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Abstract. Given a graph G = (V, E), the vertex expansion of a set

S ⊂ V is defined as ΦV (S) = |N(S)|
|S| . In the Small Set Vertex Expan-

sion (SSVE) problem, we are given a graph G = (V, E) and a positive

integer k ≤ |V (G)|
2

, the goal is to return a set S ⊂ V (G) of k nodes min-

imizing the vertex expansion ΦV (S) = |N(S)|
k

; equivalently minimizing
|N(S)|. SSVE has not been as well studied as its edge-based counterpart
Small Set Expansion (SSE). SSE, and SSVE to a less extend, have
been studied due to their connection to other hard problems including
the Unique Games Conjecture and Graph Colouring. Using the hard-
ness of Minimum k-Union problem, we prove that Small Set Vertex
Expansion problem is NP-complete. We enhance our understanding of
the problem from the viewpoint of parameterized complexity by show-
ing that (1) the problem is W[1]-hard when parameterized by k, (2)
the problem is fixed-parameter tractable (FPT) when parameterized by
the neighbourhood diversity nd, and (3) it is fixed-parameter tractable
(FPT) when parameterized by treewidth tw of the input graph.

Keywords: Parameterized complexity · FPT · W[1]-hard ·
Treewidth · Neighbourhood diversity

1 Introduction

Covering problems are very well-studied in theoretical computer science. Given
a set of elements {1, 2, ..., n} (called the universe) and a collection S of m sets
whose union equals the universe, the Set Cover problem is to identify the
smallest sub-collection of S whose union equals the universe, and Max k-Cover
is the problem of selecting k sets from S such that their union has maximum
cardinality. Max k-Cover is known to admit a (1− 1

e )-approximation algorithm
(which is also known to be tight) [5]. A natural variation of Max k-Cover
problem is instead of covering maximum number of elements, the problem is
to cover minimum number of elements of the universe by the union of k sets.
Minimum k-Union [2,16] is one of such problems, where we are given a family
of sets within a finite universe and an integer k and we are asked to choose k
sets from this family in order to minimise the number of elements of universe
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that are covered. Minimum k-Union has not been studied until recently, when
an O(

√
m)-approximation algorithm is given by Eden Chlamtác et al. [3], where

m is the number of sets in S. Given an instance of Minimum k-Union, we can
construct the obvious bipartite graph in which the left side represents sets and
the right side represents elements and there is an edge between a set node and an
element node if the set contains the element. Then Minimum k-Union is clearly
equivalent to the problem of choosing k left nodes in order to minimize the
size of their neighbours. This is known as the Small Set Bipartite Vertex
Expansion (SSBVE) problem [2]. This is the bipartite version of the Small Set
Vertex Expansion, in which we are given an arbitrary graph and are asked
to choose a set S of k nodes minimizing the vertex expansion ΦV (S) = |N(S)|.
Small Set Vertex Expansion problem is vertex version of the Small Set
Expansion (SSE) problem, in which we are asked to choose a set of k nodes to
minimize the number of edges with exactly one endpoint in the set. SSVE has not
been as well studied as SSE, but has recently received significant attention [12].
SSE, and SSVE to a less extend, have been studied due to their connection to
other hard problems including the Unique Games Conjecture [8]. These problems
recently gained interest due to their connection to obtain sub-exponential time,
constant factor approximation algorithm for may combinatorial problems like
Sparsest Set and Graph Colouring [1].

A problem with input size n and parameter k is said to be ‘fixed-parameter
tractable (FPT)’ if it has an algorithm that runs in time O(f(k)nc), where f is
some (usually computable) function, and c is a constant that does not depend
on k or n. What makes the theory more interesting is a hierarchy of intractable
parameterized problem classes above FPT which helps in distinguishing those
problems that are not fixed parameter tractable. For the standard concepts in
parameterized complexity, see the recent textbook by Cygan et al. [4].

Our main results are the following:

– The Small Set Vertex Expansion (SSVE) problem is NP-complete.
– SSVE is W[1]-hard when parameterized by k.
– SSVE is fixed-parameter tractable (FPT) when parameterized by neighbour-

hood diversity of the input graph.
– SSVE is FPT when parameterized by treewidth of the input graph.

Related Results: Despite being a very natural problem, Minimum k-
Union/ SSBVE has received surprisingly little attention. Chlamtác et al.
[3] gave an O(

√
n)-approximation algorithm for SSBVE and equivalently

O(
√

m)-approximation algorithm for Minimum k-Union problem. Louis and
Makarychev [12] studied approximation algorithms for hypergraph small set
expansion and small set vertex expansion problem. They provided a polyloga-
rithmic approximation when k is very close to n, namely, k ≥ n

ploylog(n) . To the
best of our knowledge, the parameterized complexity of SSVE and SSE problems
have not been studied before. Raghavendra and Steurer [13] have investigated the
connection between Graph Expansion and the Unique Games Conjectures.
They proved that a simple decision version of the problem of approximately
small set expansion reduces to Unique Games.
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2 Preliminaries

The vertex and edge expansion in graphs have been a subject of intense study
with applications in almost all branches of theoretical computer science. From an
algorithmic standpoint SSVE and SSE are fundamental optimization problems
with numerous applications. The computational complexity of computing and
approximating expansion is still not very well understood. Throughout this arti-
cle, G = (V,E) denotes a finite, simple and undirected graph of order |V (G)| = n.
For a vertex v ∈ V , we use N(v) = {u : (u, v) ∈ E(G)} to denote the (open)
neighbourhood of vertex v in G, and N [v] = NG(v) ∪ {v} to denote the closed
neighbourhood of v. The degree d(v) of a vertex v ∈ V (G) is |N(v)|. For a sub-
set S ⊆ V (G), we define its closed neighbourhood as N [S] =

⋃
v∈S N [v] and its

open neighbourhood as N(S) = N [S] \ S. Given a graph G = (V,E), the vertex
expansion of a set S ⊂ V is defined as

ΦV (S) =
|N(S)|

|S| .

Definition 1. [2] In the Small Set Vertex Expansion (SSVE) problem, we
are given a graph G = (V,E) and an integer k ≤ |V |

2 . The goal is to return a
subset S ⊂ V with |S| = k minimizing the vertex expansion ΦV (S) = |N(S)|

k ;
equivalently minimizing |N(S)|.
The edge expansion of a subset of vertices S ⊂ V in a graph G measures the
fraction of edges that leaves S. For simplicity we consider regular graphs in
the definition of Small Set Expansion (SSE). In a d-regular graph, the edge
expansion Φ(S) of a subset S ⊂ V is defined as

Φ(S) =
|E(S, V \ S)|

d|S|
where E(S, V \ S) denotes the set of edges with one endpoint in S and other
endpoint in V \ S.

Definition 2. [2] In the Small Set Expansion (SSE) problem, we are given
a d-regular graph G = (V,E) and an integer k ≤ |V |

2 . The goal is to return a
subset S ⊂ V with |S| = k minimizing the edge expansion Φ(S) = |E(S,V \S)|

kd ;
equivalently minimizing |E(S, V \ S)|.
Among the two notions of expansion, this work will concern with vertex expan-
sion. The decision version of the problem studied in this paper is formalized as
follows:

Small Set Vertex Expansion
Input: An undirected graph G = (V,E) and two positive integers k ≤ |V |

2 ,
� ≤ |V (G)|.
Question: Is there a set S ⊂ V (G) with |S| = k such that the vertex expan-
sion ΦV (S) = |N(S)| ≤ �?
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We now recall some graph parameters used in this paper. The graph parameters
we explicitly use in this paper are neighbourhood diversity nd and treewidth tw.
We now review the concept of a tree decomposition, introduced by Robertson
and Seymour in [14].

Definition 3. A tree decomposition of a graph G is a pair (T, {Xt}t∈V (T )),
where T is a tree and each node t of the tree T is assigned a vertex subset
Xt ⊆ V (G), called a bag, such that the following conditions are satisfied:

1. Every vertex of G is in at least one bag.
2. For every edge uv ∈ E(G), there exists a node t ∈ T such that bag Xt contains

both u and v.
3. For every u ∈ V (G), the set {t ∈ V (T ) | u ∈ Xt} induces a connected subtree

of T .

Definition 4. The width of a tree decomposition is defined as width(T ) =
maxt∈V (T )|Xt|−1 and the treewidth tw(G) of a graph G is the minimum width
among all possible tree decomposition of G.

A special type of tree decomposition, known as a nice tree decomposition was
introduced by Kloks [9]. The nodes in such a decomposition can be partitioned
into four types.

Definition 5. A tree decomposition (T, {Xt}t∈V (T )) is said to be nice tree
decomposition if the following conditions are satisfied:

1. All bags correspond to leaves are empty. One of the leaves is considered as
root node r. Thus Xr = ∅ and Xl = ∅ for each leaf l.

2. There are three types of non-leaf nodes:
– Introduce node: a node t with exactly one child t′ such that Xt =

Xt′ ∪ {v} for some v /∈ Xt′ ; we say that v is introduced at t.
– Forget node: a node t with exactly one child t′ such that Xt = Xt′ \{w}

for some w ∈ Xt′ ; we say that w is forgotten at t.
– Join node: a node with two children t1 and t2 such that Xt = Xt1 = Xt2 .

Note that, by the third property of tree decomposition, a vertex v ∈ V (G) may
be introduced several time, but each vertex is forgotten only once. To control
introduction of edges, sometimes one more type of node is considered in nice
tree decomposition called introduce edge node. An introduce edge node is a node
t, labeled with edge uv ∈ E(G), such that u, v ∈ Xt and Xt = Xt′ , where t′ is
the only child of t. We say that node t introduces edge uv. It is known that if a
graph G admits a tree decomposition of width at most tw, then it also admits a
nice tree decomposition of width at most tw, that has at most O(n · tw) nodes
[4].
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3 Proving Small Set Vertex Expansion is NP-complete

Using the hardness of Minimum k-Union problem, we prove that Small Set
Vertex Expansion problem is NP-complete. We state the decision version of
Minimum k-Union problem.

Definition 6. [2] In Minimum k-Union problem, we are given an universe U =
{1, 2, . . . , n} of n elements and a collection of m sets S ⊆ 2U , as well as two
integers k ≤ m and � ≤ n. Does there exist a collection T ⊆ S with |T | = k such
that | ∪S∈T S| ≤ �?

It is known that Minimum k-Union problem is NP-complete [16]. Now we prove
the following hardness result.

Theorem 1. The Small Set Vertex Expansion problem is NP-complete.

Proof. We first show that Small Set Vertex Expansion problem is in NP.
Given a graph G = (V,E) with n vertices and two integers k ≤ n

2 and � ≤ n, a
certificate could be a set S ⊂ V of size k. We could then check, in polynomial
time, there are k vertices in S, and the vertex expansion ΦV (S) = |N(S)| is less
than or equal to �. We prove the Small Set Vertex Expansion problem is
NP-hard by showing that Minimum k-Union ≤P Small Set Vertex Expan-
sion. Given an instance (U,S, k, �) of Minimum k-Union problem, we construct
a graph H with vertex sets X and Y . The vertices in X = {s1, s2, . . . , sm} cor-
respond to sets in S = {S1, S2, . . . , Sm}; the vertices in Y = {u1, u2, . . . , un} are
the elements in U . We make sj ∈ X adjacent to ui ∈ Y if and only if ui ∈ Sj .
Additionally, for each vertex ui, we add a clique of size n+1, Ki

n+1 and we make
ui adjacent to each vertex in Ki

n+1.
We show that there is a collection of k sets

{
Si1 , Si2 , . . . , Sik

} ⊆ S such
that | ∪k

j=1 Sij | ≤ �, for Minimum k-Union problem if and only if there is
a set S ⊂ V (H) of k ≤ |V (H)|

2 vertices such that |NH(S)| ≤ �, for Small
Set Vertex Expansion problem. Suppose there is a collection of k sets{
Si1 , Si2 , . . . , Sik

} ⊆ S such that | ∪k
j=1 Sij | ≤ �. We choose the vertices

{si1 , si2 , . . . , sik} ⊆ X correspond to sets Si1 , Si2 , . . . , Sik . As the size of the
union of these k sets Si1 , Si2 , . . . , Sik is less or equal to �, the vertex expansion
of {si1 , si2 , . . . , sik} is also at most �. If k > |V (H)|

2 , then S is any size |V (H)|
2

subset of {si1 , si2 , . . . , sik} and it has vertex expansion at most �.
Conversely, suppose there is a subset S ⊆ V (H) of k vertices such that

ΦV (S) ≤ � where � ≤ n. Note that S cannot contain any vertex from Y as each
vertex in Y has at least n + 1 neighbours in H. Similarly S cannot contain any
vertex from Ki

n+1, as each vertex in Ki
n+1 has at least n+1 neighbours in H. Thus

S ⊆ X and let S = {sj1 , sj2 , . . . , sjk}. We consider the k sets Sj1 , Sj2 , . . . , Sjk

correspond to these k vertices. As ΦV (S) = |N(S)| ≤ �, we have | ∪k
i=1 Sji | ≤ �.

This completes the proof.
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4 W[1]-Hardness Parameterized by k

The input to the decision version of SSVE is a graph G with two integers k ≤ n
2

and � ≤ n, and (G, k, �) is a yes-instance if G has a set S of k vertices such that
the vertex expansion ΦV (S) = |N(S)| ≤ �. In this section we show that SSVE is
W [1]-hard when parameterized by k, via a reduction from Clique.

Theorem 2. The Small Set Vertex Expansion problem is W [1]-hard when
parameterized by k.

Proof. Let (G, k) be an instance of Clique. We construct an instance
(G′, k(k−1)

2 , k) of Small Set Vertex Expansion problem as follows. We con-
struct a graph G′ with vertex sets X and Y , where X = V (G) = {v1, v2, . . . , vn}
and Y = E(G) = {e1, e2, . . . , em}, the edge set of G. We make vi adjacent to ej if
and only if vi is an endpoint of ej . We further add a set P = {p1, p2, . . . , pk2} of
k2 vertices; the vertices in P are adjacent to every element of X and all vertices
in P are pairwise adjacent.

We claim that there is a set S of k(k−1)
2 vertices in G′ with vertex expansion

ΦV (S) = |N(S)| ≤ k if and only if G contains a clique on k vertices. Suppose
first that G contains a clique on k vertices {v1, v2, . . . , vk}; we set S to be the
set of edges belonging to this clique, and notice that in G all endpoints of edges
in S belong to the set {v1, v2, . . . , vk}. Thus the vertex expansion of S in G′ is
exactly {v1, v2, . . . , vk} and ΦV (S) = |N(S)| = k, so we have a yes-instance for
(G′, k(k−1)

2 , k).
Conversely, suppose that G′ contains a set S of k(k−1)

2 vertices such that
ΦV (S) = |N(S)| ≤ k. As d(v) ≥ k + 1 for every vertex v ∈ X ∪ P , we cannot
include any vertex of X or P in the set S. So we conclude that S ⊆ Y is a set of
edges in G. All edges in S belong to the subgraph of G induced by N(S), which
by assumption has at most k vertices. Since |S| = k(k−1)

2 , this is only possible if
|N(S)| = k and N(S) in fact induces a clique in G, as required.

5 FPT Algorithm Parameterized by Neighbourhood
Diversity

In this section, we present an FPT algorithm for the Small Set Vertex
Expansion problem parameterized by neighbourhood diversity. We say two
vertices u and v have the same type if and only if N(u) \ {v} = N(v) \ {u}.
The relation of having the same type is an equivalence relation. The idea of
neighbourhood diversity is based on this type structure.

Definition 7. [10] The neighbourhood diversity of a graph G = (V,E), denoted
by nd(G), is the least integer w for which we can partition the set V of vertices
into w classes, such that all vertices in each class have the same type.

If neighbourhood diversity of a graph is bounded by an integer w, then there
exists a partition {C1, C2, . . . , Cw} of V (G) into w type classes. It is known
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that such a minimum partition can be found in linear time using fast modular
decomposition algorithms [15]. Notice that each type class could either be a
clique or an independent set by definition. For algorithmic purpose it is often
useful to consider a type graph H of graph G, where each vertex of H is a type
class in G, and two vertices Ci and Cj are adjacent iff there is complete bipartite
clique between these type classes in G. It is not difficult to see that there will be
either a complete bipartite clique or no edges between any two type classes. The
key property of graphs of bounded neighbourhood diversity is that their type
graphs have bounded size. In this section, we prove the following theorem:

Theorem 3. The Small Set Vertex Expansion problem is fixed-parameter
tractable when parameterized by the neighbourhood diversity.

Given a graph G = (V,E) with neighbourhood diversity nd(G) ≤ w, we
first find a partition of the vertices into at most w type classes {C1, . . . , Cw}.
Next we guess a set of type classes Ci for which Ci ∩ S �= ∅, where S is a set
with k vertices such that the vertex expansion ΦV (S) = |N(S)| is minimum. Let
P ⊆ {C1, . . . , Cw} be a collection of type classes for which Ci ∩ S �= ∅. There
are at most 2w candidates for P. Finally we reduce the problem of finding a set
S that minimizes the vertex expansion ΦV (S) to 2w integer linear programming
(ILP) optimizations with at most w variables in each ILP optimization. Since ILP
optimization is fixed parameter tractable when parameterized by the number of
variables [6], we conclude that our problem is fixed parameter tractable when
parameterized by the neighbourhood diversity w.

ILP Formulation: For each Ci, we associate a variable xi that indicates |S ∩
Ci| = xi. As the vertices in Ci have the same neighbourhood, the variables xi

determine S uniquely, up to isomorphism. We define

r(Ci) =

{
1 if Ci is adjacent to some Cj ∈ P; i �= j

0 otherwise

Let C be a subset of P consisting of all type classes which are cliques; I = P \ C
and R = {C1, . . . , Cw} \ P. Given a P ⊆ {C1, . . . , Cw}, our goal is to minimize

ΦV (S) = |N(S)| =
∑

Ci∈R
r(Ci)|Ci| +

∑

Ci∈C
(|Ci| − xi) +

∑

Ci∈I
r(Ci)(|Ci| − xi) (1)

under the condition xi ∈ {1, . . . , |Ci|} for all i : Ci ∈ P and xi = 0 for all
i : Ci ∈ R and the additional conditions described below. Note that if Ci ∈ R
and it is adjacent to some type class in P, then Ci is contained in N(S); if
Ci ∈ C then |Ci| − xi vertices of Ci are in N(S); finally if Ci ∈ I and it is
adjacent to some type class in P, then |Ci| − xi vertices of Ci are in N(S). It
is easy to see that minimizing the expansion ΦV (S) in Eq. 1 is equivalent to
maximizing

∑
Ci∈C xi +

∑
Ci∈I r(Ci)xi. Given a P ⊆ {C1, . . . , Cw}, we present

ILP formulation of SSVE problem as follows:
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Maximize
∑

Ci∈C
xi +

∑

Ci∈I
r(Ci)xi

Subject to
∑

xi = k

xi ∈ {1, . . . , |Ci|} for all i : Ci ∈ C ∪ I

Solving the ILP: Lenstra [11] showed that the feasibility version of p-ILP
is FPT with running time doubly exponential in p, where p is the number of
variables. Later, Kannan [7] designed an algorithm for p-ILP running in time
pO(p). In our algorithm, we need the optimization version of p-ILP rather than
the feasibility version. We state the minimization version of p-ILP as presented
by Fellows et al. [6].

p-Variable Integer Linear Programming Optimization (p-Opt-ILP):
Let matrices A ∈ Zm×p, b ∈ Zp×1 and c ∈ Z1×p be given. We want to find a
vector x ∈ Zp×1 that minimizes the objective function c · x and satisfies the m
inequalities, that is, A ·x ≥ b. The number of variables p is the parameter. Then
they showed the following:

Lemma 1. [6] p-Opt-ILP can be solved using O(p2.5p+o(p) ·L · log(MN)) arith-
metic operations and space polynomial in L. Here L is the number of bits in the
input, N is the maximum absolute value any variable can take, and M is an
upper bound on the absolute value of the minimum taken by the objective func-
tion.

In the formulation for SSVE problem, we have at most w variables. The value
of objective function is bounded by n and the value of any variable in the integer
linear programming is also bounded by n. The constraints can be represented
using O(w2 log n) bits. Lemma 1 implies that we can solve the problem with the
guess P in FPT time. There are at most 2w choices for P, and the ILP formula
for a guess can be solved in FPT time. Thus Theorem 3 holds.

6 FPT Algorithm Parameterized by Treewidth

This section presents an FPT algorithm using dynamic programming for the
Small Set Vertex Expansion problem parameterized by treewidth. Given a
graph G = (V,E), an integer k ≤ n

2 and its nice tree decomposition (T,Xt : t ∈
V (T )) of width at most tw, subproblems will be defined on Gt = (Vt, Et) where
Vt is the union of all bags present in subtree of T rooted at t, including Xt and
Et is the set of edges e introduced in the subtree rooted at t. We define a colour
function f : Xt �→ {0, 1, 1̂} that assigns three different colours to the vertices of
Xt. The meanings of three different colours are given below:
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1 (black vertices): all black vertices are contained in set S whose vertex expansion
ΦV (S) we wish to calculate in Gt.
0 (white vertices): white vertices are adjacent to black vertices, these vertices
are in the expansion N(S) in Gt.
1̂ (gray vertices): gray vertices are neither in S nor in N(S).

Now we introduce some notations. Let X ⊆ V and consider a colouring
f : X �→ {1, 0, 1̂}. For α ∈ {1, 0, 1̂} and v ∈ V (G) a new colouring fv �→α :
X ∪ {v} �→ {1, 0, 1̂} is defined as follows:

fv �→α(x) =

{
f(x) when x �= v

α when x = v

Let f be a colouring of X, then the notation f|Y is used to denote the restriction
of f to Y , where Y ⊆ X.

For a colouring f of Xt and an integer i, a set S ⊆ Vt is said to be compatible
for tuple (t, f, i) if

1. |S| = i,
2. S ∩ Xt = f−1{1} which is the set of vertices of Xt coloured black, and
3. N(S) ∩ Xt = f−1{0}, which is the set of vertices of Xt coloured white.

We call a set S a minimum compatible set for (t, f, i) if its vertex expansion
ΦV (S) = |NVt

(S)| is minimum. We denote by c[t, f, i] the minimum vertex
expansion for (t, f, i), that is, c[t, f, i] equals to |NVt

(S)|, where S is a mini-
mum compatible set for (t, f, i). If no such S exists, then we put c[t, f, i] = ∞
also c[t, f, i < 0] = ∞. Since each vertex in Xt can be coloured with 3 colours
(1, 0, 1̂), the number of possible colouring f of Xt is 3|Xt| and for each colouring
f we vary i from 0 to k. The smallest value of vertex expansion ΦV (S) = |N(S)|
for a set S with k nodes will be c[r, φ, k], where r is the root node of tree decom-
position of G as G = Gr and Xr = ∅. We only show that ΦV (S) can be computed
in the claimed running time in Theorem 4. Corresponding set S can be easily
computed in the same running time by remembering a corresponding set for each
tuple (t, f, i) in the dynamic programming above. Now we present the recursive
formulae for the values of c[t, f, i].

Leaf Node: If t is a leaf node, then the corresponding bag Xt is empty. Hence
the colour function f on Xt is an empty colouring; the number i of vertices
coloured black cannot be greater than zero. Thus we have

c[t, ∅, i] =

{
0 if i = 0
∞ otherwise

Introduce Node: Suppose t is an introduce node with child t′ such that Xt =
Xt′ ∪{v} for some v /∈ Xt′ . The introduce node introduces the vertex v but does
not introduce the edges incident to v in Gt. So when v is introduced by node
t it is an isolated vertex in Gt. Vertex v cannot be coloured white 0; as it is
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isolated and it cannot be neighbour of any black vertex. Hence if f(v) = 0, then
c[t, f, i] = ∞. When f(v) = 1, v is contained in S. As v is an isolated vertex, it
does not contribute towards the size of NVt

(S), hence c[t, f, i] = c[t′, f|X
t′ , i− 1].

When f(v) = 1̂, v does not contribute towards the size of NVt
(S). Here the

sets compatible for (t′, f|X
t′ , i) are also compatible for (t, f, i). So, c[t, f, i] =

c[t′, f|X
t′ , i]. Combining all the cases together, we get

c[t, f, i] =

⎧
⎪⎨

⎪⎩

∞ if f(v) = 0
c[t′, f|X

t′ , i − 1] if f(v) = 1

c[t′, f|X
t′ , i] if f(v) = 1̂

Introduce Edge Node: Let t be an introduce edge node that introduces the
edge (u, v), let t′ be the child of t. Thus Xt = Xt′ ; the edge (u, v) is not there in
Gt′ , but it is there in Gt. Let f be a colouring of Xt. We consider the following
cases:

– Suppose f(u) = 1 and f(v) = 1̂. This means u ∈ S and v is non-adjacent to
black vertices in Gt. But u and v are adjacent in Gt. Thus c[t, f, i] = ∞. The
same conclusion can be drawn when v is coloured black and u is coloured
gray.

– Suppose f(u) = 1 and f(v) = 0. This means u ∈ S and v ∈ N(S) in Gt. In
order to get a solution for (t, f, i), we consider two cases.
Case 1: While considering precomputed solution for t′ we can relax the colour
of v from white to gray. Then the minimum vertex expansion for (t, f, i)
is one more than the minimum vertex expansion for (t′, fv→1̂, i), that is,
c[t, f, i] = 1 + c[t′, fv �→1̂, i].
Case 2: While considering precomputed solution for t′ we keep the colour of
v be white. Then the minimum vertex expansion for (t, f, i) is equal to the
minimum vertex expansion for (t′, f, i), that is, c[t, f, i] = c[t′, f, i].
Combining above two cases we get

c[t, f, i] = min
{

c[t′, f, i], 1 + c[t′, fv �→1̂, i]
}

The same conclusion can be drawn when v is coloured black and u is coloured
white.

– Other colour combinations of u and v do not affect the size of N(S) or do not
contradict the definition of campatability. So the compatible sets for (t′, f, i)
are also compatible for (t, f, i) and hence c[t, f, i] = c[t′, f, i].

Combining all the cases together, we get

c[t, f, i] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞ if (f(u), f(v)) = (1̂, 1)
∞ if (f(u), f(v)) = (1, 1̂)
min{c[t′, f, i], 1 + c[t′, fv �→1̂, i]} if (f(u), f(v)) = (1, 0)
min{c[t′, f, i], 1 + c[t′, fu�→1̂, i]} if (f(u), f(v)) = (0, 1)
c[t′, f, i] otherwise
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Forget Node: Let t be a forget node with the child t′ such that Xt = Xt′ \ {w}
for some vertex w ∈ Xt′ . Here the bag Xt forgets the vertex w. At this stage
we decides the final colour of the vertex w. We observe that Gt′ = Gt. The
compatible sets for (t′, fw �→1, i), (t′, fw �→0, i), (t′, fw �→1̂, i) are also compatible for
(t, f, i). On the other hand compatible sets for (t, f, i) are also compatible for
(t′, fw �→1, i) if w ∈ S, for (t′, fw �→0, i) if w ∈ N(S) or for (t′, fw �→1̂, i) if w /∈ N [S].
Hence

c[t, f, i] = min
{

c[t′, fw �→1, i], c[t′, fw �→0, i], c[t′, fw �→1̂, i]
}

Join Node: Let t be a join node with children t1 and t2, such that Xt = Xt1 =
Xt2 . Let f be a colouring of Xt. We say that colouring f1 of Xt1 and f2 of Xt2

are consistent for colouring f of Xt, if the following conditions are true for each
v ∈ Xt:

1. f(v) = 1 if and only if f1(v) = f2(v) = 1,
2. f(v) = 1̂ if and only if f1(v) = f2(v) = 1̂,
3. f(v) = 0 if and only if (f1(v), f2(v)) ∈ {(0, 1̂), (1̂, 0), (0, 0)}.

Let f be a colouring of Xt; f1 and f2 be two colouring of Xt1 and Xt2 respectively
consistent with f . Suppose S1 is a compatible set for (t1, f1, i1) and S2 is a
compatible set for (t2, f2, i2), where |S1| = i1 and |S2| = i2. Set S = S1 ∪ S2,
clearly |S| = |S1|+ |S2|−|f−1{1}|. It is easy to see that S is a compatible set for
(t, f, i), where i = i1 + i2 − |f−1{1}|. According to Condition 3 in the definition
of consistent function, each v ∈ Xt that is white in f , we make it white either
in f1, f2 or in both f1 and f2. Consequently, we have the following recursive
formula:

c[t, f, i] = min
f1,f2

{

min
i1,i2 : i=i1+i2−|f−1{1}|

{
c[t1, f1, i1] + c[t2, f2, i2] − αf1,f2

}
}

,

where αf1,f2 = |{v ∈ Xt | f1(v) = f2(v) = 0}|.
We now analyse the running time of the algorithm. We compute all entries

c[t, f, i] in a bottom-up manner. Clearly, the time needed to process each leaf
node, introduce vertex node, introduce edge node or forget node is 3tw+1 · kO(1)

assuming that the entries for the children of t are already computed. The com-
putation of c[t, f, i] for join node takes more time and it can be done as fol-
lows. If a pair (f1, f2) is consistent with f , then for every v ∈ Xt, we have
(f(v), f1(v), f1(v)) ∈ {(1, 1, 1), (1̂, 1̂, 1̂), (0, 0, 0), (0, 0, 1̂), (0, 1̂, 0)}. Hence there
are exactly 5|Xt| triples of colouring (f, f1, f2) such that f1 and f2 are consistent
with f , since for every vertex v, we have 5 possibilities for (f(v), f1(v), f2(v)). In
order to compute c(t, f, i), we iterate through all consistent pairs (f1, f2); then
for each considered triple (f, f1, f2) we vary i1 and i2 from 0 to k such that
i = i1 + i2 − |f−1{1}|. As |Xt| ≤ tw + 1, the time needed to process each join
node is 5tw+1kO(1). Since we assume that the number of nodes in a nice tree
decomposition is O(n · tw), we have the following theorem.
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Theorem 4. Given an n-vertex graph G and its nice tree decomposition of
width at most tw, the Small Set Vertex Expansion problem can be solved
in O(5twn) time.

7 Conclusion

In this work we proved that the Small Set Vertex Expansion problem is
W[1]-hard when parameterized by k, the number of vertices in S; it is FPT
when parameterized neighbourhood diversity; and the problem is FPT when
parameterized by treewidth of the input graph. The parameterized complexity
of the Small Set Vertex Expansion problem remains unsettle when param-
eterized by k + �, and when parameterized by other important structural graph
parameters like clique-width, modular width and treedepth.

Acknowledgement. We are grateful to Dr. Kitty Meeks, University of Glasgow, for
useful discussions and her comments on the proof of Theorem 2.
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