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Abstract. We consider the problem of locating a single facility for 2
agents in Lp space (1 < p < ∞) and give a nearly complete charac-
terization of such deterministic strategyproof mechanisms. We use the
distance between an agent and the facility in Lp space to denote the cost
of the agent. A mechanism is strategyproof iff no agent can reduce her
cost from misreporting her private location.

We show that in Lp space (1 < p < ∞) with 2 agents, any location
output of a deterministic, unanimous, translation-invariant strategyproof
mechanism must satisfy a set of equations and mechanisms are continu-
ous, scalable. In one-dimensional space, the output must be one agent’s
location, which is easy to prove in any n agents.

However, in m-dimensional space (m ≥ 2), the situation will be much
more complex, with only 2-agent case finished. We show that the output
of such a mechanism must satisfy a set of equations, and when p = 2 the
output must locate at a sphere with the segment between the two agents
as the diameter. Further more, for n-agent situations, we find that the
simple extension of this the 2-agent situation cannot hold when dimen-
sion m > 2 and prove that the well-known general median mechanism
will give an counter-example.

Particularly, in L2 (i.e., Euclidean) space with 2 agents, such a mech-
anism is rotation-invariant iff it is dictatorial; and such a mechanism
is anonymous iff it is one of the three mechanisms in Sect. 4. And our
tool implies that any such a mechanism has a tight lower bound of 2-
approximation for maximum cost in any multi-dimensional space.

Keywords: Facility location · Mechanism design · Lp space.

1 Introduction

We consider the problem of locating a single facility for n (mainly in n = 2)
agents in Lp space (1 < p < ∞). This facility serves these agents and every
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agent has a cost which is equal to the distance to access the facility. An agent’s
location is private information, i.e., only she herself knows it. A strategyproof
mechanism means that no agent can gain (i.e., reduce her cost) from misreporting
her location. A mechanism is deterministic if the output is a specific location.
Compared to randomized mechanisms, deterministic mechanisms often receive
more attention because of their simplicity and ease of use.

A basic area of facility location study is the characterization of truthful mech-
anisms. In many situations and settings, the goal is to design a strategyproof
mechanism which can minimize the objective cost function (e.g., social cost or
maximum cost) as far as possible. Therefore, giving the characterization of such
mechanisms will be helpful to further study. In this area, an important work is
made by Moulin [10] that in any one-dimension space (they call it single-peaked
preferences), every strategyproof, efficient (the selected alternative is Pareto opti-
mal, which is different from our setting) and anonymous voting scheme (mecha-
nism) must be a median voter scheme (to select the median agent). After that,
Border and Jordan [4] extend his result to Euclidean space and show that it
induces to median voter schemes in each dimension separately. Other works
include Barberà et al. [2] that the result also fits in any L1 norm, and [3] that
in a compact set of the Euclidean space, which is a more restricted domain, all
those mechanisms behave like generalized median voter schemes. Nearly all the
relevant works focus on deterministic mechanisms and leaves the randomized
ones an open question.

As for other settings, Tang et al. [13] firstly discuss the characterization
of group-strategyproof (No group of agents can reduce their cost together by
misreporting their location) both in deterministic and randomized mechanisms
(The former characterization is complete and the latter is nearly complete). And
Feigenbaum et al. [5] discuss the characterization of 2-agent randomized strat-
egyproof mechanism in one-dimensional space. However, before our work, there
has not been any discussion of the characterization of deterministic strategyproof
mechanisms in any metric space.

One measurement of the facility location mechanisms is the cost they achieve.
There are two common view: maximum cost (i.e., the maximum cost between
the facility and some agent) and social cost (i.e., the sum of the cost between the
facility and all the agents). The ratio between the cost one mechanism achieve
and the minimum cost is widely used in this study. Procaccia and Tennenholtz
[11] study approximately optimal strategyproof mechanisms for facility games
both in maximum cost and social cost view, focusing on one-dimensional space
and randomized mechanisms. They propose an interesting randomized mecha-
nism for the maximum cost view, which achieves a ratio of 3/2 and they proves
it to be the best. Subsequently, Alon et al. [1] study the characterization of
deterministic and randomized mechanisms in more general metric space (such
as network and rings).

Other related works about facility location are k-facility location problems.
Compared to single facility location problems, they are more complex. Agents
can have preference on different facilities and their location can be public
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information this time. One important and classical work is made by Fotakis
and Tzamos [8]. They study mechanisms that are winner-imposing, in the sense
that the mechanisms allocate facilities to agents and require that each agent
allocated a facility should connect to it. Also they prove an upper bound of
4k in the social cost view. And there are many other follow-up works (see e.g.,
[6,7,9,12,14]).

Our work is motivated by [5]. Their result about the characterization of 2-
agent randomized strategyproof mechanisms in a line (i.e., one-dimension) leads
us studying the deterministic ones. And some of our technique is motivated by
[13] (e.g., the proof of continuity). We show that in any one-dimensional Lp space
with n agents, the output of a deterministic unanimous translation-invariant
strategyproof mechanism should locate at one agent’s location and in multi-
dimensional Lp space (1 < p < ∞) with 2 agents, the output of such a mechanism
should satisfy a set of equations. Particularly, in L2 space (i.e., the Euclidean
space), let the two agents be A,B and the output be W , then they should satisfy−−→
WA · −−→

WB = 0. These characterizations are nearly complete and next we give
complete characterization of two more specific situations (also restricted in 2
agents). The first one is that such a mechanism is rotation-invariant if and only
if it is dictatorial (i.e., the output location is always the same agent). The second
one is that such a mechanism is anonymous (i.e., all the permutations of agents
does not affect the output) if and only if it is one of the three mechanisms
we give in Sect. 4. In the end, we show that the general median mechanism
is an counter-example of the simple extension from 2-agent situation to n-agent
situation in m-dimensional space (m > 2), which means that the characterization
of n-agent situation may be very complex, unfortunately. Also, using our tool,
we ensure a tight lower bound of 2-approximation for maximum cost in any
multi-dimensional space.

2 Preliminaries

We consider the single facility location game with n (n ≥ 2) agents N =
{1, 2, ..., n}. All the agents are located in a m-dimensional Lp space Rm. Obvi-
ously for ∀x, y ∈ Rm, there is ‖x‖ + ‖y‖ ≥ ‖x + y‖ and the equality holds if and
only if x and y have the same directions. We use Ai ∈ Rm to denote agent i’s
location in the space. Therefore a location profile is a vector consisting of all the
agents’ locations A = (A1, A2, ..., An).

A deterministic mechanism is a map f : Rn
m → Rm from a location profile to

the location of the facility. We use W = f(A) to denote the output location and
the cost of agent i is the distance between her and the facility, i.e., d(Ai,W ) =
‖W − Ai‖. We will mix the two representations in this paper.

Next we formally define some properties of a deterministic mechanism.

Definition 1 (Strategyproofness). A mechanism f is strategyproof if and only
if no agent can reduce her distance to the output by misreporting her location. It
means that, for ∀A ∈ R

n
m,∀i ∈ N,∀A′

i ∈ Rm, there is

d(f(A), Ai) ≤ d(f(A′
i,A−i), Ai).
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Here A−i = (A1, ..., Ai−1, Ai+1, ..., An), i.e., the profile without Ai.

Definition 2 (Unanimity). A mechanism f is unanimous if and only if when
∀Ai = C, we have

f(A) = C,

which means that if all agents report the same location, then the mechanism must
output this location.

Definition 3 (Dictatorship). A mechanism f is dictatorial if and only if ∃i ∈
N,∀A ∈ R

n
m, there is

f(A) = Ai.

At this time we call i is the dictator.

Definition 4 (Anonymity). A mechanism f is anonymous if and only if when
any group of the agents exchange their location reports, the output is still the
same, which means that any permutation of the agents’ locations does not affect
the output.

Definition 5 (Translational Invariance). A mechanism f is translation-
invariant if and only if

∀A ∈ R
n
m,∀t ∈ Rm, f(A + t) = f(A) + t.

Here, f(A+ t) = f(A1 + t, ..., An + t). This means that if we move all the agents
the same distance in one direction, then the output location will also move the
same distance in this direction.

Definition 6 (Scalability). A mechanism f is scalable if and only if

∀A ∈ R
n
m,∀k ∈ R, k > 0, f(k · A) = k · f(A).

Here, f(k · A) = f(k · A1, ..., k · An).

Notice that if a mechanism f satisfies translational invariance and scalability,
then we will have

∀A ∈ R
n
m,∀k ∈ R, k > 0,∀t ∈ Rm, f(k · A + t) = k · f(A) + t.

Definition 7 (Rotational Invariance). A mechanism f is rotation-invariant if
and only if when all the agents are rotated at the same angle around a point
(not necessary to be an agent) in the same direction in some dimensions, then
the output will also be rotated at this angle around the point in such direction in
these dimensions.

For convenience, the properties of rotational invariance and anonymity are
only described with natural languages. Notice that the description of rotational
invariance includes situations that points are rotated on an axis and so on,
because of “in some dimensions”.
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3 Nearly Complete Characterization of Deterministic
Mechanisms

We will start with the situations in one-dimensional space as a warm-up and
prove that this characterization is suitable for any n agents. Then we will discuss
the multi-dimensional situations in Lp space with 2 agents for 1 < p < ∞. The
reason why we abandon L1 and L∞ is that in these two spaces, there exists two
vectors x, y with different directions that ‖x‖ + ‖y‖ = ‖x + y‖, which is not a
friendly property. We use m to denote number of dimensions.

3.1 One-Dimensional Situation

The one-dimensional situation is simple. In any Lp space, ∀a, b, c ∈ R, if a ≤ b ≤
c, then we have ‖a− b‖+‖b− c‖ = ‖a− c‖. For convenience, we call the negative
direction in the coordinate axis “left” and call the positive direction “right”.

Lemma 1. (Continuity) If mechanism f is strategyproof, then for ∀i ∈ N with
any fixed A−i ∈ R

n−1
m , we have

‖u(Ai) − u(A′
i)‖ ≤ ‖Ai − A′

i‖,

where u(Ai) = ‖f(Ai,A−i) − Ai‖. This implies that u(Ai) is a continuous func-
tion.

Proof. We assume that ∃Ai, A
′
i such that ‖u(Ai) − u(A′

i)‖ > ‖Ai − A′
i‖. Also

without loss of generality, we assume that u(Ai) > u(A′
i) which means that

u(Ai) − u(A′
i) > ‖Ai − A′

i‖, then we have

‖f(A′
i,A−i) − Ai‖ ≤ ‖f(A′

i,A−i) − A′
i‖ + ‖Ai − A′

i‖
= u(A′

i) + ‖Ai − A′
i‖

< u(Ai) = ‖f(Ai,A−i) − Ai‖.

Notice this is contradict with the strategyproofness, because Ai can misreport
her location as A′

i to reduce her cost. Therefore the previous inequality in lemma
must hold. When A′

i → Ai, we see u(Ai) is a continuous function. 
�
This lemma is very useful and fits any m (dimensions) and n (agents).

A1 An-1 AnA2W ......

ε

A +ε1

Fig. 1. Case 1 in the proof of Theorem 1
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Theorem 1. When m = 1, the output of a deterministic unanimous
translation-invariant strategyproof mechanism must be one agent’s location.

Proof. Without loss of generality, we let n agents be A1, ..., An and assume
A1 ≤ A2 ≤ ... ≤ An. If all Ai are in the same location, according to unanimity,
the output is Ai.

Let W = f(A). We divide this into 3 different cases. We only need to prove
that the output cannot locate at these three areas. Using proof by contradiction,
we assume that there can be a situation that W does not locate at any agents.

Case 1, W < A1: As is shown in Fig. 1, we can find a positive tiny ε that
ε � d(W,A1), e.g., ε < 0.01 · d(W,A1) and according to Lemma 1, we have
f(A1 + ε,A−1) < A1, otherwise it will contradict with ‖u(A1) − u(A1 + ε)‖ ≤
|A1 − (A1 + ε)‖ = ε.

Therefore we must have f(A1 + ε,A−1) ≤ W , otherwise agent with location
A1 gain from misreporting her location as A1 + ε. In the same way, we also
must have f(A1 + ε,A−1) ≥ W , otherwise agent with location A1 + ε can gain
from misreporting her location as A1 (fix other agents in A−1). This means that
f(A1 + ε,A−1) = f(A) = W .

Let Aε
−i denotes (A1 + ε, ..., Ai−1 + ε, Ai+1, ..., An) (of course 1 ≤ i ≤ n

and when i = n we say it denotes (A1 + ε, ..., An−1 + ε, when i = 1 we say it
denotes (A2, ..., An). In the same way, when i increases from 1 to n, we have
f(An + ε,Aε

−n ) = f(An−1 + ε,Aε
−(n−1)) = ... = f(A) = W and at last get

f(A + ε) = W . However, according to the translational-invariance, we must
have f(A) = W +ε, which leads to a contradiction. Therefore the output cannot
satisfy W < A1.

Case 2, W > An: This is completely symmetrical with the first case and we
can use the same method by adding a tiny ε (ε � d(W,An)) to all agents.

Case 3, ∃i ∈ [1, n−1], Ai < W < Ai+1: We can still add all the agents a tiny
ε � min{d(W,Ai), d(W,Ai+1)}. When adding Aj with j ≤ i, we can refer to
case 1’s proof and when adding Aj with j > i, we can refer to case 2’s method.

Notice that if Ai = Ai+1, then there cannot be Ai < W < Ai+1, thus these
3 cases include all the areas except the locations of the agents. Therefore, any
such strategyproof mechanism cannot output a location W = Ai for any i. We
prove this theorem. 
�

Therefore we can know that in one-dimensional space (including all the Lp

space for any positive integer p), the output must be one agent’s location. But
in multi-dimensional space, the result is different. Although output still can be
one agent’s location, it’s not necessary.

3.2 Multi-dimensional L2 Situation

There are two reasons why we select L2 space (i.e., Euclidean space). The first
one is that it has some very friendly properties. For example, in an Euclidean
space, any right triangle must satisfy that its hypotenuse is the (only) longest
side. But in other space such as L3 space, this rule may not hold. Here, the length
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of side is the distance between the two points in Lp space. And the second reason
is that the Euclidean space is the most common and most used space. In this
part, we will study the result in Euclidean space.

Lemma 2. In any Euclidean space with n agents Ai (i ∈ N), let the output of
a deterministic unanimous translation-invariant strategyproof mechanism be W ,
then for ∀A′

i on the segment between Ai and W (including Ai and W ), we have

f(A′
i,A−i) = W,

which means that if one agent move her location close to the output along the
segment, the output does not change.

Proof. Obviously we only need to care the situation that A′
i = Ai. Considering

the property of strategyproofness and let W ′ = f(A′
i,A−i), we have{

d(Ai,W ) ≤ d(Ai,W
′)

d(A′
i,W

′) ≤ d(A′
i,W )

Draw the spheres (if m = 2 then circles and if m > 3 then m-spheres) O1 and O2

with Ai and A′
i as centers, d(Ai,W ) and d(A′

i,W ) as radius, respectively. The
first inequality implies that W ′ cannot be inside of O1 and the second implies
that W ′ cannot be outside of O2. Therefore, W ′ = W , which is the only common
point between the two spheres (circles). 
�

In fact, this lemma holds when p > 2, but at this time, what we draw is
not 2 spheres any more, but 2 inscribed similar Enclosed ellipsoid on which the
distance between a point and center is a constant in Lp space.

Lemma 3. In any Euclidean space with 2 agents A and B, if the output of
a deterministic unanimous translation-invariant strategyproof mechanism is on
the line AB, then it can only locate at A or B.

Proof. Similar to the proof of Theorem1, we set the output W and divide it into
three cases.

If ∃k > 0 that
−−→
WA = k · −−→

AB, then according to Lemma 2, we move A and
then B towards W with a tiny distance ε. In this period, the output is still W ,
which is contradict with translational-invariance.

If ∃k > 0 that
−−→
WB = k · −−→

BA, then according to Lemma 2, we move B and
then A towards W with a tiny distance ε. In this period, the output is still W ,
which is contradict with translational-invariance.

If ∃k > 0 that
−−→
AW = k · −−→

WB, then according to Lemma2, we move
A to W and have f(W,B) = W . Next we move B away from W to B′ so
that d(B′,W ) = d(A,B). Therefore we notice that f(W,B′) = W + (W − A)
because otherwise B can gain from misreporting B′, and this is contradict with
translational-invariance.

Therefore, the lemma is proved. 
�
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A0 A1W0

B1

W1
Wx

BxB0

Fig. 2. Proof of Lemma 4

Lemma 4. In any Euclidean space with 2 agents A and B, the output W can
never satisfy that 0◦ < ∠AWB < 90◦.

Proof. For convenience, we use term Ax and Bx (x ∈ [0, 1]) and Wx = f(Ax, Bx).
Let ∠A0W0B0 ∈ (0◦, 90◦). Also let

−−−→
B0B1 =

−−−→
A0W0 and A1 = W0. Therefore we

have
−−−−→
W0W1 =

−−−→
B0B1. Here

−−−→
A0Ax = x · −−−→

A0A1,
−−−→
B0Bx = x · −−−→

B0B1 and
−−−−→
W0Wx =

x · −−−−→
W0W1. These are all drawn in Fig. 2.
According to Lemma 2, because f(Ax, Bx) = Wx, we can get f(A1, Bx) =

Wx. This means that if we fix A in A1 and move B from B0 to B1 on a straight
line, then W will move from W0 to W1 on a straight line. Because of strate-
gyproofness, for ∀x ∈ [0, 1], we have d(B1,Wx) ≥ d(B1,W1). However, since we
know that ∠A1W1B1 = ∠A0W0B0 < 90◦, then there must exist x < 1 so that
d(B1,Wx) < d(B1,W1). Therefore the lemma is proved. 
�
Lemma 5. In any Euclidean space with 2 agents A and B, the output W can
never satisfy that 90◦ < ∠AWB < 180◦.

Proof. Similar to the proof of Lemma4, we use term Ax and Bx (x ∈ [0, 1])
and Wx = f(Ax, Bx). Let ∠A0W0B0 ∈ (90◦, 180◦). Also let

−−−→
B0B1 =

−−−→
A0W0

and A1 = W0. Therefore we have
−−−−→
W0W1 =

−−−→
B0B1. Here

−−−→
A0Ax = x · −−−→

A0A1,−−−→
B0Bx = x · −−−→

B0B1 and
−−−−→
W0Wx = x · −−−−→

W0W1.
According to Lemma 2, because f(Ax, Bx) = Wx, we can get f(A1, Bx) =

Wx. This means that if we fix A in A1 and move B from B0 to B1 on a
straight line, then W will move from W0 to W1 on a straight line. Because
of strategyproofness, for ∀x ∈ [0, 1], we have d(B0,Wx) ≥ d(B0,W0). However,
since we know that ∠W1A1B0 < 90◦, then there must exist x > 0 so that
d(B0,Wx) < d(B0,W0). Therefore the lemma is proved. 
�
Theorem 2. In any Euclidean space with 2 agents A and B, the output W of a
deterministic unanimous translation-invariant strategyproof mechanism f must
satisfy −−→

AW · −−→BW = 0,

which means that W must locate on a sphere with AB as the diameter.
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According to Lemma 3, 4 and 5, Theorem 2 is obvious. Notice this theorem
fits any dimension m > 1. Maybe intuitively we can guess that this can be
extended to more n-agent situation, but we will show that there is an counter-
example for any m > 2 in Sect. 5. Here is the conjecture that does not hold for
m > 2.

Conjecture 1. In any Euclidean space with n agents A1, ..., An, the output W
of a deterministic unanimous translation-invariant strategyproof mechanism f
must satisfy that

∃i, j ∈ N,
−−−→
AiW · −−−→

AjW = 0.

3.3 Multi-dimensional Lp Situation

As is mentioned in the last part, we know that other Lp space has less friendly
properties than L2 space. Therefore the result is not a right angle any more
because in other Lp space, a right triangle’s hypotenuse may not be the longest
side. We use analytical geometry to solve this problem. Obviously we only need
to analyze the case that the output W does not locate at A or B.

According to translational-invariance, We can assume that A(−x1, ...,−xm),
B(x1 , ..., xm

) and W (y1, ..., ym), then the distance between two points such as
A,W is dp(A,W ) = (

∑m
i=1 |xi + yi|p)1/p.

Theorem 3. In any Lp space (2 < p < ∞) with 2 agents A and B, the output
W of a deterministic unanimous translation-invariant strategyproof mechanism
f must satisfy ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m∑
i=1

(xi + yi) · (xi − yi) · |xi − yi|p−2 = 0

m∑
i=1

(xi − yi) · (xi + yi) · |xi + yi|p−2 = 0

Proof. Consider such a situation. In a Lp space, let f(A0, B0) = W0, A1 =
W0 and

−−−→
B0B1 =

−−−→
A0A1, therefore we have

−−−−→
W0W1 =

−−−→
B0B1. We still use term

Ax, Bx,Wx which mean
−−−→
A0Ax =

−−−→
A0A1,

−−−→
B0Bx =

−−−→
B0B1 and

−−−−→
W0Wx =

−−−−→
W0W1

respectively.
Similar to the proof of Lemma 4 and Lemma 5, we can easily find that

f(A1, Bx) = Wx. Considering strategyproofness, because we know that when B
moves from B0 to B1 with fixed A1, Wx moves from W0 to W1, then d(Bx,Wx)
is the shortest distance between Bx and segment W0W1, otherwise agent B at
Bx may misreport her location B′

x to reduce her cost.
Because of translational-invariance, let α ∈ [−1, 1]. Using A,B,W instead of

A0, B0,W0, we set

g(α) =

(
m∑

i=1

|(yi + α · (yi + xi) − xi)|p
)1/p

.
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Obviously, g(α) means the distance between B and some point in segment AW .
According to the last paragraph, we have g(0) = minα∈[−1,1] g(α), and g′(0) = 0
which means derivative of g(α).

In the same way, let h(β) (β ∈ [−1, 1]) denotes the distance between A and
some point in segment BW and we will have

h(β) =

(
m∑

i=1

|yi + β · (yi − xi) + xi|p
)1/p

,

and h′(0) = 0.
For convenience, let G(α) = g(α)p/p and H(α) = h(α)p/p, thus G′(0) =

H ′(0) = 0. We have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G′(α) =
m∑

i=1

(yi + α · (xi + yi) − xi) · |yi + α · (xi + yi) − xi|p−2 · (xi + yi)

H ′(β) =
m∑

i=1

(yi + β · (yi − xi) + xi) · |yi + β · (yi − xi) + xi|p−2 · (yi − xi)

Considering G′(0) = H ′(0) = 0, we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
i=1

(xi + yi) · (xi − yi) · |xi − yi|p−2 = 0

m∑
i=1

(xi − yi) · (xi + yi) · |xi + yi|p−2 = 0

In summary, the equations in the theorem hold. 
�
We can find that the group of equations has an infinite number of solutions if

and only if p = 2 (When p = 2, |xi ± yi|p−2 in the equations should be replaced
with 1). And at this time the two equations are equivalent which mean the
output should locate on a sphere with AB as the diameter.

Theorem 4. In any Lp space (1 < p < ∞) with 2 agents A and B, a determinis-
tic unanimous translation-invariant strategyproof mechanism f must be scalable.

Proof. When p > 2, according to Theorem 3, because of finite number of valid
output locations, the property scalability holds, otherwise it will contradict with
continuity and translational-invariance (Let’s imagine a situation: We move one
agent to the other slowly, and if the output does not obey scalability, then it will
“jump” in some time to another valid output location). Therefore we only need
to discuss p = 2.

Considering translational-invariance, we can assume A locates at the origin.
Then we have f(k ·A, k ·B) = f(A, k ·B), which means we only need to move B.
Notice that for any k1 · k2 = 1, we find f(k1 · A, k1 · B) and f(k2 · A, k2 · B) are
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inverted to each other. Therefore we only need to analyze 0 < k < 1 (Of course
we do not need to discuss when k = 1). Then we divide this into 3 cases.

Case 1, f(A,B) = A: According to Lemma 2, ∀k ∈ (0, 1), we have f(A, k ·
B) = A.

Case 2, f(A,B) = B: According to Lemma 2, ∀k ∈ (0, 1), we have f(A +
(1 − k) · B,B) = B. Considering translational-invariance, we have f(A, k · B) =
f(A + (1 − k) · B − (1 − k) · B,B − (1 − k) · B) = B − (1 − k) · B = k · B.

Case 3, f(A,B) = A,B: Assume W = f(A,B), B′ = k · B, and W ′ =
f(A,B′). Therefore, there exists C ∈ AW and D ∈ BW that

−−→
CD =

−−→
AB′ =

k·−−→AB. Obviously �WCD ∼= �W ′AB′. Thus we know W ′ ∈ AW ,
−−−→
AW ′ = k·−−→AW

and
−−−→
W ′B′ =

−−→
WB. This means that W ′ = k · W . 
�

Also, we give our conjecture about the n-agent situation.

Conjecture 2. In any Lp (1 < p < ∞) space with n agents, a deterministic
unanimous translation-invariant strategyproof mechanism f is scalable.

4 Two Special Cases

Although we cannot give complete characterization of any 2-agent deterministic
unanimous translation-invariant strategyproof mechanism, we finish two special
cases. One is dictatorial mechanism in Euclidean spcae, and the other is anony-
mous mechanism in 2-dimensional Euclidean space.

4.1 Dictatorial Mechanisms

Theorem 5. In any Euclidean space with 2 agents, f is a deterministic unani-
mous translation-invariant strategyproof mechanism, then f is rotation-invariant
if and only if f is dictatorial.

Proof. First of all, if f is dictatorial, then obviously it is rotation-invariant. Then
we only need to analyze the case that f is rotation-invariant.

Let 2 agents be A and B, and we assume W = f(A,B). If there exists A0, B0

that W0 = f(A0, B0) = A0, B0, then we have f(W0, B0) = W0. Otherwise we
can imagine an agent A with location W0 misreports her location as A0 to reduce
her cost. Besides, we know that f is scalable and translation-invariant, then if
we move B0 to some B1 ∈ A0B0 so that ‖A0B1‖ = ‖W0B0‖. Therefore we will
find that it is contradict with rotational-invariance by observing f(A0, B1) and
f(W0, B0). Thus the output can only locate at A or B.

Consider the following three properties: rotational-invariance, translational-
invariance and scalability, and we will find that if f(A0, B0) = A0 (or B0, A0 =
B0 otherwise we can solve this by unanimity), then for ∀A,B ∈ Rm, we have
f(A,B) = A (or B), because any two points in Lp space can be transformed by
A0 and B0 with these three properties. Therefore, f is dictatorial. 
�
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4.2 Anonymous Mechanisms

Here we give 3 anonymous mechanisms in 2-dimensional Euclidean space. Let 2
agents be A and B with different coordinates (xA, yA) and (xB , yB) respectively.
For these 3 mechanisms, if A = B, then we select A (or B) as the facility.

Mechanism 1: (u, v)-C1 Mechanism (u, v ∈ {0, 1}).
If u = 1, then xW = max{xA, xB}; if u = 0, then xW = min{xA, xB}.
If v = 1, then yW = max{yA, yB}; if v = 0, then yW = min{yA, yB}.
Mechanism 2: (u)-C2 Mechanism (u = 0). Without loss of generality, we
assume xA ≤ xB. And W = f(A,B) with coordinate (xW , yW ). We divide this
into three cases.

Case 1. When xA = xB, we let xW = xA. If u > 0, let yW = max{yA, yB} and
if u < 0, let yW = min{yA, yB}.
Notice other 2 cases satisfy xA < xB. Let R = (yB − yA)/(xB − xA).
Case 2. u > 0. When −1/u ≤ R ≤ u, draw line (1) y = u · (x − xA) + yA and
line (2) y = − 1

u ·(x−xB)+yB. Let W be the intersection of the two lines. When
R > u, we let W = A and when R < −1/u, we let W = B.
Case 3. u < 0. When u ≤ R ≤ −1/u, draw line (1) y = u · (x − xA) + yA and
line (2) y = − 1

u ·(x−xB)+yB. Let W be the intersection of the two lines. When
R > −1/u, we let W = A and when R < u, we let W = B.

Mechanism 3: (v)-C3 Mechanism (v = 0). Without loss of generality, we
assume yA ≤ yB. And W = f(A,B) with coordinate (xW , yW ). We divide this
into three cases.

Case 1. When yA = yB, we let yW = yA. If v > 0, let xW = max{xA, xB} and
if v < 0, let xW = min{xA, xB}.
Notice other 2 cases satisfy xA < xB. Let S = (xB − xA)/(yB − yA).
Case 2. v > 0. When −1/v ≤ S ≤ v, draw line (1) x = v · (y − yA) + xA and
line (2) x = − 1

v ·(y−yB)+xB. Let W be the intersection of the two lines. When
S > v, we let W = A and when S < −1/v, we let W = B.
Case 3. v < 0. When v ≤ S ≤ −1/v, draw line (1) x = v · (y − yA) + xA and
line (2) x = − 1

v ·(y−yB)+xB. Let W be the intersection of the two lines. When
S > −1/v, we let W = A and when S < v, we let W = B.

Theorem 6. In any 2-dimensional Euclidean space with 2 agents, a mechanism
f is deterministic unanimous translation-invariant anonymous strategyproof, if
and only if f is one of Mechanism 1, 2, and 3.

Proof. Firstly we prove sufficiency. Obviously if f is one of the 3 mechanisms, it is
deterministic, unanimous, translation-invariant and anonymous. So we only need
to prove it is strategyproof. Considering translational-invariance, anonymity and
scalability (proved in previous theorem), we only need to prove for any A0(0, 0)
and B0(cos θ, sin θ), B cannot gain from misreporting her location.

Mechanism 1 is strategyproof: Out of symmetry, we only need to prove (1,1)-
C1 Mechanism is strategyproof.
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(1) When θ ∈ [0, π/2], B will never misreport because her cost is 0.
(2) When θ ∈ (π/2, π), the facility is (0, sin θ) and B’s cost is − cos θ. Because
A0(0, 0), then xW ≥ 0, therefore this is the minimum cost for B.
(3) When θ ∈ [π, 3π/2], the facility is (0, 0) and B’s cost is 1. Because A0(0, 0),
then xW ≥ 0 and yW ≥ 0, therefore this is the minimum cost for B.
(4) When θ ∈ (3π/2, 2π), we can use the same way as (2) to prove.

Mechanism 2 and 3 are strategyproof: Out of symmetry, we only need to
prove Mechanism 2 is strategyproof for u > 0 and θ ∈ [−π/2, π/2] (And we fill
find this time xB ≥ xA).
(1) When θ ∈ [arctan u−π/2, arctan u], then W0 ∈ Line 1 (y = ux) and xW ≥ 0.
We assume B misreports as B′(x′, y′). When y′ ≥ 0, if y′/x′ > u or ≤ 0 or
x′ = 0, then the output will locate at top left of Line 1, leading the cost larger
than previous one; if y′/x′ ∈ [0, u], then the output will locate at Line 1, leading
the cost never smaller than the previous one because A0W0 ⊥ B0W0 and in
Euclidean space this is the smallest distance. When y′ < 0, in the same way, if
−1/u < y′/x′ < 0, the output will locate at Line 1; if y′/x′ < −1/u or > u or
x′ = 0, the output will locate at A; and if 0 < y′/x′ < u, the output will locate
at top left of Line 1.
(2) When θ ∈ (arctan u, π/2], B will never misreport because W0 = B0.
(3) When θ ∈ [−π/2, arctan u−π/2), then W0 = A0 and the cost is 1. We assume
B misreports as B′(x′, y′). When y′ ≤ 0, if y′/x′ ≤ −1/u or ≥ u or x′ = 0, the
output will still locate at A0; if −1/u < y′/x′ ≤ 0, the output W ′ ∈ Line 1 and
∠B0A0W

′ > 90◦ so the cost will increase; if 0 < y′/x′ < u, the output W ′ ∈
Line 2 and ∠B0A0W

′ > 90◦ so the cost will increase. When y′ > 0, in the same
way, we have ∠B0A0W

′ > 90◦.
Secondly, we prove necessity. In fact, we only need to observe the output of

f((0,−1), (0, 1)) and f((−1, 0), (1, 0)) and this is enough for us to characterize
the whole mechanism. According to Theorem 2, any output W must satisfy

−−→
WA·−−→

WB = 0. We divide this into 4 cases.
(1) f((0,−1), (0, 1)) = (0,±1) and f((−1, 0), (1, 0)) = (±1, 0). Out of symme-

try, we mainly discuss the positive result (1, 0) and (0, 1). We claim this mech-
anism is the same as (1, 1)-C1 Mechanism. The proof is rather easy. Assume
there exists a group of W0 = f(A0, B0) that xW = max{xA, xB}. Obviously
yA = yB , xA = xB, and W0, A0, B0 cannot locate at the same line, otherwise
it will contradict the condition at once. Because ∠A0W0B0 = 90◦, then if we
move two lines y = 0 and x = 0, we will finally find that one of the two lines
will have 2 intersections with broken line A0W0B0 and let the two intersections
on A0W0 and W0B0 be C and D (if there are infinite intersections, we can let
one of the two points be W0 and the other be A0 or B0, then there must be
one contradiction in these two situations. In other 3 cases, this discussion will
be omitted due to the length), thus we have f(C,D) = W0, which contradicts
with the conditions. In the same way we can also prove yW = max{yA, yB}
will lead to a contradiction, too. Therefore, this is the same as C1 Mechanism.
In summary, the four situations are the 4 combinations of C1 Mechanism with
different parameters.
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(2) f((0,−1), (0, 1)) = (0,±1) and f((−1, 0), (1, 0)) = (cos θ1, sin θ1), where
θ1 = 0, π (same in the following (4)). Out of symmetry, we only consider
f((0,−1), (0, 1)) = (0,±1) and θ1 ∈ (0, π) (If θ1 ∈ (π, 2π) then we can use
the same method below to lead to a contradiction). According to Lemma2, for
∀C ∈ A0W0,∀D ∈ B0W0, we have f(C,D) = W0, which is the same as case 2 in
C2 Mechanism when (yA−yB)/(xA−xB) ∈ [sin θ1/(cos θ1−1), sin θ1/(1+cos θ1)].
When (yA − yB)/(xA − xB) > sin θ1/(1 + cos θ1) or < sin θ1/(cos θ1 − 1), we can
use the same method as (1) to prove W locates at agents with larger y axis,
which is the same as C2 Mechanism. In summary, this case means ( sin θ1

1+cos θ1
)-C2

Mechanism.
(3) f((0,−1), (0, 1)) = (cos θ2, sin θ2) and f((−1, 0), (1, 0)) = (±1, 0), where

θ2 = 0.5π, 1.5π (same in the following (4)). This case is the same as ( cos θ2
1+sin θ2

)-C3
Mechanism. The proof is similar to (2), thus omitted.

(4) f((0,−1), (0, 1)) = (cos θ2, sin θ2) and f((−1, 0), (1, 0)) = (cos θ1, sin θ1).
In fact, this case cannot exist. Let A0(−1, 0), B0(1, 0), A1(0,−1), B1(0, 1). We can
draw a line which can be moved in the space and let it has 2 intersections with
broken lines A0W0B0 and A1W1B1 and the intersections are C0,D0 and C1,D1

respectively. Considering f(C0,D0) = W0 and f(C1,D1) = W1, we find that
considering translational-invariance and scalability, the contradiction is obvious.


�

5 Discussion

In this section we will discuss the general median mechanism and the lower
bound of the maximum cost view.

Mechanism 4: (General Median Mechanism). Given location of n agents, let
W be the output, then in every dimension, W ’s coordinate is equal to agents’
median coordinate in this dimension. If there are 2 median coordinates, then we
select the larger one.

In fact, when there are 2 median coordinates, it does not matter if we select
the larger one or the smaller one.

Lemma 6. The General Median Mechanism in Euclidean space fits Conjecture
1 if and only if dimension m ≤ 2.

Proof. Obviously this mechanism is unanimous, translation-invariant, scalable,
and much literature have proved that it’s strategyproof in Lp space. When m =
1, Conjecture 1 is also obvious.

When m = 2, Let’s recall Theorem 2. If ∃i ∈ N,W = Ai, then for any j ∈ N ,
we have

−−−→
WAi ·−−−→

WAj = 0. If for ∀i ∈ N,W = Ai, then assuming W (0, ..., 0), there
must exists As, At that they locate on different axes, meaning

−−−→
WAs · −−−→

WAt = 0.
When m ≥ 3, we can give an counter-example with 3 agents. Let them

be A1(0, 1,−1, 0, ..., 0), A2(−1, 0, 1, 0, ..., 0) and A3(1,−1, 0, 0, ..., 0). Then the
output is (0, 0, ..., 0). But this is contradict with Conjecture 1. 
�
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In the end, we use our tool to prove a lower bound of 2 in the maximum cost
view.

Lemma 7. In any Lp space and maximum cost view, the lower bound of deter-
ministic strategyproof mechanism is 2.

Proof. Assume f(A,B) = W and A,B are the only two agents, then according
to the tool for the proof of Theorem5, we have f(W,B) = B, which means that
if there two agents located at W and B, then the maximum cost of f is always
at least twice the optimal maximum cost d(W,B)/2. 
�

Many works proves this result in one-dimensional space and we give a simple
proof of the multi-dimensional space.
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