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Abstract. We study the problem of estimating the number of defective
items d within a pile of n elements up to a multiplicative factor of Δ > 1,
using deterministic group testing algorithms. We bring lower and upper
bounds on the number of tests required in both the adaptive and the non-
adaptive deterministic settings given an upper bound D on the defectives
number. For the adaptive deterministic settings, our results show that,
any algorithm for estimating the defectives number up to a multiplicative
factor of Δ must make at least Ω

(
(D/Δ2) log(n/D)

)
tests. This extends

the same lower bound achieved in [1] for non-adaptive algorithms. More-
over, we give a polynomial time adaptive algorithm that shows that our
bound is tight up to a small additive term.

For non-adaptive algorithms, an upper bound of O((D/Δ2)
(log(n/D) + log Δ)) is achieved by means of non-constructive proof.
This improves the lower bound Ω((log D)/(log Δ))D log n) from [1] and
matches the lower bound up to a small additive term.

In addition, we study polynomial time constructive algorithms. We use
existing polynomial time constructible expander regular bipartite graphs,
extractors and condensers to construct two polynomial time algorithms.
The first algorithm makes O((D1+o(1)/Δ2) · log n) tests, and the second
makes (D/Δ2) · Quazipoly (log n) tests. This is the first explicit con-
struction with an almost optimal test complexity.

Keywords: Group testing · Pooling design · Deterministic group
testing

1 Introduction

The problem of group testing is the problem of identifying or, in some cases,
examining the properties of a small amount of items known as defective items
within a pile of elements using group tests. Let X be a set of n items, and let
I ⊆ X be the set of defective items. A group test is a subset Q ⊆ X of items.
The result of the test Q with respect to I is defined by Q(I) := 1 if Q ∩ I �= ∅
and Q(I) := 0 otherwise. While the defective set I is unknown to the algorithm,
in many cases we might be interested in finding the size of the defective set |I|,
or at least an estimation of that value with a minimum number of tests.
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Group testing was originally proposed as a potential solution for economis-
ing mass blood testing during WWII [11]. Since then, group testing approach
has been diversely applied in a wide area of practical applications including
DNA library screening [20], product testing quality control [22], file searching in
storage systems [17], sequential screening of experimental variables [18], efficient
contention algorithms for MAC [17,26], data compression [16], and computations
in data stream model [8]. Recently, during the COVID-19 pandemic outbreak, a
number of researches adopted the group testing paradigm not only to accelerate
mass testing process, but also to dramatically reduce the number of kits required
for testing due to severe shortages in the testing kits supply [14,19,27].

While an up-front knowledge of the value of d or at least an upper bound
on it is required in many of the algorithms aimed at identifying the defective
items, estimating or finding the number of defectives is an interesting problem on
its own as well. Defectives estimation via group testing has been applied vastly
in biological and medical applications [7,13,23–25]. In [24], for example, group
testing algorithms are used to estimate aster-yellow virus transmitters proportion
over the organisms in a natural population of leafhoppers. Similarly, in [25],
the authors estimate the infection rate of the yellow-fever virus in mosquito
population using group testing methods. On the other hand, in [13], group-
testing-based estimation of rare diseases prevalence is employed not only for its
effectiveness but also because it naturally preserves individual anonymity of the
subjects.

Algorithms dedicated for this task might operate in stages or rounds. In each
round, the tests are defined in advance and tested in a single parallel step. Tests
on some round might depend on the test results of the preceding rounds. A single
round algorithm is called non-adaptive algorithm, while a multi-round algorithm
is called adaptive algorithm.

In recent years, there has been an increasing interest in the problem of esti-
mating the number of defective items via group testing [2,3,5,7,9,10,12,21].
The target in some of these papers is to find an estimation d̂ within an additive
factor of ε < 1 such that (1 − ε)d ≤ d̂ ≤ (1 + ε)d. For randomized adaptive
algorithms we have the following results. Falhatgar et.al. [12] give a randomised
adaptive algorithm that estimates d using 2 log log d + O(1/ε2 log 1/δ) queries
in expectation where δ is the failure probability of the algorithm. Bshouty et.
al. [3] modified this result and gave an algorithm that uses (1 − δ) log log d +
O((1/ε2) log 1/δ) expected number of queries. Moreover, they proved a lower
bound of (1 − δ) log log d + Ω((1/ε) log(1/δ)) queries.

For randomized non-adaptive algorithms with constant estimation, Dam-
aschke and Sheikh Muhammad give in [10] a randomized non-adaptive algorithm
that makes O((log(1/δ)) log n) tests and in [2], Bshouty gives the lower bound
Ω(log n/ log log n).

In this paper, we are interested in deterministic adaptive and non-adaptive
algorithms that estimate the defective items set size d up to a multiplicative
factor of Δ > 1. Formally, let |I| := d and let D ≥ d. We say that a deterministic
algorithm A estimates d up to a multiplicative factor of Δ if, given D as an
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Table 1. Upper and lower bounds on the number of tests required
for estimating defectives in deterministic group testing.

Bounds Adaptive/Non-

adapt.

Result Explicit/Non-

expl.

Ref.

Lower B. Non-Adapt. D
Δ2 log n

D
– [1]

Lower B. Adaptive D
Δ2 log n

D
– Ours

Upper B. Adaptive D
Δ2

(
log n

D
+ log Δ

)
Explicit Ours

Upper B. Non-Adapt. log D
log Δ

D log n Non-Expl. [1]

Upper B. Non-Adapt. D
Δ2

(
log n

D
+ log Δ

)
Non-expl. Ours

Upper B. Non-Adapt. D1+o(1)

Δ2 log n Explicita Ours

Upper B. Non-Adapt. D
Δ2 · Quazipoly(log n) Explicit Ours

aThis result is true for Δ > C for some constant C. See Sect. 6.2.

input to the algorithm, it evaluates an estimation d̂ such that d/Δ ≤ d̂ ≤ dΔ.
Bshouty et al. show in [3] that, if no upper bound D is given to the algorithm,
then any deterministic adaptive algorithm (and therefore also non-deterministic
algorithm) for this problem must make at least Ω(n) tests. This is equivalent to
testing all the items. This justifies the fact that any non-trivial efficient algorithm
must have some upper bound D for d.

Agarwal et.al. [1] consider this problem. They first give the lower bound
of Ω((D/Δ2) log(n/D)) queries for any non-adaptive deterministic algorithm.
Moreover, using a non-constructive proof, they give an upper bound of
O (((log D)/(log Δ))D log n) queries.

We further investigate this problem. We bring new lower and upper bounds
on the number of tests required both in adaptive and non-adaptive deterministic
algorithms. For the adaptive deterministic settings, our results show that, any
algorithm for estimating the defectives number up to a multiplicative factor
of Δ must make at least Ω

(
(D/Δ2) log(n/D)

)
tests. This extends the same

lower bound achieved in [1] for non-adaptive algorithms. Furthermore, we give
a polynomial time adaptive algorithm that shows that our bound is tight up to
a small additive term.

For non-adaptive algorithms, we achieve an upper bound of O((D/Δ2)
(log(n/D)+log Δ)) by means of non-constructive proof. This improves the lower
bound O((log D)/(log Δ))D log n) from [1], and matches the lower bound up to
a small additive term.

We then study polynomial time constructive algorithms. For this task, we
use existing polynomial time constructible expander regular bipartite graphs,
extractors and condensers to construct two polynomial time algorithms. The
first algorithm makes O((D1+o(1)/Δ2) · log n) tests, and the second makes
(D/Δ2) · quazipoly (log n) tests. To the best of our knowledge, this is the first
explicit construction with an almost optimal test complexity. Our results are
summarised in Table 1.
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2 Definitions and Preliminary Results

In this section, we give some notations and definition that will be used in this
paper.

Let X = [n] := {1, · · · , n} be a set of items. Let I ⊆ X be a set of defective
items, and let d denote its size, i.e. d = |I|. In the group testing settings, a test
is a subset Q ⊆ X of items. An answer to a test Q with respect to the defective
items set I, is denoted by Q(I), such that Q(I) := 1 if Q∩I �= ∅ and 0 otherwise.
We denote by OI an oracle that for a test Q returns Q(I).

Let A be an algorithm with an access to OI , and let d = |I|. We say that
the algorithm A estimates d up to a multiplicative factor of Δ, if A gets as an
input an upper bound D ≥ d and a parameter Δ > 1, and outputs d̂ such that
d/Δ ≤ d̂ ≤ dΔ. We say that A is an adaptive algorithm, if its queries depend on
the result of previous queries, and non-adaptive if its queries are independent of
previous ones and therefore, can be executed in a single parallel step. We may
assume that D ≥ Δ2, otherwise, the algorithm trivially outputs d̂ = D/Δ. We
note here that Δ ≥ 1+Ω(1), that is, it is greater than a constant that is greater
than 1 and it may depend1 on n and/or D. This is implicit in [1] and is also
constrained in this paper. It is also interesting to investigate this problem when
Δ = 1 + o(n) where o() (small o) is with respect to D and/or n.

We will use the following

Lemma 1. Chernoff’s Bound. Let X1, . . . , Xm be independent random vari-
ables taking values in {0, 1}. Let X =

∑m
i=1 Xi denotes their sum and μ = E[X]

denotes the sum’s expected value. Then

Pr[X > (1 + λ)μ] ≤
(

eλ

(1 + λ)(1+λ)

)μ

≤ e− λ2μ
2+λ ≤

{
e− λ2μ

3 if 0 < λ ≤ 1
e− λμ

3 if λ > 1
. (1)

In particular,

Pr[X > Λ] ≤
(eμ

Λ

)Λ

. (2)

For 0 ≤ λ ≤ 1 we have

Pr[X < (1 − λ)μ] ≤
(

e−λ

(1 − λ)(1−λ)

)μ

≤ e− λ2μ
2 . (3)

Moreover, we will often use the inequality

(n

k

)k

≤
(

n

k

)
≤

k∑

i=0

(
n

i

)
≤

(en

k

)k

. (4)

1 For example Δ = log log n + log D.
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3 Upper Bound for Non-adaptive Deterministic
Algorithms

In this section, we give the upper bound for deterministic non-adaptive algorithm
that estimates d up to a multiplicative factor of Δ. We prove:

Theorem 1. Let D be some upper bound on the number of defective items d
and Δ > 1. Then, there is a deterministic non-adaptive algorithm that makes

O

(
D

Δ2

(
log

n

D
+ log Δ

))

tests and outputs d̂ such that d
Δ ≤ d̂ ≤ dΔ.

To prove the Theorem we need the following:

Lemma 2. Let Δ > 1 and � ≥ 2Δ2. There is a non-adaptive deterministic
algorithm that makes

t = O

(
�

Δ2

(
log

n

�
+ log Δ

))

tests such that,

1. If the number of defectives d is less than �/Δ2, it outputs 0.
2. If it is greater than �/Δ, it outputs 1.

Proof. We choose a constant c such that (1 − Δ2/(c�))�/Δ2
= 1/e. Note that

(
1 − Δ2

2�

)�/Δ2

≥ 1 − Δ2�

2�Δ2
=

1
2

>
1
e

and
(

1 − 2Δ2

�

)�/Δ2

=

((
1 − 2Δ2

�

) �
2Δ2

)2

≤ 1
e2

<
1
e
.

Therefore, such c exists and we have 1/2 ≤ c ≤ 2.

Consider a test Q ⊆ [n] chosen at random where each item i ∈ [n] is chosen
to be in Q with probability Δ2/(c�). Let I be the set of defective items such that
|I| = d, and let Q(I) be the result of the test Q with respect to the set I. Then,

Pr[Q(I) = 0] =
(

1 − Δ2

c�

)d

. (5)

If d ≤ �/Δ2,

Pr[Q(I) = 0] ≥
(

1 − Δ2

c�

)�/Δ2

= e−1, (6)
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if d = 2�/Δ2,

Pr[Q(I) = 0] =
(

1 − Δ2

c�

)2�/Δ2

= e−2, (7)

and if d = �/Δ, we get:

Pr[Q(I) = 0] =

((
1 − Δ2

c�

) �
Δ2

)Δ

= e−Δ. (8)

Let Q1, Q2, . . . , Qt be a sequence of t i.i.d tests such that

t =
c′�

(Δ − 1)2
ln

c′′Δ2n

�

where c′ = 54e2 and c′′ = 4e.
Let

η = e−1

(
1
2

+
1

2Δ

)
.

Consider the following two events:

1. A: There is a set of defectives I of size |I| ≤ �/Δ2 such that the number of
tests with 0 answer is less than ηt.

2. B: There is a set of defectives J of size |J | > �/Δ such that the number of
tests with 0 answer is at least ηt.

Notice that, to prove the lemma it is enough to prove that Pr[A ∨ B] < 1. We
will show that Pr[A],Pr[B] < 1/2.

Let X1, . . . , Xt be random variables such that Xi = 1 if and only if Qi(I) = 0.
Let X be the number of tests that yield the result 0. Therefore, X =

∑t
i=1 Xi

and define μ := E[X].
If |I| = d ≤ �/Δ2, then μ = t · E[Xi] = t · Pr[Xi = 1]. By (6) we have

μ = E[X] ≥ t · e−1. (9)

By (3) in Lemma 1, for λ = 1/2 − 1/(2Δ) we have

Pr[X ≤ ηt] = Pr[X ≤ (1 − λ)te−1] ≤ Pr[X ≤ (1 − λ)μ] ≤ e− λ2μ
2 ≤ e− (1−Δ−1)2t

8e .

Using this result, Eq. (4) and the union bound, we can conclude that

Pr[A] ≤

⎛

⎝
�/Δ2
∑

i=0

(
n

i

)
⎞

⎠ e− (1−Δ−1)2t
8e ≤

(
eΔ2n

�

) �
Δ2

e− (1−Δ−1)2t
8e

=
(

eΔ2n

�

) �
Δ2

e− c′�
8eΔ2 ln c′′Δ2n

� =
(

eΔ2n

�

) �
Δ2

(
c′′Δ2n

�

)− c′�
Δ2

<
1
2
.

On the other hand, for the event B, we have two cases.
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Case I. 1 < Δ ≤ 2.
If there is a set of defectives J of size |J | > �/Δ such that more than ηt of

the tests yield the answer 0, then there is a set of defectives J ′ of size |J ′| = �/Δ
such that more than ηt of the tests answers are 0. Denote by B′ the latter event.
Then, by (8) we have μ = E[X] = e−Δt and for λ = (eΔ−1 − 1)/2 ≥ (Δ − 1)/2,
η′ = (e−1 + e−Δ)/2 ≤ η we get

Pr[B] ≤ Pr[B′] ≤
(

n

�/Δ

)
Pr [X ≥ ηt] ≤

(
n

�/Δ

)
Pr [X ≥ η′t]

=
(

n

�/Δ

)
Pr [X ≥ (1 + λ) μ]

≤
(

eΔn

�

) �
Δ

Pr [X ≥ (1 + λ) μ]

If 1 < Δ ≤ 2 then 0 ≤ λ ≤ 1 and then by (1) in Lemma 1, we have

(
eΔn

�

) �
Δ

Pr [X ≥ (1 + λ)μ] ≤
(

eΔn

�

) �
Δ

e−λ2μ/3

≤
(

eΔn

�

) �
Δ

e−(Δ−1)2μ/12 since λ ≥ (Δ − 1)/2

=
(

eΔn

�

) �
Δ

e−(Δ−1)2e−Δt/12

=
(

eΔn

�

) �
Δ

(
c′′Δ2n

�

)−c′�e−Δ/12

≤
(

2en

�

)� (
c′′n
�

)−(c′e−2/12)�

<
1
2

1 ≤ Δ < 2

Case II. Δ > 2.
In this case we have �/Δ > 2�/Δ2. Therefore, if there is a set of defectives J

of size |J | > �/Δ such that more than ηt of the tests yield the answer 0, then
there is a set of defectives J ′ of size |J ′| = 2�/Δ2 such that more than ηt of the
tests answers are 0. Denote by B′′ the latter event. By (7), μ = E[X] = e−2t.
Let λ = 1/3 − 1/(3Δ) < 1. Then ηt > (1 + λ)μ. By (1) in Lemma 1, we have

Pr[X ≥ ηt] ≤ Pr[X ≥ (1 + λ)μ] ≤ e− λ2μ
3 ≤ e− (1−Δ−1)2t

27e2 .

Then

Pr[A] ≤ Pr[B′′] ≤
(

n

2�/Δ2

)
e− (1−Δ−1)2t

27e2 ≤
(

eΔ2n

2�

) 2�
Δ2

e− (1−Δ−1)2t

27e2

=
(

eΔ2n

2�

) 2�
Δ2

e− c′�
27e2Δ2 ln c′′Δ2n

� =
(

eΔ2n

2�

) 2�
Δ2

(
c′′Δ2n

�

)− c′�
27e2Δ2

<
1
2
.
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We are now ready to prove Theorem 1.
Let A(�,Δ) be the algorithm from Lemma 2. Then, A(�,Δ) makes at most

c�

Δ2
log

Δn

�
(10)

queries for some constant c, and

1. If A(�,Δ) = 1, then d ≥ �
Δ2 .

2. If A(�,Δ) = 0, then d ≤ �
Δ .

Consider the algorithm T (n,D,Δ) that runs A(D/Δi,Δ) for all i =
0, . . . , 
log D/ log Δ�. Let r be the minimum integer such that A(D/Δr,Δ) = 1.
Algorithm T (n,D,Δ) then outputs d̂ = D/Δr+1. See algorithm T in Fig. 1.

T (n, D, Δ)
1) r ← 0.
2) For each i = 0, 1, . . . , �logD/ logΔ� do:

2.1) R ← A(D/Δi, Δ)
2.2) If (R = 1) then

r ← i

d̂ ← D/Δr+1

Output (d̂).

Fig. 1. Algorithm T

We now prove:

Lemma 3. Algorithm T (n,D,Δ) is deterministic non-adaptive that makes

O

(
D

Δ2
log

(
Δn

D

))

tests and outputs d̂ that satisfies

d

Δ
≤ d̂ ≤ Δd.

Proof. For i = 0, if A(D/Δi,Δ) = 1 then d ≥ D/Δ2. Then d̂ = D/Δ ≤ Δd and
since D ≥ d we also have d̂ = D/Δ ≥ d/Δ.

For i > 0, if A(D/Δi−1,Δ) = 0 and A(D/Δi,Δ) = 1 then d ≤ D/Δi and
d ≥ D/Δi+2. Then d̂ = D/Δi+1 ≤ Δd and d̂ ≥ d/Δ.
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Let q = 
log D/ log Δ�. Let t denote the number of queries performed by
algorithm T (n,D,Δ). By (10), the number of tests is at most

q∑

i=0

cD

ΔiΔ2
log

nΔi+1

D
≤ cD

Δ2

∞∑

i=0

1
Δi

log
nΔi+1

D

=
cD

Δ2

(
(
log

n

D

) ∞∑

i=0

1
Δi

+ (log Δ)
∞∑

i=0

i + 1
Δi

)

≤ cD

Δ2

(
Δ

Δ − 1
log

n

D
+

Δ2

(Δ − 1)2
log Δ

)
.

For the case when Δ = 1 + Θ(1) we get

t = O
(
D log

n

D

)

and for the case when Δ = ω(1) we get

t = O

(
D

Δ2

(
log

n

D
+ log Δ

))
.

4 Lower Bound for Adaptive Deterministic Algorithm

In this section, we prove the following lower bound.

Theorem 2. Any deterministic adaptive group testing algorithm that given D >
d, outputs d̂ that satisfies d/Δ ≤ d̂ ≤ Δd must make at least

Ω

(
D

Δ2
log

n

D

)

queries.

For the proof, we use the following from [3].

Lemma 4. Let A be a deterministic adaptive algorithm that for a defective sets
I ⊂ [n] makes the tests T I

1 , T I
2 . . . , T I

w(I) and let s(I) be the sequence of answers to
these tests. If M = |{s(I)|I ⊆ [n]}| then the test complexity of A is maxI w(I) ≥
log M .

The following Lemma assists us to prove the result declared by Theorem 2.

Lemma 5. Any deterministic adaptive algorithm such that, if the number of
defectives d is less than or equal d1 it outputs 0 and if it is greater than d2 it
outputs 1, must make

Ω

(
d1 log

n

d2

)
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tests.
In particular, when d1 = �/Δ2 and d2 = �/Δ we get

Ω

(
�

Δ2

(
log

n

�
+ log Δ

))

tests.

Proof. Let A be such algorithm. Let s(I) be the sequence of answers to the
tests of A when the set of defective items is I. Consider a set I of size d1 and
let J = {J ⊆ [n] : |J | = d1, s(J) = s(I)}. Let I ′ = ∪J∈J J . We claim that
s(I ′) = s(I). Suppose for the contrary, s(I ′) �= s(I). Then, since I ⊆ I ′, there
is a test Q ⊆ [n] that is asked by A that gives answer 0 to I and 1 to I ′. Since
I ′ ∩ Q �= ∅, there is a subset J ′ ∈ J such that J ′ ∩ Q �= ∅ and therefore Q gives
answer 1 to J ′. Then s(J ′) �= s(I) and we get a contradiction.

Since s(I ′) = s(I) and algorithm A outputs 0 to I, it also outputs 0 to I ′.
Therefore, |I ′| ≤ d2. Therefore |J | ≤ N :=

(
d2
d1

)
. That is, for every possible

sequence of answers s′ of the algorithm A, there is at most N sets of size d1
that get the same sequence of answers. Since there are L :=

(
n
d1

)
such sets, the

number of different sequences of answers that A might have must be at least
L/N . By Lemma 4, the number of tests that the algorithm makes is at least

log

(
n
d1

)

(
d2
d1

) ≥ log
(

n

ed2

)d1

= Ω

(
d1 log

n

d2

)
.

The conclusions established by Lemma 5 show that the upper bound from
Lemma 2 is tight. Moreover, using these results, we provide the following proof
for Theorem 2.

Proof. Let d1 = D/Δ2 − 1 and d2 = D. For sets of size less than or equal d1
the algorithm returns d1/Δ ≤ d̂ ≤ Δd1 and for sets of equal to d2 the algorithm
returns d2/Δ < d̂ ≤ Δd2. Since Δd1 < d2/Δ, the above intervals are disjoint.
So, the algorithm can distinguish between sets of size less that or equal to d1
and sets of size greater than d2. By Lemma 5 the algorithm must make at least

Ω

(
D

Δ2
log

n

D

)

tests.

5 Polynomial Time Adaptive Algorithm

In this section, we prove:

Theorem 3. Let D be some upper bound on the number of defective items d
and Δ > 1. Then, there is a linear time deterministic adaptive algorithm that
makes

O

(
D

Δ2

(
log

n

D
+ log Δ

))

tests and outputs d̂ such that d
Δ ≤ d̂ ≤ dΔ.
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We first describe the algorithm. The algorithm gets as an input the set of
items X = [n] and splits it into two equally-sized disjoint sets Q1 and Q2. The
algorithm asks the queries defined by Q1 and Q2 and proceeds in the splitting
process on the sets that yielded positive answers only. We call these sets defective
sets. As long as the algorithm gets less than D/Δ2 distinct defective sets, it
continues to split and test. Two cases can happen. Either it gets D/Δ2 defective
sets and then the algorithm outputs d̂ = D/Δ, or the number of the defective
sets is always less than D/Δ2 and then, the algorithm finds all the defective items
and returns their exact number. The algorithm is given in Fig. 2. The algorithm
invokes the procedure Split(X) that on an input X = {a1, a2, . . . , an}, it returns
the set W where W := {X1,X2} such that Xi ⊆ X, X1 = {a1, a2, . . . , a�n/2�},
X2 = {a�n/2�+1, . . . , an} if |X| ≥ 2, and W := {X} otherwise.

Adaptive-dEstimate (OI , X, Δ, D)
1) Q ← X, S ← ∅
2) While (|Q| ≤ D/Δ2) do:

2.1) For each Qi ∈ Q{
Q

(1)
i , Q

(2)
i

}
← Split(Qi)

If (Q(1)
i (I) = 1) then S ← S ∪ {Q

(1)
i }

If (Q(2)
i (I) = 1) then S ← S ∪ {Q

(2)
i }

2.2) If ∀Si ∈ S, |Si| = 1
d̂ ← |S|
Output (d̂)

Else
Q ← S, S ← ∅.

3) d̂ ← |Q| · Δ.
4) Output (d̂)

Fig. 2. Algorithm Adaptive-dEstimate to estimate the number of defective items.

Lemma 6. Algorithm Adaptive-dEstimate is a deterministic adaptive algo-
rithm that makes

2
D

Δ2
log

nΔ2

D
= O

(
D

Δ2

(
log

n

D
+ log Δ

))

tests and outputs an estimation d̂ such that:

d

Δ
≤ d̂ ≤ dΔ.

Proof. If d ≤ D
Δ2 , then the splitting process in step 2 of the algorithm proceeds

until each defective item belongs to a distinct set. Eventually, the condition in
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step 2.2 is met and the algorithm outputs the exact value of d. If d > D/Δ2, then
the splitting process stops when the number of defective sets |Q| exceeds D/Δ2.
The algorithm halts and outputs d̂ = |Q|Δ. Obviously, |Q| ≤ d. Therefore,
d̂ = |Q|Δ ≤ dΔ. Moreover, |Q| > D/Δ2 ≥ d/Δ2 which implies that d̂ ≥ d/Δ.

The number of iterations cannot exceed log n iterations. In the first
log(D/Δ2) iterations, in the worst case scenario, the algorithm splits its cur-
rent set Qi on each iteration into two sets Q

(1)
i and Q

(2)
i such that Q

(1)
i (I) =

Q
(2)
i (I) = 1. Therefore, the number of tests that the algorithm asks over all the

first log(D/Δ2) iterations is at most

log(D/Δ2)∑

i=1

2i ≤ 2
D

Δ2
.

Since |Q| ≤ D/Δ2, in the other log n − log(D/Δ2) iterations, the algorithm
makes at most 2D/Δ2 tests each iteration. So, the total number of tests is at
most

2
D

Δ2

(
log n − log

D

Δ2

)
+ 2

D

Δ2
= O

(
D

Δ2
log

nΔ2

D

)

.

6 Polynomial Time Non-adaptive Algorithm

In this section, we show how to use expanders, condensers and extractors to con-
struct deterministic non-adaptive algorithms for defectives number estimation.
We prove:

Theorem 4. Let D be some upper bound on the number of defective items d and
Δ > 1. Then, there is a polynomial time deterministic non-adaptive algorithm
that makes

min
(
Do(1), 2O(log3(log n))

)
· D

Δ2
log n

tests and outputs d̂ such that d
Δ ≤ d̂ ≤ dΔ.

6.1 Algorithms Using Expanders

Let G be a bipartite graph G = G(L,R,E) with left vertices L = [n], right
vertices R = [m] and edges E ⊆ L × R. For each edge (i, j) ∈ E, it holds that
the endpoint i ∈ L and j ∈ R. For a vertex v ∈ L, define Γ (v) to be the set of
the neighbours of v in G i.e. Γ (v) := {u ∈ R|(v, u) ∈ E}. For a subset S ⊆ L,
we define Γ (S) to be the set of neighbours of S, meaning Γ (S) := ∪v∈SΓ (v).
For a vertex v ∈ L, the degree of v is defined as deg(v) := |Γ (v)|. We say that a
bipartite graph G = G(L,R,E) is a (k, a)-expander δ-regular bipartite graph if,
the degree of every vertex in L is δ, and for every left-subset S ⊆ L of size at
most k, we have |Γ (S)| ≥ a|S|.
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Lemma 7. Let X = [n] be a set of items and I ⊆ [n] is the set of defective
items such that |I| = d is unknown to the algorithm. Let G = G(L,R,E) be a
(k, a)-expander δ-regular bipartite graph with |L| = n and |R| = m. Then, there
is a deterministic non-adaptive algorithm A, such that for n items, it makes m
tests and satisfies:

1. If |I| < ak/δ, then A outputs 0.
2. If |I| ≥ k, then A outputs 1.

Proof. For every j ∈ R, we define the test T (j) = {i|(i, j) ∈ E}. The number of
tests is |R| = m. If |I| ≥ k, then |Γ (I)| ≥ ak. Therefore, at least ak tests will
give positive answer 1. If |I| < ak/δ, then, since the degree of every vertex in L
is δ, we have |Γ (I)| ≤ δ|I| < ak. This shows that, for this case, at most ak − 1
tests give the answer 1. Hence, we can distinguish between the two cases.

Following the same proof of Lemma 3 with algorithm T in Fig. 1, we have:

Lemma 8. Let A(�,Δ) be a deterministic non-adaptive algorithm such that, for
n items, it makes m(�,Δ) tests and satisfies:

1. If |I| < �/Δ2, then A outputs 0.
2. If |I| ≥ �/Δ, then A outputs 1.

Then, there is a deterministic non-adaptive algorithm T such that, given D > d,
for n items it makes

�log D/ log Δ	∑

i=0

m

(
D

Δi
,Δ

)

tests and outputs d̂ that satisfies d/Δ ≤ d̂ ≤ Δd.

The parameters of the explicit construction of a (k, a)-expander δ-regular
bipartite graph from [4] are summarised in the following lemma.

Lemma 9. For any k > 0 and 0 < ε < 1, there is an explicit construction of a
(k, a)-expander δ-regular bipartite graph with

m = O(kδ/ε), δ = 2O(log3(log n/ε)), a = (1 − ε)δ.

We now prove:

Lemma 10. There is a polynomial time deterministic non-adaptive algorithm
that makes

D

Δ2
· 2O(log3(log n)) =

D

Δ2
· quasipoly(log n)

tests and outputs d̂ that satisfies

d

Δ
≤ d̂ ≤ Δd.
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Proof. We use the expander in Lemma 9. Recall that Δ = 1 + Ω(1). Let r =
min(Δ, 2), ε = 1 − 1/r and k = r�/Δ2. Then a = δ/r = 2O(log3 log n) and
m = m(�,Δ) = (�/Δ2)2O(log3 log n). By Lemma 7, there is a deterministic non-
adaptive algorithm A such that for n items, it makes m(�,Δ) tests and

1. If |I| < ak/δ = �/Δ2 then A outputs 0.
2. If |I| ≥ k = r�/Δ2 then A outputs 1.

Algorithm A trivially satisfies the first condition required by Lemma 8. Consider
item 2. If Δ < 2 then r = Δ and then if |I| ≥ k = �/Δ then A outputs 1. If Δ > 2
then r = 2 and then if |I| ≥ k = 2�/Δ2 then A outputs 1. Since 2�/Δ2 < �/Δ,
if |I| ≥ �/Δ then A outputs 1.

Now by Lemma 8, there is a deterministic non-adaptive algorithm T such
that, given D > d, for n items, it makes

�log D/ log Δ	∑

i=0

m

(
D

Δi
,Δ

)
=

D

Δ2
· 2O(log3(log n))

tests and outputs d̂ that satisfies d/Δ ≤ d̂ ≤ Δd.

6.2 Algorithms Using Extractors and Condensers

Extractors are functions that convert weak random sources into almost-perfect
random sources. We use these objects to construct a non-adaptive algorithm for
estimating d. We start with some definitions.

Definition 1. Let X be a random variable over a finite set S. We say that X
has min-entropy at least k if Pr[X = x] ≤ 2−k for all x ∈ S.

Definition 2. Let X and Y be random variables over a finite set S. We say
that X and Y are ε − close if maxP⊆S |Pr[X ∈ P ] − Pr[Y ∈ P ]| ≤ ε.

We denote by U� the uniform distribution on {0, 1}�. The notations Prx∈B or
Ex∈B stand for the fact that the probability and the expectation are taken when
x is chosen randomly uniformly from B.

Definition 3. A function F : {0, 1}n̂ × {0, 1}t̂ → {0, 1}m̂ is a k →ε k′ con-
denser if for every X with min-entropy at least k and Y uniformly distributed
on {0, 1}t̂, the distribution of (Y, F (X,Y )) is ε-close to a distribution (Ut̂, Z)
with min-entropy t̂+k′. A condenser is called (k, ε)-lossless condenser if k′ = k.
A condenser is called (k, ε)-extractor if m̂ = k′.

Let N̂ = {0, 1}n̂, T̂ = {0, 1}t̂ and M̂ = {0, 1}m̂, and let F : N̂ × T̂ → M̂ be a
k →ε k′ condenser. Consider the 2t̂ × 2n̂ matrix M induced by F . That is, for
r ∈ T̂ and s ∈ N̂ , the entry Mr,s is equal to F (s, r). For s ∈ N̂ , let M(s) be the
sth column of M. Then, M(s)

r = Mr,s = F (s, r).
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Definition 4. Let Σ be a finite set. An n-mixture over Σ is an n−tuple S :=
(S1, · · · , Sn) such that for all i ∈ [n], Si ⊆ Σ.

Using these definitions and notations, we restate the result proved by Cher-
aghchi [6] (Theorem 9) in the following lemma.

Lemma 11. Let F : {0, 1}n̂ ×{0, 1}t̂ → {0, 1}m̂ be a k →ε k′ condenser. Let M
be the matrix induced by F . Then, for any 2t̂−mixture S = (S1, · · · , S2t̂) over
M̂ := {0, 1}m̂, the number of columns s in M that satisfies

Pr
r∈T̂

[M(s)
r ∈ Sr] >

Er∈T̂ [|Sr|]
2k′ + ε

is less than 2k.

Equipped with Lemma 11, we prove:

Lemma 12. If there is a k →ε k′ condenser F : {0, 1}n̂ × {0, 1}t̂ → {0, 1}m̂

then, there is a deterministic non-adaptive algorithm A for n = 2n̂ items that
makes m = 2t̂+m̂ tests and satisfies the following.

1. If the number of defectives is less than (1 − ε)2k′
then A outputs 0.

2. If the number of defectives is greater than or equal 2k + 1 then A outputs 1.

Proof. Consider the matrix M induced by the condenser F as explained above.
We define the test matrix T from M as follows. Let x ∈ {0, 1}m̂. Define e(x) ∈
{0, 1}2m̂

such that e(x)y = 1 if and only if x = y, where the bits in e(x) are
indexed by the elements of {0, 1}2m̂

. Each row r in the matrix M is replaced
by 2m̂ rows (in T ) such that in each entry Mr,s ∈ {0, 1}m̂ is replaced by the
column vector e(Mr,s)T ∈ {0, 1}2m̂

. The rows of the matrix T are indexed by
T̂ × M̂ . Let T (i) denote the ith column of T . Therefore, for r ∈ T̂ and j ∈ M̂ ,
the row (r, j) in the matrix T is denoted by T(r,j). Moreover, the ith entry of the
row T(r,j) is denoted by T(r,j),i and T(r,j),i = T (i)

(r,j) = 1 if and only if Mr,i = j.
The size of the test matrix T is m × n.

Let the defective elements be si1 , . . . , si�
and let y ∈ {0, 1}m indicate the tests

result. Then, y is equal to T (si1 ) ∨· · ·∨T (si�
). Let S = (Sr)r∈T̂ be a 2t̂−mixture

over {0, 1}m̂ where for all r ∈ T̂ , Sr = {j ∈ {0, 1}m̂|y(r,j) = T (si1 )

(r,j) ∨· · ·∨T (si�
)

(r,j) =
1}. It is easy to see that:

1. |Sr| ≤ �. This is because, by the definition of Sr, j ∈ Sr if and only if y(r,j) = 1.

The entry y(r,j) gets the value 1 if at least one of the entries T (si1 )

(r,j) , · · · , T (si�
)

(r,j)

is 1. Any row in T (si1 ), · · · , T (si�
) has exactly one entry that is equal to 1

in all the 2m̂ rows indexed by r. Hence, each row can cause one item to be
inserted to Sr.

2. For any sij
∈ {si1 , . . . , si�

}, we have Prr∈T̂ [M(sij
)

r ∈ Sr] = 1
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3. Given the matrix M, its test matrix T and the observed result y, for any
column s the probability Prr∈T̂ [M(s)

r ∈ Sr] can be easily computed.

If the number of defectives is less than (1 − ε)2k′
then, by Lemma 11, all

columns, except for at most 2k columns, satisfy

Pr
r∈T̂

[M(s)
r ∈ Sr] ≤

Er∈T̂ [|Sr|]
2k′ + ε <

Er∈T̂ [(1 − ε)2k′
]

2k′ + ε = 1.

So for less than 2k + 1 columns we have Prr∈T̂ [M(s)
r ∈ Sr] = 1. If the number of

defectives is greater than or equal 2k+1, then for the columns of the defectives we
have Prr∈T̂ [M(s)

r ∈ Sr] = 1. So for more than 2k columns we have Prr∈T̂ [M(s)
r ∈

Sr] = 1.

The following Lemma summarises the state of the art result due to
Guruswami et. al. [15] on explicit construction of expanders.

Lemma 13. For all positive integers n̂, k such that n̂ ≥ k, and all ε > 0, there
is an explicit (k, ε) extractor F : {0, 1}n̂ × {0, 1}t̂ → {0, 1}m̂ with t̂ = log n̂ +
O(log k log (k/ε)) and m̂ = k′ = k − 2 log 1/ε − c for some constant c.

We now prove:

Lemma 14. There is a constant C such that for every Δ > C, there is a polyno-
mial deterministic non-adaptive algorithm that estimates the number of defective
items in a set of n items up to a multiplicative factor of Δ and asks

O

(
D1+o(1)

Δ2
log n

)

queries.

Proof. We use the notations from Lemma 13. Let C = 27 · 2c−2. We choose
ε = 2/3 and k′ such that (1 − ε)2k′

= �/Δ2. Then

2k = 2k′+2 log(1/ε)+c = 27 · 2c−2 �

Δ2
<

�

Δ

By Lemma 12, there is a deterministic non-adaptive algorithm A for n = 2n̂

items that makes

m = 2t̂+m̂ = n̂2O(log k log(k/ε)) �

(1 − ε)Δ2
= 2log

2 log(�/Δ) �

Δ2
log n

tests that satisfies the following:

1. If the number of defectives is less than (1 − ε)2k′
= �/Δ2 then A outputs 0.

2. If the number of defectives is greater than or equal 2k + 1 then A outputs 1
and, since 2k < �/Δ, in particular, if the number of defectives is greater than
or equal �/Δ then A outputs 1.
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By Lemma 8, the result follows.

A similar work by Capalbo et al. [4] gives an explicit construction of a lossless
condenser is summarised in the following lemma:

Lemma 15. For all positive integers n̂, k and all ε > 0, there is an explicit
lossless condenser F : {0, 1}n̂ × {0, 1}t̂ → {0, 1}m̂ with t̂ = O(log3(n̂/ε)) and
m̂ = k + log(1/ε) + O(1).

The construction from Lemma 15 yields a result that is similar to the one estab-
lished in Lemma 14.
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