
A Sub-linear Time Algorithm
for Approximating k-Nearest-Neighbor

with Full Quality Guarantee

Hengzhao Ma and Jianzhong Li(B)

Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
hzma@stu.hit.edu.cn, lijzh@hit.edu.cn

Abstract. In this paper we propose an algorithm for the approximate k-
Nearest-Neighbors problem. According to the existing researches, there
are two kinds of approximation criteria. One is the distance criterion,
and the other is the recall criterion. All former algorithms suffer the
problem that there are no theoretical guarantees for the two approxima-
tion criteria. The algorithm proposed in this paper unifies the two kinds
of approximation criteria, and has full theoretical guarantees. Further-
more, the query time of the algorithm is sub-linear. As far as we know,
it is the first algorithm that achieves both sub-linear query time and full
theoretical approximation guarantees.

Keywords: Computation geometry · Approximate k-nearest-neighbors

1 Introduction

The k-Nearest-Neighbor (kNN) problem is a well-known problem in theoretical
computer science and applications. Let (U,D) be a metric space, then for the
input set P ⊆ U of elements and a query element q ∈ U , the kNN problem is
to find the k elements with smallest distance to q. Since the exact results are
expensive to compute when the size of the input is large [19], and approximate
results serve as good as the exact ones in many applications [30], the approximate
kNN, kANN for short, draws more research efforts in recent years. There are
two kinds of approximation criteria for the kANN problem, namely, the distance
criterion and the recall criterion. The distance criterion requires that the ratio
between the distance from the approximate results to the query and the distance
from the exact results to the query is no more than a given threshold. The recall
criterion requires that the size of the intersection of the approximate result set
and the exact result set is no less than a given threshold. The formal description
will be given in detail in Sect. 2. Next we brief the existing algorithms for the
kANN problem to see how these two criteria are considered by former researchers.

This work was supported by the National Natural Science Foundation of China under
grant 61732003, 61832003, 61972110 and U1811461.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 19–31, 2020.
https://doi.org/10.1007/978-3-030-64843-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_2

20 H. Ma and J. Li

The algorithms for the kANN problem can be categorized into four classes.
The first class is the tree-based methods. The main idea of this method is to
recursively partition the metric space into sub-spaces, and organize them into
a tree structure. The K-D tree [6] is the representative idea in this category. It
is efficient in low dimensional spaces, but the performance drops rapidly when
the number of dimension grows up. Vantage point tree (VP-tree) [31] is another
data structure with a better partition strategy and better performance. The
FLANN [25] method is a recent work with improved performance in high dimen-
sional spaces, but it is reported that this method would achieve in sub-optimal
results [20]. To the best of our knowledge, the tree based methods can satisfy
neither the distance nor the recall criterion theoretically.

The second class is the permutation based methods. The idea is to choose
a set of pivot points, and represent each data element with a permutation of
the pivots sorted by the distance to it. In such a representation, close objects
will have similar permutations. Methods using the permutation idea include the
MI-File [2] and PP-Index [13]. Unfortunately, the permutation based method
can not satisfy either of the distance or the recall criterion theoretically, as far
as we know.

The third class is the Locality Sensitive Hashing (LSH) based methods. LSH
was first introduced by Indyk et al. [19] for the kANN problem where k = 1.
Soon after, Datar et al. [11] proposed the first practical LSH function, and since
then there came a burst in the theoretical and applicational researches on the
LSH framework. For example, Andoni et al. proved the lower bound of the time-
space complexities of the LSH based algorithms [3], and devised the optimal LSH
function which meets the lower bound [4]. On the other hand, Gao et al. [15]
proposed an algorithm that aimed to close the gap between the LSH theory and
kANN search applications. See [29] for a survey. The basic LSH based method
can satisfy only the distance criterion when k = 1 [19]. Some existing algorithms
made some progress. The C2LSH algorithm [14] solved the kANN problem with
the distance criterion, but it has a constraint that the approximation factor must
be a square of an integer. The SRS algorithm [28] is another one aimed at the
distance criterion. However, it only has partial guarantee, that is, the results
satisfy the distance criterion only when the algorithm terminates on a specific
condition.

The forth class is graph based methods. The specific kind of graphs used
in this method is the proximity graphs, where the edges in this kind of graph
are defined by the geometric relationship of the points. See [23] for a survey.
The graph based kANN algorithms usually conduct a navigating process on the
proximity graphs. This process selects an vertex in the graph as the start point,
and move to the destination point following some specific navigating strategy. For
example, Paredes et al. [27] used the kNN graph, Ocsa et al. [26] used the Relative
Neighborhood Graph (RNG), and Malkov et al. [22] used the Navigable Small
World Graph (NSW) [22]. None of these algorithms have theoretical guarantee
on the two approximation criteria.

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 21

In summary, most of the existing algorithms do not have theoretical guar-
antee on either of the two approximation criteria. The recall criterion is only
used as a measurement of the experimental results, and the distance criterion is
only partially satisfied by only a few algorithms [14,28]. In this paper, we pro-
pose a sub-linear time algorithm for kANN problem that unifies the two kinds
of approximation criteria, which overcomes the disadvantages of the existing
algorithms. The contributions of this paper are listed below.

1. We propose an algorithm that unifies the distance criterion and the recall cri-
terion for the approximate k-Nearest-Neighbor problem. The result returned
by the algorithm can satisfy at least one criterion in any situation. This is a
major progress compared to the existing algorithms.

2. Assuming the input point set follows the Poisson Point Process, the algorithm
takes O(n log n) time of preprocessing, O(n log n) space, and answers a query
in O(dn1/d log n + knρ log n) time, where ρ < 1 is a constant.

3. The algorithm is the first algorithm for kANN that provides theoretical guar-
antee on both of the approximation criteria, and it is also the first algorithm
that achieves sub-linear query time while providing theoretical guarantees.
The former works [14,28] with partial guarantee both need linear query time.

The rest of this paper is organized as follows. Section 2 introduces the defi-
nition of the problem and some prerequisite knowledge. The detailed algorithm
are presented in Sect. 3. Then the time and space complexities are analyzed in
Sect. 4. Finally the conclusion is given in Sect. 5.

2 Preliminaries

2.1 Problem Definitions

The problem studied in this paper is the approximate k-Nearest-Neighbor prob-
lem, which is denoted as kANN for short. In this paper the problem is constrained
to the Euclidean space. The input is a set P of points where each p ∈ P is a d-
dimensional vector (p(1), p(2), · · · , p(n)). The distance between two points p and

p′ is defined by D(p, p′) =

√
d∑

i=1

(p(i) − p′(i))2, which is the well known Euclidean

distance. Before giving the definition of the kANN problem, we first introduce
the exact kNN problem.

Definition 2.1 (kNN). Given the input point set P ⊂ Rd and a query point
q ∈ Rd, define kNN(q, P) to be the set of k points in P that are nearest to q.
Formally,

1. kNN(q, P) ⊆ P , and |kNN(q, P)| = k;
2. D(p, q) ≤ D(p′, q) for ∀p ∈ kNN(q, P) and ∀p′ ∈ P \ kNN(q, P).

Next we will give the definition of the approximate kNN. There are two kinds
of definitions based on different approximation criteria.

22 H. Ma and J. Li

Definition 2.2 (kANNc). Given the input point set P ⊂ Rd, a query point
q ∈ Rd, and a approximation factor c > 1, find a point set kANNc(q, P) which
satisfies:

1. kANNc(q, P) ⊆ P , and |kANNc(q, P)| = k;
2. let Tk(q, P) = max

p∈kNN(q,P)
D(p, q), then D(p′, q) ≤ c · Tk(q, P) holds for ∀p′ ∈

kANNc(q, P).

Remark 2.1. The second requirement in Definition 2.2 is called the distance
criterion.

Definition 2.3 (kANNδ). Given the input point set P ⊂ Rd, a query point
q ∈ Rd, and a approximation factor δ < 1, find a point set kANNδ(q, P) ⊆ P
which satisfies:

1. kANNδ(q, P) ⊆ P , and |kANNδ(q, P)| = k;
2. |kANNδ(q, P) ∩ kNN(q, P)| ≥ δ · k.

Remark 2.2. If a kANN algorithm returned a set S, the value |S∩kNN(q,P)|
|kNN(q,P)| is

usually called the recall of the set S. This is widely used in many works to
evaluate the quality of the kANN algorithm. Thus we call the second statement
in Definition 2.3 as the recall criterion.

Next we give the definition of the problem studied in this paper, which unifies
the two different criteria.

Definition 2.4. Given the input point set P ⊂ Rd, a query point q ∈ Rd, and
approximation factors c > 1 and δ < 1, find a point set kNNc,δ(q, P) which
satisfies:

1. kANNc,δ(q, P) ⊆ P , and |kANNc,δ(q, P)| = k;
2. kANNc,δ(q, P) satisfies at least one of the distance criterion and the recall cri-

terion. Formally, either D(p′, q) ≤ c ·Tk(q, P) holds for ∀p′ ∈ kANNc,δ(q, P),
or |kANNc,δ(q, P) ∩ kNN(q, P)| ≥ δ · k.

According to Definition 2.4, the output of the algorithm is required to satisfy
one of the two criteria, but not both. It will be our future work to devise an
algorithm to satisfy both of the criteria.

In the rest of this section we will introduce some concepts and algorithms
that will be used in our proposed algorithm.

2.2 Minimum Enclosing Spheres

The d-dimensional spheres is the generalization of the circles in the 2-dimensional
case. Let c be the center and r be the radius. A d-dimensional sphere, denoted
as S(c, r), is the set S(c, r) = {x ∈ Rd | D(x, c) ≤ r}. Note that the boundary
is included. If q ∈ S(c, r) we say that q falls inside sphere S(c, r), or the sphere
encloses point p. A sphere S(c, r) is said to pass through point p iff D(c, p) = r.

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 23

Given a set P of points, the minimum enclosing sphere (MES) of P , is the d-
dimensional sphere enclosing all points in P and has the smallest possible radius.
It is known that the MES of a given finite point set in Rd is unique, and can be
calculated by a quadratic programming algorithm [32]. Next we introduce the
approximate minimum enclosing spheres.

Definition 2.5 (AMES). Given a set of points P ⊂ Rd and an approxima-
tion factor ε < 1, the approximate minimum enclosing sphere of P , denoted as
AMES(P, ε), is a d-dimensional sphere S(c, r) satisfies:

1. p ∈ S(c, r) for ∀p ∈ P ;
2. r < (1 + ε)r∗, where r∗ is the radius of the exact MES of P .

The following algorithm can calculate the AMES in O(n/ε2) time, which is
given in [5].

Algorithm 1: Compute AMES

Input: a point set P , and an approximation factor ε.
Output: AMES(P, ε)

1 c0 ← an arbitrary point in P ;
2 for i = 1 to 1/ε2 do
3 pi ← the point in P farthest away from ci−1;
4 ci ← ci−1 + 1

i (pi − ci−1);
5 end

The following Lemma gives the complexity of Algorithm 1 .

Lemma 2.1 [5]. For given ε and P where |P | = n, Algorithm 1 can calculate
AMES(P, ε) in O(n/ε2) time.

2.3 Delaunay Triangulation

The Delaunay Triangulation (DT) is a fundamental data structure in computa-
tion geometry. The definition is given below.

Definition 2.6 (DT). Given a set of points P ⊂ Rd, the Delaunay Triangula-
tion is a graph DT (P) = (V,E) which satisfies:

1. V = P ;
2. for ∀p, p′ ∈ P , (p, p′) ∈ E iff there exists a d-dimensional sphere passing

through p and p′, and no other p′′ ∈ P is inside it.

The Delaunay Triangulation is a natural dual of the Voronoi diagram. We
omit the details about their relationship since it is not the focus of this paper.

There are extensive research works about the Delaunay triangulation. An
important problem is to find the expected properties of DT built on random
point sets. Here we focus on the point sets that follow the Poisson Point Process
in d-dimensional Euclidean space. In this model, for any region R ⊂ Rd, the
probability that R contains k points follows a Poisson-like distribution. See [1]
for more details. We cite one important property of the Poisson Point Process
in the following lemma.

24 H. Ma and J. Li

Lemma 2.2 [1]. Let S ⊂ Rd be a point set following the Poisson Point Process.
Suppose there are two regions B ⊆ A ⊂ Rd. For any point p ∈ S, if p falls inside
A then the probability that p falls inside B is the ratio between the volume of B
and A. Formally, we have

Pr[p ∈ B | p ∈ A] =
volume(B)
volume(A)

.

Further, we cite some important properties of the Delaunay triangulation
built on point sets which follow the Poisson Point Process.

Lemma 2.3 [7]. Let S ⊂ Rd be a point set following the Poisson Point Process,
and Δ(G) = max

p∈V (G)
|{(p, q) ∈ E(G)}| be the maximum degree of G. Then the

expected maximum degree of DT (S) is O(log n/ log log n).

Lemma 2.4 [9]. Let S ⊂ Rd be a point set following the Poisson Point Process.
The expected time to construct DT (S) is O(n log n).

2.4 Walking in Delaunay Triangulation

Given a Delaunay Triangulation DT , the points and edges of DT form a set of
simplices. Given a query point q, there is a problem to find which simplex of
DT that q falls in. There is a class of algorithms to tackle this problem which
is called Walking. The Walking algorithm starts at some simplex, and walks to
the destination by moving to adjacent simplices step by step. There are several
kinds of walking strategy, including Jump&Walk [24], Straight Walk [8] and
Stochastic Walk [12], etc. Some of these strategies are only applicable to 2 or 3
dimensions, while Straight Walk can generalize to higher dimension. As Fig. 1
shows, the Straight Walk strategy only considers the simplices that intersect the
line segment from the start point to the destination. The following lemma gives
the complexity of this walking strategy.

Lemma 2.5 [10]. Given a Delaunay Triangulation DT of a point set P ⊂ Rd,
and two points p and p′ in Rd as the start point and destination point, the walking
from p to p′ using Straight Walk takes O(n1/d) expected time.

2.5 (c, r)-NN

The Approximate Near Neighbor problem is introduced in [19] for solving the
kANNc problem with k = 1. Usually the Approximate Near Neighbor problem is
denoted as (c, r)-NN since there are two input parameters c and r. The definition
is given below. The idea to use (c, r)-NN to solve 1ANNc is via Turing reduction,
that is, use (c, r)-NN as an oracle or sub-procedure. The details can be found
in [16,17,19,21].

Definition 2.7. Given a point set P , a query point q, and two query parameters
c > 1, r > 0, the output of the (c, r)-NN problem should satisfy:

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 25

Fig. 1. Illustration of the straight walk

1. if ∃p∗ ∈ S(q, r) ∩ P , then output a point p′ ∈ S(q, c · r) ∩ P ;
2. if D(p, q) > c · r for ∀p ∈ P , then output No;

Since we aim to solve kANN problem in this paper, we need the following
definition of (c, r)-kNN.

Definition 2.8. Given a point set P , a query point q, and two query parameters
c, r, the output of the (c, r)-kNN problem is a set kNN(c,r)(q, P), which satisfies:

1. if |P ∩ S(q, r)| ≥ k, then output a set Q ⊆ P ∩ S(q, c · r), where |Q| = k;
2. if |P ∩ S(q, c · r)| < k, then output ∅;

It can be easily seen that the (c, r)-kNN problem is a natural generalization of
the (c, r)-NN problem. Recently, there are several algorithms proposed to solve
this problem. The following Lemma 2.6 gives the complexity of the (c, r)-kNN
algorithm. The proof can be found on the online version of this paper [18].

Lemma 2.6. There is an algorithm that solves (c, r)-kNN problem in O(knρ) of
time, requiring O(kn1+ρ log n) time of preprocessing and O(kn1+ρ) of space. The
parameter ρ is a constant depending on the LSH function used in the algorithm,
and ρ < 1 always holds.

3 Algorithm

The proposed algorithm consists of two phases, i.e., the preprocessing phase and
the query phase. The preprocessing phase is to built a data structure, which
will be used to guide the search in the query phase. Next we will describe the
algorithm of the two phases in detail.

26 H. Ma and J. Li

3.1 Preprocessing Algorithm

Before describing the details of the preprocessing algorithm, we first introduce
several concepts that will be used in the following discussion.

Axis Parallel Box. An axis parallel box B in Rd is defined to be the Cartesian
product of d intervals, i.e., B = I1×I2×· · ·×Id. And the following is the definition
of Minimum Bounding Box.

Definition 3.1. Given a point set P , the Minimum Bounding Box, denoted as
MBB(P), is the axis parallel box satisfying the following two requirements:

1. MBB(P) encloses all points in P , and
2. there exists points p and p′ in P such that p(i) = ai, p

′(i) = bi for each interval
Ii = (ai, bi) defining MBB(P), 1 ≤ i ≤ d.

Median Split. Given a point set P and its minimum bounding box MBB(P),
we introduce an operation on P that splits P into two subsets, which is called
median split. This operation first finds the longest interval Ii from the intervals
defining MBB(P). Then, the operation finds the median of the set {p(i) | p ∈ P},
which is the median of the i-th coordinates of the points in P . This median is
denoted as medi(P). Finally P is split into two subsets, i.e., P1 = {p ∈ P |
p(i) ≤ medi(P)} and P2 = {p ∈ P | p(i) > medi(P)}. Here we assume that no
two points share the same coordinate in any dimension. This assumption can be
assured by adding some random small shift on the original coordinates.

Median Split Tree. By recursively conducting the median split operation, a
point set P can be organized into a tree structure, which is called the Median
Split Tree (MST). The definition of MST is given below.

Definition 3.2. Given the input point set P , a Median Split Tree (MST) based
on P , denoted as MST (P), is a tree structure satisfying the following require-
ments:

1. the root of MST (P) is P , and the other nodes in MST (P) are subsets of P ;
2. there are two child nodes for each interior node N ∈ MST (P), which are

generated by conducting a median split on N ;
3. each leaf node contains only one point.

Balanced Median Split Tree. The depth of a node N in a tree T , denoted as
depT (N), is defined to be the number of edges in the path from N to the root of
T . It can be noticed that the leaf nodes in the MST may have different depths.
So we introduce the Balanced Median Split Tree (BMST), where all leaf nodes
have the same depth.

Let LT (i) = {N ∈ T | depT (N) = i}, which is the nodes in the i-th layer in
tree T , and |N | be the number of points included in node N . For a median split

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 27

tree MST (P), it can be easily proved that either |N | = �n/2i or |N | = �n/2i�
for ∀N ∈ LMST (P)(i). Given MST (P), the BMST (P) is constructed as follows.
Find the smallest i such that �n/2i� ≤ 3, then for each node N ∈ LMST (P)(i),
connect all the nodes in the sub-tree rooted at N directly to N .

Hierarchical Delaunay Graph. Given a point set P , we introduce the most
important concept for the preprocessing algorithm in this paper, which is the
Hierarchical Delaunay Graph (HDG). This structure is constructed by adding
edges between nodes in the same layer of BMST (P). The additional edges are
called the graph edges, in contrast with the tree edges in BMST (P). The defini-
tion of the HDG is given below. Here Cen(N) denotes the center of AMES(N).

Definition 3.3. Given a point set P and the balanced median split tree
BMST (P), a Hierarchical Delaunay Graph HDG is a layered graph based on
BMST (P), where each layer is a Delaunay triangulation. Formally, for each
N,N ′ ∈ HDG(P), there is an graph edge between N,N ′ iff

1. depBMST (P)(N) = depBMST (P)(N ′), and
2. there exists a d-dimensional sphere S passing through Cen(N), Cen(N ′), and

there is no N ′′ ∈ HDG(P) such that Cen(N ′′) falls in S, where N ′′ is in the
same layer with N and N ′. That is, the graph edges connecting nodes in the
same layer forms the Delaunay Triangulation.

The Preprocessing Algorithm. Next we describe the preprocessing algo-
rithm which aims to build the HDG. The algorithm can be divided into three
steps.

Step 1, split and build tree. The first step is to recursively split P into smaller
sets using the median split operation, and the median split tree is built. Finally
the nodes near the leaf layer is adjusted to satisfy the definition of the balanced
median split tree.

Step 2, compute spheres. In this step, the algorithm will go over the tree and
compute the AMES for each node using Algorithm 1.

Step 3, construct the HDG. In this step, an algorithm given in [9] which
satisfies Lemma 2.4 is invoked to compute the Delaunay triangulation for each
layer.

The pseudo codes of the preprocessing algorithm is given in Algorithm 2.

3.2 Query Algorithm

The query algorithm takes the HDG built by the preprocessing algorithm, and
executes the following three steps.

The first is the descending step. The algorithm goes down the tree and stops
at level i such that k ≤ n/2i < 2k. At each level, the child node with smallest
distance to the query is chosen to be visited in next level.

28 H. Ma and J. Li

Algorithm 2: Preprocessing Algorithm
Input: a point set P
Output: a hierarchical Delaynay graph HDG(P)

1 T ←SplitTree(P);
2 Modify T into a BMST;
3 ComputeSpheres(T);
4 HierarchicalDelaunay(T);
5 Procedure SplitTree(N):
6 Conduct median split on N and generate two sets N1 and N2;
7 T1 ←SplitTree(N1);
8 T2 ←SplitTree(N2);
9 Let T1 be the left sub-tree of N , and T2 be the right sub-tree of N ;

10 end
11 Procedure ComputeSpheres(T):
12 foreach N ∈ T do
13 Call AMES(N, 0.1) (Algorithm 1);
14 end

15 end
16 s Procedure HierarchicalDelaunay(T):
17 Let dl be the depth of the leaf node in T ;
18 for i = 0 to dl do
19 Delaunay(LT (i)) (Lemma 2.4);
20 end

21 end

The second is the navigating step. The algorithm marches towards the local
nearest AMES center by moving on the edges of the HDG.

The third step is the answering step. The algorithm finds the answer of
kANNc,δ(q, P) by invoking the (c, r)-kNN query. The answer can satisfy the
distance criterion or the recall criterion according to the different return result
of the (c, r)-kNN query.

Algorithm 3 describes the above process in pseudo codes, where Cen(N) and
Rad(N) are the center and radius of the AMES of node N , respectively.

4 Analysis

The analysis in this section will assume that the input point set P follows the
Poisson Point Process. The proofs can be found in the online version of this
paper [18], and are all omitted here due to space limitation.

4.1 Correctness

Lemma 4.1. If Algorithm 3 terminates when i = 0, then the returned point set
Res is a δ-kNN of q in P with at least 1 − e−n−k

nd probability.

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 29

Algorithm 3: Query
Input: a query points q, a point set P , approximation factors c > 1, δ < 1,

and HDG(P)
Output: kANNc,δ(q, P)

1 N ← the root of HDG(P);
2 while |N | > 2k do
3 Lc ← the left child of N , Rc ← the right child of N ;
4 if D(q, Cen(Lc)) < D(q, Cen(Rc))) then
5 N ← Lc;
6 else
7 N ← Rc;
8 end

9 end
10 while ∃N ′ ∈ Nbr(N) s.t. D(q, Cen(N ′)) < D(q, Cen(N))) do
11 N ← arg min

N′∈Nbr(N)
{D(q, Cen(N ′))};

12 end
13 for i = 0 to logc n do

14 Invoke (c, r)-kNN query where r = D(q,Cen(N))+Rad(N)
n

ci;
15 if the query returned a set Res then
16 return Res as the final result;
17 end

18 end

Lemma 4.2. If Algorithm 3 terminates when i > 0, then the returned point set
Res is a c-kNN of q in P .

Theorem 4.1. The result of Algorithm 3 satisfies the requirement of
kNNc,δ(q, P) with at least 1 − e−n−k

nd probability.

4.2 Complexities

Theorem 4.2. The expected time complexity of Algorithm 2, which is the pre-
processing time complexity, is O(n log n).

Theorem 4.3. The space complexity of Algorithm 2 is O(n log n).

Theorem 4.4. The time complexity of Algorithm 3, which is the query com-
plexity, is O(dn1/d log n + knρ log n), where ρ < 1 is a constant.

5 Conclusion

In this paper we proposed an algorithm for the approximate k-Nearest-Neighbors
problem. We observed that there are two kinds of approximation criteria in the
history of this research area, which is called the distance criterion and the recall
criterion in this paper. But we also observed that all existing works do not

30 H. Ma and J. Li

have theoretical guarantees on the two criteria. We raised a new definition for
the approximate k-Nearest-Neighbor problem which unifies the distance criterion
and the recall criterion, and proposed an algorithm that solves the new problem.
The result of the algorithm can satisfy at least one of the two criteria. In our
future work, we will try to devise new algorithms that can satisfy both of the
criteria.

References

1. Poisson Point Process. https://wikimili.com/en/Poisson point process
2. Amato, G., Gennaro, C., Savino, P.: MI-file: using inverted files for scalable approx-

imate similarity search. Multimed. Tools Appl. 71(3), 1333–1362 (2012). https://
doi.org/10.1007/s11042-012-1271-1

3. Andoni, A., Laarhoven, T., Razenshteyn, I., Waingarten, E.: Optimal hashing-
based time-space trade-offs for approximate near neighbors. In: Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
47–66, January 2017

4. Andoni, A., Razenshteyn, I.: Optimal data-dependent hashing for approximate
near neighbors. In: Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing - STOC 2015, pp. 793–801 (2015)

5. Bâdoiu, M., Bâdoiu, M., Clarkson, K.L., Clarkson, K.L.: Smaller core-sets for balls.
In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 801–802 (2003)

6. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

7. Bern, M., Eppstein, D., Yao, F.: The expected extremes in a delaunay triangula-
tion. Int. J. Comput. Geom. Appl. 01(01), 79–91 (1991)

8. Bose, P., Devroye, L.: On the stabbing number of a random Delaunay triangulation.
Comput. Geom.: Theory Appl. 36(2), 89–105 (2007)

9. Buchin, K., Mulzer, W.: Delaunay triangulations in O(sort(n)) time and more.
In: Proceedings - Annual IEEE Symposium on Foundations of Computer Science,
FOCS , vol. 5, pp. 139–148 (2009)

10. de Castro, P.M.M., Devillers, O.: Simple and efficient distribution-sensitive point
location in triangulations. In: 2011 Proceedings of the Thirteenth Workshop on
Algorithm Engineering and Experiments (ALENEX), pp. 127–138, January 2011

11. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry - SCG 2004, pp. 253–262 (2004)

12. Devillers, O., Pion, S., Teillaud, M.: Walking in a triangulation. Int. J. Found.
Comput. Sci. 13(02), 181–199 (2002)

13. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-
larity search. Inf. Process. Manage. 48(5), 889–902 (2012)

14. Gan, J., Feng, J., Fang, Q., Ng, W.: Locality-sensitive hashing scheme based on
dynamic collision counting. In: Proceedings of the 2012 International Conference
on Management of Data - SIGMOD 2012, pp. 541–552 (2012)

15. Gao, J., Jagadish, H., Ooi, B.C., Wang, S.: Selective hashing: closing the gap
between radius search and k-NN Search. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining - KDD 2015,
pp. 349–358 (2015)

https://wikimili.com/en/Poisson_point_process
https://doi.org/10.1007/s11042-012-1271-1
https://doi.org/10.1007/s11042-012-1271-1

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 31

16. Har-Peled, S.: A replacement for Voronoi diagrams of near linear size. In: Pro-
ceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 94–103.
IEEE (2001)

17. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbor: towards
removing the curse of dimensionality. Theory Comput. 8(1), 321–350 (2012)

18. Hengzhao Ma, J.L.: A sub-linear time algorithm for approximating k-nearest-
neighbor with full quality guarantee (2020). https://arxiv.org/abs/2008.02924

19. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing - STOC 1998, pp. 604–613 (1998)

20. Lin, P.C., Zhao, W.L.: Graph based Nearest Neighbor Search: Promises and Fail-
ures, pp. 1–8 (2019)

21. Ma, H., Li, J.: An algorithm for reducing approximate nearest neighbor to approxi-
mate near neighbor with O(log n) query time. In: 12th International Conference on
Combinatorial Optimization and Applications - COCOA 2018, pp. 465–479 (2018)

22. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest
neighbor algorithm based on navigable small world graphs. Inf. Syst. 45, 61–68
(2014)

23. Mitchell, J.S., Mulzer, W.: Proximity algorithms. In: Handbook of Discrete and
Computational Geometry, Third Edition, pp. 849–874 (2017)

24. Mücke, E.P., Saias, I., Zhu, B.: Fast randomized point location without prepro-
cessing in two- and three-dimensional Delaunay triangulations. Comput. Geom.
12(1–2), 63–83 (1999)

25. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

26. Ocsa, A., Bedregal, C., Cuadros-vargas, E., Society, P.C.: A new approach for sim-
ilarity queries using proximity graphs, pp. 131–142. Simpósio Brasileiro de Banco
de Dados (2007)

27. Paredes, R., Chávez, E.: Using the k-nearest neighbor graph for proximity searching
in metric spaces. In: International Symposium on String Processing and Informa-
tion Retrieval, pp. 127–138 (2005)

28. Sun, Y., Wang, W., Qin, J., Zhang, Y., Lin, X.: SRS: solving c-approximate nearest
neighbor queries in high dimensional Euclidean space with a tiny index. Proc.
VLDB Endow. 8, 1–12 (2014)

29. Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: a survey. In:
ArXiv:1408.2927 (2014)

30. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: Proceedings of 24rd
International Conference on Very Large Data Bases, pp. 194–205 (1998)

31. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 311–321 (1993)

32. Yildirim, E.A.: Two algorithms for the minimum enclosing ball problem. SIAM J.
Optim. 19(3), 1368–1391 (2008)

https://arxiv.org/abs/2008.02924
http://arxiv.org/abs/1408.2927

	A Sub-linear Time Algorithm for Approximating k-Nearest-Neighbor with Full Quality Guarantee
	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions
	2.2 Minimum Enclosing Spheres
	2.3 Delaunay Triangulation
	2.4 Walking in Delaunay Triangulation
	2.5 (c,r)-NN

	3 Algorithm
	3.1 Preprocessing Algorithm
	3.2 Query Algorithm

	4 Analysis
	4.1 Correctness
	4.2 Complexities

	5 Conclusion
	References

