
Almost Linear Time Algorithms
for Minsum k-Sink Problems

on Dynamic Flow Path Networks

Yuya Higashikawa1(B), Naoki Katoh1, Junichi Teruyama1, and Koji Watase2

1 University of Hyogo, Kobe, Japan
{higashikawa,naoki.katoh,junichi.teruyama}@sis.u-hyogo.ac.jp

2 Kwansei Gakuin University, Sanda, Japan
fnt43517@kwansei.ac.jp

Abstract. We address the facility location problems on dynamic flow
path networks. A dynamic flow path network consists of an undirected
path with positive edge lengths, positive edge capacities, and positive
vertex weights. A path can be considered as a road, an edge length
as the distance along the road and a vertex weight as the number of
people at the site. An edge capacity limits the number of people that
can enter the edge per unit time. In the dynamic flow network, given
particular points on edges or vertices, called sinks, all the people evacuate
from the vertices to the sinks as quickly as possible. The problem is
to find the location of sinks on a dynamic flow path network in such
a way that the aggregate evacuation time (i.e., the sum of evacuation
times for all the people) to sinks is minimized. We consider two models
of the problem: the confluent flow model and the non-confluent flow
model. In the former model, the way of evacuation is restricted so that
all the people at a vertex have to evacuate to the same sink, and in
the latter model, there is no such restriction. In this paper, for both the
models, we develop algorithms which run in almost linear time regardless
of the number of sinks. It should be stressed that for the confluent flow
model, our algorithm improves upon the previous result by Benkoczi
et al. [Theoretical Computer Science, 2020], and one for the non-confluent
flow model is the first polynomial time algorithm.

Keywords: Dynamic flow networks · Facility location problems ·
Minimum k-link path problem · Persistent data structures

1 Introduction

Recently, many disasters, such as earthquakes, nuclear plant accidents, volcanic
eruptions and flooding, have struck in many parts of the world, and it has been
recognized that orderly evacuation planning is urgently needed. A powerful tool

A full version of the paper is available at [14]; https://arxiv.org/abs/2010.05729.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 198–213, 2020.
https://doi.org/10.1007/978-3-030-64843-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_14&domain=pdf
https://arxiv.org/abs/2010.05729
https://doi.org/10.1007/978-3-030-64843-5_14

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 199

for evacuation planning is the dynamic flow model introduced by Ford and Fulk-
erson [10], which represents movement of commodities over time in a network.
In this model, we are given a graph with source vertices and sink vertices. Each
source vertex is associated with a positive weight, called a supply, each sink
vertex is associated with a positive weight, called a demand, and each edge is
associated with positive length and capacity. An edge capacity limits the amount
of supply that can enter the edge per unit time. One variant of the dynamic flow
problem is the quickest transshipment problem, of which the objective is to send
exactly the right amount of supply out of sources into sinks with satisfying the
demand constraints in the minimum overall time. Hoppe and Tardos [15] pro-
vided a polynomial time algorithm for this problem in the case where the transit
times are integral. However, the complexity of their algorithm is very high. Find-
ing a practical polynomial time solution to this problem is still open. A reader
is referred to a recent survey by Skutella [18] on dynamic flows.

This paper discusses a related problem, called the k-sink problem [2,4,5,7–9,
12,13,16], of which the objective is to find a location of k sinks in a given dynamic
flow network so that all the supply is sent to the sinks as quickly as possible. For
the optimality of location, the following two criteria can be naturally considered:
the minimization of evacuation completion time and aggregate evacuation time
(i.e., average evacuation time). We call the k-sink problem that requires finding
a location of k sinks that minimizes the evacuation completion time (resp. the
aggregate evacuation time) the minmax (resp. minsum) k-sink problem. Several
papers have studied the minmax k-sink problems on dynamic flow networks [2,7–
9,12,13,16]. On the other hand, the minsum k-sink problems on dynamic flow
networks have not been studied except for the case of path networks [4,5,13].

Moreover, there are two models on the way of evacuation. Under the confluent
flow model, all the supply leaving a vertex must evacuate to the same sink
through the same edges, and under the non-confluent flow model, there is no
such restriction. To our knowledge, all the papers which deal with the k-sink
problems [2,4,5,7–9,13] adopt the confluent flow model.

In order to model the evacuation behavior of people, it might be natural
to treat each supply as a discrete quantity as in [15,16]. Nevertheless, almost
all the previous papers on sink problems [2,7–9,12,13] treat each supply as a
continuous quantity since it is easier for mathematically handling the problems
and the effect is small enough to ignore when the number of people is large.
Throughout the paper, we also adopt the model with continuous supplies.

In this paper, we study the minsum k-sink problems on dynamic flow path
networks under both the confluent flow model and the non-confluent flow model.
A path network can model a coastal area surrounded by the sea and a hilly
area, an airplane aisle, a hall way in a building, a street, a highway, etc., to
name a few. For the confluent flow model, the previous best results are an
O(kn log3 n) time algorithm for the case with uniform edge capacity in [4], and
O(kn log4 n) time algorithm for the case with general edge capacities in [5], where
n is the number of vertices on path networks. We develop algorithms which run in
time min{O(kn log2 n), n2O(

√
log k log log n) log2 n} for the case with uniform edge

200 Y. Higashikawa et al.

capacity, and in time min{O(kn log3 n), n2O(
√
log k log log n) log3 n} for the case

with general edge capacities, respectively. Thus, our algorithms improve upon
the complexities by [4,5] for any value of k. Especially, for the non-confluent flow
model, this paper provides the first polynomial time algorithms.

Since the number of sinks k is at most n, we confirm 2O(
√
log k log log n) =

nO(
√

log log n/ log n) = no(1), which means that our algorithms are the first ones
which run in almost linear time (i.e., n1+o(1) time) regardless of k. The reason
why we could achieve almost linear time algorithms for the minsum k-sink prob-
lems is that we newly discover a convex property from a novel point of view.
In all the previous papers on the k-sink problems, the evacuation completion.
time and the aggregate evacuation time (called CT and AT, respectively) are
basically determined as functions in “distance”: Let us consider the case with a
1-sink. The values CT(x) or AT(x) may change as a sink location x moves along
edges in the network. In contrast, we introduce a new metric for CT and AT as
follows: assuming that a sink is fixed and all the supply in the network flows to
the sink, for a positive real z, CT(z) is the time at which the first z of supply
completes its evacuation to the sink and then AT(z) is the integral of CT(z), i.e.,
AT(z) =

∫ z

0
CT(t)dt. We can observe that AT(z) is convex in z since CT(z) is

increasing in z. Based on the convexity of AT(z), we develop efficient algorithms.
The rest of the paper is organized as follows. In Sect. 2, we introduce the

terms that are used throughout the paper and explain our models. In Sect. 3,
we show that our problem can be reduced to the minimum k-link path prob-
lem with links satisfying the concave Monge condition. This immediately implies
by Schieber [17] that the optimal solutions for our problems can be obtained
by solving min{O(kn), n2O(

√
log k log log n)} subproblems of computing the opti-

mal aggregate evacuation time for subpaths, in each of which two sinks are
located on its endpoints. Section 3 subsequently shows an overview of the algo-
rithm that solves the above subproblems. In Sect. 4, we introduce novel data
structures, which enable to solve each of the above subproblems in O(poly log n)
time. Section 5 concludes the paper.

2 Preliminaries

2.1 Notations

For two real values a, b with a < b, let [a, b] = {t ∈ R | a ≤ t ≤ b}, [a, b) =
{t ∈ R | a ≤ t < b}, (a, b] = {t ∈ R | a < t ≤ b}, and (a, b) = {t ∈ R | a <
t < b}, where R is the set of real values. For two integers i, j with i ≤ j, let
[i..j] = {h ∈ Z | i ≤ h ≤ j}, where Z is the set of integers. A dynamic flow
path network P is given as a 5-tuple (P,w, c, l, τ), where P is a path with vertex
set V = {vi | i ∈ [1..n]} and edge set E = {ei = (vi, vi+1) | i ∈ [1..n − 1]},
w is a vector 〈w1, . . . , wn〉 of which a component wi is the weight of vertex vi

representing the amount of supply (e.g., the number of evacuees, cars) located
at vi, c is a vector 〈c1, . . . , cn−1〉 of which a component ci is the capacity of edge
ei representing the upper bound on the flow rate through ei per unit time, l is

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 201

a vector 〈�1, . . . , �n−1〉 of which a component �i is the length of edge ei, and τ is
the time which unit supply takes to move unit distance on any edge.

We say a point p lies on path P = (V,E), denoted by p ∈ P , if p lies on a
vertex v ∈ V or an edge e ∈ E. For two points p, q ∈ P , p ≺ q means that p lies
to the left side of q. For two points p, q ∈ P , p � q means that p ≺ q or p and
q lie on the same place. Let us consider two integers i, j ∈ [1..n] with i < j. We
denote by Pi,j a subpath of P from vi to vj . Let Li,j be the distance between vi

and vj , i.e., Li,j =
∑j−1

h=i �h, and let Ci,j be the minimum capacity for all the
edges between vi and vj , i.e., Ci,j = min{ch | h ∈ [i..j − 1]}. For i ∈ [1..n], we
denote the sum of weights from v1 to vi by Wi =

∑i
j=1 wj . Note that, given a

dynamic flow path network P, if we construct two lists of Wi and L1,i for all
i ∈ [1..n] in O(n) preprocessing time, we can obtain Wi for any i ∈ [1..n] and
Li,j = L1,j −L1,i for any i, j ∈ [1..n] with i < j in O(1) time. In addition, Ci,j for
any i, j ∈ [1..n] with i < j can be obtained in O(1) time with O(n) preprocessing
time, which is known as the range minimum query [1,3].

A k-sink x is k-tuple (x1, . . . , xk) of points on P , where xi ≺ xj for i < j.
We define the function Id for point p ∈ P as follows: the value Id(p) is an
integer such that vId(p) � p ≺ vId(p)+1 holds. For a k-sink x for P, a divider
d is (k − 1)-tuple (d1, . . . , dk−1) of real values such that di < dj for i < j and
WId(xi) ≤ di ≤ WId(xi+1). Given a k-sink x and a divider d for P, the portion
WId(xi) −di−1 supply that originates from the left side of xi flows to sink xi, and
the portion di −WId(xi) supply that originates from the right side of xi also flows
to sink xi. For instance, under the non-confluent flow model, if Wh−1 < di < Wh

where h ∈ [1..n], di − Wh−1 of wh supply at vh flows to sink xi and the rest
of Wh − di supply to do sink xi+1. The difference between the confluent flow
model and the non-confluent flow model is that the confluent flow model requires
that each value di of a divider d must take a value in {W1, . . . , Wn}, but the
non-confluent flow model does not. For the notation, we set d0 = 0 and dk = Wn.

For a dynamic flow path network P, a k-sink x and a divider d, the evacuation
completion time CT(P,x,d) is the time at which all the supply completes the
evacuation. The aggregate evacuation time AT(P,x,d) is that the sum of the
evacuation completion time for all the supply. Their explicit definitions are given
later. In this paper, our task is, given a dynamic flow path network P, to find a k-
sink x and a divider d that minimize the aggregate evacuation time AT(P,x,d)
in each evacuation model.

2.2 Aggregate Evacuation Time on a Path

For the confluent flow model, it is shown in [5,13] that for the minsum k-sink
problems, there exists an optimal k-sink such that all the k sinks are at vertices.
This fact also holds for the non-confluent flow model. Indeed, if a divider d is
fixed, then we have k subproblems for a 1-sink and the optimal sink location for
each subproblem is at a vertex. Thus, we have the following lemma.

202 Y. Higashikawa et al.

Lemma 1 ([13]). For the minsum k-sink problem in a dynamic flow path net-
work, there exists an optimal k-sink such that all the k sinks are at vertices under
the confluent/non-confluent flow model.

Lemma 1 implies that it is enough to consider only the case that every sink is at
a vertex. Thus, we suppose x = (x1, . . . , xk) ∈ V k, where xi ≺ xj for i < j.

A Simple Example with a 1-sink. In order to give explicit definitions for the
evacuation completion time and the aggregate evacuation time, let us consider
a simple example for a 1-sink. We are given a dynamic flow path network P =
(P,w, c, l, τ) with n vertices and set a unique sink on a vertex vi, that is, x = (vi)
and d = () which is the 0-tuple. In this case, all the supply on the left side of
vi (i.e., at v1, . . . , vi−1) will flow right to sink vi, and all the supply on the right
side of vi (i.e., at vi+1, . . . , vn) will flow left to sink vi. Note that in our models
all the supply at vi immediately completes its evacuation at time 0.

To deal with this case, we introduce some new notations. Let the function
θi,+(z) denote the time at which the first z − Wi of supply on the right side
of vi completes its evacuation to sink vi (where θi,+(z) = 0 for z ∈ [0,Wi]).
Higashikawa [11] shows that the value θi,+(Wn), the evacuation completion time
for all the supply on the right side of vi, is given by the following formula:

θi,+(Wn) = max
{

Wn − Wj−1

Ci,j
+ τ · Li,j | j ∈ [i + 1..n]

}

. (1)

Recall that Ci,j = min{ch | h ∈ [i..j − 1]}. We can generalize formula (1) to the
case with any z ∈ [0,Wn] as follows:

θi,+(z) = max{θi,+,j(z) | j ∈ [i + 1..n]}, (2)

where θi,+,j(z) for j ∈ [i + 1..n] is defined as

θi,+,j(z) =

{
0 if z ≤ Wj−1,
z−Wj−1

Ci,j
+ τ · Li,j if z > Wj−1.

(3)

Similarly, let θi,−(z) denote the time at which the first Wi−1 − z of supply on
the left side of vi completes its evacuation to sink vi (where θi,−(z) = 0 for
z ∈ [Wi−1,Wn]). Then,

θi,−(z) = max{θi,−,j(z) | j ∈ [1..i − 1]}, (4)

where θi,−,j(z) is defined as

θi,−,j(z) =

{
Wj−z
Cj,i

+ τ · Lj,i if z < Wj ,

0 if z ≥ Wj .
(5)

The aggregate evacuation times for the supply on the right side and the left
side of vi are

∫ Wn

Wi

θi,+(z)dz =
∫ Wn

0

θi,+(z)dz and
∫ Wi−1

0

θi,−(z)dz =
∫ Wn

0

θi,−(z)dz,

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 203

Fig. 1. The thick half-open segments indicate function θi,+(t) and the gray area indi-
cates Φi,+(z) for some z > Wi.

respectively. Thus, the aggregate evacuation time AT(P, (vi), ()) is given as

AT(P, (vi), ()) =
∫ Wn

0

{
θi,+(z) + θi,−(z)

}
dz.

Aggregate Evacuation Time with a k-Sink. Suppose that we are given a
k-sink x = (x1, . . . , xk) ∈ V k and a divider d = (d1, . . . , dk−1). Recalling the
definition of Id(p) for p ∈ P , we have xi = vId(xi) for all i ∈ [1..k]. In this
situation, for each i ∈ [1..k], the first di − WId(xi) of supply on the right side of
xi and the first WId(xi)−1 − di−1 of supply on the left side of xi move to sink xi.

By the argument of the previous section, the aggregate evacuation times for
the supply on the right side and the left side of xi are

∫ di

WId(xi)

θId(xi),+(z)dz =
∫ di

0

θId(xi),+(z)dz and

∫ WId(xi)−1

di−1

θId(xi),−(z)dz =
∫ Wn

di−1

θId(xi),−(z)dz,

respectively. In order to give the general form for the above values, let us denote
by Φi,+(z) the aggregate evacuation time when the first z −Wi of supply on the
right side of vi flows to sink vi. Similarly, we denote by Φi,−(z) the aggregate
evacuation time when the first Wi−1 − z of supply on the left side of vi flows to
sink vi. Therefore, we have

Φi,+(z) =
∫ z

0

θi,+(t)dt and Φi,−(z) =
∫ Wn

z

θi,−(t)dt =
∫ z

Wn

−θi,−(t)dt (6)

(see Fig. 1). Let us consider a subpath PId(xi),Id(xi+1) which is a subpath between
sinks xi and xi+1. The aggregate evacuation time for the supply on PId(xi),Id(xi+1)

is given by

∫ di

0

θId(xi),+(z)dz +
∫ Wn

di

θId(xi+1),−(z)dz = ΦId(xi),+(di) + ΦId(xi+1),−(di).

204 Y. Higashikawa et al.

For i, j ∈ [1..n] with i < j, let us define

Φi,j(z) = Φi,+(z) + Φj,−(z) =
∫ z

0

θi,+(t)dt +
∫ Wn

z

θj,−(t)dt (7)

for z ∈ [Wi,Wj−1]. Then, the aggregate evacuation time AT(P,x,d) is given as

AT(P,x,d) = ΦId(x1),−(0) +
k−1∑

i=1

ΦId(xi),Id(xi+1)(di) + ΦId(xk),+(Wn). (8)

In the rest of this section, we show the important properties of Φi,j(z). Let
us first confirm that by Eq. (6), both Φi,+(z) and Φj,−(z) are convex in z since
θi,+(z) and −θj,−(z) are non-decreasing in z, therefore Φi,j(z) is convex in z.
On the condition of the minimizer for Φi,j(z), we have a more useful lemma.

Lemma 2. For any i, j ∈ [1..n] with i < j, there uniquely exists

z∗ ∈ arg min
z∈[Wi,Wj−1]

max{θi,+(z), θj,−(z)}.

Furthermore, Φi,j(z) is minimized on [Wi,Wj−1] when z = z∗.

See Lemma 2 in [14] for the proof. In the following sections, such z∗ is called the
pseudo-intersection point1 of θi,+(z) and θj,−(z), and we say that θi,+(z) and
θj,−(z) pseudo-intersect on [Wi,Wj−1] at z∗.

3 Algorithms

In order to solve our problems, we reduce them to minimum k-link path problems.
In the minimum k-link path problems, we are given a weighted complete directed
acyclic graph (DAG) G = (V ′, E′, w′) with V ′ = {v′

i | i ∈ [1..n]} and E′ =
{(v′

i, v
′
j) | i, j ∈ [1..n], i < j}. Each edge (v′

i, v
′
j) is associated with weight w′(i, j).

We call a path in G a k-link path if the path contains exactly k edges. The task
is to find a k-link path (v′

a0
= v′

1, v
′
a1

, v′
a2

, . . . , v′
ak−1

, v′
ak

= v′
n) from v′

1 to v′
n

that minimizes the sum of weights of k edges,
∑k

i=1 w′(ai−1, ai). If the weight
function w′ satisfies the concave Monge property, then we can solve the minimum
k-link path problems in almost linear time regardless of k.

Definition 1 (Concave Monge property). We say function f : Z × Z → R

satisfies the concave Monge property if for any integers i, j with i + 1 < j,
f(i, j) + f(i + 1, j + 1) ≤ f(i + 1, j) + f(i, j + 1) holds.

Lemma 3 ([17]). Given a weighted complete DAG with n vertices, if the weight
function satisfies the concave Monge property, then there exists an algorithm that
solves the minimum k-link path problem in time min{O(kn), n2O(

√
log k log log n)}.

1 The reason why we adopt a term “pseudo-intersection” is that two functions θi,+(z)
and θj,−(z) are not continuous in general while “intersection” is usually defined for
continuous functions.

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 205

We describe how to reduce the k-sink problem on a dynamic flow path net-
work P = (P = (V,E),w, c, l, τ) with n vertices to the minimum (k + 1)-
link path problem on a weighted complete DAG G = (V ′, E′, w′). We pre-
pare a weighted complete DAG G = (V ′, E′, w′) with n + 2 vertices, where
V ′ = {v′

i | i ∈ [0..n + 1]} and E′ = {(v′
i, v

′
j) | i, j ∈ [0..n + 1], i < j}. We set the

weight function w′ as

w′(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

OPT(i, j) i, j ∈ [1..n], i < j,
Φi,+(Wn) i ∈ [1..n] and j = n + 1,
Φj,−(0) i = 0 and j ∈ [1..n],
∞ i = 0 and j = n + 1,

(9)

where OPT(i, j) = minz∈[Wi,Wj−1] Φ
i,j(z).

Now, on a weighted complete DAG G made as above, let us consider a (k+1)-
link path (v′

a0
= v′

0, v
′
a1

, . . . , v′
ak

, v′
ak+1

= v′
n+1) from v′

0 to v′
n+1, where a1, . . . , ak

are integers satisfying 0 < a1 < a2 < · · · < ak < n + 1. The sum of weights of
this (k + 1)-link path is

k∑

i=0

w′(ai, ai+1) = Φa1,−(0) +
k−1∑

i=1

OPT(ai, ai+1) + Φak,+(Wn).

This value is equivalent to mind AT(P,x,d) for a k-sink x = (va1 , va2 , . . . , vak
)

(recall Eq. (8)), which implies that a minimum (k+1)-link path on G corresponds
to an optimal k-sink location for a dynamic flow path network P.

We show in the following lemma that the function w′ defined as formula (9)
satisfies the concave Monge property under both of evacuation models. See
Lemma 4 in [14] for the proof.

Lemma 4. The weight function w′ defined as formula (9) satisfies the concave
Monge property under the confluent/non-confluent flow model.

Lemmas 3 and 4 imply that if we can evaluate w′(i, j) in time at most t for
any i, j ∈ [0..n + 1] with i < j, then we can solve the k-sink problem in time
min{O(knt), n2O(

√
log k log log n)t}.

In order to obtain w′(i, j) for any i, j ∈ [0..n + 1] with i < j in O(poly log n)
time, we introduce novel data structures and some modules using them. Basi-
cally, we construct a segment tree [6] T with root ρ such that its leaves correspond
to indices of vertices of P arranged from left to right and its height is O(log n).
For a node u ∈ T , let Tu denote the subtree rooted at u, and let lu (resp. ru)
denote the index of the vertex that corresponds to the leftmost (resp. rightmost)
leaf of Tu. Let pu denote the parent of u if u �= ρ. We say a node u ∈ T spans
subpath P�u,ru

. If P�u,ru
⊆ P ′ and P�pu ,rpu

�⊆ P ′, node u is called a maximal
subpath node for P ′. For each node u ∈ T , let mu be the number of edges in
subpath P�u,ru

, i.e., mu = ru − �u. As with a standard segment tree, T has the
following properties.

Property 1. For i, j ∈ [1..n] with i < j, the number of maximal subpath nodes
for Pi,j is O(log n). Moreover, we can find all the maximal subpath nodes for
Pi,j by walking on T from leaf i to leaf j in O(log n) time.

206 Y. Higashikawa et al.

Property 2. If one can construct data structures for each node u of a segment
tree T in O(f(mu)) time, where f : N → R is some function independent of
n and bounded below by a linear function asymptotically, i.e., f(m) = Ω(m),
then the running time for construction of data structures for every node in T is
O(f(n) log n) time in total.

At each node u ∈ T , we store four types of the information that depend
on the indices of the vertices spanned by u, i.e., lu, . . . , ru. We will introduce
each type in Sect. 4. As will be shown there, the four types of the information
at u ∈ T can be constructed in O(mu log mu) time. Therefore, we can construct
T in O(n log2 n) time by Property 2.

Recall that for i, j ∈ [1..n] with i < j, it holds w′(i, j) = OPT(i, j). We give
an outline of the algorithm that computes OPT(i, j) only for the non-confluent
flow model since a similar argument holds even for the confluent flow model
with minor modification. The main task is to find a value z∗ that minimizes
Φi,j(z), i.e., OPT(i, j) = Φi,j(z∗). By Lemma 2, such the value z∗ is the pseudo-
intersection point of θi,+(z) and θj,−(z) on [Wi,Wj−1].

Before explaining our algorithms, we need introduce the following definition:

Definition 2. For integers i, �, r ∈ [1..n] with i < � ≤ r, we denote by
θi,+,[�..r](z) the upper envelope of functions {θi,+,h(z) | h ∈ [�..r]}, that is,

θi,+,[�..r](z) = max{θi,+,h(z) | h ∈ [�..r]}.

For integers i, �, r ∈ [1..n] with � ≤ r < i, we denote by θi,−,[�..r](z) the upper
envelope of functions {θi,−,h(z) | h ∈ [�..r]}, that is,

θi,−,[�..r](z) = max{θi,−,h(z) | h ∈ [�..r]}.

Algorithm for computing OPT(i, j) for given i, j ∈ [1..n] with i < j

Phase 1: Find a set U of the maximal subpath nodes for Pi+1,j−1 by walking
on segment tree T from leaf i + 1 to leaf j − 1.

Phase 2: For each u ∈ U , compute a real interval I+
u such that θi,+(z) =

θi,+,[�u..ru](z) holds on any z ∈ I+
u , and a real interval I−

u such that
θj,−(z) = θj,−,[�u..ru](z) holds on any z ∈ I−

u , both of which are
obtained by using information stored at node u. See Sect. 5.1 in [14]
for the details.

Phase 3: Compute the pseudo-intersection point z∗ of θi,+(z) and θj,−(z) on
[Wi,Wj−1] by using real intervals obtained in Phase 2. See Sect. 5.2
in [14] for the details.

Phase 4: Compute OPT(i, j) = Φi,j(z∗) as follows: By formula (7), we have

Φi,j(z∗) =
∫ z∗

0

θi,+(t)dt +
∫ Wn

z∗
θj,−(t)dt

=
∑

u∈U

{∫

I+
u ∩[0,z∗]

θi,+,[�u..ru](t)dt +
∫

I−
u ∩[z∗,Wn]

θj,−,[�u..ru](t)dt

}

.

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 207

For each u ∈ U , we compute integrals
∫

θi,+,[�u..ru](t)dt and∫
θj,−,[�u..ru](t)dt by using the information stored at u. See Sect. 5.3

in [14] for the details.

For the cases of i = 0 or j = n + 1, we can also compute w′(0, j) = Φj,−(0) and
w′(i, n + 1) = Φi,+(Wn) by the same operations except for Phase 3.

We give the following lemma about the running time of the above algorithm
for the case of general edge capacities. See Lemma 8 in [14] for the proof.

Lemma 5 (Key lemma for general capacity). Let us suppose that a segment
tree T is available. Given two integers i, j ∈ [0..n+1] with i < j, one can compute
a value w′(i, j) in O(log3 n) time for the confluent/non-confluent flow model.

Recalling that the running time for construction of data structure T is
O(n log2 n), Lemmas 3, 4 and 5 imply the following main theorem.

Theorem 1 (Main theorem for general capacity). Given a dynamic flow
path network P, there exists an algorithm that finds an optimal k-sink under the
confluent/non-confluent flow model in time min{O(kn log3 n), n2O(

√
log k log log n)

log3 n}.

When the capacities of P are uniform, we can improve the running time
for computing w′(i, j) to O(log2 n) time with minor modification. See Lemma 9
in [14] for the proof.

Lemma 6 (Key lemma for uniform capacity). Let us suppose that a seg-
ment tree T is available. Given two integers i, j ∈ [1..n] with i < j, one can
compute a value w′(i, j) in O(log2 n) time for the confluent/non-confluent flow
model when the capacities are uniform.

Theorem 2 (Main theorem for uniform capacity). Given a dynamic
flow path network P with a uniform capacity, there exists an algorithm that
finds an optimal k-sink under the confluent/non-confluent flow model in time
min{O(kn log2 n), n2O(

√
log k log log n) log2 n}.

4 Data Structures Associated with Nodes of T

In the rest of the paper, we introduce novel data structures associated with each
node u of segment tree T , which are used to compute OPT(i, j) in O(poly log n)
time. Note that our data structures generalize the capacities and upper envelopes
tree (CUE tree) provided by Bhattacharya et al. [7].

Recall the algorithm for computing OPT(i, j) shown in Sect. 3. To explain the
data structures, let us see more precisely how the algorithm performs in Phase 2.
Confirm that for z ∈ [Wi,Wj−1], it holds θi,+(z) = max{θi,+,[�u..ru](z) | u ∈ U},
where U is a set of the maximal subpath nodes for Pi+1,j−1. Let us focus on
function θi,+,[�u..ru](z) for a node u ∈ U only on interval (W�u−1,Wn] since it
holds θi,+,[�u..ru](z) = 0 if z ≤ W�u−1. Interval (W�u−1,Wn] consists of three

208 Y. Higashikawa et al.

Fig. 2. Illustration of J +
u,1, J +

u,2 and J +
u,3. The thick half lines have the same slope of

1/Ci,�u , the gray half lines have slopes ≤ 1/Ci,�u , and the regular half lines have slopes
> 1/Ci,�u . The upper envelope of all the thick half lines and the regular half lines is
function θi,+,[�u..ru](z).

left-open-right-closed intervals J +
u,1, J +

u,2 and J +
u,3 that satisfy the following

conditions: (i) For z ∈ J +
u,1, θi,+,[�u..ru](z) = θi,+,�u(z). (ii) For z ∈ J +

u,2,
θi,+,[�u..ru](z) = θi,+,[�u+1..ru](z) and its slope is 1/Ci,�u

. (iii) For z ∈ J +
u,3,

θi,+,[�u..ru](z) = θi,+,[�u+1..ru](z) and its slope is greater than 1/Ci,�u
. See also

Fig. 2. Thus in Phase 2, the algorithm computes J +
u,1, J +

u,2 and J +
u,3 for all

u ∈ U , and combines them one by one to obtain intervals I+
u for all u ∈ U .

To implement these operations efficiently, we construct some data structures at
each node u of T . To explain the data structures stored at u, we introduce the
following definition:

Definition 3. For integers i, �, r ∈ [1..n] with i < � ≤ r and a positive real c,
let θ̄i,+,[�..r](c, z) = max{θ̄i,+,h(c, z) | h ∈ [�..r]}, where

θ̄i,+,j(c, z) =
{

0 if z ≤ Wj−1,
z−Wj−1

c + τ · Li,j if z > Wj−1.
(10)

For integers i, �, r ∈ [1..n] with � ≤ r < i and a positive real c, let θ̄i,−,[�..r](c, z) =
max{θ̄i,−,h(c, z) | h ∈ [�..r]}, where

θ̄i,−,j(c, z) =
{

Wj−z
c + τ · Lj,i if z < Wj ,

0 if z ≥ Wj .
(11)

We can see that for z ∈ J +
u,2, θi,+,[�u+1..ru](z) = θ̄�u,+,[�u+1..ru](Ci,�u

, z)+τ ·Li,�u
,

and for z ∈ J +
u,3, θi,+,[�u+1..ru](z) = θ�u,+,[�u+1..ru](z) + τ · Li,�u

. We then store
at u of T the information for computing in O(poly log n) time θ�u,+,[�u+1..ru](z)
for any z ∈ [0,Wn] as TYPE I, and also one for computing in O(poly log n) time
θ̄�u,+,[�u+1..ru](c, z) for any c > 0 and any z ∈ [0,Wn] as TYPE III.

In Phase 4, the algorithm requires computing integrals
∫ z

0
θ�u,+,[�u+1..ru](t)dt

for any z ∈ [0,Wn], and
∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt for any c > 0 and any z ∈

[0,Wn], for which the information is stored at each u ∈ T as TYPEs II and IV,
respectively.

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 209

In a symmetric manner, we also store at each u ∈ T the information for
computing θru,−,[�u..ru−1](z),

∫ Wn

z
θru,−,[�u..ru−1](t)dt, θ̄ru,−,[�u..ru−1](c, z), and

∫ Wn

z
θ̄ru,−,[�u..ru−1](c, t)dt as TYPEs I, II, III, and IV, respectively.

Let us introduce what information is stored as TYPEs I–IV at u ∈ T . See
Sect. 4 in [14] for the detail.

TYPE I. We give the information only for computing θ�u,+,[�u+1..ru](z) stored
at u ∈ T as TYPE I since the case for θru,−,[�u..ru−1](z) is symmetric. By
Definition 2, the function θ�u,+,[�u+1..ru](z) is the upper envelope of mu functions
θ�u,+,h(z) for h ∈ [�u + 1..ru]. Let Bu,+ = (bu,+

1 = 0, bu,+
2 , . . . , bu,+

Nu,+ = Wn)
denote a sequence of breakpoints of θ�u,+,[�u+1..ru](z), where Nu,+ is the number
of breakpoints. For each p ∈ [1..Nu,+ − 1], let Hu,+

p ∈ [�u + 1..ru] such that

θ�u,+,[�u+1..ru](z) = θ�u,+,Hu,+
p (z) holds for any z ∈ (bu,+

p , bu,+
p+1]. As TYPE I,

each node u ∈ T is associated with following two lists:

1. Pairs of breakpoint bu,+
p and value θ�u,+,[�u+1..ru](bu,+

p), and
2. Pairs of range (bu,+

p , bu,+
p+1] and index Hu,+

p .

Note that the above lists can be constructed in O(mu log mu) time for each
u ∈ T . By Property 2, we can obtain the whole information of TYPE I of T in
time O(n log2 n). We now give the application of TYPE I. See Lemma 11 in [14]
for the proof.

Lemma 7 (Query with TYPE I). Suppose that TYPE I of T is available.
Given a node u ∈ T and a real value z ∈ [0,Wn], we can obtain

(i) index H ∈ [�u + 1..ru] such that θ�u,+,H(z) = θ�u,+,[�u+1..ru](z), and
(ii) index H ∈ [�u..ru − 1] such that θru,−,H(z) = θru,−,[�u..ru−1](z)

in time O(log n) respectively. Furthermore, if the capacities of P are uniform
and z /∈ [W�u

,Wru−1], we can obtain the above indices in time O(1).

TYPE II. We give the information only for computing
∫ z

0
θ�u,+,[�u+1..ru](t)dt

stored at u ∈ T as TYPE II since the case for
∫ Wn

z
θru,−,[�u..ru−1](t)dt is sym-

metric. Each node u ∈ T contains a list of all pairs of breakpoint bu,+
p and value

∫ bu,+
p

0
θ�u,+,[�u+1..ru](t)dt. This list can be constructed in O(mu) time for each

u ∈ T by using TYPE I of u. By Property 2, we obtain the whole information
of TYPE II of T in time O(n log n). We give the application of TYPEs I and II.
See Lemma 12 in [14] for the proof.

Lemma 8 (Query with TYPEs I and II). Suppose that TYPEs I and II of
T is available. Given a node u ∈ T and a real value z ∈ [0,Wn], we can obtain
(i) value

∫ z

0
θ�u,+,[�u+1..ru](t)dt, and (ii) value

∫ Wn

z
θru,−,[�u..ru−1](t)dt in time

O(log n) respectively. Furthermore, if the capacities of P are uniform and z /∈
[W�u

,Wru−1], we can obtain the above values in time O(1).

210 Y. Higashikawa et al.

TYPE III. We give the information only for computing θ̄�u,+,[�u+1..ru](c, z)
stored at u ∈ T as TYPE III since the case for θ̄ru,−,[�u..ru−1](c, z) is symmetric.
Note that it is enough to prepare for the case of z ∈ (W�u

,Wru
] since it holds

that θ̄�u,+,[�u+1..ru](c, z) = 0 for z ∈ [0,W�u
] and

θ̄�u,+,[�u+1..ru](c, z) = θ̄�u,+,[�u+1..ru](c,Wru
) +

z − Wru

c

for z ∈ (Wru
,Wn], of which the first term is obtained by prepared information

with z = Wru
and the second term is obtained by elementally calculation.

For each u ∈ T , we construct a persistent segment tree as TYPE III. Refer-
ring to formula (10), each function θ̄�u,+,j(c, z) for j ∈ [lu + 1..ru] is linear in
z ∈ (Wj−1,Wn] with the same slope 1/c. Let us make parameter c decrease
from ∞ to 0, then all the slopes 1/c increase from 0 to ∞. As c decreases, the
number of subfunctions that consist of θ̄�u,+,[�u+1..ru](c, z) also decreases one
by one from mu to 1. Let cu,+

h be a value c at which the number of subfunc-
tions of θ̄�u,+,[�u+1..ru](c, z) becomes mu − h while c decreases. Note that we
have ∞ = cu,+

0 > cu,+
1 > · · · > cu,+

mu−1 > 0. Let us define indices jh
1 , . . . , jh

mu−h

with lu + 1 = jh
1 < · · · < jh

mu−h ≤ ru corresponding to the subfunctions of
θ̄�u,+,[�u+1..ru](cu,+

h , z), that is, for any integer p ∈ [1..mu − h], we have

θ̄�u,+,[�u+1..ru](cu,+
h , z) = θ̄�u,+,jh

p (cu,+
h , z) if z ∈ (Wjh

p −1,Wjh
p+1−1], (12)

where jh
mu−h+1 − 1 = ru. We give the following lemma about the property of

cu,+
h . See Lemma 13 in [14] for the proof.

Lemma 9. For each node u ∈ T , all values cu,+
1 , . . . , cu,+

mu−1 can be computed in
O(mu log mu) time.

By the above argument, while c ∈ (cu,+
h , cu,+

h−1] with some h ∈ [1..mu] (where
cu,+
mu

= 0), the representation of θ̄�u,+,[�u+1..ru](c, z) (with mu − h + 1 subfunc-
tions) remains the same. Our fundamental idea is to consider segment trees
corresponding to each interval (cu,+

h , cu,+
h−1] with h ∈ [1..mu], and construct a

persistent data structure for such the segment trees.
First of all, we introduce a segment tree Th with root ρh to compute

θ̄�u,+,[�u+1..ru](c, z) for c ∈ (cu,+
h , cu,+

h−1] with h ∈ [1..mu]. Tree Th contains mu

leaves labeled as lu + 1, . . . , ru. Each leaf j corresponds to interval (Wj−1,Wj].
For a node ν ∈ Th, let �ν (resp. rν) denote the label of the leftmost (resp.
rightmost) leaf of the subtree rooted at ν. Let pν denote the parent of ν if
ν �= ρh. We say a node ν ∈ Th spans an interval (W�ν−1,Wrν

]. For some
two integers i, j ∈ [�u + 1..ru] with i < j, if (W�ν−1,Wrν

] ⊆ (Wi−1,Wj] and
(W�pν −1 ,Wrpν

] �⊆ (Wi−1,Wj], then ν is called a maximal subinterval node for
(Wi−1,Wj]. A segment tree Th satisfies the following property similar to Prop-
erty 1: For any two integers i, j ∈ [�u + 1..ru] with i < j, the number of maximal
subinterval nodes in Th for (Wi−1,Wj] is O(log mu). For each p ∈ [1..mu −h+1],

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 211

we store function θ̄�u,+,jh−1
p (c, z) at all the maximal subinterval nodes for inter-

val (Wjh−1
p −1,Wjh−1

p+1 −1], which takes O(mu log mu) time by the property. The
other nodes in Th contains NULL.

If we have Th, for given z ∈ (W�u
,Wru

] and c ∈ (cu,+
h , cu,+

h−1], we can com-
pute value θ̄�u,+,[�u+1..ru](c, z) in time O(log mu) as follows: Starting from root
ρh, go down to a child such that its spanned interval contains z until we
achieve a node that contains some function θ̄�u,+,j(c, z) (not NULL). Now, we
know θ̄�u,+,[�u+1..ru](c, z) = θ̄�u,+,j(c, z), which can be computed by elementally
calculation.

If we explicitly construct Th for all h ∈ [1..mu], it takes O(m2
u log mu) time

for each node u ∈ T , which implies by Property 2 that O(n2 log2 n) time is
required in total. However, using the fact that Th and Th+1 are almost same
except for at most O(log mu) nodes, we can construct a persistent segment tree
in O(mu log mu) time, in which we can search as if all of Th are maintained.
Thus, we obtain the whole information of TYPE III of T in time O(n log2 n) by
Property 2.

Using this persistent segment tree, we can compute θ̄�u,+,[�u+1..ru](c, z) for
any z ∈ [0,Wn] and any c > 0 in O(log mu) time as follows: Find integer h over
[1..mu] such that c ∈ (cu,+

h , cu,+
h−1] in O(log mu) time by binary search, and then

search in the persistent segment tree as Th in time O(log mu).

Lemma 10 (Query with TYPE III). Suppose that TYPE III of T is avail-
able. Given a node u ∈ T , real values z ∈ [0,Wn] and c > 0, we can obtain

(i) index H ∈ [�u + 1..ru] such that θ̄�u,+,H(c, z) = θ̄�u,+,[�u+1..ru](c, z), and
(ii) index H ∈ [�u..ru − 1] such that θ̄ru,−,H(c, z) = θ̄ru,−,[�u..ru−1](c, z) in time

O(log n) respectively.

TYPE IV. We give the information only for computing
∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt

stored at u ∈ T as TYPE IV since the case for
∫ Wn

z
θ̄�u,−,[�u..ru−1](c, t)dt is

symmetric. Similar to TYPE III, we prepare only for the case of z ∈ (W�u
,Wru

]
since it holds that

∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt = 0 for z ∈ [0,W�u

] and
∫ z

0

θ̄�u,+,[�u+1..ru](c, t)dt =
∫ Wru

0

θ̄�u,+,[�u+1..ru](c, t)dt +
(z − Wru

)2

2c

for z ∈ (Wru
,Wn], of which the first term can be obtained by prepared informa-

tion with z = Wru
and the second term by elementally calculation.

For each u ∈ T , we construct a persistent segment tree again, which is
similar to one shown in the previous section. To begin with, consider the case
of c ∈ (cu,+

h , cu,+
h−1] with some h ∈ [1..mu] (where recall that cu,+

0 = ∞ and
cu,+
mu

= 0), and indices jh−1
1 , · · · , jh−1

mu−h+1 that satisfy (12). In this case, for
z ∈ (Wjh−1

p −1,Wjh−1
p+1 −1] with p ∈ [1..mu − h + 1], we have

∫ z

0
θ̄

�u,+,[�u+1..ru]
(c, t)dt =

p−1∑
q=1

⎧⎪⎨
⎪⎩

∫ W
j
h−1
q+1 −1

W
j
h−1
q −1

θ̄
�u,+,jh−1

q (c, t)dt

⎫⎪⎬
⎪⎭+

∫ z

W
j
h−1
p −1

θ̄
�u,+,jh−1

p (c, t)dt.

(13)

212 Y. Higashikawa et al.

For ease of reference, we use Fh,p(c, z) instead of the right hand side of (13).
Similarly to the explanation for TYPE III, let Th be a segment tree with

root ρh and mu leaves labeled as lu +1, . . . , ru, and each leaf j of Th corresponds
to interval (Wj−1,Wj]. In the same manner as for TYPE III, for each p ∈
[1..mu −h+1], we store function Fh,p(c, z) at all the maximal subinterval nodes
in Th for interval (Wjh−1

p −1,Wjh−1
p+1 −1]. Using Th, for any z ∈ (W�u

,Wru
] and any

c ∈ (cu,+
h , cu,+

h−1], we can compute value
∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt in time O(log mu)

by summing up all functions of nodes on a path from root ρh to leaf with an
interval that contains z. Actually, we store functions in a more complicated
way in order to maintain them as a persistent data structure. We construct a
persistent segment tree at u ∈ T in O(mu log mu) time, in which we can search
as if all of Th are maintained. Using this persistent segment tree, we can compute∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt for any z ∈ [0,Wn] and any c > 0 in O(log mu) time in

the same manner as for TYPE III.

Lemma 11 (Query with TYPE IV). Suppose that TYPE IV of T is avail-
able. Given a node u ∈ T , real values z ∈ [0,Wn] and c > 0, we can obtain (i)
value

∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt, and (ii) value

∫ Wn

z
θ̄ru,−,[�u..ru−1](c, t)dt in time

O(log n) respectively.

5 Conclusion

We remark here that our algorithms can be extended to the minsum k-sink
problem in a dynamic flow path network, in which each vertex vi has the cost λi

for locating a sink at vi, and we minimize AT(P,x,d)+
∑

i{λi | x consists of vi}.
Then, the same reduction works with link costs w′′(i, j) = w′(i, j)+λi, which still
satisfy the concave Monge property. This implies that our approach immediately
gives algorithms of the same running time.

Acknowledgement. Yuya Higashikawa: Supported by JSPS Kakenhi Grant-in-Aid
for Young Scientists (20K19746), JSPS Kakenhi Grant-in-Aid for Scientific Research
(B) (19H04068), and JST CREST (JPMJCR1402).
Naoki Katoh: Supported by JSPS Kakenhi Grant-in-Aid for Scientific Research (B)
(19H04068), and JST CREST (JPMJCR1402).
Junichi Teruyama: Supported by JSPS Kakenhi Grant-in-Aid for Scientific Research
(B) (19H04068), and JST CREST (JPMJCR1402).

References

1. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: a
survey and a new distributed algorithm. In: Proceedings of the the 14th Annual
ACM Symposium on Parallel Algorithms and Architectures, pp. 258–264 (2002)

2. Belmonte, R., Higashikawa, Y., Katoh, N., Okamoto, Y.: Polynomial-time approx-
imability of the k-sink location problem. CoRR abs/1503.02835 (2015)

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 213

3. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

4. Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minsum
k -Sink problem on dynamic flow path networks. In: Iliopoulos, C., Leong, H.W.,
Sung, W.-K. (eds.) IWOCA 2018. LNCS, vol. 10979, pp. 78–89. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94667-2 7

5. Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minsum
k-sink problem on path networks. Theor. Comput. Sci. 806, 388–401 (2020)

6. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2010)

7. Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved
algorithms for computing k -Sink on dynamic flow path networks. In: Ellen, F.,
Kolokolova, A., Sack, J.R. (eds.) WADS 2017. LNCS, vol. 10389, pp. 133–144.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2 12

8. Chen, D., Golin, M.J.: Sink evacuation on trees with dynamic confluent flows. In:
27th International Symposium on Algorithms and Computation (ISAAC 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

9. Chen, D., Golin, M.J.: Minmax centered k-partitioning of trees and applications
to sink evacuation with dynamic confluent flows. CoRR abs/1803.09289 (2018)

10. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows.
Oper. Res. 6(3), 419–433 (1958)

11. Higashikawa, Y.: Studies on the space exploration and the sink location under
incomplete information towards applications to evacuation planning. Ph.D. thesis,
Kyoto University, Japan (2014)

12. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in
dynamic tree networks with uniform capacity. J. Graph Algorithms Appl. 18(4),
539–555 (2014)

13. Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in
dynamic path networks. Theor. Comput. Sci. 607, 2–15 (2015)

14. Higashikawa, Y., Katoh, N., Teruyama, J., Watase, K.: Almost linear time algo-
rithms for minsum k-sink problems on dynamic flow path networks (a full version
of the paper). CoRR abs/2010.05729 (2020)

15. Hoppe, B., Tardos, E.: The quickest transshipment problem. Math. Oper. Res.
25(1), 36–62 (2000)

16. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An O(n log2 n) algorithm for a sink
location problem in dynamic tree networks. Discret. Appl. Math. 154, 2387–2401
(2006)

17. Schieber, B.: Computing a minimum weight k-link path in graphs with the concave
monge property. J. Algorithms 29(2), 204–222 (1998)

18. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász,
L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1 21

https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/978-3-319-94667-2_7
https://doi.org/10.1007/978-3-319-62127-2_12
https://doi.org/10.1007/978-3-540-76796-1_21

	Almost Linear Time Algorithms for Minsum k-Sink Problems on Dynamic Flow Path Networks
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Aggregate Evacuation Time on a Path

	3 Algorithms
	4 Data Structures Associated with Nodes of T
	5 Conclusion
	References

