
Propositional Projection Temporal Logic
Specification Mining

Nan Zhang, Xiaoshuai Yuan, and Zhenhua Duan(B)

Institute of Computing Theory and Technology, and ISN Laboratory,
Xidian University, Xi’an 710071, China

nanzhang@xidian.edu.cn, yuanxiaoshuai@stu.xidian.edu.cn,
zhhduan@mail.xidian.edu.cn

Abstract. This paper proposes a dynamic approach of specification
mining for Propositional Projection Temporal Logic (PPTL). To this
end, a pattern library is built to collect some common temporal rela-
tion among events. Further, several algorithms of specification mining
for PPTL are designed. With our approach, PPTL specifications are
mined from a trace set of a target program by using patterns in the
library. In addition, a specification mining tool PPTLMiner support-
ing this approach is developed. In practice, given a trace set and user
selected patterns, PPTLMiner can capture PPTL specifications of target
programs.

Keywords: Propositional projection temporal logic · Pattern · Trace ·
Specification mining

1 Introduction

A software system specification is a formal description of the system require-
ments. Formal languages are often employed to write specifications so as to
prevent the ambiguity written in natural languages. The common used formal
languages include Temporal Logic (TL) and Finite State Automata (FSA). Soft-
ware system specification can be used to test and verify the correctness and
reliability of software systems [13]. However, due to various kinds of reasons, a
great number of software systems lack formal specifications. In particular, for
most of legacy software systems, formal specifications are missed. This makes the
maintenance of software systems difficult. To fight this problem, various kinds
of specification mining approaches are proposed [10–12,14,15,17,19–21].

Walkinshaw et al. [19] present a semi-automated approach to inferring FSAs
from dynamic execution traces that builds on the QSM algorithm [8]. This algo-
rithm infers a finite state automaton by successively merging states. Lo et al.

This research is supported by National Key Research and Development Program of
China under Grant No. 2018AAA0103202, National Natural Science Foundation of
China under Grant Nos. 61751207 and 61732013, and Shaanxi Key Science and Tech-
nology Innovation Team Project under Grant No. 2019TD-001.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 289–303, 2020.
https://doi.org/10.1007/978-3-030-64843-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_20

290 N. Zhang et al.

propose Deep Specification Mining (DSM) approach that performs deep learn-
ing for mining FSA-based specifications [11]. FSA specifications are intuitive
and easily to be used for verifying and testing programs. However, most of FSA
specification mining approaches suffer from accuracy and correctness for repre-
senting properties of programs. Yang et al. [21] present an interesting work on
mining two-event temporal logic rules (i.e., of the form G(a → XF (b)), where
G, X and F are LTL operators, which are statistically significant with respect
to a user-defined “satisfaction rate”. Wasylkowski et al. [20] mine temporal rules
as Computational Tree Logic (CTL) properties by leveraging a model checking
algorithm and using concept analysis. Lemieux et al. [12] propose an approach
to mine LTL properties of arbitrary length and complexity. Similar to the above
research work, most of specification mining approaches employ LTL and CTL as
the property description languages. Due to the limitation of the expressiveness of
LTL and CTL, some temporal properties such as periodic repetition properties
cannot be characterized.

Since the expressiveness of Propositional Projection Temporal Logic (PPTL)
is full regular [3,18], in this paper, we propose a dynamic approach to mining
PPTL properties based on a pattern library. PPTL contains three primitive tem-
poral operators: next (©), projection (prj) and chop-plus (+). Apart from some
common temporal properties that can be formalized in LTL and CTL, PPTL
is able to describe two other kinds of properties: interval sensitive properties
and periodic repetition properties. With the proposed approach, we abstract
API/method calls as events. A trace is a sequence of API/method calls occurred
during program execution. Daikon [1] is used to generate raw traces first, then
a tool DtraceFilter we developed is employed to further refine the traces. Pat-
terns are used to characterize common temporal relations among events. Two
categories of patterns, Occurrence and Order, are used. These patterns are pre-
defined in a pattern library. The proposed mining algorithms require two inputs:
an instantiated pattern formula P and a refined execution trace τ . To obtain
an instantiated pattern formula, we need to specify a pattern formula which
can be either a user-defined one or a predefined one in the library. The pattern
is instantiated by substituting atomic propositions with concrete events. After
pattern instantiation, several mining algorithms based on PPTL normal form
[3–7] are employed to recursively check whether τ satisfies P .

The contribution of the paper is three-fold. First, we propose a PPTL tem-
poral rule specification mining approach so that full regular properties can be
mined. Second, we develop a tool PPTLMiner which supports the proposed min-
ing approach. Third, we build a pattern library to cover all common patterns
accumulated from literatures and abstracted from the existing software systems.
The library is open, user-editable and in constant expansion and growth.

This paper is organized as follows. In the next section, PPTL is briefly intro-
duced. In Sect. 3, the trace generation and the construction of the pattern library
are presented. In Sect. 4, the overall framework of PPTLMiner and key algo-
rithms are elaborated. Finally, conclusions are drawn in Sect. 5.

Propositional Projection Temporal Logic Specification Mining 291

2 Propositional Projection Temporal Logic

In this section, we briefly introduce our underlying logic, Propositional Projec-
tion Temporal Logic (PPTL), including its syntax and semantics. It is used to
describe specifications of programs. For more detail, please refer to [3,7].

Syntax of PPTL. Let Prop be a set of atomic propositions and p ∈ Prop. The
syntax of PPTL is inductively defined as follows.

P ::= p | © P | ¬P | P ∨ Q | (P1, ..., Pm) prj Q | P+

where P1, ..., Pm, P and Q are well-formed PPTL formulas. Here, © (next), prj
(projection) and + (chop-plus) are primitive temporal operators.

Semantics of PPTL. Let B = {true, false} and N be the set of non-negative
integers. Let ω denote infinity. PPTL formulas are interpreted over intervals. An
interval σ is a finite or infinite sequence of states, denoted by σ = 〈s0, s1, . . .〉.
A state si is a mapping from Prop to B. An interpretation I = (σ, k, j) is
a subinterval 〈sk, . . . , sj〉 of σ with the current state being sk. An auxiliary
operator ↓ is defined as σ ↓ (r1, . . . , rm) = 〈st1 , st2 , . . . , stn〉, where t1, . . . , tn
are obtained from r1, . . . , rm by deleting all duplicates. That is, t1, . . . , tn is the
longest strictly increasing subsequence of r1, . . . , rm. The semantics of PPTL
formulas is inductively defined as a satisfaction relation below.
(1) I |= p iff sk[p] = true.
(2) I |= ©P iff (σ, k + 1, j) |= P .
(3) I |= ¬P iff I 	|= P .
(4) I |= P ∨ Q iff I |= P or I |= Q.
(5) I |= (P1, . . . , Pm) prj Q iff there exist m integers k = r0 ≤ r1 ≤ . . . ≤ rm ≤ j
such that (σ, rl−1, rl) |= Pl for all 1 ≤ l ≤ m, and one of the following two cases
holds:
• if rm = j, there exists rh such that 0 ≤ h ≤ m and σ ↓ (r0, . . . , rh) |= Q;
• if rm < j, then σ ↓ (r0, . . . , rm) · σ(rm+1..j) |= Q.
(6) I |= P+ iff there exist m integers k = r0 ≤ r1 ≤ . . . ≤ rm = j (m ∈ N) such
that (σ, rl−1, rl) |= P for all 1 ≤ l ≤ m.
Derived Formulas. Some derived formulas in PPTL are defined in Table 1.

Operator Priority. To avoid an excessive number of parentheses, the prece-
dence rules shown in Table 2 are used, where 1 = highest and 9 = lowest.

Definition 1 (PPTL Normal Formal). Let Q be a PPTL formula and Qp

denote the set of atomic propositions appearing in Q. Q is in normal form if Q
has been rewritten as

Q ≡
n0∨

j=1

(Qej ∧ ε) ∨
n∨

i=1

(Qci ∧ ©Q′
i)

where Qej ≡ ∧m0
k=1 ˙qjk, Qci ≡ ∧m

h=1 ˙qih, l = |Qp|, 1 ≤ n ≤ 3l, 1 ≤ n0 ≤ 3l,
1 ≤ m ≤ l, 1 ≤ m0 ≤ l; qjk, qih ∈ Qp, for any r ∈ Qp, ṙ means r or ¬r; Q′

i is a
general PPTL formula.

292 N. Zhang et al.

Table 1. Derived formulas

Table 2. Operator priority

1. ¬ 2. +, ∗ 3. ©,
⊙

, ♦, �
4. ∧ 5. ; 6. ∨
7. prj 8. || 9. →, ↔

In some circumstances, for convenience, we write Qe∧ε instead of
∨n0

j=1(Qej∧
ε) and

∨r
i=1(Qi ∧ ©Q′

i) instead of
∨n

i=1(Qci ∧ ©Q′
i). Thus,

Q ≡ (Qe ∧ ε) ∨
r∨

i=1

(Qi ∧ ©Q′
i)

where Qe and Qi are state formulas. The algorithm of translating a PPTL for-
mula into its normal form can be found in [4–6].

3 Pattern Library Construction and Trace Generation

Our specification mining algorithm relies on two inputs: a pattern and a program
execution trace. A pattern is a property template in which the atomic proposition
symbols need to be instantiated as events (namely, API or method calls) occurred
during program execution. A trace is a sequence of method calls in the execution
of a program. In this section, we present how to build the pattern library and
traces.

3.1 Pattern and Pattern Library

Patterns are abstracted from common software behaviors and used to describe
occurrence of events or states during program execution [9]. A pattern is a logical
representation of certain event relation. The APIs and methods in a target
program are defined as events. We say that an event occurs whenever it is called
in the execution of the program. In the following, we define a quadruples to
represent and store patterns.

Propositional Projection Temporal Logic Specification Mining 293

Definition 2 (Pattern). A pattern T =< C,N,R,A > is a tuple where C is a
pattern category indicating occurrence or order of events, N a pattern name, R
a PPTL formula, and A an annotation.

Following Dwyer et al.’s SPS [9] and Autili et al.’s PSP framework [2], we
also classify patterns into two categories, Occurrence and Order.

The Occurrence category contains 18 patterns that indicate presence or
absence of certain events or states during program execution. For instance, (1)
Absence means that an event never happens; (2) Universality indicates that an
event always occurs during program execution; (3) Existence shows that an event
occurs at least once during program execution; and (4) Bounded Existence tells
us that an event has a limited number of occurrences during program execution,
e.g. event f.open() occurs twice.

The Order category contains 19 patterns that represent relative temporal
orders among multiple events or states occurred during program execution. For
example, (1)“s precedes p” indicates that if event p occurs, event s definitely
occurs before p; (2) “s responds p” means that if event p occurs, event s definitely
occurs after p; (3)Chain (s, t) means that a combination chain of events s and
t. (s, t) precedes p means that if event p happens, chain events (s, t) certainly
happen before p, and (s, t) responds p means that if event p happens, (s, t)
certainly responds to p [2,9].

Pattern Library. A pattern library L is a set containing all patterns p we
collected. After an in-depth investigation of the existing literature and programs
specified behavior characteristics, we build a pattern library and some patterns
are shown in Table 3 and Table 4.

Table 3. Pattern library - occurrence category

No. Pattern Name PPTL Formula Annotation

1 Universality �p Event p always occurs

2 Absence �¬p Event p never occur

3 Existence ♦p Event p occurs at least once

4 Frequency �♦p Event p occurs frequently

5 Both Occur ♦p ∧ ♦q Events p and q both occur

6 Simultaneity ♦(p ∧ q) Events p and q occur at the same time

7 Prefix of Trace �♦p;more Event p occurs frequently at a prefix of a trace

8 Suffix of Trace ♦�p Event p occurs continuously at a suffix of a trace

3.2 Trace Generation

We concern only specifications of temporal relations among the methods or API
calls occurred during program execution.

294 N. Zhang et al.

Table 4. Pattern library - order category

No. Pattern Name PPTL Formula Annotation

1 Precedence (1-1) ♦p → (�¬p; s) Event s takes precedence over event p

2 Response (1-1) �(s → ©♦p) Event p responds to event s

3 Until (�p; ©s) ∨ s Event p occurs until event s occurs

4 Response Invariance �(p → ©�s) If p has occurred, then in response s holds continually

5 Chop �p; ©�q There exists a time point t such that event p occurs

continuously before t and event q continuously after t

6 Never Follow �(p → ⊙ �¬q) Event p is never followed by event q

Definition 3 (Trace). A trace is a sequence of methods or API calls (namely
events) with parameters.

Example 1. A trace of a program using stack structure.
trace τ1 = 〈StackAr(int), isFull(), isEmpty(), top(), isEmpty(), topAndPop(),
isEmpty(), isFull(), isEmpty(), top(), isEmpty(), push(java.lang.Object),
isFull()〉
Example 2. A trace of a program manipulating files.
trace τ2 = 〈open(f1), write(f1), read(f1), close(f1), open(f2), delete(f1),
read(f2), write(f2), write(f2), read(f2), close(f2), delete(f2)〉

We use Daikon [1] as an auxiliary tool to generate traces. Daikon can dynam-
ically detect program invariants. A program invariant is a property that remains
unchanged at one or more positions of program execution. The common invari-
ants are APIs, functions, global or local variables, arguments, return values and
so on. Invariants can be used to analyze behavior of a program. Dynamic invari-
ant detection refers to a process of running a program so as to check variables
and assertions detected in the program execution [16].

Daikon generates a sequence containing all invariants and stores it in a dtrace
file in which the invariants are stored line by line. The program execution traces
we need are contained in this sequence. Since there exists an amount of redundant
information, the dtrace file needs to be further refined.

The whole process of generating a trace is shown in Fig. 1.

Fig. 1. The process of trace generation

Propositional Projection Temporal Logic Specification Mining 295

Step 1. Generating sequences of program invariants
A source program and its arguments are input to Daikon so that a sequence

of program invariants is generated. The sequence is written in a file f.dtrace in
the dtrace format. When the program is executed with different arguments for
a desired number n of times, we obtain a set Pool1 = {fi.dtrace|i = 1, . . . , n} of
program traces.

Step 2. Filtering of sequences of program invariants
A filter tool DtraceFilter has been developed to filter out redundant informa-

tion, including parameters, variables, return values and useless spaces, in each
file fi.dtrace of Pool1. As a result, sequences consisting of only APIs and method
calls constitute a new set Pool2 = {fi.trace|i = 1, . . . , n}.

Step 3. Parsing traces in Pool2
Each trace fi.trace in Pool2 needs to be parsed so as to obtain a API/method-

name list fi.event. These lists constitute a set Event = {fi.event|i = 1, . . . , n}.

Step 4. Optimizing traces in Pool2
We can specify desired API/method names from the lists in Event according

to the requirements. DtraceFilter can be used to select the events we concern
from each list in Event to build a positive list fi.pevent of events, and generate
a set PositiveEvent = {fi.pevent|i = 1, . . . , n}.

Based on PositiveEvent, DtraceFilter further refines each fi.trace in Pool2
to get a positive trace fi.ptrace consisting of only the events in fi.pevent, and
obtain a set PositiveTrace = {fi.ptrace|i = 1, . . . , n}.

We can also specify undesired API/method names from the lists in Event.
In a similar way, DtraceFilter can be used to build a negative list fi.nevent of
events and generate NegativeEvent = {fi.nevent|i = 1, . . . , n}. After deleting
the negative events from each trace fi.trace in Pool2, DtraceFilter builds a set
NegativeTrace = {fi.ntrace|i = 1, . . . , n}.

4 PPTL Specification Mining

Based on the Pattern Library and set of refined traces presented in the previous
section, an approach to PPTL specification mining is proposed and a specifica-
tion mining tool, PPTLMiner, is developed. In this section, the framework of
PPTLMiner and some key algorithms are presented in detail.

4.1 The Framework of PPTLMiner

The integrated design of PPTLMiner is shown in Fig. 2. It consists of the fol-
lowing six parts.

(1) Pattern Library. The Pattern Library covers all patterns we obtain
after investigating literatures and programs. Our Pattern Library is open, user-
editable and in constant expansion and growth. New patterns can be inserted
into the library from time to time. For more details, refer to Sect. 3.1.

296 N. Zhang et al.

Fig. 2. The framework of PPTLMiner

(2) Trace Generator. The function of the Trace Generator is to generate traces
from an executable program. To do so, an executable program and its arguments
are input into Daikon to produce raw traces (dtrace files). Then Dtracefilter is
employed to filter out redundant information in dtrace files to obtain trace files,
which are further refined to obtain positive and negative traces. For more details,
refer to Sect. 3.2.

(3) PPTL Parser. The input of PPTL Parser is a PPTL formula. PPTL Parser
is developed by means of Flex and Bison. It can be used to generate a PPTL
syntax tree for any PPTL formula.

(4) Trace Parser. The function of Trace Parser is two-fold. The first is to parse
traces generated by the Trace Generator and restore them in an appropriate data
structure so that the traces can conveniently be used by PPTL Pattern Checker.
The second is to calculate a set E = {e1, e2, . . . , en} of events appeared in the
traces so as to instantiate PPTL patterns.

(5) PPTL Pattern Formula Instantiator. The instantiator requires two
inputs: (a) a PPTL pattern formula P , and (b) E, the set of events produced by
Trace Parser. The function of the instantiator is to instantiate a pattern formula
P by substituting atomic propositions in P by events in Events.

(6) PPTL Pattern Checker. PPTL Pattern Checker also requires two inputs:
(a) a trace τ produced by Trace Generator, and (b) an instantiated pattern
formula P generated by PPTL Pattern Formula Instantiator. The function of
the Checker is to decide whether trace τ satisfies P .

4.2 Mining Process and Algorithms

In this subsection, we present the mining process and algorithms in detail.

(1) Syntax Tree of PPTL Formula
By syntax analysis, a PPTL Pattern Formula is parsed into a syntax tree. A

syntax tree consists of a root node and two child nodes. The root node is of two

Propositional Projection Temporal Logic Specification Mining 297

attributes, NODETYPE and STRING, which indicate the type and name of the
root node, respectively. All nodes having two null child nodes in the syntax tree
of a PPTL pattern formula P constitute a set S(P) of atomic propositions. For
instance, for an atomic proposition p, its NODETYPE is “atomic proposition”
while its STRING is “p”. Two child nodes are all null. For formula P1;P2, its
NODETYPE is “chop” while its STRING is “;”. It has two non-null child nodes,
child1 and child2, where child1 is the root of P1 while child2 is the root of P2.
S(P1;P2) = S(P1) ∪ S(P2). More Examples are shown in Fig. 3.

P

null null T(P1) null

prj

, T(P3)

a b

c d

p: atomic proposition.
P1, P2, P3 : PPTL formula.
a: P ≡ p
b: P ≡ P1

c: P ≡ P1 P2

d: P ≡ (P1,P2) prj P3

T(P1) T(P2)
T(P1) T(P2)

Fig. 3. PPTL syntax tree

(2) Instantiating PPTL Pattern Formulas
Based on the set S(P) of atomic propositions and set E collected by Trace

Parser, a PPTL Pattern Formula P is instantiated by Algorithm 1.
(3) PPTL Pattern Check

We use Algorithm 2, Algorithm 3 and Algorithm 4 to check whether τ satisfies
Q, where τ is a refined trace generated in Sect. 3.2 while Q is an instantiated
PPTL pattern formula obtained in part (2). These algorithms are based on
PPTL Normal Form.

In particular, Algorithm2, i.e. CheckBasedonNF(P, τ), first checks the sat-
isfiability of P . If P is satisfiable, it is translated into its normal form Pnf

by calling the existing external function NF (·) given in [3]. Then Algorithm 3
NFCheckTrace(Pnf , τ) is called to decide whether τ satisfies Pnf .

In function NFCheckTrace(Pnf , τ), the first disjunct Pnf .child1 is first
checked. If NFCheckTrace(Pnf .child1, τ) is true, Pnf is already satisfied by τ .
Otherwise the rest disjuncts Pnf .child2 are further checked.

298 N. Zhang et al.

Algorithm 1. function Instantiator(E, S, P)
Input: E: a set of events;
Input: S: a set of atomic propositions appearing in P ;
Input: P : a syntax tree of a PPTL pattern formula;
Output: Ps: a set of instantiated PPTL pattern formulas.
1: begin
2: Ps ← null;
3: m is a patttern instance;
4: /* m = {(api, epi) | api ∈ S & epi ∈ E & 1 ≤ i ≤ |S| & api �= apj if i �= j)} */
5: M is a set of pattern instances; /* M = {m1, m2,} */
6: M ← null;
7: Count is used for count the number of m;
8: Count ← 0;
9: /* (E.size())!

(E.size()−S.size())!
is the total number of non-duplicate pattern instances */

10: while Count <= (E.size())!
(E.size()−S.size())!

do
11: E1 is a set used to store ep ∈ E has been checked;
12: m ← null;
13: E1 ← null;
14: for all ap in S do
15: while true do
16: ep is an event randomly selected from E;
17: if ep not in E1 then
18: m.insert(ap, ep); /* ap is mapped to ep */
19: E1.insert(ep); /* ep is labeled */
20: break;
21: end if
22: end while
23: end for/* build m */
24: if m not in M then
25: M.insert(m);
26: count + +;
27: end if
28: end while/* build M */
29: for all m in M do
30: Pins is a copy of P ; /* Pins is used for instantiation */
31: Pins ← P ;
32: for all node in Pins do
33: if node.type == AtomicProp then
34: for all mi in m do
35: if mi.ap == node.name then
36: node.name ← mi.ep;
37: end if
38: end for
39: end if
40: end for
41: Ps.insert(Pins); /* insert pattern instance Pins into set Ps */
42: end for
43: return Ps

44: end

Propositional Projection Temporal Logic Specification Mining 299

Algorithm 2. function CheckBasedonNF(P , τ)
Input: P : An instantiated PPTL pattern formula;
Input: τ : A program execution trace;
Output: True if τ satisfies P , False otherwise.
1: begin
2: q is a boolean variable;
3: q = CheckSatisfiability(P); /* check satisfiability of P [5] */
4: if ¬q then
5: return False;
6: else
7: Pnf = NF (P); /* transform P into its normal form [5] */
8: return NFCheckTrace(Pnf ,τ);
9: end if

10: end

To check a disjunct, two cases need to be considered: (1)Pe ∧ ε and (2)Pc ∧
©Pf . For the first case, the function checks whether τ satisfies Pe and whether
τ is empty. If both are true, Pe ∧ ε is satisfied by τ . For the second case, the
function checks whether τ satisfies Pc and whether tail(τ) satisfies Pf . If both
are true, Pc ∧ ©Pf is satisfied by τ . In checking whether τ satisfies the state
formula Pe or Pc, Algorithm 4 StateFormulaCheck(Ps,τ) is called. For doing so,
function StateFormulaCheck(Ps,τ) is simply to check the satisfiability of state
formula Ps over τ by considering several syntax constructs of Ps.

300 N. Zhang et al.

Algorithm 3. function NFCheckTrace(Pnf , τ)
Input: Pnf : A PPTL formula in its normal form;
Input: τ : A program execution trace;
Output: True if τ satisfies Pnf , False otherwise.
1: begin
2: τbak = τ ;
3: switch Pnf .type do
4: case OrProp
5: q1 is a boolean variable;
6: q1 = NFCheckTrace(Pnf .child1, τ);
7: if q1 then /* first disjunct is satisfied by τ */
8: return True;
9: else/* select another disjunct */

10: τ = τbak;
11: return NFCheckTrace(Pnf .child2, τ);
12: end if
13: case AndProp
14: Pc = Pnf .child1; /* if Pnf .child2 is ε, Pc stands for Pe */
15: q2 is a boolean variable;
16: q2 = StateFormulaCheck(Pc, τ); /* check satisfiability of Pc over τ */
17: if q2 then
18: if Pnf .child2.type is ε then
19: if |τ | == 0 then /* check whether the trace is empty */
20: return True;
21: else
22: return False;
23: end if
24: else
25: Pf = Pnf .child2.child1; /* obtain next formula Pf */
26: if |τ | == 0 then
27: return False;
28: else
29: τ = tail(τ); /* update τ by its first proper suffix */
30: return CheckBasedOnNF(Pf , τ);
31: end if
32: end if
33: else
34: return False;
35: end if
36: end

Propositional Projection Temporal Logic Specification Mining 301

Algorithm 4. function StateFormulaCheck(Ps, τ)
Input: Ps: A state PPTL formula;
Input: τ : A program execution trace;
Output: True if τ satisfies Ps, False otherwise.
1: begin
2: switch Ps.type do
3: case OrProp /* Ps ≡ P1 ∨ P2 */
4: P1 = Ps.child1;
5: P2 = Ps.child2;
6: q1 is a boolean variable;
7: q1 = StateFormulaCheck(P1, τ);
8: if q1 then
9: return True;

10: else
11: return StateFormulaCheck(P2, τ)
12: end if
13: case AndProp /* Ps ≡ P1 ∧ P2 */
14: P1 = Ps.child1;
15: P2 = Ps.child2;
16: q2 is a boolean variable;
17: q2 = StateFormulaCheck(P1, τ);
18: if q2 then
19: return StateFormulaCheck(P2, τ)
20: else
21: return False;
22: end if
23: case NegationProp /* Ps ≡ ¬P1 */
24: P1 = Ps.child1;
25: if StateFormulaCheck(P1, τ) then
26: return False;
27: else
28: return True;
29: end if
30: case AtomicProp /* Ps ≡ p */
31: if head(τ) satisfies Ps then
32: return True;
33: else
34: return False;
35: end if
36: case TrueProp /* Ps ≡ true */
37: return True;
38: case FalseProp /* Ps ≡ false */
39: return False;
40: end

302 N. Zhang et al.

5 Conclusion

This paper presents an approach to mining PPTL specification from program
execution traces. A tool PPTLMiner has been developed to support the proposed
approach. This allows us to mine full regular temporal rules represented by PPTL
formulas from traces. However, a mined PPTL formula has to be checked over
all traces so as to ensure its validity. This is not a easy job since there might be
error traces involved.

In the future, we will investigate how to evaluate the mined properties so
that desired properties can be found. Further, we will optimize PPTLMiner to
improve its mining quality and efficiency.

References

1. The Daikon Invariant Detector. http://plse.cs.washington.edu/daikon/
2. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualita-

tive, real-time, and probabilistic property specification patterns using a structured
English grammar. IEEE Trans. Softw. Eng. 41(7), 1 (2015)

3. Duan, Z.: Temporal logic and Temporal Logic Programming. Science Press, Beijing
(2005)

4. Duan, Z., Tian, C.: A practical decision procedure for propositional projection
temporal logic with infinite models. Theoret. Comput. Sci. 554, 169–190 (2014)

5. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection
temporal logic with infinite models. Acta Informatica 45(1), 43–78 (2008)

6. Duan, Z., Tian, C., Zhang, N.: A canonical form based decision procedure and
model checking approach for propositional projection temporal logic. Theor. Com-
put. Sci. 609, 544–560 (2016)

7. Duan, Z., Zhang, N., Koutny, M.: A complete proof system for propositional pro-
jection temporal logic. Theor. Comput. Sci. 497, 84–107 (2013)

8. Dupont, P., Lambeau, B., Damas, C., Lamsweerde, A.: The QSM algorithm and
its application to software behavior model induction. Appl. Artif. Intell. 22(1&2),
77–115 (2008)

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 1999 International Conference on
Software Engineering (IEEE Cat. No.99CB37002), pp. 411–420 (1999)

10. Iegorov, O., Fischmeister, S.: Mining task precedence graphs from real-time embed-
ded system traces. pp. 251–260 (2018)

11. Le, T.B., Lo, D.: Deep specification mining. In: Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp. 106–
117 (2018)

12. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (T).
In: Proceedings of the 2015 IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 81–92 (2015)

13. Li, H., Shen, L.M., Ma, C., Liu, M.Y.: Role behavior detection method of privilege
escalation attacks for android applications. Int. J. Perform. Eng. 15(6), 1631–1641
(2019)

14. Narayan, A., Cutulenco, G., Joshi, Y., Fischmeister, S.: Mining timed regular spec-
ifications from system traces. ACM Trans. Embed. Comput. Syst. 17(2), 1–21
(2018)

http://plse.cs.washington.edu/daikon/

Propositional Projection Temporal Logic Specification Mining 303

15. Pradel, M., Gross, T.R.: Automatic generation of object usage specifications from
large method traces. In: Proceedings of the 2009 IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 371–382 (2009)

16. Ratcliff, S., White, D., Clark, J.: Searching for invariants using genetic program-
ming and mutation testing. In: Proceedings of the 2011 Annual Genetic and Evo-
lutionary Computation Conference, pp. 1907–1914 (2011)

17. Reger, G., Havelund, K.: What is a trace? A runtime verification perspective.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 339–355.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 25

18. Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with
star. Theor. Comput. Sci. 412(18), 1729–1744 (2011)

19. Walkinshaw, N., Bogdanov, K., Holcombe, M., Salahuddin, S.: Reverse engineer-
ing state machines by interactive grammar inference. In: Proceedings of the 2007
Working Conference on Reverse Engineering, pp. 209–218 (2007)

20. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage.
In: Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, pp. 295–306 (2009)

21. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining tem-
poral API rules from imperfect traces. In: Proceedings of the 2006 International
Conference on Software Engineering, pp. 282–291 (2006)

https://doi.org/10.1007/978-3-319-47169-3_25

	Propositional Projection Temporal Logic Specification Mining
	1 Introduction
	2 Propositional Projection Temporal Logic
	3 Pattern Library Construction and Trace Generation
	3.1 Pattern and Pattern Library
	3.2 Trace Generation

	4 PPTL Specification Mining
	4.1 The Framework of PPTLMiner
	4.2 Mining Process and Algorithms

	5 Conclusion
	References

