
Improved Scheduling with a Shared
Resource via Structural Insights

Christoph Damerius1(B), Peter Kling1, Minming Li2, Florian Schneider1,
and Ruilong Zhang2

1 Universität Hamburg, Hamburg, Germany
christoph.damerius@uni-hamburg.de

2 City University Hong Kong, Kowloon, Hong Kong SAR, China

Abstract. We consider a scheduling problem with resource-dependent
processing speeds in which n jobs have to be scheduled on m machines
that share a common resource. The resource may be distributed arbi-
trarily among the machines. This distribution is under the control of the
scheduler and can be changed over time. Each job j has a processing vol-
ume pj ∈ N and a resource requirement rj ∈ (0, 1]. The latter indicates
what fraction of the resource a job requires to run at full speed. Provid-
ing it with a larger share is not beneficial, but lowering its share results
in a proportionally lowered processing speed. The goal is to schedule all
jobs non-preemptively while minimizing the latest completion time.

This problem was introduced by Kling et al. [SPAA’17], who proved
NP-hardness and gave an efficient algorithm with approximation ratio
2 + 1/(m − 2). The (asymptotic) tightness of that bound was left as an
open question. We focus on the case of two machines and derive a strong,
structural lower bound. This lower bound is based on a relaxed version
and allows us to design an asymptotic 3/2-approximation that runs in
time O (n · log n). As an immediate consequence we also get an improved
9/4-approximation for the case of three machines.

Keywords: Approximation algorithm · Multiprocessor scheduling ·
Relaxation · Resource constraints · Shared resource · Makespan

1 Introduction

Resource allocation is probably among the oldest and most well-studied opti-
mization problems. In the context of computing systems, the resource typically
corresponds to computational power, often in the form of a number of machines
that must process a set of incoming jobs while optimizing a suitable quality
of service measure. Even for this restricted scenario, there is a huge variety of
models, differing in both machine and job properties as well as in the considered
quality of service measures (see [11] for a detailed overview).

However, computational power is not the only contended resource in com-
puting systems. In fact, in modern HPC environments computational power is
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 168–182, 2020.
https://doi.org/10.1007/978-3-030-64843-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_12

Improved Scheduling with a Shared Resource via Structural Insights 169

rarely the performance bottleneck. Instead, often other shared resources, like
the bandwidth or an I/O bus, constitute the performance bottleneck of such
systems. Thus, the distribution of these additional shared resources can severely
impact the system performance [14]. In this work, we study systems with such
an additional shared resource.

Both standard resource constrained scheduling [4,8,12] (in which jobs require
a certain amount of the resource to be able to run) and scheduling models with
resource dependent processing times [6–9] (where a job’s processing time depends
on the amount of resource it receives) found considerable interest in the research
community. The model we study falls into the category of resource dependent
processing times. However, a particular feature is that we not only allow the
scheduler to assign a resource share to a job once (when it is started). Instead,
the scheduler may readjust the resource distribution adaptively at integral time
points (processor cycles).

As an example, consider a multiprocessor system with a shared communica-
tion bus of limited bandwidth. The processed jobs may have different commu-
nication requirements, depending on their data-processing (generation or con-
sumption) rate. Assigning a job a bandwidth that saturates its data-processing
rate yields optimal performance, while throttling its bandwidth typically results
in an immediate, proportional efficiency drop. On the other hand, increasing a
job’s bandwidth above its data-processing rate has no beneficial effect. As jobs
enter and leave the system, the scheduler should adjust the resource distribution
to the new situation. Note that while the linear efficiency drop is natural in the
described setting, the resource dependency may be more complex (e.g., concave),
as in the case of a shared power supply or cooling system [13].

We obviously adopt an idealized perspective by disregarding aspects like
how CPU-intensive a given job is and by assuming that the shared resource is
the performance bottleneck. Nevertheless, we aim at understanding exactly this
aspect of resource allocation in modern data driven computing centers, in which
computational power is often available in abundance.

1.1 Basic System Model

The following scheduling problem, originally proposed by Kling et al. [10], models
the scenario described above. There are m ∈ N machines from the set M :=
[m] = { 1, 2, . . . ,m } and n ∈ N jobs from the set J := [n]. Time is partitioned
into integral (time) slots t ∈ N0, representing the time interval [t, t + 1). The
machines share a common, finite resource. During any slot t, each machine i ∈ M
is assigned a fraction Ri(t) ∈ [0, 1] of the resource. The resource may not be
overused, so we require

∑
i∈M Ri(t) ≤ 1. At any time, each machine can be

assigned at most one job (no machine sharing) and each job can be assigned to at
most one machine (no parallelism). A job j ∈ J is defined via two parameters, its
processing volume pj > 0 and its resource requirement rj ∈ (0, 1].1 If j is assigned
1 In [10], rj > 1 is allowed. Our restriction is without loss of generality, as we can

assign such jobs a resource requirement of 1 and increase their processing volume by
a factor rj to get an equivalent instance.

170 C. Damerius et al.

to machine i during slot t, it is processed at speed min { 1, Ri(t)/rj }, which is
also the amount of the job’s processing volume that finishes during this slot. Job
j finishes in the first slot t after which all pj units of its processing volume are
finished. Preemption of jobs is not allowed, so once a job j is assigned to machine
i, no other job can be assigned to i until j is finished. The objective is to find a
schedule (a resource and job assignment adhering to the above constraints) that
has minimum makespan (the first time when all jobs are finished).

This problem is known as Shared Resource Job-Scheduling
(SRJS) [10]. In the bandwidth example from before, the resource requirement rj

models how communication intensive a job is. For example, rj = 0.5 means that
the process can utilize up to half of the available bandwidth. Assigning it more
than this does not help (it cannot use the excess bandwidth), while decreasing
its bandwidth results in a linear drop of the job’s processing speed.

Simplifying Assumptions. To simplify the exposition, throughout this paper we
assume rj �= 1 for all j ∈ J . This simplifies a few notions and arguments (e.g.,
we avoid slots in which formally two jobs are scheduled but only one job is
processed at non-zero speed) but is not essential for our results. We also assume
pj ∈ N, which is not required in [10] but does not change the hardness or difficult
instances and is a natural restriction given the integral time slots.

1.2 Related Work

In the following we give an overview of the most relevant related work. In par-
ticular, we survey known results on SRJS and other related resource constrained
scheduling problems. We also briefly explain an interesting connection to bin
packing.

Known Results for SRJS. The SRJS problem was introduced by Kling et al.
[10], who proved strong NP-hardness even for two machines and unit size jobs.
Their main result was a polynomial time algorithm with an approximation ratio
of 2 + 1/(m − 2). If jobs have unit size, a simple modification of their algorithm
yields an asymptotic

(
1 + 1/(m − 1)

)
-approximation.

Althaus et al. [1] considered the SRJS problem for unit size jobs in a slightly
different setting, in which the jobs’ assignment to machines and their orders on
each machine are fixed. They prove that this variant is NP-hard if the number of
machines is part of the input and show how to efficiently compute a (2 − 1/m)-
approximation. Furthermore, they provide a dynamic program that computes
an optimal schedule in (a rather high) polynomial time, when m is not part of
the input. For the special case m = 2, a more efficient algorithm with running
time O

(
n2

)
is given.

Resource Constrained Scheduling. One of the earliest results for scheduling with
resource constraints is due to Garey and Graham [4]. They considered n jobs
that must be processed by m machines sharing s different resources. While pro-
cessed, each job requires a certain amount of each of these resources. Garey and

Improved Scheduling with a Shared Resource via Structural Insights 171

Graham [4] considered list-scheduling algorithms for this problem and proved an
upper bound on the approximation ratio of s+2− (2s+1)/m. Garey and John-
son [5] proved that this problem is already NP-complete for a single resource,
for which the above approximation ratio becomes 3 − 3/m. The best known
absolute approximation ratio for this case is due to Niemeier and Wiese [12],
who gave a (2 + ε)-approximation. Using a simple reduction from the Parti-
tion problem, one can see that no efficient algorithm can give an approximation
ratio better than 3/2, unless P = NP . While this implies that there cannot be a
PTAS (polynomial-time approximation scheme), Jansen et al. [8] recently gave
an APTAS (asymptotic PTAS).

Resource Dependent Processing Times. A common generalization of resource
constrained scheduling assumes that the processing time of a job depends directly
on the amount of resource it receives. Among the first to consider this model was
Grigoriev et al. [6], who achieved a 3.75-approximation for unrelated machines.
For identical machines, Kellerer [9] improved the ratio to 3.5 + ε. In a variant in
which jobs are already preassigned to machines and for succinctly encoded pro-
cessing time functions, Grigoriev and Uetz [7] achieved a (3 + ε)-approximation.
Recently, Jansen et al. [8] gave an asymptotic PTAS for scheduling with resource
dependent processing times.

Note that in resource dependent processing times, the resource a job gets
assigned is fixed and cannot change over time. In contrast, the model we consider
gives the scheduler the option to adjust the resource assignment over time, which
may be used to prioritize a short but resource intensive job during the processing
of a long but less resource hungry job.

Connection to Bin Packing. Resource constrained scheduling problems are often
generalizations of bin packing problems. For example, for a single resource, unit
processing times and k machines, resource constrained scheduling is equivalent
to bin packing with cardinality constraints [2,8] (where no bin may contain more
than k items). Similarly, the SRJS problem is a generalization of bin packing with
cardinality constraints and splittable items. Here, items may be larger than the
bin capacity but can be split, and no bin may contain more than k item parts.
This problem is (up to preemptiveness) equivalent to SRJS for k machines if all
resource requirements are 1 and processing volumes correspond to item sizes.2

In this case, each time slot can be seen as one bin.
Since we consider arbitrary resource requirements, we refer to [3] for the state

of the art in bin packing with cardinality constraints and splittable items.

1.3 Our Contribution

We construct an efficient algorithm for SRJS on two machines that improves
upon the previously best known approximation factor 2. Specifically, our main

2 Alternatively, one can allow resource requirements > 1 and use these as item sizes
while setting all processing volumes to 1, as described in [10].

172 C. Damerius et al.

result is the following theorem: (Due to space constraint, some proofs are omitted
in this conference version.)

Theorem 1. There is an asymptotic 1.5-approximation algorithm for SRJS
with m = 2 machines that has running time O (n log n).

This is the first algorithm reaching an approximation ratio below 2. As a simple
consequence, we also get an improved asymptotic 9/4-approximation for m = 3
machines (compared to the bound 2 + 1/(m − 2) = 3 from [10] for this case).

Our approach is quite different from Kling et al. [10]. They order jobs by
increasing resource requirement and repeatedly seek roughly m jobs that saturate
the full resource. By reserving one machine to maintain a suitable invariant, they
can guarantee that, during the first phase of the algorithm, either always the
full resource is used or always (almost) m jobs are given their full resource
requirement. In the second phase, when there are less than m jobs left and these
cannot saturate the resource, those jobs are always given their full resource
requirement. Both phases are easily bounded by the optimal makespan, which
is where the factor 2 comes from. While the bound of 2 + 1/(m − 2) becomes
unbounded for m = 2 machines, the algorithm in this case basically ignores one
machine and yields a trivial 2-approximation.

The analysis of [10] relies on two simple lower bounds: the optimal makespan
OPT is at least

∑
j∈J rj ·pj (job j must be assigned a total of rj ·pj resource share

over time) and at least
∑

j∈J�pj�/m (job j occupies at least pj/m time slots on
some machine). Our improvement uses a more complex, structural lower bound
based on a relaxed version of SRJS as a blueprint to find a good, non-relaxed
schedule. The relaxed version allows (a) preemption and (b) that the resource
and job assignments is changed at arbitrary (non-integral) times. More exactly,
we show that there is an optimal relaxed structured schedule SR in which, except
for a single disruptive job jD, one machine schedules the jobs of large resource
requirement in descending order of resource requirement and the other machine
schedules the jobs of small resource requirement in ascending order of resource
requirement. We further simplify such a structured schedule SR by assigning
jobs j with small rj their full resource requirement, yielding an elevated schedule
ŜR. This elevated schedule is no longer necessarily optimal, but we can show
that it becomes not much more expensive. This elevated schedule ŜR yields the
aforementioned structural lower bound, which we use to guide our algorithm
when constructing a valid, non-relaxed schedule. The following theorem states
a slightly simplified version of the guarantees provided by our structural lower
bound. See Theorem3 for the full formal statement.

Theorem 2. There is an optimal structured relaxed schedule SR and an elevated
structured relaxed schedule ŜR with a distinguished disruptive job jD such that

1. if rjD
≤ 1/2, then |ŜR| ≤ |SR| and

2. if rjD
> 1/2, then |ŜR| ≤ cjD

· |SR| + 0.042 · AjD
.

Here, AjD
denotes the total time for which jD is scheduled in SR and the value

cjD
depends on rjD

but lies in [1, 1.18).

Improved Scheduling with a Shared Resource via Structural Insights 173

While our lower bound does not immediately extend to the case of more
machines, we believe that this is an important first step towards designing an
improved approximation algorithm for arbitrary number of machines.

Note that we also show that our bound from Theorem1 is tight in the sense
that there are instances for which an optimal relaxed schedule is by a factor of
3/2 shorter than an optimal non-relaxed schedule. Thus, improving upon the
asymptotic 3/2-approximation would require new, stronger lower bounds.

2 Preliminaries

Before we derive the structured lower bound in Sect. 3 and use it to derive and
analyze our algorithm in Sect. 4, we introduce some notions and notation which
are used in the remainder of this paper.

Schedules. We model a schedule as a finite sequence S of stripes. A stripe s ∈ S
represents the schedule in a maximal time interval I(s) with integral endpoints
in which the job and resource assignments remain the same. The order of these
stripes in the sequence S corresponds to the temporal order of these intervals.
We let J(s) ⊆ J denote the jobs scheduled during I(s). For j ∈ J(s) we let
Rj(s) denote the resource share that job j receives during I(s) (i.e., the resource
assigned to the machine that runs j). To ease the exposition, we sometimes
identify a stripe s with the time interval I(s). This allows us, e.g., to speak of a
job j ∈ J(s) scheduled during stripe s, to use |s| := |I(s)| to refer to the length
of a stripe s, or to write s ⊆ T if a stripe’s interval I(s) is contained in another
time interval T .

Any finite sequence S of stripes can be seen as a – possibly invalid – sched-
ule for SRJS. To ensure a valid schedule, we need additional constraints: The
resource may not be overused and we may never schedule more than m jobs, so
we must have

∑
j∈J(s) Rj(s) ≤ 1 and |J(s)| ≤ m for all s ∈ S. Since j is processed

at speed min { 1, Rj(s)/rj } during s, we can assume (w.l.o.g.) that Rj(s) ≤ rj

for all s ∈ S and j ∈ J(s). With this assumption, the requirement that a schedule
finishes all jobs can be expressed as

∑
s∈S : j∈J(s)|s| ·Rj(s)/rj ≥ pj for all j ∈ J .

Not allowing preemption implies that the active time Aj :=
⋃

s∈S : j∈J(s) I(s) of
each job j must form itself an interval. While the sequence S does not give a
specific assignment of jobs to machines, we can derive such an assignment easily
via a greedy round robin approach.

W.l.o.g., we assume that for all s ∈ S we have J(s) �= ∅, since otherwise we
can delete s and move subsequent stripes by |s| to the left. Thus, we can define
the makespan of S as |S| :=

∑
s∈S |s|. When dealing with multiple schedules,

we sometimes use superscript notation (e.g., AS
j) to emphasize the schedule to

which a given quantity refers.

Relaxed Schedules. We also consider a relaxed version of the SRJS problem (r-
SRJS), in which the resource and job assignments may change at non-integral
times and in which jobs can be preempted (and migrated) finitely often. This

174 C. Damerius et al.

resource usage

time0

1

0.8

0.6

0.4

0.2

5 10 15

(5, 0.2)

(1,0.9)

(4, 0.4)
(3, 0.9)

(3, 0.2)

(6, 0.15)
(3, 0.1)

(3, 0.85)

s1 s2 s3 s4 s5 s6 s7 s8 s9

(a) A non-relaxed schedule.

resource usage

time0

1

0.8

0.6

0.4

0.2

5 10 15

(5, 0.2)

(4, 0.4)(3, 0.9)

(3, 0.2)(3, 0.1)

(3, 0.85)

(6, 0.15)

(1, 0.9)

s1 s2 s3 s4 s5 s6 s7 s8 s9

(b) A relaxed schedule.

Fig. 1. A non-relaxed and a relaxed schedule for m = 2 machines and n = 8 jobs, with
their parameters indicated in forms of tuples (pj , rj). Stripes are indicated by color
grading. Note that in the non-relaxed schedule, all stripes start/end at integral time
points and no job is preempted. (Color figure online)

gives rise to relaxed schedules S, which are finite sequences of stripes adhering
to the same constraints as schedules except that the time intervals I(s) for
s ∈ S may now have non-integral endpoints and the jobs’ active times Aj are
not necessarily intervals. Figure 1 illustrates how relaxed schedules differ from
non-relaxed schedules. Relaxed schedules can be considerably shorter.

Subschedules, Substripes, and Volume. For a schedule S we define a subschedule
S′ of S as an arbitrary, not necessarily consecutive subsequence of S. Similarly,
a relaxed subschedule S′

R of a relaxed schedule SR is a subsequence of SR. A
substripe s′ of a stripe s is a restriction of s to a subinterval I(s′) ⊆ I(s) (we
denote this by s′ ⊆ s). In particular, s′ has the same job set J(s′) = J(s) and the
same resource assignments Rj(s′) = Rj(s) for all j ∈ J(s′). For a (sub-)stripe
s we define the volume of job j ∈ J(s) in s as Vj(s) := Rj(s) · |s|. The volume
of a (sub-)stripe s ∈ S is defined as V (s) :=

∑
j∈J(s) Vj(s) and the volume of a

subschedule S′ as V (S′) :=
∑

s∈S′ V (s).

Big and Small Jobs. Using the resource requirements, we partition the job set
J = JB ·∪ JS into big jobs JB := { j ∈ J | rj > 1/2 } and small jobs JS :=
{ j ∈ J | rj ≤ 1/2 }. Given a (relaxed or non-relaxed) schedule S, a region is
a maximal subschedule of consecutive stripes during which the number of big
jobs and the number of small jobs that are simultaneously scheduled remain the
same. The type T ∈ {B,S, (B,B), (S, S), (B,S) } of an interval, (sub-)stripe,
region indicates whether during the corresponding times exactly one big/small
job, exactly two big/small jobs, or exactly one big job and one small job are
scheduled. We call a stripe of type T a T -stripe and use a similar designation
for (sub-)stripes, regions, and intervals. If there exists exactly one T -region for
schedule S, then we denote that region by ST .

3 A Lower Bound for SRJS

To derive a lower bound, we aim to “normalize” a given optimal relaxed schedule
such that it gets a favorable structure exploitable by our algorithm. While this

Improved Scheduling with a Shared Resource via Structural Insights 175

normalization may increase the makespan, Theorem 3 will bound this increase
by a small factor. In the following we first provide the high level idea of our
approach and major notions. Afterwards we give the full formal definitions and
results.

High Level Idea. We can assume that, at each time point, the optimal relaxed
schedule either uses the full resource or both two jobs reach their full resource
requirement (see Definition 1). A relaxed schedule that satisfies this property is
called reasonable. Any unreasonable schedule can be easily transformed into a
reasonable schedule.

Next, we balance the jobs by ordering them. We show that it is possible to
transform a relaxed optimal schedule such that one machine schedules the jobs
of large resource requirement in decreasing order of resource requirement and,
similarly, the other machine schedules the jobs of small resource requirement
in ascending order of resource requirement. However, the load of machines may
not be equal in the end. Therefore, we may need a disruptive job jD to equalize
the loads. The aforementioned order then only holds up to some point where
jD starts. Intuitively, if this job would be scheduled later, the load of both
machines would be further imbalanced and the makespan would increase. A
relaxed schedule that satisfies the above ordering constraint is called ordered (see
Definition 3 for the formal definition). If an ordered relaxed schedule satisfies an
additional property about the scheduling of jD, we call that schedule structured
(see Definition 4). We prove that we can always transform an optimal relaxed
schedule into an ordered one without increasing the makespan (see Lemma 1).

As a further simplification, we increase the resource of all small jobs to their
full resource requirement. This process is called elevating (see Definition 5). Intu-
itively, elevating makes the small jobs be processed with a higher speed, but
this may come at the price of processing big jobs with a lower speed and thus
increase the makespan. To be more precise, we show that the makespan may
only increase when small jobs scheduled together with a disruptive big job are
elevated. In Theorem 3, we analyze the makespan increase incurred by elevating
in detail.

Formal Definitions and Results

Definition 1. For a job set J , we call a (sub-)stripe s with J(s) ⊆ J reasonable
if

∑
j∈J Rj(s) = 1 or Rj(s) = rj for all jobs j ∈ J(s). A subschedule is called

reasonable if all of its (sub-)stripes are reasonable and unreasonable otherwise.

Definition 2. Define a strict total order ≺ on j, j′ ∈ J where rj �= rj′ as
j ≺ j′ :⇔ rj < rj′ . Otherwise order j,j′ arbitrarily but consistently by ≺.

The following Definition 3 formalizes the ordered -property of relaxed sched-
ules SR, which is central to our lower bound. Intuitively, it requires that SR can
be split into a left part and a right part (separated by a stripe index l). The
left part schedules the smallest jobs JSR

≺ in ascending order (according to ≺)
and the biggest jobs JSR

� in descending order. It is separated from the right part

176 C. Damerius et al.

(a) (b) (c)

Fig. 2. (a) An ordered relaxed schedule SR = (si)i=1,...,13 with the disruptive job
jD = j6, where j1 ≺ · · · ≺ j13. In this example, l = 8, JSR

R = { j4, . . . , j9 }, jD ∈ JB

and as such the other jobs in s8, . . . , s13 are sorted ascendingly after ≺. (b+c) Exchange
argument of Observation 1.

throughout which the disruptive job jD and the remaining jobs are scheduled.
jD could be any of the jobs from J \ (JSR

≺ ∪ JSR
�) and adheres to no further

ordering constraint, hence its disruptive nature. The ordering of the remaining
jobs which are scheduled together with jD is either ascending (if jD is big) or
otherwise descending. (See Fig. 2a for an example.) The definition also includes
a special case where all stripes schedule jD (then SR only comprises out of its
right part). We start by giving the main definitions for ordered, structured and
elevated relaxed schedules.

Definition 3. For a job set J , we call a reasonable relaxed schedule SR =
(s1, . . . , sk) ordered for the disruptive job jD ∈ J , if

1. If s is a stripe with |J(s)| = 1, then s = sk and AjD
= [0, |SR|).

2. If ∀i = 1, . . . , k : |J(si)| = { ji,1, ji,2 } with ji,1 ≺ ji,2, then there
exists an l ∈ [k] such that jD ∈ J(si) iff i ≥ l and for JSR

R :=
{ j | Rj(si) > 0, i ∈ { l, . . . , k } }, we have j1,1 � · · · � jl−1,1 � JSR

R �
jl−1,2 · · · � j1,2. Further, define JSR

≺ = (ji,1)i=1,...,l−1 and JSR
� =

(ji,2)i=1,...,l−1.
3. For all i ≤ k − 1 where J(si) = { jD, j } , J(si+1) = { jD, j′ } with j �= j′, we

have j ≺ j′ iff jD ∈ JB .

Remark 1. In the context of Definition 3, we can assume that jD is always chosen
such that there exists a stripe s with jD ∈ J(s) such that j � jD for all j ∈ J(s).
Otherwise, choose s with J(s) = { j′

D, jD } with j′
D being minimal according to

≺. We assign j′
D to be the new disruptive job, and reverse the order of all stripes

that schedule jD if necessary, to reobtain property 3 of Definition 3.

Remark 2. The orderedness immediately implies the existence of up to three
regions in the order (B,S), (B,B), B or (B,S), (S, S), S. For example, in Fig. 2a,
jD ∈ JB and therefore the jobs j6 = jD, . . . , j13 are big jobs, while j1, . . . , j5
might all be small jobs. Then the stripes s1, . . . , s9 form a (B,S) region, while
s10, . . . , s13 form a (B,B) region. No B region exists in this case.

Improved Scheduling with a Shared Resource via Structural Insights 177

We will first show that any optimal relaxed schedule can be transformed
into an ordered schedule without losing its optimality (Lemma1). The proof
mainly relies on an exchange argument (Observation 1) to deal with unreasonable
relaxed schedules.

Observation 1. Let s1, s2 be stripes with J(s1) = { j1, j2a }, J(s2) = { j2b, j3 },
where j1 ≺ j2x ≺ j3 ∀x ∈ { a, b } and j2a �= j2b. We can transform them into
stripes sL, sR and possibly sM , such that J(sL) = { j1, j3 }, J(sR) = { j2a, j2b }
and J(sM) is either J(s1) or J(s2), such that the volume of jobs scheduled and
total length of stripes is unchanged.

Lemma 1. For any job set J there exists an ordered, optimal relaxed schedule
SR.

Definition 4. We call an ordered relaxed schedule SR for J and for jD ∈ J
structured, if no stripes s with J(s) = { jD, j′ } with jD ≺ j′ exist or RjD

(AjD
\

S
(B,S)
R) = rjD

.

Definition 5. We call a subschedule S′
R ⊆ SR elevated in a relaxed schedule

SR, if Rj(A
S′

R
j) = rj for all j ∈ JS .

The following two lemmas show the existence of structured, optimal relaxed
schedules. Lemma 2 essentially tells us that an optimal relaxed schedule can
either be fully elevated or structured and at least partially elevated. Lemma3
then gives rise to structured optimal elevated relaxed schedules if the full ele-
vation in Lemma2 was possible. Unfortunately, the full elevation step can not
always be pursued while staying optimal. Theorem 3 gives details about the
makespan increase.

Lemma 2. For every job set J there exists an optimal ordered (for job jD)
relaxed schedule SR which is either elevated, or is elevated in SR\ASR

jD
, RjD

(ASR
jD

\
S
(B,S)
R) = rjD

and jD ∈ JB.

Lemma 3. For any optimal elevated ordered relaxed schedule SR for a job set
J there exists a structured optimal elevated relaxed schedule ŜR for J .

Theorem 3. For every job set J there exists a structured (for jD ∈ J) optimal
relaxed schedule SR and a structured (for jD), elevated relaxed schedule ŜR such
that one of the following holds:

1. jD ∈ JS and |ŜR| ≤ |SR|.
2. jD ∈ JB and ŜB

R = ∅. Let aX := |X(B,S) \AjD
| and bX := |X(B,S) ∩AjD

| for
X ∈ {SR, ŜR }. Then |ŜR| ≤ |SR| + λbSR

, aŜR
≤ aSR

and bŜR
≤ bSR

, where
λ is the smallest positive root of (λ + 1)3 − 27λ.

3. jD ∈ JB, ŜB
R �= ∅ and |ŜR| ≤ (4 − 2rjD

− 1
rjD

)|SR| ≤ (4 −
√

8)|SR|.

178 C. Damerius et al.

4 Approximation Algorithm and Analysis

Our approximation algorithm ALG for SRJS constructs the schedule by using
the structure derived in Theorem 3 as a starting point. To accomplish this, ALG
is designed to first gain information about the relaxed schedule ŜR given by
Theorem 3 by essentially replicating the order given by the orderedness property.
Based on this information, either ALGbig or ALGsmall is executed. Essentially,
ALG determines whether jD, as given by Theorem 3, is in JS or in JB and
branches into ALGsmall or ALGbig accordingly.

ALGsmall processes the jobs by first scheduling the small jobs in descending
order of their processing volumes (using Assign), and scheduling the big jobs in
arbitrary order afterwards. For this case it can be easily shown that our bound
is satisfied (see the proof of Theorem 4).

For the case of jD ∈ JB , a more sophisticated approach is needed. ALGbig

roughly schedules the jobs in the (B,S) region, mimicking the order as in ŜR.
Afterwards, ALGbig schedules all remaining big jobs using a slightly modified
longest-first approach. Care has to be taken on the transition between both parts
of ALGbig. For that reason, we calculate two schedules S and S′, one of which
can be shown to match the desired bound. Their job scheduling order mainly
differs in whether the longest (S) or most resource intensive remaining job (S′)
is scheduled first. The remaining jobs are then scheduled in a longest-first order.
Lastly, the machine loads are balanced by adjusting the resources given to the
big jobs in the second part (BalanceLength).

We will first give the pseudocode of the algorithm, then describe the subrou-
tines involved and then give some analysis.

Improved Scheduling with a Shared Resource via Structural Insights 179

Description of Subroutines. Assign(S, j, i, t) schedules a job j into a (relaxed or
unrelaxed) schedule S on machine i, starting at the earliest time point possible,
but not before t. In contrast to the lower bound, where we did not state on
which machine we schedule, here we always give a specific machine to schedule
on, as it simplifies further analysis. The resource is assigned to j by consecu-
tively considering the slots s = t, t + 1, . . . and in each of these slots giving
j the maximum possible resource. The given resource is only restricted by rj ,
other already scheduled jobs (their given resources remain unchanged) and the
remaining processing volume that j needs to schedule in s.

For a (relaxed) schedule S, we denote by loadS(i) the earliest time point after
which machine i remains idle for the rest of S. Furthermore, define imin(S) ∈
{ 1, 2 } to be a machine that has the lowest load in S. We assume that job sets will
retain their ordering when passed as arguments or when elements are removed.

GetEndPoint2(S, j) simulates scheduling j into S as Assign(S, j, 2, 0)
does, but instead returns loadS(2) without altering S. This is useful so that
we do not have to revert the scheduling of jobs.

BalanceLength processes a given schedule S as follows: It only changes S
if Δ := |loadS(2)−loadS(1)| ≥ 2. If so, it checks if the job j, scheduled in the last
slot of S, is given rj resource during AS

j ∪S(B,B). As we have scheduled longest-
first, there can be at most one stripe s with J(s) = { j, j′ } in S(B,B) during which
j does not get rj resource. The algorithm then gives j′ less resource during
s, pushing all other jobs scheduled with j after s to the right, shortening Δ.
Simultaneously, BalanceLength gives j more resource during s, shortening Δ
even further. All jobs but j scheduled after s are given at most 1−rj resource and
as such their resource does not change when moved. Hence, it is straightforward
to calculate how much volume has to be redistributed to shorten Δ until either
Δ ≤ 1 or j is given rj resource in s.

Outline of the Analysis. We will first analyze how ALG branches into ALGsmall

or ALGbig and with which arguments. In the case that ALG branches into
ALGsmall, we can easily derive the 1.5-approximation factor in Theorem4.

ALGbig basically consists of a first part where roughly the jobs from the
(B,S)-region in ŜR are scheduled and a second part where the remaining jobs
are scheduled longest-first. To take care of the transition between both parts, we
define the notion of a bridge job jβ :

Definition 6. For a structured relaxed schedule SR, the bridge job jβ is the
smallest job scheduled in S

(B,S)
R that is not scheduled together with jobs j � jβ

in SR (if it exists).

Using this definition, we are now able to give Lemma 4, which shows which
sub-algorithm is executed with precisely which arguments by ALG.

Lemma 4. Let J be a job set and SR, ŜR be the relaxed schedules given
by Theorem3 for J , with jD being the disruptive job of ŜR. If property 1
of Theorem3 holds, then calling ALG(J) will execute ALGsmall(JS , JB) with

180 C. Damerius et al.

JS (JB) being ascendingly (descendingly) sorted after ≺, respectively. Other-
wise, ALGbig(JS ,H, JB \ H, t) will be executed with arguments t = inf(AŜR

jβ
)

if there exists a bridge job jβ for ŜR, or t = 0 otherwise. Furthermore,
H = { j ∈ JB | inf(AŜR

j) ≥ t } �= ∅.

H is the set of all big jobs scheduled not before the bridge job. For the first
part, ALGbig schedules JS and JB \ H, mimicking the order as in ŜR into the
interval [0, t′+�t�). The following observation guarantees that ALG can fit these
jobs into said interval.

Observation 2. Let SR be a relaxed schedule for a job set J as obtained by
Theorem 3, with S

(B,S)
R �= ∅. Then Assign in line 6 of ALGbig does not schedule

jobs beyond t′ + �t�.

For the second part, only big jobs remain to be scheduled. We can show they
need at most ≈ 4/3 · V slots, where V is their total volume, or the number of
slots they require is dominated by one long job (where all other big jobs can
fit onto the other machine). We can then guarantee the bound for one of the
schedules procured by ALGbig, which then helps us to prove the overall bound.

In summary, we show the following theorem.

Theorem 4. For any job set J we have |ALG(J)| ≤ 1.5OPT + O (1), and this
bound is tight for ALG.

Proof. We only show the asymptotic lower bound here. Construct a job set with
k ∈ Z2n unit-size jobs j with rj = 1/3 and k − 1 unit-size jobs j with rj = 2/3.
We can obviously construct a schedule of makespan k. The corresponding relaxed
schedule obtained by Theorem 3 will have jD ∈ JS , so ALGsmall will be executed.
It will first schedule all small jobs in k/2 slots. Afterwards, all big jobs will be
scheduled on the same machine, using k − 1 slots. This gives the asymptotic
lower bound of 3/2.

5 Additional Results

Note that ALG, as stated in Sect. 4, does not necessarily have a running time
of O (n log n). However, we prove this running time using a slightly modified
algorithm in the following lemma.

Lemma 5. ALG can be implemented to run in O (n log n) time for a job set J
with |J | = n.

Our results for the two-machine case also imply an improved bound for the
three-machine case, which is based on ignoring one of the three machines.

Corollary 1. For m = 3 and any job set J with |J | = n, we have ALG ≤
9/4 ·OPT +O (1), where ALG runs in O(n log n) time and OPT is the optimal
solution for 3 machines.

Improved Scheduling with a Shared Resource via Structural Insights 181

Lemma 6. For any P ∈ N there exists a job set J with
∑

j∈J pj ≥ P such that
3/2 · |SR| ≤ |S|, where SR and S are optimal relaxed (unrelaxed) schedules for
J , respectively. Furthermore, SR can be chosen not to use preemption.

In Lemma 6, SR did not even use preemption. Thus, the slotted time is the
reason for the 3/2-gap between relaxed and unrelaxed schedules. To beat the
approximation ratio of 3/2, we would have to improve our understanding of how
slotted time affects optimal schedules.

6 Conclusion and Open Problems

Using structural insights about the SRJS problem, we were able to improve
approximation results from [10] for the cases of m ∈ { 2, 3 } machines in the
SRJS problem. As mentioned in Sect. 5, our (asymptotic) 3/2-approximation for
m = 2 is the best possible result that can be achieved with the lower bound based
on our definition of relaxed schedules and can be computed in time O(n log n).
This leaves two natural research questions.

First, can a similar approach improve further improve the competitive ratio
of [10] for larger values of m? While the lower bound we constructed in Sect. 3 is
tailored towards m = 2, the underlying principle may be used to design improved
algorithms for m > 2 machines. Indeed, a key insight behind our improvement
stems from a worst case instance for the algorithm of [10]: Consider an instance
with a job j that has small resource requirement rj and processing volume
pj ≈ OPT. An optimal schedule must begin to process pj early, in parallel to
the rest of the instance. However, the algorithm from [10] is resource-focused, in
the sense that it orders jobs by resource requirement and basically ignores the
processing volume when selecting jobs to be processed. This might result in j
being processed at the very end, after all other jobs have been finished, possibly
yielding an approximation ratio of roughly 2 (for large m). One could fix this
problem using an algorithm focused on processing-volume, but that would run
into similar issues caused by different resource requirements. Our algorithm for
m = 2 basically identifies jobs like j (the disruptive job) and uses it to balance
between these two extremes. A key question when considering such an approach
for larger m is how to identify a suitable (set of) disruptive job(s).

A second possible research direction is to beat the lower bound limit of our
structural approach. Given its relation to other resource constrained scheduling
problems and to bin packing variants, it seems possible that one can even find a
PTAS for SRJS. While a PTAS has typically a worse runtime compared to more
direct, combinatorial algorithms, it would yield solutions that are arbitrarily
close to optimal schedules. A difficulty in constructing a PTAS seems to stem
from the partition of time into discrete slots. An incautious approach might yield
cases where all machines are stuck with finishing an ε-portion of work, forcing
them to waste most of the available resource in such a time slot. If the average
job processing time is small, this might have a comparatively large influence on
the approximation factor. Previous work [10] reserved one of the m machines to

182 C. Damerius et al.

deal with such problems (which is wasteful for small m). Also augmenting the
available resource in each slot by, e.g., a 1 + ε factor should help to circumvent
such difficulties.

Acknowledgement. Peter Kling and Christoph Damerius were partially supported
by the DAAD PPP with Project-ID 57447553. Minming Li is also from City University
of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China. The work described
in this paper was partially supported by Project 11771365 supported by NSFC.

References

1. Althaus, E., et al.: Scheduling shared continuous resources on many-cores. J. Sched.
21(1), 77–92 (2017). https://doi.org/10.1007/s10951-017-0518-0

2. Epstein, L., Levin, A.: AFPTAS results for common variants of bin packing: a new
method for handling the small items. SIAM J. Optim. 20(6), 3121–3145 (2010)

3. Epstein, L., Levin, A., van Stee, R.: Approximation schemes for packing splittable
items with cardinality constraints. Algorithmica 62(1–2), 102–129 (2012)

4. Garey, M.R., Graham, R.L.: Bounds for multiprocessor scheduling with resource
constraints. SIAM J. Comput. 4(2), 187–200 (1975)

5. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)

6. Grigoriev, A., Sviridenko, M., Uetz, M.: Machine scheduling with resource depen-
dent processing times. Math. Program. 110(1), 209–228 (2007)

7. Grigoriev, A., Uetz, M.: Scheduling jobs with time-resource tradeoff via nonlinear
programming. Discret. Optim. 6(4), 414–419 (2009)

8. Jansen, K., Maack, M., Rau, M.: Approximation schemes for machine scheduling
with resource (in-)dependent processing times. ACM Trans. Algorithms 15(3),
31:1–31:28 (2019)

9. Kellerer, H.: An approximation algorithm for identical parallel machine scheduling
with resource dependent processing times. Oper. Res. Lett. 36(2), 157–159 (2008)

10. Kling, P., Mäcker, A., Riechers, S., Skopalik, A.: Sharing is caring: multiproces-
sor scheduling with a sharable resource. In: Scheideler, C., Hajiaghayi, M.T. (eds.)
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2017, Washington DC, USA, 24–26 July 2017, pp. 123–132. ACM
(2017)

11. Leung, J.Y. (ed.): Handbook of Scheduling - Algorithms, Models, and Performance
Analysis. Chapman and Hall/CRC (2004)

12. Niemeier, M., Wiese, A.: Scheduling with an orthogonal resource constraint. Algo-
rithmica 71(4), 837–858 (2015)

13. Rózycki, R., Weglarz, J.: Improving the efficiency of scheduling jobs driven by a
common limited energy source. In: 23rd International Conference on Methods &
Models in Automation & Robotics, MMAR 2018, Mi ↪edzyzdroje, Poland, 27–30
August 2018, pp. 932–936. IEEE (2018)

14. Trinitis, C., Weidendorfer, J., Brinkmann, A.: Co-scheduling: prospects and chal-
lenges. In: Trinitis, C., Weidendorfer, J. (eds.) Co-Scheduling of HPC Applica-
tions [Extended Versions of All Papers from COSH@HiPEAC 2016, Prague, Czech
Republic, 19 January 2016]. Advances in Parallel Computing, vol. 28, pp. 1–11.
IOS Press (2016)

https://doi.org/10.1007/s10951-017-0518-0

	Improved Scheduling with a Shared Resource via Structural Insights
	1 Introduction
	1.1 Basic System Model
	1.2 Related Work
	1.3 Our Contribution

	2 Preliminaries
	3 A Lower Bound for SRJS
	4 Approximation Algorithm and Analysis
	5 Additional Results
	6 Conclusion and Open Problems
	References

