1).

Now taking every triangle of G with an amount of
1

(1 + ε
2 )(n − 2)p2

, we obtain

a feasible fractional triangle packing of G with high probability, giving

Pr

⎡

⎣ν∗
t (G) ≥

∑

T∈T (G)

1
(1 + ε

2 )(n − 2)p2

⎤

⎦

= Pr
[

ν∗
t (G) ≥ T (G)

(1 + ε
2 )(n − 2)p2

]

= 1 − o(1)

(3)

For each triangle T ∈ Kn, let XT be the random variable defined by: XT = 1
if T ⊆ G and XT = 0 otherwise. Then

E[XT ] = Pr[XT = 1] = p3 and Var[XT ] = p3(1 − p3).
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For any two distinct triangles T1, T2 in Kn, we have

Cov[XT1 , XT2 ] = E[XT1XT2 ] − E[XT1 ]E[XT2 ] =

{
p5 − p6, if E(T1) ∩ E(T2) �= ∅
0, otherwise.

Denote T (G) =
∑

T∈T (Kn)
XT . Combining p = Ω(1), we can compute

E[T (G)] =
(

n

3

)

p3 = Θ(n3).

Var[T (G)] =
(

n

3

)

p3(1 − p3) + 2
(

n

2

)(

n − 2
2

)

(p5 − p6) = Θ(n4).

Thus, Chebyshev’s Inequality gives

Pr
[

T (G) ≤
(

1 − ε

2

)

E[T (G)]
]

≤ Pr
[

|T (G) − E[T (G)]| ≥ ε

2
E[T (G)]

]

≤ 4Var[T (G)]
ε2(E[T (G)])2

= o(1)

(4)

Then, since
1 − ε/2
1 + ε/2

> 1 − ε when 0 < ε < 1, we obtain

Pr
[

ν∗
t (G) ≥ (1 − ε)

n(n − 1)
6

p

]

≥ Pr
[

ν∗
t (G) ≥ 1 − ε/2

1 + ε/2
· n(n − 1)

6
p

]

≥ Pr
[

ν∗
t (G) ≥ 1 − ε/2

1 + ε/2
· n(n − 1)

6
p

∣

∣

∣

∣

ν∗
t (G) ≥ T (G)

(1 + ε/2)(n − 2)p2

]

− o(1)

≥ Pr
[

T (G)
(1 + ε/2)(n − 2)p2

≥ 1 − ε/2
1 + ε/2

· n(n − 1)
6

p

]

− o(1)

= Pr [T (G) ≥ (1 − ε/2)E[T (G)]] − o(1)
= 1 − o(1),

where the second inequality is implied by Lemma 1 and (3), and the last equality
is implied by (4). The lemma is established.

We take advantage of the following result in [16] to bridge the relationship of
ν∗

t (G) and νt(G). This result shows that the gap between these two parameters
is very small when graph G is dense.

Lemma 5. ([16]). If G is a graph with n vertices, then ν∗
t (G) − νt(G) = o(n2).

Combining the above lemma, we derive naturally the lower bound of νt(G)
with high probability.
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Lemma 6. If G ∈ G(n, p) and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr
[

νt(G) ≥ (1 − ε) · n(n − 1)p
6

]

= 1 − o(1).

Proof. Using Lemma 5, when n is sufficiently large we have

Pr
[

νt(G) ≥ (1 − ε) · n(n − 1)p
6

]

= Pr
[

ν∗
t (G) ≥ (1 − ε) · n(n − 1)p

6
+ o(n2)

]

≥ Pr
[

ν∗
t (G) ≥ (1 − ε) · n(n − 1)p

6
+

ε

2
· n(n − 1)p

6

]

= Pr
[

ν∗
t (G) ≥

(

1 − ε

2

) n(n − 1)p
6

]

.

The result follows from Lemma 4.

Now we are ready to prove one of the two main theorems:

Theorem 1. If G ∈ G(n, p) and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

Proof. Let A denote the event that

τt(G) ≤
(

1 +
ε

3

) n(n − 1)
4

p and νt(G) ≥
(

1 − ε

3

) n(n − 1)p
6

.

Combining Lemmas 3 and 6 we have Pr[A] = 1−o(1). Note that 1+ε >
1 + ε/3
1 − ε/3

.

Therefore, recalling Lemma 1, we deduce that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)]

≥ Pr
[

τt(G) ≤ 1.5 · 1 + ε/3
1 − ε/3

νt(G)
]

≥ Pr
[

τt(G) ≤ 1.5 · 1 + ε/3
1 − ε/3

νt(G)
∣

∣

∣

∣

A

]

− o(1)

= 1 − o(1),

which establishes the theorem.

Remark 1. In G(n, p), p = Ω(1) implies E[m] =
(

n
2

)

p = n(n − 1)p/2 = Ω(n2),
thus our main theorem is a result in dense random graphs.
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3 G(n,m) Random Graph Model

In this section, we discuss the probability properties of graphs in G(n,m). Given
0 ≤ m ≤ n(n−1)/2, under G(n,m) model, let G be defined by randomly picking
m edges from all vi, vj pairs. Theorem 2 is our main result: If G ∈ G(n,m) and
m = Ω(n2), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

The primary idea behind the theorem is as follows:

– First, in Lemma 2, τt(G) ≤ m/2 holds;
– Second, in Lemma 7, Lemma 8, we prove that νt(G) ≥ (1 − ε)m/3 holds with

high probability through combining the Chernoff’s bounds technique and the
relationship between ν∗(G) and νt(G) [16];

– By using the previous two properties, Theorem 2 holds.

For easy of presentation, we use N to denote
(

n

2

)

.

Now we give the high probability result of the lower bound of ν∗
t (G) in

G(n,m) model:

Lemma 7. If G ∈ G(n,m) and m = Ω(n2), then for any 0 < ε < 1, it holds
that

Pr[ν∗
t (G) ≥ (1 − ε)m/3] = 1 − o(1).

Proof. Consider an arbitrary edge uv ∈ Kn. For each w ∈ V (G) \ {u, v}. Let
Xw be the random variable defined by; Xw = 1 if uw, vw ∈ E(G) and Xw = 0
otherwise. Assuming uv ∈ E(G), let Tuv denote the number of triangles of G
that contain uv. Then we have

E[Xw] =
m(m − 1)
N(N − 1)

,

Var[Xw] =
m(m − 1)
N(N − 1)

(1 − m(m − 1)
N(N − 1)

)

Cov[Xw,Xw′ ] =
m(m − 1)(m − 2)(m − 3)
N(N − 1)(N − 2)(N − 3)

− (
m(m − 1)
N(N − 1)

)2 ≤ 0

where w,w′ ∈ V (G) \ {u, v}. It follows from Tuv =
∑

w∈V (G)\{u,v} Xw that

E[Tuv] = (n − 2)
m(m − 1)
N(N − 1)

= Θ(n).

Using Chernoff’s Inequality, we derive

Pr

[
Tuv ≥

(
1 +

ε

2

) (n − 2)m(m − 1)

N(N − 1)

]
≤ exp

(
− ε2E[Tuv]

12

)
≤ exp

(
− ε2Θ(n)

12

)
;

Pr

[
Te ≥

(
1 +

ε

2

) (n − 2)m(m − 1)

N(N − 1)
∃ e ∈ E(G)

]
≤ n2 exp

(
− ε2Θ(n)

12

)
= o(1).
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So taking every triangle of G with an amount of
[

(1 +
ε

2
) · (n − 2)m(m − 1)

N(N − 1)

]−1

makes a feasible fractional packing of G with high probability. Thus

Pr

⎡

⎣ν∗
t (G) ≥

∑

∀T

1

(1 + ε
2 ) · (n−2)m(m−1)

N(N−1)

⎤

⎦

= Pr

⎡

⎣ν∗
t (G) ≥ T (G)

(1 + ε
2 ) · (n−2)m(m−1)

N(N−1)

⎤

⎦

= 1 − o(1).

(5)

For each triangle T ∈ Kn, let XT be the random variable defined by: XT = 1
if T ⊆ G and XT = 0 otherwise. Then

E[XT ] =
m(m − 1)(m − 2)
N(N − 1)(N − 2)

.

Var[XT ] =
m(m − 1)(m − 2)
N(N − 1)(N − 2)

(

1 − m(m − 1)(m − 2)
N(N − 1)(N − 2)

)

.

For any two distinct triangles T1, T2 in Kn, we have

Cov(XT1 ,XT2)
= E[XT1XT2 ] − E[XT1 ] · E[XT2 ]

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

m(m − 1)(m − 2)(m − 3)(m − 4)
N(N − 1)(N − 2)(N − 3)(N − 4)

−
(

m(m − 1)(m − 2)
N(N − 1)(N − 2)

)2

,

if E(T1) ∩ E(T2) 
= ∅;
0, otherwise.

Notice that

E[T (G)] =
(

n

3

)

m(m − 1)(m − 2)
N(N − 1)(N − 2)

= Θ(n3)

Var[T (G)] =
(

n

3

)

m(m − 1)(m − 2)
N(N − 1)(N − 2)

(

1 − m(m − 1)(m − 2)
N(N − 1)(N − 2)

)

+

2
(

n

2

)(

n − 2
2

)

(

m(m − 1)(m − 2)(m − 3)(m − 4)
N(N − 1)(N − 2)(N − 3)(N − 4)

−
(

m(m − 1)(m − 2)
N(N − 1)(N − 2)

)2
)

= Θ(n4).

By Chebyshev’s Inequality, we have:

Pr
[

T (G) ≤
(

1 − ε

4

)

E[T (G)]
]

≤ Pr
[

|T (G) − E[T (G)]| ≥ ε

4
E[T (G)]

]

≤ 16Var[T (G)]
ε2(E[T (G)])2

= o(1).

(6)
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Since
1 − ε/2
1 + ε/2

> 1 − ε, we deduce from (5) and Lemma 1 that

Pr
[

ν∗
t (G) ≥ (1 − ε)

m

3

]

≥ Pr
[

ν∗
t (G) ≥ 1 − ε/2

1 + ε/2
· m

3

]

≥ Pr

⎡

⎣ν∗
t (G) ≥ 1 − ε/2

1 + ε/2
· m

3

∣

∣

∣

∣

∣

∣

ν∗
t (G) ≥ T (G)

(1 + ε
2 ) (n−2)m(m−1)

N(N−1)

⎤

⎦ − o(1)

≥ Pr

⎡

⎣

T (G)

(1 + ε
2 ) (n−2)m(m−1)

N(N−1)

≥ 1 − ε/2
1 + ε/2

· m

3

⎤

⎦ − o(1)

= Pr
[

T (G) ≥
(

1 − ε

2

)

(

n

3

)

m2(m − 1)
N2(N − 1)

]

− o(1)

As (1 +
ε

4
)
m − 2
N − 2

>
m

N
holds for sufficiently large n, we have

Pr
[

ν∗
t (G) ≥ (1 − ε)

m

3

]

≥ Pr
[

T (G) ≥
(

1 − ε

2

) (

1 +
ε

4

)

(

n

3

)

m(m − 1)(m − 2)
N(N − 1)(N − 2)

]

− o(1)

≥ Pr
[

T (G) ≥
(

1 − ε

4

)

E[T (G)]
]

− o(1)

= 1 − o(1),

where the second inequality is implied by (1 − ε/2)(1 + ε/4) ≤ 1 − ε/4, and the
last equality is guaranteed by (6). This complete the proof of the lemma.

Similar to the the proof of Lemma6, the combination of Lemma 5 and
Lemma 7 gives the following Lemma 8.

Lemma 8. If G ∈ G(n,m) and m = Ω(n2), then for any 0 < ε < 1, it holds
that

Pr[νt(G) ≥ (1 − ε)m/3] = 1 − o(1).

Proof. Using Lemma 5, when n is sufficiently large we have

Pr [νt(G) ≥ (1 − ε)m/3]
= Pr

[

ν∗
t (G) ≥ (1 − ε)m/3 + o(n2)

]

≥ Pr
[

ν∗
t (G) ≥ (1 − ε)m/3 +

ε

2
· m/3

]

= Pr
[

ν∗
t (G) ≥

(

1 − ε

2

)

m/3
]

.

The result follows from Lemma 7.
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Now, we are ready to prove the main theorem in G(n,m) as follows:

Theorem 2. If G ∈ G(n,m) and m = Ω(n2), then for any 0 < ε < 1, it holds
that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

Proof. Let A denote the event that

τt(G) ≤ m

2
and νt(G) ≥ (1 − ε

2
)
m

3
.

It follows from Lemmas 2(ii) and 8 that Pr[A] = 1−o(1). Since 1+ε > (1−ε/2)−1,
we deduce from Lemma 1 that

Pr[τt(G) ≤ 1.5(1 + ε)νt(G)]
≥ Pr [(1 − ε/2) · τt(G) ≤ 1.5νt(G)]
≥ Pr [ (1 − ε/2) · τt(G) ≤ 1.5νt(G) |A] − o(1)
= 1 − o(1)

verifying the theorem.

Remark 2. In G(n,m), the condition m = Ω(n2) implies that our main theorem
is a result in dense random graphs.

4 Conclusion and Future Work

We consider Tuza’s conjecture on random graphs, under two probability models
G(n, p) and G(n,m). Two results are following:

– If G ∈ G(n, p) and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

– If G ∈ G(n,m) and m = Ω(n2), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

In some sense, on dense random graph, these two inequalities verify Tuza’s con-
jecture.

Future work: In dense random graphs, these two results nearly imply τt(G) ≤
1.5νt(G) holds with high probability. It is interesting to consider the same prob-
lem in sparse random graphs.

Acknowledgement. The authors are very indebted to Professor Xujin Chen and
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Appendix: A List of Mathematical Symbols

G(n, p) Given 0 ≤ p ≤ 1, Pr({vi, vj} ∈ G) = p for all vi, vj

With these probabilities mutually independent

G(n, m) Given 0 ≤ m ≤ n(n − 1)/2, let G be defined by

Randomly picking m edges from all vi, vj pairs

τt(G) The minimum cardinality of a triangle cover in G

νt(G) The maximum cardinality of a triangle packing in G

τ∗
t (G) The minimum cardinality of a fractional triangle cover in G

ν∗
t (G) The maximum cardinality of a fractional triangle packing in G

b(G) The maximum number of edges of sub-bipartite in G

δ(G) The minimum degree of graph G

f(n) = O(g(n)) ∃ c > 0, n0 ∈ N+, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n)

f(n) = Ω(g(n)) ∃ c > 0, n0 ∈ N+, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n)

f(n) = Θ(g(n)) ∃ c1 > 0, c2 > 0, n0 ∈ N+, ∀n ≥ n0,0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

f(n) = o(g(n)) ∀ c > 0, ∃ n0 ∈ N+, ∀n ≥ n0, 0 ≤ f(n) < cg(n)

f(n) = ω(g(n)) ∀ c > 0, ∃ n0 ∈ N+, ∀n ≥ n0, 0 ≤ cg(n) < f(n)

Union Bound Inequality:
For any finite or countably infinite sequence of events E1, E2, . . . , then

Pr

⎡

⎣

⋃

i≥1

Ei

⎤

⎦ ≤
∑

i≥1

Pr(Ei).

Chernoff’s Inequalities:
Let X1,X2, . . . , Xn be mutually independent 0–1 random variables with Pr[Xi =
1] = pi. Let X =

∑n
i=1 Xi and μ = E[X]. For 0 < ε ≤ 1, then the following

bounds hold:

Pr[X ≥ (1 + ε)μ] ≤ e−ε2μ/3, Pr[X ≤ (1 − ε)μ] ≤ e−ε2μ/2.

Chebyshev’s Inequality:
For any a > 0,

Pr[|X − E[X]| ≥ a] ≤ Var[X]
a2

.
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packing and covering triangles. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.)
IWOCA 2016. LNCS, vol. 9843, pp. 266–277. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44543-4 21

9. Chen, X., Diao, Z., Hu, X., Tang, Z.: Total dual integrality of triangle covering.
In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp.
128–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6 10

10. Chen, X., Diao, Z., Hu, X., Tang, Z.: Covering triangles in edge-weighted graphs.
Theory Comput. Syst. 62(6), 1525–1552 (2018)

11. Cui, Q., Haxell, P., Ma, W.: Packing and covering triangles in planar graphs.
Graphs and Combinatorics 25(6), 817–824 (2009)

12. Erdös, P., Gallai, T., Tuza, Z.: Covering and independence in triangle structures.
Discret. Math. 150(1–3), 89–101 (1996)
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