
Weili Wu
Zhongnan Zhang (Eds.)

LN
CS

 1
25

77

14th International Conference, COCOA 2020
Dallas, TX, USA, December 11–13, 2020
Proceedings

Combinatorial Optimization
and Applications

Lecture Notes in Computer Science 12577

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Weili Wu • Zhongnan Zhang (Eds.)

Combinatorial Optimization
and Applications
14th International Conference, COCOA 2020
Dallas, TX, USA, December 11–13, 2020
Proceedings

123

Editors
Weili Wu
The University of Texas at Dallas
Richardson, TX, USA

Zhongnan Zhang
Xiamen University
Xiamen, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-64842-8 ISBN 978-3-030-64843-5 (eBook)
https://doi.org/10.1007/978-3-030-64843-5

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7227-3943
https://doi.org/10.1007/978-3-030-64843-5

Preface

The 14th Annual International Conference on Combinatorial Optimization and
Application (COCOA 2020) was planned to take place in Dallas, Texas, USA,
December 11–13, 2020. As a result of extenuating circumstances due to COVID-19,
COCOA 2020 was held as a fully virtual conference. COCOA 2020 provided a forum
for researchers working in the area of combinatorial optimization and its applications
with all aspects, including algorithm design, theoretical and experimental analysis, and
applied research of general algorithmic interest.

The Program Committee received a total of 104 submissions from 17 countries and
regions, among which 55 were accepted for presentations in the conference. Each
contributed paper was rigorously peer-reviewed by reviewers who were drawn from a
large pool of Technical Committee members.

We wish to thank all authors for submitting their papers to COCOA 2020 for their
contributions. We also wish to express our deepest appreciation to the Program
Committee members and all subreviewers for their hard work within demanding
constraints, so that each paper received two to three review reports. Especially, we wish
to thank the Organization Committee members and conference sponsor from The
University of Texas at Dallas, USA, for various assistance.

October 2020 Weili Wu
Zhongnan Zhang

Organization

Program Chairs

Weili Wu The University of Texas at Dallas, USA
Zhongnan Zhang Xiamen University, China

Program Committee

Smita Ghosh Santa Clara University, USA
Xiao Li The University of Texas at Dallas, USA
Hsu-Chun Yen National Taiwan University, Taiwan
Bhadrachalam Chitturi The University of Texas at Dallas, USA
Stanley Fung University of Leicester, UK
Zhi-Zhong Chen Tokyo Denki University, Japan
Michael Khachay Krasovsky Institute of Mathematics and Mechanics,

Russia
Xiaoming Sun Institute of Computing Technology, Chinese Academy

of Sciences, China
Vladimir Boginski University of Central Florida, USA
Haipeng Dai Nanjing University, China
Annalisa De Bonis Università di Salerno, Italy
Weili Wu The University of Texas at Dallas, USA
Tsan-sheng Hsu Academia Sinica, Taiwan
Lidong Wu The University of Texas at Tyler, USA
Yingshu Li Georgia State University, USA
Weitian Tong Eastern Michigan University, USA
Zhao Zhang Zhejiang Normal University, China
Sun-Yuan Hsieh National Cheng Kung University, Taiwan
Kun-Mao Chao National Taiwan University, Taiwan
Yi Li The University of Texas at Tyler, USA
Huaming Zhang University of Alabama in Huntsville, USA
Pavel Skums Georgia State University, USA
Zhiyi Tan Zhejiang University, China
Viet Hung Nguyen University of Auvergne, France
Ovidiu Daescu The University of Texas at Dallas, USA
Yan Shi University of Wisconsin-Platteville, USA
Chuangyin Dang City University of Hong Kong, Hong Kong
Xianyue Li Lanzhou University, China
Guohui Lin University of Alberta, Canada
Suneeta Ramaswami Rutgers University, USA
Jie Wang University of Massachusetts Lowell, USA
Maggie Cheng Illinois Institute of Technology, USA

Xiaohui Bei Nanyang Technological University, Singapore
Guangmo Tong University of Delaware, USA
Wen Xu Texas Woman’s University, USA
Sergiy Butenko Texas A&M University, USA
Xujin Chen Chinese Academy of Sciences, China
Zhongnan Zhang Xiamen University, China
Boting Yang University of Regina, Canada
Yan Qiang Taiyuan University of Technology, China
Martin Ziegler KAIST, South Korea
Gruia Calinescu Illinois Institute of Technology, USA
Chia-Wei Lee National Taitung University, Taiwan
Liying Kang Shanghai University, China
Bin Fu University of Texas Rio Grande Valley, USA
Meng Han Kennesaw State University, USA
Rudolf Fleischer GUtech, Oman
Joonglyul Lee The University of North Carolina at Pembroke, USA
Mitsunori Ogihara University of Miami, USA
Zhixiang Chen University of Texas Rio Grande Valley, USA
Xiang Li Santa Clara University, USA
Wolfgang Bein University of Nevada, Las Vegas, USA
Fay Zhong California State University, East Bay, USA
Oleg Prokopyev University of Pittsburgh, USA
Qianping Gu Simon Fraser University, Canada
Chihao Zhang Shanghai Jiao Tong University, China
Wei Wang Xi’an Jiaotong University, China
Kazuo Iwama Kyoto University, Japan

viii Organization

Contents

Approximation Algorithms

Approximate Ridesharing of Personal Vehicles Problem 3
Qian-Ping Gu, Jiajian Leo Liang, and Guochuan Zhang

A Sub-linear Time Algorithm for Approximating k-Nearest-Neighbor
with Full Quality Guarantee . 19

Hengzhao Ma and Jianzhong Li

Sampling-Based Approximate Skyline Calculation on Big Data 32
Xingxing Xiao and Jianzhong Li

Approximating k-Orthogonal Line Center . 47
Barunabha Chakraborty, Arun Kumar Das, Sandip Das,
and Joydeep Mukherjee

Selecting Sources for Query Approximation with Bounded Resources 61
Hongjie Guo, Jianzhong Li, and Hong Gao

Parameterized Complexity of Satisfactory Partition Problem 76
Ajinkya Gaikwad, Soumen Maity, and Shuvam Kant Tripathi

An Approximation of the Zero Error Capacity by a Greedy Algorithm 91
Marcin Jurkiewicz

Scheduling

On the Complexity of a Periodic Scheduling Problem with Precedence
Relations . 107

Richard Hladík, Anna Minaeva, and Zdeněk Hanzálek

Energy-Constrained Drone Delivery Scheduling . 125
Rafael Papa, Ionut Cardei, and Mihaela Cardei

Scheduling Jobs with Precedence Constraints to Minimize Peak Demand 140
Elliott Pryor, Brendan Mumey, and Sean Yaw

Reachability Games for Optimal Multi-agent Scheduling of Tasks
with Variable Durations . 151

Dhananjay Raju, Niklas Lauffer, and Ufuk Topcu

Improved Scheduling with a Shared Resource via Structural Insights 168
Christoph Damerius, Peter Kling, Minming Li, Florian Schneider,
and Ruilong Zhang

Network Optimization

Two-Stage Pricing Strategy with Price Discount in Online
Social Networks . 185

He Yuan, Ziwei Liang, and Hongwei Du

Almost Linear Time Algorithms for Minsum k-Sink Problems on Dynamic
Flow Path Networks . 198

Yuya Higashikawa, Naoki Katoh, Junichi Teruyama, and Koji Watase

Matched Participants Maximization Based on Social Spread 214
Guoyao Rao, Yongcai Wang, Wenping Chen, Deying Li, and Weili Wu

Mixed-Case Community Detection Problem in Social Networks 230
Yapu Zhang, Jianxiong Guo, and Wenguo Yang

How to Get a Degree-Anonymous Graph Using Minimum Number
of Edge Rotations . 242

Cristina Bazgan, Pierre Cazals, and Janka Chlebíková

The Small Set Vertex Expansion Problem . 257
Soumen Maity

Complexity and Logic

On Unit Read-Once Resolutions and Copy Complexity 273
P. Wojciechowski and K. Subramani

Propositional Projection Temporal Logic Specification Mining 289
Nan Zhang, Xiaoshuai Yuan, and Zhenhua Duan

An Improved Exact Algorithm for the Exact Satisfiability Problem 304
Gordon Hoi

Transforming Multi-matching Nested Traceable Automata
to Multi-matching Nested Expressions . 320

Jin Liu, Zhenhua Duan, and Cong Tian

On the Complexity of Some Facet-Defining Inequalities
of the QAP-Polytope . 334

Pawan Aurora and Hans Raj Tiwary

x Contents

Hardness of Segment Cover, Contiguous SAT and Visibility
with Uncertain Obstacles . 350

Sharareh Alipour and Salman Parsa

On the Complexity of Minimum Maximal Uniquely Restricted Matching. . . . 364
Juhi Chaudhary and B. S. Panda

Search, Facility and Graphs

A Two-Layers Heuristic Search Algorithm for Milk Run with a New
PDPTW Model . 379

Xuhong Cai, Li Jiang, Songhu Guo, Hejiao Huang, and Hongwei Du

Optimal Deterministic Group Testing Algorithms to Estimate the Number
of Defectives . 393

Nader H. Bshouty and Catherine A. Haddad-Zaknoon

Nearly Complete Characterization of 2-Agent Deterministic Strategyproof
Mechanisms for Single Facility Location in Lp Space 411

Jianan Lin

Packing and Covering Triangles in Dense Random Graphs. 426
Zhongzheng Tang and Zhuo Diao

Mechanism Design for Facility Location Games with Candidate Locations. . . 440
Zhongzheng Tang, Chenhao Wang, Mengqi Zhang, and Yingchao Zhao

Geometric Problem

Online Maximum k-Interval Coverage Problem. 455
Songhua Li, Minming Li, Lingjie Duan, and Victor C. S. Lee

Vertex Fault-Tolerant Spanners for Weighted Points
in Polygonal Domains . 471

R. Inkulu and Apurv Singh

Competitive Analysis for Two Variants of Online Metric
Matching Problem. 486

Toshiya Itoh, Shuichi Miyazaki, and Makoto Satake

Guarding Disjoint Orthogonal Polygons in the Plane 499
Ovidiu Daescu and Hemant Malik

Optimal Strategies in Single Round Voronoi Game on Convex Polygons
with Constraints . 515

Aritra Banik, Arun Kumar Das, Sandip Das, Anil Maheshwari,
and Swami Sarvottamananda

Contents xi

Cutting Stock with Rotation: Packing Square Items into Square Bins. 530
Shahin Kamali and Pooya Nikbakht

Miscellaneous

Remotely Useful Greedy Algorithms . 547
Moritz Beck

Parameterized Algorithms for Fixed-Order Book Drawing with Bounded
Number of Crossings per Edge . 562

Yunlong Liu, Jie Chen, and Jingui Huang

Fractional Maker-Breaker Resolving Game. 577
Eunjeong Yi

Price of Fairness in Budget Division for Egalitarian Social Welfare. 594
Zhongzheng Tang, Chenhao Wang, and Mengqi Zhang

Inspection Strategy for On-board Fuel Sampling Within Emission
Control Areas . 608

Lingyue Li, Suixiang Gao, and Wenguo Yang

Novel Algorithms for Maximum DS Decomposition 624
Shengminjie Chen, Wenguo Yang, Suixiang Gao, and Rong Jin

Reading Articles Online . 639
Andreas Karrenbauer and Elizaveta Kovalevskaya

Sensors, Vehicles and Graphs

An Efficient Mechanism for Resource Allocation in Mobile
Edge Computing . 657

Guotai Zeng, Chen Zhang, and Hongwei Du

Data Sensing with Limited Mobile Sensors in Sweep Coverage 669
Zixiong Nie, Chuang Liu, and Hongwei Du

Trip-Vehicle Assignment Algorithms for Ride-Sharing. 681
Songhua Li, Minming Li, and Victor C. S. Lee

Minimum Wireless Charger Placement with Individual
Energy Requirement . 697

Xingjian Ding, Jianxiong Guo, Deying Li, and Ding-Zhu Du

An Efficient Algorithm for Routing and Recharging of Electric Vehicles 711
Tayebeh Bahreini, Nathan Fisher, and Daniel Grosu

xii Contents

The Optimization of Self-interference in Wideband Full-Duplex Phased
Array with Joint Transmit and Receive Beamforming 727

XiaoXin Wang, Zhipeng Jiang, Wenguo Yang, and Suixiang Gao

Graph Problems

Oriented Coloring of msp-Digraphs and Oriented
Co-graphs (Extended Abstract) . 743

Frank Gurski, Dominique Komander, and Marvin Lindemann

Star-Critical Ramsey Number of Large Cycle and Book. 759
Yan Li, Yusheng Li, and Ye Wang

Computing Imbalance-Minimal Orderings for Bipartite Permutation Graphs
and Threshold Graphs . 766

Jan Gorzny

Inductive Graph Invariants and Algorithmic Applications 780
C. R. Subramanian

Constructing Order Type Graphs Using an Axiomatic Approach 802
Sergey Bereg and Mohammadreza Haghpanah

FISSION: A Practical Algorithm for Computing Minimum Balanced
Node Separators . 817

Johannes Blum, Ruoying Li, and Sabine Storandt

Author Index . 833

Contents xiii

Approximation Algorithms

Approximate Ridesharing of Personal
Vehicles Problem

Qian-Ping Gu1, Jiajian Leo Liang1(B), and Guochuan Zhang2

1 School of Computing Science, Simon Fraser University, Burnaby, Canada
{qgu,leo liang}@sfu.ca

2 College of Computer Science and Technology, Zhejiang University,
Hangzhou, China
zgc@zju.edu.cn

Abstract. The ridesharing problem is that given a set of trips, each trip
consists of an individual, a vehicle of the individual and some require-
ments, select a subset of trips and use the vehicles of selected trips to
deliver all individuals to their destinations satisfying the requirements.
Requirements of trips are specified by parameters including source, des-
tination, vehicle capacity, preferred paths of a driver, detour distance
and number of stops a driver is willing to make, and time constraints.
We analyze the relations between time complexity and parameters for
two optimization problems: minimizing the number of selected vehicles
and minimizing total travel distance of the vehicles. We consider the fol-
lowing conditions: (1) all trips have the same source or same destination,
(2) no detour is allowed, (3) each participant has one preferred path, (4)
no limit on the number of stops, and (5) all trips have the same earliest
departure and same latest arrival time. It is known that both minimiza-
tion problems are NP-hard if one of Conditions (1), (2) and (3) is not
satisfied. We prove that both problems are NP-hard and further show
that it is NP-hard to approximate both problems within a constant fac-
tor if Conditions (4) or (5) is not satisfied. We give K+2

2
-approximation

algorithms for minimizing the number of selected vehicles when condition
(4) is not satisfied, where K is the largest capacity of all vehicles.

Keywords: Ridesharing problem · Optimization problems ·
Approximation algorithms · Algorithmic analysis

1 Introduction

As the population grows in urban areas, the number of cars on the road also
increases. As shown in [20], personal vehicles are still the main transportation
mode in 218 European cities between 2001 and 2011. In the United States, the
estimated cost of congestion is around $121 billion per year [3]. Based on reports
in 2011 [6,18], occupancy rate of personal vehicles in the United States is 1.6
persons per vehicle, which can be a cause for congestion. Shared mobility (car-
pooling or ridesharing) can be an effective way to increase occupancy rate [5].
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-64843-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_1

4 Q.-P. Gu et al.

Caulfield [4] estimated that ridesharing to work in Dublin, Ireland can reduce
12,674 tons of CO2 emissions annually. Ma et al. [15] showed taxi-ridesharing
in Beijing has the potential to save 120 million liter of gasoline per year. Sys-
tems that provide ridesharing services are known as mobility-on-demand (MoD)
systems, such as Uber, Lyft and DiDi. These systems are cable of supporting
dynamic ridesharing, meaning the ridesharing requests enter and leave the sys-
tem in real-time. Although the analysis and algorithms discussed in this paper
are for static ridesharing, one can view a dynamic ridesharing instance as a
sequence of static ridesharing instances (computing a solution for a fixed inter-
val, e.g. [19]).

We consider the following ridesharing problem: given a set of trips (requests)
in a road network, where each trip consists of an individual, a vehicle of the
individual and some requirements, select a subset of trips and use the vehicles
of the selected trips to deliver the individuals of all trips to their destinations
satisfying the requirements. An individual of a selected trip is called a driver and
an individual other than a driver is called a passenger. The requirements of a
trip are specified by parameters including: the source and destination of the trip,
the vehicle capacity (number of seats to serve passengers), the preferred paths
of the individual when selected as a driver, the detour distance and number
of stops the driver is willing to make to serve passengers, and time constraints
(e.g., departure/arrival time). There are different benefits of shared mobility [5],
but the main goal considered in this paper is to reduce the number of cars on
the roads. This can be achieved by the following optimization goals: minimize
the number of vehicles (or equivalently drivers) and minimize the total travel
distance of vehicles (or equivalently drivers) to serve all trips.

In general, the ridesharing problem is NP-hard as it is a generalization of
the vehicle routing problem (VRP) and Dial-A-Ride problem (DARP) [17]. A
common approach for solving the ridesharing problem is to use a Mixed Integer
Programming (MIP) formulation and solve it by an exact method or heuris-
tics [3,11,12]. MIP based exact algorithms are time consuming and not practi-
cal for large-scale ridesharing, so most previous studies rely on (meat)heuristics
or focus on simplified ridesharing for large instances [1,13,19]. The optimization
goals of the ridesharing problem are typically classified into two categories: oper-
ational objectives and quality-related objectives [17]. Operational objectives are
system-wide optimizing goals, whereas quality-related objectives focus on the
performance from the individual (driver/passenger) perspective. Some variants
and mathematical formulation of ridesharing problem come from the well studied
DARP. A literature review on DARP can be found in [16]. For the ridesharing
problem, we refer readers to literature surveys and reviews [2,5,17].

Most previous works focus on computational studies of the ridesharing prob-
lems and do not have a clear model for analyzing the relations between the
time complexity of the ridesharing problem and its parameters. A recent model
was introduced in [7] for analyzing the computational complexity of simplified
ridesharing problem with parameters of source, destination, vehicle capacity,
detour distance limit, and preferred paths only. The work in [7] gives an algo-

Approximate Ridesharing of Personal Vehicles Problem 5

rithmic analysis on the simplified ridesharing problems based on the following
conditions: (1) all trips have the same destination or all trips have the same
source; (2) no detour is allowed; (3) each trip has a unique preferred path. It
was shown in [7] that if any one of the three conditions is not satisfied, both
minimization problems (minimizing the number of drivers and travel distance
of vehicles) are NP-hard. When all three conditions are satisfied, Gu et al. [8]
developed a dynamic programming algorithm that finds an exact solution for
each minimization problem in O(M + l3) time, where M is the size of the road
network and l is the number of trips. In [8], a greedy algorithm was also proposed
that finds a solution with minimum number of drivers in O(M + l · log l) time.

A closely related problem was studied by Kutiel and Rawitz [14], called the
maximum carpool matching problem (MCMP). Given a set V of trips, the goal
of MCMP is to find a set of drivers S ⊆ V to serve all trips of V such that the
number of passengers is maximized. It was shown that MCMP is NP-hard [10].
Algorithms are proposed in [14] with 1

2 -approximation ratio, that is, the number
of passengers found by the algorithms is at least half of that for the optimal solu-
tion. The algorithms in [14] can be modified to K+2

2 -approximation algorithms
for the ridesharing problem with minimizing the number of drivers.

In this paper, we extend the time complexity analysis of simplified ridesharing
problems in [7] to more generalized ridesharing problems with three additional
parameters considered: number of stops a driver willing to make to serve pas-
sengers, arrival time and departure time of each trip. We introduce two more
conditions: (4) Each driver is willing to stop to pick-up passengers as many times
as its vehicle capacity. (5) All trips have the same earliest departure and same
latest arrival time. We call Condition (4) the stop constraint condition and (5)
the time constraint condition. Our results in this paper are:

1. We prove that both ridesharing minimization problems are NP-hard and fur-
ther show that it is NP-hard to approximate both problems within a constant
factor if stop constraint or time constraint condition is not satisfied.

2. We present two K+2
2 -approximation algorithms for minimizing the number of

drivers when the input instances satisfy all conditions except stop constraint
condition, where K is the largest capacity of all vehicles. For a ridesharing
instance containing a road network of size M and l trips, our first algorithm,
which is a modification of a 1

2 -approximation algorithm (StarImprove) in [14],
runs in O(M + K · l3) time. Our second algorithm is more practical and runs
in O(M + K · l2) time.

An instance satisfying Conditions (1–3) and (5) may reflect a ridesharing in
school commute: in the morning many staffs and students go to the school around
the same time (Conditions (1) and (5)), each driver has a fixed path from home
to the school (Condition (3)) and does not want to detour (Condition (2)); in
the afternoon, staffs and students leave from the school (Conditions (1) and (5)).
The rest of the paper is organized as follows. Section 2 gives the preliminaries
of the paper. In Sect. 3, we show the NP-hardness results for stop constraint
condition and time constraint condition. Section 4 presents the approximation

6 Q.-P. Gu et al.

algorithms for minimizing the number of drivers for stop constraint condition.
Section 5 concludes the paper.

2 Preliminaries

A (undirected) graph G consists of a set V (G) of vertices and a set E(G) of
edges, where each edge {u, v} of E(G) is a (unordered) pair of vertices in V (G).
A digraph H consists of a set V (H) of vertices and a set E(H) of arcs, where each
arc (u, v) of E(H) is an ordered pair of vertices in V (H). A graph G (digraph
H) is weighted if every edge of G (arc of H) is assigned a real number as the
edge length. A path between vertex v0 and vertex vk in graph G is a sequence
e1, .., ek of edges, where ei = {vi−1, vi} ∈ E(G) for 1 ≤ i ≤ k and vi �= vj for
i �= j and 0 ≤ i, j ≤ k. A path from vertex v0 to vertex vk in a digraph H is
defined similarly with each ei = (vi−1, vi) an arc in H. The length of a path P
is the sum of the lengths of edges (arcs) in P . For simplicity, we express a road
network by a weighted undirected graph G(V,E) with non-negative edge length:
V (G) is the set of locations in the network, an edge {u, v} represents the road
segment between u and v.

In the ridesharing problem, we assume that the individual of every trip can
be assigned as a driver or passenger. In general, in addition to a vehicle and
individual, each trip has a source, a destination, a capacity of the vehicle, a set of
preferred (optional) paths (e.g., shortest paths) to reach the destination, a limit
(optional) on the detour distance/time from the preferred path to serve other
individuals, a limit (optional) on the number of stops a driver wants to make to
pick-up passengers, an earliest departure time, and a latest arrival time. Each
trip in the ridesharing problem is expressed by an integer label i and specified
by parameters (si, ti, ni, di,Pi, δi, αi, βi), which are defined in Table 1.

Table 1. Parameters for every trip i.

Parameter Definition

si The source (start location) of i (a vertex in G)

ti The destination of i (a vertex in G)

ni The number of seats (capacity) of i available for passengers

di The detour distance limit i willing to make for offering services

Pi The set of preferred paths of i from si to ti in G

δi The maximum number of stops i willing to make to pick-up passengers

αi The earliest departure time of i

βi The latest arrival time of i

When the individual of trip i delivers (using i’s vehicle) the individual of a
trip j, we say trip i serves trip j and call i a driver and j a passenger. The serve
relation between a driver i and a passenger j is defined as follows. A trip i can
serve i itself and can serve a trip j �= i if i and j can arrive at their destinations
by time βi and βj respectively such that j is a passenger of i, the detour of i is
at most di, and the number of stops i has to make to serve j is at most δi. When

Approximate Ridesharing of Personal Vehicles Problem 7

a trip i can serve another trip j, it means that i-j is a feasible assignment of a
driver-passenger pair. We extend this notion to a set σ(i) of passenger trips that
can be served by a driver i (i ∈ σ(i)). A driver i can serve all trips of σ(i) if the
total detour of i is at most di, the number of stops i have to make to pick-up
σ(i) is at most δi, and every j ∈ σ(i) arrives at ti before βj . At any specific
time point, a trip i can serve at most ni + 1 trips. If trip i serves some trips
after serving some other trips (known as re-take passengers in previous studies),
trip i may serve more than ni + 1 trips. In this paper, we study the ridesharing
problem in which no re-taking passenger is allowed. A serve relation is transitive
if i can serve j and j can serve k imply i can serve k. Let (G,R) be an instance
of the ridesharing problem, where G is a road network (weighted graph) and
R = {1, .., l} is a set of trips. (S, σ), where S ⊆ R is a set of trips assigned as
drivers and σ is a mapping S → 2R, is a partial solution to (G,R) if

– for each i ∈ S, i can serve σ(i),
– for each pair i, j ∈ S with i �= j, σ(i) ∩ σ(j) = ∅, and
– σ(S) = ∪i∈Sσ(i) ⊆ R.

When σ(S) = R, (S, σ) is called a solution of (G,R). For a (partial) solution
(S, σ), we sometimes call S a (partial) solution when σ is clear from the context.

We consider the problem of minimizing |S| (the number of drivers) and the
problem of minimizing the total travel distance of the drivers in S. To investigate
the relations between the computational complexity and problem parameters,
Gu et al. [7] introduced the simplified minimization (ridesharing) problems with
parameters (si, ti, ni, di,Pi) only and the following conditions:

(1) All trips have the same destination or all trips have the same source, that
is, ti = D for every i ∈ R or si = χ for every i ∈ R.

(2) Zero detour: each trip can only serve others on his/her preferred path, that
is, di = 0 for every i ∈ R.

(3) Fixed path: Pi has a unique preferred path Pi.

It is shown in [7] that if any one of Conditions (1), (2) and (3) is not satisfied,
both minimization problems are NP-hard. Polynomial-time exact algorithms are
given in [8] for the simplified minimization problems if all of Conditions (1–3) and
transitive serve relation are satisfied. In this paper, we study more generalized
minimization problems with all parameters in Table 1 considered. To analyze
the computational complexity of the more generalized minimization problems,
we introduce two more conditions:

(4) The number of stops each driver is willing to make to pick-up passengers is
at least its capacity, that is, δi ≥ ni for every i ∈ R.

(5) All trips have the same earliest departure and same latest arrival time, that
is, for every i ∈ R, αi = α and βi = β for some α < β.

The polynomial-time exact algorithms in [8] can still apply to any ridesharing
instance when all of Conditions (1–5) and transitive serve relation are satisfied.

8 Q.-P. Gu et al.

3 NP-Hardness Results

We first show the NP-hardness results for the stop constraint condition, that is,
when Conditions (1)–(3) and (5) are satisfied but Condition (4) is not. When
Condition (1) is satisfied, we assume all trips have the same destination (since
it is symmetric to prove the case that all trips have the same source). If all trips
have distinct sources, one can solve both minimization problems by using the
polynomial-time exact algorithms in [8]: when Conditions (1–3) are satisfied and
each trip has a distinct source si, each trip is represented by a distinct vertex i
in the serve relation graph in [8]. Each time a driver i serves a trip j, i must stop
at sj �= si to pick-up j. When Condition (4) is not satisfied (δi < ni), i can serve
at most δi passengers. Therefore, we can set the capacity ni to min{ni, δi} and
apply the exact algorithms to solve the minimization problems. In what follows,
we assume trips have arbitrary sources (multiple trips may have a same source).

3.1 Both Minimization Problems Are NP-Hard

We prove both minimization problems are NP-hard. The proof is a reduction
from the 3-partition problem. The decision problem of 3-partition is that given
a set A = {a1, a2, ..., a3r} of 3r positive integers, where r ≥ 2,

∑3r
i=1 ai = rM

and M/4 < ai < M/2, whether A can be partitioned into r disjoint subsets
A1, A2,, Ar such that each subset has three elements of A and the sum of
integers in each subset is M . Given a 3-partition instance A = {a1, ..., a3r},
construct a ridesharing problem instance (G,RA) as follows (see Fig. 1).

– G is a graph with V (G) = {D,u1, ..., u3r, v1, ..., vr} and E(G) having edges
{ui, v1} for 1 ≤ i ≤ 3r, edges {vi, vi+1} for 1 ≤ i ≤ r − 1 and {vr,D}. Each
edge {u, v} has weight of 1, representing the travel distance from u to v. It
takes r + 1 units of distance traveling from ui to D for 1 ≤ i ≤ 3r.

– RA = {1, ..., 3r + rM} has 3r + rM trips. Let α and β be valid constants
representing time.

• Each trip i, 1 ≤ i ≤ 3r, has source si = ui, destination ti = D,ni =
ai, di = 0, δi = 1, αi = α and βi = β. Each trip i has a preferred path
{ui, v1}, {v1, v2}, ..., {vr,D} in G.

• Each trip i, 3r + 1 ≤ i ≤ 3r + rM , has source si = vj , j = �(i − 3r)/M�,
destination ti = D, ni = 0, δi = 0, di = 0, αi = α, βi = β and a unique
preferred path {vj , vj+1}, {vj+1, vj+2}, ..., {vr,D} in G.

Lemma 1. Any solution for the instance (G,RA) has every trip i, 1 ≤ i ≤ 3r,
as a driver and total travel distance at least 3r · (r + 1).

Proof. Since condition (2) is satisfied (detour is not allowed), every trip i, 1 ≤ i ≤
3r, must be a driver in any solution. A solution with exactly 3r drivers has total
travel distance 3r · (r + 1), and any solution with a trip i, 3r + 1 ≤ i ≤ 3r + rM ,
as a driver has total travel distance greater than 3r · (r + 1). �

Approximate Ridesharing of Personal Vehicles Problem 9

Fig. 1. Ridesharing instance based on a given 3-partition problem instance.

Theorem 1. Minimizing the number of drivers in the ridesharing problem is
NP-hard when Conditions (1–3) and (5) are satisfied, but Condition (4) is not.

Proof. We prove the theorem by showing that an instance A = {a1, ..., a3r} of
the 3-partition problem has a solution if and only if the ridesharing problem
instance (G,RA) has a solution of 3r drivers.

Assume that instance A has a solution A1, ..., Ar where the sum of elements
in each Aj is M . For each Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ r, assign the three trips
whose nj1 = aj1 , nj2 = aj2 and nj3 = aj3 as drivers to serve the M trips with
sources at vertex vj . Hence, we have a solution of 3r drivers for (G,RA).

Assume that (G,RA) has a solution of 3r drivers. By Lemma 1, every trip
i, 1 ≤ i ≤ 3r, is a driver in the solution. Then, each trip j for 3r + 1 ≤ j ≤
3r + rM must be a passenger in the solution, total of rM passengers. Since∑

1≤i≤3r ai = rM , each driver i, 1 ≤ i ≤ 3r, serves exactly ni = ai passengers.
Since ai < M/2 for every ai ∈ A, at least three drivers are required to serve
the M passengers with sources at each vertex vj , 1 ≤ j ≤ 3r. Due to δi = 1,
each driver i, 1 ≤ i ≤ 3r, can only serve passengers with the same source.
Therefore, the solution of 3r drivers has exactly three drivers j1, j2, j3 to serve
the M passengers with sources at vertex vj , implying aj1 + aj2 + aj3 = M . Let
Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ r, we get a solution for the 3-partition instance.

The size of (G,RA) is polynomial in r. It takes a polynomial time to convert
a solution of (G,RA) to a solution of the 3-partition instance and vice versa. �

The proof of Theorem 2 can be found in Sect. 3 of [9].

Theorem 2. Minimizing the total travel distance of drivers in the ridesharing
problem is NP-hard when Conditions (1–3) and (5) are satisfied but Condition
(4) is not.

3.2 Inapproximability Results

Based on the results in Sect. 3.1, we extent our reduction to further show that
it is NP-hard to approximate both minimization problems within a constant
factor if Condition (4) is not satisfied. Let (G,RA) be the ridesharing problem
instance constructed based on a given 3-partition instance A as described above
for Theorem 1. We modify (G,RA) to get a new ridesharing instance (G,R′) as
follows. For every trip i, 1 ≤ i ≤ 3r, we multiply ni with rM , that is, ni = ai·rM ,
where r and M are given in instance A. There are now rM2 trips with sources

10 Q.-P. Gu et al.

at vertex vj for 1 ≤ j ≤ r, and all such trips have the same destination, capacity,
detour, stop limit, earlier departure time, latest arrival time, and preferred path
as before. The size of (G,R′) is polynomial in r and M . Note that Lemma 1
holds for (G,R′) and

∑3r
i=1 ni = rM

∑3r
i=1 ai = (rM)2.

Lemma 2. Let (G,R′) be a ridesharing problem instance constructed above
from a 3-partition problem instance A = {a1, . . . , a3r}. The 3-partition prob-
lem instance A has a solution if and only if the ridesharing problem instance
(G,R′) has a solution (σ, S) s.t. 3r ≤ |S| < 3r + rM , where S is the set of
drivers.

Proof. Assume that instance A has a solution A1, . . . , Ar where the sum of ele-
ments in each Aj is rM2. For each Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ r, we assign the
three trips whose nj1 = aj1 · rM , nj2 = aj2 · rM and nj3 = aj3 · rM as drivers
to serve the rM2 trips with sources at vertex vj . Hence, we have a solution of
3r drivers for (G,R′).

Assume that (G,R′) has a solution with 3r ≤ |S| < 3r + rM drivers. Let
R′(1, 3r) be the set of trips in R′ with labels from 1 to 3r. By Lemma 1, every trip
i ∈ R′(1, 3r) is a driver in S. Since ai < M/2 for every ai ∈ A, ni < rM ·M/2 for
every trip i ∈ R′(1, 3r). From this, it requires at least three drivers in R′(1, 3r)
to serve the rM2 trips with sources at each vertex vj , 1 ≤ j ≤ r. For every trip
i ∈ R′(1, 3r), i can only serve passengers with the same source due to δi = 1.
There are two cases: (1) |S| = 3r and (2) 3r < |S| < 3r + rM .

(1) It follows from the proof of Theorem 1 that every three drivers j1, j2, j3
of the 3r drivers serve exactly rM2 passengers with sources at vertex vj . Then
similar, let Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ r, we get a solution for the 3-partition
problem instance.

(2) For every vertex vj , let Xj be the set of trips with source vj not served by
drivers in R′(1, 3r). Then 0 ≤ |Xj | < rM due to |S| < 3r + rM . For every trip
i ∈ R′(1, 3r), ni = ai · rM is a multiple of rM . Hence, the sum of capacity for
any trips in R′(1, 3r) is also a multiple of rM , and further, ni1 +ni2 = (ai1 +ai2)·
rM < rM ·(M−1) for every i1, i2 ∈ R′(1, 3r) because ai1 < M/2 and ai2 < M/2.
From these and |Xj | < rM , there are 3 drivers j1, j2, j3 ∈ R′(1, 3r) to serve trips
with source vj and nj1 + nj2 + nj3 ≥ rM2. Because nj1 + nj2 + nj3 ≥ rM2 for
every 1 ≤ j ≤ r and

∑
1≤i≤3r ni = (rM)2, nj1 + nj2 + nj3 = rM2 for every j.

Thus, we get a solution with Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ r, for the 3-partition
problem.

It takes a polynomial time to convert a solution of (G,R′) to a solution of
the 3-partition instance and vice versa. �
Theorem 3. Let (G,R′) be the ridesharing instance stated above based on a
3-partition instance. Approximating the minimum number of drivers for (G,R′)
within a constant factor is NP-hard. This implies that it is NP-hard to approxi-
mate the minimum number of drivers within a constant factor for a ridesharing
instance when Conditions (1–3) and (5) are satisfied and Condition (4) is not.

Approximate Ridesharing of Personal Vehicles Problem 11

Proof. Assume that there is a polynomial time c-approximation algorithm C for
instance (G,R′) for any constant c > 1. This means that C will output a solution
(σC , SC) for (G,R′) such that OPT (R′) ≤ |SC | ≤ c · OPT (R′), where OPT (R′)
is the minimum number of drivers for (G,R′). When the 3-partition instance is a
“No” instance, the optimal value for (G,R′) is OPT (R′) ≥ 3r+rM by Lemma 2.
Hence, algorithm C must output a value |SC | ≥ 3r + rM . When the 3-partition
instance is a “Yes” instance, the optimal value for (G,R′) is OPT (R′) = 3r.
For any constant c > 1, taking M such that c < M/3 + 1. The output |SC |
from algorithm C on (G,R′) is 3r ≤ |SC | ≤ 3rc < 3r + rM for a 3-partition
“Yes” instance. Therefore, by running the c-approximation algorithm C on any
ridesharing instance (G,R′) and checking the output value |SC | of C, we can
answer the 3-partition problem in polynomial time, which contradicts that the
3-partition problem is NP-hard unless P = NP . �

The proof of Theorem 4 can be found in Sect. 3 of [9].

Theorem 4. It is NP-hard to approximate the total travel distance of drivers
within any constant factor for a ridesharing instance when Conditions (1–3) and
(5) are satisfied and Condition (4) is not.

3.3 NP-Hardness Result for Time Constraint Condition

Assume that Conditions (1–4) are satisfied but Condition (5) is not, that is, trips
can have arbitrary departure time and arrival time. Then we have the following
results (detailed proofs for the results are given in Sect. 4 of [9]).

Theorem 5. Minimizing the number of drivers in the ridesharing problem is
NP-hard when Conditions (1–4) are satisfied but Condition (5) is not.

Theorem 6. Minimizing the total travel distance of drivers in the ridesharing
problem is NP-hard when Conditions (1–4) are satisfied but Condition (5) is not.

Theorem 7. It is NP-hard to approximate the minimum number of drivers
within any constant factor for a ridesharing instance satisfying Conditions (1–4)
but not Condition (5).

Theorem 8. It is NP-hard to approximate the minimum total travel distance
of drivers within any constant factor for a ridesharing instance satisfying Con-
ditions (1–4) but not Condition (5).

4 Approximation Algorithms for Stop Constraint
Condition

For short, we call the ridesharing problem with all conditions satisfied except
Condition (4) as ridesharing problem with stop constraint. Let K = maxi∈R ni

be the largest capacity of all vehicles. Kutiel and Rawitz [14] proposed two
1
2 -approximation algorithms for the maximum carpool matching problem. We

12 Q.-P. Gu et al.

first show that the algorithms in [14] can be modified to K+2
2 -approximation

algorithms for minimizing the number of drivers in the ridesharing problem with
stop constraint. Then we propose a more practical K+2

2 -approximation algorithm
for the minimization problem.

4.1 Approximation Algorithms Based on MCMP

An instance of the maximum carpool matching problem (MCMP) consists of a
directed graph H(V,E), a capacity function c : V → N, and a weight function
w : E → R

+, where the vertices of V represent the individuals and there is an
arc (u, v) ∈ E if v can serve u. We are only interested in the unweighted case,
that is, w(u, v) = 1 for every (u, v) ∈ E. Every v ∈ V can be assigned as a driver
or passenger. The goal of MCMP is to find a set of drivers S ⊆ V to serve all V
such that the number of passengers is maximized. A solution to MCMP is a set
S of vertex-disjoint stars in H. Let Sv be a star in S rooted at center vertex v,
and leaves of Sv is denoted by Pv = V (Sv) \ {v}. For each star Sv ∈ S, vertex v
has out-degree of 0 and every leave in Pv has only one out-edge towards v. The
center vertex of each star Sv is assigned as a driver and the leaves are assigned as
passengers. The set of edges in S is called a matching M . An edge in M is called
a matched edge. Notice that |M | equals to the number of passengers. For an arc
e = (u, v) in H, vertices u and v are said to be incident to e. For a matching M
and a set V ′ ⊆ V of vertices, let M(V ′) be the set of edges in M incident to V ′.
Table 2 lists the basic notation and definition for this section.

Table 2. Common notation and definition used in this section.

Notation Definition

S A set of vertex-disjoint stars in H (solution to MCMP)

Sv and Pv Star Sv rooted at center vertex v with leaves Pv = V (Sv) \ {v}
c(v) Capacity of vertex v (equivalent to nv in Table 1)

Matching M The set of edges in S
M(V ′) The set of edges in M incident to a set V ′ of vertices

N in(v) The set of in-neighbors of v, N in(v) = {u | (u, v) ∈ E}
Ein(v) The set of arcs entering v, in-arcs Ein(v) = {(u, v) | (u, v) ∈ E}
δPv The number of stops required for v to pick-up Pv

Two approximation algorithms (StarImprove and EdgeSwap) are presented
in [14]; both can achieve 1

2 -approximation ratio, that is, the number of passengers
found by the algorithm is at least half of that for the optimal solution.

EdgeSwap. The EdgeSwap algorithm requires the input instance to have a
bounded degree graph (or the largest capacity K is bound by a constant) to
have a polynomial running time. The idea of EdgeSwap is to swap i matched
edges in M with i + 1 edges in E \ M for 1 ≤ i ≤ k and k is a constant integer.
The running time of EdgeSwap is in the order of O(|E|2k+1). EdgeSwap can

Approximate Ridesharing of Personal Vehicles Problem 13

directly apply to the minimization problem to achieve K+2
2 -approximation ratio

in O(l2K) time, which may not be practical even if K is a small constant.

StarImprove. Let (H(V,E), c, w) be an instance of MCMP. Let S be the current
set of stars found by StarImprove and M be the set of matched edges. The idea
of the StarImprove algorithm is to iteratively check in a for-loop for every vertex
v ∈ V (G):

– check if there exists a star Sv with E(Sv) ∩ M = ∅ s.t. the resulting set of
stars S\M(V (Sv)) ∪ Sv gives a larger matching.

Such a star Sv is called an improvement and |Pv| ≤ c(v). Given a ridesharing
instance (G,R) satisfying all conditions, except Condition (4). The StarImprove
algorithm cannot apply to (G,R) directly because the algorithm assumes a driver
v can serve any combination of passengers corresponding to vertices adjacent to
v up to c(v). This is not the case for (G,R) in general. For example, suppose v
can serve u1 and u2 with nv = 2 and δv = 1. The StarImprove assigns v as a
driver to serve both u1 and u2. However, if u1 and u2 have different sources (sv �=
su1 �= su2), this assignment is not valid for (G,R). Hence, we need to modify
StarImprove for computing a star. For a vertex v and star Sv, let N in

-M (v) = {i |
i ∈ N in \ V (M)} and δPv be the number of stops required for v to pick-up Pv.
Suppose the in-neighbors N in

-M (v) are partitioned into g1(v), . . . , gm(v) groups
such that trips with same source are grouped together. When stop constraint is
considered, finding a star Sv with maximum |Pv| is similar to solving a fractional
knapsack instance using a greedy approach as shown in Fig. 2.

Algorithm 1 Greedy algorithm
1: Pv = ∅; c = c(v); Pv = 0;
2: if ∃ a group gj(v) s.t. su = sv for any u ∈ gj(v) then
3: if |gj(v)| ≤ c then Pv = Pv ∪ gj(v); c = c − |gj(v)|;
4: else Pv = Pv ∪ g′

j(v), where g′
j(v) ⊆ gj(v) with |g′

j(v)| = c. c = 0;
5: end if
6: while c > 0 and Pv < v do
7: Select gi(v) = max1≤i≤m{|gi(v) \ Pv|};
8: if |gi(v)| ≤ c then Pv = Pv ∪ gi(v); c = c − |gi(v)|; v = v + 1;
9: else Pv = Pv ∪g′

i(v), where g′
i(v) ⊆ gi(v) with |g′

i(v)| = c. c = 0; v =
P P

P Pv+1;
10: end while
11: return the star Sv induced by Pv v ;

Fig. 2. Greedy algorithm for computing Sv.

Lemma 3. Let v be the trip being processed and Sv be the star found by Algo-
rithm 1 w.r.t. current matching M . Then |Pv| ≥ |P ′

v| for any star S′
v s.t.

P ′
v ∩ M = ∅.

The proof of Lemma 3 is in Sect. 5 of [9].

Definition 1. A star Sv rooted at v is an improvement with respect to matching
M if |Pv| ≤ c(v), δPv ≤ δv and |Sv| − ∑

(u,v)∈E(Sv) |M(u)| > |M(v)|.

14 Q.-P. Gu et al.

Definition 1 is equivalent to the original definition in [14], except the former
is for the unweighted case and stop constraint. When an improvement is found,
the current matching M is increased by exactly |Sv|−∑

(u,v)∈E(Sv) |M(u)| edges.
For a vertex v and a subset S ⊆ Ein(v), let N in

S (v) = {u | (u, v) ∈ S}.

Lemma 4. Let M be the current matching and v be a vertex with no improve-
ment. Let Sv ⊆ Ein(v) s.t. |Sv| ≤ c(v) and δPv ≤ δv, then |Sv| ≤ |M(v)| +
|M(N in

Sv
(v))|. Further, if the star Sv found by Algorithm 1 w.r.t. M is not an

improvement, then no other S′
v is an improvement.

The proof of Lemma 4 is in Sect. 5 of [9]. By Lemma 4 and the same argument
of Lemma 6 in [14], we have the following lemma.

Lemma 5. The modified StarImprove algorithm computes a solution to an
instance of ridesharing problem with stop constraint with 1

2 -approximation.

By Lemma 5 and a straight forward implementation of the modified StarIm-
prove algorithm, we have the following theorem (proof in Sect. 5 of [9]).

Theorem 9. Let (G,R) be a ridesharing instance satisfying all conditions,
except condition (4). Let |S∗| be the minimum number of drivers for (G,R),
l = |R| and K = maxi∈R ni. Then,

– The EdgeSwap algorithm computes a solution (σ, S) for (G,R) s.t. |S∗| ≤
|S| ≤ K+2

2 |S∗| with running time O(M + l2K).
– The modified StarImprove algorithm computes a solution (σ, S) for (G,R) s.t.

|S∗| ≤ |S| ≤ K+2
2 |S∗| with running time O(M + K · l3), where M is the size

of a ridesharing instance which contains a road network and l trips.

4.2 A More Practical New Approximation Algorithm

For our proposed algorithm, we assume the serve relation is transitive, that is,
trip i can serve trip j and j can serve trip k imply i can serve k. In general, if each
trip has a unique preferred path and trip i can serve trip j implies j’s preferred
path is a subpath of i’s preferred path, then the serve relation is transitive. Given
a ridesharing instance (G,R), we construct a directed meta graph Γ (V,E) to
express the serve relation, where V (Γ) represents the start locations of all trips
in (G,R). Each node μ of V (Γ) contains all trips with the same start location μ.
There is an arc (μ, ν) in E(Γ) if a trip in μ can serve a trip in ν. Since Conditions
(1–3) are satisfied, if one trip in μ can serve a trip in ν, any trip in μ can serve
any trip in ν. We say node μ can serve node ν. An arc (μ, ν) in Γ is called a
short cut if after removing (μ, ν) from Γ , there is a path from μ to ν in Γ . We
simplify Γ by removing all short cuts from Γ . In what follows, we use Γ for
the simplified meta graph. Notice that Γ is an inverse tree and for every pair of
nodes μ and ν in Γ , if there is a path from μ to ν then μ can serve ν. We label
the nodes of Γ as V (Γ) = {μp, μp−1, ..., μ1}, where p = |V (Γ)|, in such a way
that for every arc (μb, μa) of Γ , b > a, and we say μb has a larger label than
μa. The labeling is done by the procedure in [8] (see Appendix of [9]). Figure 3

Approximate Ridesharing of Personal Vehicles Problem 15

shows an example of a graph Γ (V,E). Each node in Γ without an incoming arc
is called an origin, and μ1 is the unique sink. Table 3 contains the basic notation
and definition for this section.

Table 3. Basic notation and definition used in this section.

Notation Definition

Γ (V, E) A directed graph expressing the serve relation and p = |V (Γ)|
μ is an ancestor of ν If ∃ a nonempty path from μ to ν in Γ (ν is a descendant of μ)

Aµ and A∗
µ Set of ancestors of μ and A∗

µ = Aµ ∪ {μ} respectively

Dµ and D∗
µ Set of descendants of μ and D∗

µ = Dµ ∪ {μ} respectively

R(μ) and R(U) Set of trips in a node μ and in a set U of nodes respectively

S(μ) and S(U) Set of drivers in a node μ and in nodes U respectively

node(i) The node that contains trip i (if i ∈ R(μ) then node(i) = μ)

Fig. 3. (a) a set R of 10 trips with same destination D in the road network graph G.
(b) The directed meta graph expressing the serve relation of these trips with shortcuts
in dashed arcs. (c) The simplified meta graph, which is an inverse tree.

We divide all trips of R into two sets W and X as follows. Let W = {i ∈
R | ni = 0} ∪ {i ∈ R(μ) | δi = 0 and |R(μ) = 1| for every node μ ∈ V (Γ)} and
X = R\W . For a node μ in Γ , let X(μ) = X ∩R(μ) and W (μ) = W ∩R(μ). Our
algorithm tries to minimize the number of drivers that only serve itself. There
are three phases in the algorithm. In Phase-I, it serves all trips of W and tries
to minimize the number of trips in W that are assigned as drivers since each
trip of W can serve only itself. Let Z be the set of unserved trips after Phase-I
such that for every i ∈ Z, δi = 0. In Phase-II, it serves all trips of Z and tries
to minimize the number of such drivers of Z, each only serves itself. In Phase
III, it serves all remaining trips. Let (S, σ) be the current partial solution and
i ∈ R be a driver. Denoted by free(i) = ni − |σ(i)| + 1 is the remaining capacity
of i w.r.t. solution (S, σ). Denoted by stop(i) is the number of stops i has to
made in order to serve all of σ(i) w.r.t. (S, σ). For a driver i and node μ, we
define R(i, μ, S) as the set of min{free(i), |R(μ)\σ(S)|} trips in R(μ)\σ(S) and
W (i, μ, S) as the set of min{free(i), |W (μ) \ σ(S)|} trips in W (μ) \ σ(S), and
similarly for Z(i, μ, S). We start with initial solution (S, σ) = (∅, ∅), free(i) = ni

16 Q.-P. Gu et al.

and stop(i) = 0 for all i ∈ R. The three phases of the approximation algorithm
are described in following, and the pseudo code is given in Sect. 6 of [9].

(Phase-I). In this phase, the algorithm assigns a set of drivers to serve all trips
of W . Let Γ (W) = {μ ∈ V (Γ) | W (μ) \ σ(S) �= ∅}, and each node of Γ (W)
is processed. In each iteration, the node μ = argmaxμ∈Γ (W)|W (μ) \ σ(S)| is
selected and a subset of trips in W (μ) \ σ(S) is served by a driver as follows:

– Let X̂1 = {i ∈ S(Aμ) | free(i) > 0 ∧ stop(i) < δi} and X̄ = {i ∈ X ∩ R(A∗
μ) \

σ(S) | stop(i) < δi ∨ i ∈ R(μ)}. The algorithm finds and assigns a trip x as a
driver to serve W (x, μ, S) s.t. x = argminx∈X̂1∪X̄ : nx≥|W (μ)\σ(S)|δx −stop(x).

• If such a trip x does not exist, it means that nx < |W (μ)\σ(S)| for every
x ∈ X̂1 ∪ X̄ assuming X̂1 ∪ X̄ �= ∅. Then, x = argmaxx∈X̂1∪X̄ free(x) is
assigned as a driver to serve W (x, μ, S). If there is more than one x with
same free(x), the trip with smallest δx − stop(x) is selected.

– When X̂1 ∪ X̄ = ∅, assign every w ∈ W (μ) \ σ(S) as a driver to serve itself.

(Phase-II). In the second phase, all trips of Z = {i ∈ R \ σ(S) | δi = 0} will be
served. Let Γ (Z) = {μ ∈ Γ | Z(μ) = (Z ∩ R(μ)) �= ∅}. Each node μ of Γ (Z) is
processed in the decreasing order of their node labels.

– If |Z(μ)| ≥ 2, trip x = argmaxx∈Z(μ)nx is assigned as a driver and serves
Z(x, μ, S) consists of trips with smallest capacity among trips in Z(μ)\σ(S).

– This repeats until |Z(μ)| ≤ 1. Then next node in Γ (Z) is processed.

After all nodes of Γ (Z) are processed, if Z is still non-empty, each node μ of
Γ (Z) is processed again; note that every μ contains exactly one z ∈ Z(μ) now.

– A driver x ∈ X̂2 = {i ∈ S(A∗
μ) | free(i) > 0 ∧ (stop(i) < δi ∨ i ∈ R(μ))} with

largest free(x) is selected to serve z = Z(μ) if X̂2 �= ∅.
– If X̂2 = ∅, a trip x ∈ X̄ = {i ∈ X ∩ R(A∗

μ) \ σ(S) | stop(i) < δi ∨ i ∈ R(μ)}
with largest δx is selected to serve z = Z(μ).

(Phase-III). To serve all remaining trips, the algorithm processes each node of
Γ in decreasing order of node labels from μp to μ1. Let μj be the node being
processed by the algorithm. Suppose there are trips in R(μj) that have not be
served, that is, R(μj) � σ(S).

– A driver x ∈ X̂2 = {i ∈ S(A∗
μj

) | free(i) > 0 ∧ (stop(i) < δi ∨ i ∈ R(μj))}
with largest free(x) is selected if X̂2 �= ∅.

– If X̂2 = ∅, a trip x = argmaxx∈X(μj)\σ(S)nx is assigned as a driver. If the
largest nx is not unique, the trip with the smallest δx is selected.

– In either case, x is assigned to serve R(x, μj , S). This repeats until all of R(μj)
are served. Then, next node μj−1 is processed.

Theorem 10. Given a ridesharing instance (G,R) of size M and l trips sat-
isfying Conditions (1–3) and (5). Algorithm 1 computes a solution (S, σ) for
(G,R) such that |S∗| ≤ |S| ≤ K+2

2 |S∗|, where (S∗, σ∗) is any optimal solution
and K = maxi∈R ni, with running time O(M + l2).

The complete proof of the theorem is in Sect. 6 of [9].

Approximate Ridesharing of Personal Vehicles Problem 17

5 Conclusion

We proved that the problems of minimizing the number of vehicles and mini-
mizing the total distance of vehicles are NP-hard, and further it is NP-hard to
approximate these two problems within a constant factor if neither Condition
(4) nor (5) is satisfied. Combining these with the results of [7,8], both minimiza-
tion problems are NP-hard if one of Conditions (1)–(5) is not satisfied. We also
presented K+2

2 -approximation algorithms for minimizing number of drivers for
problem instances satisfying all conditions except Condition (4), where K is the
largest capacity of all vehicles. It is worth developing approximation algorithms
for other NP-hard cases; for example, two or more of the five conditions are not
satisfied. It is interesting to study applications of the approximation algorithms
for other related problems, such as multimodal transportation with ridesharing
(integrating public and private transportation).

Acknowledgments. The authors thank the anonymous reviewers for their construc-
tive comments. This work was partially supported by Canada NSERC Discovery Grant
253500 and China NSFC Grant 11531014.

References

1. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Dynamic ride-sharing: a simula-
tion study in metro Atlanta. Trans. Res. Part B 45(9), 1450–1464 (2011)

2. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Optimization for dynamic ride-
sharing: a review. Eur. J. Oper. Res. 223, 295–303 (2012)

3. Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D.: On-demand
high-capacity ride-sharing via dynamic trip-vehicle assignment. In: Proceedings of
the National Academy of Sciences (PNAS), vol. 114, no. 3, pp. 462–467 (2017)

4. Caulfield, B.: Estimating the environmental benefits of ride-sharing: a case study
of Dublin. Transp. Res. Part D 14(7), 527–531 (2009)

5. Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M., Wang, X., Koenig, S.:
Ridesharing: the state-of-the-art and future directions. Transp. Res. Part B 57,
28–46 (2013)

6. Ghoseiri, K., Haghani, A., Hamed, M.: Real-time rideshare matching problem.
Final Report of UMD-2009-05, U.S. Department of Transportation (2011)

7. Gu, Q.-P., Liang, J.L., Zhang, G.: Algorithmic analysis for ridesharing of personal
vehicles. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol.
10043, pp. 438–452. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48749-6 32

8. Gu, Q., Liang, J.L., Zhang, G.: Efficient algorithms for ridesharing of personal
vehicles. Theor. Comput. Sci. 788, 79–94 (2019)

9. Gu, Q.P., Liang, J.L., Zhang, G.: Approximate Ridesharing of Personal Vehicles
Problem. eprint arXiv:2007.15154 [cs.DS], 2020

10. Hartman, I.B.-A., et al.: Theory and practice in large carpooling problems. In:
Proceedings of the 5th International Conference on ANT, pp. 339–347 (2014)

11. Herbawi, W., Weber, M.: The ridematching problem with time windows in dynamic
ridesharing: a model and a genetic algorithm. In: Proceedings of ACM Genetic and
Evolutionary Computation Conference (GECCO), pp. 1–8 (2012)

https://doi.org/10.1007/978-3-319-48749-6_32
https://doi.org/10.1007/978-3-319-48749-6_32
http://arxiv.org/abs/2007.15154

18 Q.-P. Gu et al.

12. Huang, Y., Bastani, F., Jin, R., Wang, X.S.: Large scale real-time ridesharing with
service guarantee on road networks. Proc. VLDB Endow. 7(14), 2017–2028 (2014)

13. Jung, J., Jayakrishnan, R., Park, J.Y.: Dynamic shared-taxi dispatch algorithm
with hybrid-simulated annealing. Comput.-Aided Civ. Inf. 31(4), 275–291 (2016)

14. Kutiel, G., Rawitz, D.: Local search algorithms for maximum carpool matching. In:
Proceedings of 25th Annual European Symposium on Algorithms, pp. 55:1–55:14
(2017)

15. Ma, S., Zheng, Y., Wolfson, O.: Real-time city-scale taxi ridesharing. IEEE Trans.
Knowl. Data Eng. 27(7), 1782–1795 (2015)

16. Molenbruch, Y., Braekers, K., Caris, A.: Typology and literature review for dial-a-
ride problems. Ann. Oper. Res. 259(1), 295–325 (2017). https://doi.org/10.1007/
s10479-017-2525-0

17. Mourad, A., Puchinger, J., Chu, C.: A survey of models and algorithms for opti-
mizing shared mobility. Transp. Res. Part B 123, 323–346 (2019)

18. Santos, A., McGuckin, N., Nakamoto, H.Y., Gray, D., Liss, S.: Summary of travel
trends: 2009 national household travel survey. Technical report, US Department of
Transportation Federal Highway Administration (2011)

19. Santos, D.O., Xavier, E.C.: Taxi and ride sharing: a dynamic dial-a-ride problem
with money as an incentive. Exp. Syst. Appl. 42(19), 6728–6737 (2015)

20. Sierpiński, G.: Changes of the modal split of traffic in Europe. Arch. Transp. Syst.
Telemat. 6(1), 45–48 (2013)

https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/s10479-017-2525-0

A Sub-linear Time Algorithm
for Approximating k-Nearest-Neighbor

with Full Quality Guarantee

Hengzhao Ma and Jianzhong Li(B)

Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
hzma@stu.hit.edu.cn, lijzh@hit.edu.cn

Abstract. In this paper we propose an algorithm for the approximate k-
Nearest-Neighbors problem. According to the existing researches, there
are two kinds of approximation criteria. One is the distance criterion,
and the other is the recall criterion. All former algorithms suffer the
problem that there are no theoretical guarantees for the two approxima-
tion criteria. The algorithm proposed in this paper unifies the two kinds
of approximation criteria, and has full theoretical guarantees. Further-
more, the query time of the algorithm is sub-linear. As far as we know,
it is the first algorithm that achieves both sub-linear query time and full
theoretical approximation guarantees.

Keywords: Computation geometry · Approximate k-nearest-neighbors

1 Introduction

The k-Nearest-Neighbor (kNN) problem is a well-known problem in theoretical
computer science and applications. Let (U,D) be a metric space, then for the
input set P ⊆ U of elements and a query element q ∈ U , the kNN problem is
to find the k elements with smallest distance to q. Since the exact results are
expensive to compute when the size of the input is large [19], and approximate
results serve as good as the exact ones in many applications [30], the approximate
kNN, kANN for short, draws more research efforts in recent years. There are
two kinds of approximation criteria for the kANN problem, namely, the distance
criterion and the recall criterion. The distance criterion requires that the ratio
between the distance from the approximate results to the query and the distance
from the exact results to the query is no more than a given threshold. The recall
criterion requires that the size of the intersection of the approximate result set
and the exact result set is no less than a given threshold. The formal description
will be given in detail in Sect. 2. Next we brief the existing algorithms for the
kANN problem to see how these two criteria are considered by former researchers.

This work was supported by the National Natural Science Foundation of China under
grant 61732003, 61832003, 61972110 and U1811461.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 19–31, 2020.
https://doi.org/10.1007/978-3-030-64843-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_2

20 H. Ma and J. Li

The algorithms for the kANN problem can be categorized into four classes.
The first class is the tree-based methods. The main idea of this method is to
recursively partition the metric space into sub-spaces, and organize them into
a tree structure. The K-D tree [6] is the representative idea in this category. It
is efficient in low dimensional spaces, but the performance drops rapidly when
the number of dimension grows up. Vantage point tree (VP-tree) [31] is another
data structure with a better partition strategy and better performance. The
FLANN [25] method is a recent work with improved performance in high dimen-
sional spaces, but it is reported that this method would achieve in sub-optimal
results [20]. To the best of our knowledge, the tree based methods can satisfy
neither the distance nor the recall criterion theoretically.

The second class is the permutation based methods. The idea is to choose
a set of pivot points, and represent each data element with a permutation of
the pivots sorted by the distance to it. In such a representation, close objects
will have similar permutations. Methods using the permutation idea include the
MI-File [2] and PP-Index [13]. Unfortunately, the permutation based method
can not satisfy either of the distance or the recall criterion theoretically, as far
as we know.

The third class is the Locality Sensitive Hashing (LSH) based methods. LSH
was first introduced by Indyk et al. [19] for the kANN problem where k = 1.
Soon after, Datar et al. [11] proposed the first practical LSH function, and since
then there came a burst in the theoretical and applicational researches on the
LSH framework. For example, Andoni et al. proved the lower bound of the time-
space complexities of the LSH based algorithms [3], and devised the optimal LSH
function which meets the lower bound [4]. On the other hand, Gao et al. [15]
proposed an algorithm that aimed to close the gap between the LSH theory and
kANN search applications. See [29] for a survey. The basic LSH based method
can satisfy only the distance criterion when k = 1 [19]. Some existing algorithms
made some progress. The C2LSH algorithm [14] solved the kANN problem with
the distance criterion, but it has a constraint that the approximation factor must
be a square of an integer. The SRS algorithm [28] is another one aimed at the
distance criterion. However, it only has partial guarantee, that is, the results
satisfy the distance criterion only when the algorithm terminates on a specific
condition.

The forth class is graph based methods. The specific kind of graphs used
in this method is the proximity graphs, where the edges in this kind of graph
are defined by the geometric relationship of the points. See [23] for a survey.
The graph based kANN algorithms usually conduct a navigating process on the
proximity graphs. This process selects an vertex in the graph as the start point,
and move to the destination point following some specific navigating strategy. For
example, Paredes et al. [27] used the kNN graph, Ocsa et al. [26] used the Relative
Neighborhood Graph (RNG), and Malkov et al. [22] used the Navigable Small
World Graph (NSW) [22]. None of these algorithms have theoretical guarantee
on the two approximation criteria.

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 21

In summary, most of the existing algorithms do not have theoretical guar-
antee on either of the two approximation criteria. The recall criterion is only
used as a measurement of the experimental results, and the distance criterion is
only partially satisfied by only a few algorithms [14,28]. In this paper, we pro-
pose a sub-linear time algorithm for kANN problem that unifies the two kinds
of approximation criteria, which overcomes the disadvantages of the existing
algorithms. The contributions of this paper are listed below.

1. We propose an algorithm that unifies the distance criterion and the recall cri-
terion for the approximate k-Nearest-Neighbor problem. The result returned
by the algorithm can satisfy at least one criterion in any situation. This is a
major progress compared to the existing algorithms.

2. Assuming the input point set follows the Poisson Point Process, the algorithm
takes O(n log n) time of preprocessing, O(n log n) space, and answers a query
in O(dn1/d log n + knρ log n) time, where ρ < 1 is a constant.

3. The algorithm is the first algorithm for kANN that provides theoretical guar-
antee on both of the approximation criteria, and it is also the first algorithm
that achieves sub-linear query time while providing theoretical guarantees.
The former works [14,28] with partial guarantee both need linear query time.

The rest of this paper is organized as follows. Section 2 introduces the defi-
nition of the problem and some prerequisite knowledge. The detailed algorithm
are presented in Sect. 3. Then the time and space complexities are analyzed in
Sect. 4. Finally the conclusion is given in Sect. 5.

2 Preliminaries

2.1 Problem Definitions

The problem studied in this paper is the approximate k-Nearest-Neighbor prob-
lem, which is denoted as kANN for short. In this paper the problem is constrained
to the Euclidean space. The input is a set P of points where each p ∈ P is a d-
dimensional vector (p(1), p(2), · · · , p(n)). The distance between two points p and

p′ is defined by D(p, p′) =

√
d∑

i=1

(p(i) − p′(i))2, which is the well known Euclidean

distance. Before giving the definition of the kANN problem, we first introduce
the exact kNN problem.

Definition 2.1 (kNN). Given the input point set P ⊂ Rd and a query point
q ∈ Rd, define kNN(q, P) to be the set of k points in P that are nearest to q.
Formally,

1. kNN(q, P) ⊆ P , and |kNN(q, P)| = k;
2. D(p, q) ≤ D(p′, q) for ∀p ∈ kNN(q, P) and ∀p′ ∈ P \ kNN(q, P).

Next we will give the definition of the approximate kNN. There are two kinds
of definitions based on different approximation criteria.

22 H. Ma and J. Li

Definition 2.2 (kANNc). Given the input point set P ⊂ Rd, a query point
q ∈ Rd, and a approximation factor c > 1, find a point set kANNc(q, P) which
satisfies:

1. kANNc(q, P) ⊆ P , and |kANNc(q, P)| = k;
2. let Tk(q, P) = max

p∈kNN(q,P)
D(p, q), then D(p′, q) ≤ c · Tk(q, P) holds for ∀p′ ∈

kANNc(q, P).

Remark 2.1. The second requirement in Definition 2.2 is called the distance
criterion.

Definition 2.3 (kANNδ). Given the input point set P ⊂ Rd, a query point
q ∈ Rd, and a approximation factor δ < 1, find a point set kANNδ(q, P) ⊆ P
which satisfies:

1. kANNδ(q, P) ⊆ P , and |kANNδ(q, P)| = k;
2. |kANNδ(q, P) ∩ kNN(q, P)| ≥ δ · k.

Remark 2.2. If a kANN algorithm returned a set S, the value |S∩kNN(q,P)|
|kNN(q,P)| is

usually called the recall of the set S. This is widely used in many works to
evaluate the quality of the kANN algorithm. Thus we call the second statement
in Definition 2.3 as the recall criterion.

Next we give the definition of the problem studied in this paper, which unifies
the two different criteria.

Definition 2.4. Given the input point set P ⊂ Rd, a query point q ∈ Rd, and
approximation factors c > 1 and δ < 1, find a point set kNNc,δ(q, P) which
satisfies:

1. kANNc,δ(q, P) ⊆ P , and |kANNc,δ(q, P)| = k;
2. kANNc,δ(q, P) satisfies at least one of the distance criterion and the recall cri-

terion. Formally, either D(p′, q) ≤ c ·Tk(q, P) holds for ∀p′ ∈ kANNc,δ(q, P),
or |kANNc,δ(q, P) ∩ kNN(q, P)| ≥ δ · k.

According to Definition 2.4, the output of the algorithm is required to satisfy
one of the two criteria, but not both. It will be our future work to devise an
algorithm to satisfy both of the criteria.

In the rest of this section we will introduce some concepts and algorithms
that will be used in our proposed algorithm.

2.2 Minimum Enclosing Spheres

The d-dimensional spheres is the generalization of the circles in the 2-dimensional
case. Let c be the center and r be the radius. A d-dimensional sphere, denoted
as S(c, r), is the set S(c, r) = {x ∈ Rd | D(x, c) ≤ r}. Note that the boundary
is included. If q ∈ S(c, r) we say that q falls inside sphere S(c, r), or the sphere
encloses point p. A sphere S(c, r) is said to pass through point p iff D(c, p) = r.

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 23

Given a set P of points, the minimum enclosing sphere (MES) of P , is the d-
dimensional sphere enclosing all points in P and has the smallest possible radius.
It is known that the MES of a given finite point set in Rd is unique, and can be
calculated by a quadratic programming algorithm [32]. Next we introduce the
approximate minimum enclosing spheres.

Definition 2.5 (AMES). Given a set of points P ⊂ Rd and an approxima-
tion factor ε < 1, the approximate minimum enclosing sphere of P , denoted as
AMES(P, ε), is a d-dimensional sphere S(c, r) satisfies:

1. p ∈ S(c, r) for ∀p ∈ P ;
2. r < (1 + ε)r∗, where r∗ is the radius of the exact MES of P .

The following algorithm can calculate the AMES in O(n/ε2) time, which is
given in [5].

Algorithm 1: Compute AMES

Input: a point set P , and an approximation factor ε.
Output: AMES(P, ε)

1 c0 ← an arbitrary point in P ;
2 for i = 1 to 1/ε2 do
3 pi ← the point in P farthest away from ci−1;
4 ci ← ci−1 + 1

i (pi − ci−1);
5 end

The following Lemma gives the complexity of Algorithm 1 .

Lemma 2.1 [5]. For given ε and P where |P | = n, Algorithm 1 can calculate
AMES(P, ε) in O(n/ε2) time.

2.3 Delaunay Triangulation

The Delaunay Triangulation (DT) is a fundamental data structure in computa-
tion geometry. The definition is given below.

Definition 2.6 (DT). Given a set of points P ⊂ Rd, the Delaunay Triangula-
tion is a graph DT (P) = (V,E) which satisfies:

1. V = P ;
2. for ∀p, p′ ∈ P , (p, p′) ∈ E iff there exists a d-dimensional sphere passing

through p and p′, and no other p′′ ∈ P is inside it.

The Delaunay Triangulation is a natural dual of the Voronoi diagram. We
omit the details about their relationship since it is not the focus of this paper.

There are extensive research works about the Delaunay triangulation. An
important problem is to find the expected properties of DT built on random
point sets. Here we focus on the point sets that follow the Poisson Point Process
in d-dimensional Euclidean space. In this model, for any region R ⊂ Rd, the
probability that R contains k points follows a Poisson-like distribution. See [1]
for more details. We cite one important property of the Poisson Point Process
in the following lemma.

24 H. Ma and J. Li

Lemma 2.2 [1]. Let S ⊂ Rd be a point set following the Poisson Point Process.
Suppose there are two regions B ⊆ A ⊂ Rd. For any point p ∈ S, if p falls inside
A then the probability that p falls inside B is the ratio between the volume of B
and A. Formally, we have

Pr[p ∈ B | p ∈ A] =
volume(B)
volume(A)

.

Further, we cite some important properties of the Delaunay triangulation
built on point sets which follow the Poisson Point Process.

Lemma 2.3 [7]. Let S ⊂ Rd be a point set following the Poisson Point Process,
and Δ(G) = max

p∈V (G)
|{(p, q) ∈ E(G)}| be the maximum degree of G. Then the

expected maximum degree of DT (S) is O(log n/ log log n).

Lemma 2.4 [9]. Let S ⊂ Rd be a point set following the Poisson Point Process.
The expected time to construct DT (S) is O(n log n).

2.4 Walking in Delaunay Triangulation

Given a Delaunay Triangulation DT , the points and edges of DT form a set of
simplices. Given a query point q, there is a problem to find which simplex of
DT that q falls in. There is a class of algorithms to tackle this problem which
is called Walking. The Walking algorithm starts at some simplex, and walks to
the destination by moving to adjacent simplices step by step. There are several
kinds of walking strategy, including Jump&Walk [24], Straight Walk [8] and
Stochastic Walk [12], etc. Some of these strategies are only applicable to 2 or 3
dimensions, while Straight Walk can generalize to higher dimension. As Fig. 1
shows, the Straight Walk strategy only considers the simplices that intersect the
line segment from the start point to the destination. The following lemma gives
the complexity of this walking strategy.

Lemma 2.5 [10]. Given a Delaunay Triangulation DT of a point set P ⊂ Rd,
and two points p and p′ in Rd as the start point and destination point, the walking
from p to p′ using Straight Walk takes O(n1/d) expected time.

2.5 (c, r)-NN

The Approximate Near Neighbor problem is introduced in [19] for solving the
kANNc problem with k = 1. Usually the Approximate Near Neighbor problem is
denoted as (c, r)-NN since there are two input parameters c and r. The definition
is given below. The idea to use (c, r)-NN to solve 1ANNc is via Turing reduction,
that is, use (c, r)-NN as an oracle or sub-procedure. The details can be found
in [16,17,19,21].

Definition 2.7. Given a point set P , a query point q, and two query parameters
c > 1, r > 0, the output of the (c, r)-NN problem should satisfy:

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 25

Fig. 1. Illustration of the straight walk

1. if ∃p∗ ∈ S(q, r) ∩ P , then output a point p′ ∈ S(q, c · r) ∩ P ;
2. if D(p, q) > c · r for ∀p ∈ P , then output No;

Since we aim to solve kANN problem in this paper, we need the following
definition of (c, r)-kNN.

Definition 2.8. Given a point set P , a query point q, and two query parameters
c, r, the output of the (c, r)-kNN problem is a set kNN(c,r)(q, P), which satisfies:

1. if |P ∩ S(q, r)| ≥ k, then output a set Q ⊆ P ∩ S(q, c · r), where |Q| = k;
2. if |P ∩ S(q, c · r)| < k, then output ∅;

It can be easily seen that the (c, r)-kNN problem is a natural generalization of
the (c, r)-NN problem. Recently, there are several algorithms proposed to solve
this problem. The following Lemma 2.6 gives the complexity of the (c, r)-kNN
algorithm. The proof can be found on the online version of this paper [18].

Lemma 2.6. There is an algorithm that solves (c, r)-kNN problem in O(knρ) of
time, requiring O(kn1+ρ log n) time of preprocessing and O(kn1+ρ) of space. The
parameter ρ is a constant depending on the LSH function used in the algorithm,
and ρ < 1 always holds.

3 Algorithm

The proposed algorithm consists of two phases, i.e., the preprocessing phase and
the query phase. The preprocessing phase is to built a data structure, which
will be used to guide the search in the query phase. Next we will describe the
algorithm of the two phases in detail.

26 H. Ma and J. Li

3.1 Preprocessing Algorithm

Before describing the details of the preprocessing algorithm, we first introduce
several concepts that will be used in the following discussion.

Axis Parallel Box. An axis parallel box B in Rd is defined to be the Cartesian
product of d intervals, i.e., B = I1×I2×· · ·×Id. And the following is the definition
of Minimum Bounding Box.

Definition 3.1. Given a point set P , the Minimum Bounding Box, denoted as
MBB(P), is the axis parallel box satisfying the following two requirements:

1. MBB(P) encloses all points in P , and
2. there exists points p and p′ in P such that p(i) = ai, p

′(i) = bi for each interval
Ii = (ai, bi) defining MBB(P), 1 ≤ i ≤ d.

Median Split. Given a point set P and its minimum bounding box MBB(P),
we introduce an operation on P that splits P into two subsets, which is called
median split. This operation first finds the longest interval Ii from the intervals
defining MBB(P). Then, the operation finds the median of the set {p(i) | p ∈ P},
which is the median of the i-th coordinates of the points in P . This median is
denoted as medi(P). Finally P is split into two subsets, i.e., P1 = {p ∈ P |
p(i) ≤ medi(P)} and P2 = {p ∈ P | p(i) > medi(P)}. Here we assume that no
two points share the same coordinate in any dimension. This assumption can be
assured by adding some random small shift on the original coordinates.

Median Split Tree. By recursively conducting the median split operation, a
point set P can be organized into a tree structure, which is called the Median
Split Tree (MST). The definition of MST is given below.

Definition 3.2. Given the input point set P , a Median Split Tree (MST) based
on P , denoted as MST (P), is a tree structure satisfying the following require-
ments:

1. the root of MST (P) is P , and the other nodes in MST (P) are subsets of P ;
2. there are two child nodes for each interior node N ∈ MST (P), which are

generated by conducting a median split on N ;
3. each leaf node contains only one point.

Balanced Median Split Tree. The depth of a node N in a tree T , denoted as
depT (N), is defined to be the number of edges in the path from N to the root of
T . It can be noticed that the leaf nodes in the MST may have different depths.
So we introduce the Balanced Median Split Tree (BMST), where all leaf nodes
have the same depth.

Let LT (i) = {N ∈ T | depT (N) = i}, which is the nodes in the i-th layer in
tree T , and |N | be the number of points included in node N . For a median split

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 27

tree MST (P), it can be easily proved that either |N | = �n/2i or |N | = �n/2i�
for ∀N ∈ LMST (P)(i). Given MST (P), the BMST (P) is constructed as follows.
Find the smallest i such that �n/2i� ≤ 3, then for each node N ∈ LMST (P)(i),
connect all the nodes in the sub-tree rooted at N directly to N .

Hierarchical Delaunay Graph. Given a point set P , we introduce the most
important concept for the preprocessing algorithm in this paper, which is the
Hierarchical Delaunay Graph (HDG). This structure is constructed by adding
edges between nodes in the same layer of BMST (P). The additional edges are
called the graph edges, in contrast with the tree edges in BMST (P). The defini-
tion of the HDG is given below. Here Cen(N) denotes the center of AMES(N).

Definition 3.3. Given a point set P and the balanced median split tree
BMST (P), a Hierarchical Delaunay Graph HDG is a layered graph based on
BMST (P), where each layer is a Delaunay triangulation. Formally, for each
N,N ′ ∈ HDG(P), there is an graph edge between N,N ′ iff

1. depBMST (P)(N) = depBMST (P)(N ′), and
2. there exists a d-dimensional sphere S passing through Cen(N), Cen(N ′), and

there is no N ′′ ∈ HDG(P) such that Cen(N ′′) falls in S, where N ′′ is in the
same layer with N and N ′. That is, the graph edges connecting nodes in the
same layer forms the Delaunay Triangulation.

The Preprocessing Algorithm. Next we describe the preprocessing algo-
rithm which aims to build the HDG. The algorithm can be divided into three
steps.

Step 1, split and build tree. The first step is to recursively split P into smaller
sets using the median split operation, and the median split tree is built. Finally
the nodes near the leaf layer is adjusted to satisfy the definition of the balanced
median split tree.

Step 2, compute spheres. In this step, the algorithm will go over the tree and
compute the AMES for each node using Algorithm 1.

Step 3, construct the HDG. In this step, an algorithm given in [9] which
satisfies Lemma 2.4 is invoked to compute the Delaunay triangulation for each
layer.

The pseudo codes of the preprocessing algorithm is given in Algorithm 2.

3.2 Query Algorithm

The query algorithm takes the HDG built by the preprocessing algorithm, and
executes the following three steps.

The first is the descending step. The algorithm goes down the tree and stops
at level i such that k ≤ n/2i < 2k. At each level, the child node with smallest
distance to the query is chosen to be visited in next level.

28 H. Ma and J. Li

Algorithm 2: Preprocessing Algorithm
Input: a point set P
Output: a hierarchical Delaynay graph HDG(P)

1 T ←SplitTree(P);
2 Modify T into a BMST;
3 ComputeSpheres(T);
4 HierarchicalDelaunay(T);
5 Procedure SplitTree(N):
6 Conduct median split on N and generate two sets N1 and N2;
7 T1 ←SplitTree(N1);
8 T2 ←SplitTree(N2);
9 Let T1 be the left sub-tree of N , and T2 be the right sub-tree of N ;

10 end
11 Procedure ComputeSpheres(T):
12 foreach N ∈ T do
13 Call AMES(N, 0.1) (Algorithm 1);
14 end

15 end
16 s Procedure HierarchicalDelaunay(T):
17 Let dl be the depth of the leaf node in T ;
18 for i = 0 to dl do
19 Delaunay(LT (i)) (Lemma 2.4);
20 end

21 end

The second is the navigating step. The algorithm marches towards the local
nearest AMES center by moving on the edges of the HDG.

The third step is the answering step. The algorithm finds the answer of
kANNc,δ(q, P) by invoking the (c, r)-kNN query. The answer can satisfy the
distance criterion or the recall criterion according to the different return result
of the (c, r)-kNN query.

Algorithm 3 describes the above process in pseudo codes, where Cen(N) and
Rad(N) are the center and radius of the AMES of node N , respectively.

4 Analysis

The analysis in this section will assume that the input point set P follows the
Poisson Point Process. The proofs can be found in the online version of this
paper [18], and are all omitted here due to space limitation.

4.1 Correctness

Lemma 4.1. If Algorithm 3 terminates when i = 0, then the returned point set
Res is a δ-kNN of q in P with at least 1 − e−n−k

nd probability.

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 29

Algorithm 3: Query
Input: a query points q, a point set P , approximation factors c > 1, δ < 1,

and HDG(P)
Output: kANNc,δ(q, P)

1 N ← the root of HDG(P);
2 while |N | > 2k do
3 Lc ← the left child of N , Rc ← the right child of N ;
4 if D(q, Cen(Lc)) < D(q, Cen(Rc))) then
5 N ← Lc;
6 else
7 N ← Rc;
8 end

9 end
10 while ∃N ′ ∈ Nbr(N) s.t. D(q, Cen(N ′)) < D(q, Cen(N))) do
11 N ← arg min

N′∈Nbr(N)
{D(q, Cen(N ′))};

12 end
13 for i = 0 to logc n do

14 Invoke (c, r)-kNN query where r = D(q,Cen(N))+Rad(N)
n

ci;
15 if the query returned a set Res then
16 return Res as the final result;
17 end

18 end

Lemma 4.2. If Algorithm 3 terminates when i > 0, then the returned point set
Res is a c-kNN of q in P .

Theorem 4.1. The result of Algorithm 3 satisfies the requirement of
kNNc,δ(q, P) with at least 1 − e−n−k

nd probability.

4.2 Complexities

Theorem 4.2. The expected time complexity of Algorithm 2, which is the pre-
processing time complexity, is O(n log n).

Theorem 4.3. The space complexity of Algorithm 2 is O(n log n).

Theorem 4.4. The time complexity of Algorithm 3, which is the query com-
plexity, is O(dn1/d log n + knρ log n), where ρ < 1 is a constant.

5 Conclusion

In this paper we proposed an algorithm for the approximate k-Nearest-Neighbors
problem. We observed that there are two kinds of approximation criteria in the
history of this research area, which is called the distance criterion and the recall
criterion in this paper. But we also observed that all existing works do not

30 H. Ma and J. Li

have theoretical guarantees on the two criteria. We raised a new definition for
the approximate k-Nearest-Neighbor problem which unifies the distance criterion
and the recall criterion, and proposed an algorithm that solves the new problem.
The result of the algorithm can satisfy at least one of the two criteria. In our
future work, we will try to devise new algorithms that can satisfy both of the
criteria.

References

1. Poisson Point Process. https://wikimili.com/en/Poisson point process
2. Amato, G., Gennaro, C., Savino, P.: MI-file: using inverted files for scalable approx-

imate similarity search. Multimed. Tools Appl. 71(3), 1333–1362 (2012). https://
doi.org/10.1007/s11042-012-1271-1

3. Andoni, A., Laarhoven, T., Razenshteyn, I., Waingarten, E.: Optimal hashing-
based time-space trade-offs for approximate near neighbors. In: Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
47–66, January 2017

4. Andoni, A., Razenshteyn, I.: Optimal data-dependent hashing for approximate
near neighbors. In: Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing - STOC 2015, pp. 793–801 (2015)

5. Bâdoiu, M., Bâdoiu, M., Clarkson, K.L., Clarkson, K.L.: Smaller core-sets for balls.
In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 801–802 (2003)

6. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

7. Bern, M., Eppstein, D., Yao, F.: The expected extremes in a delaunay triangula-
tion. Int. J. Comput. Geom. Appl. 01(01), 79–91 (1991)

8. Bose, P., Devroye, L.: On the stabbing number of a random Delaunay triangulation.
Comput. Geom.: Theory Appl. 36(2), 89–105 (2007)

9. Buchin, K., Mulzer, W.: Delaunay triangulations in O(sort(n)) time and more.
In: Proceedings - Annual IEEE Symposium on Foundations of Computer Science,
FOCS , vol. 5, pp. 139–148 (2009)

10. de Castro, P.M.M., Devillers, O.: Simple and efficient distribution-sensitive point
location in triangulations. In: 2011 Proceedings of the Thirteenth Workshop on
Algorithm Engineering and Experiments (ALENEX), pp. 127–138, January 2011

11. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry - SCG 2004, pp. 253–262 (2004)

12. Devillers, O., Pion, S., Teillaud, M.: Walking in a triangulation. Int. J. Found.
Comput. Sci. 13(02), 181–199 (2002)

13. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-
larity search. Inf. Process. Manage. 48(5), 889–902 (2012)

14. Gan, J., Feng, J., Fang, Q., Ng, W.: Locality-sensitive hashing scheme based on
dynamic collision counting. In: Proceedings of the 2012 International Conference
on Management of Data - SIGMOD 2012, pp. 541–552 (2012)

15. Gao, J., Jagadish, H., Ooi, B.C., Wang, S.: Selective hashing: closing the gap
between radius search and k-NN Search. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining - KDD 2015,
pp. 349–358 (2015)

https://wikimili.com/en/Poisson_point_process
https://doi.org/10.1007/s11042-012-1271-1
https://doi.org/10.1007/s11042-012-1271-1

Sub-linear Time Approximate k-NN with Full Approximation Guarantee 31

16. Har-Peled, S.: A replacement for Voronoi diagrams of near linear size. In: Pro-
ceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 94–103.
IEEE (2001)

17. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbor: towards
removing the curse of dimensionality. Theory Comput. 8(1), 321–350 (2012)

18. Hengzhao Ma, J.L.: A sub-linear time algorithm for approximating k-nearest-
neighbor with full quality guarantee (2020). https://arxiv.org/abs/2008.02924

19. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing - STOC 1998, pp. 604–613 (1998)

20. Lin, P.C., Zhao, W.L.: Graph based Nearest Neighbor Search: Promises and Fail-
ures, pp. 1–8 (2019)

21. Ma, H., Li, J.: An algorithm for reducing approximate nearest neighbor to approxi-
mate near neighbor with O(log n) query time. In: 12th International Conference on
Combinatorial Optimization and Applications - COCOA 2018, pp. 465–479 (2018)

22. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest
neighbor algorithm based on navigable small world graphs. Inf. Syst. 45, 61–68
(2014)

23. Mitchell, J.S., Mulzer, W.: Proximity algorithms. In: Handbook of Discrete and
Computational Geometry, Third Edition, pp. 849–874 (2017)

24. Mücke, E.P., Saias, I., Zhu, B.: Fast randomized point location without prepro-
cessing in two- and three-dimensional Delaunay triangulations. Comput. Geom.
12(1–2), 63–83 (1999)

25. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

26. Ocsa, A., Bedregal, C., Cuadros-vargas, E., Society, P.C.: A new approach for sim-
ilarity queries using proximity graphs, pp. 131–142. Simpósio Brasileiro de Banco
de Dados (2007)

27. Paredes, R., Chávez, E.: Using the k-nearest neighbor graph for proximity searching
in metric spaces. In: International Symposium on String Processing and Informa-
tion Retrieval, pp. 127–138 (2005)

28. Sun, Y., Wang, W., Qin, J., Zhang, Y., Lin, X.: SRS: solving c-approximate nearest
neighbor queries in high dimensional Euclidean space with a tiny index. Proc.
VLDB Endow. 8, 1–12 (2014)

29. Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: a survey. In:
ArXiv:1408.2927 (2014)

30. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: Proceedings of 24rd
International Conference on Very Large Data Bases, pp. 194–205 (1998)

31. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 311–321 (1993)

32. Yildirim, E.A.: Two algorithms for the minimum enclosing ball problem. SIAM J.
Optim. 19(3), 1368–1391 (2008)

https://arxiv.org/abs/2008.02924
http://arxiv.org/abs/1408.2927

Sampling-Based Approximate Skyline
Calculation on Big Data

Xingxing Xiao and Jianzhong Li(B)

Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
{xiaoxx,lijzh}@hit.edu.cn

Abstract. The existing algorithms for processing skyline queries can-
not adapt to big data. This paper proposes two approximate skyline
algorithms based on sampling. The first algorithm obtains a fixed size
sample and computes the approximate skyline on the sample. The error
of the first algorithm is relatively small in most cases, and is almost
independent of the input relation size. The second algorithm returns an
(ε, δ)-approximation for the exact skyline. The size of sample required
by the second algorithm can be regarded as a constant relative to the
input relation size, so is the running time.

Keywords: Sampling · Skyline · Approximation · Big data

1 Introduction

Skyline queries are important in many applications involving multi-criteria deci-
sion making. Given a relation T (A1, A2, ..., Ad) and a set of skyline criteria
C ⊆ {A1, ..., Ad}, a skyline query on T is to find a subset of T such that each
tuple t in the subset is not dominated by any tuple in T , where t′ dominates t,
written as t′ ≺ t, means that t′.Ai ≤ t.Ai for all Ai ∈ C and there is an attribute
Aj ∈ C such that t′.Aj < t.Aj . t.Ai is the value of tuple t ∈ T on attribute Ai.
Skyline queries can also be defined using ≥ and >. Without loss of generality,
this paper only considers the skyline queries defined by ≤ and <. The answers
to a skyline query are all the potentially best tuples to users, and skyline queries
provide good mechanisms for merging user’s preferences into queries.

Studies on skyline queries originated in theoretical computer science area in
the last century. Skyline was called as the set of maximals or the pareto set in
that time. Many algorithms for finding the maximals were proposed [3,4,16].
The lowest time complexity of these algorithms is O(n logd−2 n) in the worst
case, and O(n) in the average case. However, all the algorithms are based on
Divide&Conquer strategy and assume that their input tuples are stored in main
memory.

This work was supported by the National Natural Science Foundation of China under
grant 61732003, 61832003, 61972110 and U1811461.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 32–46, 2020.
https://doi.org/10.1007/978-3-030-64843-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_3

Sampling-Based Approximate Skyline Calculation on Big Data 33

Borzsony first introduced skyline queries to the database field [5]. It attracted
considerable attention to design efficient algorithms for processing skyline queries
on relations stored in external storage. Many algorithms have been proposed [2,
5,8,12]. The lowest time complexity of the algorithms is O(n2) in the worst case,
and O(n) in the average case.

Nowadays, big data is coming to the force in a lot of applications [10]. Process-
ing a skyline query on big data in more than linear time is by far too expensive
and often even linear time may be too slow. Thus, designing a subliner time algo-
rithm for processing skyline queries becomes a highly concerned research subject.
Many index-based algorithms for processing skyline queries have been proposed
to achieve the sublinear running time in the average case [5,13,15,17,24,26].
However, all the algorithms have serious limitations. Firstly, the algorithms
require much time for pre-computation, which is at least Ω(n). Secondly, they
need expensive extra space overhead for indexes. Thirdly, there is much overhead
to maintain indexes while the input relations are updated.

Approximation computation [7,20,21,23] of the skyline is the only way to
break trough the three limitations. Fortunately, approximate skyline results are
enough in many applications. An example of skyline queries is to find restaurants
near the workplace that provide delicious foods and excellent services. To get
the answer quickly, users can accept approximate skyline results that are the
good restaurants but not the best ones. Actually, users prefer to get approximate
results in seconds rather than exact results in hours or more in many applications.

There have been many researches on approximate algorithms for skyline
queries [14,18,19,25,27], but their goal is to reduce the skyline size and approx-
imate the best subset of k input tuples to represent the skyline under various
measures. Moreover, they have higher running time than the precise algorithms
for processing skyline queries.

In this paper, we propose two approximate algorithms based on sampling [22],
for processing skyline queries on big data. The proposed algorithms don’t need
any extra space or pre-computation overhead. Viewing the skyline as a covering,
the error of a approximate algorithm is defined as |DN (Sky)−DN (˜Sky)

DN (Sky) |, where

DN (˜Sky) is the number of tuples dominated by the approximate result ˜Sky,
and DN (Sky) is the number of tuples dominated by the exact result Sky. If

|DN (Sky)−DN (˜Sky)
DN (Sky) | ≤ ε, then ε is called as the error bound of the approximate

algorithm.
The first algorithm draws a random sample from the input relation at the

beginning, and then computes the approximate skyline on the sample. The algo-
rithm has two advantages. First, the expected error of the algorithm is almost
independent of the input relation size. Second, the standard deviation of the
error is relatively small.

The second algorithm, DOUBLE, is a random algorithm and returns an
(ε, δ)-approximation for the exact skyline efficiently. The size of sample required
by DOUBLE is almost a constant relative to the input relation size. DOUBLE
first draws an initial sample, and then computes the approximate skyline on the

34 X. Xiao and J. Li

sample. Afterwards, it judges whether the current result meets the requirement
by Monte Carlo method. If not, it doubles the sample size and repeats the above
process. Otherwise it terminates.

The main contributions of the paper are listed below.

(1) A baseline approximate algorithm for processing skyline queries is proposed,
which is based on a sample of size m. The running time of the algorithm
is O(m logd−2 m) in the worst case and O(m) in the average case. If m is
equal to n

1
k (k > 1), the baseline algorithm is in sublinear time. If all skyline

criteria are independent of each other, the expected error of the algorithm
is

ε ≤ n − m

n

d−1
∑

i=0

(log(m + 1))i

i!(m + 1)
.

And the standard deviation of the error is o(ε).
(2) An approximate algorithm, DOUBLE, is proposed to return an (ε, δ)-

approximation for the exact skyline efficiently. The expected sample size
required by DOUBLE is O(M ε

3 ,δ), and the expected time complexity
of DOUBLE is O(M ε

3 ,δ logd−1 M ε
3 ,δ), where M ε

3 ,δ is the size of sample
required by the baseline algorithm to return an (ε

3 , δ)-approximation. M ε
3 ,δ

is almost unaffected by the relation size.

The remainder of the paper is organized as follows. Section 2 provides prob-
lem definitions. Section 3 describes the baseline algorithm and its analysis.
Section 4 presents DOUBLE and its analysis. Section 5 concludes the paper.

2 Problem Definition

2.1 Skyline Definition

Let T (A1, A2, ..., Ad) be a relation with n tuples and d attributes, abbreviated
as T . In the following, we assume that all attributes are skyline criteria. First,
we formally define the dominance relationship between tuples in T .

Definition 2.1 (Dominance between Tuples). Let t and t′ be tuples in the
relation T (A1, A2, ..., Ad). t dominates t′ with respect to the d attributes of T ,
denoted by t ≺ t′, if t.Ai ≤ t′.Ai for all Ai ∈ {A1, ..., Ad}, and ∃Aj ∈ {A1, ..., Ad}
such that t.Aj < t′.Aj.

Based on the dominance relationship between tuples, we can define the domi-
nance relationship between sets. In the following, t � t′ denotes t ≺ t′ or t = t′

with respect to d attributes of T .

Definition 2.2 (Dominance between Sets). A tuple set Q dominates
another set Q′, denoted by Q � Q′, if for each tuple t′ in Q′, there is a tuple t
in Q such that t ≺ t′ or t = t′, i.e. t � t′. Q � {t} can be abbreviated as Q � t.

Sampling-Based Approximate Skyline Calculation on Big Data 35

Now, we define the skyline of a relation.

Definition 2.3 (Skyline). Given a relation T (A1, A2, ..., Ad), the skyline of T
is Sky(T) = {t ∈ T |∀t′ ∈ T, t′
≺ t}.
Definition 2.4 (Skyline Problem). The skyline problem is defined as follows.

Input: a relation T (A1, A2, ..., Ad).
Output: Sky(T).

The skyline problem can be equivalently defined as following optimization
problem.

Definition 2.5 (OP-Sky Problem). OP-Sky problem is defined as follows.
Input: a relation T (A1, A2, ..., Ad).
Output: Q ⊆ T such that |{t ∈ T |Q � t}| is maximized and ∀t1, t2 ∈ Q, t1
≺

t2.

The following Theorem 2.1 shows that the Skyline Problem is equivalent to
the OP -Sky.

Theorem 2.1. The skyline of T is one of the optimal solutions of the problem
OP1. If there is no duplicate tuples in T , Sky(T) is the unique optimal solution.

This paper focus on approximate algorithms for solving the OP -Sky problem.
The error of an approximate algorithm for an input relation T is defined as
|DN (Sky)−DN (˜Sky)

DN (Sky) |, where DN (˜Sky) is the number of tuples in T dominated

by the approximate solution ˜Sky, and DN (Sky) is the number of tuples in T

dominated by the exact solution Sky. If |DN (Sky)−DN (˜Sky)
DN (Sky) | ≤ ε, then ε is called

as the error bound of the approximate algorithm.
In the following sections, we will present two approximate algorithms for

solving the OP -Sky problem.

3 The Baseline Algorithm and Analysis

3.1 The Algorithm

The baseline algorithm first obtains a sample S of size m from the input relation
T , and then computes the approximate skyline result on S. Any existing skyline
algorithm can be invoked to compute the skyline of S.

Algorithm 1: The Baseline Algorithm
Input: The relation T (A1, A2, ..., Ad) with n tuples, and the sample size m;

Output: ˜Sky, i.e. the approximate skyline of T
1 S is the sample of m tuples from T ;
2 return getSkyline(S). /* getSkyline can be any exact skyline algorithm */

36 X. Xiao and J. Li

3.2 Error Analysis of the Baseline Algorithm

To facilitate the error analysis of the baseline algorithm, we assume that the
baseline algorithm is based on sampling without replacement. Let ε be the error
of the algorithm, ε be the expected error of the algorithm, and σ2 be the variance
of the error.

The Expected Error. We first analyze the expected error ε of the baseline
algorithm. Assume each tuple in T is a d-dimensional i.i.d. (independent and
identically distributed) random variable.

If the n random variables are continuous, we assume that they have the
joint probability distribution function F (v1, v2, ..., vd) = F (V), where V =
(v1, v2, ...vd). Let f(v1, v2, ..., vd) = f(V) be the joint probability density func-
tion of the random variables. Without loss of generality, the range of variables on
each attribute is [0, 1], since the domain of any attribute of T can be transformed
to [0, 1].

Theorem 3.1. If all the n tuples in T are d-dimensional i.i.d. continuous ran-
dom variables with the distribution function F (V), then the expected error of the
baseline algorithm is

ε =
n − m

n

∫

[0,1]d
f(V)(1 − F (V))mdV

where m is the sample size, f(V) is the density function of the variables, and
the range of variables on each attribute is [0, 1].

Proof. Due to DN (Sky(S)) = DN (S) ≤ DN (Sky(T)) = n, where n is the size
of the relation T , we have

ε = |DN (Sky(T)) − DN (Sky(S))
DN (Sky(T))

| =
n − DN (S)

n

Let Xi be a random variable for 1 ≤ i ≤ n, and ti be the ith tuple in T .
Xi = 0 if ti in T is dominated by the sample S, otherwise Xi = 1. Thus, we
have DN (S) = n − ∑n

i=1 Xi and ε =
∑n

i=1 Xi

n . By the linearity of expectations,
the expected error of the baseline algorithm is ε =

∑n
i=1 EXi

n =
∑n

i=1 Pr(Xi=1)

n =
Pr(Xi = 1), where Pr(Xi = 1) is the probability that ti in T is not dominated
by S.

Let Yi be a random variable for 1 ≤ i ≤ n. Yi = 0 if ti in T is picked up
into the sample S, otherwise Yi = 1. According to the conditional probability
formula, we have

Pr(Xi = 1) = Pr(Yi = 0)Pr(Xi = 1|Yi = 0) + Pr(Yi = 1)Pr(Xi = 1|Yi = 1)

If ti is selected into in S, then it is dominated by S. Therefore, we have Pr(Xi =
1|Yi = 0) is equal to 0. Due to sampling with replacement, Pr(Yi = 1) is equal
to n−m

n . In short, we have

Sampling-Based Approximate Skyline Calculation on Big Data 37

Pr(Xi = 1) =
n − m

n
Pr(Xi = 1|Yi = 1)

Assume ti is not selected into S. Let ti have the value V = (v1, v2, ..., vd).
Subsequently, for the jth tuple t′j in S, t′j satisfies the distribution F and is
independent of ti. It is almost impossible that ti has a value equal to t′j on an
attribute. The probability of t′j ≺ ti is F (V). In turn, we have Pr(t′j
� ti|Yi =
1) = 1 − F (V).

Because S is a random sample without replacement, all tuples in S are dis-
tinct tuples from T . All the tuples in T are independently distributed, so are the
tuples in S. Therefore, the probability that S doesn’t dominate {ti} is

Pr(S
� {ti}|Yi = 1) =
m
∏

j=1

Pr(t′j
� ti|Yi = 1) = (1 − F (V))m

In the analysis above, V is regarded as a constant vector. Since V is a variable
vector and has the density function f(V), we have

Pr(Xi = 1|Yi = 1) =
∫

[0,1]d
f(V)(1 − F (V))mdV

Thus the probability that ti is not dominated by S is

Pr(Xi = 1) =
n − m

n

∫

[0,1]d
f(V)(1 − F (V))mdV

��
Corollary 3.1. If all the n tuples in T are d-dimensional i.i.d. continuous ran-
dom variables, then the expected error of the baseline algorithm is

ε =
n − m

n

μm+1,d

m + 1

where m is the sample size and μm+1,d is the expected skyline size of a set of
m + 1 d-dimensional i.i.d. random variables with the same distribution.

Proof. Let Q be a set of m + 1 d-dimensional i.i.d. random variables with the
distribution function F , then the expected skyline size of Q is μm+1,d = (m +
1)

∫

[0,1]d
f(V)(1 − F (V))mdV . Based on Theorem 3.1, we get the corollary. ��

If the n random variables are discrete, we assume that they have the joint
probability mass function as follows

g(v1, v2, ..., vd) = Pr(A1 = v1, A2 = v2, ..., Ad = vd)

Let G(v1, v2, ..., vd) = G(V) be the probability distribution function of the vari-
ables. Assume that V is the set of all tuples in T , i.e. all value vectors of the
d-dimensional variables.

38 X. Xiao and J. Li

Theorem 3.2. If all the n tuples in T are d-dimensional i.i.d. discrete random
variables with the distribution function G(V), then the expected error of the
baseline algorithm is

ε =
n − m

n

∑

V ∈V
g(V)(1 − G(V))m

where m is the sample size, V is the set of all value vectors of the d-dimensional
variables and g is the mass function.

The proof is basically the same as Theorem 3.1, except that duplicate tuples
need to be considered.

Based on Theorem 3.1 and 3.2, the relation size has almost no effect on the
expected error of the baseline algorithm. Indeed, m is equal to o(n), and n−m

n
approaches to 1 in most cases.

Corollary 3.2. If all the n tuples in T are d-dimensional i.i.d. discrete random
variables, then the expected error of the baseline algorithm is

ε ≤ n − m

n

μm+1,d

m + 1
(1)

where m is the sample size and μm+1,d is the expected skyline size of a set of
m + 1 d-dimensional i.i.d. random variables with the same distribution. If there
is no duplicate tuples in T , then the equality of (1) holds.

Proof. Let Q be a set of m + 1 d-dimensional i.i.d. random variables with the
distribution function G, then the expected skyline size of Q is

μm+1,d =(m + 1)
∑

V ∈V
g(V)(1 − G(V) + g(V))m

≥(m + 1)
∑

V ∈V
g(V)(1 − G(V))m (2)

the equality of (2) holds if and only if there is no duplicate tuples in Q. Based
on Theorem 3.2, the corollary is proved. ��

By the analysis of the expected skyline size under stronger assumptions
in [11], we further analyze the expected error of the baseline algorithm.

Definition 3.1 (Component independence). T (A1, A2, ..., Ad) satisfies
component independence (CI), if all n tuples in T follow the conditions below.

1. (Attribute Independence) the values of tuples in T on a single attribute
are statically independent of the values on any other attribute;

2. (Distinct Values) T is sparse, i.e. any two tuples in T have different values
on each attribute.

Theorem 3.3. Under CI, the error of the baseline algorithm is unaffected by
the specific distribution of T .

Sampling-Based Approximate Skyline Calculation on Big Data 39

Proof. If T satisfies component independence, it can be converted into an uni-
formly and independently distributed set. After conversion, the error of the
basline algorithm remains unchanged. The specific conversion process is as fol-
lows. Consider each attribute in turn. For the attribute Ai, sort tuples in ascend-
ing order by values on Ai. Then rank 0 is allocated the lowest value 0 on Ai,
and so forth. Rank j is allocated the value j/n on Ai. ��

From [11], we have the following lemma.

Lemma 3.1. Under CI, the expected skyline size of T is equal to the (d − 1)th

order harmonic of n, denoted by Hd−1,n.

For integers k > 0 and integers n > 0, Hd,n =
∑n

i=1
Hd−1,i

i . From [6] and [9],
we have

Hd,n =
(log n)d

d!
+ γ

(log n)d−1

(d − 1)!
+ O((log n)d−2) ≤

d
∑

i=0

(log n)i

i!
,

where γ = 0.577... is Euler’s constant.
From Definition 3.1, there is no duplicate tuples in T under CI. Thus, based

on Corollary 3.1 and 3.2, we have the following corollary.

Corollary 3.3. If the relation T (A1, A2, ..., Ad) with n tuples satisfies CI, then
the expected error of the baseline algorithm is

ε =
n − m

n(m + 1)
Hd−1,n ≤ n − m

n(m + 1)

d−1
∑

i=0

(log(m + 1))i

i!

where m is the sample size.

If there are tuples in T with the same values on an attribute and Attribute
Independence in Definition 3.1 holds, we have the following corollary.

Corollary 3.4. If all attributes in T (A1, A2, ..., Ad) are independent of each
other, then the expected error of the baseline algorithm is

ε ≤ n − m

n(m + 1)
Hd−1,n ≤ n − m

n(m + 1)

d−1
∑

i=0

(log(m + 1))i

i!

where m is the sample size.

Corollary 3.5. If all attributes in T (A1, A2, ..., Ad) are independent of each
other, with sample size m equal to n

1
k − 1(k > 1), then the expected error of the

baseline algorithm is

ε ≤ n − n
1
k + 1

n

d−1
∑

i=0

(log n)i

kin
1
k i!

where m is the sample size.

40 X. Xiao and J. Li

Variance of the Error. We assume that each tuple in T is a d-dimensional
i.i.d random variable and T satisfies component independence (CI). Without
losing generality, all random variables are uniformly distributed over [0, 1]d.

Theorem 3.4. If the relation T (A1, A2, ..., Ad) with n tuples satisfies CI, then
σ2 = O(μm,d

m2), and σ = O(
√

μm,d

m) = o(ε).

Proof. Let Xi be a random variable for 1 ≤ i ≤ n. Xi = 0 if ti in T is dominated
by the sample S, otherwise Xi = 1. From the proof in Theorem 3.1, we have

σ2 = D(ε) = D(
∑n

i=1 Xi

n
) = D(

n
∑

i=1

Xi)/n2

= (E(
n

∑

i=1

X2
i) + E(

∑

i�=j

XiXj) − E2(
n

∑

i=1

Xi))/n2

=
1
n

Pr(Xi = 1) +
n − 1

n
Pri�=j(Xi = Xj = 1) − Pr2(Xi = 1).

Assume the ti in T has the value U = (u1, u2, ..., ud) and the jth tuple tj has
the value V = (v1, v2, ..., vd). Let (η) be

{(U, V)|U ∈ [0, 1]d, V ∈ [0, 1]d, u1 ≤ v1, ..., uη ≤ vη, vη+1 < uη+1, ..., vd < ud}.

(η) represents the set of all possible (U, V), in which U has values no more than
V on the first η attributes and has higher values on the subsequent attributes.
Then we have

Pri�=j(Xi = Xj = 1)

=
(n − m)(n − 1 − m)

n(n − 1)

d
∑

η=0

(

d
η

)

∫

(η)

(1 −
d

∏

i=1

ui −
d

∏

i=1

vi +
η

∏

i=1

ui

d
∏

i=η+1

vi)mdUdV .

In the above equation, (n−m)(n−1−m)
n(n−1) is the probability that two distinct tuples

both are not selected into the sample. Based on [1], we have

d−1
∑

η=1

(

d
η

)

∫

(η)

(1 −
d

∏

i=1

ui −
d

∏

i=1

vi +
η

∏

i=1

ui

d
∏

i=η+1

vi)mdUdV =
μ2

m+2,d + O(μm+2,d)
(m + 1)(m + 2)

.

Thus,

Pri�=j(Xi = Xj = 1)

=
(n − m)(n − 1 − m)

n(n − 1)
(2

∫

[0,1]d
(1 −

d
∏

i=1

vi)m
d

∏

i=1

vidV +
μ2

m+2,d + O(μm+2,d)
(m + 1)(m + 2)

)

(3)

=
(n − m)(n − 1 − m)

n(n − 1)
2μm+2,d(2) + μ2

m+2,d + O(μm+2,d)
(m + 1)(m + 2)

. (4)

Sampling-Based Approximate Skyline Calculation on Big Data 41

Equation (3) is based on variable substitution. In (4), μn,d(r) denotes the
expected size of the rth layer skyline of T , where the rth layer skyline of T
is the set of tuples in T that are dominated by exactly r − 1 tuples in T , and its
expected size is equal to

μn,d(r) = n
(

n−1
r−1

)

∫

[0,1]d
(1 −

d
∏

i=1

vi)n−r(
d

∏

i=1

vi)r−1dV .

Due to Pr(Xi = 1) = n−m
n

μm+1,d

m+1 , we have

D(
n

∑

i=1

Xi)

= (n − m)
μm+1,d

m + 1
− (n − m)(n + 1)

(m + 1)2(m + 2)
μ2

m+1,d +
(n − m)(n − 1 − m)

(m + 1)(m + 2)
(μm+2,d+

μm+1,d)(μm+2,d − μm+1,d) +
(n − m)(n − 1 − m)

(m + 1)(m + 2)
(2μm+2,d(2) + O(μm+2,d))

= (n − m)
μm+1,d

m + 1
− (n − m)(n + 1)

(m + 1)2(m + 2)
μ2

m+1,d +
(n − m)(n − 1 − m)

(m + 1)(m + 2)
O(μm+2,d).

(5)

Equation (5) holds because μm+2,d −μm+1,d ≤ 1 and μm+2,d(2) ≤ μm+2,d. With
μm+1,d ≤ m + 1, it is true that D(

∑n
i=1 Xi) = O(n2

m2 μm,d). ��

3.3 Analysis of the Time Complexity

Theorem 3.5. If getSkyline in step 2 is based on FLET [3], then the time com-
plexity of the baseline algorithm is O(m logd−2 m) in the worst case, and O(m)
in the average case.

Proof. Since the time complexity of FLET [3] is O(nlogd−2n) in the worst case,
and O(n) in the average case, step 2 of the algorithm needs O(m logd−2 m) time.
Thus, the time complexity of the algorithm is O(m logd−2 m) because that step
1 of the algorithm needs O(m) time. ��
Corollary 3.6. If sample size m equal to n

1
k (k > 1), then the running time of

the baseline algorithm is O(n
1
k logd−2 n

1
k) in the worst case, and O(n

1
k) in the

average case.

Corollary 3.6 tells that the baseline algorithm is in sublinear time if the sample
size m is equal to n

1
k (k > 1).

4 DOUBLE and Analysis

In this section, we devise a sampling-based algorithm, DOUBLE, to return an
(ε, δ)-approximation efficiently for the exact skyline of the given relation T . It

42 X. Xiao and J. Li

Algorithm 2: DOUBLE
Input:

T : the input relation with n tuples and d attributes;
ε: the error bound;
δ: the error probability;

Output:
an (ε, δ)-approximation ˜Sky of the skyline of T ;

1 m = sI , and S[1, ..., m] is the sample of m tuples;

2 ˜Sky = getSkyline(S[1, ..., m]);

3 ε̂=verifyError(˜Sky);
4 While (ε̂ > 2ε

3
) Do

5 m = 2m, and S[m
2

+ 1, ..., m] is the sample of m/2 tuples;

6 ˜Sky = mergeSkyline(˜Sky, getSkyline(S[m
2

+ 1, ..., m]));

7 ε̂=verifyError(˜Sky);

8 return ˜Sky;

first draws an initial sample of size sI (line 1). The value of sI can be set to any
positive integer. Afterwards, DOUBLE computes the approximate skyline result
on the sample (line 2), and then verifies the error ε of the current result ˜Sky
(lines 3–4). If it is guaranteed that Pr(ε ≤ ε) is at least 1 − δ, then DOUBLE
terminates (line 8). Otherwise, it doubles the sample size and repeats the above
process (lines 5–7).

DOUBLE judges whether ε meets the requirement by Monte Carlo method.
In the subroutine verifyError, sv is the sample size for each verification, and is
equal to 18(ln log2 n+ln(1

δ))

ε � (line 2). DOUBLE first obtains a random sample V
of size sv (line 3). Then it counts and returns the proportion of tuples in V not
dominated by the approximate result ˜Sky (lines 4–7), which is denoted by ε̂. If
ε̂ ≤ 2ε

3 , it is guaranteed that the error of ˜Sky is not higher than the error bound
ε with a probability no less than 1 − δ. In the following, we prove the above in
detail.

Subroutines 1
1 verifyError (˜Sky)

2 count = 0, and sv = � 18(ln log2 n+ln(1
δ
))

ε
�;

3 V is the sample of sv tuples;
4 for each tuple t in V do

5 if t is not dominated by ˜Sky then
6 count+=1;

7 return count/sv;

Sampling-Based Approximate Skyline Calculation on Big Data 43

4.1 Error Analysis of DOUBLE

Let q be the total number of times to invoke verifyError. For 1 ≤ j ≤ q, mj

(respectively, εj) denotes the value of m (respectively, ε) when verfyError is being
invoked for the jth time. ˜Skyj is defined in a similar way. ε̂j is the value returned
by the jth invocation of verifyError. Then we have the following theorem.

Theorem 4.1. For the jth invocation of verifyError, if εj > ε, then Pr(ε̂j ≤
2
3ε) < δ

log2 n .

Proof. Let Xi be a random variable for 1 ≤ i ≤ sv. For the jth invocation of
verifyError, Xi = 0 if tuple ti in V is dominated by the approximate result
˜Skyj , otherwise Xi = 1. Obviously, ε̂j is equal to 1

sv

∑sv

i=1 Xi. According to the
definition of ε, E(ε̂j) = Pr(Xi = 1) = εj .

By the Chernoff bound, we have

Pr(ε̂j ≤ 2
3
εj) ≤ 1

esvεj/18
.

With εj > ε and sv ≥ 18(ln log2 n+ln(1
δ))

ε , we get the theorem. ��
˜Skyq is the final result returned by DOUBLE. Next, we show that ˜Skyq is

an (ε, δ)-approximation of the exact skyline.

Corollary 4.1. If DOUBLE terminates normally, it returns an (ε, δ)-
approximation ˜Skyq, i.e. the error εq of ˜Skyq satisfies

Pr(εq ≤ ε) = Pr(|DN (˜Skyq) − DN (Sky)
DN (Sky)

| ≤ ε) ≥ 1 − δ.

Proof. DOUBLE finally returns an (ε, δ)-approximation ˜Skyq, if and only if,
for any positive integer j < q, the jth invocation of verifyError with the error
εj > ε must return an estimated value ε̂j > 2ε

3 . The number of times to invoke
verifyError is at most log2 n. Based on Theorem 4.1, the probability in this
corollary is at least (1 − δ

log2 n)log2 n > 1 − δ. ��

4.2 Analysis of Sample Size and Time Complexity

mq is the final value of m. Assume Mε,δ is the size of sample required by the
baseline algorithm running on T to return an (ε, δ)-approximation. Based on
analysis in Sect. 3, Mε,δ and mq are almost unaffected by the relation size n.
Here we analyze the relationship between Mε,δ and mq.

Theorem 4.2. If δ ≤ 1/8, the expected value of mq is O(M ε
3 ,δ).

44 X. Xiao and J. Li

Proof. If mq is less than M ε
3 ,δ, then the theorem holds. Otherwise, for the

jth invocation of verifyError with M ε
3 ,δ ≤ mj < 2M ε

3 ,δ, the error εj of ˜Skyj

satisfies Pr(εj ≤ ε
3) ≥ 1 − δ. Under the condition εj ≤ ε

3 , the probability
of ε̂j ≤ 2ε

3 is at least 1 − (δ
log2 n)2. Thus the probability of q ≤ j is at least

(1 − δ)(1 − (δ
log2 n)2) > 1 − 2δ. Similarly, for any k > j, the probability of q > k

is less than 2δ. Thus the expected value of mq is at most

2M ε
3 ,δ + 22M ε

3 ,δ × 2δ + ... + 2iM ε
3 ,δ × (2δ)i−1 + ...

With δ ≤ 1/8, it is O(M ε
3 ,δ). ��

Based on analysis in Sect. 3, M ε
3 ,δ is up-bounded by O(Mε,δ) in most cases.

Thus, the sample used by DOUBLE has the same order of magnitude as the
baseline algorithm. Hereafter, we analyze the time complexity of DOUBLE on
mq.

Theorem 4.3. If getSkyine and mergeSkyline are based on FLET [3], then the
time complexity of DOUBLE is O(mq logd−1 mq + (ln log n + ln 1

δ)mq log mq),
where mq is the final value of m in DOUBLE.

Proof. Except for verifyError, the algorithm process is completely equivalent to
SD&C [4]. Therefore, the total running time of getSkyline and mergeSkyline is
T ′(mq, d) = 2T ′(mq/2, d)+M(mq, d), where M(mq, d) is O(mq logd−2 mq). Thus
we have T ′(mq, d) = O(mq logd−1 mq). The number of verifications is O(log mq).
Based on Corollary 3.1 and 3.2, the size of ˜Sky is O(εmq). Therefore, due to
εsv = O(ln log n+ln 1

δ), the total running time of verifyError is O(εmqsv log mq)
= O((ln log n + ln 1

δ)mq log mq)). Finally, the time complexity of the algorithm
is O(mq logd−1 mq + (ln log n + ln 1

δ)mq log mq). ��
Even if n is up to 270, ln log2 n is less than 5. Without loss of generality, the

time complexity of DOUBLE is O(mq logd−1 mq). Through a proof similar to
Theorem 4.2, we get the following corollary.

Corollary 4.2. For M ε
3 ,δ ≥ 1

2
1

d−1 −1
and δ ≤ 1/16, if getSkyine and mergeSky-

line are based on FLET [3], then the expected time complexity of DOUBLE is
O(M ε

3 ,δ logd−1 M ε
3 ,δ).

5 Conclusion

In this paper, we proposed two sampling-based approximate algorithms for pro-
cessing skyline queries on big data. The first algorithm draws a random sample of
size m and computes the approximate skyline on the sample. The expected error
of the algorithm is almost independent of the input relation size and the standard
deviation of the error is relatively small. The running time of the algorithm is
O(m logd−2 m) in the worst case and O(m) in the average case. With a moderate

Sampling-Based Approximate Skyline Calculation on Big Data 45

size sample, the algorithm has a low enough error. Given ε and δ, the second
algorithm returns an (ε, δ)-approximation of the exact skyline. The expected
time complexity of the algorithm is O(M ε

3 ,δ logd−1 M ε
3 ,δ), where M ε

3 ,δ is the
size of sample required by the first algorithm to return an (ε

3 , δ)-approximation.
M ε

3 ,δ is up-bounded by O(Mε,δ) in most cases, and is almost unaffected by the
relation size.

References

1. Bai, Z.D., Chao, C.C., Hwang, H.K., Liang, W.Q.: On the variance of the number
of maxima in random vectors and its applications. In: Advances in Statistics, pp.
164–173. World Scientific (2008)

2. Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. ACM
Trans. Database Syst. (TODS) 33(4), 1–49 (2008)

3. Bentley, J.L., Clarkson, K.L., Levine, D.B.: Fast linear expected-time algorithms
for computing maxima and convex hulls. Algorithmica 9(2), 168–183 (1993)

4. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average num-
ber of maxima in a set of vectors and applications. J. ACM (JACM) 25(4), 536–543
(1978)

5. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
17th International Conference on Data Engineering, pp. 421–430. IEEE (2001)

6. Buchta, C.: On the average number of maxima in a set of vectors. Inf. Process.
Lett. 33(2), 63–65 (1989)

7. Cai, Z., Miao, D., Li, Y.: Deletion propagation for multiple key preserving con-
junctive queries: approximations and complexity. In: 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pp. 506–517. IEEE (2019)

8. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE,
vol. 3, pp. 717–719 (2003)

9. Devroye, L.: A note on finding convex hulls via maximal vectors. Inf. Process. Lett.
11(1), 53–56 (1980)

10. Gao, X., Li, J., Miao, D., Liu, X.: Recognizing the tractability in big data com-
puting. Theor. Comput. Sci. 838, 195–207 (2020)

11. Godfrey, P.: Skyline cardinality for relational processing. In: Seipel, D., Turull-
Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 78–97. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24627-5 7

12. Godfrey, P., Shipley, R., Gryz, J., et al.: Maximal vector computation in large data
sets. VLDB 5, 229–240 (2005)

13. Han, X., Li, J., Yang, D., Wang, J.: Efficient skyline computation on big data.
IEEE Trans. Knowl. Data Eng. 25(11), 2521–2535 (2012)

14. Koltun, V., Papadimitriou, C.H.: Approximately dominating representatives. In:
Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 204–214. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30570-5 14

15. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algo-
rithm for skyline queries. In: VLDB 2002: Proceedings of the 28th International
Conference on Very Large Databases, pp. 275–286. Elsevier (2002)

16. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM (JACM) 22(4), 469–476 (1975)

17. Lee, K.C., Lee, W.C., Zheng, B., Li, H., Tian, Y.: Z-sky: an efficient skyline query
processing framework based on z-order. VLDB J. 19(3), 333–362 (2010)

https://doi.org/10.1007/978-3-540-24627-5_7
https://doi.org/10.1007/978-3-540-30570-5_14

46 X. Xiao and J. Li

18. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most representative
skyline operator. In: 2007 IEEE 23rd International Conference on Data Engineer-
ing, pp. 86–95. IEEE (2007)

19. Magnani, M., Assent, I., Mortensen, M.L.: Taking the big picture: representative
skylines based on significance and diversity. VLDB J. 23(5), 795–815 (2014)

20. Miao, D., Cai, Z., Li, J.: On the complexity of bounded view propagation for
conjunctive queries. IEEE Trans. Knowl. Data Eng. 30(1), 115–127 (2017)

21. Miao, D., Cai, Z., Li, J., Gao, X., Liu, X.: The computation of optimal subset
repairs. Proc. VLDB Endow. 13(12), 2061–2074 (2020)

22. Miao, D., Liu, X., Li, J.: On the complexity of sampling query feedback restricted
database repair of functional dependency violations. Theor. Comput. Sci. 609,
594–605 (2016)

23. Miao, D., Yu, J., Cai, Z.: The hardness of resilience for nested aggregation query.
Theor. Comput. Sci. 803, 152–159 (2020)

24. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data, pp. 467–478 (2003)

25. Søholm, M., Chester, S., Assent, I.: Maximum coverage representative skyline. In:
EDBT, pp. 702–703 (2016)

26. Tan, K.L., Eng, P.K., Ooi, B.C., et al.: Efficient progressive skyline computation.
VLDB 1, 301–310 (2001)

27. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: 2009
IEEE 25th International Conference on Data Engineering, pp. 892–903. IEEE
(2009)

28. Xingxing Xiao, J.L.: Sampling based approximate skyline calculation on big data
(2020). https://arxiv.org/abs/2008.05103

https://arxiv.org/abs/2008.05103

Approximating k-Orthogonal Line Center

Barunabha Chakraborty1, Arun Kumar Das2(B), Sandip Das2,
and Joydeep Mukherjee1

1 Ramakrishna Mission Vivekananda Educational and Research Institute,
Howrah, India

chakrabortybarunabha@yahoo.com, joydeep.m1981@gmail.com
2 Indian Statistical Institute, Kolkata, India

arund426@gmail.com, sandipdas@isical.ac.in

Abstract. k-orthogonal line center problem computes a set of k axis-
parallel lines for a given set of n points such that the maximum among
the distances between each point and its nearest line is minimized. In
this paper, we design a deterministic bi-criteria approximation algorithm
that runs in O(k2n log n) time and returns at most 3

2
k lines such that

the minimized distance is within 16r. Here r is the minimized distance
in the optimal solution with k line centers for the given input.

Keywords: Line centers · Approximation algorithm · Computational
geometry · Bi-criteria approximation

1 Introduction

The problem of computing k-orthogonal line centers for a given set of points is
to find k axis-parallel lines such that the maximum among the distances from
each point to its nearest line is minimized. These lines are called centers and the
minimized distance is called radius. We define them formally in the preliminaries
section. A direct application of this problem is in the designing of transport
networks where the roads or any other transport tracks are orthogonal to each
other and the designer has to plan them such that the maximum among all
the distances between each user and its nearest track is minimized. A similar
scenario happens while designing a circuit board. The designer needs to optimize
the distances between wires and components. This problem also finds application
in facility location [19,20], machine learning [9] etc.

A closely related problem to the orthogonal line center problem is stabbing or
hitting problem. In this problem, a set of geometric objects are given as input and
one has to find a set of predetermined objects with minimum cardinality such
that each member of the given set is intersected by at least one member of the
output set. This problem also has wide application in facility location [11,15],
medical researches [18], statistical analysis [7] etc. The decision version of the
k-orthogonal line centers can be viewed as square stabbing as well. Here the set
of squares have side lengths 2r, where r is the radius in the decision version of k-
line center problem. The classical problem of orthogonal stabbing of unit squares
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 47–60, 2020.
https://doi.org/10.1007/978-3-030-64843-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_4

48 B. Chakraborty et al.

computes a minimum set of axis-parallel lines such that each member of the given
set of axis-parallel unit squares is stabbed by at least one line. This problem is
known to be W[1]-hard [12]. In the problem of k-orthogonal line centers for
unit squares, one has to find a set of axis-parallel lines such that the maximum
among the distances between a square and its nearest line is minimized. Here
the distance between a square and a horizontal line is the distance between
the line and the horizontal side of the square which is nearest to the line. The
distance between a vertical line and a square is defined similarly. Orthogonal
stabbing of unit squares is NP-hard. Thus we can not expect to find a finite
factor approximation in terms of the radius for the problem of k-orthogonal line
centers for unit squares with running time c×poly(n, k), where c is independent
of n and k. We can only expect to get a (α, β) bi-criteria approximation for this
problem. In this approximate solution, we use at most αk (α > 1) axis-parallel
lines such that every square is within βr (β > 1) distance from some line. Here
r is the optimal radius for the k-orthogonal line center problem for unit squares.
Although we design our algorithm for planar point set, it is not hard to see
that the algorithm can be seamlessly applied to get a constant factor bi-criteria
approximation in the case of squares as well. This gives a clear motivation behind
designing the bi-criteria approximation algorithm that we present in this paper.

The k-orthogonal line center problem is a special case of projective clustering.
Projective clustering problem takes a point set with n points in R

d and two
integers k < n and q ≤ d as input and asks for k q-dimensional flats such that
the point set is partitioned into k subsets (clusters) so that when a cluster is
projected on the flats, the maximum distance between each point to its projection
is minimized. In our problem, the q-dimensional flats are lines, and the input
point set is in R

2. Megiddo and Tamir [16] showed that finding k lines which
cover a given set of points, as well as the projective clustering, is NP-hard.

1.1 Previous Results

A significant amount of work has been done in the domain of clustering and
stabbing problems due to their wide application. Stabbing of compact sets with
lines was studied by Hassin and Megiddo [13]. In this paper, they devised a
polynomial time algorithm for stabbing a set of planar points with axis-parallel
lines. They also showed it is NP-hard if the lines are in arbitrary orientation.
Agarwal and Procopiuc [1] studied the problem of covering a point set in R

d with
k cylinders. They presented the following results. For d = 2, they gave a random-
ized algorithm, which runs in O(nk2 log4 n) expected time, when k2 log k < n
to compute O(k log k) strips of width at most w∗ that cover the given set of
points. Here w∗ is the width in the optimal solution. But for higher values of k
the expected running time is O(n

2
3 k

8
3 log4 n). For d = 3, the expected time is

O(n
3
2 k

9
4 polylog(n)). They also compute a set of O(dk log k) d-cylinders of diam-

eter at most 8w∗ in expected time O(dnk3 log4 n) to cover a set of n points in R
d.

Aggarwal et al. [3] designed a randomized algorithm that computes k cylinders
of radius (1 + ε)r∗ that cover a set of n given points in R

d. Here r∗ is the opti-
mal radius. The expected running time of the algorithm is O(n log n), but the

Approximating k-Orthogonal Line Center 49

constant of proportionality depends on k, d, ε. Besides the theoretical results on
projective clustering, the practical implementation and heuristics for the prob-
lems are also studied [4–6,17]. Special case like 2 line center problem was studied
by Jaromczyk and Kowaluk [14] designed a O(n2 log2 n) time algorithm. Agar-
wal et al. [2] provided an (1 + ε) approximation scheme for the problem which
runs in O(n(log n + ε−2 log 1

ε) + ε− 7
2 log 1

ε) time. Feldman et al. [9] gave a ran-
domized linear time bi-criteria approximation for generalized k-center, mean and
median problems. Gaur et al. [11] gave a 2-factor approximation for the orthog-
onal rectangle stabbing problem. Dom et al. [8] showed that stabbing squares of
same size with axis-parallel lines is W[1]-hard and designed a fixed-parameter
tractable algorithm for the problem with disjoint squares of same size, which
runs in (4k + 1)knO(1) time.

1.2 Our Result

We devise a (32 , 16) deterministic bi-criteria approximation algorithm for k-
orthogonal line center problem which runs in O(k2n log n) time. To the best
of our knowledge, this result is a first deterministic constant factor bi-criteria
approximation for this problem.

1.3 Organisation of the Paper

We give a brief overview of the algorithm in Subsect. 1.4. In Sect. 2, we describe a
set of problems formally which are related to each other in terms of determining
a constant factor approximation. We present an algorithm to these problems
and discuss the running time of the algorithm in Sect. 3. Finally, we conclude
the paper by stating some further direction of the work.

1.4 Overview of the Algorithm

Our algorithm consists of three phases. In the beginning, we choose a subset of
the given point set S. We call these chosen points as pivots. We denote the set
of pivots as P. We choose the pivots greedily in such a way so that any two
pivots are well separated both horizontally and vertically. The notion of well
separateness will be explained when we describe the algorithm formally below.
Next, we employ a local search technique to update the set of pivots so that
at the end of each update step we increase the number of pivots by one yet
maintaining the property of well separateness among the updated set of pivots.
We maintain the condition of well separateness at every step to guarantee that
the cardinality of the set of pivots never exceeds k. Finally, we show that we can
choose at most 3

2k lines passing through the members of P as line centers such
that radius is within 16 times the optimal radius.

50 B. Chakraborty et al.

2 Preliminaries

Problem 1. A set S of n points in 2-dimensional plane is given, along
with an integer k such that k < n. A set C of axis-parallel lines are to
be returned as output such that |C| = k and the maximum among the
distances between each point and its nearest line is minimized.

The distance between two points of S is defined as Min{|x1 −x2|, |y1 − y2|},
where (x1, y1) and (x2, y2) are the coordinates of the two points respectively.
The distance between a point and a line is the perpendicular distance between
them.

The distance between a point and the set C is defined as the distance between
the point and the member of C which is nearest to the point. We denote this as
d(s, C) The radius r of a set C is defined as maxs∈Sd(s, C).

Problem 2. A set S of n points in 2-dimensional plane is given, along
with an integer k such that k < n. A set C of axis-parallel lines are to be
returned as output such that the lines pass through at least one member
of S with |C| = k and the maximum among the distances between each
point and its nearest line is minimized.

Lemma 1. An optimal solution to Problem 2 is a (1, 2) bi-criteria approximate
solution to Problem 1.

Proof. Let C∗ be a set of line centers with a radius r∗ that is an optimal solution
to Problem 1 for a given set of points S. Let l ∈ C∗ be a line center. Let C(l) =
{s ∈ S|d(s, l) ≤ d(s, l′),∀l′ ∈ C∗ \ {l}}. So, d(s, l) ≤ r∗ for all s ∈ C(l). Let lx be
the line of same orientation as l, that passes through some member x of C(l).
Then for any member y ∈ C(l) we have d(y, lx) ≤ d(y, l)+d(x, l) ≤ 2r∗. Thus we
can construct a set Cx that consists of lx, for all l ∈ C∗. Here x is a point nearest
to l and on the below of l, if l is horizontal. Otherwise x is a point nearest to
l and on the right of l if l is vertical. Existence of such x is guaranteed by the
optimality of C∗. Thus d(s, Cx) ≤ 2r∗ for all s ∈ S. Thus Cx is a (1, 2) bi-criteria
approximation for Problem 1.

Furthermore, Cx is a solution to Problem 2 which may not be optimal. The
radius of an optimal solution to Problem 2 must be less than or equal to the
radius of Cx. Hence the lemma follows. ��

Note that the radius of C is defined by a pair consisting of a point and a
vertical line or a point and a horizontal line. So in Problem 2, the possible values
for the radius of C are the distances between a member of S and a line passing
through another member of S. Since there are O(n2) such choices, we have the
following observation.

Observation 1. There are O(n2) candidates for optimal radius in Problem 2.

Approximating k-Orthogonal Line Center 51

Problem 3. A set S of n points in 2-dimensional plane is given, along with
k and r. A set C of k axis-parallel lines are to be returned as output such
that the lines pass through at least one member of S and the maximum
among the distances between each point and its nearest line is within r.

Lemma 2. Problem 2 can be solved in O((T +n) log n) time if Problem 3 can be
solved in O(T) time.

Proof. There are O(n2) candidates for radius in Problem 2 as noted in Obser-
vation 1. So we can solve Problem 2 by solving 3 with these radii as input. We
return the solution of Problem 3 as a solution to Problem 2 with the minimum r
among these candidates. We can do a binary search on these O(n2) candidates to
achieve the solution to Problem 2. The technique by Frederickson and Johnson
[10] helps to determine the middle element in the binary search in linear time.
Thus the lemma holds. ��

We design an algorithm for Problem 3 in the following. We denote the hori-
zontal and vertical lines passing through a member s of S by hs and vs respec-
tively. Let C be a set of line centers with radius ξ for a set of points S. If a line
hs ∈ C is the nearest line to a point t ∈ S, then t must be within a distance
of ξ from this line. We observe this scenario in a different way. Let (xs, ys) be
the coordinates of s. A horizontal strip generated from s, is the planar region
bounded by two horizontal lines y = ys + ξ and y = ys − ξ. We denote it by hs

ξ.
Then t lies in the interior of this horizontal strip. Similarly we define a vertical
strip, vs

ξ , generated from s, as the planar region bounded by two vertical lines
x = xs + ξ and x = xs − ξ. s is called the generator of the strips hs

ξ and vs
ξ .

The upper shadow zone of a horizontal strip hs
ξ is defined as the planar region

bounded by the two horizontal lines y = ys+ξ and y = ys+2ξ. The lower shadow
zone of a horizontal strip hs

ξ is defined as the planar region bounded by the two
horizontal lines y = ys − ξ and y = ys −2ξ. Union of these two regions are called
shadow zone of a horizontal strip. Similarly we define the left shadow zone, right
shadow zone and shadow zone of a vertical strip. (Fig. 1)

In our algorithm, each strip will correspond to a unique pivot of P and each
pivot will correspond to exactly one horizontal and exactly one vertical strip. Let
H(p) and V (p) denotes the horizontal and vertical strip corresponding to p ∈ P
respectively. The horizontal and vertical lines passing through the generator of
H(p) and V (p) respectively are called generating lines of the strips.

Now we define a private neighbour of a pivot p ∈ P. Horizontal private
neighbours of p (depicted in Fig. 1) are those points s ∈ S, which satisfy the
following properties:

– s lies in the interior of H(p),
– s does not lie in the interior of V (q) and their shadow zones, for all q ∈ P.

Similarly, we define vertical private neighbour of a pivot. Note that if we
consider all strips of same width then a point s ∈ S can be a private neighbour

52 B. Chakraborty et al.

Fig. 1. Strips and private neighbours of a pivot p

of two pivots in same orientation. But it can not be a private neighbour of two
pivots in different orientations.

We say that two pivots p, q ∈ P are well separated if they are at a distance
more than 2r from each other. We say that a pivot p ∈ P is conflicting hor-
izontally (depicted in Fig. 2) with another pivot q ∈ P, if one of them has a
horizontal private neighbour which is within a distance of 2r from the other.
Similarly, we say they are conflicting vertically if there exists such a vertical
private neighbour. We say p is conflicting with q if they are either conflicting
horizontally or vertically or both. The corresponding private neighbour is called
a conflict witness.

Observation 2. A pivot p ∈ P can conflict with at most two members of P \ p
in one orientation.

Proof. Since the members of P are well separated from each other, p can conflict
horizontally with at most one pivot in P \ {p}, which lies above p and at most
one pivot in P \ {p}, which lies below p. Thus the observation holds. ��

3 Description of the Algorithm

3.1 Phase I of the Algorithm

In the first phase, we choose a set of pivots maintaining the well separateness
among all of them. We maintain this well separateness throughout the algorithm.

Approximating k-Orthogonal Line Center 53

Fig. 2. Horizontal Conflict of two pivots p and q

We begin with any point s1 of the given set S. We take this point in the set
of pivots P. Now we choose the next point s2 which is at a distance greater
than 2r from s1. We choose a point si ∈ S to be included in P if the point is
at a distance greater than 2r from all the existing members of P. We stop the
iteration when we can not find a point to be included in P. We terminate the
algorithm if |P| exceeds k and report “failure” as we can not find a set of line
centers with cardinality k for this given r.

Lemma 3. Cardinality of P is at most k, if all the members of P are well
separated from each other.

Proof. Let p and q are two points such that d(p, q) > 2r. Then there can not be
a single line l such that d(p, l) ≤ r and d(q, l) ≤ r. We need two different lines
for that. If r is the radius of the optimal set of k line centers for S, then we can
not find more than k points which are well separated. ��
Lemma 4. All point of S are covered with hp

2r or vp
2r for some p ∈ P.

Proof. If any point s ∈ S is not covered with hp
2r or vp

2r for some p ∈ P, then s
is well separated from all the members of P. So we can increase the cardinality
of P by including s in P. So when we stop the above mentioned iteration, the
lemma holds. ��
As a consequence of Lemma 3 and Lemma 4 we can claim the following lemma.
But note that this is not an output of the algorithm.

54 B. Chakraborty et al.

Algorithm 1: Phase I
Input: S, k, r
Output: P, A set of strips H(p), V (p) for all p ∈ P
P ←− φ;
For every member s ∈ S
if d(s, S) > 2r then

P ←− P ∪ {s};
if |P| > k then

Stop the algorithm and return ”Failure”.
end

end
Draw the strips hp

2r, v
p
2r for all p ∈ P ;

H(p) ←− hp
2r and V (p) ←− vp

2r for all p ∈ P ;

Lemma 5. After the successful termination phase I, if we choose hp and vp

for all p ∈ P as line centers, then we get a (2, 2) bi-criteria approximation for
Problem 3.

We end this phase by drawing the strips hp
2r and vp

2r, for all p ∈ P. So in this
phase H(p) = hp

2r and V (p) = vp
2r, for all p ∈ P.

3.2 Phase II of the Algorithm

Algorithm 2: Phase II
Input: S, k, r, P, A set of strips corresponding to the members of P
Output: P, A set of strips corresponding to the members of P
For every member p ∈ P
if p has horizontal and vertical private neighbours th and tv respectively, such
that d(th, (P \ {p})) > 2r and d(th, (P \ {p})) > 2r then

P ←− P \ {p} ∪ {th, tv}.;

Draw v
th
2r and htv

2r;
H(th) ← hp

2r;

V (th) ← v
th
2r ;

H(tv) ← htv
2r;

V (tv) ← vp
2r;

if |P| > k then
Return “failure” and terminate algorithm.

end

end

In this phase, we try to increase the cardinality of P by choosing two members
of S as pivots in place of one existing pivot. Thus in each step of this phase, we
increase the cardinality of P by one. The following lemma helps us to identify
the pivots which we can replace by two other members of S.

Approximating k-Orthogonal Line Center 55

Lemma 6. Let p ∈ P be a pivot having private neighbours in its strips of both
orientations such that they are well separated from all members of P \ {p}, then
we can increase the cardinality of P by one without violating the well separateness
of the members in P.

Proof. Let p ∈ P have a horizontal private neighbour th and a vertical private
neighbour tv such that th and tv are well separated from all the members of
P \ {p}. It follows from the definition of private neighbours of a pivot that
th and tv are well separated from each other as well. So we can update P ←
(P \ {p}) ∪ {th, tv}. Thus the lemma holds. ��

In the following, we describe the pivot replacement and other associated steps
performed in phase II. We implement this phase in an iterative fashion.

If for some p ∈ P has two private neighbours th and tv in H(p) and V (p)
respectively, such that th and tv are well separated from all the members of
P \ {p}, then by Lemma 6, we update P ← (P \ {p}) ∪ {th, tv}. We also draw
two new strips. They are vth

2r and htv
2r. Note that H(th) = hp

2r, V (th) = vth
2r

and H(tv) = htv
2r, V (tv) = vp

2r. At any point if |P| exceeds k, we terminate the
algorithm and return “failure”.

We terminate phase II when we can not increase the cardinality of P in this
manner. Note that we have not removed any strip that is drawn at phase I.

Observation 3. Let t is a member of P that is chosen in phase II, by replacing
an old member p of P. Then the private neighbours of t is a subset of the private
neighbours of p.

3.3 Phase III of the Algorithm

After termination of phase II, if a pivot p ∈ P has private neighbours in both
orientations, then the following observation holds.

Observation 4. All the private neighbours of p in at least one orientation are
conflict witnesses.

Proof. If p has at least one private neighbours in both orientations which are
well separated from all other pivots in P, then we can increase the cardinality of
P by virtue of Lemma 6. So, after completion of phase II this observation holds.

��
We can classify all the members p ∈ P in two classes.

– Case 1: p has private neighbours in both orientations. We call the set of
these pivots as Pcon.

– Case 2: p has private neighbours only in one orientation. In such a case we
call p as a loner. We denote the set of such pivots as Plon.

56 B. Chakraborty et al.

Now we assign line centers for the points covered by the strips corresponding
to the members of Pcon and Plon in the following two steps.

Step 1: Assigning Line Centers Corresponding to the Members of Pcon

Consider a member p ∈ Pcon. As mentioned earlier that after the termination of
phase II, p has to satisfy any one of the following.

– All the private neighbours of p in H(p) are conflict witnesses. Then p ∈ PH
con.

– All the private neighbours in V (p) are conflict witnesses. Then p ∈ PV
con.

Note that as we defined PH
con and PV

con, their intersection may not be empty.
If we put the members in their intersection only in PH

con, we can partition them
in two disjoint sets PH

con and PV
con such that Pcon = PH

con ∪PV
con. Let |PH

con| = c1
and |PV

con| = c2.
Let p ∈ PH

con. Now p can conflict horizontally with at most two members of
P as noted in Observation 2. Let p horizontally conflicts with q ∈ P such that q
lies below p.

Lemma 7. We can choose 3 lines such that all points, which are covered with
H(p), V (p),H(q), V (q), and their shadow zones, are within 8r distance from
these lines.

Proof. We choose the generating lines of V (p), V (q) and H(q). Any point covered
with these two vertical strips or their shadow zones is within a distance of 4r
from these vertical lines. Let H(q) = hu

2r, for some u ∈ S. Any point covered
with H(q) or its shadow zone is also within 4r distance from hu. Now consider
a point s which is covered with H(p). Since there is a conflict witness t which
is a horizontal private neighbour of p or q and lies within a distance of 2r from
both p and q, then the distance between hp and hq is at most 4r. So, if s lies
in H(p), then s lies within 6r distance from hu. If s lies in the shadow zone of
H(p), s is within a distance of 8r from hu. Thus the lemma holds. ��

We call these chosen lines as the line centers assigned to the pivots p and q. We
say that all the points which are within 8r distance from the assigned line centers
are covered with these centers. Using Lemma 7, we assign line centers to the
members of PH

con. We choose the members of PH
con with respect to the decreasing

order of their y-coordinates. Once we assign the line centers corresponding to a
strip, we “mark” the pivots also. Initially, no member of P is marked. We traverse
PH

con from top to bottom and use the following rules to assign line centers for a
pivot p ∈ PH

con, which is not already marked.

– R1: If p is conflicting horizontally with q such that q lies below p, then we
assign the generating lines of H(q), V (q) and V (p) as line centers. We mark
both p and q.

– R2: If p is conflicting horizontally only with q such that q lies above p, then
we assign line centers based on the following two scenarios.

– If q is already marked while we assigned line centers from top to bottom,
the generating lines of H(q) and V (q) are already chosen. We assign the
generating line of V (p) as a center and mark p.

Approximating k-Orthogonal Line Center 57

– If q is not already marked we assign the generating lines of V (q), V (p),
and H(p) as centers and mark p and q.

Lemma 8. Consider p ∈ PH
con is horizontally conflicting with a marked pivot,

q, then all the points covered by H(p) and its shadow zone are also within a
distance of 8r from the generating line of H(q).

Proof. p is horizontally conflicting only with q. So the distance between hp and
hq are at most 4r. So this lemma follows from a similar argument as in Lemma 7.

��
Thus we assign line centers to the members of PH

con according to the above-
mentioned rules. We can argue similarly for all the members of PV

con. We assign
the line centers corresponding to them from left to right, that is by the increasing
order of their x-coordinate. Using similar argument as in Lemma 7 and Lemma 8,
we can conclude that, the points those are covered with H(p), V (p) and their
shadow zones, for all p ∈ PV

con, are within a distance of 8r from the assigned line
centers. Note that some pivots that are not members of Pcon are also marked
while assigning line centers to the members of Pcon. We denote the set of these
pivots as Psup. Let |Psup| = c3. We denote the set of these assigned line centers
as Ccon.

Lemma 9. |Ccon| ≤ 3
2 (c1 + c2 + c3).

Proof. We have assigned at most 3 line centers for every two members of PH
con,

PV
con and Psup. Furthermore in the rules R1 and R2 we have not assigned line

centers for any pivot more than once. Hence, |Ccon| ≤ 3
2 (c1 + c2 + c3). ��

Note that in this fashion all pivots of Pcon will be marked. All the points
which are covered with the strips H(p), V (p), and their shadow zones, for all
p ∈ Pcon ∪ Psup are covered by the members of Ccon by virtue of Lemma 7 and
Lemma 8.

Step 2: Assigning Line Centers with Plon

Now we are left with some unmarked members of Plon. Such a member p ∈ Plon

can be one of the following types.

– Type 1: p has only vertical private neighbours. We denote the set of such
pivots as PV

lon. Let |PV
lon| = c4.

– Type 2: p has only horizontal private neighbours. We denote the set of such
pivots as PH

lon. Let |PH
lon| = c5.

– Type 3: p does not have a private neighbour. We denote the set of such
pivots as PN

lon. Let |PN
lon| = c6.

Note that |PH
lon ∪ PV

lon| = c4 + c5, since PH
lon ∩ PV

lon = φ.

Lemma 10. We can choose at most 3
2 (c4+c5+c6) lines such that all the points

covered by the strips H(p) and V (p) for all p ∈ PV
lon ∪PH

lon ∪PN
lon, which are not

covered by any assigned line centers in step 1, are within 4r distance from these
new lines.

58 B. Chakraborty et al.

Proof. With out loss of generality let us assume c5 ≤ 1
2 (c4 + c5). We choose the

generating lines of the following strips.

– V (p), for all p ∈ PN
lon

– V (p), for all p ∈ PV
lon

– H(p) and V (p), for all p ∈ PH
lon

We denote the set of these lines as Clon. So, |Clon| = (c6 + c4 +2c5) ≤ c6 + 3
2 (c4 +

c5) < 3
2 (c4 + c5 + c6).

Now we show that d(s, Clon) ≤ 4r for all s ∈ S such that s is not already
covered with a line center assigned in step 1. Such an s must lie in some H(p)
or V (p) for some p ∈ PV

lon ∪ PH
lon ∪ PN

lon.
From the construction of Clon all the private neighbours of the pivots in

PV
lon ∪ PH

lon ∪ PN
lon are within a distance of 2r from Clon. If a point which is not

a horizontal private neighbour of any pivot and lies only in a shadow zone of a
horizontal strip and not in any other vertical strip or its shadow zone, then that
point is well separated from all the members of P. But this implies we could
have selected this point in phase I, which contradicts the termination of phase
I. So the remaining points must be in some vertical strip or in the shadow zone
of some vertical strip corresponding to some member of PV

lon ∪ PH
lon ∪ PN

lon. We
have chosen the generating lines of all the vertical strips corresponding to the
pivots belonging to PV

lon ∪ PH
lon ∪ PN

lon. Hence, they are within 4r distance from
C. Thus the lemma holds. ��

We assign the members of Clon as line centers corresponding to the members
of PV

lon ∪ PH
lon ∪ PN

lon and mark them. At this step we have all the members of P
marked. We return the set C = Ccon ∪ Clon as the output to the algorithm.

Theorem 1. C is a (32 , 8) bi-criteria approximation for Problem 3.

Proof. The proof follows from Lemma9 and Lemma 10. ��

3.4 Running Time of the Algorithm

We are constructing the set P by choosing the members from S which constitutes
phase I. In this phase, we check each member of S if they can be included in P.
This checking for each member requires O(k) time. Since each member of S is
checked only once, phase I finishes in O(kn) time. Then we check for the private
neighbours of each pivot in phase II. This checking requires O(kn) time for each
pivot. Any update of P requires O(kn) time. We have to check this for at most k
times. So phase II takes O(k2n) time. In phase III we label the members of Plon

and Pcon. This takes O(k2n) time. Then we sort the members of P which takes
O(k log k) time. We can return the line centers from the sorted list. So in total,
our algorithm runs in O(nk2) amount of time.

Theorem 2. A (32 , 16) bi-criteria approximation for k-orthogonal line centers
can be found in O(k2n log n) time.

Proof. The proof follows from the above running time analysis, Theorem1,
Lemma 1, and Lemma 2. ��

Approximating k-Orthogonal Line Center 59

4 Conclusion

We have presented a bi-criteria approximation algorithm for k-orthogonal line
center problem for planar point sets. An interesting direction would be to inves-
tigate whether our algorithm can be extended to a bi-criteria approximation
scheme for the k-orthogonal line center problem. Another direction would be
to design bi-criteria approximation for k-orthogonal median and mean with a
similar approach.

References

1. Agarwal, P.K., Procopiuc, C.M.: Approximation algorithms for projective cluster-
ing. J. Algorithms 46(2), 115–139 (2003)

2. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: A (1+ ε)-approximation algo-
rithm for 2-line-center. Comput. Geom. 26(2), 119–128 (2003). https://doi.org/10.
1007/s10878-012-9579-3

3. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: Approximation algorithms
for a k-line center. Algorithmica 42(3), 221–230 (2005). https://doi.org/10.1007/
s00453-005-1166-x

4. Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms for
projected clustering. SIGMOD Rec. 28, 61–72 (1999)

5. Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimen-
sional spaces. In: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2000, pp. 70–81. Association for Computing
Machinery, New York (2000)

6. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. ACM SIGMoD Rec.
27(2), 94–105 (1998)

7. Calinescu, G., Dumitrescu, A., Karloff, H., Wan, P.J.: Separating points by axis-
parallel lines. Int. J. Comput. Geom. Appl. 15, 575–590 (2005)

8. Dom, M., Fellows, M.R., Rosamond, F.A.: Parameterized complexity of stabbing
rectangles and squares in the plane. In: Das, S., Uehara, R. (eds.) WALCOM
2009. LNCS, vol. 5431, pp. 298–309. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00202-1 26

9. Feldman, D., Fiat, A., Sharir, M., Segev, D.: Bi-criteria linear-time approxima-
tions for generalized k-mean/median/center. In: Proceedings of the Twenty-Third
Annual Symposium on Computational Geometry, SCG 2007, pp. 19–26. Associa-
tion for Computing Machinery, New York (2007)

10. Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: sorted
matrices. SIAM J. Comput. 13(1), 14–30 (1984)

11. Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algo-
rithms for the rectangle stabbing problem and the rectilinear partitioning problem.
J. Algorithms 43(1), 138–152 (2002)

12. Giannopoulos, P., Knauer, C., Rote, G., Werner, D.: Fixed-parameter tractability
and lower bounds for stabbing problems. Comput. Geom. 46(7), 839–860 (2013).
euroCG 2009

13. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with
straight lines. Discret. Appl. Math. 30(1), 29–42 (1991)

https://doi.org/10.1007/s10878-012-9579-3
https://doi.org/10.1007/s10878-012-9579-3
https://doi.org/10.1007/s00453-005-1166-x
https://doi.org/10.1007/s00453-005-1166-x
https://doi.org/10.1007/978-3-642-00202-1_26
https://doi.org/10.1007/978-3-642-00202-1_26

60 B. Chakraborty et al.

14. Jaromczyk, J.W., Kowaluk, M.: The two-line center problem from a polar view: a
new algorithm and data structure. In: Akl, S.G., Dehne, F., Sack, J.-R., Santoro,
N. (eds.) WADS 1995. LNCS, vol. 955, pp. 13–25. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60220-8 47

15. Kovaleva, S., Spieksma, F.C.R.: Approximation algorithms for rectangle stabbing
and interval stabbing problems. SIAM J. Discret. Math. 20(3), 748–768 (2006)

16. Megiddo, N., Tamir, A.: Finding least-distances lines. SIAM J. Algebraic Discret.
Methods 4, 207–211 (1983)

17. Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M.: A Monte Carlo algo-
rithm for fast projective clustering. In: Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2002, pp. 418–427.
Association for Computing Machinery, New York (2002)

18. Renner, W.D., Pugh, N.O., Ross, D.B., Berg, R.E., Hall, D.C.: An algorithm for
planning stereotactic brain implants. Int. J. Radiat. Oncol. Biol. Phys. 13(4), 631–
637 (1987)

19. Tansel, B.C., Francis, R.L., Lowe, T.J.: State of the art-location on networks: a
survey. Part I: the p-center and p-median problems. Manag. Sci. 29(4), 482–497
(1983)

20. Zanjirani Farahani, R., Hekmatfar, M.: Facility Location: Concepts, Models, Algo-
rithms and Case Studies. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-7908-2151-2

https://doi.org/10.1007/3-540-60220-8_47
https://doi.org/10.1007/978-3-7908-2151-2
https://doi.org/10.1007/978-3-7908-2151-2

Selecting Sources for Query
Approximation with Bounded Resources

Hongjie Guo, Jianzhong Li(B), and Hong Gao

Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
hjguo@stu.hit.edu.cn, {lijzh,honggao}@hit.edu.cn

Abstract. In big data era, the Web contains a big amount of data,
which is extracted from various sources. Exact query answering on large
amounts of data sources is challenging for two main reasons. First, query-
ing on big data sources is costly and even impossible. Second, due to the
uneven data quality and overlaps of data sources, querying low-quality
sources may return unexpected errors. Thus, it is critical to study approx-
imate query problems on big data by accessing a bounded amount of the
data sources. In this paper, we present an efficient method to select
sources on big data for approximate querying. Our approach proposes
a gain model for source selection by considering sources overlaps and
data quality. Under the proposed model, we formalize the source selec-
tion problem into two optimization problems and prove their hardness.
Due to the NP-hardness of problems, we present two approximate algo-
rithms to solve the problems and devise a bitwise operation strategy
to improve efficiency, along with rigorous theoretical guarantees on their
performance. Experimental results on both real-world and synthetic data
show high efficiency and scalability of our algorithms.

Keywords: Big data · Data quality · Source selection · Query
approximation

1 Introduction

Traditional query processing mainly focuses on efficient computation of exact
answers Q(D) to a query Q in a dataset D. Nowadays, with the dramatic growth
of useful information, dataset can be collected from various sources, i.e., websites,
data markets, and enterprises. In applications with huge amounts of heteroge-
neous and autonomous data sources, exact query answering on big data is not
only infeasible but also unnecessary due to the following reasons.

(1) Query answering is costly, even simple queries that require a single scan
over the entire dataset cannot be answered within an acceptable time bound.
Indeed, a linear-time query processing algorithm may take days on a dataset D
of PB size [1].

(2) Overlaps among data sources are significant. Due to the autonomy of
data sources, data sources are likely to contain overlap information, querying
redundant sources may bring some gain, but with a higher extra cost.
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 61–75, 2020.
https://doi.org/10.1007/978-3-030-64843-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_5

62 H. Guo et al.

(3) Data sources are often low-quality. Even for domains such as flight and
stock, which people consider to be highly reliable, a large amount of inconsistency
has been observed in data collected from multiple sources [2], querying low-
quality data sources can even deteriorate the quality of query results.

We next use a real-world example to illustrate these.
We consider the dataset D of all Computer Science books from an online

bookstore aggregator. There are 894 bookstore sources, together providing 1265
Computer Science books. Each of these sources can be viewed as a relation:
Book (ISBN, Name, Author), describing the ISBN, name and author of Book,
and each source identifies a book by its ISBN. Consider the following.

(1) A query Q1 is to find the total number of books in D:
SELECT * FROM Bookstores
It is costly to answer Q1, for not only the number of data sources is large,

but also a data source contains a large volume of data. If we process the sources
in decreasing order of their provide books, and query the total number of books
after adding each new source. We can find that the largest source already pro-
vides 1096 books (86%), and we can obtain all 1265 books after querying 537
sources. In other words, after querying the first 537 sources, the rest of the
sources do not bring any new gain [3].

(2) As another example, consider a query Q2 to find the author lists of the
book with ISBN = 201361205, query Q2 is written as:

SELECT Name FROM Bookstores
WHERE ISBN = 201361205
We observed that D returns 5 different answers for Q2, it shows that sources

may have quality problems and can provide quite different answers for a query.
In fact, in this dataset, each book has 1 to 23 different provided author lists.

These examples show that it is inappropriate to accessing the whole dataset
when querying data from a large number of sources, which motivates us to select
proper data sources before querying. Due to the importance, data source selec-
tion draws attention recently. [3] selects a set of sources for data fusion, and
maximizes the profit by optimizing the gain and cost of integrating sources.
However, it does not consider data self-conflicting and incomplete, and could
hardly scale to big data sources for high time complexity of algorithm. [12] pro-
poses a probabilistic coverage model to evaluate the quality of data and consider
overlaps information. However, this method requires some prior statistics truth
probability of each value, furthermore, this paper adopts a simple greedy method
to solve the problem which is not optimal.

Based on the above discussion, in this paper, given an upper bound on the
amount of data that can be used, we propose efficient source selection methods
for approximate query answering. We propose a gain model for source selection
by measuring the sources according to their coverage, overlaps, quality and cost.
Considering these measures, we formulate the data source selection problem as
two optimization problems from different aspects, both of which are proven to be
NP-hard. Due to the hardness, we present two approximate algorithms to solve
the optimization problems. These algorithms are proved can obtain the best

Selecting Sources for Query Approximation with Bounded Resources 63

possible approximate factor, furthermore, the running time of these methods are
linear or polynomial in source number for the two propose problems, respectively.
To improve the efficiency and scalability, we prestore the coverage information
of each source offline and eliminate overlaps between sources online using bitwise
operation, in this way, we can greatly accelerate the source selection algorithms.

In this paper, we make the following contributions.
First, we propose the gain model for data source selection from big

autonomous data sources. This model take into consideration data quality and
sources overlaps.

Second, under the proposed gain model, We formalize two optimization goals
for source selection, called BNMG and BCMG, respectively. We show these two
problems both are NP-hard.

Third, We present a greedy approximation algorithm for BNMG. We show
that the greedy heuristic algorithm for BCMG has an unbounded approximation
factor, and present a modified greedy algorithm to achieve a constant approx-
imation factor for BCMG. A bitwise operation strategy for our algorithms is
proposed to achieve better performance.

Finally, we conduct experiments on real-life and synthetic data to verify the
effectiveness, efficiency and scalability of our proposed algorithms.

2 Problem Definition

This section first formally defines the basic notions used in the paper, then
formulates the source selection problems, and then analyzes the complexity of
these problems.

2.1 Basic Notions and Quality Metric

Definition 1 (Data source). A dataset D is specified by a relational schema R,
which consists of a collection of relation schemas (R1, · · · , Rm). Each relation
schema Ri is defined over a set of attributes. A dataset consists of a set of
data sources S = {Si|1 ≤ i ≤ m}, where each source Si includes a schema Ri.
We assume that the schemas of sources have been mapped by existing schema
mapping techniques.

Definition 2 (Data item). Consider a data item domain DI. A data item DI ∈
DI represents a particular aspect of a real-world entity in a domain, such as the
name of a book, and each data item should be identified by a key. For each data
item DI ∈ DI, a source Si ∈ S can (but not necessarily) provide a value, and
DIi denotes that a set of data items provided by Si.

Definition 3 (Functional dependency (FD)). An FD ϕ: [A1, · · · , Al] → [B],
where Ai and B are attributes in relational table. The semantic of ϕ is that any
two tuples are equal on the left-hand side attribute of ϕ, they should also be equal
on the right-hand side, otherwise, we say such tuples violate the FD [4].

64 H. Guo et al.

Definition 4 (Claim). Let S be a set of sources and C a set of claims, each of
which is triple < S, k, v >, meaning that the source, S, claims a value, v, on a
data item with key, k. Sources often provide claims in the form of tuples.

For example, in Table 1 there are two sources, s1 and s2, providing 3 claim-
tuples. Note that a source can provide conflicting claims for a data item, for
instance, consider data item: ISDN=02013.Name, s1 claims that the name of
ISDN=02013 are Java and C++, respectively. However, only one of the con-
flicting values is true. s2 also miss the value of the author of the book with
ISDN=02014.

Table 1. Claims tuple of books.

Sourceid Tupleid ISDN Name Author

s1 t1 02013 Java Robert

s1 t2 02013 C++ Robert

s2 t3 02014 Analysis of Algorithms

Next, we consider quality metrics. Selecting sources should consider three
sides. First, we wish to select a source that has a high coverage and a low overlap:
such a source would return more answers and contribute more new answers
than another source with the same coverage. Second, the answers returned by a
high-quality source are high reliability. Third, a source with low cost will yield
better performance. We next formally define these measures considered in source
selection.

Definition 5 (Coverage). We define the coverage of source S as the number of
its provided data items, denoted by V (S). Formally,

V (Si) = |DIi|, 1 ≤ i ≤ m (1)

For source set S (a subset of source S), we have

V (S) = ∪Si∈SV (Si) (2)

coverage of the source S reflects the expected number of answers returned by S,
and coverage of the source set S represents the total distinct data items provided
by sources, which has already eliminated the overlap information.

A source may provide self-conflicting or incomplete data, which means that
the source has low reliability, querying low reliability may lead to an unex-
pectedly bad result. Thus, it is non-trivial to select sources according to their
reliability, there can be many different ways to measure source reliability, in this
paper, we measure it as the maximum correct number of claims provided by
source, called the reliability of the source. The reliability of source S is denoted
by R(S).

Selecting Sources for Query Approximation with Bounded Resources 65

In Table 1, s1 claims two different values for the name of book, and no more
than one of these can be correct. The upper bound of correct claims number
provided by source S over key k is

us,k = max
v

(Ns,k,v) (3)

where Ns,k,v is the number of claims provided by S for k with a value v.

Definition 6 (Reliability). The reliability of source S according to the upper
bounds as

R(S) =
∑

k

us,k (4)

For source set S, we have
R(S) =

∑

Si∈S
R(Si) (5)

Collecting sources for querying come with a cost. First, many data sources charge
for their data. Second, collecting and integrating them requires resources and
time.

Definition 7 (Cost). We define the cost of source S as the total number of its
provided claims, denoted by C(S).

C(S) =
∑

k,v

(Ns,k,v) (6)

Similarly, for source set S, we have

C(S) =
∑

Si∈S
C(Si) (7)

Definition 8 (Gain). Now we define the gain model of source selection.

G(S) = αV (S) + (1 − α)R(S) (8)

where α ∈ [0, 1] is a parameter controlling how much coverage and reliability
have to be taken into account.

2.2 Problems

It is impractical to maximize the gain while minimizing the cost. Thus, we define
the following two constrained optimization problems to select sources.

In some scenarios, a query system gives an upper Bound on the Number
of data sources can be accessed, and the optimization goal is to Maximize the
Gain, we call this problem as BNMG.

66 H. Guo et al.

Definition 9 (BNMG). Given a source set S and a positive integer K, the
BNMG problem is to find a subset S of S, such that |S| ≤ K, and G(S) is
maximized.

In some scenarios, a query system gives an upper Bound on the Cost as the
constraint, and wishes to obtain the Maximum Gain, we define this problem as
BCMG.

Definition 10 (BCMG). Given a source set S and τc be a budget on cost, the
BCMG problem is to find a subset S of S, such that maximizes G(S) under
C(S) ≤ τc.

2.3 Complexity Results

Theorem 1. The gain function of formulation (8) is non-negative, monotone
and submodular.

Proof. non-negative. Obviously.
monotone. For x ∈ S − S, if G(S ∪ x) ≥ G(S), the gain model is monotone.

αV (S ∪ x) ≥ αV (S), obviously (9)

(1 − α)R(S ∪ x) = (1 − α)R(S) + (1 − α)R(x) ≥ (1 − α)R(S) (10)

According to Eqs. (9) and (10), we get

G(S ∪ x) = αV (S ∪ x) + (1 − α)R(S ∪ x) ≥ αV (S) + (1 − α)R(S) = G(S) (11)

Submodular. For R ⊂ S and x ∈ S−S, if G(S ∪x)−G(S) ≤ G(R∪x)−G(R),
the gain model is submodular.

V (S ∪ x) − V (S) = V (S) + V (x) − V (S ∩ x) − V (S)
= V (x) − V (S ∩ x)

(12)

Similarly,
V (R ∪ x) − V (R) = V (x) − V (R ∩ x) (13)

Since, R ⊂ S, then V (S ∩ x) ≥ V (R ∩ x). Hence

αV (S ∪ x) − αV (S) ≤ αV (R ∪ x) − αV (R) (14)

And

(1 − α)R(S ∪ x) − (1 − α)R(S) = (1 − α)R(S) + (1 − α)R(x) − (1 − α)R(S)
= (1 − α)R(x)

(15)
Similarly, (1 − α)R(R ∪ x) − (1 − α)R(R) = (1 − α)R(x), we have

(1 − α)R(S ∪ x) − (1 − α)R(S) = (1 − α)R(R ∪ x) − (1 − α)R(R) (16)

Combining Eqs. (14) and (16), we get

G(S ∪ x) − G(S) ≤ G(R ∪ x) − G(R) (17)

Selecting Sources for Query Approximation with Bounded Resources 67

Theorem 2. Both BNMG and BCMG are NP-hard problems.

Proof. For a submodular function f , if f only takes non-negative value, and is
monotone. Finding a K-element set S for which f(S) is maximized is an NP-
hard optimization problem [5,6]. For BNMG problem, function f is the gain
model, thus, BNMG is NP-hard.

The BCMG problem is an instance of the Budgeted Maximum Coverage
Problem (BMC) that is proven to be NP-hard [7]. Given an instance of BMC: A
collection of sets S = {S1, S2, · · · , Sm} with associated costs {Ci}mi=1 is defined
over a domain of elements X = {x1, x2, · · · , xn} with associated equivalent-
weights. The goal is to find a collection of sets S ⊆ S, such that the total cost of
elements in S does not exceed a given budget L, and the total weight of elements
covered by S is maximized. BCMG can be captured by the BMC problem in the
following way: 1) the sets in BMC represent the sources in S of BCMG; 2) the
elements in BMC represent the data items in BCMG; 3) the parameter α of the
gain model in BCMG is equal to 1. Since the reduction could be accomplished
in polynomial time, BCMG is an NP-hard problem.

3 Algorithm for Source Selection

Due to the NP-hardness of BNMG and BCMG, in this section, firstly, we devise
a greedy approximation algorithm for BNMG and analyze the complexity and
approximation ratio (Sect. 3.1). Then, we show that a greedy strategy is insuf-
ficient for solving the BCMG problem. Indeed, it can get arbitrary bad results.
Thus, we generate a modified greedy algorithm using the enumeration technique
for BCMG, and demonstrate that such algorithm has the best possible approx-
imation factor (Sect. 3.2). We devise a bitwise operation strategy to accelerate
the running of proposed algorithms (Sect. 3.3).

3.1 Algorithm for BNMG

For a submodular and nondecreasing function f , f satisfies a natural “dimin-
ishing returns” property: The marginal gain from adding a source to a set of
sources S is at least as high as the marginal gain from adding the same source to
a superset of S. Here, the marginal gain (G(S ∪ Si) − G(S) in this algorithm) is
the difference between the gain after and before selecting the new source. Such
problem is well-solved by a simple greedy algorithm, denoted by Greedy (shown
in Algorithm 1), that selects K sources by iteratively picking the source that
provides the largest marginal gain (line 6).

68 H. Guo et al.

Algorithm 1. Greedy
Input: S, K
Output: a subset S of S with |S| ≤ K
1: Initialize S ← ∅
2: while |S| < K do
3: for all Si ∈ S do
4: G(S ∪ Si) ← CompGain(S ∪ Si);
5: end for
6: Sopt ← arg maxSi∈S

G(S ∪ Si) − G(S);
7: S ← S ∪ Sopt;
8: S ← S\Sopt;
9: end while

Time Complexity Analysis. The time complexity of Algorithm 1 is determined
by the complexity to compute the gain of (S ∪ Si), this complexity is O(n), n is
the maximal number of data items in Si. Clearly, the complexity of Algorithm1
is O(K ∗n∗m), where K is the number of selected sources, and m is the number
of sources in S.

Theorem 3. Algorithm1 is a (1 − 1/e) − approximation algorithm, where e is
the base of the natural logarithm.

Proof. The greedy algorithm has (1−1/e) approximation ratio for a submodular
and monotone function with a cardinality constraint [6].

3.2 Algorithm for BCMG

The greedy heuristic algorithm that picks at each step a source maximizing the
ratio G(S∪Si)−G(S)

C(Si)
has an unbounded approximation factor. Namely, the worst

case behavior of this algorithm might be very far from the optimal solution. In
Table 2 for example, two sources S1 and S2 are subjected to an FD: key → value.
According to our problem definition, S1 has V (S1) = 1, R(S1) = 1, C(S1) = 1;
S2 has V (S2) = p, R(S2) = p, C(S2) = p+1. Let S = {S1, S2}, α = 0.5, and the
budget of cost τc = p + 1. The optimal solution contains the source S2 and has
gain p, while the solution picked by the greedy heuristic contains the source S1

and has gain 1. The approximation factor of this instance is p, and is therefore
unbounded (since p is not a constant).

Table 2. Two sources for an example

Selecting Sources for Query Approximation with Bounded Resources 69

We modify the greedy heuristic using the enumeration technique, so as to
achieve a constant approximation factor for the BCMG problem. The main idea
is to apply the partial enumeration technique [8] before calling greedy algorithm,
denoted by EnumGreedy (shown in Algorithm2). Let l be a fixed integer. Firstly,
we enumerate all subsets of S of cardinality less than l which have cost at most τc,
and select the subset that has the maximal gain as the candidate solution (line
2). Then, we consider all subsets of S of cardinality l which have cost at most τc,
and we complete each subset to a candidate solution using the greedy heuristic
(line 3–17). The algorithm outputs the candidate solution having the greatest
gain (line 18–22). Time Complexity Analysis. The running time of Algorithm2 is

Algorithm 2. EnumGreedy
Input: S, τc, l
Output: a subset S of S with C(S) ≤ τc
1: Initialize S ← ∅, S ′ ← ∅, S ′′ ← ∅
2: S ′ ← arg maxS′⊆S

{G(S ′)| C(S ′) ≤ τc, |S ′| < l}
3: for all S ′′ ⊆ S, |S ′′| = l, C(S ′′) ≤ τc do
4: S ← S\S ′′

5: for all Si ∈ S do
6: G(S ′′ ∪ Si) ← CompGain(S ′′ ∪ Si);
7: C(Si) ← CompCost(Si);
8: end for
9: Sopt ← arg maxSi

G(S′′∪Si)−G(S′′)
C(Si)

;

10: if C(S ′′) + C(Si) ≤ τc then
11: S ′′ ← S ′′ ∪ Sopt;
12: S ← S\Sopt;
13: end if
14: if G(S ′′) > G(S ′′) then
15: S ′′ ← S ′′;
16: end if
17: end for
18: if G(S ′) > G(S ′′) then
19: S ← S ′;
20: else
21: S ← S ′′;
22: end if

O((n ·m)(l−1)) executions of enumeration and O((n ·m)2l) executions of greedy,
where m is the number of sources, n is the maximal number of data items in Si.
Therefore, for every fixed l, the running time is polynomial in n · m.

Discussion. When l = 1, Algorithm 2 is actually a simple greedy method which
has an unbounded approximation factor as previously mentioned. When l = 2,
Algorithm 2 finds a collection of sources according to the greedy heuristic as the
first candidate for solution. The second candidate is a single set in S for which
gain is maximized. The algorithm outputs the candidate solution having the
maximum gain.

70 H. Guo et al.

Theorem 4. For l = 2, Algorithm2 achieves an approximation factor of
1
2 (1 − 1

e) for the BCMG problem. For l ≥ 3, Algorithm2 achieves a (1 − 1
e)

approximation ratio for the BCMG, and this approximation factor is the best
possible.

Proof. The proof is by generalized the proof of approximation factor for the
BMC problem, presented in [7]. The detail is omitted due to space limitation.

3.3 Improvement for Algorithms

The time complexities of proposed algorithms are determined by the complex-
ity to compute the gain. In fact, the time complexities are dominated by the
computing of coverage since reliability and cost can be computed in constant
time. To reduce the computation time, we transform the process of computing
coverage into building bit vectors and conducting bitwise or operation between
them so that we can compute coverage without accessing original data. We build
a bit vector B(Si) for each Si offline and use them to compute the coverage of
sources online.

Constructing a bit vector for each source in an offline phase. Given S, we
consider all data items of S as bit vector space. For a source Si, we maintain a
bit vector B(Si) = {(b1, b2, · · · , bM)|bi ∈ {0, 1}}, where M is the total number
of data items provided by S, bj equals 1 if Si contains j-th data item of S. The
bit vector building algorithm for each source Si is described in Algorithm 3.

Algorithm 3. Bit Vector Building
Input: S, Σ (FDs set)
Output: {B(Si)|Si ∈ S, 0 ≤ i ≤ m}
1: Initialize B(Si) ← ∅
2: for all Si ∈ S do
3: for all ϕ ∈ Σ do
4: for all Left-hand side Aj of ϕ do
5: if Si contains Aj then
6: bj = 1;
7: else
8: bj = 0;
9: end if

10: Add bj to B(Si);
11: end for
12: end for
13: end for

Then, the coverage of Si is the number of 1 in B(Si), denoted as
B(Si).cardinality.

V (Si) = B(Si).cardinality =
M∑

1

bj (18)

Selecting Sources for Query Approximation with Bounded Resources 71

Computing source coverage online. Given a source set S, the coverage of S
can be easily computed by bitwise or operation:

V (S) = ∪Si∈SV (Si) = (∨Si∈SB(Si)).cardinality (19)

where ∨ is the bitwise or operation.
Time Complexity Analysis. The expected time of Algorithm 3 is O(m ∗ |Σ| ∗

navg), where navg = avg0≤i≤m|Si|. Although the complexity is quite high, such
bit vectors are computed offline. Hence it will not affect the performance of the
algorithm.

We denote the improvement greedy algorithm for BNMG problem which
combines the bit vector operation as BitGreedy, and BitEnumGreedy for BCMG
problem similarly.

4 Experimental Results

In this section, we study the proposed algorithms experimentally. The goals
are to investigate (1) the comparison of performance between Greedy and Bit-
Greedy for BNMG problem, as well as EnumGreedy and BitEnumGreedy for
BCMG problem, and (2) how our algorithms perform in terms of efficiency and
scalability.

4.1 Experiment Setup

We conducted our comparison experiments over a real-world dataset: Book [3].
In addition, to investigate the efficiency and scalability of our algorithm, we eval-
uated the performance of BitGreedy and BitEnumGreedy on synthetic datasets
that yielded more sources and more tuples.

The Book dataset contains 894 data sources. Information on Computer Sci-
ence books was collected from online bookstore aggregator AbeBooks.com, there
are two FDs between the attributes: ISDN → Name and ISDN → Author.

The Synthetic Data is synthetic data sets with various data source number
and data size. We used 10 attributes A1 − A10 and 8 FDs: A1 → A8, A1 → A9,
A1 → A10, A2 → A6, A2 → A7, A3 → A6, A3 → A7, [A4, A5] → A8. Each
data source randomly chose an attribute with 20% probability, and each source
contains at least one of the FDs, and the size of each data source is a random
number in the range of [2000, 10000].

In practical situations, due to the enormous number and volume of sources,
Algorithm 2 needs to consume considerable time even when l = 3 to guarantee
the best approximation ratio. Thus, in this paper, we set l = 2.

In this paper, we focus more on selecting data sources with high coverage,
thus, we set α = 0.9. Users can set different values for α according to their
preferences.

All experiments are implemented in Java and executed on a PC with Win-
dows 7, a 16 GB of RAM and a 3.6 GHz Intel i7-7700U CPU.

72 H. Guo et al.

4.2 Comparison

For BNMG problem, we firstly compare the effectiveness of Greedy and Bit-
Greedy with #Bounded Source (K in problem definition) varying from 1 to
10 on Book dataset, shown in Fig. 1(a) and Fig. 1(b), then we vary #Bounded
Source from 10 to 100 on Synthetic Data with #Source = 100, #Tuple = 2000,
shown in Fig. 1(c) and Fig. 1(d).

For BCMG problem, we compare EnumGreedy and BitEnumGreedy with
Bounded cost varying from 5k to 50k on Book dataset and Bounded cost varying
from 5*104 to 5*105 on Synthetic Data, The results are shown in Fig. 1(e)–1(h).

We have the following observations. (1) For BNMG problem, both on real-
world data set and Synthetic data. Greedy and BitGreedy achieve the same
Gain, and with the increase of #Bounded sources, the runtime of Greedy is lin-
ear to #Bounded sources, while the runtime of BitGreedy grows much slowly
with #Bounded and outperforms Greedy significantly. (2) BCMG problem get
a similar result. Whether the data set is Book or Synthetic Data, compare to
EunmGreedy, BitEumGreedy achieves hundreds of speed up while not sacrifice
the Gain. (3) Due to the higher time complexity, the algorithm for BCMG prob-
lem requires much runtime than that of BNMG, it also signifies that algorithm
EnumGreedy, which without improvement strategy, for BCMG problem can not
apply to real-time query systems.

4.3 Efficiency and Scalability

To further test how the number of sources and source size affects efficiency
and scalability, we conduct experiments on synthetic datasets. (1) Fig. 1(i) and
Fig. 1(j) report the runtimes of both algorithms with varying the data size. We
observe that the runtimes of BitGreedy and EnumBitGreedy are very stable, it
shows that the high efficiency and stability of our method when the volume of
data source grows. Figure 1(k) and Fig. 1(l) plot the running time of BitGreedy
and EnumBitGreedy respectively, as we vary the number of data sources from
100 to 1000. These show that the runtimes of both BitGreedy and EnumBit-
Greedy increase nearly linearly. BitGreedy costs 47ms when the source number
reaches 1000, and EnumBitGreedy finishes in 20316ms when the source number
is 1000, showing the great scalability of our methods.

Summary. (1) The sources selected by BitGreedy and BitEnumGreedy are same
as the selections of Greedy and EnumGreedy. (2) The algorithms using bitwise
operation outperform original methods both on efficiency and scalability signif-
icantly. (3) The effectiveness of BitGreedy and BitEnumGreedy are insensitive
to the source size. (4) Our algorithms scale well on both the data size and the
number of sources.

5 Related Work

Source selection [3,9–13] has been recently studied. [3] selects a set of sources for
data fusion, it efficiently estimates fusion accuracy, and maximizes the profit by

Selecting Sources for Query Approximation with Bounded Resources 73

1 2 3 4 5 6 7 8 9 102.0k

2.5k

3.0k

3.5k

4.0k

4.5k
 Greedy
 BitGreedy

#Bounded sources

G
ai

n

(a) Test on Book (BNMG)

1 3 5 7 9
0

5

10

15

20

25

 Greedy
 BitGreedy

#Bounded sources

R
un

tim
e

(m
s)

(b) Test on Book (BNMG)

10 30 50 70 90
15.0k
20.0k
25.0k
30.0k

35.0k
40.0k
45.0k

 Greedy
 BitGreedy

#Bounded sources

G
ai

n

(c) Test on Syn. (BNMG)

10 30 50 70 90
0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

 Greedy
 BitGreedy

#Bounded sources

R
un

tim
e

(m
s)

(d) Test on Syn. (BNMG)

10k 20k 30k 40k 50k
2k

3k

4k

5k

6k

7k

 EnumGreedy
 BitEnumGreedy

Bounded cost

G
ai

n

(e) Test on Book (BCMG)

10k 20k 30k 40k 50k
0.0

500.0
1.0k
1.5k
2.0k
2.5k
3.0k
3.5k
4.0k

 EnumGreedy
 BitEnumGreedy

Bounded cost

R
un

tim
e

(m
s)

(f) Test on Book (BCMG)

100k 200k 300k 400k 500k

10.0k

15.0k

20.0k

25.0k

30.0k

 EnumGreedy
 BitEnumGreedy

Bounded cost

G
ai

n

(g) Test on Syn. (BCMG)

100k 200k 300k 400k 500k0.0
300.0
600.0
900.0

1.2k
1.5k
1.8k

 EnumGreedy
 BitEnumGreedy

Bounded cost

R
un

tim
e

(s
)

(h) Test on Syn. (BCMG) (i) Runtime VS. #Tuple

0.0 2.0k 4.0k 6.0k 8.0k 10.0k
0

20

40

60

80

100
 BitEnumGreedy

#Avg_Tuple

R
un

tim
e

(m
s)

(j) Runtime VS. #Tuple (k) Runtime VS. #Source (l) Runtime VS. #Source

Fig. 1. Experimental results

optimizing the gain and cost of integrating sources. However, it does not consider
data self-conflicting and incomplete, and could hardly scale to big data sources.
[9] studies online ordering sources by estimating overlaps of sources, but this
method requires some prior statistics and neglects data quality. [10] only takes
freshness as quality metric without a comprehensive consideration for the quality
of data sources such as functional dependency, completeness and the required
resources. [11] focuses on finding sources relevant to a given query and does not
take overlap into consideration. [12] proposes a probabilistic coverage model to
evaluate the quality of data and consider overlaps information. However, this

74 H. Guo et al.

method requires some prior statistics truth probability of each value, further-
more, this paper adopts a simple greedy method to solve the problem which is
not optimal. [13] selects sources for data inconsistency detection and does not
take quality and cost into consideration.

Fan et al. [1,14–18] proposed a series of work with respect to approximate
query processing with bounded resources, which can answer a specific class of
queries by accessing only a subset of the whole dataset with a bounded number
of tuples. Unlike our study, these works access a portion of data from each data
source instead of selecting sources by considering their coverage, overlap and
quality.

6 Conclusion

This paper studies source selection problem for query approximation taking
efficiency and effectiveness into consideration. We first propose a gain model
to evaluate the coverage, reliability and cost of data source and we formulate
source selection problem to two problems, which are both proven to be NP-
hard. Then we develop a greedy algorithm for bounded source number problem
and a modified greedy for bounded cost problem and show their approximations,
both algorithms come with rigorous theoretical guarantees on their performance.
Finally, we propose an efficient bitwise operation strategy to further improve effi-
ciency. Experimental results on both the real-world and synthetic datasets show
our methods can select sources efficiently and can scale to datasets with up to
thousands of data sources.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under grants 61732003, 61832003, 61972110 and U1811461.

References

1. Fan, W., Geerts, F., Neven, F.: Making queries tractable on big data with prepro-
cessing. PVLDB 6(9), 685–696 (2013)

2. Li, X., Dong, X.L., Lyons, K., Meng, W., Srivastava, D.: Truth finding on the deep
web: is the problem solved? VLDB 6(2), 97–108 (2012)

3. Dong, X.L., Saha, B., Srivastava, D.: Less is more: selecting sources wisely for
integration. In: VLDB, vol. 6, pp. 37–48. VLDB Endowment (2012)

4. Codd, E.F.: Relational completeness of data base sublanguages. In: Courant Com-
puter Science Symposia, vol. 6, pp. 65–98. Data Base Systems (1972)

5. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to opti-
mize float: an analytic study of exact and approximate algorithms. Manag. Sci.
23(8), 789–810 (1977)

6. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978).
https://doi.org/10.1007/BF01588971

7. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf.
Process. Lett. 70(1), 39–45 (1999)

https://doi.org/10.1007/BF01588971

Selecting Sources for Query Approximation with Bounded Resources 75

8. Shachnai, H., Tamir, T.: Polynomial time approximation schemes. In: Hand-
book of Approximation Algorithms and Metaheuristics, pp. 9.1–9.21. Chapman
& Hall/CRC Computer and Information Science Series (2007)

9. Salloum, M., Dong, X.L., Srivastava, D., Tsotras, V.J.: Online ordering of overlap-
ping data sources. VLDB 7(3), 133–144 (2013)

10. Rekatsinas, T., Dong, X.L., Srivastava, D.: Characterizing and selecting fresh data
sources. In: SIGMOD, pp. 919–930. ACM (2014)

11. Lin, Y., Wang, H., Zhang, S., Li, J., Gao, H.: Efficient quality-driven source selec-
tion from massive data sources. J. Syst. Softw. 118(1), 221–233 (2016)

12. Lin, Y., Wang, H., Li, J., Gao, H.: Data source selection for information integration
in big data era. Inf. Sci. 479(1), 197–213 (2019)

13. Li, L., Feng, X., Shao, H., Li, J.: Source selection for inconsistency detection.
In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol.
10828, pp. 370–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91458-9 22

14. Cao, Y., Fan, W., Wo, T., Yu, W.: Bounded conjunctive queries. PVLDB 7(12),
1231–1242 (2014)

15. Fan, W., Geerts, F., Libkin, L.: On scale independence for querying big data. In:
PODS, pp. 51–62. ACM (2014)

16. Fan, W., Geerts, F., Cao, Y., Deng, T., Lu, P.: Querying big data by accessing
small data. In: PODS, pp 173–184. ACM (2015)

17. Cao, Y., Fan, W.: An effective syntax for bounded relational queries. In: SIGMOD,
pp 599–614. ACM (2016)

18. Cao, Y., Fan, W.: Data driven approximation with bounded resources. PVLDB
10(9), 973–984 (2017)

https://doi.org/10.1007/978-3-319-91458-9_22
https://doi.org/10.1007/978-3-319-91458-9_22

Parameterized Complexity of Satisfactory
Partition Problem

Ajinkya Gaikwad, Soumen Maity(B), and Shuvam Kant Tripathi

Indian Institute of Science Education and Research, Pune 411008, India
{ajinkya.gaikwad,tripathi.shuvamkant}@students.iiserpune.ac.in,

soumen@iiserpune.ac.in

Abstract. The Satisfactory Partition problem consists in decid-
ing if the set of vertices of a given undirected graph can be partitioned
into two nonempty parts such that each vertex has at least as many
neighbours in its part as in the other part. The Balanced Satisfactory
Partition problem is a variant of the above problem where the two par-
tite sets are required to have the same cardinality. Both problems are
known to be NP-complete. This problem was introduced by Gerber and
Kobler [European J. Oper. Res. 125 (2000) 283-291] and further studied
by other authors, but its parameterized complexity remains open until
now. We enhance our understanding of the problem from the viewpoint
of parameterized complexity. The three main results of the paper are
the following: (1) The Satisfactory Partition problem is polynomial-time
solvable for block graphs, (2) The Satisfactory Partition problem and its
balanced version can be solved in polynomial time for graphs of bounded
clicque-width, and (3) A generalized version of the Satisfactory Partition
problem is W[1]-hard when parametrized by treewidth.

Keywords: Parameterized complexity · FPT · W[1]-hard ·
Treewidth · Clique-width

1 Introduction

Gerber and Kobler [8] introduced the problem of deciding if a given graph has a
vertex partition into two non-empty parts such that each vertex has at least as
many neighbours in its part as in the other part. A graph satisfying this prop-
erty is called partitionable. For example, complete graphs, star graphs, complete
bipartite graphs with at least one part having odd size are not partitionable,
where as some graphs are easily partitionable: cycles of length at least 4, trees
that are not star graphs [5].

Given a graph G = (V,E) and a subset S ⊆ V (G), we denote by dS(v)
the degree of a vertex v ∈ V in G[S], the subgraph of G induced by S. For
S = V , the subscript is omitted, hence d(v) stands for the degree of v in G. In

S. Maity—The author’s research was supported in part by the Science and Engineering
Research Board (SERB), Govt. of India, under Sanction Order No. MTR/2018/001025.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 76–90, 2020.
https://doi.org/10.1007/978-3-030-64843-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_6

Parameterized Complexity of Satisfactory Partition Problem 77

this paper, we study the parameterized complexity of Satisfactory Partition
and Balanced Satisfactory Partition problems. We define these problems
as follows:

Satisfactory Partition
Input: A graph G = (V, E).
Question: Is there a nontrivial partition (V1, V2) of V such that for every
v ∈ V , if v ∈ Vi then dVi(v) ≥ dV3−i(v)?

A variant of this problem where the two parts have equal size is:

Balanced Satisfactory Partition
Input: A graph G = (V, E) on an even number of vertices.
Question: Is there a nontrivial partition (V1, V2) of V such that |V1| = |V2|
and for every v ∈ V , if v ∈ Vi then dVi(v) ≥ dV3−i(v)?

Given a partition (V1, V2), we say that a vertex v ∈ Vi is satisfied if dVi
(v) ≥

dV3−i
(v), or equivalently if dVi

(v) ≥ �d(v)
2 �. A graph admitting a non-trivial

partition where all vertices are satisfied is called satisfactory partitionable, and
such a partition is called satisfactory partition. For the standard concepts in
parameterized complexity, see the recent textbook by Cygan et al. [6].

Our Results: Our main results are the following:

– The Satisfactory Partition problem is polynomial-time solvable for block
graphs,

– The Satisfactory Partition and Balanced Satisfactory Partition
problems can be solved in polynomial time for graphs of bounded clique-
width.

– A generalized version of the Satisfactory Partition problem is W[1]-hard
when parameterized by treewidth.

Related Work: In the first paper on this topic, Gerber and Kobler [8] consid-
ered a generalized version of this problem by introducing weights for the vertices
and edges and showed that a general version of the problem is strongly NP-
complete. For the unweighted version, they presented some sufficient conditions
for the existence of a solution. This problem was further studied in [2,7,9]. The
Satisfactory Partition problem is NP-complete and this implies that Bal-
anced Satisfactory Partition problem is also NP-complete via a simple
reduction in which we add new dummy vertices and dummy edges to the graph
[3,5]. Both problems are solvable in polynomial time for graphs with maximum
degree at most 4 [5]. They also studied generalizations and variants of this prob-
lem when a partition into k ≥ 3 nonempty parts is required. Bazgan, Tuza, and
Vanderpooten [2,4] studied an “unweighted” generalization of Satisfactory
Partition, where each vertex v is required to have at least s(v) neighbours
in its own part, for a given function s representing the degree of satisfiability.
Obviously, when s = �d

2�, where d is the degree function, we obtain satisfac-
tory partition. They gave a polynomial-time algorithm for graphs of bounded
treewidth which decides if a graph admits a satisfactory partition, and gives such
a partition if it exists.

78 A. Gaikwad et al.

2 Polynomial Time Algorithm on Block Graphs

A single vertex whose removal disconnects the graph is called a cut-vertex. A
maximal connected subgraph without a cut-vertex is called a block. Thus, every
block of a graph G is either a maximal 2-connected subgraph, or a cut-edge with
its end points. By their maximality, different blocks of G overlap in at most one
vertex, which is then a cut-vertex of G. Hence, every edge of G lies in a unique
block, and G is the union of its blocks. A block graph is a graph whose blocks are
cliques. An end block of a block graph is a block that contains exactly one cut-
vertex of G. A block graph that is not complete graph has at least two end blocks.
A block graph admits a nice tree structure, called cut-tree. Let {B1, B2, . . . , Br}
and {c1, c2, . . . , cs} be the set of blocks and the set of cut-vertices of a block
graph G, respectively. A cut-tree of G is a tree TG = (V ′, E′), where V ′ =
{B1, B2, . . . , Br, c1, c2, . . . , cs} and E′ = {Bicj | cj ∈ Bi, i ∈ [r] and j ∈ [s]}.
Note that the cut-tree TG is a tree in which the leaves are the end blocks of G.
The computation of blocks in a graph G and construction of TG can be done in
O(|V | + |E|) time, using Depth First Search (DFS) [1].

v1 v2 v3 v4 v5

v6
v7

v8 v9

v10 v11

v12

v13 v14

v15

v16

v17

v18
B1

B13

B3 B4

B5

B6

B7 B8

B9

B10

B11

B12

B2

Fig. 1. A block graph G

Lemma 1. If a cut vertex v is adjacent to an end block B′ = {v, v′} of size two
then v and v′ must lie in the same part in any satisfactory partition.

Proof. Suppose v and v′ are in different parts. As B′ is an end-block of size 2, v′

has no neighbour in its own part and one neighbour v in the other part. Hence
v′ is not satisfied. This proves the lemma.

Parameterized Complexity of Satisfactory Partition Problem 79

v3

B5 B6 B7

v2 v13 v4

B2 B3 B4 B10 B8 B9

v7 v15

B1 B13 B11 B12

Fig. 2. The cut tree TG of the block graph G shown in Fig. 1

Let G be a block graph and TG be the cut-tree of G. Every cut-vertex is
adjacent to at least two blocks. For simplicity, suppose cut-vertex v is adja-
cent to two blocks B1 and B2. Then TG − v has two components TG,B1 and
TG,B2 , where TG,Bi

is the component that contains block Bi, i = 1, 2. There

are two possible partitions with respect to v:
(
V (TG,B1) \ {v}, V (TG,B2)

)
and(

V (TG,B1), V (TG,B2) \ {v}
)
. A cut-vertex v ∈ V (TG) is said to be a good cut-

vertex if there is a satisfactory partition of G with respect to v; otherwise v is
called a bad cut-vertex. In general, suppose cut-vertex v ∈ V (TG) is adjacent
to k non-end blocks B1, B2, . . . , Bk, and � end blocks B′

1, B
′
2, . . . , B

′
�. As each

cut-vertex is adjacent to at least two blocks, we have k + � ≥ 2. We consider the
following cases and decide if a cut-vertex v is good or bad in each case (Fig. 2).

Case 1: Let k ≥ 2 and � ≥ 0. That is, v is adjacent to at least two non-end
blocks and � ≥ 0 end blocks. Let B1 be a smallest non-end block adjacent to v.
Consider the partition V1 = V (TG,B1) \ {v} and V2 = V \ V1. Note that v ∈ V2

and dV2(v) ≥ dV1(v), hence v is satisfied and, clearly all other vertices are also
satisfied. Thus (V1, V2) forms a satisfactory partition. For example in Fig. 1, v2
is adjacent to two non-end blocks B2, B5 and two end block B3, B4. Here B2

is a smallest non-end block, thus V1 = V (TG,B2) \ {v2} = {v7, v8, v9, v18} and
V2 = V \ V1 form a satisfactory partition. The cut-vertex v2 here is a good
cut-vertex.

Case 2: Let k = 1 and � ≥ 1. That is, v is adjacent to exactly one non-end block
B1 and at least one end block.

Subcase 2A: Suppose all the end blocks are of size two and the non-end block
B1 is of size greater than or equal to � + 2. As end blocks B′

1, B
′
2, . . . , B

′
� are

of size two each, using Lemma 1, we know the vertices of blocks B′
1, B

′
2, . . . , B

′
�

are in one part along with v. Thus
�⋃

i=1

B′
i forms first part V1 and V (TG,B1) \ {v}

80 A. Gaikwad et al.

forms second part V2. Vertex v ∈ V1 is not satisfied in partition (V1, V2), as
dV2(v) ≥ � + 1 > dV1(v) = �. For example in Fig. 1, v15 is adjacent to one non-
end block B10 of size 4 and two end blocks B11, B12 of size 2 each. Consider
the partition with respect to v15, V1 = {v15, v16, v17} and V2 = V \ V1. This is
not a satisfactory partition as v15 ∈ V1 but dV2(v15) = 3 > dV1(v15) = 2. The
cut-vertex v15 here is a bad cut-vertex.

Subcase 2B: Suppose all the end blocks are of size two and the non-end block
B1 is of size less than or equal to � + 1. We consider the same partition (V1, V2)
as in Subcase 2A. Cut-vertex v ∈ V1 is satisfied here as dV1(v) = � ≥ dV2(v). For
example, v4 is adjacent to one non-end block B7 of size 2 and two end blocks
B8, B9 of size 2 each. Note that partition with respect to v4, V1 = {v4, v5, v6}
and V2 = V \ V1, is a satisfactory partition. The cut-vertex v4 here is a good
cut-vertex.

Subcase 2C: At least one end block is of size greater than 2. Without loss of

generality suppose |B′
1| > 2. If |B1| ≥ |B′

1|, then V1 = V (TG,B1 ∪
�⋃

i=2

B′
i and

V2 = B′
1 \ {v} form a satisfactory partition. If |B′

1| ≥ |B1|, then V1 =
�⋃

i=1

B′
i and

V2 = B1 \ {v} form a satisfactory partition. For example, v7 is adjacent to one
non-end block B2 and two end blocks B1 and B13; B1 is of size 3 and B13 is
of size 2. Note that V1 = {v7, v8, v9, v18} and V2 = V \ V1 form a satisfactory
partition. The cut-vertex v7 is a good cut-vertex.

This suggests the following theorem.

Theorem 1. Let G be a block graph. If TG has a good cut-vertex then G is
satisfactory partitionable.

Note that although the condition of this theorem is sufficient to assure that a
block graph is satisfactory partitionable, this certainly is not a necessary condi-
tion. For example, the block graph shown in Fig. 3 is satisfactory partitionable
but does not have any good cut-vertices; clearly such block graphs always have
at least two bad cut-vertices. If a block graph has exactly one cut-vertex and
that too is a bad cut-vertex, then the graph is not satisfactory partitionable.
Now, we consider block graphs G having no good cut-vertices but the number m
of bad cut-vertices is at least two; such graphs satisfy following two conditions:

1. There is exactly one non-end block in G and every cut-vertex is adjacent to
it.

2. All the end blocks of G are of size exactly equal to 2.

Suppose B is the only non-end block in G and B′ is obtained from B by remov-
ing its cut vertices. Let Di represent the union of all end-blocks of size two
that contain vi. For graph G in Fig. 3, we have D3 = {v3, v7, v6, v8}, D4 =
{v4, v9, v10, v11}, D5 = {v5, v12, v13}; and B = {v1, v2, v3, v4, v5}, B′ = {v1, v2}.
By Lemma 1, all the vertices of Di must lie in one part in any satisfactory
partition. Let (D1,D2, . . . , Dm) be a decreasing ordering of Di’s according to
cardinalities, that is, |D1| ≥ |D2| ≥ . . . ≥ |Dm|.

Parameterized Complexity of Satisfactory Partition Problem 81

v1 v2

v3v4

v5

v6

v7

v8

v9

v10

v11

v12 v13

B B1

B2

B3

B4

B5

B6

B7 B8

Fig. 3. A satisfactory partitionable block graph G = (V, E) with no good cut-vertices.
Note that G has three cut-vertices v3, v4, v5 and all of them are bad cut-vertices. V1 =
{v3, v4, v6, v7, v8, v9, v10, v11} and V2 = V \V1 form a satisfactory partition of G.

Theorem 2. Let G be a block graph satisfying Conditions 1 and 2 above. Then
G is satisfactory partitionable if and only if G has a satisfactory partition of the
form either

V1,r =
r⋃

i=1

Di, V2,r = B′ ∪
m⋃

i=r+1

Di or

V ′
1,r = B′ ∪

r⋃
i=1

Di, V ′
2,r =

m⋃
i=r+1

Di,

for some 1 ≤ r ≤ m.

Proof. Suppose G is satisfactory partitionable, and V1 =
j−1⋃
i=1

Di ∪
r+1⋃

i=j+1

Di, V2 =

B′ ∪ Dj ∪
m⋃

i=r+2

Di form a satisfactory partition of G. It is easy to see that

V ′
1 =

⋃r
i=1 Di and V ′

2 = B′ ∪
m⋃

i=r+1

Di, obtained from (V1, V2) by swapping

two sets Dj and Dr+1, also form a satisfactory partition in the required form.
On the other hand, if there is a satisfactory partition of the form (V1,r, V2,r)
or (V ′

1,r, V
′
2,r) for some r, then G is satisfactory partitionable. This proves the

theorem.

The following algorithm determines if a given block graph G is satisfactory
partitionable.

82 A. Gaikwad et al.

SP-Block Graph (G)

1. compute TG.
2. for each cut-vertex v ∈ V (TG), decide if v is a good cut-vertex or a bad

cut-vertex.
3. if TG has a good cut-vertex, then G is satisfactory partitionable (Theorem1).
4. if TG has exactly one bad cut-vertex and no good cut-vertices, then G is not

satisfactory partitionable.
5. if TG has at least two bad cut-vertices and no good cut-vertices, then compute

all partitions of the form (V1,r, V2,r) and (V ′
1,r, V

′
2,r) for 1 ≤ r ≤ m, and G is

satisfactory partitionable if (V1,r, V2,r) or (V ′
1,r, V

′
2,r) is a satisfactory partition

for some 1 ≤ r ≤ m (Theorem 2).

Computation of TG takes O(V +E) time [1]. The total cost of deciding if v is
a good or bad cut-vertex for all cut-vertices v ∈ V (TG), is O(E). Computation
of all partitions of the form (V1,r, V2,r) and (V ′

1,r, V
′
2,r) for 1 ≤ r ≤ m, requires

a decreasing ordering (D1,D2, . . . , Dm) of Di’s according to their cardinalities.
This takes O(V log V) time as m can be at most |V |. The running time of SP-
Block Graph is therefore O(V log V + E).

3 Graphs of Bounded Clique-Width

This section presents a polynomial time algorithm for the Satisfactory Parti-
tion and Balanced Satisfactory Partition problems for graphs of bounded
clique-width. The clique-width of a graph G is a parameter that describes the
structural complexity of the graph; it is closely related to treewidth, but unlike
treewidth it can be bounded even for dense graphs. In a vertex-labeled graph,
an i-vertex is a vertex of label i.

A c-expression is a rooted binary tree T such that

– each leaf has label oi for some i ∈ {1, . . . , c},
– each non-leaf node with two children has label ∪, and
– each non-leaf node with only one child has label ρi,j or ηi,j (i, j ∈

{1, . . . , c}, i 	= j).

Each node in a c-expression represents a vertex-labeled graph as follows:

– a oi node represents a graph with one i-vertex;
– a ∪-node represents the disjoint union of the labeled graphs represented by

its children;
– a ρij-node represents the labeled graph obtained from the one represented by

its child by replacing the labels of the i-vertices with j;
– a ηij-node represents the labeled graph obtained from the one represented by

its child by adding all possible edges between i-vertices and j-vertices.

A c-expression represents the graph represented by its root. A c-expression of a
n-vertex graph G has O(n) vertices. The clique-width of a graph G, denoted by
cw(G), is the minimum c for which there exists a c-expression T representing a
graph isomorphic to G.

Parameterized Complexity of Satisfactory Partition Problem 83

A c-expression of a graph is irredundant if for each edge {u, v}, there is
exactly one node ηi,j that adds the edge between u and v. It is known that a
c-expression of a graph can be transformed into an irredundant one with O(n)
nodes in linear time. Here we use irredundant c-expression only.

Computing the clique-width and a corresponding c-expression of a graph is
NP-hard. For c ≤ 3, we can compute a c-expression of a graph of clique-width
at most c in O(n2m) time, where n and m are the number of vertices and edges,
respectively. For fixed c ≥ 4, it is not known whether one can compute the clique-
width and a corresponding c-expression of a graph in polynomial time. On the
other hand, it is known that for any fixed c, one can compute a (2c+1 − 1)-
expression of a graph of clique-width c in O(n3) time. For more details see [10].
We now have the following result:

Theorem 3. Given an n-vertex graph G and an irredundant c-expression T of
G, the Satisfactory Partition and Balanced Satisfactory Partition
problems are solvable in O(n8c) time.

For each node t in a c-expression T , let Gt be the vertex-labeled graph rep-
resented by t. We denote by Vt the vertex set of Gt. For each i, we denote
the set of i-vertices in Gt by V i

t . For each node t in T , we construct a
table dpt(r, r̄, s, s̄) ∈ {true, false} with indices r : {1, . . . , c} → {0, . . . , n},
r̄ : {1, . . . , c} → {0, . . . , n}, s : {1, . . . , c} → {−n + 1, . . . , n − 1} ∪ {∞}, and
s̄ : {1, . . . , c} → {−n+1, . . . , n−1}∪{∞} as follows. We set dpt(r, r̄, s, s̄) = true
if and only if there exists a partition (S, S̄) of Vt such that for all i ∈ {1, 2, . . . , c}
– r(i) = |S ∩ V i

t |;
– r̄(i) = |S̄ ∩ V i

t |;
– if S ∩V i

t 	= ∅, then s(i) = minv∈S∩V i
t

{
|NGt

(v)∩S|− |NGt
(v)\S|

}
, otherwise

s(i) = ∞;
– if S̄ ∩V i

t 	= ∅, then s̄(i) = minv∈S̄∩V i
t

{
|NGt

(v)∩ S̄|− |NGt
(v)\ S̄|

}
, otherwise

s̄(i) = ∞.

That is, r(i) denotes the number of the i-vertices in S; r̄(i) denotes the number
of the i-vertices in S̄; s(i) is the “surplus” at the weakest i-vertex in S and s̄(i)
is the “surplus” at the weakest i-vertex in S̄.

Let τ be the root of the c-expression T of G. Then G has a satisfactory
partition if there exist r, r̄, s, s̄ satisfying

1. dpτ (r, r̄, s, s̄) = true;
2. min

{
s(i), s̄(i)

}
≥ 0.

For the Balanced Satisfactory Partition problem, we additionally ask that∑c
i=1 r(i) =

∑c
i=1 r̄(i). If all entries dpτ (r, r̄, s, s̄) are computed in advance, then

we can verify above conditions by spending O(1) time for each tuple (r, r̄, s, s̄).
In the following, we compute all entries dpt(r, r̄, s, s̄) in a bottom-up manner.

There are (n + 1)c · (n + 1)c · (2n)c · (2n)c = O(n4c) possible tuples (r, r̄, s, s̄).
Thus, to prove Theorem 3, it is enough to prove that each entry dpt(r, r̄, s, s̄)
can be computed in time O(n4c) assuming that the entries for the children of t
are already computed.

84 A. Gaikwad et al.

Lemma 2. For a leaf node t with label oi, dpt(r, r̄, s, s̄) can be computed in
O(1) time.

Proof. Observe that dpt(r, r̄, s, s̄) = true if and only if r(j) = 0, r̄(j) = 0,
s(j) = 0, and s̄(j) = 0 for all j 	= i and either

– r(i) = 0, r̄(i) = 1, s(i) = ∞, s̄(i) = 0, or
– r(i) = 1, r̄(i) = 0, s(i) = 0, s̄(i) = ∞.

The first case corresponds to S = ∅, S̄ = V i
t , and the second case corresponds to

S = V i
t , S̄ = ∅. These conditions can be checked in O(1) time.

Lemma 3. For a ∪-node t, dpt(r, r̄, s, s̄) can be computed in O(n4c) time.

Proof. Let t1 and t2 be the children of t in T . Then dpt(r, r̄, s, s̄) = true if and
only if there exist r1, r̄1, s1, s̄1 and r2, r̄2, s2, s̄2 such that dpt(r1, r̄1, s1, s̄1) =
true, dpt(r2, r̄2, s2, s̄2) = true, r(i) = r1(i) + r2(i), r̄(i) = r̄1(i) + r̄2(i), s(i) =
min

{
s1(i), s2(i)

}
and s̄(i) = min

{
s̄1(i), s̄2(i)

}
for all i. The number of possible

pairs for (r1, r2) is at most (n+1)c as r2 is uniquely determined by r1; the number
of possible pairs for (r̄1, r̄2) is at most (n + 1)c as r̄2 is uniquely determined by
r̄1. There are at most 2c(2n)c possible pairs for (s1, s2) and for (s̄1, s̄2) each. In
total, there are O(n4c) candidates. Each candidate can be checked in O(1) time,
thus the lemma holds.

Lemma 4. For a ηij-node t, dpt(r, r̄, s, s̄) can be computed in O(1) time.

Proof. Let t′ be the child of t in T . Then, dpt(r, r̄, s, s̄) = true if and only if
dpt(r, r̄, s′, s̄′) = true for some s′, s̄′ with the following conditions:

– s(h) = s′(h) and s̄(h) = s̄′(h) hold for all h /∈ {i, j};
– s(i) = s′(i) + 2r(j) − |V j

t | and s(j) = s′(j) + 2r(i) − |V i
t |;

– s̄(i) = s̄′(i) + 2r̄(j) − |V j
t | and s̄(j) = s̄′(j) + 2r̄(i) − |V i

t |.
We now explain the condition for s(i). Recall that T is irredundant. That is, the
graph Gt′ does not have any edge between the i-vertices and the j-vertices. In
Gt, an i-vertex has exactly r(j) more neighbours in S and exactly |V j

t | − r(j)
more neighbours in S̄. Thus we have s(i) = s′(i) + 2r(j) − |V j

t |. The lemma
holds as there is only one candidate for each s′(i), s′(j), s̄′(i) and s̄′(j).

Lemma 5. For a ρij-node t, dpt(r, r̄, s, s̄) can be computed in O(n4) time.

Proof. Let t′ be the child of t in T . Then, dpt(r, r̄, s, s̄) = true if and only if
there exist r′, r̄′, s′, s̄′ such that dpt′(r′, r̄′, s′, s̄′) = true, where :

– r(i) = 0, r(j) = r′(i) + r′(j), and r(h) = r′(h) if h /∈ {i, j};
– r̄(i) = 0, r̄(j) = r̄′(i) + r̄′(j), and r̄(h) = r̄′(h) if h /∈ {i, j};
– s(i) = ∞, s(j) = min

{
s′(i), s′(j)

}
, and s(h) = s′(h) if h /∈ {i, j};

– s̄(i) = ∞, s̄(j) = min
{
s̄′(i), s̄′(j)

}
, and s̄(h) = s̄′(h) if h /∈ {i, j}.

The number of possible pairs for (r′(i), r′(j)) is O(n) as r′(j) is uniquely deter-
mined by r′(i); similarly the number of possible pairs for (r̄′(i), r̄′(j)) is O(n)
as r̄′(j) is uniquely determined by r̄′(i). There are at most O(n) possible pairs
for (s′(i), s′(j)) and for (s̄′(i), s̄′(j)). In total, there are O(n4) candidates. Each
candidate can be checked in O(1) time, thus the lemma holds.

Parameterized Complexity of Satisfactory Partition Problem 85

4 W[1]-Hardness Parameterized by Treewidth

In this section we show that a generalization of Satisfactory Partition is
W[1]-hard when parameterized by treewidth. We consider the following gener-
alization of Satisfactory partition, where some vertices are forced to be in
the first part V1 and some other vertices are forced to be in the second part V2.

Satisfactory PartitionFS

Input: A graph G = (V, E), a set V� ⊆ V (G), and a set V� ⊆ V (G).

Question: Is there a satisfactory partition (V1, V2) of V such that (i) V� ⊆ V1

(ii) V� ⊆ V2.

In this section, we prove the following theorem:

Theorem 4. The Satisfactory PartitionFS is W[1]-hard when parameter-
ized by the treewidth of the graph.

Let G = (V,E) be an undirected and edge weighted graph, where V , E, and
w denote the set of nodes, the set of edges and a positive integral weight function
w : E → Z+, respectively. An orientation Λ of G is an assignment of a direction
to each edge {u, v} ∈ E(G), that is, either (u, v) or (v, u) is contained in Λ. The
weighted outdegree of u on Λ is wu

out =
∑

(u,v)∈Λ w({u, v}). We define Minimum
Maximum Outdegree problem as follows:

Minimum Maximum Outdegree
Input: A graph G, an edge weighting w of G given in unary, and a positive
integer r.
Question: Is there an orientation Λ of G such that wu

out ≤ r for each u ∈
V (G)?

It is known that Minimum Maximum Outdegree is W[1]-hard when
parameterized by the treewidth of the input graph [11]. We reduce this problem
to the following generalization of Satisfactory Partition problem:

Satisfactory PartitionFSC

Input: A graph G = (V, E), a set V� ⊆ V (G), a set V� ⊆ V (G), and a set
C ⊆ V (G) × V (G).
Question: Is there a satisfactory partition (V1, V2) of V such that (i) V� ⊆ V1

(ii) V� ⊆ V2, and (iii) for all (a, b) ∈ C, V1 contains either a or b but not both?

To prove Theorem 4, we give a 2-step reduction. In the first step of the
reduction, we reduce Minimum Maximum Outdegree to Satisfactory
PartitionFSC. In the second step of the reduction we reduce the Satisfac-
tory PartitionFSC to Satisfactory PartitionFS. To measure the treewidth
of a Satisfactory PartitionFSC instance, we use the following definition. Let
I = (G,V�, V�, C) be a Satisfactory PartitionFSC instance. The primal
graph G′ of I is defined as follows: V (G′) = V (G) and E(G′) = E(G) ∪ C.

86 A. Gaikwad et al.

Lemma 6. The Satisfactory PartitionFSC is W[1]-hard when parameter-
ized by the treewidth of the primal graph.

Proof. Let G = (V,E,w) and a positive integer r be an instance of Min-
imum Maximum Outdegree. We construct an instance of Satisfactory
PartitionFSC as follows. An example is given in Fig. 4. For each vertex v ∈
V (G), we introduce a set of new vertices Hv = {hv�

1 , . . . , hv�
2r }. For each edge

(u, v) ∈ E(G), we introduce the set of new vertices Vuv = {uv
1, . . . , u

v
w(u,v)},

V ′
uv = {u′v

1 , . . . , u′v
w(u,v)}, Vvu = {vu

1 , . . . , vu
w(u,v)}, V ′

vu = {v′u
1 , . . . , v′u

w(u,v)},
V �

uv = {uv�
1 , . . . , uv�

w(u,v)}, V ′�
uv = {u′v�

1 , . . . , u′v�
w(u,v)}, V �

vu = {vu�
1 , . . . , vu�

w(u,v)},
V ′�

vu = {v′u�
1 , . . . , v′u�

w(u,v)}. We now define the graph G′ with

V (G′) = V (G)
⋃

v∈V (G)

Hv

⋃
(u,v)∈E(G)

(Vuv ∪ V �
uv ∪ Vvu ∪ V �

vu)

⋃
(u,v)∈E(G)

(V ′
uv ∪ V ′�

uv ∪ V ′
vu ∪ V ′�

vu)

and

E(G′) =
{
(v, h) | v ∈ V (G), h ∈ Hv

} ⋃ {
(u, x) | (u, v) ∈ E(G), x ∈ Vuv ∪ V �

uv

}

⋃ {
(x, v) | (u, v) ∈ E(G), x ∈ Vvu ∪ V �

vu

}

⋃ {
(uv

i , u
′v
i), (uv�

i , u′v�
i), (vui , v

′u
i), (vu�

i , v′u�
i) | (u, v) ∈ E(G), 1 ≤ i ≤ w(u, v)

}
.

We define the complementary vertex pairs

C =
{

(u′v
i , v′u

i), (u′v
i+1, v

′u
i), (uv

i , v′u
i), (u′v

i , vu
i) | (u, v) ∈ E(G), 1 ≤ i ≤ w(u, v)

}

Complementary vertex pairs are shown in dashed lines in Fig. 4. Finally we
define V� = V (G)

⋃
v∈V (G) Hv and V� =

⋃
(u,v)∈E(G)(V

�
uv ∪ V ′�

uv ∪ V �
vu ∪ V ′�

vu).
We use I to denote (G′, V�, V�, C) which is an instance of Satisfactory
PartitionFSC.

Clearly, it takes polynomial time to compute I. We now prove that the
treewidth of the primal graph G′ of I is bounded by a function of the treewidth
of G. We do so by modifying an optimal tree decomposition τ of G as follows:

– For every edge (u, v) of G, there is a node in τ whose bag B contains both u
and v; add to this node a chain of nodes 1, 2, . . . , w(u, v) − 1 where the bag
of node i is B ∪ {uv

i , u′v
i , v′u

i , vu
i , uv

i+1, u
′v
i+1, v

′u
i+1, v

u
i+1}.

– For every edge (u, v) of G, there is a node in τ whose bag B contains u;
add to this node a chain of nodes 1, 2, . . . , w(u, v) where the bag of node i is
B ∪ {uv�

i , u′v�
i }.

– For every edge (u, v) of G, there is a node in τ whose bag B contains v and
add to this node a chain of nodes 1, 2, . . . , w(u, v) where the bag of node i is
B ∪ {vu�

i , v′u�
i }.

Parameterized Complexity of Satisfactory Partition Problem 87

– For every vertex v of G, there is a node in τ whose bag B contains v and add
to this node a chain of nodes 1, 2, . . . , 2r where the bag of node i is B∪{hv�

i }.

Clearly, the modified tree decomposition is a valid tree decomposition of the
primal graph of I and its width is at most the treewidth of G plus eight.

b

hb
1

hb
2

hb
3

hb
4

bc1

bc2

bc1

bc2

b c
1

b c
2

b c
1

b c
2

ba1 ba1

b a
1 b a

1

c

hc
1

hc
2

hc
3

hc
4

cb1

cb2

cb1

cb2

c b
1

c b
2

c b
1

c b
2

ca1 ca2 ca1 ca2

c a
1 c a

2 c a
1 c a

2

a
ac
1 ac

2 ac
1 ac

2

a c
1 a c

2 a c
1 a c

2

ab
1 ab

1

a b
1 a b

1

ha
1 ha

2 ha
3 ha

4

a

b c

2

2

1

Fig. 4. Result of our reduction on a Minimum Maximum Outdegree instance G with
r = 2. The graph G is shown at the left; and G′ is shown at the right. Complementary
vertex pairs are shown using dashed lines. The vertices in the first part of satisfactory
partition (V1, V2) of G′ are shown in red for the given orientation of G. (Color figure
online)

Let D be the directed graph obtained by an orientation of the edges of G
such that for each vertex the sum of the weights of outgoing edges is at most r.
Consider the partition

V1 = V�
⋃

(u,v)∈E(D)

(Vvu ∪ V ′
vu) = V (G)

⋃
v∈V (G)

Hv

⋃
(u,v)∈E(D)

(Vvu ∪ V ′
vu)

and

V2 =
⋃

(u,v)∈E(D)

(Vuv ∪ V ′
uv ∪ V �

uv ∪ V ′�
uv)

⋃
(u,v)∈E(D)

(V �
vu ∪ V ′�

vu).

88 A. Gaikwad et al.

To prove that (V1, V2) is a satisfactory partition, first we prove that dV1(x) ≥
dV2(x) for all x ∈ V1. If x is a vertex in Hv or Vvu∪V ′

vu, then clearly all neighbours
of x are in V1, hence x is satisfied. Suppose x ∈ V (G). Let wx

out and wx
in denote

the sum of the weights of outgoing and incoming edges of vertex x, respectively.
Hence dV1(x) = 2r + wx

in and dV2(x) = 2wx
out + wx

in in G′. This shows that x is
satisfied as wx

out ≤ r. Now we prove that dV2(x) ≥ dV1(x) for all x ∈ V2. If x is
a vertex in Vuv ∪ V �

uv ∪ V �
vu then x has one neighbour in V1 and one neighbour

in V2. If x ∈ V ′
uv ∪ V ′�

uv ∪ V ′�
vu then x has one neighbour in V2 and no neighbours

in V1. Thus the vertices in V2 are satisfied.
Conversely, suppose (V1, V2) is a satisfactory partition of I. For every (u, v) ∈

E(G), either Vuv ∪ V ′
uv ∈ V1 or Vvu ∪ V ′

vu ∈ V1 due to the complementary vertex
pairs. We define a directed graph D by V (D) = V (G) and

E(D) =
{

(u, v) | Vvu ∪ V ′
vu ∈ V1

}⋃ {
(v, u) | Vuv ∪ V ′

uv ∈ V1

}
.

Suppose there is a vertex x in D for which wx
out > r. Clearly x ∈ V1. We know

dV1(x) = 2r + wx
in and dV2(x) = 2wx

out + wx
in. Then dV2(x) > dV1(x), as by

assumption wx
out > r, a contradiction to the fact that (V1, V2) is a satisfactory

partition of G′. Hence wx
out ≤ r for all x ∈ V (D).

Next we prove the following result which eliminates complementary pairs.

Lemma 7. Satisfactory PartitionFS, parameterized by the treewidth of the
graph, is W[1]-hard.

Proof. Let I = (G,V�, V�, C) be an instance of Satisfactory PartitionFSC.
Consider the primal graph of I, that is the graph Gp where V (Gp) = V (G)
and E(Gp) = E(G) ∪ C. From this we construct an instance I ′ = (G′, V ′

�, V ′
�)

of Satisfactory PartitionFS problem. For each (a, b) ∈ C in the primal
graph Gp, we introduce two new vertices �ab and �ab and four new edges
in G′. We now define the G′ with V (G′) = V (G)

⋃
(a,b)∈C{�ab,�ab} and

E(G′) = E(G)
⋃

(a,b)∈C

{
(a,�ab), (a,�ab), (b,�ab), (b,�ab)

}
. Finally, we define

the sets V ′
� = V�

⋃
(a,b)∈C{�ab} and V ′

� = V�
⋃

(a,b)∈C{�ab}. We illustrate our
construction in Fig. 5. It is easy to see that we can compute I ′ in polynomial
time and its treewidth is linear in the treewidth of I.

ab

a b

ab

Fig. 5. Gadget for a pair of complementary vertices (a, b) in the reduction from Sat-
isfactory PartitionFSC to Satisfactory PartitionFS.

Parameterized Complexity of Satisfactory Partition Problem 89

The following holds for every solution (V ′
1 , V

′
2) of I ′: V ′

1 contains �ab for
every (a, b) ∈ C, so it must also contain a or b. It cannot contain both a and b
for any (a, b) ∈ C, because �ab ∈ V ′

2 . Restricting (V ′
1 , V

′
2) to the original vertices

thus is a solution to I. Conversely, for every solution (V1, V2) of I, the partition
(V ′

1 , V
′
2) where V ′

1 = V1

⋃
(a,b)∈C{�ab} and V ′

2 = V2

⋃
(a,b)∈C{�ab}, is a solution

of I ′.
This proves Theorem 4.

5 Conclusion

In this work we proved that the Satisfactory Partition problem is polyno-
mial time solvable for block graphs; the Satisfactory Partition and Bal-
anced Satisfactory Partition problems are polynomial time solvable for
graphs of bounded clique width; and a generalized version of the Satisfactory
Partition problem is W[1]-hard when parameterized by treewidth. The param-
eterized complexity of the Satisfactory Partition problem remains unsettle
when parameterized by other important structural graph parameters like clique-
width and modular width.

Acknowledgments. The first author gratefully acknowledges support from the Min-
istry of Human Resource Development, Government of India, under Prime Minister’s
Research Fellowship Scheme (No. MRF-192002-211).

References

1. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms, 1st
edn. Addison-Wesley Longman Publishing Co., Inc., New York (1974)

2. Bazgan, C., Tuza, Z., Vanderpooten, D.: On the existence and determination of
satisfactory partitions in a graph. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC
2003. LNCS, vol. 2906, pp. 444–453. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-24587-2 46

3. Bazgan, C., Tuza, Z., Vanderpooten, D.: Complexity and approximation of satis-
factory partition problems. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595,
pp. 829–838. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719 84

4. Bazgan, C., Tuza, Z., Vanderpooten, D.: Degree-constrained decompositions of
graphs: bounded treewidth and planarity. Theoret. Comput. Sci. 355(3), 389–395
(2006)

5. Bazgan, C., Tuza, Z., Vanderpooten, D.: The satisfactory partition problem. Dis-
cret. Appl. Math. 154(8), 1236–1245 (2006)

6. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-21275-3

7. Gerber, M., Kobler, D.: Classes of graphs that can be partitioned to satisfy all
their vertices. Aust. J. Comb. 29, 201–214 (2004)

8. Gerber, M.U., Kobler, D.: Algorithmic approach to the satisfactory graph parti-
tioning problem. Eur. J. Oper. Res. 125(2), 283–291 (2000)

https://doi.org/10.1007/978-3-540-24587-2_46
https://doi.org/10.1007/978-3-540-24587-2_46
https://doi.org/10.1007/11533719_84
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

90 A. Gaikwad et al.

9. Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs
with fixed clique-width. Theoret. Comput. Sci. 299(1), 719–734 (2003)

10. Kiyomi, M., Otachi, Y.: Alliances in graphs of bounded clique-width. Discret. Appl.
Math. 223, 91–97 (2017)

11. Szeider, S.: Not so easy problems for tree decomposable graphs. CoRR,
abs/1107.1177 (2011)

An Approximation of the Zero Error
Capacity by a Greedy Algorithm

Marcin Jurkiewicz(B)

Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

marjurki@pg.edu.pl

Abstract. We present a greedy algorithm that determines a lower
bound on the zero error capacity. The algorithm has many new advan-
tages, e.g., it does not store a whole product graph in a computer memory
and it uses the so-called distributions in all dimensions to get a better
approximation of the zero error capacity. We also show an additional
application of our algorithm.

Keywords: Shannon capacity · Greedy algorithm · Strong product ·
Independence number.

1 Introduction

Let G = (V,E) be a graph1. If u, v ∈ V (G) and {u, v} ∈ E(G), then we say
that u is adjacent to v and we write u ∼ v. The open neighborhood of a vertex
v ∈ V (G) is NG(v) = {u ∈ V (G) : {u, v} ∈ E(G)}, and its closed neighborhood
is the set NG[v] = NG(v) ∪ {v}. The degree of a vertex v, denoted by dG(v), is
the cardinality of its open neighborhood. The minimum and maximum degree of
G is the minimum and maximum degree among the vertices of G and is denoted
by δ(G) and Δ(G), respectively. A graph G is regular if δ(G) = Δ(G). By the
complement of G, denoted by G, we mean a graph which has the same vertices
as G, and two vertices of G are adjacent if and only if they are not adjacent in
G. If U is a subset of vertices of G, we write G[U] and G−U for (U,E(G)∩ [U]2)
and G[V (G) \ U], respectively. Furthermore, if U = {v}, then we write G − v
rather than G − {v}.

Given two graphs G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)), the
strong product G1 � G2 is defined as follows. The vertices of G1 � G2 are all
pairs of the Cartesian product V (G1)×V (G2). There is an edge between (v1, v2)
and (u1, u2) if and only if {v1, u1} ∈ E(G1) and {v2, u2} ∈ E(G2), or v1 = u1

1 The number of vertices and edges of G we often denote by n and m, respectively,
thus |V (G)| = n and |E(G)| = m.

This article was partially supported by the Narodowe Centrum Nauki under grant
DEC-2011/02/A/ST6/00201.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 91–104, 2020.
https://doi.org/10.1007/978-3-030-64843-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_7&domain=pdf
http://orcid.org/0000-0002-9165-3028
https://doi.org/10.1007/978-3-030-64843-5_7

92 M. Jurkiewicz

and {v2, u2} ∈ E(G2), or v2 = u2 and {v1, u1} ∈ E(G1). The union G1 ∪ G2 is
defined as (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). In addition, if ◦ is a binary graph
operation, then we write G◦r to denote the rth power of G, i.e., G ◦ G ◦ . . . ◦ G,
where G occurs r-times.

A clique (independent vertex set, resp.) in a graph G = (V,E) is a subset
V ′ ⊆ V such that all (no, resp.) two vertices of V ′ are adjacent. The size of a
largest clique (independent vertex set, resp.) in a graph G is called the clique
(independence, resp.) number of G and is denoted by ω(G) (α(G), resp.). A split
graph is one whose vertex set can be partitioned as the disjoint union of an
independent set and a clique. A legal coloring of a graph G is an assignment of
colors to the vertices of G (C : V (G) → N) such that any two adjacent vertices
are colored differently.

A discrete channel W : X → Y (or simply W) is defined as a stochastic
matrix2 whose rows are indexed by the elements of a finite input set X while
the columns are indexed by a finite output set Y. The (x, y)th entry is the
probability W (y|x) that y is received when x is transmitted. A sequence of
channels {Wn : Xn → Yn}∞

n=1, where Wn : Xn → Yn is the nth direct power of
W , i.e.,

Wn(y1y2 . . . yn|x1x2 . . . xn) =
n∏

i=1

W (yi|xi)

and Xn is the nth Cartesian power of X , is called a discrete memoryless channel
(DMC) with stochastic matrix W and is denoted by {W : X → Y} or simply
{W}. See [7,8,24,29,32] for more details.

Let W : X → Y be a discrete channel. We define the ω-characteristic graph
G of W as follows. Its vertex set is V (G) = X and its set of edges E(G) consists
of input pairs that cannot result in the same output, namely, pairs of orthog-
onal rows of the matrix W . We define α-characteristic graph G(W) (we call it
characteristic graph for short) of W as the complement of the ω-characteristic
graph of W . Let {W : X → Y} be a DMC and so W : X → Y is the correspond-
ing discrete channel. We define the characteristic graph G({W}) of the discrete
memoryless channel {W} as {G(Wn)}∞

n=1. The Shannon (zero-error) capacity
C0(W) of the DMC {W : X → Y} is defined as C(G(W)), where

C(G) = sup
n∈N

log α(G�n)
n

= lim
n→∞

log α(G�n)
n

.

See [7,8,24,29] for more details. Let G be the characteristic graph of W and
Θ(G) = supn∈N

n
√

α(G�n). Then Θ(G) uniquely determines C0(W).

2 We assume that W is non-empty.

An Approximation of the Zero Error Capacity by a Greedy Algorithm 93

2 Fractional Independence Number

Computing the independence number of a graph G = (V,E) can be formulated
by the following integer program.

Maximize
∑

v∈V

xv

subject to ∀
{u,v}∈E

xu + xv � 1 and ∀
v∈V

xv ∈ S,

(1)

where S = {0, 1}. Now let S = [0, 1]. Given a graph G, by α∗
2(G) we denote the

optimum of the objective function in the integer program (1). However, for a
graph G and a set of not necessarily all its cliques3 C by α∗

C(G) we denote the
optimum of the objective function in the following integer program.

Maximize
∑

v∈V

xv

subject to ∀
C∈C

∑

v∈C

xv � 1 and ∀
v∈V

xv ∈ [0, 1].

(2)

If C is the set of all maximal cliques of size at most r in G, then we denote α∗
C(G)

by α∗
r(G). If C contains the set of all cliques (or equivalently all maximal cliques)

of G, then we denote α∗
C(G) by α∗(G) and it is called the fractional independence

number of G. It is worth to note that α∗ is multiplicative with respect to the
strong product [31].

The following results present some properties of the linear program (2).
In particular, the first observation establishes an order between the above-
mentioned measures.

Observation 1. Let G be a graph and C, C′ be sets of its cliques. If C′ ⊆ C,
then α∗

C(G) � α∗
C′(G).

Observation 2. Let G be a graph. If ω(G) = r, then α∗(G) = α∗
r(G).

Lemma 1. For every graph G and a non-empty set of its cliques C we have

|V (G)|
ω(G)

� α∗
C(G) � |C|

ς(C)
+ RC(G), (3)

where ς(C) = min{∑
C∈C |{v} ∩ C| : v ∈ ⋃

C∈C C} and RC(G) = |V (G)| −
|⋃C∈C C|. Furthermore, the equalities hold in the inequality chain (3) if G is
vertex-transitive4 and C is the set of all largest cliques in G.
3 It is worth to note that the number of maximal cliques in G is at most exponential

with respect to |V (G)| [11], while the number of edges in G is at most quadratic
with respect to |V (G)|.

4 A graph is vertex transitive if for any two vertices u and v of this graph, there is an
automorphism such that the image of u is v.

94 M. Jurkiewicz

Proof. It is well known [14] that for every graph G we have

α∗(G) � |V (G)|
ω(G)

. (4)

From (4) and Observation 1, the left inequality holds in (3).
Given a linear program (2) and its optimum α∗

C(G). Since
∑

C∈C
∑

v∈C xv �
|C|, so

∑

v∈V (G)

xv � |C|
ς(C)

+ RC(G).

Hence α∗
C(G) � |C|/ς(C) + RC(G).

If G is vertex-transitive and C is the set of all largest cliques in G, then C
covers the whole vertex set, i.e., V (G) =

⋃
C∈C C. Hence RC(G) = 0. Further-

more, every vertex is contained in the same number of largest cliques. Hence
ς(C)|V (G)| = ω(G)|C|.
�
It is interesting that the measure α∗ has a particular interpretation in informa-
tion theory [24,32].

3 Capacity Approximation

It is well known [32] that5

α(G) � i

√
α(G�i) � Θ(G) � α∗(G) (5)

for each positive integer i. A graph G is of type I if Θ(G) = α(G), otherwise is
of type II. Furthermore, Hales [16] showed that for arbitrary graphs G and H
we have

α(G � H) � min{α(G)α∗(H), α(H)α∗(G)}.

In contrast to the above results, in the next section we use the fractional inde-
pendence number to calculate lower bounds on the Shannon capacity and the
independence number of strong products.

A function β : G → R is supermultiplicative (resp. submultiplicative) on G
with respect to the operation ◦, if for any two graphs G1, G2 ∈ G we have β(G1 ◦
G2) � β(G1)·β(G2) (resp. β(G1◦G2) � β(G1)·β(G2)). A supermultiplicative and
submultiplicative function is called multiplicative. The independence number α
is supermultiplicative on the set of all graphs with respect to the strong product,
i.e., α(G � H) � α(G) · α(H) for any graphs G and H. Let B be a lower bound
on the independence number α, i.e., α(G) � B(G). If B(G�i) > (α(G))i (i � 2),
then G is of type II and is more interesting from an information theory point of
view [32]. It is possible if B(G�i) > (B(G))i. Thus we require that B has the
5 There is a better upper bound on Θ(G), the so-called Lovász theta function [28].

An Approximation of the Zero Error Capacity by a Greedy Algorithm 95

last two properties for at least one graph, i.e., B recognizes some graphs of type
II.

The residue R of a graph G of degree sequence S : d1 � d2 � d3 . . . � dn is
the number of zeros obtained by the iterative process consisting of deleting the
first term d1 of S, subtracting 1 from the d1 following ones, and re-sorting the
new sequence in non-increasing order [10]. It is well known that α(G) � R(G)
[9]. Unfortunately, the following negative result holds.

Proposition 1. Let G and H be regular6 or split graphs. Then R(G � H) �
R(G) · R(H).

Proof. Let G and H be regular graphs. For a regular graph G, from [9], we
have R(G) = �∑n

i=1(1/(1 + di)) = �(n/(1 + d(G))), where d(G) is the
degree of each vertex of G. From [21] we know that the ceiling function is
submultiplicative on non-negative real numbers with respect to the multipli-
cation. Hence R(G � H) = �|V (G)||V (H)|/(1 + (d(G)d(H) + d(G) + d(H))) �
�|V (G)|/(1+d(G))�|V (H)|/(1+d(H)) = R(G) ·R(H), since a strong product
of regular graphs is regular.

Let G and H be split graphs. From [2] and [17], we have α(G) = R(G) and
α(G�H) = α(G) ·α(H), respectively. Finally, we have R(G�H) � α(G�H) =
α(G) · α(H) = R(G) · R(H).
�

We conjecture that the residue is submultiplicative on the set of all graphs
with respect to the strong product. This probably means that the residue does
not recognize any graphs of type II. There are more such bounds, e.g., the average
distance [21], the radius [20], the Caro–Wei bound and the Wilf bound [23]. On
the other hand, it is hard to find bounds that recognize at least one graph of
type II.

4 Greedy Algorithms

In this section we present a new greedy algorithm that determines a lower bound
on the independence number of a strong product. Furhtermore, this value, from
(5), determines a lower bound on the Shannon capacity. An advantage of a greedy
algorithm is that it produces an existing solution of an optimization problem. In
the considered problem, it produces independent sets that correspond to DMCs
codes [24,32].

We modify Algorithm 4.1, the so-called greedy algorithm Min [18], which
works for an arbitrary graph. Our goal is to get larger independent sets for
strong products by a modification7 of the mentioned algorithm. The algorithm
Min has complexity O(n2).

A greedy algorithm always makes the choice that looks best at the moment.
That is, it makes a locally optimal choice in the hope that this choice will lead
6 This part of the proposition was found by my colleague [30].
7 Our algorithm works for an arbitrary graph product, as well as for an arbitrary single

graph.

96 M. Jurkiewicz

Algorithm 4.1. Greedy Algorithm Min

1: function Min(G)
2: G1 ← G, j ← 1, I ← ∅
3: while V (Gj) �= ∅ do
4: choose ij ∈ V (Gj) with dGj (ij) = δ(Gj)
5: Gj+1 ← Gj − NGj [ij]
6: I ← I ∪ {ij}
7: j ← j + 1

8: return I

to a globally optimal solution [6]. Vertices chosen (in such a way) by Min often
strongly block an eventual choice of vertices in a further stage of the algorithm,
making generated independent sets are small, especially for strong products of
graphs of type II. In Table 1, we summarize results produced by Min for these
graphs. We try to improve Min, since from our research it follows that it does not
work well, i.e., it does not recognize graphs of type II. We begin by introducing
definitions required in the rest of the paper.

Table 1. For each graph G ∈ G+
n,2 = {H : α(H�2) > α2(H)∧|V (H)| = n} we determine

an independent set I of the graph G�2 using the algorithm Min.

Greedy Algorithm Min (results)

n |G+
n,2| |I| � α2(G) |I| > α2(G) |I| = α(G�2)

5 1 1 0 0

6 4 4 0 0

7 36 36 0 0

8 513 513 0 0

9 16015 16015 0 0

10 908794 908794 0 0

A semigroup is a set S with an associative binary operation on S. A semiring
is defined as an algebra (S,+, ·) such that (S,+) and (S, ·) are semigroups and
for any a, b, c ∈ S we have a · (b + c) = a · b + a · c, (b + c) · a = b · a + c · a
[1]. Note that (G,∪,�) is a semiring, where G is the set of all finite graphs. In
addition, ∪ and � are commutative operations with neutral elements (∅, ∅) and
K1, respectively.

Lemma 2. Let p, r be positive integers and G1, G2, . . . , Gr be graphs. Then

(
⋃

i∈[r]

Gi

)�p

=
⋃

p1+p2+...+pr=p

[(
p

p1, p2, . . . , pr

)
�
i∈[r]

G�pi

i

]

An Approximation of the Zero Error Capacity by a Greedy Algorithm 97

and

α

⎛

⎝
(

⋃

i∈[r]

Gi

)�p
⎞

⎠ =
∑

p1+p2+...+pr=p

[(
p

p1, p2, . . . , pr

)
α

(
�
i∈[r]

G�pi

i

)]
,

where summations extend over all ordered sequences (p1, p2, . . . , pr) of nonnega-
tive integers that sum to p.

Proof. The first part of the theorem can be proved in analogous way to the one
in [27, Theorem 2.12] for rings (we only need the above mentioned properties of
the semiring (G,∪,�)).

The second part of the theorem follows from the fact that the independence
number is multiplicative with respect to the disjoint union ∪ for all graphs.
�
The considered modification of the greedy algorithm takes as input arbitrary
graphs G1, G2, . . . , Gr and produces as output an independent set of G� =
G1 � G2 � . . . � Gr. From Lemma 2, we can find connected components of G�.
Hence, our greedy algorithm can be applied to each connected component of G�

separately, or to the entire graph G� at once. We prefer the first method.
The next step of our modification is a reduction of factors of a strong product.

For each i ∈ {1, 2, . . . , r} and any u, v ∈ V (Gi), if NGi
[u] ⊆ NGi

[v], then α(G1 �
G2 � . . .�Gi� . . .�Gr) = α(G1 �G2 � . . .� (Gi −v)� . . .�Gr) [19]. Let G be a
factor of a strong product G�, for example G = Gi. Let > be a strict total order
on V (G). We reduce the factor G by Algorithm 4.2 (Reduction GR), which has
complexity O(Δ2m). This algorithm is correct (in the considered context) since
we remove vertices from the strong product, and hence we can only decrease or
leave its unchanged independence number.

Algorithm 4.2. Reduction GR
1: function GR(G)
2: R ← ∅
3: for all {u, v} ∈ E(G) do
4: if u > v then
5: if NG[u] = NG[v] then
6: R ← R ∪ {u}
7: else if NG[u] ⊆ NG[v] then
8: R ← R ∪ {v}
9: else if NG[v] ⊆ NG[u] then

10: R ← R ∪ {u}
11: return G − R

For some graphs, which we take as input, e.g., for a path on n � 6 vertices, we
need to recursively repeat (at most n times) the algorithm GR to get a smaller
graph. Sometimes, the algorithm GR produces vertices with degree zero. Such
vertices should be removed from a graph, but taken into account in the outcome.

98 M. Jurkiewicz

Let G be a graph and k be a positive integer. Let A be a k-tuple of subsets of
V (G). By BG(A) we denote a sequence containing upper bounds on α(G[Ai]) for
i ∈ {1, 2, . . . , k}. Let G = 2K3. Then, for example, V (G) = {1, 2, . . . , 6}, E(G) =
{{1, 2}, {2, 3}, {3, 1}, {4, 5}, {5, 6}, {6, 4}}, and BG(({1, 2, 3}, {4, 5, 6})) = (1, 1).
Let A′ be a k′-tuple of subsets of V (G). A distribution DG(A′) is a k′-tuple
of non-negative integers, and is our prediction about an arrangement of inde-
pendent vertices of G in sets from A′. Let G� = G1 � G2 � . . . � Gr. Let
i ∈ {1, 2, . . . , r}, S ⊆ V (Gi) and VGi

(S) = V (G1) × V (G2) × . . . × V (Gi−1) ×
S × V (Gi+1) × . . . × V (Gr). From [17], for each clique Q of Gi we have

α

(
�

j∈[r]\{i}
Gj

)
= α(G1 � G2 � . . . � Gi−1 � Gi[Q] � Gi+1 � . . . � Gr).

Thus, if Q = {Q1, Q2, . . . , Qk} (k ∈ N+) is a set of cliques of Gi and

αi � α

(
�

j∈[r]\{i}
Gj

)
, (6)

then we can choose BG�((VGi
(Q1), VGi

(Q2), . . . , VGi
(Qk))) = (αi, αi, . . . , αi),

where αi occurs k times. Let

αi =

⎢⎢⎢⎣
∏

j∈[r]\{i}
α∗
E(Gj)

(Gj)

⎥⎥⎥⎦ .

The function α∗ is multiplicative with respect to the strong product for all graphs
[31]. Thus, from Observation 1 and (5) we get

αi �

⎢⎢⎢⎣
∏

j∈[r]\{i}
α∗(Gj)

⎥⎥⎥⎦ =
⌊
α∗

(
�

j∈[r]\{i}
Gj

)⌋
� α

(
�

j∈[r]\{i}
Gj

)
(7)

and finally αi holds the condition (6). Furthermore, from (7) and (3), for graphs
without vertices with degree zero, also the following substitution

αi =

⎢⎢⎢⎣
∏

j∈[r]\{i}

(|E(Gj)|ς−1(E(Gj)) + RE(Gj)(G)
)
⎥⎥⎥⎦ =

⎢⎢⎢⎣
∏

j∈[r]\{i}

|E(Gj)|
δ(Gj)

⎥⎥⎥⎦

holds the condition (6).
Let i ∈ {1, 2, . . . , r}. Algorithm 4.4 (Distribution Distr), which takes as

input a graph G = Gi and an upper bound αb = αi, determines a distribution for
a graph G�. The algorithm Distr, whose running time is O(n2), uses Algorithm
4.3 (Greedy Coloring GC), which has complexity O(n + m) [25]. The algorithm
GC takes as input a graph G and an arbitrary permutation P of the vertex set
of G. GC in Distr legally colors the complement of G and hence produces a
partition Q of the vertex set of G into cliques (the so-called clique cover of G).
Subsequently, Distr distributes αb = αi potential elements of an independent

An Approximation of the Zero Error Capacity by a Greedy Algorithm 99

Algorithm 4.3. Greedy Coloring GC
1: function GC(G, P)

comment: In all algorithms, loops contained the keyword in are performed in a
given order.

2: for each v in P do
3: assign to v the smallest possible legal color C(v) in G

4: return C

Algorithm 4.4. Distribution Distr

1: function Distr(G, αb)
comment: V (G) = {v1, . . . , vn}

2: for each v ∈ V (G) do
3: distrv ← 0

4: assign to P vertices of G arranged in non-increasing order according to their
degrees

5: C ← GC(G, P)
6: create the clique cover CC of G from the coloring C
7: sort cliques from CC in non-increasing order according to their sizes
8: sort vertices in cliques from CC in non-decreasing order according to their

degrees
9: for each Q in CC do

10: q ← 	αb/|Q|

11: r ← αb mod |Q|
12: i ← 0
13: for each v in Q do
14: K ← q
15: if i < r then
16: K ← K + 1

17: m ← αb

18: for each Q′ in CC do

19: M ← max

{
k ∈ {0, . . . , K} :

∑
v′∈N(v)∩Q′

distrv′ + k � αb

}

20: if m > M then
21: m ← M
22: distrv ← m
23: i ← i + 1

24: return (distrv1 , . . . , distrvn)

set roughly evenly (about αb/|Q| elements or less depending on the sum from
line 19) among all vertices of Q (as well as among all subgraphs of G1 � G2 �
. . . � Gi−1 � Gi[Q] � Gi+1 � . . . � Gr) for all Q ∈ Q.

As we mentioned before, vertices chosen by Min strongly block an eventual
choice of vertices in a further stage of the algorithm. Our greedy algorithm,
i.e., Algorithm 4.5 (Greedy Algorithm Min-SP), significantly diminishes the
mentioned effect by the use of generated distributions. The vertex set of G1 �
G2� . . .�Gr can be interpreted as the r-dimensional cuboid of the size |V (G1)| ·

100 M. Jurkiewicz

|V (G2)| · . . . · |V (Gr)|. Min-SP uses distributions in all r dimensions. Earlier [3,
5,22], only one distribution was used at one time in algorithms for the maximum
independent set problem in subclasses of the strong product of graphs to reduce
a search space. The important point to note here is that in cases that are more
interesting from an information theory point of view, i.e., if G1 = G2 = . . . = Gr,
some parts of Min-SP are much simpler, e.g., we can determine one distribution
and then we use it in all dimensions.

Algorithm 4.5. Greedy Algorithm Min-SP

1: function Min-SP((G1, G2, . . . , Gr))
comment: v = (v1, v2, . . . , vr), v∗ = (v∗

1 , v∗
2 , . . . , v∗

r)
2: I ← ∅
3: for i ← 1 to r do
4: distr(i) ← Distr(Gi, αi)

5: V ← V (G1) × V (G2) × . . . × V (Gr)
6: for each v ∈ V do
7: d(v) ← |NG1 [v1]| · |NG2 [v2]| · . . . · |NGr [vr]| − 1

8: while V �= ∅ do
9: assign to v∗ an element v ∈ V with the smallest d(v)

10: N ← NG1 [v
∗
1] × NG2 [v

∗
2] × . . . × NGr [v∗

r]
11: N ← N ∩ V
12: F ← ∅
13: for i ← 1 to r do
14: distr

(i)
v∗
i

← distr
(i)
v∗
i

− 1

15: if distr
(i)
v∗
i

= 0 then

16: append to F elements v ∈ V with vi = v∗
i

17: V ← V \ (N ∪ F)
18: for each v ∈ V do
19: for each v′ ∈ N do
20: if v ∼ v′ then
21: d(v) ← d(v) − 1

22: I ← I ∪ {v∗}
23: return I

Min-SP defines four sets N , V , F and I, where N is the closed neighborhood
of a chosen vertex v∗ (line 10), V is a set of vertices that are available for the
next iterations, F is a set of forbidden vertices that are not available for the next
iterations and I is an actual solution (an actual independent set). In lines 13–14
and lines 18–21, Min-SP updates distributions and degrees of all vertices from
V , respectively. In line 17, elements of N and F are removed from V , but only
degrees of vertices from N are updated.

An advantage of Min-SP is that we do not need to store edges of G� =
G1 � G2 � . . . � Gr in a computer memory. This is important since |E(G�)|
almost always fastly increases with r. In the memory, we only keep factors of

An Approximation of the Zero Error Capacity by a Greedy Algorithm 101

G�, and the adjacency relation ∼ is directly checked from the conditions specified
in the definition of the strong product (line 20).

Sometimes Min-SP produces I such that V (G�) − NG� [I] �= ∅, where
NG[I] =

⋃
v∈I NG[v] for I ∈ V (G) and a graph G. Thus, finally, it is possi-

ble to get a larger independent set of G�, i.e., I ′ = I ∪ Min(G� − NG� [I]). We
prefer such a method in our computations. It turns out that we also do not need
to store edges of G� if we want to execute Min(G� − NG� [I]). It can be done
by a modification of Min similar to that we performed, when we constructed
Min-SP.

In Table 2, we summarize results produced by Min-SP. The algorithm has a
running time of O(|V |3).

Table 2. For each graph G ∈ G+
n,2 = {H : α(H�2) > α2(H)∧|V (H)| = n} we determine

an independent set I ′ of the graph G�2 using the algorithm Min-SP. It is worth to
note that the gap between α2(G) and α(G�2) is small for the n that are small [15].

Greedy Algorithm Min-SP (results)

n |G+
n,2| |I ′| � α2(G) |I ′| > α2(G) |I ′| = α(G�2)

5 1 0 1 1

6 4 0 4 4

7 36 4 32 32

8 513 127 386 386

9 16015 6306 9709 9652

10 908794 505089 403705 403469

We can approximate the Shannon capacity using (5) and the algorithm Min-
SP. We show it by the following example.

Example 1. We consider strong products of some fullerenes8, since they are reg-
ular, symmetrical [12] and hence are not so easy for solvers and programs that
calculate the independence number. Furthermore, fullerenes are often of type II.
The algorithm Min-SP produced the following upper bounds: α(C20�C20) � 56,
α(C24�C24) � 85 and α(C28�C28) � 123, where symbols C20, C24 and C28 mean
20-fullerene (dodecahedral graph), 24-fullerene and 28-fullerene (α(C20) = 8,
α(C24) = 9 and α(C28) = 11 [13]), respectively. Therefore, from (5), the Shan-
non capacity Θ(C24) � 2

√
85 = 9.21954.. > α(C24) = 9 and Θ(C28) � 2

√
123 =

11.09053.. > α(C28) = 11, but Θ(C20) � α(C20) = 8 (we conjecture that
α(C20 � C20) = 64).

8 A fullerene graph is the graph formed from the vertices and edges of a convex
polyhedron, whose faces are all pentagons or hexagons and all vertices have degree
equal to three.

102 M. Jurkiewicz

5 Community Detection Problems

Chalupa et al. [4] investigated the growth of large independent sets in the
Barabási–Albert model of scale-free complex networks. They formulated recur-
rent relations describing the cardinality of typical large independent sets and
showed that this cardinality seems to scale linearly with network size. Inde-
pendent sets in social networks represent groups of people, who do not know
anybody else within the group. Hence, an independent set of a network plays a
crucial role in community detection problems, since vertices of this set are nat-
urally unlikely to belong to the same community [4,33]. These facts imply that
the number of communities in scale-free networks seems to be bounded from
below by a linear function of network size [4].

Leskovec et al. [26] introduced the Kronecker graph network model that nat-
urally obeys common real network properties. In particular, the model assumes
that graphs have loops and corresponds to the strong product [17]. Let i � 1
and G′ = G�i. As mentioned earlier, the function α is supermultiplicative and
α∗ is multiplicative with respect to the strong product for all graphs. Thus
(α∗(G))i = α∗(G′) � α(G′) � (α(G))i and hence |V (G′)|c′ � α(G′) � |V (G′)|c,
where9 c′ = log(α∗(G))/ log(V (G)) and c = log(α(G))/ log(V (G)). We have just
showed that the cardinality of maximum independent sets, in the mentioned
model, scale sublinearly with network10 size. Furthermore, if G is of type I, then
α(G′) = |V (G′)|c. These considerations show that the number of communities in
scale-free networks seems to be bounded from below by a sublinear (rather than
a linear) function of network size. It is worth to note that we can approximate
(resp. predict) the number of communities, in the mentioned model (resp. real
complex network), using Algorithm 4.5 (Greedy Algorithm MIN-SP).

References

1. Adhikari, M.R., Adhikari, A.: Basic Modern Algebra with Applications. Springer,
New Delhi (2014). https://doi.org/10.1007/978-81-322-1599-8

2. Barrus, M.D.: Havel-Hakimi residues of unigraphs. Inform. Process. Lett. 112(1–
2), 44–48 (2012). https://doi.org/10.1016/j.ipl.2011.10.011

3. Baumert, L.D., McEliece, R.J., Rodemich, E., Rumsey, Jr., H.C., Stanley, R., Tay-
lor, H.: A combinatorial packing problem. In: Computers in algebra and number
theory (Proceedings of SIAM-AMS Symposium on Applied Mathematics, New
York, 1970), SIAM-AMS Proceedings, vol. IV, pp. 97–108. American Mathemati-
cal Society, Providence (1971)

4. Chalupa, D., Posṕıchal, J.: On the growth of large independent sets in scale-free
networks. In: Zelinka, I., Suganthan, P.N., Chen, G., Snasel, V., Abraham, A.,
Rössler, O. (eds.) Nostradamus 2014: Prediction, Modeling and Analysis of Com-
plex Systems. AISC, vol. 289, pp. 251–260. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-07401-6 24

9 We can use the so-called Lovász theta function instead of α∗, since it is also multi-
plicative with respect to the strong product for all graphs [28].

10 We assume that a network (graph) G is non-empty, i.e., |E(G)| �= 0.

https://doi.org/10.1007/978-81-322-1599-8
https://doi.org/10.1016/j.ipl.2011.10.011
https://doi.org/10.1007/978-3-319-07401-6_24
https://doi.org/10.1007/978-3-319-07401-6_24

An Approximation of the Zero Error Capacity by a Greedy Algorithm 103

5. Codenotti, B., Gerace, I., Resta, G.: Some remarks on the Shannon capacity of
odd cycles. Ars Combin. 66, 243–257 (2003)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

7. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience,
2nd edn. Wiley, Hoboken (2006)

8. Csiszár, I., Körner, J.: Information Theory, 2nd edn. Cambridge University Press,
Cambridge (2011). https://doi.org/10.1017/CBO9780511921889. Coding theorems
for discrete memoryless systems

9. Favaron, O., Mahéo, M., Saclé, J.F.: On the residue of a graph. J. Graph Theory
15(1), 39–64 (1991). https://doi.org/10.1002/jgt.3190150107

10. Favaron, O., Mahéo, M., Saclé, J.F.: Some eigenvalue properties in graphs (conjec-
tures of Graffiti. II). Discrete Math. 111(1–3), 197–220 (1993). https://doi.org/10.
1016/0012-365X(93)90156-N. Graph theory and combinatorics (Marseille-Luminy,
1990)

11. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16533-7

12. Fowler, P.W., Manolopoulos, D.: An Atlas of Fullerenes. Courier Corporation
(2007)

13. Fowler, P., Daugherty, S., Myrvold, W.: Independence number and fullerene stabil-
ity. Chem. Phys. Lett. 448(1), 75–82 (2007). https://doi.org/10.1016/j.cplett.2007.
09.054. http://www.sciencedirect.com/science/article/pii/S0009261407012948

14. Gross, J.L., Yellen, J., Zhang, P. (eds.): Handbook of Graph Theory. Discrete
Mathematics and its Applications, 2nd edn. CRC Press, Boca Raton (2014)

15. Gyárfás, A., Sebő, A., Trotignon, N.: The chromatic gap and its extremes. J.
Combin. Theory Ser. B 102(5), 1155–1178 (2012). https://doi.org/10.1016/j.jctb.
2012.06.001

16. Hales, R.S.: Numerical invariants and the strong product of graphs. J. Combin.
Theory Ser. B 15, 146–155 (1973)

17. Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs. Discrete
Mathematics and its Applications. CRC Press, Boca Raton (2011). With a foreword
by Peter Winkler

18. Harant, J., Schiermeyer, I.: On the independence number of a graph in terms of
order and size. Discrete Math. 232(1–3), 131–138 (2001). https://doi.org/10.1016/
S0012-365X(00)00298-3

19. Jurkiewicz, M.: A generalization of the Shannon’s theorem and its application to
complex networks. preprint

20. Jurkiewicz, M.: Relevant measures of product networks. preprint
21. Jurkiewicz, M.: Average distance is submultiplicative and subadditive with respect

to the strong product of graphs. Appl. Math. Comput. 315, 278–285 (2017).
https://doi.org/10.1016/j.amc.2017.06.025

22. Jurkiewicz, M., Kubale, M., Ocetkiewicz, K.: On the independence number of some
strong products of cycle-powers. Found. Comput. Decis. Sci. 40(2), 133–141 (2015).
https://doi.org/10.1515/fcds-2015-0009

23. Jurkiewicz, M., Pikies, T.: Selected topics in modern mathematics. Chap. Some
classical lower bounds on the independence number and their behavior on the
strong product of graphs. Publishing House AKAPIT, Kraków, inst. Politechnika
Krakowska (2015)

https://doi.org/10.1017/CBO9780511921889
https://doi.org/10.1002/jgt.3190150107
https://doi.org/10.1016/0012-365X(93)90156-N
https://doi.org/10.1016/0012-365X(93)90156-N
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1016/j.cplett.2007.09.054
https://doi.org/10.1016/j.cplett.2007.09.054
http://www.sciencedirect.com/science/article/pii/S0009261407012948
https://doi.org/10.1016/j.jctb.2012.06.001
https://doi.org/10.1016/j.jctb.2012.06.001
https://doi.org/10.1016/S0012-365X(00)00298-3
https://doi.org/10.1016/S0012-365X(00)00298-3
https://doi.org/10.1016/j.amc.2017.06.025
https://doi.org/10.1515/fcds-2015-0009

104 M. Jurkiewicz

24. Körner, J., Orlitsky, A.: Zero-error information theory. IEEE Trans. Inform. Theory
44(6), 2207–2229 (1998). https://doi.org/10.1109/18.720537. Information theory:
1948-1998

25. Kubale, M. (ed.): Graph Colorings, Contemporary Mathematics, vol. 352. Ameri-
can Mathematical Society, Providence (2004). https://doi.org/10.1090/conm/352

26. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–
1042 (2010)

27. Loehr, N.A.: Bijective Combinatorics. Discrete Mathematics and its Applications.
CRC Press, Boca Raton (2011)

28. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform.
Theory 25(1), 1–7 (1979). https://doi.org/10.1109/TIT.1979.1055985.
http://dx.doi.org.mathematical-reviews.han.bg.pg.edu.pl/10.1109/TIT.1979.
1055985

29. McEliece, R.J.: The Theory of Information and Coding, Encyclopedia of Math-
ematics and Its Applications, vol. 86. Cambridge University Press, Cam-
bridge (2004). http://dx.doi.org.mathematical-reviews.han.bg.pg.edu.pl/10.1017/
CBO9780511819896. With a foreword by Mark Kac

30. Pikies, T.: Personal communication (2015)
31. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory. Dover Publications

Inc., Mineola (2011). A rational approach to the theory of graphs, With a foreword
by Claude Berge, Reprint of the 1997 original

32. Shannon, C.E.: The zero error capacity of a noisy channel. Inst. Radio Eng. Trans.
Inf. Theory IT–2(September), 8–19 (1956)

33. Whang, J.J., Gleich, D.F., Dhillon, I.S.: Overlapping community detection using
seed set expansion. In: Proceedings of the 22nd ACM International Conference on
Information & Knowledge Management, CIKM 2013, pp. 2099–2108. Association
for Computing Machinery, New York (2013). https://doi.org/10.1145/2505515.
2505535

https://doi.org/10.1109/18.720537
https://doi.org/10.1090/conm/352
https://doi.org/10.1109/TIT.1979.1055985
http://dx.doi.org.mathematical-reviews.han.bg.pg.edu.pl/10.1109/TIT.1979.1055985
http://dx.doi.org.mathematical-reviews.han.bg.pg.edu.pl/10.1109/TIT.1979.1055985
http://dx.doi.org.mathematical-reviews.han.bg.pg.edu.pl/10.1017/CBO9780511819896
http://dx.doi.org.mathematical-reviews.han.bg.pg.edu.pl/10.1017/CBO9780511819896
https://doi.org/10.1145/2505515.2505535
https://doi.org/10.1145/2505515.2505535

Scheduling

On the Complexity of a Periodic
Scheduling Problem with Precedence

Relations

Richard Hlad́ık1,2, Anna Minaeva1(B), and Zdeněk Hanzálek1

1 Czech Institute of Informatics, Robotics, and Cybernetics,
Czech Technical University in Prague, Prague, Czech Republic

minaevaana@gmail.com
2 Charles University, Prague, Czech Republic

Abstract. Periodic scheduling problems (PSP) are frequently found in
a wide range of applications. In these problems, we schedule a set of
tasks on a set of machines in time, where each task is to be executed
repeatedly with a given period. The tasks are assigned to machines, and
at any moment, at most one task can be processed by a given machine.
Since no existing works address the complexity of PSPs with precedence
relations, we consider the most basic PSP with chains and end-to-end
latency constraints given in the number of periods. We define a degener-
acy of a chain as the number of broken precedence relations within the
time window of one period. We address the general problem of finding
a schedule with the minimum total degeneracy of all chains. We prove
that this PSP is strongly NP-hard even when restricted to unit process-
ing times, a common period, and 16 machines, by a reduction from the
job shop scheduling problem. Finally, we propose a local search heuristic
to solve the general PSP and present its experimental evaluation.

1 Introduction

Periodic scheduling problems (PSPs) are frequently found in a wide range of
applications, including communications [16], maintenance [17], production [1],
avionics [7], and automotive [5]. A control loop is a typical example of an appli-
cation that requires periodic data transmission from sensors over control units
and gateways to actuators. The result depends not only on a logically correct
computation but also on the end-to-end latency measured from the moment
when the sensor acquires a physical value to the moment when the actuator
performs its action. Due to the periodic nature of the problem, the end-to-end
latency is typically expressed in a number of periods [15].

In a PSP, we are given a set of tasks and a set of machines. Each task
has a processing time p and is to be executed repeatedly with a given period
T on a (given) machine. The goal is to schedule the tasks in time so that at
any given moment, at most one task is processed by each machine, and the
periodical nature of the tasks is satisfied. A PSP can be either preemptive or
non-preemptive, when an execution of a task can or cannot be preempted by
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 107–124, 2020.
https://doi.org/10.1007/978-3-030-64843-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_8

108 R. Hlad́ık et al.

the execution of another task, respectively. In this work, we deal with the non-
preemptive version of the PSP.

Many works have addressed the complexity of non-preemptive PSPs. Jeffay
et al. in [10] address a PSP on a single machine with arbitrary release dates and
deadlines equal to one period from the corresponding release dates, where the
release date is the earliest time a task can start in its period and the deadline
is the latest time it must complete. In the three-field Graham notation α|β|γ
introduced in [8], where the α field characterizes the resources, the β field reflects
properties of tasks, and the γ field contains the criterion, this problem is denoted
as 1|Ti, ri, di = ri + Ti|−. The authors prove that this problem is strongly NP-
hard by a reduction from the 3-Partition problem. However, the proof relies on
the different release dates of the tasks. Furthermore, the case of the harmonic
period set, when larger periods are divisible by smaller periods, seems to be
an easier problem, since there are efficient heuristics to solve it (e.g., in [4]).
However, Cai et al. in [3] strengthened the result of [10] by proving strong NP-
hardness of the PSP 1|Tharm

i , di = Ti|− with zero release dates and harmonic
periods. Later, Nawrocki et al. in [14] prove that this complexity result holds
even if the ratio between the periods is a power of 2, i.e., for 1|T pow2

i , di = Ti|−.
A PSP with a zero jitter requirement (also known as strictly or perfectly

periodic, where the position of a task within a period is the same in all periods)
is widely assumed [4,6] since a non-zero jitter represents a disturbance to control
systems. Korst et al. in [12] show that the PSP with zero jitter requirements on
a single machine, 1|Ti, jiti = 0|−, is strongly NP-hard. Moreover, the same
problem with unit processing times, 1|Ti, jiti = 0, pi = 1|−, is shown to be NP-
hard by Bar-Noy et al. [1] by the reduction from the graph coloring problem.
Jacobs et al. in [9] strengthen this result by proving that this PSP is strongly
NP-hard. As a matter of fact, even deciding whether a single task can be added
to the set of already scheduled tasks for this PSP is NP-complete, since it is the
problem of computing simultaneous incongruences.

There are no results on the complexity of non-preemptive PSPs with prece-
dence relations. Therefore, in this paper, we focus on a PSP with chains of
precedence relations, i.e., a task can only be scheduled after the completion of
its predecessor unless it is the first task in the chain. End-to-end latency of a
chain is the time from the start time of its first task to the completion time of its
last task. We define the degeneracy of a chain as its end-to-end latency divided by
its period. Alternatively, it is the number of broken precedence relations within
the time window of one period.

We consider a general PSPgen , PD|Tharm
i , jiti = 0, chains|

∑
δ, where tasks

with harmonic periods and zero jitter requirements are scheduled on multiple
dedicated machines (i.e., assignment of tasks to machines is given) so that the
total degeneracy of all chains is minimized. Furthermore, we address the com-
plexity of a special case of PSPgen called PSPcom , PD16|Ti = T, jiti = 0, pi =
1, chains, δl = 0|−, where tasks with a common period and unit processing times
are scheduled on 16 machines, and chains are 0-degenerated (i.e., all precedence
relations are satisfied within one period).

On the Complexity of a Periodic Scheduling Problem 109

The main three contributions of this paper are: 1) We propose a novel for-
mulation of a PSP with chains of precedence constraints called PSPgen based
on chains degeneracy. The degeneracy offers a coarser alternative to the widely
used end-to-end latency and may be a more suitable metric for some real-world
problems. 2) We establish that PSPgen is strongly NP-hard even when restricted
to unit execution times, common period, and 16 machines by a reduction from
the job shop scheduling problem J3 | pi = 1 | Cmax. This problem is called
PSPcom and denoted as PD16|Ti = T, jiti = 0, pi = 1, chains, δs = 0|−. 3)
We provide a local search heuristic algorithm that solves PSPgen . Moreover, we
experimentally demonstrate the soundness of our algorithm and show that it
can solve 92% of our instances (with up to 9 000 of tasks) in a few minutes on
a desktop computer, and the provably optimal solution is found for more than
75% instances.

2 Problem Description

In this section, we present a general problem PSPgen considered in this work.
We first introduce non-collision constraints and then the optimization criterion
based on how well the precedence constraints are satisfied within one period.
Finally, we constructively prove that the existence of a solution satisfying the
non-collision constraints is equivalent to the existence of the solution satisfying
both non-collision and precedence constraints.

2.1 Problem Statement

We are given a set of tasks T = {τ1, . . . , τn} and a set of machines M =
{μ1, . . . , μ|M|}. Each task τi has a processing time p(τi) ∈ N

∗ and executes
repeatedly with a given period T (τi) ∈ N

∗. Here, N∗ is a set of natural numbers
without zero and N0 is a set of natural numbers with zero. Each task τi is also
assigned to machine m(τi) ∈ M, on which it must be executed.

Our goal is to find a schedule, which is a function s : T → N0 that assigns a
start time s(τi) to each task τi. The task τi is then executed every T (τi) units
of time, i.e., with zero jitter; its k-th execution (for k ∈ N0) spans the interval
[s(τi) + k · T (τi), s(τi) + p(τi) + k · T (τi)). Let R(τi) denote the union of all such
intervals for task τi.

A schedule s has no collisions if there is at most one task executed on each
machine at any given moment, that is:

R(τi) ∩ R(τj) = ∅, ∀ i �= j : m(τi) = m(τj) (1)

Korst et al. [11] have shown that for zero-jitter case, Equation (1) is equivalent
to

p(τi) ≤ (s(τj) − s(τi)) mod gi,j ≤ gi,j − p(τj), (2)

where gi,j = gcd(T (τi), T (τj)).

110 R. Hlad́ık et al.

There are precedence constrains in the form of task chains. Let C =
{C1, . . . , Ck} be a partition of T into pairwise disjoint ordered sets C1, . . . , Ck

such that in each set, all tasks have the same period.1 Each of these sets is
called a (precedence) chain. The r-th task of the c-th chain is denoted by Cr

c

(for r ∈ {1, . . . , |Cc|}). We call Cr−1
c and Cr+1

c (if they exist) predecessor and
successor of Cr

c . Tasks without a predecessor are called root tasks. Note that
formally, Cr

c ∈ T .
A schedule s satisfies precedence relations, if

s(Cr
c) ≥ s(Cr−1

c) + p(Cr−1
c), ∀Cc ∈ C, r = 2, . . . , |Cc| (3)

that is, each task starts only after its predecessor finishes execution. Given that
all tasks in a chain have the same period, all further executions of the chain are
also ordered correctly.

The end-to-end latency L(Cc) of a chain Cc is the distance from the start
time of the first task to the completion time of the last task in the chain as given
by Eq. (4). Then, the degeneracy δs(Cc) with respect to schedule s is defined in
Eq. (5).

L(Cc) = s(C|Cc|
c) + p(C|Cc|

c) − s(C1
c), (4)

δs(Cc) =
⌈

L(Cc)
T (C1

c)

⌉

− 1. (5)

In other words, a chain degeneracy is the number of crossed relative period
boundaries, with the first period starting at the start time of the first task in
the chain. For the example in Fig. 1, the degeneracy of chain C1 is 2, since its
first task C1

1 = τ1 starts at 0 and crosses its relative period boundary (in this
case coinciding with its absolute period boundary) 2 times. On the other hand,
although C4 crosses its absolute period boundary at time 28, its degeneracy
equals 0, since its relative period boundary is at time 10 + 28 = 38.

The degeneracy of a schedule δ(s) is then defined as:

δ(s) =

{∑
Cc∈C δs(Cc) if s is feasible,

+∞ otherwise.

We also say a schedule with degeneracy k is k-degenerated. Note that by this
definition, the minimum possible degeneracy is zero. In this case, its end-to-end
latency does not exceed the length of chain’s period.

With the definitions provided, PSPgen is: given a description of tasks and
precedence chains, find a schedule with minimal degeneracy. Formally, find

arg min
s : T →N0

δ(s), (6)

1 On the other hand, two tasks with equal period are not necessarily in the same Cc.

On the Complexity of a Periodic Scheduling Problem 111

(a) Chains of precedence relations C1, C2, C3, and C4.

(b) An example schedule with degeneracies s(C1) = 2, s(C2) = 0, s(C3) = 1, and
s(C4) = 0. Solid vertical lines mark absolute period boundaries, whereas bold dashed
lines depict relative period boundaries for chain C4.

Fig. 1. A periodic scheduling problem with an example solution. There are four chains:
C1 = (τ1, τ2, τ3, τ4, τ5), C2 = (τ6, τ7, τ8, τ9), C3 = (τ10, τ11, τ12, τ13), and C4 = (τ14, τ15)
with periods 14, 28, 14, and 28 time units, respectively. The task assignments are
m(τ3) = m(τ5) = m(τ6) = m(τ7) = m(τ8) = m(τ12) = m(τ15) = μ1 and m(τ1) =
m(τ2) = m(τ4) = m(τ9) = m(τ10) = m(τ11) = m(τ13) = m(τ14) = μ2, the processing
times are 2 except for p(τ5) = p(τ7) = 4.

such that non-collision (1) and precedence (3) constraints hold. In the three-field
notation, PSPgen is denoted as PD|Tharm

i , jiti = 0, chains|
∑

δ.

2.2 Equivalence Proof

We show that if there is a schedule satisfying non-collision constraints for
PSPgen , it is possible to modify it to also satisfy precedence constraints. We
actually formulate this in a stronger form, which we use later in Sect. 3:

Lemma 1. Let s be a schedule satisfying (1), and let τ� be a fixed root task.
Then there exists a schedule s′ satisfying both (1) and (3) such that s′(τ�) = 0
and s′(τ) ≤ T (τ) for all other root tasks τ. Moreover, if s already satisfies (3),
then δ(s′) ≤ δ(s).

Proof. We define s′′ as s moved in time so that the start time of the chosen root
task τ� is zero:

s′′(τi) = s(τi) − s(τ�).

112 R. Hlad́ık et al.

Schedule s′′ satisfies non-collision constraint (2) since the move does not change
relative positions of start times of the tasks. However, some s′′(τi) may be neg-
ative since τ� may not be a task with the minimum start time in s. We may fix
that by moving each task by a suitable multiple of its period to the right in time.
Nevertheless, precedence constraint (3) may still be violated, and therefore we
fix both of these issues simultaneously as described in the following paragraph.

For τi ∈ T , t0 ∈ N0, let shift(τi, t0) be a minimum value t = s′′(τi)+ k ·T (τi)
(where k ∈ Z) such that t ≥ t0. We construct s′ chain by chain, traversing each
chain in the order of precedences. Given a chain Cc, we set s′(C1

c) = shift(C1
c , 0).

For each subsequent task Cr
c , we set s′(Cr

c) = shift(Cr
c , s′(Cr−1

c)+p(Cr−1
c)). That

is, the shift operation guarantees that each task starts at the earliest time after
its predecessor finishes and do not collide with other tasks. This automatically
ensures that the precedence constraint holds for s′.

With this construction, s′(τi) mod T (τi) = s′′(τi) mod T (τi) for each τi,
which means s′ satisfies non-collision constraint (1) due to Constraint (2).

Finally, since τ� is a root task, s′(τ�) = shift(τ�, 0) = 0. For all other root
tasks τ, s′(τ) < T (τ) by the definition of shift. Assume s satisfies precedence
constraints (3) and observe that δ(s′′) = δ(s). For each Cc, δs′(Cc) ≤ δs′′(Cc),
since the tasks are scheduled as close as possible. Thus, δ(s′) ≤ δ(s′′) = δ(s). ��

An example of the result of this constructive proof can be seen in Fig. 1(b),
where for chain C1, an original schedule s can be s(τ1) = 0, s(τ2) = 6, s(τ3) =
4, s(τ4) = 2, s(τ5) = 8, and a constructed schedule s′ is s′(τ1) = 0, s′(τ2) =
6, s′(τ3) = 18, s′(τ4) = 30, and s′(τ5) = 36.

3 Problem Complexity

In this section, we prove that even a less general version of PSPgen is strongly
NP-hard by a polynomial transformation from a special version of the job shop
scheduling problem.

3.1 PSPcom

The proof of NP-hardness will be carried out on a restricted variant of PSPgen

called PSPcom . This is a decision problem based on PSPgen with the following
modifications: the number of machines is at most 16, all tasks have unit process-
ing time and a common period TH , and the problem is to decide whether there
exists a 0-degenerated schedule. Thus, it is denoted as PD16|Ti = T, jiti =
0, pi = 1, chains, δl = 0|− in the three-field notation. Note that (strong) NP-
hardness of PSPcom implies (strong) NP-hardness of PSPgen since the latter is
more general.

Definition 1. PSPcom is defined by a 4-tuple (T ,M, C, TH) consisting of the
task set, T , machine set, M, chain set, C, and the common period TH . The

On the Complexity of a Periodic Scheduling Problem 113

problem is to decide if there exists a feasible schedule s such that precedence con-
straint (3), non-collision constraint (7), and 0-degeneracy constraint (8) hold.

s(τi) mod TH �= s(τj) mod TH , ∀ i �= j : m(τi) = m(τj) (7)

s(Ck
c) − s(C1

c) < TH , ∀Cc ∈ C. (8)

Due to unit processing times, non-collision constraint (1) resulted in Con-
straint (7) and 0-degeneracy constraint (8) is simply a constraint on chains’
end-to-end latency (4).

Finally, a schedule of PSPcom is feasible if it satisfies precedence con-
straint (3), non-collision constraint (7), and 0-degeneracy constraint (8).

3.2 Job Shop Scheduling Problem JS3

We prove NP-hardness of PSPcom by reduction from a specific variant of the
job shop scheduling problem JS3 denoted in the three-field notation as J3 | pi =
1 | Cmax. Thus, the tasks with unit processing times are scheduled on three
machines so that the makespan (i.e., the completion time of the latest task) is
minimal. We formulate it briefly in the following paragraphs.

Definition 2. JS3 is defined by a 4-tuple (T̂ ,M̂, Ĉ, L) consisting of the task set,
T̂ = {τ̂1, . . . , τ̂n̂}, machine set, M̂ = {μ̂1, μ̂2, μ̂3}, chain set, Ĉ = {Ĉ1, . . . , Ĉk̂},
and the maximum makespan L. The problem is to decide if there exist schedule
s such that non-collision constraint (1) and precedence constraint (3) (with s
substituted for ŝ, τi for τ̂i, and similarly for other variables) such that makespan
constraint (9) holds.

max
τ̂i∈T̂

{ŝ(τ̂i) + p̂(τ̂i)} − min
τ̂i∈T̂

{ŝ(τ̂i)} ≤ L, (9)

The definitions of the task set, machine set, and chain set are the same as
those of PSPcom . However, the tasks are not periodic. Therefore, 0-degeneracy
constraint states that the time elapsed between the first task starting and the
last task finishing among all tasks must be at most L.

Lenstra et al. have shown [13] that this problem is strongly NP-hard.

3.3 Naive Incomplete Reduction

We show that PSPcom (and, therefore, PSPgen) is strongly NP-hard by con-
structing a polynomial reduction from JS3 to PSPcom .

An obvious, but incorrect attempt at the reduction is: given an arbitrary
JS3 instance of Î = (Ĉ,M̂, Ĉ, L), we create one PSPcom task for each JS3 task:
T = { τi | τ̂i ∈ T̂ }, and similarly M = {μi | μ̂i ∈ M̂ }. We also define
C = {C1, . . . , Ck }, where k = k̂ and Ci = Ĉi. At last, for each τi ∈ T we define
p(τi) = 1 and T (τi) = TH = L.

Unlike PSPcom , which imposes the time limit TH on time elapsed between
the first task starting and the last task finishing for each chain separately, JS3

114 R. Hlad́ık et al.

requires L to be a global limit for tasks among all chains. Thus, some solutions
feasible for PSPcom are infeasible for JS3. For the example in Fig. 1(b), the
schedule for chains C2 and C4 with period TH = 28 is feasible for PSPcom ,
but not feasible for JS3 due to makespan constraint (9). Although both chains
individually span over less than 28 time units (C2 from 0 to 26 and C4 from
10 to 36), together, they run from time 0 to time 36, which is more than the
corresponding makespan value of L = 28. Thus, the two conditions are equivalent
only if we ensure that all chains start at the same time. We focus on that in the
following subsections.

3.4 Anchoring Chains

We allocate new machines, tasks, and chains to enforce a particular configuration
of the schedule. By introducing several “dense” chains (i.e., chains with the
number of tasks equal to the hyper-period), we make all chains start at the
same time. To simplify the analysis, we limit ourselves to the following subclass
of schedules.

Definition 3. Let τ be a root task. A schedule s is τ-initial, if s(τ) = 0, and
s(τ ′) < TH for all other root tasks τ ′. A schedule s is initial if it is τ-initial for
some task τ.

Without loss of generality, we may consider only τ-initial schedules: Lemma 1
guarantees that if the instance has a feasible schedule, it also has a τ-initial
feasible schedule. The converse is true since τ-initial feasible schedule is a feasible
schedule by definition.

To make the reduction in Sect. 3.3 complete, we formulate and prove
Lemma 2. It states that for any PSPcom instance, except for special cases, we
can create another instance that is feasible if and only if there exists a schedule
for the initial instance satisfying the makespan constraint in job shop scheduling
problem.

Lemma 2. Given a PSPcom instance I = (T ,M, C, TH) with M =
{μ1, μ2, μ3}, |C| > 1 and TH > 2, it is possible to create a PSPcom instance
I ′ such that I ′ is feasible if and only if

∃s, a feasible schedule of I, such that
∀τi ∈ T : s(τi) + p(τi) ≤ TH .

(10)

To prove Lemma 2, we formulate Lemma 3. It states that the space of solu-
tions (schedules) for a PSPcom problem instance with 16 machines and no addi-
tional restrictions is equivalent to the space of schedules for a PSPcom instance
with 4 machines and the enforced configuration shown in Fig. 2. In this configu-
ration, tasks mapped to one machine may be executed in a time interval [0, x],
whereas all other tasks may be executed in a time interval [x, TH

′′] for a fixed
(of our choosing) x ∈ {2, . . . , TH − 3}. Therefore, this lemma allows for working
in this constrained space of schedules.

On the Complexity of a Periodic Scheduling Problem 115

Lemma 3. Given a PSPcom instance I ′′ = (T ′′,M′′, C′′, TH
′′) and a parameter

x > 1, where M′′ = {μ1, μ2, μ3, μ�}, and TH
′′ > x+2, it is possible to create an

instance I ′ such that I ′ is feasible if and only if

∃s, a feasible schedule of I ′′, such that:

∀τi ∈ T ′′ : m(τi) = μ� =⇒ s(τi) mod TH
′′ ∈ [0, x),

∀τi ∈ T ′′ : m(τi) �= μ� =⇒ s(τi) mod TH
′′ ∈ [x, TH

′′).

(11)

Equation (11) states that the tasks from T ′′ are forbidden to execute in the
gray solid areas of Fig. 2 (and in any of their congruent copies).

We first prove Lemma 2 using the result of Lemma 3 and then we prove
Lemma 3.

µ3

µ2

µ1

µ�

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

0 x T ′′
H T ′′

H + x
TH

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

Fig. 2. Illustration of the complexity proof. Gray solid area stand for the tasks added
in Lemma 3. In the lower right hatched area, JS3 tasks are located, whereas the upper
left hatched area contains the anchoring tasks added in Lemma 2.

Proof (Lemma 2). The main idea is to use Lemma 3 to work with schedules with
the configuration displayed in Fig. 2. We “anchor” each chain by prepending to
it a special task assigned to μ�. This guarantees that each chain starts before
time x. Since tasks of I (i.e., JS3 tasks) must be executed in the time interval
[0, TH

′′ + x) due to the end-to-end latency constraint, and at the same time
cannot be executed in time intervals [0, x) and [TH

′′, TH
′′ + x), they must be

executed in interval [x, TH
′′]. Therefore, the makespan of the resulting JS3 chains

is not more than TH = TH
′′ − x. The details follow.

For each chain, we create a new anchor task τac
and prepend it to the chain:

C ′′
c = (τac

, C1
c , . . . , C

|Cc|
c). We create an instance I ′′ = (T ′′,M′′, C′′, TH

′′) with
T ′′ = T ∪{τa1 , . . . , τak

}, M′′ = M∪{μ�}, C′′ = {C ′′
1 , . . . , C ′′

k }, and TH
′′ = TH+k.

We assign the anchor tasks to the auxiliary machine: m(τac
) = μ� for all c.

We use Lemma 3 on I ′′ with x = k to obtain I ′ = (T ′,M′, C′, TH
′). We want

to prove that I ′ simulates the JS3 makespan constraint (10) in I. By Lemma 3,
I ′ enforces the configuration depicted in Fig. 2 in I ′′. We only have to prove
that I ′′ with the configuration constraints (11) simulates the JS3 makespan con-
straint (10) in I. Formally, proving the lemma is now equivalent to proving that
I ′′ satisfies configuration Constraints (11) if and only if I satisfies configuration
Constraint (10) as depicted in Fig. 3. Next, we prove both implications.

116 R. Hlad́ık et al.

“I satisfies Constraint (10) ⇒ I ′′ satisfies Constraint (11)”: Let s be the
feasible schedule of I satisfying Constraint (10). We create s′′ as follows:

s′′(τi) =

{
c − 1 If τi = τac

for some τac
,

s(τi) + k otherwise.

The definition is valid, since if τi �= τac
, then τI ∈ T , and s(τi) is defined. Both

the satisfaction of Constraints (11) of s′′ and its 0-degeneracy with TH
′′ = TH +k

are guaranteed by the construction.

I ′I
initial
with makespan
 constraint (9)

I ′′+ anchor tasks

in Lemma 2 Lemma 3

constraint (10)
 feasible (non-collision
 and 0-degeneracy
 constraints (6) and (7))

Lemma 2

PSPcom

+ C̃0, . . . , C̃9

Fig. 3. Illustration of the connection of instances I, I′, and I′′ in Lemmas 2 and 3

“I ′′ satisfies Constraint (11) ⇒ I satisfies Constraint (10)”: Let s′′ be the
feasible schedule of I ′′ satisfying Constraints (11). Since there are k anchor tasks
assigned to machine μ� and k time moments where the tasks may be scheduled,
there must exist τac

such that s′′(τac
) mod TH

′′ = 0. We may assume s′′ is τac
-

initial, otherwise we invoke Lemma 1 with τac
and make it such. Observe that the

shifted schedule still satisfies Constraints (11). Since s′′ is initial, s′′(τac
) ≤ TH

′′

and therefore, due to configuration constraints (11), s′′(τac
) ≤ k for all τac

.
Then, s(τ)′′ < TH

′′ + k for all τ ∈ T because of 0-degeneracy, and, finally,
s′′(τ) < TH

′′ = TH + k since Constraints (11) hold for s′′.
We may thus set s(τi) = s′′(τi) − k for all τi ∈ T and observe the resulting

schedule is feasible and satisfies Constraint (10).

��
Now we proceed by proving Lemma 3.

Proof (Lemma 3). We create 12 new machines and 10 × TH new tasks. We cre-
ate a new instance I ′ = (T ′,M′, C′, TH

′) with M′ = M′′ ∪ {μt1 , . . . , μt9 , μs1 ,
μs2 , μs3}, TH

′ = TH
′′, C′ = C′′ ∪{C̃0, . . . , C̃9}, and T ′ = T ′′ ∪ C̃0 ∪· · ·∪ C̃9. Each

chain consists of TH
′′ new tasks with unit processing times and we shall prove

that the start times of all auxiliary tasks are predetermined across all initial
feasible schedules.

We prove the lemma in two steps: first, we describe the assignment of the
tasks in C̃0, . . . , C̃5, and show that they enforce a special configuration on
machines μs1 , μs2 , and μs3 . Then, we describe the assignment of the remain-
ing chains and conclude the proof.

On the Complexity of a Periodic Scheduling Problem 117

Fig. 4. Assignment of tasks in C̃0, . . . , C̃5 to machines μt1 , . . . , μt6 , μs1 , . . . , μs3 and
the only possible schedule of these tasks. Tasks in the same chain have the same
background. The purpose of this configuration is to make free only intervals [x, x + 2)
on machines μs1 , μs2 and μs3 .

The assignment of tasks in C̃0, . . . , C̃5 to machines is shown in Fig. 4. All
tasks in each chain except for two tasks are assigned to the same machine,
whereas the remaining two tasks are assigned to two other mutually distinct
machines. This assignment ensures that the shown schedule s is the only possible
for any C̃1

0 -initial feasible schedule. Since each added chain contains exactly TH

tasks, fixing the start time of one task in a chain results in uniquely determined
start times of all other tasks in this chain due to non-collision and 0-degeneracy
constraints (7) and (8), respectively. Thus, the start times of the tasks in C̃0 are
uniquely determined because of C̃1

0 . Then, C̃x+1
1 can only start at x since for

any other choice, C̃0 and C̃1 would collide. Therefore, s(C̃r
1) = r − 1 for all r.

We proceed with the same reasoning, and conclude that s(C̃r
c) = r − 1 for all

c ∈ {0, . . . , 5}, r ∈ {1, . . . , TH}.
The assignment of the tasks in chains C̃6, . . . , C̃9, is shown in Fig. 5. The first

x tasks in each chain are assigned to the same machine μ1, μ2, μ3 and μt8 , the
next two tasks in each chain are assigned to the same machine μs1 , μs2 , μs3 and
μ�, and the rest of the tasks in each chain are assigned to the same machine
μt7 , μt8 , μ�, and μt9 , respectively. Note that machines μ1, μ2, μ3, μ� are free
exactly at times indicated by Constraint (11) (compare with Fig. 2).

Using the same reasoning as in the previous part of the proof, we can prove
that the configuration shown in Fig. 5 is the only possible for any C̃1

0 -initial
feasible schedule. We shall now verify that I ′ satisfies the requirements of the
lemma, i. e., that it simulates configuration constraints (11) in I ′′. We prove
both implications:

“I ′′ satisfies configuration constraints (11) =⇒ I ′ is feasible”: Let s′′ be the
schedule of I ′′ satisfying Constraints (11). We define s′(τi) = s′′(τi) for τi ∈ T
and use the idea from Figs. 4 and 5 for the remaining auxiliary tasks. By the
construction, s′ is 0-degenerated and has no collisions.

“I ′ is feasible =⇒ I ′′ satisfies configuration constraints (11)”: Let s′

be a feasible schedule of I ′. We assume without loss of generality that s′ is

118 R. Hlad́ık et al.

C̃1
6 C̃x

6

C̃x+1
6 C̃x+2

6

C̃x+3
6 C̃

T ′′
H

6

. . .

. . .

. . .

. . .

C̃1
7 C̃x

7

C̃x+1
7 C̃x+2

7

C̃x+3
7 C̃

T ′′
H

7

. . .

. . .

. . .

. . .

C̃1
8 C̃x

8

C̃x+1
8 C̃x+2

8

C̃x+3
8 C̃

T ′′
H

8

. . .

. . .

. . .

. . .

C̃1
9 C̃x

9

C̃x+1
9 C̃x+2

9

C̃x+3
9 C̃

T ′′
H

9

. . .

. . .

µs1

µs2

µs3

µ1

µ2

µ3

µt7

µt8

µ�

µt9

0 x x+ 2 T ′′
H

Fig. 5. Assignment of tasks in C̃6, . . . , C̃9 to machines μs1 , μs2 , μs3 , μt7 , μt8 , μt9 , μ1,
μ2, μ3, μ� and the only possible schedule of these tasks. Dark gray rectangles are the
tasks fixed in Fig. 4. The purpose of this configuration is to occupy interval [0, x] on
machines μ1, μ2, and μ3 and [x, TH

′′] on μ�.

C̃1
0 -initial, otherwise we make it such using Lemma 1. We define s′′(τi) = s′(τ)

for all τ ∈ T . Due to s′ being C̃1
0 -initial, we know that it must schedule tasks

from the auxiliary chain as displayed in Fig. 5. Then Constraints (11) become
just the no-collision constraints on s′ between tasks from T and tasks from C̃6,
C̃7, C̃8 and C̃9. Since these hold by construction, we are done.

��

Observation 1. If Lemma 2 is used on I = (T ,M, C, TH), the resulting
instance has O(|T | + TH) tasks, and the time complexity of constructing it is
also O(|T | + TH).

Theorem 1. There exists a polynomial reduction from JS3 to PSPcom .

Proof. Let J = (T̂ ,M̂, Ĉ, L) be a JS3 instance. Let I = (T ,M, C, TH) be the
instance obtained from J by the naive reduction described in Sect. 3.3. We
consider two cases:

– The conditions of Lemma 2 do not hold. Then either |C| = 1, or TH = L ≤ 2.
In both cases, we may decide the feasibility of the instance in polynomial
time.

– If TH > |T |, the instance is always feasible.
– Otherwise, we use Lemma 2 to obtain in time O(|T | + TH) = O(|T |) an

instance I ′ that is feasible if and only if there is a feasible schedule s of I sat-
isfying Constraint (10), which is equivalent to J having a schedule satisfying
Constraint (9).

Corollary 1. PSPcom and PSPgen are strongly NP-hard.

On the Complexity of a Periodic Scheduling Problem 119

4 Heuristic Approach

We propose a local search heuristic to solve PSPgen described in Sect. 2. The
algorithm first generates a (possibly infeasible) schedule and then, for a fixed
number of iterations, creates a new schedule based on the current one. The old
schedule is swapped with the new one if the quality of the latter is not worse in
terms of degeneracy.

Schedule Representation. In PSPs, schedules are usually represented directly
by task start times. However, inspired by the disjunctive graphs in the job shop
scheduling problem [2], we represent a schedule as a queue of tasks. We recon-
struct the schedule whenever we want to compute its degeneracy. A queue Q is
a totally ordered list of tasks: Q = (τπ(1), . . . , τπ(n)), where π is a permutation
of {1, . . . , n}. Let Q(i) = τπ(i).

Reconstruction. A reconstruction function f : Q → s is a function that takes
Q as an argument and returns a schedule (i.e., task start times). An important
property of reconstruction functions is that a small change in a queue results in a
small change in the reconstructed schedule. This property is the main motivation
for the design decisions of this function. Moreover, two schedules represented by
start times might look very different, but in fact they might be nearly identical
from the “search space” viewpoint.

The reconstruction starts with an empty schedule (i.e., s(τi) = ∅ for all
τi) and it schedules task Q(�) in the �-th iteration such that non-collision (1)
and precedence (3) (if the predecessor of Q(�) is already scheduled) constraints
are respected. Once a task is scheduled, it remains fixed until the end of the
reconstruction. Since tasks may not be in their precedence order in a queue Q,
missing precedence constraints are handled at the end of the reconstruction by
the shifting procedure from Lemma 1 in Sect. 2.2. Allowing broken precedence
constraints in Q gives the heuristic the freedom to decide that a particular
precedence relation should be broken. Note that the partial schedule may not
be extendable to a feasible schedule. Then, we return ∅ instead of the schedule.

We next describe the strategy to assign the start time for task Q(�) = τi

in details. For each machine μq, we maintain the time head(μq) = max{s(τi) +
p(τi) | s(τi) �= ∅,m(τi) = μq} at which the last task assigned to this machine
(scheduled so far) finishes executing. We schedule task τi at the earliest time t
such that: 1. it is not sooner than the last task on the corresponding machine,
i.e., t ≥ head(m(τi)); 2. non-collision constraints are satisfied, i.e., no tasks
are already scheduled in intervals [t + k · T (τi), t + k · T (τi) + p(τi)); and 3.
t ≥ s(τj) + p(τj), where τj is the predecessor of τi (if τj = ∅ or s(τj) = ∅, we
set s(τj) = −∞). If no such t exists, we return ∅. Due to the efficient schedule
representation, finding the smallest t is done quickly. However, in this work we
do not elaborate on it due to the space limit.

120 R. Hlad́ık et al.

Neighbor Function. A neighbor function takes the current Q and modifies
it. The resulting queue is a neighbor. Multiple functions have been tested, out
of which the most notable are presented in Table 1. Note that in this work, all
random choices are assumed to be in a form of the uniform distribution. The
idea used by the most successful functions, as shown later in the experiments,
is to rearrange the tasks of a randomly chosen chain such that they go in the
order of precedence relations (chain sort function). For example, queue Q =
(· · · , C2

c , · · · , C3
c , · · · , C1

c) becomes Q′ = (· · · , C1
c , · · · , C2

c , · · · , C3
c) for a chosen

chain Cc.

Table 1. List of neighbor functions

In chain sort loc, the change is discarded if the degeneracy of a queue
with the rearranged tasks is worse, and the change is kept if the degeneracy
has not changed. In one iteration, we apply this function until the neighbor
degeneracy becomes less than the initial degeneracy or until the queue is sorted.
The intuition behind is that although sorting the current chain may not change
the degeneracy, it may nevertheless improve the solution. Finally, switch is the
only function that change its strategy with iterations. Here, chain sort loc
is used until all chains are sorted. From the first iteration when there is no
unsorted chain onward, we always perform combined random. The idea is that
in the initial burn-in phase, we want to sort as many chains as possible. Once
we achieve that, we want to avoid getting stuck in a local minimum. Thus, we
switch to combined random, allowing more unpredictable changes.

Initialization. To find an initial Q, we sort all tasks in the ascending order
using a custom comparison ≺ defined as follows (“<” denoting the lexicographic
comparison on ordered pairs): τi ≺ τj ⇐⇒ (T (τi),−p(τi)) < (T (τj),−p(τj)).
In other words, we place tasks with smaller periods first, and in case of a tie, we
place longer-executing tasks first.

On the Complexity of a Periodic Scheduling Problem 121

Input: N , N+∞, time limit
1 Q.initialize();
2 while elapsed time < time limit do
3 s = Q.reconstruct(), δ1 = δ(s);
4 if δ1 = +∞ then Q′ = N+∞(Q) else Q′ = N (Q) ;
5 s′ = Q′.reconstruct(), δ2 = δ(s′);
6 if δ2 ≤ δ1 then
7 Q = Q′;
8 if δ(Q)′ = 0 then

Output: s
9 end

10 end

11 end
Output: s

Algorithm 1: Local search heuristic

4.1 Algorithm Overview

The proposed local search heuristic is presented in Algorithm 1. It is parame-
terized by the choice of two neighbor functions, N and N+∞, and the running
time time limit. We use function N when the current schedule is feasible (i.e.,
the reconstruction managed to find a non-collision schedule for a queue in the
corresponding iteration), whereas we use N+∞ when the schedule is not feasible.
The parameter time limit can be chosen based on the time that is acceptable
by the system designer. The algorithm starts by generating an initial queue on
Line 1. Then, the heuristic repeats the following procedure for a fixed number
of iterations (finishing early if δ(Q) = 0 (Line 8)). First, the schedule is recon-
structed, and its degeneracy is computed (Line 3). If the reconstructed schedule
is infeasible or the reconstruction fails, we set δ(Q) = +∞. In this case, as men-
tioned earlier, a neighbor is generated by calling N+∞(Q). Otherwise, it is done
using N (Q). If the new schedule is not worse than the old one (Line 6), the old
schedule is swapped with the new one (Line 7), and the next iteration continues
working with this updated schedule. The idea behind using non-strict inequality
on Line 6 is that we want to explore as much solution space as possible and not
get stuck in a local optimum.

4.2 Experimental Results

Experimental Setup. We randomly generated 7 sets of problem instances
differing in the following parameters presented in Table 2: minimum and maxi-
mum number of tasks in each chain, l(C)min and l(C)max, respectively, and the
upper limit on the utilization of each machine, σmax = maxμ∈M σμ . The uti-
lization is defined as σμ =

∑
τ : m(τ)=μ

p(τ)
T (τ) , which is the fraction of time this

machine is occupied. In Sets 1–6, the utilization of 95% of the machines lies in
the interval [σmax − 0.2, σmax]. In Set 7, the utilization of more than 90% of the

122 R. Hlad́ık et al.

Table 2. Parameters of the generated sets

Name σmax l(C)min l(C)max

Set 1 0.8 5 15

Set 2 0.9 2 5

(�) Set 3 0.9 5 15

Set 4 0.9 15 25

Set 5 0.93 5 15

Set 6 0.96 5 15

Set 7 1 5 15

Table 3. Results on Set 3 with various
functions N

Table 4. Results of the heuristic with N = combined local on different sets

Set % of solved instances Average degeneracy

Set 1, σmax = 0.8, medium chains 99.56 0

Set 5, σmax = 0.93, medium chains 97.98 0.49

Set 6, σmax = 0.96, medium chains 96.65 1.34

Set 7, σmax = 1, medium chains 54.50 58.52

Set 2, σmax = 0.9, short chains 98.56 0.01

Set 3, σmax = 0.9, medium chains 98.98 0.13

Set 4, σmax = 0.9, long chains 98.90 0.96

machines equals 1, and the utilization of the rest of the machines lies in the
interval [0.96, 1). The number of tasks in all sets varies from 100 to 9 000, with
more than half of the instances having more than 1 000 tasks in each set. Each
of these seven test sets consists of 4 groups of 200 problem instances, with the
following parameters (P is the set of periods, |M| is the number of machines):
1. P = {20, 21, . . . , 210}, |M| = 5, 2. P = {20, 21, . . . , 210}, |M| = 10, 3. P = {2,
10, 20, 100, 200, 1000, 2000, 4000}, |M| = 5, and 4. P = {8, 16, 64, 256,
1024, 2048}, |M| = 5. The generation procedure ensures that each of the 5 400
generated problem instances has a 0-degenerated schedule.

We ran the heuristic 6 times on each instance with N+∞ = chain uniform
with a different random seed. For each run of the heuristic, we set time limit
to 3 min. We choose the best of these runs as a result. Finally, we performed
the experiments on a machine equipped with four Intel(R) Xeon(R) Silver 4110
CPUs, all clocked at 2.10 GHz, each having 8 cores and 16 threads. Similar results
were achieved on a middle-end laptop.

Results. Table 3 presents the average degeneracy of the heuristic algorithm with
the most promising neighbor functions on problem instances of Set 3, which we
consider moderately difficult. The percentage of problem instances for which the
heuristic found a feasible solution is 98.98. The degeneracy of the heuristic with

On the Complexity of a Periodic Scheduling Problem 123

all neighbor functions is relatively small, however combined local and switch
show the best results with statistically insignificant difference. Since the former
is conceptually easier, we use it in the second experiment.

Table 4 shows the percentage of problem instances for which a feasible
solution was found and the average degeneracy for each test set. Note that
Sets 1, 3, 5, 6, and 7 have equal parameters except for σmax. As expected,
increased machine utilization leads to larger degeneracy with the significant dif-
ference for Set 7 with σmax = 1. On the other hand, Sets 2, 3, and 4 differ in the
chain length only. Instances with longer chains have larger average degeneracy,
but the results do not suggest such a dramatic increase as in Set 7.

5 Conclusions and Future Work

This paper addresses the periodic scheduling problem PSPgen with chains of
precedence relations. In this problem, periodic tasks are scheduled in time on
dedicated machines so that at any moment, at most one task is executed on each
machine. We define a degeneracy of a chain as the number of broken precedence
relations within the time window of one period. The problem is to find a schedule
with the minimum degeneracy.

We prove that this problem is strongly NP-hard even when restricted to
unit processing times, a single period, and 16 machines (called PSPcom), by a
reduction from a variant of a job shop scheduling problem. In this reduction, by
introducing auxiliary tasks, machines, and chains, we prove that the entire space
of solutions of PSPcom is equivalent to the space of solutions respecting the job
shop constraint on the total length of the schedule (missing in PSPcom). Fur-
thermore, we present a local search heuristic algorithm that solves PSPgen . We
generated 5 400 problem instances allowing 0-degenerated solutions. On them,
we experimentally demonstrate the soundness of our algorithm and show that it
can successfully solve 92% of the instances with average resulting degeneracy of
8.78, each in a few minutes.

As future work, it would be interesting to explore the complexity of PSPcom

on a smaller number of machines. Whereas the PSPcom with a common period
on one machine is polynomially solvable (by placing one task after another of
the first chain in precedence order, then the second chain, etc., in an arbitrary
order), scheduling on two and more resources (up to 15) is an open question.

Acknowledgments. Research leading to these results has received funding from the
EU ECSEL Joint Undertaking and the Ministry of Education of the Czech Republic
under grant agreement 826452 (project Arrowhead Tools).

References

1. Bar-Noy, A., Bhatia, R., Naor, J.S., Schieber, B.: Minimizing service and operation
costs of periodic scheduling. Math. Oper. Res. 27(3), 518–544 (2002)

124 R. Hlad́ık et al.

2. B�lażewicz, J., Pesch, E., Sterna, M.: The disjunctive graph machine representation
of the job shop scheduling problem. Eur. J. Oper. Res. 127(2), 317–331 (2000)

3. Cai, Y., Kong, M.: Nonpreemptive scheduling of periodic tasks in uni-and multi-
processor systems. Algorithmica 15, 572–599 (1996)

4. Dvorak, J., Hanzalek, Z.: Multi-variant time constrained FlexRay static segment
scheduling. In: 2014 10th IEEE Workshop on Factory Communication Systems
(WFCS 2014), pp. 1–8 (2014)

5. Dvořák, J., Hanzálek, Z.: Multi-variant scheduling of critical time-triggered com-
munication in incremental development process: application to flexray. IEEE Trans.
Veh. Technol. 68(1), 155–169 (2018)

6. Eisenbrand, F., Hähnle, N., Niemeier, M., Skutella, M., Verschae, J., Wiese, A.:
Scheduling periodic tasks in a hard real-time environment. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6198, pp. 299–311. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14165-2 26

7. Eisenbrand, F., et al.: Solving an avionics real-time scheduling problem by
advanced IP-methods. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol.
6346, pp. 11–22. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15775-2 2

8. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approxi-
mation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math.
5, 287–326 (1979)

9. Jacobs, T., Longo, S.: A new perspective on the windows scheduling problem. arXiv
preprint arXiv:1410.7237 (2014)

10. Jeffay, K., Stanat, D.F., Martel, C.U.: On non-preemptive scheduling of periodic
and sporadic tasks. In: IEEE Real-time Systems Symposium, pp. 129–139. IEEE,
USA (1991)

11. Korst, J., Aarts, E., Lenstra, J.K., Wessels, J.: Periodic multiprocessor scheduling.
In: Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) Parle 1991 Parallel Architec-
tures and Languages Europe. LNCS, pp. 166–178. Springer, Heidelberg (1991).
https://doi.org/10.1007/978-3-662-25209-3 12

12. Korst, J., Aarts, E., Lenstra, J.K.: Scheduling periodic tasks. INFORMS J. Com-
put. 8(4), 428–435 (1996)

13. Lenstra, J.K., Kan, A.R.: Computational complexity of discrete optimization prob-
lems. In: Annals of Discrete Mathematics, vol. 4, pp. 121–140. Elsevier (1979)

14. Nawrocki, J.R., Czajka, A., Complak, W.: Scheduling cyclic tasks with binary
periods. Inf. Process. Lett. 65(4), 173–178 (1998)

15. Ogata, K.: Discrete-Time Control Systems, vol. 2. Prentice Hall, Englewood Cliffs
(1995)

16. Oliver, R.S., Craciunas, S.S., Steiner, W.: IEEE 802.1 Qbv gate control list synthe-
sis using array theory encoding. In: 2018 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pp. 13–24. IEEE (2018)

17. Wei, W., Liu, C.: On a periodic maintenance problem. Oper. Res. Lett. 2(2), 90–93
(1983)

https://doi.org/10.1007/978-3-642-14165-2_26
https://doi.org/10.1007/978-3-642-14165-2_26
https://doi.org/10.1007/978-3-642-15775-2_2
https://doi.org/10.1007/978-3-642-15775-2_2
http://arxiv.org/abs/1410.7237
https://doi.org/10.1007/978-3-662-25209-3_12

Energy-Constrained Drone Delivery
Scheduling

Rafael Papa, Ionut Cardei, and Mihaela Cardei(B)

Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, FL 33431, USA

{rpapa2013,icardei,mcardei}@fau.edu

Abstract. In recent years drones have been used in many applications
such as surveillance, geographic mapping, search and rescue, and weather
forecast. Motivated by the increased use of drones in shipping and deliv-
ery, in this paper we tackle the problem of parcel delivery by taking into
consideration important aspects such as serving on-demand requests,
flight duration limitation due to energy constraints, maintaining the
safety distance to avoid collisions, and using warehouses as starting and
ending points in parcel delivery. In this paper we define the UAS Energy-
constrained Delivery Scheduling problem and propose a scheduling mech-
anism using a multi-source A* algorithm variant. Simulation results show
that our algorithm is efficient and scalable with the number of requests
and network size.

Keywords: UAS scheduling · Traffic management system · Energy
constraints · Multi-source A* · Graph search

1 Introduction

With the recent advances in drone technologies, a new delivery method is emerg-
ing as new trend among the e-commerce companies, the drone delivery. This
method uses a vehicle that can be operated without the cost of a human pilot
and provides a fast and low cost alternative to the regular truck delivery. Amazon
and few other high-profile drone delivery companies such as Wing, UPS Flight
Forward, and Zipline have presented their solutions recently [4]. This exciting
market is growing, but it is also facing challenges.

Flight restrictions and flight duration can make it difficult to use drones in a
large operation area. For instance, the Federal Aviation Administration (FAA)
guidelines prevent drones to fly over (or near) airports, stadiums and sporting
events, Washington-DC territory or special use airspace [5]. In addition to that,
a commercial drone can fly only for about half an hour in good conditions (i.e.
no wind or rain) and it is able to carry only one small parcel per time.

There are several research works that tackle the problem of delivery task1

using drones. Some of them are using a combination of trucks and drones. We
1 The action of delivering goods requested by clients within a limited time is called

delivery task.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 125–139, 2020.
https://doi.org/10.1007/978-3-030-64843-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_9

126 R. Papa et al.

observed few limitations and drawbacks in the related works. The solutions are
not scalable with the number of request and network size. Many formulations
present results for a small number of clients. Another issue is that the models
assume that all requests are known upfront. This is not the case in practical
applications, where requests can arrive at any time. Another limitation is to
assume that drones can fly to the destination along the euclidean distance. As
mentioned previously, there are no-fly areas such as airports that must be taken
into account.

In this paper we address these limitations and focus on drone delivery task
without using trucks. 86% of all orders shipped by Amazon weight less than 5
pounds and can potentially be delivered in small packages by drones. Our objec-
tive is to increase the drone flight time by allowing drones to land on charging
stations to replace batteries along the delivery path. The main contribution of
this paper is a UAS path scheduler that computes safe collision-free trajectories
constrained by vehicle battery capacity and application deadline demands. Our
algorithm is a variant of A* with multiple sources and branching factor of 1. Its
running time complexity is polynomial and good enough to scale to metropolitan
size networks with tens of thousands of vertices and edges supporting admission
rates of 4 requests per second (i.e. 8000 requests in 2000 s).

The rest of the paper is organized as follows. Related works are presented
in Sect. 2. Section 3 discusses the motivation and introduces the UAS-ECDS
problem definition. In Sect. 4 we propose a scheduling mechanism using a variant
of multi-source A* algorithm. The performance of our algorithm is illustrated in
Sect. 5. The conclusions are stated in Sect. 6.

2 Related Works

Paper [9] proposes a hybrid truck-drone delivery system for the last-mile delivery
in logistics operations. In the proposed Flying Sidekick Traveling Salesman Prob-
lem (FSTSP), a single drone carried by the truck is launched to make deliveries
to few selected customers and then joins the truck while on route. The objective
is to find a route that minimizes the time to complete the delivery task using
both vehicles. The paper solves FSTSP using mixed integer linear programming
(MILP) and uses a heuristic to calculate an upper bound on the time required
to visit all customers and return to the depot. The FSTSP is NP-hard and the
proposed MILP took several hours to complete for 10 clients.

There are few other formulations for TSP with drone (TSP-D) problem in
literature. Article [1] presents an integer programming (IP) formulation and sev-
eral fast route first-cluster second heuristics based on local search and dynamic
programming. It took about 2 h to achieve a near-optimal solution for 12 cus-
tomers. The recent work [2] uses the Bellman-Held-Karp dynamic programming
algorithm for the TSP-D problem. This method was able to find the optimal solu-
tion much faster for an input with 10 vertices. The authors were able to solve
problems with a higher complexity with a single drone and simple operations.

Energy-Constrained Drone Delivery Scheduling 127

Few recent works address the same problem using multiple drones and mul-
tiple trucks. The recent paper [10] proposes the Multiple Flying Sidekicks Trav-
eling Salesman Problem (mFSTSP) extending the previous FSTSP to multiple
drones. A new three-phase heuristic solution approach for the MILP formula-
tion was proposed. In Phase I the customers are divided into two sets (served
by truck and served by UAVs), in Phase II the routes are computed and in the
Phase III MILP is used to determine the exact time of launch, recovery and
service activities for the truck and the UAVs. About 66% of the problems were
optimally solved within the time limit of 1 hour for scenarios with 8 customers.

Article [8] solves the Multiple Traveling Salesman Problem with Drones
(mTSPD) by extending the previous TSP-D to multiple drones and multiple
trucks. Authors propose a MIP formulation to minimize the trucks’ and drones’
arrival time at the depot after delivery. The MIP model was used to solve sce-
narios with 10 customers. For larger problem sizes, they use a heuristic approach
based on the greedy node(s)-insertion strategy. All truck-drone delivery paths
are computed along Euclidean distances.

The hybrid truck-drone delivery systems must account for the drone energy
consumption. High speeds, different parcels weight, successive battery replace-
ments and frequent recharging may limit the use of drones in such applications.
For example, a faster speed or heavier weight parcel will demand a larger power
consumption by the device. Using charging stations is a promising strategy for
drone delivery. Paper [7] extended the FSTSP model by taking into consideration
the parcel weight and the no-fly zone areas for energy consumption purposes.

Article [6] proposes a model where drones can charge to increase the flight
time. The work proposes a scheduling algorithm based on game theory where
drones compete for charging slots on limited charging stations along the path.
Using these charging capabilities enable drones to fly longer (i.e. for hours) for
surveillance, delivery tasks and rescue operations. The proposed drone charg-
ing model is based on Hedera Hashgraph, an asynchronous Byzantine Fault
Tolerance (ABFT) consensus algorithm capable of securing the platform against
attacks. This algorithm is used to compute the consensus time-stamp for schedul-
ing the charging requests. The game-theoretic approach is used to allocate drones
to the charging slots in a cost-optimal manner.

3 Motivation and Problem Definition

Many applications are using drone technology recently such as surveillance, aerial
photography, shipping and delivery, geographic mapping, search and rescue, and
weather forecast. In this paper we tackle the problem of parcel delivery by taking
into consideration important aspects such as on-demand (or real-time) requests,
limitation of drone flight duration due to energy constraints, maintaining a safety
distance to avoid collisions, and using warehouses as starting and ending points
in parcel delivery. We assume that an aerial highway system is predefined and
it is represented by a directed graph where each edge represents an aerial lane.
The set of vertices include intersections, client locations, warehouse locations,
and charging station locations.

128 R. Papa et al.

Next, we define the UAS Energy-constrained Delivery Scheduling
(UAS-ECDS) problem: We are given an aerial highway system modeled as a
directed graph G(V,E). The set of vertices C = {c1, ..., ck} is the set of charging
stations, C ⊂ V . Client requests can arrive at any time. A request is charac-
terized by the following fields: client location (a vertex in V), the set of start
warehouses Ws ⊂ V , the set of final warehouses Wf ⊂ V , where Ws ⊆ Wf , the
request start time, the deadline to reach the client, and the deadline to reach a
final warehouse. The flight time is limited by the battery capacity. The objective
is to design an efficient, on-demand UAS delivery scheduling which accounts for
the battery constraints and is collision-free. We assume that all UAS’s have the
same maximum speed vmax and they must be separated by a distance greater
than or equal to the safety distance d when in flight, in order to be collision-free.

4 UAS Energy-Constrained Scheduling Algorithm

In this section we describe our solution for the UAS-ECDS problem. We make
the following assumptions:

– UAS’s move along the edges of the aerial highway traffic system
Ginit(V,Einit). This is a weighted graph, where the weight of an edge
dist(u, v) is the Euclidean distance from u to v.

– the minimum speed of each UAS is 0 m/s, such as for VTOL (vertical takeoff
and landing) UAS. More specifically we assume that at each time instance,
the speed of each UAS is between 0 m/s and vmax.

– we assume that the UAS can charge at most once on the path from the start
warehouse (a vertex in Ws) to the client, and at most once on the path from
the client to the final warehouse (a vertex in Wf). A delivery path looks as
follows: start warehouse → charging station (optional) → client → charging
station (optional) → final warehouse.

Our solution has the following steps: (i) clients send requests to a Base Station
(BS) or traffic management system for drones, (ii) based on the directed graph
G and the trajectory of the UAS’s already in transit, the BS computes the
trajectory of the UAS serving the new request, and (iii) if the delivery path
can be computed such that to meet the deadline for reaching the client and the
deadline for reaching a final warehouse, then a success message is sent to the
client and a message with the computed trajectory is sent to the corresponding
start warehouse. If the request cannot be satisfied, then an error message is sent
to the client.

For a collision-free system, the BS has to ensure that the distance between
moving UAS’s is at least the safety distance d when scheduling UAS trajectories.
To model the safety distance requirement, we use the mechanism from [12] to
transform the graph Ginit to a unit-graph Ginit

u = (Vu, Einit
u) where the weight

of each edge is d. Similar to [12], we transform the graph to a unit-graph and
use a time-space graph to avoid collisions. We divide each edge into segments of
length d and a shorter segment with the remainder.

Energy-Constrained Drone Delivery Scheduling 129

Each UAS takes time δ to traverse an edge (u, v) in the unit-graph, where
δ = d/vmax. The time is discretized with 1 time unit equal to δ. Let us assume
that uasj is in transit, and it is located at the vertex u at time t. The following
options are possible during the next time-interval [t, t + 1): (i) uasj pauses (e.g.
hovers), thus uasj is in u at time t + 1, (ii) uasj traverses the edge (u, v), thus
uasj is in v at time t + 1, and (iii) uasj is charging at the charging station u.
Based on our modeling of the problem, a UAS traverses an edge of the unit-graph
in 1 time unit.

To model the charging of a UAS, we assume that charging takes α time units,
where α is a configuration parameter. Charging takes a relatively small time if
the only operation performed is to replace the battery.

Another important aspect in computing the schedule of an UAS is designing
a rule to determine which unit-edges are available at a certain time t, that means
during the time interval [t, t + 1). Note that based on the way that we model
conflict prevention, an edge (u, v) can be traversed by a single UAS during a
time interval [t, t + 1). In addition, we need to ensure that the safety distance d
is maintained between any two UAS’s in transit.

To model the availability of edges in time, we define a space-time graph
denoted Gu(t) = (Vu, Eu(t)). The set of edges Eu(t) represents the edges which
are available during the time interval [t, t + 1). Initially, Eu(t) = Einit

u for each
t = 0, 1, 2, ... but when UAS trajectories are scheduled, the set of edges is pruned
accordingly.

We use the PRUNE-RULE algorithm from [12] to prune the available set
of edges. If a UAS is scheduled to use the edge (u, v) at time t (i.e. during the
time interval [t, t + 1)), then Eu(t) is pruned as follows:

1. delete (u, v) from Eu(t)
2. delete edges (a, b) with distance{(u, v), (a, b)} < d from Eu(t), with the fol-

lowing exceptions:
(a) an edge (a, u) with vertices a, u, and v collinear and dist(a, u) = dist(u, v)

= d is not deleted from Eu(t)
(b) an edge (v, b) with vertices u, v, and b collinear and dist(u, v) = dist(v, b)

= d is not deleted from Eu(t).
(c) the reverse edge (v, u) is not deleted from Eu(t).

The same edge (u, v) cannot be used by more than one UAS in the same time
interval. If an adjacent edge lies on the same straight line as (u, v) and both of
these edges have distance d, then they can be active at the same time, therefore
the adjacent edge will not be removed in this case. Lastly, edges (a, b) which are
located at a distance smaller than d to the edge (u, v) are deleted since they
may conflict with maintaining the safety distance. The reverse direction edges
are not removed.

There are few ways in which we can model the battery-constraint uas delivery.
Since in our framework uas travel along unit-edges and each uas takes δ time to
traverse an edge, we assume that a fully charged battery lasts H × δ time, thus
the uas can traverse at most H hops before recharging. An uas can replenish its
battery at a charging station and we assume that the charging takes α time-units.

130 R. Papa et al.

A request has the following fields: req = (clientV ertex, Ws, Wf , C, ts,
maxTimeClient, maxTimeWf), where clientV ertex is the client location, Ws

is the set of start warehouses, Wf is the set of final warehouses, C is the set of
charging stations, ts is the request start time, maxTimeClient is the deadline
to reach the client, and maxTimeWf is the deadline to reach a final warehouse.
Our proposed algorithm COMPUTE-PATH is a multi-source A* algorithm vari-
ant with the following specific features: (I) there are multiple sources (or roots)
in the search tree, and (II) the branching factor is one.

An Initialization phase is performed by the BS before processing client
requests. The Breath-First-Search (BFS) algorithm [3] runs on Ginit

u starting
from each charging station vertex as a source vertex and it runs only for distances
less than or equal to H. Each vertex in the graph stores the cost (i.e. the number
of edges) and the predecessor node for each charging station.

Next we describe our algorithm COMPUTE-PATH which is used to process
a client request. The input parameters are: (i) Gu[ts..maxTimeWf] which is the
unit space-time graph from ts to maxTimeWf , and (ii) the client request req.
We start in line 1 by running BFS [3] from the client vertex, with a span (or
radius) of at most 2H edges. Each node in the graph (within distance 2H) has
the shortest path (number of edges) to the client vertex.

In presenting our algorithm r, p, and q are nodes in the search tree, while u,
v, and w are nodes in the unit space-time graph Gu. A node p in the search tree
has the following fields:

– level - the level in the search tree represents the time when the uas has
reached the node p.crtV ertex.

– crtV ertex - the current vertex in the unit space-time graph Gu.
– state - takes one of the values {ST TO CH1, ST TO CLIENT, ST TO CH2,

ST TO WF} depending on the next objective vertex on the path.
– timeAtClient - initially has the value infinity. It records the time when the

uas reaches the client and it remains unchanged thereafter.
– parent - stores the parent node in the search tree.
– score - the priority for the minimum priority queue PQ. The score is a tuple

(score1, score2) where score1 is 0 if the uas is traveling between the client
and the final warehouse and 1 if the uas is traveling between the the start
warehouse and the client. If score1 equals 0 then score2 is the expected time
to reach the final warehouse. If score1 equals 1 then score2 is the expected
time to reach the client.

– batteryCharging - boolean value used to indicate whether the uas is charging
or not in the current search tree node.

– batteryLevel - takes a value between 0 and H. After the battery is charged,
the value is reset to H. The value is decremented for each new time unit.

– ch1 - stores the charging station on the path from the start warehouse to the
client, if any. Otherwise it is NIL.

– ch2 - stores the charging station on the path from the client to the final
warehouse, if any. Otherwise it is NIL.

– wf - stores the final warehouse vertex.

Energy-Constrained Drone Delivery Scheduling 131

ALGORITHM 1: COMPUTE-PATH (Gu[req.ts .. req.maxTimeWf],
req)

1: BFS(Gu, req.clientVertex)

2: PQ = ∅
3: for each warehouse w ∈ Ws do

4: r = INITIALIZE-ROOT(Gu, req, w)

5: if r �= NIL then insert(PQ, r)

6: end for

7: while PQ �= ∅ do

8: p = remove(PQ) // dequeue based on the score field

9: v = NEXT-NODE(Gu, p)

10: create a new node q in the search tree

11: INITIALIZE(p, q) /* initializes the fields of q with default values*/

12: if p.batteryCharging == true then q.level = p.level + 1 + α

13: /* if the edge is available then the path advances, otherwise the uas waits */

14: if (p.crtVertex, v) ∈ Eu(q.level-1) then q.crtVertex = v

15: if (p.state == ST TO CH1) AND (q.crtVertex == q.ch1) then

16: q.batteryCharging = true

17: q.batteryLevel = H //reset after battery charging

18: q.state = ST TO CLIENT

19: end if

20: if (p.state == ST TO CLIENT)AND(q.crtVertex == req.clientVertex) then

21: q.timeAtClient = q.level

22: if q.ch2 �= NIL then q.state = ST TO CH2 else q.state = ST TO WF

23: end if

24: if (p.state == ST TO CH2) AND (q.crtVertex == q.ch2) then

25: q.batteryCharging = true

26: q.batteryLevel = H //reset after battery charging

27: q.state = ST TO WF

28: end if

29: if (p.state == ST TO WF) AND (q.crtVertex == q.wf) AND FEASIBLE-NODE(q) then

30: /* feasible solution found */

31: PRUNE-GRAPH(Gu[ts..req.maxTimeWf], q)

32: return ASSIGN-PATH(q)

33: end if

34: if (q.state == ST TO CH1) OR (q.state == ST TO CLIENT) then

35: q.score = (1, q.level + cost to client)

36: else

37: /* state is ST TO CH2 or ST TO WF */

38: q.score = (0, q.level + cost to wf)

39: end if

40: if FEASIBLE-NODE(q) then insert(PQ, q)

41: end while

We are using a minimum priority queue PQ where the priority is decided by
the field score. There are at most |Ws| source nodes (or root nodes) in the search
tree that are added to the priority queue PQ, see lines 3 to 6. The root node
initialization is done in the procedure INITIALIZE-ROOT. We explain next the
lines 8–15 of this procedure. For each warehouse w, we are seeking to compute
a shortest path to a final warehouse, in the following order:

– Group1. Paths are in the form: w → client → wf, where wf ∈ Wf . Paths in
this group do not contain charging stations. The shortest subpath w → client
is obtained directly from the BFS tree. The least-cost subpath client → wf is
selected among all final warehouses wf in the BFS tree rooted in the client.
A path is feasible if: (i) the cost from w to wf is at most the battery level

132 R. Papa et al.

ALGORITHM 2: INITIALIZE-ROOT(Gu, req, w)
1: create the root node r of a new search tree
2: r.parent = NIL
3: r.crtVertex = w
4: r.level = req.ts // the field level stores the time
5: r.batteryCharging = false
6: r.batteryLevel = H
7: r.timeAtClient = ∞ // time when customer is reached
8: if feasible path from w to the client to a final warehouse exists then
9: select the best path

10: set r.state, r.ch1, r.ch2, r.wf based on the path
11: r.score = (1, r.level + cost to client)
12: return r
13: else
14: return NIL
15: end if

ALGORITHM 3: INITIALIZE(p, q)
1: /* initializes the fields of the node q*/
2: q.parent = p
3: q.level = p.level + 1
4: q.crtVertex = p.crtVertex
5: q.batteryLevel = p.batteryLevel - 1
6: q.batteryCharging = false
7: q.timeAtClient = p.timeAtClient
8: q.state = p.state
9: q.ch1 = p.ch1; q.ch2 = p.ch2; q.wf = p.wf

H, (ii) ts + cost from w to the client ≤ maxTimeClient, and (iii) ts + cost
from w to wf ≤ maxTimeWf. Once the path has been established we set up
the search node: r.state = ST TO CLIENT; r.ch1 = r.ch2 = NIL; r.wf is set
up to the final warehouse; r.score = (1, cost from w to the client). If there
are no feasible paths in this group, then move to Group2.

– Group2. Paths are in the form: w → client → ch2 → wf, where ch2 is a
charging station. The subpath w → client is available from the client’s BFS
tree. The client → ch2 → wf subpath is selected as the least-cost among all
chargers ch2 in the client’s BFS tree and warehouses wf in ch2’s BFS tree.
A path is feasible if (i) the cost from w to ch2 is at most H, (ii) the cost
from ch2 to wf is at most H, (iii) the time to reach the client does not exceed
maxTimeClient, and (iv) the time to reach wf does not exceed maxTimeWf.
If a path has been selected, set up the fields r.state = ST TO CLIENT; r.ch1
= NIL; r.ch2 is set to the charging station; r.wf is set to the final warehouse;
r.score = (1, cost from w to the client). If there are no feasible paths in this
group, then move to Group3.

Energy-Constrained Drone Delivery Scheduling 133

– Group3. Paths are in the form: w → ch1 → client → wf, where ch1 is a
charging station in the client’s BFS tree. The shortest subpath w → ch1 →
client is found by checking all charging stations and selecting the least cost one
for which w is in ch1’s BFS tree. The shortest path client → wf is directly
available from the client’s BFS tree. A path is feasible if the battery and
path length constraints are met similar to the previous cases. If a path has
been selected, set-up the fields r.state = ST TO CH1; r.ch1 is set up to the
charging station; r.ch2 = NIL; r.Wf is set up to the final warehouse; r.score
= (1, cost from w to the client). If there are no feasible paths in this group,
then move to Group4.

– Group4. Paths are in the form: w → ch1 → client → ch2 → wf. The process
is similar to the prior groups. We check that the battery constraint is met
from w to ch1, from ch1 to ch2, and from ch2 to wf. The fields of r are
initialized similarly to Group 3, except r.ch2 is set up to the corresponding
ch2. If there are no feasible paths in this group, then return NIL (line 14).

Lines 7–41 in the COMPUTE-PATH algorithm extract one node in each
iteration, based on the score field, until a path is found. The path of the node
dequeued is examined. Note that the paths follow the precomputed shortest
path, but in each iteration a path is either advanced or the uas has to pause if
the edge is not available (e.g. pruned edge). We note that the branching factor
of our algorithm is 1, and this is our strategy to limit the algorithm complexity
and achieve scalability with the number of requests. A branching factor larger
than 1 results in an exponential complexity to process each request.

Let p be the node dequeued in line 8. Vertex v (line 9) is the next vertex on
the shortest path precomputed in the INITIALIZE-ROOT procedure. In lines
10–11, we create a new node q which is the descendant of p in the search tree,
and initialize the fields with default values. Line 12 sets-up the level for the case
when p is a charging station. In line 14, the crtVertex is set to v if the edge is
available, otherwise if the edge is pruned then the uas pauses a time interval.

Lines 15–19 address the case when the uas reaches the charging station before
the client. In this case the battery related fields are updated and the status
changes to ST TO CLIENT, indicating that the uas is now traveling toward the
client vertex. Lines 20–23 consider the case when the uas is reaching the client
and lines 24–28 address the case when the uas has reached the charging station
after the client was visited. Lines 29–33 show the case when the uas has reached
a final warehouse. We check that the node is feasible: the uas has enough energy
to reach the final warehouse vertex and the time (or q.level) does not exceed
maxTimeWf . If the node is feasible, then a feasible solution was found. In this
case the graph is pruned using the PRUNE-RULE described previously and the
path is returned. ASSIGN-PATH starts from the node q and follows the parent
field up to the root node. The path is given by the crtV ertex field printed in
reverse order.

Lines 34–39 compute the score of the node q. The score is a tuple. Since the
paths that have already reached the client have higher priority (i.e. chances to
be completed sooner), the first element of the tuple is 0, while the paths that

134 R. Papa et al.

have not reached the client get assign the value 1. The second element of the
tuple is the expected time to reach the final warehouse or the expected time to
reach the client, respectively. A shorter time is preferred thus it has a smaller
cost and therefore a higher priority.

After all the fields have been set-up, line 40 checks whether the node q is
feasible. For this we check: (i) energy resources, (ii) the time to reach the client
does not exceed maxTimeClient, and (iii) the time to reach the final warehouse
does not exceed maxTimeWf . If the node q is feasible, then it is inserted in the
minimum priority queue PQ.

For the complexity analysis, |C| is the number of charging stations and |W |
= |Wf | is the number of warehouses with shortest path (number of edges) at
most 2H from the client. Let T = req.maxT imeWf − req.ts is the maximum
flight time. The unit graph has Eu edges and Vu vertices, and since the graph
is connected Vu = O(Eu). The Initialization phase takes O(C(Vu + Eu)) =
O(CEu) and this is computed only once, before requests are processed.

Line 1 of COMPUTE-PATH runs the BFS algorithm with complexity O(Eu).
We note that the algorithm is run only on a subgraph of the unit graph, for
vertices with cost at most 2H from the client. Lines 3–6 take O(C2W 2) mainly
due to the INITIALIZE-ROOT procedure which has to considers all feasible
paths traversing the sets of charging stations and warehouses.

The while loop in line 7 has at most O(TW) iterations. The priority queue
insert and remove operations take O(lgW) time. If a solution is found, then the
graph is pruned in O(TEu) and the path is assigned in O(T). Lines 7–41 take
O(TWlgW + T + TEu). The complexity to compute the path for a request is
polynomial and upper-bounded asymptotically by O(Eu + C2W 2 + TWlgW +
T + TEu) which is simplified to O(C2W 2 + TWlgW + TEu).

5 Performance Evaluation

We analyzed the performance of our algorithm with simulation programs written
in Python 3.8. We ran simulations on a Linux PC with 24 GB RAM and an Intel
Core i5 4-core CPU running at a sustained clock frequency of 2 GHz. Results
for a particular simulation scenario configuration were averaged over 10 random
iterations and we reported the average.

The simulation scenarios use a graph (see Fig. 1) extracted from the Open-
StreetMap [11] Miami road map that had tertiary roads removed. The map
covers downtown Miami (3.6 km × 2.5 km) and the initial graph has 402 ver-
tices and 1176 edges. The corresponding discretized unit graph has 1176 vertices
and 14264 edges for conflict distance d = 10 m. Table 1 shows the simulation
parameters.

The independent variables considered for experiments are: the request rate
(incoming requests/s), the safety distance d, the number of charging stations,
the number of start (Ws) and final (Wf) warehouses. All scenarios used the
same UAS maximum speed vmax = 10 m/s. The performance metrics are the
algorithm runtime, the trajectory duration from request start time to when the

Energy-Constrained Drone Delivery Scheduling 135

Table 1. Simulation parameters

Miami map Approx 3.6 km × 2.5 km

Number of UAS 100, 200, 1000, 2000, 3000, 4000, 6000, 8000

Request rate 0.05/s, 0.1/s, 0.5/s, 1/s, 1.5/s, 2/s, 3/s, 4/s

Safety distance d 5 m, 10 m, 20 m

δ 0.5 s, 1 s, 2 s

Max flight time 250 s, 280 s, 300 s

Max route time to client 520 s, 600 s, 620 s

Max time back at warehouse 1000 s

Total simulation time 3000 s

Fig. 1. The Miami graph with a sample route. The green circle shows the start ware-
house, the red X marks the client, the red circle is the finish warehouse and the light
blue circle is a charging station. (Color figure online)

client is reached, the total path delay, and the request satisfaction ratio. The
charger locations for all runs in particular scenario are selected from unit graph
vertices closest located to the k-means of unit graph vertices in order to have a
balanced placement on the map.

The graph pruning algorithm employs a grid partitioning scheme and a
caching mechanism [12] for segment-to-segment distances that achieves a 99.99%
hit ratio in our simulations. This high ratio is caused by vehicles moving mostly
on BFS paths to chargers and warehouses, which tend to stay the same for many
scenarios.

136 R. Papa et al.

Fig. 2. Results when the request rate varies from 0.05/s (N = 100) to 5/s (N = 8000)
and the safety distance is 5 m, 10m, or 20m. (a) Running time. (b) Path delay to reach
the client. (c) Request satisfaction ratio.

Next, we present the simulation results. The results of the first experiment
are shown in Fig. 2. We denote N the number of requests. The request rate goes
from 0.05/s (N = 100) to 4/s (N = 8000) while the safety distance is 5 m, 10 m,
or 20 m. All other parameters stay constant. The number of warehouses (start
and finish) and the number of chargers are 3. The set of 3 chargers is identical
for all runs.

The chart in Fig. 2a illustrates a runtime that varies almost linearly with the
number of requests per simulation run. We expect that with more contention
(a higher rate) fewer requests will be satisfied, leading to more searches ending
sooner, thus reducing the runtime. We also notice that a shorter safety distance
leads to longer runtimes since |Vu| and |Eu| (unit graph size) are approximately
inverse proportional to d and the algorithm complexity depends on |Vu|.

The choice of the safety distance d offers a clear trade-off between runtime
and key quality metrics for the package delivery problem: flight time to the client
and back, and request admission ratio. Contention for space-time edges increases
when the request rate and the conflict distance go up, from having fewer edges
available. This causes more frequent time edges on paths for which the vehicle
has to wait a time unit. These paths will take longer to complete, as seen in
Fig. 2b. More requests will not be satisfied with a longer safety distance, hence
the request admission rate seen in Fig. 2c.

The admission ratio is also far more sensitive to higher contention (from a
higher request rate) when the safety distance is shorter. When d = 5 m the
admission ratio stays above 96.6% for all tested request rates. When d = 10 m
the admission ratio drops below 90% at about 3.5 requests/s, while with d = 20 m
the 90% threshold is hit just above 1 request/s. A study like this could be used
in practice to determine the ideal conflict distance, guided by safety regulations,
engineering constraints, and available computation power.

For the second experiment (Fig. 3) we keep the safety distance constant at
10 m and the request rate at 0.1 requests/s (N = 200), and we vary the number
of warehouses |Wf | from 1 to 10. The set of start warehouses Ws is either equal to
the set of finish warehouses (Ws = Wf) or it has just one warehouse (|Ws| = 1)
picked randomly from Wf . The set of chargers has 4 vertices selected once for

Energy-Constrained Drone Delivery Scheduling 137

Fig. 3. Performance results when the number of warehouses |Wf | varies from 1 to 10
and the number of start warehouses |Ws| = 1 and picked randomly from Wf or the
two sets are the same, Ws = Wf . (a) Running time. (b) Path delay to reach the client.
(c) Total path delay. (d) Request satisfaction ratio.

all scenarios, with vertices placed near the 4-means locations of all unit graph
vertices.

Figure 3a shows the algorithm runtime. We notice the runtime dropping with
more warehouses and its slope steeper for scenarios where Ws = Wf compared
with scenarios where there is only one starting warehouse. While the algorithm
runtime for seeding the priority queue with search nodes depends on |Ws| and
|Wf |, higher |Ws| and |Wf | also increase the probability of finding shorter paths
to the client (for Ws = Wf), and then, to a final warehouse, as evidenced in
Fig. 3b and 3c, respectively. The reduction in client path and total path delays for
going from one warehouse to two is about 30% for both, which could provide an
economic benefit for more spread out warehouses instead of centralized package
distribution. For the |Ws| = 1 case the client path delay stays fairly constant
regardless of the number of final warehouses since it does not depend on it.

The third experiment looks at the impact of the number of charging stations.
We selected a low battery capacity of only 250 s in order to stress the system into
a lower admission ratio at the beginning. Indeed, Fig. 4d shows the admission
ratio starting from 33% for |Ws| = 1 and 54% for |Ws| = 2 with no charging
stations. With the addition of just one charger the admission ratio jumps to
57% for |Ws| = 1 and to 70% for |Ws| = 2. The proportional improvement in

138 R. Papa et al.

Fig. 4. Performance results when the number of charging stations varies from 0 to 10
and the number of warehouses varies in set {1, 2, 4, 8} and Ws = Wf . (a) Running
time. (b) Path delay to reach the client. (c) Total path delay. (d) Request satisfaction
ratio.

admission ratio is lower for |Ws| = |Wf | = 4 or 8. The growth in admission ratio
seems to stabilize with 5 chargers or more. The outlier case with 6 chargers that
yields results similar to 4 chargers can be explained by the k-means algorithm
generating an aberrant set of means where 3 of the 6 are too close to each other
to make a sufficient difference in results.

The runtime chart (Fig. 4a) indicates a general almost-linear growth trend
depending on the number of chargers. With more warehouses the paths are
shorter from more choices becoming available. Thus, the runtimes will be shorter,
too. The higher admission ratio for scenarios with more chargers implies that
more paths will actually be computed and not rejected outright. Therefore, the
runtime will grow with the number of chargers, with a growth slope depending
on |Wf |.

The client and full path delay charts in Fig. 4b and 4c show growth with an
increased number of chargers that may seem surprising. The considerable jump
in delay from none to one charger for cases |Wf | ∈ {1, 2, 4} mirrors the jump
in admission ratio for those scenarios. Having one or more chargers increases
the probability of finding a path, but at the cost of longer paths on average
since they now include chargers. The reduction in delays in scenarios with more
warehouses is consistent with the results from Fig. 3.

Energy-Constrained Drone Delivery Scheduling 139

6 Conclusions

This paper proposes a scheduling algorithm for drone delivery that processes
on-demand requests and accounts for energy constraints. We use a multi-source
A* algorithm variant to compute drone scheduling. Simulation results show that
our algorithm is efficient asymptotically and it is scalable with the number of
requests and network size.

References

1. Agatz, N., Bouman, P., Schmidt, M.: Optimization approaches for the traveling
salesman problem with drone. Transp. Sci. 52, 1–17 (2018)

2. Bouman, P., Agatz, N., Schmidt, M.: Dynamic programming approaches for the
traveling salesman problem with drone. Networks 72, 528–542 (2018). https://doi.
org/10.1002/net.21864

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

4. DRONEII: The Drone Delivery Market Map. https://dronelife.com/2019/11/07/
droneii-the-drone-delivery-market-map/. Accessed August 2020

5. FAA - Federal Aviation Administration, Airspace Restrictions. https://www.
faa.gov/uas/recreational fliers/where can i fly/airspace restrictions/. Accessed
August 2020

6. Hassija, V., Saxena, V., Chamola, V.: Scheduling drone charging for multi-drone
network based on consensus time-stamp and game theory. Comput. Commun. 149,
51–61 (2019). https://doi.org/10.1016/j.comcom.2019.09.021

7. Jeong, H., Lee, S., Song, B.: Truck-drone hybrid delivery routing: payload-energy
dependency and no-fly zones. Int. J. Prod. Econ. 214, 220–233 (2019). https://
doi.org/10.1016/j.ijpe.2019.01.010

8. Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S., Tanchoco, J.,
Brunese, P.: Multiple traveling salesman problem with drones: mathematical model
and heuristic approach. Comput. Ind. Eng. 129, 14–30 (2019). https://doi.org/10.
1016/j.cie.2019.01.020

9. Murray, C.C., Chu, A.G.: The flying sidekick traveling salesman problem: opti-
mization of drone-assisted parcel delivery. Transp. Res. Part C 54, 86–109 (2015).
https://doi.org/10.1016/j.trc.2015.03.005

10. Murray, C.C., Raj, R.: The multiple flying sidekicks traveling salesman problem:
parcel delivery with multiple drones. Transp. Res. Part C 110, 368–398 (2020).
https://doi.org/10.1016/j.trc.2019.11.003

11. Query Features—OpenStreetMap, OpenStreetMap (2020). https://www.
openstreetmap.org/query?lat=26.3678&lon=-80.0780#map=14/26.3497/-80.
0777. Accessed August 2020

12. Steinberg, A., Cardei, M., Cardei, I.: UAS path planning using a space-time graph.
In: IEEE SysCon, August 2020

https://doi.org/10.1002/net.21864
https://doi.org/10.1002/net.21864
https://dronelife.com/2019/11/07/droneii-the-drone-delivery-market-map/
https://dronelife.com/2019/11/07/droneii-the-drone-delivery-market-map/
https://www.faa.gov/uas/recreational_fliers/where_can_i_fly/airspace_restrictions/
https://www.faa.gov/uas/recreational_fliers/where_can_i_fly/airspace_restrictions/
https://doi.org/10.1016/j.comcom.2019.09.021
https://doi.org/10.1016/j.ijpe.2019.01.010
https://doi.org/10.1016/j.ijpe.2019.01.010
https://doi.org/10.1016/j.cie.2019.01.020
https://doi.org/10.1016/j.cie.2019.01.020
https://doi.org/10.1016/j.trc.2015.03.005
https://doi.org/10.1016/j.trc.2019.11.003
https://www.openstreetmap.org/query?lat=26.3678&lon=-80.0780#map=14/26.3497/-80.0777
https://www.openstreetmap.org/query?lat=26.3678&lon=-80.0780#map=14/26.3497/-80.0777
https://www.openstreetmap.org/query?lat=26.3678&lon=-80.0780#map=14/26.3497/-80.0777

Scheduling Jobs with Precedence
Constraints to Minimize Peak Demand

Elliott Pryor, Brendan Mumey, and Sean Yaw(B)

School of Computing, Montana State University, Bozeman, MT 59717, USA
{brendan.mumey,sean.yaw}@montana.edu

Abstract. Job scheduling to minimize peak demand occurs in the con-
text of smart electric power grids. Some jobs (e.g. certain household
appliances) may have flexibility in their start times and so can be shifted
in order to lower the peak power demand of the schedule. In this work,
we consider a version of peak-demand scheduling where jobs are non-
preemptible and have precedence constraints (e.g. job j cannot begin
until job i has finished). This problem occurs in the setting of industrial
processes, where resource-consuming tasks may have completion depen-
dencies. Our main contribution is the first polynomial time approxima-
tion algorithm for this problem. The algorithm is randomized and finds a
O(Δ logn

log logn
)-approximation with probability at least 1 − O(1/n), where

n is the number of jobs to be scheduled and Δ is the length of the input’s
longest precedence chain. We demonstrate that the algorithm is practical
on realistic inputs, finds solutions that are close to optimal, and improves
over existing algorithms on the data sets tested.

Keywords: Precedence job scheduling · Smart grid · Approximation
algorithm · Randomized algorithm

1 Introduction

Job scheduling is a well-studied problem with many variations (e.g. maximize
throughput, minimize makespan) and application areas. A variation that is
important to smart power grid management is to find a schedule that has the
lowest peak demand, as this minimizes the maximum instantaneous resource
consumption. Power consumption has historically been dictated by the con-
sumer, with the electricity supplier modifying their output to meet instanta-
neous demand. The introduction of two-way communication between electricity
consumers and suppliers has begun to allow coordination of electricity utiliza-
tion, generically called demand response. One key goal of demand response is
to reduce the peak demand placed on an electrical power grid. Peaks in power
demand are proportionally more expensive, compared to constant demand, to
supply and provision the distribution network for. It is thus advantageous to
both consumers and suppliers to have schedules where peak power demand is
minimized.
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 140–150, 2020.
https://doi.org/10.1007/978-3-030-64843-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_10

Scheduling Jobs with Precedence Constraints to Minimize Peak Demand 141

Fig. 1. Electricity demand over a 24-h period for jobs scheduled to start at their earliest
valid start times (Earliest Fit), an optimal schedule (OPT), and the schedule created
by the algorithm presented in this paper (APX) showing a reduction in peak demand
when jobs are actively scheduled.

Individual job scheduling is one mechanism by which peaks in power demand
can be reduced. Jobs that have flexibility in their execution timelines (e.g. dish-
washer, hot water heater) can be scheduled to start later than they are initiated,
if doing so moves execution of the job to an off-peak time. The basic problem
of scheduling power jobs to minimize peak demand is called the Peak Demand
Minimization (PDM) problem. An instance of PDM consists of a set of non-
preemptible jobs, where each job j has an arrival time aj , deadline dj , width
(i.e. duration) wj , and height (i.e. instantaneous power demand) hj . Each job
needs to be assigned a start time sj such that [sj , sj + wj) ⊆ [aj , dj). The demand
of the schedule at time t is the sum of the job heights that are scheduled to run
during t:

H(t) =
∑

j:t∈[sj ,sj+wj)

hj

Then, the peak demand Hmax of the schedule is the maximum demand over all
times t.

Hmax = max
t

H(t)

The objective of the PDM problem is to determine a job schedule, S = 〈sj〉,
that minimizes Hmax. Figure 1 shows the result of scheduling jobs to reduce the
peak demand of a schedule. Details of the simulation are discussed in Sect. 5.

In this research, we consider a generalization of the PDM problem, called
Precedence-PDM (P-PDM), where explicit orderings of jobs (i.e. precedence
constraints) need to be enforced. In addition to the four parameters described
above, each job j also has a list of other jobs Pj that must be completed before
j begins. In other words, si + wi ≤ sj for each job i in Pj . Electrical power jobs

142 E. Pryor et al.

requiring precedence constraints arise in many industrial applications where an
explicit ordering of processes is required (e.g. glass making, assembly line pro-
cesses). We first formalize this problem with an integer linear program (ILP)
and then present a new approximation algorithm based on randomized round-
ing. We assess the practical performance of our algorithm against optimal using
data from a database of power jobs used to test demand response algorithms.

The rest of this paper is organized as follows: We discuss related work in
Sect. 2 and formulate the problem in Sect. 3. Our algorithm for P-PDM is detailed
in Sect. 4 and an evaluation is presented in Sect. 5. The paper is concluded in
Sect. 6.

2 Related Work

Considerable research has been done on many variations of job scheduling prob-
lems. Scheduling non-preemptible jobs to minimize peak demand is similar to the
machine minimization problem. Approximation algorithms have been developed
for the machine minimization problem; a seminal work was [4], which presented a
randomized algorithm based on randomized rounding. More recently, the online
variant has drawn interest [3]. The machine minimization problem, however,
assumes uniform height jobs and does not consider precedence constraints.

In the context of smart power grid management, scheduling non-preemtible
jobs to minimize peak demand is called the peak demand minimization (PDM)
problem. The PDM problem without precedence constraints has been exten-
sively studied for some time [11]. An optimal fixed-parameter tractable algorithm
based on dynamic programming has been introduced for the PDM problem [14].
Heuristics that lack performance guarantees have also been proposed based on
decomposing integer linear programs [5] and simulated annealing [6]. Geometric
strip packing techniques have been used to construct approximation algorithms
for key special cases of the PDM problem (e.g. identical arrival times and dead-
lines, preemptible jobs) [9,12,13]. An approximation algorithm for the general
PDM problem was given in [15] that was based on the approach of [4]. It
was shown to provide a schedule with height within O

(
log n

log log n

)
of optimal, with

probability at least 1 − O(1/n). Our new precedence-aware PDM scheduling
algorithm described in Sect. 4 makes use of this algorithm as a subroutine.

In contrast to the basic PDM problem, the version with precedence con-
straints (P-PDM) has not yet been studied in great detail. Optimal algorithms
have been developed for generalizations of the P-PDM problem based on Mixed
Integer Linear Program implementations [1,10]. A heuristic has been introduced
that introduces new precedence constraints to force jobs off the schedule’s peak
thereby reducing peak demand [2]. A meta-heuristic based on the greedy ran-
domized adaptive search procedure has also been introduced that was slightly
modified to apply to the P-PDM problem [2,8]. As far as we are aware, our work
is the first approximation algorithm for the P-PDM problem.

Scheduling Jobs with Precedence Constraints to Minimize Peak Demand 143

3 Problem Formulation

In the general version of the PDM problem, each job j is assumed to have an
arrival time aj , deadline dj , duration wj , and instantaneous demand hj . This
model supports instances with either discrete (i.e. finite number of timeslots
and possible start times) or continuous timescales. In this research, we assume
a discrete timescale which allows us to replace the arrival time, deadline, and
duration for each job with a set of possible intervals. For job j, each of its
intervals is of the form [l, r), where l ≥ aj , r ≤ dj , 0 ≤ l < r, and r = l + wj .
Since the timescale is discrete, there is a finite number of such intervals starting
with l = aj and going to l = dj − wj . We use the following notation in the
problem formulation and algorithm description:

J Set of n jobs

hj Height of job j

Ij Set of intervals for job j indexed by k of the form [lkj , rkj)

Ij [≥ t1; ≤ t2] Intervals for job j that start on or after t1 (i.e. lkj ≥ t1)
and end on or before t2 (i.e. rkj ≤ t2)

E Precedence rules: (i, j) means job i must precede job j

Pj Set of jobs that must precede j

G = (J, E) Graph formed by jobs J and precedence edges E

Δ Length (number of vertices) of longest directed path in G

Δ(j) Length of longest directed path in G ending at j

Definition 1. Given a set of jobs J with precedence constraints, the
Precedence-PDM (P-PDM) problem seeks an interval for each job j in J ,
[lj , rj) ∈ Ij, such that:

1. All precedence constraints are met (i.e. if (i, j) ∈ E, then ri ≤ lj).
2. max

t
height(t) is minimized, where height(t) =

∑

j:t∈[lj ,rj)

hj.

The P-PDM problem can be formulated as an integer linear program (ILP)
with the following decision variables:

xjk ∈ {0, 1} Indicates if [lkj , rkj) was selected to be scheduled

H ∈ R Height of the schedule

The ILP is driven by the objective function:

min H

144 E. Pryor et al.

Subject to the following constraints:
∑

k

xjk = 1, ∀j (1)

∑

k∈Ij [<t;]

xjk +
∑

k∈Ii[;≥t]

xik ≤ 1, ∀t ≥ 0,∀j,∀i ∈ Pj (2)

∑

j,k:t∈[lkj ,rk
j)

hjxjk ≤ H. ∀t ≥ 0 (3)

Constraint (1) ensures that exactly one interval will be selected for each job,
and constraint (2) enforces all precedence constraints. Constraint (3) ensures
the H reflects the maximum height of the schedule. We note that there are only
O(

∑
j |Ij |) distinguishable constraints from (2) and (3).

In [14], the PDM problem was shown to be NP-hard to approximate within a
ratio of 2 by reducing it from the Scheduling with Release Times and Deadlines
on a Minimum Number of Machines (SRDM) problem. Since the PDM problem
is a special case of the P-PDM problem, P-PDM is also NP-hard to approximate
within a ratio of 2.

4 Approximation Algorithm

In this section we present the first approximation algorithm for the P-PDM
problem. The approximation algorithm begins by topologically sorting the jobs
according to the precedence constraints. Then, it solves a relaxed version of the
ILP described in Sect. 1. Since the xjk variables sum to one for job j, they can
be treated as the probability that interval k is selected for j. Using the relaxed
solution, it computes left and right boundaries (Lj , Rj) for each job j that
guarantee all precedence relations are met, provided the interval [lj , rj) chosen
falls inside these new boundaries, i.e. Lj ≤ lj < rj ≤ Rj . Finally, the RoundLP
algorithm described in [15] is used to schedule the jobs using only intervals that
fall within these new boundaries.

Theorem 1. If there is a feasible solution, Algorithm 1 produces an
O(Δ log n

log log n)-approximation with probability at least 1 − O(1/n).

We will prove this theorem in two parts: (1) If there is a feasible solution, the
algorithm is always able to find Rj in Step 4(b). (2) The schedule produced in
Step 5. has the desired approximation ratio.

Lemma 1. If there is a feasible solution, For any job j, we have

∑

k∈Ij [≥Lj ;≥Rj]

xjk ≥ 1 − Δ(j)
Δ

.

Scheduling Jobs with Precedence Constraints to Minimize Peak Demand 145

Algorithm 1. P-PDM APX
Step 1 Topologically sort J by precedence constraints so that (i, j) ∈ E ⇒ i < j.

Step 2 Relax all xjk variables in the ILP formulated in Sect. 3 to be real-valued in
[0, 1].

Step 3 Solve this LP to find an optimal real-valued solution 〈xjk, H〉. If the LP is
infeasible, report that no solution exists.

Step 4 for j = 1 . . . n:
a. Let Lj = max{{Ri : i ∈ Pj} ∪ {0}}. (left boundary for job j)
b. Compute:

Rj = argmint≥Lj

∑

k∈Ij [≥Lj ;≤t]

xjk ≥ 1

Δ
.

(right boundary for job j)
endfor

Step 5 Apply the RoundLP algorithm [15] to schedule jobs where each job j is
restricted to use an interval Ij [≥ Lj ; ≤ Rj].

Proof. By induction on j.
Basis (j = 1): Observe L1 = 0, so

R1 = argmint≥0

∑

k∈I1[≥0,≤t]

x1k ≥ 1
Δ

.

By the choice of R1 it follows that

∑

k∈I1[≥0;<R1]

x1k <
1
Δ

.

But then,

∑

k∈I1[≥L1;≥R1]

x1k ≥ 1 − 1
Δ

.

Since Δ(1) = 1, the basis holds.
Inductive step (j > 1): There are two cases: if Δ(j) = 1, the same argument

as the basis can be applied. If Δ(j) > 1, then Lj = Ri for some i ∈ Pj . By
induction,

∑

k∈Ii[;≥Ri]

xik ≥
∑

k∈Ii[≥Li;≥Ri]

xik ≥ 1 − Δ(i)
Δ

.

146 E. Pryor et al.

By the LP constraints and the fact that Lj = Ri,
∑

k∈Ij [<Lj ;]

xjk +
∑

k∈Ii[;≥Ri]

xik ≤ 1.

Combining the above two inequalities, and the fact that i ∈ Pj we have,

∑

k∈Ij [<Lj ;]

xjk ≤ Δ(i)
Δ

≤ Δ(j) − 1
Δ

.

Since
∑

k∈Ij [<Lj ;]

xjk +
∑

k∈Ij [≥Lj ;]

xjk = 1,

it follows that

∑

k∈Ij [≥Lj ;]

xjk ≥ 1 − Δ(j) − 1
Δ

=
Δ + 1 − Δ(j)

Δ
.

Since Δ(j) ≤ Δ, Step 4(b) successfully finds an Rj such that∑
k∈Ij [≥Lj ;≤Rj]

xjk ≥ 1
Δ . Furthermore, by the choice of Rj it follows that

∑

k∈Ij [≥Lj ;<Rj]

xjk <
1
Δ

.

But then,

∑

k∈Ij [≥Lj ;≥Rj]

xjk ≥ Δ + 1 − Δ(j)
Δ

− 1
Δ

=
Δ − Δ(j)

Δ

= 1 − Δ(j)
Δ

,

as desired.

Corollary 1. As noted in the proof, the algorithm is able to identify Lj and
Rj for each job j such that

∑
k∈Ij [≥Lj ;≤Rj]

xjk ≥ 1
Δ . Also, if (i, j) ∈ E, then

Ri ≤ Lj, so all precedence constraints will be satisfied.

We can now prove Theorem 1:

Proof. Let 〈x∗
jk,Hopt〉 be an optimal solution to the ILP Formulation and let

〈xjk,H lp〉 be the optimal solution of the LP Relaxation as found by Step 1.
Clearly, H lp ≤ Hopt, as 〈x∗

jk,Hopt〉 is a valid but not necessarily optimal LP
solution.

Scheduling Jobs with Precedence Constraints to Minimize Peak Demand 147

In Step 5 of the algorithm we consider a restricted scheduling problem in
which each job j must be scheduled with an interval from Ij [Lj , Rj]. By Corol-
lary 1, any solution to this restricted problem will satisfy all precedence con-
straints. Let 〈xr

jk,Hr〉 be a solution to the LP relaxation of the restricted ILP. Let
mj = (

∑
k∈Ij [≥Lj ;≤Rj]

xjk)−1 and consider x′
jk = mjxjk. Clearly, the {x′

jk} pro-
vide a solution to the LP relaxation of the restricted ILP with height H ′ ≤ ΔH lp,
since mj ≤ Δ, by Corollary 1. It follows that

Hr ≤ H ′ ≤ ΔH lp ≤ ΔHopt.

The scheduling algorithm from [15] produces a job schedule 〈xa
jk,Ha〉 with Ha ≤

4 log n
log log nHopt. It is shown in [15] (using a Chernoff-bound based approach) that

Pr[Ha > O

(
log n

log log n

)
Hr] = O(1/n).

So we have,

Pr[Ha > O

(
log n

log log n

)
ΔHopt] ≤ Pr[Ha > O

(
log n

log log n

)
Hr] = O(1/n).

Thus, Step 5 produces a feasible solution that is an O(Δ log n
log log n)-approximation

with probability at least 1 − O(1/n).

5 Evaluation

In this section, we evaluate the performance of the algorithm presented in Sect. 4
(denoted APX) against optimal (denoted OPT) and the SWAG algorithm intro-
duced in [2]. All trials were run on a PC with an Intel i5-4690K processor and
32GB memory. Linear programs were solved using IBM’s CPLEX optimization
tool version 12.10.

Synthetic job instances were generated based on the benchmark data set for
industrial jobs introduced in [7]. In that work, the authors extracted job flex-
ibility characteristics from a real-world data set of a small industrial facility.
They used the job characteristics to construct a set of recurring motifs that can
then be used to build job instances for benchmark testing of demand response
algorithms. To generate job instances, we first randomly selected a motif with
probability based on its prevalence amongst the other motifs. A job was then
created based on this motif with the duration, and instantaneous power demand
calculated as a randomly weighted average of three random occurrences of that
motif. The initial release time was also calculated as the same randomly weighted
average of the three random occurrences. The initial deadline was set to be the
initial release time plus the duration. This initial execution window of the job
(i.e. release time to deadline) does not leave any flexibility for scheduling, so we
stretched out the execution window of the job by moving the release time earlier

148 E. Pryor et al.

(a) Small numbers of jobs. (b) Large numbers of jobs.

Fig. 2. Peak demand found by an optimal schedule (OPT), the schedule created by
the algorithm presented in Sect. 4 (APX), and the schedule created by the heuristic
introduced in [2] (SWAG) on a varying number of jobs.

and deadline later. The amount we stretched the execution window is calcu-
lated as 0.15 times the difference between the latest time any occurrence of the
selected motif ends and the earliest any occurrence starts. Half of this quantity is
subtracted from the release time and half is added to the deadline to increase the
execution window and provide opportunity for scheduling. Finally, precedence
constraints were made by randomly adding precedence relations between jobs
with overlapping execution windows.

To evaluate the effectiveness of the algorithms in reducing the peak demand
of a schedule, they were used to schedule scenarios of between 100 and 400 jobs.
20 instances were run for each number of jobs and the peak demands of the
resulting schedules were averaged. Δ was fixed at 4 for all instances. SWAG was
run for 10 s on each instance, consistent with the evaluation in [2]. Figure 2a
shows the average peak demand of the schedules produced by OPT, APX, and
SWAG. Both APX and SWAG are very close to optimal, with peak demand at
most 10% and on average about 5% over optimal.

Scenarios with between 500 and 7000 jobs were solved to evaluate the perfor-
mance of the algorithms on larger instances. The optimal algorithms used (ILP
formulated in Sect. 3 and [1]) could not efficiently solve instances over 400 jobs,
so only APX and SWAG were used for these larger instances. SWAG did not
have good performance for larger instances with only 10 s of run time, so it was
given 60 s. 20 instances were again run for each number of jobs and the peak
demands of the resulting schedules were averaged. Δ was also fixed at 4 for all
instances. Figure 2b shows the average peak demand of the schedules produced
by APX and SWAG. The average peak demand found by APX ranges from 3%
to 22% less than the peak found by SWAG.

Scheduling Jobs with Precedence Constraints to Minimize Peak Demand 149

A limited test was also done on a single instance with 7000 jobs where SWAG
was allowed to run for one hour. After one hour, the peak found by SWAG was
almost 2% less than the peak found by SWAG at 60 s, but was still about 11%
larger than the peak found by APX. Since APX took an average of 16.4 s to solve
instances of size 7000, this suggests that APX finds higher quality solutions than
SWAG in much less time, while also benefiting from the performance guarantee
detailed in Sect. 4.

These results indicate that APX is a practical algorithm for solving P-PDM
instances as it can produce very high quality results with very little computation
time.

6 Conclusions

In this work we introduce the first approximation algorithm for the P-PDM
problem. This problem is relevant to industrial applications where an explicit
ordering of processes must be enforced. Simulations with realistic data suggest
that this algorithm is not only the first algorithm with a performance guarantee,
but it also performs better than existing algorithms. Interesting future work
includes considering not just precedence constraints, but constraints that dictate
a job must execute immediately after another is complete. This would enable
modeling jobs whose profiles are not simple rectangles (i.e. non-constant demand
throughout the life of the job). It also remains to be seen if using output from
the algorithm presented to seed the heuristic from [2] could lead to an improved
solution. Finally, it could be interesting to study the online version of the P-PDM
problem.

References

1. Barth, L., Ludwig, N., Mengelkamp, E., Staudt, P.: A comprehensive modelling
framework for demand side flexibility in smart grids. Comput. Sci. - Res. Dev. 33,
13–23 (2017). https://doi.org/10.1007/s00450-017-0343-x

2. Barth, L., Wagner, D.: Shaving peaks by augmenting the dependency graph. In:
Proceedings of the Tenth ACM International Conference on Future Energy Systems
(e-Energy), pp. 181–191 (2019)

3. Chen, L., Megow, N., Schewior, K.: An O(log m)-competitive algorithm for online
machine minimization. SIAM J. Comput. 47(6), 2057–2077 (2018)

4. Chuzhoy, J., Guha, S., Khanna, S., Naor, J.S.: Machine minimization for scheduling
jobs with interval constraints. In: 45th Annual IEEE Symposium on Foundations
of Computer Science, pp. 81–90 (2004)

5. Hong, Y., Wang, S., Huang, Z.: Efficient energy consumption scheduling: towards
effective load leveling. Energies 10(1), 105 (2017)

6. Jewell, N., Bai, L., Naber, J., McIntyre, M.L.: Analysis of electric vehicle charge
scheduling and effects on electricity demand costs. Energy Syst. 5(4), 767–786
(2013). https://doi.org/10.1007/s12667-013-0114-0

7. Ludwig, N., Barth, L., Wagner, D., Hagenmeyer, V.: Industrial demand-side flex-
ibility: a benchmark data set. In: Proceedings of the Tenth ACM International
Conference on Future Energy Systems (e-Energy), pp. 460–473 (2019)

https://doi.org/10.1007/s00450-017-0343-x
https://doi.org/10.1007/s12667-013-0114-0

150 E. Pryor et al.

8. Petersen, M.K., Hansen, L.H., Bendtsen, J., Edlund, K., Stoustrup, J.: Heuristic
optimization for the discrete virtual power plant dispatch problem. IEEE Trans.
Smart Grid 5(6), 2910–2918 (2014)

9. Ranjan, A., Khargonekar, P., Sahni, S.: Offline preemptive scheduling of power
demands to minimize peak power in smart grids. In: 2014 IEEE Symposium on
Computers and Communications (ISCC), pp. 1–6. IEEE (2014)

10. Sou, K.C., Weimer, J., Sandberg, H., Johansson, K.H.: Scheduling smart home
appliances using mixed integer linear programming. In: 50th IEEE Conference on
Decision and Control and European Control Conference, pp. 5144–5149 (2011)

11. Tang, S., Huang, Q., Li, X., Wu, D.: Smoothing the energy consumption: peak
demand reduction in smart grid. In: 2013 Proceedings IEEE INFOCOM, pp. 1133–
1141 (2013)

12. Tang, S., Yuan, J., Zhang, Z., Du, D.Z.: iGreen: green scheduling for peak demand
minimization. J. Glob. Optim. 69(1), 45–67 (2017)

13. Yaw, S., Mumey, B., McDonald, E., Lemke, J.: Peak demand scheduling in the
smart grid. In: 2014 IEEE International Conference on Smart Grid Communica-
tions (SmartGridComm), pp. 770–775 (2014)

14. Yaw, S., Mumey, B.: An exact algorithm for non-preemptive peak demand job
scheduling. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS,
vol. 8881, pp. 3–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12691-3 1

15. Yaw, S., Mumey, B.: Scheduling non-preemptible jobs to minimize peak demand.
Algorithms 10(4), 122 (2017)

https://doi.org/10.1007/978-3-319-12691-3_1
https://doi.org/10.1007/978-3-319-12691-3_1

Reachability Games for Optimal
Multi-agent Scheduling of Tasks

with Variable Durations

Dhananjay Raju(B), Niklas Lauffer, and Ufuk Topcu

The University of Texas at Austin, Austin, USA
{draju,nlauffer,utopcu}@utexas.edu

Abstract. Scheduling tasks with variable durations across multiple
agents is an NP-hard problem for even two agents. Typically, the run-
time of any exact algorithm is dominated by the number of tasks because
of an exponential dependence. We shift this exponential dependency from
the number of tasks to a new parameter, which we call window length.
This novel parameterization enables to reduce the problem of finding
an optimal schedule to one of searching for winning strategies in a two-
player reachability game on graphs of size polynomial in the number of
tasks. As such, the complexity of finding an optimal schedule is polyno-
mial in the number of tasks but exponential in the window length. We
demonstrate that, in practice our algorithm runs faster than the worst-
case complexity. The approach we present is applicable for most common
optimization criteria, such as minimization of makespan and total load.
We demonstrate the practical value of this technique by finding optimal
schedules for astronauts aboard the International Space Station. Finally,
experiments on randomly generated instances show that, on average,
this technique is at least two orders of magnitude faster than an integer
program formulation.

Keywords: Multi-agent scheduling · Graph games · Variable
durations · Linear optimization criteria · Schedulability

1 Introduction

We aim to understand the role of task structure in the complexity of finding an
optimal schedule for the agent resource-constrained project scheduling problem
(ARCPSP) with variable task durations [14]. The ARCPSP is an extension of
the resource-constrained project scheduling problem (RCPSP) with a notion of
agents that execute tasks in parallel. The problem includes lower and upper limits
for each task’s duration. Therefore, scheduling also involves assigning execution
durations from the interval for each task.

This work has been supported in part by the grants NASA NNX17AD04G,
NSF 1652113 and NSF 1646522.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 151–167, 2020.
https://doi.org/10.1007/978-3-030-64843-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_11

152 D. Raju et al.

The ARCPSP is a combinatorial optimization problem and is NP-hard for
even two agents [17]. It is possible to solve the problem efficiently if one can
divide the planning horizon into smaller time windows so that tasks start and
end within individual windows. However, this condition is often impractical and
tasks do spillover. We relax this restrictive condition. Specifically, we allow such
spillovers but limit them to the next window, but not the windows beyond.
This relaxed condition is natural in many scheduling scenarios. We describe two
of them here. Consider software development teams (a group of agents) that
aim to create software through sprints. A sprint is a short time period when a
team works to complete a number of tasks. Ideally, tasks that start in a sprint
(window) should end in the same sprint. However, it is not always possible to
satisfy this condition. In practice, task spillovers are pushed to the next sprint
and special efforts are made to avoid additional spillovers [13]. Consider a second
scenario where tasks correspond to goods being delivered to customers by a fixed
number of agents. After a customer chooses her delivery slot, the company has to
ensure that the deliveries are performed with minimal latencies. In other words,
the task spillovers are restricted.

In Sect. 2, we introduce a new parameter which we call window length (Δ).
The window length is chosen such that task spillovers are restricted to adjacent
windows. More specifically, the window length is the smallest integer such that
tasks that start in a window only spillover to the next window but not the
windows after. This parameterization enables to encode all feasible schedules as
paths in a graph of size polynomial in the number of tasks. An alternate notion
of windows has been used to restrict the difference between the start times of
various tasks, when the task durations are fixed [19]. However, we use windows
to restrict the length of individual tasks.

Uncertainty is prevalent in scheduling due to a lack of accurate process mod-
els and variability on the process and environmental data [11]. As such, it is
impossible to estimate the durations for tasks without uncertainty. Following
[15], we model the uncertainty in the task durations by allowing the tasks to
have variable durations. In this paper, we compensate for such uncertainty by
allocating each task the maximum permissible duration while simultaneously
ensuring that the resulting schedule does not violate the resource constraints.

We study optimization criteria defined as functions on non-idling durations
of individual agents. Due to the high complexity of the problem, such objectives
are seldom studied even if they have a wide range of practical applications. For
example, such optimization criteria enable to assign weights to agents to give
preference to schedules that maximize the use of agents with higher weights. In
Sect. 5, we find optimal schedules for astronauts aboard the International Space
Station (ISS). We model a scenario where some of the astronauts can be ill or
injured and try to minimize the assignment of tasks to such astronauts while
simultaneously finding a schedule that maximizes the execution time for the
tasks.

We cast the problem of finding an optimal schedule as a two-player reacha-
bility game on graphs of size polynomial in the number of tasks. In the context

Reachability Games for Optimal Multi-agent Scheduling 153

of scheduling, reachability games have previously been used for finding feasible
schedules for sporadic tasks [7]. On the other hand, we use these games to find
optimal schedules. In Table 1, we list the complexities of finding optimal sched-
ules for different optimization criteria when the window length Δ and the number
of agents k are fixed constants. The definition of Δ implies that the planning
horizon H is O(2nΔ), where n is the number of tasks (we assume that there are
no empty windows). Even though the worst-case complexities are exponential
in k and Δ, the experiments in Sect. 5 show that we can find optimal schedules
for five agents that have to complete 100 tasks within a day, in under a minute,
when a) each time step is ten minutes long b) the maximum duration of every
task is at most five hours and c) the difference between the earliest start time
and latest start time for every task is at most five hours.

Table 1. The complexity of finding optimal schedules. H is the length of the planning
horizon, k is the number of agents and Δ is the window length.

Type of optimization Complexity

None (feasibility) Ok,Δ(H)

Linear function Ok,Δ(H3)

Min total load OΔ(Hk+2)

Min makespan Ok,Δ(H3)

In Sect. 5, we validate the technique for different objectives on randomly
generated instances. The experiments show that the technique works well, even
for a large number of tasks and long planning horizons. Lastly, we compare our
technique against an integer programming encoding of the problem that we run
in Gurobi [10]. Experiments show that the technique is at least two orders of
magnitude faster.

2 The Agent Resource-Constrained Project Scheduling
Problem and Windows

An instance I of the agent resource-constrained project scheduling problem is a
tuple (A, T ,D,S, C, B,R) defined as follows.

– A = {1, 2, . . . , k} is the set of agents.
– T = {1, 2, . . . , n} is the set of tasks.
– D =

{
(dmin

t , dmax
t) | t ∈ T and dmin

t , dmax
t ∈ N

}
is a set of pairs of minimum

and maximum duration for every task. Each task has to be scheduled for at
least the minimum duration and at most the maximum duration.

– S =
{
(se

t , s
�
t) | t ∈ T and se

t , s
�
t ∈ N

}
is a set of pairs of earliest start time

and latest start time for every task. Every task has to be scheduled at or after
the earliest start time and before or at the latest start time.

154 D. Raju et al.

– For any t in T , Ct ⊆ A is the set of agents that can perform task t. Let
C = {C1, . . . , Cn}.

– There are m types of renewable resources. The maximum quantities of the
resources are encoded in a vector B in N

m. Bi gives the maximum quantity
of resource i.

– R in N
n×m is a matrix that encodes the resource requirements of the tasks.

Rtj gives the quantity of resource j required by task t.

The planning horizon H of an instance I is defined as max
{
s�

t + dmax
t | t ∈ T

}
.

In the rest of the paper, we use x to denote an arbitrary non-negative integer.
Associated with every ARCPSP instance is a parameter, window length

denoted by Δ, that is intrinsic to the instance. Formally, Δ is the smallest
positive integer such that, for all tasks t, if xΔ < se

t � (x + 1)Δ, then
s�

t + dmax
t � (x + 2)Δ. The definition of Δ implies that, if the entire plan-

ning horizon is partitioned into intervals of size Δ, then the tasks that start in
an interval can only spill over to the next interval but not the interval after. We
refer to the interval (xΔ, (x+1)Δ] as window x. The definition of window length
implies that 0 < Δ � dmax, where dmax = max{(s�

t + dmax
t) − se

t + 1 | t ∈ T }.
Therefore, given a scheduling instance I, the window length can be determined
in time polynomial in the number n of tasks and dmax. Henceforth, we assume
that Δ is given.

Remark 1. The window length restricts the maximum duration for the tasks
depending on the starting time inside a window. For example, consider a task t
that has a maximum duration of 2Δ and can start in the interval (xΔ, (x+1)Δ].
If it starts at xΔ+1, then its maximum duration is 2Δ. If it starts at xΔ+r+1
(where, r < 2Δ and r ∈ N), then the maximum duration is at most 2Δ − r.
The scheduling of tasks with starting-time-dependent execution times has been
extensively studied [5,6]. More specifically, it is known to be NP-hard [12].

A set T ′ ⊆ T of tasks is permissible if the sum of the quantities of each type of
resource required by the tasks in T ′ is less than or equal to its maximum quantity.
Formally, T ′ is permissible, if for every resource j ∈ [m],

∑
t∈T ′ Rtj � Bj . The

set of all permissible sets is the complement of the set of all forbidden sets
of tasks (a set of tasks that cannot be scheduled together) [20]. In general, the
enumeration of forbidden sets (consequently of permissible sets) for any instance
is computationally expensive [21]. Intuitively, if the earliest starting time of a
task is after another task ends, then the two tasks can never interfere with each
other. By the definition of window length, only tasks with the earliest start
time in the intervals ((x − 1)Δ,xΔ], (xΔ, (x + 1)Δ] or ((x + 1)Δ, (x + 2)Δ] can
interfere with a task with the earliest start time in the interval (xΔ, (x + 1)Δ].
Permissible sets over such tasks are said to be relevant. We denote the set of all
relevant permissible sets by P. Algorithm 1 computes all relevant permissible
sets in time O

(
(kΔ)kH

)
. In the rest of the paper, we assume that P is given.

A schedule is a set of tuples of the form (st, at, dt) for every task t, where st

is the actual start time, at is the agent assigned to the task and dt is the exact

Reachability Games for Optimal Multi-agent Scheduling 155

Algorithm 1. Finding all the relevant permissible sets.
Input an instance I of the ARCPSP.
Output the relevant permissible sets in I.
1: P ← ∅

2: for i := 0 to floor(H/Δ) do
3: X ← {t : se

t ∈ (iΔ, (i + 1)Δ]}
4: for all U ⊂ X s.t. |U | � k do
5: if

∑
k∈U Rkj < Bj for all j ∈ [1, m] then

6: P ← P ∪ {U}
7: end if
8: end for
9: end for

10: return P

duration allocated to the task. A schedule is valid if the following conditions are
satisfied.

(a) At any time, every agent is assigned at most one task.
(b) At any time, the set of tasks scheduled together is permissible.
(c) Tasks that have been scheduled are not preempted.
(d) For every task t in T , se

t � st � s�
t, at in Ct and dmin

t � dt � dmax
t .

One reason for the nonexistence of a valid schedule may be the lack of suffi-
ciently many agents. In any window, k agents can complete at most kΔ tasks.
Therefore, if there is a window (xΔ, (x+1)Δ] such that the number of tasks that
have to be completed in the window is more than kΔ, then no valid schedule
exists. In this case, we say that the number of agents is insufficient. In the rest
of the paper, we assume that the number of agents is sufficient. For clarity, we
restate the assumptions.

(A1) The number k of agents is sufficient.
(A2) The window length Δ is given.
(A3) The set P of all relevant permissible sets is given.

3 Encoding Valid Schedules as Paths in a Graph

With every instance I = (A, T ,D,S, C, B,R), we associate a graph GI =
(VI , EI). Intuitively, each vertex in VI corresponds to a configuration of the
agents at some time in the planning horizon of I. There is an edge (u, v) in
EI if and only if it is possible for the configuration of the agents corresponding
to vertex u to progress to the configuration corresponding to vertex v in the
following time step without violating the constraints of I. If a vertex has more
than one out-edge, it means that the corresponding configuration of the agents
can progress in different ways depending on the scheduling decision.

Every path in the graph GI corresponds to a valid sequence of configurations
of the agents. By designating an initial vertex vinit and a final vertex vf cor-
responding, respectively, to the initial configuration of agents before execution

156 D. Raju et al.

and the final configuration of agents after completing all the tasks, a path from
vinit to vf corresponds to a sequence of scheduling decisions constituting a valid
schedule for I.

Every vertex in VI has four components. The first component is a vector
that holds the task assignment for every agent along with the duration left to
complete the task. An idling agent, i.e., an agent which is not assigned any task
from T , is assigned a dummy task 0. The second component is the current time.
The third component has a set of tasks that have to be completed by the end of
the window corresponding to the current time. The fourth component records
the set of tasks completed so far in the window. Formally,

v =
((

(1, t1, �1), . . . , (k, tk, �k)
)
, τ, F, C

)
∈ ([k] × T × [2Δ])k × [H + 1] × 2T × 2T

belongs to VI if the following conditions are satisfied.

1. There exists P ∈ P such that {t1, . . . , tk} ⊆ P ∪ {0}, i.e., the set of tasks
scheduled at any time is permissible.

2. For every currently assigned task ta ∈ {t1, . . . , tk}, a ∈ Cta , i.e., the agent
assigned to the task can perform it.

3. For all pairs t, t′ of tasks in {t1, . . . , tk} \ {0}, at �= at′ , i.e., the same agent
cannot be assigned multiple tasks (not idling).

4. For every agent a in A, 0 � �a � dmax
ta , i.e., the duration left for the task

allocated to agent a is shorter than or equal to the maximum duration.
5. 0 � τ � H + 1.
6. F ⊆ T and if xΔ < τ � (x + 1)Δ, then, for every task t in F , xΔ <

s�
t + dmax

t � (x + 1)Δ.
7. C ⊆ T and if xΔ < τ � (x + 1)Δ, then, for every task t in C, (x − 1)Δ <

se
t + dmin

t � s�
t + dmax

t � (x + 1)Δ.
8. For every task t in {t1, . . . , tk}, if t �= 0, then t ∈ F and t �∈ C.

Let v =
((

(1, t1, �1), . . . , (k, tk, �k)
)
, τ, F, C

)
and v′ =

((
(1, t′1, �

′
1), . . . ,

(k, t′k, �′
k)

)
, τ ′, F ′, C ′) be two vertices in GI . The vertex v is said to

be in the window x if τ ∈ (xΔ, (x + 1)Δ]. The initial vertex
vinit is

((
(1, 0, 1), (2, 0, 1), . . . , (k, 0, 1)

)
, 0, ∅, ∅

)
and the final vertex vf is((

(1, 0, 1), (2, 0, 1), . . . , (k, 0, 1)
)
,H + 1, ∅, ∅

)
.

There are three types of edges in GI .

(E1) The edges between two vertices in the same window.
(E2) The edges from vertices in a window to vertices in the next window.
(E3) The edges to the final vertex.

We formally define the three types of edges in the graph GI in Table 2. The
edges of type (E1) and (E1) correspond to the assignment of new tasks; some
of the agents may be assigned new tasks, while others continue their previously
assigned task. The edges of type (E1) are from vertices corresponding to the
completion of all the tasks to the final vertex vf .

The following lemma provides a necessary and sufficient condition for the
existence of a valid schedule.

Reachability Games for Optimal Multi-agent Scheduling 157

Table 2. The three types of edges in GI .

Lemma 1. There is a valid schedule for the instance I if and only if there is a
path from vinit to vf in GI .

Proof. (⇒) In any path ρ from vinit to vf , task t has been assigned to an
agent a if there is a vertex of the form

(
(. . . , (a, t, dmax

t), . . .), τ, F, C
)
. If xΔ �

s�
t + dmax

t � (x + 1)Δ and the task is not completed by either time xΔ or
x + 1Δ, then there will be no out-edge from the vertex with time τ + 1 in the
path. Additionally, by the definition of edge types (E1) and (E2), when task t
is completed, it is removed from F , hence it cannot be reassigned. Furthermore,
no task can be assigned simultaneously to multiple agents. The start time for
task t is st = min

{
τ |

(
(. . . , (a, t, dmax

t), . . .), τ, F, C
)

∈ ρ
}

and the end time is
et = max

{
τ |

(
(. . . , (a, t, dmax

t , . . .), τ, F, C
)

∈ ρ
}
. The duration is the difference

between the end time and the start time, i.e., dt = et − st.
(⇐) Every valid schedule induces a path from vinit to vf . �	

158 D. Raju et al.

Given an ARCPSP instance I, we compute a valid schedule by constructing
the corresponding graph GI and searching for a path from vinit to vf in GI .
Given a path from vinit to vf , Algorithm 2 presents the procedure to extract a
valid schedule corresponding to a path from vinit to vf .

Lemma 2. A valid path can be computed in time O
(
H

(
(2kΔ2)k · 24kΔ

)2)
.

Proof. The number of vertices in the graph GI is O
(
(2kΔ2)k ·H·24kΔ

)
. The first

component of any vertex in VI has a task assignment for each agent and the dura-
tion left for the task. Since the number of agents is sufficient (Assumption (A1)),
any agent may start at most 2kΔ tasks over the course of the schedule. More-
over, the duration left for the task is at most 2Δ. The size of the first component
is O(2kΔ2)k). The size of the second component is H. The third component F
encodes the set of tasks to be completed by the end of the current window. If
the number of agents are sufficient, then the maximum number of tasks that can
finish in the window is 2kΔ. In the worst case, the size of F (third component)
is 22kΔ. The size of the third component is the same as the size of the fourth
component. The number of edges in GI is O

(
H

(
(2kΔ2)k ·24kΔ

)2). In any graph,
a path between any two vertices can be computed in O(|V | + |E|). �	

Algorithm 2. Schedule corresponding to a path from vinit to vf in GI .
Input path ρ = (vinit, v1, ..., vk, vf) in GI .
Output valid schedule S.
1: S ← {0, ..., 0} {empty schedule of length n}
2: for

(
((1, i, �i), . . . , (k, j, �j)) , τ, F, C

)
∈ ρ do

3: for (a, t, �) ∈ ((1, i, �i), . . . , (k, j, �j)) do
4: if t �= 0 then
5: d ← dmax

t − � {duration that t has run for so far}
6: s ← τ − d {time that t was started}
7: St ← (s, a, d)
8: end if
9: end for

10: end for
11: return S

Remark 2. The complexity of finding a valid schedule depends on the number of
tasks that have to be completed in each window. If we fix H and Δ and increase
n, then the number of tasks per window increases. The worst-case complexity
for particular values of H, k and Δ occurs when we have to schedule close to
kΔ tasks in every window.

Reachability Games for Optimal Multi-agent Scheduling 159

4 Reachability Games for Optimal Scheduling

In this section, we define optimal schedules and provide a technique to compute
optimal schedules by building upon the graph construction presented in Sect. 3.

Let S be a schedule for an instance I = (A, T ,D,S, C, B,R). For every
agent a, let wa ∈ Z be the weight of the agent. The value of the agent in the
schedule S denoted by valueS(a) is defined as

valueS(a) =
∑

(st,a,dt)∈S

dt,

i.e., the value of the agent a in the schedule S is defined as the sum of the
duration of the tasks assigned to the agent a in schedule S. The value of the
schedule S denoted by val(S) is defined as

val(S) =
∑

a∈A
wa · valueS(a).

A schedule S for instance I is optimal if for every other schedule S′,
val(S′) � val(S). Let τ ∈ [0,H + 1], where H is the planning horizon of I,
then the value of a schedule up to a time τ denoted by val(τ ;S) is defined as

val(τ ;S) =
∑

a∈A
wa

∑

(st,a,dt):st�τ

min{dt, τ − st + 1}.

Since the value of a schedule is a linear function on the value of each agent in
the schedule, we observe that

val(τ + 1;S) = val(τ ;S) +
∑

a∈A:
a is not idle at τ+1

wa. (1)

We incentivize the assignment of tasks to a particular agent by giving it a
greater weight compared to the weights of the other agents.

4.1 Two-Player Reachability Games

For each problem instance, we construct a two-player reachability game such
that we can obtain an optimal schedule from any memoryless winning strategy
for one of the players, which we call the reachability player.

A two-player reachability game [16] is played on a graph G = (V,E) between a
reachability player and a safety player. Initially, a token is placed on a designated
initial vertex vη in V . The two players take turns moving the token along the
edges of the graph. The objective of the reachability player is to move the token
to a vertex in F ⊆ V . The safety player tries to prevent the token from reaching
a vertex in F . A play ρ is a (possibly infinite) sequence vηv1... of vertices such
that (vi, vi+1) ∈ E for all 0 � i. The play ρ is winning for the reachability player
if, for some vi in ρ, vi ∈ F . A memoryless strategy σ : V → V maps every

160 D. Raju et al.

vertex to one of its successors. The play ρ is said to agree with the strategy σ for
player P if vi+1 = σ(vi) whenever player P has to play from vi. A memoryless
strategy is said to be winning for player P if all plays that agree with it are
winning for player P . Such games are determined, i.e., one of the players has a
memoryless winning strategy [16]. Additionally, a memoryless winning strategy
for the winning player can be found in O(|V | + |E|) [4,18]. An extensive survey
of reachability games on graphs can be found in [2,9].

Two-player reachability games on graphs have been used for online scheduling
of sporadic tasks [7,8]. In online scheduling, the reachability player tries to create
tasks that will miss the deadline and the safety player is the scheduler who tries
to ensure that none of the tasks miss their deadlines.

4.2 Optimal Scheduling

In the setting of this paper, the reachability player tries to find an optimal
schedule, whereas the safety player tries to produce an alternate schedule with
a value greater than the one produced by the reachability player.

With every instance I = (A, T ,D,S, C, B,R), we associate a graph Glinear
I =

(V,E). The vertices of the graph have four components. We use the first and
second components to record the schedules for the reachability player and the
safety player, respectively. The third component, which we call the counter, holds
the difference between the values of the two schedules. The difference between
the values of any two valid schedules is at most cH and at least −cH, where
c = k · max{|wa| | a ∈ A}. The last component records the turn, i.e., the player
that has to move the token next. Let GI = (VI , EI) be the graph corresponding
to instance I as defined in Sect. 3.

The set of vertices of the graph Glinear
I is V = VI × VI × [−cH, cH]× {r, s}.

The initial vertex vη is the tuple (vinit, vinit, 0, r) and the set of winning vertices
for the reachability player is F =

{
(vf , vf , δ, α) | δ � 0, α = s ∨ α = r

}
. There

are three types of edges in Glinear
I .

(E4) The edges starting from vertices with turn r.
(E5) The edges starting from vertices with turn s.
(E6) The direct edges to (vf , vf , 0, r).

Table 3. The three types of edge in Glinear
I .

Reachability Games for Optimal Multi-agent Scheduling 161

The edges of type (E4) and (E5) record the scheduling choices of the reachability
player and the safety player, respectively. The edges of type (E6) ensure that
the reachability player wins the game when the safety player has no action to
extend its schedule. Let χ = (u, v, δ, α) and χ′ = (u′, v′, δ′, α′) be two vertices in
V . We formally define the three types of edges in Table 3.

By Lemma 1, every valid schedule for I induces a valid path from vinit to
vf in the graph GI . Since the first component of the vertex set V is VI , every
valid schedule induces a valid path on this component. Thus, reachabilty player
can use any valid schedule as a memoryless strategy. Moreover, any play ρ that
agrees with such a strategy, induces a path from vι to a vertex of the form
(vf , v, δ, s), where v ∈ VI and δ ∈ [−cH, cH].

In the reachability game on the graph Glinear
I , the two players take turns

to assign tasks to agents for each time step in the scheduling horizon such that
the constructed schedules are valid. If the reachability and safety players follow
schedules S1 and S2 respectively, then Eq. (1) implies that

val(τ + 1;S1) − val(τ + 1;S2) = (val(τ ;S1) − val(τ ;S2))

+
∑

a is not idle at τ
in S1

wa −
∑

a is not idle at τ
in S2

wa. (2)

For finding the optimal schedule, we require that the value of the schedule
chosen by the reachability player is greater than or equal to the value of the
schedule chosen by the safety player, i.e., the difference between these values is
non-negative. We maintain and update this difference according to Eq. (2), by
recording the difference in the counter. If the difference in the value of the two
chosen schedules is non-negative at the end of the scheduling horizon, then the
reachability player reaches a vertex in F .

Lemma 3. If the reachability player follows an optimal schedule, then it wins
the game.

Proof. In the reachability game on Glinear
I , the two players take turns in con-

structing their respective schedules. We maintain the difference between the
values of the two schedules constructed so far in the counter. This difference
is always contained in the closed interval [−cH, cH]. If the safety player fol-
lows a valid schedule and the reachability player follows an optimal schedule,
by construction of Glinear

I , the difference is non-negative and a vertex in F is
reached. However, if the safety player does not follow a valid schedule, then the
reachability player wins by using an edge of type (E6). �	

Corollary 1. If the reachability player does not follow an optimal schedule and
the safety player follows one, then the safety player wins the game.

Theorem 1. A memoryless winning strategy for the reachability player can be
computed in time O

(
H3

(
(2kΔ2)k · 24kΔ

)2).

162 D. Raju et al.

Proof. The number of vertices in Glinear
I is O

(
|VI |2 · 2kH

)
. Suppose it is the

turn of the reachability player, upon fixing the first component of the vertex,
the other three components are directly determined. Therefore, the number of
edges in Gmax

I is |EI |2. �	

4.3 Extracting the Optimal Schedule

We present a technique to extract the optimal schedule corresponding to any
memoryless winning strategy σ for the reachability player. Consider the sce-
nario where the safety player uses the same memoryless winning strategy σ.
Let ρ denote the play corresponding to this scenario. Algorithm 3 presents the
procedure to construct this play ρ and extract the optimal schedule.

Algorithm 3. Extracting the optimal schedule.
Input memoryless winning strategy σ.
Output optimal schedule S.
1: v ← (vinit, vinit, 0, r)
2: ρ ← ∅

3: while v �= (vf , ∗, 0, s) do
4: if fourth component of v = r then
5: ρ ← ρ ∪ {v}
6: end if
7: v ← σ(v)
8: end while
9: apply Algorithm 2 to ρ to retrieve S

10: return S

4.4 Minimizing Total Load and Makespan

The completion time of an agent is the time when the agent finishes all of its
assigned tasks. Total load is defined as the sum of the completion times of all
the agents [5]. To minimize the total load, we modify the counter in construction
from Sect. 4; it now has k components, one for each agent. In the counter cor-
responding to agent a, we maintain the difference between the latest time when
agent a is not idle across the two schedules (corresponding to the moves of the
reachability player and the safety player). Since the smallest value of completion
time is zero and the greatest value of completion time is H, this difference is
contained in the closed interval [−H,H]. Thus, the counter takes values from
this interval.

Makespan is the total length of the schedule, i.e., the maximum value among
the completion times of the agents. Makespan minimization is another common
optimization criterion in the literature [1]. For minimizing the makespan, we
modify the counter in the construction from Sect. 4. The counter takes values
from the interval [−1,H]. In the counter, we maintain the difference between the

Reachability Games for Optimal Multi-agent Scheduling 163

latest time when all the agents are idle across the two schedules (corresponding
to the moves of the reachability player and the safety player). In Table 4, we
present the counters for each type of optimization criteria.

Table 4. The number of components in the counter and the range of each component
corresponding to the optimization criterion.

Optimization type #components Range of each component

Minimize makespan 1 [−1, H]

Linear function 1 [−cH, cH]

Minimize total load k [−H, H]

5 Experimental Evaluation

In this section, we validate the reachability game approach for finding optimal
schedules using 1) a case study for scheduling tasks for astronauts aboard the
International Space Station and 2) randomized experiments for different opti-
mization criteria.

5.1 Qualitative Evaluation

We solve a scheduling problem for six astronauts aboard the International Space
Station (ISS). The astronauts have to perform a set T of lab tasks with variable
durations. Due to power requirements, the astronauts can perform only three lab
tasks at any time. Additionally, to stay healthy, the astronauts have to a) eat,
b) use a treadmill and c) lift weights. An astronaut cannot exercise after she
eats. Additionally, we also model a scenario where some of the astronauts are
unhealthy (they may be injured or ill). We penalize schedules that use unhealthy
astronauts. Thus, we assign an unhealthy astronaut a weight of −1 and assign
all others a weight of 1.

Table 5. Time(s) for computing a valid schedule and an optimal schedule.

Number (n) of tasks Valid Optimal

10 0.07 0.179

20 0.08 0.191

30 0.18 0.592

40 0.20 0.608

50 3.56 4.450

60 3.62 4.515

164 D. Raju et al.

Let Ah denote the set of healthy astronauts. We compute schedules that are
optimal with respect to the linear function

∑
a∈Ah

valueS(a)−
∑

a�∈Ah
valueS(a).

For the experiments, we fix the window length Δ as 20 and the planning hori-
zon H as 300. The time in seconds for computing both a valid schedule and an
optimal schedule versus the number n of lab tasks is presented in Table 5.

Since only three lab tasks can be performed at any time, the worst-case
complexity for finding an optimal schedule is reached when around 3Δ tasks
(n = 50) have to be scheduled.

5.2 Randomized Evaluation and Comparison with an Integer
Programming Formulation

For each optimization criterion, we generate random problem instances and
record the time for synthesizing an optimal schedule for these instances. We
fix the number of agents as five and assume that all the agents can perform all

(a) Minimizing makespan

0 20 40 60 80 100
0

10

20

30

Number of tasks

C
om

pu
ta
ti
on

T
im

e
(s
)

Δ = 10
Δ = 20
Δ = 30

(b) Minimizing total load

0 20 40 60 80 100
0

10

20

30

Number of tasks

C
om

pu
ta
ti
on

T
im

e
(s
)

Δ = 10
Δ = 20
Δ = 30

(c) Optimizing over a linear objective

0 20 40 60 80 100
0

10

20

30

Number of tasks

C
om

pu
ta
ti
on

T
im

e
(s
)

Δ = 10
Δ = 20
Δ = 30

(d) Valid schedule

20 40 60 80 100

10 3

10 2

10 1

100

101

Window length (Δ)

C
om

pu
ta
ti
on

T
im

e
(s
)

n = 30
n = 40
n = 50

Fig. 1. (a)–(c) provide average running time for computing an optimal schedule for the
corresponding optimization criterion. (d) provides average running time for computing
a valid schedule as a function of window length.

Reachability Games for Optimal Multi-agent Scheduling 165

the tasks. We fix the planning horizon H = 200. We vary the window length Δ
and the number n of tasks and observe its impact on the running time.

For each value of Δ and n, we generate 100 random instances and record the
running time as the average over the running times of these 100 instances. In
total, we run 10800 experiments to generate the graphs presented in Fig. 1. We
performed the experiments on an Ubuntu 18.04 system with an Intel i7-8550U
(1.80 GHz) processor and 16 GB memory.

The experiments show that we can compute optimal schedules in less than
a minute for up to 100 tasks when Δ = 30. After we fix the values of Δ and
H, if the number n of tasks is small compared to H, the tasks are distributed
sparsely across the windows. In this case, the H term dominates the complexity
of finding an optimal schedule. However, as we increase n (until its upper bound
O(kH)), the density of tasks in each window increases. As a result, the 24kΔ

term dominates the complexity of finding an optimal schedule. This observation
is consistent with Remark 2.

Finally, we compare the reachability game technique against an integer pro-
gramming encoding for the ARCPSP problem. We use Gurobi [10], a state-of-
the-art mixed-integer linear programming (MILP) solver for solving the integer
programming formulation. Figure 2 contains the results of this comparison. The
experiments show that the reachability game technique is at least two orders of
magnitude faster than the integer program that we run on Gurobi.

(a) Valid schedule

20 40 60 80

10 4

10 3

10 2

10 1

100

101

Number of tasks

Δ = 10
Δ = 20
Δ 30

(b) Linear optimization criterion

20 40 60 80

10 1

100

101

102

Number of tasks

Δ = 10
Δ = 20
Δ = 30

Fig. 2. Average running times for computing (a) a valid schedule and (b) an optimal
schedule with respect to a linear optimization criterion using the reachability game for-
mulation versus an IP encoding run in Gurobi. The solid lines correspond to run-times
obtained by using the reachability game technique and the dashed lines correspond to
the Gurobi implementation.

166 D. Raju et al.

6 Conclusion

We identified a new parameter called window length for the agent resource-
constrained project scheduling problem (ARCPSP). Using this parameter, we
provide a novel algorithm for finding optimal schedules that scales polynomially
in the number of tasks as long as the window length is a fixed constant. We
illustrate the applicability of this method by solving a scheduling problem for
astronauts aboard the International Space Station (ISS). Furthermore, a direct
comparison with an integer program formulation that we run in Gurobi shows
that this technique is at least two orders of magnitude faster.

References

1. Artigues, C., Demassey, S., Neron, E.: Resource-Constrained Project Scheduling:
Models, Algorithms. Extensions and Applications, ISTE (2007)

2. Chatterjee, K.: Graph games with reachability objectives. In: Delzanno, G.,
Potapov, I. (eds.) RP 2011. LNCS, vol. 6945, p. 1. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24288-5 1

3. Cheng, T., Ding, Q., Lin, B.: A concise survey of scheduling with time-dependent
processing times. Eur. J. Oper. Res. 152(1), 1–13 (2004)

4. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. IEEE,
October 1991

5. Gawiejnowicz, S.: Time-Dependent Scheduling. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69446-5

6. Gawiejnowicz, S., Lee, W.-C., Lin, C.-L., Wu, C.-C.: Single-machine scheduling of
proportionally deteriorating jobs by two agents. J. Oper. Res. Soc. 62(11), 1983–
1991 (2011)

7. Geeraerts, G., Goossens, J., Nguyen, T.-V.-A.: A backward algorithm for the mul-
tiprocessor online feasibility of sporadic tasks. In: 2017 17th International Confer-
ence on Application of Concurrency to System Design (ACSD), pp. 116–125, June
2017

8. Geeraerts, G., Goossens, J., Nguyen, T.-V.-A., Stainer, A.: Synthesising succinct
strategies in safety games with an application to real-time scheduling. Theor. Com-
put. Sci. 735, 24–49 (2018)

9. Grädel, E., Thomas, W., Wilke, T.: Automata, Logics, and Infinite Games - A
Guide to Current Research. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-36387-4

10. Gurobi Optimization: L. Gurobi optimizer reference manual (2020)
11. Hughes, M.: Why projects fail: the effect of ignoring the obvious. Ind. Eng. 18,

14–18 (1986)
12. Kononov, A.: Scheduling problems with linear increasing processing times. Oper-

ations Research Proceedings 1996, pp. 208–212. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-60744-8 38

13. Larman, C.: Agile and Iterative Development. Addison-Wesley, Boston (2004)
14. Lauffer, N.T., Topcu, U.: Human-understandable explanations of infeasibility for

resource-constrained scheduling problems. In: Workshop on Explainable Planning
(XAIP 2019) (2019)

https://doi.org/10.1007/978-3-642-24288-5_1
https://doi.org/10.1007/978-3-540-69446-5
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-642-60744-8_38

Reachability Games for Optimal Multi-agent Scheduling 167

15. Lombardi, M., Milano, M.: A precedence constraint posting approach for the
RCPSP with time lags and variable durations. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 569–583. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04244-7 45

16. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic
65(2), 149–184 (1993)

17. Mosheiov, G.: Multi-machine scheduling with linear deterioration. INFOR: Inf.
Syst. Oper. Res. 36(4), 205–214 (1998)

18. Mostowski, A.W.: Games with Forbidden Positions. UG (1991)
19. Neumann, K., Schwindt, C., Zimmermann, J.: Resource-constrained project

scheduling with time windows. In: Józefowska, J., Weglarz, J. (eds.) Perspectives
in Modern Project Scheduling. ISOR, pp. 375–407. Springer, Heidelberg (2006).
https://doi.org/10.1007/978-0-387-33768-5 15

20. Radermacher, F.J.: Scheduling of project networks. Ann. Oper. Res. 4(1), 227–252
(1985)

21. Stork, F., Uetz, M.: Enumeration of circuits and minimal forbidden sets. Electron.
Notes Discret. Math. 13, 108–111 (2003)

https://doi.org/10.1007/978-3-642-04244-7_45
https://doi.org/10.1007/978-3-642-04244-7_45
https://doi.org/10.1007/978-0-387-33768-5_15

Improved Scheduling with a Shared
Resource via Structural Insights

Christoph Damerius1(B), Peter Kling1, Minming Li2, Florian Schneider1,
and Ruilong Zhang2

1 Universität Hamburg, Hamburg, Germany
christoph.damerius@uni-hamburg.de

2 City University Hong Kong, Kowloon, Hong Kong SAR, China

Abstract. We consider a scheduling problem with resource-dependent
processing speeds in which n jobs have to be scheduled on m machines
that share a common resource. The resource may be distributed arbi-
trarily among the machines. This distribution is under the control of the
scheduler and can be changed over time. Each job j has a processing vol-
ume pj ∈ N and a resource requirement rj ∈ (0, 1]. The latter indicates
what fraction of the resource a job requires to run at full speed. Provid-
ing it with a larger share is not beneficial, but lowering its share results
in a proportionally lowered processing speed. The goal is to schedule all
jobs non-preemptively while minimizing the latest completion time.

This problem was introduced by Kling et al. [SPAA’17], who proved
NP-hardness and gave an efficient algorithm with approximation ratio
2 + 1/(m − 2). The (asymptotic) tightness of that bound was left as an
open question. We focus on the case of two machines and derive a strong,
structural lower bound. This lower bound is based on a relaxed version
and allows us to design an asymptotic 3/2-approximation that runs in
time O (n · log n). As an immediate consequence we also get an improved
9/4-approximation for the case of three machines.

Keywords: Approximation algorithm · Multiprocessor scheduling ·
Relaxation · Resource constraints · Shared resource · Makespan

1 Introduction

Resource allocation is probably among the oldest and most well-studied opti-
mization problems. In the context of computing systems, the resource typically
corresponds to computational power, often in the form of a number of machines
that must process a set of incoming jobs while optimizing a suitable quality
of service measure. Even for this restricted scenario, there is a huge variety of
models, differing in both machine and job properties as well as in the considered
quality of service measures (see [11] for a detailed overview).

However, computational power is not the only contended resource in com-
puting systems. In fact, in modern HPC environments computational power is
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 168–182, 2020.
https://doi.org/10.1007/978-3-030-64843-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_12

Improved Scheduling with a Shared Resource via Structural Insights 169

rarely the performance bottleneck. Instead, often other shared resources, like
the bandwidth or an I/O bus, constitute the performance bottleneck of such
systems. Thus, the distribution of these additional shared resources can severely
impact the system performance [14]. In this work, we study systems with such
an additional shared resource.

Both standard resource constrained scheduling [4,8,12] (in which jobs require
a certain amount of the resource to be able to run) and scheduling models with
resource dependent processing times [6–9] (where a job’s processing time depends
on the amount of resource it receives) found considerable interest in the research
community. The model we study falls into the category of resource dependent
processing times. However, a particular feature is that we not only allow the
scheduler to assign a resource share to a job once (when it is started). Instead,
the scheduler may readjust the resource distribution adaptively at integral time
points (processor cycles).

As an example, consider a multiprocessor system with a shared communica-
tion bus of limited bandwidth. The processed jobs may have different commu-
nication requirements, depending on their data-processing (generation or con-
sumption) rate. Assigning a job a bandwidth that saturates its data-processing
rate yields optimal performance, while throttling its bandwidth typically results
in an immediate, proportional efficiency drop. On the other hand, increasing a
job’s bandwidth above its data-processing rate has no beneficial effect. As jobs
enter and leave the system, the scheduler should adjust the resource distribution
to the new situation. Note that while the linear efficiency drop is natural in the
described setting, the resource dependency may be more complex (e.g., concave),
as in the case of a shared power supply or cooling system [13].

We obviously adopt an idealized perspective by disregarding aspects like
how CPU-intensive a given job is and by assuming that the shared resource is
the performance bottleneck. Nevertheless, we aim at understanding exactly this
aspect of resource allocation in modern data driven computing centers, in which
computational power is often available in abundance.

1.1 Basic System Model

The following scheduling problem, originally proposed by Kling et al. [10], models
the scenario described above. There are m ∈ N machines from the set M :=
[m] = { 1, 2, . . . ,m } and n ∈ N jobs from the set J := [n]. Time is partitioned
into integral (time) slots t ∈ N0, representing the time interval [t, t + 1). The
machines share a common, finite resource. During any slot t, each machine i ∈ M
is assigned a fraction Ri(t) ∈ [0, 1] of the resource. The resource may not be
overused, so we require

∑
i∈M Ri(t) ≤ 1. At any time, each machine can be

assigned at most one job (no machine sharing) and each job can be assigned to at
most one machine (no parallelism). A job j ∈ J is defined via two parameters, its
processing volume pj > 0 and its resource requirement rj ∈ (0, 1].1 If j is assigned
1 In [10], rj > 1 is allowed. Our restriction is without loss of generality, as we can

assign such jobs a resource requirement of 1 and increase their processing volume by
a factor rj to get an equivalent instance.

170 C. Damerius et al.

to machine i during slot t, it is processed at speed min { 1, Ri(t)/rj }, which is
also the amount of the job’s processing volume that finishes during this slot. Job
j finishes in the first slot t after which all pj units of its processing volume are
finished. Preemption of jobs is not allowed, so once a job j is assigned to machine
i, no other job can be assigned to i until j is finished. The objective is to find a
schedule (a resource and job assignment adhering to the above constraints) that
has minimum makespan (the first time when all jobs are finished).

This problem is known as Shared Resource Job-Scheduling
(SRJS) [10]. In the bandwidth example from before, the resource requirement rj

models how communication intensive a job is. For example, rj = 0.5 means that
the process can utilize up to half of the available bandwidth. Assigning it more
than this does not help (it cannot use the excess bandwidth), while decreasing
its bandwidth results in a linear drop of the job’s processing speed.

Simplifying Assumptions. To simplify the exposition, throughout this paper we
assume rj �= 1 for all j ∈ J . This simplifies a few notions and arguments (e.g.,
we avoid slots in which formally two jobs are scheduled but only one job is
processed at non-zero speed) but is not essential for our results. We also assume
pj ∈ N, which is not required in [10] but does not change the hardness or difficult
instances and is a natural restriction given the integral time slots.

1.2 Related Work

In the following we give an overview of the most relevant related work. In par-
ticular, we survey known results on SRJS and other related resource constrained
scheduling problems. We also briefly explain an interesting connection to bin
packing.

Known Results for SRJS. The SRJS problem was introduced by Kling et al.
[10], who proved strong NP-hardness even for two machines and unit size jobs.
Their main result was a polynomial time algorithm with an approximation ratio
of 2 + 1/(m − 2). If jobs have unit size, a simple modification of their algorithm
yields an asymptotic

(
1 + 1/(m − 1)

)
-approximation.

Althaus et al. [1] considered the SRJS problem for unit size jobs in a slightly
different setting, in which the jobs’ assignment to machines and their orders on
each machine are fixed. They prove that this variant is NP-hard if the number of
machines is part of the input and show how to efficiently compute a (2 − 1/m)-
approximation. Furthermore, they provide a dynamic program that computes
an optimal schedule in (a rather high) polynomial time, when m is not part of
the input. For the special case m = 2, a more efficient algorithm with running
time O

(
n2

)
is given.

Resource Constrained Scheduling. One of the earliest results for scheduling with
resource constraints is due to Garey and Graham [4]. They considered n jobs
that must be processed by m machines sharing s different resources. While pro-
cessed, each job requires a certain amount of each of these resources. Garey and

Improved Scheduling with a Shared Resource via Structural Insights 171

Graham [4] considered list-scheduling algorithms for this problem and proved an
upper bound on the approximation ratio of s+2− (2s+1)/m. Garey and John-
son [5] proved that this problem is already NP-complete for a single resource,
for which the above approximation ratio becomes 3 − 3/m. The best known
absolute approximation ratio for this case is due to Niemeier and Wiese [12],
who gave a (2 + ε)-approximation. Using a simple reduction from the Parti-
tion problem, one can see that no efficient algorithm can give an approximation
ratio better than 3/2, unless P = NP . While this implies that there cannot be a
PTAS (polynomial-time approximation scheme), Jansen et al. [8] recently gave
an APTAS (asymptotic PTAS).

Resource Dependent Processing Times. A common generalization of resource
constrained scheduling assumes that the processing time of a job depends directly
on the amount of resource it receives. Among the first to consider this model was
Grigoriev et al. [6], who achieved a 3.75-approximation for unrelated machines.
For identical machines, Kellerer [9] improved the ratio to 3.5 + ε. In a variant in
which jobs are already preassigned to machines and for succinctly encoded pro-
cessing time functions, Grigoriev and Uetz [7] achieved a (3 + ε)-approximation.
Recently, Jansen et al. [8] gave an asymptotic PTAS for scheduling with resource
dependent processing times.

Note that in resource dependent processing times, the resource a job gets
assigned is fixed and cannot change over time. In contrast, the model we consider
gives the scheduler the option to adjust the resource assignment over time, which
may be used to prioritize a short but resource intensive job during the processing
of a long but less resource hungry job.

Connection to Bin Packing. Resource constrained scheduling problems are often
generalizations of bin packing problems. For example, for a single resource, unit
processing times and k machines, resource constrained scheduling is equivalent
to bin packing with cardinality constraints [2,8] (where no bin may contain more
than k items). Similarly, the SRJS problem is a generalization of bin packing with
cardinality constraints and splittable items. Here, items may be larger than the
bin capacity but can be split, and no bin may contain more than k item parts.
This problem is (up to preemptiveness) equivalent to SRJS for k machines if all
resource requirements are 1 and processing volumes correspond to item sizes.2

In this case, each time slot can be seen as one bin.
Since we consider arbitrary resource requirements, we refer to [3] for the state

of the art in bin packing with cardinality constraints and splittable items.

1.3 Our Contribution

We construct an efficient algorithm for SRJS on two machines that improves
upon the previously best known approximation factor 2. Specifically, our main

2 Alternatively, one can allow resource requirements > 1 and use these as item sizes
while setting all processing volumes to 1, as described in [10].

172 C. Damerius et al.

result is the following theorem: (Due to space constraint, some proofs are omitted
in this conference version.)

Theorem 1. There is an asymptotic 1.5-approximation algorithm for SRJS
with m = 2 machines that has running time O (n log n).

This is the first algorithm reaching an approximation ratio below 2. As a simple
consequence, we also get an improved asymptotic 9/4-approximation for m = 3
machines (compared to the bound 2 + 1/(m − 2) = 3 from [10] for this case).

Our approach is quite different from Kling et al. [10]. They order jobs by
increasing resource requirement and repeatedly seek roughly m jobs that saturate
the full resource. By reserving one machine to maintain a suitable invariant, they
can guarantee that, during the first phase of the algorithm, either always the
full resource is used or always (almost) m jobs are given their full resource
requirement. In the second phase, when there are less than m jobs left and these
cannot saturate the resource, those jobs are always given their full resource
requirement. Both phases are easily bounded by the optimal makespan, which
is where the factor 2 comes from. While the bound of 2 + 1/(m − 2) becomes
unbounded for m = 2 machines, the algorithm in this case basically ignores one
machine and yields a trivial 2-approximation.

The analysis of [10] relies on two simple lower bounds: the optimal makespan
OPT is at least

∑
j∈J rj ·pj (job j must be assigned a total of rj ·pj resource share

over time) and at least
∑

j∈J�pj�/m (job j occupies at least pj/m time slots on
some machine). Our improvement uses a more complex, structural lower bound
based on a relaxed version of SRJS as a blueprint to find a good, non-relaxed
schedule. The relaxed version allows (a) preemption and (b) that the resource
and job assignments is changed at arbitrary (non-integral) times. More exactly,
we show that there is an optimal relaxed structured schedule SR in which, except
for a single disruptive job jD, one machine schedules the jobs of large resource
requirement in descending order of resource requirement and the other machine
schedules the jobs of small resource requirement in ascending order of resource
requirement. We further simplify such a structured schedule SR by assigning
jobs j with small rj their full resource requirement, yielding an elevated schedule
ŜR. This elevated schedule is no longer necessarily optimal, but we can show
that it becomes not much more expensive. This elevated schedule ŜR yields the
aforementioned structural lower bound, which we use to guide our algorithm
when constructing a valid, non-relaxed schedule. The following theorem states
a slightly simplified version of the guarantees provided by our structural lower
bound. See Theorem3 for the full formal statement.

Theorem 2. There is an optimal structured relaxed schedule SR and an elevated
structured relaxed schedule ŜR with a distinguished disruptive job jD such that

1. if rjD
≤ 1/2, then |ŜR| ≤ |SR| and

2. if rjD
> 1/2, then |ŜR| ≤ cjD

· |SR| + 0.042 · AjD
.

Here, AjD
denotes the total time for which jD is scheduled in SR and the value

cjD
depends on rjD

but lies in [1, 1.18).

Improved Scheduling with a Shared Resource via Structural Insights 173

While our lower bound does not immediately extend to the case of more
machines, we believe that this is an important first step towards designing an
improved approximation algorithm for arbitrary number of machines.

Note that we also show that our bound from Theorem1 is tight in the sense
that there are instances for which an optimal relaxed schedule is by a factor of
3/2 shorter than an optimal non-relaxed schedule. Thus, improving upon the
asymptotic 3/2-approximation would require new, stronger lower bounds.

2 Preliminaries

Before we derive the structured lower bound in Sect. 3 and use it to derive and
analyze our algorithm in Sect. 4, we introduce some notions and notation which
are used in the remainder of this paper.

Schedules. We model a schedule as a finite sequence S of stripes. A stripe s ∈ S
represents the schedule in a maximal time interval I(s) with integral endpoints
in which the job and resource assignments remain the same. The order of these
stripes in the sequence S corresponds to the temporal order of these intervals.
We let J(s) ⊆ J denote the jobs scheduled during I(s). For j ∈ J(s) we let
Rj(s) denote the resource share that job j receives during I(s) (i.e., the resource
assigned to the machine that runs j). To ease the exposition, we sometimes
identify a stripe s with the time interval I(s). This allows us, e.g., to speak of a
job j ∈ J(s) scheduled during stripe s, to use |s| := |I(s)| to refer to the length
of a stripe s, or to write s ⊆ T if a stripe’s interval I(s) is contained in another
time interval T .

Any finite sequence S of stripes can be seen as a – possibly invalid – sched-
ule for SRJS. To ensure a valid schedule, we need additional constraints: The
resource may not be overused and we may never schedule more than m jobs, so
we must have

∑
j∈J(s) Rj(s) ≤ 1 and |J(s)| ≤ m for all s ∈ S. Since j is processed

at speed min { 1, Rj(s)/rj } during s, we can assume (w.l.o.g.) that Rj(s) ≤ rj

for all s ∈ S and j ∈ J(s). With this assumption, the requirement that a schedule
finishes all jobs can be expressed as

∑
s∈S : j∈J(s)|s| ·Rj(s)/rj ≥ pj for all j ∈ J .

Not allowing preemption implies that the active time Aj :=
⋃

s∈S : j∈J(s) I(s) of
each job j must form itself an interval. While the sequence S does not give a
specific assignment of jobs to machines, we can derive such an assignment easily
via a greedy round robin approach.

W.l.o.g., we assume that for all s ∈ S we have J(s) �= ∅, since otherwise we
can delete s and move subsequent stripes by |s| to the left. Thus, we can define
the makespan of S as |S| :=

∑
s∈S |s|. When dealing with multiple schedules,

we sometimes use superscript notation (e.g., AS
j) to emphasize the schedule to

which a given quantity refers.

Relaxed Schedules. We also consider a relaxed version of the SRJS problem (r-
SRJS), in which the resource and job assignments may change at non-integral
times and in which jobs can be preempted (and migrated) finitely often. This

174 C. Damerius et al.

resource usage

time0

1

0.8

0.6

0.4

0.2

5 10 15

(5, 0.2)

(1,0.9)

(4, 0.4)
(3, 0.9)

(3, 0.2)

(6, 0.15)
(3, 0.1)

(3, 0.85)

s1 s2 s3 s4 s5 s6 s7 s8 s9

(a) A non-relaxed schedule.

resource usage

time0

1

0.8

0.6

0.4

0.2

5 10 15

(5, 0.2)

(4, 0.4)(3, 0.9)

(3, 0.2)(3, 0.1)

(3, 0.85)

(6, 0.15)

(1, 0.9)

s1 s2 s3 s4 s5 s6 s7 s8 s9

(b) A relaxed schedule.

Fig. 1. A non-relaxed and a relaxed schedule for m = 2 machines and n = 8 jobs, with
their parameters indicated in forms of tuples (pj , rj). Stripes are indicated by color
grading. Note that in the non-relaxed schedule, all stripes start/end at integral time
points and no job is preempted. (Color figure online)

gives rise to relaxed schedules S, which are finite sequences of stripes adhering
to the same constraints as schedules except that the time intervals I(s) for
s ∈ S may now have non-integral endpoints and the jobs’ active times Aj are
not necessarily intervals. Figure 1 illustrates how relaxed schedules differ from
non-relaxed schedules. Relaxed schedules can be considerably shorter.

Subschedules, Substripes, and Volume. For a schedule S we define a subschedule
S′ of S as an arbitrary, not necessarily consecutive subsequence of S. Similarly,
a relaxed subschedule S′

R of a relaxed schedule SR is a subsequence of SR. A
substripe s′ of a stripe s is a restriction of s to a subinterval I(s′) ⊆ I(s) (we
denote this by s′ ⊆ s). In particular, s′ has the same job set J(s′) = J(s) and the
same resource assignments Rj(s′) = Rj(s) for all j ∈ J(s′). For a (sub-)stripe
s we define the volume of job j ∈ J(s) in s as Vj(s) := Rj(s) · |s|. The volume
of a (sub-)stripe s ∈ S is defined as V (s) :=

∑
j∈J(s) Vj(s) and the volume of a

subschedule S′ as V (S′) :=
∑

s∈S′ V (s).

Big and Small Jobs. Using the resource requirements, we partition the job set
J = JB ·∪ JS into big jobs JB := { j ∈ J | rj > 1/2 } and small jobs JS :=
{ j ∈ J | rj ≤ 1/2 }. Given a (relaxed or non-relaxed) schedule S, a region is
a maximal subschedule of consecutive stripes during which the number of big
jobs and the number of small jobs that are simultaneously scheduled remain the
same. The type T ∈ {B,S, (B,B), (S, S), (B,S) } of an interval, (sub-)stripe,
region indicates whether during the corresponding times exactly one big/small
job, exactly two big/small jobs, or exactly one big job and one small job are
scheduled. We call a stripe of type T a T -stripe and use a similar designation
for (sub-)stripes, regions, and intervals. If there exists exactly one T -region for
schedule S, then we denote that region by ST .

3 A Lower Bound for SRJS

To derive a lower bound, we aim to “normalize” a given optimal relaxed schedule
such that it gets a favorable structure exploitable by our algorithm. While this

Improved Scheduling with a Shared Resource via Structural Insights 175

normalization may increase the makespan, Theorem 3 will bound this increase
by a small factor. In the following we first provide the high level idea of our
approach and major notions. Afterwards we give the full formal definitions and
results.

High Level Idea. We can assume that, at each time point, the optimal relaxed
schedule either uses the full resource or both two jobs reach their full resource
requirement (see Definition 1). A relaxed schedule that satisfies this property is
called reasonable. Any unreasonable schedule can be easily transformed into a
reasonable schedule.

Next, we balance the jobs by ordering them. We show that it is possible to
transform a relaxed optimal schedule such that one machine schedules the jobs
of large resource requirement in decreasing order of resource requirement and,
similarly, the other machine schedules the jobs of small resource requirement
in ascending order of resource requirement. However, the load of machines may
not be equal in the end. Therefore, we may need a disruptive job jD to equalize
the loads. The aforementioned order then only holds up to some point where
jD starts. Intuitively, if this job would be scheduled later, the load of both
machines would be further imbalanced and the makespan would increase. A
relaxed schedule that satisfies the above ordering constraint is called ordered (see
Definition 3 for the formal definition). If an ordered relaxed schedule satisfies an
additional property about the scheduling of jD, we call that schedule structured
(see Definition 4). We prove that we can always transform an optimal relaxed
schedule into an ordered one without increasing the makespan (see Lemma 1).

As a further simplification, we increase the resource of all small jobs to their
full resource requirement. This process is called elevating (see Definition 5). Intu-
itively, elevating makes the small jobs be processed with a higher speed, but
this may come at the price of processing big jobs with a lower speed and thus
increase the makespan. To be more precise, we show that the makespan may
only increase when small jobs scheduled together with a disruptive big job are
elevated. In Theorem 3, we analyze the makespan increase incurred by elevating
in detail.

Formal Definitions and Results

Definition 1. For a job set J , we call a (sub-)stripe s with J(s) ⊆ J reasonable
if

∑
j∈J Rj(s) = 1 or Rj(s) = rj for all jobs j ∈ J(s). A subschedule is called

reasonable if all of its (sub-)stripes are reasonable and unreasonable otherwise.

Definition 2. Define a strict total order ≺ on j, j′ ∈ J where rj �= rj′ as
j ≺ j′ :⇔ rj < rj′ . Otherwise order j,j′ arbitrarily but consistently by ≺.

The following Definition 3 formalizes the ordered -property of relaxed sched-
ules SR, which is central to our lower bound. Intuitively, it requires that SR can
be split into a left part and a right part (separated by a stripe index l). The
left part schedules the smallest jobs JSR

≺ in ascending order (according to ≺)
and the biggest jobs JSR

� in descending order. It is separated from the right part

176 C. Damerius et al.

(a) (b) (c)

Fig. 2. (a) An ordered relaxed schedule SR = (si)i=1,...,13 with the disruptive job
jD = j6, where j1 ≺ · · · ≺ j13. In this example, l = 8, JSR

R = { j4, . . . , j9 }, jD ∈ JB

and as such the other jobs in s8, . . . , s13 are sorted ascendingly after ≺. (b+c) Exchange
argument of Observation 1.

throughout which the disruptive job jD and the remaining jobs are scheduled.
jD could be any of the jobs from J \ (JSR

≺ ∪ JSR
�) and adheres to no further

ordering constraint, hence its disruptive nature. The ordering of the remaining
jobs which are scheduled together with jD is either ascending (if jD is big) or
otherwise descending. (See Fig. 2a for an example.) The definition also includes
a special case where all stripes schedule jD (then SR only comprises out of its
right part). We start by giving the main definitions for ordered, structured and
elevated relaxed schedules.

Definition 3. For a job set J , we call a reasonable relaxed schedule SR =
(s1, . . . , sk) ordered for the disruptive job jD ∈ J , if

1. If s is a stripe with |J(s)| = 1, then s = sk and AjD
= [0, |SR|).

2. If ∀i = 1, . . . , k : |J(si)| = { ji,1, ji,2 } with ji,1 ≺ ji,2, then there
exists an l ∈ [k] such that jD ∈ J(si) iff i ≥ l and for JSR

R :=
{ j | Rj(si) > 0, i ∈ { l, . . . , k } }, we have j1,1 � · · · � jl−1,1 � JSR

R �
jl−1,2 · · · � j1,2. Further, define JSR

≺ = (ji,1)i=1,...,l−1 and JSR
� =

(ji,2)i=1,...,l−1.
3. For all i ≤ k − 1 where J(si) = { jD, j } , J(si+1) = { jD, j′ } with j �= j′, we

have j ≺ j′ iff jD ∈ JB .

Remark 1. In the context of Definition 3, we can assume that jD is always chosen
such that there exists a stripe s with jD ∈ J(s) such that j � jD for all j ∈ J(s).
Otherwise, choose s with J(s) = { j′

D, jD } with j′
D being minimal according to

≺. We assign j′
D to be the new disruptive job, and reverse the order of all stripes

that schedule jD if necessary, to reobtain property 3 of Definition 3.

Remark 2. The orderedness immediately implies the existence of up to three
regions in the order (B,S), (B,B), B or (B,S), (S, S), S. For example, in Fig. 2a,
jD ∈ JB and therefore the jobs j6 = jD, . . . , j13 are big jobs, while j1, . . . , j5
might all be small jobs. Then the stripes s1, . . . , s9 form a (B,S) region, while
s10, . . . , s13 form a (B,B) region. No B region exists in this case.

Improved Scheduling with a Shared Resource via Structural Insights 177

We will first show that any optimal relaxed schedule can be transformed
into an ordered schedule without losing its optimality (Lemma1). The proof
mainly relies on an exchange argument (Observation 1) to deal with unreasonable
relaxed schedules.

Observation 1. Let s1, s2 be stripes with J(s1) = { j1, j2a }, J(s2) = { j2b, j3 },
where j1 ≺ j2x ≺ j3 ∀x ∈ { a, b } and j2a �= j2b. We can transform them into
stripes sL, sR and possibly sM , such that J(sL) = { j1, j3 }, J(sR) = { j2a, j2b }
and J(sM) is either J(s1) or J(s2), such that the volume of jobs scheduled and
total length of stripes is unchanged.

Lemma 1. For any job set J there exists an ordered, optimal relaxed schedule
SR.

Definition 4. We call an ordered relaxed schedule SR for J and for jD ∈ J
structured, if no stripes s with J(s) = { jD, j′ } with jD ≺ j′ exist or RjD

(AjD
\

S
(B,S)
R) = rjD

.

Definition 5. We call a subschedule S′
R ⊆ SR elevated in a relaxed schedule

SR, if Rj(A
S′

R
j) = rj for all j ∈ JS .

The following two lemmas show the existence of structured, optimal relaxed
schedules. Lemma 2 essentially tells us that an optimal relaxed schedule can
either be fully elevated or structured and at least partially elevated. Lemma3
then gives rise to structured optimal elevated relaxed schedules if the full ele-
vation in Lemma2 was possible. Unfortunately, the full elevation step can not
always be pursued while staying optimal. Theorem 3 gives details about the
makespan increase.

Lemma 2. For every job set J there exists an optimal ordered (for job jD)
relaxed schedule SR which is either elevated, or is elevated in SR\ASR

jD
, RjD

(ASR
jD

\
S
(B,S)
R) = rjD

and jD ∈ JB.

Lemma 3. For any optimal elevated ordered relaxed schedule SR for a job set
J there exists a structured optimal elevated relaxed schedule ŜR for J .

Theorem 3. For every job set J there exists a structured (for jD ∈ J) optimal
relaxed schedule SR and a structured (for jD), elevated relaxed schedule ŜR such
that one of the following holds:

1. jD ∈ JS and |ŜR| ≤ |SR|.
2. jD ∈ JB and ŜB

R = ∅. Let aX := |X(B,S) \AjD
| and bX := |X(B,S) ∩AjD

| for
X ∈ {SR, ŜR }. Then |ŜR| ≤ |SR| + λbSR

, aŜR
≤ aSR

and bŜR
≤ bSR

, where
λ is the smallest positive root of (λ + 1)3 − 27λ.

3. jD ∈ JB, ŜB
R �= ∅ and |ŜR| ≤ (4 − 2rjD

− 1
rjD

)|SR| ≤ (4 −
√

8)|SR|.

178 C. Damerius et al.

4 Approximation Algorithm and Analysis

Our approximation algorithm ALG for SRJS constructs the schedule by using
the structure derived in Theorem 3 as a starting point. To accomplish this, ALG
is designed to first gain information about the relaxed schedule ŜR given by
Theorem 3 by essentially replicating the order given by the orderedness property.
Based on this information, either ALGbig or ALGsmall is executed. Essentially,
ALG determines whether jD, as given by Theorem 3, is in JS or in JB and
branches into ALGsmall or ALGbig accordingly.

ALGsmall processes the jobs by first scheduling the small jobs in descending
order of their processing volumes (using Assign), and scheduling the big jobs in
arbitrary order afterwards. For this case it can be easily shown that our bound
is satisfied (see the proof of Theorem 4).

For the case of jD ∈ JB , a more sophisticated approach is needed. ALGbig

roughly schedules the jobs in the (B,S) region, mimicking the order as in ŜR.
Afterwards, ALGbig schedules all remaining big jobs using a slightly modified
longest-first approach. Care has to be taken on the transition between both parts
of ALGbig. For that reason, we calculate two schedules S and S′, one of which
can be shown to match the desired bound. Their job scheduling order mainly
differs in whether the longest (S) or most resource intensive remaining job (S′)
is scheduled first. The remaining jobs are then scheduled in a longest-first order.
Lastly, the machine loads are balanced by adjusting the resources given to the
big jobs in the second part (BalanceLength).

We will first give the pseudocode of the algorithm, then describe the subrou-
tines involved and then give some analysis.

Improved Scheduling with a Shared Resource via Structural Insights 179

Description of Subroutines. Assign(S, j, i, t) schedules a job j into a (relaxed or
unrelaxed) schedule S on machine i, starting at the earliest time point possible,
but not before t. In contrast to the lower bound, where we did not state on
which machine we schedule, here we always give a specific machine to schedule
on, as it simplifies further analysis. The resource is assigned to j by consecu-
tively considering the slots s = t, t + 1, . . . and in each of these slots giving
j the maximum possible resource. The given resource is only restricted by rj ,
other already scheduled jobs (their given resources remain unchanged) and the
remaining processing volume that j needs to schedule in s.

For a (relaxed) schedule S, we denote by loadS(i) the earliest time point after
which machine i remains idle for the rest of S. Furthermore, define imin(S) ∈
{ 1, 2 } to be a machine that has the lowest load in S. We assume that job sets will
retain their ordering when passed as arguments or when elements are removed.

GetEndPoint2(S, j) simulates scheduling j into S as Assign(S, j, 2, 0)
does, but instead returns loadS(2) without altering S. This is useful so that
we do not have to revert the scheduling of jobs.

BalanceLength processes a given schedule S as follows: It only changes S
if Δ := |loadS(2)−loadS(1)| ≥ 2. If so, it checks if the job j, scheduled in the last
slot of S, is given rj resource during AS

j ∪S(B,B). As we have scheduled longest-
first, there can be at most one stripe s with J(s) = { j, j′ } in S(B,B) during which
j does not get rj resource. The algorithm then gives j′ less resource during
s, pushing all other jobs scheduled with j after s to the right, shortening Δ.
Simultaneously, BalanceLength gives j more resource during s, shortening Δ
even further. All jobs but j scheduled after s are given at most 1−rj resource and
as such their resource does not change when moved. Hence, it is straightforward
to calculate how much volume has to be redistributed to shorten Δ until either
Δ ≤ 1 or j is given rj resource in s.

Outline of the Analysis. We will first analyze how ALG branches into ALGsmall

or ALGbig and with which arguments. In the case that ALG branches into
ALGsmall, we can easily derive the 1.5-approximation factor in Theorem4.

ALGbig basically consists of a first part where roughly the jobs from the
(B,S)-region in ŜR are scheduled and a second part where the remaining jobs
are scheduled longest-first. To take care of the transition between both parts, we
define the notion of a bridge job jβ :

Definition 6. For a structured relaxed schedule SR, the bridge job jβ is the
smallest job scheduled in S

(B,S)
R that is not scheduled together with jobs j � jβ

in SR (if it exists).

Using this definition, we are now able to give Lemma 4, which shows which
sub-algorithm is executed with precisely which arguments by ALG.

Lemma 4. Let J be a job set and SR, ŜR be the relaxed schedules given
by Theorem3 for J , with jD being the disruptive job of ŜR. If property 1
of Theorem3 holds, then calling ALG(J) will execute ALGsmall(JS , JB) with

180 C. Damerius et al.

JS (JB) being ascendingly (descendingly) sorted after ≺, respectively. Other-
wise, ALGbig(JS ,H, JB \ H, t) will be executed with arguments t = inf(AŜR

jβ
)

if there exists a bridge job jβ for ŜR, or t = 0 otherwise. Furthermore,
H = { j ∈ JB | inf(AŜR

j) ≥ t } �= ∅.

H is the set of all big jobs scheduled not before the bridge job. For the first
part, ALGbig schedules JS and JB \ H, mimicking the order as in ŜR into the
interval [0, t′+�t�). The following observation guarantees that ALG can fit these
jobs into said interval.

Observation 2. Let SR be a relaxed schedule for a job set J as obtained by
Theorem 3, with S

(B,S)
R �= ∅. Then Assign in line 6 of ALGbig does not schedule

jobs beyond t′ + �t�.

For the second part, only big jobs remain to be scheduled. We can show they
need at most ≈ 4/3 · V slots, where V is their total volume, or the number of
slots they require is dominated by one long job (where all other big jobs can
fit onto the other machine). We can then guarantee the bound for one of the
schedules procured by ALGbig, which then helps us to prove the overall bound.

In summary, we show the following theorem.

Theorem 4. For any job set J we have |ALG(J)| ≤ 1.5OPT + O (1), and this
bound is tight for ALG.

Proof. We only show the asymptotic lower bound here. Construct a job set with
k ∈ Z2n unit-size jobs j with rj = 1/3 and k − 1 unit-size jobs j with rj = 2/3.
We can obviously construct a schedule of makespan k. The corresponding relaxed
schedule obtained by Theorem 3 will have jD ∈ JS , so ALGsmall will be executed.
It will first schedule all small jobs in k/2 slots. Afterwards, all big jobs will be
scheduled on the same machine, using k − 1 slots. This gives the asymptotic
lower bound of 3/2.

5 Additional Results

Note that ALG, as stated in Sect. 4, does not necessarily have a running time
of O (n log n). However, we prove this running time using a slightly modified
algorithm in the following lemma.

Lemma 5. ALG can be implemented to run in O (n log n) time for a job set J
with |J | = n.

Our results for the two-machine case also imply an improved bound for the
three-machine case, which is based on ignoring one of the three machines.

Corollary 1. For m = 3 and any job set J with |J | = n, we have ALG ≤
9/4 ·OPT +O (1), where ALG runs in O(n log n) time and OPT is the optimal
solution for 3 machines.

Improved Scheduling with a Shared Resource via Structural Insights 181

Lemma 6. For any P ∈ N there exists a job set J with
∑

j∈J pj ≥ P such that
3/2 · |SR| ≤ |S|, where SR and S are optimal relaxed (unrelaxed) schedules for
J , respectively. Furthermore, SR can be chosen not to use preemption.

In Lemma 6, SR did not even use preemption. Thus, the slotted time is the
reason for the 3/2-gap between relaxed and unrelaxed schedules. To beat the
approximation ratio of 3/2, we would have to improve our understanding of how
slotted time affects optimal schedules.

6 Conclusion and Open Problems

Using structural insights about the SRJS problem, we were able to improve
approximation results from [10] for the cases of m ∈ { 2, 3 } machines in the
SRJS problem. As mentioned in Sect. 5, our (asymptotic) 3/2-approximation for
m = 2 is the best possible result that can be achieved with the lower bound based
on our definition of relaxed schedules and can be computed in time O(n log n).
This leaves two natural research questions.

First, can a similar approach improve further improve the competitive ratio
of [10] for larger values of m? While the lower bound we constructed in Sect. 3 is
tailored towards m = 2, the underlying principle may be used to design improved
algorithms for m > 2 machines. Indeed, a key insight behind our improvement
stems from a worst case instance for the algorithm of [10]: Consider an instance
with a job j that has small resource requirement rj and processing volume
pj ≈ OPT. An optimal schedule must begin to process pj early, in parallel to
the rest of the instance. However, the algorithm from [10] is resource-focused, in
the sense that it orders jobs by resource requirement and basically ignores the
processing volume when selecting jobs to be processed. This might result in j
being processed at the very end, after all other jobs have been finished, possibly
yielding an approximation ratio of roughly 2 (for large m). One could fix this
problem using an algorithm focused on processing-volume, but that would run
into similar issues caused by different resource requirements. Our algorithm for
m = 2 basically identifies jobs like j (the disruptive job) and uses it to balance
between these two extremes. A key question when considering such an approach
for larger m is how to identify a suitable (set of) disruptive job(s).

A second possible research direction is to beat the lower bound limit of our
structural approach. Given its relation to other resource constrained scheduling
problems and to bin packing variants, it seems possible that one can even find a
PTAS for SRJS. While a PTAS has typically a worse runtime compared to more
direct, combinatorial algorithms, it would yield solutions that are arbitrarily
close to optimal schedules. A difficulty in constructing a PTAS seems to stem
from the partition of time into discrete slots. An incautious approach might yield
cases where all machines are stuck with finishing an ε-portion of work, forcing
them to waste most of the available resource in such a time slot. If the average
job processing time is small, this might have a comparatively large influence on
the approximation factor. Previous work [10] reserved one of the m machines to

182 C. Damerius et al.

deal with such problems (which is wasteful for small m). Also augmenting the
available resource in each slot by, e.g., a 1 + ε factor should help to circumvent
such difficulties.

Acknowledgement. Peter Kling and Christoph Damerius were partially supported
by the DAAD PPP with Project-ID 57447553. Minming Li is also from City University
of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China. The work described
in this paper was partially supported by Project 11771365 supported by NSFC.

References

1. Althaus, E., et al.: Scheduling shared continuous resources on many-cores. J. Sched.
21(1), 77–92 (2017). https://doi.org/10.1007/s10951-017-0518-0

2. Epstein, L., Levin, A.: AFPTAS results for common variants of bin packing: a new
method for handling the small items. SIAM J. Optim. 20(6), 3121–3145 (2010)

3. Epstein, L., Levin, A., van Stee, R.: Approximation schemes for packing splittable
items with cardinality constraints. Algorithmica 62(1–2), 102–129 (2012)

4. Garey, M.R., Graham, R.L.: Bounds for multiprocessor scheduling with resource
constraints. SIAM J. Comput. 4(2), 187–200 (1975)

5. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)

6. Grigoriev, A., Sviridenko, M., Uetz, M.: Machine scheduling with resource depen-
dent processing times. Math. Program. 110(1), 209–228 (2007)

7. Grigoriev, A., Uetz, M.: Scheduling jobs with time-resource tradeoff via nonlinear
programming. Discret. Optim. 6(4), 414–419 (2009)

8. Jansen, K., Maack, M., Rau, M.: Approximation schemes for machine scheduling
with resource (in-)dependent processing times. ACM Trans. Algorithms 15(3),
31:1–31:28 (2019)

9. Kellerer, H.: An approximation algorithm for identical parallel machine scheduling
with resource dependent processing times. Oper. Res. Lett. 36(2), 157–159 (2008)

10. Kling, P., Mäcker, A., Riechers, S., Skopalik, A.: Sharing is caring: multiproces-
sor scheduling with a sharable resource. In: Scheideler, C., Hajiaghayi, M.T. (eds.)
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2017, Washington DC, USA, 24–26 July 2017, pp. 123–132. ACM
(2017)

11. Leung, J.Y. (ed.): Handbook of Scheduling - Algorithms, Models, and Performance
Analysis. Chapman and Hall/CRC (2004)

12. Niemeier, M., Wiese, A.: Scheduling with an orthogonal resource constraint. Algo-
rithmica 71(4), 837–858 (2015)

13. Rózycki, R., Weglarz, J.: Improving the efficiency of scheduling jobs driven by a
common limited energy source. In: 23rd International Conference on Methods &
Models in Automation & Robotics, MMAR 2018, Mi ↪edzyzdroje, Poland, 27–30
August 2018, pp. 932–936. IEEE (2018)

14. Trinitis, C., Weidendorfer, J., Brinkmann, A.: Co-scheduling: prospects and chal-
lenges. In: Trinitis, C., Weidendorfer, J. (eds.) Co-Scheduling of HPC Applica-
tions [Extended Versions of All Papers from COSH@HiPEAC 2016, Prague, Czech
Republic, 19 January 2016]. Advances in Parallel Computing, vol. 28, pp. 1–11.
IOS Press (2016)

https://doi.org/10.1007/s10951-017-0518-0

Network Optimization

Two-Stage Pricing Strategy with Price
Discount in Online Social Networks

He Yuan, Ziwei Liang, and Hongwei Du(B)

Department of Computer Science and Technology, Key Laboratory of Internet
Information Collaboration, Harbin Institute of Technology (Shenzhen),

Shenzhen, China
heyuan@micc.hitsz.edu.cn, 20B951013@stu.hit.edu.cn, hongwei.du@ieee.org

Abstract. With the rapid development of online social networks
(OSNs), more and more product companies are focusing on viral market-
ing of products through the word-of-mouth effect. For product compa-
nies, designing effective marketing strategies is important for obtaining
profit. However, most existing research focuses on effective influence max-
imization analysis to disseminate information widely, rather than explic-
itly incorporating pricing factors into the design of intelligent marketing
strategies. In this paper, we have studied the product’s marketing strat-
egy and pricing model. We assume that the monopolistic seller divides
product marketing into two stages, the regular price stage and the dis-
count price stage. All users have their own expected price of the product.
Only when the product price is not higher than the user’s expected price,
the user will adopt the product. Therefore, we propose a pricing model
named Two-stage Pricing with Discount Model (TPDM). We propose
that companies use two marketing methods: Advertisement Marketing
(AM) and Word-of-mouth Marketing (WM). To achieve the goal of max-
imizing the profit of product companies, we propose a Two-stage with
Discount Greedy Algorithm (TSDG) to determine product price and
discount rate. In order to study the impact of advertising and word-of-
mouth marketing on product pricing on online social networks, we use
several real social network data sets for experiments. The experimen-
tal results show that advertising marketing can significantly increase the
profit of product companies.

Keywords: Pricing marketing · Profit maximization · Social networks

1 Introduction

With the rapid development of science and technology, online social networks
(OSNs) such as Facebook, Twitter and Google+ have become important plat-
forms for people to communicate and share information. These social network
platforms make large-scale real-time communication become possible, which also
provides the potential for viral marketing innovation and a surge in opportu-
nities [13]. However, most of the existing research focuses on the problem of
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 185–197, 2020.
https://doi.org/10.1007/978-3-030-64843-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_13

186 H. Yuan et al.

maximizing influence, and does not explicitly consider product pricing factors
in product influence marketing strategies. Due to the fast information dissem-
ination in OSNs, product companies want to place product advertisements on
social networks to expand product visibility and profits. We assume that product
companies want to take advantage of the rapid spread of information in OSNs,
and place product advertisements in it to expand product visibility and profit.
This method is to conduct product marketing through OSNs, which is also the
following research problem that we need to solve.

Viral marketing does not really carry out marketing by spreading viruses, but
by users’ spontaneous word-of-mouth promotion of a product or service in OSNs,
because this marketing method can deliver information to thousands of users.
Viral marketing is often used for company product promotion. This marketing
method that uses word of mouth between users is word-of-mouth marketing
(WM). In addition to the WM, advertisement marketing (AM) can also increase
product visibility and influence. For most companies, AM can greatly increase
product attention and exposure, and gain greater influence [18].

There are three ways for companies to improve the competitiveness and profit
of their products: reduce products cost; increase market share; adjust prices to
adapt to market conditions [5]. Among them, adjusting prices is called a pricing
strategy. The goal of the pricing strategy is to determine the optimal price under
the circumstances of maximizing the current profit and maximizing the quantity
of products sales. Historically, in production management, the goal is to reduce
production costs and expand market share. The company has made tremen-
dous efforts to reduce expenses (high cost). At now, more and more researchers
are now trying to solve the problem of price adjustments. It should be noted
that changing prices is obviously easier and faster than developing a process to
reduce production costs or increase market share. In addition, the price parame-
ter directly and strongly affects profit and market share. It has been shown that
changing the price by 1% will cause daily consumption to change by at least
10%. Therefore, price as the adjustment parameter of profit is the simplest and
fastest way to improve competitiveness.

For product companies, price is the main parameter that affects the compa-
nies’ profit. In this paper, we study the market environment of single product and
single oligarch. Companies use both advertising marketing and word-of-mouth
marketing to attract consumers. We propose the company divides product pro-
motion into two time stages, the regular price stage and the discount price stage,
and maximizes profit through the two-stage pricing decision of the product.
When a user is affected by a product advertisement in a social network, the user
will have an expected price for the product. Only when the product price is not
higher than the expected price will the user purchase the product. Therefore,
in this paper, we consider the role of product price in the spread of product
influence. And our contribution are as follows:

1) We divide the company’s product marketing into two parts, namely Advertis-
ing Marketing (AM) and Word-of-mouth Marketing (WM). These two mar-
keting methods greatly increase the influence of the product.

Two-Stage Pricing Strategy with Price Discount in Online Social Networks 187

2) We divide product promotion into two stages, considering the effect of product
prices on users’ adoption. And propose a Two-stage Pricing with Discount
Model (TPDM), which is closer to the situation of products selling in real
life.

3) In order to solve the problem of product pricing, we propose a Two-stage
with Discount Greedy algorithm (TSDG), which effectively improves the com-
pany’s profits.

4) We test our algorithm on several real OSN datasets and use TPDM to com-
pare different pricing strategies. The experimental results confirmed the effec-
tiveness and the efficiency of our algorithm.

The rest of the paper is organized as follows. Section 2 reviews some related
work. Section 3 proposes the TPDM and formulates the PROFIT problem.
Section 4 introduces the pricing strategy and Two-stage with Discount Greedy
algorithm (TSDG). Experiments are discussed in Section Sect. 5. Section 6 pro-
vides the conclusions.

2 Related Work

Our work is related to both Propagation Modelling and Pricing Strategy. We
briefly discuss both of them.

2.1 Propagation Model

There has been a large amount of research [2,4,10,12] on maximizing the influ-
ence in OSNs. Domingos and Richardson [6] first studied the influence diffusion
as an algorithmic problem for optimizing marketing strategies. They treated the
market as a social network and modeled it as a Markov random field, and then
devised a heuristic algorithm to solve the problem. Kempe et al. [12] proposed
independent cascade (IC) and linear threshold (LT) models. These two models
are the basic models for the subsequent research [3,9] on the diffusion model.
In management science, people adopt new products with two steps, they are
awareness and adoption respectively [11]. Lu et al. [16] proposed that users have
their own valuations of product price, and users will only purchase the product
if the product price is lower than the users’ valuation. They raised a Linear
Threshold Model with User Valuation (LT-V) model and defined a profit max-
imization problem which combined the product price and user’s valuation. Zhu
et al. [21] considered the relationship between influence and profit, and proposed
price related PR frame and expanded the IC and LT models respectively. Zhang
et al. [20] considered the multi-product influence in OSNs, and these products
were not purely competitive. They presented a Multiple Thresholds (MT) model
which extended from LT model.

188 H. Yuan et al.

2.2 Pricing Strategy

Many researchers start to study the problem of profit maximization on the basis
of influence maximization, but they rarely consider the impact of product pricing
on profits. Hartline et al. [8] and Dismitris et al [7]. researched the optimal
marketing of digital goods in OSNs, and proposed an “Influence and Exploit”
(IE) strategy. In IE strategy, product prices are different for seed nodes and
non-seed nodes, and product prices are free for seed nodes. However, although
price discrimination helps maximize profit, it may cause negative reactions from
buyers. For example, Shor et al. [19] suggested that price discrimination can
reduce the likelihood of purchase. Moreover, it is impractical for sellers to adjust
prices too frequently. In order to solve price discrimination, Akhlaghpour et
al. [1] based on the assumption that prices are open to all users, a descending
pricing sequence is proposed. Similarly, the order of pricing in [17] is also falling.
Niu et al. [17] proposed a multi-state diffusion scheme, and designed the best
sequential pricing strategy based on dynamic programming. Based on the multi-
state diffusion scheme, Li et al. [15] designed a pricing strategy with limited
promotional time to study the problem of maximizing profit.

3 Preliminaries

In the section, we describe our proposed TPDM model in details and formulate
the PROMAX problem. The relevant basic notations are shown in Table 1.

3.1 Propagation Model

In a social network G(V,E), where all nodes ui ∈ V and all edges (ui, uj(j �=i)) ∈
E, i, j = 1, 2, ..., n. User nodes have different judgements on the value of product,
thus, all users in OSNs have an expected price e(i) for the product. The ui’s
expected price e(i) indicates the highest price of the product that the ui can
accept. There is a gap price g(i) between the actual product price and the
expected price, e.g., g(i) = e(i) − P . If g(i) is large, it means that the product
price P is far lower than the user’s expected price e(i), and the ui is more willing
to recommend the product to its friends. According to the expected price of all
nodes, we obtain the all users’ gap prices g = {g(1), g(2), ..., g(n)}. For node ui,
the diffusion probability p(i) = g(i)

P . If the p(i) < 0, the diffusion probability
p(i) = 0, if the p(i) > 1, the diffusion probability p(i) = 1. For all nodes, the
probability p(i) ∈ [0, 1]. Since product advertisements also have a certain impact
on users, we use q denotes the probability of users viewing advertisements. Based
on the IC model in the [12], we propose a Two-stage Pricing with Discount
Model (TPDM). Figure 1 shows the influence spread procession under the TPDM
model. There are three states of nodes in social networks, they are INACTIVE,
INFLUENCED and ACTIVE respectively. In the INACTIVE state, nodes not
aware the product (Users not view the ads of the product). In the INFLUENCED
state, nodes know the product but the product price exceed the expected price

Two-Stage Pricing Strategy with Price Discount in Online Social Networks 189

Table 1. Important notations in the article.

Notation Description

G(V, E) The social network G with nodes set V and edges set E

n, m The number of nodes and edges in G are n and m respectively

e(i) The expected price of user i for company product

g(i) The gap price between the actual product price and the expected price

p(i) The probability of node i being influenced

q The probability that node i views the ads

c The cost of a single product

t(i) The price tag of user i

τ(S) The total costs of selecting seed set S

ρ(S, P, d) The profit of company

(Users view the ads of the product but not adopt). In the ACTIVE state, nodes
spread the influence of the product (Users adopt the product and recommend
it to friends). Our marketing strategy is divided into two time stages, regular
price sales stage and discount sales stage. In Fig. 2, we can see the influence of
product prices on whether users adopt products, Those two stages are showing
as follows.

INACTIVE INFLUENCED ACTIVEview the ads e(i) P
Yes

No

INACTIVE INFLUENCED e(i) P ACTIVE
Yes

No

AM

WM

AM: advertisement marketing
WM: word-of-mouth marketing

Fig. 1. The influence spread procession under the TPDM model.

(1) Regular Price Stage: The product company sets a price P for the product,
and then targets product advertisements on social networks and selects some
influential users to promote the product. For all users in social network, they view
the ads of product with q probability. If the user i views the ads of product, their
state will change to INFLUENCED. And if the product price P is not higher than
their expected price e(i), the user change the state to ACTIVE. The user i will

190 H. Yuan et al.

adopt the product and recommends the product to friends with a p(i) probability.
For user j, the friends which state are ACTIVE are 1, 2, ..., n. The probability
that the state becomes INFLUENCED is 1 − (1 − q)

∏n
k=1 (1 − p(i)), and the

probability that the state becomes ACTIVE when P < e(j). This diffusion
process continues until no user can change its state.

(2) Discount Price Stage: In order to promote more users to adopt the prod-
uct and spread the product influence, the product company sets a price discount
d for the product promotion. The final product price becomes P ∗ d, some users
who did not adopt the product because of the price higher than their expected
price become ACTIVE. For the user i that state is INFLUENCED, if the dis-
count price P ∗ d ≤ e(i), the state change to ACTIVE and begin to adopt
the product. And if the discount price P ∗ d > e(i), the user’s state maintain
INFLUENCED. Those ACTIVE users can spread the product influence to the
INACTIVE friends. This diffusion process continues until no user can change its
state.

Following [11], we set that only ACTIVE users can propagate product influ-
ence and the state will not change after the user becomes ACTIVE. In order to
facilitate the calculation of the number of user nodes affected by the company
product, we use A1, A2 to represent the number of users that state is ACTIVE
in the two sales stages respectively.

u2u1 u3

u2

u5u4 u6 u8u7 u9

u1

P > e(i) Adopt product

Regular Price period
D

iscount Price period

u4u3 u1 u5 u6

u7 u8 u9

P*d > e(i) Adopt product

INACTIVE

INFLUENCED

ACTIVE

Fig. 2. The effect of product prices on whether users adopt products

3.2 Problem Formulation

The company needs to consume some materials when producing products, we use
c ∈ [0, 1] to represent the cost of a single product. Generally speaking, product
sales are divided into two stages. The goal of product company is to expand
the demand for products by setting reasonable price P and discount rate d. In
OSNs, each user node has its own price tag selected as the seed node. And the
more friend nodes a user has, the higher the price tag. The t(i) denotes the price
tag of user node ui and τ(S) denotes the total costs of selecting seed set S.

Two-Stage Pricing Strategy with Price Discount in Online Social Networks 191

τ(S) =
∑

u∈Ss

t(u) (1)

Company makes profits by selling products, and the company’s profits increase
as the number of users who purchase products increases. We use A1P and A2P ∗d
to represent the profits of the two sale stages respectively. We use ρ(S, P, d) to
denote the entire profit of company.

ρ(S, P, d) = A1P + A2P ∗ d − c(A1 + A2)) − τ(S) (2)

Definition 1. (PROMAX problem). In a social network G(V,E), product com-
pany sets a optimal product price P and price discount d under TPDM model for
product promotion. And select a optimal seed set S that maximizing the finally
profit ρ(S, P, d).

In addition to advertisement marketing, we need to consider word-of-mouth
marketing. In order to increase word-of-mouth marketing, we initially activate
some seed nodes to make them stay ACTIVE state. Choosing the reasonable seed
users can increase the product’s scope of influence and increase the company’s
profit. Obviously, ρ(∅, P, d) < ρ(ui, P, d), and ρ(ui, P, d) > ρ(V, P, d). Therefore,
the profit ρ(S, P, d) is non-monotone. We need to choose a suitable seed node
set to optimize profit and the problem is NP-hard.

4 Solution

In this section, we present the Construction of Nodes’ State Algorithm to obtain
the number of active nodes. For Maximizing the profit of the product company,
we propose a pricing strategy for setting product price P and a Two-stage with
Discount Greedy (TSDG) Algorithm to maximizing the product profits.

4.1 Pricing Strategies

In our TDPM model, product companies can design incentive pricing strategies,
such as providing rewards to user nodes that help diffuse the product influence.
There are two types of rewards, one is free product samples and the other is
advertising costs (The cost is proportional to the number of users’ fans). In this
paper, we design an incentive strategies. The product company first selects some
influential user nodes, provides them with rewards, and makes them active. These
user nodes will actively promote the product’s influence in product marketing.

Definition 2. (IS(Incentive Strategies)). The reward provided to the seed user
corresponding their price tag (proportional to the number of neighbor users).

192 H. Yuan et al.

Algorithm 1. Construction of Nodes’ State Algorithm
Input: G(V, E), u′

is initial state, product price P
Output: u′

is state

1: while True do
2: if u′

is state is INACTIVE then
3: if ui views the product ads then
4: u′

is state becomes INFLUENCED with probability q
5: if P > expected price e(i) then
6: u′

is state becomes ACTIVE
7: u′

is INACTIVE friend users′ state becomes INFLUENCED
8: else
9: u′

is state still INFLUENCED

10: else if u′
is state is INFLUENCED then

11: if P > expected price e(i) then
12: u′

is state becomes ACTIVE
13: else
14: u′

is state still INFLUENCED

15: else
16: u′

is INACTIVE friend users′ states become INFLUENCED

17: return u′
is state

The seed users’ state are ACTIVE, and the users will affect his/her neighbor
users. In our strategy, users will evaluate the product price and the expected
price when they are INFLUENCED. When the product price is higher than the
expected price, the user will only be INFLUENCED and will not become active
and purchase the product. If the price of the product is lower than the price
expected by the user, the user will decide to purchase the product and turn the
state to be ACTIVE. Algorithm 1 shows the state changing of nodes under our
pricing strategy (Nodes’ State Changing Algorithm).

The product company divides the promotion of the product into two stages,
the regular price stage and the discount stage. Some users are influenced in the
regular price stage because the product price is higher than the expected price. In
the discount stage, because the product price is affected by the discount rate and
the product price is lower than the expected price, these users purchase products
from the affected state to become active status. Based on the optimal myopic
price (OMP) [8], we add the factor of product cost to calculate the optimal price
P.

pi = argmax(p − c) ∗ (1 − Fi(p)) (3)

The regular price P = {p1, p2, ...p|V |}, and the Fi is the distribution function
of expected price e(i). In the Discount Price Sales Stage, company will reduce
the price of the product to attract many users to buy the product. We combine
INACTIVE users and INFLUENCED users to a new set I, and then determine
the optimal discount rate through this new set I.

d = argmax(pi − c) ∗ (1 − Fi(pi)) (4)

Two-Stage Pricing Strategy with Price Discount in Online Social Networks 193

Algorithm 2. Two-stage with Discount Greedy (TSDG) Algorithm
Input: G(V, E), T = 1, S = ∅, P = 0, d = 1
Output: S, P , d

1: Calculate the Optimal price P = {p1, p2, ...p|V |}
2: for each user ui ∈ V do
3: Remove all users whose maximum marginal profit is negative, obtain a new user

set T;

4: for each user ui ∈ T do
5: Select the users whose maximum marginal profit is positive, add them into seed

set S. The remaining users are in candidates set C.

6: Obtain the number of ACTIVE nodes A1, and obtain the profit ρ1 of the first stage
of the product

7: Calculate the Optimal discount d, product price becomes pi ∗ d
8: Construction of Nodes′ State
9: for each user ui ∈ C do

10: Obtain the number of users who have newly become ACTIVE A2 and the ρ2

of the first stage of the product

11: return ρ(S, P, d)

The Fi is the distribution function of expected price e(i) of the user node of the
set I.

4.2 Two-Stage with Discount Greedy (TSDG) Algorithm

In word-of-mouth marketing, we increase the spread of product influence by
selecting seed nodes. Since the number of nodes in OSNs is very large, we propose
the TSDG algorithm that can improve the efficiency of selection. Our profit
function has sub-modularity, through which we can reduce the search space of
nodes. Our algorithm is divided into three steps. First, in regular price stage,
calculating the optimal P of the products. Then, selecting the optimal seed set
S. Finally, in discount price stage, calculating the optimal discount d of the
products Before selecting the seed nodes, we remove some nodes that are not
impossible to select as seed nodes, which can improve the efficiency of selection.
We obtain the maximum margin profit of all nodes, and remove all nodes whose
maximum profit margin is negative. Then calculate the minimum profit margin
of all nodes, and add nodes with a positive minimum profit margin to the seed
set S.

The purpose of the company’s product marketing strategy to select the seed
set node set S is to activate a part of influential user nodes in advance, so that
the number of people buying products increases, and ultimately maximize the
company’s profits. Here, we use A1(S) and A2(S) to denote the node set activated
by the seed node set S in two stages respectively. Our TSDG algorithm is divided
into two parts, first determine the product price P and select the appropriate
seed set S, and then determine the discount d.

194 H. Yuan et al.

Our TSDG algorithm greatly reduces the search space of nodes and improves
the efficiency of seed node selection. By activating the word-of-mouth marketing
of some nodes in advance, the spread of product influence can be accelerated
and the company’s profits can be improved.

5 Evaluations

5.1 Experimental Setup

Datasets: We select several real OSNs datasets from [14], they are Amazon, Epin-
ions, HepPh and P2P respectively. These graphs contain various social relation-
ships, for example, follower and trust relationships. Table 2 shows the important
statistics of these graphs:

Table 2. Important information for networks.

Dataset Nodes Edges Average Degree

Amazon 262K 1235K 4.7

Epinions 76K 509K 6.7

HepPh 15K 59K 3.9

P2P 9K 32K 3.6

Algorithms. We compare the following algorithms.

– All-OMP: The pricing strategy of this algorithm is providing optimal myopic
price (OMP) to all nodes regardless of whether a node is a seed or how
influential it is. Then use a simple greedy algorithm to select the seed node
set. The simple greedy algorithm is showed in Algorithm 1.

– Free-For-Seeds (FFS): The algorithm gives different prices to seed nodes and
non-seed nodes. it provides optimal myopic price (OMP) to all non-seed nodes
and the price of seeds is free. Then use a simple greedy algorithm to select
the seed node set.

– TSDG (Two-stage with Discount Greedy): The algorithm is showed in Algo-
rithm 2.

Expected prices Distribution: Until now, we have not obtained the expected
price of the product from users. Since product manufacturing requires a certain
cost, in general, the user’s expected price of the product is higher than the
product’s cost, and the user’s expected price of the product is related to the
product’s cost. For example, the expected price of a piece of paper is different
from the expected price of a book. Therefore, in the experiment, we assume that
users expect that the normal distribution of prices is related to cost.

Two-Stage Pricing Strategy with Price Discount in Online Social Networks 195

5.2 Profit Results of Different Algorithms

In this section we show the experimental results of four data sets. We used TPDM
model in the experiment. We assume that only those who adopt the product have
influence and that throughout the propagation process, users’ expected price of
the product unchanged.

ALL-OMP
 FFS
 TSDG

Pr
of

it

Probability of Viewing Ads

(a) Amazon

ALL-OMP
 FFS
 TSDG

Pr
of

it
Probability of Viewing Ads

(b) Epinions

ALL-OMP
 FFS
 TSDG

Pr
of

it

Probability of Viewing Ads

(c) HepPh

Pr
of

it

Probability of Viewing Ads

ALL-OMP
 FFS
 TSDG

(d) P2P

Fig. 3. The influence of advertising propagation probability on profit of different data
sets

It can be seen from Fig. 3, as the probability q of viewing advertisements con-
tinues to increase, the profit of the product company continues to increase. This
is because more users are affected by product advertisements to purchase prod-
ucts, and these users indirectly become free seed nodes to spread the influence
of the product to neighboring nodes. The increase in the probability of browsing
product advertisements causes more user nodes to be ACTIVE to purchase the
product, and the profit of the product company increases accordingly. We can
conclude that, regardless of the cost of advertising, increasing the number of ads
will cause more users to be affected, and advertising marketing can increase the
profits of product companies.

When the advertising propagation probability is 0, the company’s profit is
lower, which illustrates the importance of advertising marketing. The product
price in the All-OMP algorithm is the same for seed users and non-seed users,

196 H. Yuan et al.

which makes some seed users inactive because they expected prices are lower than
the product price, and cannot spread the influence of the product. However, for
FFS algorithm, the product price for the seed node is free, which makes the
seed node must be ACTIVE and improves the spread of influence. Therefore,
the profit obtained by the FFS algorithm is higher than that of the All-OMP
algorithm. Our TSDG algorithm divides product marketing into two stages. In
the second stage, the price of the product is reduced through discount d, so
that some users who are INFLUENCED in the first stage become ACTIVE in
the second stage. Our TSDG algorithm enables more nodes to be ACTIVE to
spread the influence of the product. From the Fig. 3, we can see that our TSDG
algorithm is much better than the other two algorithms. The experimental results
illustrate the effectiveness of our algorithm.

6 Conclusion

In this paper, we concentrate on studying the product pricing strategy in OSNs.
Considering the impact of product price and user’s expected price on the spread
of influence, we divide product marketing into two time stages. Therefore, we
propose the Two-stage Pricing with Discount Model (TPDM), which divides
product marketing into the regular price stage and the discount price stage.
We propose two marketing methods: advertising marketing (AM) and word-of-
mouth marketing (WM). These two marketing methods can improve the spread
of product influence. To achieve the goal of maximizing the profit of product
companies, we propose a Two-stage with Discount Greedy Algorithm (TSDG)
to determine product price, discount rate and seed set. And the experimental
results prove the effectiveness of the algorithm.

Acknowledgment. This work is supported by National Natural Science Foundation
of China (No. 61772154). It was also supported by the Shenzhen Basic Research Pro-
gram (Project No. JCYJ20190806143011274).

References

1. Akhlaghpour, H., Ghodsi, M., Haghpanah, N., Mirrokni, V.S., Mahini, H., Nikzad,
A.: Optimal iterative pricing over social networks (extended abstract). In: Saberi,
A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 415–423. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17572-5 34

2. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in
nearly optimal time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 946–957. SIAM (2014)

3. Chen, W., et al.: Influence maximization in social networks when negative opin-
ions may emerge and propagate. In: Proceedings of the 2011 SIAM International
Conference on Data Mining, pp. 379–390. SIAM (2011)

4. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1029–1038 (2010)

https://doi.org/10.1007/978-3-642-17572-5_34

Two-Stage Pricing Strategy with Price Discount in Online Social Networks 197

5. Dolgui, A., Proth, J.M.: Pricing strategies and models. Ann. Rev. Control 34(1),
101–110 (2010)

6. Domingos, P., Richardson, M.: Mining the network value of customers. In: Pro-
ceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 57–66 (2001)

7. Fotakis, D., Siminelakis, P.: On the efficiency of influence-and-exploit strategies for
revenue maximization under positive externalities. In: Goldberg, P.W. (ed.) WINE
2012. LNCS, vol. 7695, pp. 270–283. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-35311-6 20

8. Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over
social networks. In: Proceedings of the 17th International Conference on World
Wide Web, pp. 189–198 (2008)

9. He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization in social
networks under the competitive linear threshold model. In: Proceedings of the 2012
SIAM International Conference on Data Mining, pp. 463–474. SIAM (2012)

10. Jung, K., Heo, W., Chen, W.: Irie: scalable and robust influence maximization in
social networks. In: 2012 IEEE 12th International Conference on Data Mining, pp.
918–923. IEEE (2012)

11. Kalish, S.: A new product adoption model with price, advertising, and uncertainty.
Manage. Sci. 31(12), 1569–1585 (1985)

12. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

13. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing.
ACM Trans. Web 1(1), 5 (2007)

14. Leskovec, J., Krevl, A.: Snap datasets: stanford large network dataset collection
(2014)

15. Li, Y., Li, V.O.K.: Pricing strategies with promotion time limitation in online social
networks, pp. 254–261 (2018)

16. Lu, W., Lakshmanan, L.V.: Profit maximization over social networks. In: 2012
IEEE 12th International Conference on Data Mining, pp. 479–488. IEEE (2012)

17. Niu, G., Li, V.O.K., Long, Y.: Sequential pricing for social networks with multi-
state diffusion, pp. 3176–3181 (2013)

18. Shareef, M.A., Mukerji, B., Dwivedi, Y.K., Rana, N.P., Islam, R.: Social media
marketing: comparative effect of advertisement sources. J. Retail. Consum. Serv.
46, 58–69 (2019)

19. Shor, M., Oliver, R.L.: Price discrimination through online couponing: impact on
likelihood of purchase and profitability. J. Econ. Psychol. 27(3), 423–440 (2006)

20. Zhang, H., Zhang, H., Kuhnle, A., Thai, M.T.: Profit maximization for multiple
products in online social networks. In: IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on Computer Communications, pp. 1–9. IEEE
(2016)

21. Zhu, Y., Li, D., Yan, R., Wu, W., Bi, Y.: Maximizing the influence and profit in
social networks. IEEE Trans. Comput. Soc. Syst. 4(3), 54–64 (2017)

https://doi.org/10.1007/978-3-642-35311-6_20
https://doi.org/10.1007/978-3-642-35311-6_20

Almost Linear Time Algorithms
for Minsum k-Sink Problems

on Dynamic Flow Path Networks

Yuya Higashikawa1(B), Naoki Katoh1, Junichi Teruyama1, and Koji Watase2

1 University of Hyogo, Kobe, Japan
{higashikawa,naoki.katoh,junichi.teruyama}@sis.u-hyogo.ac.jp

2 Kwansei Gakuin University, Sanda, Japan
fnt43517@kwansei.ac.jp

Abstract. We address the facility location problems on dynamic flow
path networks. A dynamic flow path network consists of an undirected
path with positive edge lengths, positive edge capacities, and positive
vertex weights. A path can be considered as a road, an edge length
as the distance along the road and a vertex weight as the number of
people at the site. An edge capacity limits the number of people that
can enter the edge per unit time. In the dynamic flow network, given
particular points on edges or vertices, called sinks, all the people evacuate
from the vertices to the sinks as quickly as possible. The problem is
to find the location of sinks on a dynamic flow path network in such
a way that the aggregate evacuation time (i.e., the sum of evacuation
times for all the people) to sinks is minimized. We consider two models
of the problem: the confluent flow model and the non-confluent flow
model. In the former model, the way of evacuation is restricted so that
all the people at a vertex have to evacuate to the same sink, and in
the latter model, there is no such restriction. In this paper, for both the
models, we develop algorithms which run in almost linear time regardless
of the number of sinks. It should be stressed that for the confluent flow
model, our algorithm improves upon the previous result by Benkoczi
et al. [Theoretical Computer Science, 2020], and one for the non-confluent
flow model is the first polynomial time algorithm.

Keywords: Dynamic flow networks · Facility location problems ·
Minimum k-link path problem · Persistent data structures

1 Introduction

Recently, many disasters, such as earthquakes, nuclear plant accidents, volcanic
eruptions and flooding, have struck in many parts of the world, and it has been
recognized that orderly evacuation planning is urgently needed. A powerful tool

A full version of the paper is available at [14]; https://arxiv.org/abs/2010.05729.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 198–213, 2020.
https://doi.org/10.1007/978-3-030-64843-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_14&domain=pdf
https://arxiv.org/abs/2010.05729
https://doi.org/10.1007/978-3-030-64843-5_14

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 199

for evacuation planning is the dynamic flow model introduced by Ford and Fulk-
erson [10], which represents movement of commodities over time in a network.
In this model, we are given a graph with source vertices and sink vertices. Each
source vertex is associated with a positive weight, called a supply, each sink
vertex is associated with a positive weight, called a demand, and each edge is
associated with positive length and capacity. An edge capacity limits the amount
of supply that can enter the edge per unit time. One variant of the dynamic flow
problem is the quickest transshipment problem, of which the objective is to send
exactly the right amount of supply out of sources into sinks with satisfying the
demand constraints in the minimum overall time. Hoppe and Tardos [15] pro-
vided a polynomial time algorithm for this problem in the case where the transit
times are integral. However, the complexity of their algorithm is very high. Find-
ing a practical polynomial time solution to this problem is still open. A reader
is referred to a recent survey by Skutella [18] on dynamic flows.

This paper discusses a related problem, called the k-sink problem [2,4,5,7–9,
12,13,16], of which the objective is to find a location of k sinks in a given dynamic
flow network so that all the supply is sent to the sinks as quickly as possible. For
the optimality of location, the following two criteria can be naturally considered:
the minimization of evacuation completion time and aggregate evacuation time
(i.e., average evacuation time). We call the k-sink problem that requires finding
a location of k sinks that minimizes the evacuation completion time (resp. the
aggregate evacuation time) the minmax (resp. minsum) k-sink problem. Several
papers have studied the minmax k-sink problems on dynamic flow networks [2,7–
9,12,13,16]. On the other hand, the minsum k-sink problems on dynamic flow
networks have not been studied except for the case of path networks [4,5,13].

Moreover, there are two models on the way of evacuation. Under the confluent
flow model, all the supply leaving a vertex must evacuate to the same sink
through the same edges, and under the non-confluent flow model, there is no
such restriction. To our knowledge, all the papers which deal with the k-sink
problems [2,4,5,7–9,13] adopt the confluent flow model.

In order to model the evacuation behavior of people, it might be natural
to treat each supply as a discrete quantity as in [15,16]. Nevertheless, almost
all the previous papers on sink problems [2,7–9,12,13] treat each supply as a
continuous quantity since it is easier for mathematically handling the problems
and the effect is small enough to ignore when the number of people is large.
Throughout the paper, we also adopt the model with continuous supplies.

In this paper, we study the minsum k-sink problems on dynamic flow path
networks under both the confluent flow model and the non-confluent flow model.
A path network can model a coastal area surrounded by the sea and a hilly
area, an airplane aisle, a hall way in a building, a street, a highway, etc., to
name a few. For the confluent flow model, the previous best results are an
O(kn log3 n) time algorithm for the case with uniform edge capacity in [4], and
O(kn log4 n) time algorithm for the case with general edge capacities in [5], where
n is the number of vertices on path networks. We develop algorithms which run in
time min{O(kn log2 n), n2O(

√
log k log log n) log2 n} for the case with uniform edge

200 Y. Higashikawa et al.

capacity, and in time min{O(kn log3 n), n2O(
√
log k log log n) log3 n} for the case

with general edge capacities, respectively. Thus, our algorithms improve upon
the complexities by [4,5] for any value of k. Especially, for the non-confluent flow
model, this paper provides the first polynomial time algorithms.

Since the number of sinks k is at most n, we confirm 2O(
√
log k log log n) =

nO(
√

log log n/ log n) = no(1), which means that our algorithms are the first ones
which run in almost linear time (i.e., n1+o(1) time) regardless of k. The reason
why we could achieve almost linear time algorithms for the minsum k-sink prob-
lems is that we newly discover a convex property from a novel point of view.
In all the previous papers on the k-sink problems, the evacuation completion.
time and the aggregate evacuation time (called CT and AT, respectively) are
basically determined as functions in “distance”: Let us consider the case with a
1-sink. The values CT(x) or AT(x) may change as a sink location x moves along
edges in the network. In contrast, we introduce a new metric for CT and AT as
follows: assuming that a sink is fixed and all the supply in the network flows to
the sink, for a positive real z, CT(z) is the time at which the first z of supply
completes its evacuation to the sink and then AT(z) is the integral of CT(z), i.e.,
AT(z) =

∫ z

0
CT(t)dt. We can observe that AT(z) is convex in z since CT(z) is

increasing in z. Based on the convexity of AT(z), we develop efficient algorithms.
The rest of the paper is organized as follows. In Sect. 2, we introduce the

terms that are used throughout the paper and explain our models. In Sect. 3,
we show that our problem can be reduced to the minimum k-link path prob-
lem with links satisfying the concave Monge condition. This immediately implies
by Schieber [17] that the optimal solutions for our problems can be obtained
by solving min{O(kn), n2O(

√
log k log log n)} subproblems of computing the opti-

mal aggregate evacuation time for subpaths, in each of which two sinks are
located on its endpoints. Section 3 subsequently shows an overview of the algo-
rithm that solves the above subproblems. In Sect. 4, we introduce novel data
structures, which enable to solve each of the above subproblems in O(poly log n)
time. Section 5 concludes the paper.

2 Preliminaries

2.1 Notations

For two real values a, b with a < b, let [a, b] = {t ∈ R | a ≤ t ≤ b}, [a, b) =
{t ∈ R | a ≤ t < b}, (a, b] = {t ∈ R | a < t ≤ b}, and (a, b) = {t ∈ R | a <
t < b}, where R is the set of real values. For two integers i, j with i ≤ j, let
[i..j] = {h ∈ Z | i ≤ h ≤ j}, where Z is the set of integers. A dynamic flow
path network P is given as a 5-tuple (P,w, c, l, τ), where P is a path with vertex
set V = {vi | i ∈ [1..n]} and edge set E = {ei = (vi, vi+1) | i ∈ [1..n − 1]},
w is a vector 〈w1, . . . , wn〉 of which a component wi is the weight of vertex vi

representing the amount of supply (e.g., the number of evacuees, cars) located
at vi, c is a vector 〈c1, . . . , cn−1〉 of which a component ci is the capacity of edge
ei representing the upper bound on the flow rate through ei per unit time, l is

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 201

a vector 〈�1, . . . , �n−1〉 of which a component �i is the length of edge ei, and τ is
the time which unit supply takes to move unit distance on any edge.

We say a point p lies on path P = (V,E), denoted by p ∈ P , if p lies on a
vertex v ∈ V or an edge e ∈ E. For two points p, q ∈ P , p ≺ q means that p lies
to the left side of q. For two points p, q ∈ P , p � q means that p ≺ q or p and
q lie on the same place. Let us consider two integers i, j ∈ [1..n] with i < j. We
denote by Pi,j a subpath of P from vi to vj . Let Li,j be the distance between vi

and vj , i.e., Li,j =
∑j−1

h=i �h, and let Ci,j be the minimum capacity for all the
edges between vi and vj , i.e., Ci,j = min{ch | h ∈ [i..j − 1]}. For i ∈ [1..n], we
denote the sum of weights from v1 to vi by Wi =

∑i
j=1 wj . Note that, given a

dynamic flow path network P, if we construct two lists of Wi and L1,i for all
i ∈ [1..n] in O(n) preprocessing time, we can obtain Wi for any i ∈ [1..n] and
Li,j = L1,j −L1,i for any i, j ∈ [1..n] with i < j in O(1) time. In addition, Ci,j for
any i, j ∈ [1..n] with i < j can be obtained in O(1) time with O(n) preprocessing
time, which is known as the range minimum query [1,3].

A k-sink x is k-tuple (x1, . . . , xk) of points on P , where xi ≺ xj for i < j.
We define the function Id for point p ∈ P as follows: the value Id(p) is an
integer such that vId(p) � p ≺ vId(p)+1 holds. For a k-sink x for P, a divider
d is (k − 1)-tuple (d1, . . . , dk−1) of real values such that di < dj for i < j and
WId(xi) ≤ di ≤ WId(xi+1). Given a k-sink x and a divider d for P, the portion
WId(xi) −di−1 supply that originates from the left side of xi flows to sink xi, and
the portion di −WId(xi) supply that originates from the right side of xi also flows
to sink xi. For instance, under the non-confluent flow model, if Wh−1 < di < Wh

where h ∈ [1..n], di − Wh−1 of wh supply at vh flows to sink xi and the rest
of Wh − di supply to do sink xi+1. The difference between the confluent flow
model and the non-confluent flow model is that the confluent flow model requires
that each value di of a divider d must take a value in {W1, . . . , Wn}, but the
non-confluent flow model does not. For the notation, we set d0 = 0 and dk = Wn.

For a dynamic flow path network P, a k-sink x and a divider d, the evacuation
completion time CT(P,x,d) is the time at which all the supply completes the
evacuation. The aggregate evacuation time AT(P,x,d) is that the sum of the
evacuation completion time for all the supply. Their explicit definitions are given
later. In this paper, our task is, given a dynamic flow path network P, to find a k-
sink x and a divider d that minimize the aggregate evacuation time AT(P,x,d)
in each evacuation model.

2.2 Aggregate Evacuation Time on a Path

For the confluent flow model, it is shown in [5,13] that for the minsum k-sink
problems, there exists an optimal k-sink such that all the k sinks are at vertices.
This fact also holds for the non-confluent flow model. Indeed, if a divider d is
fixed, then we have k subproblems for a 1-sink and the optimal sink location for
each subproblem is at a vertex. Thus, we have the following lemma.

202 Y. Higashikawa et al.

Lemma 1 ([13]). For the minsum k-sink problem in a dynamic flow path net-
work, there exists an optimal k-sink such that all the k sinks are at vertices under
the confluent/non-confluent flow model.

Lemma 1 implies that it is enough to consider only the case that every sink is at
a vertex. Thus, we suppose x = (x1, . . . , xk) ∈ V k, where xi ≺ xj for i < j.

A Simple Example with a 1-sink. In order to give explicit definitions for the
evacuation completion time and the aggregate evacuation time, let us consider
a simple example for a 1-sink. We are given a dynamic flow path network P =
(P,w, c, l, τ) with n vertices and set a unique sink on a vertex vi, that is, x = (vi)
and d = () which is the 0-tuple. In this case, all the supply on the left side of
vi (i.e., at v1, . . . , vi−1) will flow right to sink vi, and all the supply on the right
side of vi (i.e., at vi+1, . . . , vn) will flow left to sink vi. Note that in our models
all the supply at vi immediately completes its evacuation at time 0.

To deal with this case, we introduce some new notations. Let the function
θi,+(z) denote the time at which the first z − Wi of supply on the right side
of vi completes its evacuation to sink vi (where θi,+(z) = 0 for z ∈ [0,Wi]).
Higashikawa [11] shows that the value θi,+(Wn), the evacuation completion time
for all the supply on the right side of vi, is given by the following formula:

θi,+(Wn) = max
{

Wn − Wj−1

Ci,j
+ τ · Li,j | j ∈ [i + 1..n]

}

. (1)

Recall that Ci,j = min{ch | h ∈ [i..j − 1]}. We can generalize formula (1) to the
case with any z ∈ [0,Wn] as follows:

θi,+(z) = max{θi,+,j(z) | j ∈ [i + 1..n]}, (2)

where θi,+,j(z) for j ∈ [i + 1..n] is defined as

θi,+,j(z) =

{
0 if z ≤ Wj−1,
z−Wj−1

Ci,j
+ τ · Li,j if z > Wj−1.

(3)

Similarly, let θi,−(z) denote the time at which the first Wi−1 − z of supply on
the left side of vi completes its evacuation to sink vi (where θi,−(z) = 0 for
z ∈ [Wi−1,Wn]). Then,

θi,−(z) = max{θi,−,j(z) | j ∈ [1..i − 1]}, (4)

where θi,−,j(z) is defined as

θi,−,j(z) =

{
Wj−z
Cj,i

+ τ · Lj,i if z < Wj ,

0 if z ≥ Wj .
(5)

The aggregate evacuation times for the supply on the right side and the left
side of vi are

∫ Wn

Wi

θi,+(z)dz =
∫ Wn

0

θi,+(z)dz and
∫ Wi−1

0

θi,−(z)dz =
∫ Wn

0

θi,−(z)dz,

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 203

Fig. 1. The thick half-open segments indicate function θi,+(t) and the gray area indi-
cates Φi,+(z) for some z > Wi.

respectively. Thus, the aggregate evacuation time AT(P, (vi), ()) is given as

AT(P, (vi), ()) =
∫ Wn

0

{
θi,+(z) + θi,−(z)

}
dz.

Aggregate Evacuation Time with a k-Sink. Suppose that we are given a
k-sink x = (x1, . . . , xk) ∈ V k and a divider d = (d1, . . . , dk−1). Recalling the
definition of Id(p) for p ∈ P , we have xi = vId(xi) for all i ∈ [1..k]. In this
situation, for each i ∈ [1..k], the first di − WId(xi) of supply on the right side of
xi and the first WId(xi)−1 − di−1 of supply on the left side of xi move to sink xi.

By the argument of the previous section, the aggregate evacuation times for
the supply on the right side and the left side of xi are

∫ di

WId(xi)

θId(xi),+(z)dz =
∫ di

0

θId(xi),+(z)dz and

∫ WId(xi)−1

di−1

θId(xi),−(z)dz =
∫ Wn

di−1

θId(xi),−(z)dz,

respectively. In order to give the general form for the above values, let us denote
by Φi,+(z) the aggregate evacuation time when the first z −Wi of supply on the
right side of vi flows to sink vi. Similarly, we denote by Φi,−(z) the aggregate
evacuation time when the first Wi−1 − z of supply on the left side of vi flows to
sink vi. Therefore, we have

Φi,+(z) =
∫ z

0

θi,+(t)dt and Φi,−(z) =
∫ Wn

z

θi,−(t)dt =
∫ z

Wn

−θi,−(t)dt (6)

(see Fig. 1). Let us consider a subpath PId(xi),Id(xi+1) which is a subpath between
sinks xi and xi+1. The aggregate evacuation time for the supply on PId(xi),Id(xi+1)

is given by

∫ di

0

θId(xi),+(z)dz +
∫ Wn

di

θId(xi+1),−(z)dz = ΦId(xi),+(di) + ΦId(xi+1),−(di).

204 Y. Higashikawa et al.

For i, j ∈ [1..n] with i < j, let us define

Φi,j(z) = Φi,+(z) + Φj,−(z) =
∫ z

0

θi,+(t)dt +
∫ Wn

z

θj,−(t)dt (7)

for z ∈ [Wi,Wj−1]. Then, the aggregate evacuation time AT(P,x,d) is given as

AT(P,x,d) = ΦId(x1),−(0) +
k−1∑

i=1

ΦId(xi),Id(xi+1)(di) + ΦId(xk),+(Wn). (8)

In the rest of this section, we show the important properties of Φi,j(z). Let
us first confirm that by Eq. (6), both Φi,+(z) and Φj,−(z) are convex in z since
θi,+(z) and −θj,−(z) are non-decreasing in z, therefore Φi,j(z) is convex in z.
On the condition of the minimizer for Φi,j(z), we have a more useful lemma.

Lemma 2. For any i, j ∈ [1..n] with i < j, there uniquely exists

z∗ ∈ arg min
z∈[Wi,Wj−1]

max{θi,+(z), θj,−(z)}.

Furthermore, Φi,j(z) is minimized on [Wi,Wj−1] when z = z∗.

See Lemma 2 in [14] for the proof. In the following sections, such z∗ is called the
pseudo-intersection point1 of θi,+(z) and θj,−(z), and we say that θi,+(z) and
θj,−(z) pseudo-intersect on [Wi,Wj−1] at z∗.

3 Algorithms

In order to solve our problems, we reduce them to minimum k-link path problems.
In the minimum k-link path problems, we are given a weighted complete directed
acyclic graph (DAG) G = (V ′, E′, w′) with V ′ = {v′

i | i ∈ [1..n]} and E′ =
{(v′

i, v
′
j) | i, j ∈ [1..n], i < j}. Each edge (v′

i, v
′
j) is associated with weight w′(i, j).

We call a path in G a k-link path if the path contains exactly k edges. The task
is to find a k-link path (v′

a0
= v′

1, v
′
a1

, v′
a2

, . . . , v′
ak−1

, v′
ak

= v′
n) from v′

1 to v′
n

that minimizes the sum of weights of k edges,
∑k

i=1 w′(ai−1, ai). If the weight
function w′ satisfies the concave Monge property, then we can solve the minimum
k-link path problems in almost linear time regardless of k.

Definition 1 (Concave Monge property). We say function f : Z × Z → R

satisfies the concave Monge property if for any integers i, j with i + 1 < j,
f(i, j) + f(i + 1, j + 1) ≤ f(i + 1, j) + f(i, j + 1) holds.

Lemma 3 ([17]). Given a weighted complete DAG with n vertices, if the weight
function satisfies the concave Monge property, then there exists an algorithm that
solves the minimum k-link path problem in time min{O(kn), n2O(

√
log k log log n)}.

1 The reason why we adopt a term “pseudo-intersection” is that two functions θi,+(z)
and θj,−(z) are not continuous in general while “intersection” is usually defined for
continuous functions.

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 205

We describe how to reduce the k-sink problem on a dynamic flow path net-
work P = (P = (V,E),w, c, l, τ) with n vertices to the minimum (k + 1)-
link path problem on a weighted complete DAG G = (V ′, E′, w′). We pre-
pare a weighted complete DAG G = (V ′, E′, w′) with n + 2 vertices, where
V ′ = {v′

i | i ∈ [0..n + 1]} and E′ = {(v′
i, v

′
j) | i, j ∈ [0..n + 1], i < j}. We set the

weight function w′ as

w′(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

OPT(i, j) i, j ∈ [1..n], i < j,
Φi,+(Wn) i ∈ [1..n] and j = n + 1,
Φj,−(0) i = 0 and j ∈ [1..n],
∞ i = 0 and j = n + 1,

(9)

where OPT(i, j) = minz∈[Wi,Wj−1] Φ
i,j(z).

Now, on a weighted complete DAG G made as above, let us consider a (k+1)-
link path (v′

a0
= v′

0, v
′
a1

, . . . , v′
ak

, v′
ak+1

= v′
n+1) from v′

0 to v′
n+1, where a1, . . . , ak

are integers satisfying 0 < a1 < a2 < · · · < ak < n + 1. The sum of weights of
this (k + 1)-link path is

k∑

i=0

w′(ai, ai+1) = Φa1,−(0) +
k−1∑

i=1

OPT(ai, ai+1) + Φak,+(Wn).

This value is equivalent to mind AT(P,x,d) for a k-sink x = (va1 , va2 , . . . , vak
)

(recall Eq. (8)), which implies that a minimum (k+1)-link path on G corresponds
to an optimal k-sink location for a dynamic flow path network P.

We show in the following lemma that the function w′ defined as formula (9)
satisfies the concave Monge property under both of evacuation models. See
Lemma 4 in [14] for the proof.

Lemma 4. The weight function w′ defined as formula (9) satisfies the concave
Monge property under the confluent/non-confluent flow model.

Lemmas 3 and 4 imply that if we can evaluate w′(i, j) in time at most t for
any i, j ∈ [0..n + 1] with i < j, then we can solve the k-sink problem in time
min{O(knt), n2O(

√
log k log log n)t}.

In order to obtain w′(i, j) for any i, j ∈ [0..n + 1] with i < j in O(poly log n)
time, we introduce novel data structures and some modules using them. Basi-
cally, we construct a segment tree [6] T with root ρ such that its leaves correspond
to indices of vertices of P arranged from left to right and its height is O(log n).
For a node u ∈ T , let Tu denote the subtree rooted at u, and let lu (resp. ru)
denote the index of the vertex that corresponds to the leftmost (resp. rightmost)
leaf of Tu. Let pu denote the parent of u if u �= ρ. We say a node u ∈ T spans
subpath P�u,ru

. If P�u,ru
⊆ P ′ and P�pu ,rpu

�⊆ P ′, node u is called a maximal
subpath node for P ′. For each node u ∈ T , let mu be the number of edges in
subpath P�u,ru

, i.e., mu = ru − �u. As with a standard segment tree, T has the
following properties.

Property 1. For i, j ∈ [1..n] with i < j, the number of maximal subpath nodes
for Pi,j is O(log n). Moreover, we can find all the maximal subpath nodes for
Pi,j by walking on T from leaf i to leaf j in O(log n) time.

206 Y. Higashikawa et al.

Property 2. If one can construct data structures for each node u of a segment
tree T in O(f(mu)) time, where f : N → R is some function independent of
n and bounded below by a linear function asymptotically, i.e., f(m) = Ω(m),
then the running time for construction of data structures for every node in T is
O(f(n) log n) time in total.

At each node u ∈ T , we store four types of the information that depend
on the indices of the vertices spanned by u, i.e., lu, . . . , ru. We will introduce
each type in Sect. 4. As will be shown there, the four types of the information
at u ∈ T can be constructed in O(mu log mu) time. Therefore, we can construct
T in O(n log2 n) time by Property 2.

Recall that for i, j ∈ [1..n] with i < j, it holds w′(i, j) = OPT(i, j). We give
an outline of the algorithm that computes OPT(i, j) only for the non-confluent
flow model since a similar argument holds even for the confluent flow model
with minor modification. The main task is to find a value z∗ that minimizes
Φi,j(z), i.e., OPT(i, j) = Φi,j(z∗). By Lemma 2, such the value z∗ is the pseudo-
intersection point of θi,+(z) and θj,−(z) on [Wi,Wj−1].

Before explaining our algorithms, we need introduce the following definition:

Definition 2. For integers i, �, r ∈ [1..n] with i < � ≤ r, we denote by
θi,+,[�..r](z) the upper envelope of functions {θi,+,h(z) | h ∈ [�..r]}, that is,

θi,+,[�..r](z) = max{θi,+,h(z) | h ∈ [�..r]}.

For integers i, �, r ∈ [1..n] with � ≤ r < i, we denote by θi,−,[�..r](z) the upper
envelope of functions {θi,−,h(z) | h ∈ [�..r]}, that is,

θi,−,[�..r](z) = max{θi,−,h(z) | h ∈ [�..r]}.

Algorithm for computing OPT(i, j) for given i, j ∈ [1..n] with i < j

Phase 1: Find a set U of the maximal subpath nodes for Pi+1,j−1 by walking
on segment tree T from leaf i + 1 to leaf j − 1.

Phase 2: For each u ∈ U , compute a real interval I+
u such that θi,+(z) =

θi,+,[�u..ru](z) holds on any z ∈ I+
u , and a real interval I−

u such that
θj,−(z) = θj,−,[�u..ru](z) holds on any z ∈ I−

u , both of which are
obtained by using information stored at node u. See Sect. 5.1 in [14]
for the details.

Phase 3: Compute the pseudo-intersection point z∗ of θi,+(z) and θj,−(z) on
[Wi,Wj−1] by using real intervals obtained in Phase 2. See Sect. 5.2
in [14] for the details.

Phase 4: Compute OPT(i, j) = Φi,j(z∗) as follows: By formula (7), we have

Φi,j(z∗) =
∫ z∗

0

θi,+(t)dt +
∫ Wn

z∗
θj,−(t)dt

=
∑

u∈U

{∫

I+
u ∩[0,z∗]

θi,+,[�u..ru](t)dt +
∫

I−
u ∩[z∗,Wn]

θj,−,[�u..ru](t)dt

}

.

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 207

For each u ∈ U , we compute integrals
∫

θi,+,[�u..ru](t)dt and∫
θj,−,[�u..ru](t)dt by using the information stored at u. See Sect. 5.3

in [14] for the details.

For the cases of i = 0 or j = n + 1, we can also compute w′(0, j) = Φj,−(0) and
w′(i, n + 1) = Φi,+(Wn) by the same operations except for Phase 3.

We give the following lemma about the running time of the above algorithm
for the case of general edge capacities. See Lemma 8 in [14] for the proof.

Lemma 5 (Key lemma for general capacity). Let us suppose that a segment
tree T is available. Given two integers i, j ∈ [0..n+1] with i < j, one can compute
a value w′(i, j) in O(log3 n) time for the confluent/non-confluent flow model.

Recalling that the running time for construction of data structure T is
O(n log2 n), Lemmas 3, 4 and 5 imply the following main theorem.

Theorem 1 (Main theorem for general capacity). Given a dynamic flow
path network P, there exists an algorithm that finds an optimal k-sink under the
confluent/non-confluent flow model in time min{O(kn log3 n), n2O(

√
log k log log n)

log3 n}.

When the capacities of P are uniform, we can improve the running time
for computing w′(i, j) to O(log2 n) time with minor modification. See Lemma 9
in [14] for the proof.

Lemma 6 (Key lemma for uniform capacity). Let us suppose that a seg-
ment tree T is available. Given two integers i, j ∈ [1..n] with i < j, one can
compute a value w′(i, j) in O(log2 n) time for the confluent/non-confluent flow
model when the capacities are uniform.

Theorem 2 (Main theorem for uniform capacity). Given a dynamic
flow path network P with a uniform capacity, there exists an algorithm that
finds an optimal k-sink under the confluent/non-confluent flow model in time
min{O(kn log2 n), n2O(

√
log k log log n) log2 n}.

4 Data Structures Associated with Nodes of T

In the rest of the paper, we introduce novel data structures associated with each
node u of segment tree T , which are used to compute OPT(i, j) in O(poly log n)
time. Note that our data structures generalize the capacities and upper envelopes
tree (CUE tree) provided by Bhattacharya et al. [7].

Recall the algorithm for computing OPT(i, j) shown in Sect. 3. To explain the
data structures, let us see more precisely how the algorithm performs in Phase 2.
Confirm that for z ∈ [Wi,Wj−1], it holds θi,+(z) = max{θi,+,[�u..ru](z) | u ∈ U},
where U is a set of the maximal subpath nodes for Pi+1,j−1. Let us focus on
function θi,+,[�u..ru](z) for a node u ∈ U only on interval (W�u−1,Wn] since it
holds θi,+,[�u..ru](z) = 0 if z ≤ W�u−1. Interval (W�u−1,Wn] consists of three

208 Y. Higashikawa et al.

Fig. 2. Illustration of J +
u,1, J +

u,2 and J +
u,3. The thick half lines have the same slope of

1/Ci,�u , the gray half lines have slopes ≤ 1/Ci,�u , and the regular half lines have slopes
> 1/Ci,�u . The upper envelope of all the thick half lines and the regular half lines is
function θi,+,[�u..ru](z).

left-open-right-closed intervals J +
u,1, J +

u,2 and J +
u,3 that satisfy the following

conditions: (i) For z ∈ J +
u,1, θi,+,[�u..ru](z) = θi,+,�u(z). (ii) For z ∈ J +

u,2,
θi,+,[�u..ru](z) = θi,+,[�u+1..ru](z) and its slope is 1/Ci,�u

. (iii) For z ∈ J +
u,3,

θi,+,[�u..ru](z) = θi,+,[�u+1..ru](z) and its slope is greater than 1/Ci,�u
. See also

Fig. 2. Thus in Phase 2, the algorithm computes J +
u,1, J +

u,2 and J +
u,3 for all

u ∈ U , and combines them one by one to obtain intervals I+
u for all u ∈ U .

To implement these operations efficiently, we construct some data structures at
each node u of T . To explain the data structures stored at u, we introduce the
following definition:

Definition 3. For integers i, �, r ∈ [1..n] with i < � ≤ r and a positive real c,
let θ̄i,+,[�..r](c, z) = max{θ̄i,+,h(c, z) | h ∈ [�..r]}, where

θ̄i,+,j(c, z) =
{

0 if z ≤ Wj−1,
z−Wj−1

c + τ · Li,j if z > Wj−1.
(10)

For integers i, �, r ∈ [1..n] with � ≤ r < i and a positive real c, let θ̄i,−,[�..r](c, z) =
max{θ̄i,−,h(c, z) | h ∈ [�..r]}, where

θ̄i,−,j(c, z) =
{

Wj−z
c + τ · Lj,i if z < Wj ,

0 if z ≥ Wj .
(11)

We can see that for z ∈ J +
u,2, θi,+,[�u+1..ru](z) = θ̄�u,+,[�u+1..ru](Ci,�u

, z)+τ ·Li,�u
,

and for z ∈ J +
u,3, θi,+,[�u+1..ru](z) = θ�u,+,[�u+1..ru](z) + τ · Li,�u

. We then store
at u of T the information for computing in O(poly log n) time θ�u,+,[�u+1..ru](z)
for any z ∈ [0,Wn] as TYPE I, and also one for computing in O(poly log n) time
θ̄�u,+,[�u+1..ru](c, z) for any c > 0 and any z ∈ [0,Wn] as TYPE III.

In Phase 4, the algorithm requires computing integrals
∫ z

0
θ�u,+,[�u+1..ru](t)dt

for any z ∈ [0,Wn], and
∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt for any c > 0 and any z ∈

[0,Wn], for which the information is stored at each u ∈ T as TYPEs II and IV,
respectively.

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 209

In a symmetric manner, we also store at each u ∈ T the information for
computing θru,−,[�u..ru−1](z),

∫ Wn

z
θru,−,[�u..ru−1](t)dt, θ̄ru,−,[�u..ru−1](c, z), and

∫ Wn

z
θ̄ru,−,[�u..ru−1](c, t)dt as TYPEs I, II, III, and IV, respectively.

Let us introduce what information is stored as TYPEs I–IV at u ∈ T . See
Sect. 4 in [14] for the detail.

TYPE I. We give the information only for computing θ�u,+,[�u+1..ru](z) stored
at u ∈ T as TYPE I since the case for θru,−,[�u..ru−1](z) is symmetric. By
Definition 2, the function θ�u,+,[�u+1..ru](z) is the upper envelope of mu functions
θ�u,+,h(z) for h ∈ [�u + 1..ru]. Let Bu,+ = (bu,+

1 = 0, bu,+
2 , . . . , bu,+

Nu,+ = Wn)
denote a sequence of breakpoints of θ�u,+,[�u+1..ru](z), where Nu,+ is the number
of breakpoints. For each p ∈ [1..Nu,+ − 1], let Hu,+

p ∈ [�u + 1..ru] such that

θ�u,+,[�u+1..ru](z) = θ�u,+,Hu,+
p (z) holds for any z ∈ (bu,+

p , bu,+
p+1]. As TYPE I,

each node u ∈ T is associated with following two lists:

1. Pairs of breakpoint bu,+
p and value θ�u,+,[�u+1..ru](bu,+

p), and
2. Pairs of range (bu,+

p , bu,+
p+1] and index Hu,+

p .

Note that the above lists can be constructed in O(mu log mu) time for each
u ∈ T . By Property 2, we can obtain the whole information of TYPE I of T in
time O(n log2 n). We now give the application of TYPE I. See Lemma 11 in [14]
for the proof.

Lemma 7 (Query with TYPE I). Suppose that TYPE I of T is available.
Given a node u ∈ T and a real value z ∈ [0,Wn], we can obtain

(i) index H ∈ [�u + 1..ru] such that θ�u,+,H(z) = θ�u,+,[�u+1..ru](z), and
(ii) index H ∈ [�u..ru − 1] such that θru,−,H(z) = θru,−,[�u..ru−1](z)

in time O(log n) respectively. Furthermore, if the capacities of P are uniform
and z /∈ [W�u

,Wru−1], we can obtain the above indices in time O(1).

TYPE II. We give the information only for computing
∫ z

0
θ�u,+,[�u+1..ru](t)dt

stored at u ∈ T as TYPE II since the case for
∫ Wn

z
θru,−,[�u..ru−1](t)dt is sym-

metric. Each node u ∈ T contains a list of all pairs of breakpoint bu,+
p and value

∫ bu,+
p

0
θ�u,+,[�u+1..ru](t)dt. This list can be constructed in O(mu) time for each

u ∈ T by using TYPE I of u. By Property 2, we obtain the whole information
of TYPE II of T in time O(n log n). We give the application of TYPEs I and II.
See Lemma 12 in [14] for the proof.

Lemma 8 (Query with TYPEs I and II). Suppose that TYPEs I and II of
T is available. Given a node u ∈ T and a real value z ∈ [0,Wn], we can obtain
(i) value

∫ z

0
θ�u,+,[�u+1..ru](t)dt, and (ii) value

∫ Wn

z
θru,−,[�u..ru−1](t)dt in time

O(log n) respectively. Furthermore, if the capacities of P are uniform and z /∈
[W�u

,Wru−1], we can obtain the above values in time O(1).

210 Y. Higashikawa et al.

TYPE III. We give the information only for computing θ̄�u,+,[�u+1..ru](c, z)
stored at u ∈ T as TYPE III since the case for θ̄ru,−,[�u..ru−1](c, z) is symmetric.
Note that it is enough to prepare for the case of z ∈ (W�u

,Wru
] since it holds

that θ̄�u,+,[�u+1..ru](c, z) = 0 for z ∈ [0,W�u
] and

θ̄�u,+,[�u+1..ru](c, z) = θ̄�u,+,[�u+1..ru](c,Wru
) +

z − Wru

c

for z ∈ (Wru
,Wn], of which the first term is obtained by prepared information

with z = Wru
and the second term is obtained by elementally calculation.

For each u ∈ T , we construct a persistent segment tree as TYPE III. Refer-
ring to formula (10), each function θ̄�u,+,j(c, z) for j ∈ [lu + 1..ru] is linear in
z ∈ (Wj−1,Wn] with the same slope 1/c. Let us make parameter c decrease
from ∞ to 0, then all the slopes 1/c increase from 0 to ∞. As c decreases, the
number of subfunctions that consist of θ̄�u,+,[�u+1..ru](c, z) also decreases one
by one from mu to 1. Let cu,+

h be a value c at which the number of subfunc-
tions of θ̄�u,+,[�u+1..ru](c, z) becomes mu − h while c decreases. Note that we
have ∞ = cu,+

0 > cu,+
1 > · · · > cu,+

mu−1 > 0. Let us define indices jh
1 , . . . , jh

mu−h

with lu + 1 = jh
1 < · · · < jh

mu−h ≤ ru corresponding to the subfunctions of
θ̄�u,+,[�u+1..ru](cu,+

h , z), that is, for any integer p ∈ [1..mu − h], we have

θ̄�u,+,[�u+1..ru](cu,+
h , z) = θ̄�u,+,jh

p (cu,+
h , z) if z ∈ (Wjh

p −1,Wjh
p+1−1], (12)

where jh
mu−h+1 − 1 = ru. We give the following lemma about the property of

cu,+
h . See Lemma 13 in [14] for the proof.

Lemma 9. For each node u ∈ T , all values cu,+
1 , . . . , cu,+

mu−1 can be computed in
O(mu log mu) time.

By the above argument, while c ∈ (cu,+
h , cu,+

h−1] with some h ∈ [1..mu] (where
cu,+
mu

= 0), the representation of θ̄�u,+,[�u+1..ru](c, z) (with mu − h + 1 subfunc-
tions) remains the same. Our fundamental idea is to consider segment trees
corresponding to each interval (cu,+

h , cu,+
h−1] with h ∈ [1..mu], and construct a

persistent data structure for such the segment trees.
First of all, we introduce a segment tree Th with root ρh to compute

θ̄�u,+,[�u+1..ru](c, z) for c ∈ (cu,+
h , cu,+

h−1] with h ∈ [1..mu]. Tree Th contains mu

leaves labeled as lu + 1, . . . , ru. Each leaf j corresponds to interval (Wj−1,Wj].
For a node ν ∈ Th, let �ν (resp. rν) denote the label of the leftmost (resp.
rightmost) leaf of the subtree rooted at ν. Let pν denote the parent of ν if
ν �= ρh. We say a node ν ∈ Th spans an interval (W�ν−1,Wrν

]. For some
two integers i, j ∈ [�u + 1..ru] with i < j, if (W�ν−1,Wrν

] ⊆ (Wi−1,Wj] and
(W�pν −1 ,Wrpν

] �⊆ (Wi−1,Wj], then ν is called a maximal subinterval node for
(Wi−1,Wj]. A segment tree Th satisfies the following property similar to Prop-
erty 1: For any two integers i, j ∈ [�u + 1..ru] with i < j, the number of maximal
subinterval nodes in Th for (Wi−1,Wj] is O(log mu). For each p ∈ [1..mu −h+1],

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 211

we store function θ̄�u,+,jh−1
p (c, z) at all the maximal subinterval nodes for inter-

val (Wjh−1
p −1,Wjh−1

p+1 −1], which takes O(mu log mu) time by the property. The
other nodes in Th contains NULL.

If we have Th, for given z ∈ (W�u
,Wru

] and c ∈ (cu,+
h , cu,+

h−1], we can com-
pute value θ̄�u,+,[�u+1..ru](c, z) in time O(log mu) as follows: Starting from root
ρh, go down to a child such that its spanned interval contains z until we
achieve a node that contains some function θ̄�u,+,j(c, z) (not NULL). Now, we
know θ̄�u,+,[�u+1..ru](c, z) = θ̄�u,+,j(c, z), which can be computed by elementally
calculation.

If we explicitly construct Th for all h ∈ [1..mu], it takes O(m2
u log mu) time

for each node u ∈ T , which implies by Property 2 that O(n2 log2 n) time is
required in total. However, using the fact that Th and Th+1 are almost same
except for at most O(log mu) nodes, we can construct a persistent segment tree
in O(mu log mu) time, in which we can search as if all of Th are maintained.
Thus, we obtain the whole information of TYPE III of T in time O(n log2 n) by
Property 2.

Using this persistent segment tree, we can compute θ̄�u,+,[�u+1..ru](c, z) for
any z ∈ [0,Wn] and any c > 0 in O(log mu) time as follows: Find integer h over
[1..mu] such that c ∈ (cu,+

h , cu,+
h−1] in O(log mu) time by binary search, and then

search in the persistent segment tree as Th in time O(log mu).

Lemma 10 (Query with TYPE III). Suppose that TYPE III of T is avail-
able. Given a node u ∈ T , real values z ∈ [0,Wn] and c > 0, we can obtain

(i) index H ∈ [�u + 1..ru] such that θ̄�u,+,H(c, z) = θ̄�u,+,[�u+1..ru](c, z), and
(ii) index H ∈ [�u..ru − 1] such that θ̄ru,−,H(c, z) = θ̄ru,−,[�u..ru−1](c, z) in time

O(log n) respectively.

TYPE IV. We give the information only for computing
∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt

stored at u ∈ T as TYPE IV since the case for
∫ Wn

z
θ̄�u,−,[�u..ru−1](c, t)dt is

symmetric. Similar to TYPE III, we prepare only for the case of z ∈ (W�u
,Wru

]
since it holds that

∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt = 0 for z ∈ [0,W�u

] and
∫ z

0

θ̄�u,+,[�u+1..ru](c, t)dt =
∫ Wru

0

θ̄�u,+,[�u+1..ru](c, t)dt +
(z − Wru

)2

2c

for z ∈ (Wru
,Wn], of which the first term can be obtained by prepared informa-

tion with z = Wru
and the second term by elementally calculation.

For each u ∈ T , we construct a persistent segment tree again, which is
similar to one shown in the previous section. To begin with, consider the case
of c ∈ (cu,+

h , cu,+
h−1] with some h ∈ [1..mu] (where recall that cu,+

0 = ∞ and
cu,+
mu

= 0), and indices jh−1
1 , · · · , jh−1

mu−h+1 that satisfy (12). In this case, for
z ∈ (Wjh−1

p −1,Wjh−1
p+1 −1] with p ∈ [1..mu − h + 1], we have

∫ z

0
θ̄

�u,+,[�u+1..ru]
(c, t)dt =

p−1∑
q=1

⎧⎪⎨
⎪⎩

∫ W
j
h−1
q+1 −1

W
j
h−1
q −1

θ̄
�u,+,jh−1

q (c, t)dt

⎫⎪⎬
⎪⎭+

∫ z

W
j
h−1
p −1

θ̄
�u,+,jh−1

p (c, t)dt.

(13)

212 Y. Higashikawa et al.

For ease of reference, we use Fh,p(c, z) instead of the right hand side of (13).
Similarly to the explanation for TYPE III, let Th be a segment tree with

root ρh and mu leaves labeled as lu +1, . . . , ru, and each leaf j of Th corresponds
to interval (Wj−1,Wj]. In the same manner as for TYPE III, for each p ∈
[1..mu −h+1], we store function Fh,p(c, z) at all the maximal subinterval nodes
in Th for interval (Wjh−1

p −1,Wjh−1
p+1 −1]. Using Th, for any z ∈ (W�u

,Wru
] and any

c ∈ (cu,+
h , cu,+

h−1], we can compute value
∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt in time O(log mu)

by summing up all functions of nodes on a path from root ρh to leaf with an
interval that contains z. Actually, we store functions in a more complicated
way in order to maintain them as a persistent data structure. We construct a
persistent segment tree at u ∈ T in O(mu log mu) time, in which we can search
as if all of Th are maintained. Using this persistent segment tree, we can compute∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt for any z ∈ [0,Wn] and any c > 0 in O(log mu) time in

the same manner as for TYPE III.

Lemma 11 (Query with TYPE IV). Suppose that TYPE IV of T is avail-
able. Given a node u ∈ T , real values z ∈ [0,Wn] and c > 0, we can obtain (i)
value

∫ z

0
θ̄�u,+,[�u+1..ru](c, t)dt, and (ii) value

∫ Wn

z
θ̄ru,−,[�u..ru−1](c, t)dt in time

O(log n) respectively.

5 Conclusion

We remark here that our algorithms can be extended to the minsum k-sink
problem in a dynamic flow path network, in which each vertex vi has the cost λi

for locating a sink at vi, and we minimize AT(P,x,d)+
∑

i{λi | x consists of vi}.
Then, the same reduction works with link costs w′′(i, j) = w′(i, j)+λi, which still
satisfy the concave Monge property. This implies that our approach immediately
gives algorithms of the same running time.

Acknowledgement. Yuya Higashikawa: Supported by JSPS Kakenhi Grant-in-Aid
for Young Scientists (20K19746), JSPS Kakenhi Grant-in-Aid for Scientific Research
(B) (19H04068), and JST CREST (JPMJCR1402).
Naoki Katoh: Supported by JSPS Kakenhi Grant-in-Aid for Scientific Research (B)
(19H04068), and JST CREST (JPMJCR1402).
Junichi Teruyama: Supported by JSPS Kakenhi Grant-in-Aid for Scientific Research
(B) (19H04068), and JST CREST (JPMJCR1402).

References

1. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: a
survey and a new distributed algorithm. In: Proceedings of the the 14th Annual
ACM Symposium on Parallel Algorithms and Architectures, pp. 258–264 (2002)

2. Belmonte, R., Higashikawa, Y., Katoh, N., Okamoto, Y.: Polynomial-time approx-
imability of the k-sink location problem. CoRR abs/1503.02835 (2015)

Almost Linear Time Algorithms for Minsum k-Sink Problems on Paths 213

3. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

4. Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minsum
k -Sink problem on dynamic flow path networks. In: Iliopoulos, C., Leong, H.W.,
Sung, W.-K. (eds.) IWOCA 2018. LNCS, vol. 10979, pp. 78–89. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94667-2 7

5. Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minsum
k-sink problem on path networks. Theor. Comput. Sci. 806, 388–401 (2020)

6. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2010)

7. Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved
algorithms for computing k -Sink on dynamic flow path networks. In: Ellen, F.,
Kolokolova, A., Sack, J.R. (eds.) WADS 2017. LNCS, vol. 10389, pp. 133–144.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2 12

8. Chen, D., Golin, M.J.: Sink evacuation on trees with dynamic confluent flows. In:
27th International Symposium on Algorithms and Computation (ISAAC 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

9. Chen, D., Golin, M.J.: Minmax centered k-partitioning of trees and applications
to sink evacuation with dynamic confluent flows. CoRR abs/1803.09289 (2018)

10. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows.
Oper. Res. 6(3), 419–433 (1958)

11. Higashikawa, Y.: Studies on the space exploration and the sink location under
incomplete information towards applications to evacuation planning. Ph.D. thesis,
Kyoto University, Japan (2014)

12. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in
dynamic tree networks with uniform capacity. J. Graph Algorithms Appl. 18(4),
539–555 (2014)

13. Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in
dynamic path networks. Theor. Comput. Sci. 607, 2–15 (2015)

14. Higashikawa, Y., Katoh, N., Teruyama, J., Watase, K.: Almost linear time algo-
rithms for minsum k-sink problems on dynamic flow path networks (a full version
of the paper). CoRR abs/2010.05729 (2020)

15. Hoppe, B., Tardos, E.: The quickest transshipment problem. Math. Oper. Res.
25(1), 36–62 (2000)

16. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An O(n log2 n) algorithm for a sink
location problem in dynamic tree networks. Discret. Appl. Math. 154, 2387–2401
(2006)

17. Schieber, B.: Computing a minimum weight k-link path in graphs with the concave
monge property. J. Algorithms 29(2), 204–222 (1998)

18. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász,
L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1 21

https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/978-3-319-94667-2_7
https://doi.org/10.1007/978-3-319-62127-2_12
https://doi.org/10.1007/978-3-540-76796-1_21

Matched Participants Maximization
Based on Social Spread

Guoyao Rao1, Yongcai Wang1, Wenping Chen1, Deying Li1(B), and Weili Wu2

1 School of Information, Renmin University of China, Beijing 100872, China
{gyr,ycw,wenpingchen,deyingli}@ruc.edu.cn

2 Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA

weiliwu@utdallas.edu

Abstract. With the great advantage of information spread in the social
network, more and more team activities would like to be organized
through the social platforms. These activities require users to match
partners and then participate in groups, e.g., group-buying and blind-
date. In this paper, we consider to organize such activities with match-
ing constraints in social networks to attract as many matched partic-
ipants as possible through a limited seed set. An Interest-based For-
warding model which is similar to Independent Cascading is used to
model information propagation. We investigate two matching strategies
to forming groups: (1) neighbor matching (NM), i.e., only direct neigh-
bors can match and (2) global matching (GM), i.e., matching is organized
by an external organizer. We prove the matched participants maximiza-
tion (MPM) problem to optimize the seed set selection to maximize
the expected number of final participants is NP-hard and the compu-
tation of the target function is #P-hard, under both the NM and GM
strategies. To solve MPM-NM efficiently, we propose a Matching Reach-
able Set method and a (1− 1/e − ε)-approximation algorithm. Sandwich
method is used for solving MPM-GM by using the result of MPM-NM as
a lower-bound and constructing an upper bound in an extended graph.
A β(1− 1/e− ε)-approximation algorithm is proposed for MPM-GM. At
last, experiments on the real-world databases verifies the effectiveness
and efficiency of the proposed algorithms.

Keywords: Social influence · Group-buying · Matching

1 Introduction

The online social network has a profound impact on our daily life. People usu-
ally publish their opinions and receive others’ information on social platforms
such as Facebook, Twitter and Wechat. Nowadays, many businesses would like to

This work is supported by the National Natural Science Foundation of China (Grant
NO. 12071478, 11671400, 61972404, 61672524), and partially by NSF 1907472.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 214–229, 2020.
https://doi.org/10.1007/978-3-030-64843-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_15

Matched Participants Maximization Based on Social Spread 215

promote their products or activities through social network platforms. They gen-
erally choose a few customers to experience the product firstly, and then exploit
word-of-mouth to spread positive information about their products to attract
more users. Since Kemp’s original work in [10], different scenes of information
propagation, different purposes of optimization, and different approaching algo-
rithms have been studied [2,4,6,7,11,13,14,16–21].

However, to the best of our knowledge, we haven’t seen research works consid-
ering the influence maximization problem with matching constraint. Businesses
often would like to organize team activities through social network platforms,
and some kinds of businesses allow only group-type participation. Users can
participate only if they can form a group, and cannot participate individually.
This is usual seen in online group-buying markets [1,9] such as Pinduoduo, a
famous company gives discounts to group buyers, while an individual buyer can-
not purchase. Users who are interested in the event and want to participate are
called latent participants. Whether some latent participants can form a partici-
pant group is based on some matching index of the users, e.g. similar shipping
addresses for reducing mailing cost, or common interest to joint the same event
etc. Only the latent participants who form groups finally participate, which are
called the final participants. The business’s target is to attract as many final par-
ticipants as possible through optimizing the selection of seed set using limited
budget to initialize the information propagation.

Fig. 1. An example of group-buying marketed through social network.

An simple example of matched participation is shown in Fig. 1. We use
connected yellow blocks in the map to represent common addresses. The black
line represents the friendships among people in a social network. Without loss
of generality, we suppose that once a user gets the activity information from
neighbors in the social network, he/she will be interested and then forwards the
information to other friends.

If we choose only one node as seed to spread the group-buying activity and
require the matching condition to be the common shipping address, then any
node in {v1, v2, v3, v4, v5, v6, v7} is the best choice to make the information spread
with 7 latent participants. But note that none of them can finally join the activity
as each node can’t find a partner with common address. If we choose node v9
instead, it spreads less widely with four latent participants {v8, v9, v10, v11}. But

216 G. Rao et al.

all these nodes can finally join the activity to be final participants by grouping as
{(v8, v9), (v10, v11)}. So the traditional strategy based on widest spreading may
not generate proper seed set for matched participate maximization (MPM).

Moreover, let’s further consider the matching conditions. In some events, peo-
ple won’t like to group with strangers who are not neighbors in social network.
Such events include watching movies or having a meal together, which require
only friends on the social network can match. On the other hand, when we con-
duct group-buy or play online game, we don’t mind to group with strangers
recommended by the system. Corresponding to these two kinds of matching
scenarios, we summarize two matching strategies commonly seen in reality. (1)
Neighbor matching (NM), in which, each latent participants seek partners among
his/her friends on the social network. (2) Global matching (GM), in which an
administrator or back-end system will seek partner for each latent participant
globally. Specifically in this example, any node in {v12, v13, v14, v15, v16, v17} is
the best choice in global matching, and any node in {v8, v9, v10, v11} is the best
choice in neighbor matching. So different matching strategies need to be consid-
ered.

More specifically, this paper considers MPM problem in a given social net-
work G(V,E, p,m), where V is the user set; E is the edge set; p models users’
interests to the event, and m models the matching indices of users. The key
contributions are as following

1. Different from previous works, we think node’s interest plays the key role in
node activation and an Interest-based Forwarding (IF) diffusion model simi-
lar to classical independent Cascade (IC) model is used to model information
propagation. Then we formulate the matched participants maximization prob-
lems(MPM) which considers two usual seen matching strategies as neighbor
matching(NM) and global matching (GM).

2. We prove the MPM problem is NP-hard and the number computation for the
final participants is #P-hard for both the NM and GM cases. We prove the
target function is submodular in NM case, but not submodular in GM case.

3. To solve MPM-NM efficiently, we propose to get a Matching Reachable Set
(MRS) to approximately estimate the target function. Then an approximation
algorithm is proposed for the MPM-NM problem with the (1−1/e− ε) ratio.
For the MPM-GM, we use the idea of Sandwich [14] by seeking an upper
bound with extending the graph since MPM-NM provides a lower bound.
Hence the sandwich algorithm guarantees the β(1 − 1/e − ε) approximation
ratio.

4. At last, we experience our methods based on the real-word labeled databases.
The results of experiment demonstrate that the proposed methods outperform
existing comparing methods.

2 Related Work

Soical Influence Problems: Kemp et al. [10] firstly formulate the basic prob-
lem of influence maximization (IM) in social influence and propose two basic
spread models as IC and LT. There are already many extended researches to

Matched Participants Maximization Based on Social Spread 217

investigate IM problem from different perspectives., such as time-constrained
[13], topic-aware [2], competition [4], rumor-control [7], location-target [12],
companies-balance [3]. Specially, in recent work [24], the authors proposed the
group influence maximization problem in social networks, in which some scenes
they considered are similar to our paper but not the same. In their model, they
supposed there are already definite groups and the key problems they need to
solve is how to activate these groups as more as possible, in which a group is
said to be activated if a certain ratio of nodes in this group are activated under
IC model. Group-fairness in influence maximization was considered in [22]. They
also considered the groups exist in advance and pursued fair information propa-
gation among the groups. However, we usually don’t know the group in advance
and so in our paper, we consider the groups are dynamically online formed by
common matching index of the latent participants.

Influence Maximization Algorithms: Besides, there are many works in
improving algorithms to solve the basic IM problem. Usually, these algorithms
can also be applied to solve the extension problem mentioned above. Kempe [10]
proved that the basic IM problem is NP-hard and the influence computation is
#P-hard. With the good property of submodularity for the target function, the
basic greedy method can provide a (1 − 1/e − ε)-approximation solution where
ε is the loss caused by influence estimation. but costs too much time using the
heavy Monte Carlo simulations to estimate the marginal gain of node’s influence,
although there are many improvements such as [11,17]. These algorithms are not
efficient for the large scale network. Tang et al. [21] and Borgs et al. [5] proposed
the reverse influence set (RIS) sampling method to estimate the influence. The
RIS-based methods are efficient for the large scale network, but they have a
key problem that how to sample the RIS sets as less as possible to reduce the
time cost and guarantee the (1 − 1/e − ε)-approximation with high confidence.
So next there are many RIS-based extensions and improvements such as the
Influence Maximization via Martingales (IMM) [20], Stop-and-Stare (SSA) and
Dynamic Stop-and-Stare (D-SSA) [8,16]. Recently, as far as we have known, the
Online Processing Information Maximization (OPIM) [19] has superior empirical
effectiveness.

3 Problem Model and Analysis

We study how to choose seed set with limited size to maximize the number of
final participants considering the matching constraint. The social network(SN)
we consider is modeled as G(V,E, p,m). Each vertex in i ∈ V represents a
user. Each edge (i, j) ∈ E denotes a friendship between two users in the social
network. The vertex weight pi (in the range [0.1]) represents the user i’s interest
probability to the activity; and the vertex weight mi ∈ N is the matching index
of the user i. As we analyze above, we need to solve two stage problems: (1)
information spread from a seed set S to activate latent participants, which are
denoted by set V l and (2) matching process to generate final participants, which
are denoted by set V p.

218 G. Rao et al.

3.1 Interest-Based Forwarding Model (IF)

There are many models for the information spreading such as the widely used
IC and LT models [10]. However in participating problems, whether a user turns
to be a latent participant is mainly determined by his/her own interest when
he/she firstly knows the information. It is less matter with whom they get the
information from. So we adopt a information propagation model, called Interest-
based Forwarding (IF) which is very similar to the classical IC model except that
a node’s activation is determined by the node’s interest probability instead of
the activating edge’s probability.

Starting from the seed set, when a node v knows the information for the
first time, it will decide to be a latent participant by its interest probability
pv. If it turns to be a latent participant, it will forward the information to its
neighbors. Otherwise, it stays inactive and cannot be activated by later received
information. The process terminates when there is no any new latent participant.

We show an IF instance based on the network in Fig. 2(a). The node colors
indicate their matching indices and the values on the nodes are the interest
probabilities. And as shown in Fig. 2(b), when we choose node h as a seed, in
first round, h gets interested and forwards the information to its neighbor a. In
next round, a gets interested and forwards it to its neighbors{b, e, f}. But only
{b, f} get interested and b continues to forward the information to its neighbors
{c, d, g}. At last, uninterested node g won’t forward it to its neighbor j and the
spread terminates. The latent participants in this example is V l = {h, a, b, c, d, f}
as shown in Fig. 2(b).

(a) SN (b) IF (c) NM (d) GM

Fig. 2. An example of matching participating based on social spread.

The Equivalent Generating Model. For each non-seed node during the IF,
the following steps are checked to decide whether the node is a latent participant;
(i) Check whether the node gets the information, i.e. whether the node has a
neighbor who is a latent participant. (ii) Decide node to be interested or not by
the interest probability. From such view, we can decide all nodes to be interested
or not without really propagating the information. The IF propagation process
is equivalent as the following process:

1. Firstly remove each G’s node v by probability 1 − pv and denote all remain
nodes as set T ;

2. Then get G’s vertex-induced subgraph g = G(T) and we mark Pr[g] as the
probability of g being induced in step 1.

Matched Participants Maximization Based on Social Spread 219

3. Each node u in g will be a latent participant iff there exists a route in g
connecting u and any seed in S. So the set of all latent participants is the set
of all nodes in g that S can reach to and we mark it as gS .

According to the equivalent generating model, the probability of V l triggered
by S is the sum of the probabilities of all the vertex-induced subgraphs where
the set of nodes that S can reach to equals to V l.

3.2 Matching Strategies

After knowing the latent participants, they are matched to generate final par-
ticipants. We consider two matching strategies.

Neighbor Matching (NM): Some activities, such as watching movies require
friends on the social network to participate. In such case, each latent partici-
pant seeks common matching index friends to be his/her partners. As shown in
Fig. 2(c), the latent participant b can group with d who has the same color. a can
group with h. c and f cannot find matched friends. So under neighbor matching
strategy, {b, d, a, h} will be the final participants. In NM, each latent participant
v can be a final participant if it has common matching-index neighbors. Let V p

�
be the set of final participants through the neighbor matching process M�. We
denote V p

� = M�(V l). Then

v ∈ V p
� ⇔ ∃u ∈ Nv ∩ V l s.t. mu = mv (1)

where Nv is v’s one-hop neighbor set in G.

Global Matching (GM): In some activities, such as group buying, matching
is determined by a back-end system, which may match any latent participants
with common matching index into one group. As shown in Fig. 2(d), through
the back-end system, two strangers c and f with common matching-index is
formed into one group to become final participants. Under GM strategy, each
latent participant v turns to be a final participant if there is at least one common
matching index latent participant. Let V p

� be the set of final participants through
the global matching process M�, i.e., V p

� = M�(V l). Then

v ∈ V p
� ⇔ ∃u ∈ V l s.t. mu = mv (2)

3.3 The MPM Problems

Based the above models, we formulate our matching participants maximization
problem as following.

Definition 1 (Matching Participants Maximization Problem (MPM)).
Given the graph G(V,E, p,m), let σ(S) be the expected number of final partic-
ipants V p through the stochastic IF process from the seeds S in G. The MPM
problem is to find a seed set S∗ with size k such that

220 G. Rao et al.

S∗ := argmax
S⊆V,|S|=k

σ(S). (3)

More specifically, according to the generating model, for MPM problem using
neighbor matching strategy, denoted by MPM-NM problem, we have

σ�(S) = E(|V p
�|) = E(|M�(V l)|) =

∑

g⊆G

Pr[g]|M�(gS)| (4)

For MPM using global matching, denoted by MPM-GM, we have

σ�(S) = E(|V p
�|) = E(|M�(V l)|) =

∑

g⊆G

Pr[g]|M�(gS)| (5)

Note that M�(gS) ⊆ M�(gS) and then from the definition, we can easily have
the following Lemma.

Lemma 1. The number of expected final participants in MPM-GM is not less
that in MPM-NM,i.e., σ�(S) ≥ σ�(S).

Problem Hardness. Note that our spread model is different from the tra-
ditional spread model in previous IM problems. We can’t see traditional IM
problem as a special case of our MPM problem to show the hardness.

Theorem 1. The MPM problem is NP-hard.

Proof 1. Consider any instance of the NP-complete Set Cover problem with
a collection S of sets S1, S2, . . . , Sm, whose union is the node set U =
{u1, u2, . . . , u�}; Supposing that k < n < m, we wish to know whether there
exist k sets in S, Sq1 , Sq2 , . . . , Sqk

whose union also is U . Actually, it’s equiva-
lent to a special MPM problem with the G(V,E, p,m) constructed as following.
There is a node si corresponding to each set Si(1 ≤ i ≤ m), and there are two
nodes vj, tj corresponding to each node uj(1 ≤ j ≤ n). There is an edge <si, vj>
whenever uj ∈ Si, and an edge < vj , tj > for each vj and tj. Let all psi

= 1,
pvj

= 0.5 and ptj
= 1. Let each msi

= i and mvj
= mtj

= m+ j. We don’t show
later details of the proof here because of the limitation of space.

Calculating σ(S) is #P-hard. In fact, the computation of expected number
of final-participants σ is also complex and we have following theorem.

Theorem 2. Given a seed set S, computing the expected number for final par-
ticipants σ(S) is #P-hard.

Proof 2. Consider any instance of the #P-complete s-t connectedness counting
problem with G(V,E) and two vertix s and t. We wish to count the number of
G’s subgraphs in which s is connected to t, and we denote all of such subgraphs
as a set G. We show this problem is equivalent to the following special computing
problem of σ with one seed on G′(V ′, E′, p,m). Let V ′ = V ∩ {t′}, E′ = E ∪
{<t, t′>}, and pvi

= 0.5, mvi
= i for each node vi ∈ V . Let p� = pt = pt′ = 1,

Matched Participants Maximization Based on Social Spread 221

and m� = |V | + 1, mt = mt′ = |V | + 2. Given a seed set S = {s}, we can
easily have that σ�(S) = σ�(S) = 2Pr{{s}
 t} = 2

∑
g∈G 0.5|V | = 0.5|V |−1|G|.

Thus we can get the size of G by 2|V |−1σ(S). So the computation problem of σ
is #P-hard since the s-t connectedness counting problem is #P-complete.

Next we design algorithms to solve the MPM under the NM and GM strategies
respectively.

4 The Algorithms Designs

As the NP-hard property of the problem we proved above, we hope to find effi-
cient algorithms with good approximation-guaranteed. Nemhauser, Wolsey, and
Fisher [15] show that the general greedy hill-climbing algorithm approximates the
optimum to within a factor of (1−1/e), when the target set function f : 2V → R
is non-negative, non-decreasing and submodular. In our MPM problem, it’s easy
to get that the target function σ is non-negative and non-decreasing. Next, we
design the algorithms by considering the submodularity.

4.1 MRS-Based Algorithm for MPM-NM

Before analyzing the submodularity of σ�, we first consider following estimation
problem. Note that the computation problem of σ� is #P-hard, which means it‘s
hard to compute the expectation exactly. And it’s heavy to estimate the value
by using Monte Carlo to directly simulate the process of firstly IF spreading
and then matching. To solve such problem, we need other efficient method to
approximately estimate the target function. Firstly, we introduce the concept of
a random set as following.

Definition 2. (Matching Reachable Set(MRS)) Given a Graph G(V,E,
p,m) and a node v randomly choose from M�(V) with node probability pv

τ ,
where τ is the sum of all nodes’ probabilities in M�(V). Let g be a vertex-
induced subgraph of G/{v} by removing each node u with probability 1−pu. The
Matching Reachable Set(MRS) of v is the set of nodes that can be reached by
any v’s neighbor in g if there is a v’s matched neighbor in g, otherwise it is an
empty set.

According to the previous problem definition, we can infer as following,

σ�(S) =
∑

g⊆G

Pr[g]|M�(gS)| (6)

=
∑

g⊆G

Pr[g]
∑

v∈M�(V)

1[v∈M�(gS)] (7)

=
∑

v∈M�(V)

∑

g⊆G

Pr[g]1[v∈M�(gS)] (8)

=
∑

v∈M�(V)

∑

g⊆G

Pr[g](
∨

u∈g∩Nv

1[mu=mv])1[gv∩S 	=∅] (9)

222 G. Rao et al.

=
∑

v∈M�(V)

pv

∑

g⊆G/{v}
Pr[g](

∨

u∈g∩Nv

1[mu=mv])1[gNv ∩S 	=∅] (10)

= τ
∑

v∈M�(V)

∑

g⊆G/{v}

pv

τ
Pr[g](

∨

u∈g∩Nv

1[mu=mv])1[gNv ∩S 	=∅] (11)

= τE(1[S∩S 	=∅]) (12)

where S is the random MRS set. It‘s easy to have that E(1[S∩S 	=∅]) is submod-
ular, and hence we have following theorem.

Theorem 3. σ� is submodular for MPM-NM.

As we analyse the equivalence between IF and the generating model, we can
get a MRS set S by a random Breadth-First-Search as shown in Algorithm1
and avoid to heavily sample large numbers of vertex-induced subgraphs. Firstly,
choose a random node v by the probability pv

τ from M�(V), then do the random
Breadth-First-Search in G starting from v by the node probability in rounds. If
there is no any v‘s matched neighbor in first search round, then terminate the
process ahead of time and let S be the ∅, else continue the process and let S be
all nodes searched.

Algorithm 1: MRS(G(V,E, p,m))
1 Initialize a queue Q ← ∅, a set S ← ∅, the search flag F ← False;
2 Choice a node v by the probability pv

τ
from M�(V);

3 Mark v be visited;
4 for u ∈ Nv do
5 Mark u be visited;
6 Push u into Q by the probability of pu;
7 if u is pushed into Q and mu = mv then
8 F ← True;

9 if F is True then
10 while Q is not empty do
11 q ← Q.pop() and add q to S;
12 for o ∈ Nq not visited do
13 Mark o be visited;
14 Push o into Q by the probability of po;

15 return S;

Let θ be the number of MRS sets. When we get θ outcomes
Xθ = {x1, x2, ..., xθ} from random MRS sampling, we have FXθ

(S) :=
1
θ

∑θ
i=1 1[S∩xi 	=∅] which is the proportion of sets in Xθ covered1 by S. So FXθ

(S)
is a statistical estimation for E(1[S∩S 	=∅]), that is we have σ� ≈ |τ |FXθ

. Then the

1 We say that a set A covers a set B that is A ∩ B �= ∅, and a node a covers a set B
that is a ∈ B.

Matched Participants Maximization Based on Social Spread 223

greedy Max-Coverage(Algorithm 2) provides a (1−1/e)-approximation solution
for the maximum coverage problem [23]to choose k nodes that cover the maxi-
mum number of sets in Xθ. So at the same time we may get same approximation
solution for our neighbor matching maximization problem ignoring the estima-
tion error. We call such idea as MRS-based.

Algorithm 2: Max-Coverage(Xθ, k)
1 Sk ← ∅;
2 for i = 1 to k do
3 Get the node si which covers most sets in Xθ;
4 Remove all sets from Xθ, which is covered by si;
5 Let Sk ← Sk ∪ {si};

6 return Sk as the selected seeds

Algorithm 3: OP-MPM(G(V,E, p,m)), k, ε, δ)
1 Get the samples number θ by the OPIM-C[19] algorithm with the estimation

error ε and confidence value δ ;
2 Get the MRS sets Xθ with the numer of θ;
3 Sk ← Max-Coverage(Xθ, k) ;
4 return The selected seeds Sk

However, as we know, the more samples lead to less error between the sta-
tistical estimation and the truth in Monte Carlo, but more sampling cost. Then
our MRS-based problem is similar with the RIS-based IM problem [21] and both
of them face such sampling cost problem that how to sample less sets under the
premise of ensuring certain accuracy of the solution, that is how to balance
the accuracy and efficiency. Then to solve our sampling problem, we adapt the
Algorithm 3 from the OPIM [19] which provides an algorithm framework to solve
the above set sampling problem when the target function can be estimated by
the statistical method of covering a random set. According to the property of
OPIM and without loss of generality by replacing the set cover estimation of
I(S) = nPr(RIS ∩ S) in IM with σ�(S) = τPr(MRS ∩ S) in our MPM-NM,
the Algorithm 3 has following formulations.

Theorem 4. The adapted OP-MPM can guarantee: The output Sk is an
(1 − 1/e − ε)-approximation solution with probability at least 1 − δ(0 < δ < 1);
When δ ≤ 1/2, the expected sampling number of MRS sets is O

((
k ln n −

ln (δ)
)
τε−2/σ�(S∗

k)
)
, where S∗

k is the unknown optimum solution.

Hence, by this theorem, we have the expected time cost in sampling(the main

cost of the algorithm) is O
(

ESMRS
(
k lnn−ln (δ)

)
τε−2

σ�(S∗
k)

)
, where ESMRS is the

expected number of the nodes searched in sampling a MRS set.

224 G. Rao et al.

4.2 Sandwich Algorithm for MPM-GM

Actually, σ� may not be submodular in MPM-GM.

Theorem 5. σ� can‘t be guaranteed to be submodular for MPM-GM.

Fig. 3. A special case

Proof 3. We prove it by a special case shown in the Fig. 3. We can have
σ�({a}) = σ�({c}) = 2papbpc = 0.01, σ�({a, c}) = 2papc = 0.05, and then
σ�({a, c}) − σ�({a}) ≥ σ�({c}). So in this sample, σ� is not submodular.

For the unsubmodularity of σ�, we use the idea of Sandwich [14] which firstly
gets corresponding solutions in two maximization problems with the lower bound
and the upper bound of the target function, then choose the best one between
them as the solution for the maximization problem with the target function.
It can provide approximation analysis for this solution to the target maximiza-
tion problem, specially when the solutions of each bound can guarantee good
approximations for their own problem. So we consider to find such upper and
lower bounds for our target function σ�. As we know that σ� is a lower bound
of σ�, we will construct an upper bound as following.

A upper bound of σ�. We extend a graph G′(V,E′, p,m) from G(V,E, p,m)
by adding edges as following: for any two nodes u and v without edge connecting
each other in G, add an edge <u.v> to G if mu = mv. Then G is a subgraph of
G′ and we mark the target function of MPM-NM on G′ as σ′

�. Nextly we will
prove that σ′

� is an upper bound of σ�.

Theorem 6. σ′
� is an upper bound of σ�.

Proof 4. By the generating model, we have

σ�(S) =
∑

T∈2V

∏

v∈T

∏

u/∈T

pv(1 − pu)|M�
(
G(T)S

)| (13)

σ′
�(S) =

∑

T∈2V

∏

v∈T

∏

u/∈T

pv(1 − pu)|M�
(
G′(T)S

)| (14)

Actually, for any node u ∈ M�
(
G(T)S

)
, we must have u ∈ G(T)S and u has

a matched node v in G(T)S. It‘s obviously that any node in G(T)S must also
exist in G′(T)S as G(T) is a subgraph of G′(T). So both u and v are in G′(T)S

and as any matched nodes are neighbors in G′, we have u ∈ M�
(
G′(T)S

)
.

Hence M�
(
G(T)S

) ⊆ M�
(
G′(T)S

)
. So σ�(S) ≤ σ′

�(S) since |M�
(
G(T)S

)| ≤
|M�

(
G′(T)S

)|.

Matched Participants Maximization Based on Social Spread 225

Sandwich Algorithm (SA-MPM). We first run the OP-MPM algorithm to
give MPM-NM’s solutions Sk

l ,Sk
u corresponding to the target function σ� and

σ′
�, then return our MPM-GM’s solution Sk

sa:= argmaxS∈{Sk
l ,Sk

u}σ�(S), which
provides following approximation guarantee.

Theorem 7. The solution given by SA-MPM satisfies

σ�(Sk
sa) ≥ β(1 − 1/e − ε).σ�(Sk

�) (15)

with probability at least 1 − 2δ, where Sk
� is the optimum solution for the MPM-

GM problem, and β = max
{ σ�(Sk

u)
σ′

�(Sk
u)

,
σ�(Sk

�)

σ�(Sk
�)

}.

5 Experiments

In this section, our experiments aim to analysis our proposed model and evaluate
the performance of the proposed methods, based on 4 open real-world labeled
datasets2(BlogcCatalog, Flickr, DBLP, Twitter) as shown in Table 1. All codes
of the experiments are written in c++ with parallel optimization, and all exper-
iments run in a linux machine with 12 cores, 24 threads, 2.4 G hz, CPU and 64G
RAM.

Table 1. Statistics of the datasets

Dataset #Node #Edge #Label

BlogCatalog 10K 333K 2k

Flickr 80K 5.9M 8K

DBLP 203K 382K 10K

Twitter 580K 717K 20K

5.1 Experiment Setup

We set the interest probability of each node randomly and uniformly from [0, 1].
We model the matching index from node label, i.e., mi := j where j is the index
of the node vi’s label. We compare our algorithms with some baseline algorithms
as following.

– OP-MPM: The algorithm we proposed to solve the MPM in neighbor match-
ing.

– SA-MPM: The algorithm we proposed to solve the MPM in global matching.
– MCGreedy: Add the seed with maximum marginal gain to current seeds

set, which is computed by the value estimation of target function with Monte
Carlo simulations. We set the simulation number to be 10000.

– IM-IF: Get the seed set with the maximum spread influence based on IF
process and we can get such seed set by using OP-MPM to solve a special
case of MPM in which all nodes’ matching indices are same.

– Random: The basic baseline algorithms by choosing seeds randomly.
2 http://networkrepository.com.

http://networkrepository.com

226 G. Rao et al.

5.2 Experiments Result

For all OP-MPM and the OP-MPM used in SA-MPM and IM-IF as a subal-
gorithm, we set same ε = 0.1 and δ = 0.01. We chose different seed size k
increasing from 0 to 100 by a step of 10, and evaluate the expected number of
final participants with the average number in 10000 simulations.

MPM-NM: For the MPM problems in neighbor matching, we compared meth-
ods OP-MPM, MCGreedy, IM-IF and Random on each network. As shown in
Fig. 4, almost all the curves except Random is increasing and gradually sta-
bilize, and the expected number satisfy following comparisons: Random<IM-
IF<MCGreedy≈OP-MPM. Of course, given a large and enough simulations
number in MCGreedy, it can also provide good accuracy equivalent to OP-MPM,
but it will cost too much more time than OP-MPM.

MPM-GM: For the MPM problems in global matching, we compare SA-MPM,
MCGreedy, IM-IF and Random. As shown in Fig. 5, it’s similar to MPM-
NM that the expected number satisfies following comparisons: Random<IM-
IF<MCGreedy<SA-MPM. Note that the target function in MPM-GM may not
be submodular and the greedy method has no approximation guarantee, so the
accuracy of MCGreedy is not as good as SA-MPM. Actually once again, both in
our experiments in MPM-NM and MPM-GM, the less expected number of final
participants by IM-IF than MCGreedy and OP-MPM tells that widely spread
strategy may not be reliable.

Running Time: We run each algorithm 10 times and compute the average of
running time. As the experiments shown in Fig. 6, on all datasets, the MCGreedy
is much heavier than the MRS-based method because of the heavy Monte Carlo
simulations. The running time of SA-MPM is nearly two times more than OP-
MPM because two similar algorithms of OP-MPM need to run in SA-MPM. The
experiments results show that IM-IF is heavier than OP-MPM and sometimes
even heavier than SA-MPM (e.g., on Flickr), because IM-IF may cost more time
than others to sample a MTR set.

(a) DBLP (b) Twitter (c) Flickr (d) BlogCatalog

Fig. 4. Expected final participants comparison in neighbor matching.

Matched Participants Maximization Based on Social Spread 227

(a) DBLP (b) Twitter (c) Flickr (d) BlogCatalog

Fig. 5. Expected final participants comparison in global matching.

(a) DBLP (b) Twitter (c) Flickr (d) BlogCatalog

Fig. 6. Average running time comparisons with k = 20.

6 Conclusions

In this paper, we are the first one to study the matched participating problem
based on the result of social spread. We propose the information spread model
IF which is based on the node probability. Considering the matching behavior
in reality, we model two matching means as neighbor matching (NM) and global
matching (GM). Combining the matching model and the information spread
model, we formulate the MPM problem in which the goal is to find a small
size seed set such that the expected number of final participants is maximized.
We show the MPM is NP-hard and the computation of target function is #P-
hard. We design the MRS-based method and propose the OP-MPM algorithm
which has a (1 − 1/e − ε) approximation ratio for the MPM-NM. and the
sandwich algorithm SA-MPM which has a β(1 − 1/e − ε) approximation ratio
for the MPM-GM. At last, a lot of experiments have been conducted on real-
world datasets show that the method we proposed outperforms other comparison
methods.

References

1. Anand, K.S., Aron, R.: Group buying on the web: a comparison of price-discovery
mechanisms. Manag. Sci. 49(11), 1546–1562 (2003)

2. Barbieri, N., Bonchi, F., Manco, G.: Topic-aware social influence propagation mod-
els. Knowl. Inf. Syst. 37(3), 555–584 (2013). https://doi.org/10.1007/s10115-013-
0646-6

https://doi.org/10.1007/s10115-013-0646-6
https://doi.org/10.1007/s10115-013-0646-6

228 G. Rao et al.

3. Becker, R., Coro, F., D’Angelo, G., Gilbert, H.: Balancing spreads of influence in a
social network. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, pp. 3–10 (2020)

4. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social
networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp.
306–311. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77105-
0 31

5. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in
nearly optimal time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 946–957. SIAM (2014)

6. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Timed influence: Computation
and maximization. arXiv preprint arXiv:1410.6976 (2014)

7. He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization in social
networks under the competitive linear threshold model. In: Proceedings of the 2012
SIAM International Conference on Data Mining, pp. 463–474. SIAM (2012)

8. Huang, K., Wang, S., Bevilacqua, G., Xiao, X., Lakshmanan, L.V.: Revisiting the
stop-and-stare algorithms for influence maximization. Proc. VLDB Endow. 10(9),
913–924 (2017)

9. Jing, X., Xie, J.: Group buying: a new mechanism for selling through social inter-
actions. Manag. Sci. 57(8), 1354–1372 (2011)

10. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

11. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
420–429. ACM (2007)

12. Li, G., Chen, S., Feng, J., Tan, K.l., Li, W.S.: Efficient location-aware influence
maximization. In: Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, pp. 87–98. ACM (2014)

13. Liu, B., Cong, G., Xu, D., Zeng, Y.: Time constrained influence maximization in
social networks. In: 2012 IEEE 12th International Conference on Data Mining, pp.
439–448. IEEE (2012)

14. Lu, W., Chen, W., Lakshmanan, L.V.: From competition to complementarity: com-
parative influence diffusion and maximization. Proc. VLDB Endow. 9(2), 60–71
(2015)

15. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions–i. Math. Program. 14(1), 265–294 (1978)

16. Nguyen, H.T., Thai, M.T., Dinh, T.N.: Stop-and-stare: optimal sampling algo-
rithms for viral marketing in billion-scale networks. In: Proceedings of the 2016
International Conference on Management of Data, pp. 695–710. ACM (2016)

17. Ohsaka, N., Akiba, T., Yoshida, Y., Kawarabayashi, K.I.: Fast and accurate influ-
ence maximization on large networks with pruned Monte-Carlo simulations. In:
Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

18. Song, C., Hsu, W., Lee, M.L.: Targeted influence maximization in social networks.
In: Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, pp. 1683–1692. ACM (2016)

19. Tang, J., Tang, X., Xiao, X., Yuan, J.: Online processing algorithms for influence
maximization. In: Proceedings of the 2018 International Conference on Manage-
ment of Data, pp. 991–1005 (2018)

https://doi.org/10.1007/978-3-540-77105-0_31
https://doi.org/10.1007/978-3-540-77105-0_31
http://arxiv.org/abs/1410.6976

Matched Participants Maximization Based on Social Spread 229

20. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a Martin-
gale approach. In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pp. 1539–1554. ACM (2015)

21. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity
meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, pp. 75–86. ACM (2014)

22. Tsang, A., Wilder, B., Rice, E., Tambe, M., Zick, Y.: Group-fairness in influence
maximization. In: Proceedings of the 28th International Joint Conference on Arti-
ficial Intelligence, pp. 5997–6005. AAAI Press (2019)

23. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013)
24. Zhu, J., Ghosh, S., Wu, W.: Group influence maximization problem in social net-

works. IEEE Trans. Comput. Soc. Syst. 6(6), 1156–1164 (2019)

Mixed-Case Community Detection
Problem in Social Networks

Yapu Zhang1, Jianxiong Guo2, and Wenguo Yang1(B)

1 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China

zhangyapu16@mails.ucas.ac.cn, yangwg@ucas.edu.cn
2 Department of Computer Science, University of Texas at Dallas,

Richardson, TX 75080, USA
jianxiong.guo@utdallas.edu

Abstract. The problem of detecting communities is one of the essen-
tial problems in the study of social networks. To devise the algorithms
of community detection, one should first define high-quality communi-
ties. In fact, there are no agreed methods to measure the quality of the
community. In this paper, we consider a novel objective function of this
problem. Our goal is to maximize not only the average of the sum of
edge weights within communities (i.e., average-case) but also the sum
of edge weights within the minimum community (i.e., worst-case). To
balance both the average-case and worst-case problems, we introduce a
parameter into our objective function and call it the mixed-cased com-
munity detection problem. We devise several approximation algorithms
for the worst-case, such as the Greedy, Semi-Sandwich Approximation,
and Local Search algorithms. For the average-case, an efficient Terminal-
based algorithm is proposed. We prove that the best solution between the
average-case and worst-case problems still can provide an approximate
guarantee for any mixed-case community detection problem.

Keywords: Social networks · Community detection · Approximation
algorithms.

1 Introduction

Nowadays, the social network plays a significant role in our daily life. It can serve
platforms that allow people to share information, make friends, and sell prod-
ucts. Therefore, it has attracted widespread attention in sociology, economics,
marketing, etc. One of the essential problems of social networks is the commu-
nity detection problem. Generally, a social network is modeled as a graph, where
vertices represent individuals, and edges represent the relationships among the

This work is supported by National Science Foundation under Grant No. 1907472 and
by the National Natural Science Foundation of China under Grants No. 11991022 and
No. 12071459.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 230–241, 2020.
https://doi.org/10.1007/978-3-030-64843-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_16

Mixed-Case Community Detection Problem in Social Networks 231

individuals. The community detection problem aims to organize individuals into
groups based on the graph structure.

Weiss and Jacobson [21] are among the first researchers who studied the prob-
lem of community detection. Following them, there are extensive works regarding
this problem. However, the community detection problem is still an ill-defined
problem. That is, there is no universal definition of the objective function that
measures the quality of a partition. In fact, it is a hot issue of the study on iden-
tifying the benchmark of the community. Generally, one expects that the links
within each community are denser than those between different communities
[16]. Based on this concept, a popular modularity-based objective function [16]
is proposed. Also, there are the density-based [15] and spectrum-based objective
functions [11,19].

The above objective functions are too complicated to solve. A simple objec-
tive function is to minimize the number of cut-edges. However, it may obtain
a bad solution from a simple cut-based view [10,18]. For example, as shown in
Fig. 1, our goal is to cluster the nodes into 2 communities. It is easy to know that
v1 will separate from other nodes considering the minimum cut-edges. Accord-
ing to the graph topology, it is better to let v1, . . . , v5 be into a community and
v6, . . . v10 be into a community (Fig. 1).

Fig. 1. Example illustrating the weakness of the cut-based method.

Observe that it performs poorly due to ignoring to guarantee the quality of
the worst community. Motivated by this idea, one may also expect to make the
size of links in each community as much close as possible. In this paper, we pro-
pose a novel objective function of community detection. On the one hand, the
objective is to maximize the average of the sum of edge weights in a community
partition. Notice that maximizing the sum of edge weights within communi-
ties means minimizing the edge weights between different communities. On the
other hand, our goal is to maximize the sum of edge weights in the worst commu-
nity. We denote them as the average-case and worst-case community detention
problems, respectively. Combined with the average-case and the worst-case, we
define a mixed community detection problem. In summary, our contributions are
as follows.

First, we consider a new objective function of the community detection prob-
lem, which takes into account the average-case and the worst-case problems.
Then, some properties, such as the supermodularity and monotonicity of the
objective function, are studied. For the worst-case objective function, we devise

232 Y. Zhang et al.

a greedy algorithm. Based on the Sandwich Approximation strategy [14], a Semi-
Sandwich algorithm with a data-dependent ratio is proposed. Moreover, we fur-
ther improve the approximate ratio through iteratively finding an optimal local
solution. For the average-case problem, different from using the cut-based meth-
ods directly, we derive a more efficient heuristic algorithm. Based on the results
of the average-case and worst-case problems, it is proved that the better solution
can provide the appropriation guarantee for the general case.

The following paper is arranged as below. We review the related work in
Sect. 2. Section 3 presents the problem definition. Meanwhile, the properties of
the objective function are studied. We discuss the algorithms for the worst-
case, average-case, and general-case problems in Sects. 4, 5, and 6, respectively.
Finally, our work is concluded in Sect. 7.

2 Related Works

The community detection problem attracts much attention due to its important
role in social networks. There are a huge body of the related works [1,7,16,23,24].
The work of the community detection problem can be traced back to Weiss et
al. [21]. A community is a subgraph in which the nodes are denser than the
rest of the graph. The community detection aims to cluster the nodes into some
communities. More specifically, given a graph G = (V,E) with |V | = n and |E| =
m, the community detection is to identify k communities π = {C1, . . . , Ck},
where Ci ⊆ V for each i = 1, . . . , k. The disjoint communities means that Ci ∩
Cj = ∅ for any two different communities Ci and Cj . Otherwise, it is called as
the overlapping communities. The considerable research on detecting the disjoint
communities is provided in [13,17]. Considering that each individual can be into
different groups, like friends and colleagues, the researchers also focused on the
overlapping communities [4,12,22].

In fact, the definition of community is ambiguous. To measure the quality
of the community, some metrics are proposed. For instance, given a partition
π = {C1, . . . , Ck}, a classic strategy is to measure it from the cut-based view.
In [10], the ratio cut is written as RatioCut(C1, . . . , Ck) =

∑k
i=1

cut(Ci,V \Ci)
|Ci| ,

where cut(Ci, V \ Ci) is the sum of the edge weights between Ci and V \ Ci.
The density-based method is designed based on the internal degree dint(C) and
external degree dout(C) of the community C. More specifically, authors [8] denote
by dint(C)

|C|(|C|−1) and dout(C)
|C|(n−|C|) the internal edge density and eternal edge density of

the community C, respectively. Newman et al. [16] defined the modularity. The
modularity of the partition π can be defined as Q(π) = 1

2m

∑k
i=1

∑
u,v∈Ci

[Auv −
dudv

2m], where Auv are the adjacency matrix elements, du is the degree of node u.
Different metrics can lead to different algorithms.

In this paper, we study a novel objective function, in which both the average-
case and the worst-case problems are combined. To the best of our knowledge,
Wei et al. [20] first considered this pattern. Several algorithms including the
greedy, minorization-maximization are proposed. Different from our work, their
objective function is monotone non-decreasing submodular. Here, a set function

Mixed-Case Community Detection Problem in Social Networks 233

f : 2V → R+ is monotone, if f(S) ≤ f(T) whenever S ⊆ T ⊆ V. f is submodular
if f(S ∪ {v}) − f(S) ≥ f(T ∪ {v}) − f(T), for any S ⊆ T ⊆ V and v ∈ V \T . f
is supermodular if and only if −f is submodular. And our objective function is
monotone non-decreasing supermodular.

3 Problem Definition

Let a social network be modeled by an undirected graph G = (V,E), in which the
nodes denote the users and the edges represent the links among users. Suppose
that there exists a weight wuv ∈ [0, 1] for each edge (u, v) ∈ E. The weight wuv

describes the social influence between nodes u and v. Note that, in general, an
undirected graph G can also be viewed as a directed graph, where wuv = wvu

for each (u, v) ∈ E and wuv = 0 for each (u, v) /∈ E.
In this paper, we study the Community Detection problem. Given a social

network G = (V,E), one expects to organize the users into groups. We denote
these groups as communities. Let k be the size of communities. Our goal is to
divide a network into k disjoint communities. More specifically, we ask for a
partition π = {C1, . . . , Ck} such that Ci
= ∅,

⋃k
i=1 Ci = V and Ci ∩ Cj = ∅ for

any i
= j.
Denote a set function f : 2V → R+ such that f(C) =

∑
u,v∈C wuv for any

subset C ⊆ V . Then, we can use f(C) to measure the internal connectedness [8]
in the community C .

Lemma 1. As defined above, f is a monotone non-decreasing supermodular
function.

Proof. It is trivial to prove that f is monotone non-decreasing. Next, it suffices
to show its supermodularity. Let C1 ⊆ C2 ⊆ V and c ∈ V \ C2. According to
definitions, we have f(C1 ∪ {c}) − f(C1) =

∑
u,v∈C1∪{c} wuv − ∑

u,v∈C1
wuv =

∑
v∈C1

(wcv + wvc). Similarly, we have f(C2 ∪ {c}) =
∑

v∈C2
(wcv + wvc). Then,

the inequality
∑

v∈C1
(wcv + wvc) ≤ ∑

v∈C2
(wcv + wvc) holds since C1 ⊆ C2.

Thus, f(C1 ∪ {c}) − f(C1) ≤ f(C2 ∪ {c}) − f(C2) and the lemma follows.

Based on the set function f , we consider a following problem.

Problem 1. (Mixed-case Community Detection problem) Given a social network
G and an integer k ≥ 2, a Mixed-case Community Detection problem is:

max
π∈Π

[(1 − λ)min
i

f(Cπ
i) +

λ

k

k∑

i=1

f(Cπ
i)], (1)

where λ ∈ [0, 1], a partition π = {Cπ
1 , . . . , Cπ

k }, and Π is a set containing all
partitions of V into k communities.

According to definitions, our goal is to maximize not only the average of the
sum of the function f but also the worst value of f of a community. We define this
problem as the worst-case, average-case and general-case problem when λ = 0,
λ = 1, and λ ∈ (0, 1), respectively. In the following, we discuss the above cases
one by one.

234 Y. Zhang et al.

4 Worst-Case Community Detection Problem

First, we consider solving the worst-case community detection problem. A simple
but efficient way is to use a greedy strategy. As shown in Algorithm 1, we ini-
tialize C1, . . . , Ck with the empty sets. This algorithm aims to iteratively select
a node with the maximum marginal increment to the community whose value is
minimum until sets C1, . . . , Ck form a partition.

Algorithm 1. Greedy
Input: G = (V, E), k
Output: A partition π

1: Initialize C1, = . . . , = Ck = ∅ and S = V
2: while S �= ∅ do
3: j ← arg mini=1,...,k f(Ci)
4: s ← arg maxs∈S{f(Cj ∪ {s}) − f(Cj)}
5: Cj ← Cj ∪ {s}
6: S ← S \ {s}
7: end while
8: return π = {C1, . . . , Ck}

Algorithm 2. Semi-Sandwich
Input: G = (V, E), k
Output: A partition π

1: π1 ← a partition returned by Algorithm 1
2: π2 ← a partition returned by Algorithm 1 where f is replaced by f
3: return π ← arg maxπ=π1,π2 mini f(Cπ

i)

Generally, the solution of the Greedy is good. However, it is hard to
derive an approximation guarantee. To address this issue, we define f(C) =∑

u∈C,v∈V wuv +
∑

u∈V,v∈C wuv. It is easy to prove that f is a modular upper
bound of f . More specifically, for any C ⊆ V , we have that f(C) ≥ f(C) and
f(C) =

∑
c∈C f({c}). Using Algorithm 1 , we compute the solutions for the

original function and upper bound, respectively. That is, we obtain the solutions
for maxπ∈Π mini f(Cπ

i), maxπ∈Π mini f(Cπ
i). Similar to the Sandwich Approx-

imation framework [14], our final result will be the partition with the largest
value for the original function. This process is concluded in Algorithm2 and this
solution returned has a data-dependent approximation ratio.

Theorem 1. Algorithm2 returns a f(A
π2
i)

kf(A
π2
i)

-approximate solution.

Mixed-Case Community Detection Problem in Social Networks 235

Proof. It is proved that the Greedy returns a 1/k-approximate solution if f is
submodular [20]. The modular function f can also satisfy this property. That
is, we have mini=1,...,k f(Cπ2

i) ≥ 1
k maxπ∈Π mini=1,...,k f(Ci). Suppose that π∗

and π∗ are the optimal solution for the upper bound and the original function,
respectively. Then, we have

min
i

f(Cπ2
i) = min

i

f(Cπ2
i)

f(Cπ2
i)

f(Cπ2
i)

≥ min
i

f(Cπ2
i)

f(Cπ2
i)

1
k

f(Cπ∗
i)

≥ min
i

f(Cπ2
i)

f(Cπ2
i)

1
k

f(Cπ∗
i)

≥ min
i

f(Cπ2
i)

f(Cπ2
i)

1
k

f(Cπ∗
i)

Thus, the theorem is proved.

Algorithm 3. Local Search
Input: G = (V, E), k, d, λ
Output: A partition π

1: Select a partition π̂ as the initial partition
2: repeat
3: π ← π̂
4: i∗ ← arg mini f(Cπ

i)
5: u ← arg maxv∈V \Cπ

i∗ {f(Cπ
i∗ ∪ {v}) − f(Cπ

i∗)}
6: j∗ ← the community which contains node u
7: update π̂ such that Cπ̂

i∗ = Cπ
i∗ ∪ {u} and Cπ̂

j∗ = Cπ
j∗ \ {u}

8: until mini f(Cπ
i) ≥ mini f(Cπ̂

i)
9: return π

Next, we propose another method to solve the worst-case problem. We define
a given partition as the optimal local solution as follows.

Definition 1. Given a partition π = {Cπ
1 , . . . , Cπ

k }, we call it the local optimal
solution if changing the community of any node cannot improve the value of the
objective function.

Our method is to obtain an optimal local solution iteratively. As shown in
Algorithm 3, we select an initial partition, which is any solution to the worst-
case problem. The key idea of this strategy is to iteratively improve the solu-
tion by taking an item from the current community to another community.
At each iteration, the algorithm first finds out the minimum community, i.e.,

236 Y. Zhang et al.

i∗ = arg mini f(Cπ
i). Then, it finds out an element that can maximize the value

of this maximum community and its corresponding community. That is, this ele-
ment u = arg maxv∈V \Cπ

i∗ {f(Cπ
i∗ ∪ {v}) − f(Cπ

i∗)}. A new partition is obtained
by removing the element u from its current community j∗ and then adding it
into the minimum community i∗. If the objective function of the new community
partition is no better than before, i.e., mini f(Cπ

i) ≥ mini f(C π̂
i), our algorithms

terminates.
In fact, we can utilize Algorithm 3 to improve the solution returned from

Algorithm 2. This method is to consider the result obtained from Algorithm2 as
our initial partition in Algorithm3.

Notice that the number of iterations is ambiguous. A simple way to accelerate
our algorithm is to give a number of iterations. That is, the algorithm terminates
when the number of iterations is equal to a given integer.

5 Average-Case Community Detection

In this section, we consider the average-case community detection problem. In
fact, maximizing the average of the sum of the edge weights within communities
is equivalent to minimizing the edge weights crossing different communities. That
is, our problem maxπ∈Π

1
k

∑k
i=1 f(Cπ

i) can be viewed as:

min
π∈Π

k∑

i=1

g(Cπ
i), (2)

where g(Cπ
i) =

∑
u∈Cπ

i ,v∈V \Cπ
i
(wuv + wvu).

Lemma 2. As defined above, g is a submdoular function.

Proof. Let C1 ⊆ C2 ⊆ V and c ∈ V \ C2. Similar to Lemma 1, we have
g(C1 ∪ {c}) − g(C1) =

∑
v∈V \(C1∪{c})(wcv + wvc) and g(C2 ∪ {c}) − g(C2) =

∑
v∈V \(C2∪{c})(wcv + wvc). Then, g(C1 ∪ {c}) − g(C1) ≤ g(C2 ∪ {c}) − g(C2)

holds since C1 ⊆ C2. Thus, the lemma is proved.

The above problem can be viewed as the Minimum k-Cut problem. Observe
that this problem is also equivalent to the minimum s − t cut problem when
k = 2. It can be solved in polynomial time using a maximum flow algorithm.
Moreover, it is polynomial solvable for any fixed k [9]. Unfortunately, the time
complexity of this polynomial algorithm is nO(k). Moreover, the authors proved
that the time of any improved algorithm will still grow exponentially with k.
Thus, this kind of algorithms cannot apply to large networks. Also, as shown
the example in Sect. 1, the partition obtained by solving the Minimum k–cut can
perform badly. Thus, a new strategy should be proposed.

The Minimum k–cut problem is closely related to the Multiway Partition
problem. Next, we propose a heuristic algorithm based on the Multiway Partition
problem.

Mixed-Case Community Detection Problem in Social Networks 237

Definition 2. (Multiway Partition problem) Let g : 2V ← R+ be a submodular
set function and S = {s1, . . . , sk}, where si ∈ V is called as a terminal for any
i = 1, . . . , k. The Multiway Cut problem asks for a partition π = {Cπ

1 , . . . , Cπ
k }

of V such that si ∈ Cπ
i and

∑k
i=1 g(Cπ

i) is minimized.

Multiway Partition problem is also equivalent to the minimum s − t cut
problem when k = 2, and it can be solved in polynomial time. However, the
Multiway Partition problem is NP-hard when k ≥ 3. Fortunately, the consid-
erable approximation algorithms are proposed [2,3,5,6]. For instance, Dahlhaus
et al. [6] devised a 2(1 − 1

k)-approximate solution. Their stagey is based on the
minimum cut. For each terminal si, we compute a minimum cut Mi. Among
these cuts, the algorithm discards the largest one. After removing these cuts,
the left graph will form a partition with k parts.

Next, we study the relationship between the Minimum k–cut problem and the
Multiway Partition problem. Let π∗ = {Cπ∗

1 , . . . , Cπ∗
k } be the optimal solution to

the Minimum k–cut problem and S∗ = {s∗
1, . . . , s

∗
k} be a corresponding terminal

set, where s∗
i ∈ Cπ∗

i for any i = 1, . . . , k. Accordingly, there is an optimal solution
π̂∗ = {C π̂∗

1 , . . . , C π̂∗
k } to the Multiway Partition problem. We can show that the

quality of these two partition are equal. Then, the following result holds.

Lemma 3. Suppose that π̂ is a β–approximate solution to the Multiway Parti-
tion problem with the terminal set S∗. This partition π̂ is also a β−approximate
solution to the Minimum k–cut problem.

Proof. We have that
∑k

i=1 g(C π̂∗
i) ≥ ∑k

i=1 g(Cπ∗
i) since π∗ is a feasible solution

to the Multiway Partition problem. Furthermore, we have that
∑k

i=1 g(C π̂∗
i) ≤

∑k
i=1 g(Cπ∗

i) since π∗ is the optimal solution, which separates the graph into k

parts. Then,
∑k

i=1 g(C π̂∗
i) =

∑k
i=1 g(Cπ∗

i) holds. Thus, the partition π̂ is also a
β−approximate solution to the Minimum k–cut problem.

The key point is to guess the terminal set S∗. However, there are
(
n
k

)
possi-

bilities for such a subset S∗, and then it is unavailable for large networks. In the
meantime, a good subset S∗ can lead to a highly-quality community partition.
To address this problem, we propose the Algorithm 4.

Algorithm 4. Terminal-based
Input: G = (V, E), k, d
Output: A partition π

1: Initialize set Sd containing d nodes with the highest degrees
2: Initialize Π ← ∅
3: for each S = {s1, . . . , sk} ⊆ Sd do
4: π ← a partition using the Dahlhaus’s method
5: Π ← Π ∪ π
6: end for
7: return π ← arg maxπ∈Π

∑k
i=1 f(Cπ

i)

238 Y. Zhang et al.

Initially, we control the selection of set S∗ in a small range. That is, we
choose a set Sd containing d nodes with the highest degrees. For each sub-
set S which includes k nodes in Sd, we compute its corresponding partition π
using the method proposed by Dahlhaus et al. [6]. Notice that

∑k
i=1 f(Cπ

i) =
f(V) − ∑k

i=1 g(Cπ
i) and g is nonnegative function. Thus, among all these parti-

tions, the one with the minimum value of
∑k

i=1 g(Cπ
i) becomes our final result.

Furthermore, we can conclude that f(V) ≥ ∑k
i=1 f(Cπ

i) holds for any parti-
tion. The approximation ratio for the average-case problem is at least equal to
f(V)−∑k

i=1 g(Cπ
i)

f(V) .

6 General-Case Community Detection

In this section, we start to consider the general-case problem with 0 < λ < 1.
A natural idea is to combine the result of the worst-case (i.e., λ = 0) with the
result of the average-case (i.e., λ = 1). Denote WCD algorithm as the approxi-
mation algorithm for solving the worst-case problem and ACD algorithm as the
approximation algorithm for solving the average-case problem. The key scheme
is to obtain a partition π̂1 by running WCD algorithm, and then obtain a par-
tition π̂2 by running ACD algorithm. Between partitions π̂1 and π̂2, the one
with a higher value for the objective function is selected as our final result.
That is, our solution is π̂ = arg maxπ∈π̂1,π̂2 [(1−λ)mini f(Cπ

i)+ λ
k

∑k
i=1 f(Cπ

i)].
We denote such an idea as the Combination algorithm. For convenience, we let
F1(π) = mini f(Cπ

i) and F2(π) = 1
m

∑k
i=1 f(Cπ

i) in the following. Suppose that
the WCD algorithm and ACD algorithm return the approximate solution with
factor α ≥ 0 and β ≥ 0. We can conclude the following theorem.

Theorem 2. The Combination algorithm solves the General-case Community
Detection problem with a factor max{ (1−λ)β

(1−λ)β+α , λβ}.
Proof. Let π̂1 and π̂2 be the solution of the WCD algorithm and ACD algo-
rithm, respectively. Suppose that π∗ is the optimal solution to the general-case
community detection problem. That is, π∗ ∈ arg maxπ∈Π(1−λ)F1(π)+λF2(π).

According to definitions, we have F1(π̂1) ≥ αF1(π) and F2(π̂2) ≥ βF2(π).
Moreover, for any partition π, F1(π) ≤ F2(π). On the one hand, we have

(1 − λ)F1(π̂1) + λF2(π̂1) = μ[(1 − λ)F1(π̂1) + λF2(π̂2)]

+ (1 − μ)[(1 − λ)F1(π̂1) + λF2(π̂2)]

≥ μ[(1 − λ)αF1(π̂
∗) + λαF1(π̂

∗)] + (1 − μ)[0 + λβF2(π̂
∗)]

≥ μα

1 − λ
(1 − λ)F1(π

∗) + (1 − μ)βλF2(π
∗)

≥ min{ μα

1 − λ
, (1 − μ)β}[(1 − λ)F1(π

∗) + λF2(π
∗)].

If u satisfies μα
1−λ = (1 − μ)β, then u is the optimal solution to maximize

min{ μα
1−λ , (1 − μ)β}. At this time, u = (1−λ)β

(1−λ)β+α . Then, the following inequality
holds:

Mixed-Case Community Detection Problem in Social Networks 239

(1 − λ)F1(π̂1) + λF2(π̂2) ≥ (1 − λ)β
(1 − λ)β + α

[(1 − λ)F1(π∗) + λF2(π∗)]. (3)

On the other hand, we have

(1 − λ)F1(π̂2) + λF2(π̂2)
≥ λF2(π̂2)

≥ λβF2(π∗)
≥ λβ[(1 − λ)F1(π∗) + λF2(π∗)].

(4)

Combining Eq. (3) with Eq. (4), we have

max{(1 − λ)F1(π̂1) + λF2(π̂2), (1 − λ)F1(π̂2) + λF2(π̂2)}

≥ max{ (1 − λ)β
(1 − λ)β + α

, λβ}[(1 − λ)F1(π∗) + λF2(π∗)].
(5)

7 Conclusions

In this paper, we focus on the community detection problem. To measure the
quality of the communities, we consider a novel objective function. The objec-
tive aims to maximize not only the average of the sum of edge weights within
communities (i.e., average case) but also the sum of edge weights within the min-
imum community (i.e., worst case). Taking into account the average-case and the
worst-case, we introduce a parameter to balance them. Then, the mixed-cased
community detection problem is defined. According to the value of this parame-
ter, we define the average-case, worst-case, and general-case problems when the
parameter equals one, zero, and between zero and one, respectively. The Greedy,
Semi-Sandwich Approximation and Local Search algorithms are designed to solve
the worst-case problem. A Terminal-based algorithm is proposed with respect
to the average-case. We prove that the best solution between the worst-case and
average-case problems still can provide an approximate guarantee.

References

1. Abbe, E.: Community detection and stochastic block models: recent developments.
J. Mach. Learn. Res. 18(1), 6446–6531 (2017)

2. Buchbinder, N., Schwartz, R., Weizman, B.: Simplex transformations and the mul-
tiway cut problem. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 2400–2410. SIAM (2017)

3. Călinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for
multiway cut. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, pp. 48–52 (1998)

4. Chakraborty, T., Ghosh, S., Park, N.: Ensemble-based overlapping community
detection using disjoint community structures. Knowl.-Based Syst. 163, 241–251
(2019)

240 Y. Zhang et al.

5. Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway parti-
tion. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science,
pp. 807–816. IEEE (2011)

6. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiway cuts. In: Proceedings of the Twenty-Fourth Annual
ACM Symposium on Theory of Computing, pp. 241–251 (1992)

7. De Bacco, C., Power, E.A., Larremore, D.B., Moore, C.: Community detection,
link prediction, and layer interdependence in multilayer networks. Phys. Rev. E
95(4), 042317 (2017)

8. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep.
659, 1–44 (2016)

9. Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the k-cut problem
for fixed k. Math. Oper. Res. 19(1), 24–37 (1994)

10. Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and
clustering. IEEE Trans. Comput.-aided Des. Integr. Circ. Syst. 11(9), 1074–1085
(1992)

11. Kannan, R., Vempala, S., Vetta, A.: On clusterings: good, bad and spectral. J.
ACM (JACM) 51(3), 497–515 (2004)

12. Kelley, S., Goldberg, M., Magdon-Ismail, M., Mertsalov, K., Wallace, A.: Defining
and discovering communities in social networks. In: Thai, M., Pardalos, P. (eds.)
Handbook of Optimization in Complex Networks, pp. 139–168. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-1-4614-0754-6 6

13. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for
network community detection. In: Proceedings of the 19th International Conference
on World Wide Web, pp. 631–640 (2010)

14. Lu, W., Chen, W., Lakshmanan, L.V.: From competition to complementarity: com-
parative influence diffusion and maximization. Proc. VLDB Endow. 9(2), 60–71
(2015)

15. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.: Using auto-
matic clustering to produce high-level system organizations of source code. In:
Proceedings of 6th International Workshop on Program Comprehension. IWPC
1998 (Cat. No. 98TB100242), pp. 45–52. IEEE (1998)

16. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

17. Taha, K.: Disjoint community detection in networks based on the relative associ-
ation of members. IEEE Trans. Comput. Soc. Syst. 5(2), 493–507 (2018)

18. Tong, G., Cui, L., Wu, W., Liu, C., Du, D.Z.: Terminal-set-enhanced community
detection in social networks. In: IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, pp. 1–9. IEEE (2016)

19. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

20. Wei, K., Iyer, R.K., Wang, S., Bai, W., Bilmes, J.A.: Mixed robust/average sub-
modular partitioning: fast algorithms, guarantees, and applications. In: Advances
in Neural Information Processing Systems, pp. 2233–2241 (2015)

21. Weiss, R.S., Jacobson, E.: A method for the analysis of the structure of complex
organizations. Am. Sociol. Rev. 20(6), 661–668 (1955)

22. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks:
the state-of-the-art and comparative study. ACM Comput. Surv. (CSUR) 45(4),
1–35 (2013)

https://doi.org/10.1007/978-1-4614-0754-6_6

Mixed-Case Community Detection Problem in Social Networks 241

23. Zeng, X., Wang, W., Chen, C., Yen, G.G.: A consensus community-based parti-
cle swarm optimization for dynamic community detection. IEEE Trans. Cybern.
50(6), 2502–2513 (2019)

24. Zhe, C., Sun, A., Xiao, X.: Community detection on large complex attribute net-
work. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2041–2049 (2019)

How to Get a Degree-Anonymous Graph
Using Minimum Number of Edge

Rotations

Cristina Bazgan1 , Pierre Cazals1(B) , and Janka Chleb́ıková2

1 Université Paris-Dauphine, Université PSL, CNRS, LAMSADE,
75016 Paris, France

{cristina.bazgan,pierre.cazals}@dauphine.eu
2 School of Computing, University of Portsmouth, Portsmouth, UK

janka.chlebikova@port.ac.uk

Abstract. A graph is k-degree-anonymous if for each vertex there are
at least k − 1 other vertices of the same degree in the graph. Min
Anonymous-Edge-Rotation asks for a given graph G and a positive
integer k to find a minimum number of edge rotations that transform G
into a k-degree-anonymous graph. In this paper, we establish sufficient
conditions for an input graph and k ensuring that a solution for the prob-
lem exists. We also prove that the Min Anonymous-Edge-Rotation
problem is NP-hard even for k = n/3, where n is the order of a graph.
On the positive side, we argue that under some constraints on the num-
ber of edges in a graph and k, Min Anonymous-Edge-Rotation is
polynomial-time 2-approximable. Moreover, we show that the problem
is solvable in polynomial time for any graph when k = n and for trees
when k = θ(n).

1 Introduction

Huge amounts of data has been aggregated on social networks in recent years. To
assure the privacy of network’s users is one of the key research task in this field.
One possible study model was introduced by Liu and Terzi [15] who transferred
the k-degree-anonymity concept from tabular data in databases [9] to graphs
which are often used as a representation of networks. Therefore, a graph is called
k-degree-anonymous if for each vertex there are at least k − 1 other vertices
with the same degree. The parameter k represents the number of vertices that
are mixed together and thus the increasing value of k increases the level of
anonymity. In [18], Wu et al. presented a survey of different anonymization
models and some of their weaknesses.

In this paper we consider the k-degree-anonymous concept of Liu and
Terzi [15]. Different graph operations of transforming a graph into a k-degree-
anonymous one are considered in several papers where the operations maybe
the following: delete vertex/edge, add vertex/edge, or add/delete of an edge (see
the references later). One advantage in that approaches of vertex/edge dele-
tion/adding is that a solution always exists since in the worst case scenario one
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 242–256, 2020.
https://doi.org/10.1007/978-3-030-64843-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_17&domain=pdf
http://orcid.org/0000-0002-5460-6222
http://orcid.org/0000-0002-7681-476X
http://orcid.org/0000-0002-9493-2049
https://doi.org/10.1007/978-3-030-64843-5_17

Degree-Anonymous Graphs and Edge Rotations 243

can consider the empty or the complete graph that is k-degree-anonymous for
any k (at most the number of vertices of the graph). However, the basic graph
parameters as the number of vertices and edges could be modified.

In this paper we consider the version of transforming a graph into a k-degree-
anonymous one using edge rotations which don’t modify the number of ver-
tices/edges, however a solution may not always exists, as we show later.

Vertex/edge modification versions associated to k-degree-anonymity have
been relatively well studied. Hartung et al. [12,13] studied the edge adding mod-
ification as proposed by Liu and Terzi [15]. For this version Chester et al. [6]
established a polynomial time algorithm for bipartite graphs

The variant of adding vertices instead of edges was studied by Chester et
al. and in [5] they presented an approximation algorithm with an additive error.
Bredereck et al. [2] investigated the parameterized complexity of several variants
of vertex adding which differ in the way the inserted vertices can be adjacent to
existing vertices. Concerning the vertex deletion variant, Bazgan et al. [1] showed
the NP-hardness even on very restricted graph classes such as trees, split graphs,
or trivially perfect graphs. Moreover, in [1] the vertex and edge deletion variants
are proved intractable from the approximability and parameterized complexity
point of view.

Several papers study the basic properties of edge rotations, including some
bounds for the minimum number of edge rotations between two graphs [3,4,8,
14]. To the best of our knowledge the problem of transforming a graph to a
k-degree anonymous graph using the edge rotations has not been fully explored.
In some particular cases some research has been done, e.g. in [16] they study an
edge rotation distance and various other metric between the degree sequences to
find a “closest” regular graph.

Our Results. In this paper we study the various aspects of the Min Anonymous-
Edge-Rotation problem. An input to the problem is an undirected graph
G = (V,E) with n vertices and m edges and an integer k ≤ n. The goal is to find a
shortest sequence of edge rotations that transforms G into a k-degree-anonymous
graph, if such a sequence exists. We first show that when n

2 ≤ m ≤ n(n−3)
2 and

k ≤ n
4 a solution always exists. Moreover for trees a solution exists if and only

if 2m
n is an integer. We prove that Min Anonymous-Edge-Rotation is NP-

hard even when k = n
3 and provide a polynomial-time 2-approximable algorithm

under some constraints. Finally, we demonstrate that Min Anonymous-Edge-
Rotation is solvable in polynomial time for trees when k = θ(n) and for any
graph when k = n.

Our paper is organized as follows. Some preliminaries about edge rota-
tions and our formal definitions are given in Sect. 2. The study of feasibility
is established in Sect. 3. Section 4 presents the NP-hardness proof. In Sect. 5 we
establish a lower bound that is used in Sect. 6 to present a polynomial-time
2-approximation algorithm and in Sect. 7 to demonstrate the polynomial time
algorithm for trees. Moreover in Sect. 7 we consider the case k = n in general
graphs. Some conclusions are given at the end of the paper. The omitted proofs
can be found in the full version of the paper.

244 C. Bazgan et al.

2 Preliminaries

In this paper we assume that all graphs are undirected, without loops and mul-
tiple edges, and not necessary connected graphs.

Let G = (V,E) be a graph. For a vertex v ∈ V , let degG(v) be the degree of
v in G, and ΔG be the maximum degree of G. A vertex v with degree degG(v) =
|V | − 1 is called a universal vertex. The neighborhood of v in G is denoted by
NG(v) = {u ∈ V : uv ∈ E} and IncG(v) is the set of all edges incident to v,
IncG(v) = {e ∈ E : v ∈ e}. If the underlying graph G is clear from the context,
we omit the subscript G.

Definition 1. Given a graph G = (V,E) of order n, the degree sequence SG of G
is the non-increasing sequence of its vertex degrees, SG = (deg(v1), . . . , deg(vn)),
deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vn). A sequence D of non-negative integers
D = (d1, d2, . . . , dn) is graphic if there exists a graph G such that its degree
sequence coincides with D.

As follows from Erdős-Gallai theorem (see e.g. [7]) the necessary and sufficient
conditions for a non-increasing sequence D = (d1, d2, . . . , dn) to be graphic are:

n∑

i=1

di is even (1)

�∑

i=1

di ≤ �(� − 1) +
n∑

i=�+1

min(di, �) holds for any 1 ≤ � ≤ n. (2)

Furthermore, it is an easy exercise to prove that a sequence of integers D =
(d1, d2, . . . , dn) corresponds to a degree sequence of a tree on n vertices if and
only if each di ≥ 1 and

∑n
i=1 di = 2(n − 1).

Let G(n,m) be the set of all graphs with n vertices and m edges.

Definition 2. Let G,G′ ∈ G(n,m). We say that G′ can be obtained from G
by an edge rotation (uv, uw) if V (G) = V (G′) and there exist three distinct
vertices u, v and w in G such that uv ∈ E(G), uw /∈ E(G), and E(G′) =
(E(G) \ {uv}) ∪ {uw}.
Remark 1. Let G be a graph. For the vertices u, v, w in G the edge rota-
tion (uv, uw) modifies G into the graph G′ such that degG′(v) = degG(v) − 1,
degG′(w) = degG(w)+1, and the degree of the other vertices is not changed. Let
define a (+1,−1)-degree modification of the degree sequence D = (d1, . . . , dn)
in such a way that di := di + 1, dj := dj − 1 for any two indices i, j such that
i, j ∈ {1, . . . , n}. Note that each edge rotation corresponds to a (+1,−1)-degree
modification, but not opposite.

Definition 3. A sequence of integers D = (d1, d2, . . . , dn) is called k-
anonymous where k ∈ {1, . . . , n}, if for each element di from D there are
at least k − 1 other elements in D with the same value. A graph G is called
k-degree-anonymous if its degree sequence is k-anonymous. The vertices of
the same degree correspond to a degree class.

Degree-Anonymous Graphs and Edge Rotations 245

In this paper we study the following anonymization problem:

Min Anonymous-Edge-Rotation
Input: (G, k) where G = (V,E) is an undirected graph and k a positive
integer, k ∈ {1, . . . , |V |}.
Output: If there is a solution, find a sequence of a minimum number � + 1
of graphs G0 = G,G1, G2, . . . , G� such that Gi+1 can be obtained from Gi

by one edge rotation, and G� is k-degree-anonymous.

Note that a solution to the Min Anonymous-Edge-Rotation problem may
not exist for all instances, e.g. there is no solution if G is a graph obtained from
the complete graph Kn, n ≥ 6, removing an edge together with k = 3. Therefore,
we are only interested in studying of feasible instances (G, k) defined as an
instance for which there exists a solution to Min Anonymous-Edge-Rotation.
Our initial study of sufficient conditions for feasibility is covered in Sect. 3.

Obviously, since all graphs are 1-degree-anonymous, we are only interested
in cases where k ≥ 2.

The decision version associated to Min Anonymous-Edge-Rotation is
defined as follows for a feasible instance (G, k):

Anonymous-Edge-Rotation
Input: (G, k, r) where G = (V,E) is an undirected graph, k ∈ {1, . . . , |V |},
and r be a positive integer.
Question: Is there a sequence of � + 1 graphs G0 = G,G1, G2, . . . , G� such
that � ≤ r, Gi+1 can be obtained from Gi by one edge rotation, and G� is
k-degree-anonymous?

We also consider the Min Anonymous-Edge-Rotation problem in
restricted graph classes, e.g. trees. In that case we require that all graphs in
the sequence G0, . . . , G� must be from the same graph class. Note that the
problem can also be studied without this requirement, but the results may be
different.

The following theorem highlights important properties of the edge rotations,
the proof can be found e.g. in [4].

Theorem 1. For any two graphs G,G′ ∈ G(n,m) there exists a sequence of
edge rotations transforming G into G′.

Corollary 1. For any two graphs G,G′ ∈ G(n,m), the edge distance between
G and G′ is bounded by 2m.

3 Feasibility

As it was discussed in Sect. 2, the Min Anonymous-Edge-Rotation problem
does not have a solution for every input instance. It is not difficult to see that

246 C. Bazgan et al.

if a graph is ‘almost’ complete or ‘almost’ empty, then there are only restricted
options on the number of different degree classes.

First we present some sufficient conditions for an instance to be feasible
showing that if a graph is not ‘almost’ complete or an empty graph, then a
solution of the problem exists for all k ≤ n

4 , where n is the order of the graph.

Theorem 2. Let G ∈ G(n,m) such that n
2 ≤ m ≤ n(n−3)

2 and n ≥ 4. Then
there exists a feasible solution for the Min Anonymous-Edge-Rotation prob-
lem, hence a k-degree-anonymous graph G′ ∈ G(n,m), for any k ≤ n

4 .

Proof. Let m, n, k be fixed. Any graph G ∈ G(n,m) is a 1-degree-anonymous
graph, hence we can suppose k ≥ 2.

In the first part of the proof we describe a construction of a k-anonymous

sequence D = (d1, d2, . . . , dn) with property
n∑

i=1

di = 2m for any m, n, k satisfy-

ing the restriction of the theorem. In the second part we show that the sequence
D is graphic, hence that the sequence satisfies the conditions (1) and (2) from

Sect. 2. As
n∑

i=1

di = 2m is the condition for a constructed sequence, the property

(1) trivially holds.
Now we construct three distinct k-anonymous sequences Type 1, 2, 3 of

integers based on the values of k and s ≡ 2m mod n. Denote by d the average
degree of the graph G defined as d =

⌊
2m
n

⌋
.

Type 1: k ≤ s ≤ n − k
Let D1 = (d11, d

1
2, . . . , d

1
s, d

2
1, d

2
2, . . . , d

2
n−s) be a sequence of positive integers

where for all i, 1 ≤ i ≤ s, d1i = d + 1 and for all j, 1 ≤ j ≤ n − s,
d2j = d (see Fig. 1). The sequence contains n elements and it is easy to see

that
s∑

i=1

(d + 1) +
n−s∑
j=1

d = 2m.

Following the assumptions s ≥ k and n − s ≥ k, therefore D1 is a k-anonymous
sequence.

Type 2 : s < k
Let D2 = (d11, d

1
2, . . . , d

1
s+k, d21, d

2
2, . . . , d

2
n−s−2k, d31, d

3
2, . . . , d

3
k) be a sequence of

positive integers where for all i, 1 ≤ i ≤ s + k, d1i = d + 1; for all r, 1 ≤ r ≤
n − s − 2k, d2r = d; for all j, 1 ≤ j ≤ k, d3j = d − 1 (see Fig. 1). The sequence

contains n elements and
s+k∑
i=1

(d + 1) +
k∑

j=1

(d − 1) +
n−s−2k∑

�=1

d = 2m

Since n ≥ 4k and s < k, n − s − 2k ≥ k, D2 is a k-anonymous sequence.

Type 3: s > n − k
Let D3 = (d11, d

1
2, . . . , d

1
k, d21, d

2
2, . . . , d

2
s−2k, d31, d

3
2, . . . , d

3
k+n−s) be a sequence of

positive integers where for all i, 1 ≤ i ≤ k, d1i = d + 2; for all r, 1 ≤ r ≤ s − 2k,
d2r = d + 1; for all j, 1 ≤ j ≤ k + n − s, d3j = d (see Fig. 1). The sequence has n

elements and
k∑

i=1

(d + 2) +
k+n−s∑

j=1

d +
s−2k∑
�=1

(d + 1) = 2m.

Degree-Anonymous Graphs and Edge Rotations 247

Type 1: s n− s

d+ 1 d

Type 2: s+ k n− s− 2k k

d+ 1 d d− 1

Type 3: k s− 2k k + n− s

d+ 2 d+ 1 d

Fig. 1. The sequences of Type 1, 2, 3

Because n > s, the number d appears more than k-times in D3. Due to the
assumptions n ≥ 4k and s > n − k, also s − 2k ≥ k. Hence D3 is a k-anonymous
sequence.

The proof that all three sequences are graphic can be found in the full version
of the paper. ��

Now we extend the feasibility study to the case k = n for which we get
necessary and sufficient conditions.

Theorem 3. Let G ∈ G(n,m) for some positive integers n and m. Then (G,n)
is a feasible instance of Min Anonymous-Edge-Rotation if and only if 2m

n
is an integer.

4 NP-Hardness

In this section we show that the decision version of Min Anonymous-Edge-
Rotation, the problem Anonymous-Edge-Rotation, is NP-complete. The
proof is based on a reduction from the restricted version of a cover set problem,
Exact Cover By 3-Sets, which is known to be NP-complete [10].

Exact Cover By 3-Sets (X3C)
Input: A set X of elements with |X| = 3m and a collection C of 3-elements
subsets of X where each element appears in exactly 3 sets.
Question: Does C contain an exact cover for X, i.e. a subcollection C ′ ⊆ C
such that every element occurs in exactly one member set of C ′ ?

We define a polynomial-time reduction and then prove the NP-completeness
of Anonymous-Edge-Rotation.

Reduction. Let I = (X,C) be an instance of X3C with |X| = |C| = 3m and m
even. We describe the construction σ transforming an instance I into the graph
G := σ(I) where G = (V,E) is defined as follows:

– For each element x ∈ X, we add a vertex vx to the set Velem ⊂ V and a
vertex ux to the set Vhub ⊂ V .

248 C. Bazgan et al.

– For each 3-element set {x, y, z} of the collection C, we add 4 vertices c1xyz,
c2xyz, c3xyz and c4xyz to the set Vset ⊂ V .

– For each i ∈ {1, . . . , 5m} we add a vertex wi to the set Vreg ⊂ V and for each
j ∈ {1, . . . , 10m} we add a vertex tj to Vsingle ⊂ V .

Let V = Velem ∪ Vhub ∪ Vset ∪ Vreg ∪ Vsingle. Obviously, |V | = 3m + 3m + 12m +
15m = 33m. Now we define the set E of the edges in G.

– For all x, y ∈ X, such that x �= y, we add the edge vxuy to EX ⊂ E.
– For each 3-element set {x, y, z} of the collection C, ∀i ∈ {1, 2, 3, 4}, we add

the edges ci
xyzux, ci

xyzuy and ci
xyzuz to the set EC ⊂ E.

– We add the set of edges E′ ⊂ E to the vertex set Velem such that (Velem, E′) is
a 11-regular graph. Since the number of vertices in the set |Velem| = 3m is even
(m is even) and 11 < 3m such a regular graph exists [17]. Furthermore, such
a graph can be constructed in polynomial time using Havel-Hakimi algorithm
[11].

– We add the set of the edges E′′ ⊂ E to the vertex set Vreg such that (Vreg, E
′′)

is a (3m+11)-regular graph. Since the number of vertices of Vreg is even and
3m + 11 < 5m,
similarly to the previous case such a regular graph exists and can be con-
structed in polynomial time.

Finally, let E = EX ∪ EC ∪ E′ ∪ E′′.
Obviously, the graph G = (V,E) has the following properties: (i) 10m vertices

of degree 0 (the vertices of the set Vsingle), (ii) 12m vertices of degree 3 (the
vertices of the set Vset), (iii) 8m vertices of degree 3m + 11 (the vertices of the
set Vreg and Vhub), (iv) 3m vertices of degree 3m + 10 (the vertices of the set
Velem).

Theorem 4. Anonymous-Edge-Rotation is NP-complete even in case k =
n
3 where n is the order of the graph G for an input instance (G, k, r).

Proof. Let I = (X,C) be an instance of X3C with |X| = |C| = 3m and consider
the instance I ′ = (G, k, r) of Anonymous-Edge-Rotation where G = σ(I),
k = 11m and r = 3m. We claim that I is a yes-instance if and only if I ′ is a
yes-instance.

Let C ′ ⊆ C be an exact cover for X of size m. Now we define 3m rotations
which are independent from each other: for every 3-element set {x, y, z} ∈ C ′,
we replace the edge uxc1xyz by the edge uxvx, and similarly uyc1xyz by uyvy and
uzc

1
xyz by uzvz. Since C ′ is of size m, we define exactly 3m rotations. Let G′ be

the graph obtained from G after applying all 3m rotations. Since C ′ is an exact
cover of size m: (i) there are m vertices of type c1xyz that lost all 3 neighbours
and become of degree 0 in G′, (ii) all 3m vertices of type vx are attached to a
new neighbour, so they become of degree 3m + 11 in G′.

Then the graph G′ has 10m+m = 11m vertices of degree 0, 12m−m = 11m
of degree 3 vertices, 8m + 3m = 11m of degree 3m + 11 vertices, hence we
conclude that G′ is the 11m-anonymous graph.

Degree-Anonymous Graphs and Edge Rotations 249

Let I ′ be a yes-instance of Anonymous-Edge-Rotation. Then there exists
a sequence of 3m rotations such that the graph G′ = (V,E′) obtained after
applying the rotations to G is a 11m-anonymous graph. Since |V | = 33m, there
must be only three different degrees classes in G′. Note that with one rotation, we
can change the degree of two vertices, therefore the degree at most 6m vertices
can be changed by 3m rotations. Since the graph G has more than 6m vertices of
the degrees 3m+11, 3, and 0, all these degree classes must be in G′. Furthermore,
due to the number of vertices of G, these are the only degree classes in G′. This
means that in G′ the number of vertices of degree 3m+11 must be increased by
3m, the number of vertices of degree 0 must be increased by m, the number of
vertices of degree 3 must be decreased by m and there are no vertices of degrees
3m + 10 in G′. A single rotation can increase or decrease the degree of a vertex
by 1 therefore using 3m rotations no vertex of degree 3m + 10 in G can have
degree 0 in G′ and similarly, no vertex of degree 3 in G can have degree 3m+11
in G′. Therefore the 3m new vertices of degree 3m + 11 in G′ must have degree
3m + 10 in G. This is only possible if the degree of each vertex vx from the set
Velem is increased by 1. Similarly, the m new vertices of degree 0 in G′ must
have degree 3 in G, let CG′ be the set of such vertices. Obviously, CG′ must be
a subset of Vset, in which the vertices have the form c�

xyz with x, y, z ∈ X, for
any set {x, y, z} ∈ C, and � ∈ {1, 2, 3, 4}.

To reach the requested degree configuration in G′ with exactly 3m edge
rotations, in each rotation the degree of each vertex from Velem must be increased
by 1 and the degree of each vertex from the set CG′ must be decrease by 1. To
achieve that, for each vertex vx from Velem, the only possible rotation is to add
the edge uxvx where ux ∈ Vhub and remove the edge uxc�

xyz where cxyz ∈ CG′ .
To fulfil the condition about the degree classes and the number of the rotations,
the only way to achieve that is that C ′′ = {{x, y, z} | c�

xyz ∈ CG′} is an exact
cover of X. ��

5 Lower Bound for a k-Degree-Anonymous Graph

In this section we suppose that (G, k) is a feasible instance. For any such instance
we define a k-anonymous degree sequence Sbound that can be computed in poly-
nomial time if k = θ(n). We show that with the (+1,−1)-degree modifications
(Remark 1) the graph G can be transformed into a k-degree-anonymous graph
G′ with degree sequence Sbound using at most double of edge rotations as in an
optimal solution of Min Anonymous-Edge-Rotation for (G, k).

Note that in general a (+1,−1)-degree modification doesn’t correspond to
an edge rotation, but as we show later in Sect. 7.1, it is true for trees.

Now in the following steps we show how to define the degree sequence Sbound.

Step 1: Compute Every Available Target Sequence
Let S = (s1, . . . , sn) be a non-increasing sequence of non-negative integers, r ∈
{1, . . . , n}. Any partition of S into r contiguous subsequences (i.e. if S[a] and
S[b] are in one part, then all S[i], a ≤ i ≤ b must be in the same part) is called
a contiguous r-partition. The number of contiguous r-partitions of S is

(
n−1
r−1

)
,

250 C. Bazgan et al.

therefore bounded by (n − 1)r−1. Then the number of contiguous partitions of
S with at most r parts can be bounded by

∑r−1
i=0 (n − 1)i ≤ 2nr−1.

For each contiguous �-partition p, 1 ≤ � ≤ r, we use notation p = [p1, . . . , p�],
where pi denotes the number of elements in part i, 1 ≤ i ≤ �. Note that at this
stage important is the number of elements in each part, not which elements from
S are in it.

Let G be a graph of order n and k an integer, k ≥ 2. If G is a k-degree-
anonymous graph, then the vertices of G can be partitioned into at most c = n

k �
parts where the vertices in each part have the same degree. Let P be the set of
all such contiguous partitions with at most c parts. As it follows from the initial
discussion, the number of such partitions is bounded by 2nc−1.

Now for each contiguous partition p = [p1, p2, . . . , p�] ∈ P , � ∈ {1, . . . , c}, we
compute all non-increasing sequences (d1, d2, . . . , d�) of � integers di such that
0 ≤ di < |V |. Let P̂p be the set of all feasible k-anonymous degree sequences for
p, i.e.

S = (d1, . . . , d1︸ ︷︷ ︸
p1−times

, d2, . . . , d2︸ ︷︷ ︸
p2−times

, . . . , d�, . . . , d�︸ ︷︷ ︸
p�−times

) = (dp1
1 , dp2

2 , . . . , dp�

�) ∈ P̂p

if and only if
�∑

i=1

pidi = 2|E|, S is graphic and k-anonymous.

For each contiguous partition p with � parts, 1 ≤ � ≤ c, there are at most
n possibilities for a degree on each position. The test whether the generated
sequence is graphic and k-anonymous can be done in O(n) operations. Since
|P | = O(nc−1), there are at most O(nc−1 ×n� ×n) ≤ O(n2c) operations to com-
pute all feasible degree sequences of every partition, where c = n

k �. Obviously,
if c is a constant, such number of operations is polynomial.
Step 2: Find the Best One
Now based on the previous analysis we can define the degree sequence Sbound

and prove some basic properties.

Definition 4. Let G be a graph with the degree sequence SG. Then define Sbound

for G as a degree sequence for which the sum
∑n

i=1 |SG[i] − S[i]| achieves the
minimum for all elements S ∈ P̂p and p ∈ P .

Remark 2. Similarly to a k-anonymous sequence Sbound defined in Definition 4
for a graph, we can define a k-anonymous sequence STbound for a tree. The only
difference is that in the set P̂p, every feasible solution must have di ≥ 1, which
would be a subset of P̂p. Also for the testing, we don’t need to check whether S

is graphic, the condition
∑�

i=1 pidi = 2|E|, is enough for the degree sequence of
a tree.

The following lemmas describes the basic properties of sequences.

Lemma 1. Let S be a n-sequence of non-negative integers and denote by S′

the sequence S sorted in non-increasing order. Let Ss be another n-sequence of
non-negative integers sorted in non-increasing order. Then

Degree-Anonymous Graphs and Edge Rotations 251

|
n∑

i=1

|Ss[i] − S′[i]| ≤
n∑

i=1

|Ss[i] − S[i] (3)

Lemma 2. Let (G, k) be a feasible instance for the Min Anonymous-Edge-
Rotation problem. Let OPT be an optimum solution that is a minimum set of

rotations that transform G to a k-degree-anonymous graph G′. Then
n∑

i=1

|SG[i]−
Sbound[i]| ≤ 2|OPT |, where the degree sequence Sbound is defined in Definition 4.

Proof. Let SG′ be the degree sequence of G′ sorted in the same order as SG

(i.e. for every v ∈ V , if degG(v) is in the position i in SG then degG′(v) is
in the position i in SG′). Let S′

G′ be the degree sequence SG′ sorted in non-
increasing order. As in the definition of Sbound we considered all the options, there

must exist p ∈ P and S ∈ P̂p such that S = S′
G′ , and

n∑
i=1

|SG[i] − Sbound[i]| ≤
n∑

i=1

|SG[i] − S′
G′ [i]|.

Since the degree sequence S′
G′ is sorted in non-increasing order, then

n∑
i=1

|SG[i] − S′
G′ [i]| ≤

n∑
i=1

|SG[i] − SG′ [i]| by Lemma 1. One rotation from the

graph Gj to Gj+1 in the sequence of the graphs from G to G′ can only decrease
the degree of a vertex by one and increase the degree of another one by one,

hence
n∑

i=1

|SGj
[i] − SG′ [i]| ≤

n∑
i=1

|SGj+1 [i] − SG′ [i]| + 2. This means by one rota-

tion the value
n∑

i=1

|SG[i] − SG′ [i] decreases by at most 2. After |OPT | rotations,

the last graph Gj+1 in the sequence is G′, therefore
n∑

i=1

|SG[i]−SG′ [i]| ≤ 2|OPT |
and the lemma follows. ��

6 Approximation

In this section we show that under some constraints on the number of edges
and k, there exists a polynomial time 2-approximation algorithm for the Min
Anonymous-Edge-Rotation problem for all feasible inputs (G, k).

Remark 3. Let S = (x1, x2, . . . , xn) be a non-increasing sequence of n non-
negative integers. Denote by R = x1 − xn, A0 = x1+xn

2 , and let A =
∑n

i=1 xi

n .

The standard deviation of S is defined as σ(S) =
√∑

(xi−A)2

n . It can be
shown that

n∑

i=1

(xi − A)2 ≤
n∑

i=1

(xi − A0)2 ≤ nR2

4
,

hence σ(S) ≤ R
2 .

252 C. Bazgan et al.

The mean absolute derivation of S is defined as MAD[S] = 1
n

∑n
i=1 |xi − A|.

It is well known (e.g. applying Jensen’s inequality) that MAD[S] ≤ σ(S).

Based on the correlation mentioned in Remark 3, we calculate an upper
bound on the values in the degree sequence Sbound in the following lemma.

Lemma 3. Let (G, k) be an instance of the Min Anonymous-Edge-
Rotation problem where G is the graph with n vertices and m edges. Sup-
pose that n

2 ≤ m ≤ n(n−3)
2 , k ≤ n

4 , and let the constant c be defined as
c = n

k �, hence k = θ(n). Let Sbound be the k-anonymous degree sequence
associated with G defined following Definition 4. Then for every i, Sbound[i] ≤
min{(1 + n

4k + n
kΔ)Δ,n − 1}, 1 ≤ i ≤ n.

In the following two lemmas we prove that if a graph has ‘sufficiently’ many
edges than edge rotations with the specific properties exist in a graph.

Lemma 4. Let G = (V,E) be a graph with |E| > Δ2, let uv ∈ E. Then there
exists an edge ab ∈ E such that both vertices a and b are different from u and v
and at most one of the following edges {av, au, bv, bu} is in E.

Lemma 5. Let G = (V,E) be a graph and suppose |E| > Δ2. Let v+, v− ∈
V such that 1 ≤ dG(v−) ≤ Δ and 0 ≤ dG(v+) ≤ Δ < |V | − 1. Then there
exists a sequence of at most two edge rotations that transform G to G′ such that
dG′(v+) = dG(v+) + 1, dG′(v−) = dG(v−) − 1 and degrees of other vertices in G
are not changed. These rotations can be found in O(|E|2) steps.

Theorem 5. The Min Anonymous-Edge-Rotation problem is polynomial
time 2-approximable for all instances (G, k), k ≤ n

4 where k = θ(n) and G is
the graph with n vertices and m edges, where max{n

2 , (1+ n
4k + n

kΔ)2Δ2} ≤ m ≤
n(n−3)

2 , and the constant c is defined as c = n
k �.

Proof. Let (G = (V,E), k) be an instance of Min Anonymous-Edge-
Rotation and SG be the degree sequence of G. Let the constant c be defined
as c = n

k �. Due to our assumptions about the number of edges and k, all such
instances are feasible as follows from Sect. 3. First we compute a k-anonymous
degree sequence Sbound following Definition 4 in O(n2c) steps. Due to the assump-
tion k = θ(n) and consequently c being a constant, such number of steps is
polynomial. Furthermore, the condition on the number of edges ensures that we
can always apply Lemma 5 and find suitable edge rotations.

If there exist two vertices v+, v− ∈ V such that 0 ≤ SG[v+] < Sbound[v+] ≤
(1 + n

4k + n
kΔ)Δ < |V | − 1 and SG[v−] > Sbound[v−] we apply Lemma 5 to

transform G to a graph G1 with at most two rotations such that dG1(v
+) =

dG(v+) + 1 and dG1(v
−) = dG(v−) − 1.

We’ll be executing the above transformations while there are two vertices v+,
v− ∈ V with the required properties. In each such transformation we decrease
the degree of one vertex by 1 and increase the degree of another one by 1 with
at most two rotations. Hence we transform G to a final graph G′ with degree

Degree-Anonymous Graphs and Edge Rotations 253

sequence Sbound by at most
n∑

i=1

|SG[i]−Sbound[i]| rotations. By Lemma 2 we know

that
n∑

i=1

|SG[i]−Sbound[i]| ≤ 2|OPT |, hence we use at most 2 times the numbers

of rotations of an optimal solution. In each transformation loop searching for the
vertices v+ and v− can be done in time O(n) and searching for an edge ab in
time O(m2) (Lemma 4). Due to the modifications in each transformation loop,
there can be at most O(n2) loops. Therefore the time complexity is bounded by
O(n2c + n2 × m2 × n). Since c ≥ 4, O(n2c + m2 × n3) ≤ O(n2c).

Finally, since Sbound is k-anonymous, G′ is a k-degree-anonymous graph. ��

7 Polynomial Cases

As follows from Sect. 4, the Min Anonymous-Edge-Rotation problem is NP-
hard even for k = n

3 , where n is the order of an input graph. In this section we
show that the problem can be solved in polynomial time on trees when k = θ(n)
or in case of any graph when k = n.

7.1 Trees

For a tree T = (V,E) rooted in a vertex r, for any v ∈ V , v �= r, child(v) is a
vertex that is a neighbor of v not on the path from r to v.

Lemma 6. Let T = (V,E) be a tree and v−, v+ vertices from V such that
v− is not a leaf and v+ is not a universal vertex. Then using one rotation we
can transform T into a tree T ′ such that dT ′(v−) = dT (v−) − 1 and dT ′(v+) =
dT (v+) + 1.

Theorem 6. The Min Anonymous-Edge-Rotation problem is polynomial-
time solvable for any instance (T, k) where T is a tree of the order n, k ≤ n

4 and
such that c = n

k � is a constant, hence k = θ(n).

Proof. Let T be a tree and ST = (d1, d2, . . . , dn) its degree sequence sorted in
non-increasing order. As it was mentioned in Sect. 2, for a degree sequence of

a tree only the following conditions must hold
n∑

i=1

di = 2(n − 1) and di ≥ 1 for

all i, 1 ≤ i ≤ n. Now based on ST define a k-anonymous sequence STbound as
discussed in Sect. 5.

Let x and y be integers such that ST [x] > STbound[x] and ST [y] < STbound[y].
Since STbound correspond to a tree, STbound[x] ≥ 1 then ST [x] > 1 then vx is
not a leave in T . Moreover since STbound[y] ≤ n − 1, vy is not a universal vertex
in T .

254 C. Bazgan et al.

By Lemma 6 there exists a tree T1 such that ST1 [x] = ST [x] − 1 and
ST1 [y] = ST [y] + 1. Repeat this operation until reaching a tree T ′ with the
degree sequence STbound. The cost of one operation is O(n) and we repeat it

n∑

i=1
|ST [i]−ST bound[i]|

2 ≤ n2 times. Since STbound is k-anonymous, T ′ is a k-degree-

anonymous tree. Since we use

n∑

i=1
|ST [i]−ST bound[i]|

2 ≤ |OPT | rotations (Lemma
2), the algorithm is optimal. The total cost of the algorithm is bounded by
O(n2c + n2) = O(n2c), where c = n

k � is a constant. ��

7.2 One Degree Class, k = n

In this part we show that Min Anonymous-Edge-Rotation is polynomial-
time solvable for instances where k coincides with the number of vertices of the
graph, that means all vertices must be in the same degree class.

Lemma 7. Let G = (V,E) be a graph and u, v ∈ V . If NG(u) � NG(v), then
there is an edge rotation that leads to a graph G′ such that dG′(u) = dG(u) − 1
and dG′(v) = dG(v) + 1.

Remark 4. Let G = (V,E) be a graph, ∀u, v ∈ V , if dG(u) > dG(v), then there
is an edge rotation that leads to a graph G′ such that dG′(u) = dG(u) − 1 and
dG′(v) = dG(v) + 1.

Lemma 8. Let (G,n) be an instance of Min Anonymous-Edge-
Rotation where G ∈ G(n,m) for some positive integers m, n, and 2m

n is an
integer. Then the optimum value of Min Anonymous-Edge-Rotation on
(G,n) is

∑
w∈V |dG(w)−2m/n|

2 ,

Theorem 7. The Min Anonymous-Edge-Rotation problem is polynomial-
time solvable for instances (G, k) when k = n, where n is the order of the
graph G.

Proof. In case k = n, we are looking for a n-degree-anonymous graph with
only one degree class, hence for a regular graph. Due to Theorem 3, we can
easily decide whether (G,n) is a feasible instance of Min Anonymous-Edge-
Rotation: if for G ∈ G(n,m) the fraction 2m

n is not an integer, (G,n) is not a
feasible input.

For a feasible input (G,n), the result is based on Algorithm 1 and its cor-
rectness follows from Lemmas 7 and 8.

Obviously, the algorithm runs in polynomial time. ��

Degree-Anonymous Graphs and Edge Rotations 255

Input : A graph G = (V, E)

Output: A sequence S of edge rotations if 2|E|
|V | is an integer

NO otherwise

S = ∅ ;

d = 2|E|
|V | ;

if if d is not integer then
return NO ;

else
while ∃u, v ∈ V such that dG(u) < d and dG(v) > d do

Let w ∈ N (v) \ N (u) ;
E = E \ {vw};
E = E ∪ {uw};
S = S ∪ {(wv, wu)};

end

end

Algorithm 1: Algorithm for k = |V |

8 Conclusion

In this paper we initiate the study of the complexity of Min Anonymous-Edge-
Rotation problem in which the task is to transform a given graph to a k-degree
anonymous graph using the minimum number of edge rotations. The problem
doesn’t have a solution for all graphs and all possible values of k, but our initial
feasibility study already covers the majority of instances rotations. The problem
doesn’t have a solution for all graphs and all possible values of k, but our initial
feasibility study already covers the majority of instances. The extensions of these
results are still possible, mainly to find necessary and sufficient conditions for
feasibility.

As we were able to prove NP-hardness in case where the number of vertices
k in each degree class is θ(n), further research could explore stronger hardness
results or cases when k is a constant. Our next research step includes relaxation of
the condition on the number of the edges in the presented 2-approximation algo-
rithm as well as extension of the graph classes in which the Min Anonymous-
Edge-Rotation problem can be solved in polynomial time.

References

1. Bazgan, C., Bredereck, R., Hartung, S., Nichterlein, A., Woeginger, G.J.: Find-
ing large degree-anonymous subgraphs is hard. Theor. Comput. Sci. 622, 90–110
(2016)

2. Bredereck, Robert., Froese, Vincent., Hartung, Sepp., Nichterlein, André., Nieder-
meier, Rolf, Talmon, Nimrod: The complexity of degree anonymization by vertex
addition. In: Gu, Qianping, Hell, Pavol, Yang, Boting (eds.) AAIM 2014. LNCS,
vol. 8546, pp. 44–55. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07956-1 5

https://doi.org/10.1007/978-3-319-07956-1_5
https://doi.org/10.1007/978-3-319-07956-1_5

256 C. Bazgan et al.

3. Chartrand, G., Gavlas, H., Johnson, H.H.M.A.: Rotation and jump distances
between graphs. Discussiones Mathematicae Graph Theory 17, 285–300 (1997)

4. Chartrand, G., Saba, F., Zou, H.B.: Edge rotations and distance between graphs.
Časopis pro pěstováńı matematiky 110(1), 87–91 (1985)

5. Chester, S., Kapron, B.M., Ramesh, G., Srivastava, G., Thomo, A., Venkatesh,
S.: Why waldo befriended the dummy? k-anonymization of social networks with
pseudo-nodes. Social Netw. Analys. Mining 3(3), 381–399 (2013)

6. Chester, S., Kapron, B.M., Srivastava, G., Venkatesh, S.: Complexity of social
network anonymization. Social Netw. Analys. Mining 3(2), 151–166 (2013)

7. Erdos, P., Gallai, T.: Gráfok elóırt fokú pontokkal (graphs with points of prescribed
degrees, in Hungarian). Mat. Lapok 11, 264–274 (1961)

8. Faudree, R.J., Schelp, R.H., Lesniak, L., Gyárfás, A., Lehel, J.: On the rotation
distance of graphs. Discrete Math. 126(1–3), 121–135 (1994)

9. Fung, B., Wang, K., Chen, R., Yu, P.: Privacy-preserving data publishing: a survey
of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San
Francisco (1979)

11. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a
linear graph. i. J. Soc. Ind. Appl. Math. 10(3), 496–506 (1962)

12. Hartung, S., Hoffmann, C., Nichterlein, A.: Improved upper and lower bound
heuristics for degree anonymization in social networks. In: Gudmundsson, J., Kata-
jainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 376–387. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07959-2 32

13. Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complexity
analysis of degree anonymization in graphs. Inf. Comput. 243, 249–262 (2015)

14. Jarrett, E.B.: Edge rotation and edge slide distance graphs. Comput. Math. Appl.
34(11), 81–87 (1997)

15. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD,
pp. 93–106. ACM (2008)

16. Salas, J., Torra, V.: Graphic sequences, distances and k-degree anonymity. Discrete
Appl. Math. 188, 25–31 (2015)

17. Tomescu, I.: Problems in combinatorics and graph theory. Wiley-Interscience Series
Discrete Math. 212–213 (1961)

18. Wu, X., Ying, X., Liu, K., Chen, L.: A survey of privacy-preservation of graphs and
social networks. In: Aggarwal, C., Wang, H. (eds.) Managing and Mining Graph
Data. Advances in Database Systems, vol. 40, pp. 421–453. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-1-4419-6045-0 14

https://doi.org/10.1007/978-3-319-07959-2_32
https://doi.org/10.1007/978-1-4419-6045-0_14

The Small Set Vertex Expansion Problem

Soumen Maity(B)

Indian Institute of Science Education and Research, Pune 411008, India
soumen@iiserpune.ac.in

Abstract. Given a graph G = (V, E), the vertex expansion of a set

S ⊂ V is defined as ΦV (S) = |N(S)|
|S| . In the Small Set Vertex Expan-

sion (SSVE) problem, we are given a graph G = (V, E) and a positive

integer k ≤ |V (G)|
2

, the goal is to return a set S ⊂ V (G) of k nodes min-

imizing the vertex expansion ΦV (S) = |N(S)|
k

; equivalently minimizing
|N(S)|. SSVE has not been as well studied as its edge-based counterpart
Small Set Expansion (SSE). SSE, and SSVE to a less extend, have
been studied due to their connection to other hard problems including
the Unique Games Conjecture and Graph Colouring. Using the hard-
ness of Minimum k-Union problem, we prove that Small Set Vertex
Expansion problem is NP-complete. We enhance our understanding of
the problem from the viewpoint of parameterized complexity by show-
ing that (1) the problem is W[1]-hard when parameterized by k, (2)
the problem is fixed-parameter tractable (FPT) when parameterized by
the neighbourhood diversity nd, and (3) it is fixed-parameter tractable
(FPT) when parameterized by treewidth tw of the input graph.

Keywords: Parameterized complexity · FPT · W[1]-hard ·
Treewidth · Neighbourhood diversity

1 Introduction

Covering problems are very well-studied in theoretical computer science. Given
a set of elements {1, 2, ..., n} (called the universe) and a collection S of m sets
whose union equals the universe, the Set Cover problem is to identify the
smallest sub-collection of S whose union equals the universe, and Max k-Cover
is the problem of selecting k sets from S such that their union has maximum
cardinality. Max k-Cover is known to admit a (1− 1

e)-approximation algorithm
(which is also known to be tight) [5]. A natural variation of Max k-Cover
problem is instead of covering maximum number of elements, the problem is
to cover minimum number of elements of the universe by the union of k sets.
Minimum k-Union [2,16] is one of such problems, where we are given a family
of sets within a finite universe and an integer k and we are asked to choose k
sets from this family in order to minimise the number of elements of universe

The author’s research was supported in part by the Science and Engineering Research
Board (SERB), Govt. of India, under Sanction Order No. MTR/2018/001025.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 257–269, 2020.
https://doi.org/10.1007/978-3-030-64843-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_18

258 S. Maity

that are covered. Minimum k-Union has not been studied until recently, when
an O(

√
m)-approximation algorithm is given by Eden Chlamtác et al. [3], where

m is the number of sets in S. Given an instance of Minimum k-Union, we can
construct the obvious bipartite graph in which the left side represents sets and
the right side represents elements and there is an edge between a set node and an
element node if the set contains the element. Then Minimum k-Union is clearly
equivalent to the problem of choosing k left nodes in order to minimize the
size of their neighbours. This is known as the Small Set Bipartite Vertex
Expansion (SSBVE) problem [2]. This is the bipartite version of the Small Set
Vertex Expansion, in which we are given an arbitrary graph and are asked
to choose a set S of k nodes minimizing the vertex expansion ΦV (S) = |N(S)|.
Small Set Vertex Expansion problem is vertex version of the Small Set
Expansion (SSE) problem, in which we are asked to choose a set of k nodes to
minimize the number of edges with exactly one endpoint in the set. SSVE has not
been as well studied as SSE, but has recently received significant attention [12].
SSE, and SSVE to a less extend, have been studied due to their connection to
other hard problems including the Unique Games Conjecture [8]. These problems
recently gained interest due to their connection to obtain sub-exponential time,
constant factor approximation algorithm for may combinatorial problems like
Sparsest Set and Graph Colouring [1].

A problem with input size n and parameter k is said to be ‘fixed-parameter
tractable (FPT)’ if it has an algorithm that runs in time O(f(k)nc), where f is
some (usually computable) function, and c is a constant that does not depend
on k or n. What makes the theory more interesting is a hierarchy of intractable
parameterized problem classes above FPT which helps in distinguishing those
problems that are not fixed parameter tractable. For the standard concepts in
parameterized complexity, see the recent textbook by Cygan et al. [4].

Our main results are the following:

– The Small Set Vertex Expansion (SSVE) problem is NP-complete.
– SSVE is W[1]-hard when parameterized by k.
– SSVE is fixed-parameter tractable (FPT) when parameterized by neighbour-

hood diversity of the input graph.
– SSVE is FPT when parameterized by treewidth of the input graph.

Related Results: Despite being a very natural problem, Minimum k-
Union/ SSBVE has received surprisingly little attention. Chlamtác et al.
[3] gave an O(

√
n)-approximation algorithm for SSBVE and equivalently

O(
√

m)-approximation algorithm for Minimum k-Union problem. Louis and
Makarychev [12] studied approximation algorithms for hypergraph small set
expansion and small set vertex expansion problem. They provided a polyloga-
rithmic approximation when k is very close to n, namely, k ≥ n

ploylog(n) . To the
best of our knowledge, the parameterized complexity of SSVE and SSE problems
have not been studied before. Raghavendra and Steurer [13] have investigated the
connection between Graph Expansion and the Unique Games Conjectures.
They proved that a simple decision version of the problem of approximately
small set expansion reduces to Unique Games.

The Small Set Vertex Expansion Problem 259

2 Preliminaries

The vertex and edge expansion in graphs have been a subject of intense study
with applications in almost all branches of theoretical computer science. From an
algorithmic standpoint SSVE and SSE are fundamental optimization problems
with numerous applications. The computational complexity of computing and
approximating expansion is still not very well understood. Throughout this arti-
cle, G = (V,E) denotes a finite, simple and undirected graph of order |V (G)| = n.
For a vertex v ∈ V , we use N(v) = {u : (u, v) ∈ E(G)} to denote the (open)
neighbourhood of vertex v in G, and N [v] = NG(v) ∪ {v} to denote the closed
neighbourhood of v. The degree d(v) of a vertex v ∈ V (G) is |N(v)|. For a sub-
set S ⊆ V (G), we define its closed neighbourhood as N [S] =

⋃
v∈S N [v] and its

open neighbourhood as N(S) = N [S] \ S. Given a graph G = (V,E), the vertex
expansion of a set S ⊂ V is defined as

ΦV (S) =
|N(S)|

|S| .

Definition 1. [2] In the Small Set Vertex Expansion (SSVE) problem, we
are given a graph G = (V,E) and an integer k ≤ |V |

2 . The goal is to return a
subset S ⊂ V with |S| = k minimizing the vertex expansion ΦV (S) = |N(S)|

k ;
equivalently minimizing |N(S)|.
The edge expansion of a subset of vertices S ⊂ V in a graph G measures the
fraction of edges that leaves S. For simplicity we consider regular graphs in
the definition of Small Set Expansion (SSE). In a d-regular graph, the edge
expansion Φ(S) of a subset S ⊂ V is defined as

Φ(S) =
|E(S, V \ S)|

d|S|
where E(S, V \ S) denotes the set of edges with one endpoint in S and other
endpoint in V \ S.

Definition 2. [2] In the Small Set Expansion (SSE) problem, we are given
a d-regular graph G = (V,E) and an integer k ≤ |V |

2 . The goal is to return a
subset S ⊂ V with |S| = k minimizing the edge expansion Φ(S) = |E(S,V \S)|

kd ;
equivalently minimizing |E(S, V \ S)|.
Among the two notions of expansion, this work will concern with vertex expan-
sion. The decision version of the problem studied in this paper is formalized as
follows:

Small Set Vertex Expansion
Input: An undirected graph G = (V,E) and two positive integers k ≤ |V |

2 ,
� ≤ |V (G)|.
Question: Is there a set S ⊂ V (G) with |S| = k such that the vertex expan-
sion ΦV (S) = |N(S)| ≤ �?

260 S. Maity

We now recall some graph parameters used in this paper. The graph parameters
we explicitly use in this paper are neighbourhood diversity nd and treewidth tw.
We now review the concept of a tree decomposition, introduced by Robertson
and Seymour in [14].

Definition 3. A tree decomposition of a graph G is a pair (T, {Xt}t∈V (T)),
where T is a tree and each node t of the tree T is assigned a vertex subset
Xt ⊆ V (G), called a bag, such that the following conditions are satisfied:

1. Every vertex of G is in at least one bag.
2. For every edge uv ∈ E(G), there exists a node t ∈ T such that bag Xt contains

both u and v.
3. For every u ∈ V (G), the set {t ∈ V (T) | u ∈ Xt} induces a connected subtree

of T .

Definition 4. The width of a tree decomposition is defined as width(T) =
maxt∈V (T)|Xt|−1 and the treewidth tw(G) of a graph G is the minimum width
among all possible tree decomposition of G.

A special type of tree decomposition, known as a nice tree decomposition was
introduced by Kloks [9]. The nodes in such a decomposition can be partitioned
into four types.

Definition 5. A tree decomposition (T, {Xt}t∈V (T)) is said to be nice tree
decomposition if the following conditions are satisfied:

1. All bags correspond to leaves are empty. One of the leaves is considered as
root node r. Thus Xr = ∅ and Xl = ∅ for each leaf l.

2. There are three types of non-leaf nodes:
– Introduce node: a node t with exactly one child t′ such that Xt =

Xt′ ∪ {v} for some v /∈ Xt′ ; we say that v is introduced at t.
– Forget node: a node t with exactly one child t′ such that Xt = Xt′ \{w}

for some w ∈ Xt′ ; we say that w is forgotten at t.
– Join node: a node with two children t1 and t2 such that Xt = Xt1 = Xt2 .

Note that, by the third property of tree decomposition, a vertex v ∈ V (G) may
be introduced several time, but each vertex is forgotten only once. To control
introduction of edges, sometimes one more type of node is considered in nice
tree decomposition called introduce edge node. An introduce edge node is a node
t, labeled with edge uv ∈ E(G), such that u, v ∈ Xt and Xt = Xt′ , where t′ is
the only child of t. We say that node t introduces edge uv. It is known that if a
graph G admits a tree decomposition of width at most tw, then it also admits a
nice tree decomposition of width at most tw, that has at most O(n · tw) nodes
[4].

The Small Set Vertex Expansion Problem 261

3 Proving Small Set Vertex Expansion is NP-complete

Using the hardness of Minimum k-Union problem, we prove that Small Set
Vertex Expansion problem is NP-complete. We state the decision version of
Minimum k-Union problem.

Definition 6. [2] In Minimum k-Union problem, we are given an universe U =
{1, 2, . . . , n} of n elements and a collection of m sets S ⊆ 2U , as well as two
integers k ≤ m and � ≤ n. Does there exist a collection T ⊆ S with |T | = k such
that | ∪S∈T S| ≤ �?

It is known that Minimum k-Union problem is NP-complete [16]. Now we prove
the following hardness result.

Theorem 1. The Small Set Vertex Expansion problem is NP-complete.

Proof. We first show that Small Set Vertex Expansion problem is in NP.
Given a graph G = (V,E) with n vertices and two integers k ≤ n

2 and � ≤ n, a
certificate could be a set S ⊂ V of size k. We could then check, in polynomial
time, there are k vertices in S, and the vertex expansion ΦV (S) = |N(S)| is less
than or equal to �. We prove the Small Set Vertex Expansion problem is
NP-hard by showing that Minimum k-Union ≤P Small Set Vertex Expan-
sion. Given an instance (U,S, k, �) of Minimum k-Union problem, we construct
a graph H with vertex sets X and Y . The vertices in X = {s1, s2, . . . , sm} cor-
respond to sets in S = {S1, S2, . . . , Sm}; the vertices in Y = {u1, u2, . . . , un} are
the elements in U . We make sj ∈ X adjacent to ui ∈ Y if and only if ui ∈ Sj .
Additionally, for each vertex ui, we add a clique of size n+1, Ki

n+1 and we make
ui adjacent to each vertex in Ki

n+1.
We show that there is a collection of k sets

{
Si1 , Si2 , . . . , Sik

} ⊆ S such
that | ∪k

j=1 Sij | ≤ �, for Minimum k-Union problem if and only if there is
a set S ⊂ V (H) of k ≤ |V (H)|

2 vertices such that |NH(S)| ≤ �, for Small
Set Vertex Expansion problem. Suppose there is a collection of k sets{
Si1 , Si2 , . . . , Sik

} ⊆ S such that | ∪k
j=1 Sij | ≤ �. We choose the vertices

{si1 , si2 , . . . , sik} ⊆ X correspond to sets Si1 , Si2 , . . . , Sik . As the size of the
union of these k sets Si1 , Si2 , . . . , Sik is less or equal to �, the vertex expansion
of {si1 , si2 , . . . , sik} is also at most �. If k > |V (H)|

2 , then S is any size |V (H)|
2

subset of {si1 , si2 , . . . , sik} and it has vertex expansion at most �.
Conversely, suppose there is a subset S ⊆ V (H) of k vertices such that

ΦV (S) ≤ � where � ≤ n. Note that S cannot contain any vertex from Y as each
vertex in Y has at least n + 1 neighbours in H. Similarly S cannot contain any
vertex from Ki

n+1, as each vertex in Ki
n+1 has at least n+1 neighbours in H. Thus

S ⊆ X and let S = {sj1 , sj2 , . . . , sjk}. We consider the k sets Sj1 , Sj2 , . . . , Sjk

correspond to these k vertices. As ΦV (S) = |N(S)| ≤ �, we have | ∪k
i=1 Sji | ≤ �.

This completes the proof.

262 S. Maity

4 W[1]-Hardness Parameterized by k

The input to the decision version of SSVE is a graph G with two integers k ≤ n
2

and � ≤ n, and (G, k, �) is a yes-instance if G has a set S of k vertices such that
the vertex expansion ΦV (S) = |N(S)| ≤ �. In this section we show that SSVE is
W [1]-hard when parameterized by k, via a reduction from Clique.

Theorem 2. The Small Set Vertex Expansion problem is W [1]-hard when
parameterized by k.

Proof. Let (G, k) be an instance of Clique. We construct an instance
(G′, k(k−1)

2 , k) of Small Set Vertex Expansion problem as follows. We con-
struct a graph G′ with vertex sets X and Y , where X = V (G) = {v1, v2, . . . , vn}
and Y = E(G) = {e1, e2, . . . , em}, the edge set of G. We make vi adjacent to ej if
and only if vi is an endpoint of ej . We further add a set P = {p1, p2, . . . , pk2} of
k2 vertices; the vertices in P are adjacent to every element of X and all vertices
in P are pairwise adjacent.

We claim that there is a set S of k(k−1)
2 vertices in G′ with vertex expansion

ΦV (S) = |N(S)| ≤ k if and only if G contains a clique on k vertices. Suppose
first that G contains a clique on k vertices {v1, v2, . . . , vk}; we set S to be the
set of edges belonging to this clique, and notice that in G all endpoints of edges
in S belong to the set {v1, v2, . . . , vk}. Thus the vertex expansion of S in G′ is
exactly {v1, v2, . . . , vk} and ΦV (S) = |N(S)| = k, so we have a yes-instance for
(G′, k(k−1)

2 , k).
Conversely, suppose that G′ contains a set S of k(k−1)

2 vertices such that
ΦV (S) = |N(S)| ≤ k. As d(v) ≥ k + 1 for every vertex v ∈ X ∪ P , we cannot
include any vertex of X or P in the set S. So we conclude that S ⊆ Y is a set of
edges in G. All edges in S belong to the subgraph of G induced by N(S), which
by assumption has at most k vertices. Since |S| = k(k−1)

2 , this is only possible if
|N(S)| = k and N(S) in fact induces a clique in G, as required.

5 FPT Algorithm Parameterized by Neighbourhood
Diversity

In this section, we present an FPT algorithm for the Small Set Vertex
Expansion problem parameterized by neighbourhood diversity. We say two
vertices u and v have the same type if and only if N(u) \ {v} = N(v) \ {u}.
The relation of having the same type is an equivalence relation. The idea of
neighbourhood diversity is based on this type structure.

Definition 7. [10] The neighbourhood diversity of a graph G = (V,E), denoted
by nd(G), is the least integer w for which we can partition the set V of vertices
into w classes, such that all vertices in each class have the same type.

If neighbourhood diversity of a graph is bounded by an integer w, then there
exists a partition {C1, C2, . . . , Cw} of V (G) into w type classes. It is known

The Small Set Vertex Expansion Problem 263

that such a minimum partition can be found in linear time using fast modular
decomposition algorithms [15]. Notice that each type class could either be a
clique or an independent set by definition. For algorithmic purpose it is often
useful to consider a type graph H of graph G, where each vertex of H is a type
class in G, and two vertices Ci and Cj are adjacent iff there is complete bipartite
clique between these type classes in G. It is not difficult to see that there will be
either a complete bipartite clique or no edges between any two type classes. The
key property of graphs of bounded neighbourhood diversity is that their type
graphs have bounded size. In this section, we prove the following theorem:

Theorem 3. The Small Set Vertex Expansion problem is fixed-parameter
tractable when parameterized by the neighbourhood diversity.

Given a graph G = (V,E) with neighbourhood diversity nd(G) ≤ w, we
first find a partition of the vertices into at most w type classes {C1, . . . , Cw}.
Next we guess a set of type classes Ci for which Ci ∩ S �= ∅, where S is a set
with k vertices such that the vertex expansion ΦV (S) = |N(S)| is minimum. Let
P ⊆ {C1, . . . , Cw} be a collection of type classes for which Ci ∩ S �= ∅. There
are at most 2w candidates for P. Finally we reduce the problem of finding a set
S that minimizes the vertex expansion ΦV (S) to 2w integer linear programming
(ILP) optimizations with at most w variables in each ILP optimization. Since ILP
optimization is fixed parameter tractable when parameterized by the number of
variables [6], we conclude that our problem is fixed parameter tractable when
parameterized by the neighbourhood diversity w.

ILP Formulation: For each Ci, we associate a variable xi that indicates |S ∩
Ci| = xi. As the vertices in Ci have the same neighbourhood, the variables xi

determine S uniquely, up to isomorphism. We define

r(Ci) =

{
1 if Ci is adjacent to some Cj ∈ P; i �= j

0 otherwise

Let C be a subset of P consisting of all type classes which are cliques; I = P \ C
and R = {C1, . . . , Cw} \ P. Given a P ⊆ {C1, . . . , Cw}, our goal is to minimize

ΦV (S) = |N(S)| =
∑

Ci∈R
r(Ci)|Ci| +

∑

Ci∈C
(|Ci| − xi) +

∑

Ci∈I
r(Ci)(|Ci| − xi) (1)

under the condition xi ∈ {1, . . . , |Ci|} for all i : Ci ∈ P and xi = 0 for all
i : Ci ∈ R and the additional conditions described below. Note that if Ci ∈ R
and it is adjacent to some type class in P, then Ci is contained in N(S); if
Ci ∈ C then |Ci| − xi vertices of Ci are in N(S); finally if Ci ∈ I and it is
adjacent to some type class in P, then |Ci| − xi vertices of Ci are in N(S). It
is easy to see that minimizing the expansion ΦV (S) in Eq. 1 is equivalent to
maximizing

∑
Ci∈C xi +

∑
Ci∈I r(Ci)xi. Given a P ⊆ {C1, . . . , Cw}, we present

ILP formulation of SSVE problem as follows:

264 S. Maity

Maximize
∑

Ci∈C
xi +

∑

Ci∈I
r(Ci)xi

Subject to
∑

xi = k

xi ∈ {1, . . . , |Ci|} for all i : Ci ∈ C ∪ I

Solving the ILP: Lenstra [11] showed that the feasibility version of p-ILP
is FPT with running time doubly exponential in p, where p is the number of
variables. Later, Kannan [7] designed an algorithm for p-ILP running in time
pO(p). In our algorithm, we need the optimization version of p-ILP rather than
the feasibility version. We state the minimization version of p-ILP as presented
by Fellows et al. [6].

p-Variable Integer Linear Programming Optimization (p-Opt-ILP):
Let matrices A ∈ Zm×p, b ∈ Zp×1 and c ∈ Z1×p be given. We want to find a
vector x ∈ Zp×1 that minimizes the objective function c · x and satisfies the m
inequalities, that is, A ·x ≥ b. The number of variables p is the parameter. Then
they showed the following:

Lemma 1. [6] p-Opt-ILP can be solved using O(p2.5p+o(p) ·L · log(MN)) arith-
metic operations and space polynomial in L. Here L is the number of bits in the
input, N is the maximum absolute value any variable can take, and M is an
upper bound on the absolute value of the minimum taken by the objective func-
tion.

In the formulation for SSVE problem, we have at most w variables. The value
of objective function is bounded by n and the value of any variable in the integer
linear programming is also bounded by n. The constraints can be represented
using O(w2 log n) bits. Lemma 1 implies that we can solve the problem with the
guess P in FPT time. There are at most 2w choices for P, and the ILP formula
for a guess can be solved in FPT time. Thus Theorem 3 holds.

6 FPT Algorithm Parameterized by Treewidth

This section presents an FPT algorithm using dynamic programming for the
Small Set Vertex Expansion problem parameterized by treewidth. Given a
graph G = (V,E), an integer k ≤ n

2 and its nice tree decomposition (T,Xt : t ∈
V (T)) of width at most tw, subproblems will be defined on Gt = (Vt, Et) where
Vt is the union of all bags present in subtree of T rooted at t, including Xt and
Et is the set of edges e introduced in the subtree rooted at t. We define a colour
function f : Xt �→ {0, 1, 1̂} that assigns three different colours to the vertices of
Xt. The meanings of three different colours are given below:

The Small Set Vertex Expansion Problem 265

1 (black vertices): all black vertices are contained in set S whose vertex expansion
ΦV (S) we wish to calculate in Gt.
0 (white vertices): white vertices are adjacent to black vertices, these vertices
are in the expansion N(S) in Gt.
1̂ (gray vertices): gray vertices are neither in S nor in N(S).

Now we introduce some notations. Let X ⊆ V and consider a colouring
f : X �→ {1, 0, 1̂}. For α ∈ {1, 0, 1̂} and v ∈ V (G) a new colouring fv �→α :
X ∪ {v} �→ {1, 0, 1̂} is defined as follows:

fv �→α(x) =

{
f(x) when x �= v

α when x = v

Let f be a colouring of X, then the notation f|Y is used to denote the restriction
of f to Y , where Y ⊆ X.

For a colouring f of Xt and an integer i, a set S ⊆ Vt is said to be compatible
for tuple (t, f, i) if

1. |S| = i,
2. S ∩ Xt = f−1{1} which is the set of vertices of Xt coloured black, and
3. N(S) ∩ Xt = f−1{0}, which is the set of vertices of Xt coloured white.

We call a set S a minimum compatible set for (t, f, i) if its vertex expansion
ΦV (S) = |NVt

(S)| is minimum. We denote by c[t, f, i] the minimum vertex
expansion for (t, f, i), that is, c[t, f, i] equals to |NVt

(S)|, where S is a mini-
mum compatible set for (t, f, i). If no such S exists, then we put c[t, f, i] = ∞
also c[t, f, i < 0] = ∞. Since each vertex in Xt can be coloured with 3 colours
(1, 0, 1̂), the number of possible colouring f of Xt is 3|Xt| and for each colouring
f we vary i from 0 to k. The smallest value of vertex expansion ΦV (S) = |N(S)|
for a set S with k nodes will be c[r, φ, k], where r is the root node of tree decom-
position of G as G = Gr and Xr = ∅. We only show that ΦV (S) can be computed
in the claimed running time in Theorem 4. Corresponding set S can be easily
computed in the same running time by remembering a corresponding set for each
tuple (t, f, i) in the dynamic programming above. Now we present the recursive
formulae for the values of c[t, f, i].

Leaf Node: If t is a leaf node, then the corresponding bag Xt is empty. Hence
the colour function f on Xt is an empty colouring; the number i of vertices
coloured black cannot be greater than zero. Thus we have

c[t, ∅, i] =

{
0 if i = 0
∞ otherwise

Introduce Node: Suppose t is an introduce node with child t′ such that Xt =
Xt′ ∪{v} for some v /∈ Xt′ . The introduce node introduces the vertex v but does
not introduce the edges incident to v in Gt. So when v is introduced by node
t it is an isolated vertex in Gt. Vertex v cannot be coloured white 0; as it is

266 S. Maity

isolated and it cannot be neighbour of any black vertex. Hence if f(v) = 0, then
c[t, f, i] = ∞. When f(v) = 1, v is contained in S. As v is an isolated vertex, it
does not contribute towards the size of NVt

(S), hence c[t, f, i] = c[t′, f|X
t′ , i− 1].

When f(v) = 1̂, v does not contribute towards the size of NVt
(S). Here the

sets compatible for (t′, f|X
t′ , i) are also compatible for (t, f, i). So, c[t, f, i] =

c[t′, f|X
t′ , i]. Combining all the cases together, we get

c[t, f, i] =

⎧
⎪⎨

⎪⎩

∞ if f(v) = 0
c[t′, f|X

t′ , i − 1] if f(v) = 1

c[t′, f|X
t′ , i] if f(v) = 1̂

Introduce Edge Node: Let t be an introduce edge node that introduces the
edge (u, v), let t′ be the child of t. Thus Xt = Xt′ ; the edge (u, v) is not there in
Gt′ , but it is there in Gt. Let f be a colouring of Xt. We consider the following
cases:

– Suppose f(u) = 1 and f(v) = 1̂. This means u ∈ S and v is non-adjacent to
black vertices in Gt. But u and v are adjacent in Gt. Thus c[t, f, i] = ∞. The
same conclusion can be drawn when v is coloured black and u is coloured
gray.

– Suppose f(u) = 1 and f(v) = 0. This means u ∈ S and v ∈ N(S) in Gt. In
order to get a solution for (t, f, i), we consider two cases.
Case 1: While considering precomputed solution for t′ we can relax the colour
of v from white to gray. Then the minimum vertex expansion for (t, f, i)
is one more than the minimum vertex expansion for (t′, fv→1̂, i), that is,
c[t, f, i] = 1 + c[t′, fv �→1̂, i].
Case 2: While considering precomputed solution for t′ we keep the colour of
v be white. Then the minimum vertex expansion for (t, f, i) is equal to the
minimum vertex expansion for (t′, f, i), that is, c[t, f, i] = c[t′, f, i].
Combining above two cases we get

c[t, f, i] = min
{

c[t′, f, i], 1 + c[t′, fv �→1̂, i]
}

The same conclusion can be drawn when v is coloured black and u is coloured
white.

– Other colour combinations of u and v do not affect the size of N(S) or do not
contradict the definition of campatability. So the compatible sets for (t′, f, i)
are also compatible for (t, f, i) and hence c[t, f, i] = c[t′, f, i].

Combining all the cases together, we get

c[t, f, i] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞ if (f(u), f(v)) = (1̂, 1)
∞ if (f(u), f(v)) = (1, 1̂)
min{c[t′, f, i], 1 + c[t′, fv �→1̂, i]} if (f(u), f(v)) = (1, 0)
min{c[t′, f, i], 1 + c[t′, fu�→1̂, i]} if (f(u), f(v)) = (0, 1)
c[t′, f, i] otherwise

The Small Set Vertex Expansion Problem 267

Forget Node: Let t be a forget node with the child t′ such that Xt = Xt′ \ {w}
for some vertex w ∈ Xt′ . Here the bag Xt forgets the vertex w. At this stage
we decides the final colour of the vertex w. We observe that Gt′ = Gt. The
compatible sets for (t′, fw �→1, i), (t′, fw �→0, i), (t′, fw �→1̂, i) are also compatible for
(t, f, i). On the other hand compatible sets for (t, f, i) are also compatible for
(t′, fw �→1, i) if w ∈ S, for (t′, fw �→0, i) if w ∈ N(S) or for (t′, fw �→1̂, i) if w /∈ N [S].
Hence

c[t, f, i] = min
{

c[t′, fw �→1, i], c[t′, fw �→0, i], c[t′, fw �→1̂, i]
}

Join Node: Let t be a join node with children t1 and t2, such that Xt = Xt1 =
Xt2 . Let f be a colouring of Xt. We say that colouring f1 of Xt1 and f2 of Xt2

are consistent for colouring f of Xt, if the following conditions are true for each
v ∈ Xt:

1. f(v) = 1 if and only if f1(v) = f2(v) = 1,
2. f(v) = 1̂ if and only if f1(v) = f2(v) = 1̂,
3. f(v) = 0 if and only if (f1(v), f2(v)) ∈ {(0, 1̂), (1̂, 0), (0, 0)}.

Let f be a colouring of Xt; f1 and f2 be two colouring of Xt1 and Xt2 respectively
consistent with f . Suppose S1 is a compatible set for (t1, f1, i1) and S2 is a
compatible set for (t2, f2, i2), where |S1| = i1 and |S2| = i2. Set S = S1 ∪ S2,
clearly |S| = |S1|+ |S2|−|f−1{1}|. It is easy to see that S is a compatible set for
(t, f, i), where i = i1 + i2 − |f−1{1}|. According to Condition 3 in the definition
of consistent function, each v ∈ Xt that is white in f , we make it white either
in f1, f2 or in both f1 and f2. Consequently, we have the following recursive
formula:

c[t, f, i] = min
f1,f2

{

min
i1,i2 : i=i1+i2−|f−1{1}|

{
c[t1, f1, i1] + c[t2, f2, i2] − αf1,f2

}
}

,

where αf1,f2 = |{v ∈ Xt | f1(v) = f2(v) = 0}|.
We now analyse the running time of the algorithm. We compute all entries

c[t, f, i] in a bottom-up manner. Clearly, the time needed to process each leaf
node, introduce vertex node, introduce edge node or forget node is 3tw+1 · kO(1)

assuming that the entries for the children of t are already computed. The com-
putation of c[t, f, i] for join node takes more time and it can be done as fol-
lows. If a pair (f1, f2) is consistent with f , then for every v ∈ Xt, we have
(f(v), f1(v), f1(v)) ∈ {(1, 1, 1), (1̂, 1̂, 1̂), (0, 0, 0), (0, 0, 1̂), (0, 1̂, 0)}. Hence there
are exactly 5|Xt| triples of colouring (f, f1, f2) such that f1 and f2 are consistent
with f , since for every vertex v, we have 5 possibilities for (f(v), f1(v), f2(v)). In
order to compute c(t, f, i), we iterate through all consistent pairs (f1, f2); then
for each considered triple (f, f1, f2) we vary i1 and i2 from 0 to k such that
i = i1 + i2 − |f−1{1}|. As |Xt| ≤ tw + 1, the time needed to process each join
node is 5tw+1kO(1). Since we assume that the number of nodes in a nice tree
decomposition is O(n · tw), we have the following theorem.

268 S. Maity

Theorem 4. Given an n-vertex graph G and its nice tree decomposition of
width at most tw, the Small Set Vertex Expansion problem can be solved
in O(5twn) time.

7 Conclusion

In this work we proved that the Small Set Vertex Expansion problem is
W[1]-hard when parameterized by k, the number of vertices in S; it is FPT
when parameterized neighbourhood diversity; and the problem is FPT when
parameterized by treewidth of the input graph. The parameterized complexity
of the Small Set Vertex Expansion problem remains unsettle when param-
eterized by k + �, and when parameterized by other important structural graph
parameters like clique-width, modular width and treedepth.

Acknowledgement. We are grateful to Dr. Kitty Meeks, University of Glasgow, for
useful discussions and her comments on the proof of Theorem 2.

References

1. Arora, S., Ge, R.: New tools for graph coloring. In: Goldberg, L.A., Jansen, K.,
Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM -2011. LNCS, vol. 6845, pp.
1–12. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22935-0 1

2. Chlamtác, E., Dinitz, M., Makarychev, Y.: Minimizing the union: Tight approxi-
mations for small set bipartite vertex expansion. ArXiv, abs/1611.07866 (2017)

3. Chlamtáč, E., Dinitz, M., Konrad, C., Kortsarz, G., Rabanca, G.: The densest
k-subhypergraph problem. SIAM J. Discrete Math. 32(2), 1458–1477 (2018)

4. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3 15

5. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

6. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0 28

7. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

8. Khot, S.A., Vishnoi, N.K.: The unique games conjecture, integrality gap for cut
problems and embeddability of negative type metrics into l/sub 1/. In: 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 53–62
(2005)

9. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://
doi.org/10.1007/BFb0045375

10. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64, 19–37 (2012)

11. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

12. Louis, A., Makarychev, Y.: Approximation algorithms for hypergraph small-set
expansion and small-set vertex expansion. Theory Comput. 12(17), 1–25 (2016)

https://doi.org/10.1007/978-3-642-22935-0_1
https://doi.org/10.1007/978-3-319-21275-3_15
https://doi.org/10.1007/978-3-319-21275-3_15
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375

The Small Set Vertex Expansion Problem 269

13. Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture.
In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing,
STOC 2010, pp. 755–764. Association for Computing Machinery, New York (2010)

14. Robertson, N., Seymour, P.: Graph minors. iii. planar tree-width. J. Comb. Theory
Ser. B 36(1), 49–64 (1984)

15. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decom-
position via recursive factorizing permutations. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70575-8 52

16. Vinterbo, S.A.: A Note on the Hardness of the k-Ambiguity Problem. Technical
report, Harvard Medical School, Boston, MA, USA, 06 2002

https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52

Complexity and Logic

On Unit Read-Once Resolutions
and Copy Complexity

P. Wojciechowski and K. Subramani(B)

LDCSEE, West Virginia University, Morgantown, WV, USA
pwojciec@mix.wvu.edu, k.subramani@mail.wvu.edu

Abstract. In this paper, we discuss the copy complexity of unit resolu-
tion with respect to Horn formulas. A Horn formula is a boolean formula
in conjunctive normal form (CNF) with at most one positive literal per
clause. Horn formulas find applications in a number of domains such
as program verification and logic programming. Resolution as a proof
system for boolean formulas is both sound and complete. However, reso-
lution is considered an inefficient proof system when compared to other
stronger proof systems for boolean formulas. Despite this inefficiency, the
simple nature of resolution makes it an integral part of several theorem
provers. Unit resolution is a restricted form of resolution in which each
resolution step needs to use a clause with only one literal (unit literal
clause). While not complete for general CNF formulas, unit resolution
is complete for Horn formulas. A read-once resolution (ROR) refutation
is a refutation in which each clause (input or derived) may be used at
most once in the derivation of a refutation. As with unit resolution, ROR
refutation is incomplete in general and complete for Horn clauses. This
paper focuses on a combination of unit resolution and read-once reso-
lution called Unit read-once resolution (UROR). UROR is incomplete
for Horn clauses. In this paper, we study the copy complexity problem
in Horn formulas under UROR. Briefly, the copy complexity of a for-
mula under UROR is the smallest number k such that replicating each
clause k times guarantees the existence of a UROR refutation. This paper
focuses on two problems related to the copy complexity of unit resolu-
tion. We first relate the copy complexity of unit resolution for Horn
formulas to the copy complexity of the addition rule in the correspond-
ing Horn constraint system. We also examine a form of copy complexity
where we permit replication of derived clauses, in addition to the input
clauses. Finally, we provide a polynomial time algorithm for the problem
of checking if a 2-CNF formula has a UROR refutation.

1 Introduction

In this paper, we discuss the copy complexity of unit resolution with respect
to Horn formulas. A Horn formula is a boolean formula in conjunctive normal

K. Subramani—This research was supported in part by the Air-Force Office of Scien-
tific Research through Grant FA9550-19-1-0177 and in part by the Air-Force Research
Laboratory, Rome through Contract FA8750-17-S-7007.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 273–288, 2020.
https://doi.org/10.1007/978-3-030-64843-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_19

274 P. Wojciechowski and K. Subramani

form (CNF) with at most one positive literal per clause [2]. Unit resolution is a
restricted form of resolution in which each resolution step needs to use a clause
with only one literal. While not complete for general CNF, unit resolution is
complete for Horn formulas. We focus on copy complexity as it relates to Horn
formulas and also present a polynomial time algorithm for the unit read-once
resolution (UROR) problem in 2-CNF formulas.

The primary focus of this paper is copy complexity. It is closely related to
the concept of clause duplication described in [5]. A CNF formula Φ has copy
complexity k if the formula Φ′ formed by taking k copies of each clause φi ∈ Φ
has a read-once refutation. In this paper, we focus on Horn formulas. Note that
Horn formulas always have read-once resolution refutations [2], but don’t always
have unit read-once resolution refutations. Thus, we focus on copy complexity
with respect to unit resolution.

Additionally, we examine a variant of copy complexity which allows for copies
of derived clauses in addition to copies of clauses from the original CNF formula.
We also relate the copy complexity of a Horn formula to the copy complexity of
the corresponding linear system. Finally, we show that the problem of determin-
ing if a 2-CNF formula has a unit read-once resolution refutation can be solved
in polynomial time. This is in contrast to the result from [8] which showed that
the problem of determining if a 2-CNF formula has a read-once resolution (not
necessarily a unit read-once resolution) refutation is NP-complete.

2 Statement of Problems

In this section, we briefly discuss the terms used in this paper. We assume that
the reader is familiar with elementary propositional logic.

Definition 1. A literal is a variable x or its complement ¬x. x is called a
positive literal and ¬x is called a negative literal.

Definition 2. A CNF clause is a disjunction of literals. The empty clause,
which is always false, is denoted as �.
Definition 3. A CNF formula is a conjunction of CNF clauses.

Throughout this paper, we use m to denote the number of clauses in a CNF
formula Φ and n to denote the number of variables. Note that an unsatisfiable
CNF formula Φ is said to be minimal unsatisfiable if removing any clause from
Φ makes Φ satisfiable.

Definition 4. A k-CNF clause is a CNF clause with at most k literals.

Definition 5. A Horn clause is a CNF clause which contains at most one
positive literal.

A clause that is both a k-CNF clause and a Horn clause is called a k-Horn
clause.

On Unit Read-Once Resolutions and Copy Complexity 275

For a single resolution step with parent clauses (α ∨ x) and (¬x ∨ β) with
resolvent (α ∨ β), we write

(α ∨ x), (¬x ∨ β) | 1
RES

(α ∨ β).

The variable x is called the matching or resolution variable. If for initial clauses
α1, . . . , αn, a clause π can be generated by a sequence of resolution steps we
write

α1, . . . , αn |
RES

π.

If a resolution step involves a unit clause, a clause of the form (x) or (¬x),
then it is called a unit resolution step. If a resolution refutation consists of only
unit resolution steps, then it is called a unit resolution refutation.

We now formally define the types of resolution refutation discussed in this
paper.

Definition 6. A read-once resolution refutation is a refutation in which each
clause, π, can be used in only one resolution step. This applies to clauses present
in the original formula and those derived as a result of previous resolution steps.

In a read-once refutation, a clause can be reused if it can be re-derived from
a set of unused input clauses.

More formally, a resolution derivation Φ |
RES

π is a read-once resolution
derivation, if for all resolution steps π1 ∧ π2 | 1

RES
π, we delete one instance of

the clauses π1 and π2 from, and add a copy of the resolvent π to, the current
multi-set of clauses. In other words, if U is the current multi-set of clauses, we
replace U with (U \ {π1, π2}) ∪ {π}.

It is important to note Read-Once resolution is an incomplete refutation
procedure. This means that there exist infeasible CNF formulas that do not have
read-once refutations.

We can similarly define unit read-once resolution.

Definition 7. A unit read-once resolution refutation is a unit resolution refu-
tation in which each clause, π, can be used in only one unit resolution step. This
applies to clauses present in the original formula and those derived as a result
of previous unit resolution steps.

This lets us define the concept of copy complexity with respect to unit read-
once resolution.

Definition 8. A CNF formula Φ has copy complexity at most k, with respect
to unit resolution, if there exists a multi-set of CNF clauses, Φ′ such that:

1. Every clause in Φ appears at most k times in Φ′.
2. Every clause in Φ′ appears in Φ.
3. Φ′ has a unit read-once resolution refutation.

276 P. Wojciechowski and K. Subramani

In this paper, we also deal with the copy complexity of linear constraint
systems that correspond to CNF formulas.

From a CNF formula Φ, we create the system of constraints S(Φ) as described
in [4]. S(Φ) is constructed as follows:

1. For each boolean variable xj ∈ Φ create the variable xj .
2. For each clause φi = (x1 ∨ . . . ∨ xp ∨ ¬y1 ∨ . . . ∨ ¬yr), create the constraint∑p

j=1 xj − ∑r
j=1 yj ≥ 1 − r. Let L(φi) denote the left-hand side of this con-

straint and let R(φi) denote the right hand side of the constraint.

For a set of clauses {φ1, . . . , φm} and non-negative integers ki we write∑m
i=1 ki ·L(φi) ≥ ∑m

i=1 ki ·R(φi) ≡ 0 ≥ 1, if the constraint obtained by summing
the constraints k1 · S(φ1) though km · S(φm) results in the constraint 0 ≥ 1.

We can now define the concept of constraint-copy complexity.

Definition 9. A CNF formula Φ = {φ1, . . . , φm}, has constraint-copy com-
plexity k, if there exist non-negative integers k1 . . . km such that ki ≤ k for
i = 1 . . . m and

m∑

i=1

ki · L(φi) ≥
m∑

i=1

ki · R(φi)≡ 0 ≥ 1.

Note that, in Definition 9, a limit is placed upon the multiplier associated
with each constraint. This limits the number of times each constraint can be
used in a refutation. Thus, this definition effectively extends the notion of copy
complexity to systems of linear constraints.

The problem of determining if a read-once resolution refutation or unit read-
once resolution refutation exists is only interesting for unsatisfiable formulas.
Thus, for all of the problems studied in this paper, we assume that the formula
provided is unsatisfiable. For both the formula types considered, Horn [2] and
2-CNF [12], the problems of determining satisfiability are in P.

3 Motivation and Related Work

In this paper, we focus on the copy complexity of Horn formulas with respect to
unit resolution. This is similar to the concept of clause duplication introduced
in [5]. That paper examined read-once refutations of CNF formulas under two
inference rules, resolution and duplication. The added inference rule removes a
clause from the formula only two add two copies of that clause. [5] classified
CNF formulas based on the number of times the duplication rule needed to be
used in a read-once refutation. The class R(k) was the set of CNF formulas with
a read-once refutation using the duplication rule at most k times. Note that this
differs from the concept of copy complexity in the following ways:

1. The duplication rule can be applied to derived clauses as well as clauses from
the original system. In this way, the concept of clause duplication is closer to
derived copy complexity than it is to regular copy complexity.

On Unit Read-Once Resolutions and Copy Complexity 277

2. The class R(k) is interested in the total number of clauses copied instead of
the number of times any particular clause is used.

[5] showed that for general CNF formulas, the class R(0) is NP-complete. Note
that R(0) is the set of CNF formulas with a read-once resolution refutation. The
paper also showed that the class R(k)\R(k−1) is DP-complete for any positive
integer k.

Resolution as a proof system is widely used in the study of proof complexity.
This is due to the simple nature of resolution based proofs [1]. In [15], Tseitin
showed that a restricted form of resolution had an exponential lower bound. This
result was improved in [3]. In that paper, it was established that CNF formulas
have exponentially long refutations even without the restrictions imposed by
[15]. This was accomplished by showing that any resolution based refutation
of the pigeonhole principle is necessarily exponentially long in the size of the
input. Additional lower bounds on the length of resolution proofs are discussed
in [1,13]. The issues of copy complexity and read-once refutation in Horn clauses
have also been discussed in [9]; however, the results in this paper are tangential
in emphasis and scope.

4 The UROR Problem for Horn Formulas

In this section, we explore the problem of finding unit read-once resolution refu-
tations for Horn formulas. If we restrict ourselves to unit resolution refutations
then Horn formulas are no longer guaranteed to have read-once refutations.

Observation 41. For a CNF formula Φ, a unit read-once resolution refutation
of Φ has at most (m − 1) resolution steps, where m is the number of clauses in
the formula.

Proof. Recall that a read-once resolution step is equivalent to removing the two
parent clauses from the formula and adding the resolvent. Thus, each read-once
resolution step effectively reduces the number of clauses in the formula by 1.
Since Φ initially has m clauses, there can be at most (m − 1) such resolution
steps.
�

It was shown in [10] that the UROR problem for Horn formulas is NP-
complete.

We now provide an alternative proof that the UROR problem is NP-
complete for Horn formulas. This is done by a reduction from the set packing
problem. This problem is defined as follows:

Definition 10. The set packing problem is the following: Given a set S of
size n, m subsets S1, . . . , Sm of S, and an integer k, does {S1, . . . , Sm} contain
k mutually disjoint sets?

This problem is known to be NP-complete [6].

Theorem 1. The UROR problem for Horn formulas is NP-complete.

278 P. Wojciechowski and K. Subramani

Proof. The number of resolutions in a unit read-once resolution refutation is
limited by the number of clauses in the Horn formula. Thus, a unit read-once
resolution can also be verified in polynomial time. Consequently, the UROR
problem is in NP.

Let us consider an instance of the set packing problem. We construct the
Horn formula Φ as follows.

1. For each xi ∈ S, create the boolean variable xi and the clause (xi).
2. For j = 1 . . . k, create the boolean variable vj .
3. For each subset Sl, l = 1 . . . m create the k clauses

(vj ∨
∨

xi∈Sl

¬xi) j = 1 . . . k.

4. Finally create clause (¬v1 ∨ . . . ∨ ¬vk).

We now show that Φ has a unit read-once resolution refutation if and only if
{S1, . . . , Sm} contains k mutually disjoint sets.

Suppose that {S1, . . . , Sm} does contain k mutually disjoint sets. Without
loss of generality, assume that these are the sets S1, . . . , Sk.

Let us consider the sets of clauses

Φj = {(vj ∨
∨

xi∈Sj

¬xi)} ∪ {(xi) |xi ∈ Sj} j = 1 . . . k.

By the construction of Φ, Φj ⊆ Φ for j = 1 . . . k. Since the sets S1, . . . , Sk are
mutually disjoint, so are the sets Φ1, . . . , Φk.

It is easy to see that the clause (vj) can be derived from the set Φj by
unit read-once resolution. Since this holds for every j = 1 . . . k and since the
sets Φ1, . . . , Φk are mutually disjoint, the set of clauses {(v1), . . . , (vk)} can be
derived from Φ by unit read-once resolution.

Together with the clause (¬v1 ∨ . . .∨¬vk), this set of clauses has a unit read-
once derivation of the empty clause. Thus, Φ has a unit read-once resolution
refutation.

Now suppose that Φ has a unit read-once resolution refutation R. Note that
Φ/{(¬v1∨ . . .∨¬vk)} can be satisfied by setting every variable xi and vj to true.
Thus, R must use the clause (¬v1 ∨ . . . ∨ ¬vk).

To eliminate the clause (¬v1 ∨ . . . ∨ ¬vk), R must either derive the clauses
(v1), . . . , (vk), or reduce (¬v1 ∨ . . . ∨ ¬vk) to a unit clause and then resolve it
with another clause. Without loss of generality, we can assume that this unit
clause is (¬v1). In either case, R must derive the clauses (v2), . . . , (vk).

Thus, we must derive the clauses (v2), . . . , (vk). Let us consider the clause
(vj), 2 ≤ j ≤ k. By the construction of Φ, this clause must be derived from one
of the clauses

(vj ∨
∨

xi∈Sl

¬xi) l = 1 . . . m.

On Unit Read-Once Resolutions and Copy Complexity 279

To perform this derivation, we must use the set of clauses Ψlj = {(xi) |xi ∈ Slj}
for some lj ≤ m.

Since the refutation is read-once, the sets Ψlj for j = 2 . . . k are mutually
disjoint. Thus, the sets Slj for j = 2 . . . k are also mutually disjoint.

If R derives the clause (v1), then, by the construction of Φ, this clause must
be derived from one of the clauses

(v1 ∨
∨

xi∈Sl

¬xi) l = 1 . . . m.

To perform this derivation, we must use the set of clauses Ψl1 = {(xi) |xi ∈ Sl1}
for some l1 ≤ m.

If R reduces (¬v1∨ . . .∨¬vk) to the clause (¬v1), then we must resolve (¬v1)
with one of the clauses

(v1 ∨
∨

xi∈Sl

¬xi) l = 1 . . . m.

This results in the clause (
∨

xi∈Sl1
¬xi) for some l1 ≤ m. To eliminate this clause,

we must use the set of clauses Ψl1 = {(xi) |xi ∈ Sl1}.
Since R is read-once, the set Ψl1 does not share any clauses with the sets

Ψlj , j = 2 . . . k. Thus, the sets Slj for j = 1 . . . k are also mutually disjoint. This
means that {S1, . . . , Sm} contains k mutually disjoint sets.

Thus, Φ has a unit read-once resolution refutation if and only if {S1, . . . , Sm}
contains k mutually disjoint sets. As a result of this, the UROR problem for Horn
formulas is NP-complete.
�

5 Copy Complexity and Horn Constraints

In this section, we relate the copy complexity of Horn formulas to the copy
complexity of the corresponding linear system.

Theorem 2. If Φ has copy complexity k with respect to unit resolution, then Φ
has constraint-copy complexity k.

Proof. Let Φ = {φ1, . . . , φm} be a CNF formula. Assume that Φ has a copy
complexity of k with respect to unit resolution. Thus, we can construct the
multi-set Φ′ where each clause φi appears ki ≤ k times for i = 1 . . . m and Φ′

has a unit read-once resolution refutation. We will show that
∑m

i=1 ki · L(φi) ≥∑m
i=1 ki · R(φi)≡ 0 ≥ 1.
Let (xi)∧(¬xi ∨β) | 1

RES
β be a resolution step in the unit read-once resolu-

tion refutation of φ. Observe that (xi) corresponds to the constraint xi ≥ 1 and
(¬xi ∨ β) corresponds to the constraint L(β) − xi ≥ R(β) − 1. Summing these
constraints results in L(β) ≥ R(β) which is the constraint that corresponds to β.
Thus, each resolution step corresponds to the summation of the corresponding
constraints.

280 P. Wojciechowski and K. Subramani

Since the last resolution step is (xi) ∧ (¬xi) | 1
RES

�, it follows that the last
summation is summing xi ≥ 1 and −xi ≥ 0 to get 0 ≥ 1. Thus, 0 ≥ 1 is the
result of the entire summation and

∑m
i=1 ki · L(φi) ≥ ∑m

i=1 ki · R(φi)≡ 0 ≥ 1 as
desired.
�
Theorem 3. If a CNF formula Φ has constraint-copy complexity k, then Φ has
copy complexity k with respect to unit resolution.

Proof. We will show a stronger result: If
∑m

i=1 ki ·L(φi) ≥ ∑m
i=1 ki ·R(φi)≡ 0 ≥ 1

for some coefficients ki, i = 1 . . . m, then Φ has a unit resolution refutation using
ki copies of the clause φi. The theorem follows immediately from this.

Let K =
∑m

i=1 ki, we will obtain the desired result by induction on K.
If K = 2, then Φ must have two clauses with k1 = k2 = 1. Thus, Φ =

(x) ∧ (¬x). This formula obviously has a unit read-once resolution refutation.
Now assume that the desired result holds for all formulas Φ for which there

exists a set of coefficients such that K = h.
Let Φ be a formula with coefficients ki such that K = h + 1. Let Pos(φi)

be the number of positive literals in clause φi and let Neg(φi) be the number of
negative literals.

Since R(φi) = 1 − Neg(φi), we have that

m∑

i=1

ki · L(φi) ≥
m∑

i=1

ki · (1 − Neg(φi)) ≡ 0 ≥ 1.

Since
∑m

i=1 ki · L(φi) = 0, we must have that the total number of negative
literals is equal to the total number of positive literals. This means that

∑m
i=1 ki ·

Neg(φi) =
∑m

i=1 ki · Pos(φi). Thus, we have the following:

2 ·
(

m∑

i=1

ki · (1 − Neg(φi))

)

= 2 ·
m∑

i=1

ki −
m∑

i=1

ki · Neg(φi) −
m∑

i=1

ki · Pos(φi)

= 2
m∑

i=1

ki −
m∑

i=1

ki · (Neg(φi) + Pos(φi))

= 2
m∑

i=1

ki −
m∑

i=1

ki · |φi| =
m∑

i=1

ki · (2 − |φi|).

We want this sum to be 2. The only way for this sum to be positive is if there
exists a clause such that |φi| = 1. Thus, Φ must have a unit clause. Let (λ) be
that unit clause. Thus we have that Φ is of the form:

Φ = (λ), (¬λ ∨ α1), . . . , (¬λ ∨ αr), (λ ∨ βr+1), · · · , (λ ∨ βr+s), πr+s+1, . . . , πm.

We can resolve (λ) and (¬λ ∨ α1) to obtain α1. If α1 �∈ Φ, this results in the
formula Φ′ where

Φ′ = (λ), (¬λ ∨ α1), . . . , (¬λ ∨ αr), (λ ∨ βr+1), · · · , (λ ∨ βr+s), πr+s+1, . . . , πm, α1.

On Unit Read-Once Resolutions and Copy Complexity 281

Let us consider the summation
∑m

i=1 ki · L(φi) ≥ ∑m
i=1 ki · R(φi)≡ 0 ≥ 1.

Since addition is commutative, we can assume without loss of generality that
the first addition performed in this summation is

(L(λ) ≥ R(λ)) + (L(¬λ ∨ α1) ≥ R(¬λ ∨ α1)) ≡ (L(α1) ≥ R(α1)) .

Thus, in the summation
∑m

i=1 ki · L(φi) ≥ ∑m
i=1 ki · R(φi)≡ 0 ≥ 1, we can

replace one instance of the constraints L(λ) ≥ R(λ) and L(¬λ∨α1) ≥ R(¬λ∨α1)
with the constraint L(α1) ≥ R(α1).

Thus, for each clause φ′
i ∈ Φ′ we can create the coefficient k′

i such that
∑m+1

i=1 k′
i · L(φ′

i) ≥ ∑m+1
i=1 k′

i · R(φ′
i)≡ 0 ≥ 1. This set of coefficients has the

following properties:

1. k′
0 = k0 − 1 since we have removed an instance of the constraint L(λ) ≥ R(λ)

from the summation.
2. k′

1 = k1−1 since we have removed an instance of the constraint L(¬λ∨α1) ≥
R(¬λ ∨ α1) from the summation.

3. k′
m+1 = 1 since we have added the new constraint L(α1) ≥ R(α1).

4. k′
i = ki for 2 ≤ i ≤ m, since we have not modified the number of times any

other constraint appears in the summation.

Thus, we have

K ′ =
m+1∑

i=1

k′
i = (k0 − 1) + (k1 − 1) +

m∑

i=1

ki + 1 =
m∑

i=1

ki − 1 = K − 1 = h.

By the inductive hypothesis, Φ′ has a unit resolution refutation in which
the clause φ′

i is used k′
i times. We can add the resolution step (λ) ∧ (¬λ ∨

α1) | 1
RES

α1 onto the beginning of this refutation. This results in a unit reso-
lution refutation of Φ where the clause φi is used ki times, as desired.

If α1 ∈ Φ, then there exists a clause πj ∈ Φ such that πj = α1. We can assume
without loss of generality that πm = α1. Thus, the resolution step (λ) ∧ (¬λ ∨
α1) | 1

RES
α1 results in the formula Φ′ = Φ. As before, for each clause φ′

i ∈ Φ′ we
can create the coefficient k′

i such that
∑m

i=1 k′
i · L(φ′

i) ≥ ∑m
i=1 k′

i · R(φ′
i)≡ 0 ≥ 1.

This set of coefficients has the following properties:

1. k′
0 = k0 − 1 since we have removed an instance of the constraint L(λ) ≥ R(λ)

from the summation.
2. k′

1 = k1−1 since we have removed an instance of the constraint L(¬λ∨α1) ≥
R(¬λ ∨ α1) from the summation.

3. k′
m = km + 1 since we have added an instance of the constraint (L(α1) ≥

R(α1)) ≡ (L(πm) ≥ R(πm)).
4. k′

i = ki for 2 ≤ i ≤ m − 1, since we have not modified the number of times
any other constraint appears in the summation.

Thus, we have

K ′ =
m∑

i=1

k′
i = (k0 − 1) + (k1 − 1) +

m−1∑

i=2

ki + (km + 1) =
m∑

i=1

ki − 1 = K − 1 = h.

282 P. Wojciechowski and K. Subramani

By the inductive hypothesis, Φ′ has a unit resolution refutation in which
the clause φ′

i is used k′
i times. We can add the resolution step (λ) ∧ (¬λ ∨

α1) | 1
RES

α1 onto the beginning of this refutation. This results in a unit reso-
lution refutation of Φ where the clause φi is used ki times, as desired.
�

Theorems 2 and 3 imply the following corollaries.

Corollary 1. A CNF formula Φ has a constraint-copy complexity of k, if and
only if Φ has a copy complexity of k with respect to unit resolution.

Corollary 2. A CNF formula Φ has a constraint-copy complexity of 1, if and
only if Φ has a unit read-once resolution refutation.

We now show that for any fixed k, determining if a Horn formula has copy
complexity 2k with respect to unit resolution is NP-complete.

Theorem 4. For any fixed k, determining if a Horn formula has copy complex-
ity 2k with respect to unit resolution is NP-complete.

Proof. This problem is in NP, because k is fixed. We have only to guess coeffi-
cients less than or equal to 2k and to compute the weighted sum of the inequal-
ities of the corresponding constraint system.

The NP-hardness will be shown by induction on k.
For k = 0, the problem is exactly the problem of deciding whether a unit

read-once resolution exists. This problem has been shown to be NP-complete
for Horn formulas [10] (See Theorem 1).

Assume that the problem of determining if a Horn formula has copy com-
plexity 2k with respect to unit resolution is NP-complete.

Let Φ = φ1 ∧ . . . ∧ φm be a Horn formula. In polynomial time, we can
construct a Horn formula Φ′ as follows:

1. For each clause φi ∈ Φ, create the variables yi, zi, and ai.
2. For each clause φi ∈ Φ, add the clauses (yi), (¬yi ∨ zi), (¬yi ∨ ¬zi ∨ ai), and

(¬ai ∨ φi) to Φ′.

Thus, we have Φ′ =
∧

1≤i≤m(yi) ∧ (¬yi ∨ zi) ∧ (¬yi ∨ ¬zi ∨ ai) ∧ (¬ai ∨ φi).
By construction, Φ′ is a Horn formula.
We now show that Φ has a copy complexity of 2k if and only if Φ′ has a copy

complexity of 2k+1.
Assume that Φ has a copy complexity of 2k with respect to unit resolution.

Then, by Corollary 1, there exist coefficients k1, . . . , km ≤ 2k such that:

m∑

i=1

ki · L(φi) ≥
m∑

i=1

ki · R(φi) ≡ 0 ≥ 1.

We construct a set of coefficients for Φ′ as follows:

1. For each clause (yi), create the coefficient ti = 2 · ki.
2. For each clause (¬yi ∨ zi), create the coefficient li = ki.

On Unit Read-Once Resolutions and Copy Complexity 283

3. For each clause (¬yi ∨ ¬zi ∨ ai), create the coefficient pi = ki.
4. For each clause (¬ai ∨ φi), create the coefficient qi = ki.

Then we obtain:
m∑

i=1

[(2 · ki · yi) + ki · (−yi + zi) + ki · (−yi − zi + ai) + ki · (−ai + L(φi))] =

m∑

i=1

ki · L(φi) = 0

and
m∑

i=1

[2 · ki · R(yi) + ki · R(¬yi ∨ zi) + ki · R(¬yi ∨ ¬zi ∨ ai) + ki · R(¬ai ∨ φi)]

=
m∑

i=1

[2 · ki − ki + ki · (R(φi) − 1)] =
m∑

i=1

ki · R(αi) = 1.

Thus, Φ′ has copy complexity 2k+1 with respect to unit resolution.
Now assume that Φ′ has copy complexity 2k+1 with respect to unit resolution.

Thus, there are coefficients ti, li, pi and ki less than or equal to 2k+1 such that:
∑

i

[ti · (yi) + li · (−yi + zi) + pi · (−yi − zi + ai) + ki · (−ai + L(φi))] = 0.

In this summation ai appears positively pi times and negatively ki times, thus
pi = ki. Similarly, zi appears positively li times and negatively pi times, thus
li = pi = ki. We also have that yi appears positively ti times and negatively
li + pi = 2 · ki times, thus ti = 2 · ki.

This means that
∑

i ki · L(φi) = 0 and ki ≤ 2k.
We also have that

1 =
m∑

i=1

[ti · R(yi) + li · R(¬yi ∨ zi) + pi · R(¬yi ∨ ¬zi ∨ ai) + ki · R(¬ai ∨ φi)]

=
m∑

i=1

[2 · ki · R(yi) + ki · R(¬yi ∨ zi) + ki · R(¬yi ∨ ¬zi ∨ ai) + ki · R(¬ai ∨ φi)]

=
m∑

i=1

[2 · ki − ki + ki · (R(φi) − 1)] =
m∑

i=1

ki · R(αi).

Thus, Φ has copy complexity 2k with respect to unit resolution.
�

6 Derived-Copy Complexity

In this section, we study a variant of copy complexity which allows for copies
of derived clauses. This is different from regular copy complexity which allows
only copies of clauses in the original system. We refer to this as derived-copy
complexity.

284 P. Wojciechowski and K. Subramani

Theorem 5. The derived-copy complexity of a Horn formula with m clauses
with respect to unit resolution is at most (m − 1).

Proof. Let Φ be an unsatisfiable Horn formula. Note that adding clauses to
Φ cannot increase the copy complexity. Thus, we can assume without loss of
generality that Φ is minimal unsatisfiable.

First, assume that Φ has m = 2 clauses. Thus, Φ has the form (x)∧ (¬x) and
the derived-copy complexity is 1.

Now assume that every Horn formula with k clauses has derived-copy com-
plexity k − 1.

Let Φ be a Horn formula with m = k + 1 clauses. Thus, Φ has the form
(x) ∧ (¬x ∨ α1) ∧ . . . ∧ (¬x ∨ αt) ∧ σt+1 ∧ . . . ∧ σk for some t ≤ k.

Since Φ is minimal unsatisfiable, αi and σj do not contain the literal x. By
construction, they also do not contain the literal ¬x.

If we generate t copies of the clause (x), then for each i = 1 . . . t, we can
apply the resolution step (x) ∧ (¬x ∨ αi) | 1

RES
αi. Applying these resolution

steps results in the Horn formula Φ′ = α1 ∧ . . . ∧ αt ∧ σt+1 ∧ . . . ∧ σk.
Φ′ is minimal unsatisfiable and consists of k clauses. By the induction hypoth-

esis, we know that the derived-copy complexity of Φ′ is at most (k − 1).
Thus the derived-copy complexity of Φ is at most max{t, k − 1} ≤ k as

desired.
�
Theorem 6. For each value of m, there exists a Horn formula with m clauses
and derived-copy complexity (m − 1)

Proof. We inductively define Φm as follows: 1. Φ2 = (x1) ∧ (¬x1).
2. If Φm = α1 ∧ . . . ∧ αm, then Φm+1 = (xm) ∧ (¬xm ∨ α1) ∧ . . . ∧ (¬xm ∨ αm).

Note that for each m, Φm consists of m clauses and is an unsatisfiable Horn
formula.

We now show by induction, that Φm has derived copy complexity (m − 1).
Φ2 has a unit read-once resolution refutation consisting of the single resolution
step (x1) ∧ (¬x1) | 1

RES
�.

Now assume that Φm−1 has derived copy complexity (m−2). To derive Φm−1

from Φm by unit read-once resolution, we need to resolve the clause (xm) with
every other clause in Φm. This requires (m−1) copies of the clause (xn). By the
inductive hypothesis, this derived formula has derived-copy complexity (m − 2).
Thus, the formula Φm has derived-copy complexity max{m−1,m−2} = (m−1)
as desired.
�

From Theorem 5 and Theorem 6, it follows that the derived copy complexity
for Horn formulas with m clauses is (m − 1).

7 The UROR Problem for 2-CNF Formulas

In this section, we show that the UROR Problem for 2-CNF formulas is in
P. This is done by reducing the problem to minimum weight perfect matching

On Unit Read-Once Resolutions and Copy Complexity 285

using a similar construction to the one in [14]. Note that the problem of finding
read-once resolution refutations for 2-CNF formulas is NP-complete [8].

Let Φ be a 2-CNF formula with m clauses over n variables. We construct a
weighted undirected graph G = 〈V,E,b〉 as follows:

1. For each variable xi in Φ, add the vertices x+
i , x′

i
+, x−

i , and x′
i
− to V. Addi-

tionally, add the edges x−
i

0
x+

i and x′
i
− 0

x′
i
+ to E.

2. Add the vertices x+
0 and x−

0 to V.
3. For each constraint φk of Φ, add the vertices φk and φ′

k to V and the edge

φk
0

φ′
k to E. Additionally:

(a) If φk is of the form (xi ∨ xj), add the edges x+
i

−1
φk, x′

i
+ −1

φk,

x+
j

−1
φ′

k, and x′
j
+ −1

φ′
k to E.

(b) If φk is of the form (xi ∨ ¬xj), add the edges x+
i

−1
φk, x′

i
+ −1

φk,

x−
j

−1
φ′

k, and x′
j
− −1

φ′
k to E.

(c) If φk is of the form (¬xi ∨ xj), add the edges x−
i

−1
φk, x′

i
− −1

φk,

x+
j

−1
φ′

k, and x′
j
+ −1

φ′
k to E′′.

(d) If φk is of the form (¬xi ∨ ¬xj), add the edges x−
i

−1
φk, x′

i
− −1

φk,

x−
j

−1
φ′

k, and x′
j
− −1

φ′
k to E.

(e) If φk is of the form (xi), add the edges x+
i

−1
φk, x′

i
+ −1

φk, x+
0

−1
φ′

k,

and x−
0

−1
φ′

k to E.

(f) If φk is of the form (¬xi), add the edges x−
i

−1
φk, x′

i
− −1

φk, x+
0

−1
φ′

k,

and x−
0

−1
φ′

k to E.

Under this construction, each variable is represented by a pair of 0-weight
edges. Thus, each variable can be used twice by a refutation. Note that each 2-
CNF formula has a refutation that uses each variable at most twice [7]. However,
we only have one 0-weight edge for each clause. This prevents the refutation from
re-using clauses. Observe that G has O(m + n) vertices and O(m + n) edges.

Theorem 7. Φ has a unit read-once resolution refutation if and only if G has
a negative weight perfect matching.

Proof. First, assume that Φ has a unit read-once resolution refutation R. Let
ΦR ⊆ Φ be the set of clauses in Φ used by any resolution step in R. Since R is
a sequence of resolution steps, we can order the clauses in ΦR according to the
order in which they are used by resolution steps in R. Thus, if a clause φj is
used by an earlier resolution step in R than the clause φk, then φj is earlier in
the ordering of ΦR than φk.

We can construct a negative weight perfect matching P of G as follows:

1. For each variable xi in Φ:
(a) If no clause in ΦR contains the literal xi, add the edges x+

i

0
x−

i and

x′
i
+ 0

x′
i
− to P .

286 P. Wojciechowski and K. Subramani

(b) If only one clause in ΦR contains the literal xi, add the edge x′
i
+ 0

x′
i
−

to P .
2. For each clause φk in Φ:

(a) If φk �∈ ΦR, add the edge φk
0

φ′
k to P .

(b) If φk ∈ ΦR is a two variable clause:
i. If φk is the first clause in ΦR to contain the literal xi, add the edge

x+
i

−1
φk (or x+

i

−1
φ′

k) to P . If it is the second, add the edge

x′
i
+ −1

φk (or x′
i
+ −1

φ′
k) instead.

ii. If φk is the first clause in ΦR to contain the literal ¬xi, add the edge
x−

i

−1
φk (or x−

i

−1
φ′

k) to P . If it is the second, add the edge

x′
i
− −1

φk (or x′
i
− −1

φ′
k) instead.

(c) If φk ∈ R is a unit clause:
i. If φk is the first clause in ΦR to contain the literal xi, add the edge

x+
i

−1
φk to P . If it is the second, add the edge x′

i
+ −1

φk instead.
ii. If φk is the first clause in ΦR to contain the literal −xi, add the edge

x−
i

−1
φk to P . If it is the second, add the edge x′

i
− −1

φk instead.

iii. If φk is the first unit clause in ΦR, add the edge x+
0

−1
φ′

k to P . If it

is the second, add the edge x−
0

−1
φ′

k instead.

Every vertex in G is an endpoint of exactly one edge in P . Thus, P is a
perfect matching. Since

∑
φk∈R −1 < 0, P has negative weight.

Now assume that G has a negative weight perfect matching P . We can con-
struct a unit read-once resolution refutation R as follows:

1. Since there is no edge between x+
0 and x−

0 , P must use the edge x+
0

−1
φ′

k

for some unit clause φk. Thus, the edge φk
0

φ′
k is not in P . Note that φk

is the clause (xi) or (¬xi) for some xi.
2. Without loss of generality, assume φk is the clause (xi). This means that the

edge x+
i

−1
φk (or x′+

i

−1
φk) must be in P . Thus, the edge x+

i

0
x−

i

(or x′+
i

0
x′−

i) is not in P . This means that for some clause φl, the edge

x−
i

−1
φl (or x′−

i

−1
φl) is in P . If φl corresponds to the clause (¬xi ∨ xj)

or (¬xi ∨ ¬xj) for some xj , then we add either (xi), (¬xi ∨ xj) | 1
RES

(xj)
or (xi), (¬xi ∨ ¬xj) | 1

RES
(¬xj) to R. If φl corresponds to the clause (¬xi),

then we add (xi), (¬xi) | 1
RES

� to R.
3. If φl is a non-unit clause, then we can repeat step 2 from either xj or ¬xj . This

continues until a second unit clause is encountered, completing the refutation.
By construction, R is a unit read-once resolution refutation.
�
Observe that the minimum weight perfect matching of an undirected graph

having n′ vertices and m′ edges can be found in O(m′ ·n′ +n′2 · log n′) time using
the algorithm in [11]. Since in our case, G has O(m + n) vertices and O(m + n)
edges, it follows that we can detect the presence of a negative weight perfect

On Unit Read-Once Resolutions and Copy Complexity 287

matching in O((m + n)2 · log(m + n)) time. Hence, using the above reduction,
the UROR problem for 2-CNF formulas can be solved in O((m+n)2 · log(m+n))
time.

8 Conclusion

In this paper, we established the relationship between copy complexity of Horn
formulas with respect to unit read-once resolution and the copy complexity of the
corresponding system of constraints. We also studied the derived copy complexity
of Horn formulas and derived tight bounds for the same. Finally, we described
a polynomial time algorithm to check if a 2-CNF formula has a UROR.

Acknowledgments. We would like to thank Hans Kleine Büning for his insights into
the problems examined in this paper.

References

1. Beame, P., Pitassi, T.: Propositional proof complexity: past, present, future. Bull.
EATCS 65, 66–89 (1998)

2. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. J. Log. Program. 1(3), 267–284 (1984)

3. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39(2–3), 297–308
(1985)

4. Hooker, J.N.: Generalized resolution and cutting planes. Ann. Oper. Res. 12(1–4),
217–239 (1988)

5. Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Proceedings of
the 10th Annual Conference on Structure in Complexity Theory (SCTC 1995), Los
Alamitos, CA, USA, June 1995, pp. 29–36. IEEE Computer Society Press (1995)

6. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

7. Büning, H.K., Wojciechowski, P., Subramani, K.: The complexity of finding read-
once NAE-resolution refutations. In: Ghosh, S., Prasad, S. (eds.) ICLA 2017.
LNCS, vol. 10119, pp. 64–76. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54069-5 6

8. Büning, H.K., Wojciechowski, P.J., Subramani, K.: Finding read-once resolution
refutations in systems of 2CNF clauses. Theor. Comput. Sci. 729, 42–56 (2018)

9. Kleine Büning, H., Wojciechowski, P., Subramani, K.: Read-once resolutions in
horn formulas. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS, vol. 11458,
pp. 100–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18126-0 9

10. Kleine Büning, H., Zhao, X.: Read-once unit resolution. In: Giunchiglia, E., Tac-
chella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 356–369. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24605-3 27

11. Korte, B., Vygen, J.: Combinatorial Optimization. Number 21 in Algorithms and
Combinatorics. 4th edn. Springer, New York (2010)

12. Krom, M.R.: The decision problem for a class of first-order formulas in which all
disjunctions are binary. Math. Logic Q. 13(1–2), 15–20 (1967)

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-662-54069-5_6
https://doi.org/10.1007/978-3-662-54069-5_6
https://doi.org/10.1007/978-3-030-18126-0_9
https://doi.org/10.1007/978-3-540-24605-3_27

288 P. Wojciechowski and K. Subramani

13. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log. 62(3), 981–998 (1997)

14. Subramani, K., Wojciechowki, P.: A polynomial time algorithm for read-once certi-
fication of linear infeasibility in UTVPI constraints. Algorithmica 81(7), 2765–2794
(2019)

15. Tseitin, G.S.: On the Complexity of Derivation in Propositional Calculus, pp. 466–
483. Springer, Heidelberg (1983)

Propositional Projection Temporal Logic
Specification Mining

Nan Zhang, Xiaoshuai Yuan, and Zhenhua Duan(B)

Institute of Computing Theory and Technology, and ISN Laboratory,
Xidian University, Xi’an 710071, China

nanzhang@xidian.edu.cn, yuanxiaoshuai@stu.xidian.edu.cn,
zhhduan@mail.xidian.edu.cn

Abstract. This paper proposes a dynamic approach of specification
mining for Propositional Projection Temporal Logic (PPTL). To this
end, a pattern library is built to collect some common temporal rela-
tion among events. Further, several algorithms of specification mining
for PPTL are designed. With our approach, PPTL specifications are
mined from a trace set of a target program by using patterns in the
library. In addition, a specification mining tool PPTLMiner support-
ing this approach is developed. In practice, given a trace set and user
selected patterns, PPTLMiner can capture PPTL specifications of target
programs.

Keywords: Propositional projection temporal logic · Pattern · Trace ·
Specification mining

1 Introduction

A software system specification is a formal description of the system require-
ments. Formal languages are often employed to write specifications so as to
prevent the ambiguity written in natural languages. The common used formal
languages include Temporal Logic (TL) and Finite State Automata (FSA). Soft-
ware system specification can be used to test and verify the correctness and
reliability of software systems [13]. However, due to various kinds of reasons, a
great number of software systems lack formal specifications. In particular, for
most of legacy software systems, formal specifications are missed. This makes the
maintenance of software systems difficult. To fight this problem, various kinds
of specification mining approaches are proposed [10–12,14,15,17,19–21].

Walkinshaw et al. [19] present a semi-automated approach to inferring FSAs
from dynamic execution traces that builds on the QSM algorithm [8]. This algo-
rithm infers a finite state automaton by successively merging states. Lo et al.

This research is supported by National Key Research and Development Program of
China under Grant No. 2018AAA0103202, National Natural Science Foundation of
China under Grant Nos. 61751207 and 61732013, and Shaanxi Key Science and Tech-
nology Innovation Team Project under Grant No. 2019TD-001.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 289–303, 2020.
https://doi.org/10.1007/978-3-030-64843-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_20

290 N. Zhang et al.

propose Deep Specification Mining (DSM) approach that performs deep learn-
ing for mining FSA-based specifications [11]. FSA specifications are intuitive
and easily to be used for verifying and testing programs. However, most of FSA
specification mining approaches suffer from accuracy and correctness for repre-
senting properties of programs. Yang et al. [21] present an interesting work on
mining two-event temporal logic rules (i.e., of the form G(a → XF (b)), where
G, X and F are LTL operators, which are statistically significant with respect
to a user-defined “satisfaction rate”. Wasylkowski et al. [20] mine temporal rules
as Computational Tree Logic (CTL) properties by leveraging a model checking
algorithm and using concept analysis. Lemieux et al. [12] propose an approach
to mine LTL properties of arbitrary length and complexity. Similar to the above
research work, most of specification mining approaches employ LTL and CTL as
the property description languages. Due to the limitation of the expressiveness of
LTL and CTL, some temporal properties such as periodic repetition properties
cannot be characterized.

Since the expressiveness of Propositional Projection Temporal Logic (PPTL)
is full regular [3,18], in this paper, we propose a dynamic approach to mining
PPTL properties based on a pattern library. PPTL contains three primitive tem-
poral operators: next (©), projection (prj) and chop-plus (+). Apart from some
common temporal properties that can be formalized in LTL and CTL, PPTL
is able to describe two other kinds of properties: interval sensitive properties
and periodic repetition properties. With the proposed approach, we abstract
API/method calls as events. A trace is a sequence of API/method calls occurred
during program execution. Daikon [1] is used to generate raw traces first, then
a tool DtraceFilter we developed is employed to further refine the traces. Pat-
terns are used to characterize common temporal relations among events. Two
categories of patterns, Occurrence and Order, are used. These patterns are pre-
defined in a pattern library. The proposed mining algorithms require two inputs:
an instantiated pattern formula P and a refined execution trace τ . To obtain
an instantiated pattern formula, we need to specify a pattern formula which
can be either a user-defined one or a predefined one in the library. The pattern
is instantiated by substituting atomic propositions with concrete events. After
pattern instantiation, several mining algorithms based on PPTL normal form
[3–7] are employed to recursively check whether τ satisfies P .

The contribution of the paper is three-fold. First, we propose a PPTL tem-
poral rule specification mining approach so that full regular properties can be
mined. Second, we develop a tool PPTLMiner which supports the proposed min-
ing approach. Third, we build a pattern library to cover all common patterns
accumulated from literatures and abstracted from the existing software systems.
The library is open, user-editable and in constant expansion and growth.

This paper is organized as follows. In the next section, PPTL is briefly intro-
duced. In Sect. 3, the trace generation and the construction of the pattern library
are presented. In Sect. 4, the overall framework of PPTLMiner and key algo-
rithms are elaborated. Finally, conclusions are drawn in Sect. 5.

Propositional Projection Temporal Logic Specification Mining 291

2 Propositional Projection Temporal Logic

In this section, we briefly introduce our underlying logic, Propositional Projec-
tion Temporal Logic (PPTL), including its syntax and semantics. It is used to
describe specifications of programs. For more detail, please refer to [3,7].

Syntax of PPTL. Let Prop be a set of atomic propositions and p ∈ Prop. The
syntax of PPTL is inductively defined as follows.

P ::= p | © P | ¬P | P ∨ Q | (P1, ..., Pm) prj Q | P+

where P1, ..., Pm, P and Q are well-formed PPTL formulas. Here, © (next), prj
(projection) and + (chop-plus) are primitive temporal operators.

Semantics of PPTL. Let B = {true, false} and N be the set of non-negative
integers. Let ω denote infinity. PPTL formulas are interpreted over intervals. An
interval σ is a finite or infinite sequence of states, denoted by σ = 〈s0, s1, . . .〉.
A state si is a mapping from Prop to B. An interpretation I = (σ, k, j) is
a subinterval 〈sk, . . . , sj〉 of σ with the current state being sk. An auxiliary
operator ↓ is defined as σ ↓ (r1, . . . , rm) = 〈st1 , st2 , . . . , stn〉, where t1, . . . , tn
are obtained from r1, . . . , rm by deleting all duplicates. That is, t1, . . . , tn is the
longest strictly increasing subsequence of r1, . . . , rm. The semantics of PPTL
formulas is inductively defined as a satisfaction relation below.
(1) I |= p iff sk[p] = true.
(2) I |= ©P iff (σ, k + 1, j) |= P .
(3) I |= ¬P iff I 	|= P .
(4) I |= P ∨ Q iff I |= P or I |= Q.
(5) I |= (P1, . . . , Pm) prj Q iff there exist m integers k = r0 ≤ r1 ≤ . . . ≤ rm ≤ j
such that (σ, rl−1, rl) |= Pl for all 1 ≤ l ≤ m, and one of the following two cases
holds:
• if rm = j, there exists rh such that 0 ≤ h ≤ m and σ ↓ (r0, . . . , rh) |= Q;
• if rm < j, then σ ↓ (r0, . . . , rm) · σ(rm+1..j) |= Q.
(6) I |= P+ iff there exist m integers k = r0 ≤ r1 ≤ . . . ≤ rm = j (m ∈ N) such
that (σ, rl−1, rl) |= P for all 1 ≤ l ≤ m.
Derived Formulas. Some derived formulas in PPTL are defined in Table 1.

Operator Priority. To avoid an excessive number of parentheses, the prece-
dence rules shown in Table 2 are used, where 1 = highest and 9 = lowest.

Definition 1 (PPTL Normal Formal). Let Q be a PPTL formula and Qp

denote the set of atomic propositions appearing in Q. Q is in normal form if Q
has been rewritten as

Q ≡
n0∨

j=1

(Qej ∧ ε) ∨
n∨

i=1

(Qci ∧ ©Q′
i)

where Qej ≡ ∧m0
k=1 ˙qjk, Qci ≡ ∧m

h=1 ˙qih, l = |Qp|, 1 ≤ n ≤ 3l, 1 ≤ n0 ≤ 3l,
1 ≤ m ≤ l, 1 ≤ m0 ≤ l; qjk, qih ∈ Qp, for any r ∈ Qp, ṙ means r or ¬r; Q′

i is a
general PPTL formula.

292 N. Zhang et al.

Table 1. Derived formulas

Table 2. Operator priority

1. ¬ 2. +, ∗ 3. ©,
⊙

, ♦, �
4. ∧ 5. ; 6. ∨
7. prj 8. || 9. →, ↔

In some circumstances, for convenience, we write Qe∧ε instead of
∨n0

j=1(Qej∧
ε) and

∨r
i=1(Qi ∧ ©Q′

i) instead of
∨n

i=1(Qci ∧ ©Q′
i). Thus,

Q ≡ (Qe ∧ ε) ∨
r∨

i=1

(Qi ∧ ©Q′
i)

where Qe and Qi are state formulas. The algorithm of translating a PPTL for-
mula into its normal form can be found in [4–6].

3 Pattern Library Construction and Trace Generation

Our specification mining algorithm relies on two inputs: a pattern and a program
execution trace. A pattern is a property template in which the atomic proposition
symbols need to be instantiated as events (namely, API or method calls) occurred
during program execution. A trace is a sequence of method calls in the execution
of a program. In this section, we present how to build the pattern library and
traces.

3.1 Pattern and Pattern Library

Patterns are abstracted from common software behaviors and used to describe
occurrence of events or states during program execution [9]. A pattern is a logical
representation of certain event relation. The APIs and methods in a target
program are defined as events. We say that an event occurs whenever it is called
in the execution of the program. In the following, we define a quadruples to
represent and store patterns.

Propositional Projection Temporal Logic Specification Mining 293

Definition 2 (Pattern). A pattern T =< C,N,R,A > is a tuple where C is a
pattern category indicating occurrence or order of events, N a pattern name, R
a PPTL formula, and A an annotation.

Following Dwyer et al.’s SPS [9] and Autili et al.’s PSP framework [2], we
also classify patterns into two categories, Occurrence and Order.

The Occurrence category contains 18 patterns that indicate presence or
absence of certain events or states during program execution. For instance, (1)
Absence means that an event never happens; (2) Universality indicates that an
event always occurs during program execution; (3) Existence shows that an event
occurs at least once during program execution; and (4) Bounded Existence tells
us that an event has a limited number of occurrences during program execution,
e.g. event f.open() occurs twice.

The Order category contains 19 patterns that represent relative temporal
orders among multiple events or states occurred during program execution. For
example, (1)“s precedes p” indicates that if event p occurs, event s definitely
occurs before p; (2) “s responds p” means that if event p occurs, event s definitely
occurs after p; (3)Chain (s, t) means that a combination chain of events s and
t. (s, t) precedes p means that if event p happens, chain events (s, t) certainly
happen before p, and (s, t) responds p means that if event p happens, (s, t)
certainly responds to p [2,9].

Pattern Library. A pattern library L is a set containing all patterns p we
collected. After an in-depth investigation of the existing literature and programs
specified behavior characteristics, we build a pattern library and some patterns
are shown in Table 3 and Table 4.

Table 3. Pattern library - occurrence category

No. Pattern Name PPTL Formula Annotation

1 Universality �p Event p always occurs

2 Absence �¬p Event p never occur

3 Existence ♦p Event p occurs at least once

4 Frequency �♦p Event p occurs frequently

5 Both Occur ♦p ∧ ♦q Events p and q both occur

6 Simultaneity ♦(p ∧ q) Events p and q occur at the same time

7 Prefix of Trace �♦p;more Event p occurs frequently at a prefix of a trace

8 Suffix of Trace ♦�p Event p occurs continuously at a suffix of a trace

3.2 Trace Generation

We concern only specifications of temporal relations among the methods or API
calls occurred during program execution.

294 N. Zhang et al.

Table 4. Pattern library - order category

No. Pattern Name PPTL Formula Annotation

1 Precedence (1-1) ♦p → (�¬p; s) Event s takes precedence over event p

2 Response (1-1) �(s → ©♦p) Event p responds to event s

3 Until (�p; ©s) ∨ s Event p occurs until event s occurs

4 Response Invariance �(p → ©�s) If p has occurred, then in response s holds continually

5 Chop �p; ©�q There exists a time point t such that event p occurs

continuously before t and event q continuously after t

6 Never Follow �(p → ⊙ �¬q) Event p is never followed by event q

Definition 3 (Trace). A trace is a sequence of methods or API calls (namely
events) with parameters.

Example 1. A trace of a program using stack structure.
trace τ1 = 〈StackAr(int), isFull(), isEmpty(), top(), isEmpty(), topAndPop(),
isEmpty(), isFull(), isEmpty(), top(), isEmpty(), push(java.lang.Object),
isFull()〉
Example 2. A trace of a program manipulating files.
trace τ2 = 〈open(f1), write(f1), read(f1), close(f1), open(f2), delete(f1),
read(f2), write(f2), write(f2), read(f2), close(f2), delete(f2)〉

We use Daikon [1] as an auxiliary tool to generate traces. Daikon can dynam-
ically detect program invariants. A program invariant is a property that remains
unchanged at one or more positions of program execution. The common invari-
ants are APIs, functions, global or local variables, arguments, return values and
so on. Invariants can be used to analyze behavior of a program. Dynamic invari-
ant detection refers to a process of running a program so as to check variables
and assertions detected in the program execution [16].

Daikon generates a sequence containing all invariants and stores it in a dtrace
file in which the invariants are stored line by line. The program execution traces
we need are contained in this sequence. Since there exists an amount of redundant
information, the dtrace file needs to be further refined.

The whole process of generating a trace is shown in Fig. 1.

Fig. 1. The process of trace generation

Propositional Projection Temporal Logic Specification Mining 295

Step 1. Generating sequences of program invariants
A source program and its arguments are input to Daikon so that a sequence

of program invariants is generated. The sequence is written in a file f.dtrace in
the dtrace format. When the program is executed with different arguments for
a desired number n of times, we obtain a set Pool1 = {fi.dtrace|i = 1, . . . , n} of
program traces.

Step 2. Filtering of sequences of program invariants
A filter tool DtraceFilter has been developed to filter out redundant informa-

tion, including parameters, variables, return values and useless spaces, in each
file fi.dtrace of Pool1. As a result, sequences consisting of only APIs and method
calls constitute a new set Pool2 = {fi.trace|i = 1, . . . , n}.

Step 3. Parsing traces in Pool2
Each trace fi.trace in Pool2 needs to be parsed so as to obtain a API/method-

name list fi.event. These lists constitute a set Event = {fi.event|i = 1, . . . , n}.

Step 4. Optimizing traces in Pool2
We can specify desired API/method names from the lists in Event according

to the requirements. DtraceFilter can be used to select the events we concern
from each list in Event to build a positive list fi.pevent of events, and generate
a set PositiveEvent = {fi.pevent|i = 1, . . . , n}.

Based on PositiveEvent, DtraceFilter further refines each fi.trace in Pool2
to get a positive trace fi.ptrace consisting of only the events in fi.pevent, and
obtain a set PositiveTrace = {fi.ptrace|i = 1, . . . , n}.

We can also specify undesired API/method names from the lists in Event.
In a similar way, DtraceFilter can be used to build a negative list fi.nevent of
events and generate NegativeEvent = {fi.nevent|i = 1, . . . , n}. After deleting
the negative events from each trace fi.trace in Pool2, DtraceFilter builds a set
NegativeTrace = {fi.ntrace|i = 1, . . . , n}.

4 PPTL Specification Mining

Based on the Pattern Library and set of refined traces presented in the previous
section, an approach to PPTL specification mining is proposed and a specifica-
tion mining tool, PPTLMiner, is developed. In this section, the framework of
PPTLMiner and some key algorithms are presented in detail.

4.1 The Framework of PPTLMiner

The integrated design of PPTLMiner is shown in Fig. 2. It consists of the fol-
lowing six parts.

(1) Pattern Library. The Pattern Library covers all patterns we obtain
after investigating literatures and programs. Our Pattern Library is open, user-
editable and in constant expansion and growth. New patterns can be inserted
into the library from time to time. For more details, refer to Sect. 3.1.

296 N. Zhang et al.

Fig. 2. The framework of PPTLMiner

(2) Trace Generator. The function of the Trace Generator is to generate traces
from an executable program. To do so, an executable program and its arguments
are input into Daikon to produce raw traces (dtrace files). Then Dtracefilter is
employed to filter out redundant information in dtrace files to obtain trace files,
which are further refined to obtain positive and negative traces. For more details,
refer to Sect. 3.2.

(3) PPTL Parser. The input of PPTL Parser is a PPTL formula. PPTL Parser
is developed by means of Flex and Bison. It can be used to generate a PPTL
syntax tree for any PPTL formula.

(4) Trace Parser. The function of Trace Parser is two-fold. The first is to parse
traces generated by the Trace Generator and restore them in an appropriate data
structure so that the traces can conveniently be used by PPTL Pattern Checker.
The second is to calculate a set E = {e1, e2, . . . , en} of events appeared in the
traces so as to instantiate PPTL patterns.

(5) PPTL Pattern Formula Instantiator. The instantiator requires two
inputs: (a) a PPTL pattern formula P , and (b) E, the set of events produced by
Trace Parser. The function of the instantiator is to instantiate a pattern formula
P by substituting atomic propositions in P by events in Events.

(6) PPTL Pattern Checker. PPTL Pattern Checker also requires two inputs:
(a) a trace τ produced by Trace Generator, and (b) an instantiated pattern
formula P generated by PPTL Pattern Formula Instantiator. The function of
the Checker is to decide whether trace τ satisfies P .

4.2 Mining Process and Algorithms

In this subsection, we present the mining process and algorithms in detail.

(1) Syntax Tree of PPTL Formula
By syntax analysis, a PPTL Pattern Formula is parsed into a syntax tree. A

syntax tree consists of a root node and two child nodes. The root node is of two

Propositional Projection Temporal Logic Specification Mining 297

attributes, NODETYPE and STRING, which indicate the type and name of the
root node, respectively. All nodes having two null child nodes in the syntax tree
of a PPTL pattern formula P constitute a set S(P) of atomic propositions. For
instance, for an atomic proposition p, its NODETYPE is “atomic proposition”
while its STRING is “p”. Two child nodes are all null. For formula P1;P2, its
NODETYPE is “chop” while its STRING is “;”. It has two non-null child nodes,
child1 and child2, where child1 is the root of P1 while child2 is the root of P2.
S(P1;P2) = S(P1) ∪ S(P2). More Examples are shown in Fig. 3.

P

null null T(P1) null

prj

, T(P3)

a b

c d

p: atomic proposition.
P1, P2, P3 : PPTL formula.
a: P ≡ p
b: P ≡ P1

c: P ≡ P1 P2

d: P ≡ (P1,P2) prj P3

T(P1) T(P2)
T(P1) T(P2)

Fig. 3. PPTL syntax tree

(2) Instantiating PPTL Pattern Formulas
Based on the set S(P) of atomic propositions and set E collected by Trace

Parser, a PPTL Pattern Formula P is instantiated by Algorithm 1.
(3) PPTL Pattern Check

We use Algorithm 2, Algorithm 3 and Algorithm 4 to check whether τ satisfies
Q, where τ is a refined trace generated in Sect. 3.2 while Q is an instantiated
PPTL pattern formula obtained in part (2). These algorithms are based on
PPTL Normal Form.

In particular, Algorithm2, i.e. CheckBasedonNF(P, τ), first checks the sat-
isfiability of P . If P is satisfiable, it is translated into its normal form Pnf

by calling the existing external function NF (·) given in [3]. Then Algorithm 3
NFCheckTrace(Pnf , τ) is called to decide whether τ satisfies Pnf .

In function NFCheckTrace(Pnf , τ), the first disjunct Pnf .child1 is first
checked. If NFCheckTrace(Pnf .child1, τ) is true, Pnf is already satisfied by τ .
Otherwise the rest disjuncts Pnf .child2 are further checked.

298 N. Zhang et al.

Algorithm 1. function Instantiator(E, S, P)
Input: E: a set of events;
Input: S: a set of atomic propositions appearing in P ;
Input: P : a syntax tree of a PPTL pattern formula;
Output: Ps: a set of instantiated PPTL pattern formulas.
1: begin
2: Ps ← null;
3: m is a patttern instance;
4: /* m = {(api, epi) | api ∈ S & epi ∈ E & 1 ≤ i ≤ |S| & api �= apj if i �= j)} */
5: M is a set of pattern instances; /* M = {m1, m2,} */
6: M ← null;
7: Count is used for count the number of m;
8: Count ← 0;
9: /* (E.size())!

(E.size()−S.size())!
is the total number of non-duplicate pattern instances */

10: while Count <= (E.size())!
(E.size()−S.size())!

do
11: E1 is a set used to store ep ∈ E has been checked;
12: m ← null;
13: E1 ← null;
14: for all ap in S do
15: while true do
16: ep is an event randomly selected from E;
17: if ep not in E1 then
18: m.insert(ap, ep); /* ap is mapped to ep */
19: E1.insert(ep); /* ep is labeled */
20: break;
21: end if
22: end while
23: end for/* build m */
24: if m not in M then
25: M.insert(m);
26: count + +;
27: end if
28: end while/* build M */
29: for all m in M do
30: Pins is a copy of P ; /* Pins is used for instantiation */
31: Pins ← P ;
32: for all node in Pins do
33: if node.type == AtomicProp then
34: for all mi in m do
35: if mi.ap == node.name then
36: node.name ← mi.ep;
37: end if
38: end for
39: end if
40: end for
41: Ps.insert(Pins); /* insert pattern instance Pins into set Ps */
42: end for
43: return Ps

44: end

Propositional Projection Temporal Logic Specification Mining 299

Algorithm 2. function CheckBasedonNF(P , τ)
Input: P : An instantiated PPTL pattern formula;
Input: τ : A program execution trace;
Output: True if τ satisfies P , False otherwise.
1: begin
2: q is a boolean variable;
3: q = CheckSatisfiability(P); /* check satisfiability of P [5] */
4: if ¬q then
5: return False;
6: else
7: Pnf = NF (P); /* transform P into its normal form [5] */
8: return NFCheckTrace(Pnf ,τ);
9: end if

10: end

To check a disjunct, two cases need to be considered: (1)Pe ∧ ε and (2)Pc ∧
©Pf . For the first case, the function checks whether τ satisfies Pe and whether
τ is empty. If both are true, Pe ∧ ε is satisfied by τ . For the second case, the
function checks whether τ satisfies Pc and whether tail(τ) satisfies Pf . If both
are true, Pc ∧ ©Pf is satisfied by τ . In checking whether τ satisfies the state
formula Pe or Pc, Algorithm 4 StateFormulaCheck(Ps,τ) is called. For doing so,
function StateFormulaCheck(Ps,τ) is simply to check the satisfiability of state
formula Ps over τ by considering several syntax constructs of Ps.

300 N. Zhang et al.

Algorithm 3. function NFCheckTrace(Pnf , τ)
Input: Pnf : A PPTL formula in its normal form;
Input: τ : A program execution trace;
Output: True if τ satisfies Pnf , False otherwise.
1: begin
2: τbak = τ ;
3: switch Pnf .type do
4: case OrProp
5: q1 is a boolean variable;
6: q1 = NFCheckTrace(Pnf .child1, τ);
7: if q1 then /* first disjunct is satisfied by τ */
8: return True;
9: else/* select another disjunct */

10: τ = τbak;
11: return NFCheckTrace(Pnf .child2, τ);
12: end if
13: case AndProp
14: Pc = Pnf .child1; /* if Pnf .child2 is ε, Pc stands for Pe */
15: q2 is a boolean variable;
16: q2 = StateFormulaCheck(Pc, τ); /* check satisfiability of Pc over τ */
17: if q2 then
18: if Pnf .child2.type is ε then
19: if |τ | == 0 then /* check whether the trace is empty */
20: return True;
21: else
22: return False;
23: end if
24: else
25: Pf = Pnf .child2.child1; /* obtain next formula Pf */
26: if |τ | == 0 then
27: return False;
28: else
29: τ = tail(τ); /* update τ by its first proper suffix */
30: return CheckBasedOnNF(Pf , τ);
31: end if
32: end if
33: else
34: return False;
35: end if
36: end

Propositional Projection Temporal Logic Specification Mining 301

Algorithm 4. function StateFormulaCheck(Ps, τ)
Input: Ps: A state PPTL formula;
Input: τ : A program execution trace;
Output: True if τ satisfies Ps, False otherwise.
1: begin
2: switch Ps.type do
3: case OrProp /* Ps ≡ P1 ∨ P2 */
4: P1 = Ps.child1;
5: P2 = Ps.child2;
6: q1 is a boolean variable;
7: q1 = StateFormulaCheck(P1, τ);
8: if q1 then
9: return True;

10: else
11: return StateFormulaCheck(P2, τ)
12: end if
13: case AndProp /* Ps ≡ P1 ∧ P2 */
14: P1 = Ps.child1;
15: P2 = Ps.child2;
16: q2 is a boolean variable;
17: q2 = StateFormulaCheck(P1, τ);
18: if q2 then
19: return StateFormulaCheck(P2, τ)
20: else
21: return False;
22: end if
23: case NegationProp /* Ps ≡ ¬P1 */
24: P1 = Ps.child1;
25: if StateFormulaCheck(P1, τ) then
26: return False;
27: else
28: return True;
29: end if
30: case AtomicProp /* Ps ≡ p */
31: if head(τ) satisfies Ps then
32: return True;
33: else
34: return False;
35: end if
36: case TrueProp /* Ps ≡ true */
37: return True;
38: case FalseProp /* Ps ≡ false */
39: return False;
40: end

302 N. Zhang et al.

5 Conclusion

This paper presents an approach to mining PPTL specification from program
execution traces. A tool PPTLMiner has been developed to support the proposed
approach. This allows us to mine full regular temporal rules represented by PPTL
formulas from traces. However, a mined PPTL formula has to be checked over
all traces so as to ensure its validity. This is not a easy job since there might be
error traces involved.

In the future, we will investigate how to evaluate the mined properties so
that desired properties can be found. Further, we will optimize PPTLMiner to
improve its mining quality and efficiency.

References

1. The Daikon Invariant Detector. http://plse.cs.washington.edu/daikon/
2. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualita-

tive, real-time, and probabilistic property specification patterns using a structured
English grammar. IEEE Trans. Softw. Eng. 41(7), 1 (2015)

3. Duan, Z.: Temporal logic and Temporal Logic Programming. Science Press, Beijing
(2005)

4. Duan, Z., Tian, C.: A practical decision procedure for propositional projection
temporal logic with infinite models. Theoret. Comput. Sci. 554, 169–190 (2014)

5. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection
temporal logic with infinite models. Acta Informatica 45(1), 43–78 (2008)

6. Duan, Z., Tian, C., Zhang, N.: A canonical form based decision procedure and
model checking approach for propositional projection temporal logic. Theor. Com-
put. Sci. 609, 544–560 (2016)

7. Duan, Z., Zhang, N., Koutny, M.: A complete proof system for propositional pro-
jection temporal logic. Theor. Comput. Sci. 497, 84–107 (2013)

8. Dupont, P., Lambeau, B., Damas, C., Lamsweerde, A.: The QSM algorithm and
its application to software behavior model induction. Appl. Artif. Intell. 22(1&2),
77–115 (2008)

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 1999 International Conference on
Software Engineering (IEEE Cat. No.99CB37002), pp. 411–420 (1999)

10. Iegorov, O., Fischmeister, S.: Mining task precedence graphs from real-time embed-
ded system traces. pp. 251–260 (2018)

11. Le, T.B., Lo, D.: Deep specification mining. In: Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp. 106–
117 (2018)

12. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (T).
In: Proceedings of the 2015 IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 81–92 (2015)

13. Li, H., Shen, L.M., Ma, C., Liu, M.Y.: Role behavior detection method of privilege
escalation attacks for android applications. Int. J. Perform. Eng. 15(6), 1631–1641
(2019)

14. Narayan, A., Cutulenco, G., Joshi, Y., Fischmeister, S.: Mining timed regular spec-
ifications from system traces. ACM Trans. Embed. Comput. Syst. 17(2), 1–21
(2018)

http://plse.cs.washington.edu/daikon/

Propositional Projection Temporal Logic Specification Mining 303

15. Pradel, M., Gross, T.R.: Automatic generation of object usage specifications from
large method traces. In: Proceedings of the 2009 IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 371–382 (2009)

16. Ratcliff, S., White, D., Clark, J.: Searching for invariants using genetic program-
ming and mutation testing. In: Proceedings of the 2011 Annual Genetic and Evo-
lutionary Computation Conference, pp. 1907–1914 (2011)

17. Reger, G., Havelund, K.: What is a trace? A runtime verification perspective.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 339–355.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 25

18. Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with
star. Theor. Comput. Sci. 412(18), 1729–1744 (2011)

19. Walkinshaw, N., Bogdanov, K., Holcombe, M., Salahuddin, S.: Reverse engineer-
ing state machines by interactive grammar inference. In: Proceedings of the 2007
Working Conference on Reverse Engineering, pp. 209–218 (2007)

20. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage.
In: Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, pp. 295–306 (2009)

21. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining tem-
poral API rules from imperfect traces. In: Proceedings of the 2006 International
Conference on Software Engineering, pp. 282–291 (2006)

https://doi.org/10.1007/978-3-319-47169-3_25

An Improved Exact Algorithm for the
Exact Satisfiability Problem

Gordon Hoi(B)

School of Computing, National University of Singapore, 13 Computing Drive,
Block COM1, Singapore 117417, Republic of Singapore

e0013185@u.nus.edu

Abstract. The Exact Satisfiability problem, XSAT, is defined as the
problem of finding a satisfying assignment to a formula ϕ in CNF such
that exactly one literal in each clause is assigned to be “1” and the other
literals in the same clause are set to “0”. Since it is an important variant
of the satisfiability problem, XSAT has also been studied heavily and has
seen numerous improvements to the development of its exact algorithms
over the years.

The fastest known exact algorithm to solve XSAT runs in O(1.1730n)
time, where n is the number of variables in the formula. In this paper, we
propose a faster exact algorithm that solves the problem in O(1.1674n)
time. Like many of the authors working on this problem, we give a DPLL
algorithm to solve it. The novelty of this paper lies on the design of the
nonstandard measure, to help us to tighten the analysis of the algorithm
further.

Keywords: XSAT · Measure and conquer · Exponential time
algorithms

1 Introduction

Given a propositional formula ϕ in conjunctive normal form (CNF), a common
question to ask would be if there is a satisfying assignment to ϕ. This is known
as the satisfiability problem, or SAT. SAT is seen to be a problem that is at
the center of computational complexity because it has been commonly used as
a framework to solve other combinatorial problems. In addition, SAT has found
many uses in practice as well. Some of these examples include: AI-planning,
software model checking, etc. [3].

Because of its importance, many other variants of the satisfiability problem
have also been explored. One such important variant is the Exact Satisfiability
problem, XSAT, where it asks if one can find a satisfying assignment such that
exactly one of the literal in each clause is assigned the value “1” and all other
literals in the same clause are assigned “0”. All the mentioned problems, SAT
and XSAT, are both known to be NP-complete [1,2].

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 304–319, 2020.
https://doi.org/10.1007/978-3-030-64843-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_21

An Improved Exact Algorithm for the Exact Satisfiability Problem 305

In this paper1, we will focus on the XSAT problem and in particular, exact
algorithms to solve it. XSAT is a well-studied problem and has seen numerous
improvements [4–7] to it, with the fastest solving it in O(1.1730n) time.

We propose an algorithm to solve XSAT in O(1.1674n) time, using poly-
nomial space. Like most of the earlier authors, we will design a Davis-Putnam-
Logemann-Loveland (DPLL) [11] style algorithm to solve this problem. We build
our work upon the works of the earlier authors. While the earlier authors all used
the standard measure, which is the number of variables n, the novelty here lies
on the design of a nonstandard measure to help us to tighten the analysis of the
algorithm further.

2 Preliminaries

In this section, we will introduce some definitions and also the techniques needed
to understand the analysis of DPLL algorithm.

2.1 Branching Factor and Vector

Our algorithm is a DPLL style algorithm, or also known as a branch and bound
algorithm. DPLL algorithms are recursive in nature and have two kinds of rules
associated with them: Simplification and Branching rules. Simplification rules
help us to simplify a problem instance or to act as a case to terminate the
algorithm. Branching rules on the other hand, help us to solve a problem instance
by recursively solving smaller instances of the problem. To help us to better
understand the execution of a DPLL algorithm, the notion of a search tree is
commonly used. We can assign the root node of the search tree to be the original
problem, while subsequent child nodes are assigned to be the smaller instances
of the problem whenever we invoke a branching rule. For more information of
this area, one may refer to the textbook written by Fomin and Kratsch [9].

Let μ be our measure of complexity. To analyse the running time of DPLL
algorithms, one just needs to bound the number of leaves generated in the
search tree. This is because the complexity of such algorithm is proportional
to the number of leaves, modulo polynomial factors, that is, O(poly(|ϕ|, μ) ×
number of leaves in the search tree) = O∗(number of leaves in the search tree),
where the function poly(|ϕ|, μ) is some polynomial dependent on |ϕ| and μ, and
O∗(f(μ)) is the class of all function g bounded by some polynomial p(·) × f(μ).

Then we let T (μ) denote the maximum number of leaf nodes generated by
the algorithm when we have μ as the parameter for the input problem. Since the
search tree is only generated by applying a branching rule, it suffices to consider
the number of leaf nodes generated by that rule (as simplification rules take only
polynomial time). To do this, we use techniques in [10]. Suppose a branching
rule has r ≥ 2 children, with t1, t2, . . . , tr decrease in measure for these children.

1 Some details in this paper has been omitted due to space constraints, the full paper
is available in arxiv: https://arxiv.org/pdf/2010.03850.pdf.

https://arxiv.org/pdf/2010.03850.pdf

306 G. Hoi

Then, any function T (μ) which satisfies T (μ) ≥ T (μ−t1)+T (μ−t2)+. . . T (μ−tr),
with appropriate base cases, would satisfy the bounds for the branching rule. To
solve the above linear recurrence, one can model this as x−t1 +x−t2 +. . .+x−tr =
1. Let β be the unique positive root of this recurrence, where β ≥ 1. Then any
T (μ) ≥ βµ would satisfy the recurrence for this branching rule. In addition, we
denote the branching factor τ(t1, t2, . . . , tr) as β. If there are k branching rules in
the DPLL algorithm, then the overall complexity of the algorithm is the largest
branching factor among all k branching rules; i.e. c = max{β1, β2, . . . , βk}, and
therefore the time complexity of the algorithm is bounded above by O∗(cµ).

Next, we will introduce some known results about branching factors. If k <
k′, then we have that τ(k′, j) < τ(k, j), for all positive k, j. In other words,
comparing two branching factor, if one eliminates more weights, then this will
result in a a smaller branching factor. Suppose that i+ j = 2α, for some α, then
τ(α, α) ≤ τ(i, j). In other words, a more balanced tree will result in a smaller
branching factor.

Finally, the correctness of DPLL algorithms usually follows from the fact
that all cases have been covered.

2.2 Definitions

Definition 1. A clause is a disjunction of literals. We also say that a clause is
a multiset of literals. A k-literal clause is a clause C with |C| = k. Let C be a
clause, then δ is a subclause of C if δ ⊂ C.

Suppose we have C = (a ∨ b ∨ c ∨ d), then C is a 4-literal clause. In addition,
δ = (a ∨ b ∨ c) is a subclause of C. We may also write C = (δ ∨ d). For now, we
define a clause as a multiset of literals as the same literal may appear twice in
a clause. When no simplification rules2 can be applied, we may then think of a
clause as a set of literals instead.

Definition 2. Two clauses are called neighbours if they share at least a com-
mon variable. Two variables are called neighbours if they appear in some clause
together. Let C1 and C2 be two clauses that are neighbours. Now if |C1 ∩ C2| =
k ≥ 2, we say that C1 and C2 have k overlapping variables. In addition, the vari-
ables in C1 − C2 and C2 − C1 are known as outside variables. Let |C1 − C2| = i
and |C2 − C1| = j, i, j ≥ 1. Then we say that there are i + j outside variables,
in an i-j orientation.

Note that this definition (i-j orientation) is strictly used for the case when
we have k ≥ 2 overlapping variables between any two clauses3. We only consider
i, j ≥ 1 because if i or j is 0, then one of the clause must be a subclause of the
other. Consider the following example.

2 More details later in Sect. 3, when the algorithm is given.
3 Mainly in Sect. 4.3.

An Improved Exact Algorithm for the Exact Satisfiability Problem 307

Example 1. Let C1 = (a ∨ b ∨ c ∨ d ∨ e) and C2 = (d ∨ e ∨ f ∨ g ∨ h). Then in
this case, since C1 ∩ C2 = {d, e}, there are 2 literals in the intersection and we
say that C1 and C2 have 2 overlapping variables. In addition, C1 −C2 = {a, b, c}
and C2 − C1 = {f, g, h}. Now, we say C1 and C2 have 6 outside variables in a
3-3 orientation.

Definition 3. Let x be a literal. Now the degree of a variable, deg(x), denotes
the total number of times that the literal x and ¬x appears in ϕ. If deg(x) ≥ 3,
then we say that the variable x is heavy. Further, for a heavy variable x that
appears in clauses C1, C2, ..., Ck, k ≥ 3, we say that x is in (l1, l2, ..., lk), where
|Ci| = li, 1 ≤ i ≤ k. Adding on to this,

1. if ¬x appears in Ci, then we say x is in (l1, l2, ...,¬li, ..., lk).
2. if |Ci| ≥ li, then we say x is in (l1, l2, ...,≥ li, ..., lk).

Note that if x is a heavy variable, we will only use this definition that x is
in (l1, l2, ..., lk), whenever given any two clauses that x is in, they have at most
1 overlapping variable between them.

Example 2. Suppose we have the following clauses: (x∨a∨b∨c∨d), (¬x∨e∨f∨g),
(x ∨ h ∨ i ∨ j ∨ k). Then in this case, we have x in (5,¬4, 5). We can also say
that x is in (≥ 4,¬4, 5) and we use “≥ i” whenever we just need to know that
the clause length is at least i. Note that the order in which the clause length is
presented here does not matter, i.e. (5,¬4, 5) can also be written as (¬4, 5, 5).

Definition 4. We say that two variables, x and y, are linked when we can
deduce either x = y or x = ¬y. When this happens, we can proceed to remove
one of the linked variable, either x or y, and replace by the other.

Suppose we have a 3-literal clause (0 ∨ x ∨ y), by definition of being exact
satisfiable, we can deduce that x = ¬y in this case, and proceed to remove one
variable, say x, by replacing all instances of x by ¬y and ¬x by y respectively.

Definition 5. Given a formula ϕ and δ a multiset of literals.

1. If |δ| = 1, then let x be the only literal in δ. Now ϕ[x = 1] and ϕ[x = 0]
denotes the new formula obtained after assigning x = 1 and x = 0 respec-
tively.

2. If |δ| ≥ 2, then we only allow the following when δ ⊂ C, for some clause C in
ϕ. ϕ[δ = 1] denotes the new formula obtained after assigning all the C − δ to
be 0. By definition of being exact-satisfiable, this is saying that the “1” must
only appear in one of the literals in δ. Therefore, all the literals in C − δ are
assigned 0. On the other hand, ϕ[δ = 0] denotes the new formula obtained
after assigning all the literals in δ to be 0.

Similarly, given two literals x and y, we say that ϕ[x = y] is the new formula
obtained by replacing all occurrences of x by y.

308 G. Hoi

Example 3. Suppose ϕ = (a ∨ b ∨ c ∨ d) and δ = (a ∨ b ∨ c). Then ϕ[δ = 1] =
(a ∨ b ∨ c ∨ 0) since we are saying that the “1” appears in either a, b, or c. On
the other hand, ϕ[δ = 0] = (0 ∨ 0 ∨ 0 ∨ d).

Definition 5.1 is used whenever we are branching a variable. On the other
hand, Definition 5.2 is used when we want to branch a subclause, especially when
we deal with k ≥ 2 overlapping variables between two clauses. In addition, when
we have a subclause δ such that |δ| = 2, then let x and y be the literals in δ.
Saying that ϕ[δ = 1] is the same as saying ϕ[x = ¬y], linking x = ¬y.

A common technique used by the earlier authors is known as resolution. If
there are clauses C1 = (C ∨ x) and C2 = (C ′ ∨ ¬x), where x is a literal, C and
C ′ are subclauses of C1 and C2 respectively, then we can replace every clause
(x ∨ α) by (C ′ ∨ α), and every clause (¬x ∨ β) by (C ∨ β), for some subclause
α, β. In addition, every literal in C ∩ C ′ can be assigned 0. This can help us to
remove literals appearing as x and ¬x in different clauses.

2.3 A Nonstandard Measure

Instead of using the number of variables as our measure, we will design a non-
standard measure to help us to improve the worst case time complexity of our
algorithm. Let {x1, x2, ..., xn} be the set of variables in ϕ. For 1 ≤ i ≤ n, we
define the weight wi for xi as:

wi =

⎧
⎪⎨

⎪⎩

0.8823, if xi is on a 3-literal clause such that all 3 variables in that
clause do not have the same neighbour

1, otherwise

We then define our choice of measure as μ =
∑

i wi, where μ ≤ n by defini-
tion. This value of 0.8823 is chosen by a linear search program to bring down
the overall runtime of the algorithm to as low as possible. Therefore, we have
O(cµ) ⊆ O(cn), for some constant c ≥ 1 by definition.

Example 4. Suppose we have the following clauses: (x ∨ y ∨ z ∨ a), (x ∨ u ∨ w ∨
v), (x ∨ r ∨ s ∨ t), (a ∨ v ∨ t) and the clause (y ∨ e ∨ f). The variables x, z, u, w, r
and s have weight 1. By definition, variables a, v and t are assigned the weight 1
because these variables have x as their neighbour. Variables y, e, f have weights
0.8823 because these 3 variables do not have the same neighbour.

3 Algorithm

All of our simplification rules and branching rules are designed to ensure that
the overall measure does not increase after applying them. That is, the measure
before applying any of the rule, μ, and the measure after applying any of the
rule, μ′, is always μ′ ≤ μ. We call our DPLL algorithm XSAT (.). Note that if
every variable x has deg(x) ≤ 2, then we can solve XSAT in polynomial time [5].

An Improved Exact Algorithm for the Exact Satisfiability Problem 309

With this in mind, we’ll design our algorithm by branching all heavy variables.
Note that each line of the algorithm has decreasing priority; Line 1 has higher
priority than Line 2, Line 2 than Line 3 etc. Let α, β, δ be subclauses.
Algorithm: XSAT
Input: A formula ϕ
Output: 1 if ϕ is exact satisfiable, else 0

1. If there is a clause that is not exact-satisfiable, then return 0.
2. If there is a clause C = (1∨δ) or C = (x∨¬x∨δ), for some variable x, then

set all literals in δ to 0 and drop the clause C. Return XSAT (ϕ[δ = 0]).
3. If there exist a clause C = (0 ∨ δ), then update C = δ. Update ϕ′ as the

new formula and return XSAT (ϕ′).
4. If there exist a 1-literal clause containing the literal l, then drop that clause.

Return XSAT (ϕ[l = 1]).
5. If there exist a 2-literal clause containing the literal l and l′, then drop that

clause. Return XSAT (ϕ[l = ¬l′]).
6. If there exist a clause C with a literal l appearing at least twice, then return

XSAT (ϕ[l = 0]).
7. If there exist clauses of the type (α∨x∨y) and (β ∨x∨¬y), for some literal

x and y, then return XSAT (ϕ[x = 0]).
8. If there exist clauses of the type (α ∨ x ∨ y) and (β ∨ ¬x ∨ ¬y), then return

XSAT (ϕ[x = ¬y]).
9. If there are clauses C and C ′ such that C ⊂ C ′, then set all literals in

δ = C ′ − C as 0, remove the clause C ′ and return XSAT (ϕ[δ = 0]).
10. If there is a variable x appearing in at least three 3-literal clauses, then we

either simplify it or branch x. If we simplify it, let ϕ′ be the new formula
after simplifying. Return XSAT (ϕ′). If we branch x, return XSAT (ϕ[x =
1]) ∨ XSAT (ϕ[x = 0]).

11. If there are clauses C1 containing x and C2 containing ¬x, for some literal x.
Then we apply resolution and let ϕ′ be the new formula. Return XSAT (ϕ′).

12. If there are clauses C1 and C2 such that they have k ≥ 2 overlapping
variables, then check if the outside variables are in a 1-j orientation, j ≥ 1.
If yes, then let ϕ′ be the new formula after applying some changes 4, then
return XSAT (ϕ′). Else, let δ = C1 ∩ C2 and we branch the subclause δ.
Return XSAT (ϕ[δ = 1]) ∨ XSAT (ϕ[δ = 0]).

13. If there is a heavy variable x, then branch x. Return XSAT (ϕ[x = 1]) ∨
XSAT (ϕ[x = 0]).

14. If all the variables x have deg(x) ≤ 2, then solve the problem in polynomial
time. Return 1 if exact-satisfiable, else return 0.

Lines 1 to 9, 11 are simplification rules, while Lines 10, 12 and 13 are branch-
ing rules. Line 14 takes only polynomial time to decide if there is an exact-
satisfiable assignment to ϕ when deg(x) ≤ 2 for all variable x. Line 1 says that
if any clause is found not to be exact-satisfiable, then we can return 0. Line 2
4 Full details given in the Sect. 4.3.

310 G. Hoi

says if a clause contains a “1”, then the other literals appearing in the clause
must be assigned 0. Line 3 says that if we have a clause containing “0”, then
we can update that clause by dropping off the constant “0”. Line 4 says that
if we encounter a 1-literal clause, then that literal must be assigned 1. Line 5
says that if there are any 2-literal clause containing some literals x and y, then
we can just link the two literals x = ¬y together. After Line 5 of the algorithm,
every clause in ϕ must be at least a 3-literal clause.

Line 6 deals with clauses containing the same literals that appear at least
twice. After Line 6, every clause can only contain any literal at most once. Lines
7 and 8 deals with two clauses that have at least two variables in common,
in different permutations. After Line 8, if any two clauses have at least two
variables in common, then this implies that they have share at least two literals
in common. After Line 9, no clause is a subclause of a larger clause in ϕ.

In Line 10, we deal with variables that appears in at least three 3-literal
clauses. We deal with this case early on because it helps us to reduce the number
of cases that we need to handle later on while branching in Sect. 4.3 and 4.4.
In Line 11, we deal with clauses C1 containing the literal x and C2 containing
¬x. Line 12 deals with two clauses having k ≥ 2 overlapping variables. First,
we deal with such cases in a 1-j orientation, j ≥ 1, followed by such cases in
an i-j orientation, i, j ≥ 2. After which, any two clauses must have only at
most one variable in common. Line 13 deals with heavy variables. After that, no
heavy variables exist in the formula ϕ and we can proceed to solve the problem in
polynomial time in Line 14. We have therefore covered all cases in our algorithm.

4 Analysis of Algorithm

In this section, we will analyze the overall runtime of the algorithm given in
the previous section. Note that simplification rules only take polynomial time.
Therefore, we will analyse from Lines 10 to 13 of the algorithm.

Due to the way we design our measure, if a k-literal clause drops to a 3-literal
clause, k > 3, we can factor in the change of measure of 1 − 0.8823 = 0.1177
for each of the variables in the 3-literal clause, if there is no common neighbour.
Whenever we deal with a 3-literal clause, for simplicity, we will treat all the
variables in it as having a weight of 0.8823 instead of 1. This gives us an upper
bound on the branching factor without the need to consider all kinds of cases.

In addition, when we are dealing with 3-literal clause, sometimes we have
to increase the measure after linking. For example, suppose we have the clause
(0 ∨ x ∨ y), for some literals x and y. Now we can link x = ¬y and proceed
to remove one variable, say x. This means that the 3-literal clause is removed
and the surviving variable y, may no longer be appearing in any other 3-literal
clause. Therefore, the weight of y increases from 0.8823 to 1. This increase in
weight means that we increase our measure and therefore, we have to factor in
“−0.1177” whenever we are linking variables in a 3-literal clause together.

An Improved Exact Algorithm for the Exact Satisfiability Problem 311

4.1 Line 10 of the Algorithm

Line 10 of the algorithm deals with a variable appearing in at least three 3-literal
clauses. We can either simplify the case further, or branch x. At this point in
time, Lines 11 and 12 of the algorithm has not been called. This means that we
have to deal with literals appearing as x and ¬x, and that given any two clause,
it is possible that they have k ≥ 2 overlapping variables.

Lemma 1. If x appears in at least three 3-literal clauses, we either simplify this
case further or we branch x, incurring at most O(1.1664n) time.

Proof. Now let x be appearing in two 3-literal clauses. We first deal with the
case that for any two 3-literal clauses, there are k ≥ 2 overlapping variables.
Since simplification rules do not apply anymore, the only case we need to handle
here is (x ∨ y ∨ z) and (x ∨ y ∨ w), for some literals w, y, z. In this case, we can
link w = z and drop one of these clauses.

For the remaining cases, x must appear in three 3-literal clause and there are
no k ≥ 2 overlapping variables between any two of the 3-literal clause. Therefore,
for the remaining case, x must be in (3, 3, 3) or (3, 3,¬3).

For the (3, 3, 3) case, let the clauses be (x∨v1∨v2), (x∨v3∨v4) and (x∨v5∨v6),
where v1, ..., v6 are unique literals. We branch x = 1 and x = 0 here. When x = 1,
we remove the variables v1, ..., v6 and x itself. This gives us a change of measure
of 7 × 0.8823. When x = 0, we remove x, and link v1 = ¬v2, v3 = ¬v4 and
v5 = ¬v6. This gives us a change of measure of 4 × 0.8823 − 3 × 0.1177. This
gives us a branching factor of τ(7 × 0.8823, 4 × 0.8823 − 3 × 0.1177) = 1.1664.
The case for (¬3,¬3,¬3) is symmetric.

For the (3, 3,¬3) case, let the clauses be (x ∨ v1 ∨ v2), (x ∨ v3 ∨ v4) and
(¬x ∨ v5 ∨ v6), where v1, ..., v6 are unique literals. Again, we branch x = 1 and
x = 0. When x = 1, we remove x and the variables v1, ..., v4, and link the
variables v5 = ¬v6. This gives us a change of measure of 6 × 0.8823 − 0.1177.
When x = 0, we remove x, v5, v6, and link the variables v1 = ¬v2 and v3 = ¬v4.
This gives us a change of measure of 5 × 0.8823 − 2 × 0.1177. This gives us a
branching factor of τ(6×0.8823−0.1177, 5×0.8823−2×0.1177) = 1.1605. The
case for (3,¬3,¬3) is symmetric. Therefore, this takes at most O(1.1664n) time.

4.2 Line 11 of the Algorithm

Line 11 of the algorithm applies resolution. One may note that our measure
is designed in terms of the length of the clause. Therefore, it is possible that
the measure may increase from 0.8823 to 1 after applying resolution. Applying
resolution on k-literal clauses, k ≥ 4, is fine because doing so will not increase the
measure. On the other hand, applying on 3-literal clauses will increase the length
of the clause and hence, increase the weights of the other variables in the clause,
and finally, the overall measure. Therefore to apply resolution on such cases, we
have to ensure that the removal of the variable x, is more than the increase of
the weights of from 0.8823 to 1 (1 − 0.8823 = 0.1177). To give an upper bound,
we assume that x has weight 0.8823. Taking 0.8823 ÷ 0.1177 = 7.5. Therefore,

312 G. Hoi

if there are more than 7.5 variables increasing from 0.8823 to 1, then we refrain
from doing so. This translates to x appearing in at least four 3-literal clauses.
However, this has already been handled by Line 10 of the algorithm. Hence,
when we come to Line 11 of the algorithm, we can safely apply resolution.

4.3 Line 12 of the Algorithm

In this section, we deal with Line 12 of the algorithm. Since simplification rules
do not apply anymore when this line is reached, we may then think of clauses as
sets (instead of multiset) of literals, since the same literal can no longer appear
more than once in the clause. In addition, literals x and ¬x do not appear in
the formula. Now, we fix the following notation for the rest of this section. Let
C1 and C2 be any clauses given such that C1 ∩ C2 = δ, with |δ| ≥ 2 overlapping
variables, in an i-j orientation, where |C1 − C2| = i and |C2 − C1| = j, where
i, j ≥ 1. We divide them into 3 parts, let L = C1 − C2 (left), R = C2 − C1

(right) and δ (middle). For example, in Example 1, we have L = {a, b, c} and
R = {f, g, h}. We first deal with the cases i = 1, j ≥ 1.

Lemma 2. The time complexity of dealing with two clauses with k ≥ 2 overlap-
ping variables, having 1-j orientation, j ≥ 1, is at most O(1.1664n).

Proof. If j = 1, then let x ∈ L and y ∈ R. Then we can just link x = y and
this case is done. If j ≥ 2, then let C1 = (x ∨ δ) and C2 = (δ ∨ R). From C1,
we know that ¬x = δ. Therefore, C2 can be rewritten has (¬x ∨ R). With the
clauses C1 = (x ∨ δ) and C2 = (¬x ∨ R), apply Line 11 (resolution) to remove
the literals x and ¬x, or to apply branching to get a complexity of O(1.1664n).

Now, we deal with the case of having k ≥ 2 overlapping variables in an i-j
orientation, i, j ≥ 2. Note that during the course of branching δ = 0, when a
longer clause drops to a 3-literal clause L (or R), then we can factor in the
change of measure of 1 − 0.8823 = 0.1177 for each of the variable in L (Normal
Case). However, there are situations when we are not allowed to factor in this
change. Firstly, when there is a common neighbour to the variables in L (Case
1). Secondly, when some or all variables in L already have weights 0.8823, which
means the variable appears in further 3-literal clauses prior to the branching
(Case 2). Details of Case 1 is in our full paper in arxiv.

For Case 2, we pay special attention to the outside variables in an i-j orien-
tation, i ≤ 3 or j ≤ 3. This is because when i, j ≥ 4, and while branching δ = 0,
the change in measure only comes from the removal of variables in δ. On the
other hand, when δ = 1, we can remove additional variables not in L, R and
δ, whenever we have a variable having weight 0.8823. Let s be a variable not
appearing in L, R or δ. We show all the possibilities below.

Case 2: The variables in L (or R) appear in further 3-literal clauses.

1. Case 2.1: A pair of 3-literal clauses containing s, with the neighbours of s
L, R, and δ. For example, if we have (l1 ∨ l2 ∨ δ) and (δ ∨ r2 ∨ r1), and the
two 3-literal clauses (s∨ l1 ∨ r1) and (s∨ l2 ∨ r2). Details of Case 2.1 is in our
full paper in arxiv.

An Improved Exact Algorithm for the Exact Satisfiability Problem 313

2. Case 2.2: Not Case 2.1. In other words, there is no such s that appears in
two 3-literal clauses, where the neighbours of s are the variables in L and R.
In this case, we have 3-literal clauses, each containing a variable from L, a
variable from R, and another variable not from L, R, and δ.

By Line 10 of the algorithm, s cannot appear in a third 3-literal clause.
Therefore, we must either have Case 2.1 or Case 2.2. Case 2.2 arises when it is
not Case 2.1; when there is no such s, appearing in two 3-literal clauses, with
the neighbours of s appearing in L and R. Case 2.2 represents the case where
we can have (l ∨ s ∨ r), where l ∈ L, r ∈ R (s appears in exactly one 3-literal
clause). In summary, Case 1, 2.1 and a few other additional cases are discussed
in our full arxiv paper5, and we will only show the Normal Case and Case 2.2.

Lemma 3. The time complexity of dealing with two clauses with k ≥ 2 overlap-
ping literals, having i-j orientation, i, j ≥ 2, is at most O(1.1674n) time.

Proof. Let any two clauses be given with k ≥ 2 overlapping variables and have
at least 4 outside variables in a 2-2 orientation. We will show the Normal Case
first, followed by Case 2.2 (only for outsides variables i ≤ 3 or j ≤ 3). For Case
2.2, and the appearance of each 3-literal clause, note that when branching δ = 1,
we can remove all the variables in the 3-literal clause, giving us 3 × 0.8823 per
3-literal clause that appears in this manner. Let h denote the number of further
3-literal clauses for Case 2.2 encountered below. In addition, for Case 2.2 having
odd number of outside variables, we treat the variable not in any 3-literal clause
as having weight 1, acting as an upper bound to our cases.

For k = 2, and we have 4 outside variables in a 2-2 orientation. When δ = 1,
we remove all 5 variables in total (4 outside variables and 1 via linking in δ).
When δ = 0, we remove 2 variables in δ and another 2 from linking the variables
in L and R. This gives us a change of measure of 4. Therefore, we have τ(5, 4) =
1.1674. For Case 2.2, we can have at most two 3-literal clauses here. This gives
us τ(h × (3 × 0.8823) + 2 × (2 − h) + 1, 2 + 2 × 0.8823), h ∈ {1, 2}, which is at
max of 1.1612, when h = 1. This completes the case for 4 outside variables.

Case: 5 outside variables in a 2-3 orientation. Branching δ = 1 will remove
all outside variables, and 1 of the linked variable in δ. This gives us a change of
measure of 6. On the other hand, branching δ = 0 will allow us to remove all
the variables in δ, link the 2 variables in L, and factor in the change of measure
for the remaining variables in R. This gives us τ(6, 3+3× 0.1177) = 1.1648. For
Case 2.2, we have at most two 3-literal clauses appearing in both L and R. Then
we have τ(h × (3 × 0.8823) + 2 × (2 − h) + 2, 2 + 0.8823 + 0.1177), h ∈ {1, 2},
which is at max of 1.1636 when h = 1. This completes the case for 5 outside
variables.

Case: 6 outside variables in a 3-3 orientation. Branching δ = 1 will remove all
6 outside variables in L and R, and also remove one more variable by linking the
variables in δ, a total of 7 variables. On the other hand, when δ = 0, we remove all
the variables in δ and also factor in the change of measure for the variables in L

5 The full paper is available in arxiv: https://arxiv.org/pdf/2010.03850.pdf.

https://arxiv.org/pdf/2010.03850.pdf

314 G. Hoi

and R, a total of 2+6×0.1177 for this branch. This gives us τ(7, 2+6×0.1177) =
1.1664. When Case 2.2 applies, then we can have at most three 3-literals clauses
appearing. This gives us a τ(h×(3×0.8823)+2×(3−h)+1, 2+2×(3−h)×0.1177),
h ∈ {1, 2, 3}, which is at max of 1.1641 when h = 1. This completes the case for
6 outside variables.

Case: 7 outside variables in a 3-4 orientation. Branching δ = 1 will allow us to
remove all 7 outside variables, and 1 variable from δ via linking. This gives us a
change of measure of 8. On the other hand, when δ = 0, we can factor in a change
of measure of 3 × 0.1177 from the variables. This gives us τ(8, 2 + 3 × 0.1177) =
1.1630. For Case 2.2, there are at most three 3-literal clauses between L and R.
This gives us τ(h × (3 × 0.8823) + 2 × (3 − h) + 2, 2 + (3 − h) × 0.1177), which
is at max of 1.1585 when h = 1. This completes the case for 7 outside variables.

Case: p ≥ 8 outside variables. Branching δ = 1 allows us to remove all
p outside variables, and an additional variable from linking in δ, which has a
change of measure of 9. For the δ = 0 branch, we remove two variables. This
gives us τ(p + 1, 2) ≤ τ(9, 2) = 1.1619. This completes the case for k = 2
overlapping variables.

Now we deal with k = 3 overlapping variables. If there are 4 outside variables
in a 2-2 orientation, then branching δ = 1 will allow us to remove all 4 outside
variables, which is a change of measure of 4. On the other hand, branching δ = 0
will allow us to remove all the variables in δ, as well as link the two variables in
L and R, removing a total of 5 variables. This gives us τ(4, 5) = 1.1674. When
we have Case 2.2, then we have at most two 3-literal clauses appearing. This
gives us τ(h × (3 × 0.8823) + 2 × (2 − h), 3 + 2 × 0.8823), h ∈ {1, 2}, which is at
max of 1.1588 when h = 1. This completes the case for 4 outside variables in a
2-2 orientation.

Case: 5 outside variables in a 2-3 orientation. Branching δ = 1 will allow
us to remove all 5 outside variables. On the other hand, branching δ = 0 will
allow us to remove all the variables in δ, as well as an additional variable from
linking the two variables in L, a total of 4 variables. This gives us τ(5, 4) =
1.1674. For Case 2.2, we can have at most two 3-literal clauses occurring. For
simplicity, we treat the 3rd variable in R as having weight 0.8823. Then we have
τ(h × (3 × 0.8823) + 2 × (2 − h) + 1, 3 + 0.8823 + 0.1177), h ∈ {1, 2}, which is at
max of 1.1563 when h = 1. This completes the case for 5 outside variables.

Case: 6 outside variables in a 3-3 orientation. When branching δ = 1, we
remove all 6 outside variables. When branching δ = 0, we remove all 3 variables
in δ, and we can factor in the change of measure for these of 0.1177 for these 6
variables. This gives us τ(6, 3 + 6 × 0.1177) = 1.1569. In Case 2.2, we can have
at most three 3-literal appearing in L and R. Then we have τ(h× (3×0.8823)+
2 × (3 − h), 3 + 2 × (3 − h) × 0.1177), h ∈ {1, 2, 3}, which is at max of 1.1526
when h = 1. This completes the case for 6 outside variables.

Case: p ≥ 7 outside variables. Then branching δ = 1 will allow us to remove
at least 7 variables, and when δ = 0, we remove all the variables in δ. This
gives us τ(p, 3) ≤ τ(7, 3) = 1.1586. For Case 2.2, we can have at most h ≤ 	p

2

3-literals clauses. Then we have τ(h × (3 × 0.8823) + 2 × (p

2
 − h) + 1, 3), which

An Improved Exact Algorithm for the Exact Satisfiability Problem 315

is at max of 1.1503 when h = 1 and 	p
2
=3. This completes the case for k = 3

overlapping variables.
Now, we deal with the case of k = 4 overlapping variables. When we have

4 outside variables in a 2-2 orientation, then branching δ = 1 will allow us to
remove all 4 outside variables. On the other hand, when δ = 0, we remove all
the variables in δ, and link the two variables in L and R. This gives us a change
of measure of 6. Therefore, we have τ(4, 6) = 1.1510. For Case 2.2, we can have
at most two 3-literal clauses. Then we have τ(h × (3 × 0.8823) + 2 × (2 − h), 4 +
2 × 0.8823), h ∈ {1, 2}, which is at max of 1.1431 when h = 1. This completes
the case for 4 outside variables.

Case: p ≥ 5 outside variables. Branching δ = 1 will allow us to remove at
least 5 variables. Branching δ = 0 will remove all the variables in δ. This gives
us τ(p, 4) ≤ τ(5, 4) = 1.1674. For Case 2.2, we can have at most h ≤ 	p

2
 number
of 3-literal clauses. We have τ(h × (3 × 0.8823) + 2 × (p

2
 − h) + 1, 4), which is
at max of 1.1563 when h = 1 and 	p

2
 = 2. This completes the case for 5 outside
variables.

Finally for k ≥ 5 overlapping variables and p ≥ 4 outside variables, branching
δ = 1 will remove at least 4 variables, while branching δ = 0 will remove at least
5 variables. This gives us τ(p, k) ≤ τ(4, 5) = 1.1674. For Case 2.2, there can be
at most h ≤ 	p

2
 number of 3-literal clauses. Then we have τ(h × (3 × 0.8823) +
2 × (p

2
) − h), k) ≤ τ(h × (3 × 0.8823) + 2 × (p
2
 − h), 5), which is at max of

1.1547 when h = 1 and 	p
2
 = 2.

This completes the case for k ≥ 2 overlapping variables and the max branch-
ing factor while executing this line of the algorithm is 1.1674.

4.4 Line 13 of the Algorithm

Now, we deal with Line 13 of the algorithm, to branch off heavy variables in
the formula. After Line 12 of the algorithm, given any two clauses C1 and C2,
there can only be at most only 1 variable appearing in them. Cases 1 and 2
in the previous section will also apply here (we deal with Case 1 in the full
paper). In Sect. 4.3, we paid special attention to L and R when |L| = 3 or
|R| = 3. Here, we pay special attention to x being in 4-literal clauses, because
after branching x = 0, it will drop to a 3-literal clause. Since we have dealt
with (3, 3, 3) case earlier, here, we’ll deal with the remaining cases; cases from
(3, 3,≥ 4) to (≥ 5,≥ 5,≥ 5).

For Case 2, there are some changes. Here, we are dealing with 3 clauses
instead of 2 in the previous section, therefore, there will be more permutation of
3-literal clauses to consider. Recall previously that we dealt with a case where s
appears in two 3-literal clauses in Case 2.1 of Sect. 4.3. We shift this case to our
arxiv paper.

Let s be a variable not appearing in the clauses that we are discussing about.
We define Case 2.1 and Case 2.2, while keeping the Normal Case as before.
Case 2.1: If we have clauses C1 = (a1 ∨ a2 ∨ ... ∨ x), C2 = (b1 ∨ b2 ∨ ... ∨ x),
C3 = (c1 ∨ c2 ∨ ... ∨ x), (s ∨ a1 ∨ b1) and (s ∨ b2 ∨ c1). Note that some clause C2

316 G. Hoi

has 2 variables as neighbours of s. For the proof below, we will use this (a clause
having two variables in it as neighbours of s) notation to denote the worst case.

Case 2.2: No such s occurs where we have a clause that has two variables
in it as neighbours of s. Therefore, for each 3-literal clause appearing, it will
only contain two variables from the clauses, and a new variable not in the three
clauses. For example, if we have (x∨ v1 ∨ v2 ∨ v3), (x∨ v4 ∨ v5 ∨ v6) and (x∨ v7 ∨
v8 ∨ v9). Here, we consider 3-literal clauses appearing as (s ∨ v1 ∨ v4). Similar to
Case 2.2 in the previous section.

In Case 2, s cannot appear in the third 3-literal clause due to Line 10. There-
fore, only Case 2.1 or 2.2 can happen. Our cases here are complete.

Lemma 4. The time complexity of branching heavy variables is O(1.1668n).

Proof. Let x be a heavy variable. Given (l1, l2, l3), then there are |l1|+|l2|+|l3|−2
unique variables in these clauses. Let h denote the number of 3-literal clauses as
shown in Case 2.2 above. We will give the Normal case, Case 1 (only for (4, 4, 4)),
Case 2.1 and Case 2.2. For Case 2.1, we will treat all variables as having weight
0.8823 to lessen the number of cases we need to consider. In addition, we handle
the cases in the following order: (3, 3,≥ 4), then (3,≥ 4,≥ 4) etc.

(3, 3,≥ 4). We start with (3, 3, 4). Branching x = 1 will allow us to remove
all the variables in this case, with a change in measure of 5 × 0.8823 + 3. When
x = 0, we will have a change in measure of 3 × 0.8823 − 2 × 0.1177, and when
the 4-literal clause drops to a 3-literal clause, another 3 × 0.1177. This gives us
τ(5 × 0.8823 + 3, 3 × 0.8823 + 0.1177) = 1.1591. If Case 2.1 occurs, then the
worst case here would be that one of the 3-literal clauses (in (3, 3, 4)), contain
two variables that are neighbours to s. We branch x = 1 and x = 0 to get
τ(7 × 0.8823 + 2, 3 × 0.8823) = 1.1526. If Case 2.2 occurs, then we can have
at most three 3-literal clauses. We branch x = 1 and x = 0. Then we have
τ(5×0.8823+h×(2×0.8823)+(3−h), 3×0.8823+(3−h)×0.1177−2×0.1177),
h ∈ {1, 2, 3}, which is at max of 1.1526 when h = 1. This completes the case
for (3, 3, 4). Next, we deal with (3, 3,≥ 5). For such a case, when x = 1, we
remove all variables, which gives us a change of measure of 5×0.8823+4. When
x = 0, we remove x and link up the two variables in the 3-literal clauses. This
gives us a change of 3 × 0.8823 − 2 × 0.1177. This gives us τ(5 × 0.8823 + 4, 3 ×
0.8823 − 2 × 0.1177) = 1.1562. If Case 2.1 or 2.2 applies here, then we give an
upper bound to these cases by treating all variables as having weight 0.8823.
When x = 1, we remove all 9 variables, this gives us 9 × 0.8823. On the other
hand, when x = 0, we have 3 × 0.8823 − 2 × 0.1177. This gives us at most
τ(9 × 0.8823, 3 × 0.8823 − 2 × 0.1177) = 1.1620. This completes the case for
(3, 3,≥ 5) and hence (3, 3,≥ 4).

(3,≥ 4,≥ 4). We start with (3, 4, 4). Branching x = 1 will allow us to remove
all the variables, giving us 6 + 3 × 0.8823. Branching x = 0, gives us a change of
2×0.8823−0.1177+6×0.1177 instead. This gives us τ(6+3×0.8823, 2×0.8823+
5 × 0.1177) = 1.1551. For Case 2.1, the worst case happens when we have two
variables in any of the 4-literal clauses as neighbours of s. Branching s = 1 will
allow us to remove 7 variables, where one of which is via linking of a variable in

An Improved Exact Algorithm for the Exact Satisfiability Problem 317

a 3-literal clause, giving us 7×0.8823−0.1177. When s = 0, we remove x, s and
2 variables via linking in the 3-literal clause, giving us 4 × 0.8823 − 2 × 0.1177.
This gives τ(7 × 0.8823 − 0.1177, 4 × 0.8823 − 2 × 0.1177) = 1.1653. For Case
2.2, we can have at most three 3-literal clauses appearing across the two 4-literal
clauses. Then branching x = 1 and x = 0 gives us τ(3×0.8823+h×(3×0.8823)+
2 × (3 − h), 2 × 0.8823 − 0.1177 + (3 − h) × 2 × 0.1177), h ∈ {1, 2, 3}, which is at
max of 1.1571 when h = 3. This completes the case for (3, 4, 4). For (3, 4,≥ 5),
branching x = 1 will allow us to remove all variables, giving us 3×0.8823+7. On
the other hand, branching x = 0 will allow us to remove x, link a variable in the
3-literal clause and factor in the change in measure for the 4-literal clauses. This
gives us τ(3×0.8823+7, 2×0.8823+2×0.1177) = 1.1547. For Case 2.1 and Case
2.2, we can find a variable s that does not appear in any of the clauses. We give
an upper bound for this case by treating all variables as having weight 0.8823.
When x = 1, we remove all 10 variables and s. This gives us 11 × 0.8823. When
x = 0, we remove x and link up the other variable in the 3-literal clause, giving
us 2×0.8823−0.1177. This gives us τ(11×0.8823, 2×0.8823−0.1177) = 1.1666.
This completes the case for (3, 4,≥ 5). Finally, for (3,≥ 5,≥ 5), we give an
upper bound by treating all the variables as having weight 0.8823, to deal with
the Normal Case, Case 2.1 and 2.2. Branching x = 1 gives us 11 × 0.8823.
When x = 0, this gives us 2 × 0.8823 − 0.1177. Therefore, we have at most
τ(11 × 0.8823, 2 × 0.8823 − 0.1177) = 1.1666 for this case. This completes the
case for (3,≥ 5,≥ 5) and hence (3,≥ 4,≥ 4).

(4, 4, 4). When x = 1, we remove all variables. This gives us a change of
measure of 10. On the other hand, when x = 0, we have a change of measure
of 1 + 9 × 0.1177. This gives us a branching factor of τ(10, 1 + 9 × 0.1177) =
1.1492. When Case 2.1 occurs, then one of the 4-literal clause must have 2
variables in it that are neighbours to s. Suppose we have (x ∨ a1 ∨ a2 ∨ a3),
(x ∨ b1 ∨ b2 ∨ b3), (x ∨ c1 ∨ c2 ∨ c3), (s ∨ a1 ∨ b1) and (s ∨ b2 ∨ c1). Then we
branch b1 = 1 and b1 = 0. When b1 = 1, then s = a1 = b2 = b3 = x = 0.
Since s = b2 = 0, then c1 = 1. Therefore, we must have c2 = c3 = 0 and we
can link up a2 = ¬a3. Now, x must have weight 1, else earlier cases would have
handled it. This gives a change of measure of 9× 0.8823+1. On the other hand,
when b1 = 0, we link up ¬a1 = s (no increase in weights for s), giving us a
change of measure of 2 × 0.8823 + 0.1177. This gives a branching factor of at
most τ(9×0.8823+1, 2×0.8823+0.1177) = 1.1668. When Case 2.2 arises, then
the worst case happens when we have three 3-literal clauses appearing across
the 4-literal clauses. This gives us τ(9 × 0.8823 + 4, 1 + 3 × 0.1177) = 1.1577.
This completes the case for (4, 4, 4).

(4, 4,≥ 5). When x = 1, we remove all 11 variables. When x = 0, we remove
x and factor in the change of measure from the 4-literal clauses, giving us 1 +
6 × 0.1177. This gives us a branching factor of τ(11, 1 + 6 × 0.1177) = 1.1509.
If Case 2.1 occurs, and two variables from a 4-literal clause is a neighbour to s,
then choose the variable that is a neighbour to s to branch, such that we can
remove all the variables in the 5-literal clause (same technique as above). The
same upper bound of 1.1668 will also apply here. If two variables from a 5-literal

318 G. Hoi

clause is a neighbour to s, then branch any of these two variables to get the
same bound of 1.1668. If Case 2.2 applies, then there are at most three 3-literal
clauses between the two 4-literal clauses. Then we have τ(h × (3 × 0.8823) +
5, 1 + 2 × (3 − h) × 0.1177), h ∈ {1, 2, 3}, which is at max of 1.1637 when h = 3.
This completes the case for (4, 4,≥ 5).

(4,≥ 5,≥ 5). When x = 1, we remove all 12 variables. When x = 0, we
remove x and factor in the change of measure of 1 + 3 × 0.1177. Therefore, we
have τ(12, 1+3×0.1177) = 1.1551. When Case 2.1 occurs, then follow the same
technique as given in (4, 4,≥ 5) to get the upper bound of 1.1668 here. When
Case 2.2 occurs, then we can have at most three 3-literal clauses appearing across
the 4-literal and the 5-literal clauses. This gives us τ(h × (3 × 0.8823) + 2 × (3 −
h)+6, 1+ (3−h)× 0.1177), h ∈ {1, 2, 3}, which is at max of 1.1550 when h = 3.
This completes the case of (4,≥ 5,≥ 5).

(≥ 5,≥ 5,≥ 5). When x = 1, we remove 13 variables and when x = 0, we
remove only x. This gives us τ(13, 1) = 1.1632. If Case 2.1 occurs, follow the
same technique as given in (4, 4,≥ 5) when two variables in the 5-literal clause
are neighbours to s. This gives us the same upper bound of 1.1668. For Case 2.2,
the worst case occurs when every variable in (≥ 5,≥ 5,≥ 5) has weight 1, which
gives 1.1632 (Normal Case). This is because when x = 0, we can only remove x
and not factor in any other change in measure. On the other hand, when any of
the variables have weight 0.8823, this means we can remove additional variables
when x = 1. This completes the case for (≥ 5,≥ 5,≥ 5). Hence, Line 14 of the
algorithm runs in O(1.1668n) time.

Therefore, putting all the lemmas together, we have the following result:

Theorem 1. The algorithm runs in O(1.1674n) time.

References

1. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of STOC
1978, pp. 216–226. ACM (1978)

2. Cook, S.: The complexity of theorem proving procedures. In: Proceedings of 3rd
Annual ACM Symposium on Theory of Computing (STOC), pp. 151–158 (1971)

3. Marques-Silva, J., Practical applications of Boolean Satisfiability. In: 9th Interna-
tional Workshop on Discrete Event Systems, pp. 74–80. IEEE (2008)

4. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

5. Monien, B., Speckenmeyer, E., Vornberger, O.: Upper bounds for covering prob-
lems. Methods Oper. Res. 43, 419–431 (1981)

6. Byskov, J.M., Madsen, B.A., Skjernaa, B.: New algorithms for exact satisfiability.
Theoret. Comput. Sci. 332(1–3), 515–541 (2005)

7. Dahllöf, V.: Exact algorithms for exact satisfiability problems. Linköping Studies
in Science and Technology, Ph.D. Dissertation no 1013 (2006)

8. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure and conquer approach for the
analysis of exact algorithms. J. ACM (JACM) 56(5), 25 (2009)

An Improved Exact Algorithm for the Exact Satisfiability Problem 319

9. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16533-7

10. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theoret.
Comput. Sci. 223(1–2), 1–72 (1999)

11. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Commun. ACM 5(7), 394–397 (1962)

https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-642-16533-7

Transforming Multi-matching Nested
Traceable Automata to Multi-matching

Nested Expressions

Jin Liu, Zhenhua Duan(B), and Cong Tian

ICTT and ISN Laboratory, Xidian University,
Xi’an 710071, People’s Republic of China

liujin xd@163.com, zhhduan@mail.xidian.edu.cn, ctian@mail.xidian.edu.cn

Abstract. Multi-matching nested relation consists of a sequence of lin-
early ordered positions, call, internal, and return, augmented with one-
to-one, one-to-n or n-to-one matching nested edges from call to return.
After word encoding by introducing tagged letters, Multi-matching
Nested Words (MNW) are obtained over a tagged alphabet. Then Multi-
matching Nested Expressions (MNE) and Multi-matching Nested Trace-
able Automata (MNTA) are defined over MNWs. Further, a transforma-
tion method from MNTA to MNE is proposed. An extra state is intro-
duced as the unique initial state. Three kinds of labelled arcs are created
for different kinds of transitions. They are merged according to specific
strategies and meanwhile the expressions are calculated. As a result, the
corresponding MNE can be obtained.

Keywords: Multi-matching nested relation · One-to-n · n-to-one ·
Automata · Expression · Transformation

1 Introduction

Finite Automata (FA) are a useful model for many important kinds of hardware
and software, such as the lexical analyzer of a typical compiler, the software for
scanning large bodies of text or designing and checking the behavior of digital
circuits [1]. They can describe regular languages but not languages with one-to-
one matching structures.

The concept of matching relations is proposed in [2,3], consisting a sequence
of linearly ordered positions (call, internal and return), augmented with nesting
edges connecting calls and returns. The edges do not cross creating a properly
nested hierarchical structure and some of the edges are allowed to be pending.
The model of nested words is obtained by assigning each position with a symbol,
for instance, the execution of a sequential structured program and the SAX

This research is supported by the NSFC Grant Nos. 61732013 and 61751207, the
National Key Research and Development Program of China (No. 2018AAA0103202),
and Shaanxi Key Science and Technology Innovation Team Project (No. 2019TD-001).

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 320–333, 2020.
https://doi.org/10.1007/978-3-030-64843-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_22&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_22

Transforming Multi-matching Nested Traceable Automata MNE 321

representation of XML documentations [4–6]. Finite automata are defined over
nested words, named Nested Word Automata (NWA), where the action depends
on the type of positions [2,3]. At a call, the state propagates along both linear and
nesting outgoing edges, while both linear and nesting incoming edges determine
the new state for a return. One can easily interpret NWA as pushdown automata,
named Visibly Pushdown Automata (VPA), by linear word encoding of nested
words. The automaton pushes onto the stack when reading a call while pops the
stack only at a return, and does not use the stack at an internal [3,7].

Traceable Automata (TA) are proposed in [8–10] as an extension of FA to
describe the control construction of menu of user interface in integrated software
engineering environment. Different tools constitutes a state set and all commands
of each tool form the set of input symbols. When the environment receives a
command at a state during the process, corresponding subroutine is executed.
Then it turns to a specific state after the execution is completed. If the command
is an exit, it will trace back to the previous state before the current one. To do
this, a state stack is introduced to preserve a part of running history in order
to determine the subsequent state. Two kinds of transitions are defined in TA:
the current state is pushed into the stack for record in a push transition while
the automaton traces to the state on the top stack which is popped then in a
trace transition. Each push transition corresponds to a specific trace one. TA
can describe parenthesis matching languages.

Nevertheless, the model above cannot describe one-to-n and n-to-one match-
ing structures, which also play an important role in real-world applications.
It is familiar in C programs that memory can be dynamically allocated, then
referenced and manipulated by pointers, finally freed [11]. The allocation is cor-
responding to a specific free, which is a one-to-one matching relation. Multiple
usages (read or written) and the final free constitute an n-to-one matching rela-
tion. An erroneous pointer manipulation leads to double frees. The allocation
and double frees form a one-to-n matching relation. Further, an n-to-one encryp-
tion and authentication scheme is used in group-oriented cryptography for the
scenario that the number of the receivers is much fewer than the number of the
senders. Actually, a receiver may serve millions of senders [12,13]. Besides, one-
to-n and n-to-one relations are common in mapping relations among tables in
database systems [14].

With this motivation, multi-matching nested relations are studied, where
nesting edges can share the same call or return. One call (or return) is cor-
responding to multiple returns (or calls). Its natural word encoding form is
obtained by assigning each call, internal and return position with different
tagged symbols. Accordingly, multi-matching nested expressions and multi-
matching nested traceable automata are defined over multi-matching nested
words. In a MNTA, the input symbols are also recorded in the stack besides
states, they are used to determine the subsequent transitions together. A trans-
formation method from MNTA to MNE is proposed. An extra state X is intro-
duced as the unique initial state and different kinds of labeled arcs are created
for transitions. The arcs are merged according to the characteristics of transi-

322 J. Liu et al.

tions in MNTA. Finally, the expressions for the labeled arcs from X to each final
state are calculated as the one of the automaton.

The rest of paper is organized as follows. In Sect. 2, we present the defini-
tion of multi-matching nested relations and its word encoding. Section 3 defines
MNTA and MNE over multi-matching nested words. A transformation method
from MNTA to MNE is illustrated in Sect. 4. Finally, we conclude in Sect. 5.

2 Multi-matching Nested Words

2.1 Multi-matching Nested Relation

Given a linear sequence, the positions are divided into three types: call, internal
and return. Matching relation is defined in [3] over a linear sequence for describ-
ing one-to-one matching relation where each call is matched with a specific
return. To make the call or return shareable, we extend the definition to multi-
matching nested relations including one-to-one, one-to-n and n-to-one. And the
edges starting at −∞ and edges ending at +∞ are used to model pending edges.
Assume that −∞ < i, j < +∞ for integers i and j.

Definition 1 (Multi-matching Nested Relation). A multi-matching
nested relation �̇ of length m, m ≥ 0, is a subset of {−∞, 1, 2, · · · ,m} ×
{1, 2, · · · ,m,+∞} such that

1. nesting edges go only forward: if i�̇j then i < j;
2. nesting edges do not cross: if i�̇j and i′�̇j′, then it is not the case that

i < i′ ≤ j < j′;
3. only one end of a nesting edge can be shared with others: for i�̇j and i′�̇j′

where 1 ≤ i = i′ < j′ < j ≤ m (or 1 ≤ i < i′ < j′ = j ≤ m), there does
not exist k, where k �= i, i′, j, j′, such that any of k�̇i, k�̇j, j�̇k, k�̇j′ and
j′�̇k (or k�̇i′, i′�̇k, k�̇i, i�̇k and j�̇k) holds.

In the third condition of Definition 1, consider the case that i�̇j and i�̇j′ where
1 ≤ i < j′ < j ≤ m. Let k �= i, j, j′. For position i, it is shareable in this case,
hence only the nesting edge emanating from i is allowed, i.e. i�̇k. For position
j (or j′), it cannot be shared with other nesting edges besides i�̇j (i�̇j′), i.e.
neither k�̇j (k�̇j′) nor j�̇k (j′�̇k) is permitted.

For n different nesting edges sharing position i: i�̇j1, i�̇j2, · · · , i�̇jn where
1 ≤ i < j1 < j2 < · · · < jn ≤ m and n ≥ 1, position i is denoted as a call position
(call for short) while each position jk, 1 ≤ k ≤ n, is its return-successor and
denoted as a return position (return for short). The return jn is called outermost-
return; while other returns are identified as inner-returns. Specifically, for the
nesting edge i�̇ + ∞, i is called a pending call ; otherwise, i is a matched call.

Similarly, for n different nesting edges sharing position j: i1�̇j, i2�̇j, · · · ,
in�̇j where 1 ≤ i1 < i2 < · · · < in < j ≤ m and n ≥ 1, position j is a return
and each call position ik, 1 ≤ k ≤ n, is its call-predecessor, where i1 is indicated
as an outermost-call while other calls are called inner-calls. Specifically, j is

Transforming Multi-matching Nested Traceable Automata MNE 323

denoted as a pending return when there is a nesting edge −∞�̇j; otherwise a
matched return.

A position is an internal position (internal for short) if it is neither a call nor
a return. A multi-matching nested relation is well-matched if there is no pending
call or pending return.

Different from matching relation in [3], multi-matching nested relation
requires in the third condition of Definition 1 that for n different nesting edges,
they can share the same call (or return), but their returns (or calls) cannot.
Specially, a multi-matching nested relation is a matching relation if there do not
exist two nesting edges sharing the same call or return.

Note that for a position i: (i) i can be classified to only one type of call,
internal and return; (ii) i is not shareable if i is a pending call or pending return.

2.2 Word Encoding

Given a multi-matching relation, a word can be obtained by assigning each
position with a symbol. For distinction of the classifications of positions, different
tags are introduced. Symbols decorated by tags ‘<’ at the left superscript and
‘>’ at the right superscript distinguish calls and returns. The dot ‘·’ at the
top of a symbols can distinguish calls (or returns) and inner-calls (or inner-
returns). For an internal, no tag is needed. Given an alphabet Σ, a tagged
alphabet Σ̂ = Σc ∪ Σ̇c ∪ Σi ∪ Σ̇r ∪ Σr is introduced, where Σc = {<a|a ∈ Σ},
Σ̇c = {<ȧ|a ∈ Σ}, Σi = Σ, Σ̇r = {ȧ>|a ∈ Σ} and Σr = {a>|a ∈ Σ} are the
symbols of call, inner-call, internal, inner-return and return, respectively.

Definition 2. For any symbols <a1 ∈ Σc, <ȧ2 ∈ Σ̇c, ȧ3
> ∈ Σ̇r and a4

> ∈ Σr,
(i) <a1 and a4

>; (ii) <a1, <ȧ2 and a4
>; (iii) <a1, ȧ3

> and a4
> are indicated to

be matched if and only if (i) a1 = a4; (ii) a1 = a2 = a4; (iii) a1 = a3 = a4

respectively.

Then, we give the definition of multi-matching nested words.

Definition 3 (Multi-matching Nested Word, MNW). Given a multi-
matching nested relation �̇ of length m, a multi-matching nested word w =
w1w2 · · · wm over alphabet Σ̂ can be obtained which satisfies the following con-
ditions:

1. if there are n nesting edges i�̇j1, i�̇j2, · · · , i�̇jn where 1 ≤ i < j1 < j2 <
· · · < jn ≤ m and n ≥ 1, then wi ∈ Σc, wj1 = wj2 = · · · = wjn−1 ∈ Σ̇r,
wjn ∈ Σr, and they are matched;

2. if there are n nesting edges i1�̇j, i2�̇j, · · · , in�̇j where 1 ≤ i1 < i2 <
· · · < in < j ≤ m and n ≥ 1, then wi1 ∈ Σc, wi2 = wi3 = · · · = win ∈ Σ̇c,
wj ∈ Σr, and they are matched;

3. wk ∈ Σi if position k is an internal.

Definition 3 requires that for n nesting edges sharing the same call or return, all
symbols assigned to calls and returns of these edges must be matched. The set

324 J. Liu et al.

of all multi-matching nested words over Σ̂ are denoted as MNW(Σ̂). Note that
due to the requirement of symbol matching, it can be obtained MNW(Σ̂) ⊂ Σ̂∗.

For example, given a multi-matching relation �̇ = {(1, 2), (1, 7), (4, 6), (5, 6)}
of length 7, where 3 is an internal, {(1, 2), (1, 7)} forms a one-to-n matching and
{(4, 6), (5, 6)} is an n-to-one matching. Suppose symbols a and b are assigned
to the two matching relations while i indicates the internal, a multi-matching
nested word n = <aȧ>i<b<̇bb>a> is obtained.

3 Multi-matching Nested Languages

3.1 Multi-matching Nested Expressions

To describe multi-matching nested words over the tagged alphabet Σ̂, we intro-
duce multi-matching nested expressions. An expression e is denoted to be well-
matched if there is no pending call or pending return in e.

Definition 4 (Multi-matching Nested Expression, MNE). A multi-
matching nested expression e over Σ̂ = Σc ∪ Σ̇c ∪ Σi ∪ Σ̇r ∪ Σr is inductively
defined as follows:

e → ε | ∅ | x | (<aen
<ȧen−1 · · ·<ȧe1a

>)∗ | (<ae1ȧ
>e2ȧ

> · · · ena>)∗ | e + e |
er · ec | e∗

rc | (e)

where x ∈ Σc ∪ Σi ∪ Σr, <a ∈ Σc, <ȧ ∈ Σ̇c, ȧ> ∈ Σ̇r, a> ∈ Σr, n ≥ 1.

Basically, a multi-matching nested expression e can be an empty expression
ε or an empty set ∅. For the expression of a single symbol x, inner-call or inner-
return can not exist without matched call and return.

As for expressions (<aen
<ȧen−1 · · ·<ȧe1a

>)∗ and (<ae1ȧ
>e2ȧ

> · · · ena>)∗, each
nested expression ei, 1 ≤ i ≤ n, must be well-matched. The binary operation
+ (called union) is the same as that in regular expression [1]. The expression
er · ec means the concatenation of er and ec which satisfies that er containing
pending calls and ec containing pending returns are not allowed at the same time.
For simplicity, the concatenation operator can be omitted. e∗

rc signifies the unary
operation ∗ (called closure) augmented with the restriction that words expressed
by erc cannot contain pending calls and pending returns simultaneously. Besides,
the expression (e), a parenthesized e, is also a multi-matching nested expression.
And the parentheses are used to group operands.

The set of words described by a multi-matching nested expression e consti-
tutes a multi-matching nested language, denoted by L(e).

The precedence order of the operators in multi-matching nested expressions
is as follows. The unary operator closure (∗) binds stronger than the binary
ones. The binary operator concatenation (·) takes precedence over union (+).
Sometimes, parentheses are used to group operands exactly as we choose.

Transforming Multi-matching Nested Traceable Automata MNE 325

3.2 Multi-matching Nested Traceable Automata

Traceable automata are the model that can describe one-to-one matching rela-
tions. In order to extend to multi-matching nested relations, we need to adapt
the TA model by recording both input symbols and states in the stack to identify
whether a one-to-n or n-to-one matching relation.

Definition 5 (Multi-matching Nested Traceable Automata, MNTA).
A multi-matching nested traceable automaton is a tuple M = (Q, Σ̂, δ,Q0, F, Γ),
where

1. Q is a finite set of states;
2. Q0 ⊆ Q is the set of initial states;
3. F ⊆ Q is the set of final states;
4. Σ̂ = Σc ∪ Σ̇c ∪ Σi ∪ Σ̇r ∪ Σr is a finite set of input symbols, where Σc,

Σ̇c, Σi, Σ̇r and Σr denote call, inner-call, internal, inner-return and return
symbols, respectively;

5. Γ ⊆ (Σc ∪ Σ̇c ∪ Σ̇r) × Q ∪ {⊥} is a finite set of stack elements, where ⊥ is
a special bottom-of-stack symbol; and

6. δ is the transition relation consisting of three parts:
(a) a push transition relation δp ⊆ Q × Γ × Σc × Q × (Σc × Q × Γ)
(b) an update transition relation δu ⊆ Q × Γ × (Σ̇c ∪ Σi ∪ Σ̇r) × Q × Γ
(c) a trace transition relation δt ⊆ Q × Γ × Σr × {trace}

The transitions in M can be classified into three categories. When reading a
call <a at state q, both q and <a are pushed into the stack; meanwhile, the
state updates to q′, denoted as (q, γ,<a, q′,<aqγ). When reading an internal, M
takes a simple state transition, named internal update transition. For transition
(q,<ap/<ȧp,<ȧ, q′,<ȧp), where <ap or <ȧp is abbreviated as <ap/<ȧp, the state
changes from q to q′ and the top stack element is modified from <ap/<ȧp to
<ȧp, denoted as a call update transition. Similarly, a return update transition is
(q,<ap/ȧ>p, ȧ>, q′, ȧ>p) where the top stack is updated to ȧ>p. Upon a return a>,
the top stack element <ap/<ȧp/ȧ>p is popped and M traces back to p, denoted
as a trace transition. Note that if the top of stack is ⊥, the input symbol is
read only and the stack remains unchanged. Note that the input symbol must
be matched with the one on the top of stack in a trace or call/return update
transition transition.

Formally, a stack σ is a finite word over Γ . The set of all stacks is denoted
as St = (Γ \ {⊥})∗ · {⊥} where ⊥ signifies the empty stack. Notation |σ| stands
for the length of the stack. Especially, |σ| = 0 if σ = ⊥.

A configuration of M is a pair (q, σ) where q ∈ Q, and σ ∈ St. A run of
M on a word w = w1w2 · · · wn is a finite non-empty sequence of configurations
ρ = (q0, σ0)

w1−→ (q1, σ1)
w2−→ · · · wn−→ (qn, σn) where q0 ∈ Q0 and σ0 = ⊥. A run ρ is

an accepting run if in the last configuration, qn ∈ F and σn ∈ (Σc × Q)∗ · {⊥}
which means the stack does not contain inner-call or inner-return symbols.
Hence, a word w is accepted by M if there is an accepting run of M on w. The
language of M , denoted by L(M), is the set of words accepted by M .

326 J. Liu et al.

Fig. 1. An example of MNTA

For the graphical presentation of MNTA, a transition (q, γ, x, q′, γ′) is
depicted as an edge from q to q′ labelled with a triple (γ, x, γ′) recording the
input symbol and the change of the top stack. Especially, for a push transi-
tion, γ and γ′ can be denoted as ε and xq respectively. Note that if x ∈ Σi, γ
and γ′ can be omitted since the stack does not change. For a trace transition
(q, γ, x, trace), there is an edge from q to trace labelled with (γ, x, ε), where trace
can appear more than once in a transition graph. For clarity, push transitions
are depicted in green, trace ones in red, call and return update ones in orange
and internal update ones in blue. Figure 1 presents an example MNTA accepting
{((<a<ȧ(<cc>)∗a>)∗ + (<bḃ>b>)∗)∗}.

4 A Transformation Method from MNTA to MNE

Now we illustrate in details how to transform MNTA to MNE. At first, different
kinds of labelled arcs are introduced for transitions in MNTA.

4.1 Labelled Arcs

Given a MNTA M = (Q, Σ̂, δ,Q0, F, Γ), for any two states q and p in Q, a tran-
sition δ from q to p can be denoted as δq→p. For a word w, let w′ = w1w2 · · · wn

be a well-matched subword of w. A run-segment ρ = (q, σ)
w1−→ (q1, σ1)

w2−→
· · · wn−→ (qn, σn) over w′ is a tracing run-segment if δq→q1 is a push transition and
δqn−1→qn is its corresponding trace transition where q = qn, σ = σn, w1 ∈ Σc

and wn ∈ Σr are matched.
For any two states q and p, a labeled arc from q to p is denoted as

Arcq→p. According to the characteristics of transitions and accepting conditions
of MNTA, the labeled arcs are classified into three types. Let γ, γ1, γ2 be ε or in
Γ and β a string over Σ̂.

� An arc of Acc Arcq→p represents that the run-segment from q to p is a segment
of an accepting run including trace transitions with an empty stack, internal
update transitions and push transitions. The label is a triple (Acc, γ, β), where
only the information of the updated top stack is necessary. When γ = ⊥, it
can be obtained no push transition is met from q to p; otherwise, γ ∈ Σc ×Q.

Transforming Multi-matching Nested Traceable Automata MNE 327

� An arc of Actr Arcq→p indicates the run-segment from q to p may be a segment
of an accepting run including push transitions and internal update transitions.
The label is a quadruple (Actr, γ1, γ2, β) since the information about both the
push transition and the updated stack top should be recorded.

� An arc of Tra Arcq→p denotes that the run-segment from q to p may be a seg-
ment of a tracing run-segment in which push transitions, call/internal/return
update transitions and trace transitions are involved. Similarly, the label is
a quadruple (Tra, γ1, γ2, β). Specifically, if the run-segment ends with a trace
transition, γ2 = ε and the arc is denoted as Arcq→trace.

4.2 Transformation

Given a MNTA M = (Q, Σ̂, δ,Q0, F, Γ), the transformation is performed by 4
steps.

Step 1: Preprocessing

– Initially, an extra state X is created first which will act as the unique initial
state throughout the transformation. For each initial state qi ∈ Q0, an arc of
Acc from state X to qi labeled with ArcX→qi = (Acc,⊥, ε) is created.

– Eliminating all the states and transitions which are unreachable from X.
– For each transition in δ, a labeled arc is created as follows:

• For each transition (q, γ1, x, p, γ2) (possibly p = q), where q, p, t ∈ Q,
i. if γ1 = γ2 = ⊥ and x ∈ Σi ∪ Σr, an arc Arcq→p = (Acc,⊥, x) is

created;
ii. if γ1 = γ2 = yt, y ∈ Σc, x ∈ Σi, or γ1 = ε, γ2 = xq, x ∈ Σc, two arcs

Arcq→p = (Actr, γ1, γ2, x) and Arcq→p = (Tra, γ1, γ2, x) are created,
where a push transition is denoted as (q, ε, x, p, xq) for convenience;

iii. if γ2 = yt and y ∈ Σ̇c∪Σ̇r, an arc Arcq→p = (Tra, γ1, γ2, x) is created.
• For each trace transition δ(q, γ, x) = trace where γ = yt, x ∈ Σr and

y ∈ Σc ∪ Σ̇c ∪ Σ̇r is matched with x, an arc Arcq→trace = (Tra, γ, ε, x) is
created.

– In order to reduce the number of arcs as much as possible, all created arcs can
be simplified according to the following rules during the entire transformation.
Suppose there are two arcs Arc1 and Arc2 from q to p.

• If Arc1 = (Acc, γ1, β1) and Arc2 = (Acc, γ2, β2) where γ1 = γ2, Arc1 and
Arc2 are eliminated and substituted by a new arc Arc = (Acc, γ1, β1+β2);

• If Arc1 = (Type, γ11, γ12, β1) and Arc2 = (Type, γ21, γ22, β2) where γ11 =
γ21 and γ12 = γ22, Arc1 and Arc2 are eliminated and substituted by a
new arc Arc = (Type, γ11, γ22, β1 + β2), where Type is Actr or Tra.

Step 2: Processing all push transitions
For each arc Arcq→p, all push transitions (if exist) at state p are handled first.
Suppose there are n push transitions and each transition is δ(p, γ, xi) = (ti, xipγ)
where 1 ≤ i ≤ n, xi ∈ Σc and ti ∈ Q. Let βi = βxip and βnew =

∑n
i=1 β∗

i . Then,
for each arc Arcq→p,

328 J. Liu et al.

– Arcq→p = (Acc, γ, β) of Acc, it is updated as (Acc, γ, ββ∗
new).

– Arcq→p = (Actr/Tra, γ1, γ2, β) of Actr or Tra, a new arc (Actr/Tra, γ1,
γ2, ββ∗

new) is replaced.

Step 3: Updating labeled arcs
In this step, all arcs relevant to each state p are modified according to the
following strategies. For any two arcs Arcq→p to p and Arcp→t or Arcp→trace

from p, they are eliminated and a new arc Arcq→t or Arcq→trace is created. Let
β′
1 = β1, β′

2 = β2, and m,n ∈ Q.

– For two arcs of Acc Arcq→p = (Acc, γ1, β1) and Arcp→t = (Acc, γ2, β2) where
γ1 �= ⊥ and γ2 = ⊥ occurring at the same time is not permitted, if q = p �= X,
β′
1 = β∗

1 ; similarly, if p = t, β′
2 = β∗

2 . A new arc Arcq→t = (Acc, γ2, β′
1β

′
2) is

created.
– Consider two arcs of Actr Arcq→p = (Actr, γ11, γ12, β1) and Arcp→t =

(Actr, γ21, γ22, β2), where either γ21 = ε or γ12 = γ21 = γ22 holds. When
γi1 = ε, γi2 = ximi, xi ∈ Σc, mi ∈ Q and i ∈ {1, 2}, that means there is
a push transition at state q (i = 1) or p (i = 2). Then it can be inferred
that β′

i = (βiβ
∗
ximi

)∗ if q = p (i = 1) or p = t (i = 2). Similarly, when
γi1 = γi2 = ximi, β′

i = β∗
i if q = p (i = 1) or p = t (i = 2). Hence, the new

arc Arcq→t = (Actr, γ11, γ22, β′
1β

′
2) is created.

– As to Arcq→p = (Acc, γ, β1) and Arcp→t = (Actr, γ1, γ2, β2) where γ = γ1 =
⊥/xm and x ∈ Σc,

• γ1 = γ2 = ⊥/xm. When q = p �= X, β′
1 = β∗

1 . Let β′
2 = β∗

2 if p = t. Then
Arcq→t = (Acc, γ2, β′

1β
′
2).

• γ1 = ε, γ2 = yn and y ∈ Σc. When p �= t, we have Arcq→t =
(Acc, γ2, β1β2); otherwise, Arcq→t = (Acc, γ2, β1(β2 + βxm)∗).

– Consider Arcq→p = (Tra, γ11, γ12, β1) and Arcp→t = (Tra, γ21, γ22, β2) where
γ12 = γ21 = xm and x ∈ Σc ∪ Σ̇c ∪ Σ̇r. Let y ∈ Σc be the symbol matched
with x.

• γ11 = ε.
i. When q �= p, a new arc Arcq→t = (Tra, γ11, γ22, β1β

′
2) is created where

β′
2 = β∗

2 if p = t and γ21 = γ22.
ii. For the case that q = p, let βym = β1β̄1 and βn = (β1β

∗
ym)n(β̄1β

∗
ym)n,

n ≥ 0. The new arc is Arcq→t = (Tra, γ11, γ22, βnew) where βnew is
calculated as:

βnew =

⎧
⎪⎨

⎪⎩

β1β
∗
nβ2 p �= t,

β1(βn + β2)∗ p = t & γ21 = γ22,

β1β
∗
nβ2β

∗
n p = t & γ21 �= γ22.

• γ11 �= ε. We have β′
1 = β∗

1 if q = p and γ11 = γ12 while β′
2 = β∗

2 if p = t
and γ21 = γ22. The new arc is Arcq→t = (Tra, γ11, γ22, β′

1β
′
2).

– Consider Arcq→p = (Tra, γ1, γ2, β1) and Arcp→trace = (Tra, γ, ε, β2) where
γ2 = γ = xm and x ∈ Σc ∪ Σ̇c ∪ Σ̇r. y ∈ Σc is matched with x.

Transforming Multi-matching Nested Traceable Automata MNE 329

• When γ1 = ε, there is a push transition at state q, i.e. q = m. If q = p,
β′
1 = β1β

∗
yq, then Arcp→trace = (Tra, yq, ε, β′

1β2) is created.
• γ1 �= ε holds. There is β′

1 = β∗
1 if q = p. Arcq→trace = (Tra, γ1, ε, β′

1β2).

Step 4: Merging arcs and computing MNE

– Eliminating each arc of the form ArcX→q = (Acc, γ, β) (q /∈ F) and all arcs
of Tra not in the form of Arcq→trace = (Tra, γ, ε, β) where γ = xq and there
is a push transition at state q by reading call x.

– Calculating each βxq where x ∈ Σc: check whether there exists an arc
Traq→trace = (Tra, γi1, γi2, βi) at q which satisfies γi1 = xq and γi2 = ε.
If there are n such arcs, βxq is calculated as

∑n
i=1 βi; otherwise, βxq = ε.

– Suppose each arc of Acc is ArcX→qfi
= (Acc, γi, βi) where qfi ∈ F . We have

EM =
∑n

i=1 βi. In particular, if there are no Acc arcs left eventually, the
multi-matching nested expression EM of M is ∅.

Initially, for each transition in δ, according to the accepting condition of MNTA,
a trace or internal update transition with the stack empty can only be in an
accepting run rather than a tracing run-segment, an arc of Acc is created. As
for a push transition or an internal update transition with a non-empty stack,
they can not only in an accepting run but also a tracing run-segment, hence two
arcs of Actr and Tra are created. However, since an inner-call or inner-return
symbol cannot exist in the stack in the final configuration of an accepting run,
only the arc of Tra is created.

Note that in Step 2, push transitions are handled first since a tracing run-
segment produced from state p to trace by a push transition at p may occur for
a few times before a non-push transition is taken at p. Within the tracing run-
segment, the state traces back to p and the stack stays unchanged eventually.
Hence, each arc Arcq→p is updated by concatenating all expressions obtained
from each tracing run-segment produced from p to trace by a push at p.

The first case in Step 3 shows that two arcs of Acc can be merged directly
based on the restriction that pending returns can be followed by pending calls,
but not vice versa. Besides, pending calls can be followed by pending calls which
is dealt with in case two by the merging of two arcs of Actr. The case that an
arc of Acc is followed by an arc of Actr signifies that there has already been at
least one push transition, i.e. an pending call, in an accepting run represented
by the arc of Acc. Regarding to the fourth case of two arcs of Tra, two different
ways of concatenations are given depending on whether the first arc starts from
a push transition. Note that if there is a self-loop arc of Tra at state q starting
from a push transition, the tracing run-segment from q to trace can repeat for
multiple times in an accepting run on the condition that a corresponding trace
can be met. The last case discusses that when a trace is met, if the information
of the stack top between two arcs of Tra matches, they are merged.

4.3 Example

Now we take the example automaton Mex in Fig. 2 to intuitively illustrate the
transformation.

330 J. Liu et al.

Fig. 2. A MNTA Mex

Figure 3 presents the automaton after being preprocessed (Step 1). For clar-
ity, arcs of Actr are depicted as black lines while arcs of Acc and Tra as red and
blue dashed lines, respectively. Compared with the original automaton in Fig. 2,
state X and arc ArcX→q0 = (Acc,⊥, ε) are created. Besides, labeled arcs of Acc,
Actr or Tra are created for each of the transitions in Mex, shown as follows.

ArcX→q0 = (Acc,⊥, ε) Arcq0→q1 = (Acc,⊥, a>)
Arcq1→q8 = (Tra, ε,<aq1,

<a) Arcq1→q8 = (Actr, ε,<aq1,
<a)

Arcq1→q2 = (Tra, ε,<bq1,<b) Arcq1→q2 = (Actr, ε,<bq1,<b)

Arcq2→q3 = (Tra,<bq1, <̇bq1,<b) Arcq3→q4 = (Tra, <̇bq1, <̇bq1,<b)
Arcq3→q5 = (Tra, ε,<cq3,<c) Arcq3→q5 = (Actr, ε,<cq3,<c)
Arcq5→q6 = (Tra,<cq3,<cq3, i) Arcq5→q6 = (Actr,<cq3,<cq3, i)

Arcq4→trace = (Tra, <̇bq1, ε, b>) Arcq6→q7 = (Tra,<cq3, ċ>q3, c
>)

Arcq7→trace = (Tra, ċ>q3, ε, c
>)

For instance, arc Arcq0→q1 = (Acc,⊥, a>) is created for transition
(q0,⊥, a>, q1,⊥) and arc Arcq4→trace = (Tra, <̇bq1, ε, b>) is created for
(q4, <̇bq1, b>, trace). In Fig. 3, there are 2 arcs, ArcX→q0 and Arcq0→q1 , of Acc, 4

Fig. 3. Transformation from MNTA to MNE-1

Transforming Multi-matching Nested Traceable Automata MNE 331

arcs, Arcq1→q8 , Arcq1→q2 , Arcq3→q5 and Arcq5→q6 , of Actr, and 9 arcs, Arcq1→q8 ,
Arcq1→q2 , Arcq2→q3 , Arcq3→q4 , Arcq4→trace, Arcq3→q5 , Arcq5→q6 , Arcq6→q7 and
Arcq7→trace of Tra.

According to Step 2, all the push transitions are processed first. In Mex, there
are two push transitions (q1, γ,<a, q8,

<aq1γ) and (q1, γ,<b, q2,
<bq1γ) at state q1,

while one push (q3, γ,<c, q5,
<cq3γ) at state q3. Hence, arcs Arcq0→q1 of Acc and

Arcq2→q3 of Tra are updated as:

Arcq0→q1 = (Acc,⊥, a>(β<aq1 + β<bq1)
∗) Arcq2→q3 = (Tra,<bq1, <̇bq1,<bβ∗

<cq3)

Figure 4 depicts the automaton updated according to Step 3 by merging
the labeled arcs with the same type. First, for the arcs of Acc, a new arcs,
ArcX→q1 of Acc is created for the arc pair, ArcX→q0 and Arcq0→q1 , which are
eliminated then. Then the new arc Arcq3→q6 of Actr is created to substitute
for Arcq3→q5 and Arcq5→q6 . As for the arcs of Tra, in the run-segment from
q1 to trace or from q3 to trace, any two connected arcs satisfy the conditions
of the fourth or fifth case in Step 3. Thus, Arcq1→trace is created and reserved
eventually, while the original arcs, Arcq1→q2 , Arcq2→q3 , Arcq3→q4 and Arcq4→trace,
and intermediate created arcs Arcq1→q3 and Arcq1→q4 are eliminated. Similarly,
Arcq3→trace is created while Arcq3→q5 , Arcq5→q6 , Arcq6→q7 and Arcq7→trace, and
the intermediate created arcs Arcq3→q6 and Arcq3→q7 are eliminated. Each label
of new created arcs is presented below.

ArcX→q1 = (Acc,⊥, a>(β<aq1 + β<bq1)
∗) Arcq3→q6 = (Actr, ε,<cq3,<ci)

Arcq1→trace = (Tra,<bq1, ε,<b<̇bβ∗
<cq3

<̇bb>) Arcq3→trace = (Tra,<cq3, ε,<ciċ>c>)

Fig. 4. Transformation from MNTA to MNE-2

For the arcs of different types, i.e. Acc and Actr, they are merged according to
the third case of Step 3. As Fig. 5 illustrates, ArcX→q1 and Arcq1→q2 are replaced
by ArcX→q2 while ArcX→q1 and Arcq1→q8 by ArcX→q8 .

ArcX→q2 = (Acc,⊥, a>(β<aq1 + β<bq1)
∗<b)

ArcX→q8 = (Acc,⊥, a>(β<aq1 + β<bq1)
∗<a)

332 J. Liu et al.

Fig. 5. Transformation from MNTA to MNE-3

Eventually, ArcX→q2 , Arcq1→q8 and Arcq3→q6 are eliminated as shown in
Fig. 6. Hence, we can obtain the subexpression of each tracing run-segment:

β<aq1 = ε β<cq3 = <cċ>ic> β<bq1 = <b<̇b(<cċ>ic>)∗<̇bb>.

And the final obtained multi-matching nested expression of Mex is

EMex
= a>(<b<̇b(<cċ>ic>)∗<̇bb>)∗<a.

Fig. 6. Transformation from MNTA to MNE-4

5 Conclusion

In this paper, the nested words with one-to-one matching relations are extended
to multi-matching nested words with one-to-n and n-to-one matching relations.
MNE and MNTA are defined over multi-matching nested words. To acquire MNE
from MNTA, the main idea is the construction of labeled arcs for different tran-
sitions and the merging strategies. The corresponding expression is calculated
by the sum of each labeled arc from the initial state to each final state.

Transforming Multi-matching Nested Traceable Automata MNE 333

References

1. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 2nd edn. Pearson Education, Boston (2000). ISBN
0-201-44124-1

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Ibarra, O.H.,
Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006).
https://doi.org/10.1007/11779148 1

3. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43
(2009)

4. Neven, F.: Automata, logic, and XML. In: Bradfield, J. (ed.) CSL 2002. LNCS,
vol. 2471, pp. 2–26. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45793-3 2

5. Hunter, D., Rafter, J., Fawcett, J.: Beginning XML. John Wiley & Sons, New York
(2007)

6. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for
streaming XML. In: Proceedings of the 16th International Conference on World
Wide Web, pp. 1053–1062 (2007)

7. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
Thirty-Sixth Annual ACM Symposium on Theory of Computing, pp. 202–211
(2004)

8. Kegang, H., Zhenhua, D., Xin, L.: On traceable automata. Chin. J. Comput. 5,
340–348 (1990)

9. Kegang, H., Zhenhua, D.: The relationship between DTA and DMTA. Microelec-
tron. Comput. 4, 6–10 (1990)

10. Kegang, H., Zhenhua, D.: Two fundamental theorems on traceable automata. J.
Northwest Univ. Nat. Sci. Ed. 20(1), 11–17 (1990)

11. Kernighan, B.W., Ritchie, D.M.: The C Programming Language. Prentice Hall,
New Jersey (2006)

12. Lin, X.J., Wu, C.K., Liu, F.: Many-to-one encryption and authentication scheme
and its application. J. Commun. Netw. 10(1), 18–27 (2008)

13. Zhong, H., Cui, J., Shi, R., Xia, C.: Many-to-one homomorphic encryption scheme.
Secur. Commun. Netw. 9(10), 1007–1015 (2016)

14. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts. McGraw-
Hill, New York (1997)

https://doi.org/10.1007/11779148_1
https://doi.org/10.1007/3-540-45793-3_2
https://doi.org/10.1007/3-540-45793-3_2

On the Complexity of Some
Facet-Defining Inequalities

of the QAP-Polytope

Pawan Aurora1 and Hans Raj Tiwary2(B)

1 IISER Bhopal, Bhopal, India
paurora@iiserb.ac.in

2 Department of Applied Mathematics, Charles University, Prague, Czech Republic
hansraj@kam.mff.cuni.cz

Abstract. The Quadratic Assignment Problem (QAP) is a well-known
NP-hard problem that is equivalent to optimizing a linear objective func-
tion over the QAP polytope. The QAP polytope with parameter n –
QAPn – is defined as the convex hull of rank-1 matrices xxT with x as
the vectorized n × n permutation matrices.

In this paper we consider all the known exponential-sized families of
facet-defining inequalities of the QAP-polytope. We describe a new fam-
ily of valid inequalities that we show to be facet-defining. We also show
that membership testing (and hence optimizing) over some of the known
classes of inequalities is coNP-complete. We complement our hardness
results by showing a lower bound of 2Ω(n) on the extension complex-
ity of all relaxations of QAPn for which any of the known classes of
inequalities are valid.

1 Introduction

The Quadratic Assignment Problem (QAP) is a fundamental combinatorial opti-
mization problem from the category of facility location problems [23,24]. QAP
is defined as the following problem: given n facilities and n locations, distances
dij between all pairs of locations i, j ∈ [n], flows fij between all pairs of facilities
i, j ∈ [n] and costs cij of opening facility i at location j, for all pairs i, j ∈ [n], find
an assignment σ of the n facilities to the n locations so that the total cost given
by the function

∑
i,j fijdσ(i)σ(j) +

∑
i ciσ(i) is minimized. The problem is known

as QAP since it can be modeled as optimizing a quadratic function over linear
and binary constraints. However, several linearizations of the problem have been
proposed. For details refer to the book [10] and the citations therein.

Given an instance of QAP, it is NP-hard to approximate the optimum within
any constant factor [31]. What makes QAP one of the “hardest” problems in
combinatorial optimization is the fact that unlike most NP-hard combinatorial
optimization problems, it is practically intractable. It is generally considered
impossible to solve to optimality QAP instances of size larger than 20 within
reasonable time limits [10].
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 334–349, 2020.
https://doi.org/10.1007/978-3-030-64843-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_23&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_23

On the Complexity of Some Facet-Defining Inequalities of the QAP-Polytope 335

As is common with combinatorial obtimization problems, QAP can be
viewed as the problem of optimizing a linear objective function over the con-
vex hull of all feasible solutions. To this end, the QAP polytope is defined as
QAPn = conv

({
yyT |y = vec(Pσ), σ ∈ Sn

})
, where Pσ is the n × n permutation

matrix corresponding to the premutation σ and y = vec(Pσ) is its vectoriza-
tion. Following the notation of [1], we denote a vertex yyT as P

[2]
σ . Note that

P
[2]
σ (ij, kl) = Pσ(i, j) · Pσ(k, l). Clearly, QAPn ⊂ R

n2×n2
. In fact QAPn can be

embedded in R
(n4+n2)/2 since each point in the polytope is a symmetric n2 ×n2

matrix and we could only store its upper (or lower) triangular part. However, in
this paper we would conveniently denote a point in QAPn by a n2 × n2 matrix.

One of the methods for solving hard combinatorial optimization problems
is the method of branch-and-cut [27]. For this method to be effective for the
QAP, it is important to identify new valid and possibly facet-defining inequalities
for the QAP-polytope and to develop the corresponding separation algorithms.
Given that it is NP-hard to optimize over the QAP-polytope, it is probably
impossible to characterize all its facets [28]. In [18,19,26], the authors obtain
early results on the combinatorial structure of the QAP-polytope and some of
its facet-defining inequalities. In [1] the authors list all the known facets of the
QAP-polytope besides the equations that define its affine hull. In this paper we
add another exponential sized family to the list of known facets of the QAP-
polytope. Optimizing the QAP objective function over any of the relaxations
given by these families can provide an approximate solution to the QAP, provided
the optimization problem can be efficiently solved. In this paper we also show
that optimizing over the relaxations given by some of these exponential sized
family of facet-defining inequalities is NP-hard. We do it by proving that the
corresponding membership testing problem is coNP-complete for the appropriate
classes of inequalities.

Furthermore, we prove a lower bound of 2Ω(n) on the extension complexity of
bounded relaxations of QAPn obtained by each of these families of inequalities.

To summarize, our main contributions are as follows.

– We identify a new family of valid inequalities for QAPn (Sect. 2) and prove
that they are facet-defining (Sect. 3),

– We prove that membership testing for three out of the five known families of
valid inequalities for the QAP-polytope(including the new one we introduce)
is coNP-complete (Sect. 4), and

– We prove a lower bound of 2Ω(n) for the extension complexity of any bounded1

relaxation of QAPn that has any of the known families as valid inequalities
(Sect. 5).

1 In fact, boundedness is not required for the results in Sect. 5. However, since we will
rely on existing results, such as Theorem 1, that are published with the boundedness
assumption, we will include this assumption.

336 P. Aurora and H.R. Tiwary

1.1 Extension Complexity

Let P ⊂ R
n be a polytope. A polytope Q ⊂ R

n+r is called an extension or an
extended formulation of P if

P = {x ∈ R
n | ∃y ∈ R

r, (x, y) ∈ Q}.

Let size(P) denote the number of facets of polytope P and let Q ↓ P denote
that Q is an extended formulation of P . Then, the extension complexity of a
polytope P – denoted by xc(P) – is defined to be min

Q↓P
size(Q).

Extended formulations are a very useful tool in combinatorial optimization
as they allow the possibility of drastically reducing the size of a Linear Program
by introducing new variables (See [12,22,32,33] for surveys). In the past decade
lower bounds on the extension complexity of various polytopes have been studied
[3,15,29,30] and the notion generalized and studied in various settings such
as general conic extensions [17], semidefinite extensions [8,25], approximation
[4,5,7,11], parameterization [9,16], generalized probabilistic theories in Physics
[14], and information theoretic perspective [6,7].

Superpolynomial lower bounds on extension complexity are known for poly-
topes related to many NP-hard problems [3,15] as well as for the Matching
polytope: the convex hull of characteristic vectors of all matchings in Kn [30].
High extension complexity of the Matching polytope highlights the fact that a
superpolynomial lower bound on the extension complexity cannot be taken to
mean that the underlying optimization problem is not solvable in polynomial
time. However, these lowers bounds are unconditional and do not require stan-
dard complexity theoretic assumption such as P �= NP . Moreover, apart from
the exception of Matching polytope, linear optimization over all known poly-
topes with superpolynomial lower bound is infeasible. Either because the linear
optimization over the polytope is NP-hard [3,15] or the polytope is not explicitly
given, as is the case for some matroid polytopes [29].

For the purposes of this paper the most relevant characterization of extension
complexity is given by Faenza et al. [13] where the authors prove the equivalence
between existence of an extended formulation of size r with the existence of a
certain two-party communication game requiring an exchange of Θ(log r) bits.
We will describe this connection here and use it as a black box in our proofs of
lower bounds on the extension complexity of the polytopes considered here.

EF-Protocols: Computing a Matrix in Expectation. Let M be an m × n
matrix with non-negative entries. Consider a communication game between two
players: Alice and Bob. Alice and Bob both know the matrix M and can agree
upon any strategy prior to the start of the game. In each round of the game,
Alice receives a row index i ∈ [m] and Bob a column index j ∈ [n]. Both Alice
and Bob have no restriction on the computations that they perform and can
also use (private) random bits. They can also exchange information by sending
some bits to the other player. At some point one of them outputs a non-negative
number and the round finishes.

On the Complexity of Some Facet-Defining Inequalities of the QAP-Polytope 337

Since they are allowed the use of random bits, the output Xij when Alice and
Bob receive inputs i and j respectively, is a random variable. We says that their
strategy is an EF-protocol for M if E[Xij] = Mij for all (i, j) ∈ [m] × [n], where
E[Xij] is the expected value of the random variable Xij . The complexity of an
EF-protocol is defined to be the maximum number of bits exchanged between
Alice and Bob for any input i, j to Alice and Bob respectively.

Let P = {x | Ax � b} = conv({v1, . . . , vn}) be a polytope where A is an
m × d real matrix, b ∈ R

m, vi ∈ R
d, and conv(S) denotes the convex hull of the

points in a set S. The slack matrix of P with respect to this representation -
denoted by S(P) - is the m × n (non-negative) matrix whose entry at i-th row
and j-th column is bi − Aivj , where Ai denotes the i-th row of the matrix A.
Note that a polytope is not defined uniquely this way: one can always embed
the polytope in higher dimensional space, and add redundant inequalities and
points to the descriptions. However, in what follows, none of that makes any
difference and one can choose any description that they like. This justifies the
notation S(P) for any slack matrix of P even though the particular description
of P that defines this matrix is completely ignored in the notation.

The following connection – which we will use in Sect. 5 – was shown by
Faenza et al. [13] between existence of an EF-protocol computing a slack matrix
of polytope P and that of an extended formulation of P .

Theorem 1 [13]. Let M be a non-negative matrix such that any EF-protocol
for M has complexity at least c. Further, let P be a polytope such that M is a
submatrix of some slack matrix S(P) of P . Then, xc(P) � 2c.

2 Relaxations of QAPn

In the following, Y is a n2×n2 variable matrix that is used to denote an arbitrary
point in QAPn. Further, Yij,kl refers to Y (n ∗ (i − 1) + j, n ∗ (k − 1) + l).

The most general family of valid inequalities that includes all known families
as special cases is the following:

QAP1:
∑

ijkl

nijnklYij,kl − (2β − 1)
∑

ij

nijYij,ij � 1
4

− (β − 1
2
)2 (1)

where β ∈ Z and nij ∈ Z for all i, j ∈ [n]. These inequalities were introduced
in [1] as a generalization of all known facet-defining inequalities for the QAP-
polytope.

QAP2:
m∑

r=1

Yirjr,kl − Ykl,kl −
∑

r<s

Yirjr,isjs � 0 (2)

where i1, . . . , im, k are all distinct and j1, . . . , jm, l are also distinct. In addition,
n � 6,m � 3. These inequalities were introduced in [1] and proved to be a
special case of QAP1 that are facet-defining for the QAP-polytope.

338 P. Aurora and H.R. Tiwary

QAP3:
(β − 1)

∑

(ij)∈P×Q

Yij,ij −
∑

(ij),(kl)∈P×Q
i<k

Yij,kl � β2−β
2 (3)

where P,Q ⊂ [n]. In addition (i) β+1 � |P |, |Q| � n−3, (ii) |P |+|Q| � n−3+β,
(iii) β � 2. These inequalities were introduced by Jünger and Kaibel [20,21] who
also proved that they are facet-defining for the QAP-polytope. They are also a
special case of QAP1 [1].

QAP4:

− (β − 1)
∑

(ij)∈P1×Q

Yij,ij + β
∑

(ij)∈P2×Q

Yij,ij +
∑

i<k
(ij),(kl)∈P1×Q

Yij,kl

+
∑

i<k
(ij),(kl)∈P2×Q

Yij,kl −
∑

(ij)∈P1×Q
(kl)∈P2×Q

Yij,kl − β2−β
2 � 0

(4)

where P1, P2, Q ⊂ [n], P1 ∩P2 = ∅. Further, (i) 3 ≤ |Q| ≤ n−3, (ii) |P1|+ |P2| ≤
n − 3, (iii) |P1| � min{2, β + 1}, (iv) |P2| � min{1,−β + 2}, (v) ||P1| − |P2| −
β| ≤ n − |Q| − 4, (vi) if |P2| = 1: |Q| � min{−β + 5, β + 2}; if |P2| � 2:
|Q| � min{−β + 5, β + 3} or |Q| � min{−β + 4, β + 4}. These inequalities were
also introduced by Kaibel [21] and shown to be facet-defining for the QAP-
polytope. They are also a special case of QAP1.

It is known [1] that the inequalities QAP2 , QAP3 and QAP4 are special
instances of the QAP1 inequalities. QAP1 inequalities are in general not facet-
defining for the QAP-polytope and so it is interesting to identify conditions
under which they do define facets. We identify a new special case (5) of QAP1
inequality and show in Sect. 3 that they are facet-defining. Inequality QAP5
follows from QAP1 by setting β = 2, ni1j1 = ni2j2 = · · · = nim,jm = 1 for distinct
i1, . . . , im ∈ [n] and distinct j1, . . . , jm ∈ [n], and nij = 0 for i ∈ [n]\{i1, . . . , im}
or j ∈ [n] \ {j1, . . . , jm}.

QAP5:
m∑

r=1

Yirjr,irjr −
∑

r<s

Yirjr,isjs � 1 (5)

where i1, . . . , im are all distinct and j1, . . . , jm are also distinct. In addition,
m,n � 7. These inequalities are new and we discuss them in the following
section.

3 A New Class of Facet-Defining Inequalities

In this section we prove that the inequalities QAP5 are facet-defining. Let
Sk denote the set of those vertices of QAPn that correspond to the per-
mutations having ir �→ jr for r ∈ {r1, r2, . . . , rk} ⊆ [m] and ir ��→ jr for
r ∈ [m] \ {r1, r2, . . . , rk}. Here ir, jr,m are as in the definition of QAP5. If

On the Complexity of Some Facet-Defining Inequalities of the QAP-Polytope 339

V is the set of all the vertices of QAPn then clearly V = ∪m
i=0Si, and Si ∩Sj = ∅

for all i �= j ∈ {0, 1, . . . ,m}.

Lemma 1. The sets S1, S2 together constitute the vertices that satisfy the
inequality (5) with equality.

Proof. Consider a P
[2]
σ ∈ Sk for 1 � k � m. W.l.o.g. let σ(i1) = j1, . . . , σ(ik) = jk

and σ(ir) �= jr for r ∈ {k + 1, . . . ,m}. Substituting Y = P
[2]
σ in (5) we have∑m

r=1 Pσ(ir, jr) − ∑
r<s Pσ(ir, jr) · Pσ(is, js) = k − (

k
2

)
. For k = 0 we have

k − (
k
2

)
= 0 < 1, for k = 1, k − (

k
2

)
= 1, for k = 2, k − (

k
2

)
= 1 and for 3 � k � m

we have k − (
k
2

)
< 1. Hence a vertex of QAPn satisfies the inequality (5) with

equality if and only if it belongs to S1 or S2. ��
Let S = S1 ∪ S2. We will show that any vertex in V \ S can be expressed

as a linear combination of the vertices in S and a fixed vertex P
[2]
σ∗ ∈ S0. This

will establish that the dimension of the face containing S is one less than the
dimension of the polytope and hence it must be a facet.

The following lemma from [1] provides a useful tool to express certain vertices
as a linear combination of others.

Lemma 2 [1, Lemma 16]. Let k1, k2, k3, x, y ∈ [n] be distinct indices. Let Σ =
{σ1, . . . , σ6} be a set of permutations of [n] such that σi(z) = σj(z) for all z ∈
[n] \ {k1, k2, k3} and for every i, j ∈ {1, . . . , 6}. Further, let Σ′ = {σ′

1, . . . , σ
′
6}

where σ′
i is a transposition of σi on the indices x, y, for each i = 1, . . . , 6. Then

∀ i, j, k, l ∈ [n],
∑

σ∈Σ∪Σ′ sign(σ)P [2]
σ (ij, kl) = 0.

The next lemma shows that the vertices in the sets S4, . . . , Sm can be
expressed as a linear combination of the vertices in the sets S0, . . . , S3.

In what follows, when it is clear from the context, we use σ to refer to a
vertex P

[2]
σ .

Lemma 3. For k � 4, any vertex in Sk can be expressed as a linear combination
of vertices in Sk−1, Sk−2, Sk−3, and Sk−4.

Proof. Let σ1 ∈ Sk. Since k is at least 4, we must have indices ir1 , ir2 , ir3 , ir4 , rk

∈ [m], k = 1, . . . , 4, such that σ1(irk
) = jrk

, k = 1, . . . , 4. Let k1 = ir1 , k2 =
ir2 , k3 = ir3 , x = ir4 , where k1, k2, k3, x are as defined in Lemma 2. Applying
Lemma 2 with y chosen as an index such that either y �= ip for any p ∈ [m]
or when y = ip, p ∈ [m] then σ1(ip) �= jp, we get σ′

1 ∈ Sk−1, σ2, σ3, σ6 ∈
Sk−2, σ4, σ5, σ

′
2, σ

′
3, σ

′
6 ∈ Sk−3, σ

′
4, σ

′
5 ∈ Sk−4 with the property that σ1 is a

linear combination of σ2, . . . , σ6, σ
′
1, . . . , σ

′
6. ��

Next, we show that vertices in S3 can be expressed as linear combinations of
vertices in S and S0 as well.

Lemma 4. Any vertex in S3 can be expressed as a linear combination of vertices
in S and S0.

340 P. Aurora and H.R. Tiwary

Proof. Let σ1 ∈ S3. So we have indices ir1 , ir2 , ir3 , rk ∈ [m], k = 1, 2, 3, such that
σ1(irk

) = jrk
, k = 1, 2, 3. Let k1 = ir1 , k2 = ir2 , x = ir3 , where k1, k2, x are as

defined in Lemma 2. Applying Lemma 2 with k3, y chosen arbitrarily from [n] \
{ir1 , ir2 , ir3}, we get σ2, . . . , σ6, σ

′
1, σ

′
2, σ

′
6 ∈ S, σ′

3, σ
′
4, σ

′
5 ∈ S0 with the property

that σ1 is a linear combination of σ2, . . . , σ6, σ
′
1, . . . , σ

′
6. ��

Now that we have established that the linear hull of S0, S1, S2 equals the
linear hull of the QAP-polytope, the only remaining task is to show that instead
of the entire set S0, a fixed vertex in S0 suffices to generate the entire linear
hull. We will show that in fact any arbitrary vertex in S0 is sufficient. We do this
by first showing that permutations in S0 define a connected graph if the edges
connect permutations that are one transposition apart. Then, we show that any
vertex σ ∈ S0 is sufficient to generate all vertices in the connected component
of σ by linear combination with vertices in S1, S2.

In the following lemma we show that it is possible to obtain the permutation
corresponding to a vertex in S0 from the permutation corresponding to any
other vertex in S0 via transpositions such that the vertices corresponding to the
intermediate permutations also lie in S0.

Lemma 5. Consider the graph G = (S0, E) where S0 is the set of vertices of the
QAP-polytope that correspond to permutations for which ir ��→ jr for all r ∈ [m]
and {P

[2]
σ1 , P

[2]
σ2 } ∈ E for some P

[2]
σ1 , P

[2]
σ2 ∈ S0 if σ1 and σ2 are transpositions of

each other. Then G is connected.

Proof. Consider an arbitrary vertex P
[2]
σ ∈ S0 such that σ(ir) = kr, kr �= jr for

all r ∈ [m]. Also, consider another vertex P
[2]
σ′ ∈ S0 such that σ′(ir) = lr, lr �= jr

for all r ∈ [m]. We will show that there is a path from P
[2]
σ to P

[2]
σ′ in G. For

simplicity, we will use σ to refer to P
[2]
σ . Let σ, σ1, σ2, . . . , σt, σ

′ be a path of
length t+1 between σ and σ′. Consider a vertex σp, p ∈ [t] such that σp(ir) = lr
for all r ∈ [s], s < m. In the next step we will extend the path from σp to some
vertex σq such that σq(ir) = lr for all r ∈ [s + 1]. If σp(ix) = ls+1 such that
σp(is+1) �= jx then we can swap σp(ix) with σp(is+1) to get the desired vertex
σq. Otherwise, in the first swap we can move ls+1 to some index ix′ , x �= x′,
such that ls+1 �= jx′ and then in the second swap get σp(is+1) to map to ls+1.
Note that both the swaps result in vertices within S0. After the first swap we
have σp′(ix′) = ls+1 and σp′(ix) = σp(ix′) and after the second swap we get
σq(is+1) = ls+1 and σq(ix′) = jx, both of which avoid a map from ix to jx and
ix′ to jx′ . In case it is not possible to find a suitable ix′ to move ls+1, it should
be possible to move σp(is+1) instead. Once we have obtained a permutation σ′′

such that σ′′(ir) = lr for all r ∈ [m], there must exist a path from σ′′ to σ′ since
the set of permutations having ir �→ lr for all r ∈ [m], forms a group isomorphic
to the symmetric group on n − m elements. ��

The following lemma gives a sequence of four vertices of QAPn such that
a specific linear combination of these vertices reduces the number of non-zero
entries in the resulting vector to a constant independent of n. This lemma will be

On the Complexity of Some Facet-Defining Inequalities of the QAP-Polytope 341

used crucially in Lemma 7 to express the difference of two neighboring vertices
in S0 in terms of the vertices in S.

Lemma 6. Given a sequence of permutations over the set [n], σ1, σ2, σ3, σ4,
such that σ2 is obtained from σ1 by a transposition that swaps the values of
σ1(i), σ1(j); σ3 is obtained from σ2 by a transposition that swaps the values of
σ2(i′), σ2(j′) (i′ �= i, j′ �= j); and σ4 is obtained from σ3 by a transposition that
swaps the values of σ3(i), σ3(j). Then (P [2]

σ1 − P
[2]
σ2) − (P [2]

σ4 − P
[2]
σ3) has a number

of non-zeroes that is independent of n.

Proof. Recall that P
[2]
σ (ab, xy) = Pσ(a, b) · Pσ(x, y). Since σ1 and σ2 differ at

only i, j, we have (P [2]
σ1 −P

[2]
σ2)(ab, xy) = 0 for all a, b, x, y ∈ [n] \ {i, j}. Similarly,

we have (P [2]
σ4 −P

[2]
σ3)(ab, xy) = 0 for all a, b, x, y ∈ [n]\{i, j}. One can verify that

(P [2]
σ1 − P

[2]
σ2)(ab, xy) = 1 for all x, y such that σ1(x) = y, when a = i, b = σ1(i)

or when a = j, b = σ1(j). Symmetrically, we have (P [2]
σ1 − P

[2]
σ2)(ab, xy) = −1 for

all x, y such that σ2(x) = y, when a = i, b = σ2(i) or when a = j, b = σ2(j).
For the case when a, b /∈ {i, j}, (P [2]

σ1 − P
[2]
σ2)(ab, xy) = 1 when x = i, y = σ1(i)

or when x = j, y = σ1(j) and (P [2]
σ1 − P

[2]
σ2)(ab, xy) = −1 when x = i, y =

σ2(i) or when x = j, y = σ2(j). Similar values follow for P
[2]
σ4 − P

[2]
σ3 . Note that

P
[2]
σ1 − P

[2]
σ2 and P

[2]
σ4 − P

[2]
σ3 differ only at the indices i′, j′. So subtracting the

latter from the former we get, ((P [2]
σ1 − P

[2]
σ2) − (P [2]

σ4 − P
[2]
σ3))(ab, xy) = 0 for all

a, b, x, y /∈ {i, j, i′, j′}. The only non-zero entries that remain are the following:
(i) a = i, b = σ1(i), x = i′, y = σ1(i′), (ii) a = i, b = σ2(i), x = i′, y = σ2(i′),
(iii) a = j, b = σ1(j), x = i′, y = σ1(i′), (iv) a = j, b = σ2(j), x = i′, y = σ2(i′),
(v) a = i, b = σ1(i), x = i′, y = σ3(i′), (vi) a = i, b = σ2(i), x = i′, y = σ3(i′),
(vii) a = j, b = σ1(j), x = i′, y = σ3(i′), (viii) a = j, b = σ2(j), x = i′, y = σ3(i′).
Another 8 non-zero entries correspond to the case when x = j′ taking the total
to 16. 16 more entries follow from symmetry, by swapping a, b with x, y. Thus,
we get a total of 32 non-zero entries in the resulting matrix. Half of these are
+1 and the remaining half are −1. Note that these entries depend only on the
indices where the four permutations map the indices i, j, i′, j′ and not on the
value of n or where these permutations map the remaining indices. ��

Lemma 7. For any P
[2]
σ ∈ S0, P

[2]
σ − P

[2]
σ′ lies in the linear hull of S for every

neighbor P
[2]
σ′ ∈ S0, provided m � 7.

Proof. Let σ1, σ2, σ3, σ4 be as defined in Lemma 6. Let σ5, σ6, σ7, σ8 be four
permutations different from σ1, σ2, σ3, σ4 but related to each other just like
σ1, σ2, σ3, σ4 are. This means that σ6 is obtained from σ5 by the same trans-
position that is used to obtain σ2 from σ1, σ7 is obtained from σ6 by the same
transposition that is used to obtain σ3 from σ2, and σ8 is obtained from σ7 by
the same transposition that is used to obtain σ4 from σ3. So from Lemma 6,
we have P

[2]
σ1 − P

[2]
σ2 = (P [2]

σ3 − P
[2]
σ4) + (P [2]

σ5 − P
[2]
σ6) − (P [2]

σ7 − P
[2]
σ8). Let σ1 = σ

and σ2 = σ′. If we can find σ3, . . . , σ8 as defined above such that the corre-
sponding vertices lie in S, then we are done. Since σ, σ′ ∈ S0, we have some

342 P. Aurora and H.R. Tiwary

index a, a �= ir, r ∈ [m] such that σ(a) = σ′(a) = jr. Consider the case when
a = ip, p ∈ [m] and σ(ir) �= jp. The case when a �= ip for any p ∈ [m] is similar.
We can swap σ′(a) with σ′(ir) to get σ3(a) = σ′(ir), σ3(ir) = jr which clearly
lies in S. We obtain σ4 from σ3 by the transposition defined in Lemma6 and
clearly σ4 also lies in S. Next we select a permutation σ5 ∈ S that matches with
σ4 at the four indices defined in Lemma 6 and also maps an index ir′ , r �= r′

to jr′ . So we have σ3, σ4 ∈ S1, σ5 ∈ S2. Obtaining σ6, σ7, σ8 as outlined above,
we have σ6 ∈ S2, σ7, σ8 ∈ S1. Next, consider the case when a = ip, p ∈ [m] and
σ(ir) = jp. This can happen when m is even and any transposition of σ either
results in a permutation in S0 or in S2. It is not possible to get a permutation
in S1 by a single transposition of σ. So we obtain σ3, σ4 as before but this time
the vertices lie in S2 instead of S1. Moreover, this time we select a permutation
σ5 ∈ S that matches with σ4 at the four indices defined in Lemma 6 but has a
pair of indices ix, iy such that σ5(ix) = jy but σ5(iy) �= jx. Obtaining σ6, σ7, σ8

as above, we have σ5, σ6 ∈ S2, σ7, σ8 ∈ S0. We can now repeat the above argu-
ment with σ = σ7, σ

′ = σ8. This time however, by the choice of σ5 ∈ S, we have
ensured that we are in the first case where we could express the difference vector
as a combination of vertices only in S. Note that we need m to be at least 7
for the above argument to work. This is so because the transposition of σ that
gives σ′ can use upto four indices so that these indices are no longer available to
get to S. Further, as in the second case above, two other indices swap with each
other to get to S2. So that takes up a total of six indices that are not available
to get the desired σ5. Now if m is at least 7, we are guaranteed to find a pair of
indices ix, iy such that σ5(ix) = jy but σ5(iy) �= jx.

��
Theorem 2. The following inequality:

m∑

r=1

Yirjr,irjr −
∑

r<s

Yirjr,isjs ≤ 1

where i1, . . . , im are all distinct and j1, . . . , jm are also distinct, is facet-defining
for the QAP-polytope when m,n � 7.

Proof. From Lemma 3 and Lemma 4 we can conclude that any vertex in V \
(S ∪ S0) can be expressed as a linear combination of the vertices in S ∪ S0.
What remains to be shown is that any vertex in S0 can be expressed as a linear
combination of the vertices in S and a fixed vertex σ∗ ∈ S0. From Lemma 5 we
know that it is possible to go from any vertex in S0 to any other vertex in S0 via
transpositions such that all the intermediate vertices are in S0. Let us fix some
arbitrary vertex in S0 as σ∗. So there is a path from every other vertex in S0 to
σ∗. Consider a vertex σ ∈ S0. Let σ, σ1, . . . , σt, σ

∗ be a path from σ to σ∗. From
Lemma 7 we can express the difference of any vertex σ ∈ S0 with any other vertex
σ′ ∈ S0 such that σ′ is a transposition of σ, as a linear combination of the vertices
in S. So we have σ − σ1 ∈ span(S), σ1 − σ2 ∈ span(S), . . . , σt − σ∗ ∈ span(S)
which implies that σ − σ∗ ∈ span(S) or σ ∈ span(S ∪ {σ∗}).

��

On the Complexity of Some Facet-Defining Inequalities of the QAP-Polytope 343

4 Membership Testing

In this section we consider the membership testing problem for each of the QAP
relaxations defined in Sect. 2. That is, for each of these relaxations we wish to
test whether a given point x satisfies all the constraints. Note that the separation
problem where one wishes to identify a violated inequality in case the answer to
membership testing is negative is a harder problem. Typically for efficient use in
cutting plane methods one would like to solve the (harder) separation problem.

We show that membership testing for inequalities QAP2, QAP3, or QAP5 is
coNP-complete.

Recall that QAP2 is defined by the following set of inequalities:

m∑

r=1

Yirjr,kl − Ykl,kl −
∑

r<s

Yirjr,isjs � 0

where i1, . . . , im, k are all distinct and j1, . . . , jm, l are also distinct. In addition,
n � 6,m � 3.

Theorem 3. Given a point x ∈ R
n4

with 0 � x � 1, it is coNP-complete to
decide whether x satisfies all inequalities of QAP2.

Proof. The problem is clearly in coNP since given a violated inequality it can
be checked quickly that it is indeed violated.

For establishing NP-hardness we will reduce the max-clique problem to mem-
bership testing for QAP2. Let the given instance of the max-clique problem be
G = (V,E) where V = [n]. We construct a n-partite graph G′ = (V ′, E′) where
V ′ = {(ij)} for i, j ∈ [n] and {i1j1, i2j2} ∈ E′ if and only if {i1, i2} ∈ E.
So if there is an edge {i, j} ∈ E then we get a complete bi-partite graph
between the partitions i and j, else there is no edge between these two par-
titions. Consider a clique C = {i1, i2, . . . , ik} of size k in G. Then the set of
vertices {i1j1, i2j2, . . . , ikjk} where jr could be any arbitrary index in [n], forms
a clique of size k in G′. Conversely, given a clique C = {i1j1, i2j2, . . . , ikjk} of
size k in G′, the set of vertices {i1, i2, . . . , ik} forms a clique of size k in G. Fix a
pair of indices k, l ∈ [n] arbitrarily and add edges {kl, irjr} for all ir ∈ {[n]\{k}}
to G′ (if the edge is not already present). Now construct a point Y as follows:

Yi1j1,i2j2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if (kl) /∈ {(i1j1), (i2j2)} and {i1j1, i2j2} ∈ E′

n, if (kl) /∈ {(i1j1), (i2j2)} and {i1j1, i2j2} /∈ E′

1, if (i1 �= i2 = k and j1 �= j2 = l)
or (k = i1 �= i2 and l = j1 �= j2)

t, if i1 = i2 = k and j1 = j2 = l

n2, if i1 = i2 and j1 = j2 and (i1 �= k or j1 �= l)

where t � 2 is a natural number. Notice that any point Y satisfies all the
inequalities of QAP2 if and only if αY satisfies them for all α � 0. Therefore Y
can be scaled to satisfy 0 � Y � 1. We will ignore this scale factor and continue
our argument with Y as constructed above to avoid cluttered equations.

344 P. Aurora and H.R. Tiwary

We claim that Y satisfies all the inequalities of QAP2 if and only if every
clique in the subgraph induced by the neighborhood of the vertex (kl) in G′, has
size at most t.

Suppose that the largest clique C = {i1j1, i2j2, . . . , it′jt′} such that {irjr, kl
} ∈ E′ for r ∈ [t′], has size t′ > t. Without loss of generality, we can assume
that i1, . . . , it′ as well as j1, . . . , jt′ are distinct. Consider the inequality hC cor-
responding to the choice of indices {i1, . . . , it′ , k}, {j1, . . . , jt′ , l}. From the above
construction,

∑t′

r=1 Yirjr,kl = t′, Ykl,kl = t and
∑

r<s,r,s∈[t′] Yirjr,isjs = 0 giving
t′ � t and Y violates hC .

Now suppose that every clique C in the subgraph induced by the neigh-
borhood of (kl), has size at most t and there exists an inequality of QAP2
defined by the sets {i1, . . . , im, k′}, {j1, . . . , jm, l′} that is violated by the above
point Y . Notice that k′ = k and l′ = l must hold. If not then

∑m
r=1 Yirjr,k′l′

− ∑
r<s,r Yirjr,isjs � nm � n2 = Yk′l′,k′l′ and Y does not violate the inequality.

So any violated inequality must have
∑m

r=1 Yirjr,kl > t +
∑

r<s Yirjr,isjs . Since
Yirjr,kl = 1 for all ir ∈ {[n] \ {k}}, we have m > t +

∑
r<s Yirjr,isjs for any

violated inequality, which is not possible if Yirjr,isjs = n since m � n and t � 2.
Therefore, Yirjr,isjs = 0 for all distinct r, s ∈ [m] and so {irjr, , isjs} ∈ E′. But
then, m > t giving a clique of size larger than t in the neighborhood of (kl)
contradicting the assumption that the every such clique has size at most t.

Therefore, given a membership oracle for QAP2 we can compute the size of
the largest clique in any graph except Kn by calling such an oracle for various
choices of k, l and t and outputting the largest value of t for which the above
constructed point satisfies all the inequalities.

��

Next, recall that QAP3 is defined by the following set of inequalities:

(β − 1)
∑

(ij)∈P×Q

Yij,ij −
∑

(ij),(kl)∈P×Q
i<k

Yij,kl � β2−β
2

where P,Q ⊂ [n]. In addition (i) β+1 � |P |, |Q| � n−3, (ii) |P |+|Q| � n−3+β,
(iii) β � 2.

Theorem 4. Given a point x ∈ R
n4

with x � 0, it is coNP-complete to decide
whether x satisfies all inequalities of QAP3.

Proof. Again we will reduce the max-clique problem to membership testing for
QAP3. Given an instance of the max-clique problem, G = (V,E) with |V | = n,
we construct a point Y as follows:

On the Complexity of Some Facet-Defining Inequalities of the QAP-Polytope 345

Yi1j1,i2j2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if {i1, i2} ∈ E

n2, if {i1, i2} /∈ E (i1 �= i2)
1/t, if i1 = i2 and j1 = j2 = 1
0, if i1 = i2 and j1 = j2 and j1 > 1

where 1 � t � n − 4 is some natural number. We claim that Y satisfies all
inequalities of QAP3 if and only if G doesn’t contain a clique of size larger than
t. This gives an algorithm to find the size of largest clique in G by increasing t
gradually and computing the smallest value of t for which Y becomes feasible. If
Y remains infeasible for t = n − 4 then the largest clique in G has size n − 3 or
more. This can be determined by checking the O(n3) possible subsets of vertices
of G.

To prove the claim, let P be a clique in G with t < |P | � n − 3. Define
Q = {1}, β = 2 and consider the inequality h defined by P,Q, β. It can be
checked that Y violates h.

Conversely, let h be an inequality defined by P,Q, β that is violated by Y .
We first observe that 1 ∈ Q. Suppose not, then for any (i, j) ∈ P × Q we

have Yij,ij = 0. Since β2 − β � 0 for all natural β � 2, h cannot be violated by
Y . It follows that if i, k ∈ P and i �= k, then {i, k} ∈ E. Again, suppose not.
Then, Yij,kl = n2 for all j, l but (β − 1)

∑
(ij)∈P×Q Yij,ij � (n− 4) · (n− 3) < n2.

So Y cannot violate h as (β − 1)
∑

(ij)∈P×Q Yij,ij − ∑
(ij),(kl)∈P×Q,i<k Yij,kl is

negative but β2 − β is nonnegative.
So we have that if Y violates h then Yij,kl = 0 for all i �= k. Further, such an

inequality must have {i, k} ∈ E for all distinct i, k ∈ P . That is P must form a
clique in G. Recall that only 1 ∈ Q contributes a non-zero value to the left hand
side expression of h. Therefore, if Y violates h then |P |/t =

∑
(ij)∈P×Q Yij,ij >

β/2 and G contains a clique of size larger than tβ/2, that is, larger than t. ��

Finally, recall that QAP5 is defined by the following set of inequalities:
m∑

r=1

Yirjr,irjr −
∑

r<s

Yirjr,isjs � 1

where i1, . . . , im are all distinct and j1, . . . , jm are also distinct. In addition,
m,n � 7.

Theorem 5. Given a point x ∈ R
n4

with x � 0, it is coNP-complete to decide
whether x satisfies all inequalities of QAP5.

Proof. Given an instance of the max-clique problem, G = (V,E) with |V | = n,
we construct a point Y as follows:

Yi1j1,i2j2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if {i1, i2} ∈ E

n/6, if i1 �= i2 and {i1, i2} /∈ E

1/t, if i1 = i2 and j1 = j2

0, otherwise

346 P. Aurora and H.R. Tiwary

where, t � 6 is a natural number.
We claim that Y is infeasible if and only if there exists a clique in G of size

at least t + 1.
Suppose there exists a clique C = {p1, . . . , pm} in G with m � t+1. Consider

the inequality hC defined by the indices i1, . . . , im and j1, . . . , jm with ik = jk =
pk for all k ∈ [m]. Then, Y violates hC because m/t > 1.

Conversely, suppose every clique in G has size at most t and let h be a
violated inequality defined by indices i1, . . . , im and j1, . . . , jm. It must hold
that {ir, is} ∈ E otherwise the left hand side in the inequality h with respect
to Y is at most m/t − n/6 which is at most zero since t � 6 and m � n and so
Y cannot violate h. So for a violation, G must contain a clique of size m. But
then Yirjr,isjs = 0 for all distinct r, s ∈ [m] and so m/t > 1 contradicting the
assumption that G contains no cliques of size larger than t.

Therefore, given a graph G = (V,E) if Y is feasible for all values of t � 6
then the size of a largest clique is at most 6 and can be computed in polynomial
time. Otherwise, the largest value of t for which Y is infeasible equals the size
of the largest clique in G minus one. ��

5 Extension Complexity

In this section we will prove that any relaxation of the QAP-polytope for which
any of the families of inequalities defined in Sect. 2 are valid, has superpolynomial
extension complexity. A set of linear inequalities is said to be a relaxation of the
QAP-polytope if it contains the QAP-polytope.

We will need the following lemma whose proof we omit2 due to space con-
straints.

Lemma 8. Let Nk
n be a 2n×2n matrix with rows and columns indexed by binary

vectors of length n and whose entries are Nk
n(a, b) := (aᵀb − k) · (aᵀb − k − 1).

Then, any EF-protocol for Nk
n requires Ω(n − k) bits to be exchanged.

As noted in Sect. 2, QAP1 are the most general family of valid inequalities
for the QAP-polytope. Therefore any lower bound on the extension complexity
of a relaxation Rn corresponding to any of the families QAP2-QAP5 also hold
for QAP1. Proofs for each of QAP2-QAP5 are somewhat similar. Therefore due
to space constraints we only provide partial proof of the next theorem.

Theorem 6. Let Ri
n be any bounded relaxation of the QAP-polytope such that

the inequalities of QAPi are valid for Ri
n. Then xc(Ri

n) � 2Ω(n).

Proof. (Proof for QAP2): Consider any relaxation of QAPn for which the
inequalities of QAP2 are valid. Let i1, i2, . . . , im, k be distinct indices in [n], and
j1, j2, . . . , jm, l be all distinct indices in [n] as well. Let σ ∈ Sn be such that

q indices (ir, jr) satisfy Pσ(ir, jr) = 1. Then, the slack of
m∑

r=1

Yirjr,kl − Ykl,kl −

2 For the omitted proofs refer to the full version of this paper [2].

On the Complexity of Some Facet-Defining Inequalities of the QAP-Polytope 347

∑

r<s

Yirjr,isjs � 0 with respect to P
[2]
σ is Pσ(k, l) +

(
q
2

) − qPσ(k, l). If Pσ(k, l) = 0

then this equals
(
q
2

)
. If Pσ(k, l) = 1 then this equals 1 +

(
q
2

) − q = 2+q(q−1)−2q
2 =

(
q−1
2

)
. Therefore the slack is

(
q − Pσ(k, l)

2

)

(6)

Now, suppose there exists an EF-protocol for computing the slack matrix
of R2

n that requires at most c bits to be exchanged. That is if Alice is given
any valid inequality for R2

n and Bob any feasible point in R2
n they can compute

the corresponding slack in expectation by exchanging at most c bits. We will
show that they can modify this EF-protocol to get an EF-protocol for matrix
N1

n with at most O(c + log n) bits exchanged. By Lemma 8 this requires Ω(n)
bits to be exchanged and so c = Ω(n). Finally, applying Theorem1 we will get
that xc(R2

n) � 2Ω(n).
So suppose, Alice and Bob get a, b ∈ {0, 1}n respectively and wish to compute

N1
n(a, b) = (aᵀb − 1)(aᵀb − 2) in expectation. We can assume that Alice receives

neither the all zero nor the all one vector. If a = (0, . . . , 0) then she can output
zero and stop. If a = (1, . . . , 1) then she can tell Bob this using one bit and Bob
can output the number of nonzero entries in b. Further, we can assume that the
vector b contains at least three zero entries. Otherwise Bob can tell Alice using
at most 2 log n bits the indices where b is zero and Alice can output the correct
value.

Let p1, . . . , pm be the indices where a is non-zero and let p be an arbi-
trary index such that ap = 0. Alice creates the inequality corresponding to
sets i1, . . . , im, k and j1, . . . , jm, l where i1 = j1 = p1, . . . , im = jm = pm and
k = l = p. Alice then sends the index p to Bob who sets bp = 1 if it is not
already so. Bob then creates any permutation σb such that σb(i) = i if bi = 1
and σb(i) �= i if bi = 0. This is clearly possible since b still contains at least two
zeroes. Bob selects the vertex P

[2]
σb of QAPn corresponding to this permutation.

Clearly, aᵀb equals the number of index pairs (ir, jr) in the set created by Alice
such that P

[2]
σb (ir, jr) = 1.

Using Pσ(k, l) = Pσb
(p, p) = 1 and q = aᵀb in equation (6) we see that

the slack of Alice’s inequality with respect to Bob’s vertex of QAPn is exactly(
aᵀb−1

2

)
= 1

2N1
n(a, b) and hence they can just use the protocol for computing the

slack matrix of R2
n for computing N1

n by agreeing that every time they wish to
output something they would output twice as much. ��

Acknowledgement. Pawan Aurora is partially supported by grant MTR/2018/
000861 of the Science and Engineering Research Board, Government of India. Hans
Raj Tiwary was partially supported by grant 17-09142S of GAČR.

References

1. Aurora, P., Mehta, S.K.: The QAP-polytope and the graph isomorphism problem.
J. Comb. Optim. 36(3), 965–1006 (2018)

348 P. Aurora and H.R. Tiwary

2. Aurora, P., Tiwary, H.R.: On the complexity of some facet-defining inequalities of
the QAP-polytope. CoRR abs/2010.06401 (2020)

3. Avis, D., Tiwary, H.R.: On the extension complexity of combinatorial polytopes.
Math. Program. 153(1), 95–115 (2014). https://doi.org/10.1007/s10107-014-0764-
2

4. Bazzi, A., Fiorini, S., Pokutta, S., Svensson, O.: No small linear program approx-
imates vertex cover within a factor 2 - ε. Math. Oper. Res. 44(1), 147–172 (2019)

5. Braun, G., Fiorini, S., Pokutta, S., Steurer, D.: Approximation limits of linear
programs (beyond hierarchies). Math. Oper. Res. 40(3), 756–772 (2015)

6. Braun, G., Jain, R., Lee, T., Pokutta, S.: Information-theoretic approximations of
the nonnegative rank. Comput. Complex. 26(1), 147–197 (2016). https://doi.org/
10.1007/s00037-016-0125-z

7. Braverman, M., Moitra, A.: An information complexity approach to extended for-
mulations. In: Proceedings of the STOC 2013, pp. 161–170 (2013)

8. Briët, J., Dadush, D., Pokutta, S.: On the existence of 0/1 polytopes with
high semidefinite extension complexity. Math. Program. 153(1), 179–199 (2014).
https://doi.org/10.1007/s10107-014-0785-x

9. Buchanan, A.: Extended formulations for vertex cover. Oper. Res. Lett. 44(3),
374–378 (2016)

10. Cela, E.: The Quadratic Assignment Problem: Theory and Algorithms. Combina-
torial Optimization. Springer, Boston (1997)

11. Chan, S.O., Lee, J.R., Raghavendra, P., Steurer, D.: Approximate constraint sat-
isfaction requires large LP relaxations. In: Proceedings of the FOCS 2013, pp.
350–359 (2013)

12. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial
optimization. Ann. Oper. Res. 204(1), 97–143 (2013)

13. Faenza, Y., Fiorini, S., Grappe, R., Tiwary, H.R.: Extended formulations, nonneg-
ative factorizations, and randomized communication protocols. Math. Program.
153(1), 75–94 (2014). https://doi.org/10.1007/s10107-014-0755-3

14. Fiorini, S., Massar, S., Patra, M.K., Tiwary, H.R.: Generalized probabilistic the-
ories and conic extensions of polytopes. J. Phys. A: Math. Theor. 48(2), 025302
(2014)

15. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Exponential lower
bounds for polytopes in combinatorial optimization. J. ACM 62(2), 17 (2015)

16. Gajarský, J., Hlinený, P., Tiwary, H.R.: Parameterized extension complexity of
independent set and related problems. Discrete Appl. Math. 248, 56–67 (2018)

17. Gouveia, J., Parrilo, P.A., Thomas, R.R.: Lifts of convex sets and cone factoriza-
tions. Math. Oper. Res. 38(2), 248–264 (2013)

18. Jünger, M., Kaibel, V.: A basic study of the QAP-polytope. Technical report,
Institut Fr̈r Informatik, Universität zu Köln, Germany (1996)

19. Jünger, M., Kaibel, V.: On the SQAP polytope. Technical report, Institut Fr̈r
Informatik, Universität zu Köln, Germany (1996)

20. Jünger, M., Kaibel, V.: The QAP-polytope and the star transformation. Discrete
Appl. Math. 111(3), 283–306 (2001)

21. Kaibel, V.: Polyhedral combinatorics of the quadratic assignment problem. Ph.D.
thesis, Faculty of Mathematics and Natural Sciences, University of Cologne (1997)

22. Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2–7
(2011)

23. Koopmans, T., Beckmann, M.: Assignment problems and the location of economic
activities. Technical report, Cowles Foundation, Yale University (1955)

https://arxiv.org/abs/2010.06401
https://doi.org/10.1007/s10107-014-0764-2
https://doi.org/10.1007/s10107-014-0764-2
https://doi.org/10.1007/s00037-016-0125-z
https://doi.org/10.1007/s00037-016-0125-z
https://doi.org/10.1007/s10107-014-0785-x
https://doi.org/10.1007/s10107-014-0755-3

On the Complexity of Some Facet-Defining Inequalities of the QAP-Polytope 349

24. Lawler, E.L.: The quadratic assignment problem. Manag. Sci. 9(4), 586–599 (1963)
25. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite

programming relaxations. In: Proceedings of the STOC 2015, pp. 567–576 (2015)
26. Padberg, M., Rijal, M.: Location, Scheduling, Design and Integer Programming.

International Series in Operations Research & Management Science. Springer,
Boston (1996)

27. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991)

28. Pitowsky, I.: Quantum Probability – Quantum Logic. Lecture Notes in Physics,
vol. 321. Springer, Berlin (1989)

29. Rothvoß, T.: Some 0/1 polytopes need exponential size extended formulations.
Math. Program. 142(1–2), 255–268 (2013)

30. Rothvoß, T.: The matching polytope has exponential extension complexity. J. ACM
64(6), 41:1–41:19 (2017)

31. Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23(3), 555–
565 (1976)

32. Vanderbeck, F., Wolsey, L.A.: Reformulation and decomposition of integer pro-
grams. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp.
431–502. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-
0 13

33. Wolsey, L.A.: Using extended formulations in practice. Optima 85, 7–9 (2011)

https://doi.org/10.1007/978-3-540-68279-0_13
https://doi.org/10.1007/978-3-540-68279-0_13

Hardness of Segment Cover, Contiguous
SAT and Visibility with Uncertain

Obstacles

Sharareh Alipour1 and Salman Parsa2(B)

1 School of Computer Science, Institute for Research in Fundamental Sciences (IPM),
Tehran, Iran

alipour@ipm.ir
2 Computer Science Department, Saint Louis University, St. Louis, USA

salman.parsa@slu.edu

Abstract. We define the problem segment cover as follows. We are given
a set of pairs of sub-intervals of the unit interval. The problem asks if
there is a choice of a single interval from each pair such that the union of
the chosen intervals covers the entire unit interval. This problem arises
naturally while attempting to compute visibility between a point and a
line segment in the plane in the presence of uncertain obstacles. Segment
cover is equivalent to a restricted version of SAT which we call contiguous
SAT. Consider a SAT with the following restrictions. An input formula
is in CNF form and an ordering of the clauses is given in which clauses
containing any fixed literal appear contiguously. We call this restricted
problem contiguous SAT. Our main result is that the problems segment
cover and contiguous SAT are NP-hard. We also discuss hardness of
approximation for these problems.

1 Introduction

In this paper we consider two very related problems. One of them we call the
segment cover problem and the other one contiguous SAT. These problems are
encountered when trying to introduce a specific model of uncertainty into visi-
bility problems, see Sect. 1.2 below for the connection to this uncertain visibility
model which has been the origin of this work. These two problems are very
natural and we expect that they would be encountered in similar situations.

1.1 Problem Statements and Results

Our first problem is called the segment cover problem. Let I be an interval of
the real line, this interval is fixed once and for all and for simplicity we take
I = [0, 1]. We call a closed sub-interval of I a segment. An uncertain segment

The work of Salman Parsa is supported by the National Science Foundation under
Grant CCF-1614562 and funding from the Saint Louis University Research Institute.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 350–363, 2020.
https://doi.org/10.1007/978-3-030-64843-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_24&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_24

Hardness of Segment Cover 351

is a pair s = {l, r} of two segments. An uncertain segment models the situation
where we know that the “real” segment is one of l or r but we do not know which
one. Let S = {si, i = 1, . . . , n} be a set of uncertain segments. The segment cover
problem asks: Is there a choice of li or ri (but not both) for each i such that
the union of the chosen segments is I. See Fig. 1 for an example. In other words,
if the uncertain segment si is li with probability 0 ≤ pi ≤ 1 and is ri with
probability 1 − pi, the problem asks to decide if the probability of the entire
interval I being covered is non-zero. We show in Sect. 2 that the segment cover
problem is NP-hard. We remark that if we require that any two segments (of all
uncertain segments) are disjoint or coincide, then the NP-hardness result does
not apply. Therefore the NP-hardness is not immediate because of the presence
of a choice. Also one is justified for having the first impression that this problem
should not be NP-hard. We reduce 3SAT to segment cover. The method we use
for the reduction is simple, however we believe it is novel.

0 1

Fig. 1. An instance of segment cover with 3 uncertain segments. The segments are
depicted above the interval for clarity.

Our second problem, the contiguous SAT is a restricted SAT problem. The
input to contiguous SAT is i) a SAT instance in CNF form C1 ∧ C2 · · · ∧ Cm,
where the Ci’s are m clauses, and ii) an ordering on the Ci. The instance must
satisfy the contiguity condition: any literal appears in a contiguous set of clauses
with respect to the given ordering. It is convenient to assume that the subscripts
of the Ci respect the given ordering. Then the contiguity condition requires that
for any positive literal x, the i such that x ∈ Ci form a contiguous set of numbers,
and similarly for the literal ¬x. For example, the following formula is an input
to contiguous SAT with the left-to-right ordering of the clauses.

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x3 ∨ ¬x1)

But the following is not a valid input.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x3 ∨ ¬x1)

352 S. Alipour and S. Parsa

Lemma 1 states that the above two problems are linear-time equivalent.
Therefore, by the results of this paper, the contiguous SAT problem is also
NP-hard. The segment cover problem provides a geometric view to contiguous
SAT. This point of view has been useful in proving our results.

We also consider a special case of the segment cover problem in which the
input segments are all of equal length. We call this problem all-equal segment
cover. We show in Theorem 2 that all-equal segment cover is NP-hard. From this
result follows that a problem called Best-Case Connectivity (BCU) in [9,10] is
NP-hard even in dimension 1. Therefore we strengthen a main result of [9,10]
considerably.

The BCU problem is defined as follows. Let R1, . . . , Rn be n closed regions
in the d-dimensional Euclidean space. These are called uncertainty regions. Find
the minimum value of r satisfying: there exist points pi ∈ Ri such that the
union of the balls of radius r centered at the pi,

⋃
i B(pi, r), is connected. In

[9,10] it is shown that this problem is NP-hard in the plane, d = 2, even when
each uncertainty region is a pair of points. They leave the case d = 1 open. We
reduce this problem to the all-equal segment cover in Corollary 1. See Fig. 2 for
an example.

Fig. 2. What is the minimum radius such that the union of three balls, one chosen
from each color, is connected?

In Sect. 4 we also prove hardness of approximation results for the segment
cover problem.

1.2 Relations to Uncertain Visibility

This section describes the motivation behind our problems and can be skipped.
One of the basic problems in computational geometry is computing visibility in
various configurations of points and obstacles in the Euclidean plane. Visibility
plays an important role in robotics and computer graphics, among other areas.
In robotics, for example, the efficient exploration of an unknown environment
requires computing the visibility polygon of the robot or test whether the robot
sees a specific object or not.

Suppose that we are given a set S of n obstacles in the plane, say in the
form of convex polygons. Two points p and q are visible to each other if their
connecting line segment does not intersect any of the obstacles in S. A line
segment t ⊂ R

2 is visible to a point p if p is visible to at least one point of the
line segment t.

Hardness of Segment Cover 353

In a version of visibility testing problem we are given a set S of n obstacles in
R

2 and our goal is to preprocess S so that we can quickly answer a query of the
form: is a query segment t ⊂ R

2 visible from a query point q ∈ R
2? For instance

q is a camera and the segment represents an object of interest.
Recently, there has been some attention to situations wherein there is uncer-

tainty in the obstacle positions. Then, two points are visible to each other with a
certain probability. Examples of these kind of problem can be found in [1,7]. We
introduce uncertainty into the set of obstacles S as follows. Each obstacle exists
in one of two possible locations with given probabilities. Consequently, the set
S is replaced by a set of pairs {li, ri} of obstacles. We denote the set of pairs
again by S. The probabilistic visibility testing problem asks to preprocess S to
answer the following query: What is the probability that a given segment I ⊂ R

2

be visible from a given query point q? It was shown in [1] that computing this
probability exactly is #P -hard. Note that for a fixed q, each possible location
of an obstacle covers a sub-segment of I. Then the probability that the interval
I be visible to q is 1 if and only if, for any choices of li or ri the projections of
the chosen obstacles to I do not cover the interval I. This is our segment cover
problem. See Fig. 3. Our results imply that deciding that a given point q can
always see a given segment I is NP-hard, in the presence of uncertain obstacles.

eye

Fig. 3. 3 uncertain obstacles, each with two possibilities li, ri, the projection each
uncertain obstacle gives an uncertain segment, one such uncertain segment is depicted

354 S. Alipour and S. Parsa

1.3 Related Work

The problems around the visibility concept have been an active research area
since the beginning of computational geometry. Point and edge visibility [4,5,11,
18], the art gallery problem [27], the watchman route problem [8,23], visibility
graphs and their recognition [15,17] are among the topics of interest in this field.
Uncertainty is very natural in applications and indeed has been studied from a
more practical viewpoint, like robot motion planning [6,12,14,24,26].

There are many restrictions of SAT that are NP-complete. They include
k-SAT, k ≥ 3, NAE-SAT, 1-in-3 SAT [30], planar 3-SAT [22], planar 1-in-3
SAT [21], monotone planar cubic 1-in-3 SAT [25], 4-bounded planar 3-connected
3-SAT [20]. Let us denote by (r, s)-SAT the SAT problem restricted to clauses
containing exactly r variables, and each variable appearing in at most s clauses.
Tovey [31] has shown that (3, 3)-SAT is always satisfiable and (3, 4)-SAT is NP-
Complete. In addition, it is proved in [28] that 3-SAT restricted to instances
where each variable appears at most three times is NP-Complete. A stronger
result, proved in Dahlhaus et al. [13], states that planar 3-SAT in which each
variables appears exactly three times, and twice with one literal, a third time as
the other literal, is still NP-Complete. These results will be used in Sect. 2. We
make use of the hardness of SAT instances where each variable is restricted to
a few clauses in our proof of hardness of all-equal segment cover. None of these
special cases directly imply hardness of contiguous SAT. Indeed although our
reduction is quite simple its method is novel to the best of our knowledge.

2 Reduction

In this section we reduce 3SAT to segment cover.

Convention. We make the following convention that by a literal of a SAT
instance we mean an appearance of x or ¬x for some variable x in φ. There-
fore, a literal is uniquely determined by determining its clause and a number. In
addition, if an interval is the union of sub-intervals such that the sub-intervals
share only endpoints with each other and are otherwise disjoint, by abuse of
notation and for simplicity, we say that the interval is a disjoint union of the
sub-intervals.

We begin by observing the following.

Lemma 1. The problems segment cover and contiguous SAT are equivalent with
linear-time reductions.

Proof. Given an instant of segment cover construct an instance of contiguous
SAT as follows. Partition the interval I using the endpoints of all of the given
segments into subintervals Ji. The Ji are closed sub-intervals that only share
(one or two) endpoints with the neighboring sub-intervals and otherwise are
disjoint. For each sub-interval Ji we define a clause Ci. For any uncertain segment
sj = {lj , rj} define a variable xj . For all i and j, add the literal xj to the Ci

Hardness of Segment Cover 355

if Ji is covered by lj and add the literal ¬xj to the Ci if Ji is covered by rj .
Order the Ci using the left-to-right ordering of the sub-intervals Ji. This defines
an instance of contiguous SAT. See Fig. 4.

If the contiguous SAT instance we constructed is satisfiable then we choose
for sj , the segment lj if xj = 1 and rj if xj = 0. These choices cover all of I. If
the segment cover is satisfiable then the contiguous SAT instance is satisfiable.
Therefore segment cover reduces to contiguous SAT.

Similarly given an instance of contiguous SAT with m clauses one can con-
struct an instance of segment cover by i) partitioning the segment I into m
sub-intervals Ji = [(i−1)/m, i/m], i = 1, · · · ,m, and associating Ji to Ci and ii)
defining a segment sj for the variable xj and defining lj and rj by concatenating
the sub-intervals corresponding to clauses in which xj or ¬xj appear. We omit
the details. �	

0 1

Fig. 4. Defining a SAT instance from a segment cover instance, for example C5 =
(¬x1 ∨ x2 ∨ x3)

We now start our reduction of 3SAT to segment cover. More over we assume
that clauses contain exactly three literals. Let φ be the given 3SAT formula
with s clauses, C1, . . . , Cs. For simplicity of presentation assume each variable
appears at least once as a positive literal and at least once as a negative literal in
φ. We first divide the interval I into s disjoint sub-intervals Bj = [(j −1)/s, j/s],
j = 1, . . . , s. Next, we define an arbitrary one-one correspondence between the
clauses and the intervals Bj . For simplicity we take Bj to be the sub-interval
corresponding to Cj .

Clause Uncertain Segments. We partition each Bj into three equal parts, Bj1,
Bj2 and Bj3. Next we consider the set Tj = {{Bj1, Bj2}, {Bj2, Bj3}} containing
the two uncertain segments {Bj1, Bj2} and {Bj2, Bj3} as shown in Fig. 5. Tj

has the following property.

Lemma 2. For any choice of segments from the uncertain segments of Tj, at
most two intervals among Bj1, Bj2 and Bj3 are covered.

356 S. Alipour and S. Parsa

We define an arbitrary one-one correspondence between the literals of Cj

and the sub-intervals Bj1, Bj2 and Bj3. We denote this correspondence by αj :
Lj(φ) → {Bj1, Bj2, Bj3}, where Lj(φ) denotes the set of of literals of Cj . We
denote by α the one-one correspondence between all appearances of literals in
φ and all Bjk, j = 1, . . . , s, k = 1, 2, 3 which is defined by the αj . Again for
simplicity we can take α to be the correspondence suggested by the subscripts,
that is if Cj = (λ1 ∨ λ2 ∨ λ3) then α(λi) = Bji, i = 1, 2, 3.

Variable Uncertain Segments. Let x1, . . . , xm be the variables of the given for-
mula φ. We shall construct a collection of uncertain intervals Si for the variable
xi. For each variable, these uncertain intervals are defined by means of a com-
plete bipartite graph denoted Gi, i = 1, . . . , m. The vertices of Gi are the literals
of φ. The vertices are divided into two parts denoted Pi and Ni, namely positive
and negative literals. This finishes the definition of Gi.

For each i, using Gi, we define the set Si as follows. Let v ∈ Pi ∪ Ni be a
literals of xi and take J = α(v). Let d = d(v) be the degree of v in the graph Gi.
Partition the interval J into d disjoint (sharing only endpoints) sub-intervals,
and define an arbitrary one-one correspondence βv between the edges incident
on v and these sub-intervals. Perform this subdivision for the intervals α(v) for
all v ∈ Pi ∪Ni. We obtain thus a set of one-one correspondences βv between the
edges incident to the vertex v and subintervals of J = α(v).

Now the uncertain segments Si are defined by the edges of the graph Gi

and their corresponding sub-intervals. In more detail, let e = {vP , vN}, vP ∈
Pi, vN ∈ Ni be an edge of the graph Gi. Then e determines the segment βvP

(e)
inside α(vP), and the segment βvN

(e) inside α(vN). Then se ∈ Si is defined as
the uncertain segment containing these two segments.

Fig. 5. The uncertain segments defining Tj , the segment are shown above the interval
for visual purposes

The segment cover instance for φ is the set of uncertain segments S =⋃m
i=1 Si ∪ ⋃s

i=1 Ti.

2.1 Correctness of the Reduction

In this section we show that there is a covering of the unit interval with the
uncertain segments S if and only if the given sentence φ is satisfiable.

Hardness of Segment Cover 357

Assume that φ is satisfiable. Observe that each uncertain segment s ∈ Si ⊂ S,
has a positive segment and a negative segment. Namely, the positive segment is
the one which corresponds to the incidence of the edge to a vertex in the positive
part of Gi, i.e., Pi, and analogously for the negative segment. Hence we can write
s = {sp, sn} where sp = βvP

(e), sn = βvN
(e), where e = {vP , vN} is the edge

defining s. Now assume xi takes the value 1 (=true) in the assignment that
satisfies φ. We choose sp, otherwise we choose sn, for all s ∈ Si.

We spell out the following fact.

Lemma 3. An interval Bj0k0 , for some j0 ∈ {1, . . . , s}, k0 ∈ {1, 2, 3}, satisfies
α(v) = Bj0k0 for some v ∈ Pi if and only if xi has a positive literal in Cj0 .
Analogously, an interval Bj0k0 satisfies α(v) = Bj0k0 for some v ∈ Ni if and
only if xi has a negative literal in Cj0 .

From the above lemma, whenever we choose the uncertain segments as above,
since each clause is satisfied, each clause Cj has a literal v (=vertex in some
graph) all of whose incident edges have chosen that vertex. Hence, α(v) among
Bj1, Bj2 and Bj3 is covered. It remains to cover the two remaining intervals.
This is easily done by a suitable choice for the uncertain segments of the set Tj .
This finishes one direction of the proof.

Consider now the other direction. We have to show that if there is a choice for
each uncertain segment s ∈ S, such that the unit interval is covered, then, there
is an assignment of 0 and 1 to the variables xi that satisfies the given formula φ.
Consider a clause Cj = (λ1∨λ2∨λ3), where λi are literals. And let xi1 , xi2 , xi3 be
the corresponding variables. The interval Bj is covered by the chosen segments.
Recall that the uncertain segments correspond to the edges of the graphs Gi

(other than elements of the Tj) and that a choice of an interval for an uncertain
segment is equivalent to choosing one endpoint of the corresponding edge.

Lemma 4. Assume there is a choice of uncertain segments such that I is
covered. Consider the graphs Gi1 , Gi2 , Gi3 of variables of any clause Cj =
(λ1 ∨ λ2 ∨ λ3). There exists at least one vertex λ among λi, i = 1, 2, 3, such
that, each edge incident on λ has chosen λ.

Proof. The uncertain segments in Tj leave at least one of Bj1, Bj2 and Bj3

uncovered, wlog, let it be Bj1. The interval Bj1 has to be covered using the
uncertain segments of S. All the edges incident on λ1 are required to choose λ1,
otherwise, some part of the interval Bj1 = α(λ1) would remain uncovered. �	

To construct an assignment from the choices of uncertain segments S we
do as follows. Consider any clause Bj . Lemma 4 gives a k ∈ {1, 2, 3} such that
a vertex in Gik is chosen by all its incident edges. If the vertex is in Pik , set
xik = 1, otherwise set xik to be 0.

First, we prove our assignment is well-defined. Assume for the contrary that
xi has been assigned both 0 and 1. Let vp ∈ Pi be the vertex based on which
we have assigned 1 to xi, and let vn ∈ Ni be the vertex based on which we have
assigned 0 to xi. Therefore all of the edges incident to vp have chosen vp and all

358 S. Alipour and S. Parsa

the edges incident on vn have chosen vn. But this is a contradiction since Gi is
a complete bi-partite graph.

Second, we show that the assignment satisfies all of the clauses. Take a clause
Cj and consider its corresponding interval Bj . Let x be the vertex returned by
Lemma 4 and v the vertex of the graph of x all of whose incident edges have
chosen it. If v is a positive literal in Cj , v is in the positive part of G. Hence
our procedure setting x = 1 satisfies the clause. If x has a negative literal in Cj ,
then v appears in the negative part of G. Hence setting x = 0 will satisfy Cj .
This finishes the proof of the correctness of the reduction.

We now bound the run-time of the reduction procedure. Assume the given
formula φ is an arbitrary 3SAT instance. In linear time in number of clauses we
construct the sets Tj of uncertain segments. Let variable xi appear in pi clauses
as a positive literal and in ni clauses as a negative literal. Then the graph Gi is
Kpi,ni

and has pini edges. Thus our reduction is of complexity O(s+
∑m

i=1 pini).

Theorem 1. The problems segment cover and contiguous SAT are NP-
Complete.

Remark. If we start by the NP-Complete problem studied by [13] in which each
variable appears at most three times then the number of our uncertain segments
is exactly 2s+2m (this would require also dealing with clauses with two literals).

3 All-Equal Segment Cover

In this section we strengthen our result to show that the segment cover remains
NP-complete even when we require that the lengths of the intervals all be equal.
We call this problem all-equal segment cover. We will later deduce that the
problem BCU of [9,10] (defined in Sect. 1) is also NP-complete for d = 1.

We now describe the modifications to the reduction necessary to keep all
the intervals the same length. Observe that we can make sure that the intervals
Bj1, Bj2, Bj3, for all j, have equal length. It remains to make sure that the
intervals in the uncertain segments from the Si have equal length and have
also length equal to the Bji. For simplicity in this argument, we will start by
a special 3SAT problem, namely, the one considered by [13]. They have proved
that planar 3-SAT remains NP-Complete when each variable appears at most
three times, once as one literal, twice as the other. If a clause contains only
two literals we change the intervals Tj of Fig. 5 accordingly. When applying
our reduction to this type of formulas, we will see that in the final uncertain
segments intervals Bj1, Bj2, Bj3 are divided into at most two smaller intervals.
With these preliminaries in mind, we will substitute the intervals in the Fig. 6
for the corresponding intervals from the construction of Sect. 2. In this figure
Bj1, Bj3, Bj5 play the roles of Bj1, Bj2 and Bj3 of the original reduction. Note
that we have assumed in the figure that the worst case happens, i.e., each three
of the sub-intervals is divided. The other cases are simpler.

Theorem 2. The problem all-equal segment cover is NP-Complete.

Hardness of Segment Cover 359

Proof. Consider a clause Cj and its sub-interval Bj . To the set Tj of the original
reduction we add s − 1 new uncertain segments, each of them consisting of two
copies of the same segment. This insures that certain subsets of the interval I are
always covered, see Fig. 6 (for instance, {s1, s

′
1} is such an uncertain segment).

The set Si of uncertain segments for the variable xi is defined just as in the
original reduction, but with the modification that a vertex interval Bjk is not
partitioned, rather the sub-intervals for the at most two incident edges are copies
of the interval Bjk, one of them slightly moved to the right, the other slightly
moved to the left.

We need to check that the new intervals have the required properties used
in the reduction. As before, at most two of the intervals Bj1, Bj3 and Bj5 can
be covered by the uncertain segments from (updated) Tj . It is easily checked
that any interval, say Bj1, which is not covered, can only be covered when both
of the intervals of the incident edges are present. Hence, the same correctness
argument applies here as well. �	

We next show that the optimization problem called BCU and studied in
[9,10] is NP-complete on the real line. For the definition of BCU refer to Sect. 1.

Corollary 1. The 1-dimensional BCU is NP-complete.

Proof. Let the set {s1, . . . , sn} of uncertain segments be an instance of all-equal
segment cover. For each si, construct an uncertain region ui containing two
points, namely, the midpoints of the two intervals in si. We add two more regions
defined as follows. Let xl be the smallest coordinate and xr be the largest coor-
dinate of any midpoint. Moreover, let r be half the length of an interval. Define
u0 = {xl − 2r, xl − 3r} and un+1 = {xr + 2r, xr + 3r}. Add these two sets to the
problem instance. Then the ui define an instance of BCU. An algorithm solving
BCU returns a minimum r′ such that there are n + 2 disks of radius r′, with
centers at the points of the ui, one center from each ui, such that the area they
cover is connected. Because of u0, un+1 we have always r′ ≥ r. Moreover, r′ = r
if and only if the answer to the original all-equal segment cover is affirmative.

Fig. 6. The labelled intervals on the top define uncertain segments Tj , unlabelled ones
in the bottom define sets Si.

360 S. Alipour and S. Parsa

4 Approximation

In this section we consider the approximation of the segment cover problem. We
can define two natural approximation problems. The first, called max-segment
cover, or max-SC for short, asks to choose one interval from each uncertain
segment such that the union of the resulting intervals is of maximum length
possible among all the choices. Here we have extended the meaning of length
of an interval to the length of a union of disjoint intervals in the obvious way.
Therefor, max-SC asks for maximum coverage.

The second, called contiguous max-SC, requires a choice of an interval
from each uncertain segment such that a maximum-length connected interval
is obtained, among all connected intervals of all choices. Therefore contiguous
max-SC asks for maximum connected coverage. In this section we discuss the
approximation problem max-sc and leave more specialized study of contiguous
max-SC as an open problem.

4.1 Hardness of Approximation for Max-SC

We first prove hardness of approximation for max-SC. Let max-E3SAT be max-
3SAT restricted to formulas in which each clause contains exactly three literals.

Theorem 3. Let c′ be a ratio beyond which it is NP-hard to approximate max-
E3SAT. Then it is NP-hard to approximate max-SC with ratio larger than c =
c′+2
3 .

Proof. Suppose we are given an instance φ of max-E3SAT with n variables. We
shall apply the reduction of Sect. 2 to φ and obtain an instance of max-SC,
however, we need some modifications. Consider a graph Gi constructed in the
reduction. If |Pi| = |Ni| we leave the graph as it is, otherwise, let |Pi| < |Ni|.
We add |Ni| − |Pi| dummy vertices to |Pi| to make the two sets equal. We do
analogously in the other case. Let G̃i denote the modified graphs, i = 1, . . . , n.
We build the uncertain segments Si from G̃i as follows. Let v be a vertex of
G̃i and m = |P̃i| = |Ñi|. If v is not a dummy vertex, it has associated with
it a sub-interval of a clause-interval. We make sure all these sub-intervals have
length 1, and a clause interval has length 3. If v is a dummy vertex, associate
to it the fixed interval J ′ of very small length ε > 0, anywhere outside all of the
clause intervals.

Next, we build the uncertain segments Si as before from the graphs G̃i and
associated intervals. Let W be the total length of the union of the intervals of
uncertain segments Si, then by construction

W = 3s + ε.

Note that any two intervals of (possibly different) uncertain segments defined
here are disjoint other than when both intervals are sub-intervals of J ′.

We run the approximation algorithm for max-SC on our instance. The algo-
rithm makes a choice from each uncertain segment. We modify this choice

Hardness of Segment Cover 361

slightly. If any uncertain segment has chosen a sub-interval of J ′ we reverse
this choice. It is clear that at the end we have at worst decreased the total
approximated length by ε. And we have not decreased the approximated length
over the original clause intervals.

Observe that the total length that the uncertain segments chosen from Ti

contribute is at most 2W/3 = s. If from any clause-interval the choice from Ti

covers only 1/3 of the interval, then the middle interval Bj2 is covered. We change
the choices so that only 1/3 of the interval is not covered, by covering either of
Bj1 or Bj3. This insures that from any clause interval exactly one sub-interval
is not covered by the Ti.

Now from the modified choice of uncertain segments and the graphs Gi define
the graphs G′

i as follows. For each i, from the graph G̃i, remove any vertex whose
interval is covered in the approximation by intervals from Ti. Denote the new
graph by G′

i. The total length of the intervals corresponding to the non-dummy
vertices of G′

i is W/3 = s. Next, define an assignment as follows. We distinguish
five cases from each other.

– Case 1: The graph has original vertices in positive part only, and, dummy
vertices are in positive part. For any edge e ∈ G̃i that is not incident with
a dummy vertex, we redirect the choice to the positive side. Note that since
any interval we uncover is covered by Ti this does not decrease the length of
the approximation. After these re-directions, any non-dummy vertex in the
positive side of G̃i has all its sub-intervals chosen.

– Case 2: The graph has original vertices in positive part only, and, dummy
vertices are in negative part. For any edge e ∈ G̃i that is not incident with
a dummy vertex, we redirect the choice to the positive side. Recall that all
the other edges have also chosen the positive side. Then again after this
re-direction of choice all the vertices in positive part of G̃i, have their inter-
vals covered. Again this operation does not decrease the total approximated
length.

– Cases 3, 4: These are analogous to the previous cases, where non-dummy
vertices appear in the negative part only. We perform analogously as in those
cases.

– Case 5: The graph has non-dummy vertices in both parts, or it has only
dummy vertices. In this case, we can assign an arbitrary value to xi. We
choose the side which does not have dummy vertices and redirect all the
edges of G̃i towards that side. Re-direction of the choice for an edge not
incident on a dummy vertex does not change the approximated weight. Also
we had set the choice for edges incident on dummy vertices away from them.
It follows that all the intervals associated to the vertices of the chosen side
are covered.

Thus we have defined an assignment. Now we compute the number of clauses
satisfied by our assignment. The length not covered by the Ti and covered by the
Si in the approximation is at least c(W +ε)− 2

3W . After the above redirection of
the choices, an interval corresponding to a clause is either all covered or covered
in exactly 2/3 of its length. Therefore, c(W + ε) − 2

3W is (lower bound for) the

362 S. Alipour and S. Parsa

total number of the intervals satisfied by our assignment. For any algorithm that
runs in polynomial times we must have c(W + ε) − 2

3W = 3cs + cε − 2s < c′s.
This implies

c <
c′ + 2
3 + ε

s

.

The claim follows. �	
Remark. By a seminal result of H̊astad [19] max-E3SAT cannot be approximated
by a ratio larger than 7/8. Using this result the above theorem implies that max-
SC cannot be approximated beyond the ration 23/24, unless P = NP.

Approximation of Max-SC. To approximate max-SC, we can the existing algo-
rithms for weighted max-SAT, which is a well-studied problem in the literature.
We refer to the sequence of papers [2,3,16,29]. We form a SAT from our seg-
ment cover instance as follows. Any maximal sub-interval J ⊂ I = [0, 1] that
does not contain an endpoint defines a clause, and in it are literals correspond-
ing to uncertain segments covering the interval J . See the proof of Lemma 1. We
assign the length of J as the weight of the corresponding clause. Given we have
an algorithm for weighted max-SAT with approximation ratio 0 < c′ < 1, then
clearly we have an algorithm with the same ratio for max-SC.

It is interesting to see these upper and/or lower bounds improved.

References

1. Abam, M.A., Alipour, S., Ghodsi, M., Mahdian, M.: Visibility testing and counting
for uncertain segments. Theor. Comput. Sci. 779, 1–7 (2019)

2. Asano, T.: An improved analysis of Goemans and Williamson’s LP-relaxation for
MAX SAT. Theor. Comput. Sci. 354(3), 339–353 (2006)

3. Asano, T., Williamson, D.P.: Improved approximation algorithms for MAX SAT.
J. Algorithms 42(1), 173–202 (2002)

4. Avis, D., Toussaint, G.T.: An optimal algorithm for determining the visibility of a
polygon from an edge. IEEE Trans. Comput. 30(12), 910–914 (1981)

5. Ben-Moshe, B., Hall-Holt, O.A., Katz, M.J., Mitchell, J.S.B.: Computing the vis-
ibility graph of points within a polygon. In: Proceedings of the 20th ACM Sym-
posium on Computational Geometry, Brooklyn, New York, USA, 8–11 June 2004,
pp. 27–35 (2004)

6. Briggs, A.J.: An efficient algorithm for one-step planar compliant motion planning
with uncertainty. Algorithmica 8(3), 195–208 (1992)

7. Buchin, K., Kostitsyna, I., Löffler, M., Silveira, R.I.: Region-based approximation
algorithms for visibility between imprecise locations. In: Proceedings of the Sev-
enteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2015,
San Diego, CA, USA, 5 January 2015, pp. 94–103 (2015)

8. Carlsson, S., Jonsson, H., Nilsson, B.J.: Finding the shortest Watchman route in
a simple polygon. Discrete Comput. Geom. 22(3), 377–402 (1999)

9. Chambers, E., et al.: Connectivity graphs of uncertainty regions. In: Cheong, O.,
Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6507, pp. 434–445. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17514-5 37

10. Chambers, E.W., et al.: Connectivity graphs of uncertainty regions. Algorithmica
78(3), 990–1019 (2017)

https://doi.org/10.1007/978-3-642-17514-5_37

Hardness of Segment Cover 363

11. Chazelle, B., Guibas, L.J.: Visibility and intersection problems in plane geom-
etry. Discrete Comput. Geom. 4(6), 551–581 (1989). https://doi.org/10.1007/
BF02187747

12. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)

13. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

14. Donald, B.R.: The complexity of planar compliant motion planning under uncer-
tainty. Algorithmica 5(3), 353–382 (1990)

15. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, New
York (2007)

16. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (1995)

17. Gudmundsson, J., Morin, P.: Planar visibility: testing and counting. In: Proceed-
ings of the 26th ACM Symposium on Computational Geometry, Snowbird, Utah,
USA, 13–16 June 2010, pp. 77–86 (2010)

18. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time
algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica 2, 209–233 (1987)

19. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
20. Kratochv́ıl, J.: A special planar satisfiability problem and a consequence of its

NP-completeness. Discrete Appl. Math. 52(3), 233–252 (1994)
21. Laroche, P.: Planar 1-in-3 satisfiability is NP-complete. Comptes Rendus de L

Academie des Sciences Serie I-Mathematique 316(4), 389–392 (1993)
22. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343

(1982)
23. Mitchell, J.S.B.: Approximating Watchman routes. In: Proceedings of the Twenty-

Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, 6–8 January 2013, pp. 844–855 (2013)

24. Moon, I., Miura, J., Shirai, Y.: On-line viewpoint and motion planning for efficient
visual navigation under uncertainty. Robot. Auton. Syst. 28(2–3), 237–248 (1999)

25. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete Comput.
Geom. 26(4), 573–590 (2001)

26. Murrieta-Cid, R., González-Baños, H.H., Tovar, B.: A reactive motion planner
to maintain visibility of unpredictable targets. In: Proceedings of the 2002 IEEE
International Conference on Robotics and Automation, ICRA 2002, Washington,
DC, USA, 11–15 May 2002, pp. 4242–4248 (2002)

27. O’rourke, J.: Art Gallery Theorems and Algorithms, vol. 57. Oxford University
Press, Oxford (1987)

28. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

29. Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX
SAT. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA, 23–25 January
2011, pp. 656–663 (2011)

30. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
10th Annual ACM Symposium on Theory of Computing, San Diego, California,
USA, 1–3 May 1978, pp. 216–226 (1978)

31. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math.
8(1), 85–89 (1984)

https://doi.org/10.1007/BF02187747
https://doi.org/10.1007/BF02187747

On the Complexity of Minimum Maximal
Uniquely Restricted Matching

Juhi Chaudhary and B. S. Panda(B)

Computer Science and Application Group, Department of Mathematics,
Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

{maz168189,bspanda}@maths.iitd.ac.in

Abstract. A subset M ⊆ E of edges of a graph G = (V,E) is called
a matching if no two edges of M share a common vertex. A matching
M in a graph G is called a uniquely restricted matching if G[V (M)], the
subgraph of G induced by the M -saturated vertices of G, contains exactly
one perfect matching. A uniquely restricted matching M is maximal if
M is not properly contained in any other uniquely restricted matching of
G. Given a graph G, the Min-Max-UR Matching problem asks to find
a maximal uniquely restricted matching of minimum cardinality in G. In
general, the decision version of the Min-Max-UR Matching problem
is known to be NP-complete for general graphs and remains so even
for bipartite graphs. In this paper, we strengthen this result by proving
that this problem remains NP-complete for chordal bipartite graphs and
chordal graphs. On the positive side, we prove that the Min-Max-UR
Matching problem is polynomial time solvable for bipartite permutation
graphs and proper interval graphs. Finally, we show that the Min-Max-
UR Matching problem is APX-complete for bounded degree graphs.

Keywords: Matching · Uniquely restricted matching · Minimum
maximal matching · Graph algorithms · NP-completeness ·
APX-completeness

1 Introduction

A subset M ⊆ E of edges of a graph G = (V,E) is called a matching if no two
edges of M share a common vertex. Given a matching M in G, a vertex v ∈ V is
called M -saturated if there exists an edge e ∈ M incident on v. We shall denote
V (M) as the set of M -saturated vertices in G. A matching M in G is called a
uniquely restricted matching if the subgraph G[V (M)] of G induced by V (M)
has only one perfect matching. The Uniquely Restricted Matching problem
asks to find a uniquely restricted matching of maximum size in a given graph

J. Chaudhary—The author has been supported by the Department of Science and
Technology through INSPIRE Fellowship for this research.
B. S. Panda—The author wants to thank the SERB, Department of science and tech-
nology for their support vide Diary No. SERB/F/12949/2018-2019.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 364–376, 2020.
https://doi.org/10.1007/978-3-030-64843-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_25

On the Complexity of Minimum Maximal Uniquely Restricted Matching 365

G [6]. We shall denote μurm(G) as the size of a maximum uniquely restricted
matching in G. Given a graph G, the Min-Max-UR Matching problem asks to
find a maximal uniquely restricted matching of minimum size in G, and we shall
denote μ′

urm(G) as the size of a minimum maximal uniquely restricted matching
in G. The decision versions of the Uniquely Restricted Matching problem
and the Min-Max-UR Matching problem are defined as follows:

Decide-UR Matching problem
Instance: A graph G = (V,E) and a positive integer k ≤ |V |.
Question: Does there exist a uniquely restricted matching M in G such that
|M | ≥ k?

Decide-Min-Max-UR Matching problem
Instance: A graph G = (V,E) and a positive integer k ≤ |V |.
Question: Does there exist a maximal uniquely restricted matching M in G
such that |M | ≤ k?

The concept of minimum maximal uniquely restricted matching was intro-
duced by Goddard et al. in [4], along with some other restricted variations of
matching. Further, Panda et al. [14] proved that the Decide-Min-Max-UR
Matching problem is NP-complete for bipartite graphs of maximum degree 7
and linear time solvable for chain graphs. They also proved that it is hard to
approximate the Min-Max-UR Matching problem for bipartite graphs within
a ratio of n1−ε for any ε > 0 unless P = NP.

In this paper, we extend the algorithmic study of the Min-Max-UR Match-
ing problem in some subclasses of graphs. The main contributions of this paper
are summarized below.

1. We strengthen the hardness result of the Decide-Min-Max-UR Match-
ing problem for bipartite graph by showing that this problem remains NP-
complete for chordal bipartite graphs, a subclass of bipartite graphs. On the
positive side, we propose a polynomial time algorithm for computing a mini-
mum maximal uniquely restricted matching in bipartite permutation graphs,
a subclass of chordal bipartite graphs.

2. We prove that the Decide-Min-Max-UR Matching problem is NP-
complete for chordal graphs and propose a polynomial time algorithm for
computing a minimum maximal uniquely restricted matching in proper inter-
val graphs, a subclass of chordal graphs.

3. We show that the Min-Max-UR Matching problem is APX-complete for
bounded degree graphs.

The concept of uniquely restricted matching, motivated by a problem in Lin-
ear Algebra, was introduced by Golumbic et al. in [6]. Some more results related
to uniquely restricted matching can be found in [2,4,10,14]. Given a graph G,
an even cycle in G is said to be an alternating cycle with respect to a match-
ing M if every second edge of the cycle belongs to M . The following theorem
characterizes uniquely restricted matchings in terms of alternating cycles.

366 J. Chaudhary and B. S. Panda

Theorem 1 [6]. Let G = (V,E) be a graph. A matching M in G is uniquely
restricted if and only if there is no alternating cycle with respect to M in G.

Observation 2 [6]. Let G = (X,Y,E) be a bipartite graph and M be a uniquely
restricted matching in G. If |X| = p, |Y | = q and |M | = k, then we can order the
vertices of X as (x1, x2, . . . xp) and the vertices of Y as (y1, y2, . . . yq) in such a
way that xiyi ∈ M, 1 ≤ i ≤ |M |, and xiyj /∈ E for 1 ≤ j < i ≤ k.

2 Preliminaries

All graphs considered in this paper are simple and connected unless otherwise
stated. For a graph G = (V,E), let n denote the number of vertices and m
denote the number of edges in G. The open and closed neighborhood of a vertex
u ∈ V is denoted by N(u) and N [u] respectively, where N(u) = {w | wu ∈ E}
and N [u] = N(u) ∪ {u}. The degree of a vertex u is |N(u)| and is denoted by
d(u). For a graph G = (V,E), the subgraph of G induced by U ⊆ V is denoted
by G[U], where G[U] = (U,EU) and EU = {xy ∈ E | x, y ∈ U}. In a graph G,
a clique is a subset of vertices of G such that every two distinct vertices in the
clique are adjacent.

A graph G = (V,E) is called a k-regular graph if d(v) = k for every vertex
v of G. A graph G = (V,E) is called a bipartite graph if its vertex set V can be
partitioned into two independent sets X and Y , such that every edge of G joins
a vertex in X to a vertex in Y . A bipartite graph with bipartition (X,Y) of V
is denoted by G = (X,Y,E). A bipartite graph G = (X,Y,E) is called a chordal
bipartite graph if every cycle in G of length at least six has a chord, that is, an
edge joining two non-consecutive vertices of the cycle. A graph G = (V,E) is
called a permutation graph if there exists a one to one correspondence between
V (G) and a set of line segments between two parallel lines such that two vertices
are adjacent if and only if their corresponding line segments intersect. In other
words, a permutation graph is a graph whose vertices represent the elements of
a permutation, and whose edges represent pairs of elements that are reversed
by the permutation. If G = (V,E) is both a bipartite graph and a permutation
graph, it is called a bipartite permutation graph.

A graph G = (V,E) is called a chordal graph if every cycle in G of length at
least four has a chord. It can be noted that a chordal bipartite graph may not
be a chordal graph as a cycle on four vertices is a chordal bipartite graph but
not a chordal graph. Let F be a family of sets. The intersection graph of F is
obtained by taking each set in F as a vertex and joining two sets in F if and
only if they have a non-empty intersection. A graph G is called a proper interval
graph if it is the intersection graph of a family F of intervals on the real line
such that no interval in F properly contains another interval in F .

The class APX is the set of all optimization problems which admit a poly-
nomial time α-approximation algorithm, where α is a constant [15]. For most of
the approximation related terminologies, we refer the reader to [1].

On the Complexity of Minimum Maximal Uniquely Restricted Matching 367

3 Minimum Maximal Uniquely Restricted Matching
in Subclasses of Bipartite Graphs

3.1 Chordal Bipartite Graphs

In this subsection, we show that the Decide-Min-Max-UR Matching problem
is NP-complete for chordal bipartite graphs by providing a polynomial time
reduction from the Decide-UR Matching problem in chordal bipartite graphs,
which is already known to be NP-complete [11].

Theorem 3. The Decide-Min-Max-UR Matching problem is NP-complete
for chordal bipartite graphs.

Proof. Clearly, the Decide-Min-Max-UR Matching problem is in NP for
chordal bipartite graphs. To show the NP-completeness, consider the follow-
ing reduction. Given a chordal bipartite graph G = (V,E), where V =
{v1, v2, . . . vn}, an instance of the Decide-UR Matching problem, we construct
a chordal bipartite graph H = (VH , EH), an instance of the Decide-Min-Max-
UR Matching problem by adding a pendant edge viai to each vertex vi ∈ V .
More formally, VH = V ∪ {ai | 1 ≤ i ≤ n}, EH = E ∪ {viai | 1 ≤ i ≤ n}.

It is clear that the constructed graph H is a chordal bipartite graph. Also,
given a chordal bipartite graph G, the graph H can be constructed in polyno-
mial time. Now, the following claims are sufficient to complete the proof of the
theorem.

Claim. If M is a maximal uniquely restricted matching in H, then for each
1 ≤ i ≤ n, vi is saturated by M .

Proof. Let M be a maximal uniquely restricted matching in H such that for
some fixed k, vk is not saturated by M . Then, M ∪ {vkak} is also a uniquely
restricted matching in H. Since M is maximal; it is a contradiction. ��
Claim. If M∗

H is a minimum maximal uniquely restricted matching in H and
M∗

G is a maximum uniquely restricted matching in G, then |M∗
H | = n − |M∗

G|.
Proof. Let M∗

G be a maximum uniquely restricted matching in G. This implies
that 2|M∗

G| vertices are saturated, and n − 2|M∗
G| vertices are unsaturated by

M∗
G in G. Define MH = M∗

G ∪ {viai | vi is not saturated by M∗
G} in H. It is

easy to note that MH is a maximal uniquely restricted matching in H, and since
|MH | = (|M∗

G| + n − 2|M∗
G|) = (n − |M∗

G|), |M∗
H | ≤ n − |M∗

G|.
Conversely, let M∗

H be a minimum maximal uniquely restricted matching
in H. Let edges of the form {viai | 1 ≤ i ≤ n} are called Type-A edges and
edges in the set E are called Type-B edges. Let T ∗ ∪ S∗ be a partition of M∗

H

such that T ∗ contains Type-A edges and, S∗ contains Type-B edges. Since M∗
H is

maximal, |T ∗| = (n−2|S∗|). It implies that |M∗
H | = |S∗|+(n−2|S∗|) = n−|S∗|.

Since S∗ ⊂ M∗
H , S∗ is a uniquely restricted matching in G and |S∗| ≤ |M∗

G|. As
|S∗| = n − |M∗

H |, n − |M∗
H | ≤ |M∗

G|. This completes the proof of the claim. ��

368 J. Chaudhary and B. S. Panda

Hence, the theorem is proved. ��
Next, we show that a maximal uniquely restricted matching of minimum size

can be computed in polynomial time for bipartite permutation graphs, a subclass
of chordal bipartite graphs.

3.2 Bipartite Permutation Graphs

Let G = (X,Y,E), where |X| = p and |Y | = q be a bipartite graph and let
γ = (y1, y2, . . . , yq) be some ordering of Y . A subset of Y is called a segment of
Y if its elements are consecutive in γ. The ordering γ is said to have the convex
property if for each vertex x ∈ X, N(x) is a segment in γ. An ordering of Y with
the convex property is called a convex ordering. A bipartite graph G = (X,Y,E)
is said to be convex on Y if there exists a convex ordering of Y . The term convex
on X is defined similarly.

Let G = (X,Y,E), where X = {x1, x2, . . . xp} and Y = {y1, y2, . . . yq} be a
bipartite permutation graph. If σ = (x1, x2, . . . , xp, y1, y2, ..., yq) is an ordering of
X∪Y , then let f(x)(or f(y)) denote the first neighbor of vertex x(or y) and l(x)(
or l(y)) denote the last neighbor of vertex x(or y) in σ. Further, the ordering
σ = (x1, x2, . . . , xp, y1, y2, ..., yq) of X ∪ Y is called a forward-convex ordering if
the following conditions hold:

1. The orderings (x1, x2, ..., xp) and (y1, y2, ..., yq) are convex orderings of the
sets X and Y respectively.

2. For any xi < xj in σ, f(xi) ≤ f(xj) and l(xi) ≤ l(xj) in σ, where f(x) denote
the first neighbor of vertex x and l(x) denote the last neighbor of vertex x.

A bipartite graph is said to be a forward-convex bipartite graph if there
exists a forward-convex ordering of its vertices. It can be noted that the class of
bipartite permutation graphs is the same as the class of forward-convex bipartite
graphs [9]. Before discussing the algorithm, let us first, discuss the idea behind
our algorithm. In a given bipartite permutation graph G, we first, identify an
edge that belongs to some minimum maximal uniquely restricted matching M .
After adding the desired edge to the matching, we remove those vertices from
G that cannot be saturated by M in the later stages of the algorithm. Since
bipartite permutation graphs are hereditary, the subgraph obtained will also be
a bipartite permutation graph. In this graph, we can again identify the edge that
belongs to some minimum maximal uniquely restricted matching. This process
is repeated unless we are left with an empty graph.

Let Bef(xi, yj) = {xkyl | xk ≤ xi and yl ≤ yj in σ}.

Lemma 1. Let G = (X,Y,E) be a bipartite permutation graph with a forward-
convex ordering σ = (x1, x2, ..., xp, y1, y2, ..., yq). Then, there exists a minimum
maximal uniquely restricted matching M in G such that l(y1)l(x1) ∈ M .

Proof. Let M be a minimum maximal uniquely restricted matching in G. In
order to prove the lemma, let us first prove the following claim.

On the Complexity of Minimum Maximal Uniquely Restricted Matching 369

Claim. There exists a minimum maximal uniquely restricted matching M in G
such that |M ∩ Bef(l(y1), l(x1))| = 1.

Proof. Due to space restriction, the proof is omitted. ��
Let M be a minimum maximal uniquely restricted matching in G. If

l(y1)l(x1) ∈ M , then we are done. So assume that xayb(�= l(y1)l(x1)) ∈
M ∩Bef(l(y1), l(x1)). Let M ′ = (M \{xayb})∪{l(y1)l(x1)}. If M ′ is a uniquely
restricted matching, then we are done. Otherwise, there must exist an edge
xuyv such that either xuyv forms an alternating cycle with l(y1)l(x1) or M ′

does not form a matching (because either l(y1) = xu or l(x1) = yv). So, let
M ′ = M ′ \ {xuyv}. Since |M ′| < |M |, M ′ cannot be a maximal uniquely
restricted matching. Now, we are left to show that exactly one more edge is
required to make M ′ a maximal uniquely restricted matching. On the contrary,
let us assume that M ′′ = M ′ ∪ {xiyj , xkyl} is a uniquely restricted matching.
Without loss of generality, let xi < xk and yj < yl in σ. By the definition of a
forward-convex ordering, l(y1)yl, l(x1)xk ∈ E. So, edges xiyj and xkyl forms an
alternating cycle in G[V (M)], which is a contradiction. Thus, exactly one more
edge is required to make M ′ a maximal uniquely restricted matching. ��

Let σ = (x1, x2, ..., xp, y1, y2, ..., yq) be a forward-convex ordering of a bipar-
tite permutation graph G and let σi = (xa, xb, . . . , xk, ya′ , yb′ , . . . , yk′) be an
ordering obtained by removing some vertices from σ. Then, σi is a forward-
convex ordering of some bipartite permutation graph Gi = (Xi, Yi, Ei), where
Gi is a subgraph of G. Hence, we have the following corollary to Lemma 1.

Corollary 1. If σi = (xa, xb, . . . , xk, ya′ , yb′ , . . . , yk′) is a forward-convex order-
ing of a subgraph Gi = (Xi, Yi, Ei) of a bipartite permutation graph G, then
there exists a minimum maximal uniquely restricted matching M in Gi such
that l(ya′)l(xa) ∈ M .

Based on the above lemmas, we now present a polynomial time algorithm
URM-BPG(G), which computes a maximal uniquely restricted matching of
minimum size in a given bipartite permutation graph G. The pseudocode of the
algorithm is given in Fig. 1.

Theorem 4. Given a bipartite permutation graph G1 = (X1, Y1, E1) with a
forward-convex ordering σ(G1), the algorithm URM-BPG(G1) correctly com-
putes a minimum size maximal uniquely restricted matching in G1.

Proof. Due to space restriction, the proof is omitted. ��

4 Minimum Maximal Uniquely Restricted Matching
in Subclasses of Chordal Graphs

4.1 Chordal Graphs

In this subsection, we show that the Decide-Min-Max-UR Matching problem
is NP-complete for chordal graphs by providing a polynomial time reduction

370 J. Chaudhary and B. S. Panda

Fig. 1. Algorithm to compute a minimum maximal uniquely restricted matching in a
bipartite permutation graph G.

from the Decide-UR Matching problem in chordal graphs, which is already
known to be NP-complete [6]. The reduction is similar to the reduction given in
Subsect. 3.1.

Theorem 5. The Decide-Min-Max-UR Matching problem is NP-complete
for chordal graphs.

Proof. Clearly, the Decide-Min-Max-UR Matching problem is in NP for
chordal graphs. To show the NP-completeness, consider the following reduction.
Given a chordal graph G = (V,E), where V = {v1, v2, . . . vn}, an instance of
the Decide-UR Matching problem in chordal graphs, we construct a chordal
graph H = (VH , EH), an instance of the Decide-Min-Max-UR Match-
ing problem by adding a pendant edge viai to each vertex vi ∈ V . More formally,
VH = V ∪ {ai | 1 ≤ i ≤ n}, EH = E ∪ {viai | 1 ≤ i ≤ n}.

It is clear that the constructed graph H is a chordal graph. Also, given a
chordal graph G, the graph H can be constructed in polynomial time. Now, the
following claims are sufficient to complete the proof of the theorem.

Claim. If M is a maximal uniquely restricted matching in H, then for each
1 ≤ i ≤ n, vi is saturated by M .

Proof. Let M be a maximal uniquely restricted matching in H such that for
some fixed k, vk is not saturated by M . Then, M ∪ {vkak} is also a uniquely
restricted matching in H. Since M is maximal; it is a contradiction. ��
Claim. If M∗

H is a minimum maximal uniquely restricted matching in H and
M∗

G is a maximum uniquely restricted matching in G, then |M∗
H | = n − |M∗

G|.

On the Complexity of Minimum Maximal Uniquely Restricted Matching 371

Proof. Let M∗
G be a maximum uniquely restricted matching in G. This implies

that 2|M∗
G| vertices are saturated, and n − 2|M∗

G| vertices are unsaturated by
M∗

G in G. Define MH = M∗
G ∪ {viai | vi is not saturated by M∗

G} in H. It is
easy to note that MH is a maximal uniquely restricted matching in H, and since
|MH | = (|M∗

G| + n − 2|M∗
G|) = (n − |M∗

G|), |M∗
H | ≤ n − |M∗

G|.
Conversely, let M∗

H be a minimum maximal uniquely restricted matching in
H. Let edges of the form {viai | 1 ≤ i ≤ n} are called Type-A edges and edges
in the edge set E are called Type-B edges. Let T ∗ ∪ S∗ be a partition of M∗

H

such that T ∗ contains Type-A edges and, S∗ contains Type-B edges. Since M∗
H is

maximal, |T ∗| = (n−2|S∗|). It implies that |M∗
H | = |S∗|+(n−2|S∗|) = n−|S∗|.

Since S∗ ⊂ M∗
H , S∗ is a uniquely restricted matching in G and |S∗| ≤ |M∗

G|. As
|S∗| = n − |M∗

H |, n − |M∗
H | ≤ |M∗

G|. This completes the proof of the claim. ��
Hence, the theorem is proved. ��
Next, we show that a maximal uniquely restricted matching of minimum size

can be computed in polynomial time for proper interval graphs, a subclass of
chordal graphs, where the problem is NP-complete.

4.2 Proper Interval Graphs

Let G = (V,E) be a given graph. A vertex v ∈ V is called a simplicial vertex, if
N [v] induces a clique in G. An ordering α = (v1, v2, . . . , vn) of vertices is called
a perfect elimination ordering (PEO) of G if vi is a simplicial vertex in Gi =
G[{vi, vi+1, . . . , vn}] for all 1 ≤ i ≤ n. A PEO α = (v1, v2, . . . , vn) of a graph G
is called a bi-compatible elimination ordering (BCO) if α−1 = (vn, vn−1, . . . , v1)
i.e., the reverse of α, is also a PEO of G. It has been characterized in [7] that a
graph is a proper interval graph if and only if it has a BCO.

Before discussing the algorithm, let us first, discuss the idea behind our algo-
rithm. In a given proper interval graph G, we first identify an edge that belongs
to some minimum maximal uniquely restricted matching M . After adding the
desired edge to the matching, the algorithm remove those vertices from G that
cannot be saturated by M in the later stages of the algorithm. We can find such
vertices with the help of Theorem 1. Since proper interval graphs are heredi-
tary, the subgraph thus obtained will also be a proper interval graph, in which
an edge belonging to some minimum maximal uniquely restricted matching will
be readily available. This process is repeated unless we are left with an empty
graph.

In a given BCO σ of G, let v− (v+) denote the vertex just before (after) a
vertex v in σ. For 1 ≤ i ≤ n and k ≥ 2, let L(vi) or L1(vi) denote the maximum
indexed neighbor of vertex vi in σ and let Lk(vi) denote the maximum indexed
neighbor of vertex Lk−1(vi) in σ.

Observation 6 [13]. Let σ = (v1, v2, . . . , vn) be a BCO of a proper interval
graph G = (V,E). If vivj ∈ E, then vkvj ∈ E for all k, i ≤ k ≤ j − 1.

Observation 7 [12]. Let σ = (v1, v2, . . . , vn) be a BCO of a proper interval
graph G = (V,E) and let L(vi) denote the maximum indexed neighbor of vertex
vi in σ. If vi < vj in σ, then L(vi) ≤ L(vj) in σ.

372 J. Chaudhary and B. S. Panda

Lemma 2 [3,6]. Let σ = (v1, v2, . . . , vn) be a BCO of a proper interval graph
G = (V,E) and let M be a uniquely restricted matching in G. If the edges
u1w1, u2w2 ∈ M such that u1 < w1 and u2 < w2 in σ, then either w1 < u2 or
w2 < u1.

This lemma immediately gives the following corollary.

Corollary 2. Let σ = (v1, v2, . . . , vn) be a BCO of a proper interval graph G =
(V,E) and let Mk = {e1, e2, . . . , ek} be a uniquely restricted matching in G. If
l(e) and r(e) denote the left and right endpoints of an edge e, respectively. Then,
we can rename the edges in Mk such that l(e1) < r(e1) < . . . < l(ek) < r(ek) in
σ(G).

Lemma 3 [3]. Let σ = (v1, v2, . . . , vn) be a BCO of a proper interval graph
G = (V,E). Let e1, e2, e3 be distinct edges of G such that l(e1) ≤ l(e2) ≤ l(e3)
and r(e1) ≤ r(e2) ≤ r(e3) in σ. If {e1, e3} is not a uniquely restricted matching
in G, then neither {e1, e2} nor {e2, e3} is a uniquely restricted matching in G.

Lemma 4. Let G = (V,E) be a proper interval graph with a BCO σ =
(v1, v2, . . . , vn). Then, there exists a minimum maximal uniquely restricted
matching M in G such that

(i) L(v1)L(v2) ∈ M if L(v1) �= L(v2),
(ii) L(v2)−L(v2) ∈ M if L(v1) = L(v2).

Proof. Due to space restriction, the proof is omitted. ��
It can be noted that in Lemma 4, the edge L(v1)L(v2) (or L(v2)−L(v2)) will

be the first edge with respect to σ that belongs to M .
Let σ = (v1, v2, . . . , vn) be a BCO of a proper interval graph G and let

σ′ = (va, vb, . . . , vk) be an ordering obtained from σ by removing some vertices
from σ. Then, σ′ is also a BCO of some proper interval graph G′, where G′ is a
subgraph of G. Hence, we have the following corollary to Lemma 4.

Corollary 3. If σ′ = (va, vb, . . . , vk) is a BCO of a subgraph G′ = (V ′, E′) of a
proper interval graph G = (V,E), then there exists a minimum maximal uniquely
restricted matching M in G such that

L(va)L(vb) ∈ M if L(va) �= L(vb),
L(vb)−L(vb) ∈ M if L(va) = L(vb).

Based on the above lemmas, we now present a polynomial time algorithm
URM-PIG(G), which computes a maximal uniquely restricted matching of min-
imum size in a given proper interval graph G. The pseudocode of the algorithm
is given in Fig. 2.

Theorem 8. Given a proper interval graph G1 = (V1, E1) with a bi-compatible
elimination ordering σ(G1), URM-PIG(G1) correctly computes a minimum size
maximal uniquely restricted matching in G1.

Proof. Due to space restriction, the proof is omitted. ��

On the Complexity of Minimum Maximal Uniquely Restricted Matching 373

Fig. 2. Algorithm to compute a minimum maximal uniquely restricted matching in a
proper interval graph G.

5 APX-completeness for Bounded Degree Graphs

In this section, we show that the Min-Max-UR Matching problem is APX-
complete, even if the degree of the graph is bounded by 4. We first show that
the Min-Max-UR Matching problem belongs to the class APX for r-regular
graphs, where r ≥ 3 is a constant.

Observation 9. For a graph G with n vertices, μurm(G) ≤ n
2 .

Lemma 5. Let r ≥ 3 be a positive integer. If G is a r-regular graph then
μ′

urm(G) ≥ rn
2[2r(r−1)+1] .

374 J. Chaudhary and B. S. Panda

Proof. Choose an edge uv ∈ M and remove the edges incident on the vertices
in N(u) ∪ N(v). For uv ∈ M , at most (2r(r − 1) + 1) edges are incident on
N(u) ∪ N(v) (since G is a r-regular graph). Therefore, |M | ≥ rn

2[2r(r−1)+1] . ��
Based on these bounds, we have the following theorem.

Theorem 10. The Min-Max-UR Matching problem can be approximated
within a ratio of (2r(r−1)+1)

r in r-regular graphs, where r ≥ 3 is a constant.

For a bounded degree graph G, Δ(G) ≤ k for some integer constant k, the
following corollary follows from Theorem 10.

Corollary 4. The Min-Max-UR Matching problem for bounded degree
graphs is in APX.

Now, we are ready to show the APX-completeness of the Min-Max-UR
Matching problem for bounded degree graphs. For this purpose, we recall the
concept of L-reduction. Given two NP optimization problems π1 and π2 and a
polynomial time transformation f from instances of π1 to instances of π2, we
say that f is an L-reduction if there are positive constants α and β such that for
every instance x of π1:

1. optπ2(f(x)) ≤ α.optπ1(x);
2. for every feasible solution y of f(x) with objective value mπ2(f(x), y) = c2,

we can find a solution y′ of x in polynomial time with mπ1(x, y′) = c1 such
that |optπ1(x) − c1| ≤ β.|optπ2(f(x)) − c2|.
Next, we give a L-reduction from the Min-Ind-Dom-Set problem for 3-

regular graphs, which is already known to be APX-complete [8].

Theorem 11. The Min-Max-UR Matching problem is APX-complete for
graphs with maximum degree 4.

Proof. By Corollary 4, the Min-Max-UR Matching problem is in APX for
bounded degree graphs. Given a 3-regular graph G = (V,E), an instance of
the Min-Ind-Dom-Set problem, we construct a graph H = (VH , EH) with
maximum degree 4, an instance of the Min-Max-UR Matching problem as
follows:

For each vertex vi ∈ V , we take two copies of vi, namely v1
i and v2

i in VH ,
and join them by the edge v1

i v2
i . For each edge vivj ∈ E, we connect the vertices

v1
i and v1

j using the gadget H1
ij (see Fig. 3), and connect the vertices v2

i and v2
j

using the gadget H2
ij (see Fig. 3). Also, Fig. 3 illustrates the subgraph Hij of H

corresponding to the edge vivj in G.
Since G is a 3-regular graph, it is clear from the construction that graph H

has maximum degree 4. Also, H can be constructed from G in polynomial time
as |VH | = 20|V |.

Claim. G has an independent dominating set of size k if and only if H has a
maximal uniquely restricted matching of size k + 2m.

On the Complexity of Minimum Maximal Uniquely Restricted Matching 375

v1i v1j

v2i v2j

a1ij b1ij

c1ij d1ij

a2ij b2ij

c2ij d2ij

e1ij f1
ij

e2ij f2
ij

Fig. 3. Subgraph Hij of H corresponding to edge vivj in G.

Proof. Due to space restriction, the proof is omitted. ��
It is easy to observe that 2m = 3n as G is a 3-regular graph. From Claim 5,

we have the following result.

Claim. If M∗ is a minimum size maximal uniquely restricted matching in H and
I∗ is a minimum size independent dominating set in G, then |M∗| = |I∗| + 3n.

We now return to the proof of Theorem 11. It is known that any independent
dominating set I in a 3-regular graph G satisfies the inequality n

4 ≤ |I| ≤ n
2

[5]. Therefore, we have |M∗| = |I∗| + 3n ≤ |I∗| + 12|I∗| = 13|I∗|. Further,
by Claim 5, from any maximal uniquely restricted matching M ′ in H, we can
obtain an independent dominating set I in G such that |I| ≤ |M ′| − 3n. Now,
|M ′| − |M∗| = |M ′| − |M∗| − 3n + 3n = (|M ′| − 3n) − (|M∗| − 3n) ≥ (|I| − |I∗|).
From these two inequalities it follows that it is an L-reduction with α = 13 and
β = 1. ��

Therefore, the Min-Max-UR Matching problem is APX-complete for
graphs with maximum degree 4. ��

6 Conclusions

In this paper, we have shown that the Decide-Min-Max-UR Matching prob-
lem is NP-complete for chordal bipartite graphs and chordal graphs. Also, the
Min-Max-UR Matching problem is shown to be polynomial time solvable for
bipartite permutation graphs and proper interval graphs. We also show that
the Min-Max-UR Matching problem is APX-complete for bounded degree
graphs. It will be interesting to study the complexity status of the Min-Max-UR
Matching problem in graph classes like split graphs and permutation graphs.

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Spaccamela, A.M., Protasi, M.:
Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties. Springer, Heidelberg (2012)

376 J. Chaudhary and B. S. Panda

2. Baste, J., Rautenbach, D., Sau, I.: Uniquely restricted matchings and edge color-
ings. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp.
100–112. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6 8

3. Francis, M.C., Jacob, D., Jana, S.: Uniquely restricted matchings in interval graphs.
SIAM J. Discrete Math. 32(1), 148–172 (2018)

4. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Laskar, R.: Generalized
subgraph-restricted matchings in graphs. Discrete Math. 293(1), 129–138 (2005)

5. Goddard, W., Henning, M.A.: Independent domination in graphs: a survey and
recent results. Discrete Math. 313(7), 839–854 (2013)

6. Golumbic, M.C., Hirst, T., Lewenstein, M.: Uniquely restricted matchings. Algo-
rithmica 31(2), 139–154 (2001)

7. Jamison, R.E., Laskar, R.: Elimination orderings of chordal graphs. Combin. Appl.
192–200 (1982)

8. Kann, V.: On the approximability of NP-complete optimization problems. Ph.D.
thesis, Royal Institute of Technology Stockholm (1992)

9. Lai, T.H., Wei, S.S.: Bipartite permutation graphs with application to the mini-
mum buffer size problem. Discrete Appl. Math. 74(1), 33–55 (1997)

10. Mishra, S.: On the maximum uniquely restricted matching for bipartite graphs.
Electron. Notes Discrete Math. 37, 345–350 (2011)

11. Müller, H.: Alternating cycle-free matchings. Order 7(1), 11–21 (1990)
12. Panda, B.S., Chaudhary, J.: Acyclic matching in some subclasses of graphs. In:

G ↪asieniec, L., Klasing, R., Radzik, T. (eds.) IWOCA 2020. LNCS, vol. 12126, pp.
409–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48966-3 31

13. Panda, B.S., Das, S.K.: A linear time recognition algorithm for proper interval
graphs. Inf. Process. Lett. 87(3), 153–161 (2003)

14. Panda, B.S., Pandey, A.: On the complexity of minimum cardinality maximal
uniquely restricted matching in graphs. In: Arumugam, S., Bagga, J., Beineke,
L.W., Panda, B.S. (eds.) ICTCSDM 2016. LNCS, vol. 10398, pp. 218–227. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-64419-6 29

15. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

https://doi.org/10.1007/978-3-319-68705-6_8
https://doi.org/10.1007/978-3-030-48966-3_31
https://doi.org/10.1007/978-3-319-64419-6_29

Search, Facility and Graphs

A Two-Layers Heuristic Search Algorithm
for Milk Run with a New PDPTW Model

Xuhong Cai, Li Jiang, Songhu Guo, Hejiao Huang(B), and Hongwei Du

Harbin Institute of Technology, Shenzhen, China
huanghejiao@hit.edu.cn

Abstract. With the growth of market competition on manufacture,
milk-run becomes a popular just-in-time (JIT) logistic strategy to ensure
vehicle pickups and delivers goods on multiple round trips with fixed
time window. Reasonable milk-run vehicle routing planning is able to
improve the utilization of vehicle, so that logistic cost can be reduced. In
order to better capture the real-world scenes, we build a novel milk-run
model called MOPDPTW (Multiple-Orders Pickup and Delivery Prob-
lem with Time-bound Window) based on PDPTW (Pickup and Delivery
Problem with Time Window). Aiming at minimizing the number of used
vehicles and total travel distance in this model, a two-layers heuristic
search algorithm is proposed to solve this problem. The inner layer of
proposed algorithm searches possible solutions in global and sends them
to the outer layer to find local optimal solution. We validate our algo-
rithm against an improved large neighborhood algorithm on standard
Li and Lim’s benchmark and instances modified for MOPDPTW. The
experiment results show that our algorithm performs better in reducing
the logistic cost of milk-run.

Keywords: Milk run · MOPDPTW · Large neighborhood search ·
Multiple orders

1 Introduction

With the increasing market competition and business globalization, manufactur-
ing enterprises are facing huge challenge in reducing logistic costs. Moreover, the
enterprise’s warehouses are insufficient to meet production and storage needs.
Under this setting, a logistic mode of JIT that picks up goods in small batch and
high frequency is adopted in enterprises’ logistic. In JIT mode, the direct ship-
ment logistic strategy leads to a great increase in transportation cost. Milk-run is
a good logistic strategy that can achieve JIT supply with minimum logistic cost,
which is widely applied in automakers and gradually applied in electronic prod-
uct manufacturing, electric appliance manufacturing, as well as e-tailing indus-
try. In milk-run transport network, all members share vehicles, vehicle departs

This work is financially supported by National Key R&D Program of China under
Grant No. 2017YFB0803002 and No. 2016YFB0800804, National Natural Science
Foundation of China under Grant No. 61672195 and No. 61732022.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 379–392, 2020.
https://doi.org/10.1007/978-3-030-64843-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_26&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_26

380 X. Cai et al.

from the distribution center, then travel to the vendors to pick up goods on
multiple round trips with fixed time window among the designed route plan,
finally return back to the distribution center. Though automakers have applied
milk-run for many years, the application of milk-run in other manufacturing is
immature and there are many problems in practice. Low vehicle loading rate,
poor vehicle management efficiency, high transportation cost and idealized prac-
tical constraints lead to high logistic cost of milk-run system. Most milk-run
models in automakers determine a route on which a vehicle either delivers parts
from a single vendor to multiple customers (outbound logistic) or travels from
multiple vendors to a single customer location (inbound logistic). Both logistics
simplify the delivery scenario. However, in the real manufacturing scenario, the
manufacturing enterprise needs to delivery its raw materials to its production
plants. Thus, the limited vehicles need to serve multiple-vendors and multiple-
customers in practice. Reasonable milk-run vehicle routing plan is a primary
task in many enterprises.

Technically, various approaches have been studied and proposed to solve
milk-run problems. Specifically for milk-run system of the automakers, Miao et
al. [4] used ant colony optimization (ACO) method to solve the problem with
minimizing manufacturing cost, delivery cost and inventory cost. Based on the
same milk-run problem, Nguyen et al. [7] proposed a hybrid ACO to improve
the solution. Instead of taking all logistic costs into account, researchers focus
more on vehicle routing optimization which directly influences logistic costs and
inventory levels. Ma et al. [10] and Huang et al. [9] built mathematical model on
milk-run with time window, then used particle swarm optimization and improved
C-W algorithm to solve the problem of given example, respectively. Gyulai et al.
[15] studied milk-run vehicle routing for shop floors manufacturing enviroments.
In addition, Alnahhal et al. [14], Urru et al. [16] studied inbound milk-run prob-
lems. Obviously, the outbound and inbound milk-run logistic are studied sep-
arately. With considering both logistics, Solomon et al. [5] and Kong et al. [3]
put forward some new model and optimization algorithms for milk-run vehicle
routing problems that were reduced to VRPTW (Vehicle Routing Problem with
Time Window) and VRPPD (Vehicle Routing Problem with Pickup and Deliv-
ery). Based on the fact that milk-run vehicle routing problem can be reduced to
VRPPD, many researchers are committed to studying VRPPD and its variants.
VRPPD is a NP-hard problem, Berbeglia et al. [11] provided a complete review
for the VRPPD. Montero et al. [12] developed an integer linear programming
for the VRPPD with solving the problem by local search procedure. Männel et
al. [2] extended the VRPPD to a three-dimensional loading problem, and mod-
ified a large neighborhood search heuristic to solve the problem. PDPTW is a
variant of VRPPD, many methods of PDPTW can be found. Few literatures
applied exact algorithms to solve PDPTW because of its high time complex-
ity, so heuristic and metaheuristic algorithms are the main methods to solve
PDPTW. The heuristic algorithms have been studied to solve PDPTW include
large neighborhood search algorithm [6], guided ejection search algorithm [8],
memetic algorithm [17] etc., while metaheuristic algorithms consist of simulated

An Algorithm for Milk Run with a New PDPTW Model 381

annealing [1], genetic algorithm [18], ant colony optimization [19] etc. There are
many algorithms aiming at solving milk-run vehicle routing problem, while sel-
dom do they obtain optimization and none of them study inbound and outbound
milk-run together.

In this paper, we design a novel milk-run model called MOPDPTW
(Multiple-Orders Pickup and Delivery Problem with Time Window), which
is a more practical model in real scenario. Compared with classical PDPTW,
MOPDPTW introduces an additional practical constraint called multiple orders
constraint. Since the features of small batch and high frequency in milk-run,
multiple orders constraint requires that customer’s demand is represented by
multiple orders rather than single request. MOPDPTW can be described as
scheduling vehicle routes to serve a group of customers with multiple orders.
With the objectives of minimizing the number of vehicles (main objective) and
the total travel distance (secondary objective), we proposed a new two-layers
heuristic search algorithm to solve the problem. To enhance the quality of solu-
tion, our algorithm explores solution space in two layers. The inner layer searches
possible solutions in global and the outer layer searches local optimal solution so
as to converge to best solution. In addition, the two-layers algorithm is equipped
with a packing scheme, which effectively reduces the waste of vehicle resources.
Based on the experiments on Li and Lim’s benchmark, we validate that the
proposed algorithm is able to retrieve high-quality solutions. We also present
an in-depth analysis of the results on MOPDPTW instances to investigate the
algorithm behavior and solution quality. Experiments results show that our algo-
rithm gets better solution than 1D LNS [2] on the real milk-run instances.

The rest of this paper is organized as follows. Section 2 gives problem descrip-
tion and formulation. In Sect. 3, we describe the algorithm to solve the problem.
Simulations and results are discussed in Sect. 4. Finally, we draw our conclusions
in Sect. 4.1.

2 Problem Description and Model

In our proposed MOPDPTW model, we consider a practical off-line vehicle rout-
ing problem with hard time window, capacity, precedence, coupling and multiple
orders constraints, while relaxing the constraint that one customer (location)
can be only visited once. The MOPDPTW problem is described as scheduling
routes for a limited number of vehicles to serve a group of customers (vendors
and plants) in the specified time windows. The fleet of vehicles is assumed to
be homogeneous, all the vehicles are located at a single depot, where they start
and end their route, and each vehicle has a limited capacity. The total demand
on the route does not exceed the vehicles capacity. Moreover, any paired pickup
and delivery locations must be serviced by the same vehicle and the pickup loca-
tion must be scheduled before the corresponding delivery location in the route.
the customer with multiple orders is allowed to be visited more than once and
its orders can be packed together. The problem setting studied here includes
customers, orders, central depot, vehicle speed, time windows and a network

382 X. Cai et al.

connecting the depot and customers. The objective of our problem is to find
routes for vehicles that serve all orders at a minimum total costs (in terms of
number of vehicles, travel distance, etc.). The fewer the number of vehicles, the
higher the load rate of vehicle and the less the logistic costs. We defined the
number of vehicles, the travel distance as the main and secondary objective
respectively.

Since customers may be visited repeatedly, we treat the orders instead of cus-
tomers as virtual nodes. The node set consists of all orders, V = {0, 1, 2, . . . , N},
and the arc set is defined between each pair of nodes, E = {<i, j>|i, j ∈ V, i �=
j}. The problem description can be defined on a complete graph G = {V,E}.
The notations and definitions of the variables of our problem are listed in Table 1.

Table 1. Notations and definitions

Notation Definition

0 The central depot

Ck Maximal load of vehicle k

V0 Set of orders, V0 = {1, 2, . . . , N}
V Nodes set in the transport network, V = V0 ∪ {0}
M Maximum number of vehicles used

K A fleet of identical vehicles, K = {1, 2, . . . , M}
G = (V, E) The undirected graph of milk-run transport network

P+ Set of pickup orders

P − Set of delivery orders, P+ ∪ P − = V0

qi Demand at order i, qi > 0, i is a pickup order, qi < 0, i is a delivery
order

[ei, li] Time window, order i must be served within [ei, li]

id Delivery order of pickup order i ∈ P+, id ∈ P −

si Time needed to service at order i

speed The vehicle speed is 1

dij The distance between locations of order i and order j

tij The time needed for vehicle to travel from order i to order j

xijk Decision variable, equals to 1 if vehicle k traverses from order i to
order j, otherwise equals to 0; i, j ∈ V, k ∈ K

Tik Decision variable, time for vehicle k to begin service at order i

Lik Decision variable, load for vehicle k finishing order i

α, β Weight of the number of vehicles and total travel distances, α + β = 1

Based on the notations and variable definitions, the proposed MOPDPTW
model is established as follows.

The objective function is formulated in (1). It seeks to minimize the number of
vehicles and total travel distance. Constraints (2) and (4) ensure that each order

An Algorithm for Milk Run with a New PDPTW Model 383

is only visited once. Constraint (3) is limiting the vehicle number. Constraints (5)
and (6) ensure that each vehicle departs from depot to pickup order location,
and return to depot from delivery order location. Constraint (7) ensure the
pickup order and its coupling delivery order to be finished by the same vehicle.
Constraint (8) ensures that the next order can be served only after finishing the
current order. Constraint (9) ensures that the pickup order should be served
before its coupling delivery order. Constraint (10) ensures that the time vehicle
begin to serve at an order must be within the order’s time windows. Constraints
(11) and (12) are the capacity constraints.

min α
∑

k∈K

∑

j∈V

x0jk + β
∑

k∈K

∑

i∈V

∑

j∈V,i�=j

xijkdij (1)

s.t.
∑

i∈V

∑

k∈K

xijk = 1,∀j ∈ V0 (2)

∑

k∈K

∑

j∈V0

x0jk ≤ |K| (3)

∑

i∈V0

xijk −
∑

i∈V0

xjik = 0,∀j ∈ V0, k ∈ K (4)

∑

j∈P+

x0jk = 1,∀k ∈ K (5)

∑

i∈P−
xi0k = 1,∀k ∈ K (6)

∑

j∈V

xijk −
∑

j∈V

xjidk = 0,∀i ∈ P+, k ∈ K (7)

(Tik + si + tij)xijk ≤ Tjk,∀i, j ∈ V (8)

Tik + si + ti,id ≤ Tid,k,∀i ∈ P+ (9)
ei ≤ Tik ≤ li,∀i ∈ V, k ∈ K (10)
(Lik + qj)xikj ≤ Ljk,∀i ∈ V, k ∈ K (11)
0 ≤ Lik ≤ Ck,∀i ∈ V, k ∈ K (12)

3 Algorithm Design

The proposed two-layers heuristic search algorithm consists of two stages. In
the first stage, we adopt Solomon insertion heuristic [22] to construct an initial
solution due to its success in generating feasible solution on the PDPTW and the
simplicity of its implementation. The second stage can be viewed as an optimizer,
an two-layers heuristic search mechanism is used to further improve the initial
solution from the first stage. In the two-layers heuristic search procedure, the
inner layer runs global search methods in parallel, which offers the possibility to
speed up the search, then the outer layer further searches local optimal to make
solution converge to best solution. In addition, we use packing scheme in each
iteration to reduce the waste of vehicle resources. The framework procedure of
the algorithm is presented in Algorithm 1.

384 X. Cai et al.

Algorithm 1: Framework procedure
Input: Order information
Output: Best solution Sbest

1 Initialization: use Insertion Heuristic to construct the initial solution Sini,
Sbest ← Sini, Scur ← Sini, Strans ← Φ, Iter ← 0;

2 while Iter ≤ MINI do
3 //parallelly compute neighbor solutions from three neighborhood structure;
4 Strans ← InnerSearch(Scur);
5 //get local optimal solution of each neighbor solution by the outer layer;
6 Strans ← OuterSearch(Strans);
7 if Strans < Scur then
8 if Strans < Sbest then
9 Sbest ← Strans;

10 end
11 Scur ← Strans;
12 Iter ← 0;

13 end
14 else
15 Iter ← Iter + 1;
16 end

17 end
18 return Sbest;

Table 2. Neighborhood structure heuristics

Heuristic Description

Random and Greedy (RAG) Remove iteratively PD-orders that are selected at
random, then insert iteratively PD-orders into the
solution such that the increase of the distance cost is
minimal

Tour and Regret-2 (TAR) Remove all PD-orders from a randomly chosen route.
If less than m PD-orders are removed in this way,
further PD-orders will be removed with Random
removal. Then insert iteratively PD-orders into the
solution such that the gap in the cost function
between inserting the PD-orders into its best and its
second best route is maximal

Worst and Priority (WAP) Remove iteratively a PD-order whose removal leads
to the largest cost (total travel distance) reduction,
then insert the PD-order into its best position
according to priority sequence

3.1 Inner Search of Algorithm

It is not possible to search the entire solution space for vehicle routing problem in
reasonable time. Thus, we use different large neighborhood structures to ensure

An Algorithm for Milk Run with a New PDPTW Model 385

that solutions are searched in global as far as possible. The inner search procedure
explores solutions in parallel by three large neighborhood structures, which are
briefly summarized in Table 2. We apply several simple and effective removal and
insertion heuristics from literature [2]. In addition, we propose a priority-based
insertion heuristic for searching better solution. All operators have their own
search bias. RAG operator aims to expand the search space, TAR operator is
used to reduce number of vehicles and WAP operator is utilized to reduce the
total distance cost.

Algorithm 2 shows the pseudo-code of WAP procedure in detail. The WAP
procedure starts with parameters initialization (line 1). For each remove rate
(lines 2–16), remove the number of largest cost orders (lines 3–4), then insert
the removed orders to current solution according to their cost priorities (line 5).
If insert successful, then updates the current solution and best solution (lines
6–15).

Algorithm 2: Worst and Priority procedure
Input: Solution Sini maximal remove rate pmax, remove rate increasement Δp
Output: Solution Sbest

1 Initialization: Sbest ← Sini, Scur ← Sini, p ← p0;
2 while p ≤ pmax do
3 remove numbers num ← N ∗ p;
4 removeOrders ← WorstRemoval(Scur, num);
5 Insert orders: PriorityInsert(Scur, removeOrders);
6 if insert successful then
7 Reduce vehicle number of Scur;
8 if Scur < Sbest then
9 Sbest ← Scur;

10 end
11 else
12 p ← p + Δp;
13 Scur ← Sbest;

14 end

15 end

16 end
17 return Sbest;

Under the multiple-orders constraint, the occurrence of serving two or more
orders of one customer with different vehicles is possible. In order to reduce the
unnecessary waste of resource, in each insert iteration, the packing procedure
tries to merge adjacent orders that were loaded or unloaded in the same cus-
tomer. The pseudo-code of packing procedure is presented in Algorithm 3. In
the process of inserting PD-orders, if there were two connected orders belonging
to same customer and their time windows were overlapping, then the packing
procedure packs the two orders together (lines 2–3). After packing, the time

386 X. Cai et al.

window of both orders become [e′
i, l

′
i], where e′

i = max{e1, e2}, l′i = min{l1, l2}.
Finally, check whether the solution still satisfies the capacity and time window
constraints (line 4). If pack successful, return the new solution (lines 5–10).

Algorithm 3: Packing procedure
Input: Solution Sinput

Output: Solution Snew

1 for each connected orders in Sinput do
2 if two orders are served in same customer then
3 Pack two orders in Sinput, update the time window, get solution Stemp;
4 Check capacity constraint and time window constraint;
5 if pack successful then
6 Snew ← Stemp;
7 end

8 end

9 end
10 return Snew;

3.2 Outer Search of Algorithm

In the outer search, we propose a local search neighborhood operator called IM
(Irreversible Move). The IM is defined as moving PD-orders from one route to
another route at all costs. An interesting feature of IM operator is the diversity
of its possible solution. First, we select and remove a pair of PD-orders say PD1
from Route1. Next, treat PD1 as a seed to create a new route Route2′ and
successively insert PD-orders of Route2 into Route2′ without violating problem
constraints. If all orders of Route2 were inserted into Route2′, IM operator can
get a solution like PD-Shift in [1]. Otherwise, there is one of Route2 failed to be
inserted into Route2′. If the remaining one was inserted to Route1 successfully,
IM operator obtained a solution like PD-exchange in [1]. If not, IM operator
moved PD-orders several times, which makes search space more widely. The
outer search procedure’s pseudo-code is presented in algorithm 4. We adopt the
acceptance test derived from [2] here. The outer search procedure begins with
initial best solution at null (line 1). For each solution from inner search (lines 2–
13), adopt IM operator with given times (lines 3–12). For each move, randomly
select and remove a PD-orders from one route and insert it to another route at
any cost (lines 4–7), then check whether to update the best solution (lines 8–10).
Finally, return the best solution (line 14).

4 Computational Experiments

The computational experiments are organized in two parts. In the first part, we
examine our two-layers heuristic search algorithm (denoted by TLHSA) using

An Algorithm for Milk Run with a New PDPTW Model 387

Algorithm 4: Outer Search Algorithm
Input: Solutions set neighbors, move times times
Output: Solution Sbest

1 Initialization: Sbest ← Φ, k ← 1;
2 for each solution Si in neighbors do
3 for k < times do
4 Random select and remove a PD-orders PD1 from Route1;
5 Create a new route Route2′ for PD1;
6 Random select a Route2, insert its orders to Route2′ first then other

routes;
7 Replace the Route2 with Route2′ in Si, Scur ← Si;
8 if Scur < Sbest then
9 Sbest ← Scur;

10 end
11 k ← k + 1;

12 end

13 end
14 return Sbest;

the well-known PDP instances pdp 100 by Li and Lim [1]. In the second part,
we mainly test the superiority of our algorithm with 56 new multi-orders vari-
ant of PDPTW instances. Based on pdp 100, we kept the first 80% of the
orders unchanged and change the location of the remaining orders. The lat-
ter’s new location is one of the former’s, then we generated 56 MOPDPTW
instances mopdp 1001. Six classes of instances (molc1, molc2, molr1, molr2,
molrc1, molrc2) reflect different real-life milk-run scenarios. The characteristics
of mopdp 100 is shown in Table 3.

Table 3. MOPDPTW data’s test characteristics

molc1 molc2 molr1 molr2 molrc1 molrc2

Distribution Clustered Clustered Random Random Mix Mix

Vehicle capacity 200 700 200 1000 200 1000

Time window Tight Wide Tight Wide Tight Wide

Rate of multiple orders 20% 20% 20% 20% 20% 20%

Our experimental environment is the Intel Core i7-6700 K (3.40 GHz, 8 GB
RAM). The algorithms were coded in the Java programming language under
Eclipse 4.6.3. The values of the parameters used are MINI = 10, p0 = 0.1,
pmax = 0.5, Δp = 0.05, times = 20. Since the number of vehicles is our main
objective and total travel distance is the secondary objective, their weight are
set as α = 0.999, β = 0.001.
1 https://github.com/caixuhong/TLHSA.

https://github.com/caixuhong/TLHSA

388 X. Cai et al.

A. Results for 56 PDP Problem Instances

We tested our algorithm on Li and Lim’s instances with 100 customers, and
compared the results of our algorithms with those of 1D LNS [2] which is based
on large neighborhood search and tree search and the best known solutions.
The test instances and best known solutions were taken from the website Sintef
[13]. Table 4 shows the results obtained as indicated in the above sources (NV
is number of used vehicles, TD is total travel distance). Though [2] states that
they have obtained all optimal solutions for 56 instances, they did not give the
optimal solutions of lrc2 instances. With the effective of two-layers heuristic
search strategy, TLHSA finds the best known solution for all the instances.
The results show that our designed TLHSA can effectively tackle the PDPTW
problems.

Table 4. Best solutions for pdp 100 instances

Instances TLHSA 1D LNS Best known

solution

Instances TLHSA 1D LNS Best known

solution

NV TD NV TD NV TD NV TD NV TD NV TD

lc101 10 828.94 10 828.94 10 828.94 lc201 3 591.56 3 591.56 3 591.56

lc102 10 828.94 10 828.94 10 828.94 lc202 3 591.56 3 591.56 3 591.56

lc103 9 1035.35 9 1035.35 9 1035.35 lc203 3 591.17 3 591.17 3 591.17

lc104 9 860.01 9 860.01 9 860.01 lc204 3 590.60 3 590.60 3 590.60

lc105 10 828.94 10 828.94 10 828.94 lc205 3 588.88 3 588.88 3 588.88

lc106 10 828.94 10 828.94 10 828.94 lc206 3 588.49 3 588.49 3 588.49

lc107 10 828.94 10 828.94 10 828.94 lc207 3 588.29 3 588.29 3 588.29

lc108 10 826.44 10 826.44 10 826.44 lc208 3 588.32 3 588.32 3 588.32

lc109 9 1000.60 9 1000.60 9 1000.60

lr101 19 1650.80 19 1650.80 19 1650.80 lr201 4 1253.23 4 1253.23 4 1253.23

lr102 17 1487.57 17 1487.57 17 1487.57 lr202 3 1197.67 3 1197.67 3 1197.67

lr103 13 1292.68 13 1292.68 13 1292.68 lr203 3 949.40 3 949.40 3 949.40

lr104 9 1013.39 9 1013.39 9 1013.39 lr204 2 849.05 2 849.05 2 849.05

lr105 14 1377.11 14 1377.11 14 1377.11 lr205 3 1054.02 3 1054.02 3 1054.02

lr106 12 1252.62 12 1252.62 12 1252.62 lr206 3 931.63 3 931.63 3 931.63

lr107 10 1111.31 10 1111.31 10 1111.31 lr207 2 903.06 2 903.06 2 903.06

lr108 9 968.97 9 968.97 9 968.97 lr208 2 734.85 2 734.85 2 734.85

lr109 11 1208.96 11 1208.96 11 1208.96 lr209 3 930.59 3 930.59 3 930.59

lr110 10 1159.35 10 1159.35 10 1159.35 lr210 3 964.22 3 964.22 3 964.22

lr111 10 1108.90 10 1108.90 10 1108.90 lr211 2 911.52 2 911.52 2 911.52

lr112 9 1003.77 9 1003.77 9 1003.77

lrc101 14 1708.80 14 1708.80 14 1708.80 lrc201 4 1406.94 – – 4 1406.94

lrc102 12 1558.07 12 1558.07 12 1558.07 lrc202 3 1374.27 – – 3 1374.27

lrc103 11 1258.74 11 1258.74 11 1258.74 lrc203 3 1089.07 – – 3 1089.07

lrc104 10 1128.40 10 1128.40 10 1128.40 lrc204 3 818.66 – – 3 818.66

lrc105 13 1637.62 13 1637.62 13 1637.62 lrc205 4 1302.20 – – 4 1302.20

lrc106 11 1424.73 11 1424.73 11 1424.73 lrc206 3 1159.03 – – 3 1159.03

lrc107 11 1230.14 11 1230.14 11 1230.14 lrc207 3 1062.05 – – 3 1062.05

lrc108 10 1147.43 10 1147.43 10 1147.43 lrc208 3 852.76 – – 3 852.76

An Algorithm for Milk Run with a New PDPTW Model 389

B. Results for Newly-Generated 56 MOPDP Problem Instances

In this part, we reimplement 1D LNS algorithm for MOPDPTW instances and
get detailed results. We choose the best result of each instance over 5 runs.
To validate the difference between PDPTW and MOPDPTW, we compute the
gap of the number of vehicles (NV gaps) and the gap of total travel distance
(TD gaps) between pdp 100 and mopdp 100 for two algorithms. The NV gaps
and TD gaps of six classes instances are presented in Fig. 1 and Fig. 2. The
range of NV gaps is [−3, 2] for TLHSA and [0, 5] for 1D LNS, while the range of
TD gaps is [−17.29%, 42.20%] for TLHSA and [−4.26%, 194.38%] for 1D LNS.
Obviously, the number of vehicles and total travel distances decrease significantly
if the MOPDPTW instances are solved by TLHSA instead of 1D LNS.

(a) molc instances

(b) molr instances

(c) molrc instances

Fig. 1. NV gaps between mopdp and
pdp instances

(a) molc instances

(b) molr instances

(c) molrc instances

Fig. 2. TD gaps between mopdp and
pdp instances

390 X. Cai et al.

C. Simulation Result Analysis

The results clearly show that both 1D LNS and TLHSA have a good performance
on Li and Lim’s benchmark. However, when the problem includes more realistic
constraints like a customer owns multiple orders, the results of the two algorithms
are very different. To further evaluate our algorithm, we analyze the results with
algorithm behaviors. We compute the average NV, TD, NV gaps, TD gaps for six
classes instances, which is presented in Table 5. As seen in Table 5, the results
of 1D LNS in PDPTW and MOPDPTW are very different, it indicates that
the more realistic MOPDPTW model leads to a significant increase of vehicle
numbers and total travel distances. Nevertheless, the results of our algorithm in
MOPDPTW is very closed to PDPTW. The packing strategy of our algorithm
is the biggest contributor to those good results. It avoids the situation where two
orders of one customer are served by two vehicles so that it can effectively reduce
the number of vehicles and total travel distance. The average NV gaps and
TD gaps are 0 and 5.31%, 1 and 38.31%, for TLHSA and 1D LNS respectively.
All of those indicate that the algorithm for PDPTW cannot directly applied to
MOPDPTW model, redesigning the algorithm for MOPDPTW is essential. In
addition, from overall views in Fig. 1 and Fig. 2, TLHSA gets better NV and TD
than 1D LNS in six classes milk-run environments.

Table 5. Average NV and TD of solutions for mopdp 100 instances compared with
pdp 100

Instances Best for pdp 1D LNS for mopdp TLHSA for mopdp

NV TD NV TD NV gaps TD gaps% NV TD NV gaps TD gaps%

lc 7 740.35 7 1097.10 0 48.19 6 776.84 −1 4.93

lr 8 1100.64 9 1392.29 1 26.50 8 1152.28 0 4.69

lrc 7 1259.93 9 1766.85 2 40.23 8 1339.38 1 6.31

Avg 1 38.31 0 5.31

In summary, our algorithm has a good performance under Li and Lim’s
benchmark. Moreover, significantly improved in MOPDPTW problem compar-
ing with the classical PDPTW algorithm.

4.1 Conclusion

In this paper, we study a practical milk-run vehicle routing problem in manu-
facturing enterprises, which combined inbound and outbound milk-run together.
Based on PDPTW, we gave the formulation of our milk-run vehicle routing prob-
lem called MOPDPTW. The MOPDPTW relaxes a visit constraint because
of small batch and high frequency in real-life, which makes the results of the
MOPDPTW great different from classical PDPTW. To obtain the optimization
of MOPDPTW, our algorithm searches solution space with two layers. The inner
layer searches possible solutions in global by three large neighborhood structure
and the outer layer searches local optimal solution for converging to best solution

An Algorithm for Milk Run with a New PDPTW Model 391

by a small but effective local operator. In addition, we provide a packing scheme
in search iteration to improve the optimization of solution for multiple-orders
cases. Experiment results show that our proposed algorithm is able to retrieve
high-quality solutions, better than 1D LNS on the different milk-run instances.

References

1. Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time
windows. In: Proceedings 13th IEEE International Conference on Tools with Arti-
ficial Intelligence, ICTAI 2001, Dallas, TX, USA, pp. 160–167 (2001). https://doi.
org/10.1109/ICTAI.2001.974461

2. Männel, D., Bortfeldt, A.: A hybrid algorithm for the vehicle routing problem with
pickup and delivery and three-dimensional loading constraints. Eur. J. Oper. Res.
254(3), 840–858 (2016)

3. Kong, J.-L., Jia, G.-Z., Gan, C.-Y.: A new mathematical model of vehicle routing
problem based on milk-run. In: International Conference on Management Science
& Engineering. IEEE (2013)

4. Miao, Z., Xu, K.L.: Modeling and simulation of lean supply chain with the con-
sideration of delivery consolidation. Key Eng. Mater. 467–469(467–469), 853–858
(2011)

5. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the
vehicle routing problem with time windows. Oper. Res. 40, 342–354 (1992)

6. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40, 455–472 (2006)

7. Nguyen, T.H.D. Dao, T.M.: Novel approach to optimize milk-run delivery: a case
study. In: 2015 IEEE International Conference on Industrial Engineering and Engi-
neering Management (IEEM), Singapore, pp. 351–355 (2015). https://doi.org/10.
1109/IEEM.2015.7385667

8. Nagata, Y., Kobayashi, S.: Guided ejection search for the pickup and delivery
problem with time windows. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS,
vol. 6022, pp. 202–213. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12139-5 18

9. Huang, M., Yang, J., et al.: The modeling of milk-run vehicle routing problem
based on improved C-W algorithm that joined time window. Transp. Res. Proc.
25, 716–728 (2017)

10. Ma, H.J., Wei, J.: Milk-run vehicle routing optimization model and algorithm of
automobile parts. Appl. Mech. Mater. 1463–1467 (2013)

11. Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., et al.: Static pickup and delivery
problems: aclassification scheme and survey. TOP 15(1), 1–31 (2007)

12. Montero, A., Jose Miranda-Bront, J., Mendez-Diaz, I.: An ILP-based local search
procedure for the VRP with pickups and deliveries. Ann. Oper. Res. 259(1–2),
327–350 (2017)

13. Sintef: Li and Lim benchmark. https://www.sintef.no/projectweb/top/pdptw/li-
lim-benchmark/100-customers/

14. Alnahhal, M., Ridwan, A., Noche, B.: In-plant milk run decision problems. In:
International Conference on Logistics & Operations Management. IEEE (2014)

15. Gyulai, D., Pfeiffer, A., Sobottka, T., et al.: Milkrun vehicle routing approach for
shop-floor logistics. Proc. Cirp 7, 127–132 (2013)

https://doi.org/10.1109/ICTAI.2001.974461
https://doi.org/10.1109/ICTAI.2001.974461
https://doi.org/10.1109/IEEM.2015.7385667
https://doi.org/10.1109/IEEM.2015.7385667
https://doi.org/10.1007/978-3-642-12139-5_18
https://doi.org/10.1007/978-3-642-12139-5_18
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/100-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/100-customers/

392 X. Cai et al.

16. Urru, A., Bonini, M., Echelmeyer, W.: Planning of a milk-run systems in high
constrained industrial scenarios. In: 2018 IEEE 22nd International Conference on
Intelligent Engineering Systems (INES). IEEE (2018)

17. Nalepa, J., Blocho, M.: A parallel memetic algorithm for the pickup and delivery
problem with time windows. In: Euromicro International Conference on Parallel.
IEEE (2017)

18. Alaia, E.B., Dridi, I.H., Bouchriha, H., et al.: Optimization of the multi-depot
& multi-vehicle pickup and delivery problem with time windows using genetic
algorithm. In: International Conference on Control. IEEE (2013)

19. Huang, Y., Ting, C.: Ant Colony optimization for the single vehicle pickup and
delivery problem with time window. In: International Conference on Technologies
& Applications of Artificial Intelligence. IEEE Computer Society (2010)

20. Li, L., Yaohua, W., Hongchun, H., et al.: A hybrid intelligent algorithm for vehicle
pick-up and delivery problem with time windows. In: Control Conference. IEEE
(2007)

21. Bent, R., Hentenryck, P.V.: A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Comput. Oper. Res. 33(4), 875–893
(2006)

22. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

Optimal Deterministic Group Testing
Algorithms to Estimate the Number

of Defectives

Nader H. Bshouty and Catherine A. Haddad-Zaknoon(B)

Technion - Israel Institute of Technology, Haifa, Israel
{bshouty,catherine}@cs.technion.ac.il

Abstract. We study the problem of estimating the number of defective
items d within a pile of n elements up to a multiplicative factor of Δ > 1,
using deterministic group testing algorithms. We bring lower and upper
bounds on the number of tests required in both the adaptive and the non-
adaptive deterministic settings given an upper bound D on the defectives
number. For the adaptive deterministic settings, our results show that,
any algorithm for estimating the defectives number up to a multiplicative
factor of Δ must make at least Ω

(
(D/Δ2) log(n/D)

)
tests. This extends

the same lower bound achieved in [1] for non-adaptive algorithms. More-
over, we give a polynomial time adaptive algorithm that shows that our
bound is tight up to a small additive term.

For non-adaptive algorithms, an upper bound of O((D/Δ2)
(log(n/D) + log Δ)) is achieved by means of non-constructive proof.
This improves the lower bound Ω((log D)/(log Δ))D log n) from [1] and
matches the lower bound up to a small additive term.

In addition, we study polynomial time constructive algorithms. We use
existing polynomial time constructible expander regular bipartite graphs,
extractors and condensers to construct two polynomial time algorithms.
The first algorithm makes O((D1+o(1)/Δ2) · log n) tests, and the second
makes (D/Δ2) · Quazipoly (log n) tests. This is the first explicit con-
struction with an almost optimal test complexity.

Keywords: Group testing · Pooling design · Deterministic group
testing

1 Introduction

The problem of group testing is the problem of identifying or, in some cases,
examining the properties of a small amount of items known as defective items
within a pile of elements using group tests. Let X be a set of n items, and let
I ⊆ X be the set of defective items. A group test is a subset Q ⊆ X of items.
The result of the test Q with respect to I is defined by Q(I) := 1 if Q ∩ I �= ∅
and Q(I) := 0 otherwise. While the defective set I is unknown to the algorithm,
in many cases we might be interested in finding the size of the defective set |I|,
or at least an estimation of that value with a minimum number of tests.
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 393–410, 2020.
https://doi.org/10.1007/978-3-030-64843-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_27&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_27

394 N. H. Bshouty and C. A. Haddad-Zaknoon

Group testing was originally proposed as a potential solution for economis-
ing mass blood testing during WWII [11]. Since then, group testing approach
has been diversely applied in a wide area of practical applications including
DNA library screening [20], product testing quality control [22], file searching in
storage systems [17], sequential screening of experimental variables [18], efficient
contention algorithms for MAC [17,26], data compression [16], and computations
in data stream model [8]. Recently, during the COVID-19 pandemic outbreak, a
number of researches adopted the group testing paradigm not only to accelerate
mass testing process, but also to dramatically reduce the number of kits required
for testing due to severe shortages in the testing kits supply [14,19,27].

While an up-front knowledge of the value of d or at least an upper bound
on it is required in many of the algorithms aimed at identifying the defective
items, estimating or finding the number of defectives is an interesting problem on
its own as well. Defectives estimation via group testing has been applied vastly
in biological and medical applications [7,13,23–25]. In [24], for example, group
testing algorithms are used to estimate aster-yellow virus transmitters proportion
over the organisms in a natural population of leafhoppers. Similarly, in [25],
the authors estimate the infection rate of the yellow-fever virus in mosquito
population using group testing methods. On the other hand, in [13], group-
testing-based estimation of rare diseases prevalence is employed not only for its
effectiveness but also because it naturally preserves individual anonymity of the
subjects.

Algorithms dedicated for this task might operate in stages or rounds. In each
round, the tests are defined in advance and tested in a single parallel step. Tests
on some round might depend on the test results of the preceding rounds. A single
round algorithm is called non-adaptive algorithm, while a multi-round algorithm
is called adaptive algorithm.

In recent years, there has been an increasing interest in the problem of esti-
mating the number of defective items via group testing [2,3,5,7,9,10,12,21].
The target in some of these papers is to find an estimation d̂ within an additive
factor of ε < 1 such that (1 − ε)d ≤ d̂ ≤ (1 + ε)d. For randomized adaptive
algorithms we have the following results. Falhatgar et.al. [12] give a randomised
adaptive algorithm that estimates d using 2 log log d + O(1/ε2 log 1/δ) queries
in expectation where δ is the failure probability of the algorithm. Bshouty et.
al. [3] modified this result and gave an algorithm that uses (1 − δ) log log d +
O((1/ε2) log 1/δ) expected number of queries. Moreover, they proved a lower
bound of (1 − δ) log log d + Ω((1/ε) log(1/δ)) queries.

For randomized non-adaptive algorithms with constant estimation, Dam-
aschke and Sheikh Muhammad give in [10] a randomized non-adaptive algorithm
that makes O((log(1/δ)) log n) tests and in [2], Bshouty gives the lower bound
Ω(log n/ log log n).

In this paper, we are interested in deterministic adaptive and non-adaptive
algorithms that estimate the defective items set size d up to a multiplicative
factor of Δ > 1. Formally, let |I| := d and let D ≥ d. We say that a deterministic
algorithm A estimates d up to a multiplicative factor of Δ if, given D as an

Optimal Deterministic Group Testing Algorithms 395

Table 1. Upper and lower bounds on the number of tests required
for estimating defectives in deterministic group testing.

Bounds Adaptive/Non-

adapt.

Result Explicit/Non-

expl.

Ref.

Lower B. Non-Adapt. D
Δ2 log n

D
– [1]

Lower B. Adaptive D
Δ2 log n

D
– Ours

Upper B. Adaptive D
Δ2

(
log n

D
+ log Δ

)
Explicit Ours

Upper B. Non-Adapt. log D
log Δ

D log n Non-Expl. [1]

Upper B. Non-Adapt. D
Δ2

(
log n

D
+ log Δ

)
Non-expl. Ours

Upper B. Non-Adapt. D1+o(1)

Δ2 log n Explicita Ours

Upper B. Non-Adapt. D
Δ2 · Quazipoly(log n) Explicit Ours

aThis result is true for Δ > C for some constant C. See Sect. 6.2.

input to the algorithm, it evaluates an estimation d̂ such that d/Δ ≤ d̂ ≤ dΔ.
Bshouty et al. show in [3] that, if no upper bound D is given to the algorithm,
then any deterministic adaptive algorithm (and therefore also non-deterministic
algorithm) for this problem must make at least Ω(n) tests. This is equivalent to
testing all the items. This justifies the fact that any non-trivial efficient algorithm
must have some upper bound D for d.

Agarwal et.al. [1] consider this problem. They first give the lower bound
of Ω((D/Δ2) log(n/D)) queries for any non-adaptive deterministic algorithm.
Moreover, using a non-constructive proof, they give an upper bound of
O (((log D)/(log Δ))D log n) queries.

We further investigate this problem. We bring new lower and upper bounds
on the number of tests required both in adaptive and non-adaptive deterministic
algorithms. For the adaptive deterministic settings, our results show that, any
algorithm for estimating the defectives number up to a multiplicative factor
of Δ must make at least Ω

(
(D/Δ2) log(n/D)

)
tests. This extends the same

lower bound achieved in [1] for non-adaptive algorithms. Furthermore, we give
a polynomial time adaptive algorithm that shows that our bound is tight up to
a small additive term.

For non-adaptive algorithms, we achieve an upper bound of O((D/Δ2)
(log(n/D)+log Δ)) by means of non-constructive proof. This improves the lower
bound O((log D)/(log Δ))D log n) from [1], and matches the lower bound up to
a small additive term.

We then study polynomial time constructive algorithms. For this task, we
use existing polynomial time constructible expander regular bipartite graphs,
extractors and condensers to construct two polynomial time algorithms. The
first algorithm makes O((D1+o(1)/Δ2) · log n) tests, and the second makes
(D/Δ2) · quazipoly (log n) tests. To the best of our knowledge, this is the first
explicit construction with an almost optimal test complexity. Our results are
summarised in Table 1.

396 N. H. Bshouty and C. A. Haddad-Zaknoon

2 Definitions and Preliminary Results

In this section, we give some notations and definition that will be used in this
paper.

Let X = [n] := {1, · · · , n} be a set of items. Let I ⊆ X be a set of defective
items, and let d denote its size, i.e. d = |I|. In the group testing settings, a test
is a subset Q ⊆ X of items. An answer to a test Q with respect to the defective
items set I, is denoted by Q(I), such that Q(I) := 1 if Q∩I �= ∅ and 0 otherwise.
We denote by OI an oracle that for a test Q returns Q(I).

Let A be an algorithm with an access to OI , and let d = |I|. We say that
the algorithm A estimates d up to a multiplicative factor of Δ, if A gets as an
input an upper bound D ≥ d and a parameter Δ > 1, and outputs d̂ such that
d/Δ ≤ d̂ ≤ dΔ. We say that A is an adaptive algorithm, if its queries depend on
the result of previous queries, and non-adaptive if its queries are independent of
previous ones and therefore, can be executed in a single parallel step. We may
assume that D ≥ Δ2, otherwise, the algorithm trivially outputs d̂ = D/Δ. We
note here that Δ ≥ 1+Ω(1), that is, it is greater than a constant that is greater
than 1 and it may depend1 on n and/or D. This is implicit in [1] and is also
constrained in this paper. It is also interesting to investigate this problem when
Δ = 1 + o(n) where o() (small o) is with respect to D and/or n.

We will use the following

Lemma 1. Chernoff’s Bound. Let X1, . . . , Xm be independent random vari-
ables taking values in {0, 1}. Let X =

∑m
i=1 Xi denotes their sum and μ = E[X]

denotes the sum’s expected value. Then

Pr[X > (1 + λ)μ] ≤
(

eλ

(1 + λ)(1+λ)

)μ

≤ e− λ2μ
2+λ ≤

{
e− λ2μ

3 if 0 < λ ≤ 1
e− λμ

3 if λ > 1
. (1)

In particular,

Pr[X > Λ] ≤
(eμ

Λ

)Λ

. (2)

For 0 ≤ λ ≤ 1 we have

Pr[X < (1 − λ)μ] ≤
(

e−λ

(1 − λ)(1−λ)

)μ

≤ e− λ2μ
2 . (3)

Moreover, we will often use the inequality

(n

k

)k

≤
(

n

k

)
≤

k∑

i=0

(
n

i

)
≤

(en

k

)k

. (4)

1 For example Δ = log log n + log D.

Optimal Deterministic Group Testing Algorithms 397

3 Upper Bound for Non-adaptive Deterministic
Algorithms

In this section, we give the upper bound for deterministic non-adaptive algorithm
that estimates d up to a multiplicative factor of Δ. We prove:

Theorem 1. Let D be some upper bound on the number of defective items d
and Δ > 1. Then, there is a deterministic non-adaptive algorithm that makes

O

(
D

Δ2

(
log

n

D
+ log Δ

))

tests and outputs d̂ such that d
Δ ≤ d̂ ≤ dΔ.

To prove the Theorem we need the following:

Lemma 2. Let Δ > 1 and � ≥ 2Δ2. There is a non-adaptive deterministic
algorithm that makes

t = O

(
�

Δ2

(
log

n

�
+ log Δ

))

tests such that,

1. If the number of defectives d is less than �/Δ2, it outputs 0.
2. If it is greater than �/Δ, it outputs 1.

Proof. We choose a constant c such that (1 − Δ2/(c�))�/Δ2
= 1/e. Note that

(
1 − Δ2

2�

)�/Δ2

≥ 1 − Δ2�

2�Δ2
=

1
2

>
1
e

and
(

1 − 2Δ2

�

)�/Δ2

=

((
1 − 2Δ2

�

) �
2Δ2

)2

≤ 1
e2

<
1
e
.

Therefore, such c exists and we have 1/2 ≤ c ≤ 2.

Consider a test Q ⊆ [n] chosen at random where each item i ∈ [n] is chosen
to be in Q with probability Δ2/(c�). Let I be the set of defective items such that
|I| = d, and let Q(I) be the result of the test Q with respect to the set I. Then,

Pr[Q(I) = 0] =
(

1 − Δ2

c�

)d

. (5)

If d ≤ �/Δ2,

Pr[Q(I) = 0] ≥
(

1 − Δ2

c�

)�/Δ2

= e−1, (6)

398 N. H. Bshouty and C. A. Haddad-Zaknoon

if d = 2�/Δ2,

Pr[Q(I) = 0] =
(

1 − Δ2

c�

)2�/Δ2

= e−2, (7)

and if d = �/Δ, we get:

Pr[Q(I) = 0] =

((
1 − Δ2

c�

) �
Δ2

)Δ

= e−Δ. (8)

Let Q1, Q2, . . . , Qt be a sequence of t i.i.d tests such that

t =
c′�

(Δ − 1)2
ln

c′′Δ2n

�

where c′ = 54e2 and c′′ = 4e.
Let

η = e−1

(
1
2

+
1

2Δ

)
.

Consider the following two events:

1. A: There is a set of defectives I of size |I| ≤ �/Δ2 such that the number of
tests with 0 answer is less than ηt.

2. B: There is a set of defectives J of size |J | > �/Δ such that the number of
tests with 0 answer is at least ηt.

Notice that, to prove the lemma it is enough to prove that Pr[A ∨ B] < 1. We
will show that Pr[A],Pr[B] < 1/2.

Let X1, . . . , Xt be random variables such that Xi = 1 if and only if Qi(I) = 0.
Let X be the number of tests that yield the result 0. Therefore, X =

∑t
i=1 Xi

and define μ := E[X].
If |I| = d ≤ �/Δ2, then μ = t · E[Xi] = t · Pr[Xi = 1]. By (6) we have

μ = E[X] ≥ t · e−1. (9)

By (3) in Lemma 1, for λ = 1/2 − 1/(2Δ) we have

Pr[X ≤ ηt] = Pr[X ≤ (1 − λ)te−1] ≤ Pr[X ≤ (1 − λ)μ] ≤ e− λ2μ
2 ≤ e− (1−Δ−1)2t

8e .

Using this result, Eq. (4) and the union bound, we can conclude that

Pr[A] ≤

⎛

⎝
�/Δ2
∑

i=0

(
n

i

)
⎞

⎠ e− (1−Δ−1)2t
8e ≤

(
eΔ2n

�

) �
Δ2

e− (1−Δ−1)2t
8e

=
(

eΔ2n

�

) �
Δ2

e− c′�
8eΔ2 ln c′′Δ2n

� =
(

eΔ2n

�

) �
Δ2

(
c′′Δ2n

�

)− c′�
Δ2

<
1
2
.

On the other hand, for the event B, we have two cases.

Optimal Deterministic Group Testing Algorithms 399

Case I. 1 < Δ ≤ 2.
If there is a set of defectives J of size |J | > �/Δ such that more than ηt of

the tests yield the answer 0, then there is a set of defectives J ′ of size |J ′| = �/Δ
such that more than ηt of the tests answers are 0. Denote by B′ the latter event.
Then, by (8) we have μ = E[X] = e−Δt and for λ = (eΔ−1 − 1)/2 ≥ (Δ − 1)/2,
η′ = (e−1 + e−Δ)/2 ≤ η we get

Pr[B] ≤ Pr[B′] ≤
(

n

�/Δ

)
Pr [X ≥ ηt] ≤

(
n

�/Δ

)
Pr [X ≥ η′t]

=
(

n

�/Δ

)
Pr [X ≥ (1 + λ) μ]

≤
(

eΔn

�

) �
Δ

Pr [X ≥ (1 + λ) μ]

If 1 < Δ ≤ 2 then 0 ≤ λ ≤ 1 and then by (1) in Lemma 1, we have

(
eΔn

�

) �
Δ

Pr [X ≥ (1 + λ)μ] ≤
(

eΔn

�

) �
Δ

e−λ2μ/3

≤
(

eΔn

�

) �
Δ

e−(Δ−1)2μ/12 since λ ≥ (Δ − 1)/2

=
(

eΔn

�

) �
Δ

e−(Δ−1)2e−Δt/12

=
(

eΔn

�

) �
Δ

(
c′′Δ2n

�

)−c′�e−Δ/12

≤
(

2en

�

)� (
c′′n
�

)−(c′e−2/12)�

<
1
2

1 ≤ Δ < 2

Case II. Δ > 2.
In this case we have �/Δ > 2�/Δ2. Therefore, if there is a set of defectives J

of size |J | > �/Δ such that more than ηt of the tests yield the answer 0, then
there is a set of defectives J ′ of size |J ′| = 2�/Δ2 such that more than ηt of the
tests answers are 0. Denote by B′′ the latter event. By (7), μ = E[X] = e−2t.
Let λ = 1/3 − 1/(3Δ) < 1. Then ηt > (1 + λ)μ. By (1) in Lemma 1, we have

Pr[X ≥ ηt] ≤ Pr[X ≥ (1 + λ)μ] ≤ e− λ2μ
3 ≤ e− (1−Δ−1)2t

27e2 .

Then

Pr[A] ≤ Pr[B′′] ≤
(

n

2�/Δ2

)
e− (1−Δ−1)2t

27e2 ≤
(

eΔ2n

2�

) 2�
Δ2

e− (1−Δ−1)2t

27e2

=
(

eΔ2n

2�

) 2�
Δ2

e− c′�
27e2Δ2 ln c′′Δ2n

� =
(

eΔ2n

2�

) 2�
Δ2

(
c′′Δ2n

�

)− c′�
27e2Δ2

<
1
2
.

400 N. H. Bshouty and C. A. Haddad-Zaknoon

We are now ready to prove Theorem 1.
Let A(�,Δ) be the algorithm from Lemma 2. Then, A(�,Δ) makes at most

c�

Δ2
log

Δn

�
(10)

queries for some constant c, and

1. If A(�,Δ) = 1, then d ≥ �
Δ2 .

2. If A(�,Δ) = 0, then d ≤ �
Δ .

Consider the algorithm T (n,D,Δ) that runs A(D/Δi,Δ) for all i =
0, . . . ,
log D/ log Δ�. Let r be the minimum integer such that A(D/Δr,Δ) = 1.
Algorithm T (n,D,Δ) then outputs d̂ = D/Δr+1. See algorithm T in Fig. 1.

T (n, D, Δ)
1) r ← 0.
2) For each i = 0, 1, . . . , �logD/ logΔ� do:

2.1) R ← A(D/Δi, Δ)
2.2) If (R = 1) then

r ← i

d̂ ← D/Δr+1

Output (d̂).

Fig. 1. Algorithm T

We now prove:

Lemma 3. Algorithm T (n,D,Δ) is deterministic non-adaptive that makes

O

(
D

Δ2
log

(
Δn

D

))

tests and outputs d̂ that satisfies

d

Δ
≤ d̂ ≤ Δd.

Proof. For i = 0, if A(D/Δi,Δ) = 1 then d ≥ D/Δ2. Then d̂ = D/Δ ≤ Δd and
since D ≥ d we also have d̂ = D/Δ ≥ d/Δ.

For i > 0, if A(D/Δi−1,Δ) = 0 and A(D/Δi,Δ) = 1 then d ≤ D/Δi and
d ≥ D/Δi+2. Then d̂ = D/Δi+1 ≤ Δd and d̂ ≥ d/Δ.

Optimal Deterministic Group Testing Algorithms 401

Let q =
log D/ log Δ�. Let t denote the number of queries performed by
algorithm T (n,D,Δ). By (10), the number of tests is at most

q∑

i=0

cD

ΔiΔ2
log

nΔi+1

D
≤ cD

Δ2

∞∑

i=0

1
Δi

log
nΔi+1

D

=
cD

Δ2

(
(
log

n

D

) ∞∑

i=0

1
Δi

+ (log Δ)
∞∑

i=0

i + 1
Δi

)

≤ cD

Δ2

(
Δ

Δ − 1
log

n

D
+

Δ2

(Δ − 1)2
log Δ

)
.

For the case when Δ = 1 + Θ(1) we get

t = O
(
D log

n

D

)

and for the case when Δ = ω(1) we get

t = O

(
D

Δ2

(
log

n

D
+ log Δ

))
.

4 Lower Bound for Adaptive Deterministic Algorithm

In this section, we prove the following lower bound.

Theorem 2. Any deterministic adaptive group testing algorithm that given D >
d, outputs d̂ that satisfies d/Δ ≤ d̂ ≤ Δd must make at least

Ω

(
D

Δ2
log

n

D

)

queries.

For the proof, we use the following from [3].

Lemma 4. Let A be a deterministic adaptive algorithm that for a defective sets
I ⊂ [n] makes the tests T I

1 , T I
2 . . . , T I

w(I) and let s(I) be the sequence of answers to
these tests. If M = |{s(I)|I ⊆ [n]}| then the test complexity of A is maxI w(I) ≥
log M .

The following Lemma assists us to prove the result declared by Theorem 2.

Lemma 5. Any deterministic adaptive algorithm such that, if the number of
defectives d is less than or equal d1 it outputs 0 and if it is greater than d2 it
outputs 1, must make

Ω

(
d1 log

n

d2

)

402 N. H. Bshouty and C. A. Haddad-Zaknoon

tests.
In particular, when d1 = �/Δ2 and d2 = �/Δ we get

Ω

(
�

Δ2

(
log

n

�
+ log Δ

))

tests.

Proof. Let A be such algorithm. Let s(I) be the sequence of answers to the
tests of A when the set of defective items is I. Consider a set I of size d1 and
let J = {J ⊆ [n] : |J | = d1, s(J) = s(I)}. Let I ′ = ∪J∈J J . We claim that
s(I ′) = s(I). Suppose for the contrary, s(I ′) �= s(I). Then, since I ⊆ I ′, there
is a test Q ⊆ [n] that is asked by A that gives answer 0 to I and 1 to I ′. Since
I ′ ∩ Q �= ∅, there is a subset J ′ ∈ J such that J ′ ∩ Q �= ∅ and therefore Q gives
answer 1 to J ′. Then s(J ′) �= s(I) and we get a contradiction.

Since s(I ′) = s(I) and algorithm A outputs 0 to I, it also outputs 0 to I ′.
Therefore, |I ′| ≤ d2. Therefore |J | ≤ N :=

(
d2
d1

)
. That is, for every possible

sequence of answers s′ of the algorithm A, there is at most N sets of size d1
that get the same sequence of answers. Since there are L :=

(
n
d1

)
such sets, the

number of different sequences of answers that A might have must be at least
L/N . By Lemma 4, the number of tests that the algorithm makes is at least

log

(
n
d1

)

(
d2
d1

) ≥ log
(

n

ed2

)d1

= Ω

(
d1 log

n

d2

)
.

The conclusions established by Lemma 5 show that the upper bound from
Lemma 2 is tight. Moreover, using these results, we provide the following proof
for Theorem 2.

Proof. Let d1 = D/Δ2 − 1 and d2 = D. For sets of size less than or equal d1
the algorithm returns d1/Δ ≤ d̂ ≤ Δd1 and for sets of equal to d2 the algorithm
returns d2/Δ < d̂ ≤ Δd2. Since Δd1 < d2/Δ, the above intervals are disjoint.
So, the algorithm can distinguish between sets of size less that or equal to d1
and sets of size greater than d2. By Lemma 5 the algorithm must make at least

Ω

(
D

Δ2
log

n

D

)

tests.

5 Polynomial Time Adaptive Algorithm

In this section, we prove:

Theorem 3. Let D be some upper bound on the number of defective items d
and Δ > 1. Then, there is a linear time deterministic adaptive algorithm that
makes

O

(
D

Δ2

(
log

n

D
+ log Δ

))

tests and outputs d̂ such that d
Δ ≤ d̂ ≤ dΔ.

Optimal Deterministic Group Testing Algorithms 403

We first describe the algorithm. The algorithm gets as an input the set of
items X = [n] and splits it into two equally-sized disjoint sets Q1 and Q2. The
algorithm asks the queries defined by Q1 and Q2 and proceeds in the splitting
process on the sets that yielded positive answers only. We call these sets defective
sets. As long as the algorithm gets less than D/Δ2 distinct defective sets, it
continues to split and test. Two cases can happen. Either it gets D/Δ2 defective
sets and then the algorithm outputs d̂ = D/Δ, or the number of the defective
sets is always less than D/Δ2 and then, the algorithm finds all the defective items
and returns their exact number. The algorithm is given in Fig. 2. The algorithm
invokes the procedure Split(X) that on an input X = {a1, a2, . . . , an}, it returns
the set W where W := {X1,X2} such that Xi ⊆ X, X1 = {a1, a2, . . . , a�n/2�},
X2 = {a�n/2�+1, . . . , an} if |X| ≥ 2, and W := {X} otherwise.

Adaptive-dEstimate (OI , X, Δ, D)
1) Q ← X, S ← ∅
2) While (|Q| ≤ D/Δ2) do:

2.1) For each Qi ∈ Q{
Q

(1)
i , Q

(2)
i

}
← Split(Qi)

If (Q(1)
i (I) = 1) then S ← S ∪ {Q

(1)
i }

If (Q(2)
i (I) = 1) then S ← S ∪ {Q

(2)
i }

2.2) If ∀Si ∈ S, |Si| = 1
d̂ ← |S|
Output (d̂)

Else
Q ← S, S ← ∅.

3) d̂ ← |Q| · Δ.
4) Output (d̂)

Fig. 2. Algorithm Adaptive-dEstimate to estimate the number of defective items.

Lemma 6. Algorithm Adaptive-dEstimate is a deterministic adaptive algo-
rithm that makes

2
D

Δ2
log

nΔ2

D
= O

(
D

Δ2

(
log

n

D
+ log Δ

))

tests and outputs an estimation d̂ such that:

d

Δ
≤ d̂ ≤ dΔ.

Proof. If d ≤ D
Δ2 , then the splitting process in step 2 of the algorithm proceeds

until each defective item belongs to a distinct set. Eventually, the condition in

404 N. H. Bshouty and C. A. Haddad-Zaknoon

step 2.2 is met and the algorithm outputs the exact value of d. If d > D/Δ2, then
the splitting process stops when the number of defective sets |Q| exceeds D/Δ2.
The algorithm halts and outputs d̂ = |Q|Δ. Obviously, |Q| ≤ d. Therefore,
d̂ = |Q|Δ ≤ dΔ. Moreover, |Q| > D/Δ2 ≥ d/Δ2 which implies that d̂ ≥ d/Δ.

The number of iterations cannot exceed log n iterations. In the first
log(D/Δ2) iterations, in the worst case scenario, the algorithm splits its cur-
rent set Qi on each iteration into two sets Q

(1)
i and Q

(2)
i such that Q

(1)
i (I) =

Q
(2)
i (I) = 1. Therefore, the number of tests that the algorithm asks over all the

first log(D/Δ2) iterations is at most

log(D/Δ2)∑

i=1

2i ≤ 2
D

Δ2
.

Since |Q| ≤ D/Δ2, in the other log n − log(D/Δ2) iterations, the algorithm
makes at most 2D/Δ2 tests each iteration. So, the total number of tests is at
most

2
D

Δ2

(
log n − log

D

Δ2

)
+ 2

D

Δ2
= O

(
D

Δ2
log

nΔ2

D

)

.

6 Polynomial Time Non-adaptive Algorithm

In this section, we show how to use expanders, condensers and extractors to con-
struct deterministic non-adaptive algorithms for defectives number estimation.
We prove:

Theorem 4. Let D be some upper bound on the number of defective items d and
Δ > 1. Then, there is a polynomial time deterministic non-adaptive algorithm
that makes

min
(
Do(1), 2O(log3(log n))

)
· D

Δ2
log n

tests and outputs d̂ such that d
Δ ≤ d̂ ≤ dΔ.

6.1 Algorithms Using Expanders

Let G be a bipartite graph G = G(L,R,E) with left vertices L = [n], right
vertices R = [m] and edges E ⊆ L × R. For each edge (i, j) ∈ E, it holds that
the endpoint i ∈ L and j ∈ R. For a vertex v ∈ L, define Γ (v) to be the set of
the neighbours of v in G i.e. Γ (v) := {u ∈ R|(v, u) ∈ E}. For a subset S ⊆ L,
we define Γ (S) to be the set of neighbours of S, meaning Γ (S) := ∪v∈SΓ (v).
For a vertex v ∈ L, the degree of v is defined as deg(v) := |Γ (v)|. We say that a
bipartite graph G = G(L,R,E) is a (k, a)-expander δ-regular bipartite graph if,
the degree of every vertex in L is δ, and for every left-subset S ⊆ L of size at
most k, we have |Γ (S)| ≥ a|S|.

Optimal Deterministic Group Testing Algorithms 405

Lemma 7. Let X = [n] be a set of items and I ⊆ [n] is the set of defective
items such that |I| = d is unknown to the algorithm. Let G = G(L,R,E) be a
(k, a)-expander δ-regular bipartite graph with |L| = n and |R| = m. Then, there
is a deterministic non-adaptive algorithm A, such that for n items, it makes m
tests and satisfies:

1. If |I| < ak/δ, then A outputs 0.
2. If |I| ≥ k, then A outputs 1.

Proof. For every j ∈ R, we define the test T (j) = {i|(i, j) ∈ E}. The number of
tests is |R| = m. If |I| ≥ k, then |Γ (I)| ≥ ak. Therefore, at least ak tests will
give positive answer 1. If |I| < ak/δ, then, since the degree of every vertex in L
is δ, we have |Γ (I)| ≤ δ|I| < ak. This shows that, for this case, at most ak − 1
tests give the answer 1. Hence, we can distinguish between the two cases.

Following the same proof of Lemma 3 with algorithm T in Fig. 1, we have:

Lemma 8. Let A(�,Δ) be a deterministic non-adaptive algorithm such that, for
n items, it makes m(�,Δ) tests and satisfies:

1. If |I| < �/Δ2, then A outputs 0.
2. If |I| ≥ �/Δ, then A outputs 1.

Then, there is a deterministic non-adaptive algorithm T such that, given D > d,
for n items it makes

�log D/ log Δ	∑

i=0

m

(
D

Δi
,Δ

)

tests and outputs d̂ that satisfies d/Δ ≤ d̂ ≤ Δd.

The parameters of the explicit construction of a (k, a)-expander δ-regular
bipartite graph from [4] are summarised in the following lemma.

Lemma 9. For any k > 0 and 0 < ε < 1, there is an explicit construction of a
(k, a)-expander δ-regular bipartite graph with

m = O(kδ/ε), δ = 2O(log3(log n/ε)), a = (1 − ε)δ.

We now prove:

Lemma 10. There is a polynomial time deterministic non-adaptive algorithm
that makes

D

Δ2
· 2O(log3(log n)) =

D

Δ2
· quasipoly(log n)

tests and outputs d̂ that satisfies

d

Δ
≤ d̂ ≤ Δd.

406 N. H. Bshouty and C. A. Haddad-Zaknoon

Proof. We use the expander in Lemma 9. Recall that Δ = 1 + Ω(1). Let r =
min(Δ, 2), ε = 1 − 1/r and k = r�/Δ2. Then a = δ/r = 2O(log3 log n) and
m = m(�,Δ) = (�/Δ2)2O(log3 log n). By Lemma 7, there is a deterministic non-
adaptive algorithm A such that for n items, it makes m(�,Δ) tests and

1. If |I| < ak/δ = �/Δ2 then A outputs 0.
2. If |I| ≥ k = r�/Δ2 then A outputs 1.

Algorithm A trivially satisfies the first condition required by Lemma 8. Consider
item 2. If Δ < 2 then r = Δ and then if |I| ≥ k = �/Δ then A outputs 1. If Δ > 2
then r = 2 and then if |I| ≥ k = 2�/Δ2 then A outputs 1. Since 2�/Δ2 < �/Δ,
if |I| ≥ �/Δ then A outputs 1.

Now by Lemma 8, there is a deterministic non-adaptive algorithm T such
that, given D > d, for n items, it makes

�log D/ log Δ	∑

i=0

m

(
D

Δi
,Δ

)
=

D

Δ2
· 2O(log3(log n))

tests and outputs d̂ that satisfies d/Δ ≤ d̂ ≤ Δd.

6.2 Algorithms Using Extractors and Condensers

Extractors are functions that convert weak random sources into almost-perfect
random sources. We use these objects to construct a non-adaptive algorithm for
estimating d. We start with some definitions.

Definition 1. Let X be a random variable over a finite set S. We say that X
has min-entropy at least k if Pr[X = x] ≤ 2−k for all x ∈ S.

Definition 2. Let X and Y be random variables over a finite set S. We say
that X and Y are ε − close if maxP⊆S |Pr[X ∈ P] − Pr[Y ∈ P]| ≤ ε.

We denote by U� the uniform distribution on {0, 1}�. The notations Prx∈B or
Ex∈B stand for the fact that the probability and the expectation are taken when
x is chosen randomly uniformly from B.

Definition 3. A function F : {0, 1}n̂ × {0, 1}t̂ → {0, 1}m̂ is a k →ε k′ con-
denser if for every X with min-entropy at least k and Y uniformly distributed
on {0, 1}t̂, the distribution of (Y, F (X,Y)) is ε-close to a distribution (Ut̂, Z)
with min-entropy t̂+k′. A condenser is called (k, ε)-lossless condenser if k′ = k.
A condenser is called (k, ε)-extractor if m̂ = k′.

Let N̂ = {0, 1}n̂, T̂ = {0, 1}t̂ and M̂ = {0, 1}m̂, and let F : N̂ × T̂ → M̂ be a
k →ε k′ condenser. Consider the 2t̂ × 2n̂ matrix M induced by F . That is, for
r ∈ T̂ and s ∈ N̂ , the entry Mr,s is equal to F (s, r). For s ∈ N̂ , let M(s) be the
sth column of M. Then, M(s)

r = Mr,s = F (s, r).

Optimal Deterministic Group Testing Algorithms 407

Definition 4. Let Σ be a finite set. An n-mixture over Σ is an n−tuple S :=
(S1, · · · , Sn) such that for all i ∈ [n], Si ⊆ Σ.

Using these definitions and notations, we restate the result proved by Cher-
aghchi [6] (Theorem 9) in the following lemma.

Lemma 11. Let F : {0, 1}n̂ ×{0, 1}t̂ → {0, 1}m̂ be a k →ε k′ condenser. Let M
be the matrix induced by F . Then, for any 2t̂−mixture S = (S1, · · · , S2t̂) over
M̂ := {0, 1}m̂, the number of columns s in M that satisfies

Pr
r∈T̂

[M(s)
r ∈ Sr] >

Er∈T̂ [|Sr|]
2k′ + ε

is less than 2k.

Equipped with Lemma 11, we prove:

Lemma 12. If there is a k →ε k′ condenser F : {0, 1}n̂ × {0, 1}t̂ → {0, 1}m̂

then, there is a deterministic non-adaptive algorithm A for n = 2n̂ items that
makes m = 2t̂+m̂ tests and satisfies the following.

1. If the number of defectives is less than (1 − ε)2k′
then A outputs 0.

2. If the number of defectives is greater than or equal 2k + 1 then A outputs 1.

Proof. Consider the matrix M induced by the condenser F as explained above.
We define the test matrix T from M as follows. Let x ∈ {0, 1}m̂. Define e(x) ∈
{0, 1}2m̂

such that e(x)y = 1 if and only if x = y, where the bits in e(x) are
indexed by the elements of {0, 1}2m̂

. Each row r in the matrix M is replaced
by 2m̂ rows (in T) such that in each entry Mr,s ∈ {0, 1}m̂ is replaced by the
column vector e(Mr,s)T ∈ {0, 1}2m̂

. The rows of the matrix T are indexed by
T̂ × M̂ . Let T (i) denote the ith column of T . Therefore, for r ∈ T̂ and j ∈ M̂ ,
the row (r, j) in the matrix T is denoted by T(r,j). Moreover, the ith entry of the
row T(r,j) is denoted by T(r,j),i and T(r,j),i = T (i)

(r,j) = 1 if and only if Mr,i = j.
The size of the test matrix T is m × n.

Let the defective elements be si1 , . . . , si�
and let y ∈ {0, 1}m indicate the tests

result. Then, y is equal to T (si1) ∨· · ·∨T (si�
). Let S = (Sr)r∈T̂ be a 2t̂−mixture

over {0, 1}m̂ where for all r ∈ T̂ , Sr = {j ∈ {0, 1}m̂|y(r,j) = T (si1)

(r,j) ∨· · ·∨T (si�
)

(r,j) =
1}. It is easy to see that:

1. |Sr| ≤ �. This is because, by the definition of Sr, j ∈ Sr if and only if y(r,j) = 1.

The entry y(r,j) gets the value 1 if at least one of the entries T (si1)

(r,j) , · · · , T (si�
)

(r,j)

is 1. Any row in T (si1), · · · , T (si�
) has exactly one entry that is equal to 1

in all the 2m̂ rows indexed by r. Hence, each row can cause one item to be
inserted to Sr.

2. For any sij
∈ {si1 , . . . , si�

}, we have Prr∈T̂ [M(sij
)

r ∈ Sr] = 1

408 N. H. Bshouty and C. A. Haddad-Zaknoon

3. Given the matrix M, its test matrix T and the observed result y, for any
column s the probability Prr∈T̂ [M(s)

r ∈ Sr] can be easily computed.

If the number of defectives is less than (1 − ε)2k′
then, by Lemma 11, all

columns, except for at most 2k columns, satisfy

Pr
r∈T̂

[M(s)
r ∈ Sr] ≤

Er∈T̂ [|Sr|]
2k′ + ε <

Er∈T̂ [(1 − ε)2k′
]

2k′ + ε = 1.

So for less than 2k + 1 columns we have Prr∈T̂ [M(s)
r ∈ Sr] = 1. If the number of

defectives is greater than or equal 2k+1, then for the columns of the defectives we
have Prr∈T̂ [M(s)

r ∈ Sr] = 1. So for more than 2k columns we have Prr∈T̂ [M(s)
r ∈

Sr] = 1.

The following Lemma summarises the state of the art result due to
Guruswami et. al. [15] on explicit construction of expanders.

Lemma 13. For all positive integers n̂, k such that n̂ ≥ k, and all ε > 0, there
is an explicit (k, ε) extractor F : {0, 1}n̂ × {0, 1}t̂ → {0, 1}m̂ with t̂ = log n̂ +
O(log k log (k/ε)) and m̂ = k′ = k − 2 log 1/ε − c for some constant c.

We now prove:

Lemma 14. There is a constant C such that for every Δ > C, there is a polyno-
mial deterministic non-adaptive algorithm that estimates the number of defective
items in a set of n items up to a multiplicative factor of Δ and asks

O

(
D1+o(1)

Δ2
log n

)

queries.

Proof. We use the notations from Lemma 13. Let C = 27 · 2c−2. We choose
ε = 2/3 and k′ such that (1 − ε)2k′

= �/Δ2. Then

2k = 2k′+2 log(1/ε)+c = 27 · 2c−2 �

Δ2
<

�

Δ

By Lemma 12, there is a deterministic non-adaptive algorithm A for n = 2n̂

items that makes

m = 2t̂+m̂ = n̂2O(log k log(k/ε)) �

(1 − ε)Δ2
= 2log

2 log(�/Δ) �

Δ2
log n

tests that satisfies the following:

1. If the number of defectives is less than (1 − ε)2k′
= �/Δ2 then A outputs 0.

2. If the number of defectives is greater than or equal 2k + 1 then A outputs 1
and, since 2k < �/Δ, in particular, if the number of defectives is greater than
or equal �/Δ then A outputs 1.

Optimal Deterministic Group Testing Algorithms 409

By Lemma 8, the result follows.

A similar work by Capalbo et al. [4] gives an explicit construction of a lossless
condenser is summarised in the following lemma:

Lemma 15. For all positive integers n̂, k and all ε > 0, there is an explicit
lossless condenser F : {0, 1}n̂ × {0, 1}t̂ → {0, 1}m̂ with t̂ = O(log3(n̂/ε)) and
m̂ = k + log(1/ε) + O(1).

The construction from Lemma 15 yields a result that is similar to the one estab-
lished in Lemma 14.

References

1. Agarwal, A., Flodin, L., Mazumdar, A.: Estimation of sparsity via simple measure-
ments. In: 2017 IEEE International Symposium on Information Theory (ISIT), pp.
456–460. IEEE (2017)

2. Bshouty, N.H.: Lower bound for non-adaptive estimation of the number of defective
items. In: 30th International Symposium on Algorithms and Computation, ISAAC
2019, 8–11 December 2019, Shanghai University of Finance and Economics, Shang-
hai, China, pp. 2:1–2:9 (2019). https://doi.org/10.4230/LIPIcs.ISAAC.2019.2

3. Bshouty, N.H., Bshouty-Hurani, V.E., Haddad, G., Hashem, T., Khoury, F.,
Sharafy, O.: Adaptive group testing algorithms to estimate the number of defec-
tives. CoRR abs/1712.00615 (2017). http://arxiv.org/abs/1712.00615

4. Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors
and constant-degree expansion beyond the degree/2 barrier, January 2002

5. Cheng, Y., Xu, Y.F.: An efficient FPRAS type group testing procedure to approx-
imate the number of defectives. J. Combin. Optim. 27, 302–314 (2014)

6. Cheraghchi, M.: Noise-resilient group testing: limitations and constructions. CoRR
abs/0811.2609 (2008). http://arxiv.org/abs/0811.2609

7. Chen, C.L., Swallow, W.H.: Using group testing to estimate a proportion, and to
test the binomial model. Biometrics 46(4), 1035–1046 (1990)

8. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005).
https://doi.org/10.1145/1061318.1061325

9. Damaschke, P., Muhammad, A.S.: Bounds for nonadaptive group tests to estimate
the amount of defectives. In: Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS,
vol. 6509, pp. 117–130. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17461-2 10

10. Damaschke, P., Sheikh Muhammad, A.: Competitive group testing and learning
hidden vertex covers with minimum adaptivity. In: Kuty�lowski, M., Charatonik,
W., G ↪ebala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 84–95. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03409-1 9

11. Dorfman, R.: The detection of defective members of large populations. Ann. Math.
Stat. 14(4), 436–440 (1943)

12. Falahatgar, M., Jafarpour, A., Orlitsky, A., Pichapati, V., Suresh, A.: Estimating
the number of defectives with group testing, pp. 1376–1380, July 2016. https://
doi.org/10.1109/ISIT.2016.7541524

https://doi.org/10.4230/LIPIcs.ISAAC.2019.2
http://arxiv.org/abs/1712.00615
http://arxiv.org/abs/0811.2609
https://doi.org/10.1145/1061318.1061325
https://doi.org/10.1007/978-3-642-17461-2_10
https://doi.org/10.1007/978-3-642-17461-2_10
https://doi.org/10.1007/978-3-642-03409-1_9
https://doi.org/10.1109/ISIT.2016.7541524
https://doi.org/10.1109/ISIT.2016.7541524

410 N. H. Bshouty and C. A. Haddad-Zaknoon

13. Gastwirth, J.L., Hammick, P.A.: Estimation of the prevalence of a rare dis-
ease, preserving the anonymity of the subjects by group testing: application to
estimating the prevalence of aids antibodies in blood donors. J. Stat. Plann.
Inference 22(1), 15–27 (1989). https://doi.org/10.1016/0378-3758(89)90061-X.
http://www.sciencedirect.com/science/article/pii/037837588990061X

14. Gollier, C., Gossner, O.: Group testing against Covid-19. Covid Econ. 32–42 (2020)
15. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness

extractors from Parvaresh-Vardy codes. In: Twenty-Second Annual IEEE Confer-
ence on Computational Complexity (CCC 2007), pp. 96–108 (2007)

16. Hong, E.S., Ladner, R.E.: Group testing for image compression. IEEE Trans. Image
Process. 11(8), 901–911 (2002)

17. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans.
Inf. Theory 10(4), 363–377 (1964)

18. Li, C.: A sequential method for screening experimental variables. J. Am. Stat.
Assoc. - J AMER STATIST ASSN 57, 455–477 (1962). https://doi.org/10.1080/
01621459.1962.10480672

19. Mentus, C., Romeo, M., DiPaola, C.: Analysis and applications of adaptive group
testing methods for Covid-19. medRxiv (2020). https://doi.org/10.1101/2020.
04.05.20050245. https://www.medrxiv.org/content/early/2020/04/16/2020.04.05.
20050245

20. Ngo, H., Du, D.Z.: A survey on combinatorial group testing algorithms with appli-
cations to DNA library screening. DIMACS Ser. Discrete Math. Theor. Comput.
Sci. 55, 171–182 (2000). https://doi.org/10.1090/dimacs/055/13

21. Ron, D., Tsur, G.: The power of an example: hidden set size approximation using
group queries and conditional sampling. CoRR abs/1404.5568 (2014). http://arxiv.
org/abs/1404.5568

22. Sobel, M., Groll, P.A.: Group testing to eliminate efficiently all defectives in a
binomial sample. Bell Syst. Tech. J. 38(5), 1179–1252 (1959)

23. Swallow, W.H.: Group testing for estimating infection rates and probabilities of
disease transmission. Phytopathology (USA) (1985)

24. Thompson, K.H.: Estimation of the proportion of vectors in a natural population
of insects. Biometrics 18(4), 568–578 (1962)

25. Walter, S.D., Hilderth, S.W., Beaty, B.J.: Estimation of infection rates in popula-
tions of organisms using pools of variable size. Am. J. Epidemiol. 112(1), 124–128
(1980). https://doi.org/10.1093/oxfordjournals.aje.a112961

26. Wolf, J.: Born again group testing: multiaccess communications. IEEE Trans. Inf.
Theory 31(2), 185–191 (1985)

27. Yelin, I., et al.: Evaluation of Covid-19 RT-qPCR test in multi-sample
pools. medRxiv (2020). https://doi.org/10.1101/2020.03.26.20039438. https://
www.medrxiv.org/content/early/2020/03/27/2020.03.26.20039438

https://doi.org/10.1016/0378-3758(89)90061-X
http://www.sciencedirect.com/science/article/pii/037837588990061X
https://doi.org/10.1080/01621459.1962.10480672
https://doi.org/10.1080/01621459.1962.10480672
https://doi.org/10.1101/2020.04.05.20050245
https://doi.org/10.1101/2020.04.05.20050245
https://www.medrxiv.org/content/early/2020/04/16/2020.04.05.20050245
https://www.medrxiv.org/content/early/2020/04/16/2020.04.05.20050245
https://doi.org/10.1090/dimacs/055/13
http://arxiv.org/abs/1404.5568
http://arxiv.org/abs/1404.5568
https://doi.org/10.1093/oxfordjournals.aje.a112961
https://doi.org/10.1101/2020.03.26.20039438
https://www.medrxiv.org/content/early/2020/03/27/2020.03.26.20039438
https://www.medrxiv.org/content/early/2020/03/27/2020.03.26.20039438

Nearly Complete Characterization
of 2-Agent Deterministic Strategyproof
Mechanisms for Single Facility Location

in Lp Space

Jianan Lin(B)

School of Computer Science, Fudan University, Shanghai 201203, China
jnlin16@fudan.edu.cn

Abstract. We consider the problem of locating a single facility for 2
agents in Lp space (1 < p < ∞) and give a nearly complete charac-
terization of such deterministic strategyproof mechanisms. We use the
distance between an agent and the facility in Lp space to denote the cost
of the agent. A mechanism is strategyproof iff no agent can reduce her
cost from misreporting her private location.

We show that in Lp space (1 < p < ∞) with 2 agents, any location
output of a deterministic, unanimous, translation-invariant strategyproof
mechanism must satisfy a set of equations and mechanisms are continu-
ous, scalable. In one-dimensional space, the output must be one agent’s
location, which is easy to prove in any n agents.

However, in m-dimensional space (m ≥ 2), the situation will be much
more complex, with only 2-agent case finished. We show that the output
of such a mechanism must satisfy a set of equations, and when p = 2 the
output must locate at a sphere with the segment between the two agents
as the diameter. Further more, for n-agent situations, we find that the
simple extension of this the 2-agent situation cannot hold when dimen-
sion m > 2 and prove that the well-known general median mechanism
will give an counter-example.

Particularly, in L2 (i.e., Euclidean) space with 2 agents, such a mech-
anism is rotation-invariant iff it is dictatorial; and such a mechanism
is anonymous iff it is one of the three mechanisms in Sect. 4. And our
tool implies that any such a mechanism has a tight lower bound of 2-
approximation for maximum cost in any multi-dimensional space.

Keywords: Facility location · Mechanism design · Lp space.

1 Introduction

We consider the problem of locating a single facility for n (mainly in n = 2)
agents in Lp space (1 < p < ∞). This facility serves these agents and every

Thanks for my advisors Pinyan Lu and Hu Fu for giving me advise on this problem.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 411–425, 2020.
https://doi.org/10.1007/978-3-030-64843-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_28&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_28

412 J. Lin

agent has a cost which is equal to the distance to access the facility. An agent’s
location is private information, i.e., only she herself knows it. A strategyproof
mechanism means that no agent can gain (i.e., reduce her cost) from misreporting
her location. A mechanism is deterministic if the output is a specific location.
Compared to randomized mechanisms, deterministic mechanisms often receive
more attention because of their simplicity and ease of use.

A basic area of facility location study is the characterization of truthful mech-
anisms. In many situations and settings, the goal is to design a strategyproof
mechanism which can minimize the objective cost function (e.g., social cost or
maximum cost) as far as possible. Therefore, giving the characterization of such
mechanisms will be helpful to further study. In this area, an important work is
made by Moulin [10] that in any one-dimension space (they call it single-peaked
preferences), every strategyproof, efficient (the selected alternative is Pareto opti-
mal, which is different from our setting) and anonymous voting scheme (mecha-
nism) must be a median voter scheme (to select the median agent). After that,
Border and Jordan [4] extend his result to Euclidean space and show that it
induces to median voter schemes in each dimension separately. Other works
include Barberà et al. [2] that the result also fits in any L1 norm, and [3] that
in a compact set of the Euclidean space, which is a more restricted domain, all
those mechanisms behave like generalized median voter schemes. Nearly all the
relevant works focus on deterministic mechanisms and leaves the randomized
ones an open question.

As for other settings, Tang et al. [13] firstly discuss the characterization
of group-strategyproof (No group of agents can reduce their cost together by
misreporting their location) both in deterministic and randomized mechanisms
(The former characterization is complete and the latter is nearly complete). And
Feigenbaum et al. [5] discuss the characterization of 2-agent randomized strat-
egyproof mechanism in one-dimensional space. However, before our work, there
has not been any discussion of the characterization of deterministic strategyproof
mechanisms in any metric space.

One measurement of the facility location mechanisms is the cost they achieve.
There are two common view: maximum cost (i.e., the maximum cost between
the facility and some agent) and social cost (i.e., the sum of the cost between the
facility and all the agents). The ratio between the cost one mechanism achieve
and the minimum cost is widely used in this study. Procaccia and Tennenholtz
[11] study approximately optimal strategyproof mechanisms for facility games
both in maximum cost and social cost view, focusing on one-dimensional space
and randomized mechanisms. They propose an interesting randomized mecha-
nism for the maximum cost view, which achieves a ratio of 3/2 and they proves
it to be the best. Subsequently, Alon et al. [1] study the characterization of
deterministic and randomized mechanisms in more general metric space (such
as network and rings).

Other related works about facility location are k-facility location problems.
Compared to single facility location problems, they are more complex. Agents
can have preference on different facilities and their location can be public

Nearly Complete Characterization of 2-Agent Deterministic Strategyproof 413

information this time. One important and classical work is made by Fotakis
and Tzamos [8]. They study mechanisms that are winner-imposing, in the sense
that the mechanisms allocate facilities to agents and require that each agent
allocated a facility should connect to it. Also they prove an upper bound of
4k in the social cost view. And there are many other follow-up works (see e.g.,
[6,7,9,12,14]).

Our work is motivated by [5]. Their result about the characterization of 2-
agent randomized strategyproof mechanisms in a line (i.e., one-dimension) leads
us studying the deterministic ones. And some of our technique is motivated by
[13] (e.g., the proof of continuity). We show that in any one-dimensional Lp space
with n agents, the output of a deterministic unanimous translation-invariant
strategyproof mechanism should locate at one agent’s location and in multi-
dimensional Lp space (1 < p < ∞) with 2 agents, the output of such a mechanism
should satisfy a set of equations. Particularly, in L2 space (i.e., the Euclidean
space), let the two agents be A,B and the output be W , then they should satisfy−−→
WA · −−→

WB = 0. These characterizations are nearly complete and next we give
complete characterization of two more specific situations (also restricted in 2
agents). The first one is that such a mechanism is rotation-invariant if and only
if it is dictatorial (i.e., the output location is always the same agent). The second
one is that such a mechanism is anonymous (i.e., all the permutations of agents
does not affect the output) if and only if it is one of the three mechanisms
we give in Sect. 4. In the end, we show that the general median mechanism
is an counter-example of the simple extension from 2-agent situation to n-agent
situation in m-dimensional space (m > 2), which means that the characterization
of n-agent situation may be very complex, unfortunately. Also, using our tool,
we ensure a tight lower bound of 2-approximation for maximum cost in any
multi-dimensional space.

2 Preliminaries

We consider the single facility location game with n (n ≥ 2) agents N =
{1, 2, ..., n}. All the agents are located in a m-dimensional Lp space Rm. Obvi-
ously for ∀x, y ∈ Rm, there is ‖x‖ + ‖y‖ ≥ ‖x + y‖ and the equality holds if and
only if x and y have the same directions. We use Ai ∈ Rm to denote agent i’s
location in the space. Therefore a location profile is a vector consisting of all the
agents’ locations A = (A1, A2, ..., An).

A deterministic mechanism is a map f : Rn
m → Rm from a location profile to

the location of the facility. We use W = f(A) to denote the output location and
the cost of agent i is the distance between her and the facility, i.e., d(Ai,W) =
‖W − Ai‖. We will mix the two representations in this paper.

Next we formally define some properties of a deterministic mechanism.

Definition 1 (Strategyproofness). A mechanism f is strategyproof if and only
if no agent can reduce her distance to the output by misreporting her location. It
means that, for ∀A ∈ R

n
m,∀i ∈ N,∀A′

i ∈ Rm, there is

d(f(A), Ai) ≤ d(f(A′
i,A−i), Ai).

414 J. Lin

Here A−i = (A1, ..., Ai−1, Ai+1, ..., An), i.e., the profile without Ai.

Definition 2 (Unanimity). A mechanism f is unanimous if and only if when
∀Ai = C, we have

f(A) = C,

which means that if all agents report the same location, then the mechanism must
output this location.

Definition 3 (Dictatorship). A mechanism f is dictatorial if and only if ∃i ∈
N,∀A ∈ R

n
m, there is

f(A) = Ai.

At this time we call i is the dictator.

Definition 4 (Anonymity). A mechanism f is anonymous if and only if when
any group of the agents exchange their location reports, the output is still the
same, which means that any permutation of the agents’ locations does not affect
the output.

Definition 5 (Translational Invariance). A mechanism f is translation-
invariant if and only if

∀A ∈ R
n
m,∀t ∈ Rm, f(A + t) = f(A) + t.

Here, f(A+ t) = f(A1 + t, ..., An + t). This means that if we move all the agents
the same distance in one direction, then the output location will also move the
same distance in this direction.

Definition 6 (Scalability). A mechanism f is scalable if and only if

∀A ∈ R
n
m,∀k ∈ R, k > 0, f(k · A) = k · f(A).

Here, f(k · A) = f(k · A1, ..., k · An).

Notice that if a mechanism f satisfies translational invariance and scalability,
then we will have

∀A ∈ R
n
m,∀k ∈ R, k > 0,∀t ∈ Rm, f(k · A + t) = k · f(A) + t.

Definition 7 (Rotational Invariance). A mechanism f is rotation-invariant if
and only if when all the agents are rotated at the same angle around a point
(not necessary to be an agent) in the same direction in some dimensions, then
the output will also be rotated at this angle around the point in such direction in
these dimensions.

For convenience, the properties of rotational invariance and anonymity are
only described with natural languages. Notice that the description of rotational
invariance includes situations that points are rotated on an axis and so on,
because of “in some dimensions”.

Nearly Complete Characterization of 2-Agent Deterministic Strategyproof 415

3 Nearly Complete Characterization of Deterministic
Mechanisms

We will start with the situations in one-dimensional space as a warm-up and
prove that this characterization is suitable for any n agents. Then we will discuss
the multi-dimensional situations in Lp space with 2 agents for 1 < p < ∞. The
reason why we abandon L1 and L∞ is that in these two spaces, there exists two
vectors x, y with different directions that ‖x‖ + ‖y‖ = ‖x + y‖, which is not a
friendly property. We use m to denote number of dimensions.

3.1 One-Dimensional Situation

The one-dimensional situation is simple. In any Lp space, ∀a, b, c ∈ R, if a ≤ b ≤
c, then we have ‖a− b‖+‖b− c‖ = ‖a− c‖. For convenience, we call the negative
direction in the coordinate axis “left” and call the positive direction “right”.

Lemma 1. (Continuity) If mechanism f is strategyproof, then for ∀i ∈ N with
any fixed A−i ∈ R

n−1
m , we have

‖u(Ai) − u(A′
i)‖ ≤ ‖Ai − A′

i‖,

where u(Ai) = ‖f(Ai,A−i) − Ai‖. This implies that u(Ai) is a continuous func-
tion.

Proof. We assume that ∃Ai, A
′
i such that ‖u(Ai) − u(A′

i)‖ > ‖Ai − A′
i‖. Also

without loss of generality, we assume that u(Ai) > u(A′
i) which means that

u(Ai) − u(A′
i) > ‖Ai − A′

i‖, then we have

‖f(A′
i,A−i) − Ai‖ ≤ ‖f(A′

i,A−i) − A′
i‖ + ‖Ai − A′

i‖
= u(A′

i) + ‖Ai − A′
i‖

< u(Ai) = ‖f(Ai,A−i) − Ai‖.

Notice this is contradict with the strategyproofness, because Ai can misreport
her location as A′

i to reduce her cost. Therefore the previous inequality in lemma
must hold. When A′

i → Ai, we see u(Ai) is a continuous function.
�
This lemma is very useful and fits any m (dimensions) and n (agents).

A1 An-1 AnA2W

ε

A +ε1

Fig. 1. Case 1 in the proof of Theorem 1

416 J. Lin

Theorem 1. When m = 1, the output of a deterministic unanimous
translation-invariant strategyproof mechanism must be one agent’s location.

Proof. Without loss of generality, we let n agents be A1, ..., An and assume
A1 ≤ A2 ≤ ... ≤ An. If all Ai are in the same location, according to unanimity,
the output is Ai.

Let W = f(A). We divide this into 3 different cases. We only need to prove
that the output cannot locate at these three areas. Using proof by contradiction,
we assume that there can be a situation that W does not locate at any agents.

Case 1, W < A1: As is shown in Fig. 1, we can find a positive tiny ε that
ε � d(W,A1), e.g., ε < 0.01 · d(W,A1) and according to Lemma 1, we have
f(A1 + ε,A−1) < A1, otherwise it will contradict with ‖u(A1) − u(A1 + ε)‖ ≤
|A1 − (A1 + ε)‖ = ε.

Therefore we must have f(A1 + ε,A−1) ≤ W , otherwise agent with location
A1 gain from misreporting her location as A1 + ε. In the same way, we also
must have f(A1 + ε,A−1) ≥ W , otherwise agent with location A1 + ε can gain
from misreporting her location as A1 (fix other agents in A−1). This means that
f(A1 + ε,A−1) = f(A) = W .

Let Aε
−i denotes (A1 + ε, ..., Ai−1 + ε, Ai+1, ..., An) (of course 1 ≤ i ≤ n

and when i = n we say it denotes (A1 + ε, ..., An−1 + ε, when i = 1 we say it
denotes (A2, ..., An). In the same way, when i increases from 1 to n, we have
f(An + ε,Aε

−n) = f(An−1 + ε,Aε
−(n−1)) = ... = f(A) = W and at last get

f(A + ε) = W . However, according to the translational-invariance, we must
have f(A) = W +ε, which leads to a contradiction. Therefore the output cannot
satisfy W < A1.

Case 2, W > An: This is completely symmetrical with the first case and we
can use the same method by adding a tiny ε (ε � d(W,An)) to all agents.

Case 3, ∃i ∈ [1, n−1], Ai < W < Ai+1: We can still add all the agents a tiny
ε � min{d(W,Ai), d(W,Ai+1)}. When adding Aj with j ≤ i, we can refer to
case 1’s proof and when adding Aj with j > i, we can refer to case 2’s method.

Notice that if Ai = Ai+1, then there cannot be Ai < W < Ai+1, thus these
3 cases include all the areas except the locations of the agents. Therefore, any
such strategyproof mechanism cannot output a location W = Ai for any i. We
prove this theorem.
�

Therefore we can know that in one-dimensional space (including all the Lp

space for any positive integer p), the output must be one agent’s location. But
in multi-dimensional space, the result is different. Although output still can be
one agent’s location, it’s not necessary.

3.2 Multi-dimensional L2 Situation

There are two reasons why we select L2 space (i.e., Euclidean space). The first
one is that it has some very friendly properties. For example, in an Euclidean
space, any right triangle must satisfy that its hypotenuse is the (only) longest
side. But in other space such as L3 space, this rule may not hold. Here, the length

Nearly Complete Characterization of 2-Agent Deterministic Strategyproof 417

of side is the distance between the two points in Lp space. And the second reason
is that the Euclidean space is the most common and most used space. In this
part, we will study the result in Euclidean space.

Lemma 2. In any Euclidean space with n agents Ai (i ∈ N), let the output of
a deterministic unanimous translation-invariant strategyproof mechanism be W ,
then for ∀A′

i on the segment between Ai and W (including Ai and W), we have

f(A′
i,A−i) = W,

which means that if one agent move her location close to the output along the
segment, the output does not change.

Proof. Obviously we only need to care the situation that A′
i = Ai. Considering

the property of strategyproofness and let W ′ = f(A′
i,A−i), we have{

d(Ai,W) ≤ d(Ai,W
′)

d(A′
i,W

′) ≤ d(A′
i,W)

Draw the spheres (if m = 2 then circles and if m > 3 then m-spheres) O1 and O2

with Ai and A′
i as centers, d(Ai,W) and d(A′

i,W) as radius, respectively. The
first inequality implies that W ′ cannot be inside of O1 and the second implies
that W ′ cannot be outside of O2. Therefore, W ′ = W , which is the only common
point between the two spheres (circles).
�

In fact, this lemma holds when p > 2, but at this time, what we draw is
not 2 spheres any more, but 2 inscribed similar Enclosed ellipsoid on which the
distance between a point and center is a constant in Lp space.

Lemma 3. In any Euclidean space with 2 agents A and B, if the output of
a deterministic unanimous translation-invariant strategyproof mechanism is on
the line AB, then it can only locate at A or B.

Proof. Similar to the proof of Theorem1, we set the output W and divide it into
three cases.

If ∃k > 0 that
−−→
WA = k · −−→

AB, then according to Lemma 2, we move A and
then B towards W with a tiny distance ε. In this period, the output is still W ,
which is contradict with translational-invariance.

If ∃k > 0 that
−−→
WB = k · −−→

BA, then according to Lemma 2, we move B and
then A towards W with a tiny distance ε. In this period, the output is still W ,
which is contradict with translational-invariance.

If ∃k > 0 that
−−→
AW = k · −−→

WB, then according to Lemma2, we move
A to W and have f(W,B) = W . Next we move B away from W to B′ so
that d(B′,W) = d(A,B). Therefore we notice that f(W,B′) = W + (W − A)
because otherwise B can gain from misreporting B′, and this is contradict with
translational-invariance.

Therefore, the lemma is proved.
�

418 J. Lin

A0 A1W0

B1

W1
Wx

BxB0

Fig. 2. Proof of Lemma 4

Lemma 4. In any Euclidean space with 2 agents A and B, the output W can
never satisfy that 0◦ < ∠AWB < 90◦.

Proof. For convenience, we use term Ax and Bx (x ∈ [0, 1]) and Wx = f(Ax, Bx).
Let ∠A0W0B0 ∈ (0◦, 90◦). Also let

−−−→
B0B1 =

−−−→
A0W0 and A1 = W0. Therefore we

have
−−−−→
W0W1 =

−−−→
B0B1. Here

−−−→
A0Ax = x · −−−→

A0A1,
−−−→
B0Bx = x · −−−→

B0B1 and
−−−−→
W0Wx =

x · −−−−→
W0W1. These are all drawn in Fig. 2.
According to Lemma 2, because f(Ax, Bx) = Wx, we can get f(A1, Bx) =

Wx. This means that if we fix A in A1 and move B from B0 to B1 on a straight
line, then W will move from W0 to W1 on a straight line. Because of strate-
gyproofness, for ∀x ∈ [0, 1], we have d(B1,Wx) ≥ d(B1,W1). However, since we
know that ∠A1W1B1 = ∠A0W0B0 < 90◦, then there must exist x < 1 so that
d(B1,Wx) < d(B1,W1). Therefore the lemma is proved.
�
Lemma 5. In any Euclidean space with 2 agents A and B, the output W can
never satisfy that 90◦ < ∠AWB < 180◦.

Proof. Similar to the proof of Lemma4, we use term Ax and Bx (x ∈ [0, 1])
and Wx = f(Ax, Bx). Let ∠A0W0B0 ∈ (90◦, 180◦). Also let

−−−→
B0B1 =

−−−→
A0W0

and A1 = W0. Therefore we have
−−−−→
W0W1 =

−−−→
B0B1. Here

−−−→
A0Ax = x · −−−→

A0A1,−−−→
B0Bx = x · −−−→

B0B1 and
−−−−→
W0Wx = x · −−−−→

W0W1.
According to Lemma 2, because f(Ax, Bx) = Wx, we can get f(A1, Bx) =

Wx. This means that if we fix A in A1 and move B from B0 to B1 on a
straight line, then W will move from W0 to W1 on a straight line. Because
of strategyproofness, for ∀x ∈ [0, 1], we have d(B0,Wx) ≥ d(B0,W0). However,
since we know that ∠W1A1B0 < 90◦, then there must exist x > 0 so that
d(B0,Wx) < d(B0,W0). Therefore the lemma is proved.
�
Theorem 2. In any Euclidean space with 2 agents A and B, the output W of a
deterministic unanimous translation-invariant strategyproof mechanism f must
satisfy −−→

AW · −−→BW = 0,

which means that W must locate on a sphere with AB as the diameter.

Nearly Complete Characterization of 2-Agent Deterministic Strategyproof 419

According to Lemma 3, 4 and 5, Theorem 2 is obvious. Notice this theorem
fits any dimension m > 1. Maybe intuitively we can guess that this can be
extended to more n-agent situation, but we will show that there is an counter-
example for any m > 2 in Sect. 5. Here is the conjecture that does not hold for
m > 2.

Conjecture 1. In any Euclidean space with n agents A1, ..., An, the output W
of a deterministic unanimous translation-invariant strategyproof mechanism f
must satisfy that

∃i, j ∈ N,
−−−→
AiW · −−−→

AjW = 0.

3.3 Multi-dimensional Lp Situation

As is mentioned in the last part, we know that other Lp space has less friendly
properties than L2 space. Therefore the result is not a right angle any more
because in other Lp space, a right triangle’s hypotenuse may not be the longest
side. We use analytical geometry to solve this problem. Obviously we only need
to analyze the case that the output W does not locate at A or B.

According to translational-invariance, We can assume that A(−x1, ...,−xm),
B(x1 , ..., xm

) and W (y1, ..., ym), then the distance between two points such as
A,W is dp(A,W) = (

∑m
i=1 |xi + yi|p)1/p.

Theorem 3. In any Lp space (2 < p < ∞) with 2 agents A and B, the output
W of a deterministic unanimous translation-invariant strategyproof mechanism
f must satisfy ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m∑
i=1

(xi + yi) · (xi − yi) · |xi − yi|p−2 = 0

m∑
i=1

(xi − yi) · (xi + yi) · |xi + yi|p−2 = 0

Proof. Consider such a situation. In a Lp space, let f(A0, B0) = W0, A1 =
W0 and

−−−→
B0B1 =

−−−→
A0A1, therefore we have

−−−−→
W0W1 =

−−−→
B0B1. We still use term

Ax, Bx,Wx which mean
−−−→
A0Ax =

−−−→
A0A1,

−−−→
B0Bx =

−−−→
B0B1 and

−−−−→
W0Wx =

−−−−→
W0W1

respectively.
Similar to the proof of Lemma 4 and Lemma 5, we can easily find that

f(A1, Bx) = Wx. Considering strategyproofness, because we know that when B
moves from B0 to B1 with fixed A1, Wx moves from W0 to W1, then d(Bx,Wx)
is the shortest distance between Bx and segment W0W1, otherwise agent B at
Bx may misreport her location B′

x to reduce her cost.
Because of translational-invariance, let α ∈ [−1, 1]. Using A,B,W instead of

A0, B0,W0, we set

g(α) =

(
m∑

i=1

|(yi + α · (yi + xi) − xi)|p
)1/p

.

420 J. Lin

Obviously, g(α) means the distance between B and some point in segment AW .
According to the last paragraph, we have g(0) = minα∈[−1,1] g(α), and g′(0) = 0
which means derivative of g(α).

In the same way, let h(β) (β ∈ [−1, 1]) denotes the distance between A and
some point in segment BW and we will have

h(β) =

(
m∑

i=1

|yi + β · (yi − xi) + xi|p
)1/p

,

and h′(0) = 0.
For convenience, let G(α) = g(α)p/p and H(α) = h(α)p/p, thus G′(0) =

H ′(0) = 0. We have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G′(α) =
m∑

i=1

(yi + α · (xi + yi) − xi) · |yi + α · (xi + yi) − xi|p−2 · (xi + yi)

H ′(β) =
m∑

i=1

(yi + β · (yi − xi) + xi) · |yi + β · (yi − xi) + xi|p−2 · (yi − xi)

Considering G′(0) = H ′(0) = 0, we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
i=1

(xi + yi) · (xi − yi) · |xi − yi|p−2 = 0

m∑
i=1

(xi − yi) · (xi + yi) · |xi + yi|p−2 = 0

In summary, the equations in the theorem hold.
�
We can find that the group of equations has an infinite number of solutions if

and only if p = 2 (When p = 2, |xi ± yi|p−2 in the equations should be replaced
with 1). And at this time the two equations are equivalent which mean the
output should locate on a sphere with AB as the diameter.

Theorem 4. In any Lp space (1 < p < ∞) with 2 agents A and B, a determinis-
tic unanimous translation-invariant strategyproof mechanism f must be scalable.

Proof. When p > 2, according to Theorem 3, because of finite number of valid
output locations, the property scalability holds, otherwise it will contradict with
continuity and translational-invariance (Let’s imagine a situation: We move one
agent to the other slowly, and if the output does not obey scalability, then it will
“jump” in some time to another valid output location). Therefore we only need
to discuss p = 2.

Considering translational-invariance, we can assume A locates at the origin.
Then we have f(k ·A, k ·B) = f(A, k ·B), which means we only need to move B.
Notice that for any k1 · k2 = 1, we find f(k1 · A, k1 · B) and f(k2 · A, k2 · B) are

Nearly Complete Characterization of 2-Agent Deterministic Strategyproof 421

inverted to each other. Therefore we only need to analyze 0 < k < 1 (Of course
we do not need to discuss when k = 1). Then we divide this into 3 cases.

Case 1, f(A,B) = A: According to Lemma 2, ∀k ∈ (0, 1), we have f(A, k ·
B) = A.

Case 2, f(A,B) = B: According to Lemma 2, ∀k ∈ (0, 1), we have f(A +
(1 − k) · B,B) = B. Considering translational-invariance, we have f(A, k · B) =
f(A + (1 − k) · B − (1 − k) · B,B − (1 − k) · B) = B − (1 − k) · B = k · B.

Case 3, f(A,B) = A,B: Assume W = f(A,B), B′ = k · B, and W ′ =
f(A,B′). Therefore, there exists C ∈ AW and D ∈ BW that

−−→
CD =

−−→
AB′ =

k·−−→AB. Obviously �WCD ∼= �W ′AB′. Thus we know W ′ ∈ AW ,
−−−→
AW ′ = k·−−→AW

and
−−−→
W ′B′ =

−−→
WB. This means that W ′ = k · W .
�

Also, we give our conjecture about the n-agent situation.

Conjecture 2. In any Lp (1 < p < ∞) space with n agents, a deterministic
unanimous translation-invariant strategyproof mechanism f is scalable.

4 Two Special Cases

Although we cannot give complete characterization of any 2-agent deterministic
unanimous translation-invariant strategyproof mechanism, we finish two special
cases. One is dictatorial mechanism in Euclidean spcae, and the other is anony-
mous mechanism in 2-dimensional Euclidean space.

4.1 Dictatorial Mechanisms

Theorem 5. In any Euclidean space with 2 agents, f is a deterministic unani-
mous translation-invariant strategyproof mechanism, then f is rotation-invariant
if and only if f is dictatorial.

Proof. First of all, if f is dictatorial, then obviously it is rotation-invariant. Then
we only need to analyze the case that f is rotation-invariant.

Let 2 agents be A and B, and we assume W = f(A,B). If there exists A0, B0

that W0 = f(A0, B0) = A0, B0, then we have f(W0, B0) = W0. Otherwise we
can imagine an agent A with location W0 misreports her location as A0 to reduce
her cost. Besides, we know that f is scalable and translation-invariant, then if
we move B0 to some B1 ∈ A0B0 so that ‖A0B1‖ = ‖W0B0‖. Therefore we will
find that it is contradict with rotational-invariance by observing f(A0, B1) and
f(W0, B0). Thus the output can only locate at A or B.

Consider the following three properties: rotational-invariance, translational-
invariance and scalability, and we will find that if f(A0, B0) = A0 (or B0, A0 =
B0 otherwise we can solve this by unanimity), then for ∀A,B ∈ Rm, we have
f(A,B) = A (or B), because any two points in Lp space can be transformed by
A0 and B0 with these three properties. Therefore, f is dictatorial.
�

422 J. Lin

4.2 Anonymous Mechanisms

Here we give 3 anonymous mechanisms in 2-dimensional Euclidean space. Let 2
agents be A and B with different coordinates (xA, yA) and (xB , yB) respectively.
For these 3 mechanisms, if A = B, then we select A (or B) as the facility.

Mechanism 1: (u, v)-C1 Mechanism (u, v ∈ {0, 1}).
If u = 1, then xW = max{xA, xB}; if u = 0, then xW = min{xA, xB}.
If v = 1, then yW = max{yA, yB}; if v = 0, then yW = min{yA, yB}.
Mechanism 2: (u)-C2 Mechanism (u = 0). Without loss of generality, we
assume xA ≤ xB. And W = f(A,B) with coordinate (xW , yW). We divide this
into three cases.

Case 1. When xA = xB, we let xW = xA. If u > 0, let yW = max{yA, yB} and
if u < 0, let yW = min{yA, yB}.
Notice other 2 cases satisfy xA < xB. Let R = (yB − yA)/(xB − xA).
Case 2. u > 0. When −1/u ≤ R ≤ u, draw line (1) y = u · (x − xA) + yA and
line (2) y = − 1

u ·(x−xB)+yB. Let W be the intersection of the two lines. When
R > u, we let W = A and when R < −1/u, we let W = B.
Case 3. u < 0. When u ≤ R ≤ −1/u, draw line (1) y = u · (x − xA) + yA and
line (2) y = − 1

u ·(x−xB)+yB. Let W be the intersection of the two lines. When
R > −1/u, we let W = A and when R < u, we let W = B.

Mechanism 3: (v)-C3 Mechanism (v = 0). Without loss of generality, we
assume yA ≤ yB. And W = f(A,B) with coordinate (xW , yW). We divide this
into three cases.

Case 1. When yA = yB, we let yW = yA. If v > 0, let xW = max{xA, xB} and
if v < 0, let xW = min{xA, xB}.
Notice other 2 cases satisfy xA < xB. Let S = (xB − xA)/(yB − yA).
Case 2. v > 0. When −1/v ≤ S ≤ v, draw line (1) x = v · (y − yA) + xA and
line (2) x = − 1

v ·(y−yB)+xB. Let W be the intersection of the two lines. When
S > v, we let W = A and when S < −1/v, we let W = B.
Case 3. v < 0. When v ≤ S ≤ −1/v, draw line (1) x = v · (y − yA) + xA and
line (2) x = − 1

v ·(y−yB)+xB. Let W be the intersection of the two lines. When
S > −1/v, we let W = A and when S < v, we let W = B.

Theorem 6. In any 2-dimensional Euclidean space with 2 agents, a mechanism
f is deterministic unanimous translation-invariant anonymous strategyproof, if
and only if f is one of Mechanism 1, 2, and 3.

Proof. Firstly we prove sufficiency. Obviously if f is one of the 3 mechanisms, it is
deterministic, unanimous, translation-invariant and anonymous. So we only need
to prove it is strategyproof. Considering translational-invariance, anonymity and
scalability (proved in previous theorem), we only need to prove for any A0(0, 0)
and B0(cos θ, sin θ), B cannot gain from misreporting her location.

Mechanism 1 is strategyproof: Out of symmetry, we only need to prove (1,1)-
C1 Mechanism is strategyproof.

Nearly Complete Characterization of 2-Agent Deterministic Strategyproof 423

(1) When θ ∈ [0, π/2], B will never misreport because her cost is 0.
(2) When θ ∈ (π/2, π), the facility is (0, sin θ) and B’s cost is − cos θ. Because
A0(0, 0), then xW ≥ 0, therefore this is the minimum cost for B.
(3) When θ ∈ [π, 3π/2], the facility is (0, 0) and B’s cost is 1. Because A0(0, 0),
then xW ≥ 0 and yW ≥ 0, therefore this is the minimum cost for B.
(4) When θ ∈ (3π/2, 2π), we can use the same way as (2) to prove.

Mechanism 2 and 3 are strategyproof: Out of symmetry, we only need to
prove Mechanism 2 is strategyproof for u > 0 and θ ∈ [−π/2, π/2] (And we fill
find this time xB ≥ xA).
(1) When θ ∈ [arctan u−π/2, arctan u], then W0 ∈ Line 1 (y = ux) and xW ≥ 0.
We assume B misreports as B′(x′, y′). When y′ ≥ 0, if y′/x′ > u or ≤ 0 or
x′ = 0, then the output will locate at top left of Line 1, leading the cost larger
than previous one; if y′/x′ ∈ [0, u], then the output will locate at Line 1, leading
the cost never smaller than the previous one because A0W0 ⊥ B0W0 and in
Euclidean space this is the smallest distance. When y′ < 0, in the same way, if
−1/u < y′/x′ < 0, the output will locate at Line 1; if y′/x′ < −1/u or > u or
x′ = 0, the output will locate at A; and if 0 < y′/x′ < u, the output will locate
at top left of Line 1.
(2) When θ ∈ (arctan u, π/2], B will never misreport because W0 = B0.
(3) When θ ∈ [−π/2, arctan u−π/2), then W0 = A0 and the cost is 1. We assume
B misreports as B′(x′, y′). When y′ ≤ 0, if y′/x′ ≤ −1/u or ≥ u or x′ = 0, the
output will still locate at A0; if −1/u < y′/x′ ≤ 0, the output W ′ ∈ Line 1 and
∠B0A0W

′ > 90◦ so the cost will increase; if 0 < y′/x′ < u, the output W ′ ∈
Line 2 and ∠B0A0W

′ > 90◦ so the cost will increase. When y′ > 0, in the same
way, we have ∠B0A0W

′ > 90◦.
Secondly, we prove necessity. In fact, we only need to observe the output of

f((0,−1), (0, 1)) and f((−1, 0), (1, 0)) and this is enough for us to characterize
the whole mechanism. According to Theorem 2, any output W must satisfy

−−→
WA·−−→

WB = 0. We divide this into 4 cases.
(1) f((0,−1), (0, 1)) = (0,±1) and f((−1, 0), (1, 0)) = (±1, 0). Out of symme-

try, we mainly discuss the positive result (1, 0) and (0, 1). We claim this mech-
anism is the same as (1, 1)-C1 Mechanism. The proof is rather easy. Assume
there exists a group of W0 = f(A0, B0) that xW = max{xA, xB}. Obviously
yA = yB , xA = xB, and W0, A0, B0 cannot locate at the same line, otherwise
it will contradict the condition at once. Because ∠A0W0B0 = 90◦, then if we
move two lines y = 0 and x = 0, we will finally find that one of the two lines
will have 2 intersections with broken line A0W0B0 and let the two intersections
on A0W0 and W0B0 be C and D (if there are infinite intersections, we can let
one of the two points be W0 and the other be A0 or B0, then there must be
one contradiction in these two situations. In other 3 cases, this discussion will
be omitted due to the length), thus we have f(C,D) = W0, which contradicts
with the conditions. In the same way we can also prove yW = max{yA, yB}
will lead to a contradiction, too. Therefore, this is the same as C1 Mechanism.
In summary, the four situations are the 4 combinations of C1 Mechanism with
different parameters.

424 J. Lin

(2) f((0,−1), (0, 1)) = (0,±1) and f((−1, 0), (1, 0)) = (cos θ1, sin θ1), where
θ1 = 0, π (same in the following (4)). Out of symmetry, we only consider
f((0,−1), (0, 1)) = (0,±1) and θ1 ∈ (0, π) (If θ1 ∈ (π, 2π) then we can use
the same method below to lead to a contradiction). According to Lemma2, for
∀C ∈ A0W0,∀D ∈ B0W0, we have f(C,D) = W0, which is the same as case 2 in
C2 Mechanism when (yA−yB)/(xA−xB) ∈ [sin θ1/(cos θ1−1), sin θ1/(1+cos θ1)].
When (yA − yB)/(xA − xB) > sin θ1/(1 + cos θ1) or < sin θ1/(cos θ1 − 1), we can
use the same method as (1) to prove W locates at agents with larger y axis,
which is the same as C2 Mechanism. In summary, this case means (sin θ1

1+cos θ1
)-C2

Mechanism.
(3) f((0,−1), (0, 1)) = (cos θ2, sin θ2) and f((−1, 0), (1, 0)) = (±1, 0), where

θ2 = 0.5π, 1.5π (same in the following (4)). This case is the same as (cos θ2
1+sin θ2

)-C3
Mechanism. The proof is similar to (2), thus omitted.

(4) f((0,−1), (0, 1)) = (cos θ2, sin θ2) and f((−1, 0), (1, 0)) = (cos θ1, sin θ1).
In fact, this case cannot exist. Let A0(−1, 0), B0(1, 0), A1(0,−1), B1(0, 1). We can
draw a line which can be moved in the space and let it has 2 intersections with
broken lines A0W0B0 and A1W1B1 and the intersections are C0,D0 and C1,D1

respectively. Considering f(C0,D0) = W0 and f(C1,D1) = W1, we find that
considering translational-invariance and scalability, the contradiction is obvious.

�

5 Discussion

In this section we will discuss the general median mechanism and the lower
bound of the maximum cost view.

Mechanism 4: (General Median Mechanism). Given location of n agents, let
W be the output, then in every dimension, W ’s coordinate is equal to agents’
median coordinate in this dimension. If there are 2 median coordinates, then we
select the larger one.

In fact, when there are 2 median coordinates, it does not matter if we select
the larger one or the smaller one.

Lemma 6. The General Median Mechanism in Euclidean space fits Conjecture
1 if and only if dimension m ≤ 2.

Proof. Obviously this mechanism is unanimous, translation-invariant, scalable,
and much literature have proved that it’s strategyproof in Lp space. When m =
1, Conjecture 1 is also obvious.

When m = 2, Let’s recall Theorem 2. If ∃i ∈ N,W = Ai, then for any j ∈ N ,
we have

−−−→
WAi ·−−−→

WAj = 0. If for ∀i ∈ N,W = Ai, then assuming W (0, ..., 0), there
must exists As, At that they locate on different axes, meaning

−−−→
WAs · −−−→

WAt = 0.
When m ≥ 3, we can give an counter-example with 3 agents. Let them

be A1(0, 1,−1, 0, ..., 0), A2(−1, 0, 1, 0, ..., 0) and A3(1,−1, 0, 0, ..., 0). Then the
output is (0, 0, ..., 0). But this is contradict with Conjecture 1.
�

Nearly Complete Characterization of 2-Agent Deterministic Strategyproof 425

In the end, we use our tool to prove a lower bound of 2 in the maximum cost
view.

Lemma 7. In any Lp space and maximum cost view, the lower bound of deter-
ministic strategyproof mechanism is 2.

Proof. Assume f(A,B) = W and A,B are the only two agents, then according
to the tool for the proof of Theorem5, we have f(W,B) = B, which means that
if there two agents located at W and B, then the maximum cost of f is always
at least twice the optimal maximum cost d(W,B)/2.
�

Many works proves this result in one-dimensional space and we give a simple
proof of the multi-dimensional space.

References

1. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof approxi-
mation of the minimax on networks. Math. Oper. Res. 35(3), 513–526 (2010)

2. Barberà, S., Gul, F., Stacchetti, E.: Generalized median voter schemes and com-
mittees. J. Econ. Theory 61(2), 262–289 (1993)

3. Barberà, S., Massó, J., Serizawa, S.: Strategy-proof voting on compact ranges.
Games Econ. Behav. 25(2), 272–291 (1998)

4. Border, K.C., Jordan, J.S.: Straightforward elections, unanimity and phantom vot-
ers. Rev. Econ. Stud. 50(1), 153–170 (1983)

5. Feigenbaum, I., Sethuraman, J., Ye, C.: Approximately optimal mechanisms for
strategyproof facility location: minimizing LP norm of costs. Math. Oper. Res.
42(2), 434–447 (2017)

6. Filos-Ratsikas, A., Li, M., Zhang, J., Zhang, Q.: Facility location with double-
peaked preferences. Auton. Agents Multi-Agent Syst. 31(6), 1209–1235 (2017).
https://doi.org/10.1007/s10458-017-9361-0

7. Fong, K.C., Li, M., Lu, P., Todo, T., Yokoo, M.: Facility location games with
fractional preferences. In: 32nd AAAI Conference on Artificial Intelligence, AAAI
2018, pp. 1039–1046. AAAI Press (2018)

8. Fotakis, D., Tzamos, C.: Winner-imposing strategyproof mechanisms for multiple
facility location games. Theor. Comput. Sci. 472, 90–103 (2013)

9. Li, M., Lu, P., Yao, Y., Zhang, J.: Strategyproof mechanism for two heteroge-
neous facilities with constant approximation ratio. arXiv preprint arXiv:1907.08918
(2019)

10. Moulin, H.: On strategy-proofness and single peakedness. Public Choice 35(4),
437–455 (1980)

11. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 177–186
(2009)

12. Serafino, P., Ventre, C.: Heterogeneous facility location without money on the line.
In: ECAI, pp. 807–812 (2014)

13. Tang, P., Yu, D., Zhao, S.: Characterization of group-strategyproof mechanisms
for facility location in strictly convex space. In: Proceedings of the 21st ACM
Conference on Economics and Computation, pp. 133–157 (2020)

14. Yuan, H., Wang, K., Fong, K.C., Zhang, Y., Li, M.: Facility location games with
optional preference. In: Proceedings of the Twenty-Second European Conference
on Artificial Intelligence, pp. 1520–1527 (2016)

https://doi.org/10.1007/s10458-017-9361-0
http://arxiv.org/abs/1907.08918

Packing and Covering Triangles in Dense
Random Graphs

Zhongzheng Tang1 and Zhuo Diao2(B)

1 School of Sciences, Beijing University of Posts and Telecommunications,
Beijing 100876, China

tangzhongzheng@amss.ac.cn
2 School of Statistics and Mathematics, Central University of Finance

and Economics, Beijing 100081, China
diaozhuo@amss.ac.cn

Abstract. Given a simple graph G = (V, E), a subset of E is called
a triangle cover if it intersects each triangle of G. Let νt(G) and τt(G)
denote the maximum number of pairwise edge-disjoint triangles in G
and the minimum cardinality of a triangle cover of G, respectively. Tuza
[25] conjectured in 1981 that τt(G)/νt(G) ≤ 2 holds for every graph G.
In this paper, we consider Tuza’s Conjecture on dense random graphs.
We prove that under G(n, p) model with p = Ω(1), for any 0 < ε < 1,
τt(G) ≤ 1.5(1 + ε)νt(G) holds with high probability, and under G(n, m)
model with m = Ω(n2), for any 0 < ε < 1, τt(G) ≤ 1.5(1+ ε)νt(G) holds
with high probability. In some sense, on dense random graphs, these
conclusions verify Tuza’s Conjecture.

Keywords: Triangle cover · Triangle packing · Random graph ·
G(n,p) model · G(n,m) model.

1 Introduction

Graphs considered in this paper are undirected, finite and may have multiple
edges. Given a graph G = (V,E) with vertex set V (G) = V and edge set
E(G) = E, for convenience, we often identify a triangle in G with its edge set.
A subset of E is called a triangle cover if it intersects each triangle of G. Let
τt(G) denote the minimum cardinality of a triangle cover of G, referred to as
the triangle covering number of G. A set of pairwise edge-disjoint triangles in
G is called a triangle packing of G. Let νt(G) denote the maximum cardinality
of a triangle packing of G, referred to as the triangle packing number of G.
It is clear that 1 ≤ τt(G)/νt(G) ≤ 3 holds for every graph G. Our research
is motivated by the following conjecture raised by Tuza [25] in 1981, and its
weighted generalization by Chapuy et al. [7] in 2014.

This research is supported part by National Natural Science Foundation of China under
Grant No. 11901605, and by the disciplinary funding of Central University of Finance
and Economics.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 426–439, 2020.
https://doi.org/10.1007/978-3-030-64843-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_29&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_29

Packing and Covering Triangles in Dense Random Graphs 427

Conjecture 1. (Tuza’s Conjecture [25]). τt(G)/νt(G) ≤ 2 holds for every
simple graph G.

To the best of our knowledge, the conjecture is still unsolved in general. If it
is true, then the upper bound 2 is sharp as shown by K4 and K5 – the complete
graphs of orders 4 and 5.

Related Work. The only known universal upper bound smaller than 3 was given
by Haxell [14], who shown that τt(G)/νt(G) ≤ 66/23 = 2.8695... holds for all
simple graphs G. Haxell’s proof [14] implies a polynomial-time algorithm for
finding a triangle cover of cardinality at most 66/23 times that of a maximal
triangle packing. Other results on Tuza’s conjecture concern with special classes
of graphs.

Tuza [26] proved his conjecture holds for planar simple graphs, K5-free
chordal simple graphs and simple graphs with n vertices and at least 7n2/16
edges. The proof for planar graphs [26] gives an elegant polynomial-time algo-
rithm for finding a triangle cover in planar simple graphs with cardinality at
most twice that of a maximal triangle packing. The validity of Tuza’s conjecture
on the class of planar graphs was later generalized by Krivelevich [18] to the class
of simple graphs without K3,3-subdivision. Haxell and Kohayakawa [15] showed
that τt(G)/νt(G) ≤ 2−ε for tripartite simple graphs G, where ε > 0.044. Haxell,
Kostochka and Thomasse [13] proved that every K4-free planar simple graph G
satisfies τt(G)/νt(G) ≤ 1.5.

Regarding the tightness of the conjectured upper bound 2, Tuza [26] noticed
that there exists infinitely many simple graphs G attaining the conjectured upper
bound τt(G)/νt(G) = 2. Cui et al. [11] characterized planar simple graphs G
satisfying τt(G)/νt(G) = 2; these graphs are edge-disjoint unions of K4’s plus
possibly some vertices and edges that are not in triangles. Baron and Kahn [2]
proved that Tuza’s conjecture is asymptotically tight for dense simple graphs.

Fractional and weighted variants of Conjecture 1 were studied in literature.
Krivelevich [18] proved two fractional versions of the conjecture: τt(G) ≤ 2ν∗

t (G)
and τ∗

t (G) ≤ 2νt(G) , where τ∗
t (G) and ν∗

t (G) are the values of an optimal
fractional triangle cover and an optimal fractional triangle packing of simple
graph G, respectively. [16] proved if G is a graph with n vertices, then ν∗

t (G) −
νt(G) = o(n2).

We can regard the classic random graph models G(n, p) and G(n,m) as special
graph classes, and we can also consider the probabilistic properties between
τt(G) and νt(G). Bennett et al. [3] showed that τt(G) ≤ 2νt(G) holds with high
probability in G(n,m) model where m ≤ 0.2403n1.5 or m ≥ 2.1243n1.5. Relevant
studies in random graph models were discussed in [1,19,24]. Other extensions
related to Conjecture 1 can be found in [4–6,8–10,12,17,20–23].

Our Contributions. We consider Tuza’s conjecture on random graph, under two
probability models G(n, p) and G(n,m).

– Given 0 ≤ p ≤ 1, under G(n, p) model, Pr({vi, vj} ∈ G) = p for all vi, vj with
these probabilities mutually independent. Our main theorem is following: If

428 Z. Tang and Z. Diao

G ∈ G(n, p) and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

– Given 0 ≤ m ≤ n(n−1)/2, under G(n,m) model, let G be defined by randomly
picking m edges from all vi, vj pairs. Our main theorem is following: If G ∈
G(n,m) and m = Ω(n2), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

The main content of the article is organized as follows: In Sect. 2, the theorem
in G(n, p) random graph model is proved; In Sect. 3, the theorem in G(n,m)
random graph model is proved; In Sect. 4, the conclusions are summarized and
some future works are proposed. The appendix provides a list of mathematical
symbols and classical theorems.

2 G(n, p) Random Graph Model

In this section, we discuss the probability properties of graphs in G(n, p). Given
0 ≤ p ≤ 1, under G(n, p) model, Pr({vi, vj} ∈ G) = p for all vi, vj with these
probabilities mutually independent. Theorem1 is our main result: If G ∈ G(n, p)
and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

The primary idea behind the theorem is as follows:

– First, in Lemma 2, Lemma 3, we prove that τt(G) ≤ (1+ε)n(n−1)
4 p holds with

high probability by combining the Chernoff’s bounds technique;
– Second, in Lemma 4, Lemma 6, we prove that νt(G) ≥ (1 − ε)n(n−1)

6 p holds
with high probability through combining the Chernoff’s bounds technique
and the relationship between ν∗(G) and νt(G)[16].

– By using the previous two properties, Theorem 1 holds.

The following simple property will be used frequently in our discussions.

Lemma 1. Let A(n) and B(n) be two events related to parameter n. If
Pr[A(n)] = 1 − o(1), then Pr[B(n)] ≥ Pr[B(n)|A(n)] − o(1) where o(1) → 0 as
n → ∞.

Proof. This can be seen from the fact that Pr[A] · Pr[B] = Pr[B] − o(1) ≥
Pr[A ∩ B] − o(1) and o(1)/Pr[A] = o(1).

Denote the edge number of graph G as m. Let b(G) be the maximum number
of edges of sub-bipartite in G. There are four basic properties of graph parame-
ters. The first three holds in every graph, while the last one shows the boundary
condition of triangle-free in G(n, p).

Packing and Covering Triangles in Dense Random Graphs 429

Lemma 2.

(i) b(G) ≥ m/2 for every graph G.
(ii) τt(G) ≤ m/2 for every graph G.
(iii) νt(G) ≤ m/3 for every graph G.
(iv) If G ∈ G(n, p) and p = o(1/n), then G is triangle-free with high probability.

Proof. Suppose b(G) < m/2 and the corresponding sub-bipartite is B = (V1, V2).
Thus, there exists one vertex, without loss of generality, u ∈ V1 satisfies that
dB(u) < dG(u)/2. We can move vertex u from V1 to V2, and let ˜B = (˜V1, ˜V2)
where ˜V1 = V1\{u}, ˜V2 = V2 ∪ {u}. We have |E(˜B)| > |E(B)| = b(G), which
contradicts with the definition of b(G). Therefore, statement (i) holds.
Statement (ii) follows from the definition of b(G) and the result of statement (i).
Statement (iii) is trivial.
Applying Union Bound Inequality, Statement (iv) is due to

Pr[G contains at least a triangle] ≤
(

n

3

)

· p3 = o(1)

In view of Lemma 2(iv), we consider henceforth G(n, p) with p = Ω(1/n).
Under this condition, we give the following upper bounds for τt(G) and νt(G)
with high probability.

Lemma 3. If G ∈ G(n, p) and p = Ω(1/n), for any 0 < ε < 1, it holds that

Pr
[

τt(G) ≤ (1 + ε)
n(n − 1)

4
p

]

= 1 − o(1). (1)

Pr
[

νt(G) ≤ (1 + ε)
n(n − 1)

6
p

]

= 1 − o(1). (2)

Proof. For each edge e in complete graph Kn, Let Xe be the random variable
defined by: Xe = 1 if e ∈ E(G) and Xe = 0 otherwise. Then Xe, e ∈ Kn, are
independent 0–1 variables, E[Xe] = p, m =

∑

e∈Kn
Xe and E[m] = n(n−1)p/2 =

Ω(n). By Chernoff’s Inequality, for any 0 < ε < 1 we have

Pr[m ≥ (1 + ε)E[m]] ≤ exp
(

−ε2E[m]
3

)

= o(1).

Thus, it follows from Lemma 2(ii) and (iii) that

Pr
[

τt(G) ≤ (1 + ε)
n(n − 1)

4
p

]

= Pr
[

2τt(G) ≤ (1 + ε)
n(n − 1)

2
p

]

≥ Pr
[

m ≤ (1 + ε)
n(n − 1)

2
p

]

= Pr [m ≤ (1 + ε)E(m)]
= 1 − o(1)

430 Z. Tang and Z. Diao

Similarly,

Pr
[

νt(G) ≤ (1 + ε)
n(n − 1)

6
p

]

= Pr
[

3νt(G) ≤ (1 + ε)
n(n − 1)

2
p

]

≥ Pr
[

m ≤ (1 + ε)
n(n − 1)

2
p

]

= 1 − o(1)

proving the lemma.

Along a different line, we consider the probability result of the lower bounds
of the fractional triangle packing ν∗

t (G) as follows:

Lemma 4. If G ∈ G(n, p) and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr
[

ν∗
t (G) ≥ (1 − ε)

n(n − 1)p
6

]

= 1 − o(1).

Proof. Consider an arbitrary edge uv ∈ Kn. For each w ∈ V (G) \ {u, v}. Let
Xw be the random variable defined by: Xw = 1 if uw, vw ∈ E(G) and Xw = 0
otherwise. Assuming uv ∈ E(G), let Tuv denote the number of triangles of G that
contain uv. Notice that Xw, w ∈ V (G) \ {u, v}, are independent 0–1 variables,
E[Xw] = p2, Tuv =

∑

w∈V (G)\{u,v} Xw, and E[Tuv] = (n − 2)p2. By Chernoff’s
Inequality, we have

Pr
[

Tuv ≥
(

1 +
ε

2

)

(n − 2)p2
]

≤ exp
(

−ε2(n − 2)p2

12

)

,

and by using Union Bound Inequality

Pr
[
Te ≥

(
1 +

ε

2

)
(n − 2)p2 for some e ∈ E(G)

]
≤ n2 · exp

(
− ε2(n − 2)p2

12

)
= o(1).

Now taking every triangle of G with an amount of
1

(1 + ε
2)(n − 2)p2

, we obtain

a feasible fractional triangle packing of G with high probability, giving

Pr

⎡

⎣ν∗
t (G) ≥

∑

T∈T (G)

1
(1 + ε

2)(n − 2)p2

⎤

⎦

= Pr
[

ν∗
t (G) ≥ T (G)

(1 + ε
2)(n − 2)p2

]

= 1 − o(1)

(3)

For each triangle T ∈ Kn, let XT be the random variable defined by: XT = 1
if T ⊆ G and XT = 0 otherwise. Then

E[XT] = Pr[XT = 1] = p3 and Var[XT] = p3(1 − p3).

Packing and Covering Triangles in Dense Random Graphs 431

For any two distinct triangles T1, T2 in Kn, we have

Cov[XT1 , XT2] = E[XT1XT2] − E[XT1]E[XT2] =

{
p5 − p6, if E(T1) ∩ E(T2) �= ∅
0, otherwise.

Denote T (G) =
∑

T∈T (Kn)
XT . Combining p = Ω(1), we can compute

E[T (G)] =
(

n

3

)

p3 = Θ(n3).

Var[T (G)] =
(

n

3

)

p3(1 − p3) + 2
(

n

2

)(

n − 2
2

)

(p5 − p6) = Θ(n4).

Thus, Chebyshev’s Inequality gives

Pr
[

T (G) ≤
(

1 − ε

2

)

E[T (G)]
]

≤ Pr
[

|T (G) − E[T (G)]| ≥ ε

2
E[T (G)]

]

≤ 4Var[T (G)]
ε2(E[T (G)])2

= o(1)

(4)

Then, since
1 − ε/2
1 + ε/2

> 1 − ε when 0 < ε < 1, we obtain

Pr
[

ν∗
t (G) ≥ (1 − ε)

n(n − 1)
6

p

]

≥ Pr
[

ν∗
t (G) ≥ 1 − ε/2

1 + ε/2
· n(n − 1)

6
p

]

≥ Pr
[

ν∗
t (G) ≥ 1 − ε/2

1 + ε/2
· n(n − 1)

6
p

∣

∣

∣

∣

ν∗
t (G) ≥ T (G)

(1 + ε/2)(n − 2)p2

]

− o(1)

≥ Pr
[

T (G)
(1 + ε/2)(n − 2)p2

≥ 1 − ε/2
1 + ε/2

· n(n − 1)
6

p

]

− o(1)

= Pr [T (G) ≥ (1 − ε/2)E[T (G)]] − o(1)
= 1 − o(1),

where the second inequality is implied by Lemma 1 and (3), and the last equality
is implied by (4). The lemma is established.

We take advantage of the following result in [16] to bridge the relationship of
ν∗

t (G) and νt(G). This result shows that the gap between these two parameters
is very small when graph G is dense.

Lemma 5. ([16]). If G is a graph with n vertices, then ν∗
t (G) − νt(G) = o(n2).

Combining the above lemma, we derive naturally the lower bound of νt(G)
with high probability.

432 Z. Tang and Z. Diao

Lemma 6. If G ∈ G(n, p) and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr
[

νt(G) ≥ (1 − ε) · n(n − 1)p
6

]

= 1 − o(1).

Proof. Using Lemma 5, when n is sufficiently large we have

Pr
[

νt(G) ≥ (1 − ε) · n(n − 1)p
6

]

= Pr
[

ν∗
t (G) ≥ (1 − ε) · n(n − 1)p

6
+ o(n2)

]

≥ Pr
[

ν∗
t (G) ≥ (1 − ε) · n(n − 1)p

6
+

ε

2
· n(n − 1)p

6

]

= Pr
[

ν∗
t (G) ≥

(

1 − ε

2

) n(n − 1)p
6

]

.

The result follows from Lemma 4.

Now we are ready to prove one of the two main theorems:

Theorem 1. If G ∈ G(n, p) and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

Proof. Let A denote the event that

τt(G) ≤
(

1 +
ε

3

) n(n − 1)
4

p and νt(G) ≥
(

1 − ε

3

) n(n − 1)p
6

.

Combining Lemmas 3 and 6 we have Pr[A] = 1−o(1). Note that 1+ε >
1 + ε/3
1 − ε/3

.

Therefore, recalling Lemma 1, we deduce that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)]

≥ Pr
[

τt(G) ≤ 1.5 · 1 + ε/3
1 − ε/3

νt(G)
]

≥ Pr
[

τt(G) ≤ 1.5 · 1 + ε/3
1 − ε/3

νt(G)
∣

∣

∣

∣

A

]

− o(1)

= 1 − o(1),

which establishes the theorem.

Remark 1. In G(n, p), p = Ω(1) implies E[m] =
(

n
2

)

p = n(n − 1)p/2 = Ω(n2),
thus our main theorem is a result in dense random graphs.

Packing and Covering Triangles in Dense Random Graphs 433

3 G(n,m) Random Graph Model

In this section, we discuss the probability properties of graphs in G(n,m). Given
0 ≤ m ≤ n(n−1)/2, under G(n,m) model, let G be defined by randomly picking
m edges from all vi, vj pairs. Theorem 2 is our main result: If G ∈ G(n,m) and
m = Ω(n2), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

The primary idea behind the theorem is as follows:

– First, in Lemma 2, τt(G) ≤ m/2 holds;
– Second, in Lemma 7, Lemma 8, we prove that νt(G) ≥ (1 − ε)m/3 holds with

high probability through combining the Chernoff’s bounds technique and the
relationship between ν∗(G) and νt(G) [16];

– By using the previous two properties, Theorem 2 holds.

For easy of presentation, we use N to denote
(

n

2

)

.

Now we give the high probability result of the lower bound of ν∗
t (G) in

G(n,m) model:

Lemma 7. If G ∈ G(n,m) and m = Ω(n2), then for any 0 < ε < 1, it holds
that

Pr[ν∗
t (G) ≥ (1 − ε)m/3] = 1 − o(1).

Proof. Consider an arbitrary edge uv ∈ Kn. For each w ∈ V (G) \ {u, v}. Let
Xw be the random variable defined by; Xw = 1 if uw, vw ∈ E(G) and Xw = 0
otherwise. Assuming uv ∈ E(G), let Tuv denote the number of triangles of G
that contain uv. Then we have

E[Xw] =
m(m − 1)
N(N − 1)

,

Var[Xw] =
m(m − 1)
N(N − 1)

(1 − m(m − 1)
N(N − 1)

)

Cov[Xw,Xw′] =
m(m − 1)(m − 2)(m − 3)
N(N − 1)(N − 2)(N − 3)

− (
m(m − 1)
N(N − 1)

)2 ≤ 0

where w,w′ ∈ V (G) \ {u, v}. It follows from Tuv =
∑

w∈V (G)\{u,v} Xw that

E[Tuv] = (n − 2)
m(m − 1)
N(N − 1)

= Θ(n).

Using Chernoff’s Inequality, we derive

Pr

[
Tuv ≥

(
1 +

ε

2

) (n − 2)m(m − 1)

N(N − 1)

]
≤ exp

(
− ε2E[Tuv]

12

)
≤ exp

(
− ε2Θ(n)

12

)
;

Pr

[
Te ≥

(
1 +

ε

2

) (n − 2)m(m − 1)

N(N − 1)
∃ e ∈ E(G)

]
≤ n2 exp

(
− ε2Θ(n)

12

)
= o(1).

434 Z. Tang and Z. Diao

So taking every triangle of G with an amount of
[

(1 +
ε

2
) · (n − 2)m(m − 1)

N(N − 1)

]−1

makes a feasible fractional packing of G with high probability. Thus

Pr

⎡

⎣ν∗
t (G) ≥

∑

∀T

1

(1 + ε
2) · (n−2)m(m−1)

N(N−1)

⎤

⎦

= Pr

⎡

⎣ν∗
t (G) ≥ T (G)

(1 + ε
2) · (n−2)m(m−1)

N(N−1)

⎤

⎦

= 1 − o(1).

(5)

For each triangle T ∈ Kn, let XT be the random variable defined by: XT = 1
if T ⊆ G and XT = 0 otherwise. Then

E[XT] =
m(m − 1)(m − 2)
N(N − 1)(N − 2)

.

Var[XT] =
m(m − 1)(m − 2)
N(N − 1)(N − 2)

(

1 − m(m − 1)(m − 2)
N(N − 1)(N − 2)

)

.

For any two distinct triangles T1, T2 in Kn, we have

Cov(XT1 ,XT2)
= E[XT1XT2] − E[XT1] · E[XT2]

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

m(m − 1)(m − 2)(m − 3)(m − 4)
N(N − 1)(N − 2)(N − 3)(N − 4)

−
(

m(m − 1)(m − 2)
N(N − 1)(N − 2)

)2

,

if E(T1) ∩ E(T2)
= ∅;
0, otherwise.

Notice that

E[T (G)] =
(

n

3

)

m(m − 1)(m − 2)
N(N − 1)(N − 2)

= Θ(n3)

Var[T (G)] =
(

n

3

)

m(m − 1)(m − 2)
N(N − 1)(N − 2)

(

1 − m(m − 1)(m − 2)
N(N − 1)(N − 2)

)

+

2
(

n

2

)(

n − 2
2

)

(

m(m − 1)(m − 2)(m − 3)(m − 4)
N(N − 1)(N − 2)(N − 3)(N − 4)

−
(

m(m − 1)(m − 2)
N(N − 1)(N − 2)

)2
)

= Θ(n4).

By Chebyshev’s Inequality, we have:

Pr
[

T (G) ≤
(

1 − ε

4

)

E[T (G)]
]

≤ Pr
[

|T (G) − E[T (G)]| ≥ ε

4
E[T (G)]

]

≤ 16Var[T (G)]
ε2(E[T (G)])2

= o(1).

(6)

Packing and Covering Triangles in Dense Random Graphs 435

Since
1 − ε/2
1 + ε/2

> 1 − ε, we deduce from (5) and Lemma 1 that

Pr
[

ν∗
t (G) ≥ (1 − ε)

m

3

]

≥ Pr
[

ν∗
t (G) ≥ 1 − ε/2

1 + ε/2
· m

3

]

≥ Pr

⎡

⎣ν∗
t (G) ≥ 1 − ε/2

1 + ε/2
· m

3

∣

∣

∣

∣

∣

∣

ν∗
t (G) ≥ T (G)

(1 + ε
2) (n−2)m(m−1)

N(N−1)

⎤

⎦ − o(1)

≥ Pr

⎡

⎣

T (G)

(1 + ε
2) (n−2)m(m−1)

N(N−1)

≥ 1 − ε/2
1 + ε/2

· m

3

⎤

⎦ − o(1)

= Pr
[

T (G) ≥
(

1 − ε

2

)

(

n

3

)

m2(m − 1)
N2(N − 1)

]

− o(1)

As (1 +
ε

4
)
m − 2
N − 2

>
m

N
holds for sufficiently large n, we have

Pr
[

ν∗
t (G) ≥ (1 − ε)

m

3

]

≥ Pr
[

T (G) ≥
(

1 − ε

2

) (

1 +
ε

4

)

(

n

3

)

m(m − 1)(m − 2)
N(N − 1)(N − 2)

]

− o(1)

≥ Pr
[

T (G) ≥
(

1 − ε

4

)

E[T (G)]
]

− o(1)

= 1 − o(1),

where the second inequality is implied by (1 − ε/2)(1 + ε/4) ≤ 1 − ε/4, and the
last equality is guaranteed by (6). This complete the proof of the lemma.

Similar to the the proof of Lemma6, the combination of Lemma 5 and
Lemma 7 gives the following Lemma 8.

Lemma 8. If G ∈ G(n,m) and m = Ω(n2), then for any 0 < ε < 1, it holds
that

Pr[νt(G) ≥ (1 − ε)m/3] = 1 − o(1).

Proof. Using Lemma 5, when n is sufficiently large we have

Pr [νt(G) ≥ (1 − ε)m/3]
= Pr

[

ν∗
t (G) ≥ (1 − ε)m/3 + o(n2)

]

≥ Pr
[

ν∗
t (G) ≥ (1 − ε)m/3 +

ε

2
· m/3

]

= Pr
[

ν∗
t (G) ≥

(

1 − ε

2

)

m/3
]

.

The result follows from Lemma 7.

436 Z. Tang and Z. Diao

Now, we are ready to prove the main theorem in G(n,m) as follows:

Theorem 2. If G ∈ G(n,m) and m = Ω(n2), then for any 0 < ε < 1, it holds
that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

Proof. Let A denote the event that

τt(G) ≤ m

2
and νt(G) ≥ (1 − ε

2
)
m

3
.

It follows from Lemmas 2(ii) and 8 that Pr[A] = 1−o(1). Since 1+ε > (1−ε/2)−1,
we deduce from Lemma 1 that

Pr[τt(G) ≤ 1.5(1 + ε)νt(G)]
≥ Pr [(1 − ε/2) · τt(G) ≤ 1.5νt(G)]
≥ Pr [(1 − ε/2) · τt(G) ≤ 1.5νt(G) |A] − o(1)
= 1 − o(1)

verifying the theorem.

Remark 2. In G(n,m), the condition m = Ω(n2) implies that our main theorem
is a result in dense random graphs.

4 Conclusion and Future Work

We consider Tuza’s conjecture on random graphs, under two probability models
G(n, p) and G(n,m). Two results are following:

– If G ∈ G(n, p) and p = Ω(1), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

– If G ∈ G(n,m) and m = Ω(n2), then for any 0 < ε < 1, it holds that

Pr [τt(G) ≤ 1.5(1 + ε)νt(G)] = 1 − o(1).

In some sense, on dense random graph, these two inequalities verify Tuza’s con-
jecture.

Future work: In dense random graphs, these two results nearly imply τt(G) ≤
1.5νt(G) holds with high probability. It is interesting to consider the same prob-
lem in sparse random graphs.

Acknowledgement. The authors are very indebted to Professor Xujin Chen and
Professor Xiaodong Hu for their invaluable suggestions and comments.

Packing and Covering Triangles in Dense Random Graphs 437

Appendix: A List of Mathematical Symbols

G(n, p) Given 0 ≤ p ≤ 1, Pr({vi, vj} ∈ G) = p for all vi, vj

With these probabilities mutually independent

G(n, m) Given 0 ≤ m ≤ n(n − 1)/2, let G be defined by

Randomly picking m edges from all vi, vj pairs

τt(G) The minimum cardinality of a triangle cover in G

νt(G) The maximum cardinality of a triangle packing in G

τ∗
t (G) The minimum cardinality of a fractional triangle cover in G

ν∗
t (G) The maximum cardinality of a fractional triangle packing in G

b(G) The maximum number of edges of sub-bipartite in G

δ(G) The minimum degree of graph G

f(n) = O(g(n)) ∃ c > 0, n0 ∈ N+, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n)

f(n) = Ω(g(n)) ∃ c > 0, n0 ∈ N+, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n)

f(n) = Θ(g(n)) ∃ c1 > 0, c2 > 0, n0 ∈ N+, ∀n ≥ n0,0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

f(n) = o(g(n)) ∀ c > 0, ∃ n0 ∈ N+, ∀n ≥ n0, 0 ≤ f(n) < cg(n)

f(n) = ω(g(n)) ∀ c > 0, ∃ n0 ∈ N+, ∀n ≥ n0, 0 ≤ cg(n) < f(n)

Union Bound Inequality:
For any finite or countably infinite sequence of events E1, E2, . . . , then

Pr

⎡

⎣

⋃

i≥1

Ei

⎤

⎦ ≤
∑

i≥1

Pr(Ei).

Chernoff’s Inequalities:
Let X1,X2, . . . , Xn be mutually independent 0–1 random variables with Pr[Xi =
1] = pi. Let X =

∑n
i=1 Xi and μ = E[X]. For 0 < ε ≤ 1, then the following

bounds hold:

Pr[X ≥ (1 + ε)μ] ≤ e−ε2μ/3, Pr[X ≤ (1 − ε)μ] ≤ e−ε2μ/2.

Chebyshev’s Inequality:
For any a > 0,

Pr[|X − E[X]| ≥ a] ≤ Var[X]
a2

.

References

1. Baron, J.D.: Two problems on cycles in random graphs. Ph.D. thesis, Rutgers
University-Graduate School-New Brunswick (2016)

438 Z. Tang and Z. Diao

2. Baron, J.D., Kahn, J.: Tuza’s conjecture is asymptotically tight for dense graphs.
Comb. Probab. Comput. 25(5), 645–667 (2016)

3. Bennett, P., Dudek, A., Zerbib, S.: Large triangle packings and Tuza’s conjecture
in sparse random graphs. Comb. Probab. Comput. 29(5), 757–779 (2020)

4. Botler, F., Fernandes, C., Gutiérrez, J.: On Tuza’s conjecture for triangulations and
graphs with small treewidth. Electron. Notes Theor. Comput. Sci. 346, 171–183
(2019)

5. Botler, F., Fernandes, C.G., Gutiérrez, J.: On Tuza’s conjecture for graphs with
treewidth at most 6. In: Anais do III Encontro de Teoria da Computação. SBC
(2018)

6. Chalermsook, P., Khuller, S., Sukprasert, P., Uniyal, S.: Multi-transversals for
triangles and the Tuza’s conjecture. In: Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1955–1974. SIAM (2020)

7. Chapuy, G., DeVos, M., McDonald, J., Mohar, B., Scheide, D.: Packing triangles
in weighted graphs. SIAM Journal on Discrete Mathematics 28(1), 226–239 (2014)

8. Chen, X., Diao, Z., Hu, X., Tang, Z.: Sufficient conditions for Tuza’s conjecture on
packing and covering triangles. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.)
IWOCA 2016. LNCS, vol. 9843, pp. 266–277. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44543-4 21

9. Chen, X., Diao, Z., Hu, X., Tang, Z.: Total dual integrality of triangle covering.
In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp.
128–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6 10

10. Chen, X., Diao, Z., Hu, X., Tang, Z.: Covering triangles in edge-weighted graphs.
Theory Comput. Syst. 62(6), 1525–1552 (2018)

11. Cui, Q., Haxell, P., Ma, W.: Packing and covering triangles in planar graphs.
Graphs and Combinatorics 25(6), 817–824 (2009)

12. Erdös, P., Gallai, T., Tuza, Z.: Covering and independence in triangle structures.
Discret. Math. 150(1–3), 89–101 (1996)

13. Haxell, P., Kostochka, A., Thomassé, S.: Packing and covering triangles inK4-free
planar graphs. Graphs and Combinatorics 28(5), 653–662 (2012)

14. Haxell, P.E.: Packing and covering triangles in graphs. Discret. Math. 195(1),
251–254 (1999)

15. Haxell, P.E., Kohayakawa, Y.: Packing and covering triangles in tripartite graphs.
Graphs and Combinatorics 14(1), 1–10 (1998)

16. Haxell, P.E., Rödl, V.: Integer and fractional packings in dense graphs. Combina-
torica 21(1), 13–38 (2001)

17. Hosseinzadeh, H., Soltankhah, N.: Relations between some packing and covering
parameters of graphs. In: The 46th Annual Iranian Mathematics Conference, p.
715 (2015)

18. Krivelevich, M.: On a conjecture of Tuza about packing and covering of triangles.
Discret. Math. 142(1), 281–286 (1995)

19. Krivelevich, M.: Triangle factors in random graphs. Comb. Probab. Comput. 6(3),
337–347 (1997)

20. Lakshmanan, A., Bujtás, C., Tuza, Z.: Induced cycles in triangle graphs. Discret.
Appl. Math. 209, 264–275 (2016)

21. Munaro, A.: Triangle packings and transversals of some K4-freegraphs. Graphs
and Combinatorics 34(4), 647–668 (2018)

22. Puleo, G.J.: Tuza’s conjecture for graphs with maximum average degree less than
7. Eur. J. Comb. 49, 134–152 (2015)

23. Puleo, G.J.: Maximal k-edge-colorable subgraphs, Vizing’s Theorem, and Tuza’s
Conjecture. Discret. Math. 340(7), 1573–1580 (2017)

https://doi.org/10.1007/978-3-319-44543-4_21
https://doi.org/10.1007/978-3-319-44543-4_21
https://doi.org/10.1007/978-3-319-48749-6_10

Packing and Covering Triangles in Dense Random Graphs 439

24. Ruciński, A.: Matching and covering the vertices of a random graph by copies of
a given graph. Discret. Math. 105(1–3), 185–197 (1992)

25. Tuza, Z.: Conjecture. In: Finite and Infinite Sets, Proc. Colloq. Math. Soc. Janos
Bolyai, p. 888 (1981)

26. Tuza, Z.: A conjecture on triangles of graphs. Graphs and Combinatorics 6(4),
373–380 (1990)

Mechanism Design for Facility Location
Games with Candidate Locations

Zhongzheng Tang1, Chenhao Wang2, Mengqi Zhang3,4(B), and Yingchao Zhao5

1 School of Sciences, Beijing University of Posts and Telecommunications,
Beijing 100876, China

tangzhongzheng@amss.ac.cn
2 Department of Computer Science and Engineering, University of Nebraska-Lincoln,

Lincoln, NE, USA
wangch@amss.ac.cn

3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, China
mqzhang@amss.ac.cn

4 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China

5 Caritas Institute of Higher Education, HKSAR,
Hong Kong, China

zhaoyingchao@gmail.com

Abstract. We study the facility location games with candidate loca-
tions from a mechanism design perspective. Suppose there are n agents
located in a metric space whose locations are their private informa-
tion, and a group of candidate locations for building facilities. The
authority plans to build some homogeneous facilities among these can-
didates to serve the agents, who bears a cost equal to the distance
to the closest facility. The goal is to design mechanisms for minimiz-
ing the total/maximum cost among the agents. For the single-facility
problem under the maximum-cost objective, we give a deterministic 3-
approximation group strategy-proof mechanism, and prove that no deter-
ministic (or randomized) strategy-proof mechanism can have an approx-
imation ratio better than 3 (or 2). For the two-facility problem on a
line, we give an anonymous deterministic group strategy-proof mecha-
nism that is (2n − 3)-approximation for the total-cost objective, and 3-
approximation for the maximum-cost objective. We also provide (asymp-
totically) tight lower bounds on the approximation ratio.

Keywords: Facility location · Social choice · Mechanism design.

1 Introduction

We consider a well-studied facility location problem of deciding where some pub-
lic facilities should be built to serve a population of agents with their locations
as private information. For example, a government needs to decide the locations
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 440–452, 2020.
https://doi.org/10.1007/978-3-030-64843-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_30&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_30

Mechanism Design for Facility Location Games 441

of public supermarkets or hospitals. It is often modeled in a metric space or a
network, where there are some agents (customers or citizens) who may bene-
fit by misreporting their locations. This manipulation can be problematic for
a decision maker to find a system optimal solution, and leads to the mecha-
nism design problem of providing (approximately) optimal solutions while also
being strategy-proof (SP), i.e., no agent can be better off by misreporting their
locations, regardless of what others report.

This setup, where the agents are located in a network that is represented
as a contiguous graph, is initially studied by Schummer and Vohra [18], and
has many applications (e.g., traffic network). Alon et al. [1] give an example
of telecommunications networks such as a local computer network or the Inter-
net. In these cases, the agents are the network users or service providers, and
the facility can be a filesharing server or a router. Interestingly, in computer
networks, an agent’s perceived network location can be easily manipulated, for
example, by generating a false IP address or rerouting incoming and outgoing
communication, etc. This explains the incentive of agents for misreporting, and
thus a strategy-proof mechanism is necessary.

In the classic model [12,17], all points in the metric space or the network
are feasible for building facilities. However, this is often impractical in many
applications. For example, due to land use restrictions, the facilities can only be
built in some feasible regions, while other lands are urban green space, residential
buildings and office buildings, etc. Therefore, we assume that there is a set
of candidate locations, and study the facility location games with candidate
locations in this paper.

We notice that our setting somewhat coincides a metric social choice problem
[8], where the voters (agents) have their preferences over the candidates, and all
participants are located in a metric space, represented as a point. The voters
prefer candidates that are closer to them to the ones that are further away.
The goal is to choose a candidate as a winner, such that the total distance to
all voters is as small as possible. When the voters are required to report their
locations, this problem is the same with the facility location game with candidate
locations.

Our setting is sometimes referred to as the “constrained facility location”
problems [20], as the feasible locations for facilities are constrained. Sui and
Boutilier [20] provide possibility and impossibility results with respect to (addi-
tive) approximate individual and group strategy-proofness, whereas do not con-
sider the approximation ratios for system objectives.

Our Results
In this paper we study the problem of locating one or two facilities in a metric
space, where there are n agents and a set of feasible locations for building the
facilities. For the single-facility problem, we consider the objective of minimizing
the maximum cost among the agents, while the social-cost (i.e., the total cost
of agents) objective has been well studied in [8] as a voting process. We present
a mechanism that deterministically selects the closest candidate location to an
arbitrary dictator agent, and prove that it is group strategy-proof (GSP, no group
of agents being better off by misreporting) and 3-approximation. In particular,

442 Z. Tang et al.

when the space is a line, the mechanism that selects the closest candidate location
to the leftmost agent is additionally anonymous, that is, the outcome is the same
for all permutations of the agents’ locations on the line. We provide a lower bound
3 for deterministic SP mechanisms, and 2 for randomized SP mechanisms; both
lower bounds hold even on a line.

For the two-facility problem on a line, we present an anonymous GSP mech-
anism that deterministically selects two candidates closest to the leftmost and
rightmost agents, respectively. It is (2n − 3)-approximation for the social-cost
objective, and 3-approximation for the maximum-cost objective. On the nega-
tive side, we prove that, for the maximum-cost objective, no deterministic (resp.
randomized) strategy-proof mechanism can have an approximation ratio better
than 3 (resp. 2).

Our results for deterministic mechanism on a line are summarized in Table 1
in bold font, where a “�” indicates that the upper bound holds for general metric
spaces. All inapproximability results are obtained on a line, and thus hold for
more general metric spaces.

Table 1. Results for deterministic strategyproof mechanisms on a line.

Objective Social cost Maximum cost

Single-facility UB: 3� [8] UB: 3�

LB: 3 [8] LB: 3

Two-facility UB: 2n− 3 UB: 3

LB: n− 2 [9] LB: 3

Related Work
A range of works on social choice study the constrained single-facility location
games for the social-cost objective, where agents can be placed anywhere, but
only a subset of locations is valid for the facility. The random dictatorship (RD)
mechanism, which selects each candidate with probability equal to the fraction
of agents who vote for it, obtains an approximation ratio of 3 − 2/n, and this
is tight for all strategyproof mechanisms [8,15]. The upper bound holds for any
metric spaces, whereas the lower bound requires specific constructions on the
n-dimensional binary cube. Anshelevich and Postl [2] show a smooth transition
of the RD approximation ratio from 2 − 2/n to 3 − 2/n as the location of the
facility becomes more constrained. Meir [14] (Sect. 5.3) provides an overview of
approximation results for the single-facility problem.

Approximate Mechanism Design in the Classic Setting. For the classic facility
location games wherein the locations have no constraint, Procaccia and Ten-
nenholtz [17] first consider it from the perspective of approximate mechanism
design. For single-facility location on a line, they give a “median” mechanism
that is GSP and optimal for minimizing the social cost. Under the maximum-cost

Mechanism Design for Facility Location Games 443

objective, they provide a deterministic 2-approximation and a randomized 1.5
approximation GSP mechanisms; both bounds are best possible. For two-facility
location, they give a 2-approximation mechanism that always places the facilities
at the leftmost and the rightmost locations of agents. Fotakis and Tzamos [9]
characterize deterministic mechanisms for the problem of locating two facilities
on the line, and prove a lower bound of n − 2. Randomized mechanisms are
considered in [12,13].

Characterizations. Dokow et al. [7] study SP mechanisms for locating a facility
in a discrete graph, where the agents are located on vertices of the graph, and
the possible facility locations are exactly the vertices of the graph. They give a
full characterization of SP mechanisms on lines and sufficiently large cycles. For
continuous lines, the set of SP and onto mechanisms has been characterized as
all generalized median voting schemes [4,18].

Other Settings. There are many different settings for facility location games
in recent years. Aziz et al. [3] study the mechanism design problem where the
public facility is capacity constrained, where the capacity constraints limit the
number of agents who can benefit from the facility’s services. Chen et al. [6]
study a dual-role game where each agent can allow a facility to be opened at his
place and he may strategically report his opening cost. By introducing payment,
they characterize truthful mechanisms and provide approximate mechanisms.
After that, Li et al. [11] study a model with payment under a budget constraint.
Kyropoulou et al. [10] initiate the study of constrained heterogeneous facility
location problems, wherein selfish agents can either like or dislike the facility
and facilities can be located in a given feasible region of the Euclidean plane.
Other works on heterogeneous facilities can be found in [5,19,21].

2 Model

Let k be the number of facilities to be built. In an instance of facility location
game with candidate locations, the agent set is N = {1, . . . , n}, and each agent
i ∈ N has a private location xi ∈ S in a metric space (S, d), where d : S2 → R

is the metric (distance function). We denote by x = (x1, . . . , xn) the location
profile of agents. The set of m candidate locations is M ⊆ S. A deterministic
mechanism f takes the reported agents’ location profile x as input, and outputs a
facility location profile y = (y1, . . . , yk) ∈ Mk, that is, selecting k candidates for
building facilities. A randomized mechanism outputs a probability distribution
over Mk. Given an outcome y, the cost of each agent i ∈ N is the distance to
the closest facility, i.e., ci(y) = d(xi,y) := min1≤j≤k d(xi, yj).

A mechanism f is strategy-proof (SP), if no agent i ∈ N can decrease his
cost by misreporting, regardless of the location profile x−i of others, that is, for
any x′

i ∈ S, ci(f(xi,x−i)) ≤ ci(f(x′
i,x−i)). Further, f is group strategy-proof

(GSP), if no coalition G ⊆ N of agent can decrease the cost of every agent in
G by misreporting, regardless of the location profile x−G of others, that is, for

444 Z. Tang et al.

any x′
G, there exists an agent i ∈ G such that ci(f(xG,x−G)) ≤ ci(f(x′

G,x−G)).
A mechanism f is anonymous, if for every profile x and every permutation of
agents π : N → N , it holds that f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)).

Denote an instance by I(x,M) or simply I. We consider two objective func-
tions, minimizing the social cost and minimizing the maximum cost.

Social Cost. Given a location profile x, the social cost of solution y is the total
distance to all agents, that is,

SC(x,y) =
∑

i∈N

ci(y) =
∑

i∈N

d(xi,y).

Maximum Cost. Given a location profile x, the maximum cost of solution y
is the maximum distance to all agents, that is,

MC(x,y) = max
i∈N

ci(y) = max
i∈N

d(xi,y).

When evaluating a mechanism’s performance, we use the standard worst-
case approximation notion. Formally, given an instance I(x,M), let opt(x) ∈
arg miny∈Mk C(x,y) be an optimal facility location profile, and OPT (x) be the
optimum value. We say that a mechanism f provides an α-approximation if for
every instance I(x,M),

C(x, f(x)) ≤ α · C(x, opt(x)) = α · OPT (x),

where the objective function C can be SC or MC. The goal is to design deter-
ministic or randomized strategy-proof mechanisms with small approximation
ratios.

3 Single-Facility Location Games

In this section, we study the single-facility location games, i.e., k = 1. Feldman
et al. [8] thoroughly study this problem for the social-cost objective. When the
space is a line, they prove tight bounds on the approximations: the Median
mechanism that places the facility at the nearest candidate of the median agent
is SP and 3-approximation, and no deterministic SP mechanism can do better.
They also propose a randomized SP and 2-approximation mechanism (called the
Spike mechanism) that selects the nearest candidate of each agent with specific
probabilities, and prove that this approximation ratio is the best possible for
any randomized SP mechanism. When it is a general metric space, they show
that random dictatorship has a best possible approximation ratio of 3 − 2

n .
Hence, we only consider the objective of minimizing the maximum cost among

the agents. We study the problem on a line and in a general metric space,
respectively.

Mechanism Design for Facility Location Games 445

3.1 Line Space

Suppose that the space is a line. Let xl (resp. xr) be the location of the leftmost
(resp. rightmost) agent with respect to location profile x. Consider the following
mechanism.

Mechanism 1. Given a location profile x, select the candidate location which
is closest to the leftmost agent, that is, select a candidate in location
arg miny∈M |y − xl|, breaking ties in any deterministic way.

Theorem 1. For the single-facility problem on a line, Mechanism1 is an anony-
mous GSP and 3-approximation mechanism, under the maximum-cost objective.

Proof. Denoted by f Mechanism 1. It is clearly anonymous, because the outcome
depends only on the agent locations, not on their identities. Namely, for any
permutation of the agent locations on the line, the facility locations do not
change. Let y = f(x) be the outcome of the mechanism, and define L = |xr −xl|.
We discuss three cases with respect to the location of y.

Case 1: xl − L/2 ≤ y ≤ xr. The maximum cost of y is MC(x, y) = max{|y −
xl|, |y −xr|} ≤ 3L/2, and the optimal maximum cost is at least L/2. So we have
MC(x,y)
OPT (x) ≤ 3.

Case 2: y > xr. It is easy to see that y is an optimal solution with maximum
cost |y−xl|, because the closest candidate y′ to the left of xl induces a maximum
cost of at least |y − xl| + L, and there is no candidate between y′ and y.

Case 3: y < xl − L/2. The maximum cost of y is MC(x, y) = xr − y. The
optimal candidate has a distance at least xl − y to xl. So we have

MC(x, y)
OPT (x)

≤ xr − y

xl − y
=

xl + L − y

xl − y
= 1 +

L

xl − y
< 1 +

L

L/2
= 3,

which establishes the proof for approximation ratio.
It remains to show the group strategy-proofness. For any group of agents G,

we want to show at least one agent in G cannot gain by misreporting. Clearly
the agent located at xl has no incentive to join G, because he already attains the
minimum possible cost. The only way for G to influence the output of mechanism
f is someone reporting a location to the left of xl. However, this cannot move the
facility location to the right, and thus no agent in G can benefit by misreporting.

��
Let ε > 0 be a sufficiently small number. We prove lower bounds for the

approximation ratio of (deterministic and randomized) SP mechanisms, match-
ing the upper bound in Theorem1.

Theorem 2. For the single-facility problem on a line, no deterministic (resp.
randomized) SP mechanism can have an approximation ratio better than 3 (resp.
2), under the maximum-cost objective.

446 Z. Tang et al.

Proof. Suppose f is a deterministic strategy-proof mechanism with approxima-
tion ratio 3 − δ for some δ > 0. Consider an instance I (as shown in Fig. 1)
with agents’ location profile x = (1 − ε, 1 + ε), and M = {0, 2}. By symmetry,
assume w.l.o.g. that f(x) = 0. The cost of agent 2 is c2(0) = |1 + ε − 0| = 1 + ε.
Now consider another instance I ′ with agents’ location profile x′ = (1−ε, 3), and
M = {0, 2}. The optimal solution is candidate 2, and the optimal maximum cost
is 1+ε. The maximum cost induced by candidate 0 is 3. Since the approximation
ratio of f is 3 − δ and ε → 0, it must select f(x′) = 2. It indicates that, under
instance I, agent 2 located at x2 = 1 + ε can decrease his cost from c2(0) to
c2(f(x′)) = |1 + ε − 2| = 1 − ε, by misreporting his location as x′

2 = 3. This is a
contradiction with strategy-proofness.

Fig. 1. Two instances I and I ′, where hollow squares indicate candidates, and solid
circles indicate agents.

Suppose f is a randomized strategy-proof mechanism with approximation
ratio 2−δ for some δ > 0. Also consider instance I. W.l.o.g. assume that f(x) = 0
with probability at least 1

2 . The cost of agent 2 is c2(f(x)) ≥ 1
2 (1+ε)+ 1

2 (1−ε) =
1. Then consider instance I ′. Let P ′

2 be the probability of f(x′) = 2. Since the
approximation ratio of f is 2 − δ, we have

P ′
2 · MC(x′, 2)

OPT (x′)
+ (1 − P ′

2) · MC(x′, 0)
OPT (x′)

= P ′
2 + (1 − P ′

2) · 3
1 + ε

≤ 2 − δ,

which implies that P ′
2 > 1

2 as ε → 0. Hence, under instance I, agent 2 located at
x2 = 1+ε can decrease his cost to c2(f(x′)) < 1

2 (1−ε)+ 1
2 (1+ε) = 1 ≤ c2(f(x)),

by misreporting his location as x′
2 = 3. ��

Remark 1. For randomized mechanisms, we have shown that the lower bound
is 2, and we are failed to find a matching upper bound. We are concerned with
weighted percentile voting (WPV) mechanisms (see [8]), which locate the facility
on the i-th percentile agent’s closest candidate with some probability pi, where
pi does not depend on the location profile x. For example, Mechanism 1 is WPV
by setting p0 = 1 and pi = 0 for i > 0. We remark that no WPV mechanism
can beat the ratio of 3. Consider an instance with agents’ location profile (1, 3)
and candidates’ location profile (ε, 2, 4 − ε). The optimal maximum cost is 1,
attained by selecting candidate 2, while any WPV mechanism must select either
candidate ε or 4 − ε, inducing a maximum cost of 3 − ε. The ratio approaches 3
when ε tends to 0. It leaves an open question to narrow this gap.

Mechanism Design for Facility Location Games 447

3.2 General Metric Spaces

In this subsection, we extend the model from a line to a general metric space.
In this setting, the locations of all agents and facility candidates are in a metric
space (S, d). Our objective is to minimize the maximum cost of agents. We give
the following dictatorial mechanism, in which the dictator can be an arbitrary
agent.

Mechanism 2 (Dictatorship). Given a location profile x, for an arbitrary
agent k ∈ N , select the closest candidate location to agent k, that is,
arg miny∈M d(xk, y), breaking ties in any deterministic way.

Theorem 3. For the single-facility problem in a metric space, Mechanism2 is
GSP and 3-approximation, under the maximum-cost objective.

Proof. Denote f by Mechanism 2. Let y = fk(x) for a fixed k, and y∗ = opt(x)
be the optimal solution. Then we have d(xi, y

∗) ≤ OPT (x) for each agent i ∈ N .
As the distance function has the triangle inequality property in a metric space,
we derive the following for each i ∈ N :

d(xi, y) ≤ d(y∗, y) + d(xi, y
∗)

≤ d(xk, y) + d(xk, y∗) + d(xi, y
∗)

≤ 2d(xk, y∗) + d(xi, y
∗)

≤ 3 OPT,

(1)

The group strategy-proofness is trivial, because Mechanism 2 is dictatorial.
��

One can find that, though losing the anonymity, Mechanism 2 is indeed a
generalization of Mechanism 1, and the approximation ratio in Theorem3 implies
that in Theorem 1.

Recall that random dictatorship locates the facility on agent i’s closest can-
didate with probability 1/n for all i ∈ N . It has an approximation ratio of 3− 2

n
for the social-cost objective in any metric space [2]. However, it does not help to
improve the deterministic upper bound 3 in Theorem3, even if on the line.

4 Two-Facility Location Games

In this section, we consider the two-facility location games on a line, under both
objectives of minimizing the social cost and minimizing the maximum cost. We
give a linear approximation for the social-cost objective, which asymptotically
tight, and a 3-approximation for the maximum-cost objective, which is best
possible.

448 Z. Tang et al.

4.1 Social-Cost Objective

For the classic (unconstrained) facility location games in a continuous line under
the social-cost objective, Fotakis and Tzamos [9] prove that no deterministic
mechanism has an approximation ratio less than n − 2. Note that the lower
bound n − 2 also holds in our setting, because when all points on the line are
candidates, our problem is equivalent to the classic problem. For the same setting
in [9], Procaccia et al. [16] give a GSP (n − 2)-approximation mechanism, which
selects the two extreme agent locations. We generalize this mechanism to our
setting.

Mechanism 3. Given a location profile x on a line, select the candidate location
which is closest to the leftmost agent, (i.e., arg miny∈M |y − xl|), breaking ties
in favor of the candidate to the right; and select the one closest to the rightmost
agent (i.e., arg miny∈M |y − xr|), breaking ties in favor of the candidate to the
left.

Lemma 4. Mechanism 3 is GSP.

Proof. For any group G of agents, we want to show at least one agent in G cannot
gain by misreporting. Clearly the agent located at xl or xr has no incentive to
join the coalition G, because he already attains the minimum possible cost.
The only way for G to influence the output of the mechanism is some member
reporting a location to the left of xl or the right of xr. However, this can move
neither of the two facility locations closer to the members. So no agent in G can
benefit by misreporting. ��
Theorem 5. For the two-facility problem on a line, Mechanism3 is GSP,
anonymous, and (2n − 3)-approximation under the social-cost objective.

Proof. The group strategy-proofness is given in Lemma4. Let y∗ = (y∗
1 , y

∗
2) be

an optimal solution with y∗
1 ≤ y∗

2 , and y = (y1, y2) with y1 ≤ y2 be the solution
output by Mechanism3. Let N1 = {i ∈ N |d(xi, y

∗
1) ≤ d(xi, y

∗
2)} be the set of

agents who are closer to y∗
1 in the optimal solution, and N2 = {i ∈ N |d(xi, y

∗
1) >

d(xi, y
∗
2)} be the complement set. Renaming if necessary, we assume xl = x1 ≤

· · · ≤ xn = xr. If |N1| = 0, then y∗
2 must be the closest candidate to every

agent in N , including x1 (i.e., y∗
2 ∈ arg miny∈M d(x1, y)). By the specific way

of tie-breaking, Mechanism3 must select y∗
2 , and achieve the optimality. The

symmetric analysis holds for the case when |N2| = 0.
So we only need to consider the case when |N1| ≥ 1 and |N2| ≥ 1. Clearly,

1 ∈ N1 and n ∈ N2. The social cost of the outcome y by Mechanism 3 is
∑

i∈N

min{d(xi, y1), d(xi, y2)} ≤
∑

i∈N1

d(xi, y1) +
∑

i∈N2

d(xi, y2)

≤
∑

i∈N1\{1}
[d(xi, y

∗
1) + d(y∗

1 , y1)] +
∑

i∈N2\{n}
[d(xi, y

∗
2) + d(y∗

2 , y2)]

+ d(xl, y
∗
1) + d(xr, y

∗
2)

Mechanism Design for Facility Location Games 449

= OPT +
∑

i∈N1\{1}
d(y∗

1 , y1) +
∑

i∈N2\{n}
d(y∗

2 , y2)

≤ OPT +
∑

i∈N1\{1}
[d(xl, y

∗
1) + d(xl, y1)] +

∑

i∈N2\{n}
[d(xr, y

∗
2) + d(xr, y2)]

≤ OPT + 2(|N1| − 1) · d(xl, y
∗
1) + 2(|N2| − 1) · d(xr, y

∗
2)

≤ OPT + 2(max{|N1|, |N2|} − 1) · OPT

≤ (2n − 3) · OPT,

where the second last inequality holds because OPT ≥ d(xl, y
∗
1)+d(xr, y

∗
2), and

the last inequality holds because max{|N1|, |N2|} ≤ n − 1. ��
Next we give an example to show that the analysis in Theorem 5 for the

approximation ratio of Mechanism3 is tight.

Example 1. Consider an instance on a line with agents’ location profile x =
(1, 4

3 , . . . , 4
3 , 2) and candidates’ location profile (23 + ε, 4

3 , 2). The optimal social
cost is 1

3 , attained by solution (43 , 2). Mechanism 3 outputs solution (23 +ε, 2), and
the social cost is (43 − 2

3 − ε) · (n−2)+ 1
3 − ε. Then we have (2/3−ε)·(n−2)+1/3−ε

1/3 →
2n − 3, when ε tends to 0.

4.2 Maximum-Cost Objective

Next, we turn to consider the maximum-cost objective.

Theorem 6. For the two-facility problem on a line, Mechanism3 is GSP,
anonymous, and 3-approximation under the maximum-cost objective.

Proof. The group strategy-proofness is given in Lemma 4. For any location profile
x, let y∗ = (y∗

1 , y
∗
2) be an optimal solution with y∗

1 ≤ y∗
2 , and y = (y1, y2) with

y1 ≤ y2 be the solution output by Mechanism3. Assume w.l.o.g. that x1 ≤ · · · ≤
xn. Let N1 = {i ∈ N |d(xi, y

∗
1) ≤ d(xi, y

∗
2)} be the set of agents who are closer

to y∗
1 in the optimal solution, and N2 = {i ∈ N |d(xi, y

∗
1) > d(xi, y

∗
2)} be the

complement set. Let n1 = |N1| and n2 = |N2|. Define C1 = maxi∈N1 d(xi, y
∗
1)

and C2 = maxi∈N2 d(xi, y
∗
2). It is easy to see that the optimal maximum cost is

max{C1, C2}.
Next, we consider a restricted instance (x1, . . . , xn1) of the single-facility loca-

tion problem. By the definition of Mechanism3, candidate y1 is the closest one
to agent 1. By Theorem 1, we have maxi∈N1 d(y1, xi) ≤ 3C1. Similarly, consider
another restricted instance (xn1+1, . . . , xn), we have maxi∈N2 d(y2, xi) ≤ 3C2.
Therefore,

max
i∈N

d(xi,y) ≤ 3max{C1, C2},

which completes the proof. ��
In the following we give a lower bound 2 for randomized SP mechanisms,

and a lower bound 3 for deterministic SP mechanisms, matching the bound

450 Z. Tang et al.

Fig. 2. There is an agent and a candidate in a very far away location L.

in Theorem 6. We use the same construction as in the proof of Theorem 2 for 2
agents, and locate an additional agent at a very far away point in all the location
profiles used in the proof.

Theorem 7. For the two-facility problem on a line, no deterministic (resp. ran-
domized) SP mechanism can have an approximation ratio better than 3 (resp.
2), under the maximum-cost objective.

Proof. Suppose f is a deterministic SP mechanism with approximation ratio
3 − δ for some δ > 0. Consider an instance I (as shown in Fig. 2) with agents’
location profile x = (1 − ε, 1 + ε, L), and M = {0, 2, L}, where L is sufficiently
large and ε > 0 is sufficiently small. Note that candidate L must be selected (to
serve agent 3) by any mechanism that has a good approximation ratio. We can
assume w.l.o.g. that 0 ∈ f(x). The cost of agent 2 is c2(f(x)) = |1+ε−0| = 1+ε.
Now consider another instance I ′ with agents’ location profile x′ = (1 − ε, 3, L),
and M = {0, 2, L}. The optimal maximum cost is 1 + ε, attained by selecting
candidates 2 and L. The maximum cost induced by any solution that selects
candidate 0 is at least 3. Since the approximation ratio of f is 3 − δ and ε → 0,
it must select candidate 2, i.e., 2 ∈ f(x′). It indicates that, under instance
I, agent 2 located at 1 + ε can decrease his cost from c2(f(x)) = 1 + ε to
c2(f(x′)) = |1 + ε − 2| = 1 − ε, by misreporting his location as x′

2 = 3. This is a
contradiction with the strategy-proofness.

Suppose f is a randomized SP mechanism with approximation ratio 2− δ for
some δ > 0. Also consider instance I. Note that candidate L must be selected
with probability 1 by any mechanisms that have a good approximation ratio,
since L tends to ∞. We can assume w.l.o.g. that 0 ∈ f(x) with probability at
least 1

2 . The cost of agent 2 is c2(f(x)) ≥ 1
2 (1 + ε) + 1

2 (1 − ε) = 1. Then consider
instance I ′. The optimal maximum cost is 1 + ε, which is attained by selecting
candidates 2 and L. Let P ′

2 be the probability of f selecting candidate 2. The
maximum cost induced by any solution that selects candidate 0 is at least 3.
Since the approximation ratio of f is 2 − δ, we have

P ′
2 · 1 + (1 − P ′

2) · 3
1 + ε

≤ 2 − δ,

which implies that P ′
2 > 1

2 as ε → 0. Hence, under instance I, agent 2 located
at 1 + ε can decrease his cost to c2(f(x′)) < 1

2 (1 − ε) + 1
2 (1 + ε) ≤ c2(f(x)), by

misreporting his location as x′
2 = 3. ��

Mechanism Design for Facility Location Games 451

5 Conclusion

For the classic k-facility location games, Fotakis and Tzamos [9] show that for
every k ≥ 3, there do not exist any deterministic anonymous SP mechanisms
with a bounded approximation ratio for the social-cost objective on the line,
even for simple instances with k + 1 agents. It directly follows a corollary that
there exists no such mechanism with a bounded approximation ratio for the
maximum-cost objective. Therefore, in our constrained setting with candidate
locations, we cannot expect to beat such lower bounds when k ≥ 3.

In this paper we are concerned with designing truthful deterministic mecha-
nisms for the setting with candidates. It remains an open question to find ran-
domized mechanisms matching the lower bound 2 in Theorems 2 and 7, though
we have excluded the possibility of WPV mechanisms.

Acknowledgement. The authors thank Minming Li and three anonymous referees
for their invaluable suggestions and comments. Minming Li is supported by NNSF of
China under Grant No. 11771365, and sponsored by Project No. CityU 11205619 from
Research Grants Council of HKSAR.

References

1. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof approxi-
mation of the minimax on networks. Math. Oper. Res. 35(3), 513–526 (2010)

2. Anshelevich, E., Postl, J.: Randomized social choice functions under metric pref-
erences. J. Artif. Intell. Res. 58, 797–827 (2017)

3. Aziz, H., Chan, H., Lee, B.E., Parkes, D.C.: The capacity constrained facility
location problem. In: Proceeding of the 15th Conference on Web and Internet
Economics (WINE), p. 336 (2019)

4. Border, K.C., Jordan, J.S.: Straightforward elections, unanimity and phantom vot-
ers. Rev. Econ. Stud. 50(1), 153–170 (1983)

5. Chen, X., Hu, X., Jia, X., Li, M., Tang, Z., Wang, C.: Mechanism design for
two-opposite-facility location games with penalties on distance. In: Deng, X. (ed.)
SAGT 2018. LNCS, vol. 11059, pp. 256–260. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99660-8 24

6. Chen, X., Li, M., Wang, C., Wang, C., Zhao, Y.: Truthful mechanisms for location
games of dual-role facilities. In: Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1470–1478 (2019)

7. Dokow, E., Feldman, M., Meir, R., Nehama, I.: Mechanism design on discrete lines
and cycles. In: Proceedings of the 13th ACM Conference on Electronic Commerce
(ACM-EC), pp. 423–440 (2012)

8. Feldman, M., Fiat, A., Golomb, I.: On voting and facility location. In Proceedings
of the 17th ACM Conference on Economics and Computation (ACM-EC), pp.
269–286 (2016)

9. Fotakis, D., Tzamos, C.: On the power of deterministic mechanisms for facility
location games. ACM Trans. Econ. Comput. (TEAC) 2(4), 1–37 (2014)

10. Kyropoulou, M., Ventre, C., Zhang, X.: Mechanism design for constrained hetero-
geneous facility location. In: Fotakis, D., Markakis, E. (eds.) SAGT 2019. LNCS,
vol. 11801, pp. 63–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30473-7 5

https://doi.org/10.1007/978-3-319-99660-8_24
https://doi.org/10.1007/978-3-319-99660-8_24
https://doi.org/10.1007/978-3-030-30473-7_5
https://doi.org/10.1007/978-3-030-30473-7_5

452 Z. Tang et al.

11. Li, M., Wang, C., Zhang, M.: Budgeted facility location games with strategic facil-
ities. In: Proceedings of the 29th International Joint Conference on Artificial Intel-
ligence (IJCAI), pp. 400–406 (2020)

12. Lu, P., Sun, X., Wang, Y., Zhu, Z.A.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM Conference on
Electronic Commerce (ACM-EC), pp. 315–324 (2010)

13. Lu, P., Wang, Y., Zhou, Y.: Tighter bounds for facility games. In: Leonardi, S. (ed.)
WINE 2009. LNCS, vol. 5929, pp. 137–148. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-10841-9 14

14. Meir, R.: Strategic voting. Synthesis Lectures on Artificial Intelligence and Machine
Learning 13(1), 1–167 (2018)

15. Meir, R., Procaccia, A.D., Rosenschein, J.S.: Algorithms for strategyproof classifi-
cation. Artif. Intell. 186, 123–156 (2012)

16. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
In: Proceedings of the 10th ACM Conference on Electronic Commerce (ACM-EC),
pp. 177–186 (2009)

17. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
ACM Trans. Econ. Comput. (TEAC) 1(4), 1–26 (2013)

18. Schummer, J., Vohra, R.V.: Strategy-proof location on a network. J. Econ. Theory
104(2), 405–428 (2002)

19. Serafino, P., Ventre, C.: Truthful mechanisms without money for non-utilitarian
heterogeneous facility location. In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI), pp. 1029–1035 (2015)

20. Sui, X., Boutilier, C.: Approximately strategy-proof mechanisms for (con-
strained) facility location. In: Proceedings of the 14th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 605–613 (2015)

21. Zou, S., Li, M.: Facility location games with dual preference. In: Proceedings of
the 14th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 615–623 (2015)

https://doi.org/10.1007/978-3-642-10841-9_14
https://doi.org/10.1007/978-3-642-10841-9_14

Geometric Problem

Online Maximum k-Interval Coverage
Problem

Songhua Li1(B), Minming Li1, Lingjie Duan2, and Victor C. S. Lee1

1 City University of Hong Kong, Kowloon, Hong Kong SAR, China
songhuali3-c@my.cityu.edu.hk, {minming.li,csvlee}@cityu.edu.hk
2 Singapore University of Technology and Design, Singapore, Singapore

lingjie duan@sutd.edu.sg

Abstract. We study the online maximum coverage problem on a line,
in which, given an online sequence of sub-intervals (which may intersect
among each other) of a target large interval and an integer k, we aim to
select at most k of the sub-intervals such that the total covered length
of the target interval is maximized. The decision to accept or reject each
sub-interval is made immediately and irrevocably (no preemption) right
at the release timestamp of the sub-interval. We comprehensively study
different settings of the problem, regarding the number of total released
sub-intervals, we consider the unique-number (UN) setting where the
total number is known in advance and the arbitrary-number (AN) set-
ting where the total number is not known, respectively; regarding the
length of a released sub-interval, we generally consider three settings:
each sub-interval is of a normalized unit-length (UL), a flexible-length
(FL) in a known range, or an arbitrary-length (AL). In addition, we
extend the UL setting to a generalized unit-sum (US) setting, where a
batch of a finite number of disjoint sub-intervals of the unit total length
is released instead at each timestamp, and accordingly k batches can be
accepted. We first prove in the AL setting that no online determinis-
tic algorithm can achieve a bounded competitive ratio. Then, we present
lower bounds on the competitive ratio for the other settings concerned in
this paper. For the offline problem where the sequence of all the released
sub-intervals is known in advance to the decision-maker, we propose a
dynamic-programming-based optimal approach as the benchmark. For
the online problem, we first propose a single-threshold-based determinis-
tic algorithm SOA by adding a sub-interval if the added length exceeds a
certain threshold, achieving competitive ratios close to the lower bounds,
respectively. Then, we extend to a double-thresholds-based algorithm
DOA, by using the first threshold for exploration and the second thresh-
old (larger than the first one) for exploitation. With the two thresholds
solved by our proposed program, we show that DOA improves SOA in
the worst-case performance. Moreover, we prove that a deterministic
algorithm that accepts sub-intervals by multi non-increasing thresholds
cannot outperform even SOA.

Keywords: Maximum k-coverage problem · Budgeted maximum
coverage problem · Interval coverage · Online algorithm

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 455–470, 2020.
https://doi.org/10.1007/978-3-030-64843-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_31&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_31

456 S. Li et al.

1 Introduction

In the classical Maximum k-Coverage Problem, we are given a universal
set of elements U = {U1, · · · , Um} in which each is associated with a weight
w : U → R, a collection of subsets S = {S1, · · · , Sn} of U and an integer k,
and we aim to select k sets from S that maximize the total weight of covered
elements in U. Hochbaum et al. [1] showed that this problem is NP-hard and
presented a (1 − 1

e)-approximation algorithm that greedily selects a set that
maximally increases the current overall coverage. The Budgeted Maximum
Coverage (BMC) problem generalizes the classical coverage problem above by
further associating each Si ∈ S with a cost c : S → R and relaxing the budget k
from an integer to a real number, in which the goal is replaced by selecting a sub-
collection of the sets in S that maximizes the total weight of the covered elements
in U while adhering to the budget k. Clearly, the BMC problem is also NP-hard
and actually has a (1 − 1

e)-approximation algorithm [3]. In the online version of
the above maximum coverage problems, where at each timestamp i a set Si ∈ S
is released together with its elements and associated values, an algorithm must
decide whether to accept or reject each set Si at its release timestamp i and
may also drop previously accepted sets (preemption). However, each rejected or
dropped set cannot be retrieved at a later timestamp.

In this paper, we consider the online maximum k-coverage problem on a
line without preemption. Given an online sequence of sub-intervals of a target
interval, we aim to accept k of the sub-intervals irrevocably such that the total
covered length of the target interval is maximized. We refer to this variant as
the Online Maximum k-Interval Coverage Problem as formally defined
in Sect. 2. Regarding the length of a sub-interval, we generally consider the Unit-
Length (UL), the Flexible-Length (FL), and the Arbitrary-Length (AL) settings,
respectively. We consider the Unique-Number (UN) and the Arbitrary-Number
(AN) settings, respectively, regarding the total number of released sub-intervals.
In particular, our problem under the UN setting is essentially the classical max-
imum k-coverage problem (or say, the BMC with unit-cost sets only and an
integer budget k) without preemption, by the following reduction method: we
partition the target interval of our problem into discrete small intervals by the
boundary points of all the released sub-intervals, then, the small intervals are
equivalent to the elements of a universal set U in which each element has a
weight equal to the length of its corresponding small interval, and the released
sub-intervals are equivalent to the sets in the collection S = {S1, · · · , Sn}. The
objective remains the same.

Related Works. We survey relevant researches along two threads. The first
thread is about the Online Budgeted Maximum Coverage (OBMC) problem,
Saha et al. [7] presented a 4-competitive deterministic algorithm for the setting
where sets have unit costs. Rawitz and Rosén [5] showed that the competitive
ratio of any deterministic online algorithm for the OBMC problem must depend
on the maximum ratio r between the cost of a set and the total budget, and
also presented a lower bound of Ω(1√

1−r
) and a 4

1−r -competitive deterministic

Online Maximum k-Interval Coverage Problem 457

algorithm. Ausiello et al. [2] studied a special variant of online maximum k-
coverage problem, the maximum k-vertex coverage problem, where each element
belongs to exactly two sets and the intersection of any two sets has size at most
one. They presented a deterministic 2-competitive algorithm and gave a lower
bound of 3

2 . The second thread is about the online k-secretary problem [12], which
was introduced by Kleinberg [11] and aimed to select k out of n independent
values for maximizing the expected sum of individual secretary values. Bateni
et al. [4] studied a more general version called the submodular secretary prob-
lem, which aims to maximize the expectation of a submodular function that
defines the efficiency of selected candidates based on their overlapping skills.
Our problem is similar to theirs as the objective function of our problem is
also submodular (see Len(·) of our model in Sect. 2). However, we focus on the
adversarial release order of sub-intervals (secretaries) in the worst-case analysis
of deterministic algorithms while [4] focused on a random release order of sec-
retaries in the average-case analysis of algorithms. Other works related to this
paper include the interval scheduling problem, the set cover problem, and the
online knapsack problem. Interested readers may refer to [8,9,13–16].

Table 1. Main results in this paper

Settings Lower bounds Upper bounds

UL UN
√

2 for k = 2
decrease as k ≥ 3 increase
(Theorem 2)

<2
(Theorems 4 & 8)

AN
√

2 for k = 2
decrease as k ≥ 3 increase
(Corollary 1)

√
9k2−14k+9−k−1

2(k−1)
+ 1

(Corollary 4)

FL UN 2km
2km+(1−m)min{k,n−k} (<2)

(Theorem 3)

<1 + k
k−1

√
1+8m

4

(Theorem 6)

AN 2m
m+1

(Corollary 2)

√
(1+8m)k2−(6+8m)k+9−k−1

2(k−1)
+ 1

(Corollary 5)

AL UN or AN +∞ (Theorem 1) -

US UN
√

2 for k = 2
decrease as k ≥ 3 increase
(Corollary 3)

<2
(Theorem 5)

Our Contribution. Results of this paper are three-fold. First, we show that
no online deterministic algorithm can achieve a bounded competitive ratio in
the AL setting, and present lower bounds on the competitive ratio for the other
settings, respectively, in a constructive way. Second, we give an O(kn + n log n)-
time optimal solution to the offline problem where the sequence of all the
released sub-intervals is known in advance to the decision-maker, by apply-
ing a dynamic programming-based approach. Third, for the online problems,

458 S. Li et al.

we propose two O(n)-time deterministic algorithms, SOA and DOA, with their
competitive ratios proved to be close to the lower bounds in the settings, respec-
tively. We also extend our results in UL to a generalized unit-sum (US) setting,
where at each timestamp, a batch of a finite number of disjoint sub-intervals is
released instead and accordingly one can accept at most k released batches. In
addition, we show that any deterministic algorithm, that accepts sub-intervals
by non-decreasing thresholds, cannot achieve better performance even than the
SOA does.

Main results of this paper are summarized in Table 1, in which, for ease of
understanding, some complicated parameter-dependent results are approximated
by formulations in bold. For precise results, please refer to the corresponding
theorems or corollaries. Due to space constraints, omitted proofs can be found in
the full version of this paper [6].

2 Preliminaries

Table 2. Notations in this paper.

Notations Descriptions

[0, a] The target interval

k The maximum number of sub-intervals to accept

Vi = [oi, di] The ith released sub-interval

Vi = {V1, V2, · · · , Vi} The sequence of the first i released sub-intervals

χ(Vn, k) The optimal solution for the offline problem,
given both the set V of offline sub-intervals and
the quota k beforehand

Λ(Vi, Vj) The length of the intersection between
sub-intervals Vi and Vj , i.e., Λ(Vi, Vj) = |Vi ∩ Vj |

Φ(Vi) The subset of Vi that are accepted by our
algorithm

Len(U) The cumulative length of the parts of [0, a] that
are covered by sub-intervals in a given set U , i.e.,
Len(U) = | ⋃Vi∈U Vi|. Also, we use Len(Vi) to
denote the length of a sub-interval Vi, i.e.,
Len(Vi) = |Vi|

The Model. Table 2 summarizes key notations in this paper. An online sequence
V = {V1, V2, · · · } of sub-intervals of a large target interval [0, a] are released
in an adversarial order to the decision-maker, in which Vi = [oi, di] ⊆ [0, a]
for each Vi ∈ V. Upon the arrival of each Vi ∈ V, the decision-maker must
make a decision whether to accept or reject Vi immediately and irrevocably.

Online Maximum k-Interval Coverage Problem 459

For example, when recruiting at most k employees across different domains of
expertise in the target interval, each released sub-interval represents a candidate’s
expertise domain. The hiring decision on each sub-interval is irrevocable and
must be made on candidate arrival without knowing future sub-intervals. Due
to the quota limitation, the decision-maker can accept no more than k (≥ 2)
sub-intervals1. Any two different sub-intervals Vi, Vj ∈ V may intersect (i.e.,
[oi, dj] ∩ [oj , dj] �= ∅) considering that the expertise of candidates may overlap
in reality. Now, we formally define the settings studied in this paper: with respect
to the length (di − oi) of each Vi ∈ V, we consider three settings.

– Unit Length (UL): |di − oi| = 1 is normalized with regard to a;
– Flexible Length (FL): |di − oi| varies in a known range [1,m], in which

m > 1 as m = 1 degenerates the case to the UL setting;
– Arbitrary Length (AL):|di − oi| varies arbitrarily in [0, a];

In addition, we also consider a generalized version of the UL setting, which is
the Unit Sum (US) setting: each Vi ∈ V is no longer restricted to contain only
one sub-interval, but a batch of a finite number of disjoint sub-intervals of [0, a]
whose sum length is equal to 1. This tells that a candidate masters different
domains of expertise. We keep the same unit-sum for all the sub-intervals to tell
similar strength of all the job candidates. Accordingly, k batches of sub-intervals
can be accepted in the US setting. With respect to the number |V| of total
released sub-intervals, we consider the following two settings respectively.

– Unique Number (UN): |V| is known in advance as a constant n ∈ N
∗. We

further restrict n ≥ k + 1 as otherwise (when n ≤ k) an optimal solution can
be easily achieved by just accepting all sub-intervals;

– Arbitrary Number (AN): |V| is not known;

When two settings are linked by a “-”, we refer to the case that the two settings
hold together. For example, we use UL-UN to refer to the setting where all
sub-intervals have unit length and the total number of released sub-intervals are
known in advance. Whenever we specify a single setting in one dimension, we
do not distinguish among settings in the other dimension. For example, when
specifying the UN setting only, we actually refer to the context as any setting in
{UL-UN, FL-UN, AL-UN}.

Given a sequence V = {V1, V2, · · · } of online sub-intervals of [0, a], the objec-
tive is to accept a subset U ⊆ V of sub-intervals such that |U | ≤ k and the
cumulative length Len(U) of the parts of [0, a] that are covered by accepted
sub-intervals in U is maximized. Denote ALG(V) and OPT(V) as the covered
length by an online algorithm ALG and by an optimal offline solution with com-
plete information of all sub-intervals known beforehand, respectively. We slightly
abuse notations by rewriting ALG(V) and OPT(V) to ALG and OPT, respec-
tively. For ρ ≥ 1, a deterministic online algorithm ALG is called ρ-competitive
[10] for the problem if OPT(V)≤ ρALG(V) for every instance V. Alternatively,
1 When k = 1, our problem degenerates to the classical secretary problem without

expertise sub-interval overlap.

460 S. Li et al.

we also say the competitive ratio of ALG is ρ for the problem. Further, when a
number γ ≥ 1 ensures that γ ≤ ρ holds for all deterministic online algorithms,
we say γ is a lower bound the on competitive ratio for the problem.

3 Lower Bounds

We construct lower bounds on the competitive ratio for the settings studied in
this paper, respectively.

Theorem 1. In the AL setting, no online deterministic algorithm can achieve
a bounded competitive ratio.

Proof. Let ε be a small positive number, i.e., 0 < ε 	 1. Suppose the first k
sub-intervals released as Vk = {[0, εk+1−i]|i = 1, 2, · · · , k}. We discuss two cases.

Case 1. Online algorithm (ALG) rejects some sub-interval Vj = [0, εk+1−j] ∈
Vk. Afterwards, the adversary only release sub-intervals as [0, εk+1−j+1] instead.
This way, the optimal solution (OPT) is able to achieve an overall length at
least εk+1−j by accepting Vj , while ALG can achieve an overall length at most
εk+1−j+1 by sub-intervals in Vj−1, we have ρ ≤ εk+1−j

εk+1−j+1 = 1
ε → +∞ when

ε → 0;

Case 2. ALG accepts all the k sub-intervals in Vk and hence runs out of its
quota. Afterward, the adversary only release sub-intervals as [0, 1]. Then, OPT is
able to achieve an overall length 1 by accepting some [0, 1], while ALG achieves
an overall length exactly equal to ε by Vk, we have ρ ≤ 1

ε → +∞ when ε → 0.

Theorem 2. In the UL-UN setting, no online deterministic algorithm can

achieve a competitive ratio better than (1), in which α =
⌊
1 − log(k

1
k −1)

log(k
1
k)

⌋

⎧⎪⎪⎨
⎪⎪⎩

√
2, if k = 2

min{k
1
k , k

α
k +k−α−1

k
α
k +k−α−2

, k

k
α
k +k−α−1

}, if 3 ≤ k ≤ n − α − 1

min{k
1
k , k

α
k +k−α−1

k
α
k +k−α−2

, n−α+2+k
α
k −k

n−k
k

k
α
k +k−α−1

}, if n − α ≤ k ≤ n − 1

(1)

Corollary 1. For UL-AN, no online deterministic algorithm can achieve a com-

petitive ratio better than (2), in which α =
⌊
1 − log(k

1
k −1)

log(k
1
k)

⌋
.

{√
2, if k = 2

min{k
1
k , k

α
k +k−α−1

k
α
k +k−α−2

, k

k
α
k +k−α−1

}, if 3 ≤ k
(2)

Theorem 3. For FL-UN, no online deterministic algorithm can achieve a com-
petitive ratio better than 2km

2km+(1−m)min{k,n−k} which is strictly smaller than 2.

Corollary 2. For FL-AN, no online deterministic algorithm can achieve a com-
petitive ratio better than 2m

m+1 which is strictly smaller than 2.

Online Maximum k-Interval Coverage Problem 461

Corollary 3. For US-UN, no online deterministic algorithm can achieve a com-

petitive ratio better than (1), where α =
⌊
1 − log(k

1
k −1)

log(k
1
k)

⌋
.

4 Upper Bounds

We present two online deterministic algorithms in Subsects. 4.2 and 4.3 respec-
tively. Before that, we give an O(kn + n log n) time dynamic programming app-
roach as a benchmark, which optimally solves the offline problem where the
sequence of all the released sub-intervals are given beforehand.

4.1 Dynamic Programming Based Optimal Offline Solution

Since both the UL and the FL settings are special cases of the AL setting, we
present our offline solution in the AL setting2. Suppose, without loss of generality,
that the total number of released sub-intervals in the offline problem equals n.

First, we sort sub-intervals in Vn = {V1, V2, · · · , Vn} in non-decreasing order of
their end locations (i.e., the di of each Vi), which runs in O(n log n) time. We
abuse notations, in this offline solution only, to denote (V1, V2, · · · , Vn) as the
sequence of sorted sub-intervals, i.e., d1 ≤ d2 ≤ · · · ≤ dn, and further Vi =
{V1, · · · , Vi} as the first i sub-intervals in the sequence. Suppose the decision-
maker accepts sub-intervals in Vn in decreasing order of their subscripts as well.

Definition 1. Vψ(i) = arg max
{Vj∈Vi−1|oj<oi≤dj}

{oi − oj} indicates the sub-interval in

Vi−1 that intersects with Vi and has the left-most start location.

Definition 2. Vφ(i) = arg min
{Vj∈Vi−1|dj<oi}

{oi−dj} indicates the sub-interval in Vi−1

that is disjoint from but is closest to Vi.

Proposition 1. Once an offline OPT accepts Vi, OPT accepts either Vψ(i) or
a sub-interval in {V1, V2, · · · , Vφ(i)}.

Second. Since OPT, denoted as χ(Vn, k), accepts sub-intervals in Vn in decreas-
ing order of their subscripts as well, we write the Bellman Equation in our
dynamic programming as (3) and (4) by setting i = n and j = k initially.
Specifically, we discuss the following cases when handling an arbitrary Vi ∈ Vi.

1. OPT rejects Vi. Then, we have χ(Vi, j) = Len(Vi) if OPT has enough quota,
i.e., i ≤ j, to accept all sub-intervals in Vi; or χ(Vi, j) = χ(Vi−1, j) otherwise;

2. OPT accepts Vi and hence runs out of quota (j = 0). Then, χ(Vi, j) = 0;
3. OPT accepts Vi and remains quota (j ≥ 1). By Proposition 1,

2 We do not distinguish our offline solution in the other dimension since our solution
performs optimally in either the UN or the AN.

462 S. Li et al.

(a) OPT further accepts someone in {V1, V2, · · · , Vφ(i)}. Since Vi is disjoint
from the next accepted sub-interval, χ(Vi, j) = Len(Vi) + χ(Vφ(i), j − 1);

(b) OPT further accepts Vψ(i). To calculate χ(Vi, j), we introduce an inter-
mediate function κ(Vi, j) given in Eq. (4)3, which always accepts the
last sub-interval Vi in Vi and totally accepts j out of i sub-intervals
in Vi such that the overall covered length of the interval [0, a] is max-
imized. Then, we count the length contributed by Vi as the part with-
out intersection with Vψ(i), which is Len(Vi) − Λ(Vi, Vψ(i)), and transit
the remaining part of OPT’s overall length to κ(Vψ(i), j − 1). This way,
χ(Vi, j) = Len(Vi) − Λ(Vi, Vψ(i)) + κ(Vψ(i), j − 1).

χ(Vi, j) =

⎧⎪⎪⎨
⎪⎪⎩

Len(Vi), i ≤ j
max{χ(Vi−1, j), Len(Vi) + χ(Vφ(i), j − 1),

Len(Vi) − Λ(Vi, Vψ(i)) + κ(Vψ(i), j − 1)}, 1 ≤ j < i

0, j = 0

(3)

κ(Vi, j) =

⎧⎪⎪⎨
⎪⎪⎩

max{Len(Vi) + χ(Vφ(i), j − 1),
Len(Vi) − Λ(Vi, Vψ(i)) + κ(Vψ(i), j − 1)}, j > 1

Len(Vi), j = 1
0, j = 0

(4)

Note that our dynamic programming solution totally generates O(kn) interme-
diate states in which each state runs in O(1) time. Together with the preliminary
sorting step, our offline solution totally runs in O(kn + n log n) time.

4.2 Single-Threshold Online Algorithm

We first propose an online algorithm, named the Single-threshold based Online
Algorithm (SOA), for the UN setting. Then, we extend SOA to SOAAN to tackle
the AN setting. Note that SOA and SOAAN can achieve competitive ratios
strictly smaller than 2 for the UN and the AN settings, respectively.

In the UN setting, SOA always accepts the first released sub-interval V1.
On the arrival of each future sub-interval Vi ∈ {V2, ..., Vn}, SOA accepts Vi if
and only if it meets one of the following two conditions: (i) Quota-enough
condition, after accepting Vi, SOA has enough quota to accept all the future
sub-intervals, i.e., k − |Φ(Vi−1)| ≥ n − i + 1; (ii) Threshold-accepting con-
dition, SOA still has quota (i.e., |Φ(Vi−1)| ≤ k − 1) and Vi contributes an
additional length of at least

θ = min{
√

1 + 2(k − 1)(n − k) − 1
2k − 2

,

√
9k2 − 14k + 9 − k − 1

4(k − 1)
} (5)

to the covered length of [0, a] by previously accepted sub-intervals, i.e.,

Len(Φ(Vi−1) ∪ Vi) − Len(Φ(Vi−1)) ≥ θ (6)

We summarize SOA in Algorithm 1 and we note that
3 The major difference between κ(Vi, j) and χ(Vi, j) is that κ(Vi, j) always accepts

the last sub-interval Vi in Vi while χ(Vi, j) does not necessarily.

Online Maximum k-Interval Coverage Problem 463

Algorithm 1. Single-threshold Online Algorithm (SOA)
Input: A sequence V = {V1, V2, ..., Vn} of n sub-intervals of the target interval [0, a],
in which Vi = [oi, di] for each Vi ∈ V, the quota k (2 ≤ k ≤ n − 1);
Output: A set of accepted sub-intervals, i.e., Φ(Vn);

1: Φ(V1) = {V1}; {always accept V1}
2: for i = 2; i + +; i ≤ n do
3: if |Φ(Vi−1)| = k then
4: Φ(Vn) = Φ(Vi−1);
5: break; {complete accepting as SOA runs out of the quota}
6: else if k − |Φ(Vi−1)| ≥ n − i + 1 then
7: Φ(Vi) = Φ(Vi−1)∪Vi; {accept Vi by the quota-enough condition}
8: else
9: if Len(Φ(Vi−1) ∪ Vi) − Len(Φ(Vi−1)) ≥ θ with θ given in (5) then

10: Φ(Vi) = Φ(Vi−1) ∪ Vi; {accept Vi by threshold-meeting condition}
11: else
12: Φ(Vi) = Φ(Vi−1); {reject Vi}
13: end if
14: end if
15: end for

– Once some sub-interval is accepted by the quota-enough condition, all later-
released sub-intervals are accepted by SOA;

– SOA always uses up its quota to accept k sub-intervals and only breaks (in
the Step 5 of Algorithm1) when it accepts k sub-intervals according to the
threshold θ from the first (n − 1) released sub-intervals.

Proposition 2. In SOA, we have θ =
√

1+2(k−1)(n−k)−1

2k−2 if
⌈
667n
1000

⌉ ≤ k ≤ n−1,

and θ =
√
9k2−14k+9−k−1

4(k−1) if 2 ≤ k ≤ ⌈
667n
1000

⌉ − 1.

Theorem 4. For UL-UN, SOA runs in O(n) time and achieves a competitive

ratio no larger than min{
√

1+2(k−1)(n−k)−1

k−1 + 1,
√
9k2−14k+9−k−1

2(k−1) + 1}.

Proof. SOA runs in O(n) time as it runs in no more than n iterations in which
each iteration runs in O(1) time. To show the upper bound of SOA, we discuss
in the following two cases.

Case 1. SOA accepts Vn (the last released sub-interval).
This shows that SOA triggers the quota-enough condition when accepting

some Vi ∈ {V2, V3, ..., Vn}, i.e., k − |Φ(Vi−1)| ≥ n − i + 1. Then, the algorithm
accepts all the sub-intervals {Vi, Vi+1, ..., Vn} that are released later than Vi.
Further, Len(Φ(Vn)) = Len(Φ(Vi−1)∪{Vi, Vi+1..., Vn}). In the worst case, none
of the accepted sub-intervals in {Vi, Vi+1, ..., Vn} contributes additional length
to the algorithm since these accepted sub-intervals are also available to OPT.
Suppose, without loss of generality, that

⋃
V ∈Φ(Vi−1)

V consists of a number x

464 S. Li et al.

of disjoint intervals, which are denoted by A1, A2,..., Ax respectively. Clearly,
1 ≤ x ≤ k. Namely, Len(A1),..., Len(Ax) respectively denote the length of
disjoint intervals of Φ(Vi−1). Hence, Len(Φ(Vi−1)) =

∑x
i=1 Len(Ai).

Note that each rejected sub-interval can contribute an additional length no
more than θ to Len(Φ(Vi−1)), as otherwise it would have been accepted. On
one hand, Len(OPT) ≤ Len(Φ(Vn)) + θ(n − k) holds naturally since SOA
totally rejects (n − k) sub-intervals in Vi−1. On the other hand, Len(OPT) ≤
Len(Φ(Vn)) + 2θx because there are totally x disjoint intervals formed by the
sub-intervals accepted by SOA, which implies there are at most 2x chances that
sub-interval could be missed/rejected by SOA, and each rejected sub-interval
can contribute less than θ to SOA (by Step 9 of SOA). In summary, the overall
length achieved by the OPT is bounded by the following Inequality (7).

Len(OPT) ≤ Len(Φ(Vn)) + min{2θx, θ(n − k)} (7)

Hence, we get the ratio

ρ =
Len(OPT)
Len(Φ(Vn))

≤ 1 +
min{2θx, θ(n − k)}

Len(Φ(Vn))
≤ 1 +

2θx∑x
i=1 Len(Ai)

≤ 1 + min{
√

1 + 2(k − 1)(n − k) − 1
k − 1

,

√
9k2 − 14k + 9 − k − 1

2(k − 1)
}

in which the first inequality holds by (7), the second inequality holds by
Len(Φ(Vn)) ≥ Len(Φ(Vi−1)) =

∑x
i=1 Len(Ai), and the last inequality holds

by
∑x

i=1 Len(Ai) ≥ x and (5).

Case 2. SOA does not accept Vn.
This means the quota-enough condition is not triggered during the execu-

tion and SOA accepts k sub-intervals by the threshold-accepting condition. This
implies the following Inequality (8) because each accepted sub-interval, except
V1 (which contributes 1 to SOA), contributes at least θ to SOA, see Step 9 of
SOA.

Len(Φ(Vn)) ≥ 1 + (k − 1)θ (8)
Suppose that Vi ∈ {Vk, ..., Vn−1} is the last accepted sub-interval by SOA, i.e.,
|Φ(Vi)| = k and Len(Φ(Vn)) = Len(Φ(Vi)). In other words, SOA misses all sub-
intervals in {Vi+1, ..., Vn} which can be accepted by OPT. Since the algorithm
can miss at most n−k sub-intervals, OPT can get an accumulating length at most
n − k more than that accepted by SOA, i.e., Len(OPT) ≤ Len(Φ(Vn)) + n − k.
Also, OPT cannot get a length over its quota k in this unit-length case. In
summary, the overall length accepted by the OPT is bounded by (9).

Len(OPT) ≤ min{k, Len(Φ(Vn)) + n − k} (9)

We further discuss two sub-cases.

Case 2.1.
⌈
667n
1000

⌉ ≤ k ≤ n−1. We have θ =
√

1+2(k−1)(n−k)−1

2k−2 by Proposition 2.

Note that
∂(θ

2k−n−1
k−1

)

∂k = 8k2−(8n+10)k+9n−3

4(2k−n−1)2
√

1+2(k−1)(n−k)
< 0 for each k ∈ [

⌈
667n
1000

⌉
, n] ⊆

(8n+10−
√

(8n−8)2+132

16 ,
8n+10+

√
(8n−8)2+132

16). Further, we have

Online Maximum k-Interval Coverage Problem 465

Algorithm 2. SOAAN

The SOAAN remains the same as the Algorithm 1 by discarding the else if branch of

the quota-enough condition in Lines 6-7 and setting θ =

√
9k2−14k+9−k−1

4(k−1)
;

θ
2k−n−1

k−1

≤ θ
2k−n−1

k−1

|k= 667n
1000 � < 1 (10)

Hence,

ρ =
Len(OPT)

Len(Φ(Vn))

≤ min{ k

Len(Φ(Vn))
, 1 +

n − k

Len(Φ(Vn))
} by (9)

≤ min{ k

1 + (k − 1)θ
, 1 +

n − k

1 + (k − 1)θ
} by (8)

= 1 +

√
1 + 2(k − 1)(n − k) − 1

k − 1
by (10) and θ =

√
1 + 2(k − 1)(n − k) − 1

2k − 2

Case 2.2. 2 ≤ k ≤ ⌈
667n
1000

⌉ − 1. We have θ =
√
9k2−14k+9−k−1

4(k−1) ≤√
1+2(k−1)(n−k)−1

2k−2 by Proposition 2. Hence,

ρ =
Len(OPT)

Len(Φ(Vn))

≤ min{ k

Len(Φ(Vn))
, 1 +

n − k

Len(Φ(Vn))
} by (9)

≤ min{ k

1 + (k − 1)θ
, 1 +

n − k

1 + (k − 1)θ
} by (8)

≤ k

1 + (k − 1)θ
=

√
9k2 − 14k + 9 − k − 1

2(k − 1)
+ 1 by θ =

√
9k2 − 14k + 9 − k − 1

4(k − 1)

By Case 1 and Case 2, the proof completes.

Corollary 4. For UL-AN, SOAAN runs in O(n) time and achieves a competi-
tive ratio no larger than

√
9k2−14k+9−k−1

2(k−1) + 1 for any limited time frame.

The SOA algorithm can solve the the flexible-length case. Using a similar analysis
idea as in Theorem 4, we have the following Theorem 5 and Theorem 6.

Theorem 5. For US-UN, SOA runs in O(n) time and achieves a competitive

ratio no larger than min{
√

1+2(k−1)(n−k)−1

k−1 + 1,
√
9k2−14k+9−k−1

2(k−1) + 1}.

466 S. Li et al.

Theorem 6. For FL-UN, SOA runs in O(n) time and achieves a competitive

ratio no larger than min{
√

1+2(k−1)(n−k)m−1

k−1 +1,

√
(1+8m)k2−(6+8m)k+9−k−1

2(k−1) +1}
in which m indicates the maximum possible length of a sub-interval.

Corollary 5. For FL-AN, SOAAN runs in O(n) time and achieves a competitive

ratio no larger than
√

(1+8m)k2−(6+8m)k+9−k−1

2(k−1) +1 for any limited accepting time
frame, in which m indicates the maximum possible length of a sub-interval.

4.3 Double-Threshold Online Algorithm

Built upon SOA, we now present the Double-threshold Online Algorithm (DOA)
under the UN setting, which remains the same as Algorithm 1 but extends the
single threshold θ in the threshold-meeting condition to two thresholds θ1 and θ2
(by using θ1 for exploration and θ2 for exploitation). Specifically, SOA changes
the threshold from θ1 to θ2 once accepting ω sub-intervals, in which the values of
(ω, θ1, θ2) are given later by solving the non-linear program (i-viii). Before that,
we first give the competitive analysis of DOA.

Denote j as the number of disjoint intervals formed by the sub-intervals
accepted by DOA. When DOA accepts less than k sub-intervals by threshold,
the overall length achieved by OPT is no more than Len(Φ(Vn)) + 2jθ and
certainly no more than the quota k, implying Lemma 1. When DOA accepts k
sub-intervals by threshold, the overall length of OPT should be no more than
(n−k +1+(ω − 1)θ1 +(k −ω)θ2) and also no more than k, implying Lemma 2.

Lemma 1. In UL-UN, when DOA accepts i (1 ≤ i ≤ k − 1) sub-intervals
by threshold and quota-enough accepts k − i sub-intervals, OPT can achieve an
overall length at most min{k,j+(i−j)θ1+2jθ1}

j+(i−j)θ1
times of DOA length for 1 ≤ i ≤ ω−1

or at most min{k,j+(ω−1)θ1+(i−ω+2j)θ2}
j+(ω−1)θ1+(i−ω)θ2

times of DOA length for ω ≤ i ≤ k − 1.

Lemma 2. In UL-UN, when DOA threshold-accepts k sub-intervals, OPT can
achieve an overall length at most min{k,n−k+1+(ω−1)θ1+(k−ω)θ2}

1+(ω−1)θ1+(k−ω)θ2
times of DOA’s.

Theorem 7. In UL-UN, the competitive ratio of DOA is upper bounded by

C = max{1 + 2θ1, 1 +
2θ2

1 + ω−s
s θ1

,
k

s + 1 + (ω − s − 1)θ1
,
min{k, n − k + q}

q
}

(11)
where q = 1 + (ω − 1)θ1 + (k − ω)θ2, s = k+(1−ω)θ1−2θ2

1+2θ2−θ1
.

Proof. Suppose, w.l.o.g., that DOA threshold-accepts i sub-intervals and quota-
enough accepts the other (k − i) sub-intervals. Let j denote the number of
disjoint intervals formed by the k accepted sub-intervals. In the worst case sce-
nario, the k − i quota-enough accepted sub-intervals only contribute an addi-
tional length of zero to the covered length of the interval [0, a] by previously
threshold-accepted sub-intervals. We discuss in three cases,

Online Maximum k-Interval Coverage Problem 467

Case 1. 1 ≤ i ≤ ω − 1. By Lemma 1, we have the ratio
ρ ≤ min{k,Len(Φ(Vn))+2jθ1}

Len(Φ(Vn)) ≤ min{k,j+(i−j)θ1+2jθ1}
j+(i−j)θ1

≤ 1 + 2θ1.

Case 2. ω ≤ i ≤ k−1. Denote s+1 as the minimum number of disjoint intervals
formed by the accepted sub-intervals in an optimal solution. Suppose w.l.o.g.,
OPT achieves its maximum overall length k in the worst-case scenario. We have
s+1+(ω − s)θ1 +2(s+1)θ2 ≥ k and s+(ω − s)θ1 +2sθ2 < k in the worst case,

k + (1 − ω)θ1 − 2θ2
1 + 2θ2 − θ1

≤ s ≤ k − ωθ1
1 − θ1 + 2θ2

Further, we get s = k+(1−ω)θ1−2θ2
1+2θ2−θ1

∈ [1, ω − 1] satisfying Inequality (4.3).

Case 2.1. j ≤ s. By Lemma 1, the ratio is upper bounded by

j + (ω − j)θ1 + (i − ω)θ2 + 2jθ2
j + (ω − j)θ1 + (i − ω)θ2

≤ s + (ω − s)θ1 + 2sθ2
s + (ω − s)θ1

= 1 +
2θ2

1 + ω−s
s θ1

Case 2.2. j ≥ s + 1. By Lemma 1, the ratio is upper bounded by

k

j + (ω − j)θ1 + (i − j)θ2
≤ k

s + 1 + (ω − s − 1)θ1

Case 3. i = k. By Lemma 2, the competitive ratio of DOA is upper bounded by
min{k,n−k+1+(ω−1)θ1+(k−ω)θ2}

1+(ω−1)θ1+(k−ω)θ2
.

By Cases 1, 2, 3, competitive ratio of DOA is upper bounded by (11).

To find the timing ω and the thresholds (θ1, θ2) that optimize the competi-
tive ratio of DOA, we propose the following nonlinear program to minimize the
maximum value (denoted by C) of the competitive ratio in Eq. (11), where con-
straints (ii)-(vi) are transformed from Eq. (11) respectively and constraints (vii)4

and (viii) are naturally required.

min
(ω,θ1,θ2)

C (i)

s.t. C ≥ 1 + 2θ1, (ii)

C ≥ 1 +
2θ2

1 + ω−s
s

θ1
(iii)

C ≥ k

s + 1 + (ω − s − 1)θ1
(iv)

C ≥ min{k, n − k + 1 + (ω − 1)θ1 + (k − ω)θ2}
1 + (ω − 1)θ1 + (k − ω)θ2

(v)

s =
k + (1 − ω)θ1 − 2θ2

1 + 2θ2 − θ1
(vi)

1 ≤ ω ≤ k (vii)
0 < θ1 < θ2 ≤ 1, (viii)

4 Constraint (vii) actually can be restricted, by calculation, to
⌈

k+1
5

⌉ ≤ ω ≤ k.

468 S. Li et al.

Fig. 1. Performance among DOA, SOA and the lower bound in UL-UN.

Theorem 8. DOA with (ω, θ1, θ2) returned by program (i)–(viii) achieves the
best worst-case performance of online algorithms with two thresholds.

Since the program (i–viii) is nonlinear and is complicated when transformed
into a linear programming, we search its approximated solution under the UL-
UN setting by giving the precision of θ as 0.01 and n = 100. According to the
searching result, we observe that the ω value should be set at around 0.8k and
θ1 < θ2. The double-threshold algorithm DOA improves the performance of
the single-threshold based algorithm (see Fig. 1 below). What is worth noting is
that, when the ratio k

n of the quota over the total number of online sub-intervals
is relatively small (resp. large), we find that more quota induces worse (resp.
better) performances of both SOA and DOA since OPT has more chances to
gain values from those missed sub-intervals by our algorithms (resp. since online
algorithms have fewer chances to miss values from OPT). The turning point of
k
n is around 2

3 in SOA since the two items of the competitive ratio in Theorem 4
are monotone decreasing and increasing, respectively, with regard to k, and meet
when k

n ≈ 2
3 . Interestingly, the turning point of k

n is also around 2
3 in DOA, see

the example in Fig. 1. We can also extend to more than two thresholds, yet the
analysis will be more involved with only mild improvement. Particularly, when
the thresholds in an algorithm are non-increasing as accepting sub-intervals, we
have the following theorem.

Theorem 9. SOA outperforms any online deterministic algorithm that accepts
sub-intervals by non-increasing thresholds.

5 Concluding Remarks

This paper studies the online maximum k-coverage problem on a line without
preemption. With regard to the length of each sub-interval and the number of
totally released sub-intervals, we comprehensively consider different settings in
this paper. Our contribution is three-fold.

Online Maximum k-Interval Coverage Problem 469

First, we present lower bounds on the competitive ratio for the settings respec-
tively. Second, we propose an optimal solution for the offline problem where
the sequence of offline sub-intervals is given to the decision-maker at the very
beginning. Third, we present two online algorithms, including a single-threshold-
based algorithm SOA and a double-threshold-based algorithm (DOA). DOA uses
its first threshold (which is usually set below 0.5) for exploration in accept-
ing the first [0.8k] released sub-intervals and its second threshold (which is set
larger than the first threshold) for exploitation in accepting the last k − [0.8k]
sub-intervals. We prove that SOA achieves competitive ratios close to the lower
bounds, respectively, and DOA, with its parameters computed by our proposed
program, improves the performance of SOA slightly. In addition, we show that
any online deterministic algorithm that accepts sub-intervals by non-increasing
thresholds, cannot achieve a competitive ratio better than SOA no matter how
many thresholds the algorithm uses.

For the future work, we may consider the case that different sub-intervals
are associated with different costs instead of unit costs in this paper, considering
that candidates may call for different payments in crowding-sourcing activities.

Acknowledgements. This work was done when Songhua Li was visiting the Singa-
pore University of Technology and Design. Minming Li is also from City University of
Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China. The work described
in this paper was partially supported by Project 11771365 supported by NSFC. We
would like to thank all the reviewers for their comments.

References

1. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of
maximum k-coverage. Naval Res. Logist. (NRL) 45(6), 615–627 (1998)

2. Ausiello, G., Boria, N., Giannakos, A., Lucarelli, G., Paschos, V.T.: Online maxi-
mum k-coverage. Discrete Appl. Math. 160(13–14), 1901–1913 (2012)

3. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf.
Process. Lett. 70(1), 39–45 (1999)

4. Bateni, M., Hajiaghayi, M., Zadimoghaddam, M.: Submodular secretary problem
and extensions. ACM Trans. Algorithms (TALG) 9(4), 1–23 (2013)

5. Rawitz, D., Rosén, A.: Online budgeted maximum coverage. In: the 24th Annual
European Symposium on Algorithms. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2016)

6. Li, S., Li, M., Duan, L., Lee, V.C.S.: Online maximum k-interval coverage problem
(2020). http://arxiv.org/abs/2011.10938

7. Saha, B., Getoor, L.: On maximum coverage in the streaming model and appli-
cation to multi-topic blog-watch. In: Proceedings of the 2009 SIAM International
Conference on Data Mining, pp. 697–708. Society for Industrial and Applied Math-
ematics (2009)

8. Chrobak, M., Jawor, W., Sgall, J., Tichý, T.: Online scheduling of equal-length
jobs: randomization and restarts help. SIAM J. Comput. 36(6), 1709–1728 (2007)

9. Chin, F.Y., Chrobak, M., Fung, S.P., Jawor, W., Sgall, J., Tichý, T.: Online com-
petitive algorithms for maximizing weighted throughput of unit jobs. J. Discrete
Algorithms 4(2), 255–276 (2006)

http://arxiv.org/abs/2011.10938

470 S. Li et al.

10. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, New York (2005)

11. Kleinberg, R.D.: A multiple-choice secretary algorithm with applications to online
auctions. SODA 5, 630–631 (2005)

12. Feldman, M., Zenklusen, R.: The submodular secretary problem goes linear. SIAM
J. Comput. 47(2), 330–366 (2018)

13. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary prob-
lem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P.
(eds.) APPROX/RANDOM -2007. LNCS, vol. 4627, pp. 16–28. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74208-1 2

14. Vaze, R.: Online knapsack problem under expected capacity constraint. In: IEEE
INFOCOM 2018-IEEE Conference on Computer Communications, pp. 2159–2167.
IEEE (2018)

15. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover
problem. SIAM J. Comput. 39(2), 361–370 (2009)

16. Assadi, S., Khanna, S., Li, Y.: Tight bounds for single-pass streaming complexity
of the set cover problem. SIAM J. Comput. STOC 16–341 (2019)

https://doi.org/10.1007/978-3-540-74208-1_2

Vertex Fault-Tolerant Spanners
for Weighted Points in Polygonal

Domains

R. Inkulu(B) and Apurv Singh

Department of Computer Science and Engineering, IIT Guwahati, Guwahati, India
{rinkulu,apursingh}@iitg.ac.in

Abstract. Given a set S of n points, a weight function w to associate
a non-negative weight to each point in S, a positive integer k ≥ 1, and
a real number ε > 0, we devise the following algorithms to compute
a k-vertex fault-tolerant spanner network G(S, E) for the metric space
induced by the weighted points in S: (1) When the points in S are
located in a simple polygon, we present an algorithm to compute G
with multiplicative stretch

√
10 + ε, and the number of edges in G is

O(kn(lg n)2). (2) When the points in S are located in the free space of
a polygonal domain P, we present an algorithm to compute G of size
O(

√
hkn(lg n)2) and its multiplicative stretch is 6 + ε. Here, h is the

number of simple polygonal holes in P.

Keywords: Computational geometry · Geometric spanners ·
Approximation algorithms

1 Introduction

In designing geometric networks on a given set of points in a metric space,
it is desirable for the network to have short paths between any pair of nodes
while being sparse with respect to the number of edges. Let G(S,E) be an edge-
weighted geometric graph on a set S of n points in R

d. The distance in G between
any two nodes p and q, denoted by dG(p, q), is the length of a shortest (that is,
a minimum-weighted) path between p and q in G. For a real number t ≥ 1, the
graph G is called a t-spanner of points in S if for every two points p, q ∈ S,
dG(p, q) is at most t times the Euclidean distance between p and q. The smallest
t for which G is a t-spanner is called the stretch factor of G, and the number of
edges of G is called its size.

Peleg and Schäffer [31] in the context of distributed computing, and Chew [21]
in the context of geometric networks, introduced spanner networks. Althöfer
et al. [7] first attempted to study sparse spanners on edge-weighted graphs with
edge weights obeying the triangle-inequality. The text by Narasimhan and Smid

This research is supported in part by SERB MATRICS grant MTR/2017/000474.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 471–485, 2020.
https://doi.org/10.1007/978-3-030-64843-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_32&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_32

472 R. Inkulu and A. Singh

[30], Gudmundsson and Knauer [25], and the handbook chapter [24] detail var-
ious results on Euclidean spanners, including a (1 + ε)-spanner for the set S of
n points in R

d that has O(n
εd−1) edges, for any ε > 0.

The significant results of geometric spanner networks include spanners of low
degree [8,16,20], spanners of low weight [15,23,26], spanners of low diameter
[10,11], fault-tolerant spanners [2,13,22,27–29,32], and combinations of these
[9,12,19]. For the case of metric space with bounded doubling metric, a few
results are given in [33].

As observed in Abam et al. [3], the cost of traversing a path in a network
is not only determined by the lengths of edges along the path, but also by the
delays occurring at the nodes on the path. The result in [3] models these delays
by associating non-negative weights to points. Let S be a set of n points in R

d.
For every p ∈ S, let w(p) be the non-negative weight associated with p. The
following weighted distance function dw on S defining the metric space (S, dw)
is considered by Abam et al. in [3] and by Bhattacharjee and Inkulu in [13]: for
any p, q ∈ S, dw(p, q) is equal to w(p)+ |pq|+w(q) if p �= q; otherwise, it is equal
to 0. (To reimind, |pq| is the Euclidean distance between p and q).

Recently, Abam et al. [4] showed that there exists a (2 + ε)-spanner with a
linear number of edges for the metric space (S, dw) that has a bounded dou-
bling dimension. And, [3] gives a lower bound on the stretch factor, showing
that (2 + ε) stretch is nearly optimal. Bose et al. [17] studied the problem of
computing spanners for weighted set of points. They considered points that lie
on the plane to have positive weights associated with them; and defined the dis-
tance dw between any two distinct points p, q ∈ S as |pq| − w(p) − w(q), where
|pq| is the Euclidean distance between p and q. Under the assumption that the
distance between any pair of points is non-negative, they showed the existence
of a (1 + ε)-spanner with O(n

ε) edges.
A set of h ≥ 0 disjoint simple polygonal holes contained in a simple polygon

P is the polygonal domain P. (When h is 0, the polygonal domain P is essentially
a simple polygon.) The free space D of the given polygonal domain P is defined
as the closure of P , excluding the union of the interior of polygons contained in
P . Any path between any two given points in D needs to be in the free space
D. For any two distinct points p, q ∈ S, the geodesic distance along any shortest
path between p and q is denoted with dπ(p, q). Given a set S of n points in the
free space D, computing a geodesic spanner of S is considered in Abam et al. [1].
The result in [1] showed that for the metric space (S, π), for any constant ε > 0,
there exists a (5 + ε)-spanner of size O(

√
hn(lg n)2). Further, for any constant

ε > 0, [1] gave a (
√

10 + ε)-spanner with O(n(lg n)2) edges when h = 0, i.e.,
when the polygonal domain is a simple polygon. Given a set S of n points on a
polyhedral terrain T , the geodesic distance between any two points p, q ∈ S is
the distance along any shortest path between p and q on T . The algorithm in
[4] proved that for a set of unweighted points on a polyhedral terrain, for any
constant ε > 0, there exists a (2 + ε)-geodesic spanner with O(n lg n) edges.

A graph G(S,E) is a k-vertex fault-tolerant t-spanner, denoted by (k, t)-
VFTS, for a set S of n points in R

d if for any subset S′ of S with size at

Fault-Tolerant Spanners for Weighted Points in Polygonal Domains 473

most k, the graph G \ S′ is a t-spanner for the points in S \ S′. Algorithms in
Levcopoulos et al. [28], Lukovszki [29], and Czumaj and Zhao [22] compute a
(k, t)-VFTS for the set S of points in R

d. These algorithms are also presented
in [30]. Levcopoulos et al. [28] devised an algorithm to compute a (k, t)-VFTS
of size O(n

(t−1)(2d−1)(k+1)) in O(n lg n
(t−1)4d−1 + n

(t−1)(2d−1)(k+1)) time, and the other

algorithm to compute a (k, t)-VFTS with O(k2n) edges in O(kn lg n
(t−1)d) time. The

result in [29] gives an algorithm to compute a (k, t)-VFTS of size O(kn
(t−1)d−1)

in O(1
(t−1)d (n lgd−1 n lg k + kn lg lg n)) time. The algorithm in [22] computes a

(k, t)-VFTS having O(kn
(t−1)d−1) edges in O(1

(t−1)d−1 (kn lgd n + nk2 lg k)) time

with total weight of edges upper bounded by an O(k2 lg n
(t−1)d) multiplicative factor

of the weight of a minimum spanning tree of the given set of points.

Our Contributions

For a real number t > 1 and a set S of weighted points, a graph G(S,E) is called
a t-spanner for weighted points whenever for any two points p and q in S the
distance between p and q in graph G is at most t·dw(p, q). To remind, as in [3] and
in [13], the function dw is defined on a set S of points as follows: for any p, q ∈ S,
it is equal to w(p)+dπ(p, q)+w(q) if p �= q; otherwise, dw(p, q) is 0. Here, dπ(p, q)
is the geodesic distance between p and q. Given a set S of points, a function w
to associate a non-negative weight to each point in S, an integer k ≥ 1, and a
real number t > 0, a geometric graph G is called a (k, t, w)-vertex fault-tolerant
spanner for weighted points, denoted with (k, t, w)-VFTSWP, whenever for any
set S′ ⊂ S with cardinality at most k, the graph G \ S′ is a t-spanner for the
set S \ S′ of weighted points. Note that every edge (p, q) in G corresponds to
a shortest geodesic path between two points p, q ∈ S. In addition, the weight
associated with any edge (p, q) of G is the distance dπ(p, q) along a geodesic
shortest path between p and q.

In [13], Bhattacharjee and Inkulu devised the following algorithms: one for
computing a (k, 4 + ε, w)-VFTSWP when the input points are in R

d, and the
other for computing a (k, 4+ε, w)-VFTSWP when the given points are in a simple
polygon. Further, in [14], Bhattacharjee and Inkulu extended these algorithms to
compute a (k, 4+ε, w)-VFTSWP when the points are in a polygonal domain and
when the points are located on a terrain. In this paper, we show the following
results for computing a (k, t, w)-VFTSWP:

* Given a simple polygon P, a set S of n points located in P, a weight function
w to associate a non-negative weight to each point in S, a positive integer
k, and a real number 0 < ε ≤ 1, we present an algorithm to compute a
(k,

√
10 + ε, w)-VFTSWP that has size O(kn(lg n)2). (Refer to Theorem 1.)

The stretch factor of the spanner is improved from the result in [13], and the
number of edges is an improvement over the result in [13] when (lg n) < 1

ε2 .
Note that [13] devised an algorithm for computing a (k, 4 + ε, w)-VFTSWP
with size O(kn

ε2 lg n).

474 R. Inkulu and A. Singh

* Given a polygon domain P, a set S of n points located in the free space D
of P, a weight function w to associate a non-negative weight to each point
in S, a positive integer k, and a real number 0 < ε ≤ 1, we present an
algorithm to compute a (k, 6 + ε, w)-VFTSWP with size O(

√
hkn(lg n)2).

(Refer to Theorem 3.) Here, h is the number of simple polygonal holes in P.
Though the stretch factor of the VFTSWP given in [14] is (4 + ε), its size is
O(

√
hkn
ε2 (lg n)2).

The approach in achieving these improvements is different from [13,14].
Instead of clustering (like in [13,14]), following [1], our algorithm uses the s-
semi-separated pair decomposition (s-SSPD) of points projected on line seg-
ments together with the divide-and-conquer applied to input points. For a set
Q of n points in R

d, a pair decomposition [5,34] of Q is a set of pairs of subsets
of Q, such that for every pair of points of p, q ∈ Q, there exists a pair (A,B)
in the decomposition such that p ∈ A and q ∈ B. Given a pair decomposition
{{A1, B1}, . . . , {As, Bs}} of a point set, its weight is defined as

∑s
i=1(|Ai|+|Bi|).

For a set Q of n points in R
d, a s-semi-separated pair decomposition (s-SSPD)

of Q is a pair decomposition of Q such that for every pair (A,B), the distance
between A and B (i.e., the distance of their minimum enclosing disks) is greater
than or equal to s times the minimum of the radius of A and the radius of
B. (The radius of a point set X is the radius of the smallest ball enclosing all
the points in X.) The SSPD has the advantage of low weight as compared to
well-known well-separated pair decomposition.

The Euclidean distance between two points p and q is denoted by |pq|. For
any point p located in the free space D of a polygonal domain P, and for any
line segment � located in D, let d be the geodesic distance between p and �. Then
any point p� ∈ � is called a geodesic projection of p on � whenever the geodesic
(Euclidean) distance between p and p� is d. We denote a geodesic projection of a
point p on a line segment � with p�. The splitting line segment is a line segment in
free space with both of its endpoints on the boundary of the polygonal domain.
(Note that the boundary of a polygonal domain is the union of boundaries of
holes and the boundary of the outer polygon.) Here, π denotes a shortest path
between p and q in the polygonal domain. The value of dw(p, q) is equal to
w(p)+dπ(p, q)+w(q) if p �= q, and it is 0 otherwise. The length of a shortest path
between p and q in a graph G is denoted by dG(p, q). The distance dG\S′(p, q)
denotes the distance along a shortest path between vertices p and q in graph G
after removing set S′ ⊂ V ′ of vertices from G.

Section 2 presents an algorithm to compute a (k,
√

10+ε, w)-VFTSWP when
the weighted input points are in a simple polygon. When the points are located in
the free space of a polygonal domain, an algorithm for computing a (k, 6+ ε, w)-
VFTSWP is detailed in Sect. 3.

Fault-Tolerant Spanners for Weighted Points in Polygonal Domains 475

2 Vertex Fault-Tolerant Spanner for Weighted Points
in a Simple Polygon

Given a simple polygon P, a set S of n points located in P, a weight function w
to associate a non-negative weight to each point in S, a positive integer k, and a
real number ε > 0, we devise an algorithm to compute a geodesic (k,

√
10+ε, w)-

VFTSWP for the set S of weighted points. That is, if for any set S′ ⊂ S with
cardinality at most k, the graph G\S′ is a (

√
10 + ε)-spanner for the set S′ of

weighted points. To remind, a graph G(S′, E′) is a t-spanner for the set S′ of
weighted points located in a simple polygon P whenever the distance between
any two points p, q ∈ S′ in G is upper bounded by t · (w(p) + dπ(p, q) + w(q)).
Here, dπ(p, q) is the geodesic distance between points p and q in the simple
polygon P.

Algorithm 1 listed below extends the algorithm given in [1] to the case of
input points associated with non-negative weights. In addition, the spanner con-
structed by this algorithm is vertex fault-tolerant, and it achieves (

√
10 + ε)-

stretch.

Algorithm 1. VFTSWPSimplePolygon(P, S).
Input : A simple polygon P, a set S on n points located in P, a weight

function w to associate a non-negative weight to each point in S, an
integer k ≥ 1, and a real number 0 < ε ≤ 1.

Output: A (k,
√

10 + ε, w)-VFTSWP G.

1 If |S| ≤ 1 then return.

2 By using the polygon cutting theorem in [18], we partition P into two simple
polygons P ′, P ′′ with a line segment � joining two points on ∂P such that either
of the sub-polygons contains at most two-thirds of the points in S. Let S′ be
the set of points in P ′, and let S′′ be the set of points in P ′′. (Without loss of
generality, for any point p ∈ S, if p is located on �, then we assume p ∈ S′ and
p /∈ S′′.)

3 For each point p ∈ S, compute a geodesic projection p� of p on �. Let S� be the
set of points resulting from the geodesic projection of each point in S on �.

4 Using the algorithm in [2], compute a 4
ε
-SSPD S for the points in S�.

5 AddEdgesUsingSSPD(S, G). (Refer to Algorithm 2.)

6 VFTSWPSimplePolygon(P ′, S′).

7 VFTSWPSimplePolygon(P ′′, S′′).

Essentially, edges added to G in Algorithm 1 help in achieving the vertex
fault-tolerance, i.e., maintaining

√
10+ε stretch even after removing any k points

in S.
We restate the following lemma from [1], which is useful in the analysis of

Algorithm 1.

476 R. Inkulu and A. Singh

Algorithm 2. AddEdgesUsingSSPD(S, G)
Input : An s-SSPD S, and a graph G.
Output: Based on S, edges are added to G.

1 foreach pair (A, B) in S do
2 (In the following, without loss of generality., we assume radius(A) ≤ radius(B).)

3 if |A| < k + 1 then
4 For every p ∈ A and q ∈ B, add an edge (p, q) to G.
5 else
6 For every point p in A, associate a weight w(p) + dπ(p, p�). (Note

that dπ(p, p�) is the geodesic distance between p and p�.) Let w′ be
the resultant restricted weight function.

7 With ties broken arbitrarily, select any k + 1 minimum weighted
points in A, with respect to weights associated via w′; let A′ be
this set of points.

8 For every p ∈ A ∪ B and q ∈ A′, add an edge (p, q) to G.
9 end

10 end

Lemma 1. (from [1]) Suppose ABC is a right triangle with ∠CAB = π
2 . For

some point D on line segment AC, let H be a y-monotone path between B and
D such that the region bounded by AB,AD, and H is convex. Then, 3d(H) +
d(D,C) ≤

√
10d(B,C), where d(.) denotes the Euclidean length.

We note that a y-monotone path is a path whose intersection with any line
perpendicular to y-axis is connected. In the following lemma, we prove the graph
G constructed in Algorithm 1 is indeed a (k,

√
10 + ε, w)-VFTSWP for the set S

of points located in P.

Lemma 2. The spanner G computed by Algorithm1 is a geodesic (k,
√

10+ε, w)-
VFTSWP for the set S of points located in P.

Proof: Consider any set S′ ⊂ S such that |S′| ≤ k. Let p, q be any points in
S \S′. First, we note that there exists a splitting line segment � at some iteration
of the algorithm such that p and q lie on different sides of �. Let π(p, q) be a
shortest path between p and q. Also, let r be a point at which π(p, q) intersects
�. Consider a pair (A,B) in 4

ε -SSPD S such that p� ∈ A and q� ∈ B or, q� ∈ A
and p� ∈ B. We note that since S is a pair decomposition of points in Sl, such
a (A,B) pair always exists in S. Without loss of generality, assume the former
holds. When |A| < k + 1, there exists an edge between p and q in G. Hence,
dG\S′(p, q) = dw(p, q). Consider the other case in which |A| ≥ k + 1. Since
|S′| ≤ k, there exists a cj ∈ A such that cj /∈ S′. Therefore, dG\S′(p, q)

Fault-Tolerant Spanners for Weighted Points in Polygonal Domains 477

= dw(p, cj) + dw(cj , q)
= w(p) + dπ(p, cj) + w(cj) + w(cj) + dπ(cj , q) + w(q)

[by the definition of A′]
≤w(p) + dπ(p, p�) + |p�cj�

| + dπ(cj�
, cj) + w(cj) + w(cj)+

dπ(cj�
, cj) + |cj�

q�| + dπ(q�, q) + w(q)
[since geodesic shortest paths follow triangle inequality]

≤w(p) + dπ(p, p�) + |p�cj�
| + w(p) + w(p) + dπ(p, p�) + dπ(p, p�)+

|cj�
q�| + dπ(q�, q) + w(q)

[by the definition of A′]
≤ 3[w(p) + w(q)] + 3dπ(p, p�) + |p�cj�

| + |cj�
q�| + dπ(q�, q)

≤ 3[w(p) + w(q)] + 3dπ(p, p�) + |p�cj�
| + |p�cj�

| + |p�r| + |rq�| + dπ(q�, q)
[since Euclidean distances follow triangle inequality]

= 3[w(p) + w(q)] + 3dπ(p, p�) + 2|p�cj�
| + |p�r| + |rq�| + dπ(q�, q)

≤ 3[w(p) + w(q)] + 3dπ(p, p′) + 3dπ(p′, p�) + 2|p�cj�
| + |p�r|+

|rq�| + dπ(q�, q
′) + dπ(q′, q)

[by the triangle inequality of Euclidean distances; here, p′(resp.q′) is the
the first point at which π(p, q) and π(p, p�) (resp. π(q, q�)) part ways]

≤ 3[w(p) + w(q)] + 3dπ(p, p′) +
√

10dπ(p′, r) + 2|p�cj�
| +

√
10dπ(q′, r)+

dπ(q′, q)
[applying Lemma 1 to triangles q′hq′r and p′hp′r, where hp′ (resp.hq′)
is the projection on to line defined by p�(q�)and r]

≤ 3[w(p) + w(q)] + 3dπ(p, p′) +
√

10dw(p′, r) + 2|p�cj�
| +

√
10dw(q′, r)+

dπ(q′, q)
[since the weight associated with any point is non-negative]

≤ 3[w(p) + w(q)] + 3dπ(p, p′) +
√

10dw(p′, q′) + 2|p�cj�
| + dπ(q′, q) (1)

[r is the point where π(p, q) intersects �; optimal substructure
property of shortest paths says dw(p, q) = dw(p, r) + dw(r, q)]

≤ 3[w(p) + w(q)] + 3dπ(p, p′) +
√

10dw(p′, q′) + εdw(p, q) + dπ(q′, q). (2)

Since S is a 4
ε -SSPD for the set S� of points, for any pair (X,Y) of S, the distance

between any two points in X is at most ε
2 times of the distance between X and

Y . Hence,

|p�cj�
| ≤ ε

2
|p�q�|. (3)

478 R. Inkulu and A. Singh

Therefore, |p�q�|

≤ |p�r| + |rq�|
[by the triangle inequality]

≤ |p�p| + |pr| + |rq| + |qq�|
[by the triangle inequality]

≤ dπ(p�, p) + dπ(p, r) + dπ(r, q) + dπ(q, q�)
≤ dπ(p, r) + dπ(p, r) + dπ(r, q) + dπ(r, q)

[by definition of projection of a point on l]
≤ dw(p, r) + dw(p, r) + dw(r, q) + dw(r, q)

[since the weight associated with each point is non-negative]
= 2dw(p, q) (4)

[since r is the point where π(p, q) intersects l].

From (3) and (4),

|p�cj�
| ≤ εdw(p, q). (5)

Then, dG\S′(p, q)

≤ 3[w(p) + w(q)] + 3dπ(p, p′) +
√

10dw(p′, q′) + εdw(p, q) + dπ(q′, q).
[from (2) and (5)]

≤ 3dw(p, p′) +
√

10dw(p′, q′) + εdw(p, q) + dw(q′, q)
[since the weight associated with each point is non-negative]

≤
√

10dw(p, q) + εdw(p, q)
[since dπ(p, q) = dπ(p, p′) + dπ(p′, q′) + dπ(q′, q)].

Hence, dG\S′(p, q) ≤ (
√

10 + ε)dw(p, q). 	

Theorem 1. Given a simple polygon P, a set S of n points located in P, a
weight function w to associate a non-negative weight to each point in S, a positive
integer k, and a real number 0 < ε ≤ 1, Algorithm1 computes a (k,

√
10 + ε, w)-

vertex fault-tolerant geodesic spanner network G with O(kn(lg n)2) edges, for the
set S of weighted points.

Proof: From Lemma 2, the spanner constructed is (k,
√

10 + ε, w)-VFTSWP.
Let S(n) be the number of edges in the spanner. Also, let n1, n2 be the sizes
of sets obtained by partitioning the initial n points at the root node of the
divide-and-conquer recursion tree. The recurrence is S(n) = S(n1) + S(n2) +∑

(A,B)∈ 4
ε -SSPD(k(|A| + |B|)). Since (A,B) is a pair in 4

ε -SSPD,
∑

(|A| + |B|) =
O(n lg n). Noting that n1, n2 ≥ n/3, the size of the spanner is O(kn(lg n)2). 	

Fault-Tolerant Spanners for Weighted Points in Polygonal Domains 479

3 Vertex Fault-Tolerant Spanner for Weighted Points
in a Polygonal Domain

Given a polygonal domain P, a set S of n points located in the free space D
of P, a weight function w to associate a non-negative weight to each point in
S, a positive integer k, and a real number 0 < ε ≤ 1, we compute a geodesic
(k, 6 + ε, w)-VFTSWP for the set S of weighted points. That is, for any set
S′ ⊂ S with cardinality at most k, the graph G\S′ is a (6 + ε)-spanner for the
set S′ of weighted points.

Algorithm 3 mentioned below computes a geodesic (6 + ε)-VFTSWP G for a
set S of n points lying in the free space D of the polygonal domain P, while each
point in S is associated with a non-negative weight. The polygonal domain P
consists of a simple polygon and h simple polygonal holes located interior to that
simple polygon. We combine and extend the algorithms given in Sect. 2 and the
algorithms in [1] to the case of input points associated with non-negative weights.
In addition, the spanner constructed by this algorithm is vertex fault-tolerant
and achieves a 6 + ε multiplicative stretch.

The following theorem from [6] on computing a planar separator helps in
devising a divide-and-conquer based algorithm (refer to Algorithm3).

Theorem 2. ([6]) Suppose G = (V,E) is a planar vertex-weighted graph with
|V | = m. Then, an O(

√
m)-separator for G can be computed in O(m) time. That

is, V can be partitioned into sets P,Q, and R such that |R| = O(
√

m), there is
no edge between P and Q, and w(P), w(Q) ≤ 2

3w(V). Here, w(X) is the sum of
weights of all vertices in X.

The following lemma proves that G computed by Algorithm 3 is a geodesic
(k, 6 + ε, w)-VFTSWP for the set S of points.

Lemma 3. The spanner G is a geodesic (k, 6 + ε, w)-VFTSWP for the set S of
points located in D.

Proof: Consider any set S′ ⊂ S such that |S′| ≤ k. Let p, q be any two points in
S \S′. Based on the locations of p and q, we consider the following cases: (1) The
points p and q lie inside the same simple polygon and no shortest path between p
and q intersects any splitting line segment from the set H. (2) The points p and
q belong to two distinct simple polygons in the simple polygonal subdivision of
D, and both of these simple polygons correspond to vertices of one of P,Q, and
R. (3) The points p and q belong to two distinct simple polygons in the simple
polygonal subdivision of D, but if one of these simple polygons correspond to a
vertex of P ′ ∈ {P,Q,R}, then the other simple polygon correspond to a vertex
of P ′′ ∈ {P,Q,R} and P ′′ �= P ′. In Case (1), we run Algorithm 1, which implies
there exists a path with

√
10+ε multiplicative stretch between p and q. In Cases

(2) and (3), a shortest path between p and q intersects at least one of the O(
√

h)
splitting line segments collected in the set H. Let � be the splitting line segment
that intersects a shortest path, say π(p, q), between p and q. Also, let r be the
point of intersection of π(p, q) with �. At this step, consider a pair (A,B) in

480 R. Inkulu and A. Singh

Algorithm 3. VFTSWPPolygonalDomain(D, S)
Input : The free space D of a polygonal domain P, a set S on n points located

in D, a weight function w that associates a non-negative weight to
each point in S, an integer k ≥ 1, and a real number 0 < ε ≤ 1.

Output: A (k, 6 + ε, w)-VFTSWP G.

1 If |S| ≤ 1 then return.

2 Partition the free space D into O(h) simple polygons using O(h) splitting line
segments, such that no splitting line segment crosses any of the holes of P, and
each of the resultant simple polygons has at most three splitting line segments
bounding it. This is done by choosing a leftmost vertex lO (resp. a rightmost
vertex rO) along the x-axis of each obstacle O ∈ P, and projecting lO (resp. rO)
both upwards and downwards, parallel to y-axis. (If any of the resultant simple
polygons have more than three splitting line segments on its boundary, then
that polygon is further decomposed arbitrarily so that the resulting polygon has
at most three splitting line segments on its boundary.)

3 A planar graph Gd is constructed: each vertex of Gd corresponds to a simple
polygon in the above decomposition; for any two vertices v′, v′′ of Gd, an edge
(v′, v′′) is introduced into Gd whenever the corresponding simple polygons of v′

and v′′ are adjacent to each other in the decomposition. Further, each vertex v
of Gd is associated with a weight equal to the number of points that lie inside
the simple polygon corresponding to v.

4 if the number of vertices in Gd is 1 then
5 Let D′ be the simple polygon that corresponds to the vertex of Gd, and let

S′ be the points in S that belong to D′.

6 VFTSWPSimplePolygon(D′, S ′). (Refer to Algorithm 1.)

7 return
8 end

9 Compute an O(
√

h)-separator R for the planar graph Gd using Theorem 2, and
let P, Q, and R be the sets into which the vertices of Gd is partitioned.

10 For each vertex r ∈ R, we collect the bounding splitting line segments of the

simple polygon corresponding to r into H, i.e., O(
√

h) splitting line segments
are collected into a set H.

11 foreach l ∈ H do
12 For each point p that lies in D, compute a geodesic projection p� of p on �.

Let S� be the set of points resultant from these projections.

13 Using the algorithm from [2], compute a 8
ε
-SSPD S for the points in S�.

14 AddEdgesUsingSSPD(S, G). (Refer to Algorithm 2.)

15 end
16 Let D′ (resp. D′′) be the union of simple polygons that correspond to vertices of

Gd in P (resp. Q). (Note that D′ and D′′ are polygonal domains.) Also, let S′

(resp. S′′) be the points in S that belong to D′ (resp. D′′).

17 VFTSWPPolygonalDomain(D′, S′).

18 VFTSWPPolygonalDomain(D′′, S′′).

Fault-Tolerant Spanners for Weighted Points in Polygonal Domains 481

8
ε -SSPD S such that p� ∈ A and q� ∈ B or, q� ∈ A and p� ∈ B, where p� (resp.
q�) is the projection of p (resp. q) on �. Without loss of generality, assume the
former holds. Suppose |A| < k + 1. Then, there exists an edge between p and
q. Hence, dG\S′(p, q) = dw(p, q). Consider the other case in which |A| ≥ k + 1.
Since |S′| ≤ k, there exists a cj ∈ A such that cj /∈ S′. Therefore,

dG\S′(p, q)
= dw(p, cj) + dw(cj , q)
= w(p) + dπ(p, cj) + w(cj) + w(cj) + dπ(cj , q) + w(q). (6)
≤ w(p) + dπ(p, p�) + |p�cj�

| + dπ(cj�
, cj) + w(cj) + w(cj) + dπ(cj�

, cj)+
|cj�

q�| + dπ(q�, q) + w(q)
[since geodesic shortest paths follow triangle inequality]

≤ w(p) + dw(p, q) + |p�cj�
| + dπ(cj�

, cj) + w(cj) + w(cj) + dπ(cj�
, cj)+

|cj�
q�| + w(q)[asdπ(p, p�) + dπ(q, q�) ≤ dw(p, q)]

≤ w(p) + dw(p, q) +
ε

4
|p�q�| + 2dπ(cj�

, cj) + 2w(cj)+

|cj�
q�| + w(q) [as S is a

8
ε
-SSPD, |p�cj�

| ≤ ε

4
|p�q�|]

≤ w(p) + dw(p, q) +
ε

4
[|p�p| + |pq| + |qq�|] + 2dπ(cj�

, cj) + 2w(cj)+

|cj�
q�| + w(q)[by the triangle inequality]

≤ w(p) + dw(p, q) +
ε

4
[dπ(p�, p) + dπ(p, q) + dπ(q, q�)] + 2dπ(cj�

, cj) + 2w(cj)

+ |cj�
q�| + w(q)[as the Euclidean distance between any two points

cannot be greater to the geodesic distance between them]

≤ w(p) + dw(p, q) +
ε

4
[dw(p, q) + dπ(p, q)] + 2dπ(cj�

, cj) + 2w(cj)+

|cj�
q�| + w(q)[as S is a

8
ε
-SSPD]. (7)

Since S is a 8
ε -SSPD for the set S� of points, for any pair (X,Y) of S, the distance

between any two points in X is at most ε
4 times of the distance between X and

Y . Therefore,

|p�cj�
| ≤ ε

4
|p�q�|. (8)

Since r is the point where π(p, q) intersects �, by the optimal sub-structure
property of shortest paths,

π(p, q) = π(p, r) + π(r, q). (9)

482 R. Inkulu and A. Singh

Then, dπ(p, p�) + dπ(q, q�)

≤ dπ(p, r) + dπ(q, r)
[as dπ(p, p�) ≤ dπ(p, r) and dπ(q, q�) ≤ dπ(q, r)] (10)

= dπ(p, q)
[sinceπ(p, q) intersects � at r]

≤ dw(p, q) (11)
[since the weight associated with each point is non-negative].

Moreover, |cj�
q�|

≤ |cj�
p�| + |p�q�|

[by the triangle inequality]

≤ ε

4
|p�q�| + |p�q�|

[from (8)]

≤ (
ε

4
+ 1)|p�q�|

≤ (
ε

4
+ 1)(|p�r| + |rq�|)

[by the triangle inequality]

≤ (
ε

4
+ 1)(|p�p| + |pq| + |qq�|)

[by the triangle inequality]

≤ (
ε

4
+ 1)(dπ(p�, p) + dπ(p, q) + dπ(q, q�))

[from the definition of geodesic distance]

≤ (
ε

4
+ 1)(dπ(r, p) + dπ(p, q) + dπ(q, r))

[asdπ(p, p�) ≤ dπ(p, r) and dπ(q, q�) ≤ dπ(q, r)]

= (
ε

4
+ 1)(dw(p, q) + dw(p, q))

[from (10)]

= 2(
ε

4
+ 1)dw(p, q).

Hence,

|p�cj�
| ≤ 2(

ε

4
+ 1)dw(p, q). (12)

Fault-Tolerant Spanners for Weighted Points in Polygonal Domains 483

dG\S′(p, q)

≤ w(p) + dw(p, q) +
2ε

4
dw(p, q) + 2dπ(cj�

, cj) + 2w(cj) + (
ε

2
+ 2)dw(p, q)+

w(q)[from (7) and (11)]

≤ w(p) + dw(p, q) +
2ε

4
dw(p, q) + 2[w(p) + dπ(p, q)] + (

ε

2
+ 2)dw(p, q)+

w(q)[by the definition of set A′]

≤ 3[w(p) + dπ(p, q) + w(q)] + dw(p, q) +
2ε

4
dw(p, q) + (

ε

2
+ 2)dw(p, q)

= 3dw(p, q) + dw(p, q) +
2ε

4
dw(p, q) + (

ε

2
+ 2)dw(p, q).

Hence, dG\S′(p, q) ≤ (6 + ε)dw(p, q). 	

Theorem 3. Given a polygonal domain P, a set S of n points located in the free
space D of P, a weight function w to associate a non-negative weight to each point
in S, a positive integer k, and a real number 0 < ε ≤ 1, Algorithm3 computes a
(k, 6+ ε, w)-vertex fault-tolerant spanner network G with O(kn

√
h(lg n)2) edges,

for the set S of weighted points.

Proof: From Lemma 3, the spanner constructed is (k, 6 + ε, w)-VFTSWP. Let
S(n) be the number of edges in G. Since there are O(

√
h) splitting line seg-

ments, the number of edges included into G is O(kn
√

h lg n). At each inter-
nal node of the recursion tree of the algorithm, S(n) satisfies the recurrence
S(n) = O(kn

√
h lg n) + S(n1) + S(n2), where n1 + n2 = n and n1, n2 ≥ n/3.

The number of edges included at all the leaves of the recursion tree together is
O(kn

√
h(lg n)2). Hence, the total number of edges is O(kn

√
h(lg n)2). 	

4 Conclusions

Our first algorithm computes a k-vertex fault-tolerant spanner with stretch√
10 + ε for weighted points located in a simple polygon. Our second algo-

rithm computes a k-vertex fault-tolerant spanner with stretch 6+ ε for weighted
points located in a polygonal domain. It would be interesting to achieve a better
bound on the stretch factor for the case of each point is unit or zero weighted.
Apart from the efficient computation, it would be interesting to explore the lower
bounds on the number of edges for these problems. Besides, the future work in
the context of spanners for weighted points could include finding the relation
between vertex-fault tolerance and edge-fault tolerance and optimizing various
spanner parameters, like degree, diameter, and weight.

References

1. Abam, M.A., Adeli, M., Homapour, H., Asadollahpoor, P.Z.: Geometric spanners
for points inside a polygonal domain. In: Proceedings of Symposium on Computa-
tional Geometry, pp. 186–197 (2015)

484 R. Inkulu and A. Singh

2. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant
geometric spanners. Discret. Comput. Geom. 41(4), 556–582 (2009)

3. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J., Smid, M.H.M.: Geometric
spanners for weighted point sets. Algorithmica 61(1), 207–225 (2011)

4. Abam, M.A., de Berg, M., Seraji, M.J.R.: Geodesic spanners for points on a polyhe-
dral terrain. In: Proceedings of Symposium on Discrete Algorithms, pp. 2434–2442
(2017)

5. Abam, M.A., Har-Peled, S.: New constructions of SSPDs and their applications.
Comput. Geom. 45(5), 200–214 (2012)

6. Alon, N., Seymour, P.D., Thomas, R.: Planar separators. SIAM J. Discret. Math.
7(2), 184–193 (1994)

7. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discret. Comput. Geom. 9(1), 81–100 (1993). https://doi.org/
10.1007/BF02189308

8. Aronov, B., et al.: Sparse geometric graphs with small dilation. Comput. Geom.
40(3), 207–219 (2008)

9. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.H.M.: Euclidean spanners:
short, thin, and lanky. In: Proceedings of Annual ACM Symposium on Theory of
Computing, pp. 489–498 (1995)

10. Arya, S., Mount, D.M., Smid, M.: Dynamic algorithms for geometric spanners of
small diameter: randomized solutions. Comput. Geom. 13(2), 91–107 (1999)

11. Arya, S., Mount, D.M., Smid, M.H.M.: Randomized and deterministic algorithms
for geometric spanners of small diameter. In: Proceedings of Annual Symposium
on Foundations of Computer Science, pp. 703–712 (1994)

12. Arya, S., Smid, M.H.M.: Efficient construction of a bounded-degree spanner with
low weight. Algorithmica 17(1), 33–54 (1997)

13. Bhattacharjee, S., Inkulu, R.: Fault-tolerant additive weighted geometric spanners.
In: Pal, S.P., Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol. 11394, pp. 29–41.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11509-8 3

14. Bhattacharjee, S., Inkulu, R.: Geodesic fault-tolerant additive weighted spanners.
In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp.
38–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4 4

15. Bose, P., Carmi, P., Farshi, M., Maheshwari, A., Smid, M.: Computing the greedy
spanner in near-quadratic time. Algorithmica 58(3), 711–729 (2010)

16. Bose, P., Carmi, P., Chaitman, L., Collette, S., Katz, M.J., Langerman, S.: Stable
roommates spanner. Comput. Geom. 46(2), 120–130 (2013)

17. Bose, P., Carmi, P., Couture, M.: Spanners of additively weighted point sets. In:
Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 367–377. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-69903-3 33

18. Bose, P., Czyzowicz, J., Kranakis, E., Krizanc, D., Maheshwari, A.: Polygon cut-
ting: revisited. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS,
vol. 1763, pp. 81–92. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-
540-46515-7 7

19. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: On plane constrained
bounded-degree spanners. Algorithmica 81(4), 1392–1415 (2018). https://doi.org/
10.1007/s00453-018-0476-8

20. Carmi, P., Chaitman, L.: Stable roommates and geometric spanners. In: Proceed-
ings of the 22nd Annual Canadian Conference on Computational Geometry, pp.
31–34 (2010)

21. Chew, L.P.: There are planar graphs almost as good as the complete graph. J.
Comput. Syst. Sci. 39(2), 205–219 (1989)

https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/978-3-030-11509-8_3
https://doi.org/10.1007/978-3-030-26176-4_4
https://doi.org/10.1007/978-3-540-69903-3_33
https://doi.org/10.1007/978-3-540-46515-7_7
https://doi.org/10.1007/978-3-540-46515-7_7
https://doi.org/10.1007/s00453-018-0476-8
https://doi.org/10.1007/s00453-018-0476-8

Fault-Tolerant Spanners for Weighted Points in Polygonal Domains 485

22. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discret. Comput. Geom.
32(2), 207–230 (2004)

23. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean span-
ners. Int. J. Comput. Geom. Appl. 7(4), 297–315 (1997)

24. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (ed.) Hand-
book of Computational Geometry, pp. 425–461. Elsevier (1999)

25. Gudmundsson, J., Knauer, C.: Dilation and detour in geometric networks. In:
Gonzalez, T. (ed.) Handbook of Approximation Algorithms and Metaheuristics.
Chapman & Hall (2007)

26. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for
constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002)

27. Kapoor, S., Li, X.-Y.: Efficient construction of spanners in d-dimensions. CoRR,
abs/1303.7217 (2013)

28. Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Improved algorithms for con-
structing fault-tolerant spanners. Algorithmica 32(1), 144–156 (2002)

29. Lukovszki, T.: New results on fault tolerant geometric spanners. In: Dehne, F.,
Sack, J.-R., Gupta, A., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp.
193–204. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48447-7 20

30. Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge Univer-
sity Press, Cambridge (2007)

31. Peleg, D., Schäffer, A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)
32. Solomon, S.: From hierarchical partitions to hierarchical covers: optimal fault-

tolerant spanners for doubling metrics. In: Proceedings of Symposium on Theory
of Computing, pp. 363–372 (2014)

33. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In:
Proceedings of ACM Symposium on Theory of Computing, pp. 281–290 (2004)

34. Varadarajan, K.R.: A divide-and-conquer algorithm for min-cost perfect matching
in the plane. In: Proceedings of Annual Symposium on Foundations of Computer
Science, pp. 320–329 (1998)

https://doi.org/10.1007/3-540-48447-7_20

Competitive Analysis for Two Variants
of Online Metric Matching Problem

Toshiya Itoh1 , Shuichi Miyazaki2(B) , and Makoto Satake3

1 Department of Mathematical and Computing Science,
Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

titoh@c.titech.ac.jp
2 Academic Center for Computing and Media Studies, Kyoto University,

Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
shuichi@media.kyoto-u.ac.jp

3 Graduate School of Informatics, Kyoto University,
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

satake@net.ist.i.kyoto-u.ac.jp

Abstract. In this paper, we study two variants of the online metric
matching problem. The first problem is the online metric matching prob-
lem where all the servers are placed at one of two positions in the metric
space. We show that a simple greedy algorithm achieves the competi-
tive ratio of 3 and give a matching lower bound. The second problem
is the online facility assignment problem on a line, where servers have
capacities, servers and requests are placed on 1-dimensional line, and the
distances between any two consecutive servers are the same. We show

lower bounds 1+
√

6 (> 3.44948), 4+
√
73

3
(> 4.18133) and 13

3
(> 4.33333)

on the competitive ratio when the numbers of servers are 3, 4 and 5,
respectively.

Keywords: Online algorithm · Competitive analysis · Online
matching problem

1 Introduction

The online metric matching problem was introduced independently by Kalyana-
sundaram and Pruhs [7] and Khuller, Mitchell and Vazirani [10]. In this problem,
n servers are placed on a given metric space. Then n requests, which are points
on the metric space, are given to the algorithm one-by-one in an online fashion.
The task of an online algorithm is to match each request immediately to one
of n servers. If a request is matched to a server, then it incurs a cost which is
equivalent to the distance between them. The goal of the problem is to minimize
the sum of the costs. The papers [7] and [10] presented a deterministic online

This work was partially supported by the joint project of Kyoto University and Toyota
Motor Corporation, titled “Advanced Mathematical Science for Mobility Society” and
JSPS KAKENHI Grant Numbers JP16K00017 and JP20K11677.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 486–498, 2020.
https://doi.org/10.1007/978-3-030-64843-5_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_33&domain=pdf
http://orcid.org/0000-0002-1149-7046
http://orcid.org/0000-0003-0369-1970
https://doi.org/10.1007/978-3-030-64843-5_33

Competitive Analysis for Two Variants of Online Metric Matching Problem 487

algorithm (called Permutation in [7]) and showed that it is (2n− 1)-competitive
and optimal.

In 1998, Kalyanasundaram and Pruhs [8] posed a question whether we can
have a better competitive ratio by restricting the metric space to a line, and
introduced the problem called the online matching problem on a line. Since
then, this problem has been extensively studied, but there still remains a large
gap between the best known lower bound 9.001 [5] and upper bound O(log n)
[16] on the competitive ratio.

In 2020, Ahmed, Rahman and Kobourov [1] proposed a problem called the
online facility assignment problem and considered it on a line, which we denote
OFAL for short. In this problem, all the servers (which they call facilities) and
requests (which they call customers) lie on a 1-dimensional line, and the dis-
tance between every pair of adjacent servers is the same. Also, each server has
a capacity, which is the number of requests that can be matched to the server.
In their model, all the servers are assumed to have the same capacity. Let us
denote OFAL(k) the OFAL problem where the number of servers is k. Ahmed
et al. [1] showed that for OFAL(k) the greedy algorithm is 4k-competitive for
any k and a deterministic algorithm Optimal-fill is k-competitive for any k > 2.

1.1 Our Contributions

In this paper, we study a variant of the online metric matching problem where all
the servers are placed at one of two positions in the metric space. This is equiva-
lent to the case where there are two servers with capacities. We show that a simple
greedy algorithm achieves the competitive ratio of 3 for this problem, and show
that any deterministic online algorithm has competitive ratio at least 3.

We also study OFAL(k) for small k. Specifically, we show lower bounds 1 +√
6 (>3.44948), 4+

√
73

3 (>4.18133) and 13
3 (>4.33333) on the competitive ratio

for OFAL(3), OFAL(4) and OFAL(5), respectively. We remark that our lower
bounds 1+

√
6 for OFAL(3) and 4+

√
73

3 for OFAL(4) do not contradict the above-
mentioned upper bound of Optimal-fill, since upper bounds by Ahmed et al. [1]
are with respect to the asymptotic competitive ratio, while our lower bounds are
with respect to the strict competitive ratio (see Sect. 2.3).

1.2 Related Work

In 1990, Karp, Vazirani and Vazirani [9] first studied an online version of the
matching problem. They studied the online matching problem on unweighted
bipartite graphs with 2n vertices that contain a perfect matching, where the goal
is to maximize the size of the obtained matching. In [9], they first showed that
a deterministic greedy algorithm is 1

2 -competitive and optimal. They also pre-
sented a randomized algorithm Ranking and showed that it is (1− 1

e)-competitive
and optimal. See [12] for a survey of the online matching problem.

488 T. Itoh et al.

As mentioned before, Kalyanasundaram and Pruhs [7] studied the online
metric matching problem and showed that the algorithm Permutation is (2n−1)-
competitive and optimal. Probabilistic algorithms for this problem were studied
in [4,13].

Kalyanasundaram and Pruhs [8] studied the online matching problem on
a line. They gave two conjectures that the competitive ratio of this problem
is 9 and that the Work-Function algorithm has a constant competitive ratio,
both of which were later disproved in [11] and [5], respectively. This problem
was studied in [2,3,6,14–16], and the best known deterministic algorithm is the
Robust Matching algorithm [15], which is Θ(log n)-competitive [14,16].

Besides the problem on a line, Ahmed, Rahman and Kobourov [1] studied
the online facility assignment problem on an unweighted graph G(V,E). They
showed that the greedy algorithm is 2|E|-competitive and Optimal-Fill is |E|k

r -
competitive, where |E| is the number of edges of G and r is the radius of G.

2 Preliminaries

In this section, we give definitions and notations.

2.1 Online Metric Matching Problem with Two Servers

We define the online metric matching problem with two servers, denoted by
OMM(2) for short. Let (X, d) be a metric space, where X is a (possibly infinite)
set of points and d(·, ·) is a distance function. Let S = {s1, s2} be a set of servers
and R = {r1, r2, . . . , rn} be a set of requests. A server si is characterized by the
position p(si) ∈ X and the capacity ci that satisfies c1 + c2 = n. This means
that si can be matched with at most ci requests (i = 1, 2). A request ri is also
characterized by the position p(ri) ∈ X.

S is given to an online algorithm in advance, while requests are given one-
by-one from r1 to rn. At any time of the execution of an algorithm, a server is
called free if the number of requests matched with it is less than its capacity, and
full otherwise. When a request ri is revealed, an online algorithm must match
ri with one of free servers. If ri is matched with the server sj , the pair (ri, sj)
is added to the current matching and the cost d(ri, sj) is incurred for this pair.
The cost of the matching is the sum of the costs of all the pairs contained in it.
The goal of OMM(2) is to minimize the cost of the final matching.

2.2 Online Facility Assignment Problem on a Line

We give the definition of the online facility assignment problem on a line with
k servers, denoted by OFAL(k). We state only differences from Sect. 2.1. The
set of servers is S = {s1, s2, . . . , sk} and all the servers have the same capacity
�, i.e., ci = � for all i. The number of requests must satisfy n ≤ ∑k

i=1 ci = k�.
All the servers and requests are placed on a real number line, so their positions
are expressed by a real, i.e., p(si) ∈ R and p(rj) ∈ R. Accordingly, the distance

Competitive Analysis for Two Variants of Online Metric Matching Problem 489

function is written as d(ri, sj) = |p(ri) − p(sj)|. We assume that the servers are
placed in an increasing order of their indices, i.e., p(s1) ≤ p(s2) ≤ . . . ≤ p(sk).
In this problem, any distance between two consecutive servers is the same, that
is, |p(si) − p(si+1)| = d (1 ≤ i ≤ k − 1) for some constant d. Without loss of
generality, we let d = 1.

2.3 Competitive Ratio

To evaluate the performance of an online algorithm, we use the strict competitive
ratio. (Hereafter, we omit “strict”). For an input σ, let ALG(σ) and OPT (σ) be
the costs of the matchings obtained by an online algorithm ALG and an optimal
offline algorithm OPT , respectively. Then the competitive ratio of ALG is the
supremum of c that satisfies ALG(σ) ≤ c · OPT (σ) for any input σ.

3 Online Metric Matching Problem with Two Servers

3.1 Upper Bound

In this section, we define a greedy algorithm GREEDY for OMM(2) and show
that it is 3-competitive.

Definition 1. When a request is given, GREEDY matches it with the closest
free server. If a given request is equidistant from the two servers and both servers
are free, GREEDY matches this request with s1.

In the following discussion, we fix an optimal offline algorithm OPT . If a
request r is matched with the server sx by GREEDY and with sy by OPT , we
say that r is of type 〈sx, sy〉. We then define some properties of inputs.

Definition 2. Let σ be an input to OMM(2). If every request in σ is matched
with a different server by GREEDY and OPT , σ is called anti-opt.

Definition 3. Let σ be an input to OMM(2). Suppose that GREEDY matches
its first request r1 with the server sx ∈ {s1, s2}. If GREEDY matches r1 through
rcx with sx (note that cx is the capacity of sx) and rcx+1 through rn with the
other server s3−x, σ is called one-sided-priority.

By the following two lemmas, we show that it suffices to consider inputs that
are anti-opt and one-sided-priority. For an input σ, we define Rate(σ) as

Rate(σ) =

⎧
⎪⎪⎨

⎪⎪⎩

GREEDY (σ)
OPT (σ)

(if OPT (σ) �= 0)

1 (if OPT (σ) = GREEDY (σ) = 0)
∞ (if OPT (σ) = 0 and GREEDY (σ) > 0)

Lemma 1. For any input σ, there exists an anti-opt input σ′ such that
Rate(σ′) ≥ Rate(σ).

490 T. Itoh et al.

Proof. If σ is already anti-opt, we can set σ′ = σ. Hence, in the following,
we assume that σ is not anti-opt. Then there exists a request r in σ that is
matched with the same server sx by OPT and GREEDY . Let σ′′ be an input
obtained from σ by removing r and subtracting the capacity of sx by 1. By this
modification, neither OPT nor GREEDY changes a matching for the remaining
requests. Therefore, GREEDY (σ′′) = GREEDY (σ)−d(r, sx) and OPT (σ′′) =
OPT (σ) − d(r, sx), which implies Rate(σ′′) ≥ Rate(σ).

Let σ′ be the input obtained by repeating this operation until the input
sequence becomes anti-opt. Then σ′ satisfies the conditions of this lemma.
�
Lemma 2. For any anti-opt input σ, there exists an anti-opt and one-sided-
priority input σ′ such that Rate(σ′) = Rate(σ).

Proof. If σ is already one-sided-priority, we can set σ′ = σ. Hence, in the follow-
ing, we assume that σ is not one-sided-priority.

Since σ is anti-opt, σ contains only requests of type 〈s1, s2〉 or 〈s2, s1〉. With-
out loss of generality, assume that in execution of GREEDY , the server s1
becomes full before s2, and let rt be the request that makes s1 full (i.e., rt is the
last request of type 〈s1, s2〉).

Because σ is not one-sided-priority, σ includes at least one request ri of type
〈s2, s1〉 before rt. Let σ′′ be the input obtained from σ by moving ri to just after
rt. Since the set of requests is unchanged in σ and σ′′, an optimal matching
for σ is also optimal for σ′′, so OPT (σ′′) = OPT (σ). In the following, we show
that GREEDY matches each request with the same server in σ and σ′′. The
sequence of requests up to ri−1 are the same in σ′′ and σ, so the claim clearly
holds for r1 through ri−1. The behavior of GREEDY for ri+1 through rt in σ′′

is also the same for those in σ, because when serving these requests, both s1
and s2 are free in both σ and σ′′. Just after serving rt in σ′′, s1 becomes full, so
GREEDY matches ri, rt+1, . . . , rn with s2 in σ′′. Note that these requests are
also matched with s2 in σ. Hence GREEDY (σ′′) = GREEDY (σ) and it results
that Rate(σ′′) = Rate(σ). Note that σ′′ remains anti-opt.

Let σ′ be the input obtained by repeating this operation until the input
sequence becomes one-sided-priority. Then σ′ satisfies the conditions of this
lemma.
�

We can now prove the upper bound.

Theorem 1. The competitive ratio of GREEDY is at most 3 for OMM(2).

Proof. By Lemma 1, it suffices to analyze only anti-opt inputs. In an anti-opt
input, the number of requests of type 〈s1, s2〉 and that of type 〈s2, s1〉 are the
same and the capacities of s1 and s2 are n/2 each. By Lemma 2, it suffices to
analyze only the inputs where the first n/2 requests are of type 〈s1, s2〉 and the
remaining n/2 requests are of type 〈s2, s1〉.

Let σ be an arbitrary such input. Then we have that

GREEDY (σ) =
n/2∑

i=1

d(ri, s1) +
n∑

i=n/2+1

d(ri, s2)

Competitive Analysis for Two Variants of Online Metric Matching Problem 491

and

OPT (σ) =
n/2∑

i=1

d(ri, s2) +
n∑

i=n/2+1

d(ri, s1).

When serving r1, r2, . . . , rn/2, both servers are free but GREEDY matched
them with s1. Hence d(ri, s1) ≤ d(ri, s2) for 1 ≤ i ≤ n/2. By the triangle
inequality, we have d(ri, s2) ≤ d(s1, s2) + d(ri, s1) for n/2 + 1 ≤ i ≤ n. Again,
by the triangle inequality, we have d(s1, s2) ≤ d(ri, s1) + d(ri, s2) for 1 ≤ i ≤ n.

From these inequalities, we have that

GREEDY (σ) =
n/2∑

i=1

d(ri, s1) +
n∑

i=n/2+1

d(ri, s2)

≤
n/2∑

i=1

d(ri, s2) +
n∑

i=n/2+1

(d(s1, s2) + d(ri, s1))

= OPT (σ) +
n

2
d(s1, s2)

= OPT (σ) +
1
2

n∑

i=1

d(s1, s2)

≤ OPT (σ) +
1
2

n∑

i=1

(d(ri, s1) + d(ri, s2))

= OPT (σ) +
1
2
(OPT (σ) + GREEDY (σ))

=
3
2
OPT (σ) +

1
2
GREEDY (σ).

Thus GREEDY (σ) ≤ 3OPT (σ) and the competitive ratio of GREEDY is at
most 3.
�

3.2 Lower Bound

Theorem 2. The competitive ratio of any deterministic online algorithm for
OMM(2) is at least 3.

Proof. We prove this lower bound on a 1-dimensional real line metric. Let p(s1) =
−d and p(s2) = d for a constant d. Consider any deterministic algorithm ALG.
First, our adversary gives c1 − 1 requests at p(s1) and c2 − 1 requests at p(s2).
OPT matches the first c1 − 1 requests with s1 and the rest with s2. If there
exists a request that ALG matches differently from OPT , the adversary gives
two more requests, one at p(s1) and the other at p(s2). Then, the cost of OPT
is zero, while the cost of ALG is positive, so the ratio of them becomes infinity.

Next, suppose that ALG matches all these requests with the same server as
OPT . Then the adversary gives the next request at the origin 0. Let sx be the

492 T. Itoh et al.

server that ALG matches this request with. Then OPT matches this request
with the other server s3−x. After that, the adversary gives the last request at
p(sx). ALG has to match it with s3−x and OPT matches it with sx. The costs
of ALG and OPT for this input are 3d and d, respectively. This completes the
proof.
�

4 Online Facility Assignment Problem on Line

In this section, we show lower bounds on the competitive ratio of OFAL(k) for
k = 3, 4, and 5. To simplify the proofs, we use Definitions 4 and 5 and Proposition
1, observed in [3,11], that allow us to restrict online algorithms to consider.

Definition 4. When a request r is given, the surrounding servers for r are the
closest free server to the left of r and the closest free server to the right of r.

Definition 5. If an algorithm ALG matches every request of an input σ with
one of the surrounding servers, ALG is called surrounding-oriented for σ. If ALG
is surrounding-oriented for any input, then ALG is called surrounding-oriented.

Proposition 1. For any algorithm ALG, there exists a surrounding-oriented
algorithm ALG′ such that ALG′(σ) ≤ ALG(σ) for any input σ.

The proof of Proposition 1 is omitted in [3,11], so we prove it here for com-
pleteness.

Proof. Suppose that ALG is not surrounding-oriented for σ. Then ALG matches
at least one request of σ with a non-surrounding server. Let r be the earliest
one among such requests and s be the server matched with r by ALG. Also let
s′ be the surrounding server (for r) on the same side as s and r′ be the request
matched with s′ by ALG.

We modify ALG to ALG′′ so that ALG′′ matches r with s′ and r′ with s (and
behaves the same as ALG for other requests). Without loss of generality, we can
assume that p(r) < p(s). Then we have that p(r) ≤ p(s′) < p(s). If p(r′) ≤ p(s′),
then ALG′′(σ) = ALG(σ) and if p(r′) > p(s′), then ALG′′(σ) < ALG(σ). In
either case, we have that ALG′′(σ) ≤ ALG(σ).

Let ALG′′′ be the algorithm obtained by applying this modification as long as
there is a request in σ matched with a non-surrounding server. Then ALG′′′(σ) ≤
ALG(σ) and ALG′′′ is surrounding-oriented for σ.

We do the above modification for all the inputs for which ALG is not
surrounding-oriented, and let ALG′ be the resulting algorithm. Then ALG′(σ) ≤
ALG(σ) and ALG′ is surrounding-oriented, as required.
�

By Proposition 1, it suffices to consider only surrounding-oriented algorithms
for lower bound arguments.

Theorem 3. The competitive ratio of any deterministic online algorithm for
OFAL(3) is at least 1 +

√
6 (>3.44948).

Competitive Analysis for Two Variants of Online Metric Matching Problem 493

Proof. Let ALG be any surrounding-oriented algorithm. Our adversary first
gives � − 1 requests at p(si) for each i = 1, 2 and 3. OPT matches every request
r with the server at the same position p(r). If ALG matches some request r with
a server not at p(r), then the adversary gives three more requests, one at each
position of the server. The cost of ALG is positive and the cost of OPT is zero,
so the ratio of the costs is infinity.

Next, suppose that ALG matches all these requests to the same server as
OPT . Let x =

√
6 − 2 (� 0.44949) and y = 3

√
6 − 7 (� 0.34847). The adversary

gives a request r1 at p(s2) + x.

Case 1. ALG matches r1 with s3
See Fig. 1. The adversary gives the next request r2 at p(s3). ALG matches it
with s2. Finally, the adversary gives a request r3 at p(s1) and ALG matches it
with s1. The cost of ALG is 2 − x = 4 − √

6 and the cost of OPT is x =
√

6 − 2.
The ratio is 4−√

6√
6−2

= 1 +
√

6.

Fig. 1. Requests and ALG’s matching for Case 1 of Theorem 3.

Case 2. ALG matches r1 with s2
The adversary gives the next request r2 at p(s2) − y. We have two subcases.

Case 2-1. ALG matches r2 with s1
See Fig. 2. The adversary gives a request r3 at p(s1) and ALG matches it with s3.
The cost of ALG is 3+x−y = 8−2

√
6 and the cost of OPT is 1−x+y = 2

√
6−4.

The ratio is 8−2
√
6

2
√
6−4

= 1 +
√

6.

Fig. 2. Requests and ALG’s matching for Case 2-1 of Theorem 3.

Case 2-2. ALG matches r2 with s3
See Fig. 3. The adversary gives a request r3 at p(s3) and ALG matches it with s1.
The cost of ALG is 3+x+y = 4

√
6−6 and the cost of OPT is 1+x−y = 6−2

√
6.

The ratio is 4
√
6−6

6−2
√
6

= 1 +
√

6.

494 T. Itoh et al.

Fig. 3. Requests and ALG’s matching for Case 2-2 of Theorem 3.

In any case, the ratio of ALG’s cost to OPT ’s cost is 1+
√

6. This completes
the proof.
�
Theorem 4. The competitive ratio of any deterministic online algorithm for
OFAL(4) is at least 4+

√
73

3 (> 4.18133).

Proof. Let ALG be any surrounding-oriented algorithm. In the same way as the
proof of Theorem 3, the adversary first gives �−1 requests at p(si) for i = 1, 2, 3,
and 4, and we can assume that OPT and ALG match each of these requests
with the server at the same position. Then, the adversary gives a request r1 at
p(s2)+p(s3)

2 . Without loss of generality, assume that ALG matches it with s2.
Let x = 10−√

73
2 (� 0.72800) and y = 11

√
73−93
8 (� 0.12301). The adversary

gives a request r2 at p(s1)+x. We consider two cases depending on the behavior
of ALG.

Case 1. ALG matches r2 with s1
See Fig. 4. The adversary gives the next request r3 at p(s1). ALG has to match
it with s3. Finally, the adversary gives a request r4 at p(s4) and ALG matches it
with s4. The cost of ALG is 5

2+x = 15−√
73

2 and the cost of OPT is 3
2−x =

√
73−7
2 .

The ratio is 15−√
73√

73−7
= 4+

√
73

3 .

Fig. 4. Requests and ALG’s matching for Case 1 of Theorem 4.

Case 2. ALG matches r2 with s3
The adversary gives the next request r3 at p(s3) + y. We have two subcases.

Case 2-1. ALG matches r3 with s4
See Fig. 5. The adversary gives a request r4 at p(s4). ALG has to match it

Competitive Analysis for Two Variants of Online Metric Matching Problem 495

Fig. 5. Requests and ALG’s matching for Case 2-1 of Theorem 4.

with s1. The cost of ALG is 13
2 − x − y = 105−7

√
73

8 and the cost of OPT is
1
2 + x + y = 7

√
73−49
8 . The ratio is 105−7

√
73

7
√
73−49

= 4+
√
73

3 .

Case 2-2. ALG matches r3 with s1
See Fig. 6. The adversary gives a request r4 at p(s1) and ALG has to match it
with s4. The cost of ALG is 15

2 − x + y = 15
√
73−73
8 and the cost of OPT is

5
2 − x − y = 73−7

√
73

8 . The ratio is 15
√
73−73

73−7
√
73

= 4+
√
73

3 .

Fig. 6. Requests and ALG’s matching for Case 2-2 of Theorem 4.

In any case, the ratio of ALG’s cost to OPT ’s cost is 4+
√
73

3 . This completes
the proof.
�
Theorem 5. The competitive ratio of any deterministic online algorithms for
OFAL(5) is at least 13

3 (>4.33333).

Proof. Let ALG be any surrounding-oriented algorithm. In the same way as
the proof of Theorem 3, the adversary first gives � − 1 requests at p(si) for
i = 1, 2, 3, 4, and 5, and we can assume that OPT and ALG match each of these
requests with the server at the same position.

Then, the adversary gives a request r1 at p(s3). If ALG matches this with
s2 or s4, the adversary gives the remaining requests at p(s1), p(s2), p(s4) and
p(s5). OPT ’s cost is zero, while ALG’s cost is positive, so the ratio is infinity.
Therefore, assume that ALG matches r1 with s3. The adversary then gives a
request r2 at p(s3). Without loss of generality, assume that ALG matches it with
s2. Next, the adversary gives a request r3 at p(s1) + 7

8 . We consider two cases
depending on the behavior of ALG.

496 T. Itoh et al.

Case 1. ALG matches r3 with s1
See Fig. 7. The adversary gives the next request r4 at p(s1). ALG has to match
it with s4. Finally, the adversary gives a request r5 at p(s5) and ALG matches
it with s5. The cost of ALG is 39

8 and the cost of OPT is 9
8 . The ratio is 13

3 .

Fig. 7. Requests and ALG’s matching for Case 1 of Theorem 5.

Case 2. ALG matches r3 with s4
The adversary gives the next request r4 at p(s4). We have two subcases.

Case 2-1. ALG matches r4 with s1
See Fig. 8. The adversary gives a request r5 at p(s1) and ALG has to match it
with s5. The cost of ALG is 81

8 and the cost of OPT is 17
8 . The ratio is 81

17 > 13
3 .

Fig. 8. Requests and ALG’s matching for Case 2-1 of Theorem 5.

Case 2-2. ALG matches r4 with s5
See Fig. 9. The adversary gives a request r5 at p(s5) and ALG has to match it
with s1. The cost of ALG is 65

8 and the cost of OPT is 15
8 . The ratio is 13

3 .
In any case, the ratio of ALG’s cost to OPT ’s cost is at least 13

3 , which
completes the proof.
�

Competitive Analysis for Two Variants of Online Metric Matching Problem 497

Fig. 9. Requests and ALG’s matching for Case 2-2 of Theorem 5.

5 Conclusion

In this paper, we studied two variants of the online metric matching problem.
The first is a restriction where all the servers are placed at one of two positions
in the metric space. For this problem, we presented a greedy algorithm and
showed that it is 3-competitive. We also proved that any deterministic online
algorithm has competitive ratio at least 3, giving a matching lower bound. The
second variant is the Online Facility Assignment Problem on a line with a small
number of servers. We showed lower bounds on the competitive ratio 1 +

√
6,

4+
√
73

3 , and 13
3 when the numbers of servers are 3, 4, and 5, respectively.

One of the future work is to analyze the online metric matching problem
with three or more server positions. Another interesting direction is to consider
an optimal online algorithm for the Online Facility Assignment Problem on a
line when the numbers of servers are 3, 4, and 5.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their valuable comments.

References

1. Ahmed, A., Rahman, M., Kobourov, S.: Online facility assignment. Theoret. Com-
put. Sci. 806, 455–467 (2020)

2. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: A o(n)-
competitive deterministic algorithm for online matching on a line. In: Bampis,
E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 11–22. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18263-6 2

3. Antoniadis, A., Fischer, C., Tönnis, A.: A collection of lower bounds for online
matching on the line. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.)
LATIN 2018. LNCS, vol. 10807, pp. 52–65. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77404-6 5

4. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: An o(log2 k)-competitive algo-
rithm for metric bipartite matching. In: Arge, L., Hoffmann, M., Welzl, E. (eds.)
ESA 2007. LNCS, vol. 4698, pp. 522–533. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-75520-3 47

5. Fuchs, B., Hochstättler, W., Kern, W.: Online matching on a line. Theoret. Com-
put. Sci. 332, 251–264 (2005)

https://doi.org/10.1007/978-3-319-18263-6_2
https://doi.org/10.1007/978-3-319-77404-6_5
https://doi.org/10.1007/978-3-319-77404-6_5
https://doi.org/10.1007/978-3-540-75520-3_47
https://doi.org/10.1007/978-3-540-75520-3_47

498 T. Itoh et al.

6. Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS,
vol. 7391, pp. 424–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31594-7 36

7. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),
478–488 (1993)

8. Kalyanasundaram, B., Pruhs, K.: On-line network optimization problems. In: Fiat,
A., Woeginger, G.J. (eds.) Online Algorithms. LNCS, vol. 1442, pp. 268–280.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0029573

9. Karp, R., Vazirani, U., Vazirani, V.: An optimal algorithm for on-line bipartite
matching. In: STOC 1990, pp. 352–358 (1990)

10. Khuller, S., Mitchell, S., Vazirani, V.: On-line algorithms for weighted bipartite
matching and stable marriages. Theoret. Comput. Sci. 127(2), 255–267 (1994)

11. Koutsoupias, E., Nanavati, A.: The online matching problem on a line. In: Solis-
Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 179–191. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24592-6 14

12. Mehta, A.: Online matching and ad allocation. Theoret. Comput. Sci. 8(4), 265–
368 (2012)

13. Meyerson, A., Nanavati, A., Poplawski, L.: Randomized online algorithms for min-
imum metric bipartite matching. In: SODA 2006, pp. 954–959 (2006)

14. Nayyar, K., Raghvendra, S.: An input sensitive online algorithm for the metric
bipartite matching problem. In: FOCS 2017, pp. 505–515 (2017)

15. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipar-
tite matching. In: APPROX/RANDOM 2016, vol. 60, pp. 18:1–18:16 (2016)

16. Raghvendra, S.: Optimal analysis of an online algorithm for the bipartite matching
problem on a line. In: SoCG 2018, pp. 67:1–67:14 (2018)

https://doi.org/10.1007/978-3-642-31594-7_36
https://doi.org/10.1007/978-3-642-31594-7_36
https://doi.org/10.1007/BFb0029573
https://doi.org/10.1007/978-3-540-24592-6_14

Guarding Disjoint Orthogonal Polygons
in the Plane

Ovidiu Daescu(B) and Hemant Malik

University of Texas at Dallas, Richardson, TX 75080, USA
{daescu,malik}@utdallas.edu

Abstract. Given a set F of disjoint monotone orthogonal polygons, we
present bounds on the number of vertex guards required to monitor the
free space and the boundaries of the polygons in F . We assume that
the range of vision of a guard is bounded by 180◦ (the region in front
of the guard). For k disjoint axis-aligned monotone orthogonal poly-
gons H1, H2, . . . , Hk with m1, m2, . . . , mk vertices respectively, such that∑k

i=1 mi = m, we prove that m
2

+ � k
4
� + 4 vertex guards are sufficient

to monitor the boundaries of the polygons and the free space. When the
orthogonal polygons are arbitrary oriented, we show that m

2
+ k + 1 ver-

tex guards are sometimes necessary to monitor the boundaries and the
free space and conjecture the bound is tight.

Keywords: Art gallery problem · Guarding · Orthogonal polygon ·
Monotone polygon · Visibility

1 Introduction

In 1977, Fejes Toth [22] considered the following problem: Given a set F of k
disjoint compact convex sets in the plane, how many guards are sufficient to
cover every point on the boundary of each set in F? In this paper, we consider
a variation of this problem, specifically:

Problem 1. Given a set F of k disjoint monotone orthogonal polygons in the
plane, how many vertex guards are necessary and sufficient to jointly guard the
free space and the boundaries of the polygons when the range of vision of each
guard is 180◦?

A polygon P in the plane is called orthogonal if there exist two orthogo-
nal directions l1 and l2 such that all sides of P are parallel to one of the two
directions. P is monotone with respect to a direction d if its intersection with
any line orthogonal to d is either empty or a single line segment. A polygon P
that is orthogonal with respect to directions l1 and l2 is called monotone if it is
monotone with respect to both l1 and l2. For example, an axis-aligned monotone
orthogonal polygon P has each of its sides parallel to the x-axis or the y-axis,
and is monotone with respect to both axes.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 499–514, 2020.
https://doi.org/10.1007/978-3-030-64843-5_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_34&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_34

500 O. Daescu and H. Malik

The problem we study is related to the famous art-gallery problem introduced
by Victor Klee in 1973. In almost all the studies [18,23], the art gallery lies in
the plane (2D), assuming a polygonal shape, with or without holes. In the art
gallery problem, the goal is to determine the minimum number of point guards
sufficient to see every point of the interior of a simple polygon. A point q is
visible to a guard g if the line segment joining q and g lies completely within the
polygon. When the guards are restricted to vertices of the polygon only, they
are referred to as vertex guards. Sometimes the polygon is allowed to have a set
of k polygonal holes in its interior. The problem we study can be modeled as the
following variation of the art-gallery problem:

Problem 2. Given an axis-aligned rectangle P containing k disjoint monotone
orthogonal holes, H1,H2, . . . , Hk with m1,m2, . . . ,mk vertices respectively, such
that

∑k
i=1 mi = m, place vertex guards on holes such that every point inside P

is visible to at least one guard, where the range of vision of each guard is 180◦.

Note that Problem 1 and Problem2 are equivalent. In all our proofs each
guard is (i) placed at a vertex of an orthogonal hole and (ii) is oriented such
that the seen and unseen regions of the guard are separated by a line parallel
with one of the sides of the hole that are incident to the vertex where the guard
is placed. From now on, we assume guards are placed as stated here, unless
otherwise specified, and may omit mentioning guard orientation throughout the
paper.

We address the following two versions: (A) Orthogonal holes are axis-aligned
(B) Orthogonal holes are arbitrary oriented. To solve the two versions, we
address the following variations of the art-gallery problem: (V1) Given an axis-
aligned rectangle P with k disjoint axis-aligned monotone orthogonal holes,
H1,H2, . . . , Hk with m1,m2, . . . ,mk vertices respectively, such that

∑k
i=1 mi =

m, place vertex guards on holes such that every point inside P is visible to at
least one guard, where the range of vision of guards is 180◦. (V2) Given an axis-
aligned rectangle P with k disjoint monotone orthogonal holes, H1,H2, . . . , Hk

with m1,m2, . . . ,mk vertices respectively, such that
∑k

i=1 mi = m, place vertex
guards on holes such that every point inside P is visible to at least one guard,
where the range of vision of guards is 180◦.

For the first problem (V1), we prove a sufficiency bound of m
2 +�k

4 �+4 on the
number of vertex guards. For the second problem (V2), we show that m

2 + k + 1
vertex guards are sometimes necessary and conjecture the bound is tight. The
bounds also hold if the holes are not monotone (see [14] for details).

2 Related Work

Simple Polygons Results: The problem of guarding polygons, with or without
holes, has a long history. Given a simple polygon P in the plane, with n vertices,
Chvatal [4] proved that �n/3� vertex guards are always sufficient and sometimes
necessary to guard P . Chvatal’s proof was later simplified by Fisk [11].

Guarding Disjoint Orthogonal Polygons in the Plane 501

When the view of a guard is limited to 180◦, Toth [21] showed that �n
3 � point

guards are always sufficient to cover the interior of P (thus, moving from 360 to
180 range of vision keeps the same sufficiency number). F. Santos conjectured
that � 3n−3

5 �π vertex guards are always sufficient and occasionally necessary to
cover any polygon with n vertices. Later, in 2002, Toth [20] provided lower
bounds on the number of point guards when the range of vision α is less than
180◦, specifically (i) when α < 180◦, there exist a polygon P that cannot be
guarded by 2n

3 − 3 guards, (ii) for α < 90◦ there exist P that cannot be guarded
by 3n

4 −1 guards, and (iii) for α < 60◦ there exist P where the number of guards
needed to guard P is at least � 60

α � (n−1)
2 .

Orthogonal Polygons Results: In 1983, Kahn et al. [13] showed that if every
pair of adjacent sides of the polygon form a right angle, then �n

4 � vertex guards
are occasionally necessary and always sufficient to guard a polygon with n ver-
tices. In 1983, O’Rourke [16] showed that 1 + � r

2� vertex guards are necessary
and sufficient to cover the interior of an orthogonal polygon with r reflex ver-
tices. Castro and Urrutia [9] provided a tight bound of � 3(n−1)

8 � on the number
of orthogonal floodlights (guards with 90◦ range of vision), placed at vertices
of the polygon, sufficient to view the interior of an orthogonal polygon with n
vertices.

Polygon with Holes Results: For a polygon P with n vertices and h polygonal
holes, the value n denotes the sum of the number of vertices of P and the
number of vertices of the holes. Let g(n, h) be the minimum number of point
guards and let gv(n, h) be the minimum number of vertex guards necessary
to guard any polygon with n vertices and h holes. O’Rourke [17] proved that
gv(n, h) ≤ �n+2h

3 �. Shermer [18,19] conjectured that gv(n, h) ≤ �n+h
3 � and this

is a tight bound. He was able to prove that, for h = 1, gv(n, 1) = �n+1
3 �. However,

for h > 1 the conjecture remains open.

Orthogonal Polygon with Holes Results: Let orth(n, h) be the minimum
number of point guards and orthv(n, h) be the minimum number of vertex guards
necessary to guard any orthogonal polygon with n vertices and h holes (orthog-
onal with respect to the coordinate axes). Note that orth(n, h) ≤ orthv(n, h).
O’Rourke’s method [17] extends to this case and results in orthv(n, h) ≤ �n+2h

4 �.
Shermer [18] conjectured that orthv(n, h) ≤ �n+h

4 � which Aggarwal [2] estab-
lished for h = 1 and h = 2. Zylinski [24] showed that �n+h

4 � vertex guards are
always sufficient to guard any orthogonal polygon with n vertices and h holes,
provided that there exists a quadrilateralization whose dual graph is a cactus. In
1996, Hoffmann and Kriegel [12] showed that ≤ �n

3 � vertex guards are sufficient
to guard the interior of an orthogonal polygon with holes. In 1998, Abello et
al. [1] provided a first tight bound of � 3n+4(h−1))

8 � for the number of orthogonal
floodlights placed at the vertices of an orthogonal polygon with n vertices and
h holes which are sufficient to guard the polygon, and described a simple linear-
time algorithm to find the guard placement for an orthogonal polygon (with or
without holes). Note that this result does not extend to our problem, since we
restrict guard placement to the vertices of the holes only. In 2020, Daescu and

502 O. Daescu and H. Malik

Malik [7] showed that 2k + �k
4 � + 4 vertex guards are always sufficient to guard

an axis-aligned rectangle P with k disjoint axis-aligned rectangular holes, with
guards placed only on vertices of the holes, when the range of vision of guards
is 180◦.

Families of Convex Sets on the Plane Results: In 1977, Toth [22] consid-
ered the following problem: Given a set F of n disjoint compact convex sets in
the plane, how many guards are sufficient to cover every point on the bound-
ary of each set in F? He proved that max{2n, 4n − 7} point guards are always
sufficient. Everett and Toussaint [10] proved that n disjoint squares, for n > 4,
can always be guarded with n point guards. For families of disjoint isothetic
rectangles (rectangles with sides parallel to the coordinate axes.), Czyzowicz et
al. [6] proved that � 4n+4

3 � point guards suffice and conjectured that n + c point
guards would suffice, where c is a constant. If the rectangles have equal width,
then n+1 point guards suffice, and n−1 point guards are occasionally necessary
(see [15] for more details).

In 1994, Blanco et al. [3] considered the problem of guarding the plane with
rectangular region of the plane in the presence of quadrilateral holes. Given n
pairwise disjoint quadrilaterals in the plane they showed that 2n vertex guards
are always sufficient to cover the free space and the guard locations could be
found in O(n2) time. If the quadrilaterals are isothetic rectangles, all locations
can be computed in O(n) time. Thus, this problem is similar to ours, with the
difference that the guards in [3] have 360◦ vision and the holes are quadrilaterals
or isothetic rectangles. Our problem can be seen as a generalization to orthogonal
holes, while also restricting the field of vision of the guards to 180◦.

Garcia-Lopez [8] proved that � 5m
9 � vertex lights are always sufficient and

�m
2 � are occasionally necessary to guard the free space generated by a family of

disjoint polygons with a total of m vertices.
Czyzowicz et al. [5] proposed the following problem: Given a set F of n

disjoint compact convex sets in the plane, how many guards are sufficient to
protect each set in F? A set of F is protected by a guard g if at least one point
on the boundary of that set is visible from g. They prove that � 2(n−2)

3 � point
guards are always sufficient and occasionally necessary to protect any family of
n disjoint convex sets, n > 2. To protect any family of n isothetic rectangles, �n

2 �
point guards are always sufficient, and �n

2 � point guards are sometimes necessary.
Given a set F of k disjoint isothetic rectangles in a plane, Daescu and

Malik [7] showed that 2k + �k
4 � + 4 vertex guards are always sufficient to guard

the free space, when the range of vision of guards is 180◦. They also showed that
given k disjoint, arbitrary oriented, rectangular obstacles in the plane 3k + 1
vertex guards are sometimes necessary to guard the free space and conjectured
the bound is tight.

3 Axis-Aligned Orthogonal Polygons

In this section, we considered the following variation of the art-gallery problem:
Given an axis-aligned rectangle P with k disjoint axis-aligned monotone orthog-
onal holes, H1,H2, . . . , Hk with m1,m2, . . . ,mk vertices respectively, such that

Guarding Disjoint Orthogonal Polygons in the Plane 503

∑k
i=1 mi = m, place vertex guards on holes such that every point inside P is

visible to at least one guard, where the range of vision of guards is 180◦.
In all our proofs each guard faces East, West, North, or South only.
Each vertex of an orthogonal polygon is either 270◦ (reflex) or 90◦ (convex),

defined as follows. For each orthogonal hole Hi, pick an arbitrary vertex u and
start traversing Hi in clockwise direction. For a vertex v ∈ Hi, if the turn made
at v while traversing Hi is right then v is a reflex vertex, else v is convex vertex.
For each hole Hi, let ri and ci be the total number of reflex and convex vertices,
respectively. From [18], ri = mi+4

2 = mi

2 + 2 and ci = mi−4
2 = mi

2 − 2. All holes
are orthogonal and every orthogonal polygon has an even number of vertices.
Therefore, ∀i ∈ [1, k], the value of mi

2 is an integer. Let r be the total number
of reflex vertices in P . Then,

r =
k∑

i=1

ri =
k∑

i=1

(
mi

2
+ 2) =

m

2
+ 2k (1)

Similarly, the total number of convex vertices is m
2 − 2k.

For each hole Hi, let Ei
R be the rightmost edge, Ei

L be the leftmost edge,
Ei

T be the topmost edge, and Ei
B be the bottom-most edge. First we perform

the following two steps, shown in Fig. 1: (i) Traverse Hi from Ei
R to Ei

L counter-
clockwise and extend each encountered vertical edge, including Ei

L and Ei
R,

towards North (upward) direction until it hits the polygon P or any other hole.
(ii) Traverse Hi from Ei

L to Ei
B counter-clockwise and extend each horizontal

edge, including Ei
B , towards West (left) direction until it hits the polygon P ,

any other hole, or any of the extended vertical edges.
The above steps divide the polygon into shapes where each shape corresponds

to a monotone staircase in x and y directions and one guard, placed at the South-
East corner of each shape, is sufficient to guard the shape. The total number of
guards needed to guard the polygon is equal to the number of shapes constructed
while performing the two steps above.

Fig. 1. The process to divide the poly-
gon P into shapes. Guard position (fac-
ing left) is shown with red dot. (Color
figure online)

Fig. 2. RS is shown in Red (dashed),
FS is shown in Blue (dotted), RRS is
shown in Black (dash dot dotted) and
RFS is shown in Green (dash dotted).
(Color figure online)

504 O. Daescu and H. Malik

For each hole Hi, we define the following staircases (shown in Fig. 2): (i) Ris-
ing Staircase RSi: Monotone staircase formed by traversing Hi in clockwise order
from Ei

L to Ei
T (including Ei

L and Ei
T). (ii) Falling Staircase FSi: Monotone

staircase formed by traversing Hi in clockwise order from Ei
T to Ei

R (including
Ei

T and Ei
R). (iii) Reverse Rising Staircase RRSi: Monotone staircase formed

by traversing Hi in clockwise order from Ei
R to Ei

B (including Ei
R and Ei

B). (iv)
Reverse Falling Staircase RFSi: Monotone staircase formed by traversing Hi in
clockwise order from Ei

B to Ei
L (including Ei

B and Ei
L).

For hole Hi and staircase RSi, let RSr
i be the number of reflex vertices

(excluding the first and last vertex of RSi), and RSc
i be the number of convex

vertices. Similarly, we define FSr
i , FSc

i , RFSr
i , RFSc

i , RRSr
i , and RRSc

i .
Each hole contributes towards the formation of shapes. It is easy to notice

that the total number of shapes contributed by a hole Hi is equal to the sum of:
(i) Number of reflex vertices FSr

i on FSi, (ii) Number of convex vertices RSc
i

on RSi, and (iii) Number of reflex vertices RFSr
i on RFSi.

The total number of shapes is then 1 +
∑k

i=1(FSr
i + RSc

i + RFSr
i), where

one guard is placed at a corner of the bounding rectangle P .

Theorem 1. � 3m
8 + k

2 �+1 vertex guards are always sufficient to guard an axis-
aligned rectangle polygon with k disjoint axis-aligned monotone orthogonal holes,
where m is the total number of vertices of the holes, with at most one guard placed
at a corner of the bounding rectangle.

Proof. For each hole Hi, the following conditions hold: (i) On any staircase,
total reflex vertices = total convex vertices + 1 (therefore, RSr

i = RSc
i + 1,

FSr
i = FSc

i +1, RRSr
i = RRSc

i +1 and RFSr
i = RFSc

i +1) and (ii) Total reflex
vertices = total convex vertices + 4, i.e. ri = ci + 4.

Over all holes, the relation between total reflex vertices and total convex
vertices is given by

∑k
i=1 ri =

∑k
i=1 ci + 4k. From Eq. 1,

∑k
i=1(FSr

i + RSr
i +

RFSr
i + RRSr

i) = m
2 + 2k. Substituting the value of RSr

i as RSc
i + 1 we have

∑k
i=1(FSr

i + RSc
i + 1 + RFSr

i + RRSr
i) = m

2 + 2k and

k∑

i=1

(FSr
i + RSc

i + RFSr
i) =

m

2
+ k −

k∑

i=1

RRSr
i (2)

The total number of shapes is then 1 + m
2 + k − ∑k

i=1 RRSr
i .

The bound on the total number of guards required to guard P depends upon
the value of

∑k
i=1 RRSr

i . We can rotate the polygon, together with the holes
inside it, by 0◦, 90◦, 180◦ or 270◦ (so that the polygon and holes remain axis-
aligned) to select the best bound: we have four possible rotations and we select
the one which maximizes the value of

∑k
i=1 RRSr

i .
From Eq. 1, the total number of reflex vertices is m

2 + 2k . In the worst
case, all rotations result in the same value of

∑k
i=1 RRSr

i , thus
∑k

i=1 RRSr
i ≥

1
4 × �m

2 + 2k� = �m
8 + k

2 �.

Guarding Disjoint Orthogonal Polygons in the Plane 505

The total number of shapes is 1+m
2 +k−∑k

i=1 RRSr
i ≤ 1+m

2 +k−(�m
8 +k

2 �) =
� 3m

8 + k
2 � + 1. �

If however, we do not allow a guard to be placed at a corner of the enclosing
rectangle P , then the number of guards needed could increase significantly. In
the rest of this section, we prove an upper bound on the number of vertex guards,
placed only on vertices of the holes.

We introduce staircases RSP , FSP , RRSP and RFSP (refer to Fig. 3) defined
for polygon P . RSP is constructed as follows: ∀i ∈ [1, k], extend the horizontal
edge Ei

T of each hole towards the right (East) direction, then extend the vertical
edge Ei

L towards the South direction. The closed orthogonal polygon formed by
the top edge, left edge of P , and the extended edges of the holes, corresponds to
a rising staircase, RSP . Similarly, we can construct RRSP , FSP , and RFSP . We
can replace the guard placed on the corner of P by placing guards at the reflex
vertices of RRSP . The total number of guards required to guard such staircase
is 1 + RRSr

P . Total number of guards required to guard P = 1 +
∑k

i=1(FSr
i +

RSc
i + RFSr

i) + RRSr
P . Substituting the value of

∑k
i=1(FSr

i + RSc
i + RFSr

i)
from Eq. 2:

Total guards = 1 +
m

2
+ k −

k∑

i=1

RRSr
i + RRSr

P (3)

The bound on the total number of guards required to guard P depends upon
the two terms in Eq. 3. We can always rotate the polygon to find the rotation
which maximizes the value of

∑k
i=1 RRSr

i − RRSr
P .

Fig. 3. The four staircases. RSP is in Red (dashed), FSP in Blue (dotted), RRSP in
Magenta (dash dot dotted) and RFSP in Green (dash dotted). (Color figure online)

For hole Hi, the vertical span of Hi is the parallel strip defined by the lines
supporting Ei

L and Ei
R and containing Hi. The horizontal span is defined accord-

ingly. Let HL be the leftmost hole, HT be the topmost hole, HR be the rightmost
hole, and HB be the bottom-most hole of the polygon, as defined by their left-
most, topmost, rightmost, and bottom-most edges (without loss of generality we
assume here such edges are unique).

506 O. Daescu and H. Malik

A hole Hi is called an internal hole if Hi
∈ {HL,HT ,HR,HB}. The pair of
staircases (RSP , FSP), (FSP , RRSP), (RRSP , RFSP) and (RFSP , RSP) are
adjacent staircases while the pairs (RSP , RRSP) and (FSP , RFSP) are opposite
staircases.

Theorem 2. m
2 + �k

4 � + 4 vertex guards are always sufficient to guard an axis-
aligned rectangle polygon with k disjoint axis-aligned monotone orthogonal holes
where m is the total number of vertices of the holes, with all guards placed on
vertices of the holes.

Proof. Notice it is possible that, from the set of holes (HL,HT), (HT ,HR),
(HR,HB), and (HB ,HL), the pair in one of the sets corresponds to the same hole.
In this situation (call it Situation 0), one of the staircases RSP , FSP , RRSP , and
RFSP consists of only one hole. Therefore, there exists a rotation where k − 1
holes do not participate in the formation of RRSP . We rotate the polygon such
that the RRSP consist of one hole. For each hole Hi not participating in the
formation of RRSP , RRSr

i ≥ 1 (see Fig. 3). Hence,
∑k

i=1 RRSr
i −RRSr

P ≥ k−1
and the total number of guards required to guard P is no more than m

2 + 2.

Thus, from now on, we assume this is not the case. Consider the four
staircases RSP , FSP , RFSP , and RRSP . We can have four possible situations
(cases):

Situation 1. No internal hole is shared by either adjacent staircases or opposite
staircases.

The staircases RSP , FSP , RRSP , and RFSP do not share any hole other
than HT ,HR,HB , and HL. We want to find a large lower bound for∑k

i=1 RRSr
i − RRSr

P and note that each hole not in RRSr
P contributes at least

1 reflex vertex for that bound and each hole on RRSr
P subtracts at least 1 reflex

vertex from it. We can always rotate the polygon such that RRSP contains the
smallest number of holes among all possible rotations. The largest possible value
for the minimum number of holes involved in RRSP is when the number of holes
involved in the construction of RSP , FSP , RRSP , and RFSP , is the same. Let
the staircases RSP and RRSP contain δ distinct holes. Staircase FSP contains
δ − 2 additional holes because hole HT is already counted in staircase RSP and
hole HR is counted in staircase RRSP . Similarly, RFSP contains δ−2 additional
holes. Note that δ + δ + δ − 2 + δ − 2 = k and thus δ = �k

4 � + 1. Therefore,
k − δ = k − (�k

4 � + 1) = � 3k
4 � − 1 holes do not participate in the formation of

RRSP . Among all the holes Hi, not participating in the formation of RRSP ,
RRSr

i ≥ 1. Therefore,
∑k

i=1 RRSr
i − RRSr

P ≥ � 3k
4 � − 1 and the total number of

guards required to guard P is no more than m
2 + �k

4 � + 2.

Guarding Disjoint Orthogonal Polygons in the Plane 507

Situation 2. There exists an internal hole that is shared by opposite staircases
and no internal hole is shared by adjacent staircases.

Let the staircases RSP and RRSP share a hole Hi and refer to Fig. 4. We
define two polygons, P1 and P2 (turquoise and violet boundaries in Fig. 4b),
included in P and such that Hi is included in both P1 and P2.

P1 and P2 are constructed as follows: Traverse Hi from Ei
L to Ei

R in clockwise
direction and let uL be the first vertex of Hi which is part of RSP . Let eL be
the horizontal edge incident to uL. We extend eL to the left until it hits the left
boundary of P at point a. Traverse Hi from Ei

R to Ei
L in clockwise direction and

let uR be the first vertex of Hi which is part of RRSP . Let eR be the horizontal
edge incident to uR. We extend eR to the right until it hits the right boundary
of P at point b.

P1 is the polygon traced by going from uL to a, top left vertex of P , top
right vertex of P , b, uR then counterclockwise along the boundary of Hi from
uR to uL. P2 is defined on the lower part of Hi in a similar way. Note that P1,
Hi, and P2 are interior disjoint (see Fig. 4b). We then make P1 = P1 ∪ Hi and
P2 = P2 ∪ Hi (see Fig. 4c).

We guard P1 and P2 separately. Let P1 contain α number of holes (excluding
Hi), and mα =

∑α
i=1 mi, and let P2 contain β number of holes (excluding Hi),

with mβ =
∑β

i=1 mi. Note that α + β + 1 = k.
For each hole Hj in P1 (i) Traverse Hj from Ej

R to Ej
L in counter-clockwise

direction and extend each encountered vertical edge (including Ej
L and Ej

R)
towards North (upward) direction until it hits the polygon P1 or any other hole
and (ii) Traverse Hj from Ej

R to Ej
B in clockwise direction and extend each

horizontal edge (including Ej
B) towards East (right) direction until it hits the

polygon P1, any other hole, or any of the extended vertical edges.
For each hole Hj in P2 (i) Traverse Hj from Ej

R to Ej
L in clockwise direction

and extend each encountered vertical edge (including Ej
L and Ej

R) towards South
(downward) direction until it hits the polygon P2 or any other hole and (ii)
Traverse Hj from Ej

L to Ej
T in clockwise direction and extend each horizontal

edge (including Ej
T) towards West (left) direction until it hits the polygon P2,

any other hole, or any of the extended vertical edges.

508 O. Daescu and H. Malik

Fig. 4. P1 is shown in Turquoise and P2 is shown in violet (Color figure online)

The above steps divide the polygons P1 and P2 into shapes, where each shape
corresponds to a monotone staircase, and one guard is sufficient to guard each
shape (see Fig. 4d).

Each hole contributes towards the formation of shapes. Let SP1 be the total
number of shapes contributed by holes in P1 excluding Hi. SP1 =

∑α
j=1(FSc

j +
RSr

j +RRSr
j). Let SP2 be the total number of shapes contributed by holes in P2

excluding Hi. SP2 =
∑β

j=1(RFSc
j +RSr

j +RRSr
j). Let SHi

be the total number
of shapes contributed by hole Hi in both P1 and P2, that is SHi

= mi

2 + 2. We
have one additional rectangular shape in each of the two polygons. In P1, it is
the leftmost shape and in P2, it is the rightmost shape.

The total number of shapes in P1 and P2 is 2 + SP1 +SP2 +SHi
. Substituting

the value of FSr
i as FSc

i + 1 in Eq. 1 we have
∑α

i=1(RSr
i + FSc

i + RRSr
i) =

mα

2 + α − ∑α
i=1 RFSr

i .

Guarding Disjoint Orthogonal Polygons in the Plane 509

Therefore, SP1 = mα

2 + α − ∑α
i=1 RFSr

i . For each hole, RFSr
i ≥ 1 and

thus we have SP1 ≤ mα

2 . Similarly, SP2 ≤ mβ

2 . The total number of shapes is
SP1 + SP2 + SHi

+ 2 ≤ mα

2 + mβ

2 + mi

2 + 4 = m
2 + 4.

It follows that the total number of shapes contributed by the k holes of P
is no more than m

2 + 2. In order to guard m
2 + 2 shapes, we place one guard in

each shape. Let us assume that all guards placed in P1 are facing East (right)
and all the guards placed in P2 are facing West (left). Note that two guards are
placed on each of vertex uL and vertex uR, one facing East and one facing West.
One of the guards placed on uL (resp. uR) is used to cover the side rectangular
shape associated with uL (resp. uR). Hence, the total number of guards required
to guard P ≤ m

2 + 2.

Situation 3. There exists an internal hole that is shared by adjacent staircases
and no internal hole is shared by opposite staircases.

Let Hi be a hole whose edges are included in more than one staircase. Assume
the pair RSP , FSP shares Hi, as shown in Fig. 5. Traverse Hi from Ei

L to Ei
R

in clockwise direction and let vi
1 be the first vertex encountered while traversing

Hi which is part of RSP . Similarly, let vi
2 be the last vertex encountered while

traversing Hi which is part of FSP . Let Ei
1 be the vertical edge incident to vi

1

and Ei
2 be the vertical edge incident to vi

2. Extend Ei
1 and Ei

2 in upward direction
until they hit the polygon P . Let C1 be the set of holes which lie above Hi and
inside the parallel strip defined by extended edges Ei

1 and Ei
2 . Let αi be the

number of holes in C1. Note that all holes in C1 lie within the vertical span of
Hi. Let C2 be the set containing the holes which are not in C1 (excluding Hi)
and let βi be the number of holes in C2. Note that αi + βi + 1 = k. Let C be
the set containing all holes Hi that fall within Situation 3. From set C, find the
hole Hj that minimizes the value |αj − βj |, such that αj , βj ≥ 3.

If such hole does not exist then each hole Hj in set C has αj ≤ 3 or βj ≤ 3.
We can use a similar argument as the one discussed in Situation 2. Recall that in
the worst case all staircases should involve an equal number of holes. It is easy to
notice that there exist at most three holes whose edges are included by a staircase
pair (i) RSP , FSP (ii) FSP , RRSP (iii) RRSP , RFSP , or (iv) RFSP , RSP , as
αi < 3 or βi < 3. Let each of RSP , RRSP contain δ distinct holes. Staircases
FSP , RFSP contain δ −6 additional holes, as three holes are included in each of
RSP and RRSP . There are k holes, 2 × δ + 2 × (δ − 6) = k, and 4 × δ − 12 = k,
which gives δ = �k

4 �+3. In the worst case, k−δ = k− (�k
4 �+3) = � 3k

4 �−3 holes
do not participate in the formation of RRSP . For each hole Hi not participating
in the formation of RRSP , RRSr

i ≥ 1. Therefore,

k∑

i=1

RRSr
i − RRSr

P ≥ �3k

4
� − 3 (4)

If there exists a hole Hj such that αj , βj ≥ 3, we proceed as follows. Let Hj

edges be included in RSP and FSP . Extend the topmost edge of HT in both
directions (East and West). Let e be this extended edge. Extend Ej

1 and Ej
2

510 O. Daescu and H. Malik

North (upward) until they intersect e. Let the extension of Ej
1 intersect e at a

and the extension of Ej
2 intersect e at b.

We introduce a new orthogonal hole N1, such that the hole Hj and all holes
in C1 lie inside N1 and all holes in C2 lies outside N1. Observe that N1 is an
orthogonal polygon traced by going from vj

1 to a, b, and vj
2, then clockwise along

the boundary of Hj from vj
2 to vj

1 (see Fig. 5).
The process above is known as contraction, since we have contracted αj +

1 holes into a new hole N1. The reverse process of contraction is known as
expansion. The updated polygon after performing the contraction consist of (k−
αj) holes. We keep contracting the holes if the updated polygon lies within
situation 3, and there exists a hole Bd such that αd, βd ≥ 3.

Let Ni be the hole introduced during the ith contraction. The initial polygon
has k holes. After repeating the process for l iterations, let the updated polygon
have k − ∑l

i=1 ki holes. Assume situation 3 keeps occurring, and the process
is repeated x times. Let k0 = k − ∑x

i=1 ki. At ith contraction, ki + 1 holes
are contracted into Ni. After the last contraction (x-th one, with no further
contraction possible), from Eq. 4 we have

∑k0

i=1 RRSr
i − RRSr

P ≥ � 3k0

4 � − 3.

The polygon P has k0 holes with a total of m0 =
∑k0

i=1 mi vertices. The
number of guards required to guard P ≤ 1+ m0

2 +k0−(� 3k0

4 �−3) = m0

2 +�k0

4 �+4.
Nx is the last contracted hole. Assume P is rotates so that Nx be the topmost

hole in P . We perform the expansion process on Nx. Remove hole Nx from P
and add all the kx +1 holes contracted inside Nx. Let Hx be the hole contracted
inside Nx such that the rest of kx holes lie inside the vertical span of Hx.

After expansion, guards placed on Nx are placed on the corresponding ver-
tices of Hx with the same orientation. If a guard is placed at a, place it on the
top vertex of Ex

1 and if a guard is placed b, place it on the top vertex of Ex
2 ,

with the same orientation.
Nest, extend Ex

1 and Ex
2 in upward direction until they hit P . Let Ex

1 intersect
P at uP

1 and Ex
2 intersect P at uP

2 . Let P1 be the closed polygon traced by going
from the upper vertex of Ex

1 to uP
1 , uP

2 , upper vertex of Ex
2 then counterclockwise

along the boundary of Hx (see Fig. 5b). P2 = P \ P1. Note that after expansion
P2 remains guarded.

Note that there is a guard placed on the topmost edge of Nx facing North
(upward). Let this guard be placed at a. After expansion, this guard is placed
on the top vertex of Ex

1 facing North.
Consider the polygon P . Let m1 be the total number of vertices and let

k1 = k − ∑x−1
i=1 ki be the total number of holes inside P after expanding Nx.

Let the kx holes inside Nx (excluding Hx) have a total of mx vertices. Let m
′
=

m1−m0−mx. We extend the edges of P1 in a similar way as we did for situation 2.
Total number of shapes formed = 1+m

′

2 +
∑kx

i=1 FSc
j+RSr

j +RRSr
j ≤ 1+m

′

2 +mx

2 .
We need one guard to guard each shape, however one of the shapes is already
guarded by the guard placed on the top vertex of Ex

1 .

Guarding Disjoint Orthogonal Polygons in the Plane 511

Fig. 5. Contraction and expansion

The total number of guards required to guard the updated P is no more
than m1

2 + �k0

4 � + 4. After expanding all the contracted holes, the total number
of guards required to guard P = m

2 + �k0

4 � + 4 ≤ m
2 + �k

4 � + 4. Hence, the total
number guards required to guard P is no more than m

2 + �k
4 � + 4.

Situation 4. There exists an internal hole shared by a pair of adjacent stair-
cases and a pair of opposite staircases.

Proof. We place guards according to Situation 2 and conclude that m
2 +2 guards

are sufficient to cover P . �

We also obtain the following Theorem:

Theorem 3. Given a set F of k pairwise disjoint axis aligned monotone orthog-
onal polygons in the plane, m

2 + �k
4 � + 4 vertex guards are always sufficient to

guard the free space and the boundaries of the elements in F , where m is total
vertices.

4 Arbitrary-Oriented Orthogonal Polygons

In this section, we considered the following variation of the art-gallery problem:
Given an axis-aligned rectangle P with k disjoint monotone orthogonal holes

H1, . . . ,Hk, with m1,m2, . . . ,mk vertices, respectively, such that
∑k

i=1 mi = m,
place vertex guards on holes such that every point inside P is visible to at least
one guard, where the range of vision of guards is 180◦.

Theorem 4. m
2 +k+1 guards are sometimes necessary to guard an axis-aligned

rectangle polygon with k disjoint orthogonal holes , with all guards placed on
vertices of the holes. We conjecture the bound is tight.

512 O. Daescu and H. Malik

Proof. Consider the structure in Fig. 6, with the following properties: (i) Bi

lies within the span of Bj ,∀j < i. (ii) None of the edges of Bi is partially
or completely visible from any vertex of Bj ,∀j < i − 1 and from any vertex
Bm ,∀m > i + 1. (iii) From each potential position of a vertex guard on Bi, the
guard is able to see at most one edge of Bi+1. (iv) There is no guard position
on Bi from where an edge of Bi−1 and an edge of Bi are visible.

Fig. 6. City Structure with guards
placement and orientation.

Fig. 7. ℘ is shaded in green. Potential
guard positions to cover ℘ are shown
in red and potential guard positions to
cover wi+1

L are shown in orange. (Color
figure online)

Let Ei
L be the leftmost edge of Bi such that the interior of Bi lies towards the

right of it. Similarly, we define Ei
T as the topmost edge, Ei

R as the Rightmost
edge and Ei

B as the bottom-most edge. For each hole Hi, we have staircases
RSi, FSi, RRSi and RFSi as defined in Sect. 3 (see Fig. 2). For a building Bi let
ri be the total number of reflex vertices of Bi and let ci be the total number of
convex vertices of Bi. Let

∑k
i=1 ri = r and

∑k
i=1 ci = c.

Consider the space ℘i between two consecutive holes Bi and Bi+1, as shown
in Fig. 7. ℘i is not visible to any guard placed on building Bj , where j ∈ [1, i)∪(i+
1, k] (property 2). Therefore, ℘i is only visible to the guards placed either on Bi

or on Bi+1. Let u be the upper vertex of Ei+1
L and v be the bottom vertex of Ei+1

R .
The region ℘i is visible (partially) to the following guards: (i) A guard placed
on either end of Ei

B , facing along this edge, (ii) A guard placed on either end of
Ei

B , facing towards Bi+1, (iii) Guards placed on the reflex vertices encountered
while traversing Bi+1 from u to v in clockwise direction (excluding u and v), (iv)
Guards placed on the convex vertices encountered while traversing Bi+1 from
u to v (v) A guard placed on v facing towards Ei

T , (vi) A guard placed on v
facing away from Ei+1

B , and (vii) Guards placed on u with similar orientation as

Guarding Disjoint Orthogonal Polygons in the Plane 513

of guards placed on v. Refer Fig. 7. The total number of possible guard positions
on Bi and Bi+1 from where ℘i is visible (partially) is 4(ri+1 − 1) + 2ci+1. These
guards cover mi+1 − 1 edges: one edge of Bi, and mi+1 − 2 edges of Bi+1. Note
that these guards do not cover any other edge (partially or entirely), and the
mentioned mi+1 − 1 edges are not visible (partially or entirely) to any other
potential guard. The minimum number of guards required to guard ℘i is then
ri+1 − 2.

Consider the left edge wi
L of hole Bi. Because of the structure of the hole,

Ei
L is not visible to any guard placed on Bj , for j
= i. Hence, Ei

L can only be
guarded by a guard placed on Bi, and there are four possible guard positions
from where Ei

L is visible (see Fig. 7). However, none of these guard positions
covers (partially or entirely) any other edge of a hole. Therefore, we need one
guard to cover the left edge of each hole.

There are k−1 regions ℘i in total, between consecutive holes (i = 1, 2, . . . , k−
1). Thus,

∑k−1
i=1 (ri+1 − 2) guards are needed to guard their union. As argued,

each left edge of a hole needs an additional guard.
For Bk, one guard is required to guard the bottom-most edge. For B1, only

two edges (left most and bottom most) are guarded by the above mentioned
guards. In order to guard the rest of the edges, the minimum number of guards
required is r1−2. Therefore, in total at least r1−1+

∑k
i=2(ri −2)+k = r−k+1

guards are needed. Substituting the value of r from Eq. 1, the total number of
guards needed is m

2 + k + 1. �

We also obtain the following Theorem:

Theorem 5. Given a set F of k pairwise disjoint monotone orthogonal polygons
in the plane, m

2 + k + 1 vertex guards are sometimes necessary to guard the free
space and the boundaries of the elements in F . We conjecture the bound is tight.

5 Conclusion

In this paper, we considered necessary and sufficient bounds on the number
of vertex guards needed for guarding the free space of the plane defined by
k pairwise disjoint monotone orthogonal polygons (holes) with a total of m
vertices, when the range of vision of the guards is bounded by 180◦. When the
holes are axis-aligned, we proved that m

2 + �k
4 � + 4 vertex guards are always

sufficient to guard the free space. For k arbitrary oriented holes we showed that
m
2 + k + 1 vertex guards are sometimes necessary to guard the free space and
conjecture that the bound is tight. Our results can be easily extended to the
case when the orthogonal polygons defining the holes are not monotone (details
are presented in [14]).

If the range of vision of a guard is bounded by 90◦, using the same approach
presented here, it follows that m

2 + �k
4 � + 5 vertex guards are always sufficient

to guard the free space. Similarly, for arbitrary oriented orthogonal polygons, it
follows that m

2 + k + 1 guards are sometimes necessary to guard the free space.

514 O. Daescu and H. Malik

References

1. Abello, J., Estivill-Castro, V., Shermer, T., Urrutia, J.: Illumination of orthogonal
polygons with orthogonal floodlights. Int. J. Comput. Geom. Appl. 8(01), 25–38
(1998)

2. Aggarwal, A.: The Art Gallery Theorem: Its Variations, Applications and Algo-
rithmic Aspects. Ph.D. thesis, AAI8501615 (1984)

3. Blanco, G., Everett, H., Lopez, J.G., Toussaint, G.: Illuminating the free space
between quadrilaterals with point light sources. In: Proceedings of Computer
Graphics International, World Scientific. Citeseer (1994)

4. Chvatal, V.: A combinatorial theorem in plane geometry. J. Comb. Theor. Ser. B
18(1), 39–41 (1975)

5. Czyzowicz, J., Rivera-Campo, E., Urrutia, J., Zaks, J.: Protecting convex sets.
Graphs Comb. 10(2–4), 311–321 (1994)

6. Czyzowicz, J., Riveracampo, E., Urrutia, J.: Illuminating rectangles and triangles
in the plane. J. Comb. Theor. Ser. B 57(1), 1–17 (1993)

7. Daescu, O., Malik, H.: City guarding with limited field of view. In: Proceedings of
32nd Canadian Conference on Computational Geometry (2020). http://vga.usask.
ca/cccg2020/papers/City%20Guarding%20with%20Limited%20Field%20of.pdf

8. de la Calle, J.G.L.: Problemas algoŕıtmico-combinatorios de visibilidad. Ph.D. the-
sis, Universidad Politécnica de Madrid (1995)

9. Estivill-Castro, V., Urrutia, J.: Optimal floodlight illumination of orthogonal art
galleries. In: Proceedings of 6th Canadian Conference on Computational Geometry,
pp. 81–86 (1994)

10. Everett, H., Toussaint, G.: On illuminating isothetic rectangles in the plane (1990)
11. Fisk, S.: A short proof of chvátal’s watchman theorem. J. Comb. Theor. (B) 24,

374 (1978)
12. Hoffmann, F., Kriegel, K.: A graph-coloring result and its consequences for

polygon-guarding problems. SIAM J. Discrete Math. 9(2), 210–224 (1996)
13. Kahn, J., Klawe, M., Kleitman, D.: Traditional galleries require fewer watchmen.

SIAM J. Algebraic Discrete Method 4(2), 194–206 (1983)
14. Malik., H.: City guarding and path checking: some steps towards smart cities.

Ph.D. thesis
15. Martini, H., Soltan, V.: Survey paper. Aequationes Math. 57, 121–152 (1999)
16. O’Rourke, J.: An alternate proof of the rectilinear art gallery theorem. J. Geom.

21(1), 118–130 (1983)
17. O’Rourke, J.: Galleries need fewer mobile guards: a variation on chvátal’s theorem.

Geom. Dedicata 14(3), 273–283 (1983)
18. O’Rourke, J.: Art Gallery Theorems and Algorithms, vol. 57. Oxford University

Press, Oxford (1987)
19. Shermer, T.C.: Recent results in art galleries. Proc. IEEE 80, 1384–1384 (1992)
20. Tóth, C.D.: Art galleries with guards of uniform range of vision. Comput. Geom.

21(3), 185–192 (2002)
21. Tóth, C.D.: Art gallery problem with guards whose range of vision is 180. Comput.

Geom. Theor. Appl. 3(17), 121–134 (2000)
22. Tóth, L.F.: Illumination of convex discs. Acta Math. Hung. 29(3–4), 355–360

(1977)
23. Urrutia, J.: Art gallery and illumination problems (2004)
24. Żyliński, P.: Orthogonal art galleries with holes: a coloring proof of Aggarwal’s

theorem. Electron. J. Comb. 13(1), 20 (2006)

http://vga.usask.ca/cccg2020/papers/City%20Guarding%20with%20Limited%20Field%20of.pdf
http://vga.usask.ca/cccg2020/papers/City%20Guarding%20with%20Limited%20Field%20of.pdf

Optimal Strategies in Single Round
Voronoi Game on Convex Polygons

with Constraints

Aritra Banik1, Arun Kumar Das2(B), Sandip Das2, Anil Maheshwari3,
and Swami Sarvottamananda4

1 National Institute of Science Education and Research, Bhubaneswar, India
aritrabanik@gmail.com

2 Indian Statistical Institute, Kolkata, India
arund426@gmail.com, sandipdas@isical.ac.in

3 Carleton University, Ottawa, Canada
anil@scs.carleton.ca

4 Ramakrishna Mission Vivekananda Educational and Research Institute,
Howrah, India

sarvottamananda@rkmvu.ac.in

Abstract. We describe and study the Voronoi games on convex poly-
gons. In this game, the server and then the adversary place their respec-
tive facilities by turns. We prove the lower and upper bounds of �n/3�
and n−1 respectively in the single-round game for the number of clients
won by the server for n clients. Both bounds are tight. Consequentially,
we show that in some convex polygons the adversary wins no more than
k clients in a k-round Voronoi game for any k ≤ n. We also design
O(n log2 n + m log n) and O(n + m) time algorithms to compute the
optimal locations for the server and the adversary respectively to maxi-
mize their client counts where the convex polygon has size m. Moreover,
we give an O(n log n) algorithm to compute the common intersection of
a set of n ellipses. This is needed in our algorithm.

1 Introduction

In the competitive facility location problem, the server and its adversary place
one or more facilities inside an arena with a set of clients. There are different
winning conditions, such as number of clients won, delivery cost, net profit,
min-max risk, etc. The Voronoi game is a type of competitive facility location
problem. In the game two players, the server and the adversary, place one or
more facilities to serve a set of clients C in a competitive arena. Each client
c ∈ C is served by the nearest facility. The goal of the players is to maximize the
number of their clients through one or more rounds.

Ahn et al. [2] introduced the Voronoi game on line segments and circles where
the server and its adversary place an equal number of facilities to serve clients
located on line segments and circles respectively. Cheong et al. [5] and Fekete

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 515–529, 2020.
https://doi.org/10.1007/978-3-030-64843-5_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_35&domain=pdf
http://orcid.org/0000-0002-5255-2718
https://doi.org/10.1007/978-3-030-64843-5_35

516 A. Banik et al.

and Meijer [7] studied the Voronoi game on planes. Teramoto et al. [8] studied a
discrete version of the Voronoi game on graphs where the clients and the players,
all are located on the vertices of the graphs. They used the shortest path distance
metric for their Voronoi game. Moreover, they showed that devising an optimal
strategy for the adversary is NP-hard for a certain restricted version of the
problem. Banik et al. [3] studied the discrete version of Voronoi game in �2

and gave polynomial time algorithms for the optimal placement for both the
server and its adversary. They were able to solve the Voronoi game on �2 for
each of the L1, L2 and L∞ distance metrics. Later, Banik et al. [4] introduced
the Voronoi game on simple polygons and devised polynomial time algorithms
for the optimal placement of both the server and its adversary for the geodesic
distance metric.

In this paper, we mainly study the Voronoi games on convex polygons. We
also have some surprising results on the bounds for the Voronoi games on convex
polygons. There are two players, the server Alice and her adversary Bob, who
place point facilities in the planar arena, alternately. Alice is restricted to place
her facilities in the closed interior of a polygon and Bob is restricted to place
his facilities in the closed exterior of that polygon. The clients represented as
points are on the boundary of the polygon. These restrictions can be understood
as if these are their personalized areas whereas the clients are in a common
area accessible to both. The objectives of Alice and Bob are to maximize their
respective number of clients, denoted by SA and SB. See Fig. 1.

In this paper, we first prove the tight bounds for the score of Alice, SA,
which is essentially the number of her clients (shared clients are counted as half),
for the single round Voronoi games on both simple polygons as well as convex
polygons, if both Alice and Bob choose optimal placement for their facilities.
More specifically, we show that �n/3� ≤ SA ≤ n − 1 when both the server and
the adversary make the optimal choices for the Voronoi game on convex polygons
and 1 ≤ SA ≤ n−1 for simple polygons. These bounds imply that the adversary
Bob does not always have a good strategy against the server Alice even if Alice
places her facility first (since in Voronoi games the second player usually has
an advantage). If Bob places his facility first, then Alice can trivially restrict
Bob’s score to 1/2, if clients are distinct points, and n/2, if the clients are n
points coincident on Bob’s facility B. For the k-round Voronoi games on simple
polygons or convex polygons too, we show that there exist arenas where the
adversary Bob gets no more than a (k +1)/2 score, if Alice is allowed to place k
facilities one each in each round, and a k score, if Alice is only allowed to place
a single facility in the first round. This means that the adversary Bob does not
have a guaranteed good strategy to place his facilities even in a k-round Voronoi
game on convex polygons. We prove that similar results hold equally true for the
Voronoi games on simple polygons. Since Voronoi games are zero-sum games,
the bounds on Alice’s score imply the bounds on Bob’s score SB.

We also provide algorithms to compute optimal placement for Alice for
Voronoi games on convex polygons which minimizes the maximum score of Bob
and for Bob after Alice has placed her facility which maximizes the score for Bob.

Voronoi Game on Convex Polygons 517

The algorithms respectively run in time O(n log2 n + m log n) and O(n + m) for
Alice and Bob. We present both the algorithms separately as they are signifi-
cantly different. We assume that the convex polygon P, of size m, and the n
clients, on the boundary of P, are given as input. As a part of our algorithm, as
well as an independent result, we also devise a method to compute the common
intersection of n ellipses, if it exists, in O(n log n) time.

The organization of the paper is as follows. We give some definitions, concepts
and important characterizations of optimality criteria in Sect. 2 and Sect. 3. We
present the algorithm to check and compute the common intersection of ellipses,
needed later, in Sect. 4. Next, in Sect. 5, we present tight lower and upper bounds
for Voronoi games on convex and simple polygons for a single round. We also
prove the tight upper bound and a lower bound for the k-round game for both.
In Sect. 6 we present a linear time algorithm to compute the optimal placement
of the adversary Bob given any placement of Alice. Lastly, in Sect. 7, we provide
an algorithm for the optimal placement of the server Alice, that minimizes the
maximum possible score for the adversary Bob.

2 Definitions and Preliminary Concepts

Let the vertices of the convex polygon P, given as the game arena, be v0, v1,
. . ., vm−1 in counter-clockwise order. Let there be n clients c0, c1, . . . , cn−1

that are placed in counter-clockwise order on the boundary of P. For the sake
of notational brevity, the vertices vi and v(i modm) as well as the clients cj and
c(j modn) are the same vertices and clients respectively.

Fig. 1.An example Voronoi games on a
convex polygon and the optimal facility
locations for Alice and Bob.

Fig. 2. The clients of Alice and Bob are
consecutive. Alice sees the distances as
dP whereas Bob sees the distances as δP .

In the single-round Voronoi game, Alice places her facility at A and Bob
places his facility at B after Alice’s turn. Let Alice’s and Bob’s distance from
any boundary point p ∈ P be measured as internal and external geodesic distance

518 A. Banik et al.

respectively denoted by dP(A, p) and δP(B, p). Also, we assume that the context
is always the Voronoi game on convex polygons unless mentioned otherwise. See
Fig. 2. The problem studied in the paper is to find bounds on the number of
clients of Alice and Bob and compute their optimal placements.

3 Characterization of Optimal Placements for Alice
and Bob

We characterize Bob’s optimal location first in the following lemma.

Lemma 1 (Necessary condition). The optimal position for the adversary, B,
is always on the boundary of the convex polygon P.

Proof. Consider any position of B in the open exterior of P. If B∗ be the nearest
point to B on the boundary of P, we can show that δP(B, c) > δP(B∗, c) holds
for any client c on the boundary of the polygon using the following: (1) the exter-
nal geodesic distance is the sum of Euclidean distances in some external path
in the Voronoi game on polygons and (2) Euclidean distances satisfy triangle
inequalities. The proof then follows. ��

3.1 A Characterization of Clients of Alice and Bob

We observe that all the clients of Alice and Bobs are partitioned into two con-
secutive sequences on the boundary. We prove this with the help of the following
lemma.

Lemma 2. Consider a placement of A of the server Alice inside the convex
polygon P and let the adversary Bob be located at B, on the boundary of P.
Then the boundary of P is divided into two polygonal chains, such that every
point in one chain is closer to B and every point on the other chain is closer to
A with respect to their corresponding distance metrics.

Proof. Let p be any point on the boundary of P, such that δP(B, p) ≤
dP(A, p). Let v be the first vertex on the geodesic path from p to B. By
the properties of geodesic paths, δP(B, p) = δP(B, v) + ||pv||, where ||pv||
is the Euclidean distance between p and v. Since δP(B, p) ≤ dP(A, p), and
dP(A, p) ≤ dP(A, v) + dP(v, p) = dP(A, v) + ||pv||, by triangle inequality, there-
fore δP(B, v) ≤ dP(A, p) − ||pv|| ≤ dP(A, v).

Next, By replacing p with the vertices in the above argument and using
induction we can show that δP(B, v) ≤ dP(B, v) for all points in the geodesic
path from p to B. Thus the farthest points on the boundary of P, those are closer
to B than A in clockwise and anticlockwise direction, partitions the boundary
as stated. Thus the lemma holds. ��

We state the following theorem that follows from Lemma 2. See Fig. 2 for an
illustration.

Voronoi Game on Convex Polygons 519

Theorem 1. The clients served by Bob and Alice are consecutive on the bound-
ary of P.

In the discussion below, we give a necessary and sufficient condition that
allows Bob to serve all the clients on a portion of the boundary of P.

3.2 A Necessary and Sufficient Condition for Alice and Bob

Let c and c′, c 	= c′, be two distinct clients in C on the boundary of the convex
polygon P. The external geodesic distance from c to c′ will be δP(c, c′). We
consider the locus of a point x such that ||xc|| + ||xc′|| = δP(c, c′) or dP(x, c) +
dP(x, c′) = δP(c, c′). We note that if c and c′ are not on the same edge of P
then this is an ellipse. If c and c′ are on the same edge then the locus is a line
segment, i.e., a degenerate ellipse. Let us denote either of these ellipses by Ec,c′ .
We further note that, because of the properties of ellipses, in either of the two
cases above, if Alice wishes to prevent Bob from serving both c and c′, she must
place A somewhere in the closed interior of Ec,c′ ∩ P. We state this fact in the
following lemma.

Lemma 3. The adversary, Bob, can serve two clients c and c′, c 	= c′, if and
only if Alice does not place A in the closed interior of Ec,c′ ∩ P in the Voronoi
game.

Proof. First, let A be a position inside the convex polygon such that it is not
in the closed interior of Ec,c′ , i.e., it is not in closed interior of Ec,c′ ∩ P. Then
following the argument in the discussion above, dP(A, c) + dP(A, c′) > δP(c, c′).
We can find a position for B in the geodesic path from c to c′ such that δP(c, c′) =
δP(B, c) + δP(B, c′), where δP(B, c) < dP(A, c) and δP(B, c′) < dP(A, c′). We
can do this because if x + y > z then we can partition z into two numbers x′

and y′ such that z = x′ + y′, x > x′ and y > y′. Geometrically, this translates
into finding B as above. Thus Bob can serve both c and c′.

Conversely, let A be a position inside the closed interior of Ec,c′ ∩ P. Then
dP(A, c) + dP(A, c′) ≤ δP(c, c′). This will prevent Bob to serve both c and
c′ because (1) if Bob places B in the geodesic path from c to c′ then either
δP(B, c) ≥ dP(A, c) or δP(B, c′) ≥ dP(A, c′) (due to the fact that δP(c, c′) =
δP(B, c) + δP(B, c′)) and (2) if Bob place B outside the geodesic path from c to
c′ then either δP(B, c) ≥ δP(c, c′) or δP(B, c′) ≥ δP(c, c′). ��

Combining Lemma 2 and Lemma 3 we get the following theorem.

Theorem 2. Let s and t be two points on the boundary of convex polygon P
in the Voronoi game on convex polygons. The adversary Bob can serve all the
clients on the geodesic path from s to t if and only if the server Alice does not
place A in the intersection of the closed interior of the ellipse Es,t and the polygon
P, where the ellipse is as described above.

520 A. Banik et al.

We are now in a position to present the main idea behind the paper. If Alice
wishes to prevent Bob to serve more than, say r clients, in other words forcing
SB < r, what she needs to do is to put her facility, if possible, in the intersection
of all ellipses Ec,c′ ’s for all the possible distinct pairs of clients c and c′ such that
the external geodesic paths from c to c′ contain more than or equal to r clients.
If such placement is not possible then Bob will escape the predicament and will
be able to place B that serves more than or equal to r clients.

However, for Alice’s algorithm to compute her facility’s optimal placement,
there is a need to check several possible positions for Bob’s facility location.
Correspondingly, we need to check the intersection of multiple ellipses. Therefore
first we describe an algorithm to efficiently compute the intersection of a finite
set of ellipses in the next section.

4 Algorithm to Compute the Common Intersection
of Ellipses

Suppose E be a set of n ellipses. Let e be any ellipse in the set E. In our later
algorithms, we have two very specific objectives. One is to check whether the
ellipses have a common intersect at all and the second is to compute a point in the
common intersection. This is a restricted goal relative to this section. However,
we give a method to compute the full common intersection of the ellipses in E
in this section.

We use the idea of Davenport-Schinzel sequences in our algorithm. Luckily,
after some transformation, our construction satisfies the properties of Davenport-
Schinzel sequences of order 2 and hence we are able to compute the common
intersection of ellipses in E in O(n log n) time. We are going to use the following
theorem by Agarwal et al. [1].

Theorem 3 (Agarwal et al. [1], Theorem 2.6). The lower envelope of a set F
of n continuous, totally defined, univariate functions, each pair of whose graphs
intersect in at most s points, can be constructed, in an appropriate model of com-
putation, in O(λs(n) log n) time. If the functions in F are partially defined, then
EF can be computed in O(λs+1(n) log n) time. In particular, the lower envelope
of a set of n segments in the plane can be computed in optimal O(n log n) time.

In the cited theorem above EF is the lower envelope of F . In order to use the
theorem, we need to suitable modify and transform the set of ellipses E so that
it satisfies the conditions of the theorem. We show in the following discussion
how we do it.

Since two ellipses intersect four times, the corresponding Davenport-Schinzel
sequence seems to be DS(n, 4) which will lead to length λ4(n) = Θ(n2α(n)). This
may give us a worse running time , even if we apply the theorem in our algorithm.
However, if we divide the ellipses into two halves, the upper half and the lower
half, the upper and lower halves will mutually intersect only two times. This
gives us the Davenport-Schinzel sequence DS(n, 2) with length λ2(n) = 2n − 1.

Voronoi Game on Convex Polygons 521

Hence we need to divide all the ellipses into two halves. We describe the steps
below.

We separate the boundary of every ellipse e ∈ E into lower and upper bound-
ary, separated at the points with the smallest and largest x-coordinate on the
boundary. We call the upper part of the boundaries of the ellipses as the upper
chains and denote them by upper(e) for the ellipse e. Similarly the lower part of
the boundary of an ellipse e is called the lower chain and denoted by lower(e). It
is a well known fact that the boundaries of two ellipses can intersect each other
at most four times. We make similar observations for upper and lower chains.

Observation 1 For two distinct ellipses, e and e′ in the set E, the boundary of
upper(e) and upper(e′) can intersect at most 2 times.

Observation 2 If the set E of ellipses has a common intersection then it
bounded from above by upper(e)’s and bounded from below by all the lower(e)’s,
e ∈ E.

Let l be the rightmost of the left endpoints of the ellipses in E and let r be
the leftmost of the right endpoints of the ellipses in E. Let the infinite vertical
strip containing points (x, y) such that l ≤ x ≤ r be denoted by V .

Observation 3 If the set E of ellipses has a common intersection then the
infinite vertical strip V exists and all upper and lower chains for the ellipses in
the set intersect every vertical line in the strip V .

For every e, e ∈ E, upper(e) and lower(e) are graphs of some continuous
univariate functions. The lower envelope and upper envelope of a set of functions
are defined as the pointwise minimum and maximum respectively of all the
functions in the set. If the set of ellipses in E has a common intersection then
we can compute the lower envelope of the upper chains as well as the upper
envelope of the lower chains inside the strip V . The lower envelope of the upper
chains inside this strip is denoted by Ul. Similarly the upper envelope of the
lower chains of all ellipses of E inside the vertical strip V is denoted by Lu. The
following lemma states that these can be computed efficiently. We use Theorem 3
for this purpose.

Lemma 4. Ul and Lu can be computed in O(n log n) time.

Proof. The chains upper(e) and lower(e), for any e in E, can be represented
by well defined, continuous, univariate, real functions in the range l ≤ x ≤ r.
We number these functions from 1 to n. Each pair of their graphs intersect at
most twice. Hence the two sequences of function indices occurring in Ul and Lu

are Davenport-Schinzel sequences [1] of order 2, i.e., DS(n, 2). Then the lengths
of these two sequences are bounded by 2n − 1 and the two sequences can be
computed in time O(n log n).

The main idea of the algorithm, in short, is the divide and conquer approach.
We first compute the envelopes of two halves and then compute the envelope of
the two resulting envelopes. Because of the limits imposed by the Davenport-
Schinzel sequences, the output is always bounded by 2n − 1 ellipse segments.

��

522 A. Banik et al.

If the ellipses in the set E have a common intersection then at the intersection
the lower boundaries of all the ellipses will be below the intersection and the
upper boundaries of all the ellipses will be above the intersection and vice-versa.

Lemma 5. All ellipses of E have a common intersection if and only if at least
one point of Ul lies above Lu.

Proof. All the lower chains of every ellipse of E lie below Lu except at least
one. If Ul goes below it at some x-coordinate. then there is at least one ellipse
which has its upper chain lying below the lower chain of at least one ellipse at
that x-coordinate. This means they will not form a common intersection at that
x-coordinate. ��

We describe the algorithm to compute the intersection of ellipses in E in
O(n log n) time. First we number the chains from 1 to n and compute all the lower
chains and upper chains. Next we compute the Davenport-Schinzel sequence for
both Ul and Lu using the algorithm proposed in [1]. We use these sequences to
compute both Ul and Lu by Lemma 4 and check if they have intersections using
Lemma 5.

Thus we have the following theorem.

Theorem 4. The common intersection of n ellipses can be computed in
O(n log n) time.

5 Bounds for the Scores in the Voronoi Game
on Polygons

In the case of the Voronoi games on simple polygons, we prove the tight upper
bounds and lower bounds on both SA and SB for both single-round and k-round
games. The k-round games are games where Alice and Bob alternately place
their facilities for k rounds for any fixed k ≥ 1. Thus we have 1-round, 2-round,
etc. Voronoi games. In the case of the Voronoi games on convex polygons too, we
prove the tight upper bound on the score SA. We prove the tight lower bound
for the single round Voronoi games on convex polygons and prove a lower bound
for the k-rounds on the score SA.

5.1 Tight Lower and Upper Bounds for the Scores in the Voronoi
Game on Simple Polygons

Let P be a simple polygon where Alice and Bob are playing the Voronoi game.
For single round and k round Voronoi game we show that neither Alice nor Bob
has a guaranteed strategy in the following Lemmas.

First we prove lower bounds for Alice in the following lemma.

Lemma 6. For the single round Voronoi games on simple polygons the score of
Alice SA ≥ 1/2 for n ≥ 1. For the k-round Voronoi games on simple polygons
SA ≥ k/2 for n ≥ k.

Voronoi Game on Convex Polygons 523

Fig. 3. Lower bound for SA Fig. 4. Upper bound for SA

We can show similar bounds for Bob.

Lemma 7. For the single round Voronoi game on simple polygons the score of
Bob SB ≥ 1 for n ≥ 2. For the k-round Voronoi games on simple polygons
SB ≥ (k + 1)/2 for n ≥ k + 1.

Proof. We can prove this by pigeon hole principle. Except for the last round,
Alice may place her facility to share clients with Bob. So Bob is guaranteed a
free client only at the last turn. ��

Finally, we show that the bounds of Lemma6 and Lemma 7 are tight.

Lemma 8. There exist k-round Voronoi games on simple polygons with n clients
such that SA = k/2 for any n, n ≥ k and SB = (k + 1)/2 for any n, n ≥ k + 1
for any k.

Proof. We construct simple polygon similar to star shaped and reverse star
shaped simple polygons where the clients are placed on the selected vertices
only, as shown in Fig. 3 and Fig. 4, that satisfy the scores for optimal placements
of facilities for both Alice and Bob. In fact, only one facility for Bob and Alice
suffices in the example figures to restrict the scores of Alice and Bob respectively.
Other placements are only necessary to deny even the full shares of clients. ��

In summary, k/2 ≤ SA ≤ n − (k + 1)/2 and (k + 1)/2 ≤ SB ≤ n − k/2 since
SA + SB = n if there are at least k + 1 clients.

If there are less clients than the rounds then trivially all clients will be shared.
And moreover, as a side note, if there are multiple clients on the same edge then
both Alice and Bob can perform better by placing at the median client. We state
this last fact in the following lemma.

Lemma 9. For the single round Voronoi games on simple polygons the score of
the server and adversary satisfy SA ≥ r/2 and SB ≥ r/2 where there are at least
r clients on some edge of the polygon P.

524 A. Banik et al.

If the polygon P is such that there are multiple edges with multiple clients,
then we may use Lemma 9 to further optimize the scores to get higher scores for
both Alice and Bob. Both of them give preference to these clusters of clients on
the same edge as long as these are available.

5.2 Bounds on Voronoi Games on Convex Polygons

Let P be the convex polygon where Alice and Bob are playing the Voronoi
game with n clients. First we prove the tight lower bound on the score of Alice,
SA, for the single round Voronoi game. In the following lemma, we use Haley’s
center-point Theorem [6] to show that there are always �n/3 clients for Alice.
In the succeeding lemma, we construct a single round Voronoi game such that
no matter where Bob places its facility it gets no more than one client, i.e., Alice
serves n − 1 clients.

Lemma 10. In any single-round Voronoi game on convex polygons, the server
Alice can place her facility such that she serves at least �n/3� clients.

Proof. Let Alice place her facility A at the center-point of the clients. Then
every closed half plane through A contains at least �n/3� clients [3,6]. There are
two cases.

Case 1: Facility A is strictly in the interior of P. Let us assume that Bob is
allowed to place his facility unrestrictedly in the plane with Euclidean distances
to clients. Even then he will never get more than �2n/3 clients if B avoids A.
Since the geodesic distances are always greater than the Euclidean distance and
Bob is restricted on the exterior of the convex polygon P, Bob will eventually
serve less than �2n/3 clients. Hence Alice will always be able to get at least
�n/3� clients, that is, SA ≥ �n/3�.
Case 2: Facility A is on the boundary of P. In this case there will be at least
�n/3� clients on a vertex or an edge of P. Then either (a) Bob places his facility
at A and gets no more than n/2 clients, (b) he places his facility on the same
edge as A and Alice gets at least �n/3� clients from the half-plane that passes
through A, avoids B and minimally intersects P, or (c) he places his facility
elsewhere and Alice still gets at least �n/3� clients. ��

We wish to prove that the above bound is tight. For this, we construct a
Voronoi game on a triangle such that no matter where Alice places her facility,
the adversary Bob wins at least �2n/3 clients.

Lemma 11. There exits a single round Voronoi game on a convex polygon such
that Alice serves no more than �n/3� clients.

Proof. We place n clients on an equilateral triangle as shown in Fig. 5. We can
easily show that the Ellipses Es,t’s for geodesic paths from clients s to t containing
�2n/3 clients do not intersect. Note that the clients other than those near A
are placed on the distant edge of the triangle. ��

Voronoi Game on Convex Polygons 525

Lemma 10 and Lemma 11 together show that the lower bound of �n/3� is
tight for the number of clients served by Alice.

Next, we give a lower bound on the number of clients served by Bob.

Lemma 12. For any single-round Voronoi game on convex polygons with n ≥ 2
clients, Bob serves at least 1 client.

We can ask a question here, whether Bob is always guaranteed a fraction
of the total number of clients. Surprisingly, the answer is no. The lower bound
of Lemma 12 is tight! We shall prove that the lower bound is tight by using an
iterative construction with a precondition and a postcondition. We describe the
construction of Fig. 6 below.

Fig. 5. Lower bound on SA, Ellipses
Es,t are formed by geodesic paths of
consecutive �2n/3� clients.

Fig. 6. Inductive construction for lower
bound on SB.

Let A be the origin. Let vi, a vertex, and ci, a corresponding client to the
vertex, be two points with positive x-coordinates, ci is left of vi such that the
line civi has a non-zero intercept on the y-axis and a positive slope. We can
place the next vertex vi+1 on line civi such that it has a positive x-coordinate.
It is possible to shoot a ray with larger slope and smaller intercept from vi+1

and place ci+1 on it such that ||civi+1||+ ||vi+1ci+1|| = ||ciA||+ ||Aci+1||. This is
a consequence of triangle inequality ||ciA|| ≤ ||civi+1|| + ||vi+1A||. This implies
we can have a small quantity z such that ||ciA|| + z = ||civi+1|| + ||vi+1A|| − z.
Suitably manipulating the position of ci+1 around distance will give us a proper
candidate for ci+1, i.e., ||Aci+1|| ≈ z and ||vi+1ci+1|| ≈ ||vi+1A|| − z.

The construction satisfies the following lemma:

Lemma 13. Let vertex vi, client ci and A satisfy the following preconditions:

(1) A is origin,
(2) ci and vi has positive x-coordinates with x(ci) < x(vi),
(3) line civi has positive slope and positive intercept on y-axis.

526 A. Banik et al.

Then we can compute next vertex vi+1 on line civi, left to ci, and client position
ci+1 such that we satisfy the following post-conditions:

(a) The ellipse Eci,ci+1 passes through A
(b) ci+1 and vi+1 has positive x-coordinates with x(ci+1) < x(vi+1),
(c) line ci+1vi+1 has positive slope and positive intercept on y-axis.

The construction above and the resulting post-conditions of Lemma13 can
be repeated as many times as we wish for as many clients as required. This
allows us to construct a convex polygon with any number of vertices. We also
note that we can slightly modify the construction so that the ellipse Eci,ci+1

properly contains A, though this is not necessary. Thus we have the following
lemma on the construction.

Lemma 14. There exists a convex polygon where the adversary Bob serves only
1 client in the Voronoi game on convex polygons with n ≥ 2 clients, i.e., SB is
at most 1 for any placement of B.

Proof. We construct the polygon P using the iterative construction above. We
construct the upper boundary first and then mirror it on x-axis to get lower
boundary. On right we take vertex v0 sufficiently far and on left we extend the
last edge to intersect x-axis. Such a polygon P will be convex. Then since A is
contained in Eci,ci+1 ∩ P Bob cannot serve clients ci and ci+1 simultaneously.
Iteratively, we can show that Bob cannot serve two clients simultaneously any-
where on the boundary of the polygon P.

As a consequence of the above lemma, we also have tight lower bounds for
Bob for the k-round Voronoi game on convex polygons.

Lemma 15. For the k-round Voronoi game on convex polygons with n ≥ k
clients and any k ≥ 1, Bob serves at least (k + 1)/2 client. Moreover, There
exists a convex polygon where the adversary Bob serves only (k + 1)/2 clients in
the k-round Voronoi game on convex polygons with n ≥ k clients and any k ≥ 1,
i.e., SB is at most (k + 1)/2 for any placement of B.

We combine all the results in the following theorem.

Theorem 5. For the single round Voronoi game on convex polygons with n
clients located on the boundary of the polygon P, the score of Bob, SB satisfies
1 ≤ SB ≤ � 2n

3 and the bounds are tight.

In the successive sections, we design algorithms to compute the placements
for facilities for Alice and Bob.

6 Strategy for Adversary Bob

We assume that Alice has already played her turn and she has placed her facility
at A in P. Bob’s objective is to locate an optimal position for B. In this section,

Voronoi Game on Convex Polygons 527

we show how Bob can compute the optimal position for B in linear time of the
size of the input, i.e., O(n + m).

As a consequence of Theorem 1, we only need to look for end to end geodesic
paths between the n clients. We can simply check

(
n
2

)
geodesic paths, say the

geodesic path from client s to client t, and among the corresponding ellipses
Es,t’s, we select the one that avoids A and has the maximum number of clients
for B. However, we can do this more efficiently in linear time as follows.

The main idea of the algorithm is that for each client s, s ∈ C we compute
the geodesic path to t on the boundary of P that contains the maximum number
of clients in the counter-clockwise direction such that the ellipse Es,t avoids A.
The steps are given below.

Step 1 (Initialize): We sort and merge the lists of vertices and the clients. This
is done so that we can traverse both the vertices and the clients together along
the boundary.
Step 2 (Initial geodesic path): Starting from s ← c1(= s1), we compute
the maximum length geodesic path to t ← t1 on boundary of P such that
dP(A, s) + dP(A, t) = δP (s, t). This will ensure that Es,t contains A on the
boundary. We also compute the corresponding location for B ← B1 that
allows Bob to serve all the clients on the geodesic path.
We assume for the next step that the geodesic path from s ← ci(= si) to
t ← ti is computed successfully and the location of B ← Bi is stored.
Step 3 (Successive paths): We iteratively advance s to s ← ci+1, decreasing
the geodesic distance. Since Bob served the larger geodesic path earlier, he
will also be able to serve the shorter path. This implies that the Geodesic path
can be extended in the counter-clockwise direction. Therefore, we advance t to
t ← ti+1 such that dP(A, s) + dP(A, t) = δP (s, t). We also update B ← Bi+1.
We repeat this step till the last client in the merged list s ← cn(= sn).
Step 4 (Report): Once we have all the n geodesic paths containing maximal
consecutive clients of Bob, we do a linear scan and report the maximum. ��
We show that the algorithm presented above is correct in the lemma below.

Lemma 16. Let Alice’s facility be located at A. The algorithm described above
correctly computes an optimal position of B for the Voronoi game on convex
polygons.

Proof. The proof follows from the necessary and sufficient condition in Theo-
rem 2 and the fact that clients are consecutive from Theorem1. ��

We can show that the algorithm above runs in linear time.

Theorem 6. An optimal position for the adversary Bob, B, can be computed in
O(n + m) time using O(n + m) space, where the Voronoi game is played on a
convex polygon of size m with n clients.

We note that in the algorithm described above we do not store the geodesic
paths, we only store the end points si’s (= ci’s), ti’s and corresponding location
of facilities Bi’s.

528 A. Banik et al.

7 Strategy for Server Alice

In this section, we describe an algorithm to compute the optimal facility loca-
tion in the Voronoi game on convex polygons for Alice such that the maximum
possible score of Bob is minimized.

The algorithm uses the computation of the common intersection of ellipses
described previously in Sect. 4, to do two things: (1) To check if the common
intersection is empty and (2) If the previous common intersection is non-empty,
compute a point belonging to the common intersection.

In this discussion we assume that we are dealing with finite and closed ellipses,
i.e., the boundary is included in the ellipses. We can use any suitable O(1)
representation we wish. However, the way we get these ellipses in our algorithm,
is two foci and ellipses as loci of points with a fixed total distances from the two
foci, so we use the representation (f1, f2, r), where f1 and f2 are the two foci
points and r is the total distance of any point in the boundary to the two foci,
i.e., the ellipses satisfy ‖xf1‖2 + ‖xf2‖2 = r. We proceed with the discussion of
the algorithm below. The algorithm is brief as we heavily borrow most of the
concepts already discussed in the previous sections.

7.1 Algorithm to Compute an Optimal Placement of A

In the discussion below, we design an algorithm to compute the optimal place-
ment for A. By Theorem 5 we know that �n/3� ≤ SA ≤ n−1. Also, by Theorem 2
we have a necessary and sufficient condition for the placement of the facility of
Bob. Thus we can check whether it is possible to place A for some specific value of
SA. We check this by computing the common intersection of all the ellipses Es,t’s
such that the geodesic paths from the clients s to t contains exactly n − SA + 1
clients. These ellipses can be computed by a technique similar to the algorithm in
Sect. 6, by advancing s and t simultaneously keeping track of geodesic distances.

Since the optimal value of the score for Alice is discrete in increments of
1/2 and has lower and upper bounds, we can search for it using binary search.
SA = r is optimal if a score of r is feasible and a score of r+1 is infeasible. Thus
we have the following steps in the algorithm.

Step 1 (Initialize): First we set the bounds for binary search left ← 2�n/3�,
right ← 2n − 2. We note that the score of Alice SA is discrete in multiple of
1/2 (2�n/3� ≤ 2SA ≤ 2n − 2).
Step 2 (Recursion): We check if we need to terminate the recursion i.e. if the
range is empty. Otherwise, we update mid, mid ← (left + right)/2. Next we
need to check if SA ← mid/2 is feasible.
Step 3 (Feasibility check): We update SB ← n − SA + 1. We compute n
ellipses one for each c ∈ C such that s ← c and t ← c′, such that there are SB
clients from end to end on the geodesic path from s to t. This can be done in
O(n + m) time.
Step 4 (Intersection of ellipses): Next, we compute the common intersection
of the n ellipses mentioned in the previous step using the algorithm described

Voronoi Game on Convex Polygons 529

in Sect. 4. This step can be completed in O(n log n) time independent of m
as there are n ellipses.
Step 5 (Necessary and sufficient condition check): If the common intersection
computed in the previous step is empty then the current score of SA is infea-
sible and we update right ← mid − 1 otherwise it is feasible and we update
left ← mid + 1. Then we continue the recursion. ��

The algorithm described above is correct as it depends on the necessary and
correctness condition in the Theorem 2. However the efficiency depends on the
binary search and the procedure of computing the common intersection of n
ellipses. This gives us the following theorem.

Theorem 7. An optimal position for A can be computed in O(n log2 n+m log n)
time, where the Voronoi game is played on a convex polygon of size m with n
clients.

References

1. Agarwal, P.K., Sharir, M.: Davenport-schinzel sequences and their geometric appli-
cations. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry,
chap. 1, pp. 1–47. North-Holland, Amsterdam (2000)

2. Ahn, H.K., Cheng, S.W., Cheong, O., Golin, M., van Oostrum, R.: Competitive
facility location: the voronoi game. Theoret. Comput. Sci 310(1), 457–467 (2004)

3. Banik, A., Bhattacharya, B.B., Das, S., Mukherjee, S.: The discrete voronoi game
in R2. Comput. Geom. 63, 53–62 (2017)

4. Banik, A., Das, S., Maheshwari, A., Smid, M.: The discrete voronoi game in a simple
polygon. Theoret. Comput. Sci. 793, 28–35 (2019)

5. Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The one-round voronoi game.
Discrete Comput. Geom. 31(1), 125–138 (2004)

6. Edelsbrunner, H.: A Short Course in Computational Geometry and Topology.
Springer Publishing Company, Incorporated, Warren (2014)

7. Fekete, S.P., Meijer, H.: The one-round voronoi game replayed. Comput. Geom.
30(2), 81–94 (2005)

8. Teramoto, S., Demaine, E.D., Uehara, R.: The voronoi game on graphs and its
complexity. J. Graph Algorithms Appl. 15(4), 485–501 (2011)

Cutting Stock with Rotation: Packing
Square Items into Square Bins

Shahin Kamali(B) and Pooya Nikbakht(B)

Department of Computer Science, University of Manitoba, Winnipeg, Canada
shahin.kamali@umanitoba.ca, nikbakhp@myumanitoba.ca

Abstract. In the square packing problem, the goal is to place a multi-
set of square-items of various sizes into a minimum number of square-
bins of equal size. Items are assumed to have various side-lengths of
at most 1, and bins have uniform side-length 1. Despite being studied
previously, the existing models for the problem do not allow rotation
of items. In this paper, we consider the square packing problem in the
presence of rotation. As expected, we can show that the problem is NP-
hard. We study the problem under a resource augmented setting where
an approximation algorithm can use bins of size 1 + α, for some α > 0,
while the algorithm’s packing is compared to an optimal packing into
bins of size 1. Under this setting, we show that the problem admits an
asymptotic polynomial time scheme (APTAS) whose solutions can be
encoded in a poly-logarithmic number of bits.

Keywords: Square packing with rotation · Bin packing ·
Approximation algorithms · Resource augmentation

1 Introduction

An instance of the square packing problem is defined with a multi-set of squares-
items of side-lengths at most 1. The goal is to place these squares into a minimum
number of unit square-bins in a way that two squares-items placed in the same
bin do not overlap (but they can touch each other). The problem is a variant of
the classical bin packing problem. As such, we refer to the square-items simply
as “items” and square-bins as “bins”. A square-item can be recognized by its
side-length, which we refer to as the size of the item. Throughout, we refer to
the number of bins used by an algorithm as the cost of the algorithm.

Square packing has many applications in practice. One application is cutting
stuck, where bins represent stocks (e.g., wood boards), and items are demanded
pieces of different sizes. For each item, an algorithm has to cut the stock to
provide the pieces that match the requests. This cutting process is equivalent to
placing items into bins. Note that the goal of cutting stock is to minimize the
number of stocks, which is consistent with the objective of square packing.

There has been a rich body of research around square packing, all under
the assumption that squares cannot be rotated, that is, the sides of all items
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 530–544, 2020.
https://doi.org/10.1007/978-3-030-64843-5_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_36&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_36

Cutting Stock with Rotation 531

Fig. 1. If all items in the input have length
√
2

2
√
2+1

≈ 0.35, allowing rotation allows
packing 5 items per bin instead of 4.

should be parallel to the edges of the bins. While this assumption makes the
combinatorial analysis of the problem easier, it comes at a price. Consider, for
example, an instance of the problem formed by n items, all of size

√
2

2
√
2+1

≈ 0.369.
With no rotation, any bin can include at most four items, which gives a total
cost of �n/4�. Allowing rotation, however, five items fit in each bin, and we can
reduce the cost to �n/5� (see Fig. 1). As a result, using rotation, the number of
required bins is decreased by n/20, which is a notable saving (e.g., for cutting
stock applications).

Definition 1. The input to the square packing problem with rotation is a multi-
set of squares (items), defined with their side-lengths σ = {x1, ..., xn}, where
0 < xi ≤ 1. The goal is to pack these squares into the minimum number of
squares of unit size (bins) such that no two items overlap. When placing a square
into a bin, an algorithm can translate it to any position and rotate it by any
degree, as long as the item remains fully inside the bin.

An asymptotic polynomial time scheme (APTAS) is an approximation algo-
rithm Alg such that, for any input σ of square-items whose total area is asymp-
totically large, we have Alg(σ) ≤ (1 + ε) · Opt(σ) + c0 for any small parameter
ε > 0 and some constant c0, where Alg(σ) and Opt(σ) denote the number of
bins in the packing of Alg and an optimal packing, respectively. The running
time of an APTAS needs to be polynomial in the number n of square-items, but
it can be a super-polynomial function of ε.

Related Work. The 1-dimensional bin packing has been extensively studied
(see, e.g., [9,10,20]). The problem is known to be NP-hard [20]. In a seminal
paper, de la Vega and Lueker [32] provided the first APTAS for the problem. The
best existing result is an algorithm that opens at most Opt(σ) + O(log Opt(σ))
bins for placing any input σ [23]. There are many ways to extend bin packing to
higher dimensions (see [8] for a survey). Packing square-items into square-bins
(without rotation) is perhaps the most straightforward variant. In the offline
setting, this problem is known to be NP-hard [27]. Bansal et al. [5] provided
an APTAS for this problem (indeed, for the more general d-dimensional cube
packing problem). Epstein and Levin [14] presented a “robust” approximation
scheme, where robustness implies a sequential nature for the algorithm. Rect-
angle packing is a generalization of both bin packing and square packing, where
the goal is to pack rectangles of possibly different sizes and shapes into uniform
square-bins (see [8] for details). In particular, there is a variant that assumes

532 S. Kamali and P. Nikbakht

rectangles can be rotated by exactly ninety degrees so that sides of items are
still parallel to the edges of bins (see, e.g., [12]). We note that rotation by ninety
degrees is not relevant for square packing.

Resource augmentation [28] is a relaxed framework for the analysis of approx-
imation and online algorithms. Let Alg be an approximation algorithm that uses
a resource when solving a problem. The resource can be, for example, the size of
the cache in the online paging problem [29] or the size of the bins in the pack-
ing problems [15]. Under a resource augmented setting, the resource of Alg is
increased by an augmentation factor γ > 1. Then, the cost of Alg is compared
to an optimal solution without augmentation (with the original cache size or bin
capacity). The resource augmented setting for the bin packing and related prob-
lems have been studied in several previous works [6,13,15,17,26]. In particular,
the makespan scheduling problem can be considered as a resource-augmented
variant of the bin packing problem (see, e.g., [2,3,18]).

Contribution. We start by reviewing a decision problem that asks whether a
multi-set of squares can be placed into a single bin. We refer to this problem as
the 1-Bin Square Packing (1BSP) problem and show that it is NP-hard. It turns
out that allowing rotation makes the problem much harder. It is not even clear
how to answer the 1BSP problem when all square-items have uniform size, as
there has been little progress in the congruent square packing problem [16]. The
source of difficulty is that it does not appear that one can effectively discretize
the problem and apply standard algorithmic techniques. A recent study [1] shows
that similar packing problems are ∃R-hard, and their verification algorithms need
exponential bit-precision. The same is likely true for the 1BSP problem.

We study the square packing problem under a relaxed augmented setting,
where bins of the approximation algorithm are augmented by a factor (1 + α)
for some small α > 0. The extra space given in the augmented bins enables
free translation and rotation of squares, which ultimately allows packing items
with encodable bit-precision. Under this setting, we present an APTAS for the
problem. Precisely, given small, constant values for ε, α > 0, we present an
algorithm that runs in polynomial time and packs any input σ in at most (1 +
ε)Opt(σ) + 3 augmented bins of size 1 + α. Here, Opt(σ) denotes the number of
bins in an optimal packing of σ when packed into unit bins.

Roadmap. In Sect. 2, we visit the 1BSP problem to establish the hardness of
the square packing problem with rotation, and review some existing results that
suggest the problem might be ∃R-hard. In Sect. 3, we present our main result,
which is an APTAS for packing any set of squares into augmented bins.

2 A Review of the 1-Bin Square Packing (1BSP) Problem

Given a multi-set S of squares, the 1-Bin Square Packing (1BSP) problem asks
whether items in S can be placed into a square of size c, called a container,
where translation to any position and rotation by any degree is allowed. The
1BSP problem is a decision variant of the square packing problem introduced in

Cutting Stock with Rotation 533

Fig. 2. To pack and cover a rectilinear polygon with a multi-set of squares, no square
should be rotated.

Definition 1 (scale everything to ensure the container has size 1). In this section,
we make some basic observations about the complexity of the 1BSP problem.

NP-Hardness. Many geometric packing problems are known to be NP-hard.
Examples include packing squares into squares without rotation [27], packing
circles into equilateral triangles [11], packing triangles into rectangles [7], and
packing identical simple polygons into a larger polygon [4]. Despite similarities,
none of these results establish the hardness of the 1BSP problem. As such, we
provide a proof to show the problem is NP-hard, even if the container and all
items have integer sizes. We start with the following lemma:

Lemma 1. Let S be a multi-set of squares with integer side-lengths and of total
area A, and let P be a rectilinear polygon of area A. It is possible to pack all
squares in S into P only if no square is rotated.

Proof. Assume S is fully packed into P , that is, P is fully covered by the squares
in S. We show that no square is rotated in such packing. We start with a simple
observation and then use an inductive argument.

Let r be an arbitrary convex vertex of P , that is, a vertex with an interior
angle of 90◦. Note that there are at least four convex vertices in any rectilinear
polygon. Since P is fully covered by S, there should be a square s ∈ S that
includes or touches r. As Fig. 2 illustrates, the only case where s remains fully
inside P is when it has a vertex located at r and has no rotation (Fig. 2(a)); in
all other cases, a portion of s lies outside of P , which is not possible.

Given the above observation, we use an inductive argument on A to prove
the lemma. For the base of induction, when A = 1, S is formed by one square
of size 1 packed into a square P of size 1. Clearly, packing S into P involves no
rotation. Next, assume we have a multi-set S of squares of total area k packed
into a polygon P of area k. Consider an arbitrary convex vertex r of P . By the
above observation, r is covered by a square s ∈ S that is not rotated. Let an
integer x ≥ 1 denote the area of s. Removing the area covered by s from P
results in a packing of the multi-set S − {s} of squares into a smaller polygon
P ′, where both S − {s} and P ′ have area k − x. By the induction hypothesis,
none of the squares in S − {s} are rotated when packed into P ′. Given that s
was not rotated either, no square is rotated in the original packing of S into P .

	

534 S. Kamali and P. Nikbakht

Theorem 1. The 1-Bin Square Packing (1BSP) problem (which allows rota-
tion) is strongly NP-hard, even if the container and all items have integer sizes.

Proof. Given a multi-set S0 of squares with integer side-lengths and an integer
c, Leung et al. [27] proved that it is strongly NP-hard to decide whether S0

can be packed, without rotation, in a square container of side-length c. Refer to
this problem as the 1-bin square packing without rotation (1BSW) problem. We
provide a reduction from 1BSW to 1BSP.

Assume we are given an instance of 1BSW that asks whether a multi-set S0

of squares can be packed into a square container B of side-length c. Let u be
an integer that denotes the total area of all items in S0. Define an instance of
the 1BSP problem through a multi-set S formed as the union of S0 and c2 − u
squares of unit size 1. We show that S can be packed into B with rotation if and
only if S0 can be packed into B without rotation.

Consider a c × c grid formed on B, where the grid vertices have integer
coordinates. Assume S0 can be packed into B without rotation; the total area of
items in S0 is u, and the empty area in B is c2 − u. Since S0 is packed without
rotation, we can translate squares downward and towards the left such that their
corners lie on the vertices of the grid (see the proof of Lemma 3.4 in [5] for details
of such translation). The unused area in the resulting packing is formed by c2−u
grid cells of size 1× 1. We can use the same packing and place the small squares
in S −S0 in the empty grid cells. This gives a valid packing of S. Next, assume S
can be packed into B. Since the total area of items in S is exactly c2, there is no
empty (wasted) area in B. By Lemma 1, the packing does not involve rotation
of any item. Since no rotation is involved, removing unit squares in S − S0 from
this packing gives a valid packing of S0 (without rotation). 	

Congruent Square Packing. The congruent square packing problem, first
studied by Erdős and Graham [16], asks for the minimum size s(i) of a square
that can contain i unit-sized squares. The problem is equivalent to finding the
largest value of x such that i congruent squares of size x fit into a container of
unit size. Clearly, an algorithm for the 1BSP problem can be used to find s(i),
using a binary search approach. Without rotation, it is easy to answer if a set of
congruent squares fit in a square container. Allowing rotation, however, makes
the problem harder. Despite being extensively studied (see, e.g., [19,21,22,31]),
the value of s(i) is not known for small values like i = 11. Figure 3 shows the
packings that give the smallest known upper bounds for s(11) and (18). We refer
to the survey by Friedman [19] for more details on congruent square packing.

Existential Theory of the Reals. An Existential Theory of the Reals (ETR)
formula can be stated as ψ = ∃x1, . . . , xn Φ(x1, . . . , xn), where Φ is a well-formed
sentence over alphabet {0, 1, x1, . . . , xn, .,=,≤, <,∧,∨,¬} [17]. A decision prob-
lem belongs to the complexity class ∃R-complete iff it is equivalent to deciding
(in polynomial time) whether an ETR formula is true or not. In particular, these
problems are ∃R-hard in that a witness, which certifies the problem is in NP,
might need an exponential number of bits in any numerical representation [17].
Abrahamsen et al. [1] have recently proved that a set of problems similar to

Cutting Stock with Rotation 535

Fig. 3. The smallest known container for placing 11 (left) and 18 (right) unit squares
into a larger square [19].

the 1BSP problem, such as deciding whether a set of simple polygons fit into a
square container, are ∃R-hard. It is not clear, however, whether packing convex
objects (in particular squares) into a square container is ∃R-hard. Nevertheless,
Erickson et al. [17] proposed to augment a square container in order to avoid
(a potential) exponential bit precision for encoding the packings. They showed
that if the container’s size is augmented, where a slight perturbation is applied
to the augmentation parameter (as in the smoothed analysis [30]), the bit preci-
sion for encoding a solution is expected to be logarithmic to the input size. Our
APTAS in the next section uses the augmentation of bin sizes, along with some
of the ideas from [17], to ensure logarithmic precision when packing squares into
augmented bins.

3 An APTAS for Square Packing with Rotation

In this section, we describe an APTAS for placing square-items, with rotation,
into augmented square-bins. The algorithm has two constant parameters α and
ε, which are both small, positive values. The algorithm places any input σ into
at most (1 + ε)Opt(σ) + 3 augmented bins of size 1 + α, where Opt(σ) is the
number of bins in an optimal packing of σ into unit squares. Throughout, we
assume the total area of σ is arbitrarily large. Furthermore, we let ξ = ε/1081.

Overview. The algorithm classifies items into small, medium, and large items.
The classification is similar to the one in [5] for square packing without rotation.
Medium and small items are smaller than ξ (large items can also be smaller than
ξ). Medium items have a negligible total area. As such, we place them separately
from others into a set of at most ξ · Opt(σ) + 1 medium bins.

We place large items into augmented large bins. For that, we round up item
sizes, as suggested by de la Vega and Lueker [32], to get a constant number of
possible item sizes. The resulting instance is then packed, using an exhaustive
approach, into a minimum number of augmented bins. The extra space in the
augmented bins enables us to discretize the problem, using the ideas from [17].
We show that the number of large bins will be no more than (1 + ξ)Opt(σ).

After placing large items, we partition the empty area in each large bin into
a set of trapezoids and show that small items can be tightly packed into these
trapezoids. For that, we partition trapezoids further into right-angled triangles
and use the Next-Fit-Decreasing-Height (Nfdh) algorithm of Coffman et al. [24]
to pack these triangles. If all small items are placed in the trapezoids of the large

536 S. Kamali and P. Nikbakht

bins, the resulting packing is almost-optimal, as the packing of large items is
almost optimal (and no new bin is opened for small items). If some small items
do not fit in the large bins, we place them, using the Nfdh strategy, into small
bins. In this case, we prove that all bins are “almost full”, which eventually gives
the claimed guarantee.

In what follows, we first describe how small items can be packed into trape-
zoids, then we explain the placement of large items into augmented bins, and
finally describe the packing of arbitrary inputs.

3.1 Triangle and Trapezoid Packing

Let T be a given right-angled triangle with two legs of sides a and h (assume
h ≤ a). In what follows, we show how to pack a set of items of size at most δ
into T without wasting too much area in T. In our solution, items are packed
without rotation so that their sides are parallel to the legs of T. Later, we use
this packing to show items of size at most δ can be packed into a trapezoid
container, with rotation, so that not too much area is wasted.

In order to pack items into T, we use the Next-Fit-Decreasing-Height (Nfdh)
strategy [24]. We sort items in non-increasing order of their sizes and place them
one by one in the following manner. Without loss of generality, assume the legs
of T extend along the x- and y-axes; we refer to the two legs as ‘left leg’ (of
length h) and ‘lower leg’ (of length a). We place the first item in a way that it
is tangent to the two legs of T. Let h1 denote the size of the first item. The area
within a distance h1 from the lower leg of T forms a shelf of height h1. We place
subsequent items on this shelf such that the left side of each item touches the
right side of the previous item, while its lower side touches the lower leg of T.
At some point, the next item might not fit in the shelf; at this point, we “close”
the shelf and recursively pack the remaining items in the right-angled triangle
formed by removing the shelf from T (see Fig. 4a). The algorithm stops when
it cannot open a new shelf. Note that it is possible that no item is placed in
T, which happens when the largest square in the input (the first square in the
sorted order) does not fit in T (see Fig. 4b).

Lemma 2. Assume we apply Nfdh to pack a multi-set of items, each having a
size at most δ, into a right-angled triangle T with legs of sizes a and h, where
h ≤ a. If the algorithm stops before packing all items (if not all items can be
packed into T), then the wasted area in T is less than (3.5a + h)δ.

Proof. First, assume no item can be packed into T. That means placing the first
square s1 of the multi-set in T, in a way that its two sides are tangent with the
legs of T, results in a part of s1 lying outside of T (see Fig. 4b). In this case,
a square p that is tangent to the legs of T and touches its third side is fully
contained in s1 and hence has side-length less than that of s1 (consequently less
than δ) and also less than h. So, the area of T can be partitioned into p (of area
less than hδ), a triangle above p (of area less than hδ/2), and a triangle on the
right of p (of area less than aδ/2). Consequently, the total (wasted) area of T is
less than (3h/2 + a/2)δ < (3.5a + h)δ.

Cutting Stock with Rotation 537

Fig. 4. (a) Applying the Nfdh algorithm for packing a right-angled triangle T with
squares of size at most δ. The algorithm places items in non-increasing order of their
sizes in shelves that are packed from left to right. The pink squares and the green
triangles are respectively the covering squares and triangles. (b) When no item can be
packed into T, the area of T is less than (3h/2 + a/2)δ.

Next, assume there are m ≥ 1 shelves in the final packing (see Fig. 4a). The
wasted area in the i’th shelf can be partitioned into two areas: the area on the
right of the last item placed on the shelf (call it Ri), and the area on top of the
squares placed on the shelf (call it Ti). Ri can be covered by two components: a
covering square of area h2

i and (if required) a right-angled covering triangle of
area hiai/2, where ai is the base of the covering triangle (see Fig. 4a). The bases
of covering triangles of different shelves do not intersect when projected into the
base of T. To see that, consider the top-right corner ci of the covering square of
shelf i. Since ci appears outside T and just below shelf i+1, the covering triangle
of shelf i+1 appears on the left of ci, while the covering triangle of shelf i appears
on its right. Consequently, we can write, Ri < h2

i + hiai/2 < δ(hi + ai/2), and
summing over all values of i, we get

∑m
i=1 Ri < δ

∑m
i (hi + ai/2) < δ(h + a/2).

For the wasted area on top of the i’th shelf, we can write Ti ≤ a(hi−hi+1); this is
because all items placed on the shelf have a height more than hi+1. Summing over
all but the very last shelf, we get

∑m−1
i=1 Ti ≤ a

∑m−1
i=1 (hi −hi+1) = a(h1−hm) <

aδ. The wasted area on top of the last shelf is no more than aδ, which is an upper
bound for the size of the shelf. So, we have

∑m
i=1 Ti < 2aδ. Finally, the unused

area U on top of the whole packing (the dark area in Fig. 4a) has a size of no more
than aδ. The total wasted area is thus

∑m
i=1(Ri+Ti)+U < (a/2+h)δ+2aδ+aδ =

(3.5a + h)δ. 	

Lemma 3. Let Z be a trapezoid in which every side has length at most x, and
S be a multi-set of squares of size at most δ. There is an algorithm that packs
items from S into Z such that either all items are packed into Z or a subset of
S is packed while the wasted area in Z is at most 54xδ.

Proof. First, we partition Z into four right-angled triangles. This can be done
by partitioning Z into two triangles by drawing a diagonal. By the triangle
inequality, any side of these two triangles has side-lengths less than 2x. Then,
we partition each triangle into two right-angled triangles by drawing an altitude

538 S. Kamali and P. Nikbakht

Fig. 5. Any trapezoid can be partitioned into four right-angled triangles.

that lies inside the triangle (see Fig. 5). In each of the four resulting triangles,
one edge is within a side of the trapezoid (of the size at most x), another edge is
within an edge of the two previous triangles (of the size of at most 2x), and hence
the last side is shorter than the sum of the other two, i.e., 3x. Overall, each of the
four triangles has sides of side-length no more than 3x. So, we can apply Lemma 2
to pack any of the resulting right-angled triangles with items in S. The wasted
area in each of these triangles is less than (3.5×3x+3x)δ = 13.5xδ. Consequently,
the total wasted area in the trapezoid is no more than 4 × 13.5xδ = 54xδ. 	

3.2 Packing Large Items

We explain how to pack large square-items into augmented bins. The follow-
ing lemma implies that augmenting bins enables us to encode the translation
(position) and the rotation of items in a given packing, using logarithmic bit-
precision. Erickson et al. [17] proved a more general statement about packing
convex polygons. For completeness, we include their proof for square packing.

Lemma 4. [17] Let S be a multi-set S of m squares that can be packed into
a unit bin. For any α > 0, it is possible to pack S into an augmented bin of
size 1 + α such that the translation and rotation of each item can be encoded in
O(log(m/α)).

Proof. [Sketch] The extra space given by an augmented bin can be used to ensure
all items can be placed at a distance of at least α

m+2 from each other and the
boundary of the bin, which enables free translation and rotation of squares to
a certain encodable degree. Consider a packing of S into a unit bin. Form a
partial ordering of items along the x-coordinate in which for items a, b ∈ S, we
have a < b iff there is a horizontal line that passes through both a and b crosses
a before b. Let πx be a total ordering of items that respects the above partial
ordering, and πy be another ordering defined symmetrically based on a partial
ordering through crossings of vertical lines. Let a ∈ S be the i’th element in
πx and j’th element in πy (we have i, j ∈ {1, . . . , m}). In the augmented bin,
we shift a towards the right by iα

m+2 and upwards by jα
m+2 (see Fig. 6). At this

point, any two squares are separated by at least α
m+2 . So, it is possible to shift

items towards left or right by O(α/m) and/or rotate them by O(α/m) degrees
such that squares still do not intersect. Consequently, there is a positioning of
squares in the augmented bin in which the position (translation) and rotation
of each square can be presented with O(log(m/α)) bit-precision. See details in
the proof of Corollary 26 of [17]. 	

Cutting Stock with Rotation 539

Fig. 6. (a) A set of 14 square-items that are tightly packed into a unit square. The
numbers (i, j) for a square indicate its respective indices in πx and πy. (b) The packing
of squares into an augmented bin of size 1 + α, where items are separated from each
other by at least α/14. A square with indices (i, j) is shifted by (iα

16
, jα
16

).

Lemma 4 enables us to use an exhaustive approach for packing large items,
provided that there is a constant number of item sizes.

Lemma 5. Assume a multi-set S of n squares can be optimally packed into
Opt(S) unit bins. Assume all items in S have size at least δ > 0, and there are
only K possible sizes for them, where δ and K are both constants independent of
n. There is an algorithm that packs S into Opt(S) augmented bins of size 1 + α
in time O(polylog(n)), where α > 0 is an arbitrary constant parameter.

Proof. Since all items are of side-length at least δ, the number of items that fit
in a bin is bounded by m = �1/δ2�. Consider multi-sets of items described by
vectors of form (x1, x2, . . . , xK), where 1 ≤ xi ≤ m denotes the number of items
of type (size) i in the multi-set. We say a vector is valid if the multi-set that it
represents can be packed into a unit bin. According to Lemma 4, if a vector V is
valid, the multi-set of squares associated with it can be packed into an augmented
bin of size 1 + α in a way that the exact translation and rotation of each square
can be encoded in O(log(m/α)) bits. Since there are up to m squares in the bin
and each has one of the K possible sizes, at most C = O(m((log K)+log(m/α)))
bits is sufficient to encode how a multi-set associated with a valid vector should
be packed into an augmented bin. Since K, α, and δ (and hence m) are constant
values, C is also a constant. So, if we check all 2C possible codes of length C,
we can retrieve all valid vectors and their packing into augmented bins in a
(huge) constant time. In summary, we can create a set {T1, . . . , TQ}, where each
Ti is associated with a unique, valid vector together with its translation and
rotation and is referred to as a bin type. Here, Q is the number of bin types and
is a constant (since Q ≤ 2C). From the discussion above, each bin type has an
explicit description of how a multi-set of items is placed into an augmented bin
of size 1 + α.

The remainder of the proof is identical to a similar proof from [5]. Let Tij

denote the number of squares of type j in a bin type Ti, and let nj denote the

540 S. Kamali and P. Nikbakht

number of squares of type j in the input. Furthermore, let yi denote the number
of bins of type Ti in a potential solution. The following integer programs indicate
the values of yi’s in an optimal solution:

min

Q∑

i=1

yi, s.t.

Q∑

i=1

Tijyi ≥ nj for j = 1, . . . ,K,

yi ≥ 0; yi ∈ Z for i = 1, . . . , Q,

This integer program has size O(log n) and a constant number of variables
(recall that Q is a constant). So, we can use Lenstra’s algorithm [25] to find its
optimal solution in O(polylog(n)). Such a solution indicates how many bins of
each given type should be opened, and as mentioned earlier, each bin type has
an explicit description of placements of items into an augmented bin. 	

Provided with Lemma 5, we can use the standard approach of de la Vega
and Lueker [32] to achieve an APTAS for large items.

Lemma 6. Assume a multi-set S of n squares, all of the size at least δ > 0,
where δ is a constant independent of n, can be optimally packed in Opt(S) unit
bins. For any constant parameters α, ξ > 0, it is possible to pack S into at most
(1 + ξ)Opt(S) + 1 augmented bins of size 1 + α in time O(polylog(n)).

Proof. We use the same notation as in [5]. Consider an arrangement of squares
in S in non-increasing order of sizes. We partition S into K = �l/(ξδ2)� groups,
each containing at most g = �n/K� squares. Let J be a multi-set formed from
S by rounding up the size of each square s ∈ S to the largest member of the
group that it belongs to. Let J ′ be a multi-set defined similarly except that each
square is rounded down to the smallest member of its group.

In order to pack S, we use the described algorithm in Lemma 5 to pack J
into Opt(J) augmented bins of size 1 + α, where Opt(J) is the optimal number
of unit bins that J can be packed to. Note that there are K different item sizes
in J , and all have a size larger than δ, which means we can use Lemma 5 to pack
J . Since squares in S are rounded up to form J , the same packing can be used
to pack S. Note that it takes O(polylog(n)) to achieve this packing.

To analyze the packing, let Opt(J ′) be the optimal number of unit bins that
J ′ can be packed to. We note that Opt(J ′) ≤ Opt(S) ≤ Opt(J). This is because
items of S are rounded down in J ′ and rounded up in J . Let x denote the
size of squares in group g of J ′, and y denote the sizes in group g + 1 of J .
Since y appears after x in the non-increasing ordering of squares in S, we can
assert any square in group g of J ′ has a size no smaller than a square in group
g + 1 of J . So, if we exclude the first group, any square in J can be mapped
to a square of the same or larger size in J ′. Because S is formed by n squares,
each of area larger than δ2, we have nδ2 < Opt(S). As a result, since there are
q = �n/K� ≤ �nξδ2� < �ξOpt(S)� squares in the first group, we can conclude
Opt(J) ≤ Opt(J ′) + q ≤ Opt(S) + q ≤ �(1 + ξ)Opt(S)� ≤ (1 + ξ)Opt(S) + 1. 	

Cutting Stock with Rotation 541

3.3 Packing Arbitrary Input

We use the results presented in Sects. 3.1, 3.2 to describe an algorithm for packing
arbitrary inputs. We start with the following lemma:

Lemma 7. Assume a multi-set of m squares is packed into a bin. The unused
area in the bin can be partitioned into at most 5m trapezoids.

Proof. Create an arbitrary labelling of squares as s1, s2, . . . , sm. Let t, b, l and
r respectively denote the topmost, bottom-most, leftmost, and rightmost points
of a square si (break ties arbitrarily). Draw the following five horizontal line
segments for si: 1,2) two line segments starting at l and b and extending towards
the left until they touch another square or the left side of the bin. 3,4) two
line segments starting at r and b and extending towards the right until they
touch another square or the right side of the bin. 5) a line segment that passes
through t and extends towards the left and right until it touches other squares
or boundaries of the bin (see Fig. 7).

We label the line segments of si with the label i. When we draw the line
segments for all squares, the unused area in the bin will be partitioned into
trapezoids. We label each trapezoid in the partition with the label of its lower
base. So, for each square si, there will be at most five trapezoids with the label
i. Consequently, the number of trapezoids will not exceed 5m, which completes
the proof. 	

In the above proof, we treated the topmost point t and bottom-most point
b of squares differently. This is because the line passing b can be the lower base
of two trapezoids on the two sides of the square, while the line passing t can be
the lower base of one trapezoid on top of the square.

Item classification. Assume we are given an arbitrary input σ and small,
constant parameters α, ε > 0. Recall that ξ = ε/1081. Let r = �1/ξ�, and define
the following r + 1 classes for items smaller than ξ. Class 1 contains items with
sizes in [ξ3, ξ), class 2 contains items in [ξ7, ξ

3), and generally class i (1 ≤ i ≤ r+1)
contains items in [ξ2

i+1−1, ξ
2i−1). Since there are r + 1 classes, the total area of

squares in at least one class, say class j, is upper bounded by area(σ)/(r + 1) ≤
ξ · area(σ), where area(σ) is the total area of squares in σ. We partition squares

Fig. 7. The unused area in any bin with m items can be partitioned into at most 5m
trapezoids. The five trapezoids associated with square s1 are numbered.

542 S. Kamali and P. Nikbakht

in the input σ into large, medium, and small items as follows. Medium items are
the members of class j, that is, items with size in [ξ2

j+1−1, ξ
2j−1). Large items

are items of size at least ξ
2j−1, and small items are items of size less than ξ

2j+1−1.

Packing algorithm: We are now ready to explain how to pack items in σ.
Medium items are placed separately from other items into unit bins. For that,
we apply the Nfdh algorithm of [24] to place medium items into medium bins
without rotation. We use mm to denote the number of resulting medium bins.
We apply Lemma 6 to pack the multi-set L of large items into augmented bins of
size 1+ α. We refer to these bins as large bins and use ml to denote the number
of large bins. It remains to pack small items. We use Lemma 7 to partition the
empty area of any large bins into a set of trapezoids. We pack small items into
these trapezoids. For that, we consider an arbitrary ordering of trapezoids and
use the Nfdh strategy (as described in Sect. 3.1) to place items into the first
trapezoid (after partitioning it into four right-angled triangles). If an item does
not fit, we close the trapezoids and consider the next one. The closed trapezoids
are not referred to again. This process continues until either all small items are
placed into trapezoids or all trapezoids of all large bins are closed. In the latter
case, the remaining small items are placed using the Nfdh strategy of [24] into
new bins that we call small bins.

Analysis. When we apply Nfdh to place square-items of size at most ξ into
square-bins (without rotation), the wasted area in each bin is at most 2ξ [24].
Since all medium items have size at most ξ

3 < ξ (for ξ < 1), the wasted area
in each medium bin will be at most 2ξ. On the other hand, the total area of
medium items is at most ξ · area(σ). So, the total number mm of medium bins
is at most ξ·area(σ)

1−2ξ + 1, which is at most ξ · area(σ) + 1 for ξ < 1/4. Note that
area(σ) is a lower bound for the optimal number of unit bins for packing σ. So,
mm ≤ ξOpt(σ) + 1. We consider two cases for the remainder of the analysis.

– Case I: Assume the algorithm does not open a small bin. By Lemma 6, the
number of large bins ml is no more than (1+ ξ)Opt(L)+1. Clearly, Opt(L) ≤
Opt(σ) and we can write ml ≤ (1 + ξ)Opt(σ) + 1. For the total number of
bins in the packing, we can write mm + ml ≤ (1 + 2ξ)Opt(σ) + 2.

– Case II: Assume the algorithm opens at least one small bin. We show that
the area of all bins (except possibly the last small bin) is almost entirely
used. Large items are of size at least ξ

2j−1 and area at least ξ
2j+1−2. So, the

number of large items in each large bin is at most 1

ξ2j+1−2 . By Lemma 7,

the number of trapezoids in each bin is at most 5

ξ2j+1−2 . Given that bins
are augmented (with a size of 1 + α), any trapezoid has side-length at most√

2(1 + α)2 < 2(1+α). Since we pack small items of size at most δ = ξ
2j+1−1

inside these trapezoids, by Lemma 3, the wasted area in each trapezoid is less
than 54ξ

2j+1−1 × 2(1 + α). Summing up over all trapezoids, the wasted area
in each large bin is at most 5

ξ2j+1−2 × ξ
2j+1−1 · 108(1 + α) = 540ξ(1 + α).

So, any large bin includes squares of total area at least (1+α)2−540ξ(1+α) >
1−540ξ, assuming ξ < 1/270. Moreover, since packed by Nfdh, all small bins

Cutting Stock with Rotation 543

(except potentially the last one), have a filled area of at least 1−2ξ > 1−540ξ.
In summary, with the exception of one bin, any large or small bin includes
items of total area at least 1 − 540ξ. As such, for ξ < 1/1080, we can write
ml + ms ≤ �area(σ)/(1 − 540ξ)� + 1 ≤ area(σ)(1 + 540ξ/(1 − 540ξ)) + 2 ≤
(1 + 1080ξ) · area(σ) + 2 ≤ (1 + 1080ξ) · Opt(σ) + 2. Adding the number of
medium bins, the total number of bins will be at most (1+1081ξ) ·Opt(σ)+3.

Recall that we have ξ = ε/1081. So, given any ε < 1, the number of bins
in the resulting packing will be at (1 + ε) · Opt(σ) + 3. Our algorithm’s time
complexity is dominated by the sorting process used for classifying items and
packing small items. As such, the algorithm runs in O(n log n). We can conclude
the following:

Theorem 2. Assume a multi-set σ of n squares can be optimally packed in
Opt(S) unit bins. There is a polynomial-time algorithm that, for any constant
α > 0 and ε ∈ (0, 1), packs S into at most (1 + ε)Opt(σ) + 3 augmented bins of
size 1 + α.

References

1. Abrahamsen, M., Miltzow, T., Seiferth, N.: Framework for existsr-completeness of
two-dimensional packing problems. CoRR 2004.07558 (2020)

2. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459–473
(1999)

3. Albers, S., Hellwig, M.: Online makespan minimization with parallel schedules.
Algorithmica 78(2), 492–520 (2017)

4. Allen, S.R., Iacono, J.: Packing identical simple polygons is NP-hard. CoRR
abs/1209.5307 (2012)

5. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple
dimensions: inapproximability results and approximation schemes. Math. Oper.
Res. 31(1), 31–49 (2006)

6. Boyar, J., Epstein, L., Levin, A.: Tight results for Next Fit and Worst Fit with
resource augmentation. Theor. Comput. Sci. 411(26–28), 2572–2580 (2010)

7. Chou, A.: NP-hard triangle packing problems. manuscript (2016)
8. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online

algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–
79 (2017)

9. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: A survey. In: Hochbaum, D. (ed.) Approximation algorithms for NP-hard
Problems. PWS Publishing Co. (1997)

10. Coffman Jr., E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin pack-
ing approximation algorithms: survey and classification. In: Pardalos, P.M., Du,
D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531.
Springer, New York (2013)

11. Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is hard.
CoRR abs/1008.1224 (2010)

12. Epstein, L.: Two-dimensional online bin packing with rotation. Theor. Comput.
Sci. 411(31–33), 2899–2911 (2010)

544 S. Kamali and P. Nikbakht

13. Epstein, L., Ganot, A.: Optimal on-line algorithms to minimize makespan on
two machines with resource augmentation. Theory Comput. Syst. 42(4), 431–449
(2008)

14. Epstein, L., Levin, A.: Robust approximation schemes for cube packing. SIAM J.
Optim. 23(2), 1310–1343 (2013)

15. Epstein, L., van Stee, R.: Online bin packing with resource augmentation. Discret.
Optim. 4(3–4), 322–333 (2007)

16. Erdős, P., Graham, R.L.: On packing squares with equal squares. J. Combin. The-
ory Ser. A 19, 119–123 (1975)

17. Erickson, J., van der Hoog, I., Miltzow, T.: A framework for robust realistic geo-
metric computations. CoRR abs/1912.02278 (2019)

18. Fleischer, R., Wahl, M.: Online scheduling revisited. In: Paterson, M.S. (ed.) ESA
2000. LNCS, vol. 1879, pp. 202–210. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45253-2 19

19. Friedman, E.: Packing unit squares in squares: a survey and new results. Elec. J.
Comb. 1000, DS7-Aug (2009)

20. Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing problems -
a survey. In: Ausiello, G., Lucertini, M. (eds.) Analysis and Design of Algorithms
in Combinatorial Optimization, pp. 147–172. Springer, New York (1981)

21. Gensane, T., Ryckelynck, P.: Improved dense packings of congruent squares in a
square. Discret. Comput. Geom. 34(1), 97–109 (2005)

22. Göbel, F.: Geometrical packing and covering problems. Math Centrum Tracts 106,
179–199 (1979)

23. Hoberg, R., Rothvoss, T.: A logarithmic additive integrality gap for bin packing.
In: Proceedings the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 2616–2625. SIAM (2017)

24. Coffman Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM J. Comput. 9(4), 808–
826 (1980)

25. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983)

26. Kowalski, D.R., Wong, P.W.H., Zavou, E.: Fault tolerant scheduling of tasks of
two sizes under resource augmentation. J. Sched. 20(6), 695–711 (2017). https://
doi.org/10.1007/s10951-017-0541-1

27. Leung, J.Y., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing squares
into a square. J. Parallel Distrib. Comput. 10(3), 271–275 (1990)

28. Sleator, D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28, 202–208 (1985)

29. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32, 652–686
(1985)

30. Spielman, D.A., Teng, S.: Smoothed analysis of algorithms: why the simplex algo-
rithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

31. Stromquist, W.: Packing 10 or 11 unit squares in a square. Elec. J. Comb. 10, R8
(2003)

32. de la Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1+ε in linear
time. Combinatorica 1(4), 349–355 (1981)

https://doi.org/10.1007/3-540-45253-2_19
https://doi.org/10.1007/3-540-45253-2_19
https://doi.org/10.1007/s10951-017-0541-1
https://doi.org/10.1007/s10951-017-0541-1

Miscellaneous

Remotely Useful Greedy Algorithms

Moritz Beck(B)

University of Konstanz, Konstanz, Germany
beck@inf.uni-konstanz.de

Abstract. We study a class of parameterized max-min problems, called
Remote-P: Given a minimization graph problem P, find k vertices such
that the optimum value of P is the highest amongst all k-node subsets.
One simple example for Remote-P is computing the graph diameter
where P is the shortest path problem and k = 2. In this paper we focus
on variants of the minimum spanning tree problem for P. In previous
literature P had to be defined on complete graphs. For many practically
relevant problems it is natural to define P on sparse graphs, such as street
networks. However, for large networks first computing the complete ver-
sion of the network is impractical. Therefore, we describe greedy algo-
rithms for Remote-P that perform well while computing only a small
amount of shortest paths. On the theoretical side we proof a constant fac-
tor approximation. Furthermore, we implement and test the algorithms
on a variety of graphs. We observe that the resulting running times are
practical and that the quality is partially even better than the theoretical
approximation guarantee, as shown via instance-based upper bounds.

Keywords: Graph optimization problem · Diversity maximization ·
Greedy algorithm

1 Introduction

Let P be a minimization problem on a weighted graph with an objective function
which assigns every vertex subset a solution cost. Additionaly, let k ∈ N be a
parameter that specifies the size of the vertex subset. Then the corresponding
Remote-P problem is to identify the set of k vertices that is assigned the largest
objective function value.

This class of problems, also called diversity maximization or dispersion prob-
lems, are fundamental problems in location theory [14]. Alongside theoreti-
cal interest there are also many practical applications that can be phrased as
Remote problems.

Application 1 (Facility Dispersion). The problem of dispersing facilities is to
choose locations such that the pairwise distance is maximized. Here k is the
number of facilities and P is to determine the smallest distance between two
facilities. Then the Remote-P problem seeks to choose k vertices such that the
minimum distance between any of those is maximized. This problem is known
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 547–561, 2020.
https://doi.org/10.1007/978-3-030-64843-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_37&domain=pdf
http://orcid.org/0000-0002-2972-8287
https://doi.org/10.1007/978-3-030-64843-5_37

548 M. Beck

under several names and many variations have been studied for example for
avoiding competition (sites of a restaurant chain, interference of radio transmit-
ters) [11], locating undesirable facilities (e.g. power plants) [4], and protecting
strategic facilities from simultaneous attacks (missile silos, ammunition dumps)
[4,14].

Application 2 (Vehicle Routing). In a vehicle routing problem [3] every vehicle
serves k customers at a specified drop-off zone. Here P is the problem of finding
a minimum weight cycle that starts and ends at the depot and visits the k
customers. Then Remote-P consists of finding customer locations within that
zone such that the minimum delivery time is maximized. This is useful for getting
location-independent upper bounds on the delivery time which for example can
be used in dynamic programming and branch-and-bound approaches [5,12].

Application 3 (Local Search). One of the most popular heuristics for many NP-
hard optimization problems (e.g. TSP or VRP) is local search. Thereby, the
quality depends crucially on a good initial solution. As observed in [7], exact
or approximate Remote-MST and Remote-TSP provide high-quality starting
solutions.

The scope of this paper is to analyze variants of the minimum spanning tree
problem for P. Previous approaches for these Remote-P problems are only
applicable if P is defined on complete graphs. Many application scenarios nat-
urally occur on street networks, though. As computing the complete version of
the graphs is impractical for large street networks, we seek for algorithms that
provide satisfying results without precomputing all pairwise distances.

1.1 Related Work

The focus of previous work has been on studying Remote problems on metric
spaces or complete, metric graphs. All these Remote problems are NP-hard
[2]. For most of them APX-hardness has also been shown. An overview of the
hardness results is given in Table 1. On the positive side there are approxima-
tion algorithms for most of these problems on metric graphs. The respective
approximation factors are summarized in Table 1 as well. On non-metric graphs,
though, it is not possible to approximate Remote-MST to a constant factor
(unless P = NP) [7].

Many of the approximation algorithms on metric graphs are greedy algo-
rithms which incrementally construct a solution vertex set by repeatedly choos-
ing the next best vertex. In [1] a local search algorithm was proposed that
exchanges one vertex as long as the objective value is rising. Ravi et al. [15] devel-
oped an approximation algorithm for Remote-clique in 2-dimensional euclidian
space, based on an exact dynamic programming approach for the 1D case.

We will focus on designing and analyzing greedy algorithms.

Remotely Useful Greedy Algorithms 549

Table 1. Lower and upper bound on the approximability of various Remote problems.
MM means maximum matching.

Problem Objective l.b u.b APX-algorithm

Remote-MST w(mst(P)) 2 [7] 4 [7] greedy

Remote-TSP w(tsp(P)) 2 [7] 3 [7] greedy

Remote-ST w(st(P)) 4/3 [7] 3 [7] greedy

Remote-edge minv,u∈P d(u, v) 2 [15] 2 [15] greedy

Remote-clique
∑

v,u∈P d(u, v) – 2 [9] greedy-MM

Remote-star minv∈P

∑
u∈P d(u, v) – 2 [2] MM

Remote-pseudoforest
∑

v∈P minu∈P d(u, v) 2 [7] O(log n) [2] greedy+

1.2 Contribution

We consider Remote-P problems on non-complete graphs. We introduce new
objective functions for P that are variations of the minimum spanning tree prob-
lem. Given a set of k vertices, these functions assume a value between the weight
of the MST on the complete graph and the weight of the minimum Steiner tree on
the given k nodes. These objective functions represent different levels of abstrac-
tion of the costs that occur in the application scenario. We show that a greedy
algorithm provides a 6-approximation for all these Remote problems while only
computing k shortest path trees. This algorithm is significantly faster than any
algorithm that first has to construct the complete graph via n shortest path tree
computations, where n is the number of vertices in the graph. Furthermore, we
provide an algorithm that computes instance-based upper bounds to judge the
practicality of the Remote greedy algorithms. We evaluate our algorithms on
a rich set of benchmark graphs and observe that they provide practically useful
results. In particular for graphs extracted from OpenStreetMap we get results
that are at most a factor of 3 away from the optimum.

2 Formal Problem Statement

We are given a weighted graph G(V,E) with n vertices and m edges as well
as edge costs w : E → R

+. We assume that the given graph G is connected.
The distance d(v, w) between two nodes in the graph is defined as their shortest
path cost in G. We are additionally given a minimization graph problem P with
an objective function fP : 2V → R

+ which assigns every vertex subset W ⊆ V
the respective minimum solution cost. Thereby, the solution cost typically is the
sum of shortest path distances in the graph (e.g. induced by a path, a round
tour, or a tree). The corresponding Remote-P problem seeks to find for a given
parameter k ∈ {1, . . . , n} the set W ∗ = arg maxW⊆V,|W |=k fP(W). Additionally
we are interested in the maximum value fP(W ∗).

Let GM be the complete, metric version of G, i.e. the graph (V,
(
V
2

)
) with

weights w(evw) = d(v, w) for every pair of vertices v, w. We look at the following
problems P given a weighted graph G and a set of vertices W .

550 M. Beck

– MST: Find the minimum spanning tree (MST) of the induced subgraph
GM[W].

– UMST: Let S be the set of shortest path edges between vertices in W , where
the shortest paths correspond to the MST edges in GM[W]. This includes
edges in G that are part of multiple shortest paths only once. We call this
problem UMST (unique edges MST).

– MSPS: Let S be the set of shortest paths between vertices in W , where the
shortest paths are sets of edges. Find a subset S′ ⊆ S such that

⋃
S′ is a

graph connecting the vertices in W and where
∑

e∈⋃
S w(e) is minimized. We

call this problem MSPS (minimum shortest path spanning tree).
– ST: Find the subset of edges with the lowest weight that connects all the

points in W . This is the well known Steiner tree (ST) problem.

These objective functions are illustrated in Fig. 1. These problems can be con-
sidered as a tradeoff between abstraction level of the solution and complexity:
While considering the MST problems makes sense in complete graphs it might
not be fitting for the application to sum up the cost of “virtual” edges. Instead
the real cost might more resemble the sum of weights of the connecting edges in
the underlying, non-complete graph. This gives rise to the problem UMST. Now,
considering the costs of unions of shortest paths, we might ask not for the ones
that, in a sense, form a minimum spanning tree, but the shortest paths minimiz-
ing the overall weight in G (instead of GM). This is the MSPS problem. In the
extreme one might only care about connecting the chosen vertices as cheaply as
possible, leading to the classic ST problem. The first two problems are solvable
in polynomial time while the latter two are NP-complete.

10

12
11

Sum: 21

1

10

3

9

6

Sum: 20

1

10

3

9

6

Sum: 19

1

3

4
3

7

Sum: 18

Fig. 1. The four objectives considered in this paper. From left to right: MST, UMST,
MSPS, ST. The square vertices are the ones in W . Note that in this graph the function
values are different for each of the objectives.

We can derive Remote problems from these, e.g. Remote-ST, where we
want to find k vertices maximizing the weight of the Steiner tree on them. We
consider these problems under theoretical and practical aspects.

Remotely Useful Greedy Algorithms 551

3 Hardness and Cost Hierarchy

We first take a look at the complexity of the problems P themselves. As men-
tioned already, Remote problems are hard for non-fixed k. But when one wants
to compute the actual value fP(W) of a set of solution vertices W , it is also
important to consider the complexity for evaluating P.

Lemma 1. MST and UMST can be computed efficiently.

Proof. Determine the shortest paths between vertices in W and use their costs
to compute the MST of GM[W]. For UMST count edges of G that are part of
multiple shortest paths in this MST only once.

Lemma 2. MSPS and ST are NP-hard.

Proof. By Reduction from Exact Cover by Three Sets. The proof works the
same as the proof of NP-hardness of Steiner Tree presented in [16] as all paths
of interest are shortest paths.

Next we describe the relations of the values of the different objective func-
tions. Note that a cost hierarchy on the objectives P implies a cost hierarchy on
the respective Remote problems (consider the set W ∗ maximizing an objective
lower in the hierarchy).

Lemma 3. For any graph G = (V,E) and set W ⊆ V of vertices we have

fMST(W) ≥ fUMST(W) ≥ fMSPS(W) ≥ fST(W).

Proof. – fMST(W) ≥ fUMST(W): fMST(W) sums up the weight of the edges
of an MST of GM[W], which is the sum over all path of the summed edge
weight of these paths. fMST(W) has the same value but with the weight of
every edges of G only added at most once, even if the edge is part of several
shortest paths.

– fUMST(W) ≥ fMSPS(W): Both sum up the weight of shortest paths with
duplicated edges only counted once, but while fUMST(W) chooses the short-
est paths that make up the MST on GM[W], fMSPS(W) chooses the paths
minimizing the value of the sum.

– fMSPS(W) ≥ fST(W): Both fMSPS(W) and fST(W) are the sum of edges
such that the vertices in W are connected. The minimum Steiner tree, by
definition, has the smallest weight sum satisfying this condition.

There are cases when the inequalities are strict, as can be seen in the example
graph in Fig. 1. We follow with two further oberservations about these objective
functions:

Observation 1. If k = n, i.e. W = V , then these four functions have the same
value, namely the sum of all weights in the graph.

Observation 2. The values of the objective functions for UMST, MSPS and
ST coincide in trees because there is only one way to connect a set of chosen
vertices.

552 M. Beck

Algorithm 1: greedy anticover(Vertex v0, int k)
1 W ← {v0};
2 for i = 1 to k do
3 vi+1 ← furthest node from W ;
4 W ← W ∪ {vi+1};

5 return W ;

4 Greedy Algorithms and Approximation Guarantees

In this section we present greedy algorithms for Remote problems on non-
complete graphs and show properties of them, in particular that one of them is
a 6-approximation algorithm for Remote-P with P one of the above.

4.1 Algorithms

For k = 2 all of the mentioned Remote problems become the graph diameter
problem. Finding the diameter of a graph takes prohibitively long on large graphs
as the best known algorithm takes cubic time. A natural heuristic is to find the
furthest vertex v from an arbitrary vertex u and return them, or to find the
furthest vertex w from v afterwards and returning v and w. We can generalize
this approach to higher values of k.

First, we define the notion of an anticover. This concept is later used to prove
the approximation bound.

Definition 1 (Anticover). An anticover of a graph G = (V,E) is a set of
nodes C such that there is a value r ∈ R with all vertices in C having pairwise
distance at least r and all vertices v ∈ V \C are within distance r from a vertex
in C.

We consider the following two greedy algorithms (Algorithm1+2) that aim
at finding a subset W ⊆ V with size k where the objective values fP(W) are as
high as possible for P ∈ {MST,UMST,MSPS,ST}. Algorithm 1 is widely used
to get approximations to Remote problems, marked as “greedy” in Table 1.
Algorithm 1 computes an anticover (with r being the distance to the last inserted
node).

The algorithms are illustraded in Fig. 2. Obviously they both do k shortest
path tree computations. Both are adaptions of the greedy algorithm of previous
literature, which is only defined on complete graphs, to non-complete graphs.
While Algorithm 1 computes an anticover, Algorithm 2 does not but on trees
it gives the optimum answer. An extremal vertex is any vertex that can be
found by computing the furthest vertex from some starting vertex. In trees there
are exactly two extremal vertices, namely the ones defining the diameter [10]
(assuming the diameter is unique).

Remotely Useful Greedy Algorithms 553

Algorithm 2: spread points(Vertex v0, int k)
1 W ← {v0};
2 P ← {v0};
3 for i = 1 to k do
4 vi+1 ← furthest node from P ;
5 W ← W ∪ {vi+1};

// shortest path(·, ·) contains the nodes

6 P ← P ∪ shortest path(P, vi+1);

7 return W ;

greedy anticover spread points

Fig. 2. The greedy algorithms for selecting a set of vertices. While Algorithm 1 select
vertices that are far from the already selected vertices, Algorithm 2 selects vertices that
are far from every vertex on the connecting shortest paths.

Theorem 1. Algorithm2 (spread points) computes Remote-ST exactly on
trees when starting on an extremal vertex.

Proof. Sketch: We use induction over the number of already chosen vertices,
when choosing a total of k vertices. By an exchange argument we show that
(i) the diameter is part of any optimum solution, and (ii) the algorithm always
extends the set of chosen vertices such that there still is an optimum solution of
k vertices containing them.

Because, as remarked above in Observation 2, the value of the optimum solution
on a tree is the same for Remote-ST, Remote-UMST and Remote-MSPS,
this also works for the latter two problems.

For Remote-MST, however, neither Algorithm2 nor Algorithm 1 computes
the exact optimum set of vertices on a tree. The optimum set also doesn’t even
have to be only leaf vertices when k is smaller than the number of leaves, in
contrast to the other Remote problems. For examples see Fig. 3.

In the following we look how well those greedy algorithms perform from a
theoretical as well as from a practical perspective.

554 M. Beck

1

54

5

5

40

5

1030

60

30

3 2

5

5

Fig. 3. Counterexamples for strategies for MST on trees. From left to right: Algo-
rithms 1 and 2, Choose leaves first. The square vertices are the selected vertices. The
vertices belonging to the optimum solution are marked in blue. (Color figure online)

4.2 Approximation Guarantee

Halldórsson et al. [7] have proven that an anticover is a 4-approximation for
Remote-MST and a 3-approximation for Remote-ST on complete, metric
graphs.

These bounds also hold for anticovers on non-complete graphs because when
considering distances we don’t take edges but shortest paths. On complete graphs
only these two extreme cases (MST and ST) exist but not the intermediate
problems UMST and MSPS. We show that an anticover is an approximation for
their Remote problems, too.

Theorem 2. Let P be a problem whose objective value is between fST(W) and
fMST(W) for all subsets W ⊆ V . Then an anticover is a 6-APX for Remote-P
on metric graphs.

Proof. The proof is similar to the one in [7]. We keep in mind that distance are
not defined by direct edges but by shortest paths between vertices.

Let G = (V,E) be a graph. Let W be an anticover of G with radius r and Q
be an arbitrary set of vertices, both of size k. The Steiner ratio of a graph is the
maximum ratio of the weights of FMST(W) and fST(W) over all subsets W ⊂ V
and we know that the following holds [6]:

fMST(W)
fST(W)

≤ 2
k − 1
k

(1)

As every vertex in Q has distance at most r from a vertex of W , we have

fST(Q) ≤ fST(W ∪ Q) ≤ fST(W) + kr ≤ fP(W) + kr. (2)

Every edge of the MST of GM(W) has length at least r.

fMST(W) ≥ (k − 1)r (3)

Remotely Useful Greedy Algorithms 555

Now we can use these to prove the theorem.

fP(Q)
fP(W)

≤ fMST(Q)
fP(W)

(1)

≤ 2
k − 1
k

fST(Q)
fP(W)

(2)

≤ 2
k − 1
k

fP(W) + kr

fP(W)

= 2
k − 1
k

(
1 +

kr

fP(W)

)
≤ 2

k − 1
k

(
1 +

kr

fST(W)

)

(1)

≤ 2
k − 1
k

(
1 + 2

k − 1
k

kr

fMST(W)

)
(3)

≤ 2
k − 1
k

(
1 + 2

k − 1
k

kr

(k − 1)r

)

= 2
k − 1
k

(1 + 2) = 6 − 6
k

	

Corollary 1. Algorithm1 provides a 6-approximation algorithm for Remote-
UMST and Remote-MSPS.

Algorithm 2 does not provide an approximation guarantee but we still can
measure the quality of both algorithms via instance-based upper bounds.

5 Instance-Based Upper Bounds

We want to look at instance-based upper bounds of the costs. These can be
used as a baseline for the output cost of the greedy algorithms to be compaired
against. Our upper bounds algorithm is based on ideas that are used by Magnien
et al. [13] to compute upper bounds on the diameter of a graph. They use the
upper bounds (along with lower bounds) to estimate the diameter fast. It is still
an open problem if there is a faster way than to compute all pairwise shortest
path distances which is slow on large graphs.

They combined the following two observations about the diameter of a graph:

1. The diameter of a spanning tree is not smaller than the diameter of the base
graph.

2. The diameter of a tree can be computed efficiently. [8]

The first point holds because for every edge e ∈ E we have diam(G − e) ≥
diam(G) (as long as G− e is still connected). So we can compute instance-based
upper bounds on the diameter of a graph by computing any spanning tree (e.g.
the shortest path tree of a single node) and then the its exact diameter.

Because both points also hold for Remote-ST we can use the same principle
to calculate an upper bound on its optimum solution value.

Lemma 4. The optimum solution value of an Remote-ST instance on a graph
G is less than or equal to the optimal solution value of the Remote-ST instance
on any spanning tree of G.

Proof. The proof idea is that removing an edge of the graph cannot make the
maximum minimum Steiner tree lighter.

556 M. Beck

After taking a spanning tree of the graph, we apply Theorem1 to compute an
upper bound. So we can efficiently compute an upper bound on Remote-ST as
follows:

1. Compute an arbitrary spanning tree T of G.
2. Choose k terminals by running Algorithm2 (starting from an extremal vertex)

on T .
3. Compute the weight of the minimum Steiner tree of T on these k terminals.

We double this value to get an upper bound for Remote-MST (and thus for
Remote-UMST and Remote-MSPS).

Lemma 5. Let u be an upper bound for the optimum value of an Remote-ST
instance with graph G and parameter k. Then 2 · u is an upper bound for the
optimum value of the Remote-MST instance with the same parameter and on
the same graph.

Proof. The Steiner ratio on metric graphs is 2. This means that for any metric
graph and any set W ⊆ V we have 2 · fST (W) ≥ fMST . Let W ∗ ∈ V be a k-
subset maximizing the value of fST and W ′ be a k-subset maximizing the value
of fMST . Then the following holds:

2u ≥ 2 · fST (W ∗) ≥ 2 · fST (W ′) ≥ fMST (W ′)

6 Experiments

To evaluate the algorithms we have given we have implemented the algorithms
in Rust, compiling with rustc 1.45.0, and tested them on a rich set of benchmark
graphs. Experiments were conducted on a single core of an AMD Ryzen 7 3700X
CPU (clocked at 2.2 GHz) with 128 GB main memory.

The evaluation has been run with combinations of the following parameters:

– Number of selected vertices k ∈ {3, 10, 31, 100, 316, 1000}
– Minimizing Problem P: MST, UMST
– Selecting algorithm: Random, Algorithms 1 and 2

We computed sets of vertices W and the respective objective value fP(W) ten
times for all combinations of the above parameters on all graphs described in the
next section (except only one for the largest street network). We first describe
the graphs we used for testing and then look at the results.

6.1 Benchmark Graphs

We test the algorithms on the following set of graphs:

– Graphs derived from the national TSP data
– Street network graph from OSM data
– Generated grid graphs

Remotely Useful Greedy Algorithms 557

National TSP Graphs. These graphs are derived from Euclidian point sets1.
These provide, for several countries, location coordinates of cities within that
country. We produced graphs out of them in the following way: Each city is one
vertex. Let r ∈ N be a radius. We insert an edge between two cities, with the
edge weight being their Euclidian distance rounded to the nearest whole number,
if the edge weight is at most r. If r is too small to connect all cities, i.e. there
is a city with minimum distance to other cities larger than r, then we pick an
arbitrary vertex of each connected component and add the edges of a MST on
these respresentatives. As r grows, this adds direct connections between cities
and produces more complete graphs. The radii we picked can be seen in Table 2
and contain 0, ∞ (a value larger than the diameter), the smallest radius that
connects the graph, and for Qatar and Oman half the diameter.

Table 2. TSP graphs: Number of cities, radius r, number of edges m

Djibuti (38 cities)

r 0 50 100 200 437 500 ∞
m 74 80 82 132 360 430 1406

Qatar (194 cities)

r 0 50 100 329 729 ∞
m 386 1140 2490 12258 30394 37442

Oman (1979 cities)

r 0 50 100 500 1037 5082 ∞
m 3956 14842 38758 412344 1065338 3142058 3914462

Ireland (8246 cities)

r 0 50 100 201 500

m 16490 60550 222800 803304 4036244

Street Network Graphs. We tested on three street networks obtained from Open-
StreetMap (OSM) data2. These cover the German national state of Baden-
Württemberg, Germany and Europe. We’ve also taken three street graphs from
the 9th DIMACS implementation challenge3 covering New York City, Califor-
nia and mainland USA, respectively. A overview of the graphs can be seen in
Table 3. The OSM graphs have a higher percentage of degree 2 nodes.

Generated Grid Graphs. We used three sets of grid graphs. They were generated
as follows: Given an integer k we place vertices on a regular k×k-grid and connect
horizontally or vertically adjacent vertices with edges. We choose random edge

1 http://www.math.uwaterloo.ca/tsp/world/countries.html.
2 https://i11www.iti.kit.edu/resources/roadgraphs.php.
3 http://www.dis.uniroma1.it/∼challenge9.

http://www.math.uwaterloo.ca/tsp/world/countries.html
https://i11www.iti.kit.edu/resources/roadgraphs.php
http://www.dis.uniroma1.it/~challenge9

558 M. Beck

Fig. 4. Example Plot Cutout: UMST with k = 50 nodes

Table 3. Benchmark graphs: Street networks and grid graphs. There are 3 instance of
each grid graph size.

Graph #vertices #edges

Grid 100 × 100 ≈ 9300 17820

Grid 316 × 316 ≈ 91000 179172

Grid 1000 × 1000 ≈ 920000 1798200

Graph #vertices #edges

New York City 264346 366923

California 1890815 2328871

USA 23947347 29166672

Baden-Württemberg 3064263 3234197

Germany 20690320 21895866

Europe 173789185 182620014

weights between 1 and 20 for each row and column and then randomly remove
10% of the edges and vertices that became isolated. We generated three graphs
with k equal to 100, 316 and 1000, respectively.

6.2 Results

In this section we present notable results on the conducted experiments. We
consider the quality and running times of the algorithms as well as differences
within those algorithms and between different types of graphs. Fig. 4 shows an
example output of 50 vertices selected on a graph where the edges that constitute
the UMST are highlighted.

Quality. Figure 5 shows the quality of the (non-random) greedy algorithms, com-
paring the cost for the points found by these algorithms with an instance-based
upper bound. We see that the upper bound is mostly only a small factor larger
than the computed cost. The notable exceptions are the TSP graphs, when the
radius is large, i.e. the graph has significantly more edges than vertices, and k
is high. But especially on grid graphs the factor is always lower than 7. On one
hand this means that the greedy algorithms indeed provide good approxima-
tions, many times even better than the theoretical bound of 6. On the other

Remotely Useful Greedy Algorithms 559

hand this testifies that the computed upper bounds are not too far from the
optimum values. Because of the theoretical bound for anticovers (and both algo-
rithms performing about equally, as we well see) the higher gaps for the TSP
graph don’t necessarily imply that the greedy algorithms perform worse, but
that the upper bound is not as tight for those graphs.

Fig. 5. Quality of the greedy algorithms on benchmark graphs. The symbols represent
the values for k: 3, 10, 31, 100, 316, 1000

Furthermore, the greedy selection algorithms are a substantial improvement
over random selection of vertices, especially when k is small (see Fig. 6). This
seems logical because, when many vertices are selected, the choice of bad vertices
can be smoothed out by other vertices. Also with small k every chosen vertex
has a higher impact on the overall objective value.

Selection Algorithms. We compare the quality of the two greedy algorithms.
Additionaly we tested if it is worthwhile to not select a random vertex as
input/start vertex but an extremal vertex. An extremal vertex is one that is
the furthest from any other vertex. Selecting an extremal vertex as the first one
has very similar costs but is slightly better in most cases. Interestingly, select-
ing vertices with greedy_anticover (Algorithm 1) performs better than with
spread_points (Algorithm 2) for all graphs but the OpenStreetMap graphs.
Figure 7 shows the comparison of the selecton algorithms on two graph classes;
we left out picturing random selection as the quality is too bad and the difference
betwwen the other greedy algorithms could not be made out.

560 M. Beck

Fig. 6. Quality of randomly selected vertices on benchmark graphs. The symbols rep-
resent the values for k: 3, 10, 31, 100, 316, 1000

Fig. 7. Quality of the selection algorithms compared (k = 100): greedy anticover,
spread points, random

Running Time. Unsurprisingly, selecting random vertices takes close to no time
(less than 2 seconds at most) when comparing to the time it takes to evaluate
the cost function. While greedy_anticover selects slightly better vertices for
most graphs, spread_points is a little faster. The overall running time is very
much practical with a run of an algorithm taking less than 17 min on the Europe
graph when selecting 1000 vertices. The maximum running time on all the graphs
except for the Europe graph is hardly above one minute. The growth of the
running time is plotted in Fig. 8. This figure also shows the percentage that the

Fig. 8. Running times for the greedy algorithms. The symbols represent the values for
k: 3, 10, 31, 100, 316, 1000

Remotely Useful Greedy Algorithms 561

selection phase takes of the total running time (the rest is spent computing the
objective value fP). We see that the selection phase takes up more of the running
time as k grows.

7 Conclusions and Future Work

We introduced two new objectives P for the Remote-P maximization problem
class on graphs that are not metric and complete, and presented greedy algo-
rithms that aim at solving them. We proved that one of the algorithms is a
6-approximation algorithm for these Remote problems while the other one is
also used to provide instance-based upper bounds. These bounds are then used
to evaluate these algorithms in practice on a variety of graphs where we see that
they perform well in regards to solution quality and running time.

For future work one could look at finding better upper bounds for dense
graphs. Another direction is to improve the approximation bound for the greedy
anticover algorithm on the newly introduced objectives for Remote problems.

References

1. Aghamolaei, S., Farhadi, M., Zarrabi-Zadeh, H.: Diversity maximization via com-
posable coresets. In: Proceedings of the 27th Canadian Conference on Computa-
tional Geometry, CCCG 2015 (2015)

2. Chandra, B., Halldórsson, M.M.: Approximation algorithms for dispersion prob-
lems. J. Algorithms (2001)

3. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. (1959)
4. Erkut, E., Neuman, S.: Analytical models for locating undesirable facilities. Eur.

J. Oper. Res. (1989)
5. Feitsch, F., Storandt, S.: The clustered dial-a-ride problem. In: Proceedings of the

Twenty-Ninth International Conference on Automated Planning and Scheduling,
ICAPS (2019)

6. Gilbert, E., Pollak, H.: Steiner minimal trees. SIAM J. Appl. Math. (1968)
7. Halldórsson, M.M., Iwano, K., Katoh, N., Tokuyama, T.: Finding subsets maxi-

mizing minimum structures. SIAM J. Discrete Math. (1999)
8. Handler, G.Y.: Minimax location of a facility in an undirected tree graph. Transp.

Sci. (1973)
9. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum

dispersion. Oper. Res. Lett.(1997)
10. Jordan, C.: Sur les assemblages de lignes. J. für die reine und angewandte Mathe-

matik (1869)
11. Kuby, M.J.: Programming models for facility dispersion: the p-dispersion and max-

isum dispersion problems. Geogr. Anal. (1987)
12. Lau, H.C., Sim, M., Teo, K.M.: Vehicle routing problem with time windows and a

limited number of vehicles. Eur. J. Oper. Res. (2003)
13. Magnien, C., Latapy, M., Habib, M.: Fast computation of empirically tight bounds

for the diameter of massive graphs. ACM J. Exp. Algorithmics (2009)
14. Moon, I.D., Chaudhry, S.S.: An analysis of network location problems with distance

constraints. Manag. Sci.(1984)
15. Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K.: Heuristic and special case algorithms for

dispersion problems. Oper. Res. (1994)
16. Santuari, A.: Steiner tree NP-completeness proof. Technical report (2003)

Parameterized Algorithms for
Fixed-Order Book Drawing with Bounded

Number of Crossings per Edge

Yunlong Liu , Jie Chen , and Jingui Huang(B)

Hunan Provincial Key Laboratory of Intelligent Computing and Language
Information Processing, Hunan Normal University,

Changsha 410081, People’s Republic of China
{ylliu,jie,hjg}@hunnu.edu.cn

Abstract. Given a graph G = (V, E) and a fixed linear order of V , the
problem fixed-order book drawing with bounded number of cross-
ings per edge asks whether there is a k-page book drawing of G such
that the maximum number of crossings per edge is upper-bounded by an
integer b. This problem was posed by Bhore et al. (GD 2019; J. Graph
Algorithms Appl. 2020) and thought to be interesting for further investi-
gation. In this paper, we study the fixed-parameter tractable algorithms
for this problem. More precisely, we show that this problem parame-
terized by both the bounded number b of crossings per edge and the
vertex cover number τ of the graph admits an algorithm running in time

(b + 2)O(τ3)· |V |, and this problem parameterized by both the bounded
number b of crossings per edge and the pathwidth κ of the vertex order-

ing admits an algorithm running in time (b + 2)O(κ2)· |V |. Our results
provide a specifical answer to Bhore et al.’s question.

1 Introduction

Book drawing is a fundamental topic in graph drawing. Combinatorially, a k-
page book drawing 〈≺, σ〉 of a graph G = (V,E) consists of a linear ordering ≺
of its vertices along a spine and an assignment σ of each edge to one of the k
pages, which are half-planes bounded by the spine [1]. The spine and the k pages
construct a book. Specially, a book drawing of G is also called a fixed-order book
drawing if the ordering of vertices in V (G) along the spine is predetermined and
fixed; see Fig. 1 for an illustration.

Fixed-order book drawing, as a specific subject on book drawings, has drawn
much attention in the area of graph drawing. In particular, the fixed linear
crossing number problem, where the number k of pages is given and the target
is to minimize the number of edge crossings, has been well-studied [2–6].

This research was supported in part by the National Natural Science Foundation of
China under Grants (No. 61572190, 61972423), and Hunan Provincial Science and
Technology Program Foundations (No. 2018TP1018, 2018RS3065).

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 562–576, 2020.
https://doi.org/10.1007/978-3-030-64843-5_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_38&domain=pdf
http://orcid.org/0000-0003-2686-5240
http://orcid.org/0000-0002-6611-5551
http://orcid.org/0000-0002-6965-7989
https://doi.org/10.1007/978-3-030-64843-5_38

Parameterized Algorithms for Fixed-Order Book Drawing 563

71 2 4 5 6

page2

page1

page3

3
1

2

3

4

5

6

7

Fig. 1. A graph (left) and a 3-page fixed-order book drawing with at most 1 crossings
per edge (right).

Studies on parameterized algorithms for fixed-order book drawing,
where the optimization goal is to minimize the number of pages, arise from
the problem fixed-order book embedding. A fixed-order book drawing is
called a fixed-order book embedding if it is crossing-free. The problem fixed-
order book embedding decides whether a graph G admits a k-page fixed-
order book embedding. The minimum k such that G admits a k-page fixed-order
book embedding is the fixed-order book thickness of G, denoted by fo-bt(G,≺).
Deciding whether fo-bt(G,≺)≤ 2 can be solved in linear time. However, deciding
if fo-bt(G,≺)≤ 4 is equivalent to finding a 4-coloring of a circle graph and is NP-
complete [7,8]. Considering the hardness of this problem even when the number
of pages is fixed, Bhore et al. [9] studied fixed-parameter tractable algorithms
parameterized by the vertex cover number of the graph and the pathwidth of
the vertex ordering, respectively. Furthermore, Bhore et al. [9,10] posed a gen-
eralized problem, i.e., fixed-order book drawing with bounded number of
crossings per edge (rather than per page). Note that a k-page book drawing
with bounded number of crossings per edge may contain unbounded number of
crossings on some page, which makes this generalized problem more interesting.

In this paper, we focus on the problem fixed-order book drawing with
bounded number of crossings per edge. Formally, this problem asks, given a graph
G = (V,E) and a fixed linear order ≺ of V , whether there is a k-page book draw-
ing 〈≺, σ〉 of G such that the maximum number of crossings per edge is bounded
by an integer b. We denote by fo-bd(G,≺, b) the minimum k such that (G,≺, b)
is a YES instance. Our aim is to investigate fixed-parameter tractable algorithms
for it, answering to Bhore et al.’s question. The problem fixed-order book
embedding (that is, b = 0) is NP-complete for small fixed values k on general
graphs. Therefore, unless P = NP, there can be no fixed-parameter tractable
algorithm parameterized by the natural parameters (i.e. the page number and
the crossing number). We consider the problem parameterized by the sum of the
natural parameter and some structural parameter of G.

Our results include two parts as follows.

(1) We show that this problem parameterized by both the bounded number b
of crossings per edge and the vertex cover number τ of the graph admits an
algorithm running in time (b+2)O(τ3)· |V |. Our main technique on bounding
the number of considered edges on each page is to divide all assigned edges

564 Y. Liu et al.

on each page into at most τ(τ + 1) bunches and in the same bunch we only
need to consider one edge with the maximum number of crossings.

(2) We also show that this problem parameterized by both the bounded num-
ber b of crossings per edge and the pathwidth κ of the vertex ordering
admits an algorithm running in time (b + 2)O(κ2)· |V |. Similarly, our tech-
nique on bounding the number of considered edges on each page is to divide
all assigned edges on each page into at most κ bunches and in the same
bunch we only need to consider one edge with the maximum number of
crossings.

Our results employ the dynamic programming framework in [9] and some
Lemmas in [11,12]. More importantly, we give a novel approach to bound the
number of considered edges on each page by a function of parameters, which will
enrich the techniques on designing parameterized algorithms for graph drawing
problems [13,14]. Our results are also related with a frontier research area of
graph drawing where few edge crossings are allowed per edge. Recent results
about this topic include [15–18].

2 Preliminaries

We use standard terminology from parameterized computation, graph theory
and some notations defined in [9].

A parameterized problem consists of an input (I, k) where I is the prob-
lem instance and k is the parameter. An algorithm is called a fixed-parameter
tractable algorithm if it solves a parameterized problem in time f(k)nO(1), where
f is a computable function. A parameterized problem is fixed-parameter tractable
if it admits a fixed-parameter tractable algorithm [19].

The graphs we consider in this paper are undirected and loopless. The vertex
set of a graph G is denoted by V (G), with |V (G)| = n. The edge between two
vertices u and v of G is denoted by uv. For r ∈ N, we use [1, r] to denote the set
{1, . . . , r}.

A vertex cover C of a graph G = (V,E) is a subset C ⊆ V such that each
edge in E has at least one end-point in C. A vertex v ∈ V is a cover vertex if
v ∈ C. The vertex cover number of G, denoted by τ(G), is the size of a minimum
vertex cover of G. Note that a vertex cover C with size τ can be computed in
time O(1.2738τ + τ ·n) [20]. In the rest of this paper, we will use C to denote a
minimum vertex cover of G, and use U to denote the set V (G) \ C.

Given an n-vertex graph G = (V,E) with a fixed linear order ≺ of V such that
v1 ≺ v2 ≺ . . . ≺ vn, we assume that V (G) = {v1, v2, . . . , vn} is indexed such that
i < j if and only if vi ≺ vj . Moreover, we use X = {x ∈ [1, n− τ] | ∃c ∈ C : ux is
the immediate successor of c in ≺} to denote the set of indices of vertices in U
which occur immediately after a cover vertex, and we assume that the integers
in X, denoted as x1, x2, . . . , xz, are listed in ascending order.

Given an n-vertex graph G = (V,E) with a fixed linear order ≺ of V such
that v1 ≺ v2 ≺ . . . ≺ vn, the pathwidth of (G,≺) is the minimum number κ such
that for each vertex vi (i ∈ [1, n]), there are at most κ vertices left of vi that
are adjacent to vi or a vertex right of vi. Formally, for each vi we call the set

Parameterized Algorithms for Fixed-Order Book Drawing 565

Pi = {vj | j < i,∃ q ≥ i such that vjvq ∈ E} the guard set for vi, and the
pathwidth of (G,≺) is simply maxi∈[1,n]|Pi| [21]. The elements of the guard sets
are called the guards for vi. In this paper, we will use the expanded notion of
guard set in [9]. Let v0 be a vertex with degree 0 and let v0 be placed to the left
of v1 in ≺. For a vertex vi, the expanded guard set of vi was defined as follows:
P ∗

vi
= {gi

1, g
i
2, · · · , gi

m} where for each j ∈ [1,m − 1], gi
j is the j-th guard of vi in

reverse order of ≺, and gi
m = v0.

3 Parameterization by Both the Maximum Number
of Crossings per Edge and the Vertex Cover Number

The fixed-order book drawing parameterized by both the maximum num-
ber b of crossings per edge and the vertex cover number τ , abbreviated by FDVC,
is formally defined as follows.

Input: a tuple (G, ≺), a non-negative integer b.
Parameters: b, τ ;
Question: does there exist a k-page book drawing (≺, σ) of G such that the
maximum number of crossings per edge on each page is no more than b ?

For the problem FDVC, we begin with introducing some special notations.
Given a graph G = (V,E) and a minimum vertex cover C, we denote by EC

the set of all edges whose both endpoints lie in C. For each i ∈ [1, n − τ + 1],
we denote by Ei = {ujc ∈ E | j < i, c ∈ C} the set of all edges with one
endpoint outside of C that lies to the left of ui. Correspondingly, we denote by
Ui = {ux | x < i, ux ∈ U} the set of all vertices that lie to the left of ui. An
assignment s : EC → [1, k] is called a valid page assignment if s assigns edges
in EC to k pages such that the maximum number of crossings per edge on each
page is at most b. Given a valid page assignment s of EC and a minimum vertex
cover C in G, we call α : Ei → [1, k] a valid partial page assignment if α ∪ s
assigns edges to k pages such that the maximum number of crossings per edge
on each page is at most b. Let u ∈ U \ Ui and c ∈ C. Given a valid partial page
assignment α of Ei, we draw an edge uc between u and c on page p. The added
edge uc is called a potential edge with respect to the edges assigned to page p
by α.

We employ the technique on mapping assignments to matrices and the
dynamic programming framework in algorithm for fix-order book thickness
parameterized by the vertex cover number [9]. However, the specific implemen-
tation tactics in our algorithm for the problem FDVC are quite distinct from
those in [9]. Most importantly of all, we adopt a more refined standard to classify
all valid partial page assignments of Ei (for i ∈ [1, n − τ + 1]). To arrive at this
target, we introduce three types of crossing number matrices in the record set.

566 Y. Liu et al.

3.1 Three Types of Crossing Number Matrices in the Record Set

Let i ∈ [1, n − τ + 1] and ua ∈ U \ Ui. We define the crossing number matrices
for all potential edges incident to ua, for some edges in Ei, and for all edges in
EC , respectively.

3.1.1 The Crossing Number Matrices for Potential Edges Incident
to Vertices in U \ Ui

The notion of crossing number matrix for potential edges incident to a vertex in
U \ Ui is extended from that of visibility matrix in [9] and formally introduced
in [11].

Although a valid partial page assignment in this paper refers to the assign-
ment where the number of crossings per edge is at most b, the crossing number
matrix can be defined in the same way.

Given a valid partial page assignment α ∪ s of edges in Ei ∪ EC and a vertex
ua ∈ U \ Ui, there are τ potential edges incident to ua on page p (p ∈ [1, k]).
The crossing number matrix M1

i (a, α, s) is a k × τ matrix, in which the entry
(p, q) records the number of edge-crossings generated by the potential edge cqua

on page p with some edge in Ei ∪ EC mapped to page p by α ∪ s. In particular,
when this number exceeds b + 1, it only record the number b + 1.

Similarly, the crossing number matrix admits the same property as that
in [11], i.e., for some consecutive vertices in ∈ U \Ui, their corresponding crossing
number matrices are exactly the same one.

Lemma 1. ([11]) Let α be a valid partial page assignment of Ei, xj ∈ X, and
let xl be the immediate successor of xj in X. If ui ≺ uxj

≺ uxh
≺ uxl

in ≺ and
uxh

/∈ C, then M1
i (xh, α, s) = M1

i (xj , α, s).

Based on Lemma 1, we only need to keep the crossing number matrices cor-
responding to the vertices in {ui} ∪ X, respectively. Hence, we define a crossing
number matrix queue M

1
i (α, s) as follows: M1

i (α, s) = (M1
i (i, α, s), M1

i (x1, α, s),
M1

i (x2, α, s), . . ., M1
i (xz, α, s)).

3.1.2 The Crossing Number Matrices for Some Edges Assigned
from Ei

The number of edges in Ei assigned to page p is not bounded by a function of
τ , however, we only need to consider at most τ(τ + 1) edges for the problem
FDVC. Then, we design τ crossing number matrices to capture the information
about the number of crossings generated by these considered edges.

Given a valid partial assignment α of Ei and a minimum vertex cover C =
{c1, c2, . . . , cτ}, we first describe how we choose at most τ + 1 edges incident to
one vertex in C on page p.

The vertices in V (G) \ C can be divided into τ + 1 subsets along the order
≺. In other words, assume that the vertices in V (G) lie on a straight line L in a
left-to-right fashion with the fixed-order ≺, then the line L can be divided into
τ + 1 intervals by the τ vertices in C. For ease of expression, we denote by c0

Parameterized Algorithms for Fixed-Order Book Drawing 567

c1 c3 c4c2 c c +1u7u3 u5 u6u4 u9c0 u2 u8

Fig. 2. An example on dividing the edges incident to the vertex c2 on the first page
into at most τ + 1 bunches (note that only a part of edges are drawn for brevity).

the vertex u1 when the first vertex in ≺ is not c1. We also denote by cτ+1 the
additional vertex of degree 0. Then, the τ +1 intervals can be uniformly denoted
by (ct, ct+1) for 0 ≤ t ≤ τ . See Fig. 2 for an example.

Given a vertex cq for cq ∈ C, we denote by Ei(p, cq) the set of edges in Ei

incident to cq and assigned to page p by α. Corresponding to the τ + 1 intervals
on L, the edges in Ei(p, cq) on page p can be divided into τ + 1 bunches such
that for edges in the same bunch, all endpoints except the common one (i.e., cq)
lie in the same interval. We also uniformly denote these bunches as E0

i (p, cq),
E1

i (p, cq), . . ., Eτ
i (p, cq). For example, it holds that E0

i (1, c2) = {c2u2, c2u3},
E1

i (1, c2) = {c2u4}, E2
i (1, c2) = {c2u5, c2u6}, and E3

i (1, c2) = {c2u7, c2u8} in
Fig. 2.

Assume that |Et
i (p, cq)| ≥ 2 (t ∈ [0, τ]). An important property can be dis-

covered for edges in Et
i (p, cq).

Lemma 2. Let α be a valid partial assignment of Ei, ujcr be a potential edge
on page p, in which i ≤ j, cr ∈ C, and r �= q. Then, either all edges in Et

i (p, cq)
are crossed by ujcr, or none edge in Et

i (p, cq) is crossed by ujcr.

Proof. By the definition of Et
i (p, cq), all endpoints except cq of edges in Et

i (p, cq)
lie in the interval (ct, ct+1). We first show that either all edges in Et

i (p, cq) enclose
cr/uj or none of them does. Assume towards a contradiction that one edge cqua

in Et
i (p, cq) encloses cr, but another edge cqub in Et

i (p, cq) does not. Then, it fol-
lows that ua ≺ cr ≺ ub, contradicting the assumption that ct+1 is the immediate
successor of ct in {c0}∪C ∪{cτ+1} along the given order ≺. Analogously, assume
that cqua in Et

i (p, cq) encloses uj but cqub in Et
i (p, cq) does not. It follows that

ua ≺ uj ≺ ub, which means that j < b. On the other hand, since cqub ∈ Ei, i.e.,
b < i, and i ≤ j (see assumption), it holds that b < j. Hence, a contradiction is
derived.

By the above discussion, we distinguish three cases for the vertices in {cr, uj}
based on the number of vertices uniformly enclosed by the edges in Et

i (p, cq).
Case (1): only cr (or only uj) in {cr, uj} is uniformly enclosed by the edges
in Et

i (p, cq). Case (2): both cr and uj are enclosed by the edges in Et
i (p, cq).

Case (3): none of the vertices in {cr, uj} is enclosed by the edges in Et
i (p, cq).

Correspondingly, in case (1), all edges in Et
i (p, cq) are crossed by ujcr. However,

in cases (2) and (3), none edge in Et
i (p, cq) is crossed by ujcr. �

568 Y. Liu et al.

Base on Lemma 2, we only need to consider one edge in Et
i (p, cq). More

precisely, we focus on the edge in Et
i (p, cq) that generates the maximum number

of crossings on page p (denoted as emax). Note that if there are several edges
of this kind, we arbitrarily choose one. Ordinarily, for all edges incident to the
vertex cq, we only need to choose at most τ + 1 edges on page p. Furthermore,
we define a k×(τ +1) crossing number matrix M2

i (cq, α, s), where an entry (p, t)
is h if the edge emax in Et

i (p, cq) generates h crossings on page p. Otherwise,
Et

i (p, cq) = ∅ and the entry (p, t) is filled with a special string “null” (see Fig. 3
for an example).

u5 2M7 (c2 , α , s) =
null 0 2 null null

3 1 0 null null
u1 u3

u4
u2 u7

c1 c3 c4
c2

u6

c1c0 c2c1 c3c2 c4c3 c4 c5

Fig. 3. A partial 2-page assignment of the edges in E7 (left) and the corresponding
crossing number matrix M2

7 (c2, α, s) (right).

Since there are τ vertices in C, we define a crossing number matrix queue
M

2
i (α, s) for all vertices in C as follows: M2

i (α, s) = (M2
i (c1, α, s), M2

i (c2, α, s),
. . ., M2

i (cτ , α, s)).

3.1.3 The Crossing Number Matrix for Edges in EC

Since the number of edges in EC is bounded by τ(τ − 1)/2, we directly design a
crossing number matrix for all edges in EC .

Assume that the edges in EC are denoted as e1, e2, . . . , em (m ≤ τ(τ −1)/2).
Given a valid assignment α ∪ s of edges in Ei ∪ EC , we define a k × τ(τ − 1)/2
matrix M

3
i (α, s), where an entry (p, q) is r if eq (eq ∈ EC) satisfies two conditions:

1© eq is assigned to page p by s; 2© the number of crossings generated by eq is
equal to r. Otherwise, (p, q) is filled with a special string “null”.

3.2 A Parameterized Algorithm for the Problem FDVC

Based on the three types of crossing number matrices, we define the record set
for a vertex ui ∈ U as follows: Ri(s) = {(M1

i (α,s), M2
i (α,s), M3

i (α, s)) | ∃ valid
partial page assignment α : Ei → [1, k] }. By this way, all valid page assignments
of edges in Ei ∪ EC are divided into |Ri(s)| families. For ease of presentation,
we will use Mi(α, s) to denote the record (M1

i (α,s), M2
i (α,s), M3

i (α, s)) in the
rest of this paper. Along with Ri(s), we also store a mapping Λs

i from Ri(s) to
valid partial page assignments of Ei which maps each record ω ∈ Ri(s) to some
α such that ω = Mi(α, s).

By employing the framework of dynamic programming in [9], we can obtain
an algorithm for solving FDVC, denoted by ALVC.

Parameterized Algorithms for Fixed-Order Book Drawing 569

The first step in algorithm ALVC is to branch over each case s of edge
assignments on EC . If s is invalid then discard it. Otherwise, the algorithm
ALVC is to dynamically generate some partial page assignment, in which the
maximum number of crossings per edge is at most b, in a left-to-right fashion.
Assume the record set Ri−1(s) has been computed. Each page assignment β of
edges incident to vertex ui−1 and each record ρ ∈Ri−1(s) are branched. For each
such β and γ = Λs

i−1(ρ), γ ∪ β ∪ s forms a new assignment of edges in Ei ∪ EC .
If the maximum number of crossings per edge in γ ∪ β ∪ s is at most b, then
γ ∪ β ∪ s is valid, the record Mi(γ ∪ β, s) is computed and the mapping Λs

i is
set to map to γ ∪ β. Otherwise, γ ∪ β ∪ s is invalid and discarded.

To prove the correctness of ALVC, we mainly argue that any two assignments
in the same family defined by the record set are “interchangeable”.

Let γ1 and γ2 be two valid page assignments of Ei−1, let β be a page assign-
ment of the edges incident to the vertex ui−1, and let γ1 ∪ β and γ2 ∪ β be the
corresponding assignments of Ei.

Lemma 3. If Mi−1(γ1, s) = Mi−1(γ2, s), then Mi(γ1 ∪ β, s) = Mi(γ2 ∪ β, s).

Proof. By the definition of the record in set Ri(s), it is sufficient to prove that
the crossing number matrix in Mi(γ1 ∪ β, s) is equal to that in Mi(γ2 ∪ β, s),
respectively.

(1) we show that M1
i (γ1∪β, s) = M

1
i (γ2∪β, s), i.e., M1

i (x, γ1∪β, s) = M1
i (x, γ2∪

β, s) (for x ∈ {i} ∪ X). Assume that an entry (p, q) in M1
i−1(x, γ1, s) (for

x ∈ {i− 1}∪X) is equal to h0 but that in M1
i (x, γ1 ∪β, s) (for x ∈ {i}∪X)

is equal to h0+r (r ≤ τ). Then, in the assignment β of the (at most) τ
edges incident to ui−1, there must be at least r edges assigned to page p
and there are exactly r edges among them cross uxcq on page p. By the
assumption that M1

i−1(x, γ1, s) = M1
i−1(x, γ2, s) (for x ∈ {i − 1} ∪ X), the

entry (p, q) in M1
i−1(x, γ2, s) is equal to h0. Correspondingly, the entry (p, q)

in M1
i (x, γ2 ∪ β, s) is equal to h0+r.

(2) we show that M2
i (γ1∪β, s) = M

2
i (γ2∪β, s), i.e., M2

i (c, γ1∪β, s) = M2
i (c, γ2∪

β, s) (for c ∈ C). Let (p, q) be an entry in M2
i−1(c, γ1, s). We distinguish two

cases based on whether (p, q) = “null” or not.
Case (2.1): (p, q) �=“null”. Assume that (p, q) in M2

i−1(c, γ1, s) is equal to
h0 but that in M2

i (c, γ1 ∪ β, s) is equal to h0+r. Let e be one of the edges
in Eq

i (p, c) that generate the maximum number of crossings in γ1 ∪ s. After
executing the i-th step in dynamic programming, we further distinguish
two subcases based on whether e still generates the maximum number of
crossings in γ1 ∪ β ∪ s or not.
Subcase (2.1.1): the edge e does. By Lemma 2, in the assignment β of the (at
most) τ edges incident to ui−1, there must be at least r edges assigned to
page p and there are exactly r edges among them cross all edges in Eq

i (p, c)
in γ1 ∪ β ∪ s. The r edges in β will also cross the edges between c and
vertices in the q-th interval on page p in γ2 ∪ β ∪ s. Hence, the entry (p, q)
in M2

i (c, γ2 ∪ β, s) is also equal to h0+r.

570 Y. Liu et al.

Subcase (2.1.2): the edge e does not. Then there must be one edge cui−1 in
β such that cui−1 is added to Eq

i (p, c) and cui−1 generates h0+r crossings
on page p (see the edge c2u9 in Fig. 2 for an example). As shown in point (1),
M1

i (i, γ2 ∪β, s) = M1
i (i, γ1 ∪β, s). Hence, the number of crossings generated

by cui−1 in γ2 ∪ β ∪ s is equal to that in γ1 ∪ β ∪ s. Therefore, the entry
(p, q) in M2

i (c, γ2 ∪ β, s) is also equal to h0+r.
Case (2.2): the entry (p, q) in M2

i−1(c, γ1, s) is “null” but that in M2
i (c, γ1 ∪

β, s) is equal to r. Then there must be one edge cui−1 in β such that cui−1

is added to Eq
i (p, c) and cui−1 generates r crossings on page p (see the

edge c3u9 in Fig. 2 for an example). As shown in point (1), M1
i (i, γ2 ∪ β, s)

= M1
i (i, γ1 ∪ β, s). Hence, the number of crossings generated by cui−1 in

γ2 ∪ β ∪ s is equal to that in γ1 ∪ β ∪ s. Therefore, the entry (p, q) in
M2

i (c, γ2 ∪ β, s) is also equal to r.
(3) we show that M

3
i (γ1 ∪ β, s) = M

3
i (γ2 ∪ β, s). Since the assignment s of EC

is fixed, we need not to consider the entry that filled with “null”. Assume
that an entry (p, q) in M

3
i (γ1 ∪β, s) is increased by r compared with that in

M
3
i−1(γ1, s). Along the same lines in point (1), the entry (p, q) in M

3
i (γ1∪β, s)

is also increased by r compared with that in M
3
i−1(γ2, s). �

Based on Lemma 3, the algorithm ALVC((G,≺), τ, b) correctly computes
Ri(s) from Ri−1(s). Therefore, we obtain the following conclusion.

Theorem 1. If (G,≺) contains at least one valid assignment, then the algorithm
ALVC((G,≺), τ, b) returns a valid page assignment.

Lemma 4. The algorithm ALVC for the problem FDVC runs in time (b +
2)3kτ2+3kτ+(τ2+τ+3) log(b+2) 6kτ · |V |.
Proof. Since the number of matrices with form M

1
i (α, s) (resp. M

2
i (α, s),

M
3
i (α, s)) can be bounded by (b+2)kτ(τ+1) (resp. (b+2)kτ(τ+1), (b+2)kτ(τ−1)/2),

the size of Ri(s) can be bounded by (b+2)3kτ2+3kτ . Moreover, for a given tuple
(i, γ ∪ β, s), each matrix queue can be dynamically computed from the matrix
queue corresponding to the tuple (i−1, γ, s) in time kτ2· (τ+1). Additionally, the
number of assignments of EC is at most τ τ2

and the number of assignments of
edges incident to ui−1 is at most τ τ . The total time of ALVC can be bounded by
3kτ2· (τ+1)· τ τ2 ·τ τ · (b+2)3kτ2+3kτ · |V | = (b+2)3kτ2+3kτ+(τ2+τ+3) log(b+2) 6kτ · |V |.

�
Since fo-bt(G,≺) < τ [9] and fo-bd(G,≺, b) ≤ fo-bt(G,≺), it follows that

fo-bd(G,≺, b) < τ . A (fo-bd(G,≺, b))-page book drawing can be computed by
executing the algorithm ALVC at most τ times. Now, we arrive at our first result.

Theorem 2. There is an algorithm which takes as input a graph G = (V,E)
with a fixed vertex order ≺, and an integer b, computes a page assignment σ in
time (b + 2)O(τ3)· |V | such that (≺, σ) is a (fo-bd(G,≺, b))-page book drawing of
G, where τ is the vertex cover number of G.

Parameterized Algorithms for Fixed-Order Book Drawing 571

4 Parameterization by both the Maximum Number
of Crossings per Edge and the Pathwidth of the Vertex
Ordering

The fixed-order book drawing parameterized by both the maximum num-
ber b of crossings per edge and the pathwidth κ of the vertex ordering, abbrevi-
ated by FDPW, is formally defined as follows. For the problem FDPW, we also

Input: a tuple (G, ≺), a non-negative integer b.
Parameters: b, κ;
Question: does there exist a k-page book drawing (≺, σ) of G such that the
maximum number of crossings per edge on each page is no more than b ?

begin with introducing some special notations. Given a graph G = (V,E) and
a vertex ordering ≺, we use Ei = {vavb | vavb ∈ E, b > i} to denote the set of
all edges with at least one endpoint to the right of vi. Correspondingly, we use
Vi = {vx | vx ∈ V, x ≤ i} to denote the set of all vertices that lie to the left of
vi+1. A partial assignment α : Ei → [1, k] is a valid partial page assignment if α
maps edges to k pages such that the maximum number of crossings per edge is
at most b. For ease of expression, we introduce the notion of potential edge. Let
i ∈ [1, n]. Given a valid partial page assignment α of Ei and two vertices vx, va

with x < a ≤ i, we draw an edge vxva on page p between vx and va. The added
edge vxva is called a potential edge with respect to the edges in Ei assigned on
page p.

By extending some techniques in [9], we design an algorithm for the problem
FDPW along the same lines in the above algorithm ALVC.

4.1 Two Types of Crossing Data Matrices in the Record Set

Let i ∈ [1, n] and va ∈ Vi. We define the crossing data matrices for potential
edges incident to va, and for some edges assigned from Ei, respectively.

4.1.1 The Crossing Data Matrices for Potential Edges Incident
to Vertices in Vi

The crossing data matrix corresponding to a vertex va ∈ Vi is originated from
the notion of visibility vector in [9] and formally introduced in [12].

Although a valid partial page assignment in this paper refers to the assign-
ment where the number of crossings per edge is at most b, the crossing data
matrix can be defined in the same way. Given a valid partial page assignment
α : Ei → [1, k] and a vertex va ∈ Vi, we define a k × (b + 1) matrix M1

i (va, α),
in which the entry (p, q) is set by the following rule [12].

If there exists a guard vz ∈ P ∗
vi

(z < a) such that the potential edge vzva

on page p exactly crosses q edges in Ei assigned to page p by α, then the entry

572 Y. Liu et al.

(p, q) = vz. In case there are at least two guards that satisfy this condition, we
only choose the utmost guard to the left of va. Otherwise, (p, q) = “null”.

Similarly, the crossing data matrix admits the same property as that in [12],
i.e., for some consecutive vertices in Vi, their corresponding crossing data matri-
ces are exactly the same one.

Lemma 5. ([12]) Let α be a valid partial assignment of Ei, va ≺ vi, and va /∈
P ∗

vi
. Assume that vd ∈ P ∗

vi
∪ {vi} such that d > a and d − a is minimized. Then

M1
i (va, α) = M1

i (vd, α).

Based on Lemma 5, we only need to keep the crossing data matrices corre-
sponding to the vertices in P ∗

vi
∪ {vi}, respectively. Hence, we define a crossing

data matrix queue M1
i (α) as follows: M1

i (α) = (M1
i (vi, α), M1

i (gi
1, α), M1

i (gi
2, α),

. . ., M1
i (gi

m−1, α)).

4.1.2 The Crossing Data Matrix for Some Edges Assigned from Ei

The number of edges in Ei assigned on page p is not bounded by a function of
κ, however, we only need to consider at most κ edges for the problem FDPW.
We design a crossing data matrix to capture the information about the number
of crossings generated by these considered edges.

How to choose at most κ edges on page p ? First of all, we exclude the edges
whose both endpoints lie in V \ Vi−1 since the potential edge will not cross any
one of them. Hence, we only focus on the edges that incident to the guards of
vi. For each vertex g ∈ P ∗

vi
, we use Ei(p, g) to denote the set of edges in Ei that

incident to g and assigned to page p by α. When |Ei(p, g)| ≥ 2, the following
observation will be crucial for choosing the edge to be considered.

Lemma 6. Let α be a valid partial assignment of Ei, vxva be a potential edge
on page p, and g ∈ P ∗

vi
. If vx ≺ g ≺ va, then all edges in Ei(p, g) are crossed by

vxva. Otherwise, none edge in Ei(p, g) is crossed by vxva.

Proof. By the definition of potential edge, there are only three cases about the
relative positions among vx, va and g. More precisely, the vertex orderings include
case (1): vx ≺ g ≺ va; case (2): g ≺ vx ≺ va; and case (3): vx ≺ va ≺ g. At
the same time, for the edges in Ei(p, g), their common endpoint is g and other
endpoints are all on the right of vi. Note that a ≤ i. Hence, the edge vxva crosses
each edge in Ei(p, g) in case (1). On the contrary, the edge vxva does not cross
any edge in Ei(p, g) in cases (2) and (3). �

Based on Lemma 6, for edges in Ei(p, g), we only need to choose the edge
that generates the maximum number of crossings on page p. Ordinarily, for all
edges assigned on page p, we choose at most κ edges to be considered. Since there
are exactly k pages in α, we can design a k × κ matrix M

2
i (α) to capture the

information about the number of crossings generated by edges assigned from Ei.
More precisely, an entry (p, q) in M

2
i (α) is r if the maximum number of crossings

per edge in Ei(p, q) is equal to r. Otherwise, Ei(p, q) = ∅ and (p, q) is filled with
a special string “null” (see Fig. 4 for an example).

Parameterized Algorithms for Fixed-Order Book Drawing 573

v8
v9v1 v3

v4
v2

v7
v5 v6 null 0 1 null

v1

v0 M 6 (α) =

v2 v4 v5

1 2 null 22

Fig. 4. A partial 2-page assignment of the edges in E6 (left) and the corresponding
crossing data matrix (right).

4.2 A Parameterized Algorithm for the Problem FDPW

Based on two types of matrices, we define the record set for a vertex vi (i ∈
[1, n]) as follows: Qi = {(M1

i (α), M2
i (α)) | ∃ valid partial page assignment α:

Ei → [1, k]}. By this way, all valid assignments of Ei are divided into at most
|Qi| families. For ease of presentation, we will use Mi(α) to denote the record
(M1

i (α), M2
i (α)) in the rest of this paper. Along with Qi, we also store a mapping

Λi from Ri to valid partial page assignments of Ei which maps each record
ωi(α) ∈ Ri to some α such that ωi(α) = (M1

i (α),M2
i (α)).

Employing the framework of dynamic programming in [9], we can obtain an
algorithm ALPW for solving the problem FDPW, in which the main steps can
be sketched as follows.

The basic strategy is to dynamically generate some valid partial page assign-
ment, in which the maximum number of crossings per edge is at most b, in a
right-to-left fashion. Assume the record set Qi has been computed. Let Fi−1 =
Ei−1 \ Ei. Each page assignment β of edges in Fi−1 and each record ρ ∈Qi are
branched. For each such β and α = Λi(ρ), the assignment α ∪ β is checked. If
the maximum number of crossings per edge in α∪β is still at most b, then α∪β
is valid, the record Mi−1(α ∪ β) is computed and the mapping Λi−1 is set to
map this record to α ∪ β. Otherwise, α ∪ β is invalid and discarded.

To show the correctness of algorithm ALPW, we mainly show that any two
assignments with the same crossing data matrix in our record set are “inter-
changeable”.

Let α1 and α2 be two valid page assignments of Ei, let β be a page assignment
of the edges in Fi−1, and let α1 ∪β and α2 ∪β be the corresponding assignments
of Ei−1.

Lemma 7. If Mi(α1) = Mi(α2), then Mi−1(α1 ∪ β) = Mi−1(α2 ∪ β).

Proof. By the definition of the record in set Qi−1, it is sufficient to prove that
the crossing data matrix in Mi−1(α1 ∪ β) is equal to that in Mi−1(α2 ∪ β),
respectively.

(1) we show that M
1
i−1(α1 ∪ β) = M

1
i−1(α2 ∪ β), i.e., for each gi−1

j ∈ {vi−1} ∪
P ∗

vi−1
, M1

i−1(g
i−1
j , α1 ∪ β) = M1

i−1(g
i−1
j , α2 ∪ β). Let (p, q) (for q ≤ b) be

an entry in M1
i−1(g

i−1
j , α1 ∪ β). Assume that (p, q) in M1

i−1(g
i−1
j , α1 ∪ β)

is equal to vt, but the vertex vt in M1
i (gi

j , α1) locates in the entry (p, h).

574 Y. Liu et al.

Then, for the assignment β of edges in Ei−1 \ Ei, there must be at least
q−h edges assigned to page p and there are exactly q−h edges among them
cross the potential edge vtg

i−1
j on page p. At the same time, by assumption

that M1
i (gi

j , α1) = M1
i (gi

j , α2), it follows that the entry (p, h) in M1
i (gi

j , α2)
is also equal to vt. Hence, the vertex vt also locates in the entry (p, q) in
M1

i−1(g
i−1
j , α2 ∪ β).

(2) we show that M
2
i−1(α1 ∪ β) = M

2
i−1(α2 ∪ β). Let eq

1 (resp. eq
2) be the edge

that incident to vq and generating the maximum number of crossings on
page p in the assignment α1 (resp. α2). Without loss of generality, assume
that an entry (p, q) in M

2
i (α1) is h0 but that in M

2
i−1(α1 ∪ β) is h0+r. We

distinguish two cases resulting in the change of entry (p, q). Case (2.1): the
edge eq

1 crosses r edges assigned by β. By Lemma 6, the edge eq
2 also crosses

r edges assigned by β in α2 ∪ β. Hence, the corresponding entry (p, q) in
M

2
i−1(α2 ∪ β) is also increased by r compared with that in M

2
i (α2). Case

(2.2): eq
1 is replaced by one edge vqvi from Fi−1. This means the edge vqvi

generates the maximum number of crossings among all edges incident to vq

on page p. As shown in point (1), M1
i−1(α1 ∪ β) = M

1
i−1(α2 ∪ β). Hence,

vqvi also generates the maximum number of crossings on page p in α2 ∪ β
and eq

2 is also replaced by the edge vqvi.
For the special case that an entry (p, q) in M

2
i (α1) is equal to “null” but

that in M
2
i−1(α1 ∪ β) is equal to r, the proof is along the same line as in

case (2.2). �
Based on Lemma 7, the algorithm ALPW((G,≺), κ, b) correctly computes

Qi−1 from Qi. Therefore, we can obtain the following conclusion.

Theorem 3. If ((G,≺), κ, b) contains at least one valid assignment, then the
algorithm ALPW((G,≺), κ, b) returns a valid page assignment.

Lemma 8. The algorithm ALPW for the problem FDPW runs in time (b +
2)2kκ+1+(κ+2) log(b+2) 3kκ· |V |.
Proof. Since the number of matrices with form M

1
i (α) (resp. M

2
i (α)) can be

bounded by (b + 2)kκ [12] (resp. (b + 2)kκ), the size of Qi can be bounded
by (b + 2)2kκ. Moreover, for a given tuple (i, γ ∪ β′), the matrix queue with
form M

1
i (γ ∪ β′) (resp. M

2
i (γ ∪ β′)) can be dynamically computed from the

matrix queue with form M
1
i+1(γ) (resp. M2

i+1(γ)) in time kκ(κ+1)(b+1) (resp.
kκ2), where β′ is an assignment of edges in Ei \ Ei+1. Furthermore, the number
of assignments of edges in Ei \ Ei+1 is at most κκ. Therefore, the total time
of ALPW can be bounded by (kκ2 + kκ(κ + 1)(b + 1))·κκ·(b + 2)2kκ· |V | ≤
(b + 2)2kκ+1+(κ+2) log(b+2) 3kκ· |V |. �

Since fo-bt(G,≺) < κ [9] and fo-bd(G,≺, b) ≤ fo-bt(G,≺), it follows that
fo-bt(G,≺, c) < κ. A (fo-bd(G,≺, b))-page book drawing can be computed by
executing the algorithm ALPW at most κ times. Now, we arrive at our second
result.

Parameterized Algorithms for Fixed-Order Book Drawing 575

Theorem 4. There is an algorithm which takes as input a graph G = (V,E)
with a fixed vertex order ≺, and an integer b, computes a page assignment σ in
time (b + 2)O(κ2)· |V | such that (≺, σ) is a (fo-bd(G,≺, b))-page book drawing of
G, where κ is the pathwidth of (G,≺).

5 Conclusions

In this work, we investigate fixed-parameter tractable algorithms for the problem
fixed-order book drawing with bounded number of crossings per edge. We
show that this problem parameterized by both the bounded number b of crossings
per edge and the vertex cover number τ of the graph admits an algorithm running
in time (b + 2)O(τ3)· |V |, and this problem parameterized by both the bounded
number b of crossings per edge and the pathwidth κ of the vertex ordering admits
an algorithm running in time (b + 2)O(κ2)· |V |. Our results provide a specifical
answer to Bhore et al.’s question in [9,10].

The problem fixed-order book drawing with bounded number of cross-
ings per edge can be parameterized by both the bounded number b of crossings
per edge and other structural parameter, such as treewidth or treedepth. It
would be interesting to investigate the parameterized computational complexity
for them.

Acknowledgements. The authors thank the anonymous referees for their valuable
comments and suggestions.

References

1. Klawitter, J., Mchedlidze, T., Nöllenburg, M.: Experimental evaluation of book
drawing algorithms. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp.
224–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1 19

2. Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimization in
linear embeddings of graphs. IEEE Trans. Comput. 39(1), 124–127 (1990). https://
doi.org/10.1109/12.46286

3. Cimikowski, R.: Algorithms for the fixed linear crossing number problem.
Discrete Appl. Math. 122(1), 93–115 (2002). https://doi.org/10.1016/S0166-
218X(01)00314-6

4. Cimikowski, R.: An analysis of some linear graph layout heuristics. J. Heuristics
12(3), 143–153 (2006). https://doi.org/10.1007/s10732-006-4294-9

5. Buchheim, C., Zheng, L.: Fixed linear crossing minimization by reduction to
the maximum cut problem. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006.
LNCS, vol. 4112, pp. 507–516. Springer, Heidelberg (2006). https://doi.org/10.
1007/11809678 53

6. Cimikowski, R., Mumey, B.: Approximating the fixed linear crossing number. Dis-
crete Appl. Math. 155(17), 2202–2210 (2007). https://doi.org/10.1016/j.dam.2007.
05.009

7. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of
coloring circular arcs and chords. SIAM J. Algebr. Discrete Methods 1(2), 216–227
(1980). https://doi.org/10.1137/0601025

https://doi.org/10.1007/978-3-319-73915-1_19
https://doi.org/10.1109/12.46286
https://doi.org/10.1109/12.46286
https://doi.org/10.1016/S0166-218X(01)00314-6
https://doi.org/10.1016/S0166-218X(01)00314-6
https://doi.org/10.1007/s10732-006-4294-9
https://doi.org/10.1007/11809678_53
https://doi.org/10.1007/11809678_53
https://doi.org/10.1016/j.dam.2007.05.009
https://doi.org/10.1016/j.dam.2007.05.009
https://doi.org/10.1137/0601025

576 Y. Liu et al.

8. Unger, W.: The complexity of colouring circle graphs. In: Finkel, A., Jantzen, M.
(eds.) STACS 1992. LNCS, vol. 577, pp. 389–400. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55210-3 199

9. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms
for book embedding problems. In: Archambault, D., Tóth, C.D. (eds.) GD 2019.
LNCS, vol. 11904, pp. 365–378. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-35802-0 28

10. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms
for book embedding problems. J. Graph Algorithms Appl. (2020). https://doi.org/
10.7155/jgaa.00526

11. Liu, Y., Chen, J., Huang, J.: Fixed-order book thickness with respect to the vertex-
cover number: new observations and further analysis. In: Chen, J., Feng, Q., Xu,
J. (eds.) TAMC 2020. LNCS, vol. 12337, pp. 414–425. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59267-7 35

12. Liu, Y., Chen, J., Huang, J., Wang, J.: On fixed-order book thickness parameterized
by the pathwidth of the vertex ordering. In: Zhang, Z., Li, W., Du, D.-Z. (eds.)
AAIM 2020. LNCS, vol. 12290, pp. 225–237. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-57602-8 21

13. Bannister, M.J., Eppstein, D., Simons, J.A.: Fixed parameter tractability of cross-
ing minimization of almost-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 340–351. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03841-4 30

14. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page draw-
ings of graphs with bounded treewidth. In: Duncan, C., Symvonis, A. (eds.) GD
2014. LNCS, vol. 8871, pp. 210–221. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45803-7 18

15. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few cross-
ings per edge. Algorithmica 49(1), 1–11 (2007). https://doi.org/10.1007/s00453-
007-0010-x

16. Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: Area requirement of
graph drawings with few crossing per edge. Comput. Geometry 46(8), 909–916
(2013). https://doi.org/10.1016/j.comgeo.2013.03.001

17. Binucci, C., Di Giacomoa, E., Hossainb, M.I., Liotta, G.: 1-page and 2-page draw-
ings with bounded number of crossings per edge. Eur. J. Comb. 68, 24–37 (2018).
https://doi.org/10.1007/978-3-319-29516-9 4

18. Angelini, P., Bekos, M.A., Kaufmann, M., Montecchianib, F.: On 3D visibility
representations of graphs with few crossings per edge. Theor. Comput. Sci. (2019).
https://doi.org/10.1016/j.tcs.2019.03.029

19. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

20. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40–42), 3736–3756 (2010). https://doi.org/10.1016/j.tcs.2010.
06.026

21. Kinnersley, N.G.: The vertex separation number of a graph equals its path-
width. Inf. Process. Lett. 42(6), 345–350 (1992). https://doi.org/10.1016/0020-
0190(92)90234-M

https://doi.org/10.1007/3-540-55210-3_199
https://doi.org/10.1007/978-3-030-35802-0_28
https://doi.org/10.1007/978-3-030-35802-0_28
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.1007/978-3-030-59267-7_35
https://doi.org/10.1007/978-3-030-57602-8_21
https://doi.org/10.1007/978-3-030-57602-8_21
https://doi.org/10.1007/978-3-319-03841-4_30
https://doi.org/10.1007/978-3-319-03841-4_30
https://doi.org/10.1007/978-3-662-45803-7_18
https://doi.org/10.1007/978-3-662-45803-7_18
https://doi.org/10.1007/s00453-007-0010-x
https://doi.org/10.1007/s00453-007-0010-x
https://doi.org/10.1016/j.comgeo.2013.03.001
https://doi.org/10.1007/978-3-319-29516-9_4
https://doi.org/10.1016/j.tcs.2019.03.029
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.1016/0020-0190(92)90234-M

Fractional Maker-Breaker Resolving
Game

Eunjeong Yi(B)

Texas A&M University at Galveston, Galveston, TX 77553, USA
yie@tamug.edu

Abstract. Let G be a graph with vertex set V (G), and let d(u,w)
denote the length of a u−w geodesic in G. For two distinct x, y ∈ V (G),
let R{x, y} = {z ∈ V (G) : d(x, z) �= d(y, z)}. For a function g defined on
V (G) and for U ⊆ V (G), let g(U) =

∑
s∈U g(s). A real-valued function

g : V (G) → [0, 1] is a resolving function of G if g(R{x, y}) ≥ 1 for any
distinct x, y ∈ V (G). In this paper, we introduce the fractional Maker-
Breaker resolving game (FMBRG). The game is played on a graph G by
Resolver and Spoiler (denoted by R∗ and S∗, respectively) who alter-
nately assigns non-negative real values on V (G) such that its sum is at
most one on each turn. Moreover, the total value assigned, by R∗ and
S∗, on each vertex over time cannot exceed one. R∗ wins if the total val-
ues assigned on V (G) by R∗, after finitely many turns, form a resolving
function of G, whereas S∗ wins if R∗ fails to assign values on V (G) to
form a resolving function of G. We obtain some general results on the
outcome of the FMBRG and determine the outcome of the FMBRG for
some graph classes.

Keywords: (fractional) Maker-Breaker resolving game · Resolving
function · (fractional) metric dimension · Twin equivalence class

1 Introduction

Let G be a finite, simple, undirected, and connected graph with vertex set
V (G) and edge set E(G). For two distinct x, y ∈ V (G), let R{x, y} = {z ∈
V (G) : d(x, z) �= d(y, z)}, where d(u,w) denotes the length of a shortest u − w
path in G. A subset W ⊆ V (G) is a resolving set of G if |W ∩ R{x, y}| ≥ 1
for any pair of distinct x, y ∈ V (G), and the metric dimension, dim(G), of
G is the minimum cardinality over all resolving sets of G. For a function g
defined on V (G) and for U ⊆ V (G), let g(U) =

∑
s∈U g(s). A real valued-

function g : V (G) → [0, 1] is a resolving function of G if g(R{x, y}) ≥ 1 for
any distinct x, y ∈ V (G). The fractional metric dimension, dimf (G), of G is
min{g(V (G)) : g is a resolving function of G}. Note that dimf (G) reduces to
dim(G) if the codomain of resolving functions is restricted to {0, 1}. The concept
of metric dimension was introduced by Slater [20] and by Harary and Melter [10].

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 577–593, 2020.
https://doi.org/10.1007/978-3-030-64843-5_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_39&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_39

578 E. Yi

The concept of fractional metric dimension was introduced by Currie and Oeller-
mann [6], and Arumugam and Matthew [1] officially initiated the study of frac-
tional metric dimension. Applications of metric dimension can be found in robot
navigation [16], network discovery and verification [4], sonar [20], combinatorial
optimization [19] and chemistry [17]. It was noted in [9] that determining the
metric dimension of a general graph is an NP-hard problem.

Games played on graphs have drawn interests recently. Examples of two
player games are cop and robber game [18], domination game [5], Maker-Breaker
domination game [7] and Maker-Breaker resolving game [14], to name a few.
Erdös and Selfridge [8] introduced the Maker-Breaker game that is played on
an arbitrary hypergraph H = (V,E) by two players, Maker and Breaker, who
alternately select a vertex from V that was not yet chosen in the course of
the game. Maker wins the game if he can select all the vertices of one of the
hyperedges from E, wheras Breaker wins if she is able to prevent Maker from
doing so. For further information on these games, we refer to [3] and [11].

The Maker-Breaker resolving game (MBRG for short) was introduced in [14].
Following [14], the MBRG is played on a graph G by two players, Resolver
and Spoiler, denoted by R∗ and S∗, respectively. R∗ and S∗ alternately select
(without missing their turn) a vertex of G that was not yet chosen in the course
of the game. R-game (S-game, respectively) denotes the game for which R∗ (S∗,
respectively) plays first. R∗ wins the MBRG if the vertices selected by him, after
finitely many turns, form a resolving set of G; if R∗ fails to form a resolving set
of G over the course of the MBRG, then S∗ wins. The outcome of the MBRG
on a graph G is denoted by o(G), and it was shown in [14] that there are three
realizable outcomes as follows: (i) o(G) = R if R∗ has a winning strategy in
the R-game and the S-game; (ii) o(G) = S if S∗ has a winning strategy in
the R-game and the S-game; (iii) o(G) = N if the first player has a winning
strategy. The authors of [14] also studied the minimum number of moves needed
for R∗ (S∗, respectively) to win the MBRG provided R∗ (S∗, respectively) has
a winning strategy.

In this paper, we introduce the fractional Maker-Breaker resolving game
(FMBRG) played on a graph by two players, Resolver and Spoiler. Following [14],
let R∗ (S∗, respectively) denote the Resolver (the Spoiler, respectively), and let
R-game (S-game, respectively) denote the FMBRG for which R∗ (S∗, respec-
tively) plays first. Suppose k ∈ Z

+ (k′ ∈ Z
+, respectively) is the maximum

integer for which R∗ (S∗, respectively) assigns a positive real value on at least
one vertex of G on his k-th move (her k′-th move, respectively). We denote by
hR,i (hS,i, respectively) a function defined on V (G) by R∗ (S∗, respectively) on
his/her i-th turn. We define the following terminology and notation.

• For i ∈ {1, 2, . . . , k}, a function hR,i : V (G) → [0, 1] satisfying 0 <
hR,i(V (G)) ≤ 1 is called the Resolver’s i-th distribution function, and a
function ΓR,i : V (G) → [0, 1] defined by ΓR,i(u) =

∑i
α=1 hR,α(u), for each

u ∈ V (G), is called the Resolver’s i-th cumulative distribution function.
• For j ∈ {1, 2, . . . , k′}, a function hS,j : V (G) → [0, 1] satisfying 0 <

hS,j(V (G)) ≤ 1 is called the Spoiler’s j-th distribution function, and a func-

Fractional Maker-Breaker Resolving Game 579

tion ΓS,j : V (G) → [0, 1] defined by ΓS,j(u) =
∑j

β=1 hS,β(u), for each
u ∈ V (G), is called the Spoiler’s j-th cumulative distribution function.

Note that, for each u ∈ V (G), 0 ≤ ΓR,k(u) + ΓS,k′(u) ≤ 1. In the FMBRG, R∗

wins if ΓR,t forms a resolving function of G for some t ∈ Z
+, and S∗ wins if

ΓR,t′ fails to form a resolving function of G for any t′ ∈ Z
+. The outcome of

the FMBRG on a graph G is denoted by of (G), and there are three possible
outcomes as follows: (i) of (G) = R if R∗ has a winning strategy in the R-game
and the S-game; (ii) of (G) = S if S∗ has a winning strategy in the R-game and
the S-game; (iii) of (G) = N if the first player has a winning strategy. We note
that it is impossible for the second player to win the FMBRG given each player
has an optimal strategy (see [14] on “No-Skip Lemma” for the MBRG).

This paper is organized as follows. In Sect. 2, we recall some known results
on the outcome of the MBRG. In Sect. 3, we obtain some general results on the
outcome of the FMBRG. We show how twin equivalence classes of a graph play
a role on the outcome of the FMBRG. We also examine how the conditions of
resolving functions of a graph affect the outcome of the FMBRG. In Sect. 4, we
determine of (G) for some graph classes G.

2 Some Known Results on the MBRG

In this section, we recall some known results on the MBRG. We first recall two
important concepts, twin equivalence class and pairing resolving set, that are
useful in determining the outcome of the MBRG.

For v ∈ V (G), N(v) = {u ∈ V (G) : uv ∈ E(G)}. Two vertices u and w
are twins if N(u) − {w} = N(w) − {u}; notice that a vertex is its own twin.
Hernando et al. [12] observed that the twin relation is an equivalence relation
and that an equivalence under it, called a twin equivalence class, induces a clique
or an independent set.

Observation 1 [12]. Let W be a resolving set of G. If x and y are distinct twin
vertices in G, then W ∩ {x, y} �= ∅.
Proposition 1 [14]. Let G be a connected graph of order at least 4.

(a) If G has a twin equivalence class of cardinality at least 4, then o(G) = S.
(b) If G has two distinct twin equivalence classes of cardinality at least 3, then

o(G) = S.
Next, we recall the relation between a pairing resolving set and the outcome

of the MBRG.

Definition 1 [14]. Let A = {{u1, w1}, . . . , {uk, wk}} be a set of 2-subsets of
V (G) such that | ∪k

i=1 {ui, wi}| = 2k. If every set {x1, . . . , xk}, where xi ∈
{ui, wi} for each i ∈ {1, 2, . . . , k}, is a resolving set of G, then A is called a
pairing resolving set of G.

Proposition 2 [14]. If a graph G admits a pairing resolving set, then o(G) = R.

580 E. Yi

Note that Proposition 2 implies the following.

Corollary 1. If a connected graph G has k ≥ 1 twin equivalence classes of
cardinality 2 with dim(G) = k, then o(G) = R.

We state the following result where the first player wins on the MBRG.

Proposition 3. If a connected graph G has k ≥ 0 twin equivalence class(es)
of cardinality 2 and exactly one twin equivalence class of cardinality 3 with
dim(G) = k + 2, then o(G) = N .

Proof. Let W be any minimum resolving set of G, and let E = {x, y, z} be a twin
equivalence class with |E| = 3; then |W ∩E| = 2. If k ≥ 1, let Qi = {ui, vi} be a
twin equivalence class with |Qi| = 2 for each i ∈ {1, 2, . . . , k}; then |W ∩Qi| = 1
for each i ∈ {1, 2, . . . , k}. In the S-game, S∗ can select two vertices of E after
her second move, and R∗ can select at most one vertex of E; thus, S∗ wins the
S-game. So, we consider the R-game. If k = 0, then R∗ can select two vertices
of E after his second move. If k ≥ 1, then R∗ can select two vertices of E after
his second move, and one vertex in each Qi thereafter. In each case, R∗ wins the
R-game. Thus, o(G) = N . �

3 General Results on the Outcome of the FMBRG

In this section, we obtain some general results on the FMBRG. We show how
twin equivalence classes of a graph affect the outcome of the FMBRG. We also
examine how the conditions of resolving functions of a graph affect the outcome
of the FMBRG. Moreover, we show the existence of graphs G satisfying the
following: (i) o(G) = R and of (G) ∈ {R,N ,S}; (ii) o(G) = N and of (G) ∈
{N ,S}; (iii) o(G) = S = of (G).

Observation 2 [21]. Let g : V (G) → [0, 1] be a resolving function of G. If u
and w are distinct twin vertices of G, then g(u) + g(w) ≥ 1.

Proposition 4. If a connected graph G has a twin equivalence class of cardi-
nality k ≥ 2 with dimf (G) = k

2 , then

of (G) =

⎧
⎨

⎩

R if k = 2,
N if k = 3,
S if k ≥ 4.

(1)

Proof. Let Q = {u1, u2, . . . , uk} ⊆ V (G) be a twin equivalence class of G with
|Q| = k, where k ≥ 2. By Observation 2, for any resolving function g of G,
g(ui) + g(uj) ≥ 1 for any distinct i, j ∈ {1, 2, . . . , k}. We consider three cases.

Case 1: k = 2. In the R-game, R∗ can assign values on V (G) such that
hR,1(u1) = hR,1(u2) = 1

2 . In the S-game, suppose that hS,1(u1) = x1 and
hS,1(u2) = x2, where 0 ≤ x1, x2 ≤ 1 and x1 + x2 ≤ 1; then R∗ can assign values
on V (G) such that hR,1(u1) = 1 − x1 and hR,1(u2) = x1. In each case, ΓR,1

forms a resolving function of G; thus of (G) = R.

Fractional Maker-Breaker Resolving Game 581

Case 2: k = 3. First, we consider the R-game. Suppose R∗ assigns values
on V (G) such that hR,1(u1) = 1. Suppose S∗ assigns values on V (G) such that
hS,1(u2) = y1, hS,1(u3) = y2, where 0 ≤ y1, y2 ≤ 1 and y1 +y2 ≤ 1. Then R∗ can
assign values on V (G) such that hR,2(u2) = 1 − y1 and hR,2(u3) = y1; note that
ΓR,2(u1) = 1, ΓR,2(u2) = 1 − y1 and ΓR,2(u3) = y1. Since ΓR,2 forms a resolving
function of G, R∗ wins the R-game.

Second, we consider the S-game. Suppose hS,1(u1) = 1. In order for R∗ to
win, Observation 2 implies that R∗ must satisfy ΓR,t(u2) = ΓR,t(u3) = 1 for
some t. If R∗ assigns values on V (G) such that hR,1(u2) = z1 and hR,1(u3) = z2
with z1 + z2 ≤ 1, then S∗ can assign values on V (G) such that hS,2(u2) = 1− z1
and hS,2(u3) = z1. Since ΓS,2(u1) + ΓS,2(u2) + ΓS,2(u3) = 2, ΓR,t fails to form a
resolving function of G for any t. So, S∗ wins the S-game.

Therefore, of (G) = N .
Case 3: k ≥ 4. First, we consider the R-game. Suppose R∗ assigns values on

V (G) such that hR,1(ui) = xi for each i ∈ {1, 2, . . . , k}, where 0 ≤ xi ≤ 1 and
∑k

i=1 xi ≤ 1. By relabeling the vertices of G if necessary, let x1 ≤ x2 ≤ . . . ≤ xk;
then x1 ≤ 1

k ≤ 1
4 . Then S∗ can assign values on V (G) such that hS,1(u1) =

1−x1 ≥ 3
4 and hS,1(u2) = x1. We note that, in order for R∗ to win, Observation 2

implies that R∗ must satisfy ΓR,t(ui) ≥ 1 − x1 ≥ 3
4 for each i ∈ {2, 3 . . . , k}.

Suppose R∗ assigns values on V (G) such that hR,2(u2) = 1 − x1 − x2 and
hR,2(uj) = yj for each j ∈ {3, 4, . . . , k} with

∑k
j=3 yj = x1+x2; then ΓR,2(u1) =

x1, ΓR,2(u2) = 1 − x1 and
∑k

j=3 ΓR,2(uj) ≤ 1, and thus ΓR,2(uα) ≤ 1
2 for some

α ∈ {3, 4, . . . , k}. Then S∗ can assign values on V (G) such that hS,2(uα) = 1
2

for some α ∈ {3, 4, . . . , k}, which implies ΓR,t(uα) ≤ 1
2 for any t. Since ΓR,t fails

to form a resolving function of G for any t, S∗ wins the R-game.
Second, we consider the S-game. Suppose hS,1(u1) = 1. In order for R∗

to win, Observation 2 implies that R∗ must satisfy ΓR,t(ui) = 1 for each i ∈
{2, 3, . . . , k}. Suppose R∗ assigns values on V (G) such that hR,1(ui) = zi for
each i ∈ {2, 3, . . . , k}, where 0 ≤ zi ≤ 1 and

∑k
i=2 zi ≤ 1; further, we may

assume that z2 ≤ z3 ≤ . . . ≤ zk. Then S∗ can assign values on V (G) such
that hS,2(u2) = 1 − z2 > 0; thus ΓS,2(u1) + ΓS,2(u2) = 2 − z2 > 1. Since
ΓR,t(u1) + ΓR,t(u2) < 1 for any t, ΓR,t fails to be a resolving function of G for
any t; thus, S∗ wins the S-game. �

Proposition 5. If a connected graph G has k ≥ 1 twin equivalence class(es) of
cardinality 3 with dimf (G) = 3

2k, then

of (G) =
{N if k = 1,

S if k ≥ 2.
(2)

Proof. For each i ∈ {1, 2, . . . , k}, let Qi = {ui,1, ui,2, ui,3} be a twin equivalence
class of G with |Qi| = 3, where k ≥ 1; then | ∪k

i=1 Qi| = 3k and Qi ∩ Qj = ∅
for distinct i, j ∈ {1, 2, . . . , k}. Note that, for each i ∈ {1, 2, . . . , k} and for any
distinct j1, j2 ∈ {1, 2, 3}, g(ui,j1) + g(ui,j2) ≥ 1 for any resolving function g of G
by Observation 2. If k = 1, then of (G) = N by Proposition 4. So, let k ≥ 2.

582 E. Yi

First, we consider the R-game. Suppose R∗ assigns values on V (G) such that
hR,1(V (Qi)) = xi, for each i ∈ {1, 2, . . . , k}, with

∑k
i=1 xi ≤ 1. By relabeling the

vertices of G if necessary, let x1 ≤ x2 ≤ . . . ≤ xk; further, let hR,1(u1,j) = zj for
each j ∈ {1, 2, 3}, such that z1 ≤ z2 ≤ z3. Note that x1 = z1 + z2 + z3 ≤ 1

k ≤ 1
2

and z1 ≤ 1
3k ≤ 1

6 . Then S∗ can assign values on V (G) such that hS,1(u1,1) =
1 − z1 ≥ 5

6 and hS,1(u1,2) = z1. We note that, in order for R∗ to win the
game, Observation 2 implies that R∗ must assign values on V (G) such that
ΓR,t(u1,2) ≥ 1 − z1 ≥ 5

6 and ΓR,t(u1,3) ≥ 1 − z1 ≥ 5
6 for some t. Suppose R∗

assigns values on V (G) such that hR,2(u1,2) = 1 − (z1 + z2) and hR,2(u1,3) =
z1 + z2; then ΓR,2(u1,2) = 1 − z1 and ΓR,2(u1,3) = z1 + z2 + z3 = x1 ≤ 1

2 .
So, S∗ can assign values on V (G) such that hS,2(u1,3) = 1 − x1 ≥ 1

2 , and thus
ΓS,2(u1,3) = 1 − x1 ≥ 1

2 . Since ΓR,t(u1,3) ≤ 1
2 < 1 − z1 for any t, S∗ wins the

R-game.
Second, we consider the S-game. Suppose hS,1(u1,1) = 1. We note that, in

order for R∗ to win, Observation 2 implies that R∗ must assign values on V (G)
such that ΓR,t(u1,2) = ΓR,t(u1,3) = 1 for some t. Suppose R∗ assigns values on
V (G) such that hR,1(u1,2) = y1 and hR,1(u1,3) = y2, where 0 ≤ y1, y2 ≤ 1 and
y1 + y2 ≤ 1. Then S∗ can assign values on V (G) such that hS,2(u1,2) = 1 − y1
and hS,2(u1,3) = y1; note that ΓS,2(u1,2) > 0 or ΓS,2(u1,3) > 0. Since ΓR,t fails
to form a resolving function of G for any t, S∗ wins the S-game. �

Proposition 6. If a connected graph G has k ≥ 1 twin equivalence class(es) of
cardinality 2 with dimf (G) = k, then

of (G) =

⎧
⎨

⎩

R if k = 1,
N if k = 2,
S if k ≥ 3.

(3)

Proof. For each i ∈ {1, 2, . . . , k}, let Qi = {ui, wi} be a twin equivalence class of
G with |Qi| = 2, where k ≥ 1; then | ∪k

i=1 Qi| = 2k and Qi ∩ Qj = ∅ for distinct
i, j ∈ {1, 2, . . . , k}. Note that, for each i ∈ {1, 2, . . . , k} and for any resolving
function g of G, g(ui) + g(wi) ≥ 1 by Observation 2. We consider three cases.

Case 1: k = 1. In this case, of (G) = R by Proposition 4.
Case 2: k = 2. First, we consider the R-game. Suppose R∗ assigns values

on V (G) such that hR,1(u1) = hR,1(w1) = 1
2 . Suppose S∗ assigns values on

V (G) such that hS,1(u2) = x1 and hS,1(w2) = x2, where 0 ≤ x1, x2 ≤ 1 and
x1+x2 ≤ 1. Then R∗ can assign values on V (G) such that hR,2(u2) = 1−x1 and
hR,2(w2) = x1. Since ΓR,2 forms a resolving function of G, R∗ wins the R-game.

Second, we consider the S-game. Suppose hS,1(u1) = hS,1(u2) = 1
2 . Note

that, after R∗ assigns values on V (G) on his first move, we have either hR,1(u1)+
hR,1(w1) ≤ 1

2 or hR,1(u2) + hR,1(w2) ≤ 1
2 , say the former. Then S∗ can assign

values on V (G) such that hS,2(u1)+hS,2(w1) = 1; thus ΓS,2(u1)+ΓS,2(w1) = 3
2 ,

which implies ΓR,t(u1)+ΓR,t(w1) ≤ 1
2 for any t. Since ΓR,t fails to be a resolving

function of G for any t, S∗ wins the S-game.
Therefore, of (G) = N .
Case 3: k ≥ 3. In the S-game, it’s easy to see that S∗ wins using

the argument used for Case 2. So, we consider the R-game. Suppose

Fractional Maker-Breaker Resolving Game 583

hR,1(ui) + hR,1(wi) = zi, for each i ∈ {1, 2, . . . , k}, such that
∑k

i=1 zi ≤ 1. By
relabeling the vertices of G if necessary, assume that z1 ≤ z2 ≤ . . . ≤ zk; then
z1 ≤ 1

k ≤ 1
3 . So, S∗ can assign values on V (G) such that hS,1(u1) + hS,1(w1) =

1
2 = hS,1(u2) + hS,1(w2). After R∗ assigns values on V (G) on his second move,
we have hR,2(u1) + hR,2(w1) ≤ 1

2 or hR,2(u2) + hR,2(w2) ≤ 1
2 . First, suppose

hR,2(u1) + hR,2(w1) ≤ 1
2 ; note that ΓR,2(u1) + ΓR,2(w1) ≤ z1 + 1

2 ≤ 1
3 + 1

2 = 5
6 .

Then S∗ can assign values on V (G) such that hS,2(u1) + hS,2(w1) = 2
3 ; thus,

ΓS,2(u1) + ΓS,2(w1) = 1
2 + 2

3 = 7
6 > 1, which implies that ΓR,t fails to form a

resolving function of G for any t. Second, suppose hR,2(u2) + hR,2(w2) ≤ 1
2 . If

z1 �= 0, then z2 < 1
k−1 ≤ 1

2 (i.e., ΓR,2(u2) + ΓR,2(w2) ≤ z2 + 1
2 < 1) and S∗ can

assign values on V (G), on her second move, such that hS,2(u2) + hS,2(w2) > 1
2 ,

which implies ΓS,2(u2) + ΓS,2(w2) > 1. If z1 = 0, then z2 ≤ 1
k−1 ≤ 1

2 and S∗ can
assign values on V (G), on her second move, such that ΓS,2(u1)+ΓS,2(w1) > 1 (if
hR,2(u2)+hR,2(w2) �= 0) or ΓS,2(u2)+ΓS,2(w2) > 1 (if hR,2(u2)+hR,2(w2) = 0).
In each case, S∗ wins the R-game. So, of (G) = S. �

Propositions 4, 5 and 6 imply the following.

Corollary 2. Let G be a connected graph.

(a) If G has a twin equivalence class of cardinality at least 4, then of (G) = S.
(b) If G has at least two distinct twin equivalence classes of cardinality 3, then

of (G) = S.
(c) If G has at least three distinct twin equivalence classes of cardinality 2, then

of (G) = S.
Next, we consider the outcome of the FMBRG on a graph that has twin

equivalence classes of cardinalities 2 and 3 simultaneously.

Proposition 7. If a connected graph G has k1 ≥ 1 twin equivalence class(es)
of cardinality 3 and k2 ≥ 1 twin equivalence class(es) of cardinality 2 with
dimf (G) = 3

2k1 + k2, then of (G) = S.
Proof. We consider two cases.

Case 1: k1 ≥ 2 and k2 ≥ 1. By Corollary 2(b), of (G) = S.
Case 2: k1 = 1 and k2 ≥ 1. Let U = {u1, u2, u3} be a twin equivalence class

of G with |U | = 3, and let Wi = {wi,1, wi,2} be a twin equivalence class of G
with |Wi| = 2 for each i ∈ {1, 2, . . . , k2}. For each i ∈ {1, 2, . . . , k2}, g(Wi) ≥ 1
for any resolving function g of G by Observation 2.

First, we consider the S-game. Suppose hS,1(u1) = 1. In order for R∗ to win,
Observation 2 implies that R∗ must satisfy ΓR,t(u2) = ΓR,t(u3) = 1 for some t.
Suppose R∗ assigns values on V (G) such that hR,1(u2) = x1 and hR,1(u3) = x2,
where 0 ≤ x1, x2 ≤ 1 and x1 + x2 ≤ 1. Then S∗ can assign values on V (G) such
that hS,2(u2) = 1 − x1 and hS,2(u3) = x1; then ΓS,2(u2) > 0 or ΓS,2(u3) > 0,
and thus ΓR,t(u2) < 1 or ΓR,t(u3) < 1 for any t. Thus, S∗ wins the S-game.

Second, we consider the R-game; we show that S∗ wins the R-game. We
consider three subcases.

584 E. Yi

Subcase 2.1: k2 = 1. Suppose R∗ assigns values on V (G) such that
hR,1(U) = a and hR,1(W1) = b with a + b = 1; further, let hR,1(ui) = αi for
each i ∈ {1, 2, 3} with α1 ≤ α2 ≤ α3. First, suppose a = α1 + α2 + α3 < 3

4 ; then
α1 < 1

4 . Then S∗ can assign values on V (G) such that hS,1(u1) = 1 − α1 > 3
4

and hS,1(u2) = α1. In order for R∗ to win the game, Observation 2 implies
that R∗ must satisfy ΓR,t(u2) ≥ 1 − α1 > 3

4 and ΓR,t(u3) ≥ 1 − α1 > 3
4

for some t. Suppose R∗ assigns values on V (G), on his second turn, such that
hR,2(u2) = 1 − (α1 + α2) and hR,2(u3) = α1 + α2; then ΓR,2(u2) = 1 − α1 and
ΓR,2(u3) = α1 + α2 + α3 = a < 3

4 . So, S∗ can assign values on V (G), on her
second turn, such that hS,2(u3) = 1 − a > 1

4 , which implies ΓR,t(u3) < 3
4 for

any t. Thus, S∗ wins the R-game when a < 3
4 . Second, suppose a ≥ 3

4 ; then
b ≤ 1

4 . Suppose S∗ assigns values on V (G) such that hS,1(u1) = min{1−α1,
9
10}

and hS,1(w1,1) = max{α1,
1
10}; then 0 < hS,1(u1) < 1, 0 < hS,1(w1,1) < 1, and

hS,1(u1)+hS,1(w1,1) = 1. In order for R∗ to win the game, Observation 2 implies
that R∗ must satisfy ΓR,t(u2) ≥ hS,1(u1), ΓR,t(u3) ≥ hS,1(u1), and ΓR,t(W1) ≥ 1
for some t. We note that R∗, on his second turn, must assign values on V (G) such
that hR,2(W1) ≥ 1−b, which implies ΓR,2(W1) ≥ b+(1−b) = 1; otherwise, S∗ can
assign values on V (G) such that hS,2(W1) > 1−hS,1(w1,1), and thus ΓS,2(W1) >
1, which implies ΓR,t(W1) < 1 for any t. We also note that hR,2(W1) ≥ 1 − b
implies hR,2(u2) ≤ b; thus ΓR,2(u2) ≤ α2 + b < hS,1(u1) = min{1 − α1,

9
10} since

α1 + α2 + b < α1 + α2 + α3 + b = 1 and α2 + b ≤ 1
2 + 1

4 = 3
4 < 9

10 . So, S∗ can
assign values on V (G), on her second turn, such that hS,2(u2) = 1 − (α2 + b);
then ΓR,t(u2) ≤ α2 + b < hS,1(u1) for any t. Thus, S∗ wins the R-game when
a ≥ 3

4 .
Subcase 2.2: k2 = 2. Suppose R∗ assigns values on V (G) such that

hR,1(U) = a and hR,1(Wi) = bi for each i ∈ {1, 2}, where a + b1 + b2 = 1;
further, let hR,1(ui) = αi for each i ∈ {1, 2, 3} with α1 ≤ α2 ≤ α3. If a < 3

4 , then
S∗ wins the R-game by the argument used in the proof for Subcase 2.1 of the
current proposition. So, suppose a ≥ 3

4 ; then b1 + b2 ≤ 1
4 . Then S∗ can assign

values on V (G), on her first turn, such that hS,1(w1,1) = hS,1(w2,1) = 1
2 . Since

ΓR,2(W1) + ΓR,2(W2) ≤ b1 + b2 + 1 ≤ 1
4 + 1 = 5

4 , we have either ΓR,2(W1) ≤ 5
8

or ΓR,2(W2) ≤ 5
8 , say the former. Then S∗ can assign values on V (G), on her

second turn, such that hS,2(W1) = 7
8 ; then ΓS,2(W1) = 1

2 + 7
8 = 11

8 > 1, which
implies ΓR,t(W1) < 1 for any t. Since ΓR,t fails to form a resolving function of
G for any t, S∗ wins the R-game when a ≥ 3

4 .
Subcase 2.3: k2 ≥ 3. By Corollary 2(c), S∗ wins the R-game. �

We note that a graph G having a pairing resolving set is guaranteed to have
o(G) = R (see Proposition 2), whereas such a graph G has three possibilities for
of (G) (see Proposition 6). So, it is worth to explore the conditions of resolving
functions of G that guarantee of (G) = R.

Proposition 8. Let a and k be positive integers, and let b ∈ (0, 1] be a real
number. Let G be a connected graph with V1, V2, . . . , Vk ⊆ V (G) such that |Vi| ≥ a
for each i ∈ {1, 2, . . . , k} and Vi ∩ Vj = ∅ for any distinct i, j ∈ {1, 2, . . . , k}. Let
g : V (G) → [0, 1] be a function defined by g(Vi) = b, for each i ∈ {1, 2, . . . , k},

Fractional Maker-Breaker Resolving Game 585

with g(V (G)) = bk. If a ≥ 2b + 1 and g is a resolving function of G, then
of (G) = R.

Proof. We provide an algorithmic proof to show that of (G) = R. We note that
the optimal strategy for R∗ is to assign values on V (G) such that ΓR,t(Vi) = b
for each i ∈ {1, 2, . . . , k} and for some t.

First, we consider the R-game. Suppose R∗ assigns values on V (G) such that
hR,1(Vi) = b

k , for each i ∈ {1, 2, . . . , k}, with ΓR,1(V (G)) =
∑k

i=1 hR,1(Vi) =
∑k

i=1
b
k = b ≤ 1. Let S∗ assign values on V (G) such that hS,1(Vi) = x1,i for each

i ∈ {1, 2, . . . , k}, where 0 ≤ x1,i ≤ 1 and
∑k

i=1 x1,i ≤ 1. Then R∗ can assign
values on V (G), on his second turn, such that hR,2(Vi) = min{x1,i, b − b

k} for
each i ∈ {1, 2, . . . , k}. We note the following: (i) hR,2(V (G)) ≤ hS,1(V (G)) ≤ 1;
(ii) if x1,i < b − b

k , then ΓS,1(Vi) < ΓR,2(Vi) < b; (iii) if x1,i ≥ b − b
k , then

ΓR,2(Vi) = b. We also note that, if ΓR,2(Vj) = b for some j ∈ {1, 2, . . . , k}, then
it is in the interest of S∗ to assign the value 0 for Vj on all her future turns.
Suppose S∗, on her second turn, assigns values on V (G) such that hS,2(Vi) = x2,i

for each i ∈ {1, 2, . . . , k}, where 0 ≤ x2,i ≤ 1 and
∑k

i=1 x2,i ≤ 1; here, x2,j = 0 if
ΓR,2(Vj) = b. Then R∗ can assign values on V (G), on his third turn, as follows: (i)
if ΓR,2(Vi) = b, then let hR,3(Vi) = 0; (ii) if ΓR,2(Vi) < b (i.e., x1,i < b− b

k), then
let hR,3(Vi) = min{x2,i, b − b

k − x1,i}. We note the following: (i) hR,3(V (G)) ≤
hS,2(V (G)) ≤ 1; (ii) if x2,i < b − b

k − x1,i, then ΓS,2(Vi) < ΓR,3(Vi) < b and
thus ΓS,2(Vi) + ΓR,3(Vi) < 2b; (iii) if x2,i ≥ b − b

k − x1,i, then ΓR,3(Vi) = b.
For r ≥ 3, let hS,r(Vi) = xr,i, where 0 ≤ xr,i ≤ 1 and

∑k
i=1 xr,i ≤ 1, and let

hR,r+1(Vi) = min{xr,i, b − b
k − ∑r−1

j=1 xj,i} whenever ΓR,r(Vi) < b. We continue
the process until ΓR,t(Vi) = b for each i ∈ {1, 2, . . . , k} and for some t; this
is guaranteed since ΓR,α(Vi) < b implies that ΓS,α−1(Vi) < ΓR,α(Vi) < b and
ΓR,α(Vi) + ΓS,α−1(Vi) < 2b. Thus, R∗ wins the R-game.

Second, we consider the S-game. Suppose S∗ assigns values on V (G) such
that hS,1(Vi) = z1,i for each i ∈ {1, 2, . . . , k}, where 0 ≤ z1,i ≤ 1 and

∑k
i=1 z1,i ≤

1. Let R∗ assign values on V (G) such that hR,1(Vi) = min{z1,i, b} for each
i ∈ {1, 2, . . . , k}. Note that hR,1(Vi) ≤ hS,1(Vi) and hR,1(Vi) + hS,1(Vi) ≤ b + 1
for each i ∈ {1, 2, . . . , k}. Now, suppose S∗ assigns values on V (G), on her second
turn, such that hS,2(Vi) = z2,i for each i ∈ {1, 2, . . . , k}, where 0 ≤ z2,i ≤ 1 and
∑k

i=1 z2,i ≤ 1; here, z2,j = 0 if hR,1(Vj) = b. Let R∗ assign values on V (G), on his
second turn, as follows: (i) if hR,1(Vi) = b, then let hR,2(Vi) = 0; (ii) if hR,1(Vi) <
b (i.e., z1,i < b), then let hR,2(Vi) = min{z2,i, b−z1,i}. We note the following: (i)
hR,2(V (G)) ≤ hS,2(V (G)) ≤ 1; (ii) if z2,i < b−z1,i, then ΓR,2(Vi) = ΓS,2(Vi) < b
and thus ΓR,2(Vi) + ΓS,2(Vi) < 2b; (iii) if z2,i ≥ b − z1,i, then ΓR,2(Vi) = b.
For r ≥ 3, let hS,r(Vi) = zr,i, where 0 ≤ zr,i ≤ 1 and

∑k
i=1 zr,i ≤ 1, and

let hR,r(Vi) = min{zr,i, b − ∑r−1
j=1 zj,i} whenever ΓR,r−1(Vi) < b. We continue

the process until ΓR,t(Vi) = b for each i ∈ {1, 2, . . . , k} and for some t; this
is guaranteed since ΓR,β(Vi) < b implies that ΓR,β(Vi) = ΓS,β(Vi) < b and
ΓR,β(Vi) + ΓS,β(Vi) < 2b. Thus, R∗ wins the S-game.

Therefore, of (G) = R. �

586 E. Yi

As an immediate consequence of Proposition 8, we have the following

Corollary 3. Let G be a connected graph with V1, V2, . . . , Vk ⊆ V (G) such that
Vi ∩ Vj = ∅ for any distinct i, j ∈ {1, 2, . . . , k}.
(a) Let g : V (G) → [0, 1] be a function defined by g(Vi) = 1

2 for each i ∈
{1, 2, . . . , k} such that g(V (G)) = k

2 , where k ≥ 2. If |Vi| ≥ 2 for each
i ∈ {1, 2, . . . , k} and g is a resolving function of G, then of (G) = R.

(b) Let g′ : V (G) → [0, 1] be a function defined by g′(Vi) = 1 for each i ∈
{1, 2, . . . , k} such that g′(V (G)) = k, where k ≥ 1. If |Vi| ≥ 3 for each
i ∈ {1, 2, . . . , k} and g′ is a resolving function of G, then of (G) = R.

Next, we show the existence of graphs G satisfying the following: (i) o(G) = R
and of (G) ∈ {R,N ,S}; (ii) o(G) = N and of (G) ∈ {N ,S}; (iii) o(G) = S and
of (G) = S.

Remark 1. There exist graphs G satisfying the following outcomes: (1) o(G) = R
and of (G) = R; (2) o(G) = R and of (G) = N ; (3) o(G) = R and of (G) = S.

Proof.(1) If G is isomorphic to Fig. 1(a), then dim(G) = 1 = dimf (G),
{{�, �′}} is a paring resolving set of G, and G has exactly one twin equiva-
lence class of cardinality 2; thus, o(G) = R by Proposition 2 and of (G) = R
by Proposition 6.

(2) If G is isomorphic to Fig. 1(b), then dim(G) = 2 = dimf (G),
{{�1, �′

1}, {�2, �
′
2}} is a paring resolving set of G, and G has exactly two

distinct twin equivalence classes of cardinality 2; thus, o(G) = R by Propo-
sition 2 and of (G) = N by Proposition 6.

(3) If G is isomorphic to Fig. 1(c), then dim(G) = 3 = dimf (G),
{{�1,�′

1},{�2,�
′
2},{�3,�

′
3}} is a paring resolving set of G, and G has exactly

three distinct twin equivalence classes of cardinality 2; thus, o(G) = R by
Proposition 2 and of (G) = S by Proposition 6. �

1 1 2 2 1 1 2 2 3 3

)c()b()a(

Fig. 1. Graphs G with o(G) = R and three different outcomes for of (G).

Remark 2. There exist graphs G satisfying the following outcomes: (1) o(G) = N
and of (G) = N ; (2) o(G) = N and of (G) = S.

Proof.(1) If G is the 3-cycle, then o(G) = N by Proposition 3 and of (G) = N
by Proposition 5.

Fractional Maker-Breaker Resolving Game 587

x1

x2

y1

y2

z1

z2

w1

w2

w3

Fig. 2. A graph G with o(G) = N and of (G) = S.

(2) If G is isomorphic to Fig. 2, then dim(G) = 5, dimf (G) = 9
2 , and G

has the following twin equivalence classes: {x1, x2}, {y1, y2}, {z1, z2} and
{w1, w2, w3}. So, o(G) = N by Proposition 3 and of (G) = S by Proposi-
tion 7. �

Remark 3. There exists a graph G satisfying o(G) = S = of (G).

Proof. If G is a complete graph of order at least 4, then o(G) = S by Proposi-
tion 1(a), and of (G) = S by Corollary 2(a). �

We conclude this section with some open problems.

Question 1. (a) Is there a graph G such that o(G) = N and of (G) = R?
(b) Is there a graph G such that o(G) = S and of (G) = R?
(c) Is there a graph G such that o(G) = S and of (G) = N ?

4 The Outcome of the FMBRG on Some Classes
of Graphs

In this section, we determine the outcome of the FMBRG for some classes of
graphs. We denote by Pn, Cn, Kn and Kn, respectively, the path, the cycle, the
complete graph, and the edgeless graph on n vertices. We begin by recalling some
known results on the fractional metric dimension of graphs. It was shown in [1]
that, for any connected graph G of order at least two, 1 ≤ dimf (G) ≤ |V (G)|

2 .
For graphs G with dimf (G) = |V (G)|

2 , we recall the following results.

Theorem 3 [1,13]. Let G be a connected graph of order at least two. Then
dimf (G) = |V (G)|

2 if and only if there exists a bijection α : V (G) → V (G) such
that α(v) �= v and |R{v, α(v)}| = 2 for all v ∈ V (G).

An explicit characterization of graphs G satisfying dimf (G) = |V (G)|
2 was

given in [2]. Following [2], let K = {Kn : n ≥ 2} and K = {Kn : n ≥ 2}. Let
H[K ∪ K] be the family of graphs obtained from a connected graph H by (i)
replacing each vertex ui ∈ V (H) by a graph Hi ∈ K ∪ K, and (ii) each vertex in
Hi is adjacent to each vertex in Hj if and only if uiuj ∈ E(H).

588 E. Yi

Theorem 4 [2]. Let G be a connected graph of order at least two. Then
dimf (G) = |V (G)|

2 if and only if G ∈ H[K ∪ K] for some connected graph H.

Next, we determine the outcome of the FMBRG on graphs G for which
dimf (G) = |V (G)|

2 hold.

Proposition 9. Let G be a connected graph of order n ≥ 2 with dimf (G) = n
2 .

Then

of (G) =

⎧
⎨

⎩

R if G = K2,
N if G ∈ {C3, C4,K4 − e},where e ∈ E(K4),
S otherwise.

(4)

Proof. Let G be a connected graph of order n ≥ 2 with dimf (G) = n
2 . For each

i ∈ {1, 2, . . . , k} and for k ≥ 1, let Qi be a twin equivalence class of G with
|Qi| ≥ 2 such that V (G) = ∪k

i=1Qi; notice that Qi ∩ Qj = ∅ for any distinct
i, j ∈ {1, 2, . . . , k}.

First, suppose |Qi| ≥ 4 for some i ∈ {1, 2, . . . , k}. Then of (G) = S by
Corollary 2(a).

Second, suppose |Qi| ≤ 3 for each i ∈ {1, 2, . . . , k}, and assume that |Qj | = 3
for some j ∈ {1, 2, . . . , k}. If k = 1, then |Q1| = 3 and of (G) = N by Propo-
sition 5; note that G = C3 in this case. So, suppose k ≥ 2. If |Qx| = 3 and
|Qi| = 2 for each i ∈ {1, 2, . . . , k} − {x}, then of (G) = S by Proposition 7.
If |Qx| = |Qy| = 3 for distinct x, y ∈ {1, 2, . . . , k}, then of (G) = S by Corol-
lary 2(b).

Third, suppose |Qi| = 2 for each i ∈ {1, 2, . . . , k}. By Proposition 6, we have
the following: (i) if k = 1, then of (G) = R; (ii) if k = 2, then of (G) = N ; (iii)
if k ≥ 3, then of (G) = S. We note that if G satisfies (i), then G = K2; if G
satisfies (ii), then G ∈ {C4,K4 − e}, where e ∈ E(K4). �

Next, we determine the outcome of the FMBRG on cycles.

Theorem 5 [1]. For n ≥ 3, dimf (Cn) =
{ n

n−2 if n is even,
n

n−1 if n is odd.

Proposition 10. For n ≥ 3, of (Cn) =
{N if n ∈ {3, 4},

R if n ≥ 5.

Proof. For n ≥ 3, let Cn be given by u1, u2, . . . , un, u1. Note that of (C3) = N by
Theorem 5 and Proposition 4, and of (C4) = N by Theorem 5 and Proposition 6
since C4 has exactly two distinct twin equivalence classes of cardinality 2 with
dimf (C4) = 2. So, let n ≥ 5, and we consider two cases.

Case 1: n ≥ 5 is odd. Note that |R{ui, uj}| ≥ n − 1 for any distinct
i, j ∈ {1, 2, . . . , n}.

First, we consider the R-game. Let hR,1(ui) = 1
n−1 for each i ∈ {1, 2, . . . , n−

1} with hR,1(V (Cn)) = 1. If hS,1(un) ≤ n−2
n−1 , then let hR,2(un) = 1

n−1 with
hR,2(V (Cn)) = 1

n−1 ; then ΓR,2(ui) = 1
n−1 for each i ∈ {1, 2, . . . , n}, and ΓR,2

is a resolving function of Cn since ΓR,2(R{ui, uj}) ≥ (n − 1)(1
n−1) = 1 for any

Fractional Maker-Breaker Resolving Game 589

distinct i, j ∈ {1, 2, . . . , n}. If hS,1(un) > n−2
n−1 , then let hR,2(ui) = 1

n−1 for each
i ∈ {1, 2, . . . , n − 1} with hR,2(V (Cn)) = 1; then ΓR,2(ui) = 2

n−1 for each i ∈
{1, 2, . . . , n − 1}, and ΓR,2 is a resolving function of Cn since ΓR,2(R{ui, uj}) ≥
(n − 2)(2

n−1) = 2n−4
n−1 ≥ 1 for n ≥ 5 and for any distinct i, j ∈ {1, 2, . . . , n}. In

each case, R∗ wins the R-game.
Second, we consider the S-game. By relabeling the vertices of Cn if nec-

essary, let hS,1(u1) = max{hS,1(ui) : 1 ≤ i ≤ n}; then hS,1(uj) ≤ 1
2 for

each j ∈ {2, 3, . . . , n}. We consider the cases for n = 5 and n ≥ 7 sep-
arately. Suppose n = 5. Let hR,1(ui) = 1

4 for each i ∈ {2, 3, 4, 5} with
hR,1(V (C5)) = 1. If ΓS,2(u1) ≤ 3

4 , let hR,2(u1) = 1
4 with hR,2(V (C5)) = 1

4 ; then
ΓR,2(ui) = 1

4 for each i ∈ {1, 2, 3, 4, 5}, and ΓR,2 is a resolving function of C5 since
ΓR,2(R{ui, uj}) ≥ (4)(14) = 1 for any distinct i, j ∈ {1, 2, 3, 4, 5}. If ΓS,2(ui) ≤ 2

3
for each i ∈ {2, 3, 4, 5}, then let hR,2(ui) = 1

12 for each i ∈ {2, 3, 4, 5} with
hR,2(V (C5)) = 1

3 ; then ΓR,2(ui) = 1
4 + 1

12 = 1
3 for each i ∈ {2, 3, 4, 5}, and ΓR,2

is a resolving function of C5 since ΓR,2(R{ui, uj}) ≥ (3)(13) = 1 for any distinct
i, j ∈ {1, 2, 3, 4, 5}. If ΓS,2(u1) > 3

4 and ΓS,2(uα) > 2
3 for some α ∈ {2, 3, 4, 5},

then ΓS,2(uj) < 7
12 for each j ∈ {2, 3, 4, 5} − {α}. In this case, let hR,2(uj) = 1

6
for each j ∈ {2, 3, 4, 5} − {α} with hR,2(V (C5)) = 1

2 ; then ΓR,2(uα) = 1
4 and

ΓR,2(uj) = 1
4 + 1

6 = 5
12 for each j ∈ {2, 3, 4, 5}−{α}, and thus ΓR.2(R{ui, uj}) ≥

min{(3)(5
12), 1

4 + 2(5
12)} > 1 for any distinct i, j ∈ {1, 2, 3, 4, 5}, which implies

ΓR,2 is a resolving function of C5. Now, suppose n ≥ 7. Let hR,1(ui) = 1
n−1

for each i ∈ {2, 3, . . . , n} with hR,1(V (Cn)) = 1. If ΓS,2(u1) ≤ n−2
n−1 , let

hR,2(u1) = 1
n−1 with hR,2(V (Cn)) = 1

n−1 ; then ΓR,2 is a resolving function of
Cn since ΓR,2(R{ui, uj}) ≥ (n− 1)(1

n−1) = 1 for any distinct i, j ∈ {1, 2, . . . , n}.
If ΓS,2(ui) ≤ n−3

n−1 for each i ∈ {2, 3, . . . , n}, let hR,2(ui) = 1
n−1 for each

i ∈ {2, 3, . . . , n} with hR,2(V (Cn)) = 1; then ΓR,2 is a resolving function of
Cn since ΓR,2(R{ui, uj}) ≥ (n− 2)(2

n−1) ≥ 1 for any distinct i, j ∈ {1, 2, . . . , n}.
If ΓS,2(u1) > n−2

n−1 and ΓS,2(uβ) > n−3
n−1 for some β ∈ {2, 3, . . . , n}, then

ΓS,2(uj) < 3
n−1 for each j ∈ {2, 3, . . . , n} − {β}. In this case, let hR,2(uj) = 1

n−1

for each j ∈ {2, 3, . . . , n} − {β}; then ΓR,2(uβ) = 1
n−1 , ΓR,2(uj) = 2

n−1 and
ΓR,2(uj)+ΓS,2(uj) < 2

n−1 + 3
n−1 = 5

n−1 < 1 for each j ∈ {2, 3, . . . , n}−{β}, and
thus ΓR,2(R{ui, uj}) ≥ min{(n−2)(2

n−1), 1
n−1 +(n−3)(2

n−1)} > 1 for n ≥ 7 and
for any distinct i, j ∈ {1, 2, . . . , n}, which implies ΓR,2 is a resolving function of
Cn for n ≥ 7. So, R∗ wins the S-game for any odd n ≥ 5.

Therefore, if n ≥ 5 is odd, then of (Cn) = R.
Case 2: n ≥ 6 is even. Note that |R{ui, uj}| ≥ n − 2 for any distinct

i, j ∈ {1, 2, . . . , n}, where equality holds when d(ui, uj) is even for i �= j, and
|R{ui, uj} ∩ (∪n

2
a=1{ua})| = |R{ui, uj} ∩ (∪n

b=n
2 +1{ub})| ≥ n

2 − 1.
First, we consider the R-game. Let hR,1(ui) = 1

n−2 for each i ∈ {1, 2, . . . , n−
2} with hR,1(V (Cn)) = 1. If hS,1(un−1)+hS,1(un) ≤ n−3

n−2 , then let hR,2(un−1) =
hR,2(un) = 1

n−2 with hR,2(V (Cn)) = 2
n−2 ; then ΓR,2(ui) = 1

n−2 for each i ∈
{1, 2, . . . , n}, and ΓR,2 is a resolving function of Cn since ΓR,2(R{ui, uj}) ≥ (n−
2)(1

n−2) = 1 for any distinct i, j ∈ {1, 2, . . . , n}. If hS,1(un−1) + hS,1(un) > n−3
n−2 ,

590 E. Yi

let hR,2(ui) = 1
n−2 for each i ∈ {1, 2, . . . , n − 2} with hR,2(V (Cn)) = 1; then

ΓR,2(ui) = 2
n−2 for each i ∈ {1, 2, . . . , n − 2}, and ΓR,2 is a resolving function

of Cn since ΓR,2(R{ui, uj}) ≥ (n − 4)(2
n−2) = 2n−8

n−2 ≥ 1 for n ≥ 6 and for any
distinct i, j ∈ {1, 2, . . . , n}. So, R∗ wins the R-game.

Second, we consider the S-game. Let x = � 3n
4 �, and we assume that

hS,1(ux) = max{hS,1(ui) : 1 ≤ i ≤ n} by relabeling the vertices of Cn if nec-
essary; then hS,1(uj) ≤ 1

2 for each j ∈ {1, 2, . . . , n} − {x}. Let hR,1(ui) = 2
n

for each i ∈ {1, 2, . . . , n
2 } with hR,1(V (Cn)) = 1. If ΓS,2(ui) ≤ n−4

n−2 for
each i ∈ {1, 2, . . . , n

2 }, let hR,2(ui) = 4
n(n−2) for each i ∈ {1, 2, . . . , n

2 } with
hR,2(V (Cn)) = 2

n−2 ; then ΓR,2(ui) = 2
n+ 4

n(n−2) = 2
n−2 for each i ∈ {1, 2, . . . , n

2 },
ΓR,2(uj) = 0 for each j ∈ {n

2 + 1, . . . , n}, and ΓR,2 is a resolving function of Cn

since ΓR,2(R{ui, uj}) ≥ (n
2 − 1)(2

n−2) = 1 for any distinct i, j ∈ {1, 2, . . . , n}.
If ΓS,2(uj) ≤ n−1

n for each j ∈ {n
2 + 1, . . . , n}, let hR,2(uj) = 1

n for each
j ∈ {n

2 + 1, . . . , n} with hR,2(V (Cn)) = 1
2 ; then ΓR,2(ui) = 2

n for each
i ∈ {1, 2, . . . , n

2 }, ΓR,2(uj) = 1
n for each j ∈ {n

2 +1, . . . , n}, and ΓR,2 is a resolving
function of Cn since ΓR,2(R{ui, uj}) ≥ (n

2 −1)(2
n + 1

n) = 3n−6
2n ≥ 1 for n ≥ 6 and

for any distinct i, j ∈ {1, 2, . . . , n}. If ΓS,2(uα) > n−4
n−2 for some α ∈ {1, 2, . . . , n

2 }
and ΓS,2(uβ) > n−1

n for some β ∈ {n
2 + 1, . . . , n}, then ΓS,2(ui) < 2 − (n−4

n−2 +
n−1

n) = 3n−2
n(n−2) = 1

n + 2
n−2 for each i ∈ {1, 2, . . . , n} − {α, β}. In this case, let

hR,2(uj) = 2
n for each j ∈ {n

2 + 1, . . . , n} − {β} with hR,2(V (Cn)) = n−2
n ; here,

we note that (1
n + 2

n−2) + 2
n = 5n−6

n(n−2) ≤ 1 since 5n − 6 ≤ n2 − 2n, equivalently,
n2 − 7n + 6 = (n − 6)(n − 1) ≥ 0 for n ≥ 6. Then ΓR,2(ui) = 2

n for each
i ∈ {1, 2, . . . , n} − {β} and ΓR,2(R{ui, uj}) ≥ (n − 3)(2

n) ≥ 1 for n ≥ 6 and
for any distinct i, j ∈ {1, 2, . . . , n}; thus, ΓR,2 is a resolving function of Cn for
n ≥ 6. So, R∗ wins the S-game for any even n ≥ 6.

Therefore, if n ≥ 6 is even, then of (Cn) = R. �

Next, we determine the outcome of the FMBRG on the Petersen graph.

Theorem 6 [1]. For the Petersen graph P, dimf (P) = 5
3 .

Proposition 11. For the Petersen graph P, of (P) = R.

Proof. Let P be the Petersen graph with V (P) = ∪10
i=1{ui}. Note that

|R{ui, uj}| ≥ 6 for any distinct i, j ∈ {1, 2, . . . , 10}.
First, we consider the R-game. Suppose R∗ assigns values on V (P) such that

hR,1(ui) = 1
10 for each i ∈ {1, 2, . . . , 10}. Then S∗ can assign values on V (P)

such that hS,1(ui) = xi for each i ∈ {1, 2, . . . , 10}, where 0 ≤ xi ≤ 9
10 and

∑10
i=1 xi ≤ 1; we may assume, without loss of generality, that x1 ≥ x2 ≥ . . . ≥

x10. If x1 ≤ 4
5 , then R∗ can assign values on V (P) such that hR,2(ui) = 1

10 for
each i ∈ {1, 2, . . . , 10}; then ΓR,2(ui) = 1

5 for each i ∈ {1, 2, . . . , 10}, and ΓR,2

is a resolving function of P since ΓR,2(R{ui, uj}) ≥ 6(15) > 1 for any distinct
i, j ∈ {1, 2, . . . , 10}. If x1 > 4

5 , then xi < 1
5 for each i ∈ {2, 3, . . . , 10} and R∗ can

assign values on V (P) such that hR,2(ui) = 1
9 for each i ∈ {2, 3, . . . , 10}; then

ΓR,2(u1) = 1
10 , ΓR,2(ui) = 1

10 + 1
9 = 19

90 for each i ∈ {2, 3, . . . , 10}, and ΓR,2 is a

Fractional Maker-Breaker Resolving Game 591

resolving function of P since ΓR,2(R{ui, uj}) ≥ min{ 1
10 + 5(1990), 6(1990)} > 1 for

any distinct i, j ∈ {1, 2, . . . , 10}. In each case, R∗ wins the R-game.
Second, we consider the S-game. Let hS,1(u1) = max{hS,1(ui) : 1 ≤ i ≤

10} by relabeling the vertices of P if necessary; then hS,1(ui) ≤ 1
2 for each

i ∈ {2, 3, . . . , 10}. Then R∗ can assign values on V (P) such that hR,1(u1) = 0
and hR,1(ui) = 1

9 for each i ∈ {2, 3, . . . , 10}. If ΓS,2(ui) ≤ 4
5 for each i ∈

{2, 3, . . . , 10}, then R∗ can assign values on V (P) such that hR,2(ui) = 4
45 for

each i ∈ {2, 3, . . . , 10} with hR,2(V (P)) = 4
5 ; then ΓR,2(u1) = 0, ΓR,2(ui) =

1
9 + 4

45 = 1
5 for each i ∈ {2, 3, . . . , 10}, and ΓR,2 is a resolving function of P since

ΓR,2(R{ui, uj}) ≥ 5(15) = 1 for any distinct i, j ∈ {1, 2, . . . , 10}. So, suppose
ΓS,2(uα) > 4

5 for some α ∈ {2, 3, . . . , 10}. If ΓS,2(u1) ≤ 4
5 and ΓS,2(uα) > 4

5
for exactly one α ∈ {2, 3, . . . , 10}, then R∗ can assign values on V (P) such
that hR,2(u1) = 1

5 and hR,2(uj) = 4
45 for each j ∈ {2, 3, . . . , 10} − {α}; then

ΓR,2(uα) = 1
9 , ΓR,2(ui) = 1

5 for each i ∈ {1, 2, . . . , 10} − {α}, and ΓR,2 is
a resolving function of P since ΓR,2(R{ui, uj}) ≥ min{ 1

9 + 5(15), 6(15)} > 1
for any distinct i, j ∈ {1, 2, . . . , 10}. If ΓS,2(ua) > 4

5 and ΓS,2(ub) > 4
5 for

distinct a, b ∈ {2, 3, . . . , 10}, then ΓS,2(u1) < 2
5 and ΓS,2(uj) < 2

5 for each j ∈
{2, 3, . . . , 10}−{a, b}, and R∗ can assign values on V (P) such that hR,2(u1) = 1

5 ,
hR,2(ua) = hR,2(ub) = 0 and hR,2(uj) = 4

45 for each j ∈ {2, 3, . . . , 10} − {a, b};
then ΓR,2(ua) = ΓR,2(ub) = 1

9 , ΓR,2(ui) = 1
5 for each i ∈ {1, 2, . . . , 10} − {a, b},

and ΓR,2 is a resolving function of P since ΓR,2(R{ui, uj}) ≥ 2(19)+4(15) = 46
45 >

1 for any distinct i, j ∈ {1, 2, . . . , 10}. If ΓS,2(u1) > 4
5 and ΓS,2(uβ) > 4

5 for some
β ∈ {2, 3, . . . , 10}, then ΓS,2(uj) < 2

5 for each j ∈ {2, 3, . . . , 10}−{β}, and R∗ can
assign values on V (P) such that hR,2(uj) = 1

8 for each j ∈ {2, 3, . . . , 10} − {β}
with hR,2(V (P)) = 1; then ΓR,2(u1) = 0, ΓR,2(uβ) = 1

9 , ΓR,2(uj) = 1
9 + 1

8 = 17
72

for each j ∈ {2, 3, . . . , 10} − {β}, and ΓR,2 forms a resolving function of P since
ΓR,2(R{ui, uj}) ≥ min{ 1

9 +4(1772), 5(1772)} > 1 for any distinct i, j ∈ {1, 2, . . . , 10}.
In each case, R∗ wins the S-game.

Therefore, of (P) = R. �
Next, we consider the outcome of the FMBRG on trees T . Fix a tree T . A

major vertex is a vertex of degree at least three. A vertex � of degree 1 is called
a terminal vertex of a major vertex v if d(�, v) < d(�, w) for every other major
vertex w in T . The terminal degree, ter(v), of a major vertex v is the number
of terminal vertices of v in T , and an exterior major vertex is a major vertex
that has positive terminal degree. We denote by ex(T) the number of exterior
major vertices of T , and σ(T) the number of leaves of T . Let M(T) be the set
of exterior major vertices of T . Let M1(T) = {w ∈ M(T) : ter(w) = 1} and
let M2(T) = {w ∈ M(T) : ter(w) ≥ 2}; note that M(T) = M1(T) ∪ M2(T).
For each v ∈ M(T), let Tv be the subtree of T induced by v and all vertices
belonging to the paths joining v with its terminal vertices, and let Lv be the set
of terminal vertices of v in T .

Theorem 7. (a) [15] For any graph G of order n ≥ 2, dimf (G) = 1 if and only
if G = Pn.
(b) [21] For any non-trivial tree T , dimf (T) = 1

2 (σ(T)−ex1(T)), where ex1(T)
denotes the number of exterior major vertices of T with terminal degree one.

592 E. Yi

We first consider paths.

Proposition 12. For n ≥ 2, of (Pn) = R.

Proof. Let Pn be given by u1, u2, . . . , un, where n ≥ 2. If g : V (Pn) → [0, 1] is a
function defined by g(u1) + g(un) = 1, then g is a resolving function of Pn since
R{ui, uj} ⊇ {u1, un} for any distinct i, j ∈ {1, 2, . . . , n}. In the R-game, suppose
hR,1(u1) = 1

2 = hR,1(un). In the S-game, if S∗ assigns values on V (Pn) such
that hS,1(u1) = x1, hS,1(un) = x2, where 0 ≤ x1, x2 ≤ 1 and x1 + x2 ≤ 1, then
R∗ can assign values on V (Pn) such that hR,1(u1) = 1 − x1 and hR,1(un) = x1.
In each case, hR,1(u1) + hR,1(un) = 1; thus ΓR,1 is a resolving function of Pn.
So, of (Pn) = R. �

Next, we consider the outcome of the FMBRG on trees T with ex(T) ≥ 1.
We recall the following result that is implied in [21].

Lemma 1. Let T be a tree with ex(T) ≥ 1, and let M2(T) = {v1, v2, . . . , vk}.
For each i ∈ {1, 2, . . . , k}, let �i,1, �i,2, . . . , �i,σi

be the terminal vertices of vi in T
with ter(vi) = σi ≥ 2, and let P i,j be the vi − �i,j path, excluding vi, in T , where
j ∈ {1, 2, . . . , σi}. Let g : V (T) → [0, 1] be a function defined by g(V (P i,j)) = 1

2
for each i ∈ {1, 2, . . . , k} and for each j ∈ {1, 2, . . . , σi}. Then g is a resolving
function of T .

Proposition 13. Let T be a tree with ex(T) ≥ 1.

(a) If |N(v)∩Lv| ≥ 4 for some v ∈ M2(T), or |N(u)∩Lu| = |N(w)∩Lw| = 3 for
two distinct u,w ∈ M2(T), or |N(u)∩Lu| = |N(v)∩Lv| = |N(w)∩Lw| = 2
for three distinct u, v, w ∈ M2(T), then of (T) = S.

(b) If |N(v) ∩ Lv| = 0 for each v ∈ M2(T), then of (T) = R.

Proof. Let T be a tree that is not a path.
(a) If |N(v) ∩ Lv| ≥ 4 for some v ∈ M2(T), then T has a twin equivalence

class of cardinality at least 4; thus of (T) = S by Corollary 2(a). If |N(u) ∩
Lu| = |N(w) ∩ Lw| = 3 for two distinct u,w ∈ M2(T), then T has two distinct
twin equivalence classes of cardinality 3; thus of (T) = S by Corollary 2(b). If
|N(u) ∩ Lu| = |N(v) ∩ Lv| = |N(w) ∩ Lw| = 2 for three distinct u, v, w ∈ M2(T),
then T has three distinct twin equivalence classes of cardinality 2; thus of (T) = S
by Corollary 2(c).

(b) Let M2(T) = {v1, v2, . . . , vk}, where k ≥ 1. For each i ∈ {1, 2, . . . , k} with
ter(vi) = σi ≥ 2, let �i,1, �i,2, . . . , �i,σi

be the terminal vertices of vi in T , and let
P i,j denote the vi−�i,j path, excluding vi, in T , where j ∈ {1, 2, . . . , σi}. For each
i ∈ {1, 2, . . . , k}, let gi : V (Tvi

) → [0, 1] be a function defined by g(V (P i,j)) =
1
2 for each j ∈ {1, 2, . . . , σi}. Let g : V (T) → [0, 1] be a function such that
g|Tvi

= gi (i.e., the function g restricted to Tvi
yields the function gi) with

g(V (T)) = dimf (T). Then g is a resolving function of T by Lemma 1. Since the
condition |N(v)∩Lv| = 0 for each v ∈ M2(T) implies that |V (P i,j)| ≥ 2 for each
i ∈ {1, 2, . . . , k} and for each j ∈ {1, 2, . . . , σi}, of (T) = R by Corollary 3(a). �

Fractional Maker-Breaker Resolving Game 593

Question 2. For an arbitrary tree T , can we determine of (T)?

Acknowledgement. The author thanks the anonymous referees for some helpful com-
ments and suggestions.

References

1. Arumugam, S., Mathew, V.: The fractional metric dimension of graphs. Discret.
Math. 312, 1584–1590 (2012)

2. Arumugam, S., Mathew, V., Shen, J.: On fractional metric dimension of graphs.
Discrete Math. Algorithms Appl. 5, 1350037 (2013)

3. Beck, J.: Combinatorial Games: Tic-Tac-Toe Theory. Cambridge University Press,
Cambridge (2008)

4. Beerliova, Z., et al.: Network discovery and verification. IEEE J. Sel. Areas Com-
mun. 24, 2168–2181 (2006)

5. Brešar, B., Klavžar, S., Rall, D.F.: Domination game and an imagination strategy.
SIAM J. Discret. Math. 24, 979–991 (2010)

6. Currie, J., Oellermann, O.R.: The metric dimension and metric independence of a
graph. J. Comb. Math. Comb. Comput. 39, 157–167 (2001)

7. Duchêne, E., Gledel, V., Parreau, A., Renault, G.: Maker-Breaker domination
game. Discret. Math. 343(9) (2020). #111955

8. Erdös, P., Selfridge, J.L.: On a combinatorial game. J. Comb. Theory Ser. A 14,
298–301 (1973)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

10. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–
195 (1976)

11. Hefetz, D., Krivelevich, M., Stojaković, M., Szabó, T.: The neighborhood conjec-
ture. Positional Games. OS, vol. 44, pp. 113–139. Springer, Basel (2014). https://
doi.org/10.1007/978-3-0348-0825-5 9

12. Hernando, C., Mora, M., Pelayo, I.M., Seara, C., Wood, D.R.: Extremal graph
theory for metric dimension and diameter. Electron. J. Comb. (2010). #R30

13. Kang, C.X.: On the fractional strong metric dimension of graphs. Discret. Appl.
Math. 213, 153–161 (2016)

14. Kang, C.X., Klavžar, S., Yero, I.G., Yi, E.: Maker-Breaker resolving game.
arXiv:2005.13242 (2020)

15. Kang, C.X., Yi, E.: The fractional strong metric dimension of graphs. In: Wid-
mayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 84–95.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03780-6 8

16. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl.
Math. 70, 217–229 (1996)

17. Klein, D.J., Yi, E.: A comparison on metric dimension of graphs, line graphs, and
line graphs of the subdivision graphs. Eur. J. Pure Appl. Math. 5(3), 302–316
(2012)

18. Nowakawski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discret. Math.
43, 235–239 (1983)

19. Sebö, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29, 383–
393 (2004)

20. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)
21. Yi, E.: The fractional metric dimension of permutation graphs. Acta Math. Sin.

Engl. Ser. 31, 367–382 (2015). https://doi.org/10.1007/s10114-015-4160-5

https://doi.org/10.1007/978-3-0348-0825-5_9
https://doi.org/10.1007/978-3-0348-0825-5_9
http://arxiv.org/abs/2005.13242
https://doi.org/10.1007/978-3-319-03780-6_8
https://doi.org/10.1007/s10114-015-4160-5

Price of Fairness in Budget Division
for Egalitarian Social Welfare

Zhongzheng Tang1, Chenhao Wang2, and Mengqi Zhang3,4(B)

1 School of Sciences, Beijing University of Posts and Telecommunications,
Beijing 100876, China

tangzhongzheng@amss.ac.cn
2 Department of Computer Science and Engineering, University of Nebraska-Lincoln,

Lincoln, NE, USA
wangch@amss.ac.cn

3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, China
mqzhang@amss.ac.cn

4 School of Mathematical Sciences, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. We study a participatory budgeting problem of aggregating
the preferences of agents and dividing a budget over the projects. A bud-
get division solution is a probability distribution over the projects. The
main purpose of our study concerns the comparison between the sys-
tem optimum solution and a fair solution. We are interested in assessing
the quality of fair solutions, i.e., in measuring the system efficiency loss
under a fair allocation compared to the one that maximizes (egalitarian)
social welfare. This indicator is called the price of fairness. We are also
interested in the performance of several aggregation rules. Asymptoti-
cally tight bounds are provided both for the price of fairness and the
efficiency guarantee of aggregation rules.

Keywords: Participatory budgeting · Fairness · Probabilistic voting

1 Introduction

Suppose there is a list of possible projects that require funding, and some self-
interested agents (citizens, parties or players) have their preferences over the
projects. Participatory budgeting is a process of aggregating the preferences of
agents, and allocating a fixed budget over projects [11,12,18]. It allows citizens
to identify, discuss, and prioritize public spending projects, and gives them the
power to make real decisions about how to allocate part of a municipal or public
budget, and how money is spent. These problems consist in sharing resources so
that the agents have high satisfaction, and at the same time the budget should
be utilized in an efficient way from a central point of view.

We consider participatory budgeting as a probabilistic voting process [17],
which takes as input agents’ preferences and returns a probability distribution
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 594–607, 2020.
https://doi.org/10.1007/978-3-030-64843-5_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_40&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_40

Price of Fairness in Budget Division for Egalitarian Social Welfare 595

over projects. That is, a budget division outcome is a vector of non-negative
numbers, one for each project, summing up to 1. We focus on an important
special case of dichotomous preferences: each agent either likes or dislikes each
project, and her utility is equal to the fraction of the budget spent on projects
she likes. Dichotomous preferences are of practical interest because they are easy
to elicit. This process is also referred to as approval voting, as each voter (agent)
specifies a subset of the projects that she “approves”.

The decision-maker is confronted with a system objective of social welfare
maximization, and looks for a budget division solution that performs well under
the objective. A system optimum is any solution maximizing the social welfare.
The utilitarian social welfare is defined as the sum of utilities over all agents,
and the egalitarian social welfare is the minimum among the utilities of agents.
On the other hand, it is desirable for a budget division solution to achieve the
fairness among agents. Fairness usually concerns comparing the utility gained by
one agent to the others’ utilities. The concept of fairness is not uniquely defined
since it strongly depends on the specific problem setting and also on the agents
perception of what a fair solution is. For example, the Individual Fair Share
requires that each one of the n agents receives a 1/n share of decision power, so
she can ensure an outcome she likes at least 1/n of the time (or with probability
at least 1/n).

The system optimum may be highly unbalanced, and thus violate the fairness
axioms. For instance, it could assign all budget to a single project and this may
have severe negative effects in many application scenarios. Thus, it would be
beneficial to reach a certain degree of agents’ satisfaction by implementing some
criterion of fairness. Clearly, the maximum utility of fair solutions in general
deviates from the system optimum and thus incurs a loss of system efficiency.
In this paper, we want to analyze such a loss implied by a fair solution from a
worst-case point of view.

We are interested in assessing the quality of fair solutions, i.e., in measur-
ing the system efficiency loss under a fair allocation compared to the one that
maximizes the system objective. This indicator is called the price of fairness.
Michorzewski et al. [20] study the price of fairness in participatory budgeting
under the objective of maximizing the utilitarian social welfare. We consider this
problem from an egalitarian perspective.

Fairness Axioms. Given a budget equal to 1 and n agents, there are some well-
studied fairness criteria for a budget division solution (or simply, a distribution)
[2,7,15,16]. Individual Fair Share (IFS) requires that the utility of each agent
is at least 1/n. Stronger fairness properties require that groups are fair in a
sense. Unanimous Fair Share (UFS) gives to every group of agents with the
same approval set an influence proportional to its size, that is, each agent in
this kind of group will obtain a utility at least the group’s related size (its
size divided by n). Group Fair Share (GFS) requires that for any group of
agents, the total fraction of the projects approved by the agents of this group
is at least its relative size. Core Fair Share (CFS) reflects the incentive effect in
the voting process. It says that for any group, each agent of the group cannot

596 Z. Tang et al.

obtain a higher utility under another mixture with a probability proportional
to the group size. Average Fair Share (AFS) requires that the average utility
of any group with a common approved outcome is at least its relative size.
A distribution satisfies implementability (IMP) if it can be decomposed into
individual distributions such that no agent is asked to spend budgets on projects
she considers as valueless. We remark that all other axioms mentioned above are
stronger than IFS. Besides, CFS, AFS and IMP implies GFS, which implies UFS
[2].

Voting Rules. The input of voting rules, also called participatory budgeting
rules, includes a list of possible projects, the total available budget, and the
preferences of agents. The output is a partition of budget among the projects
- determining how much budget to allocate to each project- which can be seen
as a distribution. We say a voting rule satisfies a certain fairness axiom, if any
distribution induced by this rule satisfies that. We study the following voting
rules that have been proposed for this setting.

Utilitarian (UTIL) rule selects a distribution maximizing the utilitarian
social welfare, which focus only on efficiency. Conditional Utilitarian (CUT) rule
is its simple variant, maximizing utilitarian welfare subject to the constraint that
the returned distribution is implementable. Random Priority (RP) rule averages
the outcomes of all deterministic priority rules. Nash Max Product (NASH) rule
balances well the efficiency and fairness, which selects the distribution maximiz-
ing the product of agents’ utilities. Egalitarian (EGAL) rule selects a distribution
maximizing the minimum utility of agents. Though it is fair to individuals, it
does not attempt to be fair to groups, and the egalitarian objective even treats
different voters with the same approval set as if they were a single voter. Point
Voting (PV) rule assigns each project a fraction of budget proportional to its
approval score, which does not satisfy any of our fairness properties. Uncoordi-
nated Equal Shares (ES) rule allocates each agent a 1/n share of the budget to
spend equally on her approval projects.

1.1 Our Results

In this paper, we study the participatory budgeting problem under the objective
of maximizing the egalitarian social welfare, i.e., the minimum utility among all
agents. Two questions are considered in a worst-case analysis framework: how
well can a distribution perform on the system efficiency, subject to a fairness
constraint, and how much social welfare can be achieved by a certain voting
rule. Suppose there are n agents and m projects, and the total budget is 1.

For the former question, we measure the system efficiency loss under a fair
distribution by the price of fairness, defined as the ratio of the social welfare
of the best fair distribution to the social welfare of the system optimum, under
the worst-case instance. We study six fairness axioms concerning the price of
fairness, and provided asymptotically tight bounds in Sect. 3. Because every
system optimum satisfies IFS, the price of IFS is trivially 1. By constructing an
example, we show that no distribution satisfying UFS (or GFS, IMP, AFS, CFS)

Price of Fairness in Budget Division for Egalitarian Social Welfare 597

can do better than 2
n for this example, and prove (almost) tight lower bounds.

Our results are summarized in Table 1.

Table 1. The price of fairness for 6 axioms.

Fairness axioms IFS UFS GFS IMP AFS CFS

Lower bounds 1 2
n

2
n

2
n

− 1
n2

2
n

− 1
n2

2
n

− 1
n2

Upper bounds 1 2
n

2
n

2
n

2
n

2
n

For the latter question, we study seven voting rules in Sect. 4. The efficiency
guarantee [19] of a voting rule is the worst-case ratio between the social welfare
induced by the rule and the system optimum. We provide asymptotically tight
bounds for their efficiency guarantees, as shown in Table 2. Obviously EGAL is
optimal, but it is not fair enough. CUT, NASH, ES and RP have a guarantee
of Θ(1

n), and in particular, NASH is very fair in the sense that it satisfies all
axioms mentioned above.

Table 2. Efficiency guarantees for 7 voting rules

Voting rules UTIL CUT NASH EGAL PV ES RP

Lower bounds 0 1
n

2
n

− 1
n2 1 0 1

n
2
n

Upper bounds 0 1
n−3

2
n

1 O(1
mn

) 1
n

+ O(1
nk) 2

n

1.2 Related Work

Participatory budgeting (PB), introduced by Cabannes [12], is a process of demo-
cratic deliberation and decision-making, in which an authority allocates a fixed
budget to projects, according to the preferences of multiple agents over the
projects. Goel et al. [18] and Benade et al. [4] mainly focus on aggregation
rules of PB for social welfare maximization. In the setting where the budget is
perfectly divisible, it can be regarded as a probabilistic voting process [11,17],
where a voting rule takes as input agents’ (aka voters’) preferences and returns
a probability distribution over projects.

An important consideration on PB is what input format to use for prefer-
ence elicitation - how each voter should express her preferences over the projects.
While arbitrary preferences can be complicated and difficult to elicit, dichoto-
mous preferences are simple and practical [6,7], where agents either approve or
disapprove a project. For the dichotomous preference, there have been works
both for divisible projects (e.g., [2,7]) and indivisible projects (e.g., [3,23]). This
divisible approval-based setup is a popular input format in many settings, for

598 Z. Tang et al.

which many fairness notions and voting rules have been proposed [2,10,15]. The
fair share guarantee principles (e.g., IFS, GFS and AFS) are central to the fair
division literature [8,21]. IMP is discussed in [10]. Brandl et al. [9] give a formal
study of strict participation in probabilistic voting. Recently, Aziz et al. [2] give
a detailed discussion of the above fairness notions.

For the voting rules (sometimes referred to as PB algorithms), EGAL rule
maximizes the egalitarian social welfare, and is used as the lead rule in related
assignment model with dichotomous preferences in [6]. NASH rule maximizes
a classic collective utility function, and has featured prominently in researches
[2,13,14,16]. CUT rule was first implicitly used in [15] and studied in more detail
by Aziz et al. [2]. RP rule is discussed in [7].

Our work takes direct inspiration from Michorzewski et al. [20], who study the
price of fairness in the divisible approval-based setting for maximizing utilitarian
social welfare (while we consider the egalitarian one). Price of fairness quantifies
the trade-off between fairness properties and maximization of egalitarian social
welfare, and is widely studied [1,5,22].

2 Preliminaries

An instance is a triple I = (N,P,A), where N = {1, . . . , n} is a set of agents
and P = {p1, . . . , pm} is a set of projects. Each agent i ∈ N has an approval set
Ai ⊆ P over the projects, and A = {A1, . . . , An} is the profile of approval sets.
Let In be the set of all instances with n agents. For each project pj ∈ P , let
N(pj) = {i ∈ N : pj ∈ Ai} be the set of agents who approve pj , and |N(pj)| be
the approval score of pj .

A budget division solution is a distribution x ∈ [0, 1]m over the projects
set P , where xj indicates the budget assigned to project pj , and

∑m
j=1 xj = 1.

Let Δ(P) be the set of such distributions. The utility of agent i ∈ N under
distribution x is the amount of budget assigned to her approved projects, that
is, ui(x) =

∑
pj∈Ai

xj . The (egalitarian) social welfare of x is

sw(I,x) = min
i∈N

ui(x).

Define the normalized social welfare of x as

ŝw(I,x) =
sw(I,x)
sw∗(I)

,

where sw∗(I) is the optimal social welfare of instance I. Clearly, ŝw(I,x) ∈ [0, 1].
Though the system optimum (that maximizes the minimum utility of agents) is
fair in some sense, it is not fair enough. We consider six fairness axioms. Given
an instance I = (N,P,A), a distribution x satisfies

– Individual Fair Share (IFS) if ui(x) ≥ 1/n for all agent i ∈ N ;
– Unanimous Fair Share (UFS) if for every S ⊆ N such that Ai =

Aj for all i, j ∈ S, we have ui(x) ≥ |S|/n for any i ∈ S.

Price of Fairness in Budget Division for Egalitarian Social Welfare 599

– Group Fair Share (GFS) if for every S ⊆ N , we have
∑

pj∈∪i∈SAi
xj ≥ |S|/n;

– Implementability (IMP) if we can write x = 1
n

∑
i∈N xi for some distribution

xi such that xi,j > 0 only if pj ∈ Ai;
– Average Fair Share (AFS) if for every S ⊆ N such that

⋂
i∈S Ai �= ∅, we have

1
|S|

∑
i∈S ui(x) ≥ |S|/n;

– Core Fair Share (CFS) if for every S ⊆ N , there is no vector z ∈ [0, 1]m with∑m
j=1 zj = |S|/n such that ui(z) > ui(x) for all i ∈ S.

IFS is the weakest one among the above axioms. Besides, each of CFS, AFS
and IMP implies GFS, which implies UFS.

A voting rule f is a function that maps an instance I to a distribution
f(I) ∈ Δ(P). We consider the following voting rules:

– Utilitarian (UTIL) rule selects x maximizing
∑

i∈N ui(x).
– Conditional Utilitarian (CUT) rule selects the distribution 1

n

∑
i∈N xi, where

xi is the uniform distribution over the projects in Ai with the highest approval
score.

– Nash Max Product (NASH) rule selects x maximizing
∏

i∈N ui(x).
– Egalitarian (EGAL) rule selects x maximizing mini∈N ui(x).
– Point Voting (PV) rule selects x, where xj = |N(pj)|∑

p∈P |N(p)| for pj ∈ P .

– Uncoordinated Equal Shares (ES) rule selects distribution 1
n

∑
i∈N xi, where

xi is the uniform distribution over Ai, for any i ∈ N .
– Random Priority (RP) rule selects 1

n!

∑
σ∈Θ(N) fσ(I), where Θ(N) is the set

of all strict orderings of N , and fσ(I) ∈ arg maxx∈Δ(P) �σ
lexico is a distribu-

tion maximizing the utilities of agents lexicographically with ordering σ.

A voting rule f satisfies a fairness axiom if distribution f(I) satisfies it for
all instances I. Table 3 shows the fairness axioms satisfied by the above voting
rules.

Table 3. Fairness axioms satisfied by voting rules

UTIL CUT NASH EGAL PV ES RP

IFS + + + + +

UFS + + + +

GFS + + + +

IMP + + +

AFS +

CFS +

As a warm-up, we give some properties on the optimal social welfare.

Proposition 1. Let m∗ be the minimum possible number such that there is an
optimal distribution giving positive budget to exactly m∗ projects. If m∗ > 1, the
optimal social welfare is at most m∗−1

m∗ . If m∗ = 1, the optimal social welfare is
1.

600 Z. Tang et al.

Proof. Consider an optimal distribution x that gives positive budget to m∗ > 1
projects. For each project pj ∈ P , there must exist an agent (say aj ∈ N) who
does not approve pj ; otherwise, a distribution allocating budget 1 to this project
is optimal, and thus m∗ = 1, a contradiction. Further, because x distributes
budget 1 among the m∗ projects, there is a project pk receiving a budget at
least 1

m∗ , and agent ak has a utility at most 1 − 1
m∗ , establishing the proof. �	

Proposition 2. Let m′ = minS⊆P :∪p∈SN(p)=N |S| be the minimum possible
number of projects that cover all agents. Then the optimal social welfare is at
least 1

m′ .

Proof. Consider m′ projects that cover all agents, i.e., each agent approves at
least one of the m′ projects. A distribution that allocates 1

m′ to each of the m′

projects induces a utility of at least 1
m′ for every agent, implying the optimal

social welfare at least 1
m′ . �	

Proposition 3. For an instance (N,P,A), if the optimal social welfare is k
n for

some k ≤ n, then there exists a project pj ∈ P such that at least �k� agents
approve it, i.e., N(pj) ≥ �k�.
Proof. Suppose for contradiction that for every pj ∈ P , N(pj) ≤ �k�−1. Let x be
an optimal distribution. Each project pj can provide totally at most (�k�− 1)xj

utility for the n agents. As
∑

pj∈P xj = 1, the total utility that the m projects
can provide for the n agents is at most �k� − 1. Hence, there exists at least one
agent whose utility is at most �k	−1

n < k
n , a contradiction with the optimal social

welfare. �	

3 Guarantees for Fairness Axioms

Given an instance I, the price of fairness (POF) of IFS with respect to I is
defined as the ratio of the social welfare of the best IFS distribution to the
optimal social welfare, that is,

POFIFS(I) = sup
x∈ΔIFS

sw(I,x)
sw∗(I)

= sup
x∈ΔIFS

ŝw(I,x),

where ΔIFS is the set of distributions satisfying IFS.
The POF of IFS is the infimum over all instances, that is,

POFIFS = inf
I∈In

POFIFS(I).

The POFs of other fairness axioms are similarly defined.
By the definition of IFS (that every agent receives a utility at least 1/n), it is

easy to see that every instance admits an IFS distribution, and thus an optimal
distribution must satisfy IFS. We immediately have the following theorem.

Theorem 1. For any instance I, there exists an IFS distribution x such that
ŝw(I,x) = 1. That is, POFIFS = 1.

Price of Fairness in Budget Division for Egalitarian Social Welfare 601

Also, we can give a tight lower bound for the normalized social welfare of
IFS distributions. Recall that GFS implies IFS.

Theorem 2. For any instance I and any IFS (or GFS) distribution x, we have
ŝw(I,x) ≥ 1

n . Further, there exists an instance I and a GFS distribution x such
that ŝw(I,x) = 1

n .

Proof. The first claim is straightforward from the definition. For the second
claim, we consider an instance I with n agents and m = 2n+1 projects. For any
i ∈ N \ {n}, the approval set of agent i is Ai = {p2i−1, p2i, p2i+1, p2n+1}, and
An = {p2n−1, p2n, p1, p2n+1}. That is, all agents have a common approval project
p2n+1, and each agent i has an approval project p2i, which is not approved by
other agents. The optimal social welfare is sw∗(I) = 1, attained by placing all
budget to common project p2n+1. Consider a distribution x where x2i = 1

n for
each i ∈ N , and xj = 0 for any other project pj . The utility of every agent is 1

n ,
and it is easy to check that x satisfies GFS, because for any group S ⊆ N we
have

∑
pj∈∪i∈SAi

xj = |S|/n. Then the social welfare induced by distribution x

is sw(I,x) = 1
n , which implies ŝw(I, x) = sw(I,x)

sw∗(I) = 1
n . This completes the proof.

�	
In the following we give a universal upper bound 2

n on the POFs of all other
fairness axioms.

Theorem 3. There exists an instance I such that for every distribution x satis-
fying UFS (or GFS, IMP, AFS, CFS), we have ŝw(I,x) ≤ 2

n . That is, the POF
of UFS (or GFS, IMP, AFS, CFS) is at most 2

n .

Proof. Consider an instance I with n agents and 2 projects. Agents 1, 2, . . . , n−1
approve project p1, and agent n approves p2. That is, N(p1) = {1, 2, . . . , n − 1}
and N(p2) = {n}. The optimal social welfare is sw∗(I) = 1/2, attained by
giving each project half of the budget. For any distribution x satisfying UFS
for instance I, let the utility of each agent in N(p1) be x1, and the utility of
agent n be x2. Applying UFS to coalition N(p1) and N(p2), respectively, we
have x1 ≥ n−1

n and x2 ≥ 1
n . Since x1 + x2 = 1, it must be x1 = n−1

n , x2 = 1
n .

Then sw(I,x) = min{x1, x2} = 1
n , and ŝw(I, x) = sw(I,x)

sw∗(I) = 2
n . This completes

the proof for UFS. Since each of GFS, IMP, AFS and CFS implies UFS, this
conclusion also holds for GFS, IMP, AFS and CFS. �	

4 Guarantees for Voting Rules

In this section, we consider seven voting rules (UTIL, CUT, NASH, EGAL,
PV, ES and RP), and analyze their performance on the system objective in the
worst case. Further, these analysis turn back to provide POF results for fairness
axioms, as the voting rules satisfy some certain fairness axioms (see Table 3).
Define the efficiency guarantee (or simply, guarantee) of voting rule f as the
worst-case normalized social welfare:

keff (f) = min
I∈In

ŝw(I, f(I)).

602 Z. Tang et al.

Theorem 4. The efficiency guarantee of UTIL is 0, and that of EGAL is 1.
The efficiency guarantees of CUT, NASH, ES, and RP are all in [1n , 2

n].

Proof. The efficiency guarantee of EGAL is trivial. Consider the instance con-
structed in the proof of Theorem3, where N(p1) = {1, . . . , n − 1} and N(p2) =
{n}. The optimal social welfare is 1

2 , attained by allocating x1 = x2 = 1
2 . Rule

UTIL returns x1 = 1 and x2 = 0, inducing a utility 0 for agent n. So the guaran-
tee of UTIL is 0. Rules CUT, NASH, PV, ES all return x1 = 1 − 1

n and x2 = 1
n ,

inducing a utility 1
n for agent n. So the guarantee of these four rules is at most

1/n
1/2 = 2

n . (Indeed, this claim simply follows from Theorem 3, since all the four
rules satisfy UFS.)

On the other hand, for any instance I and the distribution x returned by
CUT (resp., NASH, ES, RP), we have ui(I) ≥ 1

n for any i ∈ N , since the rule
satisfies IFS. Then sw(I,x) ≥ 1

n , which implies ŝw(I,x) ≥ 1
n . Therefore, the

efficiency guarantees of CUT (resp., NASH, ES, RP) is at least 1
n . �	

Theorem 5. The efficiency guarantee of ES is no better than 1
n + O(1

nk), for
all k ∈ N

+.

Proof. Consider an instance with n agents and m = nk+1 + 1 projects. Each
agent approves nk + 1 projects. The intersection of every two approval sets is
project pm, implying that pm is approved by all agents, and the approval score
of every other project is 1. It is easy to see that (by Proposition 1), the optimal
social welfare is 1, attained by allocating all budget to pm. The outcome of ES
is xm = 1

nk+1
, and xj = 1

n · 1
nk+1

for any pj �= pm. Thus, ES gives each agent a
utility of

1
n(nk + 1)

· nk +
1

nk + 1
=

nk−1 + 1
nk + 1

=
1
n

+ O(
1
nk

),

which completes the proof. �	
Theorem 6. The efficiency guarantee of PV is O(1

mn).

Proof. Consider an instance I with n agents and m projects. Each agent in
N \{n} approves p1, . . . , pm−1, and agent n approves pm. That is, the first m−1
projects are approved by the first n − 1 agents, and the last project is approved
by the remaining agent. The optimal social welfare is sw∗(I) = 1

2 , attained by a
distribution with x1 = xm = 1

2 . However, PV allocates each project in P \ {pm}
a budget of n−1

(m−1)(n−1)+1 , and project pm a budget of 1
(m−1)(n−1)+1 . Then the

social welfare induced by PV is 1
(m−1)(n−1)+1 , which implies the guarantee of

PV is at most 2
(m−1)(n−1)+1 = O(1

mn). �	

Theorem 7. The efficiency guarantee of CUT is no better than 1
n−3 .

Proof. Consider an instance with m =
(
n−1
2

)
+1. Each of the first

(
n−1
2

)
projects

corresponds to a unique pair of the first n − 1 agents who disapprove it, and all
other agents approve it; the last project pm is approved by the first n−1 agents.

Price of Fairness in Budget Division for Egalitarian Social Welfare 603

Fig. 1. An example with n = 5 agents and m = 7 projects, where pSj indicates that
project pj is disapproved by every agent in set S ⊆ N . Each of the first 6 projects
corresponds to a pair of agents.

That is, each agent in N \ {n} disapproves n − 2 projects in P \ {pm}, and
approves all other projects; agent n approves all m−1 projects in P \{pm}, and
disapproves project pm. Figure 1 shows a 5-agent example.

Then we have |N(pm)| = n − 1, and |N(pj)| = n − 2 for each j ≤ m − 1. The
optimal social welfare is at least 1 − n−2

m > n−3
n−1 , achieved by allocating uniform

budget to each project. However, CUT rule allocates each project in P \ {pm}
a budget of 1

n(m−1) , and project pm a budget of n−1
n . Then the social welfare

induced by CUT is 1/n, (i.e., the utility of agent n) which implies the efficiency
guarantee of CUT is at most n−1

n(n−3) < 1
n−3 . �	

Theorem 8. The efficiency guarantee of NASH is in [2n − 1
n2 , 2

n].

Proof. Let I be an arbitrary instance with n agents and m projects, and fNS(I)
be the distribution returned by NASH rule. Since NASH satisfies IFS, we have
sw(I, fNS(I)) ≥ 1

n . By Theorem 3 and the fact that NASH satisfies UFS, the
efficiency guarantee is at most 2

n . If the social welfare induced by NASH rule
is sw(I, fNS(I)) ≥ 2

n , the proof is done. So we only need to consider the case
sw(I, fNS(I)) ∈ [1n , 2

n). Suppose for contradiction that

sw(I, fNS(I))
sw∗(I)

<
2
n

− 1
n2

. (1)

Let u∗ and uNS be the utility profiles induced by an optimal distribution
and the solution output by NASH, respectively. Let ī ∈ N be the agent with
the minimum utility in the NASH solution, i.e., uNS

ī
= sw(I, fNS(I)). Then we

have

604 Z. Tang et al.

∑

i∈N

u∗
i

uNS
i

=
u∗̄

i

uNS
ī

+
∑

i∈N :i
=ī

u∗
i

uNS
i

≥ sw∗(I)
sw(I, fNS(I))

+
∑

i∈N :i
=ī

u∗
i

uNS
i

(2)

>
1

2/n − 1/n2
+

sw∗(I)
1

(n − 1)

>
1

2/n − 1/n2
+

1/n

2/n − 1/n2
(n − 1) (3)

= n, (4)

where (2) comes from (1), and (3) comes from (1) and sw(I, fNS(I)) ≥ 1
n .

The outcome of NASH rule is an optimal solution of the following convex
optimization problem:

max h(u) =
∑

i∈N

log(ui)

s.t.
∑

pj∈Ai

xj = ui, for all i ∈ N

m∑

j=1

xj = 1,

xj ≥ 0, for j = 1, . . . , m

Let D be the feasible domain of this problem. Since all constraints are linear, D
is a convex set. Let Du = {u|∃ x s.t. (u,x) ∈ D} be a restriction on u. Then for
any 0 ≤ α ≤ 1 and any utility profile u′ ∈ Du, we have uNS +α(u′ −uNS) ∈ Du.
Then, we can derive

lim
α→0+

h(uNS + α(u′ − uNS)) − h(uNS)
α

≤ 0

=⇒ ∇h(uNS)T(u′ − uNS) ≤ 0

=⇒
∑

i∈N

u′
i

uNS
i

≤ n,

which gives a contradiction to Eq. (4). �	
Because NASH rule satisfies the properties IMP, AFS and CFS, combining

with Theorem 3, we have the following corollary.

Corollary 1. The POFs of IMP, AFS and CFS are all in [2n − 1
n2 , 2

n].

Theorem 9. The efficiency guarantee of RP is 2
n .

Price of Fairness in Budget Division for Egalitarian Social Welfare 605

Proof. Let I be an arbitrary instance, and fRP (I) be the distribution returned
by RP rule. Since RP satisfies IFS, the social welfare of fRP (I) is at least 1

n . If
sw∗(I) ≤ 1

2 , the normalized social welfare is ŝw(I, fRP (I)) ≥ 2
n . So it suffices to

consider the case sw∗(I) > 1
2 .

When sw∗(I) > 1
2 , if there are two agents i, j ∈ N such that Ai ∩ Aj = ∅,

then no distribution can give both agents a utility larger than 1
2 , a contradiction.

So for any two agents, the intersection of their approval sets is non-empty. For
each agent i ∈ N , under RP rule, the probability of ranking the first among
the n! permutations is 1

n , where she receives a utility 1. Suppose i = σ(2) and
j = σ(1) for a permutation σ ∈ Θ(N). Since RP maximizes the utility of agents
lexicographically with respect to σ, it must allocate all budget to their inter-
section Ai ∩ Aj , and the utilities of agents i and j both are 1. Note that the
probability of ranking the second among the n! permutations for agent i is 1

n .
The utility of agent i under RP rule is at least

Pr{i = σ(1)} · 1 + Pr{i = σ(2)} · 1 =
2
n

,

and the normalized social welfare is also at least 2
n . Combining with the upper

bound in Theorem4, the efficiency guarantee of RP is 2
n . �	

We remark that it is still open whether RP rule can be implemented in
polynomial time. Because RP rule satisfies GFS, combining with Theorem 3, we
have the following corollary.

Corollary 2. The POF of GFS is 2
n .

5 Conclusion

We quantify the trade-off between the fairness criteria and the maximization of
egalitarian social welfare in a participatory budgeting problem with dichotomous
preferences. Compared with the work of Michorzewski et al. [20], which considers
this approval-based setting under the utilitarian social welfare, we additionally
study a fairness axiom Unanimous Fair Share (UFS) and a voting rule Random
Priority (RP). We present (asymptotically) tight bounds on the price of fairness
for six fairness axioms and the efficiency guarantees for seven voting rules. In
particular, both NASH and RP rules are guaranteed to provide a roughly 2

n
fraction of the optimum egalitarian social welfare. The NASH solution can be
computed by solving a convex program, while RP is unknown to be computed
efficiently.

Both the work of [20] and this paper assume that all agents have dichoto-
mous preferences, and an immediate future research direction would be to study
the effect of fairness constraint when agents are allowed to have a more general
preference. Another avenue for future research is considering the fairness in par-
ticipatory budgeting from the projects’ perspective. For example, the projects
(e.g., facility managers and location owners) have their own thoughts, and may

606 Z. Tang et al.

have a payoff from the budget division, for which a good solution should balance
the system efficiency and the satisfaction of the agents and projects. So it would
be interesting to study the trade-off between system efficiency and this new class
of fairness concepts.

Acknowledgement. The authors thank Xiaodong Hu and Xujin Chen for their help-
ful discussions, and anonymous referees for their valuable feedback.

References

1. Aumann, Y., Dombb, Y.: The efficiency of fair division with connected pieces.
ACM Trans. Econ. Comput. 3(4), 1–16 (2015)

2. Aziz, H., Bogomolnaia, A., Moulin, H.: Fair mixing: the case of dichotomous pref-
erences. In: Proceedings of the 20th ACM Conference on Economics and Compu-
tation (ACM-EC), pp. 753–781 (2019)

3. Aziz, H., Lee, B., Talmon, N.: Proportionally representative participatory budget-
ing: axioms and algorithms. arXiv:1711.08226 (2017)

4. Benade, G., Nath, S., Procaccia, A.D., Shah, N.: Preference elicitation for par-
ticipatory budgeting. In: Proceedings of the 31st AAAI Conference on Artificial
Intelligence (AAAI), pp. 376–382 (2017)

5. Bertsimas, D., Farias, V.F., Trichakis, N.: The price of fairness. Oper. Res. 59(1),
17–31 (2011)

6. Bogomolnaia, A., Moulin, H.: Random matching under dichotomous preferences.
Econometrica 72(1), 257–279 (2004)

7. Bogomolnaia, A., Moulin, H., Stong, R.: Collective choice under dichotomous pref-
erences. J. Econ. Theory 122(2), 165–184 (2005)

8. Bouveret, S., Chevaleyre, Y., Maudet, N.: Fair allocation of indivisible goods. In:
Handbook of Computational Social Choice. Cambridge University Press (2016)

9. Brandl, F., Brandt, F., Hofbauer, J.: Incentives for participation and abstention in
probabilistic social choice. In: Proceedings of the 14th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1411–1419 (2015)

10. Brandl, F., Brandt, F., Peters, D., Stricker, C., Suksompong, W.: Donor coordina-
tion: collective distribution of individual contributions. Technical report (2019)

11. Brandt, F.: Rolling the dice: recent results in probabilistic social choice. Trends
Comput. Soc. Choice 3–26 (2017)

12. Cabannes, Y.: Participatory budgeting: a significant contribution to participatory
democracy. Environ. Urbanization 16(1), 27–46 (2004)

13. Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.:
The unreasonable fairness of maximum nash welfare. In: Proceedings of the 17th
ACM Conference on Economics and Computation (ACM-EC), pp. 305–322 (2016)

14. Conitzer, V., Freeman, R., Shah, N.: Fair public decision making. In: Proceedings
of the 18th ACM Conference on Economics and Computation (ACM-EC), pp.
629–646 (2017)

15. Duddy, C.: Fair sharing under dichotomous preferences. Math. Soc. Sci. 73, 1–5
(2015)

16. Fain, B., Goel, A., Munagala, K.: The core of the participatory budgeting problem.
In: Cai, Y., Vetta, A. (eds.) WINE 2016. LNCS, vol. 10123, pp. 384–399. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-54110-4 27

http://arxiv.org/abs/1711.08226
https://doi.org/10.1007/978-3-662-54110-4_27

Price of Fairness in Budget Division for Egalitarian Social Welfare 607

17. Gibbard, A.: Manipulation of schemes that mix voting with chance. Econometrica:
J. Econom. Soc. 665–681 (1977)

18. Goel, A., Krishnaswamy, A.K., Sakshuwong, S., Aitamurto, T.: Knapsack voting
for participatory budgeting. ACM Trans. Econ. Comput. 7(2), 1–27 (2019)

19. Lackner, M., Skowron, P.: A quantitative analysis of multi-winner rules. In:
Proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI) (2019)

20. Michorzewski, M., Peters, D., Skowron, P.: Price of fairness in budget division
and probabilistic social choice. In: Proceedings of the 34th AAAI Conference on
Artificial Intelligence (AAAI), pp. 2184–2191 (2020)

21. Moulin, H.: Fair Division and Collective Welfare. MIT Press, Cambridge (2004)
22. Suksompong, W.: Fairly allocating contiguous blocks of indivisible items. Discret.

Appl. Math. 260, 227–236 (2019)
23. Talmon, N., Faliszewski, P.: A framework for approval-based budgeting methods.

In: Proceedings of the 33th AAAI Conference on Artificial Intelligence (AAAI),
pp. 2181–2188 (2019)

Inspection Strategy for On-board Fuel Sampling
Within Emission Control Areas

Lingyue Li, Suixiang Gao, and Wenguo Yang(B)

School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China

lilingyue17@mails.ucas.ac.cn, {sxgao,yangwg}@ucas.ac.cn

Abstract. This paper quantitatively analyzes the inspection strategy (which arriv-
ing ships are selected for inspection) for on-board fuel sampling considering lim-
ited inspection capacity and ships’ violation behaviors. By establishing a semi-
random input model and proposing the corresponding algorithm, the optimal
inspection strategy is obtained. Furthermore, the impacts of related factors on
the optimal inspection strategy are analyzed. The results show that compared to
randomly select ships, the method proposed in our study can determine a more
reasonable inspection strategy.

Keywords: Maritime transportation · Emission control areas · On-board fuel
sampling · Semi-random input model

1 Introduction

In recent years, emission control areas (ECAs) that are proposed by the International
Maritime Organization (IMO) [1] have become an important measure to reduce and
control pollutant emissions from ships [2, 3]. As a basis and guarantee for the effec-
tive enforcement of the ECA regulations, governmental supervision for violations by
ships is not only crucial for violation identification, but also has an important role in
the achievement of expected environmental benefits. At present, port state is responsible
for the supervision of ships arriving at the port and there are three commonly employed
supervision methods. Among them, on-board fuel sampling that verifies the sulfur con-
tent of fuels being utilized on board is a commonly employed and reliable supervision
method. However, this method has two challenges. First, the inspection capacity of a
government is limited. Many ships visit one port per day, and the government can only
inspect a small number of ships. Second, the violation behaviors of ships are unknown
to governments. After the establishment of ECAs, there are two strategies for a ship,
violation and compliance. Violation behavior is a strategic choice, indicating that the
ship violates the ECA regulation. Considering violation behavior is private information
of ship operators, thus governments cannot know ships’ final decisions in advance. Due
to the above challenges, there is no relevant research or policy to show the quantitative
method of selecting inspected ships. To address this problem, this paper presents an opti-
mization model to quantitatively analyze the inspection strategy (which arriving ships

© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 608–623, 2020.
https://doi.org/10.1007/978-3-030-64843-5_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_41&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_41

Inspection Strategy for On-board Fuel Sampling Within Emission Control Areas 609

are selected for inspection) for on-board fuel sampling. Our aim is to develop a feasible
inspection strategy that is adapted to a government’s limited inspection capability and
ships’ violation behaviors.

Although previous studies of behavior analysis of ships and governments have
achieved many results, some progress is urgently needed. First, an accurate descrip-
tion of the behavior of each ship is lacking. Based on the evolutionary game model in
related studies [4, 5], ships are assumed to be a homogeneous population, and the indi-
vidual differences of ships and the relationship among ships are disregarded. Second,
few studies about inspection strategy have considered the inspection capacity. In 2018,
the European Union (EU) issued regulatory guidance on sulfur emissions that employs
THETIS-EU, including historical and generic information from third party alerts [6].
Nevertheless, more factors may affect the inspection strategy and need to be considered,
such as the penalty policy, economy, port and ship characteristics. In addition, analysis of
methods to improve the inspection strategy is lacking. Therefore, combining influencing
factors to accurately describe ships’ violation behaviors and considering a government’s
limited inspection capacity to propose a reasonable inspection strategy remains to be
performed and would be extremely valuable.

Inspection strategy analysis from the perspective of mathematical description and
optimization has not been addressed. Therefore, this paper is based on an optimization
model to quantitatively analyze the inspection strategy with a government’s limited
inspection capacity and ships’ violation behaviors. Moreover, the impacts of related
factors on the inspection strategy are discussed. The results of this paper will provide
methodological support for the effective enforcement of the ECA regulations, which is
crucial for pollutant emissions reduction from ships.

The main contributions of this paper are summarized as follows: first, we describe
the behavior of a ship with three properties— economic benefit, social responsibil-
ity and randomness—which provides a reasonable simulation. Second, we construct a
semi-random input model to obtain the optimal inspection strategy, which can provide
governments with feasible guidance. Third, we analyze the impact of related factors in
terms of government and ship characteristics, which provides support for the dynamic
adjustment of an inspection strategy.

2 Description of Ships’ Violation Behaviors

A ship has two strategies (violation and compliance), and its final behavior is affected
by many factors, such as economic benefit, social responsibility, inspection capacity and
competition between ships. Thus, the challenge is how to quantify the impact of these
factors and combine them.

Since the ultimate goal of ships is to make a profit, it is obvious that economic benefit
is amain factor.We use fuel cost saving and penalty fine to describe the economic benefit,
and environmental cost to describe social responsibility.

610 L. Li et al.

First, the fuel cost saving for a non-compliant ship is calculated by multiplying the
fuel price difference by fuel consumption. Among them, fuel consumption is affected
by many factors such as speed, load, ship type, ocean current and weather. Among
these factors, speed has the greatest impact on fuel consumption, and many studies have
determined that fuel consumption is proportional to the sailing speed [7–9]. Therefore,
this paper also applies this relation to calculate the fuel consumption.

R = f × va (1)

where R is the fuel consumption per unit time, f is a conversion factor between speed
and fuel consumption, v is the sailing speed, and a is the proportionality constant. We
adopt the most commonly employed parameter assumptions f = 0.012 and a = 3 in the
literature [10–12].

Thus, the fuel cost saving for a non-compliant ship is calculated as follows:

Q = (Pe − Pw)Re = 0.012(Pe − Pw)v2D (2)

where Q represents the fuel cost saving; Pe and Pw represent the fuel prices per ton of
compliant fuel and non-compliant fuel, respectively; Re represents the fuel consumption
when the ship sailing within the ECA.D represents the ship’s sailing distance within the
ECA.

Second, the penalty fine for a non-compliant ship is calculated based on the
Environmental Protection Agency (EPA) [13]:

A= λ

(
(Pe − Pw) × AFC

24
× D

v
+ α(s × AFC

24
× D

v
+ GR)

)
(3)

whereA represents the penalty fine; λ and α represent correction factors;AFC represents
the average daily fuel consumption; s represents the sulfur content of non-compliant
fuels; GR represents a record-keeping violation.

Third, considering the incremental emissions caused by violations require a certain
amount of pollution control cost to be removed, we assume the environmental cost of a
non-compliant ship is equal to the incremental emissionsmultiplied by the corresponding
pollution control cost:

C =
∑
k

pk�Ek =
∑
k

pk(EFe
k − EFw

k)Re (4)

where C represents the environmental cost; k represents the type of pollution emissions;
pk represents the pollution control cost for type k emission.�Ek represents incremental
emissions of type k emission. EFw

k and EFe
k represent the emission factors of type k

emission for compliant fuel and non-compliant fuel, respectively. Since the motivation
of ECAs is to cut SOx, NOx and PM emissions, we assume that k includes SOx, NOx
and PM.

Inspection Strategy for On-board Fuel Sampling Within Emission Control Areas 611

Based on the discussion above, the initial violation tendency for the i-th ship can be
determined as follows:

ci = Qi

Ai + Ci
(5)

where ci represents the initial violation tendency for the i-th ship.Qi, Ai andCi represent
the fuel cost saving, penalty fine and environmental cost for the i-th ship, respectively.

Considering the government may have inspection records. That is, information about
which ship was inspected and whether the ship complies with the regulations. Making
this historical information available would be helpful. When the historical behaviors of
violations and inspections are known, the initial violation tendency for the i-th ship can
be determined as follows:

ci =
Qi +

wi∑
li

Qli

(
Ai +

wi∑
li

Ali

)
+

(
Ci +

wi∑
li

Cli

) (6)

where wi represents the number of previous arrivals of the i-th ship. Qli , Ali and Cli
represent the fuel cost saving, penalty fine and environmental cost for the l-th arrival of
the i-th ship, respectively.

In addition, other factors will also affect a ship’s violation behavior, but they are
difficult to quantify accurately. This paper assumes that the impact of these factors on
ships’ violation behaviors comes from the same distribution, which is characterized by
a Gaussian distribution with mean 0 and standard deviation σ , denoted by G(0, σ 2).
Specifically, the initial violation tendency ci is randomly perturbed by adding a random
variable generated by G(0, σ 2) to each ci. The smaller σ is, the smaller the influence
of other factors on initial violation tendency. The standard deviation is determined as
follows:

σ =
√√√√ 1

N − 1

N∑
i=1

|ci − μ|2 (7)

where N represents the total number of ships. μ represents the mean of c, that is, μ =
1
N

N∑
i=1

ci. Thus, the violation tendency for the i-th ship is bi = ci + G(0, σ 2)1.

1 According to the simulation, the numerator and denominator of c have the same order of mag-
nitude. The range of c and σ are [0.6, 1.8] and 0.16, respectively. In addition, the determination
of non-compliant ships is mainly affected by the relative value of b and has little relationship
with the absolute value b. Therefore, the establishment of b is relatively reasonable.

612 L. Li et al.

Finally, we use the roulette selection method to generate ship behaviors (xi) based on
non-compliance rate (number of inspected ships as a percentage of the total number of
ships). Based on the discussion above, the following procedure is proposed to describe
ships’ violation behaviors:

Step 1: Determine the violation tendency ci by considering the historical and current
economic benefit of the i-th ship.
Step 2: Determine the standard deviation σ by considering other factors of the i-th ship.
Step 3: Determine the violation tendency bi for the i-th ship.
Step 4: Let Ii be the sum of the violation tendency of the first i ships and I0 = 0. Thus,
we get an interval [I0, . . . IN], where Ii = Ii−1 + bi.
Step 5: Randomly select a point in the interval. If the point falls within the k-th sub-
interval [Ik , Ik+1], then assume that the k-th ship is a non-compliant ship.
Step 6: Randomly select points until the non-compliance rate is reached. A ship can only
be selected once. If the ship is selected again, discard the result; a new random selection
is needed until a different ship is selected.

3 Model Formulation and Algorithm

Port state is responsible to conduct the inspection, and the inspection strategy is that the
government where the port is located needs to determine which ship is to be inspected
under consideration of ships’ violation behaviors and its inspection capability. The goal is
to reduce the pollution emissions of ships through government inspections. This section
uses a semi-random input model to obtain inspection strategy of the government. The
symbols are defined as follows:

Indices and parameters:

N Total number of ships that visit a port in one day
m Number of inspection groups, where an inspection group is composed of sever-

al inspectors who will inspect one ship at a time
r Non-compliance rate, the number of violation ships as a percentage of total

ships
Inspection rate, the number of inspected ships as a percentage of total ships

i i-th ship
j j-th inspection group
k The type of pollution emissions

 wi Number of previous arrivals of the i-th ship
li l-th previous arrival of the i-th ship
tji Total inspection time for the j-th group to inspect the i-th ship, including the ar-

rival and departure times of the inspected ship
Tj Daily working hours of the j-th group
Ci Environmental cost of the i-th ship
 xi Binary variable, equals one if the i-th ship violates regulations; otherwise, it

equals zero
Decision variables:
yji Binary variable, equals one if the government inspects the i-th ship; otherwise,

it equals zero

Inspection Strategy for On-board Fuel Sampling Within Emission Control Areas 613

For a government, the final goal of on-board inspection is to prevent ships from
violating ECA regulations, and then reducing pollutant emissions from ships. The gov-
ernment’s optimal inspection strategy is to inspect ships that bring greater environmental
costs. Thus, the objective of inspection is tomaximize the environmental cost of inspected
ships.

max
yji∈{0,1}

m∑
j=1

N∑
i=1

Cixiyji (8)

For each inspection group, the total inspected time is less than or equal to theworking
hours per day, that is,

N∑
i=1

tjiyji ≤ Tj, j = 1, . . . , m (9)

Each ship is at most inspected once, thus

m∑
j=1

yji ≤ 1, i = 1, . . . , N (10)

We assume that the non-compliance rate of ships is known and it is reasonable to
use the value obtained by monitoring or theoretical analysis in previous studies. Thus,
the number of non-compliant ships is equal to the non-compliance rate multiplied by
the total number of ships.

N∑
i=1

xi = rN (11)

The proportion of ships that are inspected is equal to the policy requirement.

m∑
j=1

N∑
i=1

yji = βN (12)

The semi-random input model [P1] is constructed as follows:

max
yji∈{0,1}

m∑
j=1

N∑
i=1

Cixiyji (13)

614 L. Li et al.

s.t.
N∑
i=1

tjiyji ≤ Tj, j = 1, . . . , m (14)

m∑
j=1

yji ≤ 1, i = 1, . . . , N (15)

N∑
i=1

xi = rN (16)

m∑
j=1

N∑
i=1

yji = βN (17)

xi ∈ {0, 1}, i = 1, . . . , N (18)

yji ∈ {0, 1}, i = 1, . . . , N , j = 1, . . . , m (19)

The objective function (13) is to maximize the environmental cost of inspected
ships. Constraint (14) is the time constraint. Constraint (15) means each ship is at most
inspected once. Constraint (16) is the non-compliance rate constraint. Constraint (17) is
the inspection rate constraint. Constraints (18) is a semi-random input. Constraint (19)
is the 0–1 constraints.

The difficulty of solving the model [P1] is that the objective function cannot be
computed exactly, but it can be estimated through simulation. Thus, the Sample Aver-
age Approximation (SAA) method [14] is applicable, which can transform the model
[P1] into multiple deterministic programming models. The corresponding algorithm is
designed as follows:

Inspection Strategy for On-board Fuel Sampling Within Emission Control Areas 615

616 L. Li et al.

4 Results and Discussion

This section includes three parts. Section 4.1 describes the data. Section 4.2 employs an
optimization model to analyze the optimal inspection strategy, and Sect. 4.3 analyzes
the impacts of different influence factors. All the employed models are solved with
MATLAB 2019b software.

4.1 Data

The Atlantic coast and Gulf of Mexico coast are part of the North American ECA, which
has the most complex ECA boundary shape and corresponding penalty policy, and thus,
will be conducive for the quantitative study. Therefore, we consider this area as the
research object and select 27 ports based on the coastal shape and port size (see Fig. 1).
The fuel prices mainly come from MABUX [15] in January 2019, and missing data are
replaced by the average value of the remaining ports, which are IFO380 = 420, MGO

Fig. 1. ECA boundary and ports on the Atlantic coast and Gulf of Mexico coast.

Inspection Strategy for On-board Fuel Sampling Within Emission Control Areas 617

= 650. Ship information comes from FleetMon [16] and sailing distances come from
SeaRates [17]. The information of emissions factors and emission control costs comes
from IMO [18] and CEC [19], respectively.

4.2 Optimal Inspection Strategy

This section focuses on a single target port and analyzes the optimal inspection strategy.
To clarify the discussion, we define the inspection proportion of ship types (IPS), which
means the number of inspected ships for one type as a percentage of the total number of
ships. Since ship types are subdivided by size, to clarify expressions and avoid confusion,
we use “class (subclass)” to describe a specific ship type. According to the location of
the origin port and ECA, ships can be divided into two cases: origin port within the ECA
(OPW) and origin port outside the ECA (OPO).

By considering the Halifax port as an example, we assume that the total number of
visiting ships is 1456 in one day, which is equal to 28 × 2 × 26. Among them, 28
represents the total number of ship types, 2 represents the origin port location (within
or outside the ECA) and 26 represents the number of origin ports. According to the
inspection rate and non-compliance rate in Table 1, the number of inspected ships is 59.
Considering that the arrival time of ships is random (either in the daytime or at night),
we assume that the working time of one group for inspection is equal to 24 h. In this
case, the government needs at least 10 groups to achieve the required inspection rate.
Since the historical information is official data, obtaining this information in practice is
difficult. Thus, in the following section, this paper considers the cases without historical
information. From another point of view, if it is the first time a ship is inspected, it is
obvious that there is no corresponding historical inspection information. Thus, we can
regard the situation without historical information as all ships have not been inspected
before.

Table 1. Assumptions of related characteristics.

Characteristics Assumption

Ship Ship type 28 subclass

Origin port location 26 ports within the ECA and 26 ports outside the ECA

Ship proportion Each ship type has the same proportion

Non-compliance rate 6% [20]

Government Inspection time 4 h [21]

Inspection group 10

Inspection rate 4% [22]

To determine the appropriate value of M, we calculate the changes of objective
value with sampling times (see Fig. 2). The changes of relative difference of objective
value (the difference between two consecutive objective values divided by the previous

618 L. Li et al.

objective value) with sampling times show that the relative difference is smaller than
0.01% after the number of sampling is 7000, which indicates that the optimal solution is
stable at 7000 sampling times (see Fig. 3). In addition, the rounding method in the last
step of the algorithm does cause some gaps between objective values before and after
rounding. But the gap will become smaller as the number of sampling increases. The
changes of relative gap of objective value (the gap between the objective value before
and after rounding divided by the objective value before rounding) with sampling times
show that relative gap is smaller than 0.23% after the number of sampling is 7000 (see
Fig. 4). Therefore, the sampling time M is equal to 7000 in the following discussion.

0 2000 4000 6000 8000 10000
Sampling times

2.5

2.6

2.7

2.8

2.9

En
vi

ro
nm

en
ta

l c
os

t (
$)

107

Objective value before rounding
Objective value after rounding

Fig. 2. The changes of objective value with sampling times.

Fig. 3. The changes of relative difference of objective value with sampling times.

For the government, a naive, blind or not optimized situation is to randomly select
ships arriving at the port. In this case, the average environmental benefit of inspecting
the same number of ships is 1.9196 × 107$, which is less than the environmental benefit
corresponding to the optimal inspection strategy (2.6684 × 107 $). Thus, comparing to

Inspection Strategy for On-board Fuel Sampling Within Emission Control Areas 619

Fig. 4. The changes of relative gaps between objective value with sampling times.

randomly select ships, themethod proposed in our study can determine amore reasonable
inspection strategy. It can be seen inFig. 5, the optimal inspection proportion has different
IPS for different ship types and locations of origin ports. Specifically: (1) The optimal
inspection proportion mainly focuses on five classes of ships, including Container, Dry
bulk carrier, Crude oil tanker, Petroleum product tanker and Natural gas carrier. This
is mainly because these ship classes have more subclasses, thus they account for a
large proportion of ships. To ensure comparability, we divided the inspection number
by the number of ships to obtain the unit inspection proportion of 11 ship classes. Their
unit inspection proportions have the following relationship: Petroleum product tanker <

Crude oil tanker < Chemical tanker < Dry bulk carrier < Natural gas carrier < Cruise
line vessel< Container < Car carrier < Roll on-roll off ship<Other. From left to right,
the government’s unit inspection benefit gradually increases. (2) The location of origin
port has a certain influence on the optimal inspection strategy. The IPSs of inspected ships
for the OPW case and OPO case are approximately 66.54% and 33.46%, respectively.
This is mainly because OPW case has a longer sailing distance within the ECA, thus
the corresponding fuel cost saving and environmental cost are increased. However, the
penalty policy assumes that the sailing distance within the ECA is always equal to 200
nautical miles (nmi), resulting in a lower penalty fine when the actual sailing distance
is greater than 200 nmi. According to the definition of violation tendency, ships in the
OPW case have higher environmental cost and violation tendency than that in the OPO
case. (3) The IPSs of the same ship type with different origin port locations also change.
For instance, Container and Natural gas carrier (VLCC) have similar IPSs in the OPO
and OPW cases, while Dry bulk carrier, Crude oil tanker and Natural gas carrier (LGC,
midsize) have smaller IPSs in the OPO case than those in the OPW case.

620 L. Li et al.

Fig. 5. Optimal inspection proportion at the Halifax port.

4.3 Analysis of Influencing Factors

This section analyzes the impacts of non-compliance and inspection rates on the optimal
inspection strategy in terms of government and ship characteristics.

4.3.1 Effects of Non-compliance Rate

According to the describing process of ships’ violation behaviors, the non-compliance
rate plays an important role in non-compliant ships determination, which will inevitably
have an impact on the optimal inspection strategy. Thus, this subsection analyzes the
impact of non-compliance rate changes. To ensure comparability, we assume the govern-
ment’s inspection capability (inspection rate) remain unchanged and select nine values
(4%, 6%, 8%, 10%, 12%, 14%, 16%, 18% and 20%) to reflect the changes of the
non-compliance rate.

The results show that the changes in non-compliance rate have a significant effect
on the optimal inspection strategy. As the non-compliance rate increases, the optimal
inspection strategy is gradually concentrated on a part of ships, the IPSs vary for dif-
ferent ship types and the IPSs in the OPW case gradually increase. Specifically: (1)
Container, Other, Car carrier, Roll on-roll off ship and Cruise line vessel always have
higher IPSs. This indicates that these ship types have a larger violation tendency and a

Inspection Strategy for On-board Fuel Sampling Within Emission Control Areas 621

larger environmental cost than other ship types. (2) For General cargo carrier and Crude
oil tanker (Coastal), the corresponding IPSs gradually decrease. For Container (suezmax,
postpanamax, panama, intermediate), Natural gas carrier (VLGC), Other, Car carrier,
Roll on-roll off ship sand Cruise line vessel, their IPSs first increase, then decrease and
finally increase. The IPSs of other ship types have the opposite trends, that is, it decreases
first, then increases and finally decreases. These imply the relationship of violation ten-
dency and environmental cost between different ship types. This is mainly because ships
with a greater violation tendency are more likely to become non-compliance ships, and
the government tends to select ships that have larger environmental cots in the set of
non-compliant ships. When the non-compliance rate is small, non-compliant ships are
mainly those with relatively large violation tendencies. As the non-compliance rate con-
tinues to increase, the number of non-compliant ships also increases, and the additional
non-compliant ships mainly include those with relatively small violation tendencies.
Thus, the increased IPSs indicate that among the expanded non-compliant ships, these
ship types have relatively large environmental costs. While the decreased IPSs indicate
these ship types have relatively small environmental costs. (3) The IPSs in the OPW
case have increased from 51.59% under 4% non-compliance rate to 100% under 20%
non-compliance rate. This is mainly because the OPW case corresponds to a larger
environmental cost. Therefore, among non-compliance ships, due to limited inspection
capacity, the government tends to inspect ships with a more environmental cost.

4.3.2 Effects of Inspection Rate

The government’s inspection capability also plays an important role in inspection strat-
egy determination, this subsectionmainly analyzes the impact of inspection rate changes.
To ensure comparability, we assume the non-compliance rates is 15%, and the inspection
rate are 2%, 4%, 6%, 8%, 10%, 12% and 14%, respectively.

The results show that the changes in inspection rate have a large effect on the optimal
inspection strategy. As the inspection rate increases, the optimal inspection proportion is
gradually averaged, the IPSs vary for different ship types and the IPSs in the OPW case
gradually decrease. Specifically, For General cargo carrier, Dry bulk carrier (panama,
handymax), Crude oil tanker (panamax, handymax, coastal) and Petroleum product
tanker (AFRAmax, panama, coastal), their IPSs first increase, then decrease and finally
increase. The IPSs of other ship types have the opposite trends. These imply the rela-
tionship of environmental costs between different ship types. Since the non-compliance
rate is fixed, the set of non-compliant ships is also fixed. As the inspection rate continues
to increase, the number of inspected ships also increases, and the additional inspected
shipsmainly include thosewith a relatively large environmental cost. Thus, the increased
IPSs indicate that compared with other non-compliant ship types, these ship types have
relatively large environmental costs, while the decreased IPSs indicate that these ship
types have relatively small environmental costs. In addition, the IPSs in the OPW case
have decreased from 100% under 2% inspection rate to 51.85% under 14% inspection
rate. This is mainly because the OPW case corresponds to a larger environmental cost,
so it is more likely to be inspected when the inspection rate is small.

622 L. Li et al.

5 Conclusions

Since the establishment of ECAs, corresponding supervision issues have introduced
many challenges to the effective enforcement of regulations. Compared with a large
number of ships, a government’s limited inspection capacity and ships’ violation behav-
iors are the main challenges to an inspection strategy for on-board fuel sampling that
can effectively identify violations. Therefore, this paper first describes ships’ violation
behaviors by considering economic benefit, social responsibility and other factors. Based
on this, a semi-random inputmodel with limited inspection capacity, and the correspond-
ing algorithm is proposed to determine the optimal inspection strategy. In addition, the
impacts of related factors on the inspection strategy are discussed. The results show
that compared to randomly select ships, the optimal inspection strategy corresponds to
a larger objective value. This indicates the method proposed in our study can determine
a more reasonable inspection strategy, which provides methodological support for on-
board fuel sampling and effective enforcement of the ECA regulations. A promising
direction for future research is to explore new ways to further improve the inspection
strategy.

Funding. This work was supported by the National Natural Science Foundation of China
(11991022).

References

1. Tichavska, M., Tovar, B., Gritsenko, D., Johansson, L., Jalkanen, J.P.: Air emissions from
ships in port: does regulation make a difference? Transp. Policy 75, 128–140 (2017)

2. Perera, L.P., Mo, B.: Emission control based energy efficiency measures in ship operations.
Appl. Ocean Res. 60, 29–46 (2016)

3. Li, L., Gao, S., Yang, W., Xiong, X.: Ship’s response strategy to emission control areas: from
the perspective of sailing pattern optimization and evasion strategy selection. Transp. Res.
Part E: Logist. Transp. Rev. 133, 101835 (2020)

4. Liu, Y., Wang, Z.: Game simulation of policy regulation evolution in emission control area
based on system dynamics. In: 2019 3rd Scientific Conference on Mechatronics Engineering
and Computer Science, pp. 384–388. Francis Academic Press (2019)

5. Jiang, B., Xue, H., Li, J.: Study on regulation strategies of China’s ship emission control area
(ECA) based on evolutionary game (in Chinese). Logistic Sci-Tech 7, 70–74 (2018)

6. EMSA: Sulphur Inspection Guidance. European Maritime Safety Agency (2018)
7. Ronen, D.: The effect of oil price on the optimal speed of ships. J. Oper. Res. Soc. 33,

1035–1040 (2017)
8. Du, Y., Chen, Q., Quan, X., Long, L., Fung, R.Y.K.: Berth allocation considering fuel con-

sumption and vessel emissions. Transp. Res. Part E: Logist. Transp. Rev. 47, 1021–1037
(2011)

9. IMO: Reduction of GHG emissions from ships, third IMO GHG Study 2014 (2014)
10. Wang, S.,Meng,Q.: Sailing speed optimization for container ships in a liner shipping network.

Transp. Res. Part E: Logist. Transp. Rev. 48, 701–714 (2012)
11. Psaraftis, H.N., Kontovas, C.A.: Speed models for energy-efficient maritime transportation:

a taxonomy and survey. Transp. Res. Part C: Emerg. Technol. 26, 331–351 (2013)
12. Dulebenets,M.A.: Advantages and disadvantages from enforcing emission restrictions within

emission control areas. Marit. Bus. Rev. 1, 107–132 (2016)

Inspection Strategy for On-board Fuel Sampling Within Emission Control Areas 623

13. Phillip, A.B.: EPA penalty policy for violations by ships of the sulfur in fuel standard and
related provisions. Environmental Protection Agency, United Sates (2015)

14. Kim, S., Pasupathy, R., Henderson, S.G.: A guide to sample average approximation. In: Fu,
M.C. (ed.) Handbook of Simulation Optimization. ISORMS, vol. 216, pp. 207–243. Springer,
New York (2015). https://doi.org/10.1007/978-1-4939-1384-8_8

15. Marine bunker exchange. http://www.mabux.com
16. https://www.fleetmon.com
17. https://www.searates.com/cn/services/distances-time/
18. IMO: Third IMO GHG Study 2014 – Final Report. International Maritime Organization

(2015)
19. CEC: Best Available Technology for Air Pollution Control: Analysis Guidance and Case

Studies for North America. Commission for Environmental Cooperation of North America
(2005)

20. Nazha, N.: North American emission control area, canada’s compliance and enforcement
program. In: 5th PPCAC Conference, Transport Canada (2018)

21. Olaniyi, E.O., Prause, G.: Seca regulatory impact assessment: administrative burden costs in
the baltic sea region. Transp. Telecommun. J. 20, 62–73 (2019)

22. European Union. https://eur-lex.europa.eu/eli/dec_impl/2015/253/oj

https://doi.org/10.1007/978-1-4939-1384-8_8
http://www.mabux.com
https://www.fleetmon.com
https://www.searates.com/cn/services/distances-time/
https://eur-lex.europa.eu/eli/dec_impl/2015/253/oj

Novel Algorithms for Maximum DS
Decomposition

Shengminjie Chen1, Wenguo Yang1(B), Suixiang Gao1, and Rong Jin2

1 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China

chenshengminjie19@mails.ucas.edu.cn, {yangwg,sxgao}@ucas.edu.cn
2 Department of Computer Science, University of Texas at Dallas,

Richardson, TX 75080, USA
Rong.Jin@utdallas.edu

Abstract. DS decomposition is an important set function optimiza-
tion problem. Because DS decomposition is true for any set function,
how to solve DS decomposition efficiently and effectively is a heated
problem to be solved. In this paper, we focus maximum DS decom-
position problem and propose Deterministic Conditioned Greedy algo-
rithm and Random Conditioned algorithm by using the difference with
parameter decomposition function and combining non-negative condi-
tion. Besides, we get some novel approximation under different param-
eters. Also, we choose two special case to show our deterministic algo-
rithm gets f (Sk) − (

e−1 − cg

)
g (Sk) ≥ (

1 − e−1
)
[f (OPT) − g (OPT)]

and f (Sk) − (1 − cg) g (Sk) ≥ (
1 − e−1

)
f (OPT) − g (OPT) respec-

tively for cardinality constrained problem and our random algorithm
gets E[f (Sk)− (

e−1 − cg

)
g (Sk)] ≥ (

1 − e−1
)
[f (OPT) − g (OPT)] and

E[f (Sk) − (1 − cg)g (Sk)] ≥ (
1 − e−1

)
f (OPT) − g (OPT) respectively

for unconstrained problem, where cg is the curvature of monotone sub-
modular set function. Because the Conditioned Algorithm is the general
framework, different users can choose the parameters that fit their prob-
lem to get a better approximation.

Keywords: Non-submodularity · DS decomposition · Conditioned
Greedy

1 Introduction

Submodular Set Function Optimization, which is a hot issue in discrete opti-
mization, attracts many researchers. In the past few decades, there have been
many important results about maximum submodular set function. Nemhauser
et al. (1978) [20] proposed a greedy algorithm, which adds a maximal marginal

This work was supported by the National Natural Science Foundation of China under
Grant 11991022 and 12071459.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 624–638, 2020.
https://doi.org/10.1007/978-3-030-64843-5_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_42&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_42

Novel Algorithms for Maximum DS Decomposition 625

gains element to current solution in each iteration, can get 1 − e−1 approxi-
mation for optimal solution under cardinality constrained. Meanwhile, Fisher
et al. (1978) [6] proved that the greedy strategy can get (1 + p)−1 approxima-
tion for optimal solution under intersection of p matroid. Furthermore, Conforti
et al. (1984) [19] constructed a metric called curvature. Using curvature, authors
proved that the greedy algorithm can get more tight approximation (1−e−c

c and
1

1+c) for above two constrained. That is why greedy strategy is excellent for
monotone submodular maximization. Unfortunately, they assume the set func-
tion is monotone submodular function and f (∅) = 0. But these groundbreaking
works have inspired a great deal of submodular optimization.

Relaxing the restriction of monotony, Feldman et al. (2011) [5] proposed a
novel greedy which has a e−1 approximation for non-monotone submodular max-
imization under matroids constrained. Furthermore, Buchbinder et al. (2014)
[3] proved that non-monotone submodular maximization under cardinality con-
strained also has a e−1 approximation polynomial algorithm using double greedy.
What’s more, Buchbinder et al. (2012) [2] also constructed an algorithm which
can get 1/2 approximation for non-monotone submodular maximization without
constrains.

Based on these efficient algorithms, submodular optimization has played
an important role in data mining, machine learning, economics and operation
research such as influence maximization (Kempe et al., (2003) [13]), active learn-
ing (Golovin et al., (2011) [7]), document summarization (Lin et al., (2011) [16]),
image segmentation (Jegelka et al., (2011) [12]). Unfortunately, more and more
objective functions are not submodular in practical problems. Thus, how to
optimize a general set function is the most important problem and has puz-
zled many scholars. Some researchers proposed lots of definition about approx-
imation of sub-modularity. Krause et al. (2008) [14] constructed ε-Diminishing
returns to evaluate what is the difference of violation marginal gains decreas-
ing. And authors proved the standard greedy algorithm can get a f(X) ≥
(1−e−1)(OPT −kε) approximation for size constrained problem. Das and Kempe
(2011) [4] used to measure violation about submodularity by submodular ratio.
Besides, they proved the standard greedy strategy can get a f(X) ≥ 1−e−γOPT
approximation under cardinality constrained problem. Horel and Singer (2016)
[10] proposed ε-approximation submodularity to calculate the difference of sub-
modularity. According this metric, authors proved that the standard greedy

algorithm can return a f (X) ≥ 1
1+ 4kε

(1−ε)2

(
1 − e−1

(
1−ε
1+ε

)2k
)

· OPT approxima-

tion under size constrained. It is no surprise that computing these metrics is
also a hard problem. It makes these results only theoretical meaning, but lack
of practical application.

From the application perspective to solve set function optimization, Lu et al.
(2015) [17] utilized a submodular upper bound and a submodular lower bound to
constrain a set function and solved these three problems respectively. Their algo-
rithm chose the best one of them to return called Sandwich Approach. Because
this approach can get a parametric approximation, some researchers also applied

626 S. Chen et al.

Sandwich Approach to solve their problems (Yang et al. (2020) [22], Yang et al.
(2020) [23], Zhu et al. (2019) [25], Wang et al. (2017) [21]). In addition, Iyer and
Bilmes (2012) [11] proved that any set function can decompose the difference
of two submodular set functions called DS decomposition. Specially, the two
submodular set function are monotone and non-decreasing.

Lemma 1. (Iyer and Bilmes 2012) Any set function h : 2Ω → R can decompose
the difference of two monotone non-decreasing submodular set functions f and
g, i.e. h = f − g.

According to this lemma, Iyer and Bilmes proposed SubSup, SupSub, Mod-
Mod algorithms to solve minimum this problem. This excellent result has been
applied in many ways (Han et al. (2018) [8], Maehara et al. (2015) [18] and Yu
et al. (2016) [24]). Although DS decomposition has a bright application prospect,
about a general set function, there are problems worth studying how to find the
decomposition quickly and how to solve DS decomposition efficiently and effec-
tively. These problems needed to be solved also inspire us to think how to solve
maximum DS decomposition.

In this paper, we focus the maximum DS decomposition about set functions.
Since DS decomposition is the difference between two submodular functions, we
proposed Deterministic and Random Conditioned Greedy algorithm by using the
difference with parameter decomposition function and combining non-negative
condition. There are general frameworks and users can choose rational parame-
ters according the property of problem. The major contribution of our work are
as follows:

– Deterministic Conditioned Greedy is a deterministic framework which intro-
duces some parameters about iteration rounds for cardinality constrained
problem. In each iteration, the algorithm chooses the element of maximal
non-negative marginal parametric gains from ground set. Under some ratio-
nal assumption, the Deterministic Conditioned Greedy can get a polynomial
approximation for maximum DS decomposition.

– Two special cases. We choose special parameters in Deterministic Conditioned
Greedy. And the algorithm can get two novel approximations f(Sk) − (e−1 −
cg)g(Sk) ≥ (

1 − e−1
)
[f (OPT) − g (OPT)] and f(Sk) − (1 − cg)g(Sk) ≥ (1 −

e−1)f(OPT) − g(OPT) respectively for cardinality constrained problem.
– Random Conditioned Greedy is a random framework which introduces some

parameters about iteration rounds for unconstrained problem. In each itera-
tion, the algorithm chooses an element from ground set uniformly. Under some
rational assumption, the Random Conditioned Greedy can get a polynomial
approximation for maximum DS decomposition.

– Two special cases. In Random Conditioned Greedy, we choose the same
parameters as Deterministic Conditioned Greedy. And the algorithm can get
two novel approximations E[f(Sk) − (e−1 − cg)g(Sk)] ≥ (1 − e−1)[f(OPT) −
g(OPT)] and E[f(Sk)− (1− cg)g(Sk)] ≥ (1−e−1)f(OPT)−g(OPT) respec-
tively for unconstrained problem.

Novel Algorithms for Maximum DS Decomposition 627

The rest of this paper is organized as follow. Some related works about greedy
strategy, we put them in Sect. 2. In Sect. 3, we propose Deterministic Condi-
tioned Greedy Algorithm and prove approximation. We get two special results
for Deterministic Conditioned Greedy in Sect. 4. Random Conditioned Greedy
Algorithm, we introduce in Sect. 5. Also, Sect. 6 is special cases for Random
Conditioned Greedy. Conclusion and future works are in Sect. 7.

2 Related Works

In this section, we introduce some related works about set function decomposi-
tion and algorithm.

Iyer and Bilmes (2012) [11] first tried to optimize the set function from the
perspective of decomposition. They proved that DS decomposition exists for any
set functions. What’s more, they proposed three greedy strategy to solve the
DS decomposition called SupSub, SubSup, ModMod respectively. But in their
work, these three greedy strategies are used to solve the minimization problem.
As for maximum DS decomposition, this is an urgent problem to be solved.
From the decomposition perspective, Li et al. (2020) [15] proved a variation of
DS decomposition, any set function can be expressed as the difference of two
monotone nondecreasing supermodular functions. Similarly, they also proposed
greedy strategies like Iyer and Bilmes called ModMod and SupMod.

Bai and Bilmes (2018) [1] found that some set function can be expressed as
the sum of a submodular and supermodular function (BP decomposition), both
of which are non-negative monotone non-decreasing. But they didn’t show what
circumstances exists a BP decomposition. Interestingly, they proved that greedy
strategy can get a 1

kf

[
1 − e−(1−kg)kf

]
and 1−kg

(1−kg)kf+p approximation under car-
dinality and matroid constrained, where kf , kg are curvature about submodular
and supermodular functions.

Harshaw et al. (2019) [9] focused on the difference of a monotone non-
negative submodular set function and a monotone non-negative modular set
function. Besides, they proposed Distorted Greedy to solve this problem and
get a f (S) − g (S) ≥ (

1 − e−1
)
f (OPT) − g (OPT) approximation. This greedy

strategy inspires our idea to solve maximization of DS decomposition.

3 Deterministic Conditioned Greedy Algorithm

Greedy strategy is the useful algorithm to solve discrete optimization problem,
because it is simple and efficient. In the submodular optimization problem, since
greedy algorithm can get an excellent constant approximation, many researchers
use greedy strategy. Although, some practical problems are not submodular,
fortunately, they have DS decomposition (Lemma 1). Therefore, we proposed a
deterministic conditioned greedy algorithm to solve the following problem, where
the two submodular set function f , g are monotone and non-decreasing.

max
X⊆Ω,|X|≤k

h (X) = f (X) − g (X)

628 S. Chen et al.

In Algorithm 1, the A (i) and B (i) are chosen by algorithm designers. From
practical perspectives, we assume f (∅) = g (∅) = 0, A (i) ≥ 0 and B (i) ≥
0. From the proof, we assume

(
1 − 1

k

)
A (i + 1) − A (i) ≥ 0 and B (i + 1) −

B (i) ≥ 0 specially. When designers choose well-defined parameters that are
related to iteration round, it can get a wonderful approximation about maximum
DS decomposition. Firstly, we introduce two auxiliary functions and curvature
which are useful in process of approximation proof.

Algorithm 1: Deterministic Conditioned Greedy

Input: cardinality k, parameters A (i),B (i)
1.Initialize S0 ← ∅
2.For i = 0 to k − 1
3. ei ← arg maxe∈Ω {A (i + 1) f (e | Si) − B (i + 1) g (e | Ω \ e)}
4. If A (i + 1) f (ei | Si) − B (i + 1) g (ei | Ω \ ei) > 0 then
5. Si+1 ← Si ∪ {ei}
6. Else
7. Si+1 ← Si

8.End for
9.Return Sk

Definition 1. Define two auxiliary functions

φi (T) = A (i) f (T) − B (i)
∑
e∈T

g (e|Ω \ e)

ψi (T, e) = max {0, A (i + 1) f (e | T) − B (i + 1) g (e | Ω \ e)}

Definition 2 (Conforti (1984)). Given a monotone submodular set function
f : 2Ω → R, the curvature of f is

cf = 1 − mine∈Ω
f (e|Ω \ e)

f (e)

Look at the definition of two functions, ψi (T, e) is the condition of the Algorithm
1. And φi (T) is the surrogate objective function. Next, we prove an important
property about surrogate objective function.

Property 1. In each iteration

φi+1 (Si+1) − φi (Si)

= ψi (Si, ei) + [A (i + 1) − A (i)] f (Si) − [B (i + 1) − B (i)]
∑
e∈Si

g (e|Ω \ e)

(1)

Novel Algorithms for Maximum DS Decomposition 629

Proof.

φi+1 (Si+1) − φi (Si)

= A (i + 1) f (Si+1) − B (i + 1)
∑

e∈Si+1

g (e|Ω \ e) − A (i) f (Si) + B (i)
∑

e∈Si

g (e|Ω \ e)

= A (i + 1) [f (Si+1 − f (Si))] − B (i + 1) g (ei|Ω \ ei)

+ [A (i + 1) − A (i)] f (Si) − [B (i + 1) − B (i)]
∑

e∈Si

g (e|Ω \ e)

= ψi (Si, ei) + [A (i + 1) − A (i)] f (Si) − [B (i + 1) − B (i)]
∑

e∈Si

g (e|Ω \ e)

��
Using the Property 1, we construct a relationship from Deterministic Condi-
tioned Greedy to surrogate objective function. Interestingly, the condition of
Algorithm 1 has a lower bound. Therefore, in each iteration of Algorithm 1, the
marginal gain of surrogate objective function has some guarantees.

Theorem 1. ψi (Si, ei) ≥ 1
kA (i + 1) [f (OPT) − f (Si)] − 1

kB (i + 1) g (OPT)

Proof.

k · ψi (Si, ei) = k · max
e∈Ω

{0, A (i + 1) f (e | Si) − B (i + 1) g (e | Ω \ e)}
≥ |OPT | · max

e∈Ω
{0, A (i + 1) f (e | Si) − B (i + 1) g (e | Ω \ e)}

≥ |OPT | · max
e∈OPT

{A (i + 1) f (e | Si) − B (i + 1) g (e | Ω \ e)}

≥
∑

e∈OPT

[A (i + 1) f (e | Si) − B (i + 1) g (e | Ω \ e)]

= A (i + 1)
∑

e∈OPT

f (e|Si) − B (i + 1)
∑

e∈OPT

g (e|Ω \ e)

≥ A (i + 1) [f (OPT ∪ Si) − f (Si)] − B (i + 1) g (OPT)
≥ A (i + 1) [f (OPT) − f (Si)] − B (i + 1) g (OPT)

The first inequality is k ≥ |OPT |. The second inequality is OPT ⊆ Ω. The third
inequality is the maximum. The fourth inequality is sub-modularity, i.e.f(OPT ∪
Si) − f(Si) ≤ ∑

e∈OPT f(e|Si) and
∑

e∈OPT g(e|Ω \ e) ≤ g(OPT). The last
inequality is monotony. ��
Combined Property 1 and Theorem 1, the following corollary is obvious.

Corollary 1.

φi+1 (Si+1) − φi (Si) ≥ 1
k

A (i + 1) f (OPT) − 1
k

B (i + 1) g (OPT)

+
[(

1 − 1
k

)
A (i + 1) − A (i)

]
f (Si) − [B (i + 1) − B (i)]

∑
e∈Si

g (e|Ω \ e)
(2)

630 S. Chen et al.

According the above assumption and Lemma 1, we have
∑

e∈Si
g(e|Ω \ e) ≥ 0

and f (Si) ≥ 0. That is to say that the proper selection of A (i) and B (i) is
the key to the final performance of the algorithm. In our work, we assume that
they should satisfy

(
1 − 1

k

)
A (i + 1) − A (i) ≥ 0 and B (i + 1) − B (i) ≥ 0. If[(

1 − 1
k

)
A (i + 1) − A (i)

]
f (Si)− [B (i + 1) − B (i)]

∑
e∈Si

g (e|Ω \ e) ≥ 0, the
result is trivial cause we can ignore them. Therefore, we can get an approxima-
tion guarantee about maximum DS decomposition under cardinality constrained
using Deterministic Conditioned Greedy.

Theorem 2. Sk is the solution of Algorithm 1 after k iteration

A (k) f (Sk) − (B (0) − cg) g (Sk) ≥ 1

k

k−1∑

i=0

[A (i + 1) f (OPT) − B (i + 1) g (OPT)]

where cg is the curvature of function g.

Proof. φ0(S0) = A(0)f(∅) − B(0)g(∅) = 0 According the curvature cg = 1 −
min g(eΩ\e)

g(e) , we have g(eΩ\e)
g(e) ≥ 1 − cg,

φk(Sk) = A(k)f(Sk) − B(k)
∑

e∈Sk

g(e|Ω \ e) ≤ A(k)f(Sk) − B(k)(1 − cg)
∑

e∈Sk

g(e)

≤ A(k)f(Sk) − B(k)(1 − cg)g(Sk)

Thus, we can rewrite an accumulation statement

A(k)f(Sk) − B(k)(1 − cg)g(Sk) ≥ φk(Sk) − φ0(S0) =

k−1∑

i=0

φi+1(Si+1) − φi(Si)

≥
k−1∑

i=0

[
1

k
A(i + 1)f(OPT) − 1

k
B(i + 1)g(OPT) + [(1 − 1

k
)A(i + 1) − A(i)]f(Si)]

−
k−1∑

i=0

[[B(i + 1) − B(i)]
∑

e∈Si

g(e|Ω \ e)]

≥ 1

k

k−1∑

i=0

[A(i + 1)f(OPT) − B(i + 1)g(OPT)] − [B(k) − B(0)]
∑

e∈Sk

g(e|Ω \ e)

≥ 1

k

k−1∑

i=0

[A(i + 1)f(OPT) − B(i + 1)g(OPT)] − [B(k) − B(0)]g(Sk)

Therefore, we can conclude

A (k) f (Sk) − (B (0) − cg) g (Sk) ≥ 1

k

k−1∑

i=0

[A (i + 1) f (OPT) − B (i + 1) g (OPT)]

��

Novel Algorithms for Maximum DS Decomposition 631

4 Two Special Cases for Deterministic Conditioned
Greedy

In this section, we choose two special case to show Deterministic Conditioned
Greedy strategy can get f(Sk)−(e−1−cg)g(Sk) ≥ (1−e−1)[f(OPT)−g(OPT)]
approximation and f(Sk)− (1−cg)g(Sk) ≥ (1−e−1)f(OPT)−g(OPT) approx-
imation for cadinality constrained problem.

4.1 Case 1

We set A (i) = B (i) =
(
1 − 1

k

)(k−i). Therefore, the Definition 1 and Algorithm 1
become the following. Obviously, these settings satisfy all conditions and assump-
tions in Sect. 3. Hence, the following results are clearly. Because the proofs are
similar to Sect. 3, we omit them here.

φi (T) =
(

1 − 1
k

)k−i
[
f (T) −

∑
e∈T

g (e | Ω \ e)

]

ψi (T, e) = max

{
0,

(
1 − 1

k

)k−(i+1)

[f (e | Si) − g (e | Ω \ e)]

}

Algorithm 2: Deterministic Conditioned Greedy I

Input: cardinality k
1.Initialize S0 ← ∅
2.For i = 0 to k − 1

3. ei ← arg maxe∈Ω

{(
1 − 1

k

)k−(i+1)
[f (e | Si) − g (e | Ω \ e)]

}

4. If
(
1 − 1

k

)k−(i+1)
[f (ei | Si) − g (ei | Ω \ ei)] > 0 then

5. Si+1 ← Si ∪ {ei}
6. Else
7. Si+1 ← Si

8.End for
9.Return Sk

Property 2. In each iteration

φi+1 (Si+1) − φi (Si) = ψi (Si, ei) +
1
k

(1 − 1
k

)−1φi(Si)

Theorem 3. ψi (Si, ei) ≥ 1
k

(
1 − 1

k

)k−(i+1) [f (OPT) − f (Si) − g (OPT)]

Theorem 4. f (Sk) − (
e−1 − cg

)
g (Sk) ≥ (

1 − e−1
)
[f (OPT) − g (OPT)],

where cg is the curvature of function g.

632 S. Chen et al.

From Theorem 4, we find an interesting result and get the following corollary,
when cg = 0, i.e. the submodular function g is a modular function.

Corollary 2. If cg = 0, i.e. g is modular. Then we have

f (Sk) − e−1g (Sk) ≥ (
1 − e−1

)
[f (OPT) − g (OPT)]

4.2 Case 2

We set A (i) =
(
1 − 1

k

)(k−i), B (i) = 1. Therefore, the Definition 1 and Algorithm
1 become the following. Obviously, these settings satisfy all condition in Sect. 3.
And the proofs are similar with Sect. 3 and Sect. 4.1. In this subsection, we have
omitted all proofs.

φi (T) =
(

1 − 1
k

)k−i

f (T) −
∑
e∈T

g (e | Ω \ e)

ψi (T, e) = max

{
0,

(
1 − 1

k

)k−(i+1)

f (e | Si) − g (e | Ω \ e)

}

Algorithm 3: Deterministic Conditioned Greedy II

Input: cardinality k
1.Initialize S0 ← ∅
2.For i = 0 to k − 1

3. ei ← arg maxe∈Ω

{(
1 − 1

k

)k−(i+1)
f (e | Si) − g (e | Ω \ e)

}

4. If
(
1 − 1

k

)k−(i+1)
f (ei | Si) − g (ei | Ω \ ei) > 0 then

5. Si+1 ← Si ∪ {ei}
6. Else
7. Si+1 ← Si

8.End for
9.Return Sk

Property 3. In each iteration

φi+1 (Si+1) − φi (Si) = ψi (Si, ei) +
1
k

(
1 − 1

k

)k−(i+1)

f (Si)

Theorem 5. ψi (Si, ei) ≥ 1
k

(
1 − 1

k

)k−(i+1) [f (OPT) − f (Si)] − 1
kg (OPT)

Theorem 6. f (Sk)− (1 − cg) g (Sk) ≥ (
1 − e−1

)
f (OPT)−g (OPT), where cg

is the curvature of function g.

Novel Algorithms for Maximum DS Decomposition 633

Corollary 3. If cg = 0, i.e. g is modular. Then we have

f (Sk) − g (Sk) ≥ (
1 − e−1

)
f (OPT) − g (OPT)

Remark: Clearly, if g is modular, then h = f − g is submodular. The above
approximations are different with submodular maximization under cardinality
constrained problem (1−e−1). And also, the different parameters can also cause
different approximations. We think first gap is caused by non-monotony, because
h is not always monotonous. The second gap give us a clue that we can choose
the appropriate parameters A(i) and B(i) according to the characteristics of the
problem to get a better approximate ratio.

5 Random Conditioned Greedy Algorithm

Random algorithms are important algorithms for discrete optimization prob-
lem. Since randomness can bring a lot of uncertain factors and information, in
some cases, random algorithms can get better approximation than deterministic
algorithms. Therefore, we propose a random conditioned greedy in this section.
Interestingly, our random conditioned greedy can also be used in unconstrained
problems and cardinality constrained problem. The following statement is the
unconstrained problems for DS decomposition.

max
X⊆Ω

h (X) = f (X) − g (X)

According Definition 1, the Property 1 is also true for random conditioned greedy.
We just have to modify the assumptions a little bit

(
1 − 1

n

)
A (i + 1)−A (i) ≥ 0

to get the following theorems and corollary directly.

Algorithm 4: Random Conditioned Greedy

Input: ground set Ω, parameters A (i),B (i)
1.Initialize S0 ← ∅
2.For i = 0 to n − 1
3. ei ←be chosen uniformly from Ω
4. If A (i + 1) f (ei | Si) − B (i + 1) g (ei | Ω \ ei) > 0 then
5. Si+1 ← Si ∪ {ei}
6. Else
7. Si+1 ← Si

8.End for
9.Return Sn

Theorem 7. E[ψi(Si, e)] ≥ 1
nA(i + 1)[f(OPT) − f(Si)] − 1

nB(i + 1)g(OPT)

634 S. Chen et al.

Proof.

E[ψi(Si, ei)] =
1
n

·
∑
ei∈Ω

ψi(Si, ei)

≥ 1
n

·
∑

ei∈OPT

[A(i + 1)f(ei|Si) − B(i + 1)g(ei|Ω \ ei)]

=
1
n

A(i + 1)
∑

e∈OPT

f(ei|Si) − 1
n

B(i + 1)
∑

e∈OPT

g(ei|Ω \ ei)

≥ 1
n

A(i + 1)[f(OPT ∪ Si) − f(Si)] − 1
n

B(i + 1)g(OPT)

≥ 1
n

A(i + 1)[f(OPT) − f(Si)] − 1
n

B(i + 1)g(OPT)

��
Corollary 4. E[φi+1(Si+1) − φi(Si)] ≥ 1

nA(i + 1)f(OPT) − 1
nB(i + 1)g(OPT)

+ [(1 − 1
n)A(i + 1) − A(i)]f(Si) − [B(i + 1) − B(i)]

∑
e∈Si

g(e|Ω \ e)

Combined with Theorem 7 and Corollary 4, using the same method as Sect. 3, we
can prove the Random Conditioned Greedy can get the following approximation.

Theorem 8. Sn is the solution of Algorithm 4 after n iteration

E[A(n)f(Sn) − (B(0) − cg)g(Sn)] ≥ 1
n

n−1∑
i=0

[A(i + 1)f(OPT) − B(i + 1)g(OPT)]

where cg is the curvature of function g.

Proof.

E[A(n)f(Sn) − B(n)(1 − cg)g(Sn)]

≥ E[φn(Sn)] − E[φ0(S0)] =

n−1∑

i=0

E[φi+1(Si+1)] − E[φi(Si)]

≥
n−1∑

i=0

[
1

n
A(i + 1)f(OPT) − 1

n
B(i + 1)g(OPT) + [(1 − 1

n
)A(i + 1) − A(i)]f(Si)]

−
n−1∑

i=0

[B(i + 1) − B(i)]
∑

e∈Si

g(e|Ω \ e)

≥ 1

n

n−1∑

i=0

[A(i + 1)f(OPT) − B(i + 1)g(OPT)] − [B(n) − B(0)]
∑

e∈Sn

g(e|Ω \ e)

≥ 1

n

n−1∑

i=0

[A(i + 1)f(OPT) − B(i + 1)g(OPT)] − [B(n) − B(0)]g(Sn)

Novel Algorithms for Maximum DS Decomposition 635

Therefore, we can conclude

E[A(n)f(Sn) − (B(0) − cg)g(Sn)] ≥ 1
n

n−1∑
i=0

[A(i + 1)f(OPT) − B(i + 1)g(OPT)]

��
From the Theorem 7 and Theorem 8, we find an interesting phenomenon. If we
decrease the number of iterations to k, this Random Conditioned Greedy can
also be used in problems with cardinality constrained. Since this proof is similar
with Theorem 8, we just give the statement without proof.

Theorem 9. Sk is the solution of Algorithm 4 after k iteration

E[A(k)f(Sk) − (B(0) − cg)g(Sk)] ≥ 1
n

k−1∑
i=0

[A(i + 1)f(OPT) − B(i + 1)g(OPT)]

where cg is the curvature of function g.

6 Two Special Cases for Random Conditioned Greedy

In this section, we choose the same parameters as Deterministic Conditioned
Greedy to show Random Conditioned Greedy strategy can get E[f(Sn)− (e−1 −
cg)g(Sn)] ≥ (1 − e−1)[f (OPT) − g (OPT)] approximation and E[f(Sn) − (1 −
cg)g(Sn)] ≥ (1− e−1)f(OPT)− g(OPT) approximation for unconstrained prob-
lem. Since the proof is similar with Sect. 5, we only give the statement without
proofs.

6.1 Case 1

We set A (i) = B (i) =
(
1 − 1

n

)(n−i). Therefore, the Definition 1 and Algorithm 4
become the following. Obviously, these settings satisfy all assumptions in Sect. 5.

φi (T) =
(

1 − 1
n

)n−i
[
f (T) −

∑
e ∈T

g (e | Ω \ e)

]

ψi (T, e) = max

{
0,

(
1 − 1

n

)n−(i+1)

[f (e | Si) − g (e | Ω \ e)]

}

Theorem 10. E[ψi(Si, ei)] ≥ 1
n (1 − 1

n)n−(i+1)[f(OPT) − f(Si) − g(OPT)]

Theorem 11. E
[
f (Sn) − (

e−1 − cg

)
g (Sn)

]≥ (
1−e−1

)
[f (OPT)−g (OPT)],

where cg is the curvature of function g

From Theorem 11, we can draw the following corollary when g is modular func-
tion.

Corollary 5. If cg = 0, i.e. g is modular. Then we have

E
[
f (Sn) − e−1g (Sn)

] ≥ (
1 − e−1

)
[f (OPT) − g (OPT)]

636 S. Chen et al.

Algorithm 5: Random Conditioned Greedy I

Input: ground set Ω
1.Initialize S0 ← ∅
2.For i = 0 to n − 1
3. ei ←be chosen uniformly from Ω

4. If
(
1 − 1

k

)k−(i+1)
[f (ei | Si) − g (ei | Ω \ ei)] > 0 then

5. Si+1 ← Si ∪ {ei}
6. Else
7. Si+1 ← Si

8.End for
9.Return Sn

6.2 Case 2

We set A (i) =
(
1 − 1

n

)(n−i), B (i) = 1. Therefore, the Definition 1 and Algo-
rithm 4 become the following. Obviously, these settings satisfy all assumptions
in Sect. 5.

φi (T) =
(

1 − 1
n

)n−i

f (T) −
∑
e ∈T

g (e | Ω \ e)

ψi (T, e) = max

{
0,

(
1 − 1

n

)n−(i+1)

f (e | Si) − g (e | Ω \ e)

}

Algorithm 6: Random Conditioned Greedy II

Input: ground set Ω
1.Initialize S0 ← ∅
2.For i = 0 to n − 1
3. ei ←be chosen uniformly from Ω

4. If
(
1 − 1

k

)k−(i+1)
f (ei | Si) − g (ei | Ω \ ei) > 0 then

5. Si+1 ← Si ∪ {ei}
6. Else
7. Si+1 ← Si

8.End for
9.Return Sn

Theorem 12. E[ψi(Si, ei)] ≥ 1
n (1 − 1

n)n−(i+1)[f(OPT) − f(Si)] − 1
ng(OPT)

Theorem 13. E [f (Sn) − (1 − cg) g (Sn)] ≥ (
1 − e−1

)
f (OPT) − g (OPT),

where cg is the curvature of function g

From Theorem 13, we can draw the following corollary when g is modular func-
tion.

Corollary 6. If cg = 0, i.e. g is modular. Then we have

E [f (Sn) − g (Sn)] ≥ (
1 − e−1

)
f (OPT) − g (OPT)

Novel Algorithms for Maximum DS Decomposition 637

Remark: Obviously, if g is modular, then h = f − g is submodular but non-
monotone. The above approximations are different with non-monotone submod-
ular maximization under unconstrained problem 1/2. But we cannot measure
which one is better than others. In some cases, our approximations may be bet-
ter than 1/2. This give us a clue that we can choose the appropriate parameters
A (i) and B (i) according to the characteristics of the problem to get a better
approximate ratio.

7 Conclusions

In this paper, we propose Conditioned Greedy strategy with deterministic and
random which are general frameworks for maximum DS decomposition under
cardinality constrained and unconstrained respectively. Users can choose some
rational parameters to fit special practical problems and get a wonderful approx-
imation about problem. Also, we choose two special cases show our strategy can
get some novel approximation. In some situations, these novel approximations
are better than the best approximation at the state of art.

In the future works, how to remove the curvature parameter in approximation
ratio is important, because it can make the approximation much tight. What’s
more, how to select A (i) and B (i) so that the algorithm can achieve the optimal
approximation ratio is also urgent problem to be solved.

References

1. Bai, W., Bilmes, J.A.: Greed is still good: maximizing monotone submodu-
lar+supermodular functions (2018)

2. Buchbinder, N., Feldman, M., Naor, J.S., Schwartz, R.: A Tight Linear Time
(1/2)-Approximation for Unconstrained Submodular Maximization. IEEE Com-
puter Society, USA (2012). https://doi.org/10.1109/FOCS.2012.73

3. Buchbinder, N., Feldman, M., Naor, J.S., Schwartz, R.: Submodular Maximization
with Cardinality Constraints. Society for Industrial and Applied Mathematics,
USA (2014)

4. Das, A., Kempe, D.: Submodular meets spectral: Greedy algorithms for subset
selection, sparse approximation and dictionary selection. Computer Science (2011)

5. Feldman, M., Naor, J.S., Schwartz, R.: A Unified Continuous Greedy Algorithm
for Submodular Maximization. IEEE Computer Society, USA (2011). https://doi.
org/10.1109/FOCS.2011.46

6. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions-II. Math. Program. 8(1), 73–87 (1978)

7. Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active
learning and stochastic optimization. J. Artif. Intell. Res. 42(1), 427–486 (2012)

8. Han, K., Xu, C., Gui, F., Tang, S., Huang, H., Luo, J.: Discount allocation for
revenue maximization in online social networks, pp. 121–130, June 2018. https://
doi.org/10.1145/3209582.3209595

9. Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization
beyond non-negativity: guarantees, fast algorithms, and applications, vol. 2019-
June, pp. 4684–4705. Long Beach, CA, United states (2019)

https://doi.org/10.1109/FOCS.2012.73
https://doi.org/10.1109/FOCS.2011.46
https://doi.org/10.1109/FOCS.2011.46
https://doi.org/10.1145/3209582.3209595
https://doi.org/10.1145/3209582.3209595

638 S. Chen et al.

10. Horel, T., Singer, Y.: Maximization of approximately submodular functions. In:
Advances in Neural Information Processing Systems (2016)

11. Iyer, R., Bilmes, J.: Algorithms for Approximate Minimization of the Difference
Between Submodular Functions, with Applications. AUAI Press, Arlington, Vir-
ginia (2012)

12. Jegelka, S., Bilmes, J.: Submodularity Beyond Submodular Energies: Coupling
Edges in Graph Cuts. IEEE Computer Society (2011)

13. Kempe, D.: Maximizing the spread of influence through a social network. In: Pro-
ceedings of ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2003)

14. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in Gaussian
processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res.
9(3), 235–284 (2008)

15. Li, X., Du, H.G., Pardalos, P.M.: A variation of ds decomposition in set function
optimization. J. Comb. Optim. (2020)

16. Lin, H., Bilmes, J.: A Class of Submodular Functions for Document Summariza-
tion. Association for Computational Linguistics, USA (2011)

17. Lu, W., Chen, W., Lakshmanan, L.V.S.: From competition to complementarity:
comparative influence diffusion and maximization. Proc. VLDB Endow. 9(2), 60–
71 (2015)

18. Maehara, T., Murota, K.: A framework of discrete dc programming by discrete
convex analysis. Math. Program. 152, 435–466 (2015)

19. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy
algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds
theorem. Discret. Appl. Math. 7, 251–274 (1984)

20. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

21. Wang, Z., Yang, Y., Pei, J., Chu, L., Chen, E.: Activity maximization by effective
information diffusion in social networks. IEEE Trans. Knowl. Data Eng. 29(11),
2374–2387 (2017)

22. Yang, W., Chen, S., Gao, S., Yan, R.: Boosting node activity by recommendations
in social networks. J. Comb. Optim. 40(3), 825–847 (2020). https://doi.org/10.
1007/s10878-020-00629-6

23. Yang, W., Zhang, Y., Du, D.-Z.: Influence maximization problem: properties and
algorithms. J. Comb. Optim. 40(4), 907–928 (2020). https://doi.org/10.1007/
s10878-020-00638-5

24. Yu, J., Blaschko, M.: A convex surrogate operator for general non-modular loss
functions, April 2016

25. Zhu, J., Ghosh, S., Zhu, J., Wu, W.: Near-optimal convergent approach for com-
posed influence maximization problem in social networks. IEEE Access PP(99), 1
(2019)

https://doi.org/10.1007/s10878-020-00629-6
https://doi.org/10.1007/s10878-020-00629-6
https://doi.org/10.1007/s10878-020-00638-5
https://doi.org/10.1007/s10878-020-00638-5

Reading Articles Online

Andreas Karrenbauer1 and Elizaveta Kovalevskaya1,2(B)

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

{andreas.karrenbauer,elizaveta.kovalevskaya}@mpi-inf.mpg.de
2 Goethe University Frankfurt, Frankfurt am Main, Germany

lisa@ae.cs.uni-frankfurt.de

Abstract. We study the online problem of reading articles that are
listed in an aggregated form in a dynamic stream, e.g., in news feeds, as
abbreviated social media posts, or in the daily update of new articles on
arXiv. In such a context, the brief information on an article in the list-
ing only hints at its content. We consider readers who want to maximize
their information gain within a limited time budget, hence either discard-
ing an article right away based on the hint or accessing it for reading.
The reader can decide at any point whether to continue with the current
article or skip the remaining part irrevocably. In this regard, Reading
Articles Online, RAO, does differ substantially from the Online Knap-
sack Problem, but also has its similarities. Under mild assumptions, we
show that any α-competitive algorithm for the Online Knapsack Prob-
lem in the random order model can be used as a black box to obtain an
(e + α)C-competitive algorithm for RAO, where C measures the accu-
racy of the hints with respect to the information profiles of the articles.
Specifically, with the current best algorithm for Online Knapsack, which
is 6.65 < 2.45e-competitive, we obtain an upper bound of 3.45eC on the
competitive ratio of RAO. Furthermore, we study a natural algorithm
that decides whether or not to read an article based on a single thresh-
old value, which can serve as a model of human readers. We show that
this algorithmic technique is O(C)-competitive. Hence, our algorithms
are constant-competitive whenever the accuracy C is a constant.

1 Introduction

There are many news aggregators available on the Internet these days. However,
it is impossible to read all news items within a reasonable time budget. Hence,
millions of people face the problem of selecting the most interesting articles
out of a news stream. They typically browse a list of news items and make a
selection by clicking into an article based on brief information that is quickly
gathered, e.g., headline, photo, short abstract. They then read an article as long
as it is found interesting enough to stick to it, i.e., the information gain is still
sufficiently high compared to what is expected from the remaining items on the
list. If not, then the reader goes back to browsing the list, and the previous article
is discarded – often irrevocably due to the sheer amount of available items and a
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 639–654, 2020.
https://doi.org/10.1007/978-3-030-64843-5_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_43&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_43

640 A. Karrenbauer and E. Kovalevskaya

limited time budget. This problem is inspired by research in Human-Computer
Interaction [8].

In this paper, we address this problem from a theoretical point of view. To
this end, we formally model the Reading Articles Online Problem, RAO, show
lower and upper bounds on its competitive ratio, and analyze a natural threshold
algorithm, which can serve as a model of a human reader.

There are obvious parallels to the famous Secretary Problem, i.e., if we could
only afford to read one article, we had a similar problem that we had to make
an irrevocable decision without knowing the remaining options. However, in the
classical Secretary Problem, it is assumed that we obtain a truthful valuation of
each candidate upon arrival. But in our setting, we only get a hint at the content,
e.g., by reading the headline, which might be a click bait. However, if there is
still time left from our budget after discovering the click bait, we can dismiss
that article and start browsing again, which makes the problem fundamentally
more general. Moreover, a typical time budget allows for reading more than one
article, or at least a bit of several articles, perhaps of different lengths. Thus, our
problem is also related to Online Knapsack but with uncertainty about the true
values of the items. Nevertheless, we assume that the reader obtains a hint of
the information content before selecting and starting to read the actual article.
This is justified because such a hint can be acquired from the headline or a
teaser photo, which is negligible compared to the time it takes to read an entire
article. In contrast, the actual information gain is only realized while reading
and only to the extent of the portion that has already been read. For the sake of
simplicity, one can assume a sequential reading strategy where the articles are
read word for word and the information gain might fluctuate strongly, especially
in languages like German where a predicate/verb can appear at the end of a
long clause. However, in contrast to spatial information profiles, one can also
consider temporal information profiles where the information gain depends on
the reading strategy, e.g., cross reading. It is clear that the quality of the hint in
relation to the actual information content of the article is a decisive factor for the
design and analysis of corresponding online algorithms. We argue formally that
the hint should be an upper bound on the information rate, i.e., the information
gain per time unit. Moreover, we confirm that the hint should not be too far off
the average information rate to achieve decent results compared to the offline
optimum where all articles with the corresponding information profiles are known
in advance. In this paper, we assume that the length of an article, i.e., the time
it takes to read it to the end, is revealed together with the hint. This is a mild
assumption because this attribute can be retrieved quickly by taking a quick
glance at the article, e.g., at the number of pages or at the size of the scroll bar.

1.1 Related Work

To the best of our knowledge, the problem of RAO has not been studied in our
suggested setting yet. The closest related problem known is the Online Knapsack
Problem [2,4,10] in which an algorithm has to fill a knapsack with restricted
capacity while trying to maximize the sum of the items’ values. Since the input

Reading Articles Online 641

is not known at the beginning and an item is not selectable later than its arrival,
optimal algorithms do not exist. In the adversarial model where an adversary
chooses the order of the items to arrive, it has been shown in [12] that the
competitive ratio is unbounded. Therefore, we consider the random order model
where a permutation of the input is chosen uniformly at random.

A special case of the Online Knapsack Problem is the well-studied Secretary
Problem, solved by [7] among others. The goal is to choose the best secretary of a
sequence without knowing what values the remaining candidates will have. The
presented e-competitive algorithm is optimal for this problem. The k-Secretary
Problem aims to hire at most k ≥ 1 secretaries while maximizing the sum of their
values. In [11], an algorithm with a competitive ratio of 1/(1 − 5/

√
k), for large

enough k, with a matching lower bound of Ω(1/(1−1/
√

k)) is presented. Further-
more, [4] contains an algorithm that is e-competitive for any k. Some progress
for the case of small k was made in [3]. The Knapsack Secretary Problem intro-
duced by [4] is equivalent to the Online Knapsack Problem in the random order
model. They present a 10e-competitive algorithm. An 8.06-competitive algorithm
(8.06 < 2.97e) is shown in [10] for the Generalized Assignment Problem, which
is the Online Knapsack Problem generalized to a setting with multiple knap-
sacks with different capacities. The current best algorithm from [2] achieves a
competitive ratio of 6.65 < 2.45e.

There have been different approaches to studying the Knapsack Problem
with uncertainty besides the random order model. One approach is the Stochastic
Knapsack Problem where values or weights are drawn from a known distribution.
This problem has been studied in both online [12] and offline [6] settings. In [9],
an offline setting with unknown weights is considered: algorithms are allowed to
query a fixed number of items to find their exact weight.

A model with resource augmentation is considered for the fractional ver-
sion of the Online Knapsack Problem in [15]. There, the knapsack of the online
algorithm has 1 ≤ R ≤ 2 times more capacity than the knapsack of the offline
optimum. Moreover, they allow items to be rejected after being accepted. In our
model, this would mean that the reader gets time returned after having already
read an article. Thus, their algorithms are not applicable on RAO.

1.2 Our Contribution

We introduce RAO and prove lower and upper bounds on competitive ratios
under various assumptions. We present relations to the Online Knapsack problem
and show how ideas from that area can be adapted to RAO. Our emphasis lies
on the initiation of the study of this problem by the theory community.

We first show lower bounds that grow with the number of articles unless
restrictions apply that forbid the corresponding bad instances. That is, whenever
information rates may be arbitrarily larger than the hint of the corresponding
article, any algorithm underestimates the possible information gain of a good
article. Hence, the reader must adjust the hints such that they upper bound
the information rate to allow for bounded competitive ratios. While we may
assume w.l.o.g. for the Online Knapsack Problem that no item is larger than

642 A. Karrenbauer and E. Kovalevskaya

the capacity since an optimal solution cannot contain such items, we show that
RAO without this or similar restrictions suffers from a lower bound of Ω(n),
i.e., any algorithm is arbitrarily bad in the setting where articles are longer than
the time budget. Moreover, we prove that the accuracy of the hints provides a
further lower bound for the competitive ratio. We measure this accuracy as the
maximum ratio C of hints and respective average information rates. Hence, a
constant-competitive upper bound for RAO is only possible when C is bounded.

Under these restrictions, we present the first constant-competitive algorithm
for RAO. To this end, we introduce a framework for wrapping any black box
algorithm for the Online Knapsack Problem to work for RAO. Given an α-
competitive algorithm for the Online Knapsack Problem as a black box, we
obtain a (e + α)C-competitive algorithm for RAO. This algorithm is 3.45eC-
competitive when using the current best algorithm for the Online Knapsack
Problem from [2]. This is the current best upper bound that we can show for
RAO, which is constant provided that the hints admit a constant accuracy.

However, the algorithm generated by the framework above inherits its com-
plexity from the black box algorithm for the Online Knapsack Problem, which
may yield good competitive ratios from a theoretical point of view but might be
too complex to serve as a strategy for a human reader. Nevertheless, the existence
of constant-competitive ratios (modulo accuracy of the hints) motivates us to
strive for simple O(C)-algorithms. To this end, we investigate an algorithm that
bases its decisions on a single threshold. The Threshold Algorithm can be seen
as a formalization of human behavior. While reading, humans decide intuitively
whether an article is interesting or not. This intuition is modeled by the single
threshold. In case of diminishing information gain, we show that this simplistic
approach suffices to obtain an upper bound of 246C < 90.5eC on the compet-
itive ratio with the current analysis, which might leave room for improvement
but nevertheless achieves a constant competitive ratio. Diminishing information
gain means non-increasing information rates, a reasonable assumption particu-
larly in the light of efficient reading strategies, where an article is not read word
for word. In such a context, one would consider a temporal information profile
that relates the information gain to the reading time. When smoothed to coarse
time scale, the information rates can be considered non-increasing and lead to a
saturation of the total information obtained from an article over time.

2 Preliminaries

Definition 1 (Reading Articles Online (RAO)). There are n articles that
are revealed one by one in a round-wise fashion. The reader has a time budget
T ∈ N>0 for reading. In round i, the reader sees article i with its hint hi ∈ N>0

and time length ti ∈ N>0. The actual information rate ci : [ti] → [hi] is an
unknown function. The reader has to decide whether to start reading the article
or to skip to the next article. After reading time step j ≤ ti, the reader obtains
ci(j) information units and can decide to read the next time step of the article or
to discard it irrevocably. After discarding or finishing the current article, the next

Reading Articles Online 643

information units ci(j)

time j

ti

j=1

ci(j)
ti

hi } C

Fig. 1. Relation of hint hi to average information gain
∑ti

j=1 ci(j)/ti as in Definition 3.

round begins. The objective is to maximize
∑

i∈[n]

∑τi
j=1 ci(j) where 0 ≤ τi ≤ ti

is the number of time steps read by the algorithm and
∑

i∈[n] τi ≤ T .

For the sake of simplicity, we have chosen a discrete formulation in Defi-
nition 1, which is justified by considering words or even characters as atomic
information units. Since such tiny units might be too fine-grained compared to
the length of the articles, we can also extend this formulation with a slight
abuse of notation and allow that the τi are fractional, i.e.,

∑τi
j=1 ci(j) =

∑�τi�
j=1 ci(j) + ci(�τi�) · {τi}, where {τi} denotes its fractional part. However, one

could also consider a continuous formulation using integrals, i.e., the objective
becomes

∑
i∈[n]

∫ τi
0

ci(t)dt. The lower bounds presented in this section hold for
these models as well.

We use the random order model where input order corresponds to a permu-
tation π chosen uniformly at random.

Definition 2 (Competitive Ratio). We say that an algorithm Alg is α-
competitive, if, for any instance I, the expected value of Alg on instance I, with
respect to permutation of the input and random choices of Alg, is at least 1/α
of the optimal offline value Opt(I), i.e., E [Alg(I)] ≥ 1

α · Opt(I).

We measure the accuracy of hints with parameter C from Definition 3. This
relation is illustrated in Fig. 1. Lemma 4 provides a lower bound in dependence
on this accuracy.

Definition 3 (Accuracy of Hints). The accuracy C ≥ 1 is the smallest
number s.t.

hi ≤ C ·
ti∑

j=1

ci(j)
ti

∀i ∈ [n].

The hint is a single number giving a cue about a function. Therefore, no
matter which measure of accuracy we consider, if the hint is perfectly accurate,
the function has to be constant. In Sect. 6, we discuss other ideas on the measure
of accuracy of hints such as a multi-dimensional feature vector or the hint being
a random variable drawn from the information rate.

We introduce an auxiliary problem to bound the algorithm’s expected value.

644 A. Karrenbauer and E. Kovalevskaya

Definition 4 (Knapsack Problem for Hints (KPH)). Given an instance
I for RAO, i.e., time budget T , hint hi and length ti for each article i ∈ [n],
the Knapsack Problem for Hints, KPH, is the fractional knapsack problem with
values tihi, weights ti and knapsack size T . Let OptKPH(I) denote its optimal
value on instance I.

As in [4], we now define an LP for a given subset Q ⊆ [n] and time budget x.
It finds the optimal fractional solution for KPH with articles from Q and time
budget x.

max
∑n

i=1 ti · hi · y(i)

s.t.
∑n

i=1 ti · y(i) ≤ x
y(i) = 0 ∀i /∈ Q
y(i) ∈ [0, 1] ∀i ∈ [n]

The variable y
(x)
Q (i) refers to the setting of y(i) in the optimal solution on

articles from Q with time budget x. The optimal solution has a clear structure:
There exists a threshold hint ρ

(x)
Q such that any article i ∈ Q with hi > ρ

(x)
Q has

y
(x)
Q (i) = 1 and any article i ∈ Q with hi < ρ

(x)
Q has y

(x)
Q (i) = 0. As in [4], we

use the following notation for a subset R ⊆ [n]:

v
(x)
Q (R) =

∑

i∈R

ti · hi · y
(x)
Q (i) and w

(x)
Q (R) =

∑

i∈R

ti · y
(x)
Q (i).

The value v
(x)
Q (R) and weight w

(x)
Q (R) refer to the value and weight that set

R contributes to the optimal solution. We use KPH’s solution as an upper bound
on the optimal solution, as shown in the following lemma:

Lemma 1. Given instance I for RAO, let Opt(I) and OptKPH(I) be the
respective optimal values. Then, OptKPH(I) ≥ Opt(I).

Proof. Since the codomain of ci is [hi] by Definition 1, any algorithm for RAO
cannot obtain more information units than hi in any time step. Thus, the optimal
solution of KPH obtains at least the same amount of information units as the
optimal solution of RAO by reading the same parts. ��

3 Lower Bounds

The proofs in this section are constructed in a way such that the instances are
not producing a lower bound for the other settings. Note that in the proofs of
Lemma 2 and Lemma 3, we have C ≤ 2. Moreover, we construct the family of
instances such that the lower bounds hold in a fractional setting. The key idea
is to have the first time step(s) small in every information rate such that the
algorithms are forced to spend a minimal amount of time on reading an article
before obtaining eventually more than one information unit per time step.

Although Definition 1 already states that the codomain of ci is [hi], we show
a lower bound as a justification for this constraint on ci.

Reading Articles Online 645

Lemma 2. If the functions ci are allowed to take values larger than hint hi, then
the competitive ratio of any deterministic or randomized algorithm is Ω(

√
n).

Proof. We construct a family of instances for all � ∈ N. Let n := �2. For any
fixed �, we construct instance I as follows. Set T := n, ti := T = n and hi := n
for all i ∈ [n]. We define two types of articles. There are

√
n articles of type A

where ci(j) := 1 for j ∈ [T] \ {√
n} and ci(

√
n) := n2. The articles of type B

have ci(j) := 1 for j ∈ [T − 1] and ci(T) := n2.
An optimal offline algorithm reads all articles of type A up to time step√

n. Therefore, Opt(I) = Θ(n2.5). Any online algorithm cannot distinguish
between articles of type A and B until time step

√
n. The value of any online

algorithm cannot be better than the value of algorithm Alg that reads the first√
n time steps of the first

√
n articles. Since the input order is chosen uniformly

at random, the expected arrival of the first type A article is at round
√

n. Thus,
E [Alg(I)] = Θ(n2). Therefore, E [Alg(I)] ≤ Opt(I)/

√
n. ��

In RAO, solutions admit reading articles fractionally. Therefore, we show a
lower bound whenever articles are longer than the time budget.

Lemma 3. If the lengths ti are allowed to take values larger than time budget
T , then the competitive ratio of any deterministic or randomized algorithm is
Ω(n).

Proof. We construct a family of instances with T := 2, ti := 3 and hi := M
for all i ∈ [n], where M ≥ 1 is set later. We define ck(1) := 1, ck(2) := M
and ck(3) := 1. Any other article i ∈ [n] \ {k} has ci(1) := 1, ci(2) := 1 and
ci(3) := M .

As the permutation is chosen uniformly at random, an online algorithm does
not know which article is the one with M information units in the second time
step. No algorithm can do better than the algorithm Alg that reads the first
article completely while Opt(I) = M + 1. Its expected value is E [Alg(I)] =
(1/n) · (M + 1) + (1 − 1/n) · 2 ≤ (2/n + 2/M) · Opt(I). When setting M = n,
we obtain the desired bound. ��

A consequence of the next lemma is that if the accuracy C from Definition 3
is not a constant, then no constant-competitive algorithms can exist.

Lemma 4. Any deterministic or randomized algorithm is Ω(min {C, n})-com-
petitive.

646 A. Karrenbauer and E. Kovalevskaya

Proof. Consider the following family of instances I in dependence on accuracy
C ≥ 1. Let T := 2 and ti := 2 for all i ∈ [n]. Set ck(1) := 1 and ck(2) := C. We
define ci(1) := 1 and ci(2) := 1 for all i ∈ [n] \ {k}. The hints are hi := C for all
i ∈ [n], thus, they are C-accurate according to Definition 3.

Any algorithm cannot distinguish the information rate of the articles, as the
hints and the first time steps are all equal. Therefore, no algorithm is better than
Alg, which chooses to read the article arriving first completely. The optimal
choice is to read article k; we obtain the desired bound: E [Alg(I)] = (1/n) ·
(C + 1) + (1 − 1/n) · 2 ≤ (2/n + 2/C) · Opt(I). ��
Assumption 1. For any article i ∈ [n], we assume that ti ≤ T and that the
hints hi and upper bounds tihi on the information gain in the articles are dis-
tinct.1

4 Exploitation of Online Knapsack Algorithms

In this section, we develop a technique for applying any algorithm for the Online
Knapsack Problem on an instance of RAO. The presented algorithm uses the
classic Secretary Algorithm that is e-competitive for all positive n as shown in
[5]. The Secretary Algorithm rejects the first n/e� items. Then it selects the
first item that has a better value than the best so far. Note that the Secretary
Algorithm selects exactly one item.

We use KPH for the analysis as an upper bound on the actual optimal solu-
tion with respect to information rates ci. There is exactly one fractional item in
the optimal solution of KPH. The idea is to make the algorithm robust against
two types of instances: the ones with a fractional article of high information
amount and the ones with many articles in the optimal solution.

Theorem 2. Given an α-competitive algorithm Alg for the Online Knapsack
Problem, the Reduction Algorithm is (e + α)C-competitive.

Proof. We fix an instance I and use Lemma 1. We split the optimal solution of
KPH into the fractional article if that is read xif · tif time steps and the set
Hmax of articles that are read completely. Since Hmax is a feasible solution to
the integral version of KPH, the value of the articles in Hmax is not larger than
the optimal value Optint

KPH(I) of the integral version. We denote the optimal
integral solution by set H∗. Using Definition 3, we obtain:

1 Disjointness is obtained by random, consistent tie-breaking as described in [4].

Reading Articles Online 647

Opt(I) ≤ OptKPH(I) =
∑

i∈Hmax

tihi + xif tif hif ≤ Optint
KPH(I) + tif hif

≤
∑

i∈H∗
tihi + max

i∈[n]
tihi ≤ C ·

⎛

⎝
∑

i∈H∗

ti∑

j=1

ci(j) + max
i∈[n]

ti∑

j=1

ci(j)

⎞

⎠

≤ C ·
⎛

⎝α

δ
· P [b = 1]E

⎡

⎣
∑

i∈S

ti∑

j=1

ci(j)
∣
∣
∣
∣b = 1

⎤

⎦

+
e

1 − δ
· P [b = 0]E

⎡

⎣
∑

i∈S

ti∑

j=1

ci(j)
∣
∣
∣
∣b = 0

⎤

⎦

⎞

⎠

≤ C · max
{

α

δ
,

e
1 − δ

}

· E [Reduction Algorithm(I)] .

The optimal choice of δ to minimize max
{

α
δ , e

1−δ

}
is δ = α

e+α . This is exactly
how the Reduction Algorithm sets the probability δ ∈ (0, 1) in line 1, which yields
a competitive ratio of (e + α) · C. ��

Algorithm 1: Reduction Algorithm
Input: Number of articles n, time budget T , an α-competitive algorithm Alg

for the Online Knapsack Problem.
Output: Set S of chosen articles.

1 Set δ = α
e+α

and choose b ∈ {0, 1} randomly with P [b = 1] = δ;

2 if b = 1 then
3 Apply Alg with respect to values tihi and weights ti;
4 else
5 Apply the Secretary Algorithm with respect to values tihi;

When using the current best algorithm for the Online Knapsack Problem
presented in [2], the Reduction Algorithm has a competitive ratio of (e + 6.65) ·
C ≤ 3.45eC. Assuming that the accuracy of the hints C ≥ 1 from Definition 3
is constant, the RAO admits a constant upper bound on the competitive ratio.

Remark 1. (i) The Reduction Algorithm can be used to obtain an (α+e)-compe-
titive algorithm for the fractional version of the Online Knapsack Problem given
an α-competitive algorithm for the integral version. The proof is analogous to
the proof of Theorem 2. (ii) Running an α-competitive algorithm for Online
Knapsack on an instance of RAO, we obtain a 2αC-competitive algorithm for
RAO by a similar proof. Since the current best algorithm for Online Knapsack
has α = 6.65 > e, using the Reduction Algorithm provides better bounds. This
holds for the fractional Online Knapsack Problem respectively.

648 A. Karrenbauer and E. Kovalevskaya

5 Threshold Algorithm

While the Online Knapsack Problem has to take items completely, RAO does
not require the reader to finish an article. Exploiting this possibility, we present
the Threshold Algorithm, which bases its decisions on a single threshold. We
adjust the algorithm and its analysis from [4]. From now on, we assume that the
information rates ci are non-increasing and that we can stop to read an article
at any time, thus allowing fractional time steps. For the sake of presentation, we
stick to the discrete notation (avoiding integrals). In practice, the information
gain diminishes the longer an article is read, and the inherent discretization by
words or characters is so fine-grained compared to the lengths of the articles
that it is justified to consider the continuum limit.

Before starting to read, one has to decide at which length to stop reading any
article in dependence on T . First, we show that cutting all articles of an instance
after gT time steps costs at most a factor of 1/g in the competitive ratio.

Lemma 5. Given an instance I with time budget T , g ∈ (0, 1], lengths ti, hints
hi and non-increasing information rates ci : [ti] → [hi], we define the cut instance
I ′
g with time budget T ′ = T , lengths t′i = min {ti, gT}, hints h′

i = hi and non-
increasing information rates c′

i : [t′i] → [h′
i], where c′

i(j) = ci(j) for 1 ≤ j ≤ t′i.
Then, OptKPH(I) ≤ OptKPH(I ′

g)/g.

Proof. Since gti ≤ gT and gti ≤ ti we have gti ≤ min {gT, ti} = t′i and obtain:
OptKPH(I) = 1

g

∑
i∈[n] hi·gti·y(T)

[n] (i) ≤ 1
g

∑
i∈[n] h

′
it

′
i·y(T)

[n] (i) ≤ 1
g ·OptKPH(I ′

g).
The last inequality follows as no feasible solution is better than the optimum.
The time budget is respected since

∑
i∈[n] ti · y

(T)
[n] (i) ≤ T = T ′ and ti ≥ t′i. ��

We need the following lemma that can be proven by a combination of nor-
malization, Exercise 4.7 on page 84 and Exercise 4.19 on page 87 in [14].

Lemma 6. Let z1, ..., zn be mutually independent random variables from a finite
subset of [0, zmax] and Z =

∑n
i=1 zi with μ = E [Z]. For all μH ≥ μ and all δ > 0,

P [Z ≥ (1 + δ)μH] < exp
(

− μH

zmax
· [(1 + δ) ln(1 + δ) − δ]

)

.

We assume that
∑

i∈[n] min {ti, gT} =
∑

i∈[n] t
′
i ≥ 3T/2 for the purpose of

the analysis. The same assumption is made in [4] implicitly. If there are not
enough articles, the algorithm can only improve since there are fewer articles
that are not part of the optimal solution. We can now state the main theorem.

Theorem 3. For g = 0.0215, the Threshold Algorithm’s competitive ratio is
upper bounded by 246C < 90.5eC.

The proof is similar to the proof of Lemma 4 in [4]. However, we introduce
parameters over which we optimize the analysis of the competitive ratio. This
way, we make the upper bound on the competitive ratio as tight as possible for
the proof technique used here. Recall that we may assume w.l.o.g. by Assump-
tion 1 that the hints hi and upper bounds tihi are disjoint throughout the proof.

Reading Articles Online 649

Algorithm 2: Threshold Algorithm
Input: Number of articles n, time budget T , a fraction g ∈ (0, 1].

Article i appears in round π(i) and reveals hi and ti.
Output: Number of time steps 0 ≤ si ≤ ti that are read from article i ∈ [n].

1 Sample r ∈ {1, ..., n} from binomial distribution Bin(n, 1/2);
2 Let X = {1, ..., r} and Y = {r + 1, ..., n};
3 for round π(i) ∈ X do
4 Observe hi and ti;
5 Set si = 0;

6 Solve KPH on X with budget T/2, lengths t′
i = min {gT, ti}, and values t′

ihi.

7 Let ρ
(T/2)
X be the threshold hint;

8 for round π(i) ∈ Y do

9 if hi ≥ ρ
(T/2)
X then

10 Set si = min

⎧
⎨

⎩
ti, gT, T −

∑

1≤j<i

sj

⎫
⎬

⎭
;

11 Read the first si time steps of article i;

12 else
13 Set si = 0;

Proof. Fix an instance I. We refer to the order by permutation π chosen uni-
formly at random. For simplicity, we scale the instance such that T = 1 and all
ti are multiplied with 1/T , which does not affect the hints and the threshold.
We use KPH to show the bound as OptKPH(I) ≥ Opt(I) holds by Lemma 1.
As the reader always reads at most the first gT time steps, we use the bound
from Lemma 5 for cutting instance I to I ′

g. For better readability, we do not
rename the parameters of I ′

g and refer to the variables without adding a prime ′.
We proceed with showing the bound on the expected value of the algorithm on
instance I ′

g since the algorithm reads at most g time steps of each article.
Now, we proceed as in the proof of Lemma 4 in [4]. We use two auxiliary

knapsacks to bound the algorithm’s expected value. Their optimal, fractional
solution is computed offline on instance I. In contrast to [4], we parameterize
the size of the auxiliary knapsacks to find the best possible sizes. We use a
knapsack of size β and one of size γ where 0 < β ≤ 1 and 1 ≤ γ ≤ ∑

i∈[n] ti.
Recall that we assumed that

∑
i∈[n] ti ≥ 3/2 = 3T/2. We show in the following

that for all i where y
(β)
[n] (i) > 0, there is a p ∈ (0, 1) such that P [si = ti] > p. As

a consequence of p’s existence, we obtain the following inequalities:

650 A. Karrenbauer and E. Kovalevskaya

OptKPH(I) ≤ 1
g

· OptKPH(I ′
g) ≤ 1

g
· 1
β

· v
(β)
[n] ([n]) =

1
gβ

·
∑

i∈[n]

tihiy
(β)
[n] (i)

≤ 1
gβp

·
∑

i∈[n]

P [si = ti] tihi ≤ 1
gβp

·
∑

i∈[n]

P [si = ti] · C ·
si∑

j=1

ci(j)

≤ C

gβp
· E [Threshold Algorithm(I)] .

(1)
We lose the factor C as we use the inequality from Definition 3. The best

possible value for the competitive ratio is the minimum of C/(gβp). We find it
by maximizing gβp. As g and β are settable variables, we determine p first. We
define random variables ζi for all i ∈ [n], where

ζi =
{

1 if π(i) ∈ X
0 otherwise.

As discussed in [4], conditioned on the value of r, π−1(X) is a uniformly chosen
subset of [n] from any subset of [n] containing exactly r articles. Since r is
chosen from Bin(n, 1/2), it has the same distribution as the size of a uniformly
at random chosen subset of [n]. Therefore, π−1(X) is a uniformly chosen subset
of all subsets of [n]. The variables ζi are mutually independent Bernoulli random
variables with P [ζi = 1] = 1/2. Now, we fix j ∈ [n] with y

(β)
[n] (j) > 0 and define

two random variables:

Z1 := w
(β)
π([n])(X \ {π(j)}) =

∑

i∈[n]\{j}
ti · y

(β)
[n] (i) · ζi,

Z2 := w
(γ)
π([n])(Y \ {π(j)}) =

∑

i∈[n]\{j}
ti · y

(γ)
[n] (i) · (1 − ζi).

Note that the event π(j) ∈ Y , i.e., ζj = 0, is independent of Z1 and Z2 since
they are defined without π(j). The weights ti · y(β)

[n] (i) · ζi and ti · y(γ)
[n] (i) · (1 − ζi)

within the sum are random variables taking values in [0, g] since the instance
is cut. Now, we reason that when article j is revealed at position π(j) to the
Threshold Algorithm, it has enough time to read j with positive probability. The
next claim is only effective for g < 0.5 since Z1 and Z2 are non-negative.

Claim. Conditioned on Z1 < 1
2 − g and Z2 < 1 − 2g, the Threshold Algorithm

sets sj = tj if π(j) ∈ Y because hj ≥ ρ
(1/2)
X and it has enough time left.

Proof. Since tj ≤ gT = g, article j can only add at most g weight to X or Y .
Therefore, w

(β)
π([n])(X) < 1/2 and w

(γ)
π([n])(Y) < 1 − g. Recall that knapsacks of

size β and γ are packed optimally and fractionally. Thus, a knapsack of size γ

would be full, i.e., w
(γ)
π([n])(π([n])) = min

{
γ,

∑
i∈[n] ti

}
. Since we assumed in the

Reading Articles Online 651

beginning of the proof that γ ≤ ∑
i∈[n] ti, we have w

(γ)
π([n])(π([n])) = γ. We can

bound the weight of X in this solution by w
(γ)
π([n])(X) = γ −w

(γ)
π([n])(Y) > γ −(1−

g). We choose γ such that γ−(1−g) > 1/2.2 Thus, the articles in X add weights
w

(β)
π([n])(X) < 1/2 and w

(γ)
π([n])(X) > 1/2 to their respective optimal solution.

Since w
(γ)
π([n])(X) =

∑
i∈X tiy

(γ)
n (i) > 1/2, it means that there are elements in

X with combined ti of at least 1/2. Therefore, the optimal solution of KPH on
X with time budget 1/2 is satisfying the capacity constraint with equality, i.e.,
w

(1/2)
X (X) = 1/2. We obtain: w

(γ)
π([n])(X) > w

(1/2)
X (X) > w

(β)
π([n])(X).

When knapsack A has a higher capacity than knapsack B on the same
instance, then the threshold density of knapsack A cannot be higher than the
threshold density of knapsack B. For any X, we see that the knapsack of size β
uses less capacity than 1/2 and the knapsack of size γ uses more capacity than
1/2 on the same X respectively. Since both knapsacks are packed by an optimal,
fractional solution that is computed offline on the whole instance, the respective
threshold hint for articles from X and articles from π([n]) is the same. Therefore,
we get the following ordering of the threshold hints: ρ

(γ)
π([n]) ≤ ρ

(1/2)
X ≤ ρ

(β)
π([n]).

Now, we show that when the algorithm sees π(j), it has enough time left. Let
S+ =

{
π(i) ∈ Y \ {π(j)} : hi ≥ ρ

(1/2)
X

}
be the set of articles that the algorithm

can choose from. Thus, the algorithm reads every article from S+ (and maybe
π(j)) if it has enough time left at the point when an article from S+ arrives. By
transitivity, every article π(i) ∈ S+ has hi ≥ ρ

(γ)
π([n]). Therefore, for all but at most

one3 π(i) ∈ S+, the equation y
(γ)
[n] (i) = 1 holds. Since the only article i ∈ S+ that

could have y
(γ)
[n] (i) < 1 is not longer than g, the total length of articles in S+ can

be bounded from above by
∑

i∈S+ ti ≤ g + w
(γ)
π([n])(Y \ {π(j)}) = g + Z2 < 1 − g.

As tj ≤ g, the algorithm has enough time left to read article j completely, when
it arrives at position π(j). Moreover, if y

(β)
[n] (j) > 0, then hj ≥ ρ

(β)
π([n]) ≥ ρ

(1/2)
X . �

We now proceed with the main proof by showing a lower bound on p′ =
P[Z1 < 1/2 − g and Z2 < 1 − 2g]. Recall that the event π(j) ∈ Y is independent
of Z1 and Z2. With the preceded claim we obtain:

P [sj = tj] = P
[
sj = tj

∣
∣Z1 < 1/2 − g and Z2 < 1 − 2g

] · p′

= P
[
π(j) ∈ Y

∣
∣Z1 < 1/2 − g and Z2 < 1 − 2g

] · p′ =
1
2

· p′.
(2)

As we are searching for the lower bound p < P [sj = tj], we use the lower bound
for p′ multiplied with 1/2 as the value for p. Moreover,

p′ = P [Z1 < 1/2 − g and Z2 < 1 − 2g] ≥ 1 − P [Z1 ≥ 1/2 − g] − P [Z2 ≥ 1 − 2g] .
(3)

2 In [4], it is implicitly assumed that
∑

i∈[n] ti ≥ 3/2 as their choice of γ is 3/2.
3 As the hints are distinct by Assumption 1.

652 A. Karrenbauer and E. Kovalevskaya

We can bound the probabilities P [Z1 ≥ 1/2 − g] and P [Z2 ≥ 1 − 2g] by the
Chernoff Bound from Lemma 6.4 The expected values of Z1, Z2 are bounded by

E [Z1] =
1

2
·
(
β − tj · y

(β)

[n] (j)
)

≤ β

2
and E [Z2] =

1

2
·
(
γ − tj · y

(γ)

[n] (j)
)

≤ γ

2
.

We use zmax = g, δ1 = (1−2g)/β −1 > 0 and δ2 = (2−4g)/γ −1 > 0 to obtain:

P [Z1 ≥ 1/2 − g] < exp
((

1 − 1
2g

)

· ln
(

1 − 2g

β

)

− 1 +
1 − β

2g

)

,

P [Z2 ≥ 1 − 2g] < exp
((

2 − 1
g

)

· ln
(

2 − 4g

γ

)

− 2 +
1 − γ/2

g

)

.

(4)

To conclude the proof, the final step is numerically maximizing the lower
bound on gβp′/2 obtained by combining Eqs. (2), (3) and (4):

max
g,β,γ

βg
2 ·

(

1 − exp
((

1 − 1
2g

) · ln
(
1−2g

β

) − 1 + 1−β
2g

)

− exp
((

2 − 1
g

) · ln
(
2−4g

γ

) − 2 + 1−γ/2
g

)) (5)

s.t. γ + g > 1.5 2g + β < 1 4g + γ < 2
0 < g < 0.5 0 < β < 1 γ > 1

We do not use γ ≤ ∑
i∈[n] ti as a constraint because the other constraints already

imply that γ < 2, and we assume that the combined length of all articles is
huge compared to the time budget. Numerical maximization of (5) using [13]
yields g = 0.021425, β = 0.565728, γ = 1.478575. As we set p to the
lower bound on p′/2, we can plug these values in Eq. (1), so Opt(I) < 246C ·
E [Threshold Algorithm(I)] . ��

It is interesting to note that our proof suggests to limit the time for each
article to about 2% of the time budget in order to maximize the expected total
information gain. The analysis from Lemma 4 in [4] uses β = 3/4, γ = 3/2 and
ti ≤ 1/81 for all i ∈ [n]. Applying their analysis on the Threshold Algorithm
for g = 1/81 yields an upper bound of 162eC on its competitive ratio. For
these parameters, the optimized analysis in Theorem 3 gives an upper bound of
125.77eC.

6 Open Questions

An open question is whether the analysis of the Threshold Algorithm is tight.
Although we optimize to find the best possible g, the used Chernoff bound is

4 Note that the Chernoff Bound is indeed applicable since the random variables
tiy

(β)

[n] (i)ζi and tiy
(γ)

[n] (i)(1 − ζi) are discrete and ζi are mutually independent.

Reading Articles Online 653

not applicable for g ≥ 1/6. Moreover, the combined articles’ lengths, cut with
respect to g, have to be at least 1.48 times greater than the time budget. For
the sake of improving the analysis, a different approach has to be investigated.

We informally related diminishing information gain over time to efficient
reading strategies. It would be interesting to formalize it w.r.t. spatial infor-
mation profiles. Further directions involve the exploration of new settings and
extensions. There are different measures of the accuracy of the hints worth inves-
tigating. An example would be to interpret the information rate as a distribution
of information and the hint to be a random variable drawn from this distribu-
tion. Then, the algorithm’s performance is dependent on the information rate’s
expectation and standard deviation. An interesting task is to develop an algo-
rithmic strategy for the setting where the length ti of an article is not revealed
when it arrives. We believe that the studied techniques in this paper can be
used for this setting if the information gain diminishes, e.g., logarithmically as
a function of time, while reading any article. Another reasonable setting is the
one where articles appear in a non-uniform, but still random order. This is suit-
able for reading articles since many websites present articles in a categorized
order or using recommender systems, where articles are sorted based on the
user’s preferences. In that light, it would also make sense to extend the scalar
hint to a multi-dimensional feature vector. The investigation of related learning-
augmented online algorithms would be a further interesting development. The
idea of a threshold can be considered in that direction: Instead of the learning
phase in the Threshold Algorithm, an external threshold can be considered, e.g.,
from past experience, gut feeling, or rating by a recommender system.

In our opinion, the most interesting extension is to allow the reader to mark
a restricted number of articles and return to these articles at any point in time.
For secretary problems with submodular objective functions, the setting where
an algorithm is allowed to remember items and select the output after seeing
the whole instance has recently been discussed by [1]. Here, they achieve a com-
petitive ratio that is arbitrarily close to the offline version’s lower bound on the
approximation factor. This extension combined with a cross reading strategy,
unknown reading lengths, and articles sorted by categories or preferences is the
closest setting to real-life web surfing.

References

1. Agrawal, S., Shadravan, M., Stein, C.: Submodular secretary problem with short-
lists. In: Blum, A. (ed.) 10th Innovations in Theoretical Computer Science Con-
ference, ITCS 2019, San Diego, California, USA, LIPIcs, vol. 124, pp. 1:1–1:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

2. Albers, S., Khan, A., Ladewig, L.: Improved online algorithms for knapsack and
GAP in the random order model. In: Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019,
Massachusetts Institute of Technology, Cambridge, MA, USA, pp. 22:1–22:23
(2019)

654 A. Karrenbauer and E. Kovalevskaya

3. Albers, S., Ladewig, L.: New results for the k-Secretary problem. In: Lu, P., Zhang,
G. (eds.) 30th International Symposium on Algorithms and Computation (ISAAC
2019), Leibniz International Proceedings in Informatics (LIPIcs), vol. 149, pp. 18:1–
18:19. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2019)

4. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary prob-
lem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P.
(eds.) APPROX/RANDOM -2007. LNCS, vol. 4627, pp. 16–28. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74208-1 2

5. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Matroid secretary prob-
lems. J. ACM 65(6), 35:1–35:26 (2018)

6. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack
problem: the benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)

7. Dynkin, E.B.: Optimal choice of the stopping moment of a Markov process. Sov.
Math. 4, 627–629 (1963)

8. Freire, M.L.M., Potts, D., Dayama, N.R., Oulasvirta, A., Di Francesco, M.:
Foraging-based optimization of pervasive displays. Pervasive Mob. Comput. 55,
45–58 (2019)

9. Goerigk, M., Gupta, M., Ide, J., Schöbel, A., Sen, S.: The robust knapsack problem
with queries. Comput.& OR 55, 12–22 (2015)

10. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online
packing LPs in the random-order model. SIAM J. Comput. 47(5), 1939–1964
(2018)

11. Kleinberg, R.D.: A multiple-choice secretary algorithm with applications to online
auctions. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, pp. 630–631
(2005)

12. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems.
Math. Program. 68, 73–104 (1995). https://doi.org/10.1007/BF01585758

13. Maxima: Maxima, a Computer Algebra System. Version 5.43.2 (2019). http://
maxima.sourceforge.net/

14. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University
Press, Cambridge (2017)

15. Noga, J., Sarbua, V.: An online partially fractional knapsack problem. In: 8th
International Symposium on Parallel Architectures, Algorithms, and Networks,
ISPAN 2005, Las Vegas, Nevada, USA, pp. 108–112 (2005)

https://doi.org/10.1007/978-3-540-74208-1_2
https://doi.org/10.1007/BF01585758
http://maxima.sourceforge.net/
http://maxima.sourceforge.net/

Sensors, Vehicles and Graphs

An Efficient Mechanism for Resource
Allocation in Mobile Edge Computing

Guotai Zeng1, Chen Zhang2, and Hongwei Du1(B)

1 Department of Computer Science and Technology,
Harbin Institute of Technology (Shenzhen), Shenzhen, China

19S151132@stu.hit.edu.cn, hongwei.du@ieee.org
2 Department of Computer Science, City University of Hong Kong,

Kowloon, Hong Kong, China
c.zhang@my.cityu.edu.hk

Abstract. Mobile edge computing (MEC) caches data and services from
remote cloud to the edge of network. In this way, MEC lets user equip-
ment (UE) more closer to data and services than traditional cloud com-
puting. Service providers (SPs) deploy their own base stations (BSs) to
provide high quality services to their subscribers in MEC networks. SPs
get their total revenue from their subscribers, but face the cost of energy
and acquiring resources. In this paper, we attempt to maximize the final
profit of SPs base on a novel resource allocation method to cut down
the cost of energy and acquiring resources. The simulation results indi-
cate that our scheme increases the final profit of SPs, compared to the
existing methods.

Keywords: Mobile edge computing · Resource allocation · Profit
maximization

1 Introduction

With the development of wireless sensors [1] and other Internet Of Things (IOT)
[2], more and more mobile devices are connected to the Internet. But limited by
battery power, storage and computational ability of mobile devices, a number
of mobile devices can not complete all computing tasks alone or will meet great
challenges on delay or energy cost[3]. In order to deal with those problems,
mobile edge computing was proposed and become a significant technology for
5G networks[4]. MEC caches services and data from the remote cloud and deploys
them on the servers of base stations. Hence, service providers can serve their users
with BSs equipped with MEC server which have computing and radio resources.
Because the BSs are more closer to user equipment than remote cloud[5], the
applications deployed on the MEC servers will have lower latency and higher
quality of service than traditional cloud computing.

Resource allocation in MEC has received great attention at academic. Unlike
the cloud center in cloud computing, a BS in MEC hardly extends its resource,
unless SP updates the BS’s hardware. Because BSs have finite resource, resource
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 657–668, 2020.
https://doi.org/10.1007/978-3-030-64843-5_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_44&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_44

658 G. Zeng et al.

allocation is vital in MEC. A lot of previous works have done on how to allocate
resource in MEC to deal with delay problems or energy saving problems, but the
profit of SPs didn’t draw much attention. The existing profit models of MEC are
inadequate, because they only consider the different cost of acquiring resources
from BSs deployed by different SPs [5], but ignore the energy expenditure that
SPs need to pay. To provide high quality services to users, different SPs densely
deploy their own BSs to serve their users. But the BSs are deployed for peak
hours, so BSs will meet great energy waste in idle time, which reduces the final
profit of SPs.

In this paper, we use a resource allocation scheme to maximize the profit of
SPs in multi-SP MEC networks. In order to calculate the energy expenditure,
we consider this problem in a continuous time period which can be divided into
small time slots [6]. The profit maximization problem is influenced by three main
aspects. First, BSs on the edge have limited resources, so a BS can only serve
finite number of UEs in each time slot. Second, energy expenditure of BSs can
not be ignored. Third, an SP prefers its subscribers to use its own BSs to reduce
the cost of acquiring resources. The contributions of this paper are summarized
as follows.

– We attempt to maximize the final profit of SPs in Multi-SP MEC network, by
considering the expenditure of BSs’ energy consumption. In the real world,
the final profit of SPs is not only affected by cost of acquiring resources, but
also affected by the total energy consumption of BSs.

– We present a novel algorithm for SPs to allocate resource to UEs appropri-
ately, and the switch off the unprofitable BSs to reduce the energy cost. We
transform the maximum profit problem (MPP) of SPs to a matching problem
between BSs and UEs. We optimize the decisions of BSs switching and BS-
UE association, based on local matching interactions between BSs and UEs
in our algorithm.

The rest of this paper is organized as follows. Section 2 discusses the related
work. Section 3 describes the system model, and Sect. 4 formulates the maxi-
mum profit problem. Section 5 introduces the details of our proposed algorithm.
Simulation results presented in Sect. 6. In final, Sect. 7 concludes the paper.

2 Related Work

How to allocate resource in order to maximize SPs’ final profit in MEC has been
studied in previous work. In [7], Quyuan et al. proposed a incentive mechanism
to allocate the resource to UEs, so as to maximize the profit of SPs. In [8],
Huaqing et al. discussed how SPs select BSs, and how UEs select BSs in the fog
computing scenario, so as to maximize the revenue of SPs and BSs. In [5], Chen
et al. considered SPs’ maximum profit problem in cellular networks; however,
the resource allocation method they proposed only focus on the different cost of
acquiring resources from BSs deployed by different SPs, but ignore the energy
expenditure of BSs.

An Efficient Mechanism for Resource Allocation in Mobile Edge Computing 659

Energy expenditure compose of a large part of SP’s cost. A main way to
reduce energy expenditure in MEC is to allocate resource appropriately accord-
ing to the traffic load of the network, and then switch off idle BSs dynamically
[9]. In [10], the authors model the switching of MEC servers as a Minority Game;
the strategy they proposed guarantees the quality of services and reduces the
number of active servers. In [11], the authors take the server’s operational energy
into consideration and use predict mechanism to switching off the BSs. However,
those works only focus on resource allocation to reduce energy consumption, and
the concept of SP was not mentioned in those work. To the best of our knowl-
edge, no existing works have studied how to maximize the final profit of SPs
with the consideration of energy expenditure in Multi-SP MEC networks.

Fig. 1. System architecture

3 System Model

3.1 System Overview

The Fig. 1 shows the system architecture of Multi-SP MEC network, which con-
sists four layers, including the could center layer, BS layer, SP layer and UE
layer. Every BS is deployed by one SP to provide MEC services to the UEs
within its communication range. Each UE subscribes to an SP and offloads its
tasks to its subscribed SP for further process. We denote the set of BSs as B,
the set of SPs as Γ , the set of UEs as U , the set of services as S.

Although a UE may be cover by many active BSs, we assume each UE can
only requests one service to one BS in each time. Since the traffic load of MEC

660 G. Zeng et al.

network is fluctuating in both time and space, the number of UEs and the
resources that they request change over time.

An SP get its revenue from its subscribers, when its subscribers use the
computing resource provided by the SP. But the computing resource is on the
BSs deployed by the SP or its competitors. So the SP has to pay, when its
subscribers acquire resource from BSs. Because SPs will deploy their own BSs to
reduce the cost of acquiring resource, SPs have to pay for the energy expenditure
of theirs own BSs. In order to calculate the energy expenditure, we divide a
continuous period of time T into time slots t with an equal size. After subtracting
the cost of acquiring resource and energy, we get the final profit of an SP.

To get the final profit of SPs, we will discuss power model and resource model
in MEC, and then model the final profit of SPs base on the cost of acquiring
resource and energy in the following sessions.

3.2 Power Model in MEC

A BS has two working states: active or inactive. We denote the working state of
BS i in time slot t as ai,t. ai,t = 1 means that the BS i is active, while ai,t = 0
means that the BS i is inactive. The power of BS i in time slot t is defined as:

Pi,t = ai,t

(
PT

i,t + PC
i,t

)
(1)

PT
i,t = PT,OP

i,t + PT,TX
i,t (2)

PC
i,t = PC,OP

i,t + PC,CP
i,t (3)

The formulation (1) shows that the power of a active BS consists of two parts.
PT

i,t represents the transmission power of BS i in time slot t; PC
i,t represents the

calculation power of BS i in time slot t. The formulation (2) (3) show that the the
transmission power and the calculation power of BS i all consist two parts ,too.
PT,OP

i,t and PC,OP
i,t are operational power of the BS’s transmission system and

calculation system, which are inevitable when a BS is active; PT,TX
i,t represents

the BS i’s effective transmission power which depends on the traffic load, and
PC,CP

i,t represents the power that use to process the uploaded computing tasks.

3.3 Resource Model in MEC

To process the offloaded tasks, computing resource like CPU, memory and net-
work I/O are needed [12]. For simplicity, we use computing resource block (CRB)
to describe the computing resource. The total number of CRBs on BS i is denoted
as cmax

i . We use Ui,t to describe the sub set of UEs that served by BS i in the
time slot t, each of UE in Ui,t will need cu,j,t CRB to process its offloaded task
in time slot t. The CRBs that BS i allocates to service j in time slot t is denoted
as ci,j,t, and we have:

ci,j,t =
∑

u∈Ui,t

cu,j,t ∀i ∈ B ∀j ∈ S (4)

An Efficient Mechanism for Resource Allocation in Mobile Edge Computing 661

We assume that the maximum computing power of BS i is PC,max
i,t . So we

can calculate the PC,CP
i,t of BS i in this way:

PC,CP
i,t =

(
PC,max

i,t − PC,OP
i,t

) ∑
j∈S ci,j,t

cmax
i

(5)

To transmit data between BS and UE, radio resource is also required. Since
the uploaded data is much larger than the results from BSs, we only consider
the uplink radio resource in the paper. We use orthogonal frequency division
multiple access (OFDMA) as network system [13]. The radio resource of a BS
is organized in the form of radio resource block (RRB), and each RRB has the
bandwidth Wsub. According to Shannon’s theorem, the received data rate per
RRB of BS i from UE u is:

ei,u = Wsub log2 (1 + SNIRi,u) (6)

We denote signal-to-interference-plus-noise ratio (SINR) per RRB from UE
u to BS i as SNIRi,u. BS i has total Ni RRBs. The total required data rate of
UE u to upload its data in time slot t is described as λu,t. The RRBs that BS i
allocates to UEs in time slot t is denoted as ni,t, and we have:

ni,t =
∑

u∈Ui,t

�λu,t

ei,u
� (7)

Ptx denotes the transmission power per RRB, and η denotes the power ampli-
fier efficiency. Thus, we have the transmission power PT,TX

i,t of BS i:

PT,TX
i,t =

Ptxni,t

η
(8)

3.4 Profit Model in MEC

Each UE in the network subscribes to an SP, and pay for the resource when
it uses SP’s service. While an SP also needs to pay the BSs or remote cloud
for allocating their resources to its subscribers. The cost of acquiring resources
from an SP’s own BSs is lower than from other SPs’ BSs, because once the SP
use other SPs’ BSs to provide resources to its subscribers, the SP has to pay
extra money to other SPs. Thus, SPs prefer to use their own BSs to serve their
subscribers.

We denote the total profit Wk,t of SP k ∈ Γ in time slot t as:

Wk,t = WR
k,t − WB

k,t − WE
k,t (9)

WR
k,t =

∑

i∈B

∑

u∈Uk
i

∑

j∈S

cu,j,tmk (10)

WE
k,t =

∑

i∈Bk

Pi,tty (11)

662 G. Zeng et al.

WB
k,t =

∑

i∈B

∑

u∈Uk
i

∑

j∈S

xu,i,tcu,j,tqu,i (12)

WR
k,t is the total payment that SP k receives from its users; Uk

i is the sub
set of UEs that subscribe to SP k on BS i; mk is the unit price that a UE need
to pay when getting a CRB from its SP. WE

k,t is energy expenditure of SP; Bk

is the sub set of BSs deployed by SP k; y denotes the unit cost per kilowatt
hour; WB

k,t is the total payment that SP k need to pay when getting the CRBs
from BSs. The unit cost qu,i per CRB of BSs may be different because BSs may
belongs to different SP. qu,i can be described as follow:

qu,i =

{
b
(
1 + dσ

u,i

)
u and i are from same SP (13)

b
(
ι + dσ

u,i

)
u and i are from different SP (14)

The formulation (13) (14) describe the cost from both computing resources
and transmission resource. b is the base price of CRB. σ and ι are two weighted
parameters. ι > 1 indicates that it’s more expensive for an SP to use a CRB
from a BS deployed by its competitors than by its own. du,i denotes the distance
between UE u and BS i, and dσ

u,i accounts for the transmission cost which
increase when the distance between UE and BS increase.

4 Problem Formulation

Our objective is to maximize the final profit of SPs during a continuous time
T . To decrease the cost of acquiring resource, SPs prefer their subscribers to
acquire resource from their own BSs. To reduce the energy expenditure, SPs will
power off the BSs which are unprofitable.

To solve the maximum profit problem, we need to answer the two following
questions in each time slot:

1) which BS to be powered off;
2) how to associate the remaining active BSs with UEs.

We define two variable ai,t ∈ {0, 1} and xu,i,t ∈ {0, 1} to answer the two
questions. ai,t = 1 indicates the BS i is active during time slot t, otherwise BS
i is inactive. xu,i,t = 1 indicates the UE u is associated with BS i in time slot
t, otherwise they are disconnected. Thus, we can model the maximum profit
problem as follow:

max
ai,t,xu,i,t,∀u∈U,∀j∈S,∀i∈B

∑

k∈Γ

∑

t∈T

Wk,t (15)

s.t.
∑

u∈U,i∈B

xu,i,t � 1,∀t ∈ T (16)

cmax
i �

∑

j∈S

ci,j,t,∀i ∈ B,∀t ∈ T (17)

An Efficient Mechanism for Resource Allocation in Mobile Edge Computing 663

Ni � ni,t,∀i ∈ B,∀t ∈ T (18)

The formulation (15) is our goal: to maximize the the final profit of all SPs in
a period of time T . The constraint (16) indicates that a UE can only be served
by a BS in each time slot. The constraint (17) (18) indicates that a BS can only
process the uploaded tasks within its computing capacity and radio capacity.

5 Algorithm Design

The key to maximize the profit of SPs while considering the energy expenditure
is to connect most of UEs to a few BSs and power off the unprofitable BSs.
Switching off unprofitable BSs will make the active BS more busy, while cut
down the unprofitable BSs’ operational energy expenditure. In [6], authors has
proven that the switching of a set of BSs is a weighted set cover problem, which
is NP-hard. However, our problem is more complex than a set cover problem,
because RRBs and CRBs on BS are limited, which means that each BS can only
serve finite number of UEs; and the weight cost between a UE and a BS may
vary when they belong to different SPs. Thus, we need to design a new scheme
to switch off unprofitable BS, while associate the UE requests with remaining
active BSs.

The connection process of BSs and UEs is a matching process [14]. There-
fore, we use a matching algorithm to associate UEs and BSs and switch off the
unprofitable BSs. Inspired by the improved stable marriage algorithm proposed
in [5], we also use two dynamic preference lists to match UEs and BSs. How-
ever, there are three differences between our algorithm and the stable marriage
algorithm: 1) UE’s preference list only stores the BS within its communication
range; 2) BS’s preference list only stores the UEs who request to it; 3) BS will
select several qualified UEs instead of one in each iteration. Inspired by the best
fit algorithm in memory management of operating systems, the preference list
of each UE is sorted by BSs’ remain resources, and each UE will choose the
BS with Minimum resources in each iteration. Thus, most UE requests will be
gathered on a few BSs, and we can switch off more unprofitable BS to reduce
operational energy expenditure.

Algorithm 1 illustrates the details of our dynamic match (DM) algorithm. In
this algorithm, we use multiple iterations to do the matching jobs between UEs
and BSs or remote cloud. In each iteration, UE u will construct a preference
list from Bu which consists of BSs within UE u’s communication range. The
preference list of UE u is sorted by the remaining resources of BS i ∈ Bu. UE u
will choose a BS i which has smallest but enough resources Nr

i + cr
i to process

its upload task in each iteration. Nr
i is the remaining radio resource of BS i,

and cr
i is the remaining computing resource of BS i. UE u’s upload task has to

redirect to remote cloud, when its preference is empty. While UE u’s request is
processed on remote cloud, SP can not ensure the quality of service, and the

664 G. Zeng et al.

Algorithm 1. Dynamic Match (DM) Algorithm

Input: B, U, S, Γ, ci,j , Ni, cu,j,t, λu,t, P
C,max
i,t , Ptx, SINRi,u, di,u

∀i ∈ B, ∀u ∈ U, ∀j ∈ S, ∀k ∈ Γ
Output: ai,t, xu,i,t, ∀i ∈ B, ∀u ∈ U, ∀t ∈ T

1 For all t in T Initialize ai,t = 1, xu,i,t = 0, ∀i ∈ B, ∀u ∈ U, ∀t ∈ T ;
2 foreach u ∈ U do
3 Calculate the Bu that each u can reach;

4 while have not served UE do
5 while have not served UE do
6 foreach u ∈ U do
7 while Bu �= Φ and u isn’t served do
8 Select BS i∗ = argmin Nr

i + cr
i ;

9 if cr
i � cu,j,t and Nr

i � �λu,t

ei,u
� then

10 send request to BS i

11 else
12 Bu = Bu − {i∗}

13 foreach i ∈ B do
14 if there exists UEs to request BS i then
15 create two list to store UE’s request for each service: U1 to store

UEs from SP, U2 to store UEs from different SP ;
16 foreach j ∈ S do
17 if U1 �= Φ then
18 BS i select a sub set U∗

1 ⊆ U1 to add to U∗
i , the

resources that U∗
1 request can not exceed the total

resources that BS i has;

19 else
20 BS i select a sub set U∗

2 ⊆ U2 to add to U∗
i , the

resources that U∗
2 request can not exceed the total

resources that BS i has;

21 BS i broadcast the remaining resources Nr
i and cr

i to the UEs that
it can reach;

22 For all u ∈ U∗
i , set xu,i,t = 1 ;

23 foreach i ∈ B do
24 Calculate the final revenue Wi,t of BS i;
25 if Wi,t < 0 then
26 Switch off the BS i, and release UE u ∈ U∗

i ;
27 Set ai,t = 0 ;

cost of using resources on remote cloud is more expensive. BS i will receive a
lot of UE requests in each iteration, and BS i will construct two preference lists
from those UEs for each service j ∈ S: one to store the UEs from a same SP,
the other to store the UEs from different SP. BS i will sort the two preference

An Efficient Mechanism for Resource Allocation in Mobile Edge Computing 665

lists with the resources they request in order to serve more UEs in each time
slot t. Because BS i prefer to serve the UEs from same SP, so it will ignore the
second list when the first list is not empty. Only when the first list for a service
is empty, will the BS i serves the UEs from second list. In each iteration, BS i
will choose several UEs from the chosen list, until it uses up all its computing
resource or radio resource.

In the beginning of the multiple iterations, we assume that all BSs are active
in the first time, but after the matching procedure, all uploaded tasks will be
served by some BSs or remote cloud. Thus, we can calculate the total profit Wi,t

of BS i, and try to power off some unprofitable BSs to reduce the loss. Since the
energy expenditure may be very large comparing to the revenue received from
subscribers, Wi,t could be negative. After those unprofitable BSs are power off,
we will reallocate the UEs which is once served by those unprofitable BSs to the
active BSs or remote cloud, until all the UEs have been served appropriately.
We will continue to switch off the unprofitable BS until all the BSs on the MEC
network is profitable for SPs, and all UEs on the network is served appropriately.

6 Simulation Result

In this section, we present the configuration of our experiment and evaluate the
performance of our DM algorithm for the maximum profit problem by simula-
tion.

6.1 Simulation Settings

Consider a continuous period T of 24 h, which is divided into 24 time slots
with 1 h per t. There are 5 SPs, and each of them deploy 5 BSs in the MEC
network. BSs owned by different SPs are deployed randomly in 1200 m × 1200
m square with an inter-site distance of 300 m. The UEs distribution is random
and changes over time. There are 6 kinds of MEC services, and each UE only
requests a random service in each time slot t. The required CRBs per UE request
change from 1 to 3. The required data rate per UE request varies from 1 Mpbs
to 5 Mpbs. The communication range for each BS is set to be 450 m. The uplink
channel model follows the free space path loss model:

32.44 + 20 log10 du,i (km) + 20 log10 F (MHz) (19)

du,i is the distance between UE u and BS i, and F is the carrier frequency. The
experimental parameters are summarized in Table 1.

666 G. Zeng et al.

Table 1. Experimental parameters

Parameter Value

Inter-site distance 300 m

Number of CRBs per BS 250

Required CRBs per UE 1–3

Number of RRBs per BS 100

Amplifier efficiency (η) 50%

Carrier frequency (F) 2 GHz

Required data rate per UE request 1 Mbps–5 Mbps

Electricity price per kilowatt hour 1.1

Service price per CRB 0.02

Maximum computing power per BS 200 W

Operational power per BS 160 W [13]

Weight parameter ι 1.5

Weight parameter σ 0.01 [5]

Power spectral density of noise −174 dBm/Hz [6]

6.2 Performance Evaluation

In this section, we will compare our DM algorithm with other two resource allo-
cation algorithms proposed in previous works. One is efficiency first strategy
(EFS) in [6], the other is decentralized multi-SP resource allocation (DMRA) in
[5]. The principle of EFS is to switch on the BSs with the high energy efficiency
and turn off the idle BSs, but EFS ignores the preference of UE to specific SP.
DMRA uses improve stable marriage algorithm to associate UEs and BSs to let
BSs serve more UEs from a same SP, but DMRA also ignores the energy expen-
diture of SP. However, in our algorithm, we took both factors into consideration.

Fig. 2. The changing number of UEs Fig. 3. The energy cost of different
methods

An Efficient Mechanism for Resource Allocation in Mobile Edge Computing 667

Figure 2 illustrates the variation number of UEs in MEC network within 24 h.

Fig. 4. The number of inactive BSs by
using different methods.

Fig. 5. The final revenue by using dif-
ferent methods.

Figure 3 shows the energy consumption of different methods in each time slot.
Since DMRA method switches on all BSs in all time, it consumes more energy
than the other two methods. Figure 4 describes the number of BSs switched off
in each time slot. DM switches off more BSs than EFS, because EFS will not
switch off a BS if that BS have any UE requests to process, but DM will switch
off any BS that can’t make a profit. So DM also consumes less energy than EFS.

Figure 5 shows the final profit of different methods in the day. Since DMRA
method only considers the different cost of acquiring resource from different BSs,
but ignores the energy expenditure of idle BSs, DMRA has a huge expenditure
of energy. Because EFS ignore the cost of acquiring resource, it doesn’t make
too much profit. However, DM considers the cost of both acquiring resource and
energy, so DM makes more final profit than the other two.

7 Conclusion

In this paper, we study the maximum profit problem in Multi-SP MEC network,
while considering the cost of energy and acquiring resources. This problem aims
to maximize the final profit of SPs in MEC. Because the allocation of resource on
MEC is a matching procedure, we use an improved matching algorithm to asso-
ciate UEs and BSs, and switch off those unprofitable BSs to reduce operational
power. By this way, we increase the final profit of SPs.

Acknowledgment. This work is supported by the Shenzhen Basic Research Program
(Project No. JCYJ20190806143011274) and National Natural Science Foundation of
China (No. 61772154).

668 G. Zeng et al.

References

1. Liu, C., Du, H., Ye, Q.: Sweep coverage with return time constraint. In: 2016
IEEE Global Communications Conference (GLOBECOM), Washington, DC, pp.
1–6 (2016)

2. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of Things
for smart cities. IEEE Internet of Things J. 1(1), 22–32 (2014)

3. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge
computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4),
2322–2358 (2017). Fourthquarter

4. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D.: On multi-
access edge computing: a survey of the emerging 5G network edge cloud archi-
tecture and orchestration. IEEE Commun. Surv. Tutor. 19(3), 1657–1681 (2017).
Thirdquarter

5. Zhang, C., Du, H., Ye, Q., Liu, C., Yuan, H.: DMRA: a decentralized resource
allocation scheme for Multi-SP mobile edge computing. In: 2019 IEEE 39th Inter-
national Conference on Distributed Computing Systems (ICDCS), Dallas, TX,
USA, pp. 390–398 (2019)

6. Yu, N., Miao, Y., Mu, L., Du, H., Huang, H., Jia, X.: Minimizing energy cost
by dynamic switching ON/OFF base stations in cellular networks. IEEE Trans.
Wireless Commun. 15(11), 7457–7469 (2016)

7. Wang, Q., Guo, S., Liu, J., Pan, C., Yang, L.: Profit maximization incentive mecha-
nism for resource providers in mobile edge computing. IEEE Trans. Serv. Comput.
(2019)

8. Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing resource
allocation in three-tier IoT fog networks: a joint optimization approach combining
stackelberg game and matching. IEEE Internet of Things J. 4(5), 1204–1215 (2017)

9. Ajmone Marsan, M., Chiaraviglio, L., Ciullo, D., Meo, M.: Optimal energy savings
in cellular access networks. In: 2009 IEEE International Conference on Communi-
cations Workshops, Dresden, pp. 1–5 (2009)

10. Ranadheera, S., Maghsudi, S., Hossain, E.: Computation offloading and activation
of mobile edge computing servers: a minority game. IEEE Wirel. Commun. Lett.
7(5), 688–691 (2018)

11. Wang, Q., Xie, Q., Yu, N., Huang, H., Jia, X.: Dynamic server switching for energy
efficient mobile edge networks. In: 2019 IEEE International Conference on Com-
munications (ICC), ICC 2019, China, Shanghai, pp. 1–6 (2019)

12. Yu, N., Song, Z., Du, H., Huang, H., Jia, X.: Multi-resource allocation in cloud
radio access networks. In: 2017 IEEE International Conference on Communications
(ICC), Paris, pp. 1–6 (2017)

13. Yaacoub, E., Dawy, Z.: A survey on uplink resource allocation in OFDMA wireless
networks. IEEE Commun. Surv. Tutor. 14(2), 322–337 (2012)

14. Gu, Y., Saad, W., Bennis, M., Debbah, M., Han, Z.: Matching theory for future
wireless networks: fundamentals and applications. IEEE Commun. Mag. 53(5),
52–59 (2015)

Data Sensing with Limited Mobile
Sensors in Sweep Coverage

Zixiong Nie, Chuang Liu, and Hongwei Du(B)

Department of Computer Science and Technology,
Harbin Institute of Technology (Shenzhen),

Key Laboratory of Internet Information Collaboration, Shenzhen, China
19S051046@stu.hit.edu.cn, chuangliuhit@gmail.com, hongwei.du@ieee.org

Abstract. Sweep coverage has received great attention with the devel-
opment of wireless sensor networks in the past few decades. Sweep cover-
age requires mobile sensors to cover and sense environmental information
from Points Of Interests (POIs) in every sweep period. In some scenarios,
due to the heterogeneity of POIs and a lack of mobile sensors, mobile
sensors sense the different amounts of data from different POIs, and only
part of POIs can be covered by mobile sensors. Therefore, how to sched-
ule the mobile sensors to improve coverage efficiency is important. In
this paper, we propose the optimization problem (MSDSC) to maximize
sensed data with a limited number of mobile sensors in sweep coverage
and prove it to be NP-hard. We then devise two algorithms named GD-
MSDSC and MST-MSDSC for the problem. Our simulation results show
that, with a limited number of mobile sensors, GD-MSDSC and MST-
MSDSC are able to sense more data from POIs than algorithms from
previous work. In addition, MST-MSDSC can sense more data while the
time complexity of GD-MSDSC is better.

Keywords: Data sensing · Limited mobile sensors · Sweep coverage

1 Introduction

With the rapid development of Internet of Things (IoT), researches on wireless
sensor networks (WSN) are gaining lots of attention lately. Coverage problem
is an important part of WSNs. Generally speaking, the solution to coverage
problem often includes a scheme to schedule wireless sensors to gather infor-
mation of the given targets. There are mainly 3 kinds of coverage problems:
full coverage, barrier coverage and sweep coverage. In full coverage and bar-
rier coverage scenarios, the monitored targets should be covered all the time
[1,3,6,7,14,16,17,19,23–25]. However, sweep coverage just requires the moni-
tored targets to be covered periodically, it uses mobile sensors instead of static
sensors. Compared with full coverage and barrier coverage, with the same num-
ber of sensors, sweep coverage can monitor more targets which are also called
Points Of Interests (POIs). Sweep coverage can be applied in scenarios including
forest fire prevention, patrol inspection, climate prediction, etc.
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 669–680, 2020.
https://doi.org/10.1007/978-3-030-64843-5_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_45&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_45

670 Z. Nie et al.

Most studies in sweep coverage focus on minimizing the number of mobile
sensors or minimizing the sweep period of POIs. Among these studies, some
studies take data sensing or data gathering into consideration [2,15,26,28,30],
data from a POI reflects a series of information about the POI. In some scenarios,
there is only a limited number of mobile sensors and these mobile sensors may
sense different amount of data from different POIs due to the heterogeneity
of POIs. In this case, mobile sensors are unable to sense information from all
POIs. Since gaining more information from POIs will improve the quality of
monitoring, we focus on the problem to maximize sensed data from POIs with
limited number of mobile sensors. And our contribution are as follows:

1) We introduce a new problem called Maximizing sensed Data in Sweep Cov-
erage (MSDSC) and prove it to be NP-hard. In this problem, POIs are dis-
tributed in a 2D plane. Due to a limited number of mobile sensors and the
heterogeneity of POIs, the main goal of the problem is to maximize sensed
data from POIs in a sweep period.

2) We devise two heuristic algorithms, GD-MSDSC and MST-MSDSC, to solve
the problem. The time complexity of GD-MSDSC and MST-MSDSC are
O(N2) and O(N2log2N) respectively.

3) We conduct simulations to compare our methods with MinExpand and CoCy-
cle from previous literature. The results indicate that our algorithms espe-
cially MST-MSDSC have better performance than previous work in terms of
maximizing sensed data from POIs.

The rest of the paper is organized as follows. Section 2 reviews some related
work. In Sect. 3, formulation of the MSDSC problem is presented. Section 4 and
Sect. 5 introduce GD-MSDSC and MST-MSDSC algorithms respectively. And
simulation results are shown in Sect. 6. Lastly, Sect. 7 makes a conclusion.

2 Related Work

Since sweep coverage problem was first proposed in [5], there have been so many
literatures studying sweep coverage. Many variations of sweep coverage problems
are studied, most of these studies can be classified into two categories according
to their optimization goals, one is to minimize the number of mobile sensors, the
other one is to minimize the sweep period. These studies are as follows:

Some studies aim at using the least number of mobile sensors to cover all the
POIs periodically. In [5] and [18], Cheng et al. proved the problem of minimizing
the number of mobile sensors to cover all the POIs to be NP-hard. Then they
present a centralized algorithm called CSWEEP and a distributed algorithm
called DSWEEP to solve this problem for the first time. In [8], Du et al. pro-
posed a heuristic algorithm named MinExpand under the condition that mobile
sensors need to follow the same trajectory in different sweep periods. MinEx-
pand keeps expanding its sweep route by adding the POI with the minimal path
increment from the existing candidate POIs until all the POIs are included in

Data Sensing with Limited Mobile Sensors in Sweep Coverage 671

its route, OSweep algorithm was also proposed when there is no trajectory con-
straint, the performance of which is far better than CSWEEP. In [20], Liu et
al. present a heuristic algorithm called PDBA which had better performance
than GSWEEP. Subsequently, more factors were taken into consideration. Li et
al. considered data delivery in sweep coverage called Vehicle Routing Problem
based Sweep Coverage (VRPSC) [27]. They also employed Simulated Annealing
to solve VRPSC. In [21], Liu et al. designed G-MSCR and MinD-Expand based
on heuristic method to determine the minimum number of mobile sensors with
a time constraint in which the collected data should be delivered to base station
within a preset time window. Gorain et al. considered the fact that the detection
targets could be continuous region instead of discrete points, they investigated
area and line sweep coverage problems in [12,13].

Meanwhile, some researches focus on minimizing the sweep period for given
number of mobile sensors. In [9], Feng et al. considered the relationship between
minimal spanning tree and TSP cycle, then they introduced a problem to mini-
mize the makespan of mobile sweep routes (M3SR) which will in turn reduce the
sweep period for sweep coverage. To solve the problem, they present a greedy
algorithm called GD-Sweep and an approximate algorithm called BS-Sweep with
approximation ratio 6. In [10], Gao et al. proposed three constant-factor approx-
imations, CycleSplit, HeteroCycleSplit and PathSplit, to minimize the longest
trajectory length of mobile sensors under different scenarios.

In addition, other variations of sweep coverage problems had also been inves-
tigated. [4] and [22] utilized sensing range to optimize the sweep path of mobile
sensors. In [29], Wu et al. considered a novel optimization problem in sweep
coverage. With the help of crowdsensing technology, they converted the sweep
coverage problem into a task assignment problem, the goal of which is to maxi-
mize the quality of sweep coverage.

However, most of existing studies do not consider that mobile sensors may
sense different amount of data from different POIs due to the heterogeneity of
POIs, and only part of POIs can be visited as a result of limited mobile sensors.
In this case, it’s important to maximize sensed data from POIs in order to
improve the quality of sweep coverage.

3 Problem Formulation

Before introducing our problem, some basic definitions are given in Table 1. N
POIs P = {p1, p2, ..., pN} with the same sweep period t are distributed in the
two-dimensional target area, d(pi, pj) is the distance between ith POI and jth
POI. We deploy n mobile sensors to sense data from POIs in the target area
periodically. In sweep coverage, a mobile sensor can sense data from a POI only
when the mobile sensor reaches the position of this POI. As a result of the
heterogeneity of POIs, mobile sensors can sense data at most qi bytes from ith
POI per sweep period. F is the sweep coverage scheme to arrange sweep paths
for each mobile sensor. Generally, the time for the sensor to move among POIs
is usually much longer than the time spent on sensing data from POIs. Hence,

672 Z. Nie et al.

Table 1. Basic definitions

Symbol Definition

t Sweep period

v Velocity of the mobile sensor

pi The ith POI

qi
Maximum amount of data which can be sensed by mobile sensors from the

ith POI per sweep period

sj The jth mobile sensor

n Total number of mobile sensors

N Total number of POIs

d(pi, pj) Distance between POI i and j

F Sweep coverage scheme

the time for the sensor to sense data from POIs will not be considered in our
problem. Finally, Maximizing Sensed Data in Sweep Coverage (MSDSC) will
formally be defined as follows:

Definition 1 (Maximizing Sensed Data in Sweep Coverage (MSDSC)).
Given a set of POIs P = {p1, p2, ..., pN} having the same sweep period t and their
corresponding maximum data amount set Q = {q1, q2, ..., qN}. n identical mobile
sensors with velocity v are provided. The goal of MSDSC problem is to find a
sweep coverage scheme F for n mobile sensors to maximize sensed data from
POIs in a sweep period t.

)(2 1q

)(1 2q

)(2 3q

)(4 4q
)(5 5q

)(6 6q
)(7 7q

)(8 8q

)(9 9q

)(10 10q

POI Sweep Path

Fig. 1. An example of MSDSC

Figure 1 is an example of the MSDSC problem. In the square target region,
mobile sensors can sense different amount of data from these POIs. Due to a lack
of mobile sensors, POI 5, 6 and 7 are not in the sweep path of mobile sensors.

In the research, we prove the MSDSC problem is NP-hard by Theorem1, and
the details are as follows:

Data Sensing with Limited Mobile Sensors in Sweep Coverage 673

Theorem 1. The MSDSC problem is NP-hard.

Proof. The decision problem of the MSDSC problem is that whether we can find
a sweep route to sense data at least m bytes per sweep period t when given n
mobile sensors with velocity v. If we set n = 1 and m =

∑N
i=1 qi, the decision

problem becomes whether one mobile sensor can sense data from all POIs while
ensuring that its trajectory length is no longer than vt, which implies that the
mobile sensor is required to visit all the POIs and its trajectory length is no
more than vt. Apparently, this problem under this special case is equivalent to
TSP decision problem which is a well-known NP-hard problem. Therefore, the
MSDSC problem is also NP-hard.

A

B

C

D

E

POI Sweep Path

Fig. 2. An example of GD-MSDSC

4 GD-MSDSC

In this section, we present Greedy-MSDSC (GD-MSDSC) algorithm based on
greedy strategy. In this algorithm, a cycle sweep path will be generated on which
those n mobile sensors will be placed at equal intervals. In the process, we expand
the path by selecting proper POIs one by one until the total length of the path
exceeds nvt. To maximize sensed data from POIs per period, we should select
those POIs which are close to the existing path and have greater value of qi.
The converted edge length takes both of the factors into consideration, and the
corresponding definition is as follows:

Definition 2 (Converted Edge Length). Suppose the current path starts
from the POI ps and the ith POI pi has just been added to the sweep path.
Assume there are k candidate POIs C = {pc1 , pc2 , ..., pck}, then the converted
edge length of the jth candidate POI is d(pi, pcj)/qcj .

The GD-MSDSC is shown in Algorithm1. Generating the cycle sweep path
is an iterative process. Initially, the sweep path begins with a randomly selected
POI. Then the sweep path is extended by selecting a POI from a set of candidate

674 Z. Nie et al.

Algorithm 1. GD-MSDSC
Input: Set P = {p1, p2, ..., pN}, set Q = {q1, q2, ..., qN}, n mobile sensors with velocity

v, sweep period t
Output: Cycle sweep path C
1: Randomly select a POI ps as the starting POI of C
2: while The Euclidean length of C is no more than nvt and (P − C) is not empty

do
3: Find the candidate POIs set U from (P − C).
4: Find the POI pk with the minimal converted edge length from candidate POIs

set U .
5: Add pk to the existing path C.
6: end while
7: return C

POIs at each step. This procedure will be repeated until the total length of the
path is greater than nvt. Specifically, every POI in the candidate POIs set has
the property that the length of the new path will not exceed nvt if this POI is
added to the existing path. The POI selected from the candidate POIs set has
the minimum converted edge length.

In GD-MSDSC, due to the fact that there are at most N POIs in the can-
didate POIs set U , the time complexity of line 3 and 4 is O(N). Meanwhile,
the number of iterations of the loop is O(N). Therefore, the time complexity of
GD-MSDSC is O(N2)

Figure 2 gives an instance of the expanding process of the sweep path, the
existing sweep path is A → B → C, we assume POI D and POI E are candidate
POIs. Hence, the mobile sensors are required to decide which POI should be
added into the existing sweep path. By using GD-MSDSC algorithm, the con-
verted edge lengths of D and E are calculated and we denote them as lD and
lE . If lD ≤ lE , then D is the POI to be added into the existing sweep path.

5 MST-MSDSC

To further improve the efficiency of data sensing, in this section, we present
MinimalSpanningTree-MSDSC (MST-MSDSC) algorithm utilizing the relation-
ship between minimal spanning tree and the Hamitonian cycle. MST-MSDSC
attempts to generate a cycle sweep path from a spanning tree. Before introduc-
ing details of MST-MSDSC algorithm, the definition of Transformed Distance
are given as follows:

Definition 3 (Transformed Distance). The transformed distance between ith
and jth POI is d(pi, pj)/(qi + qj) denoted as e(pi, pj).

Algorithm 2 shows the details of MST-MSDSC. Prim algorithm will first be
applied to generate the minimal spanning tree for all N POIs and we record the
order in which each POI is added, denote the order sequence as {pi1 , pi2 , ..., piN },
note that we adopt transformed distance e(pi, pj) instead of d(pi, pj) as the

Data Sensing with Limited Mobile Sensors in Sweep Coverage 675

Algorithm 2. MST-MSDSC
Input: Set P = {p1, p2, ..., pN}, set Q = {q1, q2, ..., qN}, n mobile sensors with velocity

v, sweep period t
Output: Cycle sweep path C
1: low ← 0, high ← N
2: mid ← (low + high)/2
3: Calculate the transformed distance matrix E = {e(pi, pj)}, e(pi, pj) =

d(pi, pj)/(qi + qj)
4: Use prim algorithm to generate minimal spanning tree MST based on trans-

formed distance matrix E and record the addition order of each POI seq =
{pi1 , pi2 , ..., piN }

5: while low < high do
6: The spanning tree T ← MST
7: The first mid POIs in seq will be left in T and the rest POIs will be deleted

from T .
8: Generate TSP cycle O from the spanning tree T .
9: if The Euclidean length of O is no more than nvt then

10: low = mid
11: else
12: high = mid
13: end if
14: end while
15: C ← O
16: return C

weight of the minimal spanning tree. Due to the fact that the Euclidean length
of the cycle sweep route should be no more than nvt, hence, the first k POIs in
the sequence will be kept in the spanning tree and the remaining POIs in the
sequence will be deleted from the spanning tree, then we get a trimmed spanning
tree. After these operations, we generate the TSP cycle from the trimmed span-
ning tree. Specifically, binary search is applied to find the maximum k denoted
as kmax.

In MST-MSDSC, the time complexity of line 8 is O(N2) if we apply greedy
algorithm to generate TSP cycle. Meanwhile, the number of iterations from
line 5 to 14 is O(log2N). Therefore, the time complexity of MST-MSDSC is
O(N2log2N).

Figure 3 exhibits an instance of the MST-MSDSC algorithm. First the algo-
rithm randomly choose the starting POI O, then the minimal spanning tree is
generated from O by applying Prim algorithm and the addition order sequence
is {O,A,B,C,D,E, F,G,H}. To ensure the length of the sweep path of mobile
sensors does not exceed nvt, the minimal spanning tree keeps POIs O,A,B,C,D
in the spanning tree and the rest POIs are deleted from the spanning tree. The
TSP cycle O → A → B → C → D → O is generated from the trimmed spanning
tree.

676 Z. Nie et al.

POI Sweep Path

O

A

B

C

D

E

F

G

H

E

O

A

B

C
D

F

H

G

Fig. 3. An example of MST-MSDSC

6 Experimental Results

To evaluate the performance of the proposed algorithms, we use Python to con-
duct simulations for our algorithms. The experimental details and results will
be presented in this section.

(a) MinExpand (b) CoCycle

(c) GD-MSDSC (d) MST-MSDSC

Fig. 4. The number of POIs N = 500 and the number of mobile sensors n = 20 (Color
figure online)

In the simulation, a certain number of POIs with sweep period t = 50 s are
randomly distributed in a 100 m by 100 m 2D plane, the value of all qi randomly
ranges from 1 bytes to 100 bytes. We consider two cases where the number of
POIs N are 300 and 500 respectively. Meanwhile, a certain number of mobile
sensors with the velocity v of 1 m/s are deployed in the plane to sense data
from POIs, and we increase the number of mobile sensors by 5 at each time. In

Data Sensing with Limited Mobile Sensors in Sweep Coverage 677

addition, we run the simulation for 50 times and take the average value as the
experiment results.

To validate the efficiency of our algorithms, we also implement contrast algo-
rithms MinExpand [8] and CoCycle [11]. Note that CoCycle algorithm is used
for covering all the POIs. However, in our problem, only part of the POIs will be
covered when just a few mobile sensors are provided, we need to select part of
the POIs while applying CoCycle algorithm. Under this condition, we use binary
search to find the maximum number of POIs for CoCycle algorithm to cover,
and those POIs with greater qi will first be selected.

Figure 4 shows the coverage pattern of the four algorithms. The red dots in
the figure are POIs. The black edges among the POIs illustrate the scan path of
mobile sensors. In MinExpand, every ring path corresponds to the sweep path
of a mobile sensor. In CoCycle, different number of mobile sensors are allocated
on several ring paths. In GD-MSDSC and MST-MSDSC, there is only one ring
path, on which mobile sensors are placed at the same distance and moving in
the same direction. There exists cross lines in the sweep path of GD-MSDSC
while MST-MSDSC does not.

(a) N = 300 (b) N = 500

Fig. 5. Comparison of the total sensed data.

Figure 5(a) and (b) show the experimental comparison results when the num-
ber of POIs are 300 and 500 respectively. The horizontal axis represents the
given number of mobile sensors and the vertical axis represents the total col-
lected data of the mobile sensors in a sweep period. The results indicate that,
for all the investigated algorithms, initially the total amount of sensed data
increases as much more mobile sensors are provided. When the number of given
sensors reaches a certain value, the total amount of sensed data does not grow
and remain unchanged since there are sufficient number of sensors to sense data
from all POIs. Compared with MinExpand and CoCycle, MST-MSDSC and
GD-MSDSC are able to sense more data when insufficient sensors are provided.
Furthermore, in Fig. 5(a), there are 300 POIs in the region, GD-MSDSC and
MST-MSDSC have similar performance, but as the distribution of POIs gets
denser when there are 500 POIs in Fig. 5(b), MST-MSDSC is more efficient in
sensing data from POIs than GD-MSDSC.

678 Z. Nie et al.

7 Conclusions and Future Work

In this paper, we study the MSDSC problem, the goal of which is to maximize
sensed data with limited number of mobile sensors. Then we prove the MSDSC
problem to be NP-hard. Considering this, we propose two heuristic algorithms,
GD-MSDSC and MST-MSDSC, to solve the problem. Compared with MinEx-
pand and CoCycle algorithms from previous literature, the simulation results
validates the efficiency of our proposed algorithms. With the same number of
mobile sensors, both GD-MSDSC and MST-MSDSC are able to sense more data
than MinExpand and CoCycle. Specifically, MST-MSDSC senses more data from
POIs while GD-MSDSC has lower time complexity.

In the future, we plan to consider more factors like energy consumption or
data delay in our problem.

Acknowledgment. This work is supported by National Natural Science Founda-
tion of China (No. 61772154), the Shenzhen Basic Research Program (Project No.
JCYJ20190806143011274).

References

1. Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for
coverage and connectivity in thin strips of finite length. In: Proceedings of the 13th
Annual ACM International Conference on Mobile Computing and Networking, pp.
75–86 (2007)

2. Bin Tariq, M.M., Ammar, M., Zegura, E.: Message ferry route design for sparse
ad hoc networks with mobile nodes. In: Proceedings of the 7th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pp. 37–48 (2006)

3. Chen, A., Kumar, S., Lai, T.H.: Designing localized algorithms for barrier cover-
age. In: Proceedings of the 13th Annual ACM International Conference on Mobile
Computing and Networking, pp. 63–74 (2007)

4. Chen, Z., Zhu, X., Gao, X., Wu, F., Gu, J., Chen, G.: Efficient scheduling strate-
gies for mobile sensors in sweep coverage problem. In: 2016 13th Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON),
pp. 1–4. IEEE (2016)

5. Cheng, W., Li, M., Liu, K., Liu, Y., Li, X., Liao, X.: Sweep coverage with mobile
sensors. In: 2008 IEEE International Symposium on Parallel and Distributed Pro-
cessing, pp. 1–9. IEEE (2008)

6. Du, H., Luo, H.: Routing-cost constrained connected dominating set (2016)
7. Du, H., Luo, H., Zhang, J., Zhu, R., Ye, Q.: Interference-free k -barrier coverage in

wireless sensor networks. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA
2014. LNCS, vol. 8881, pp. 173–183. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-12691-3 14

8. Du, J., Li, Y., Liu, H., Sha, K.: On sweep coverage with minimum mobile sensors.
In: 2010 IEEE 16th International Conference on Parallel and Distributed Systems,
pp. 283–290. IEEE (2010)

9. Feng, Y., Gao, X., Wu, F., Chen, G.: Shorten the trajectory of mobile sensors
in sweep coverage problem. In: 2015 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6. IEEE (2015)

https://doi.org/10.1007/978-3-319-12691-3_14
https://doi.org/10.1007/978-3-319-12691-3_14

Data Sensing with Limited Mobile Sensors in Sweep Coverage 679

10. Gao, X., Fan, J., Wu, F., Chen, G.: Approximation algorithms for sweep coverage
problem with multiple mobile sensors. IEEE/ACM Trans. Netw. 26(2), 990–1003
(2018)

11. Gao, X., Zhu, X., Feng, Y., Wu, F., Chen, G.: Data ferry trajectory planning for
sweep coverage problem with multiple mobile sensors. In: 2016 13th Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON),
pp. 1–9. IEEE (2016)

12. Gorain, B., Mandal, P.S.: Point and area sweep coverage in wireless sensor net-
works. In: 2013 11th International Symposium and Workshops on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 140–145.
IEEE (2013)

13. Gorain, B., Mandal, P.S.: Line sweep coverage in wireless sensor networks. In:
2014 Sixth International Conference on Communication Systems and Networks
(COMSNETS), pp. 1–6. IEEE (2014)

14. Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless sensor network. Mob.
Netw. Appl. 10(4), 519–528 (2005). https://doi.org/10.1007/s11036-005-1564-y

15. Kim, D., Wang, W., Li, D., Lee, J.L., Wu, W., Tokuta, A.O.: A joint optimization of
data ferry trajectories and communication powers of ground sensors for long-term
environmental monitoring. J. Comb. Optim. 31(4), 1550–1568 (2016). https://doi.
org/10.1007/s10878-015-9840-7

16. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Pro-
ceedings of the 11th Annual International Conference on Mobile Computing and
Networking, pp. 284–298 (2005)

17. Kumar, S., Lai, T.H., Balogh, J.: On k-coverage in a mostly sleeping sensor net-
work. In: Proceedings of the 10th Annual International Conference on Mobile Com-
puting and Networking, pp. 144–158 (2004)

18. Li, M., Cheng, W., Liu, K., He, Y., Li, X., Liao, X.: Sweep coverage with mobile
sensors. IEEE Trans. Mob. Comput. 10(11), 1534–1545 (2011)

19. Lin, L., Lee, H.: Distributed algorithms for dynamic coverage in sensor networks.
In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of
Distributed Computing, pp. 392–393 (2007)

20. Liu, B.H., Nguyen, N.T., et al.: An efficient method for sweep coverage with min-
imum mobile sensor. In: 2014 Tenth International Conference on Intelligent Infor-
mation Hiding and Multimedia Signal Processing, pp. 289–292. IEEE (2014)

21. Liu, C., Du, H., Ye, Q.: Sweep coverage with return time constraint. In: 2016 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2016)

22. Liu, C., Du, H., Ye, Q.: Utilizing communication range to shorten the route of sweep
coverage. In: 2017 IEEE International Conference on Communications (ICC), pp.
1–6. IEEE (2017)

23. Liu, C., Huang, H., Du, H., Jia, X.: Performance-guaranteed strongly connected
dominating sets in heterogeneous wireless sensor networks. In: IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer Communica-
tions, pp. 1–9. IEEE (2016)

24. Luo, H., Du, H., Kim, D., Ye, Q., Zhu, R., Jia, J.: Imperfection better than per-
fection: Beyond optimal lifetime barrier coverage in wireless sensor networks. In:
2014 10th International Conference on Mobile Ad-hoc and Sensor Networks, pp.
24–29. IEEE (2014)

https://doi.org/10.1007/s11036-005-1564-y
https://doi.org/10.1007/s10878-015-9840-7
https://doi.org/10.1007/s10878-015-9840-7

680 Z. Nie et al.

25. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage
problems in wireless ad-hoc sensor networks. In: Proceedings IEEE INFOCOM
2001. Conference on Computer Communications. Twentieth Annual Joint Confer-
ence of the IEEE Computer and Communications Society (Cat. No. 01CH37213),
vol. 3, pp. 1380–1387. IEEE (2001)

26. Moazzez-Estanjini, R., Paschalidis, I.C.: On delay-minimized data harvesting with
mobile elements in wireless sensor networks. Ad Hoc Netw. 10(7), 1191–1203 (2012)

27. Shu, L., Wang, W., Lin, F., Liu, Z., Zhou, J.: A sweep coverage scheme based on
vehicle routing problem. Telkomnika 11(4), 2029–2036 (2013)

28. Wang, S., Gasparri, A., Krishnamachari, B.: Robotic message ferrying for wireless
networks using coarse-grained backpressure control. IEEE Trans. Mob. Comput.
16(2), 498–510 (2016)

29. Wu, L., Xiong, Y., Wu, M., He, Y., She, J.: A task assignment method for
sweep coverage optimization based on crowdsensing. IEEE Internet Things J. 6(6),
10686–10699 (2019)

30. Zhao, W., Ammar, M., Zegura, E.: Controlling the mobility of multiple data trans-
port ferries in a delay-tolerant network. In: Proceedings IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1407–
1418. IEEE (2005)

Trip-Vehicle Assignment Algorithms
for Ride-Sharing

Songhua Li(B), Minming Li, and Victor C. S. Lee

City University of Hong Kong, Kowloon, Hong Kong SAR, China
songhuali3-c@my.cityu.edu.hk, {minming.li,csvlee}@cityu.edu.hk

Abstract. The trip-vehicle assignment problem is a central issue in
most peer-to-peer ride-sharing systems. Given a set of n available vehi-
cles with respective locations and a set of m trip requests with respective
origins and destinations, the objective is to assign requests to vehicles
with the minimum overall cost (which is the sum of the moving dis-
tances of the vehicles). Since the assignment constraints are well cap-
tured by edges matched in graphs, we investigate the problem from
a matching algorithm point of view. Suppose there are at most two
requests sharing a vehicle at any time, we answer an open question by
Bei and Zhang (AAAI, 2018), that asks for a constant-approximation
algorithm for the setting where the number (m) of requests is no more
than twice the number (n) of vehicles, i.e., m ≤ 2n. We propose an
O(n4)-time 2.5-approximation algorithm, which is built upon a solution
of the Minimum-weight Fixed-size Matching problem with unmatched
vertex Penalty (MFMP), in which the cost is the sum of the weights
of both matched edges and unmatched vertices. Then, we study a more
general setting that also allows m > 2n. We propose a dynamic assign-
ment algorithm that is built upon a solution of the Minimum Weight
Matching problem with unmatched vertex Penalty (MWMP). Further,
we extend the dynamic assignment algorithm to an online setting where
on-demand trip requests appear over time. Experiments are conducted
on a real-world data set of trip records showing that our algorithms
actually achieve good performances.

Keywords: Ride-sharing system · Trip-vehicle assignment · Matching
algorithm

1 Introduction

The shared mobility has enjoyed rapid growth over the past few years due to
the fast growth in mobile technologies, and it is proved to be effective in cost-
saving, efficient in relieving traffic congestion and sustainable in increasingly
crowded urban cities. Representative systems of shared mobility include bike-
sharing systems (such as the Mobike and Divvy), ride-sharing systems (such as
the Uber and the Didi Chuxing), and car-sharing systems (such as the EVCard
and the Car2go). Among them, the ride-sharing system (RSS) seems to be the
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 681–696, 2020.
https://doi.org/10.1007/978-3-030-64843-5_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_46&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_46

682 S. Li et al.

most popular shared mobility system in urban cities since some cities do not
fit in the bike-sharing system well due to terrain characteristics or city regula-
tions. Recently, optimization problems in RSS attract lots of attention. Some
researchers focus on the ride-sharing routing problem to design a path for the
driver to pick up and drop off passenger(s) in a ride-sharing group. Lin et al. [6]
considered the demand-aware approach by leveraging travel demand statistics
and proposed a pseudo-polynomial-time algorithm for the problem. Santi et al.
[1] and Alonso-Mora et al. [7] studied the shortest-path-like routing algorithms.

In this paper, we focus on a fundamental RSS problem, which is to assign
known trip requests (passenger orders) to available vehicles (drivers) with the
sum of the vehicles’ moving distances (i.e., the overall service cost) minimized.
Considering that sharing a trip by two requests can reduce vehicles’ cumulative
trip length by 40% [1] and that users are only willing to share their trips with
one other group due to the low seating capacity of RSS vehicles, we assume in
this paper that each vehicle can serve at most two requests at any time. The
offline problem, in which both a number m of trip requests and a number n of
vehicles are given, is proved to be NP-hard [5] even for a special setting where
m = 2n (i.e., the number of trip requests is exactly twice the number of vehicles).
Usually, there are two issues in the trip-vehicle assignment problem, including
the one in grouping the requests and the other one in matching the formed
groups with drivers [6]. Naturally, an algorithm with a two-stage perfect match-
ing architecture can handle the above two issues well, and particularly perfects
for the setting m = 2n in which a 2.5-approximation algorithm is guaranteed by
Bei et al. [5]. However, when facing with a more general setting with m ≤ 2n,
we note that two hurdles hinder a two-stage perfect-matching approach from
achieving a provable constant approximation ratio: (a) every vehicle/driver in
the setting m = 2n can be assigned with exactly two trip requests [5], but this is
no more the case in the setting m ≤ 2n since some drivers may not necessarily
be assigned with trips in an optimal solution, making it hard to bound the over-
all moving distance of drivers in our solution; (b) a perfect matching no longer
exists in grouping requests in the setting m ≤ 2n since some requests may not
be matched for achieving the minimum overall service cost.

Related Works. We survey relevant researches along two threads. The first
thread is on maximizing the profit earned by the system. Lowalekar et al. [11]
proposes a heuristic algorithm to solve the real-time problem with the objec-
tive to maximize the number of served requests, which takes advantage of a
zone (here, each zone denotes an abstraction of locations) path construction.
By regarding the requests and drivers as right-side vertices and left-side vertices
of a bipartite graph, respectively, the assignment problem in RSS can generally
be modeled as the bipartite matching problem. Dickerson et al. [4] proposed a
new model of online matching with reusable resources under known adversarial
distributions, where matched resources can become available again in the future.
They also presented an LP-based adaptive algorithm with a competitive ratio
of (0.5− ε) for any given ε > 0. Zhao et al. [3] further considered the preferences
of drivers and passengers (e.g., drivers prefer to take high-rewarding passengers

Trip-Vehicle Assignment Algorithms for Ride-Sharing 683

while passengers prefer to select nearby drivers). They used the online stable
matching to maximize the expected total profit. Recently, Huang et al. [13]
introduced a fully online model of maximum cardinality matching (i.e., maxi-
mizing the number of successful assignments) in which all vertices (both drivers
and passengers) arrive online, they showed that the Ranking Algorithm by Karp
et al. [14] is 0.5211-competitive for general graphs. The second thread is on min-
imizing the overall cost (the distance or the time). Tong et al. [8] aimed to find a
maximum-cardinality matching with minimum total distance, which is under the
assumption that a new user (trip request) must be matched with an unmatched
server (driver) before the next user, they showed that the greedy algorithm has
a competitive ratio of 3.195 in the average-case analysis. More works on RSS
can be found in [9,10,12,15].

Our contribution is three-fold. First, we answer an open question by [5], that
asks for an approximation algorithm to assign a number m of given requests
to a number n (≥ m

2) of given vehicles with two requests sharing one vehicle.
To tackle the two hurdles introduced earlier in this section, we first propose a
solution to find a fixed-size matching in a weighted graph (in both edges and
vertices) that minimizes the total weight of matched edges and unmatched ver-
tices. Built upon that, we develop an O(n4)-time 2.5-approximation algorithm.
Second, we consider a more general setting of the assignment problem, in which
m > 2n is also allowed. In the setting, each vehicle can be assigned to more than
two requests but can handle at most two requests at any time. To this end, we
propose a solution to the minimum-weight matching problem with unmatched
vertex penalty, built upon which we propose a dynamic assignment algorithm.
Experiments are conducted showing that our algorithm achieves good perfor-
mances. Third, we extend the dynamic assignment algorithm to the online set-
ting where on-demand requests appear over time. The effectiveness of our online
algorithms is demonstrated via extensive experiments on real-world trip records.

2 The Model

In RSS, the traffic network is normally modeled as a metric space N =
(Ω, d), in which Ω denotes the set of distinct locations in the network, and
d : Ω × Ω → R is the distance function of roads in the network satisfying
non-negativity (d(x, y) ≥ 0), symmetry (d(x, y) = d(y, x)) and triangle inequal-
ity (d(x, y) + d(y, z) ≥ d(x, z)).1 Further, we denote the weight of a path as
d(a1, . . . , ak−1, ak) =

∑k−1
i=1 d(ai, ai+1). Given a set D = {1, . . . , n} of n avail-

able vehicles (drivers) with each vehicle k ∈ D at location dk ∈ Ω, and a set
R = {r1, . . . , rm} of m trip requests in which each request ri = (si, ti) ∈ R con-
tains a pick-up location si ∈ Ω and a drop-off location ti ∈ Ω, we aim to assign all
requests in R to vehicles in D. An instance of the trip-vehicle assignment prob-
lem in RSS can be written as a tuple I = (N ,D,R). In a trip-vehicle assignment

1 Note that our implementation data in Sect. 5 does not necessarily follow these
properties.

684 S. Li et al.

Π = {(k,Rk)|k ∈ D,Rk ⊂ R}, where Rk denotes the subset of requests assigned
to vehicle k by Π, we define the cost function cost(k,Rk) for each (k,Rk) ∈ Π
as the weight of the shortest path for vehicle k to serve its assigned requests in
Rk. For example, cost(k,Rk) = 0 when Rk = ∅; cost(k,Rk) = d(dk, si)+d(si, ti)
when Rk = {ri}; when Rk = {ri, rj},

cost(k,Rk) = min{ d(dk, si, sj , ti, tj), d(dk, si, sj , tj , ti), d(dk, sj , si, ti, tj),
d(dk, sj , si, tj , ti), d(dk, si, ti, sj , tj), d(dk, sj , tj , si, ti)} (1)

The cost of an assignment Π is defined as cost (Π) =
∑

(k,Rk)∈Π

cost (k,Rk). Given

an instance I = (N ,D,R), our model2 is presented below.

min
Π

cost (Π)

s.t. Ri ∩ Rj = ∅, ∀i, j ∈ D (i)
⋃

k∈D

Rk = R (ii)

|Rk| ≤ 2, ∀k ∈ D (iii)

in which constraint (i) indicates that each request is assigned to only one vehicle,
constraint (ii) indicates all requests are assigned successfully, and constraint (iii)
indicates each vehicle can serve at most two requests (following an assumption
in [5]).

An assignment Π is called feasible if and only if it satisfies the constraints (i)-
(iii). Let DΠ

l denote the subset of vehicles that serve exactly l requests by Π (i.e.,
DΠ

l = {k| (k,Rk) ∈ Π, |Rk| = l}), where l ∈ {0, 1, 2}. Further,
∣
∣DΠ

2

∣
∣ +

∣
∣DΠ

1

∣
∣ is

the number of vehicles-in-service (i.e., the vehicles that serve at least one request)
in Π.

Observation 1.
∣
∣DΠ

1

∣
∣ + 2 · ∣

∣DΠ
2

∣
∣ = m and

⌈
m
2

⌉ ≤ ∣
∣DΠ

1

∣
∣ +

∣
∣DΠ

2

∣
∣ ≤ min {m,n}.

3 Approximation Algorithm

To answer the open question in [5] which asks for a constant-approximation
algorithm for m ≤ 2n, we propose an O

(
n4

)
-time 2.5-approximation algorithm

DPAA (Driver Passenger Assignment Algorithm) in Algorithm 1. Before going
to the details of DPAA, we first consider a basic matching problem of DPAA.

3.1 Minimum-Weight Fixed-Size Matching with Unmatched Vertex
Penalty

DPAA is built upon a solution of the following Minimum-weight Fixed-size
Matching with unmatched vertex Penalty problem (MFMP), in which we fix the

2 For ease of analysis, our model admits that every pair of requests can be grouped
together to share a vehicle, which is also an assumption in [5].

Trip-Vehicle Assignment Algorithms for Ride-Sharing 685

size restriction in matching to handle the hurdles as aforementioned in Sect. 1
(we will state this more clearly later in Sect. 3.2).

MFMP Definition. Given a complete graph G = (V,E,w) in which the weight
function w applies to both edges in E and vertices in V , and a fixed number
x ∈

{
0, 1, ...,

⌊
|V |
2

⌋}
, the goal is to find a matching M (with the matching size

equal to x, i.e., |M | = x) in G such that the sum of weights of matched edges
and unmatched vertices is minimized. Let ze denote the indicator variable of an
edge e ∈ E, and δ(v) denote the edges in E that incident to vertex v ∈ V . If an
edge e is in the matching, set ze = 1, otherwise set ze = 0. The MFMP problem
is formulated as follows.

min
∑

e∈E

w (e) · ze +
∑

v∈V \V (
⋃

e∈E, ze=1
{e})

w(v)

s.t.
∑

e∈δ(v)

ze ≤ 1, ∀v ∈ V (iv)

ze ∈ {0, 1}, ∀e ∈ E (v)
∑

e∈E

ze = x, (vi)

MFMPA Solution. Given the MFMP problem with graph G = (V,E,w), we
propose a solution named MFMPA by the following three steps.

Step 1. Transform the graph G to a complete graph Gx = (Vx, Ex, wx), in
which the vertex set Vx is constructed by adding (|V | − 2x) new vertices V ′ ={

v′
1, v

′
2, ..., v

′
|V |−2x

}
to V , i.e., Vx = V ∪V ′. The weight function wx applies only

to the edges in Ex, for each (u, v) ∈ Ex,

wx(u, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w(u, v), if u, v ∈ V

+∞, if u, v ∈ V ′

w(u), if u ∈ V, v ∈ V ′

w(v), if u ∈ V ′, v ∈ V

An instance of the graph transformation from G to Gx is shown from Fig. 1 to
Fig. 2. In the given graph G, the vertices {v1, v2, v3, v4} in black and the edge (in
solid line) are labelled with their respective weights. Suppose the target matching
has a size of x = 1 ∈ {0, 1, ...,

⌊
|V |
2

⌋
} in the instance, it adds (|V |−2 ·x) = 2 new

vertices {v′
1, v

′
2} and eight new edges (in dashed line) to the transformed graph

Gx, in which vertices have zero weight and edges are labelled with their weights
respectively.

Step 2. Find a minimum-weight perfect matching M in Gx = (Vx, Ex, wx). Note
that such a matching M always exists because Gx is a complete graph with an
even number of vertices;

Step 3. Output edges in M that also belong to the given graph G of MFMP,
which is denoted as MT = {e|e ∈ M and e ∈ E}.

686 S. Li et al.

Fig. 1. The given graph G of MFMP. Fig. 2. The transformed graph Gx of
G. Note: the edge (v′

i, v
′
2) with infinity

weight is not shown in Fig. 2.

Lemma 1. MFMPA solves MFMP.

Proof. Given a weighted complete graph G = (V,E,w) of MFMP, we suppose
that the target matching has a size of x ∈

{
0, 1, ..., ,

⌊
|V |
2

⌋}
, MFMPA first

transforms the given graph G into a new complete graph Gx = (Vx, Ex, wx)
with vertex set Vx = V ∪ V ′, where vertices in V ′ =

{
v′
1, v

′
2, ..., v

′
|V |−2x

}
are

newly added.
As graph Gx is a complete graph and |Vx| = 2|V | − 2x is an even number,

the perfect matching exists in Gx. Then, the MFMPA can find a minimum-
weight perfect matching M in Gx, and outputs all edges in M ∩ E to form
MT . Note that each vertex in V ′ is matched with a distinct vertex in V in a
perfect matching, implying |MT | = x. Let w(M) be the weight of a matching
M . According to wx and the correlation between the M and the MT , we know
w(M) =

∑

e∈MT

w(e) +
∑

v∈V \V (MT)

w(v). Suppose

MT �= arg min
M′ in G with size x

∑

e∈M ′
w(e) +

∑

v∈V \V (M ′)

w(v)

there is another matching MT with size x in G such that
∑

e∈MT

w(e)+
∑

v∈V \V (MT)

w(v)<
∑

e∈MT

w(e) +
∑

v∈V \V (MT)

w(v)

This implies the existence of another perfect matching M in Gx that consists of
x matched edges in MT and another (|V |−2x) edges in which each one matches
a distinct vertex in V \ V (MT) with a distinct vertex in Vx \ V . Note that

w(M) =
∑

e∈M

w(e) +
∑

v∈V \V (M)

w(v) < w(M)

This contradicts with the fact that M is a minimum-weight perfect matching in
Gx.

Trip-Vehicle Assignment Algorithms for Ride-Sharing 687

3.2 Algorithm DPAA

At the high level, DPAA attempts to fix the number (
∣
∣DΠ

2

∣
∣ +

∣
∣DΠ

1

∣
∣)3 of

vehicles-in-service and generates a feasible assignment in which the num-
ber of drivers in-service equals to the fixed number. Since

∣
∣DΠ

2

∣
∣ +

∣
∣DΠ

1

∣
∣ ∈

{⌈
m
2

⌉
,
⌈

m
2

⌉
+ 1, ...,min{m,n}}, see Observation 1, DPAA totally generates

min
{⌊

m
2

⌋
+ 1, n − ⌈

m
2

⌉
+ 1

}
feasible assignments and finally outputs the one

with the minimum cost4.
Given requests in R and vehicles in D, DPAA runs min

{⌊
m
2

⌋
+ 1, n−⌈

m
2

⌉
+ 1

}
iterations. In each iteration j ∈ {

1, 2, ...,min
{⌊

m
2

⌋
, n − ⌈

m
2

⌉}
+ 1

}

of the matching loop5, DPAA fixes i =
⌈

m
2

⌉
+ j − 1 and takes a two-phase

minimum-weight perfect matching approach to generate a feasible assignment.
In the first phase, DPAA constructs a complete graph Gα weighted in both

edges and vertices, which is with regard to requests in R. Specifically, each
request ri ∈ R is modeled as a vertex (in Gα) with its weight defined as the
distance between the pick-up location and the drop-off location of the request,
i.e., α(ri) = d(ti, si). Each two different requests ri, rj ∈ R are connected by an
edge (ri, rj) of Gα with its weight defined as the shortest distance (which is from
the first pick-up location to the last drop-off location) to serve the two requests,
i.e.,

α(ri, rj) = min{d(si, sj , ti, tj), d(si, sj , tj , ti), d(sj , si, ti, tj),
d(sj , si, tj , ti), d(si, ti, sj , tj), d(sj , tj , si, ti)}

This way, we have Gα = (R,α(R)). Then, DPAA applies MFMPA in Gα to get
the matching M1j with the size of (m− i). Further, DPAA gets i request groups
including m − i request pairs in M1j and 2i − m unmatched requests, which
further tackles the hurdle (b) presented in Sect. 1.

In the second phase, DPAA constructs a complete bipartite graph Gθ

weighted only in edges. Specifically, vehicles in D are modeled as the left-side
vertices while the i request groups are modeled as the right-side vertices, and
the weight of each edge connecting a vehicle k ∈ D and a request group {rp, rq}
(or single rp) is defined as cost(k, {rp, rq}) (or cost(k, rp)). Then, DPAA finds
a right-side minimum-weight perfect matching M2j in Gθ to assign the request
groups to i distinct vehicles.

Totally, DPAA gets min
{⌊

m
2

⌋
+ 1, n − ⌈

m
2

⌉
+ 1

}
feasible assignments and

finally outputs the one with the minimum cost.

3.3 Approximation Ratio

Before the analysis of DPAA, we first analyze a degenerated algorithm DPAAD

(of DPAA) in Algorithm2, whose approximation ratio is an upper bound of that
3 This number is represented by i in Algorithm 1.
4 This tackles the hurdle (a) as presented in Sect. 1.
5 In either DPAA or DPAAD, the matching loop refers to lines 7–11 of the pseudo

code.

688 S. Li et al.

Algorithm 1. DPAA
Input: A metric space N = (Ω, d) of the traffic network, a set R = {ri(si, ti)|1 ≤ i ≤
m} of m requests with pick-up locations si and drop-off locations ti, a set {dk|k ∈ D}
of n vehicles’ locations.
Output: ΠA1 = {(k, Rk)|k ∈ D, Rk ⊂ R with |Rk| ≤ 2}.

1: for each rp, rq ∈ R and dk ∈ D do
2: θ (dk, {rp, rq})=cost (k, {rp, rq}) // θ is the weight function of graph Gθ, see

formula (1) for the cost function.
3: θ (dk, rp) = cost (k, rp)

4:
α (rp, rq) = min{ d (sp, tp, sq, tq) , d (sq, tq, sp, tp) , d (sp, sq, tp, tq) ,

d (sp, sq, tq, tp) , d (sq, sp, tq, tp) , d (sq, sp, tp, tq)}
5: α (rp) = d (sp, tp) // α is the weight function of graph Gα.
6: end for
7: for (i =

⌈
m
2

⌉
; i ≤ min {m, n} ; i + +) do

8: apply MFMPA in Gα := (R, α(R)) to get a matching M1j = MT (Gα, m − i)
with the size equal to (m − i);

9: N = R − ∪{rp,rq}∈M1j {rp, rq}, j = i − ⌈
m
2

⌉
+ 1;

10: find a minimum-weight perfect matching M2j on the right-side vertex set M1j∪N
in the weighted bipartite graph Gθ := (D, M1j ∪ N, θ).
// Please refer to constructions of Gα and Gθ in the ”Details of DPAA” in
Section 3.1.

11: end for
12: Output ΠA1 = arg min

j∈{1,2,...,min{�m
2 	,n−
m

2 �}+1}
cost (M2j)

of DPAA. Note that the only difference between DPAAD and DPAA lies in the
edge weight function of the bipartite graph in the second matching phase. In
DPAA, the edge weight function θ is defined as the shortest path for a vehicle
to serve the single request or the two requests in a pair. In DPAAD, the edge
weight function is replaced by λ which is defined as the distance from the vehi-
cle’s location to the closest pick-up location of the request(s) in the assigned
group. The output assignment of DPAA is denoted as ΠA1 while the output
assignment of DPAAD is denoted as ΠA2. To show the ratio of our algorithm,
we separate the cost of our output solution ΠA2 and the cost of an optimal solu-
tion respectively into two parts, in which the first part is the sum of distances
moved by the vehicles from their locations to the (first) pick-up location of the
assigned request(s), and the second part is the sum of distances moved by the
vehicles from their (first) pick-up locations to their (last) drop-off locations of
the assigned request(s).

Lemma 2. In each iteration

j ∈
{

1, 2, ...,min
{⌊m

2

⌋
, n −

⌈m

2

⌉}
+ 1

}

of the matching loop, both DPAA and DPAAD generates a feasible assignment
M2j such that D

M2j
1 = 2j − 2 +

⌈
m
2

⌉ − ⌊
m
2

⌋
and D

M2j
2 =

⌊
m
2

⌋ − j + 1.

Trip-Vehicle Assignment Algorithms for Ride-Sharing 689

Algorithm 2. DPAAD

Remain lines (1, 4-9, 11) of DPAA the same, replace the θ function in lines (2, 3, 10,
12) of DPAA by the λ function.

2: λ(dk, rp) = d(dk, sp);
3: λ(dk, {rp, rq}) = min {d (dk, sp) , d (dk, sq)}
10: find a minimum-weight perfect matching M2j over the right-side vertex set M1j ∪
N in the weighted bipartite graph Gλ := (D, M1j ∪ N, λ).
12: ΠA2 = arg min

j∈{1,2,...,min{�m
2 	,n−
m

2 �}+1}
cost(M2j).

Proof. Recall that Π = {(k,Rk)|k ∈ D,Rk ⊂ R} is called a feasible assignment
if and only if (i) R = ∪k∈DRk, (ii) elements in {Rk|(k,Rk) ∈ Π} are mutually
disjoint, and (iii) |Rk| ≤ 2 holds for each k ∈ D in Π.

In each iteration j ∈ {1, 2, ...,min
{⌊

m
2

⌋
, n − ⌈

m
2

⌉}
+1} of the matching loop,

both DPAA and DPAAD first fix a same number i =
⌈

m
2

⌉
+ j − 1 of vehicles-

in-service and then output a same number i of request groups (in which each
contains at most two requests, i.e., (iii)) by respectively applying the MFMPA.
As each request r ∈ R only lies in one request group Rk by MFMPA, we have
(ii) elements in {Rk| (k,Rk) ∈ M2j} are mutually disjoint. The perfect matching
in MFMPA guarantees (i) R = ∪Rk∈Π1jRk. When assigning the i request groups
among n vehicles in the second phase, the minimum-weight right-side (of request
groups) perfect matching M2j can always be found because i ≤ n. Clearly,
|DM2j

2 | = m − i =
⌊

m
2

⌋ − j + 1 which further implies D
M2j
1 = i − |DM2j

2 | =
2j − 2 +

⌈
m
2

⌉ − ⌊
m
2

⌋
.

Given a feasible assignment Π = {(k,Rk)|k ∈ D,Rk ⊂ R}, let
cost1(k,Rk,Π) denote the distance from vehicle k’s location to the first pick-
up location (in Rk) in an assignment Π, and let cost2(k,Rk,Π) denote the
distance from the first pickup location (in Rk) to the last drop-off location
(in Rk) in Π. Further, we separate the overall cost of an assignment into
two parts. The first part is the sum of distances moved by vehicles from
their locations to the (first) pick-up locations of the assigned request(s), i.e.,
cost1 (Π) =

∑
(k,Rk)∈Π cost1 (k,Rk,Π), and the second part is the sum of dis-

tances moved by vehicles from the (first) pick-up locations to the (last) drop-off
locations of the assigned request(s), i.e., cost2 (Π) =

∑
(k,Rk)∈Π cost2 (k,Rk,Π).

Therefore, cost (Π) = cost1 (Π) + cost2 (Π).
Given an instance I = (N ,D,R) of the trip-vehicle assignment problem, let

D∗
1 and D∗

2 denote the set of vehicles in an optimal assignment Π∗ that serve one
request and two requests respectively. Clearly,

⌈
m
2

⌉ ≤ |D∗
1 |+ |D∗

2 | ≤ min {m,n}.
In the j∗-th iteration (where j∗ = i∗ − ⌈

m
2

⌉
+ 1 and i∗ = |D∗

1 | + |D∗
2 |) of

the matching loop, DPAAD first generates a number |D∗
1 | + |D∗

2 | of request
groups by MFMPA and then generates a feasible assignment M2j∗ that satisfies

690 S. Li et al.

∣
∣
∣D

M2j∗
1

∣
∣
∣ = |D∗

1 | and
∣
∣
∣D

M2j∗
2

∣
∣
∣ = |D∗

2 |. For ease of expression, we denote |D∗
1 | = a

and |D∗
2 | = b.

Lemma 3. cost1 (M2j∗) ≤ cost (Π∗) + 1
2 · cost2 (Π∗) .

Proof. In the j∗-th iteration of the matching loop, M2j∗ is a minimum-weight
perfect matching over the right-side vertex set M1j∗ ∪ N (in which each request
group in M1j∗ contains a pair of requests and each request group in N contains a
single request) in the bipartite graph Gλ = (D,M1j∗∪N,λ). Let us first consider
the minimum-weight right-side perfect matching (denoted as M2j∗) in a new
bipartite graph Gλ = (D∗

1 ∪ D∗
2 ,M1j∗ ∪ N,λ). Although we do not know M2j∗

as we do not know the subset D∗
1 ∪D∗

2 of vehicles, we know w(M2j∗) ≤ w(M2j∗)
since (D∗

1 ∪ D∗
2) ⊆ D and we can further show that w(M2j∗) ≤ cost1(Π∗) +

cost(Π∗). To this end, we suppose in Π∗ that D∗
1 = {1, 2, . . . , a},D∗

2 = {a +
1, . . . , a+b}, and that (k, rk) ∈ Π∗ for each k ∈ D∗

1 . In M2j∗, we sort vehicles by

subscripts such that D
M2j∗
1 = {δ1, δ2, ..., δa} and D

M2j∗
2 = {δa+1, δa+2, ..., δa+b}.

Denote Rδk as the group assigned to vehicle δk in M2j∗, i.e., (δk, Rδk) ∈ M2j∗.
We construct a number a (=|D∗

1 |) of virtual requests R′ = {r′
1, r

′
2, . . . , r

′
a},

in which each r′
i = (s′

i, t
′
i) ∈ R′ contains a pick-up location s′

i and a drop-off
location t′i. For each vehicle k ∈ D∗

1 ∪ D∗
2 , we denote δ(k) as the counterpart of

vehicle k in assignment M2j∗, and Rδ(k) as the request group assigned to vehicle
δ(k) in M2j∗. For each r′

p = (s′
p, t

′
p) ∈ R′ and rq = (sq, tq) ∈ R′ ∪ R, we define

d(s′
p, t

′
p) = 0, and

d(sq, s
′
p) =

⎧
⎪⎨

⎪⎩

min
k∈D∗

1∪D∗
2 ,r=(s,t)∈R

d(dk, s), if rq = rp

max
k∈D∗

1∪D∗
2 ,r=(s,t)∈R

d(dk, s), if rq �= rp

in which rp is the request assigned to vehicle p in Π∗. By replacing sq by tq in
the above definition of d(sq, s

′
p), we get d(tq, s′

p). For each vehicle k ∈ D∗
1 ∪ D∗

2 ,

d(k, s′
p) =

⎧
⎪⎪⎨

⎪⎪⎩

min{d(p, rp), λ(δ(p), Rδ(p))}, if k = p

max{λ(δ(p), Rδ(p)), λ(δp, Rδp)}, if k = δp

max
i∈D∗

1∪D∗
2 ,r=(s,t)∈R

d(di, s), if other k

in which λ is the weight function defined in DPAAD. Now, let us consider the
following problem (P*) which assigns requests in R′∪R to vehicles in D∗

1∪D∗
2 . By

assigning each virtual request r′
k ∈ R′ respectively to vehicle k in Π∗ and vehicle

δk in M2∗, we can get new assignments ΠP∗ = {(k, {rk, r′
k})|k ∈ {1, 2, ..., a}} ∪

Π∗(D∗
2) and MP∗ = {δk, {rδk , r′

k}|k ∈ {1, ..., a}} ∪ M2∗(D
M2j∗
2) respectively,

which are shown respectively in Fig. 3 and Fig. 4. According to the definition of
virtual requests, we know that such assignment ΠP∗ is an optimal assignment
of P*, and MP∗ remains a perfect matching in graph Gλ = (D∗

1 ∪ D∗
2 , R ∪

R′, λ). Note that P* is actually an assignment problem reduced to the setting
of m = 2n, hence we can take the idea in ([5], Lemma 4) to get the following

Trip-Vehicle Assignment Algorithms for Ride-Sharing 691

Fig. 3. The assignment ΠP∗ Fig. 4. The assignment MP∗.

Lemma 4. According to the weight function λ and the weights related to the
virtual requests, we have w

(
M1j∗

) ≤ w(MP∗). Hence,

w (M2j∗) ≤ w
(
M2j∗

) ≤ w (MP∗)

≤ 0.5
∑

(dk,{rk1,rk2})∈Πp∗

[d(sk1, dk) + d(sk2, dk)]

≤ 0.5 · [2
∑

k∈D∗
1

cost1(k, Rk, Π∗) + 2
∑

k∈D∗
2

cost1(k, Rk, Π∗) +
∑

(k,{ri,rj})∈Π∗,k∈D∗
2

d(si, sj)]

≤ cost1(Π
∗) + 0.5 · cost2(Π

∗)

in which the third inequation holds by Lemma4, and the fourth inequation holds
by the triangle inequality d(dk, si) ≤ d(dk, sj) + d(si, sj). Further,

cost1(M2j∗) ≤ w (M2j∗) +
∑

(dk,{rk1,rk2})∈M2j∗

d(sk1, sk2)

≤ cost(Π∗) + 0.5 · cost2(Π∗)

This completes the proof.

Lemma 4. (see [5], lemma 4) For P*,

w(MP∗) ≤ 1
2

∑

(dk,{rk1,rk2})∈ΠP∗

[d(dk, sk1) + d(dk, sk2)].

Lemma 5. cost (ΠA2) ≤ cost (Π∗) + 3
2 · cost2 (Π∗) .

Proof. Note that M2j∗ is obtained from the j∗th iteration of the matching loop in
DPAAD, where j∗ = i∗ −⌈

m
2

⌉
+1 and i∗ = |D∗

1 |+ |D∗
2 |, and ΠA2 is the one with

the minimum weight among all the assignments generated by DPAAD. Thus,
cost (ΠA2) ≤ cost (M2j∗). As M2j∗ is the minimum-weight perfect matching
with a size of |D∗

1 | + |D∗
2 |, we have cost2 (M2j∗) ≤ cost2 (Π∗). Hence,

cost (ΠA2) ≤ cost (M2j∗) ≤ cost (Π∗) +
3
2

· cost2 (Π∗)

Theorem 1. For the trip-vehicle assignment problem with m ≤ 2n, DPAA runs
in time O(n4) and achieves an approximation ratio of at most 2.5.

692 S. Li et al.

Proof. DPAA runs in time O(n4) since it runs O(n) iterations in which the
minimum-weight matchings could be found in time O(n3) by [2].

Denote, for ease of expression, MA2
2j and MA1

2j as the assignment gener-
ated by DPAAD and DPAA respectively in their j-th iteration. Recall the dif-
ference between the weight functions λ and θ of the second matching phase
in DPAAD and DPAA, we have cost(MA1

2j) ≤ cost(MA2
2j) in each iteration

j, implying cost(MA1) ≤ cost(MAT). By Lemma 5, we have cost(MA1) ≤
cost(Π∗) + 1.5 · cost2(Π∗) ≤ 2.5 · cost(Π∗).

4 Dynamic Assignment Algorithm

Since vehicles may be assigned with more than two requests when m > 2n
is allowed, the size of the matching in grouping trip requests is not restricted
anymore. Further, we replace the constraint (iii) of the model in Sect. 2 by “each
vehicle can be assigned with more than two requests but can handle at most two
requests at any time”.

4.1 Minimum Weight Matching with Unmatched Vertex Penalty

We first consider a basic matching problem in the assignment, the Minimum
Weight Matching problem with unmatched vertex Penalty (MWMP), which is
defined as the MFMP problem in Sect. 3.1 with constraint (vi) excluded. Given
the MWMP problem with V =

{
v1, v2, ..., v|V |

}
and G = (V,E,w), we propose

a solution named the MWMPA with the following three steps.

Step 1. Transform the given graph G to Gy = (Vy, Ey, wy) by adding a number

|V | of new vertices V ′ =
{

v′
1, v

′
2, ..., v

′
|V |

}
to G, i.e., Vy = V ∪ V ′. The weight

function wy, which applies to edges in Gy only, is defined as follows: for any
vi, vj , v

′
i, v

′
j ∈ Vy,

⎧
⎪⎪⎨

⎪⎪⎩

wy(vi, vj) = w(vi, vj)
wy(vi, v

′
i) = w(vi)

wy(vi, v
′
j) = +∞

wy(v′
i, v

′
j) = 0

(2)

Step 2. Find a minimum-weight perfect matching, denoted as M(G), in Gy.
Step 3. Output those edges in M(G) that also belong to the given graph G of
MWMP, which is denoted as MT (G) = {e|e ∈ M(G) and e ∈ E}.

4.2 Driver Passenger Greedy Assignment Algorithm (DPGA)

At the high level, DPGA executes several rounds of MWMPA, dynamically either
assigning requests to vehicles or grouping requests in one matching pool until
all requests are assigned to vehicles. Specifically,

First. DPGA constructs a complete graph Gβ = (R ∪ D,β) based on given
requests and vehicles. The Gβ is constructed as follows: to ensure constraint

Trip-Vehicle Assignment Algorithms for Ride-Sharing 693

(i) that each request is only assigned to one specific vehicle, we define the weight
of an edge connecting a pair of vehicles dk, dl ∈ D as β(dk, dl) = +∞ (in
practice, one can use a large enough number); the weight of an edge connecting
a vehicle dk ∈ D and a request ri ∈ R is defined as β(dk, ri) = cost(dk, si),
in which the cost(·) function is defined beforehand in Sect. 1; the weight of an
edge connecting a pair of requests ri, rj ∈ R is defined as β(ri, rj) = α(si, sj), in
which the α(·) function is shown beforehand in DPAA algorithm in Sect. 3.2; to
allow some vehicles not to be assigned with requests, we further define the weight
of each vehicle vertex dk ∈ D as β(dk) = 0; to guarantee that each request is
either assigned to some driver or grouped with some other request in one round
of MWMP matching, we define the weight of each request vertex ri ∈ R as
β(ri) = +∞ (in practice, one can use a large enough number).

Then. DPGA applies MWMPA to get the MWMP matching MT (Gβ) in Gβ ,
attaining a set Q of matched edges that connect a vehicle and a request, and a
set P of matched edges that connect a pair of requests. Next, DPGA constructs
the graph Gμ as follows: the vertex weight μ(qk) (resp. μ(pi)) for each qk ∈ Q
(resp. pi ∈ P) is defined as the edge weight of qk (resp. pi) by the previous
round of matching; the weight of an edge connecting a pair of nodes qk, ql ∈ Q
is defined as μ(qk, ql) = +∞ by constraint (i) in Sect. 1; for a node qk ∈ Q and a
node pi ∈ P , the vehicle in qk should first serve requests in qk and then requests
in pi, i.e., μ(qk, pl) = μ(qk) + d(qk, pl) + μ(pl) in which d(qk, pl) is the distance
from the last drop-off location of requests in qk to the first pick-up location of
requests in pi.

Later. DPGA applies MWMPA to get the MWMP matching MT (Gμ) in
graph Gμ = (P ∪ Q,μ) for several rounds. From the second round of MWMP
matching on, the set P (resp. Q) consists of matched edges in the previous round
that only contains requests (resp. contains a vehicle and some requests). Finally,
DPGA terminates until every request is assigned to some vehicle, i.e., P = ∅.

Online Setting6 Solution. By replacing the line 5 of the pseudo code of DPGA
by “update P = P (MT (Gμ)) ∪ Rnew(t), Q = Q(MT (Gμ)) in each time slot t”,
we extend DPGA to DPGAo to handle the online setting where a set Rnew(t)
of on-demand requests are released to the system in each time slot t.

4.3 Experiments

To evaluate the performance of our algorithms, we conduct extensive experiments
using real-world taxi records. In the implementation, we use a large number of
109 to represent +∞ in corresponding weights of Gβ and Gμ in DPGA.

Data Set Description. The original data set contains pick-up and drop-off
locations of 29730 trip records generated by taxis in Chengdu, China, on August
3rd, 2014. For simplification, we first choose a representative time horizon (09:00–
09:01). Then we randomly extract, from the original data set, a number (for
6 In the online setting where trip requests are released over time, we do not consider

the service deadline of the requests and only aim to service all the released requests
with the overall moving distance of the vehicles minimized.

694 S. Li et al.

Algorithm 3. DPGA
Input: A metric space N = (Ω, d) of the traffic network, a set R = {ri(si, ti)|1 ≤ i ≤
m} of m requests with pick-up locations si and drop-off locations ti, a set {dk|k ∈ D}
of n vehicles’ locations.
Output: ΠB1 = {(k, Rk)|k ∈ D, Rk ⊂ R} meeting (i,ii,iii).

1: Apply MWMPA in Gβ = (D ∪ R, β) to get matching MT (Gβ);
//see the construction of Gβ in the detailed description of DPGA in this subsection.

2: Update Q = Q(MT (Gβ)), P = P (MT (Gβ));
3: while P �= ∅ do
4: apply MWMPA in Gμ = (P ∪ Q, μ) to get matching MT (Gμ);

//see the construction of Gμ in the detailed description of DPGA in this sub-
section.

5: update Q = Q(MT (Gμ)), P = P (MT (Gμ));
6: end while

example, m = 400) of trip records within the time horizon to be our input
trip requests. Finally, we take the drop-off locations of a number (for example,
n = 240) of trip requests, which are placed right before our input trip requests
in the original data set, as our input drivers’ locations.

(a) DPAA under the offline setting. (b) DPGAo under the online setting.

Fig. 5. Experimental results on DPAA and DPGAo algorithms under m ≤ 2n.

Evaluation Set-up. Finding an optimal solution (OPT) for the problem is NP-
hard [5], hence we compare the cost of our solution with a lower bound (LB)
of OPT. When m ≤ 2n, LB1 = min

j∈{1,2,...,min{m
2 �,n−�m

2 �}+1}
cost (M1j), which

is smaller than cost(M1j∗), is a natural lower bound (see Lemma 3). In either
the m ≥ 2n setting or the online setting, we set LB2 as the part of the cost in
grouping offline requests in R ∪ ⋃

t Rnew(t). We take several groups of input, to
test algorithms DPAA, DPGA, DPGAo in settings m ≤ 2n, m > 2n and the
online setting respectively.

Trip-Vehicle Assignment Algorithms for Ride-Sharing 695

Table 1. Experimental results on DPGA under offline setting of m > 2n.

m 100 150 200 250 300

LB2(km) 334 499 627 776 912

DPGA (km) 612 1216 1324 1564 2002

Results Analysis. For m ≤ 2n, DPAA performs surprisingly excellently in
practice, achieving an approximation ratio of less than 1.2, see Fig. 5(a). More-
over, the larger the ratio the number of vehicles

the number of requests is, the better DPAA performs. For
m > 2n, DPGA practically generates a solution with a cost at most 2.5 times
of the OPT’s cost, see Table 1. For the online setting with m ≤ 2n, we compare
the cost of DPGAo first with cost of LB2 and then with the cost of DPAA in
solving the offline problem, see Fig. 5(b), the cost of DPGAo is at most 1.9 times
that of LB2 (and hence of OPT).

5 Conclusions

This paper investigates the trip-vehicle assignment problem in ride-sharing sys-
tems, which is to assign trip requests to available vehicles. Suppose each vehicle
serves at most two requests at any time, our contribution is three-fold.

First, we answer an open question proposed by [5], which asks for an approxi-
mation algorithm to assign a number m of given requests to a number n (≥ m

2) of
given vehicles with two requests sharing one vehicle. As the new setting m ≤ 2n
allows some vehicles to serve only one or even zero requests, the perfect match-
ing no longer works in grouping requests. To tackle this hurdle, we propose a
feasible solution to find a fixed-size matching in a weighted graph (in both edges
and vertices) that minimizes the total weight of matched edges and unmatched
vertices. Built upon the solution, we develop a O(n4)-time 2.5-approximation
algorithm for the setting m ≤ 2n. We also show that our proposed algorithm
can be easily adapted to the generalized setting, where each request contains a
variable number of passengers, achieving the same approximation ratio 2.5. Sec-
ond, we consider a more general setting of the assignment problem, in which the
m > 2n is also allowed. In this setting, each vehicle can be assigned to more than
two requests but can handle at most two requests at any time. To this end, we
propose a dynamic assignment algorithm, which is built upon our solution to the
minimum-weight matching problem with an unmatched vertex penalty. Experi-
ments are conducted showing that our dynamic assignment algorithm achieves
good performances. Third, we extend the above algorithm to the online setting
where on-demand trip requests appear over time. The effectiveness of our online
algorithm is demonstrated via extensive experiments on real-world trip records.

Acknowledgements. Part of this work was done when Songhua Li was visiting the
Singapore University of Technology and Design. Minming Li is also from City Uni-
versity of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China. The work

696 S. Li et al.

described in this paper was partially supported by Project 11771365 supported by
NSFC. We would like to thank Kaiyi Liao for his help in the implementation of our
algorithms and we also thank all the anonymous reviewers for their comments.

References

1. Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S.H., Ratti, C.: Quantifying
the benefits of vehicle pooling with shareability networks. Proc. Nat. Acad. Sci.
111(37), 13290–13294 (2014)

2. Gabow, H.N.: Data structures for weighted matching and nearest common ances-
tors with linking. In: Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 434–443 (1990)

3. Zhao, B., Xu, P., Shi, Y., Tong, Y., Zhou, Z., Zeng, Y.: Preference-aware task
assignment in on-demand taxi dispatching: an online stable matching approach.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp.
2245–2252 (2019)

4. Dickerson, J.P., Sankararaman, K.A., Srinivasan, A., Xu, P.: Allocation problems in
ride-sharing platforms: online matching with reusable offline resources. In: Thirty-
Second AAAI Conference on Artificial Intelligence (2018)

5. Bei, X., Zhang, S.: Algorithms for trip-vehicle assignment in ride-sharing. In:
Thirty-Second AAAI Conference on Artificial Intelligence (2018)

6. Lin, Q., Dengt, L., Sun, J., Chen, M.: Optimal demand-aware ride-sharing routing.
In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp.
2699–2707. IEEE (2018)

7. Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D.: On-demand
high-capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Nat. Acad.
Sci. 114(3), 462–467 (2017)

8. Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching
in real-time spatial data: experiments and analysis. Proc. VLDB Endow. 9(12),
1053–1064 (2016)

9. Huang, T., Fang, B., Bei, X., Fang, F.: Dynamic trip-vehicle dispatch with sched-
uled and on-demand requests. In: Conference on Uncertainty in Artificial Intelli-
gence (2019)

10. Lesmana, N. S., Zhang, X., Bei, X.: Balancing efficiency and fairness in on-demand
ride-sourcing. In: Advances in Neural Information Processing Systems, pp. 5309–
5319 (2019)

11. Lowalekar, M., Varakantham, P., Jaillet, P.: ZAC: a zone path construction app-
roach for effective real-time ridesharing. In: Proceedings of the International Con-
ference on Automated Planning and Scheduling, vol. 29, no. 1, pp. 528–538 (2019)

12. Curry, M., Dickerson, J.P., Sankararaman, K.A., Srinivasan, A., Wan, Y., Xu, P.:
Mix and match: Markov chains and mixing times for matching in rideshare. In:
Caragiannis, I., Mirrokni, V., Nikolova, E. (eds.) WINE 2019. LNCS, vol. 11920, pp.
129–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35389-6 10

13. Huang, Z., Kang, N., Tang, Z.G., Wu, X., Zhang, Y., Zhu, X.: Fully online match-
ing. J. ACM (JACM) 67(3), 1–25 (2020)

14. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipar-
tite matching. In: Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, pp. 352–358 (1990)

15. Lowalekar, M., Varakantham, P., Jaillet, P.: Competitive ratios for online multi-
capacity ridesharing. In: Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 771–779 (2020)

https://doi.org/10.1007/978-3-030-35389-6_10

Minimum Wireless Charger Placement
with Individual Energy Requirement

Xingjian Ding1, Jianxiong Guo2, Deying Li1(B), and Ding-Zhu Du2

1 School of Information, Renmin University of China, Beijing 100872, China
{dxj,deyingli}@ruc.edu.cn

2 Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA

{jianxiong.guo,dzdu}@utdallas.edu

Abstract. Supply energy to battery-powered sensor devices by deploy-
ing wireless chargers is a promising way to prolong the operation time
of wireless sensor networks, and has attracted much attention recently.
Existing works focus on maximizing the total received charging power of
the network. However, this may face the unbalanced energy allocation
problem, which is not beneficial to prolong the operation time of wire-
less sensor networks. In this paper, we consider the individual energy
requirement of each sensor node, and study the problem of minimum
charger placement. That is, we focus on finding a strategy for placing
wireless chargers from a given candidate location set, such that each
sensor node’s energy requirement can be met, meanwhile the total num-
ber of used chargers can be minimized. We show that the problem to
be solved is NP-hard, and present two approximation algorithms which
are based on the greedy scheme and relax rounding scheme, respectively.
We prove that both of the two algorithms have performance guarantees.
Finally, we validate the performance of our algorithms by performing
extensive numerical simulations. Simulation results show the effective-
ness of our proposed algorithms.

Keywords: Wireless charger placement · Wireless sensor network ·
Individual energy requirement

1 Introduction

Over the past ten years, there is a growing interesting of using Wireless Sensor
Networks (WSNs) to collect data from the real world. A WSN system mainly
consists of lots of sensor nodes that are powered by on-board batteries. Due
to the inherent constraints on the battery technology, these on-board batteries
can only provide limited energy capacity, and thus it limits the operating time
of the wireless sensor networks. To achieve perpetual operation of the network

This work is supported by National Natural Science Foundation of China (Grant NO.
11671400, 12071478), and partially by NSF 1907472.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 697–710, 2020.
https://doi.org/10.1007/978-3-030-64843-5_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_47&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_47

698 X. Ding et al.

system, prolonging the operation time of these battery-powered sensor nodes has
been an important task. The great progress in Wireless Power Transfer (WPT)
based on magnetic resonant coupling [8] bring a novel way to replenish the
batteries of wireless sensor networks. Prolonging the operation time of sensor
nodes by using WPT has many advantages. Such as, WPT is insensitive to
external environments and can provide relatively stable energy supply for each
sensor node; the charging power to sensor nodes is controllable and thus can
be flexibly adjusted according to the energy requirement of the wireless sensor
network; WPT provides an efficient way to charge sensor nodes without any
interconnecting conductors. As a promising way to deliver energy to wireless
sensor networks, the study of deploying wireless chargers has attracted significant
attention in a few years.

In previous studies, researchers mainly concentrate on charging utility max-
imization problem [3,4,15,18]. That is, their object is to get a maximum total
charging power of a given sensor network under some certain constraints, such as
the number of used chargers or the overall working power of deployed chargers.
These studies may face the unbalanced energy allocation problem. For example,
with the object of maximizing the total charging power of the network, there
might be some sensor nodes receive lots of wireless power, but others receive
rare or even no wireless power, which is not beneficial to prolong the lifetime of
the wireless network. Moreover, there are some studies focus on studying how
to efficient place wireless chargers so that a sensor device deployed anywhere
in the network area always can receive enough energy [6]. However, these works
didn’t consider the individual energy requirement of sensor nodes. In a real wire-
less sensor network application, the energy consumption rates of different sensor
nodes are significantly different [16]. On the one hand, sensor nodes may perform
different sensing tasks that require different energy support. On the other hand,
those sensor nodes that are around the base station need to forward data for
remote nodes and thus have much higher energy consumption rates than others.

In contrast to existing works, we consider a more practice scenario that sensor
nodes have different energy requirement. Our object is to get a charger placement
strategy with minimum number of used chargers so that every sensor node in a
network area can receive enough wireless power to meet its energy requirement.
The main contributions of this paper are as follows.

– In this paper, we consider the individual energy requirement of each sensor
node in a WSN, and study the problem of minimum charger placement with
individual energy requirement (problems PIO). We prove the problem to be
solved is NP-hard.

– We propose two approximation algorithms for the PIO problem, which are
based on greedy and relax rounding, respectively. Moreover, we give detail
theoretical performance analysis of the two algorithms.

– We validate the performance of the proposed algorithms by performing lots
of numerical simulations. The results show the effectiveness of our designs.

The rest of this paper is organized as follows. Section 2 introduces the state-
of-art work of this paper. Section 3 introduces the definition the problem to

Minimum Wireless Charger Placement with Individual Energy Requirement 699

be solved. Sections 4 describes the two proposed algorithms for the PIO prob-
lem. Section 5 validates our algorithms through numerical simulations. Finally,
Section 6 draws the conclusion of this paper.

2 Related Works

In the past few years, replenish energy to sensor networks by placing wireless
chargers has been widely studied. There are lots of existing works that related
to ours. Some works consider the charging utility maximization problem from
different aspects. Dai et al. [4] focus on maximizing charging utility under the
directional charging model, they aim to get a charger placement strategy for a
certain number of directional chargers so that the overall charging utility of the
network can be maximized. Yu et al. [18] consider that wireless chargers could
communicate with each other, and they address the connected wireless charger
placement problem, that is, they aim to place a certain number of wireless charg-
ers into a WSN area to maximize the total charging utility under the constraint
that the deployed wireless chargers are connected. Wang et al. [15] first deal
with the problem of heterogeneous charger placement under directional charg-
ing model with obstacles. They aim to efficiently deploy a set of heterogeneous
wireless chargers such that the total charging utility can be maximized while
considering the effect of obstacles in the network area.

Different from the above works, some researchers focus on making sure that
each sensor node could get sufficient power to achieve perpetual operation. Li et
al. [9] investigate how to efficiently deploy wireless chargers to charge wearable
devices, and they aim to place wireless chargers in a 2-D area with minimum
cardinality to guarantee that the power non-outage probability of the wearable
device is not smaller than a given threshold. The work [10] is most similar to
ours, in which their object is to get a charger placement strategy with the mini-
mum cardinality to make sure that each sensor node can receive enough energy.
The key difference between this work and ours lies on we consider the individual
energy requirement of sensor nodes, other than with the assumption that the
same energy requirement of each sensor node is the same. Moreover, our pro-
posed algorithms have approximation ratios which guarantee the performance
in theory.

3 System Model and Problem Formulation

3.1 System Model and Assumptions

We consider a wireless sensor network that contains m rechargeable sensor nodes
denoted by S = {s1, s2, . . . , sm}. These sensor nodes are deployed in a limited
2-D area randomly, and their locations are fixed and known in advance. There
are n candidate locations in the network area which are chosen for placing wire-
less chargers. The candidate locations are chosen by end-users and at most one
wireless charger can be placed at each candidate location. The set of candidate

700 X. Ding et al.

sk
D

sl
cj

si

Fig. 1. Omni charging model

locations is denoted by by C = {c1, c2, . . . , cn}. With a little abuse of notations,
the wireless charger placed at the i-th location is also denoted by ci.

As shown in Fig. 1, in this paper, we consider problem to be addressed under
omnidirectional charging model. In the omnidirectional charging model, both
rechargeable sensor nodes and wireless chargers are equipped with omni anten-
nas. Each charger symmetrically radiates its wireless power and shape a disk
charging area centering the charger. A sensor node can receive the wireless power
from any direction, it can be charged by a wireless charger as long as it located
within the charging area of the charger. In practice, the wireless power decays
with distance increases, and thus each wireless charger has a bounded charg-
ing area. We consider the scenario that all the wireless chargers of end-users are
homogeneous, and assume that each charger can only charge sensor nodes within
the range of D. Next we describe the energy transfer model and explain the way
to calculate the receiving power of a sensor node from wireless chargers.

Based on the Friis’s free space equation [2], the receiving radio frequency
(RF) power Pr of a receiver from a transmitter can be calculated as

Pr = GtGr

(
λ

4πd

)2

Pt, (1)

where Gt and Gr are antenna gains of transmitter and receiver, respectively, d
is the line-of-sight distance between transmitter and receiver, λ is the electro-
magnetic wavelength, and Pt is the transmitting RF power of the transmitter.

The Friis’s free space function is used for far-field wireless power transmission
such as satellite communication. For wireless rechargeable sensor networks, the
polarization loss should be considered. Based on this, He et al. [6] use a more
empirical model to formulate the wireless charging process in wireless recharge-
able sensor systems:

Pr =
GtGrη

Lp

(
λ

4π(d + β)

)2

Pt, (2)

where η is the rectifier efficiency, Lp is the polarization loss, and β is a parameter
to make Friis’s free space equation suitable for short distance wireless power
transmission.

As mentioned before, the wireless power decays with distance increases, it’s
difficult for a receiver which is very far from the transmitter to capture the

Minimum Wireless Charger Placement with Individual Energy Requirement 701

wireless power as the RF signal is very weak. The symbol D is used to represent
the bound distance, that is, if d > D, Pr = 0. Therefore, in our omnidirectional
charging model, we use the following function to evaluate the RF power at sensor
node si receiving from charger cj :

Prx(si, cj) =

⎧⎪⎨
⎪⎩

αPtx(cj)
(‖si − cj‖ + β)2

, ‖si − cj‖ ≤ D

0 otherwise,
(3)

where α = GtGrη
Lp

(
λ
4π

)2
, Ptx(cj) is the antenna power of the charger cj , ‖si −

cj‖ is the line-of-sight distance between si and cj , and β is an empirically-
determined constant determined by the hardware parameters of chargers and
the surroundings.

To replenish energy to the batteries, receivers need to convert the RF energy
to electric energy. In practical applications, the conversion efficiency from RF to
electricity is non-linear [11]. We denote the electric power got by si from cj as
Pin(si, cj), and use ξ to denote the conversion efficiency, where ξ is related to
the receiving RF power Prx(si, cj), and is calculated as ξ = f(Prx(si, cj)). Then
Pin(si, cj) = ξPrx(si, cj) = f(Prx(si, cj))Prx(si, cj). This function also can be
expressed as Pin(si, cj) = g(Prx(si, cj)), where g(·) is a non-linear function. In
this work, we use the 2nd order polynomial model proposed by [17], we have

Pin(si, cj) = μ1(Prx(si, cj))2 + μ2Prx(si, cj) + μ3, (4)

where μ1, μ2, μ3 ∈ R are the empirically-determined parameters.
We assume that all of the used chargers are homogeneous, and the transmit-

ting RF power of each charger is Ptx. According to the above charging model,
the minimum RF power that a sensor node receives from a charger can be cal-
culated by Pmin

rx = αPtx

(D+β)2 . Correspondingly, the minimum electric energy that
a sensor node got from a charger is estimated as Pmin

in = g(Pmin
rx). In energy-

harvesting sensor systems, each sensor node needs to manage its electric energy
for achieving a long-term operation [7]. In order to make decision efficiently, the
sensor node use integers rather than reals to evaluate its energy. In this paper,
therefore, we use the charging levels present in [5] to evaluate the actual charging
power of a sensor node in a discretized way. The charging levels of a sensor node
si received from a charger cj can be calculated as follows.

L(si, cj) =
⌊

Pin(si, cj)
Pmin

rx

⌋
. (5)

According to [4,14], we can use multiple chargers to charge a sensor node
simultaneously, and the charging power of the sensor node got from these charg-
ers is accumulative. Thus we measure the charging levels of a sensor node from
multiple chargers as the summation of the charging levels provided by each
charger. Limited by the hardware of the sensor nodes, the charging levels of a
sensor node is bounded. We use Lth to denote the bounded charging levels of a

702 X. Ding et al.

sensor node. Then the charging levels of a sensor node si obtained from a given
charger set C is formulated as

L(si, C) =

⎧⎨
⎩

∑
cj∈C

L(si, cj), if
∑

cj∈C

L(si, cj) ≤ Lth

Lth, otherwise.
(6)

3.2 Problem Formulation

In real wireless rechargeable sensor networks, sensor nodes may have different
energy requirement, as these sensor nodes may execute different tasks, besides,
the consumed energy for forwarding data is also variant. Therefore, in this work,
we study the strategy to place wireless chargers to meet the energy requirement
of every sensor node while the total number of used chargers can be minimized.
The problem to be addressed under omnidirectional charging model is formulated
as follows.

Problem 1. minimum charger Placement with Individual energy requirement
under Omnidirectional charging model (PIO). Given m rechargeable sensor
nodes S = {s1, s2, . . . , sm}, and n pre-determined candidate locations C =
{c1, c2, . . . , cn}. The charging levels requirement for each sensor node si ∈ S
is αi ≤ Lth. Our object is to find a subset C ⊆ C with minimum cardinality
to place wireless chargers, such that every sensor node meets its charging levels
requirement.

Formally, the PIO problem can be present as

min |C|
s.t. L(si, C) ≥ αi,∀si ∈ S

In our study, we assume that the PIO problem always has feasible solutions,
as end users will determine sufficient candidate locations to provide enough wire-
less power to wireless networks.

Next, we will prove that problem PIO is NP-hard through a theorem. The
following introduced problems are helpful for our proof.

The Set Cover Problem (SC): Given a set S ′ and a collection C′ of the subset
of S ′, assume that ∪c′

j∈C′c′
j = S ′, the SC problem is to find a sub-collection

C ′ ⊆ C′ with minimum cardinality such that ∪c′
j∈C′c′

j = S ′.

The Decision Version of the SC Problem (d-SC): For a given integer k,
whether there is a sub-collection C ′ ⊆ C′ so that ∪c′

j∈C′c′
j = S ′ and |C ′| ≤ k?

The Decision Version of the PIO Problem (d-PIO): For a given integer
l, whether there is a location subset C ⊆ C, such that every sensor’s charging
levels requirement can be met and |C| ≤ l if we place wireless chargers on C?

Theorem 1. The PIO problem is NP-hard.

Minimum Wireless Charger Placement with Individual Energy Requirement 703

Proof. We prove the theorem by reduction, where we reduce the well-known SC
problem to PIO. Consider such an instance of d-SC: given an integer k, a set
S ′ = {s′

1, s
′
2, . . . , s

′
m}, and a collection C′ = {c′

1, c
′
2, . . . , c

′
n}, where c′

j ⊆ S ′ for
any c′

j ∈ C′. Next, we construct an instance d-PIO as follows. For each s′
i ∈ S ′,

we generate a rechargeable sensor node si. We also generate a virtual candidate
location cj for each c′

j ∈ C′ , where the distance between cj and si is less than
the charging range D only when s′

i ∈ c′
j . Besides, we set the charging levels

requirement αi for each sensor si to be 1, and let l = k.
Obviously, this reduction will terminated in polynomial time, and we can

get a “yes” answer from the generated instance of problem d-PIO if and only if
the given instance of problem d-SC has a “yes” answer. As the SC problem is
a well-known NP-complete problem [13], we know that the PIO problem is at
least NP-hard.

4 Algorithms for the PIO Problem

In this section, we design two algorithms with performance guarantees for prob-
lem PIO: one is a greedy algorithm, named gPIO; another one is based on relax
and rounding, named rPIO. In the following, we will describe our algorithms
in detail, and given theoretical performance analysis of the two algorithms,
respectively.

4.1 The Greedy Based Algorithm

Algorithm Description. We first introduce some useful concepts for making
the description of algorithm gPIO more clearly. As each sensor node only needs to
meet its charging levels requirement, given a set of placed wireless chargers C, we
define the useful charging levels of a sensor si as LU (si, C) = min{L(si, C), αi}.
The overall useful charging levels provided by charger set C for the whole network
is calculated as LU (C) =

∑
si∈S LU (si, C). Clearly, LU (∅) = 0. Consider a

location set C which has been deployed with wireless chargers, the marginal
increment about total useful charging levels is the difference between LU (C ∪
{ci}) and LU (C), when a candidate location ci is selected for placing a wireless
charger.

The basic idea of algorithm gPIO is as follows. In each step, the candidate
location which brings maximum marginal increment of overall useful charging
levels will be selected to place wireless charger. After a candidate location is
selected to be placed a charger, algorithm gPIO will update the overall useful
charging levels. gPIO terminates after every sensor’s charging levels requirement
is achieved. Algorithm 1 shows the details of algorithm gPIO.

In the following, we give the analysis of the time complexity of gPIO. The
calculation of LU (C ∪{ci}) costs O(mn) time, where m and n are the number of
sensor nodes and candidate locations, respectively. In each iteration of the while
loop, every candidate location in C\C needs to be checked to find the “best” one.
Therefore, it costs O(mn2) time for each iteration of the while loop. It’s easy

704 X. Ding et al.

Algorithm 1. The greedy algorithm for PIO (gPIO)
Input: S, C, and αi for each sensor si ∈ S
Output: a subset of candidate locations C
1: C ← ∅
2: while LU (si, C) < αi, ∃si ∈ S do
3: choose ci ∈ C\C that maximizes LU (C∪{ci})−LU (C), and break tie arbitrarily;
4: C ← C ∪ {ci};
5: end while
6: return C

to know that if the feasible solution exists, the gPIO algorithm must terminate
within n iterations after it scanned all the candidate locations. In summary, the
time complexity of algorithm gPIO is O(mn3).

Performance Analysis. We analyze the approximation ratio of algorithm gPIO
through the following theorem.

Theorem 2. gPIO is a (1+ln γ)-approximation algorithm for the PIO problem,
where γ = maxci∈C LU ({ci}).

Proof. We assume the solution found by algorithm gPIO contains g candidate
locations, and we renumber the locations in the order of their selection into the
solution, i.e., C = {c1, c2, . . . , cg}. We use Ci to denote the location set get by
gPIO after the i-th iteration, where i = 0, 1, . . . , g, i.e., Ci = {c1, c2, . . . , ci} and
C0 = ∅. Denote the optimal solution by C∗, and assume there are t number of
candidate locations in C∗. The PIO problem is to get a minimum set of candidate
locations to place wireless chargers such that every sensor node meets its charging
levels requirement, according to the definition of useful charging levels, the PIO
problem also can be described as to get a minimum set of candidate locations
so that the overall useful charging levels equals to

∑
si∈S αi. Obviously, we have

LU (C) = LU (C∗) =
∑

si∈S αi.
We use L−U (Ci) to represent the difference of useful charging levels between

LU (Ci) and LU (C∗), i.e., L−U (Ci) = LU (C∗) − LU (Ci). In other words, after
the i-th iteration of gPIO, there still need L−U (Ci) useful charging levels to meet
the charging levels requirement of every sensor node.

As the optimal solution contains t candidate locations, it’s easy to know
that given a location set Ci, there exists a set with no more than t locations in
C \ Ci that can provide L−U (Ci) useful charging levels for the network. By the
pigeonhole principle, there must exist a location cj ∈ C\Ci that provides at least
L−U (Ci)

t marginal increment of useful charging levels. According to the greedy
criterion of algorithm gPIO, in each step, we select the location with maximum
marginal increase of overall useful charging levels. Therefore, we have

LU (Ci+1) − LU (Ci) ≥ L−U (Ci)
t

=
LU (C∗) − LU (Ci)

t
. (7)

Minimum Wireless Charger Placement with Individual Energy Requirement 705

Equivalently, we get

LU (C∗) − LU (Ci+1) ≤ (LU (C∗) − LU (Ci)
) ·

(
1 − 1

t

)
. (8)

By induction, we have

L−U (Ci) = LU (C∗) − LU (Ci)

≤ LU (C∗) ·
(

1 − 1
t

)i

≤ LU (C∗) · e− i
t .

(9)

In each iteration, L−U (Ci) decreases from LU (C∗) to 0, so we can always find
an positive integer i ≤ g such that L−U (Ci+1) < t ≤ L−U (Ci). Each location
selected by algorithm gPIO provides at least 1 useful charging levels. Thus we
can conclude that after (i + 1)-th iterations, the gPIO algorithm will terminate
after at most t − 1 more iterations (i.e., selects at most t − 1 more candidate
locations). Therefore, we get g ≤ i+ t. As t ≤ L−U (Ci) ≤ LU (C∗) · e− i

t , we have
i ≤ t · ln

(
LU (C∗)

t

)
≤ t · ln γ. Thus we have

g ≤ i + t ≤ t(1 + ln γ). (10)

Thus the theorem holds.

4.2 The Relax Rounding Algorithm

Algorithm Description. We first rewrite the PIO problem as an integer linear
program problem. We use n variables x1, x2, . . . , xn to be indicators to denote
whether the candidate locations are selected to be placed with wireless chargers.
If a location is selected, then xj = 1 and xj = 0 otherwise, for 1 ≤ j ≤ n. Then
problem PIO can be rewritten as

min
∑
cj∈C

xj

s.t.
∑
cj∈C

xj · L(si, cj) ≥ αi, ∀si ∈ S

xj ∈ {0, 1}, 1 ≤ j ≤ n.

(11)

By relaxing the constraints of xj ∈ {0, 1} to the constraints of 0 ≤ xj ≤ 1,
for 1 ≤ j ≤ n, the integer linear program is transformed into a linear program:

min
∑
cj∈C

xj

s.t.
∑
cj∈C

xj · L(si, cj) ≥ αi, ∀si ∈ S

0 ≤ xj ≤ 1, 1 ≤ j ≤ n.

(12)

706 X. Ding et al.

Solving the linear program problem (12) and we get its optimal solution.
To get a a feasible solution of (11), i.e., a feasible solution of PIO, we need to
rounding the optimal solution of (12) to integers. Next, we will show the details
of the rounding process.

Denote the optimal solution of problem (12) by X∗ = {x∗
1, x

∗
2, . . . , x

∗
n}, then

we sort the elements in X∗ in descending order of the value of x∗
j and renumber

them, that is, let x∗
1 ≥ x∗

2 ≥ · · · ≥ x∗
n. Note that we also renumber the candidate

location set according to X∗ such that x∗
j indicates whether location cj is selected

to be placed with a charger. We denote a solution of problem (11) as XA =
{xA

1 , xA
2 , . . . , xA

n }. In the beginning, we let xA
j = 0 for 1 ≤ j ≤ n, and then

we make XA feasible for problem (11) through iterative operations. In the j-th
operation, we let xA

j = 1. The iteration terminates until XA be a feasible solution
for the integer linear program problem (11), that is, every sensor node meets its
charging levels requirement. We show the details of rPIO in Algorithm 2.

Algorithm 2. The relax rounding algorithm for PIO (rPIO)
Input: S, C, and αi for each sensor si ∈ S
Output: a feasible solution XA for problem (11)
1: Calculate L(si, cj) for each si ∈ S and cj ∈ C, and then convert the PIO problem

to an integer linear program as shown in (11);
2: Relax problem (11) and construct a corresponding linear program (12);
3: Solve the linear program (12) and get an optimal solution X∗;
4: Sort the elements in X∗ in descending order of the value of x∗

j , and renumber them
such that x∗

1 ≥ x∗
2 ≥ · · · ≥ x∗

n;
5: Renumber candidate locations such that x∗

j indicates whether location cj is
selected;

6: XA = {xA
1 , xA

2 , . . . , xA
n } = {0, 0, . . . , 0};

7: k = 1;
8: while

∑
cj∈C xj · L(si, cj) < αi, ∃si ∈ S do

9: xA
k = 1;

10: k = k + 1;
11: end while
12: return XA

Next, we give the analysis of the time complexity of algorithm rPIO. It costs
O(mn) time to get L(si, cj) for each si ∈ S and cj ∈ C in the first line in
algorithm rPIO. Convert problem PIO to an integer linear program and then
relax it to a corresponding linear program takes O(1) time. Solving the linear
program costs O(n2.5L) according to [12], where L is the number of bits in the
input. Sort the elements in X∗ takes O(n log n) time by using the Quicksort
method. L(si, cj) has been calculated for each si ∈ S and cj ∈ C in the first line,
so the judgement of the while loop costs O(m) time. The while loop contains at
most n iterations, and thus the while loop costs O(mn) time. To sum up, the
time complexity of algorithm rPIO is O(mn) + O(n2.5L) + O(n log n) + O(mn),
that is O(mn + n2.5L) time.

Minimum Wireless Charger Placement with Individual Energy Requirement 707

Performance Analysis. We use Ni to represent the summation of charging lev-
els of sensor si provided by every candidate location, that is, Ni =

∑
cj∈C

L(si, cj).

Then we have the following theorem.

Theorem 3. rPIO is a δ-approximation algorithm for the PIO problem, where
δ = max

si∈S
{Ni − αi + 1}.

Proof. To prove the theorem, we need first prove that for any xA
j ∈ XA, if

xA
j = 1, then x∗

j ≥ 1
δ . We prove this condition by contradiction. We first divide

the candidate location set into two parts according to the values of elements in
X∗. For any cj ∈ C, we put location cj into C+ if x∗

j ≥ 1
δ , otherwise, we put

location cj into C−, that is, C+ = {cj |x∗
j ≥ 1

δ } and C− = {cj |x∗
j < 1

δ }.
Assume that there exists an indicator xA

k ∈ XA where xA
k = 1 but x∗

k < 1
δ .

According to condition of the while loop in algorithm rPIO, there must exist
a sensor si ∈ S such that

∑k−1
j=1 xj · L(si, cj) < αi, otherwise, algorithm rPIO

will terminates in k − 1 iterations, and then xA
k = 0. We can easy know that

|C+| ≤ k − 1, as x∗
k < 1

δ and the elements in X∗ have been sorted in the
descending order of the value of each element. In other words, the candidate
location set C+ cannot provide enough charging levels for sensor si. We use L+

i

to denote the summation of the charging levels of si provided by each location
in C+, i.e., L+

i =
∑

cj∈C+ L(si, cj) < αi. Then the summation of the charging
levels of si provided by each location in C− can be calculated by Ni − L+

i .
∑
cj∈C

x∗
j · L(si, cj) =

∑
cj∈C+

x∗
j · L(si, cj) +

∑
cj∈C−

x∗
j · L(si, cj)

<
∑

cj∈C+

1 · L(si, cj) +
∑

cj∈C−

1
δ

· L(si, cj)

= L+
i + (Ni − L+

i) · 1
δ

(13)

As L+
i is an positive integer, and L+

i < αi, so we know that L+
i ≤ αi−1. We only

consider the case that problem PIO has feasible solutions, it’s easy to know that
δ ≥ 1, and then L+

i + (Ni − L+
i) · 1

δ hits its maximum value when L+
i = αi − 1.

Therefore, we have
∑
cj∈C

x∗
j · L(si, cj) < L+

i + (Ni − L+
i) · 1

δ

≤ αi − 1 + (Ni − αi + 1) · 1
δ

≤ αi.

(14)

Inequation (14) contradicts the fact that X∗ is a feasible solution for linear
program (12), i.e., it violates the condition that

∑
cj∈C

x∗
j · L(si, cj) ≥ αi, ∀si ∈ S.

Hence, we now have prove that for any xA
j ∈ XA, if xA

j = 1, then x∗
j ≥ 1

δ . Then
we have the following inequation,

708 X. Ding et al.

∑
cj∈C

xA
j ≤ δ ·

∑
cj∈C

x∗
j (15)

We complete the proof here.

5 Performance Evaluation

We assume that there is a wireless sensor network involves 200 rechargeable
sensor nodes that are randomly deployed in a 400 m× 400 m square area, and
each site of a sensor node is selected as a candidate location. We set the working
RF power Ptx of each wireless charger to be 106 µW. The parameters α and
β are set to be 2.5 and 15, respectively. The charging distance D is set to be
70 m. For the non-linear energy conversion, according to the data measured in
[1], we set μ1 = −0.00001, μ2 = 0.57 and μ3 = 10. The required charging levels
of each sensor node is randomly selected in [10, 20]. The data points plotted in
this section under different settings are the average of 100 runs.

5.1 Performance Comparison

We implement a random algorithm, named random, as the baseline for problem
PIO. Specifically, algorithm random repeatedly selects a candidate location in
a random way to place an omnidirectional wireless charger until every sensor
node’s charging levels requirement is met. Next, we compare our algorithms
with the baseline with different parameters.

200 220 240 260 280 300

0
50

10
0

15
0

20
0

25
0

random
rPIO
gPIO

Number of sensors (m)

N
um

be
r o

f u
se

d
ch

ar
ge

rs

(a)

200 250 300 350 400

0
50

10
0

15
0

20
0

random
rPIO
gPIO

Network area size

N
um

be
r o

f u
se

d
ch

ar
ge

rs

(b)

14 16 18 20 22

0
50

10
0

15
0

20
0

random
rPIO
gPIO

Maximum charging levels requirement

N
um

be
r o

f u
se

d
ch

ar
ge

rs

(c)

2 4 6 8 10

0
50

10
0

15
0

20
0

random
rPIO
gPIO

Minimum charging levels requirement

N
um

be
r o

f u
se

d
ch

ar
ge

rs

(d)

Fig. 2. Performance comparisons between our algorithms (gPIO and rPIO) and random
in omnidirectional charging.

(1) Effect of the number of sensor nodes (m): Figure 2(a) shows the effect
of the number of sensor nodes on the performance of our algorithms and the
baseline. We can see that with the number of sensor nodes increases, all of the
three algorithms will require more wireless chargers. However, our algorithms
gPIO and gPIO always outperforms the random algorithm. More specifically, the
growth rates of our algorithms are lower than that of the baseline algorithm. We
can also see that algorithm gPIO is better than algorithm rPIO, which implies
that the greedy algorithm is a simple but effective method to deal with the PIO
problem.

Minimum Wireless Charger Placement with Individual Energy Requirement 709

(2) Effect of the number of the network area size: Figure 2(b) shows the effect
of the network area size on the number of used wireless chargers. We keep the
number of sensor nodes to be 200, and set the side length of the square area from
200 m to 400 m. We can see that, with the network area becomes larger, all of the
algorithms will need more wireless chargers to meet the sensor nodes’ charging
levels requirements, and our algorithms always outperform the baselines.

(3) Effect of the charging levels requirements of sensor nodes: To evaluate
the effect of the charging levels requirements of sensor nodes on the number of
used wireless chargers, we design two different experiments. One is set the lower
bound of the charging levels requirements to be 10, and range the upper bound
of the charging levels requirements from 14 to 22, as shown in Fig. 2(c). It can be
seen that with the upper bound of the charging levels requirements increases, the
number of used wireless chargers slightly increases for all algorithms. In another
set of experiments, we keep the upper bound of the charging levels requirements
always be two times of the lower bound, and range the lower bound from 1 to
11, as shown in Fig. 2(d). We can see that the performance of our algorithms
is always batter than the baseline, especially when the lower bound of charging
levels requirement is small, for example, when the lower bound is et to be 1,
the number of wireless chargers required by algorithm gPIO is only 27.6% of
algorithm random, and 37.6% of algorithm rPIO.

6 Conclusions

In this study, we investigate the minimum wireless charger placement problem by
considering individual energy requirement. We consider the problem under the
omnidirectional charging model. We present two algorithms with performance
guarantees for problem PIO. In addition, we give detail theoretical performance
analysis of the two proposed algorithms. We perform lots of numerical simula-
tions to validate the performance of our algorithms, simulation results show that
our designs perform better than the baseline. The study of this problem under
directional charging model will be our future work.

References

1. Powercast Corporation: P2110b Module Datasheet (2016). https://www.
powercastco.com/documentation/p2110b-module-datasheet/. Accessed 20 Jan
2020

2. Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, Hoboken (2016)
3. Dai, H., et al.: Scape: safe charging with adjustable power. IEEE/ACM Trans.

Netw. 26(1), 520–533 (2018)
4. Dai, H., Wang, X., Liu, A.X., Ma, H., Chen, G.: Optimizing wireless charger

placement for directional charging. In: IEEE INFOCOM 2017-IEEE Conference
on Computer Communications, pp. 1–9. IEEE (2017)

5. Ding, X., et al.: Optimal charger placement for wireless power transfer. Comput.
Netw. 170, 107123 (2020)

https://www.powercastco.com/documentation/p2110b-module-datasheet/
https://www.powercastco.com/documentation/p2110b-module-datasheet/

710 X. Ding et al.

6. He, S., Chen, J., Jiang, F., Yau, D.K., Xing, G., Sun, Y.: Energy provisioning in
wireless rechargeable sensor networks. IEEE Trans. Mob. Comput. 12(10), 1931–
1942 (2012)

7. Ku, M.L., Li, W., Chen, Y., Liu, K.R.: Advances in energy harvesting communi-
cations: past, present, and future challenges. IEEE Commun. Surv. Tutor. 18(2),
1384–1412 (2015)

8. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljačić,
M.: Wireless power transfer via strongly coupled magnetic resonances. Science
317(5834), 83–86 (2007)

9. Li, Y., Chen, Y., Chen, C.S., Wang, Z., Zhu, Y.: Charging while moving: deploying
wireless chargers for powering wearable devices. IEEE Trans. Veh. Technol. 67(12),
11575–11586 (2018)

10. Li, Y., Fu, L., Chen, M., Chi, K., Zhu, Y.: RF-based charger placement for duty
cycle guarantee in battery-free sensor networks. IEEE Commun. Lett. 19(10),
1802–1805 (2015)

11. Ozçelikkale, A., Koseoglu, M., Srivastava, M.: Optimization vs. reinforcement
learning for wirelessly powered sensor networks. In: 2018 IEEE 19th International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
pp. 1–5. IEEE (2018)

12. Vaidya, P.M.: Speeding-up linear programming using fast matrix multiplication.
In: 30th Annual Symposium on Foundations of Computer Science, pp. 332–337.
IEEE (1989)

13. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-662-04565-7

14. Wang, X., Dai, H., Huang, H., Liu, Y., Chen, G., Dou, W.: Robust scheduling for
wireless charger networks. In: IEEE INFOCOM 2019-IEEE Conference on Com-
puter Communications, pp. 2323–2331. IEEE (2019)

15. Wang, X., et al.: Practical heterogeneous wireless charger placement with obstacles.
IEEE Trans. Mobile Comput. (2019)

16. Xu, W., Liang, W., Jia, X., Xu, Z.: Maximizing sensor lifetime in a rechargeable
sensor network via partial energy charging on sensors. In: 2016 13th Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON),
pp. 1–9. IEEE (2016)

17. Xu, X., Özçelikkale, A., McKelvey, T., Viberg, M.: Simultaneous information and
power transfer under a non-linear RF energy harvesting model. In: 2017 IEEE
International Conference on Communications Workshops (ICC Workshops), pp.
179–184. IEEE (2017)

18. Yu, N., Dai, H., Chen, G., Liu, A.X., Tian, B., He, T.: Connectivity-constrained
placement of wireless chargers. IEEE Trans. Mobile Comput. (2019)

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

An Efficient Algorithm for Routing
and Recharging of Electric Vehicles

Tayebeh Bahreini, Nathan Fisher, and Daniel Grosu(B)

Department of Computer Science, Wayne State University, Detroit, USA
{tayebeh.bahreini,fishern,dgrosu}@wayne.edu

Abstract. In this paper, we address the routing and recharging problem
for electric vehicles, where charging nodes have heterogeneous prices and
waiting times, and the objective is to minimize the total recharging cost.
We prove that the problem is NP-hard and propose two algorithms to
solve it. The first, is an algorithm which obtains the optimal solution
in pseudo-polynomial time. The second, is a polynomial time algorithm
that obtains a solution with the total cost of recharging not greater than
the optimal cost for a more constrained instance of the problem with the
maximum waiting time of (1−ε) ·W , where W is the maximum allowable
waiting time.

Keywords: Routing · Electric vehicles · Recharging · Rounding

1 Introduction

In the last decade, the increased awareness of the global warming brought atten-
tion toward transportation, as this sector accounts for a large amount of air
pollution. In 2018, the share of transportation in greenhouse gas emissions
was 28.2% [11]. The policy of replacing conventional gasoline vehicles with All-
Electric Vehicles (EVs) has been followed by many countries as an effective
approach toward a greener transportation system. EVs, in addition to being
environmental friendly, are more energy efficient. In these vehicles, over than
77% of the electrical energy from the grid is transmitted to the wheels, while
in conventional gasoline vehicles only about 12%–30% of the energy stored in
gasoline is converted to power at the wheels [3]. Despite the developments in
the EVs technologies over the last decade, these vehicles represent a very small
fraction of the overall vehicle market, even in the countries with the largest emis-
sion of carbon dioxide. In 2018, the penetration rate of EV in the light-vehicle
market of the US and China was only 2.1 and 3.9%, respectively [5]. The low
public interest in EVs is partially attributed to the driving range anxiety and
to the lack of extensive charging infrastructure. This challenge has motivated
researchers to devote their efforts to developing efficient optimization methods
for recharging and routing policies for EVs.

In fact, recharging policy optimization for EVs is analogous to refueling pol-
icy optimization for gasoline vehicles. There are factors such as overcharging
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 711–726, 2020.
https://doi.org/10.1007/978-3-030-64843-5_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_48&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_48

712 T. Bahreini et al.

cost and charging waiting time that do not apply to refueling policy optimiza-
tion for gasoline vehicles, but need to be taken into account while optimizing
the recharging policies for EVs. The first effort on investigating the problem of
refueling policy optimization dates back to 1980s, where the aim was to find the
shortest path between two nodes while the vehicle has to visit some intermedi-
ate nodes for refueling [6]. Since then, researchers have attempted to study the
properties of the problem and take multiple factors into account when designing
the refueling policies. Lin [8] studied the properties of the refueling policy opti-
mization problem, and based on these properties showed that the problem of
finding the optimal refueling policy can be reduced to the classical shortest path
problem. Khuller et al. [7] studied refueling and routing optimization problems
for conventional gasoline vehicles, assuming that each gas station has a certain
price for gasoline. They considered the problem with the objective of minimiz-
ing the cost of a fixed route and showed that it can be solved in polynomial
time. The authors showed that the problem of finding the cheapest tour while a
given set of locations are visited is NP-complete and developed approximation
algorithms for this problem. Arslan et al. [1] formulated the refueling/recharging
policy optimization for plug-in hybrid EVs where the vehicle has to visit both
refueling and recharging stations, and the objective is to minimize the total cost
which includes fuel and energy costs, stopping costs, depreciation costs, and
battery degradation costs. Nejad et al. [9] developed one approximation and
two exact algorithms for the routing problem of plug-in hybrid EVs. In addi-
tion to the optimal route, their proposed algorithms identify the predominant
operating mode for each segment of the path in order to minimize the fuel con-
sumption. In a recent work, Sweda et al. [10] considered the availability of a
charging station at any point in time as a probabilistic parameter and devel-
oped two heuristic methods to obtain an a priori routing and recharging policy.
In real world, recharging stations might have heterogeneous prices and waiting
times. To the best of our knowledge, no research has been done on the routing
and recharging problem for EVs with heterogeneous prices and waiting times.
In this paper, we address the routing and recharging problem for electric vehi-
cles with the objective of minimizing the total recharging cost, where charging
nodes have heterogeneous prices and waiting times. We prove that the problem
is NP-hard. We propose a pseudo-polynomial algorithm to obtain the optimal
solution. We also propose a polynomial time algorithm and prove that it obtains
a solution with the total cost of recharging not greater than the optimal cost for
a more constrained instance of the problem with the maximum waiting time of
(1 − ε) · W , where W is the maximum allowable waiting time.

2 Problem Definition

We formulate the Electric Vehicle Routing and Recharging Problem (EVRRP).
We consider an EV which is initially fully charged that is going to travel through
a road network (i.e., a directed graph) having n charging nodes v1, . . . , vn. We
do not consider any restriction such as acyclicity and predetermined order of the

An Efficient Algorithm for Routing and Recharging of Electric Vehicles 713

nodes. The EV travels from the start node v1 to the destination node vn. During
the trip from the source to the destination, the EV may need to be recharged
at the charging nodes. The goal is to find a path from the start node to the
destination node as well as a recharging policy for the EV such that the total
cost of recharging is minimized, while the total waiting time for recharging does
not exceed a given value, W .

As the driver selects a path from the start node to the destination node,
she/he must decide whether to stop and recharge at each node, and how much
to recharge at each stop. We assume that the maximum capacity of the battery
is F units. We denote by hij the amount of charge consumed from node i to
node j, if they are adjacent. We assume that the braking energy recuperation is
negligible and thus, the amount of charge consumption of the EV to pass a road
segment is non-negative (i.e., hij ≥ 0). To have a feasible solution, we assume
that for adjacent nodes i and j, hij is less than the maximum capacity of the
battery, F . Also, we assume that hij = ∞ if there is no road segment from node i
to node j. Note that in the paper, we use vi and i alternatively when we refer
to a charging node vi.

Consider a path p that contains two consecutive nodes vi and vj . The charge
level of the EV’s battery at node j is denoted by qj , and is recursively defined
based upon: qi, the charge level of the battery in the previously visited node i;
hij , the amount of charge consumption to reach node j from node i; and rj , the
amount of recharging at node j, as follows,

qj = rj + qi − hij . (1)

The EV must have enough charge to travel from node i to node j,

hij ≤ qi. (2)

The charge level of the EV at a node i cannot exceed the maximum capacity F ,

qi ≤ F. (3)

The waiting time to access node i is denoted by ωi. The total waiting time for
recharging cannot exceed a given value W ,

∑

i∈p,ri>0

ωi ≤ W. (4)

The charging nodes are heterogeneous in terms of their charging price. At
node i, the EV is charged at a fixed price per unit of charge, μi. The objective is
to find a path p over all possible paths P from node 1 to node n, and a recharging
policy r over all feasible recharging polices on path p, Rp, such that the total
recharging cost is minimized,

min
p∈P,r∈Rp

∑

i∈p

μi · ri. (5)

714 T. Bahreini et al.

v1

(0,0)

v2

(3,8)

v3

(1,1)

v4

(0,0)

3

4

4

3

1 1

Fig. 1. An illustrative example: a road network with four charging nodes, where the
start node is v1 and the destination node is v4. The weight on each edge indicates the
amount of charge consumption, while the pair on the vertices indicates the waiting
time and the price per unit of charge, respectively.

Note that in the objective function, we include the cost of recharging at the
source node and the destination. In fact, since the EV is full at node v1 at the
beginning of the trip, without loss of optimality, we can assume that μ1 = 0.
Therefore, the cost of recharging at this node is zero and the EV is fully charged
at this node. Similarly, we do not need to recharge the EV at the destination
node, we can assume that μn = 0. Therefore, the cost of recharging at this node
is zero and will not affect the value of the objective function. It is straightforward
to extend the results in this paper to settings where the EV starts with a non-full
charge.

EVRRP can be represented as a directed graph G(V,E), where V is the set
of vertices representing charging nodes and E is the set of edges representing
the road segments between the nodes. Figure 1 shows an example of such a road
network. In this example, there are four charging nodes. The vehicle must travel
from the start node v1 to the destination node v4. The weight on each edge
shows the amount of charge consumption required to travel the corresponding
road. The pair on the vertices shows the waiting time and the price per unit of
charge, respectively.

2.1 Complexity of EVRRP

In this section, we prove that EVRRP is NP-hard by showing that: (i) the decision
version (EVRRP-D) of EVRRP belongs to NP, and, (ii) a well known NP-complete
problem is reduced to EVRRP-D in polynomial time.

For the first condition, we can easily show that EVRRP-D is in NP. We only
need to guess a solution and a value C, compute the total value of the objective
function (Eq. (5)), and verify if the solution is feasible and the associated objec-
tive value is at most C. Obviously, this can be done in polynomial time. For the
second condition, we show that the Shortest Weight-Constrained Path problem
(SWCP), a well-known NP-complete problem (problem ND 30 in [4]), is reduced
to EVRRP-D in polynomial time.

An instance of EVRRP-D is represented by a graph G(V,E), where V =
{v1, . . . , vn} is the set of vertices representing charging nodes, and E is the set

An Efficient Algorithm for Routing and Recharging of Electric Vehicles 715

v1

(M,M)

v2 v3
(w′

12, c
′
12) (w′

23, c
′
23)

Graph G′

v1

(M,M) (w′
12, c

′
12)

v2

(M,M) (w′
23, c

′
23)

v3

(M,M)
1 1 1 1

Graph G

Fig. 2. Transforming graph G′, an arbitrary instance of SWCP, to graph G, an instance
of EVRRP-D.

of edges representing the road segments between the nodes. Each node is char-
acterized by the charging price per unit of charge, μi, and the waiting time, ωi.
The weight of each edge (i, j) is the amount of charge consumed when traveling
road segment (i, j) (i.e., hij). The decision question is whether there is a path
in G from the source node v1 to the destination node vn with a feasible recharg-
ing policy over the path so that the total cost of recharging (Eq. (5)) does not
exceed C and the total waiting time for recharging does not exceed W .

An instance of SWCP consists of a graph G′(V ′, E′), where V ′ = {v′
1, . . . , v

′
m}

is the set of vertices and E′ is the set of edges with cost c′
ij and weight w′

ij for
each (i, j) ∈ E′. The decision question is whether there is a path in G′ from v′

1

to v′
m such that the total cost does not exceed C ′, while the total weight is not

greater than W ′.

Theorem 1. EVRRP-D is NP-complete.

Proof. We show that an arbitrary instance of SWCP is transformed into an
instance of EVRRP-D. Let F = 2, C = 2C ′, W = W ′, and n = m. First, we
build graph G with the same set of vertices as graph G′ (i.e., V = V ′), where
v1 = v′

1 and vn = v′
m. We call these nodes the primary nodes of G. Then, we

add some other nodes to the graph as the secondary nodes.
For every edge (i, j) in G′, we add a secondary node in G. We denote this

node by vij . Then, we add one edge from node vi to node vij , another edge from
node vij to node vj . We set the amount of charge consumption of these edges to
one. Therefore, the amount of charge consumption on path {vi, vij , vj} is two.

We assume that the waiting time at the secondary node vij is w′
ij , while at

each primary node it is M >> W , a very large value. Furthermore, the charging
price per unit of charge of the secondary node vij is c′

ij . The charging price
rate at each primary node is M >> C, a very large value. Therefore, it is more
preferred to recharge the EV at the secondary nodes.

Figure 2 shows how the graph G is built based on graph G′. Figure 2a shows
graph G′ that has three nodes v1, v2, and v3. The label on each edge represents
the weight and the cost of that edge, respectively. Figure 2b shows graph G with
three primary nodes v1, v2, and v3. We add one secondary node between nodes v1
and v2, and one secondary node between nodes v2 and v3. The secondary nodes
are represented by black filled circles.

Now, we show that the solution for EVRRP-D can be constructed based on
the solution for SWCP. Let us assume that U ′ is the routing path obtained for
SWCP in G′. To obtain the corresponding path U in G, we choose the same path

716 T. Bahreini et al.

for the primary nodes. The path from a primary node vi to the next primary
node vj is {vi, vij , vj}.

The EV starts the route from node v1 with an initial charge level F . Since
the recharging price rate at primary nodes is relatively high, the EV recharges
only at the secondary nodes. Furthermore, the amount of charge consumption
between every two adjacent nodes on the path (primary/secondary) is F

2 . Thus,
an optimal recharging policy of the EV is to stop at the first secondary node
after v1 and recharge the EV to level F . The amount of recharging at this node
is F

2 . For the remaining path, the policy is to pass the next primary (without
recharging) and stop at the next secondary node and recharge the battery fully.
For the last secondary node, the node immediately before the destination node,
we recharge the EV to level F

2 , which is enough to reach the destination node.
Thus, the amount of recharging at this node is F

2 . The total waiting time of the
path is equivalent to the total waiting time of the secondary nodes on the path,∑

vij∈U w′
ij = W ′. Since W = W ′, Constraint (4) is satisfied.

The price per unit of charge at each secondary node vij is c′
ij . Since we

recharge the EV for at most two units, the total cost of recharging to reach
the destination is at most

∑
vij∈U 2 · c′

ij = 2C ′. Thus, we obtain a solution for
EVRRP with objective value less than 2C ′. Since C = 2C ′, the total recharging
cost for EVRRP does not exceed C.

Conversely, suppose that U is the routing path in G obtained for EVRRP.
To obtain path U ′ in G′, we choose the sequence of primary nodes of path U .
Since the total waiting time of path U does not exceed W , the total weight of
the corresponding edges in G′ does not exceed W , too. Since W ′ = W , the total
weight on path U ′ does not exceed W ′.

Furthermore, in path U , the amount of recharging at the first secondary node
and the last secondary node is F

2 . The amount of recharging at other secondary
nodes is F = 2. Thus, the cost of recharging at the first secondary node and the
last secondary node is equivalent to the cost of the corresponding edge in G′.
The cost of recharging at any other secondary node, is two times greater than
the cost of the corresponding edge in G. Since the total cost of recharging in G
does not exceed C, the total cost of the corresponding edges in graph G′ does not
exceed C

2 . Since C = 2C ′, the total cost of edges of path U ′ does not exceed C ′.

3 Optimal Solution for EVRRP

Here, we present an algorithm that obtains the optimal solution for EVRRP in
pseudo-polynomial time. We transform the original directed graph G(V,E) into
a directed graph G̃(Ṽ , Ẽ). In the transformed graph, we consider all possible
sequences of stops for recharging. We denote by H(i, j), the minimum amount
of charge consumed from stop i to stop j. The value of H(i, j) is obtained based
on the shortest path (in terms of the amount of charge consumption) from node i
to node j in G. We show that finding the optimal routing and recharging in G
is equivalent to finding the shortest weighted constrained path in G̃. Then, we
provide an algorithm to solve the problem.

An Efficient Algorithm for Routing and Recharging of Electric Vehicles 717

In the following, we describe the Transform-Graph procedure which obtains
the transformed graph G̃(Ṽ , Ẽ) from the original graph G. This procedure is
based on the recharging rules described in the following lemmas which are exten-
sions of the gas filling policy for the gas station problem [7].

Lemma 1. Let node i and node j be two consecutive stops (for recharging) in
the optimal solution. The path from node i to node j is the shortest path with the
minimum amount of charge consumed from node i to node j in G. The following
rules provide the optimal recharging policy at node i,

(i) if μi < μj, then recharge the battery fully.
(ii) if μi ≥ μj, then recharge the battery just enough to reach node j.

Proof. We can prove this by contradiction. If in the optimal solution, the path
from node i to node j is not the shortest path, we can replace this path with
the shortest path. Since the shortest path has the minimum amount of charge
consumed from node i to node j, the level of the battery upon arriving to node j
is higher than that in the optimal solution. Thus, the amount of recharging
needed at node j is less than that in the optimal solution. This means that
we improve the cost of recharging which is a contradiction with the optimality
assumption.

Furthermore, if μi < μj and the optimal solution does not recharge the
battery fully at node i, then we can improve the cost of recharging by increasing
the amount of recharging at node i and decreasing the amount of recharging at
node j, which is a contradiction with the optimality assumption. Similarly, in the
second case, if the optimal solution recharges the battery more than the charge
amount needed to reach node j, then, we can improve the cost of recharging
by decreasing the amount of recharging at node i and increasing the amount of
recharging at node j.

Lemma 2. Let nodes i, j, and k be three consecutive stops (for recharging) in
the optimal solution. If μi < μj and μj ≥ μk, then H(i, j) + H(j, k) > F .

Proof. According to Lemma 1, the level of the battery when the EV leaves node i
is F . By contradiction, if we assume that H(i, j)+H(j, k) ≤ F , then, the EV can
reach node k without stopping at node j. In other words, the EV can improve
the cost of recharging by decreasing the amount of recharging at node j (to level
zero) and increasing the amount of recharging at node k. This is a contradiction
with the optimality assumption.

Transform-Graph Procedure. In this procedure, we transform the original
graph G(V,E) into a new graph G̃(Ṽ , Ẽ). In the transformed graph G̃, each
vertex represents two possible consecutive stops of the EV, and each edge repre-
sents three consecutive recharging stops. For every node i and node j in G, we
add a node <i, j> in G̃, if node j is reachable from node i (i.e., H(i, j) ≤ F).

We also add a dummy source node <0, 1> and a dummy destination node
<n, n + 1> to G̃. Since the EV is full at node v1 at the beginning of the trip,
it will not go back to this node during the trip. Therefore, we do not need to

718 T. Bahreini et al.

add any node <i, 1> (where i > 1) to G̃. Similarly, since the goal is to reach
node vn, the EV will not go back from this node to any other node. Therefore,
we do not add any node <n, i> to G̃.

For every pair of nodes <i, j> and <j, k>, we add an edge from node <i, j>
to node <j, k> based on a set of conditions. Each edge has a label (wijk, cijk),
where wijk is the waiting time for recharging at node j, and cijk is the cost of
recharging at node j.

We add an edge with label (0, 0) from node <0, 1> to every adjacent
node <1, j>. In fact, since the cost of recharging at node v1 is zero (i.e., μ1 = 0),
the battery will be fully charged at node v1 with cost and waiting time equal
to zero. We also add an edge from every node <i, n> to the destination node
<n, n + 1> with label (0, 0).

For every node <i, j> and node <j, k>, where i > 0 and k ≤ n, we consider
all possible cases for the values of μi, μj , and μk. Based on these values, we add
an edge from node <i, j> to node <j, k>, as follows:

Case I (μi < μj < μk): By Lemma 1, we should fully fill the battery at node i
when node j is the next stop. Therefore, the level of the battery when arriving
at node j is F −H(i, j). Given that, μj < μk, we should again fill up the battery
fully at node j. Thus, the cost of edge (< i, j >,< j, k >) is cijk = μj · H(i, j),
and the waiting time of this edge is wijk = ωj .

Case II (μi < μj and μj ≥ μk): According to Lemma 2, node k is the next
stop after node j only if H(i, j) + H(j, k) > F . Therefore, we add an edge from
node <i, j> to node <j, k> if H(i, j) + H(j, k) > F . By Lemma 1, the level of
the battery upon arriving at node j from node i should be F − H(i, j). Given
that μj ≥ μk, the battery should only be filled up just enough to reach node k
from node j. Thus, the cost of the edge is cijk = μj · (H(j, k)+H(i, j)−F), and
the waiting time is wijk = ωj .

Case III (μi ≥ μj and μj < μk): In this case, we have an empty battery
when reaching node j from node i. Also, we want to recharge the battery fully
at node j since μj < μk. Thus, we add an edge with cost cijk = μj · F , and
waiting time wijk = ωj .

Case IV (μi ≥ μj and μj ≥ μk): In this case, we have an empty battery when
reaching node j; however, we only want to recharge enough to reach node k. Thus,
the cost of the edge is cijk = μj · H(j, k), and the waiting time is wijk = ωj .

Theorem 2. The optimal solution for EVRRP in graph G is equivalent to the
optimal solution for EVRRP in graph G̃.

Proof. We need to show that: (i) for any feasible sequence of recharging stops
in G, the corresponding sequence in G̃ is a feasible sequence and the amount
of recharging at each node is the same as in G; (ii) for any feasible sequence of
recharging stops in G̃, the corresponding sequence in G is a feasible sequence
and the EV has the same recharging policy as in G̃.

Let p = {p1, . . . , ps} be the sequence of stops of a feasible path in G, where s
is the number of nodes in the sequence. We need to show that (1) p is a feasible
sequence of stops in G̃; and (2) the level of the battery when the EV arrives at
node pi in both graphs is the same. We prove this by induction.

An Efficient Algorithm for Routing and Recharging of Electric Vehicles 719

According to our assumption, the EV reaches node v1 with an empty battery.
Then, it will be recharged to level F with zero cost/waiting time (μ1 = ω1 = 0).
Thus, node p1 = v1 is the first stop for recharging. In both G and G̃, node v1 is
reachable and the level of the battery when the EV reaches this node is zero.

Let us assume that {p1, . . . , pi} is a feasible sequence of stops in both graphs;
and for every node j ≤ i, the level of the battery is the same in both graphs.
Now, we need to show that node <pi, pi+1> in G̃ is reachable from <pi−1, pi>
via edge (< pi−1, pi, < pi, pi+1 >) and the level of the battery when the EV
arrives at node pi+1 is the same in both graphs.

Since pi+1 is the next stop in the sequence p in G, H(pi, pi+1) ≤ F . Thus,
according to transformation rules, there is an edge from node <pi−1, pi> to
node <pi, pi+1> in G̃. This implies that node <pi, pi+1> is reachable from node
<pi−1, pi>. For the second condition, we consider the possible values of μi and
μi+1,

Case 1 (μi < μi+1): According to Lemma 1, the level of the battery when
the EV leaves node pi in G is F . Thus, upon arriving at node pi+1, the level of
the battery is F − H(pi, pi+1). On the other hand, according to transformation
rules (I) and (III), the level of the battery corresponding to edge (< pi−1, pi >,
<pi, pi+1 >) is F . Thus, the level of the battery upon arriving at node pi+1 in
both graphs is the same and equal to F − H(pi, pi+1).

Case 2 (μi ≥ μi+1): According to Lemma 1, the level of the battery when
the EV leaves node pi in G is H(pi, pi+1). Thus, upon arriving at node pi+1,
the level of the battery is zero. On the other hand, according to transformation
rules (II) and (IV), the level of the battery corresponding to edge (< pi−1, pi >,
<pi, pi+1 >) is H(pi, pi+1). Thus, the level of battery upon arriving at node pi+1

in both graphs is the same and equal to zero.
Similarly, we can show that a feasible sequence of recharging in G̃ is a feasible

sequence of stops in G and the level of the battery upon arriving at each node of
the sequence in both graphs is the same.

Now, the problem is to find a path from the source node <0, 1> to the destination
node <n, n+1> in the transformed graph G̃ such that the total cost of the path
is minimized, while the total waiting time does not exceed W . Therefore, EVRRP
can be viewed as an SWCP problem. In order to obtain the optimal solution, we
use a dynamic programming algorithm [2], called DP-SWCP, introduced for the
SWCP problem.

The general idea of DP-SWCP is to use a set of labels for each node of the
graph. Each label (Wijl, Cijl) corresponds to a path l from the source node
<0, 1> to node <i, j> and is composed of two elements: Wijl, the total waiting
time of the path when the EV leaves node j, and Cijl, the total cost of that
path. DP-SWCP finds all non-dominated labels on every node. The dominance
relation is defined based on the total waiting time and the total cost on each
label. For a given node <i, j>, let us assume we find two labels (Wijl, Cijl) and
(Wijl′ , Cijl′) such that Wijl ≤ Wijl′ , and Cijl < Cijl′ . Then, path l′ cannot be a
part of the optimal solution, because we could replace it with path l which has
a lower cost and a lower weight. Therefore, we can disregard this path. In this

720 T. Bahreini et al.

Algorithm 1. OPT-EVRRP Algorithm
Input: G(V, E): Graph representing the road network

W : Maximum allowable waiting time
Output: p = {pi}: Routing vector

r = {ri}: Recharging vector
cost: Total cost

1: G̃ ← Transform-Graph(G)
2: p ← DP-SWCP(G̃, W)
3: q1 ← F
4: i ← 1
5: for each u = 2, . . . , |p| − 1 do
6: j ← pu

7: k ← pu+1

8: if μj ≤ μk then
9: qj ← F

10: else
11: qj ← H(j, k)

12: rj ← qj − qi + H(i, j)

13: cost ← ∑
i∈p ri · μi

case, we say that label (Wijl, Cijl) dominates label (Wijl′ , Cijl′) and denote it
by (Wijl, Cijl) � (Wijl′ , Cijl′).

DP-SWCP starts with the source node <0, 1> and assigns a label (0, 0). The
algorithm extends the set of labels by treating a label with the minimum cost.
In the treatment of a label l, the algorithm extends the path corresponding to
the label l along all outgoing edges. In fact, the treatment of a label (Wijl, Cijl)
on node <i, j> considers each adjacent node <j, k> such that Wijl +wijk ≤ W :
if (Wijl +wijk, Cijl +cijk) is not dominated by any label on node <j, k>, adds it
to the set of labels on node <j, k>. DP-SWCP continues the procedure until all
non-dominated labels are treated. Finally, it picks the path that corresponds to
the label with minimum cost at the destination node <n, n + 1> as the optimal
solution.

The algorithm for solving EVRRP, called OPT-EVRRP, is given in Algo-
rithm 1. The input of the algorithm is the graph G(V,E), while the output
is the sequence of stops p = {pi}, the recharging vector r = {ri}, and the total
cost of recharging. The algorithm calls the Transform-Graph procedure to obtain
the transformed graph G̃ (Line 1). Then, it calls DP-SWCP to obtain the optimal
sequence of recharging p in G̃ (Line 2). Based on Lemma 1, the OPT-EVRRP
obtains the optimal amount of recharging at each stop (Lines 3–13). In Sect. 4,
we provide an example on how OPT-EVRRP works on the EVRRP instance given
in Figure 1.

Theorem 3. OPT-EVRRP obtains the optimal solution for EVRRP and its time
complexity is O(n3 + n2 · W).

An Efficient Algorithm for Routing and Recharging of Electric Vehicles 721

Proof. According to Theorem 2, the optimal solution for EVRRP in graph G
is equivalent to the optimal solution in graph G̃. Since DP-SWCP obtains the
optimal solution in G̃, this solution is also optimal for EVRRP in G.

To determine the time complexity of OPT-EVRRP, we need to determine
the time complexity of Transform-Graph and DP-SWCP procedures. The time
complexity of Transform-Graph is proportional to the number of edges in G̃ and
is O(n3). The time complexity of DP-SWCP depends on the number of treated
labels in G̃. DP-SWCP does not treat two labels with the same total waiting
time (because one of them has a cost not less than the other one, and therefore,
it dominates it). The maximum waiting time of a label is bounded by W (W
is integer). Thus, there are at most W + 1 labels on node <i, j>. On the other
hand, there are at most n2 nodes in G̃. Thus, the total number of treated labels
is O(n2 · W). Thus, the time complexity of OPT-EVRRP is O(n3 + n2 · W).

4 An Illustrative Example

We provide a numerical example to illustrate how OPT-EVRRP works. In this
example, we consider the road network given in Fig. 1 as the original graph G.
The maximum capacity of the battery is F = 4, and the maximum allowable
waiting time is W = 8. We can easily see that the optimal solution for this
example is to start the trip from node v1, visit node v2 without recharging, stop
at node v3 and recharge for 4 units, visit node v2 again and recharge for one
unit, and finally, visit node v4. The total cost of this recharging policy is 12,
while the total waiting time is 4.

Now, we show how OPT-EVRRP obtains the optimal solution for this exam-
ple. To transform graph G into G̃, we determine the value of H(i, j), the min-
imum amount of charge consumed from node i to node j in G. Table 1 shows
the value of H(i, j) for every node i and node j in G.

Figure 3 shows the transformed graph G̃. The source node is node <0, 1>
and the destination node is <4, 5>. For every nodes i and j in G, we add a node
<i, j> to G̃, if node j is reachable from node i (i.e., H(i, j) ≤ F). For example,
we add node < 1, 2> to G̃ because H(1, 2) = 3; but we do not add node <3, 4>
to G̃ because H(3, 4) > F .

Table 1. Example: The values of H(i, j)

i/j 1 2 3 4

1 0 3 4 7
2 4 0 1 4
3 5 1 0 5
4 7 3 4 0

< 0, 1 >

< 1, 2 >

< 1, 3 > < 3, 2 >

< 2, 4 >

< 2, 3 >

< 4, 5 >

(0,0) (3,24)

(1,4)
(3,8)

(1,4)

(0,0)
(0,0)

Fig. 3. Example: The transformed
graph G̃.

722 T. Bahreini et al.

For every pair of nodes <i, j>, and <j, k>, we add an edge from node <i, j>
to node <j, k> based on the transformation rules in Transform-Graph procedure.
In Figure 3, the pair on the edge (< i, j >,< j, k >) shows the waiting time and
the recharging cost of the edge.

We add an edge from node <0, 1> to adjacent node <1, 2> with label (0, 0).
Similarly, we add an edge from node <0, 1> to node <1, 3> with label (0, 0). For
nodes <1, 2> and <2, 4>, since μ1 < μ2, and μ2 > μ4, we follow the transforma-
tion rule (II). In this case, since H(1, 2)+H(2, 4) > F , we add an edge from node
<1, 2> to node <2, 4>. The cost of this edge is μ2 · (H(1, 2)+H(2, 4)−F) = 24
and the waiting time is ω2 = 3. Similarly, for nodes <1, 2> and <2, 3>, we follow
the transformation rule (II). However, since H(1, 2) + H(2, 3) = 4 which is not
greater than F , we do not add any edge from node <1, 2> to node <2, 3>.

For nodes <1, 3> and <3, 2>, we follow the transformation rule (I). We add
an edge from node <1, 3> to node <3, 2> with cost μ3 · H(1, 3) = 4 and the
waiting time ω3 = 1. We follow the transformation rule (II) to add an edge from
node <3, 2> to node <2, 4>. The cost of this edge is μ2 ·(H(3, 2)+H(2, 4)−F) =
8 and the waiting time is ω2 = 3. We also follow the transformation rule (III)
and add an edge from node <2, 3> to node <3, 2>. The cost of this edge is
μ3 · F = 4 and the waiting time is ω3 = 1. For nodes <3, 2> and <2, 3>, we
follow the transformation rule (II). Since H(3, 2)+H(2, 3) = 2 and is not greater
than F , we do not add an edge from node <3, 2> to node <2, 3>. Finally, we
add an edge from node <2, 4> to destination node <4, 5> with label (0, 0).

Now, we use DP-SWCP to obtain the optimal solution in G̃. Due to the
limited space, we do not illustrate the procedure of DP-SWCP. There are two
possible paths from source node <0, 1> to the destination node <4, 5>. DP-
SWCP determines path {< 0, 1 >, <1, 3 >, <3, 2 >,< 2, 4 >,< 4, 5 >} as the
optimal path in G̃. Thus, the optimal sequence of stops is v1, v3, v2, v4, the total
waiting time is 4, and the total cost of recharging is 12, which corresponds to
the optimal solution in the original graph G.

5 An Efficient Algorithm for EVRRP

In the previous section, we showed that OPT-EVRRP provides the optimal solu-
tion for EVRRP and is pseudo-polynomial (in terms of the maximum total waiting
time). Here, we provide an efficient algorithm for EVRRP, called APX-EVRRP,
by scaling down the waiting time of each edge in the transformed graph as well
as the maximum waiting time. For this purpose, we scale down the values of wijk

to ω̄j = �n·ωj

ε·W �, where 0 < ε < 1. The maximum waiting time is also scaled down
to W̄ = n

ε .
APX-EVRRP is given in Algorithm 2. The algorithm calls the Transform-

Graph procedure to obtain the transformed graph G̃ (Line 1). Then, it scales
down the waiting time of each edge of the transformed graph (Lines 2–3), and
calls DP-SWCP to solve the rounded problem with maximum allowable waiting
time n

ε (Line 4). Finally, given the optimal solution p for the rounded problem,
where p is the sequence of stops, it determines the recharging amount at each

An Efficient Algorithm for Routing and Recharging of Electric Vehicles 723

Algorithm 2. APX-EVRRP Algorithm
Input: G(V, E): Graph representing the road network

W : Maximum allowable waiting time
Output: p = {pi}: Routing vector

r = {ri}: Recharging vector
cost: Total cost

1: G̃ ← Transform-Graph(G)
2: for each (< i, j >< j, k >) ∈ Ẽ do
3: wijk ← �n·wijk

ε·W �
4: p ← DP-SWCP(G̃, n

ε
)

5: q1 ← F
6: i ← 1
7: for each u = 2, . . . , |p| − 1 do
8: j ← pu

9: k ← pu+1

10: if μj ≤ μk then
11: qj ← F
12: else
13: qj ← H(j, k)

14: rj ← qj − qi + H(i, j)

15: cost ← ∑
i∈p ri · μi

stop (Lines 5–15). We choose the sequence p with recharging policy r as the
solution for EVRRP. In the next section, we show that this solution is feasible
and the total cost obtained by this solution is bounded by the optimal cost for
EVRRP with maximum waiting time (1 − ε) · W .

5.1 Properties of APX-EVRRP

In this section, we analyze the properties of the proposed algorithm. First, we
prove the correctness of APX-EVRRP by showing that the algorithm obtains a
feasible solution for EVRRP in polynomial time. Then, we show that the total
recharging cost of the solution is not greater than the optimal cost for EVRRP
with the maximum allowable waiting time (1 − ε) · W .

Let us denote the solution obtained by APX-EVRRP by (p, r), where p is the
sequence of stops and r gives the recharging amount at each stop. We also denote
by EVRRP(1−ε), the EVRRP problem with the maximum allowable waiting time
(1 − ε) · W , and by (p∗, r∗), the optimal solution for EVRRP(1−ε).

Theorem 4. APX-EVRRP obtains a feasible solution for EVRRP and its time
complexity is O(n3

ε).

Proof. Since the amount of charge consumption between every pair of nodes
in the rounded problem is the same as in the original problem, the recharging
policy r is feasible for the original problem (to reach the destination). Thus, we
only need to show that the total waiting time of the solution does not exceed W .

724 T. Bahreini et al.

In the rounded solution, the total rounded waiting time is not greater than n
ε

(i.e.,
∑

i∈p ω̄i ≤ n
ε). On the other hand ω̄i = �n·ωi

ε·W �. Thus,

∑

i∈p

n · ωi

ε · W
≤

∑

i∈p

ω̄i ≤ n

ε
.

Thus,
∑

i∈p

ωi ≤ W.

Therefore, (p, r) is a feasible solution for EVRRP with the total waiting time less
than or equal W .

The time complexity of APX-EVRRP comes mainly from DP-SWCP. In the
rounded problem, the possible value of the maximum waiting time is reduced
to n

ε . Therefore, the time complexity of DP-SWCP for the rounded problem is
O(n3

ε). Thus, the time complexity of APX-EVRRP is O(n3

ε).

Now, we show that the total cost obtained by APX-EVRRP is not greater
than the optimal cost for EVRRP(1−ε). For this purpose, we show that (p∗, r∗)
is a feasible solution for the rounded problem and the recharging cost of this
solution is not less than the cost obtained from solution (p, r).

Lemma 3. The optimal solution (p∗, r∗) for EVRRP(1−ε) is a feasible solution
for the rounded problem.

Proof. Since the amount of charge consumption between every pair of nodes is
the same in both the rounded problem and the original problem, the recharging
policy r∗ is feasible for the rounded problem. Thus, we only need to show that
the total rounded waiting time obtained from solution (p∗, r∗) is not greater
than n

ε . The rounded waiting time at stop i is ω̄i = �n·ωi

ε·W �. Thus,

∑

i∈p∗
ω̄i ≤

∑

i∈p∗
(
n · ωi

ε · W
+ 1).

On the other hand, the total waiting time of <p∗, r∗> is not greater that (1−ε)·W
(i.e.,

∑
i∈p∗ ωi ≤ (1 − ε) · W). Therefore,

∑

i∈p∗
ω̄i ≤

∑

i∈p∗
(
n · ωi

ε · W
+ 1) ≤ n · (1 − ε) · W

ε · W
+ n ≤ n · (1 +

1 − ε

ε
) ≤ n

ε
.

Therefore, (p∗, r∗) is a feasible solution for the rounded problem.

Theorem 5. The total cost of the solution obtained by APX-EVRRP is not
greater than the optimal cost for EVRRP(1−ε).

An Efficient Algorithm for Routing and Recharging of Electric Vehicles 725

Proof. According to Lemma 3, the optimal solution for EVRRP(1−ε) is a feasible
solution for the rounded problem. On the other hand, OPT-EVRRP obtains the
optimal solution <p, r> for the rounded problem. Therefore,

∑

i∈p

ri · μi ≤
∑

i∈p∗
r∗
i · μi.

Therefore, the total cost of the solution obtained by APX-EVRRP is not greater
than the total cost of the optimal solution for EVRRP(1−ε).

6 Conclusion

We studied the routing and recharging optimization problem for electric vehicles,
where the aim is to find the routing path from a starting point to destination
such that the total recharging cost is minimized. We considered that charging
nodes have heterogeneous prices and waiting times. We studied the properties of
the problem and showed that the problem is NP-hard. We proposed a pseudo-
polynomial algorithm for the optimal solution and a polynomial time algorithm
that obtains a solution with the total recharging cost not greater than the opti-
mal cost for the same problem but with the maximum waiting time of (1−ε) ·W ,
where W is the maximum allowable waiting time. As a future research, we plan
on considering the heterogeneity of charging stations in terms of charging speed.
Another direction for future study is to take the uncertainty of waiting times at
charging stations into account.

Acknowledgments. This research was supported in part by the US National Science
Foundation under grant no. IIS-1724227.

References

1. Arslan, O., Yıldız, B., Karaşan, O.E.: Minimum cost path problem for plug-in
hybrid electric vehicles. Transp. Res. Part E: Logistics Transp. Rev. 80, 123–141
(2015)

2. Desrochers, M., Soumis, F.: A generalized permanent labelling algorithm for the
shortest path problem with time windows. INFOR: Inf. Syst. Oper. Res. 26(3),
191–212 (1988)

3. DoE: All Electric Vehicles. https://www.fueleconomy.gov/feg/evtech.shtml.
Accessed 27 June 2020

4. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman San
Francisco (1979)

5. Hertzke, P., Müller, N., Schaufuss, P., Schenk, S., Wu, T.: Expanding Electric-
Vehicle Adoption Despite Early Growing Pains. McKinsey & Company Insights
(2019)

6. Ichimori, T., Ishii, H., Nishida, T.: Routing a vehicle with the limitation of fuel. J.
Oper. Res. Soc. Japan 24(3), 277–281 (1981)

7. Khuller, S., Malekian, A., Mestre, J.: To fill or not to fill: the gas station problem.
ACM Trans. Algorithms (TALG) 7(3), 1–16 (2011)

https://www.fueleconomy.gov/feg/evtech.shtml

726 T. Bahreini et al.

8. Lin, S.-H.: Finding optimal refueling policies in transportation networks. In: Fleis-
cher, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 280–291. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-68880-8 27

9. Nejad, M.M., Mashayekhy, L., Grosu, D., Chinnam, R.B.: Optimal routing for
plug-in hybrid electric vehicles. Transp. Sci. 51(4), 1304–1325 (2017)

10. Sweda, T.M., Dolinskaya, I.S., Klabjan, D.: Adaptive routing and recharging poli-
cies for electric vehicles. Transp. Sci. 51(4), 1326–1348 (2017)

11. US-EPA: Global Greenhouse Gas Emissions Data. https://www.epa.gov/
ghgemissions/global-greenhouse-gas-emissions-data. Accessed 27 June 2020

https://doi.org/10.1007/978-3-540-68880-8_27
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data

The Optimization of Self-interference
in Wideband Full-Duplex Phased Array

with Joint Transmit and Receive
Beamforming

XiaoXin Wang, Zhipeng Jiang(B), Wenguo Yang, and Suixiang Gao

School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing, China

jiangzhipeng@ucas.ac.cn

Abstract. Full-duplex (FD) wireless and phased arrays are both
promising techniques that can significantly improve data rates in future
wireless networks. However, integrating FD with transmit (Tx) and
receive (Rx) phased arrays is extremely challenging, due to the large
number of self-interference (SI) channels. In this paper, a model is pro-
posed to minimize the self-interference without large TxBF and RxBF
gain losses through optimizing the TxBF and RxBF weights. As the
model involves complex numbers and is non-convex, an iterative algo-
rithm by solving series convex model is given to obtain an approximate
solution. Meanwhile, in each step of the iterative algorithm, the sub
model is translated into real number model. Then a penalty term is
added into the sub model of each step of the iterative algorithm. Sim-
ulation results show that, the iterative algorithm is effective and can
get good results. The penalty term can improve the performance of the
algorithm.

Keywords: Full-duplex wireless · Phased array optimization ·
Iterative algorithm · Non-convex optimization · Complex number
optimization

1 Introduction

The conception of full-duplex (FD) wireless – simultaneous transmission and
reception on the same frequency at same time – has been proposed for many
years. But because of the limitation of technical level, it has not been well devel-
oped [1]. In recent years, withing the increasing number and demand of users
in 5G wireless access network, the demand for FD wireless is more and more
urgent.

In 4G and earlier wireless communication system, the time division duplex
(TDD) and frequency division duplex (FDD) are currently widely used. Unlike
FD, TDD is a kind of half-duplex (HD) wireless, it cuts the time into pieces and
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 727–740, 2020.
https://doi.org/10.1007/978-3-030-64843-5_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_49&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_49

728 X. Wang et al.

use some of them to transmit and others to reception; FDD deals with trans-
mission and reception at same time but uses two different frequency. Therefore,
the FD wireless can double the throughput theoretically [2].

The basic challenge before using full-duplex wireless is the vast amount of
self-interference (SI) leaking from the transmitter (Tx) into the receiver (Rx),
the self-interference could be even billions of times stronger than the desired
receive signal [3]. How to cancel this interference successfully and recover the
desired signal is the current important research content. In recent work the SI
cancellation (SIC) has been designed and used at at the antenna interface, radio
frequency(RF)/analog, and digital baseband [4,5].

Another important technology in communication is Tx and Rx phased arrays
which has been widely used in radar. Phased arrays is a technology for direc-
tional signal transmission and reception utilizing spatial selectivity [6], it can
enhance the communication range through analog Tx beamforming (TxBF) and
Rx beamforming (RxBF). TxBF/RxBF can increase the Tx/Rx signal power
significantly at the same link distance, or can the enhance link distance at the
same signal-to-noise ratio (SNR).

Although application prospects of combining FD with phased arrays are very
attractive, there are still many challenges we have to face. First of all, in an N-
element FD phase array, a SI channel exists between every pair of Tx and Rx
elements and there are a total of N2, these SI channels need to be canceled in
the RF domain. Some techniques in common phased arrays such as using cir-
cuits or alternating antenna placements to achieve wideband RF SIC [7], can
not be directly applied to an FD phased array. This is because these techniques
are designed for single antenna or small array system. For large phased arrays,
adding extra RF cancellers is expensive, and the cancellation via antenna place-
ments usually requires at least twice the antennas. Therefore, innovative solu-
tions are needed to achieve FD operation in phased arrays.

In this paper, we show that by adjusting Tx and Rx analog beamforming
weights (or called beamformers) carefully, FD phase arrays can simultaneously
achieve wideband RF SIC with minimal TxBF and RxBF gain losses, and
improved FD rate gains. In another word, this method can be seen as a RF
SIC based on TxBF and RxBF. This method has many advantages: (i) this
RF SIC is wideband because the SI channels in every pair of Tx and Rx ele-
ments experiences similar delays; (ii) we just adjust the beamforming weights
so a specialized RF SIC circuitry is not required, thus can save energy; (iii) we
achieve the RF SIC before the digital domain, which could largely reduce the
analog-to-digital converter (ADC) dynamic range and power consumption; (iv)
the large-scale antenna arrays are not a burden but provide a large number of
modifiable TxBF and RxBF weights.

We consider a network system that BS is an N-element FD phassed array,
and its user is a single-antenna user which is HD- or FD-capable. In some related
works [8], the main target is to maximize the FD rate gain with SI constrains.
However, in many actual application scenarios, the gain only needs to be larger
than a specified threshold, while SI should be as small as possible. Thus in our

The Optimization of Self-interference in Wideband FD Phased Array 729

case, the target is to minimize the SI while ensuring that the FD rate gain is
big enough. Base on our target we formulate an optimization problem to deter-
mine the optimal Tx and Rx beamformers jointly. Because of the non-convexity
and intractability of this problem, we present an approximate alternative algo-
rithm and split the original problem into convex sub-problems, then solve these
sub-problems by changing them from complex models into real models and then
using logarithmic barrier method. This alternative algorithm can solve the opti-
mization problem efficiently.

To summarize, the main contributions of this paper are as fellow: (i) build-
ing a model for the problem of minimizing SI; (ii) giving out an iterative algo-
rithms and split the non-convex original problem into convex sub-problems; (iii)
changing these sub-problems from complex into real and solving them by the
logarithmic barrier method.

2 Models and Algorithms

We now consider a full-duplex antenna arrays phase problem that has a same
background as the [8]. A N-element rectangular antenna array with Nx rows
and Ny columns (N = Nx × Ny), arranged same as in [8]. Its transmit power
is Pt. The spaces between adjacent antennas are half-wavelength. Assuming the
horizontal angle and the pitch angle are noted as φ and θ. Then the relevant
phase delay sn(φ, θ) of the nth element at location (nx, ny) is

sn(φ, θ) = ejπ[(nx−1) cos θ cosφ+(ny−1) cos θ sinφ],∀nx, ny. (1)

where n = (nx − 1)Ny + ny [9]. The steering vector of the antenna array in the
direction of (φ, θ) is s(φ, θ) = [sn(φ, θ)] ∈ C. So for the transmitter and receiver,
their relevant phase delay are noted as st = s(φt, θt) and sr = s(φr, θr).

The variables that can be adjusted are called analog beamformers. An ana-
log beamformer is the set of complex-valued weights applied to each element
relative to that of the first element. We note the transmit (Tx) and receive (Rx)
beamformers as the vectors w = [wn] ∈ C

N and v = [vn] ∈ C
N respectively,

and they must satisfy |wn| ≤ 1 and |vn| ≤ 1. The Tx and Rx array factors in
the desired beampointing directions are denoted respectively by at and ar, and
given by

at = sT
t w, ar = sT

r v.

According to [9], let w = s∗
t and v = s∗

r , array factors can achieve their theo-
retical maximum value N , i.e.,

amax
t = sT

t s
∗
t = N, amax

r = sT
r s

∗
r = N. (2)

Besides, The phase of the signals should be preserved, i.e., the array factors
should only contain real parts:

at, ar ∈ R ⇔ Im[at] = Im[ar] = 0, (3)

730 X. Wang et al.

Naturally, we respectively set wconv = s∗
t and vconv = s∗

r as the conventional HD
Tx and Rx beamformers. Therefore, the TxBF and RxBF gains in the desired
Tx and Rx beampointing directions, denoted by gt and gr, are given by

gt = |at|2/N, gr = |ar|2/N. (4)

Then we consider the form of self-interference. The SI channel matrix should
be defined first. Same as in [10], we denote Hnn as the frequency response of the
SI channel from the nth Tx element to the nth Rx element for every antenna
n(n = 1, 2, ..., N) , and Hmn represent the frequency response of the cross-talk
SI (CTSI) channel from the nth Tx element to the mth Rx element for every
two different antenna m �= n(m,n = 1, 2, ..., N). We assume |Hmn| ≤ 1 for all
the m,n = 1, 2, ..., N because of the propagation loss of the Tx signal. The SI
channel matrix is denoted as H = [Hmn] ∈ C

N×N , notice that for every pair
(m,n), Hmn = Hnm, so H is a symmetric matrix. The SI power under TxBF
and RxBF are:

P bf
SI = |vTHw|2 · Pt

N
. (5)

The most commonly used measure of SI is the Self-Interference-to-Noise
Ratio (XINR) under TxBF and RxBF. XINR is defined as the ratio between the
residual SI power after analog and digital SIC and the noise floor, and denoted
as γbb for the BS and γuu in for users. In our case, we only focus on the SIC
at the BS with TxBF and RxBF, so we assume that a user can always cancel
its SI to below the noise floor, i.e., γuu ≤ 1 [11,12]. For the BS, it has an Rx
array noise floor of NPnf , and an amount of achievable digital SIC denoted by
SICdig. Then we have:

γbb =
P bf

SI

SICdig · NPnf
.

=
|vTHw|2

SICdigNPnf
· Pt

N
. (6)

As we said in chapter 1, the target is to minimize the SI. Let β = SICdigPnf ,
our aim is as:

min
w ,v

∣
∣vTHw

∣
∣
2

Nβ
· Pt

N
. (7)

In a given FD antenna array system, N , Pt, β are positive constants, so we can
use an equivalent target as:

min
w ,v

∣
∣vTHw

∣
∣
2
. (8)

The Optimization of Self-interference in Wideband FD Phased Array 731

Base on the objective and constrains defined above, now we can present the
model:

min
w ,v

∣
∣vTHw

∣
∣
2
, (9)

s.t. Re
[

sT
t w

] ≥ a, (10)

Re
[

sT
r v

] ≥ a, (11)

Im
[

sT
t w

]

= Im
[

sT
r v

]

= 0, (12)

w2
n ≤ 1, v2

n ≤ 1,∀n = 1, 2, ..., N. (13)

in which a is an acceptable gain level, and smaller than the theoretical maximum
gain value, i.e., 0 ≤ a ≤ N , for example, may be 0.8N or 0.9N .

In this model, w and v are both variables, so the target function (9) is not
convex, this model is not a convex optimization and hard to be solved directly.
But it’s obvious that all the constrains are liner or convex, so we can now use
an alternative optimization algorithm.

The target function can be written as:

|vTHw|2
= (vTHw)† · (vTHw)

=w†(H†v∗vTH)w

=w†Hvw, (14)

in which Hv = H†v∗vTH. H†
v = Hv holds for a fixed Rx beamformer v, this

means Hv is a Hermitian matrix. And because the SI power cannot be negative
for any non-zero Tx beamformer w, i.e.,

w†Hvw ≥ 0,∀w ∈ C
N ,w �= 0, (15)

this means Hv is a positive semidefinite matrix. Hw can be defined in the same
way.

Now for a fixed Rx beamformer v, we can get the optimal Tx beamformer
w by solving sub-problem (P1):

(P1)min
w

w†Hvw, (16)

s.t. Re
[

sT
t w

] ≥ a, (17)

Im
[

sT
t w

]

= 0, (18)

w2
n ≤ 1,∀n = 1, 2, ..., N (19)

Now the objective function of (P1) is a quadratic form, and the constrains are
all convex, so this is a quadratically constrained convex program.

732 X. Wang et al.

Algorithm 1. Iterative Algorithm 1
Input: the number of antennas N , the total Tx power of Pt, the SI matrix H , steering

vectors st = s(φt, θt) and sr = s(φr, θr), the gain level a, the iterate terminal condition
parameter δ and M .
Initialization: Initial values of the Tx beamformer w(0) and the Rx beamformer

v(0).
For k = 0, 1, ... do:

1: Obtain w(k+1) with v(k) by solving:

(P1(k+1)) min
w

w†Hv(k)w,

s.t. Re
[
sT
t w

]
≥ a,

Im
[
sT
t w

]
= 0,

w2
n ≤ 1, ∀n = 1, 2, ..., N

2: Obtain v(k+1) with w(k+1) by solving:

(P2(k+1)) min
v

v†Hw(k+1)v,

s.t. Re
[
sT
r v

]
≥ a,

Im
[
sT
r v

]
= 0,

v2
n ≤ 1, ∀n = 1, 2, ..., N

3: Keep iterating until the Tx and Rx array factor improvements are small enough:

||v(k)†Hw(k)|2 − |v(k+1)†Hw(k+1)|2| ≤ δ · M.

Symmetrically, for a fixed Tx beamformer w, the optimal Rx beamformer v
can be gotten by solving (P2):

(P2)min
v

v†Hwv, (20)

s.t. Re
[

sT
r v

] ≥ a, (21)

Im
[

sT
r v

]

= 0, (22)

v2
n ≤ 1,∀n = 1, 2, ..., N (23)

Naturally, we can think of updating w and v alternately by solving (P1) and
(P2) in turn, or rather, solving v for a fixed w, then updating w by using this
new v.

Now we can present the iterative algorithm [8] as Algorithm 1.
In this algorithm, each iteration can be proved to have improvements, this

conclusion is provided as Theorem 1.

Theorem 1. In each iteration the target function will not decrease.

The Optimization of Self-interference in Wideband FD Phased Array 733

Proof. Assume in the k step, v(k) has been got, then w(k+1) can be got by
solving model P1(k+1). So Hw(k+1) can be computed. Then v(k+1) can be got
by solving model P2(k+1).

As model P2(k+1) is a convex model, v†Hw(k+1)v obtain the minimum for all
the vector v satisfied the constrained condition of model P2(k+1). Meanwhile,

w(k+1)†Hv(k)w(k+1) = v(k)†Hw(k+1)v(k), (24)

and v(k) satisfied the constrained condition of model P2(k+1). So

v(k+1)†Hw(k+1)v(k+1) ≤ v(k)†Hw(k+1)v(k) = w(k+1)†Hv(k)w(k+1). (25)

Similarly,
w(k+2)†Hv(k+1)w(k+2) ≤ v(k+1)†Hw(k+1)v(k+1). (26)

So

w(k+2)†Hv(k+1)w(k+2) ≤ v(k+1)†Hw(k+1)v(k+1) ≤ w(k+1)†Hv(k)w(k+1). (27)

Then Theorem 1 is proven.

Now the problem is changed into how to solve the sub-problems. The Loga-
rithmic barrier method is a good way to solve the inequality constrained convex
optimization. The details of this method is described in [13].

Next question we have to solve is that this method is just designed for real
numbers and cannot be directly used for our complex-value problem. So we have
to convert sub-problems P1 and P2 from complex to real. Now taking P1 as an
example, P2 is same. Reviewing the form of P1:

(P1)min
w

w†Hvw,

s.t. Re
[

sT
t w

] ≥ a,

Im
[

sT
t w

]

= 0,

w2
n ≤ 1,∀n = 1, 2, ..., N.

First step, we divide these vectors into real and image parts, and do not
change their inner products. So we introduce a symbol: for a complex vector
c = (c1, c2, ...cn) , the real part vector and the image part vector are denoted
respectively as

Re[c] = (Re[c1], Re[c2], ...Re[cn]), (28)

Im[c] = (Im[c1], Im[c2], ...Im[cn]). (29)

Now set
we = [Re[wT], Im[wT]]T , (30)

stR = [Re[sT
t],−Im[sT

t]]T , stI = [Im[sT
t], Re[sT

t]]T . (31)

It’s easily to check that

Re[sT
t w] = sT

tRwe, Im[sT
t w] = sT

tIwe. (32)

734 X. Wang et al.

Next set

HvR =
[

Re[Hv] −Im[Hv]
Im[Hv] Re[Hv]

]

, (33)

and get
w†Hvw = w†

eHvRwe. (34)

The last piece of new problem is a little complex, w2
n, or Re[wn]2 + Im[wn]2

is not really an intuitive function about we, so we define a group of matrices:

Un = [un
ij]2N×2N , in which

un
ij =

{

1, i = j = n or i = j = n + N,

0, else.
(35)

Then we can check that Re[wn]2 + Im[wn]2 = wT
e Unwe. Now the complex

problem P1 have been converted into a real problem P1′:

(P1′)min
we

w†
eHvRwe, (36)

s.t. − sT
tRwe + a ≤ 0, (37)

sT
tIwe = 0, (38)

wT
e Unwe − 1 ≤ 0,∀n = 1, 2, ..., N. (39)

In the same way, we can define ve, SrR, SrI and HwR, and then get a real
problem P2′:

(P2′)min
ve

v†
eHwRve, (40)

s.t. − sT
rRve + a ≤ 0, (41)

sT
rIve = 0, (42)

vT
e Unve − 1 ≤ 0,∀n = 1, 2, ..., N. (43)

Now we can use the barrier method for P1’ and P2’. According to [13], the
Newton’s method is a base step in the barrier method and it requires to calculate
the gradient and second gradient of the target function and all constrains. We
also don’t describe the details here, but we present all these derivative here.
Using P1’ as an example, let

F (we) = wT
e HvRwe, (44)

gl(we) = −sT
tRwe + a, (45)

ge(we) = sT
tIwe, (46)

un(we) = wT
e Unwe − 1,∀n = 1, 2, ..., N. (47)

The Optimization of Self-interference in Wideband FD Phased Array 735

then the results are as follow:

∇F (we) = 2HvRwe,∇2F (we) = 2HvR, (48)

∇gl(we) = −sT
tR, ∇2gl(we) = 0, (49)

∇ge(we) = sT
tI , ∇2ge(we) = 0, (50)

∇un(we) = 2Unwe, ∇2un(we) = 2Un. (51)

After all these steps, now Algorithm 1 can finally be used and get the solution
pair w and v. We will check its performance in the next chapter.

In the previous model only the value of gains and the XINR are considered, so
sometimes the TxBF and RxBF gains have a significant gap between each other.
But in some actual application scenarios, the TxBF and RxBF gains should be
balanced in the far-field, i.e., gt and gr(or equivalently, at and ar) should not be
too different, but also don’t need to be exactly same. To achieve this goal, we
just need to add a penalty term which is depend on the difference between those
two gains.

Intuitively we use (at − ar)2 as the penalty term with a sequence of step size
{αk} which satisfies 1 = α1 ≥ α2 ≥ ... > 0. Attention that this is a minimization
problem, so the sign of penalty term is positive. For fixed w, v, and α, now the
sub-problem are changed into P3 and P4 as follow, with noticing that at = sT

t w
and ar = sT

r v.

(P3)min
w

w†Hvw + α(sT
t w − sT

r v)2, (52)

s.t. Re
[

sT
t w

] ≥ a, (53)

Im
[

sT
t w

]

= 0, (54)

w2
n ≤ 1,∀n = 1, 2, ..., N (55)

(P4)min
v

v†Hwv + α(sT
t w − sT

r v)2, (56)

s.t. Re
[

sT
r v

] ≥ a, (57)

Im
[

sT
r v

]

= 0, (58)

v2
n ≤ 1,∀n = 1, 2, ..., N (59)

The new algorithm are given as Iterative Algorithm 2.
We also use the barrier method to solve this problem, here gives the form of

converted real problem P3′ and P4′:

(P3′)min
we

w†
eHvRwe + α(sT

tRwe − sT
rRve)2, (60)

s.t. − sT
tRwe + a ≤ 0, (61)

sT
tIwe = 0, (62)

wT
e Unwe − 1 ≤ 0,∀n = 1, 2, ..., N. (63)

736 X. Wang et al.

Algorithm 2. Iterative Algorithm 2
Input: the number of antennas N , the total Tx power of Pt, the SI matrix H , steering

vectors st = s(φt, θt) and sr = s(φr, θr), the gain level a, the sequence of step size
{αk}, the iterate terminal condition parameter δ and M .
Initialization: Initial values of the Tx beamformer w(0) and the Rx beamformer

v(0).
For k = 0, 1, ... do:

1: Obtain w(k+1) with v(k) by solving:

(P3(k+1)) min
w

w†Hv(k)w + αk(s
T
t w − sT

r v
(k))2,

s.t. Re
[
sT
t w

]
≥ a,

Im
[
sT
t w

]
= 0,

w2
n ≤ 1, ∀n = 1, 2, ..., N

2: Obtain v(k+1) with w(k+1) by solving:

(P4(k+1)) min
v

v†Hw(k+1)v + αk(sT
t w

(k+1) − sT
r v)2,

s.t. Re
[
sT
r v

]
≥ a,

Im
[
sT
r v

]
= 0,

v2
n ≤ 1, ∀n = 1, 2, ..., N

3: Keep iterating until the Tx and Rx array factor improvements are small enough:

||v(k)†Hw(k)|2 − |v(k+1)†Hw(k+1)|2| ≤ δ · M.

(P4′)min
ve

v†
eHwRve + α(sT

rRve − sT
tRwe)2, (64)

s.t. − sT
rRve + a ≤ 0, (65)

sT
rIve = 0, (66)

vT
e Unve − 1 ≤ 0,∀n = 1, 2, ..., N. (67)

Because the constrains are same as above, we only show the gradient and second
gradient of the new target function. Using P3’ as an example, let

F (we) = wT
e HvRwe, (68)

then the results are as follow:

∇F (we) = 2HvRwe + 2α(stRs
T
tRwe − sT

rRvestR), (69)

∇2F (we) = 2HvR + 2αstRs
T
tR, (70)

The Optimization of Self-interference in Wideband FD Phased Array 737

Same as above, the performance of Algorithm 2 will be showed in the next
chapter.

3 Simulations and Results

Before checking performances of these methods, we should first define some
variables as performance standards. We have already defined the XINR (denoted
as γbb) to show the interference level, and TxBF and RxBF gains (denoted as
gt and gr) to show the cover ability of FD. Then what we care about are gain
losses of TxBF and RxBF, which are defined as the ratio of the TxBF (resp.
RxBF) gains to their theoretical maximum values, as follow:

GainLoss(TX) = (sT
t ∗ w)/(sT

t ∗ wconv), (71)

GainLoss(RX) = (sT
r ∗ v)/(sT

r ∗ vconv). (72)

Another important thing is that how much better is FD than HD, or more
specifically called FD rate gain. Denote the FD link rate as rFD

BU and the HD
link rate as rHD

BU , the FD rate gain is defined as rFD
BU /rHD

BU . Because link rates
need to be calculated by Shannon’s formula, we should give the signal-to-noise
ratio (SNR) first. For the BS-User case, we denote γbu(u to b) and γub(b to u)
as the UL and DL SNRs respectively. Then HD link rate of BS-User is defined
as follow,

rHD
BU =

B

2
log2(1 + Nγbu) +

B

2
log2(1 + Nγub). (73)

Correspondingly, FD link rate is defined as follow,

rFD
BU = B[log2(1 +

g∗
rγbu

1 + γbb
) + log2(1 +

g∗
t γub

1 + γuu
)]. (74)

For convenience we approximate the FD sum rate in (74) by setting γuu = 1,
and we use this approximate FD sum rates in our simulations:

r̃FD
BU = B[log2(1 +

g∗
rγbu

1 + γbb
) + log2(1 +

g∗
t γub

2
)]. (75)

B represents the bandwidth in these formulas, however, the FD rate gain is not
influenced by B because of its definition.

Now we consider a system with Nx = 4 and Ny = 8, thus N = 32. Its
TxBF and RxBF in the front side of the antenna array. In actual application
scenarios, the elevation angle of the antenna array is not usually changed, while
the azimuth angle is often adjusted. So we chose φ ∈ [−90◦, 90◦] and a fixed
θ = 10◦. We consider Pt = 30 dBm, and Pnf = −90 dBm and SICdig = 40 dB
[original paper]. Data of the SI channel matrix H are provided from the Huawei
Technologies Co., Ltd which we cooperate with. We denote the acceptable gain
level in (2, 3) as a = rate · N , and chose rate = {0.7, 0.8, 0.9}. At last, let
γbu = γub = 25 dB, bandwidth B = 50 MHz.

738 X. Wang et al.

-80 -60 -40 -20 0 20 40 60 80
(degree)

-120

-100

-80

-60

-40

-20

0

20

40

60

80

XI
N

R
(d

B)

algorithm1(rate=0.9)
algorithm2(rate=0.9)
algorithm1(rate=0.8)
algorithm2(rate=0.8)
algorithm1(rate=0.7)
algorithm2(rate=0.7)

Fig. 1. The XINR in different algorithms.

Put these data into Algorithm 1 and Algorithm 2 with initial value w(0) =
0.99∗s∗

t and v(0) = 0.99∗s∗
r . The mainly results are shown as follow. Especially

in Algorithm 2, we let αk = 1/(k + 1)2(∀k = 0, 1, ...).
Figure 1 shows the performances of XINR. It means the SI level after we

adjust the beamformers. In actual application scenarios, under 0dB is small
enough.

-80 -60 -40 -20 0 20 40 60 80
(degree)

0.7

0.75

0.8

0.85

0.9

0.95

1

ga
in

 lo
ss

 (T
X)

 ra
te

algorithm1(rate=0.9)
algorithm2(rate=0.9)
algorithm1(rate=0.8)
algorithm2(rate=0.8)
algorithm1(rate=0.7)
algorithm2(rate=0.7)

Fig. 2. The Tx gain loss in different algorithms.

Figure 2 and Fig. 3 show the performances of Tx and Rx gain loss in different
algorithms and different azimuth angles. These means how much percentage of
Tx and Rx gain are retained after we adjust the beamformers. Their theoretical
maximums are 1.

Figure 4 shows the performances of FD gain ratio. It means how much better
FD is than HD. Its theoretical maximums is 2.

The Optimization of Self-interference in Wideband FD Phased Array 739

-80 -60 -40 -20 0 20 40 60 80
(degree)

0.7

0.75

0.8

0.85

0.9

0.95

1

ga
in

 lo
ss

 (R
X)

 ra
te

algorithm1(rate=0.9)
algorithm2(rate=0.9)
algorithm1(rate=0.8)
algorithm2(rate=0.8)
algorithm1(rate=0.7)
algorithm2(rate=0.7)

Fig. 3. The Rx gain loss in different algorithms.

-100 -80 -60 -40 -20 0 20 40 60 80 100
(degree)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FD
 g

ai
n

ra
tio

algorithm1(rate=0.9)
algorithm2(rate=0.9)
algorithm1(rate=0.8)
algorithm2(rate=0.8)
algorithm1(rate=0.7)
algorithm2(rate=0.7)

Fig. 4. The FD gain ratio in different algorithms.

We can see the performances of these two algorithms are satisfactory, espe-
cially the Algorithm 2, most of the results are not far from their theoretical max-
imum values, except near 0◦ and±90◦. As these simulations show, Algorithm 2
has better and more stable results than Algorithm 1. For every algorithm, the
rate determine the size of the feasible domain, the lower rate leads to a bigger
domain, so our target XINR should decrease with the rate. The rate decreases
also means the minimum gain level decreases, so the gain loss and FD gain ratio
also decrease. The results of Algorithm 2 obey this rule but Algorithm 1 are very
unstable.

The Algorithm 2 has a particularly good performance, but in fact we don’t
proof yet that every iteration can have an improvement. We think this might
be achieve by choosing a proper {αk}. And we also wander why a small penalty

740 X. Wang et al.

term can cause such a big difference between two algorithm. These issues will
be considered in the future research.

We think the poor performance of results near 0◦ and±90◦, is because the
constrains are too strict around here when using our data. We can see that when
the rate decreases from 0.9 to 0.7 and the size of the feasible domain increases,
it gets a much better solution. The theoretical proof and the existence condition
of solutions will also be considered in our future research.

References

1. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge
(2005)

2. Amjad, M., Akhtar, F., Rehmani, M.H., Reisslein, M., Umer, T.: Full-duplex com-
munication in cognitive radio networks: a survey. IEEE Commun. Surv. Tutor. 19,
2158–2191 (2017)

3. Hong, S., et al.: Applications of self-interference cancellation in 5G and beyond.
IEEE Commun. Mag. 52, 114–121 (2014)

4. Duarte, M., Dick, C., Sabharwal, A.: Experiment-driven characterization of full-
duplex wireless systems. IEEE Trans. Wirel. Commun. 11, 4296–4307 (2012)

5. Chung, M., Sim, M.S., Kim, J., Kim, D.K., Chae, C.: Prototyping real-time full
duplex radios. IEEE Commun. Mag. 53, 56–63 (2015)

6. Ivashina, M.V., Iupikov, O., Maaskant, R., van Cappellen, W.A., Oosterloo, T.: An
optimal beamforming strategy for wide-field surveys with phased-array-fed reflec-
tor antennas. IEEE Trans. Antennas Propag. 59, 1864–1875 (2011)

7. Liu, G., Yu, F.R., Ji, H., et al.: In-band full-duplex relaying: a survey, research
issues and challenges. IEEE Commun. Surv. Tutor. 17(2), 500–524 (2015)

8. Chen, T., Dastjerdi, M.B., Krishnaswamy, H., Zussman, G.: wideband full-duplex
phased array with joint transmit and receive beamforming: optimization and rate
gains. In: Proceedings of the Twentieth ACM International Symposium on Mobile
Ad Hoc Networking and Computing - Mobihoc 2019, pp. 361–370. ACM Press,
Catania (2019). https://doi.org/10.1145/3323679.3326534

9. Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, Hoboken (2016)
10. Everett, E., Shepard, C., Zhong, L., Sabharwal, A.: SoftNull: many-antenna full-

duplex wireless via digital beamforming. IEEE Trans. Wirel. Commun. 15, 8077–
8092 (2016)

11. Chen, T., Baraani Dastjerdi, M., Zhou, J., Krishnaswamy, H., Zussman, G.: Wide-
band full-duplex wireless via frequency-domain equalization: design and exper-
imentation. In: The 25th Annual International Conference on Mobile Comput-
ing and Networking, pp. 1–16. Association for Computing Machinery, New York
(2019). https://doi.org/10.1145/3300061.3300138

12. Zhou, J., et al.: Integrated full duplex radios. IEEE Commun. Mag. 55, 142–151
(2017)

13. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge Univer-
sity Press, Cambridge (2004)

https://doi.org/10.1145/3323679.3326534
https://doi.org/10.1145/3300061.3300138

Graph Problems

Oriented Coloring of msp-Digraphs
and Oriented Co-graphs
(Extended Abstract)

Frank Gurski(B), Dominique Komander, and Marvin Lindemann

Institute of Computer Science, Algorithmics for Hard Problems Group,
Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany

frank.gurski@hhu.de

Abstract. Graph coloring is an assignment of labels, so-called colors,
to the objects of a graph subject to certain constraints. The coloring
problem on undirected graphs has been well studied, as it is one of the
most fundamental problems. Meanwhile, there are very few results for
coloring problems on directed graphs. An oriented k-coloring of an ori-
ented graph G is a partition of the vertices into k independent sets such
that all the arcs, linking two of these subsets, have the same direction.
The oriented chromatic number of an oriented graph G is the smallest
k such that G allows an oriented k-coloring. Even deciding whether an
acyclic digraph allows an oriented 4-coloring is NP-hard. This motivates
to consider the problem on special graph classes.

In this paper we consider two different recursively defined classes
of oriented graphs, namely msp-digraphs (short for minimal series-
parallel digraphs) and oriented co-graphs (short for oriented complement
reducible graphs).

We show that every msp-digraph has oriented chromatic number at
most 7 and give an example that this is best possible. We use this bound
together with the recursive structure of msp-digraphs to give a linear time
solution for computing the oriented chromatic number of msp-digraphs.

Further, we use the concept of perfect orderable graphs in order to
show that for acyclic transitive digraphs every greedy coloring along a
topological ordering leads to an optimal oriented coloring, which gen-
eralizes a known solution for the oriented coloring problem on oriented
co-graphs.

Keywords: Oriented coloring · msp-digraphs · Oriented co-graphs ·
Linear time algorithms

1 Introduction

Coloring problems are among the most famous problems in graph theory since
they allow to model many real-life problems under a graph-theoretical formalism.
Graph coloring is an assignment of labels, so-called colors, to the objects of a
graph subject to certain constraints. Usually, vertices or edges are considered as
objects. Such problems have multiple applications [4,20,22,30].
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 743–758, 2020.
https://doi.org/10.1007/978-3-030-64843-5_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_50&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_50

744 F. Gurski et al.

A k-coloring for an undirected graph G is a k-labeling of the vertices of G
such that no two adjacent vertices have the same label. The smallest k such that
a graph G has a k-coloring is named the chromatic number of G. As even the
problem whether a graph has a 3-coloring, is NP-complete, finding the chromatic
number of an undirected graph is an NP-hard problem. However, there are many
efficient solutions for the coloring problem on special graph classes, like chordal
graphs [17], comparability graphs [21], and co-graphs [6].

Oriented coloring, which also considers the directions of the arcs, has been
introduced by Courcelle [7]. An oriented k-coloring of an oriented graph G =
(V,E) is a partition of the vertex set V into k independent sets, such that all the
arcs linking two of these subsets have the same direction. The oriented chromatic
number of an oriented graph G, denoted by χo(G), is the smallest k such that G
allows an oriented k-coloring. In the oriented chromatic number problem (OCN
for short) there is given an oriented graph G and an integer k and one has to
decide whether there is an oriented k-coloring for G. Even the restricted problem,
in which k is constant and does not belong to the input (OCNk for short), is
hard. While the undirected coloring problem on graphs without cycles is easy
to solve, OCN4 is NP-complete even for DAGs [10]. This makes research in this
field particularly interesting. Oriented coloring arises in scheduling models where
incompatibilities are oriented [10].

Right now, the definition of oriented coloring is mostly considered for undi-
rected graphs. In this case, the maximum value χo(G′) of all possible orientations
G′ of an undirected graph G is considered. For several special undirected graph
classes the oriented chromatic number has been bounded. Among these are out-
erplanar graphs [27], planar graphs [26], and Halin graphs [14]. In [15], Ganian
has shown an FPT-algorithm for OCN w.r.t. the parameter tree-width (of the
underlying undirected graph). Furthermore, he has shown that OCN is DET-
hard1 for classes of oriented graphs for which hold that the underlying undirected
class has bounded rank-width.

So far, oriented coloring of special classes of oriented graphs seems to be
nearly uninvestigated. In this paper, we consider the oriented coloring problem
restricted to msp-digraphs and oriented co-graphs.

Msp-digraphs, i.e. minimal series-parallel digraphs, can be defined from the
single vertex graph by applying the parallel composition and series composition.
By [2, Sect. 11.1] these graphs are useful for modeling flow diagrams and depen-
dency charts and they are used in applications for scheduling under constraints.
We show that the oriented chromatic number for msp-digraphs is at most 7 and
show by an example that this is best possible. With this bound and the recursive
structure of msp-digraphs we achieve a linear time solution for computing the
oriented chromatic number of msp-digraphs.

Oriented co-graphs, i.e. oriented complement reducible graphs, are precisely
digraphs which can be defined from the single vertex graph by applying the
disjoint union and order composition. Oriented co-graphs were already analyzed

1 DET is the class of decision problems which are reducible in logarithmic space to
the problem of computing the determinant of an integer valued n × n-matrix.

Oriented Coloring of msp-Digraphs and Oriented Co-graphs 745

by Lawler in [25] and [6, Sect. 5] using the notation of transitive series parallel
(TSP) digraphs. Their recursive structure can be used to compute an optimal
oriented coloring and the oriented chromatic number in linear time [18]. In this
paper we use the concept of perfect orderable graphs in order to show that for
acyclic transitive digraphs every greedy coloring along a topological ordering
leads to an optimal oriented coloring, which generalizes the known solution for
the oriented coloring problem on oriented co-graphs given in [18].

2 Preliminaries

2.1 Graphs and Digraphs

We use the notations of Bang-Jensen and Gutin [1] for graphs and digraphs. A
graph is a pair G = (V,E), where V is a finite set of vertices and E ⊆ {{u, v} |
u, v ∈ V, u �= v} is a finite set of edges. A directed graph or digraph is a pair
G = (V,E), where V is a finite set of vertices and E ⊆ {(u, v) | u, v ∈ V, u �= v}
is a finite set of ordered pairs of distinct vertices called arcs or directed edges.
For a vertex v ∈ V , the sets N+(v) = {u ∈ V | (v, u) ∈ E} and N−(v) = {u ∈
V | (u, v) ∈ E} are called the set of all successors and the set of all predecessors
of v. The outdegree of v, outdegree(v) for short, is the number of successors of v
and the indegree of v, indegree(v) for short, is the number of predecessors of v.
The maximum (vertex) degree is Δ(G) = maxv∈V (outdegree(v) + indegree(v)).

For some given digraph G = (V,E), we define its underlying undirected graph
by ignoring the directions of the arcs, i.e. un(G) = (V, {{u, v} | (u, v) ∈ E, u, v ∈
V }). For some (di)graph class F we define Free(F) as the set of all (di)graphs
G such that no induced sub(di)graph of G is isomorphic to a member of F .

A digraph G′ = (V ′, E′) is a subdigraph of digraph G = (V,E) if V ′ ⊆ V and
E′ ⊆ E. If every arc of E with both end vertices in V ′ is in E′, we say that G′

is an induced subdigraph of G and we write G′ = G[V ′].
An oriented graph is a digraph with no loops and no opposite arcs. We will

use the following special oriented graphs. By

−→
Pn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn)}),

n ≥ 2, we denote the oriented path on n vertices, and by

−→
Cn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn), (vn, v1)}),

n ≥ 2, we denote the oriented cycle on n vertices. By

−−−→
Kn,m = ({v1, . . . , vn, w1, . . . , wm}, {(vi, wj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}),

n,m ≥ 1 we denote an oriented complete bipartite digraph with n + m vertices.
An oriented forest (tree) is an orientation of a forest (tree). An out-rooted-tree
(in-rooted-tree) is an orientation of a tree with a distinguished root such that
all arcs are directed away from (directed to) the root. A directed acyclic graph

746 F. Gurski et al.

(DAG for short) is a digraph without any
−→
Cn, for n ≥ 2, as subdigraph. A

tournament is a digraph in which there is exactly one edge between every two
distinct vertices.

A vertex v is reachable from vertex u in G if G contains a
−→
Pn as a subdigraph

having start vertex u and end vertex v. A topological ordering of a directed graph
is a linear ordering of its vertices such that for every directed edge (u, v), vertex
u is before vertex v in the ordering. A digraph is odd cycle free if it does not
contain any

−→
Cn, for odd n ≥ 3, as subdigraph. A digraph G is bipartite if un(G)

is bipartite and a digraph G is planar if un(G) is planar.
We call a digraph G = (V,E) transitive if for every pair (u, v) ∈ E and

(v, w) ∈ E of arcs with u �= w the arc (u,w) also belongs to E. The transitive
closure tc(G) of a digraph G has the same vertex set as G and for two distinct
vertices u, v there is an arc (u, v) in tc(G) if and only if v is reachable from u
in G.

2.2 Coloring Undirected Graphs

Definition 1 (Graph coloring). A k-coloring of a graph G = (V,E) is a
mapping c : V → {1, . . . , k} such that:

– c(u) �= c(v) for every {u, v} ∈ E.

The chromatic number of G, denoted by χ(G), is the smallest k such that G has
a k-coloring.

Name Chromatic Number (CN)
Instance A graph G = (V,E) and a positive integer k ≤ |V |.
Question Is there a k-coloring for G?

If k is a constant and not part of the input, the corresponding problem is
denoted by k-Chromatic Number (CNk). Even on 4-regular planar graphs CN3

is NP-complete [11].
It is well known that bipartite graphs are exactly the graphs which allow a 2-

coloring and that planar graphs are graphs that allow a 4-coloring. On undirected
co-graphs, the graph coloring problem can be solved in linear time using two
formulas from [6], which are generalized in Lemma 3 for the oriented coloring
problem.

Coloring a graph G = (V,E) can be done by a greedy algorithm. For some
given ordering π of V , the vertices are ordered as a sequence in which each vertex
is assigned to the minimum possible value that is not forbidden by the colors of
its neighbors, see Algorithm 1. Obviously, different orders can lead to different
numbers of colors. But there is always an ordering yielding to the minimum
number of colors, which is hard to find in general.

The set of perfectly orderable graphs are those graphs for which the greedy
algorithm leads to an ordering with an optimal coloring, not only for the graph
itself but also for all of its induced subgraphs.

Oriented Coloring of msp-Digraphs and Oriented Co-graphs 747

Algorithm 1. Greedy Coloring

Data: A graph G and an ordering π : v1 < . . . < vn of its vertices.
Result: An admitted vertex coloring c : {v1, . . . , vn} �→ N of G.
for (i = 1 to n) do

c(vi) = ∞
c(v1) = 1;
for (i = 2 to n) do

c(vi) = min{N − {c(v) | v ∈ N(vi)}}

Definition 2 (Perfectly orderable graph [5]). Let G = (V,E) be a graph. A
linear ordering on V is perfect if a greedy coloring algorithm with that ordering
optimally colors every induced subgraph of G. A graph G is perfectly orderable
if it admits a perfect order.

Theorem 1 ([5]). A linear ordering π of a graph G is perfect if and only if there
is no induced P4 = ({a, b, c, d}, {{a, b}, {b, c}, {c, d}}) in G such that π(a) < π(b),
π(b) < π(c), and π(d) < π(c).

Since they are exactly the graphs with no induced P4, the set of all co-graphs
is perfectly orderable.

2.3 Coloring Oriented Graphs

Oriented graph coloring has been introduced by Courcelle [7] in 1994. We con-
sider oriented graph coloring on oriented graphs, i.e. digraphs with no loops and
no opposite arcs.

Definition 3 (Oriented graph coloring [7]). An oriented k-coloring of an
oriented graph G = (V,E) is a mapping c : V → {1, . . . , k} such that:

– c(u) �= c(v) for every (u, v) ∈ E,
– c(u) �= c(y) for every two arcs (u, v) ∈ E and (x, y) ∈ E with c(v) = c(x).

The oriented chromatic number of G, denoted by χo(G), is the smallest k such
that G has an oriented k-coloring. The vertex sets Vi = {v ∈ V | c(v) = i}, with
1 ≤ i ≤ k, divide V into a partition of so called color classes.

For two oriented graphs G1 = (V1, E1) and G2 = (V2, E2) a homomorphism
from G1 to G2, G1 → G2 for short, is a mapping h : V1 → V2 such that (u, v) ∈
E1 implies (h(u), h(v)) ∈ E2. A homomorphism from G1 to G2 can be regarded as
an oriented coloring of G1 that uses the vertices of G2 as colors classes. Therefore,
digraph G2 is called the color graph of G1. This leads to equivalent definitions for
the oriented coloring and the oriented chromatic number. There is an oriented
k-coloring of an oriented graph G1 if and only if there is a homomorphism from
G1 to some oriented graph G2 with k vertices. That is, the oriented chromatic
number of G1 is the minimum number of vertices in an oriented graph G2 such
that there is a homomorphism from G1 to G2. Obviously, it is advisable to choose
G2 as a tournament.

748 F. Gurski et al.

Observation 1. There is an oriented k-coloring of an oriented graph G1 if and
only if there is a homomorphism from G1 to some tournament G2 with k vertices.
Further, the oriented chromatic number of G1 is the minimum number of vertices
in a tournament G2 such that there is a homomorphism from G1 to G2.

Observation 2. For every oriented graph G it holds that χ(un(G)) ≤ χo(G).

Lemma 1. Let G be an oriented graph and H be a subdigraph of G. Then, it
holds that χo(H) ≤ χo(G).

Name Oriented Chromatic Number (OCN)
Instance An oriented graph G = (V,E) and a positive integer k ≤ |V |.
Question Is there an oriented k-coloring for G?

If k is constant and not part of the input, the corresponding problem is
denoted by k-Oriented Chromatic Number (OCNk). If k ≤ 3, then OCNk can
be decided in polynomial time, while OCN4 is NP-complete [23]. OCN4 is even
known to be NP-complete for several restricted classes of digraphs, e.g. for DAGs
[10].

Up to now, the definition of oriented coloring was frequently used for undi-
rected graphs. For an undirected graph G the maximum value χo(G′) of all
possible orientations G′ of G is considered. In this sense, every tree has ori-
ented chromatic number at most 3. For several further graph classes there exist
bounds on the oriented chromatic number. Among these are outerplanar graphs
[27], planar graphs [26], and Halin graphs [14].

To advance research in this field, we consider oriented graph coloring on
recursively defined oriented graph classes.

3 Coloring msp-Digraphs

We recall the definitions from [2] which are based on [29]. First, we introduce two
operations for two vertex-disjoint digraphs G1 = (V1, E1) and G2 = (V2, E2). Let
O1 be the set of vertices of outdegree 0 (set of sinks) in G1 and I2 be the set of
vertices of indegree 0 (set of sources) in G2.

– The parallel composition of G1 and G2, denoted by G1 ∪ G2, is the digraph
with vertex set V1 ∪ V2 and arc set E1 ∪ E2.

– The series composition of G1 and G2, denoted by G1×G2 is the digraph with
vertex set V1 ∪ V2 and arc set E1 ∪ E2 ∪ {(v, w) | v ∈ O1, w ∈ I2}.

Definition 4 (msp-digraphs). The class of minimal series-parallel digraphs,
msp-digraphs for short, is recursively defined as follows.

1. Every digraph on a single vertex ({v}, ∅), denoted by v, is a minimal series-
parallel digraph.

2. If G1 and G2 are vertex-disjoint minimal series-parallel digraphs then,
(a) the parallel composition G1 ∪ G2 and
(b) then series composition G1 × G2 are minimal series-parallel digraphs.

Oriented Coloring of msp-Digraphs and Oriented Co-graphs 749

The class of minimal series-parallel digraphs is denoted as MSP.

Every expression X using these three operations is called an msp-expression.
The digraph defined by the expression X is denoted by digraph(X).

Example 1. The following msp-expression X defines the oriented graph shown
in Fig. 1.

X = (v1 × (((v2 × v3) × v4) ∪ v5)) × v6

2v 3v

1v v6

4v

v5

Fig. 1. Digraph in Example 1.

1v

3v

2v

4v

Fig. 2. Digraph in Example 4.

By removing vertex v3 from digraph(X) in Example 1, we obtain a digraph
which is no msp-digraph. This implies that the set of all msp-digraphs is not
closed under taking induced subdigraphs.

A further remarkable property of msp-digraphs is that the oriented chro-
matic number of the disjoint union of two msp-digraphs can be larger than the
maximum oriented chromatic number of the involved digraphs. This follows by
the digraphs defined by expressions X1 and X2 in Example 2, which both have
oriented chromatic number 4 but their disjoint union leads to a digraph with
oriented chromatic number 5.

Example 2. In the following two msp-expressions we assume that the × opera-
tion binds more strongly than the ∪ operation.

X1 = v1 × (v2 ∪ v3 × v4) × v5 × v6

X2 = w1 × (w2 ∪ w3 × (w4 ∪ w5 × w6)) × w7

Obviously, for every msp-digraph we can define a tree structure T , which is
denoted as msp-tree.2 The leaves of an msp-tree represent the vertices of the
digraph and the inner vertices of the msp-tree correspond to the operations
applied on the subexpressions defined by the subtrees. For every msp-digraph
one can construct an msp-tree in linear time, see [29].

2 In [29], the tree-structure for an msp-digraphs is denoted as binary decomposition
tree.

750 F. Gurski et al.

Several classes of digraphs are included in the set of all msp-digraphs. Among
these are in- and out-rooted trees as well as oriented bipartite graphs

−−−→
Kn,m.

In order to give an algorithm to compute the oriented chromatic number of
msp-digraphs, we first show that this value can be bounded by a constant.

The class of undirected series-parallel graphs was considered in [27] by show-
ing that every orientation of a series-parallel graph has oriented chromatic num-
ber at most 7. This bound can not be applied to minimal series parallel digraphs,
since the set of all

−−−→
Kn,m is a subset of minimal series parallel digraphs and the

underlying graphs are even of unbounded tree-width and thus, no series-parallel
graphs.

Theorem 2. Let G be a minimal series parallel digraph. Then, it holds that
χo(G) ≤ 7.

Proof. We recursively define oriented digraphs Mi as follows. M0 is a single
vertex graph and for i ≥ 1 we define

Mi = Mi−1 ∪ Mi−1 ∪ (Mi−1 × Mi−1).

Claim. Every msp-digraph G is a (-n induced) subdigraph of some Mi such that
every source in G is a source in Mi and every sink in G is a sink in Mi.

The claim can be shown by induction over the number of vertices in some
msp-digraph G. If G has exactly one vertex, the claim holds true by choosing
M0.

Next, assume that G has k > 1 vertices. Then, it holds that G = G1�G2 for
some � ∈ {∪,×} and G1 and G2 are msp-digraphs with less than k vertices. By
the induction hypothesis we conclude that there are two integers i1 and i2 such
that G1�G2 is a subdigraph of Mi1�Mi2 . (If � = ×, it is important that every
sink in G1 is a sink in Mi1 and every source in G2 is a source in Mi2 .) Thus, G
is a subdigraph of Mi1 ∪ Mi2 ∪ (Mi1 × Mi2). W.l.o.g. we assume that i1 ≤ i2.
By construction it follows that Mi1 is a subdigraph of Mi2 . Consequently, G is
a subdigraph of Mi2 ∪ Mi2 ∪ (Mi2 × Mi2) = Mi2+1 and every source in G is a
source in Mi2+1 and every sink in G is a sink in Mi2+1. This completes the proof
of the claim.

Since an oriented coloring of an oriented graph is also an oriented coloring
for every subdigraph, we can show the theorem by coloring the digraphs Mi.
Further, the first two occurrences of Mi−1 in Mi can be colored in the same way.
Thus, we can restrict to oriented graphs M ′

i which are defined as follows. M ′
0 is

a single vertex graph and for i ≥ 1 we define

M ′
i = M ′

i−1 ∪ (M ′
i−1 × M ′

i−1).

We define an oriented 7-coloring c for M ′
i as follows. For some v of M ′

i we
define by c(v, i) the color of v in M ′

i . First, we color M ′
0 by assigning color 0 to

Oriented Coloring of msp-Digraphs and Oriented Co-graphs 751

the single vertex in M ′
0.

3 For i ≥ 1 we define the colors for the vertices v in M ′
i =

M ′
i−1 ∪ (M ′

i−1 × M ′
i−1) according to the three copies of M ′

i−1 in M ′
i (numbered

from left to right). Therefore, we use the two functions p(x) = (4 · x) mod 7 and
q(x) = (4 · x + 1) mod 7.

c(v, i) =

⎧
⎪⎪⎨

⎪⎪⎩

c(v, i − 1) if v is from the first copy

p(c(v, i − 1)) if v is from the second copy

q(c(v, i − 1)) if v is from the third copy

It remains to show that c leads to an oriented coloring for Mi. Let Ci =
(Wi, Fi) with Wi = {0, 1, 2, 3, 4, 5, 6} and Fi = {(c(u, i), c(v, i)) | (u, v) ∈ Ei} be
the color graph of M ′

i = (Vi, Ei). By the definition of M ′
i we follow that

Fi = Fi−1 ∪ {(p(x), p(y)) | (x, y) ∈ Fi−1}
∪ {(q(x), q(y)) | (x, y) ∈ Fi−1}
∪ {(p(c(v, i − 1)), q(c(w, i − 1))) | v sink of M ′

i−1, w source of M ′
i−1}.

In order to ensure an oriented coloring of M ′
i , we verify that Ci is an oriented

graph. In Fig. 3 the color graph Ci for i ≥ 5 is given.

Fig. 3. Color graph Ci for i ≥ 5 used in the proof of Theorem 2.

Every source in M ′
i is colored by 0 since p(0) = 0. Every sink in M ′

i is colored
by 0, 1, or 5 since q(0) = 1, q(1) = 5, and q(5) = 0.

Consequently, the arcs of

{(p(c(v, i − 1)), q(c(w, i − 1))) | v sink of M ′
i−1, w source of M ′

i−1}

belong to the set {(p(0), q(0)), (p(1), q(0)), (p(5), q(0))} = {(0, 1), (4, 1), (6, 1)}.
For every (u, v) ∈ {(0, 1), (4, 1), (6, 1)} we know that

(v − u) mod 7 ∈ {1, 2, 4} (1)

3 Please note that using colors starting at value 0 instead of 1 does not contradict
Definition 3.

752 F. Gurski et al.

which implies (u−v) mod 7 �∈ {1, 2, 4} and thus, (1) does not hold for the reverse
arcs of {(0, 1), (4, 1), (6, 1)}. It remains to show that (1) remains true for all arcs
(u, v) when applying p and q to M ′

i−1:

(q(v) − q(u)) mod 7 = (((4 · v + 1) mod 7) − ((4 · u + 1) mod 7)) mod 7
= (((4 · v) mod 7) − ((4 · u) mod 7)) mod 7
= (p(v) − p(u)) mod 7
= (4(v − u)) mod 7

Since (v − u) mod 7 ∈ {1, 2, 4} leads to (4(v − u)) mod 7 ∈ {1, 2, 4}, the result
follows.
�

Digraph G on 27 vertices defined in Example 3 satisfies χo(G) = 7, which
was found by a computer program.4 This implies that the bound of Theorem2
is best possible.

Example 3. In the following msp-expression we assume that the × operation
binds more strongly than the ∪ operation.

X = v1 × (v2 ∪ v3 × (v4 ∪ v5 × v6)) × (v7 ∪ (v8 ∪ v9 × v10) × (v11 ∪ v12 × v13))×
(v14 ∪ (v15 ∪ (v16 ∪ v17 × v18) × (v19 ∪ v20 × v21)) × (v22 ∪ (v23 ∪ v24 × v25) × v26)) × v27

In oder to compute the oriented chromatic number of an msp-digraph G
defined by an msp-expression X, we recursively compute the set F (X) of all
triples (H,L,R) such that H is a color graph for G, where L and R are the sets
of colors of all sinks and all sources in G with respect to the coloring by H. The
number of vertex labeled, i.e., the vertices are distinguishable from each other,
oriented graphs on n vertices is 3n(n−1)/2. By Theorem 2 we can conclude that

|F (X)| ≤ 37(7−1)/2 · 27 · 27 ∈ O(1)

which is independent of the size of G.
For two color graphs H1 = (V1, E1) and H2 = (V2, E2) we define H1 + H2 =

(V1 ∪ V2, E1 ∪ E2).

Lemma 2 (�5).

1. For every v ∈ V it holds F (v) = {(({i}, ∅), {i}, {i}) | 0 ≤ i ≤ 6}.
2. For every two msp-expressions X1 and X2 we obtain F (X1 ∪ X2) from

F (X1) and F (X2) as follows. For every (H1, L1, R1) ∈ F (X1) and every
(H2, L2, R2) ∈ F (X2) such that graph H1 + H2 is oriented, we put (H1 +
H2, L1 ∪ L2, R1 ∪ R2) into F (X1 ∪ X2).

3. For every two msp-expressions X1 and X2 we obtain F (X1 × X2) from
F (X1) and F (X2) as follows. For every (H1, L1, R1) ∈ F (X1) and every
(H2, L2, R2) ∈ F (X2) such that graph H1 + H2 together with the arcs in
R1 × L2 is oriented, we put ((V1 ∪ V2, E1 ∪ E2 ∪ R1 × L2), L1, R2) into
F (X1 × X2).

4 We implemented an algorithm which takes an oriented graph G and an integer k as
an input and which decides whether χo(G) ≤ k.

5 The proofs of the results marked with a � are omitted due to space restrictions.

Oriented Coloring of msp-Digraphs and Oriented Co-graphs 753

Since every possible coloring of G is part of the set F (X), where X is an
msp-expression for G, it is easy to find a minimum coloring for G.

Corollary 1. There is an oriented k-coloring for some msp-digraph G which
is given by some msp-expression X if and only if there is some (H,L,R) ∈
F (X) such that color graph H has k vertices. Therefore, χo(G) = min{|V | |
((V,E), L,R) ∈ F (X)}.
Theorem 3. Let G be a minimal series parallel digraph. Then, the oriented
chromatic number of G can be computed in linear time.

Proof. Let G be an msp-digraph on n vertices and m edges. Further, let T be an
msp-tree for G with root r. For some vertex u of T we denote by Tu the subtree
rooted at u and Xu the msp-expression defined by Tu.

In order to solve OCN for some msp-digraph G, we traverse msp-tree T in a
bottom-up order. For every vertex u of T we compute F (Xu) following the rules
given in Lemma 2. By Corollary 1 we can solve our problem by F (Xr) = F (X).

An msp-tree T can be computed in O(n + m) time from a minimal series-
parallel digraph with n vertices and m arcs, see [29]. Our rules given in Lemma
2 show the following running times.

– For every v ∈ V set F (v) is computable in O(1) time.
– Every set F (X1∪X2) can be computed in O(1) time from F (X1) and F (X2).
– Every set F (X1×X2) can be computed in O(1) time from F (X1) and F (X2).

Since we have n leaves and n − 1 inner vertices in msp-tree T , the running time
is in O(n + m).
�

By Corollary 2 we know that for every oriented co-graph G it holds that
χo(G) = χ(un(G)). This does not hold for minimal series parallel digraphs by
Example 3 and the next result, which can be shown by giving a 3-coloring for
un(M ′

i) for the oriented graphs M ′
i used in the proof of Theorem 2.

Proposition 1 (�). Let G be a minimal series parallel digraph. Then, it holds
that χ(un(G)) ≤ 3.

4 Coloring Transitive Acyclic Digraphs

Next, we will apply the concept of perfectly orderable graphs and Theorem 1 in
order to color transitive acyclic digraphs.

Theorem 4. Let G be a transitive acyclic digraph. Then, every greedy coloring
along a topological ordering of G leads to an optimal oriented coloring of G and
χo(G) can be computed in linear time.

754 F. Gurski et al.

Proof. Since G = (V,E) is an acyclic digraph there is a topological ordering t
for G. Since G is transitive, it does not contain the following orientation of a P4

as an induced subdigraph.
• → • → • ← •

Theorem 1 implies that every linear ordering and thus, also t is perfect on
un(G) = (V,Eu). Let c : V → {1, . . . , k} be a coloring for un(G) obtained
by the greedy algorithm (Algorithm 1) for t on V . It remains to show that c is
an oriented coloring for G.

– c(u) �= c(v) holds for every (u, v) ∈ E since c(u) �= c(v) holds for every
{u, v} ∈ Eu.

– c(u) �= c(y) for every two arcs (u, v) ∈ E and (x, y) ∈ E with c(v) = c(x)
holds by the following argumentation.
Assume there is an arc (vi, vj) ∈ E with vi < vj in t but c(vi) > c(vj). Then,
when coloring vi we would have taken c(vj) if possible, as we always take the
minimum possible color value. Since this was not possible there must have
been an other vertex vk < vi which was colored before vi with c(vk) = c(vj)
and (vk, vi) ∈ E. But if (vk, vi) ∈ E and (vi, vj) ∈ E, due to transitivity
it must also hold that (vk, vj) ∈ E and consequently, c(vk) = c(vj) is not
possible. Thus, the assumption was wrong and for every arc (vi, vj) ∈ E with
vi < vj in t it must hold that c(vi) < (cj).

The optimality of oriented coloring c holds since the lower bound of Observation
2 is achieved.
�

In order to state the next result, let ω(H) be the number of vertices in a
largest clique in the (undirected) graph H.

Corollary 2. Let G be a transitive acyclic digraph. Then, it holds that χo(G) =
χ(un(G)) = ω(un(G)) and all values can be computed in linear time.

For some oriented graph G we denote by �(G) the length of a longest oriented
path in G.

Proposition 2. Let G be a transitive acyclic digraph. Then, it holds that
χo(G) = �(G) + 1.

Proof. The proof of Theorem 4 leads to an optimal oriented coloring using �(G)+
1 colors.
�

Next, we consider oriented colorings of oriented graphs with bounded vertex
degree. For every oriented graph its oriented chromatic number can be bounded
(exponentially) by its maximum degree Δ according to [24]. For small values
Δ ≤ 7 there are better bounds in [12] and [13].

Corollary 3. Let G be a transitive acyclic digraph. Then, it holds that χo(G) ≤
Δ(G) + 1.

Oriented Coloring of msp-Digraphs and Oriented Co-graphs 755

Proof. By Proposition 2 and the fact that the first vertex of a longest path within
a transitive digraph G has outdegree at least �(G), it follows that the oriented
chromatic number of G can be estimated by χo(G) = �(G) + 1 ≤ Δ(G) + 1.
�
Proposition 3. Let G be an acyclic digraph. Then, it holds that χo(G) ≤
�(G) + 1.

Proof. Let G be an acyclic digraph and G′ its transitive closure. Then, by Lemma
1 and Proposition 2 we know that χo(G) ≤ χo(G′) = �(G′) + 1 = �(G) + 1.
�

5 Coloring Oriented Co-graphs

Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex-disjoint digraphs. The
following operations have been considered by Bechet et al. in [3].

– The disjoint union of G1 and G2, denoted by G1 ⊕ G2, is the digraph with
vertex set V1 ∪ V2 and arc set E1 ∪ E2.

– The order composition of G1 and G2, denoted by G1 �G2, is defined by their
disjoint union plus all possible arcs from vertices of G1 to vertices of G2.

By omitting the series composition within the definition of directed co-graphs
in [9], we obtain the class of all oriented co-graphs.

Definition 5 (Oriented co-graphs). The class of oriented complement
reducible graphs, oriented co-graphs for short, is recursively defined as follows.

1. Every digraph with a single vertex ({v}, ∅), denoted by v, is an oriented co-
graph.

2. If G1 and G2 are two vertex-disjoint oriented co-graphs, then
(a) the disjoint union G1 ⊕ G2, and
(b) the order composition G1 � G2 are oriented co-graphs.

The class of directed co-graphs is denoted by OC.

Every expression X using the operations of Definition 5 is called a di-co-
expression, see Example 4 for an illustration.

Example 4. The following di-co-expression X defines the oriented graph shown
in Fig. 2.

X = ((v1 ⊕ v3) � (v2 � v4))

The set of all oriented co-graphs is closed under taking induced subdigraphs.
Following the notations of [29] we denote the following orientation of a P4 as the
N graph.

N = • → • ← • → •
The class of oriented co-graphs can be characterized by excluding the four for-
bidden induced subdigraphs

←→
P2 = ({u, v}, {(u, v), (v, u)}),

−→
P3,

−→
C3, and N , see

[18]. The class of oriented co-graphs has already been analyzed by Lawler in [25]
and [6, Section 5] using the notation of transitive series-parallel (TSP) digraphs.

756 F. Gurski et al.

For every oriented co-graph we can define a tree structure, denoted as di-
co-tree. The leaves of the di-co-tree represent the vertices of the digraph and
the inner vertices of the di-co-tree correspond to the operations applied on the
subexpressions defined by the subtrees. For every oriented co-graph one can
construct a di-co-tree in linear time, see [9].

Lemma 3 ([18]). Let G1 and G2 be two vertex-disjoint oriented co-graphs.
Then, the following equations hold.

1. χo(v) = 1
2. χo(G1 ⊕ G2) = max(χo(G1), χo(G2))
3. χo(G1 � G2) = χo(G1) + χo(G2)

Theorem 5 ([18]). Let G be an oriented co-graph. Then, an optimal oriented
coloring for G and χo(G) can be computed in linear time.

The result in [18] concerning the oriented coloring on oriented co-graphs is
based on a dynamic programming along a di-co-tree for the given oriented co-
graph as input. Since every oriented co-graph is transitive and acyclic, Theorem4
leads to the next result, which re-proves Theorem 5.

Corollary 4. Let G be an oriented co-graph. Then, every greedy coloring along
a topological ordering of G leads to an optimal oriented coloring of G and χo(G)
can be computed in linear time.

Please note that Theorem 4 is more general than Corollary 4 since it does not
exclude N which is a forbidden induced subdigraph for oriented co-graphs. It
holds that

OC = Free{←→P2 ,
−→
P3,

−→
C3, N} ⊆ Free{←→P2 ,

−→
P3,

−→
C3}

and Free{←→P2 ,
−→
P3,

−→
C3} is equivalent to the set of all acyclic transitive digraphs.

Since every oriented co-graph is transitive and acyclic, Corollary 3 leads to
the following bound.

Corollary 5. Let G be an oriented co-digraph. Then, it holds that χo(G) ≤
Δ(G) + 1.

There are classes of oriented co-graphs, e.g., the class of all
−−→
K1,n, for which

the oriented chromatic number is even bounded by a constant and thus smaller
than the shown bound. Considering transitive tournaments we conclude that the
bound given in Corollary 5 is best possible.

6 Conclusions and Outlook

In this paper we considered oriented colorings of msp-digraphs and oriented co-
graphs. We showed that every msp-digraph has oriented chromatic number at
most 7, which is best possible. We used this bound together with the recur-
sive structure of msp-digraphs to give a linear time solution for computing the

Oriented Coloring of msp-Digraphs and Oriented Co-graphs 757

oriented chromatic number of msp-digraphs. Further, we use the concept of per-
fect orderable graphs in order to show that for acyclic transitive digraphs every
greedy coloring along a topological ordering leads to an optimal oriented col-
oring, which generalizes a known solution for the oriented coloring problem on
oriented co-graphs in [18].

Comparing the solutions we conclude that a greedy coloring of un(G) along
a topological ordering of G does not work for computing the oriented chromatic
number of an msp-digraph G. An oriented path would be colored by only two
colors which is not an admitted oriented coloring. Further, a dynamic program-
ming solution using similar formulas to Lemma 3 is not possible for computing
the oriented chromatic number of msp-digraphs. Example 2 implies that the ori-
ented chromatic number of the disjoint union of two msp-digraphs can be larger
than the maximum oriented chromatic number of the involved digraphs.

For future work it could be interesting to extend our solutions to super-
classes such as series-parallel digraphs [29] and graph powers [2] of minimal
series-parallel digraphs. Furthermore, the parameterized complexity of OCN and
OCNk w.r.t. structural parameters has only been considered in [16] and [15]. For
the parameters directed clique-width [8,19] and directed modular-width [28] the
parameterized complexity of OCN remains open.

Acknowledgments. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 388221852.

References

1. Bang-Jensen, J., Gutin, G.: Digraphs: Theory Algorithms and Applications.
Springer, Berlin (2009)

2. Bang-Jensen, J., Gutin, G. (eds.): Classes of Directed Graphs. Springer, Berlin
(2018)

3. Bechet, D., de Groote, P., Retoré, C.: A complete axiomatisation for the inclusion
of series-parallel partial orders. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232,
pp. 230–240. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-
5 74

4. Byskov, J.M.: Enumerating maximal independent sets with applications to graph
colouring. Oper. Res. Lett. 32(6), 547–556 (2004)

5. Chvátal, V.: Perfectly ordered graphs. In: Berge, C., Chvátal, V. (eds.) Topics on
Perfect Graphs, North-Holland Mathematics Studies, vol. 88, pp. 63–65. North-
Holland (1984)

6. Corneil, D., Lerchs, H., Stewart-Burlingham, L.: Complement reducible graphs.
Discrete Appl. Math. 3, 163–174 (1981)

7. Courcelle, B.: The monadic second-order logic of graphs VI: on several representa-
tions of graphs by relational structures. Discrete Appl. Math. 54, 117–149 (1994)

8. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101, 77–114 (2000)

9. Crespelle, C., Paul, C.: Fully dynamic recognition algorithm and certificate for
directed cographs. Discrete Appl. Math. 154(12), 1722–1741 (2006)

https://doi.org/10.1007/3-540-62950-5_74
https://doi.org/10.1007/3-540-62950-5_74

758 F. Gurski et al.

10. Culus, J.-F., Demange, M.: Oriented coloring: complexity and approximation. In:
Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM
2006. LNCS, vol. 3831, pp. 226–236. Springer, Heidelberg (2006). https://doi.org/
10.1007/11611257 20

11. Dailey, D.: Uniqueness of colorability and colorability of planar 4-regular graphs
are NP-complete. Discrete Math. 30(3), 289–293 (1980)

12. Duffy, C.: A note on colourings of connected oriented cubic graphs. ACM Com-
puting Research Repository (CoRR) abs/1908.02883, 8 p (2019)

13. Dybizbański, J., Ochem, P., Pinlou, A., Szepietowski, A.: Oriented cliques and
colorings of graphs with low maximum degree. Discrete Math. 343(5), 111829
(2020)

14. Dybizbański, J., Szepietowski, A.: The oriented chromatic number of Halin graphs.
Inf. Process. Lett. 114(1–2), 45–49 (2014)

15. Ganian, R.: The parameterized complexity of oriented colouring. In: Proceedings of
Doctoral Workshop on Mathematical and Engineering Methods in Computer Sci-
ence, MEMICS. OASICS, vol. 13. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany (2009)

16. Ganian, R., Hlinený, P., Kneis, J., Langer, A., Obdrzálek, J., Rossmanith, P.:
Digraph width measures in parameterized algorithmics. Discrete Appl. Math. 168,
88–107 (2014)

17. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Academic Press
(1980)

18. Gurski, F., Komander, D., Rehs, C.: Oriented coloring on recursively defined
digraphs. Algorithms 12(4), 87 (2019)

19. Gurski, F., Wanke, E., Yilmaz, E.: Directed NLC-width. Theor. Comput. Sci. 616,
1–17 (2016)

20. Hansen, P., Kuplinsky, J., de Werra, D.: Mixed graph coloring. Math. Methods
Oper. Res. 45, 145–160 (1997)

21. Hoàng, C.: Efficient algorithms for minimum weighted colouring of some classes of
perfect graphs. Discrete Appl. Math. 55, 133–143 (1994)

22. Jansen, K., Porkolab, L.: Preemptive scheduling with dedicated processors: appli-
cations of fractional graph coloring. J. Sched. 7, 35–48 (2004)

23. Klostermeyer, W., MacGillivray, G.: Homomorphisms and oriented colorings of
equivalence classes of oriented graphs. Discrete Math. 274, 161–172 (2004)

24. Kostochka, A., Sopena, E., Zhu, X.: Acyclic and oriented chromatic numbers of
graphs. J. Graph Theory 24(4), 331–340 (1997)

25. Lawler, E.: Graphical algorithms and their complexity. Math. Centre Tracts 81,
3–32 (1976)

26. Marshall, T.: Homomorphism bounds for oriented planar graphs of given minimum
girth. Graphs Combin. 29, 1489–1499 (2013)

27. Sopena, É.: The chromatic number of oriented graphs. J. Graph Theory 25, 191–
205 (1997)

28. Steiner, R., Wiederrecht, S.: Parameterized algorithms for directed modular width.
In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 415–426.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2 33

29. Valdes, J., Tarjan, R., Lawler, E.: The recognition of series-parallel digraphs. SIAM
J. Comput. 11, 298–313 (1982)

30. de Werra, D., Eisenbeis, C., Lelait, S., Stöhr, E.: Circular-arc graph coloring: on
chords and circuits in the meeting graph. Eur. J. Oper. Res. 136(3), 483–500 (2002)

https://doi.org/10.1007/11611257_20
https://doi.org/10.1007/11611257_20
https://doi.org/10.1007/978-3-030-39219-2_33

Star-Critical Ramsey Number of Large
Cycle and Book

Yan Li1 , Yusheng Li1 , and Ye Wang2(B)

1 Tongji University, Shanghai 200092, China
2 Harbin Engineering University, Harbin 150001, China

ywang@hrbeu.edu.cn

Abstract. For graphs F , G and H, let F → (G,H) signify that any
red/blue edge coloring of F contains either a red G or a blue H. Thus
the Ramsey number R(G,H) is defined as min{r | Kr → (G,H)}. In
this note, we consider an optimization problem to define the star-critical
Ramsey number RS(G,H) as the largest s such that Kr \K1,s → (G,H),
where r = R(G,H). We shall determine RS(Cn, Bn) for large n.

Keywords: Star-critical Ramsey number · Book · Cycle · Algorithm

1 Introduction

For vertex disjoint graphs G and H, let G+H be the graph obtained from G and
H by adding new edges to connect G and H completely. Let nH be the union
of n disjoint copies of H, and G \ H the graph obtained from G by deleting a
copy of H from G, where we always admit that H is a subgraph of G. Slightly
abusing notation, for S ⊆ V (G), we denote by G \ S the subgraph of G induced
by V (G) \ S. Let v(G), e(G) and δ(G) be the order, the size and the minimum
degree of G, respectively.

For graphs F , G and H, let F → (G,H) signify that any red/blue edge
coloring of F contains either a red G or a blue H. For any graphs G and H, we
can always find a graph F of large order satisfying F → (G,H). Moreover, the
Ramsey number R(G,H) is defined as

R(G,H) = min{r : Kr → (G,H)}.

An optimization problem is to find the largest subgraph F such that Kr \
F → (G,H) where r = R(G,H). This problem is related to both the Ramsey
number and the size Ramsey number, in which if the “largest” means the largest
number of edges, then the problem is related to the size Ramsey number r̂(G,H)
introduced by Erdős, Faudree, Rousseau and Schelp [6] as

r̂(G,H) = min{e(F) : F → (G,H)}.

Supported in part by NSFC.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 759–765, 2020.
https://doi.org/10.1007/978-3-030-64843-5_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_51&domain=pdf
http://orcid.org/0000-0002-1699-2337
http://orcid.org/0000-0001-8012-7447
http://orcid.org/0000-0002-8721-8488
https://doi.org/10.1007/978-3-030-64843-5_51

760 Y. Li et al.

Most problems on the size Ramsey number are far from being solved. We find
a new way to study this topic by considering the notion of the critical Ramsey
number RG(G,H) as follows.

Definition 1 [16]. Let k ≥ 1 be an integer and G = {Gk, Gk+1, . . . } be a class
of graphs Gn, where each graph Gn ∈ G has minimum degree δ(Gn) ≥ 1. Define
the critical Ramsey number RG(G,H) of G and H with respect to G as

RG(G,H) = max
{
n | Kr \ Gn → (G,H), Gn ∈ G

}
,

where r = R(G,H). Usually, we require Gn ⊂ Gn+1 or e(Gn) < e(Gn+1).

If G is a class
S = {K1,1,K1,2, . . .}

of stars, we shall call RS(G,H) the star-critical Ramsey number which was intro-
duced by [9] in a similar way that has attracted much attention, see, e.g., [7–
12,17,18].

Let Cn be a cycle of order n and Bn a book, where Bn = K2 + nK1. Bondy
and Erdős [1] first studied the Ramsey number of cycles, and Rousseau and
Sheehan [15] studied the Ramsey number of books, employing the Paley graphs
that are the most important strongly regular graphs and quasi-random graphs,
see [4].

Lemma 1 [13]. For all sufficiently large n, it holds

R(Cn, Bn) = 3n − 2.

For more results on cycles and books, see, e.g., [13,14].
In this note, we shall determine the star-critical Ramsey number for Cn and

Bn.

Theorem 1. For all sufficiently large n, it holds

RS(Cn, Bn) = 2n − 6.

2 Proof

Before proceeding to proof, we need some notation. For a graph G, color the
edges of G red and blue, and let GR and GB be the subgraphs of G induced by
red and blue edges, respectively. Denote by dG(v) the degree of vertex v in G,
and dRG(v), dBG(v) the number of red and blue neighbors in G, respectively. Let
dG(v) = dRG(v) + dBG(v). Let G[S] be the subgraph of G induced by S ⊆ V (G).
Note that each subgraph of G admits a red/blue edge coloring preserved from
that of G.

Denote by g(G) and c(G) the girth and the circumference of graph G, respec-
tively. A graph G is weakly pancyclic if it contains cycles of every length between
g(G) and c(G). A graph G is pancyclic if it is weakly pancyclic with g(G) = 3

Star-Critical Ramsey Number of Large Cycle and Book 761

and c(G) = v(G). We also need some results on the pancyclic properties and
weakly pancyclic properties of graphs for the proof of our result.

A graph is 2-connected if it is connected after deleting any vertex. The fol-
lowing lemma is a famous result due to Dirac.

Lemma 2 [5]. Let G be a 2-connected graph of order n with minimum degree δ.
Then c(G) ≥ min{2δ, n}.

Dirac’s result gives a fact that the c(G) of a 2-connected graph G can not be
too small. The following result by Bondy is an extension of the above lemma.

Lemma 3 [2]. If a graph G of order n has minimum degree δ(G) ≥ n
2 , then G

is pancyclic, or n = 2t and G = Kt,t.

The following lemma is an extension of the above results by Brandt, Faudree,
and Goddard.

Lemma 4 [3]. Let G be a 2-connected nonbipartite graph of order n with mini-
mum degree δ ≥ n/4 + 250. Then G is weakly pancyclic unless G has odd girth
7, in which case it has every cycle from 4 up to its circumference except C5.

Proof of Theorem 1. To show RS(Cn, Bn) ≤ 2n−6, consider the graph G = Kr−1

and vertex v0 where r = R(Cn, Bn) = 3n − 2. Let U1, U2 and U3 be red cliques
of order n − 1. Select u1 ∈ V (U1), u2 ∈ V (U2) and u3 ∈ V (U3). Color the edges
among U1, U2 and U3 blue but u1u3 and u2u3. Let v0 be adjacent to V (U2) by
blue edges completely, and to one vertex of V (U1) \ {u1} by red. Color v0u1 and
v0u3 blue. Then there is a red/blue edge coloring of Kr \ K1,2n−5 containing
neither a red Cn nor a blue Bn, yielding the upper bound as required.

To show RS(Cn, Bn) ≥ 2n−6, consider graph H = Kr\K1,s, where s = 2n−6.
Let v0 be the central vertex of K1,s and G = Kr−1. We shall prove H contains
either a red Cn or a blue Bn.

Assume there is a vertex v ∈ V (G) with dBG(v) ≥ 2n. Select 2n vertices
from the blue neighbors of v in G and let the graph induced by the 2n vertices
be G1. If there is a vertex u ∈ G1 such that dBG1

(u) ≥ n, then we can find
a blue Bn. Thus we may assume that dRG1

(u) ≥ n for any vertex u ∈ G1. By
Lemma3, GR

1 is pancyclic, or GR
1 = Kn,n. If GR

1 is pancyclic, then we can get
a red Cn. So we assume GR

1 = Kn,n with bipartition (X,Y). Note that vertices
of V (G) \ (V (G1) ∪ {v}) must be adjacent to X or Y by blue edges completely,
otherwise we will get a red Cn. Along with vertex v, we get a blue Kn+2 \ K2

thus a blue Bn. Therefore we may assume that for any vertex v ∈ V (G), we have

dRG(v) ≥ r − 2 − (2n − 1) = n − 3.

It is easy to see that GR is nonbipartite. Suppose GR is 2-connected. Since

δ(GR) ≥ n − 3 ≥ r − 1
4

+ 250,

762 Y. Li et al.

by Lemma4, GR is weakly pancyclic unless the odd girth of G is 7, in which
case G contains every cycle of length from 4 to its circumference except C5.
Therefore, by Lemma2, c(GR) ≥ 2(n − 3) ≥ n, we get a red Cn. Then we may
assume that GR contains a cut vertex u0. Note that the size of each component
of GR \{u0} is at least n−3 since δ(GR \{u0}) ≥ n−4. Thus GR \{u0} contains
at most three components.

If GR \ {u0} contains three components, then denote by U1, U2 and U3 the
vertex sets of three components of GR \{u0}. Let |U1| ≥ |U2| ≥ |U3|. If |U1| ≥ n,
we have

n ≤ |U1| ≤ r − 2 − 2(n − 3) = n + 2.

As δ(GR[U1]) ≥ n − 4 > |U1|/2 and by Lemma3, if GR[U1] is pancyclic, there
is a red Cn. If |U1| = 2t and GR[U1] = Kt,t, we shall get a blue Bn in G. Thus
there must be

|U1| = |U2| = n − 1 and |U3| = n − 2.

Moreover, Ui induces a red clique for i = 1, 2, 3. Otherwise if there is a blue
edge in Ui, then G shall contain a blue B2n−3, hence a blue Bn. Note that
dRG[U1]

(u0) = 1 and dRG[U2]
(u0) = 1 since u0 is the cut vertex, otherwise we get a

red Cn. Thus dBG[U3]
(u0) = 0, otherwise there is a blue Bn. Now we get three red

cliques of order n − 1 with almost all edges among which being blue. Consider
vertex v0 and graph G. If dBG[U3]

(v0) ≥ 1, then

dBG[U1]
(v0) = dBG[U2]

(v0) = 0,

which will yield a red Cn. Thus dBG[U3]
(v0) = 0. Furthermore, if dRG[U3]

(v0) = 1,
then v0 is adjacent to at least n + 1 vertices in U1 ∪ U2 by blue, yielding a blue
Bn. Assume dRG[U3]

(v0) = 0, then

dG[U1](v0) ≥ 3 and dG[U2](v0) ≥ 3.

Along with dRG[U1]
(v0) ≤ 1 and dRG[U2]

(v0) ≤ 1, we get a blue Bn.
If GR \ {u0} contains two components, then denote by U1 and U2 the vertex

sets of two components of GR \{u0}. Let |U1| ≤ |U2|. If n ≤ |U1| ≤ (3n−4)/2, as
δ(GR[U1]) ≥ n−4 > |U1|/2, then by Lemma3, G contains a red Cn. Furthermore,
GR[U2] is nonbipartite. Otherwise, suppose GR[U2] is bipartite with bipartiton
(X,Y) where X and Y both induce blue cliques and all edges between U1 and
X are blue, and it follows

|U1| + |X| = |U1| + r − 2 − |U1|
2

≥ n + 2.

Then the graph induced by U1 ∪ X contains a blue Bn. Thus

r − 2 − (2n − 1) ≤ |U1| ≤ n − 1 and r − 2 − (n − 1) ≤ |U2| ≤ 2n − 1.

Moreover, if GR[U2] is 2-connected, then by Lemma2 and Lemma4, GR[U2]
contains a red Cn as

δ(GR[U2]) ≥ n − 4 ≥ |U2|
4

+ 250.

Star-Critical Ramsey Number of Large Cycle and Book 763

Thus suppose that GR[U2] contains a cut vertex u1. Denote by V1 and V2 the
vertex sets of the two components of GR[U2] \ {u1}.

Then the order of {U1, V1, V2} must be

{n − 1, n − 1, n − 3} or {n − 1, n − 2, n − 2}
since |U1|+ |V1|+ |V2| = 3n− 5. Note that the graphs induced by U1, V1, and V2

contain no blue edge, otherwise we will get a blue Bn.

Case 1. Suppose |U1| = n − 1, |V1| = n − 1 and |V2| = n − 3. Note that u0 and
u1 are cut vertices, so

dRG[U1]
(u0) = 1, dRG[U1]

(u1) = 0, dRG[V1]
(u0) ≤ 1 and dRG[V1]

(u1) = 1,

otherwise we will get a red Cn. Note that dBG[V2]
(u0) = dBG[V2]

(u1) = 0 or there
will be a blue Bn. Thus u0u1 must be red and dRG[V1]

(u0) = 0. Hence G contains
three red Kn−1. Consider vertex v0 and graph G. If dBG[V2]

(v0) ≥ 1, then v0
can only be adjacent to U1 and V1 by red edges, otherwise there will be a blue
Bn. Then either dRG[U1]

(v0) ≥ 2 or dRG[V1]
(v0) ≥ 2, which will yield a red Cn. So

suppose dBG[V2]
(v0) = 0 and dRG[V2]

(v0) = 1, then v0 is adjacent to n + 2 vertices
in U1 ∪ V1 ∪ {u0, u1} by blue. In this case, if u0, u1 and v0 have a common blue
neighbor in U1 and V1, respectively, we will get a blue Bn. If not, v0u0 and v0u1

must be blue, and v0 must be adjacent to U1 or V1 by blue completely, say U1,
and to the red neighbor of u1 in V1 by blue, which will also yield a blue Bn.

If |U1| = n − 3, |V1| = n − 1 and |V2| = n − 1, G shall contain either a red Cn

or a blue Bn since dRG[U1]
(u1) = 0.

Case 2. Suppose |U1| = n − 1, |V1| = n − 2 and |V2| = n − 2. As u1 is the cut
vertex of U2, we have dRG[V1]

(u1) ≥ 1 and dRG[V2]
(u1) ≥ 1. Let the red neighbors

of u1 be v1 ∈ V1 and v2 ∈ V2. Then u0 must be adjacent to at least one of
{V1 \{v1}, V2 \{v2}} by blue edges completely, say V1 \{v1}, otherwise U2∪{u0}
induces a red Cn. Thus u0 is adjacent to V2 by red edges completely. Hence
u0u1 is blue and dRG[V1]

(u0) = 0. Similarly, u1 is adjacent to V1 by red edges
completely and to V2 \ {v2} by blue edges completely. Now we get three red
Kn−1. Consider vertex v0 and graph G. If v0 is adjacent to at least one vertex in
V2 \ {v2} by blue, then v0 can only be adjacent to U1 and V1 by red, otherwise
we get a blue Bn. Hence either dRG[U1]

(v0) ≥ 2 or dRG[V1]
(v0) ≥ 2, yielding a red

Cn. Thus dBG[V2\{v2}](v0) = 0. So suppose dRG[V2\{v2}](v0) = 1, then clearly v0v2
cannot be red. If v0v2 is blue, then

dRG[V1]
(v0) = dBG[V1]

(v0) = 0

and v0 is adjacent to u0, u1 and U1 by blue, yielding a blue Bn. Hence v0 is
adjacent to n+ 2 vertices in U1 ∪ V1 ∪ {u0, u1} by blue, and v0 and u0 will have
one common blue neighbor in U1 and V1, respectively, yielding a blue Bn.

Assume dRG[V2\{v2}](v0) = 0. If v0v2 is red, then v0 is adjacent to at least n
vertices in U1 ∪ V1 by blue, yielding a blue Bn. If v0v2 is blue, then

dRG[V1]
(v0) = 1, dBG[V1]

(v0) = 0 and dBG[U1∪{u0,u1}](v0) = n + 1,

yielding a blue Bn.

764 Y. Li et al.

Suppose |U1| = n − 2, |V1| = n − 1 and |V2| = n − 2, then dRG[V1]
(u1) = 1 and

dRG[V2]
(u1) = n − 2 since dRG[U1]

(u1) = 0. Furthermore, dRG[U1]
(u0) = n − 2 since

dRG[V1]
(u0) ≤ 1. Then we get three red Kn−1. If dBG[U1]

(v0) ≥ 1, then dBG[V2]
(v0) =

0. If dBG[V1]
(v0) ≥ 2, u0 and v0 have at least one common blue neighbor in V1,

leading to a blue Bn. So dBG[V1]
(v0) ≤ 1, which means dRG[V1∪V2]

(v0) ≥ 2, yielding
a red Cn. So dBG[U1]

(v0) = 0. Assume dRG[U1]
(v0) = 1. Note that u0 is the cut

vertex of GR such that dRG[U2]
(u0) ≥ 1. So we have dRG[U2]

(v0) = 0, otherwise
we get a red Cn. Then either u0 and v0 have one common blue neighbor in V1

and V2, respectively, or dBG[V1]
(v0) = dBG[V1]

(u0) = n − 1 and the edges u0u1,
u0v0, v0u1 are all blue, yielding a blue Bn. Therefore dG[U1](v0) = 0. Since
dRG[V1]

(v0)+dRG[V2]
(v0) ≤ 1, v0 is adjacent to at least n vertices in V1∪V2 by blue.

If u0 and v0 fail to have one common blue neighbor in V1 and V2, respectively,
then the edges u0u1, u0v0, v0u1 are all blue and

dRG[V2]
(u0) = dRG[V2]

(v0) = 1 and dBG[V1]
(u0) = dBG[V1]

(v0) = n − 1.

yielding a blue Bn, completing the proof. 	

References

1. Bondy, J., Erdős, P.: Ramsey numbers for cycles in graphs. J. Combin. Theory
Ser. B 14, 46–54 (1973)

2. Bondy, J.: Pancyclic graphs I. J. Combin. Theory Ser. B 11, 80–84 (1971)
3. Brandt, S., Faudree, R., Goddard, W.: Weakly pancyclic graphs. J. Graph Theory

27(3), 141–176 (1998)
4. Chung, F.R.K., Graham, R.L., Wilson, R.M.: Quasi-random graphs. Combinator-

ica 9(4), 345–362 (1989)
5. Dirac, G.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2(3), 69–81

(1952)
6. Erdős, P., Faudree, R., Rousseau, C., Schelp, R.: The size Ramsey numbers. Period.

Math. Hungar. 9(1–2), 145–161 (1978)
7. Haghi, S., Maimani, H., Seify, A.: Star-critical Ramsey numbers of Fn versus K4.

Discret. Appl. Math. 217(2), 203–209 (2017)
8. Hao, Y., Lin, Q.: Star-critical Ramsey numbers for large generalized fans and

books. Discret. Math. 341(12), 3385–3393 (2018)
9. Hook, J., Isaak, G.: Star-critical Ramsey numbers. Discret. Appl. Math. 159(5),

328–334 (2011)
10. Hook, J.: Critical graphs for R(Pn, Pm) and the star-critical Ramsey number for

paths. Discuss. Math. Graph Theory 35(4), 689–701 (2015)
11. Li, Y., Li, Y., Wang, Y.: Minimal Ramsey graphs on deleting stars for generalized

fans and books. Appl. Math. Comput. 372, 125006 (2020)
12. Li, Z., Li, Y.: Some star-critical Ramsey numbers. Discret. Appl. Math. 181, 301–

305 (2015)
13. Lin, Q., Peng, X.: Large book-cycle Ramsey numbers, arXiv preprint

arXiv:1909.13533 (2019)
14. Nikiforov, V., Rousseau, C.C.: Ramsey goodness and beyond. Combinatorica

29(2), 227–262 (2009)

http://arxiv.org/abs/1909.13533

Star-Critical Ramsey Number of Large Cycle and Book 765

15. Rousseau, C.C., Sheehan, J.: On Ramsey numbers for books. J. Graph Theory
2(1), 77–87 (1978)

16. Wang, Y., Li, Y.: Deleting edges from Ramsey graphs. Discret. Math. 343(3),
111743 (2020)

17. Wu, Y., Sun, Y., Radziszowski, S.: Wheel and star-critical Ramsey numbers for
quadrilateral. Discret. Appl. Math. 186, 260–271 (2015)

18. Zhang, Y., Broersma, H., Chen, Y.: On star-critical and upper size Ramsey num-
bers. Discret. Appl. Math. 202, 174–180 (2016)

Computing Imbalance-Minimal Orderings
for Bipartite Permutation Graphs

and Threshold Graphs

Jan Gorzny(B)

University of Waterloo, Waterloo, Canada
jgorzny@uwaterloo.ca

Abstract. The Imbalance problem is an NP-complete graph order-
ing problem which is only known to be polynomially solvable on some
very restricted graph classes such as proper interval graphs, trees, and
bipartite graphs of low maximum degree. In this paper, we show that
Imbalance can be solved in linear time for bipartite permutation graphs
and threshold graphs, resolving two open questions of Gorzny and Buss
[COCOON 2019]. The results rely on the fact that if a graph can be parti-
tioned into a vertex cover and an independent set, there is an imbalance-
minimal ordering for which each vertex in the independent set is as bal-
anced as possible. Furthermore, like the previous results of Gorzny and
Buss, the paper shows that optimal orderings for Imbalance are similar
to optimal orderings for Cutwidth on these graph classes. We observe
that approaches for Cutwidth are applicable for Imbalance. In partic-
ular, we observe that there is fixed-parameter tractable (FPT) algorithm
which runs in time O(2knO(1)) where k is the size of a minimum vertex
cover of the input graph G and n is the number of vertices of G. This
FPT algorithm improves the best known algorithm for this problem and
parameter. Finally, we observe that Imbalance has no polynomial kernel
parameterized by vertex cover unless NP ⊆ coNP/poly.

Keywords: Imbalance · Threshold graph · Bipartite permutation
graph · Vertex cover

1 Introduction

Given a graph G and an ordering of its vertices (also known as a linear layout of
the vertices), the imbalance of each vertex is the absolute value of the difference
in the size of its neighbourhood to its left and to its right. The imbalance of
an ordering of G is the sum of the imbalances of each vertex. Imbalance asks
whether or not it is possible to find an ordering with imbalance at most k for
a graph G. The Imbalance problem was introduced by Biedl et al. [2] in the
context of graph drawing, where such an ordering is helpful [11,12,16,18,19].

Biedl et al. [2] showed that Imbalance is NP-complete for bipartite graphs
with degree at most 6 and weighted trees and they provide a pseudo-polynomial
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 766–779, 2020.
https://doi.org/10.1007/978-3-030-64843-5_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_52&domain=pdf
http://orcid.org/0000-0003-1435-8508
https://doi.org/10.1007/978-3-030-64843-5_52

Imbalance on Threshold Graphs and Bipartite Permutation Graphs 767

time algorithm for weighted trees which runs in linear time on unweighted trees.
Kára et al. [13] showed that the problem is NP-complete for arbitrary graphs of
degree at most 4 and planar graphs. Gorzny and Buss [8] showed that Imbal-
ance remains NP-complete on split graphs, but has a linear time algorithm on
proper interval graphs, and polynomial time algorithm for superfragile graphs.
Gorzny and Buss [8] incorrectly claimed that for graphs with bounded twin
cover size, Imbalance has a fixed-parameter tractable (FPT) algorithm when
the parameter is the minimum size of a twin cover of the graph; however, this
requires an additional parameter (like the maximum degree of the graph). There
is an FPT algorithm using the minimum size of a vertex cover for a graph as the
parameter by Fellows et al. [6]. Bakken [1] showed that Imbalance is FPT when
parameterized by the neighbourhood diversity of the graph, another generaliza-
tion of vertex cover which is incomparable to the minimum twin cover size. Lok-
shtanov et al. [14] showed that Imbalance is FPT when parameterized by the
solution size k by constructing an algorithm that runs in time O(2O(k log k)nO(1)),
or when parameterized by the treewidth of the graph and the maximum degree
of the graph. As far as we know, there are no FPT results for Imbalance when
the parameter is only the treewidth of the graph. Gaspers et al. [7] showed that
Imbalance is equivalent to the Graph Cleaning problem, which yielded a
O(n�k/2�(n + m)) time parameterized algorithm where k is the solution size.

In this paper, we show linear time algorithms for Imbalance on bipartite
permutation graphs and threshold graphs, as well as an improvement over the
previous best algorithms and a kernelization lower bound for Imbalance param-
eterized by vertex cover. Since bipartite permutation graphs may have arbitrarily
large degree, this result shows that there are classes of bipartite graphs beyond
trees for which Imbalance can be solved efficiently. Moreover, bipartite per-
mutation graphs are the second class of graphs with unbounded cliquewidth
for which Imbalance can be solved efficiently, after proper interval graphs.
The result uses vertex orderings with special properties that characterizes the
class of bipartite permutation graphs. Our result on threshold graphs shows
that there is a non-trivial subclass of split graphs, for which Imbalance is NP-
complete, where Imbalance can be solved in linear time. Threshold graphs also
become the third class of unbounded cliquewidth for which Imbalance can be
solved efficiently, after proper interval graphs and bipartite permutation graphs.
Since threshold graphs are also interval graphs, this solution builds towards an
understanding of Imbalance problem on interval graphs, for which the com-
plexity of the problem is unknown. In the parameterized complexity setting, the
fastest algorithm for Imbalance on graphs of bounded vertex cover runs in
time O(22

O(k)
nO(1)) where k is the size of the vertex cover of the given graph

and n is the number of vertices [6]. In this paper, we show that the approach for
Cutwidth [5] (defined in the next section) can be applied to Imbalance and
therefore there is an algorithm that runs in time O(2knO(1)). An O(n

2 !) algo-
rithm was known [2] for Imbalance on bipartite graphs; applying the approach
used for Cutwidth [5] immediately yields an O(2n/2nO(1)) algorithm. Lastly,

768 J. Gorzny

All Graphs

Bipartite AT-Free Chordal

Bipartite
Permutation

[*]

Bipartite
Δ ≤ 6 [2] Interval Split [8]

Proper
Interval [8]

Threshold
[*]

Superfragile
[8]

Fig. 1. The relationship between graph classes discussed in this paper. Imbalance is
NP-complete for shaded classes, unknown for hatched classes, and polynomial for the
rest. Results that appear in this work are marked with [*]. An arrow from class A to
class B indicates that class A is contained within class B.

we observe that the kernelization lower bound for Cutwidth in [5] applies
immediately to Imbalance.

2 Preliminaries

All graphs in this work are finite, undirected, and without multiple edges or
loops. For a graph G = (V,E), If X ⊆ V , then G(V − X) refers to the graph
induced by the set of vertices in V \ X, i.e. G(V − X) = (V \ X,E′) where
E′ = {(u, v)|u, v ∈ V \ X} ∩ E. we will denote n = |V | and m = |E|. A complete
graph (or clique) is a graph whose vertices are pairwise adjacent. An independent
set is a set I ⊆ V of vertices with no edges among them (i.e., (I ×I) ∩ E = ∅). A
graph G is bipartite if V can be partitioned into to two sets X and Y such that all
edges have one end-point in X and the other in Y . The open neighbourhood of a
vertex v, denoted N(v), is the set { u ∈ V | (v, u) ∈ E } of vertices adjacent to v.
The closed neighbourhood of a vertex, denoted N [v], is the open neighbourhood
of the vertex along with the vertex itself, i.e. N [v] = N(v) ∪ {v}. A vertex v is a
pendant if |N(v)| = 1. If X ⊆ V , then the neighbourhood of the set X, denoted
N(X), is

(∪v∈X N(v)
) \ X.

The distance between two vertices u and v in a graph G, denoted by dG(u, v),
is the length of a shortest path between u and v in G. We will drop the
subscript when it is clear from context. The diameter of a graph G, denoted
diam(G), is the maximum distance between any two vertices in G, i.e. diam(G) =
maxu,v∈V (G) dG(u, v). Two vertices u and v are twins if they have the same neigh-
bours, except possibly for each other; that is, N(u)\{v} = N(v)\{u}. Two twins

Imbalance on Threshold Graphs and Bipartite Permutation Graphs 769

u and v are true twins if they have an edge between them; i.e., N [u] = N [v]. A
vertex cover of G is a set C ⊆ V that covers every edge; i.e., E ⊆ C × V .

An ordering of (a subset of) the vertices of a graph is a sequence 〈v1, v2,
. . . , vn〉, with each vi distinct. We will use set operations and notation on order-
ings, and also the following. For an ordering σ, σ(i) denotes the ith vertex for
1 ≤ i ≤ |σ|. If σ and π are disjoint orderings, σπ denotes their concatenation.
The relation <σ is defined by u <σ v if and only if u precedes v in σ. Relations
>σ, ≤σ and ≥σ are defined analogously. We extend these to sets of vertices: e.g.,
x <σ {y, z} if and only if x <σ y and x <σ z. For an element x of σ, σ<x denotes
the ordering induced by σ on the set { y ∈ V | y <σ x }. The orderings σ≤x, σ>x,
and σ≥x are defined analogously. More generally, for a set X ∈ V , σX denotes
the ordering induced by σ on X. Two orderings σ and τ with the same elements
are said to agree if u <σ v if and only if u <τ v. If σ is an ordering, then σR

denotes its reverse.
We now formally define Imbalance. Let G = (V,E) be a graph and σ

an ordering of V. For v ∈ V, let predσ(v) and succσ(v) respectively denote
the number of neighbours of v that precede (resp. succeed) v in σ. That is,
predσ(v) = |σ<v ∩ N(v)| and succσ(v) = |σ>v ∩ N(v)|. The imbalance of v with
respect to σ, denoted φσ(v), is |succσ(v) − predσ(v)|. The imbalance of σ is
im(σ) =

∑
v∈σ φσ(v). The imbalance of G, denoted im(G), is the minimum of

im(σ) over all orderings σ of V. Given a graph G and an integer k, Imbal-
ance asks if im(G) ≤ k. For convenience, given a set X ⊆ V and an ordering σ
of V , φσ(X) =

∑
v∈X φσ(v). We say that a vertex v is perfectly balanced in an

ordering σ if d(v) is even and φσ(v) = 0 or if d(v) is odd and φσ(v) = 1.
We also define Cutwidth. Let G = (V,E) be a graph and σ an ordering of

V. The cutwidth after v with respect to σ, denoted cσ(v), is cσ(v) = |{(x, y) ∈
E|x ≤σ v and v <σ y}|. The cutwidth of σ is cw(σ) = maxv∈σ{cσ(v)}. The
cutwidth of G, denoted cw(G), is the minimum of cw(σ) over all orderings of V .

The next observations are helpful for understanding the imbalance of an
ordering after some cliques are rearranged in an initial ordering.

Observation 1. Let X,Y be two sets of true twins in an ordering σ such that
X <σ Y , Y ⊆ N(X) and there are no vertices between X and Y in σ. Let σ′ be
obtained from σ by swapping the positions of X and Y in σ. Observe that

φσ′(X) =
∣
∣predσ′(X) − succσ′(X)

∣
∣ =

∣
∣(predσ(X) + |Y |) − (succσ(X) − |Y |)∣∣

=
∣
∣predσ(X) − succσ(X) + 2|Y |∣∣.

If predσ(X) ≥ succσ(X), φσ′(X) = φσ(X) + 2|Y |. Otherwise, predσ(X) <
succσ(X) and

– if succσ(X)−|Y | < predσ(X) < succσ(X), φσ(X)+2|Y | > φσ′(X) > φσ(X);
– if predσ(X) = succσ(X) − |Y |, φσ′(X) = φσ(X);
– otherwise, predσ(X) < succσ(X) − |Y |, φσ′(X) < φσ(X).

Observation 2. Let X,Y be two sets of true twins in an ordering σ such that
X <σ Y , X ⊆ N(Y), and there are no vertices between X and Y in σ. Let σ′

be obtained from σ by swapping the positions of X and Y in σ. Observe that

770 J. Gorzny

φσ′(Y) =
∣
∣predσ′(Y) − succσ′(Y)

∣
∣ =

∣
∣(predσ(Y) − |X|) − (succσ(Y) + |X|)∣∣

=
∣
∣predσ(Y) − succσ(Y) − 2|X|∣∣.

If predσ(Y) ≤ succσ(Y), φσ′(Y) = φσ(Y) + 2|X|. Otherwise, predσ(Y) >
succσ(Y) and

– if succσ(Y) + |X| > predσ(Y) > succσ(Y), φσ(Y) + 2|X| > φσ′(Y) > φσ(Y);
– if predσ(Y) = succσ(Y) + |X|, φσ′(Y) = φσ(Y);
– otherwise, predσ(Y) > succσ(Y) + |X|, φσ′(Y) < φσ(Y).

The next theorem shows that there is always an imbalance-minimal ordering
for which a given independent set is as balanced as possible, and will be useful
throughout the paper.

Theorem 1. Let G = (A∪B,E) be a graph where B is an independent set and
let σ be such that im(σ) = im(G). There exists an optimal imbalance ordering
σ∗ such that for all b ∈ B, φσ∗(b) ∈ {0, 1}; moreover, σA = σ∗

A.

Proof. Let σ be an optimal imbalance ordering, and suppose that b ∈ B has
φσ(b) > 1. Without loss of generality, suppose that b has k ≥ 2 more neighbours
to its right than its left. Let w be the vertex to the right of b in σ, and let σ′ be
the result of swapping b and w. If (b, w) /∈ E, the swap does not change the total
imbalance of the ordering as φσ′(b) = φσ(b) and φσ′(w) = φσ(w). If (b, w) ∈ E,
φσ′(b) = φσ(b) − 2 and φσ′(w) ≤ φσ(w) + 2. We can repeat this until k = 1 and
φσ∗(b) ≤ 1. The case where b has more neighbours to its left than its right is
analogous. Since we did not move any vertices of A past any other vertices in A,
σA agrees with σ∗

A.

The following theorem is also helpful.

Theorem 2 ([8]). For any graph G, there exists an imbalance-optimal order-
ing σ of V such that each set of true twins appears consecutively in σ.

3 Bipartite Permutation Graphs

In this section we show that if G is a bipartite permutation graph (defined
below), the imbalance of G can be computed in O(n).

A graph is a permutation graph if it is the intersection graph of lines whose
end points are on two parallel lines. A graph is a bipartite permutation graph if
it is both a bipartite graph and a permutation graph. A proper interval bigraph
is a bipartite graph that is AT-free and contains no induced cycle of size greater
than four [3]; from this characterization we know that complete bipartite graphs
are bipartite permutation graphs. Proper interval bipartite graphs are bipartite
permutation graphs [10].

A strong ordering (σA, σB) of a bipartite graph G = (A,B,E) consists of
an ordering σA of A and an ordering σB of B such that for all ab, a′b′ ∈ E,

Imbalance on Threshold Graphs and Bipartite Permutation Graphs 771

where a, a′ ∈ A and b, b′ ∈ B, a <σA a′ and b′ <σB b implies that ab′ ∈ E and
a′b ∈ E. An ordering σA of A has the adjacency property if, for every b ∈ B,
N(b) consists of vertices that are consecutive in σA. The ordering σA has the
enclosure property if, for every pair b, b′ of vertices of B with N(b) ⊆ N(b′), the
vertices of N(b′) \ N(b) appear consecutively in σA, implying that b is adjacent
to the leftmost or rightmost neighbour of b′ in σA.

It was shown that every bipartite permutation graph has a strong ordering,
and moreover, that every strong ordering of a bipartite permutation graph has
both the adjacency and enclosure properties [17]. A strong ordering of a bipartite
permutation graph can be computed in linear time [4].

Finally, we note that if a part A of a bipartition (A,B) is fixed as σA, an
ordering which is imbalance-minimal among all orderings which agree with σA

can be found in linear time.

Theorem 3 ([2]). Given a bipartite graph G = (A,B,E) and a fixed vertex-
ordering σA of A, there is a linear time algorithm that finds an ordering of G
which is imbalance-minimal with respect to all orderings that agree with σA.

The main result requires handling some highly structured cases.

Lemma 1. Let G = (A,B,E) be a complete bipartite graph. Let (σA, σB) be a
strong ordering of G. There is an optimal imbalance ordering σ of G such that
σA = σA, and φτ (A) ≥ φσ(A) for any ordering τ where each b ∈ B is perfectly
balanced.

Proof. By Theorem 1, there is an optimal ordering where B is perfectly balanced;
starting with σA (which is the same as any ordering of A, since all the vertices
of A are twins), apply the algorithm of Theorem 3 to get an ordering σ with
desired property; if σB �= σB, re-order σB so they are equal: all vertices of B are
twins and can be interchanged. It is clear that the desired properties hold. �
Lemma 2. Let G = (A,B,E) be a bipartite permutation graph such that there
is a vertex b ∈ B with N(b) = A, and for all b′ ∈ B \ {b}, deg(b′) = 1. There is
an optimal imbalance ordering σ of G such that σA = σA, and φτ (A) ≥ φσ(A)
for any ordering τ where each b ∈ B is perfectly balanced.

Proof. By Theorem 1, there is an optimal imbalance ordering that perfectly
balances all vertices of B. Observe that the vertex b ∈ B is perfectly balanced
by placing � |A|

2 � vertices of A to its right, and � |A|
2 � vertices of A to its left;

place the first � |A|
2 � vertices of A to the left of b and the rest of A to the right

of b, and call the resulting order σ. Observe that no two vertices a, a′ ∈ A have
a neighbour of B \ {b} in common, as otherwise that vertex is not a pendant.
Therefore, for each a ∈ A such that a <σ b, we can place � |N(a)|−1

2 � immediately
to the left of a and � |N(a)|−1

2 � immediately to the right of a in σ to minimize
the imbalance of a. For each a ∈ A such that b <σ a, we can place � |N(a)|−1

2 �
neighbours immediately to the right of a and � |N(a)|−1

2 � neighbours immediately
to the left of a in σ to minimize the imbalance of a. Each pendant of B is
perfectly balanced. �

772 J. Gorzny

Theorem 4. Let (σA, σB) be a strong ordering of a bipartite permutation graph
G = (A,B,E). There is an ordering σ of G with im(σ) = im(G) and σA = σA.

Proof. We will prove the following stronger claim.

Claim. There is an optimal ordering σ of G where φσ(b) ∈ {0, 1} for all b ∈ B,
σB = σB, σA = σA, and φτ (A) ≥ φσ(A) for any ordering τ where each b ∈ B is
perfectly balanced.

Proof of Claim: The proof is by induction on n. In the base case, n = 1, and the
result holds trivially.

Assume the result holds for n′ ≥ 1 and consider a bipartite permutation
graph G where |V | = n = n′ + 1. Let (σA, σB) be a strong ordering of G
where σA = 〈a1, . . . , as〉 and σB = 〈b1, . . . , bt〉 such that d(b1, as) is maximal
(i.e., use ((σA)R, (σB)R) if d(bt, a1) is larger than d(b1, as) according to the
original ordering). Let Bs ⊆ B be the maximal subset such that for all b ∈ Bs,
N(b) = {as}; similarly, let B1 ⊆ B be the maximal subset such that for all
b ∈ B1, N(b) = {a1}. Let σs be an optimal ordering of G− ({as}∪Bs) provided
by the induction hypothesis. Let A1 ⊆ A be the maximal subset such that for all
a ∈ A1, N(a) = {b1}. Let σ1 be an optimal ordering of G− ({b1}∪A1) provided
by the induction hypothesis.

If d(b1, as) = 1, then diam(G) ≤ 2 and we are done by Lemma 1; therefore
we may assume d(b1, as) ≥ 3. Let �(π, x) be the rightmost vertex of N(x) that
is to the left of x in π and let r(π, x) be the leftmost vertex of N(x) that is to
the right of x in π.

Let b′ ∈ B be the rightmost vertex of B in σ1 such that �(σ1, b
′) = �(σs, b

′)
and r(σ1, b

′) = r(σs, b
′). We show that at least one such b′ ∈ B exists. Take bi

to be the vertex of B with the smallest index (with respect to σB) such that
a1 ∈ N(bi) but N(bi) �= {a1}. If as /∈ N(bi), then bi is between the same two
vertices in both orderings σ1 and σs, so it is eligible. Otherwise, as ∈ N(bi).
Since a1 ∈ N(bi) and as ∈ N(bi), d(a1, as) = 2. If |A| is even, φσ1(bi) = 0, and
φσs

(bi) = 1. In σs, bi will be in one of the centers of |A| − 1 vertices; let a′ be
the middle vertex of A in σs. Pick b′ to be the leftmost twin of bi such that
a′ <σ′ b′ (if all twins of bi are to the left of a′, then i = t and we are done by
Lemma 2). The vertex b′ has fewer neighbours to its right in σs than its left, and
appending as will re-balance bi; i.e., it will be between the same two vertices in
both orderings. Otherwise, |A| is odd, and φσ1(bi) = 1, and φσs

(bi) = 0. In σ1,
bi will be in one of the centers of |A| vertices; let a′ be the middle vertex of A in
σ1. Pick b′ to be the rightmost twin of bi such that b′ <σ′ a′ (if all twins of bi are
to the right of a′, then i = t and we are done by Lemma 2). The vertex b′ has
fewer neighbours to its left in σ1 than its right, so removing as will re-balance
bi; i.e., it will be between the same two vertices in both orderings.

If a1 /∈ N(b′) or as /∈ N(b′), let σ′
1 = (σ1)≥b′ and σ′

s = (σs)<b′ . Otherwise,
let x ∈ A ∪ B be the rightmost vertex of B1 ∪ {a1} in σs, and let σ′

s = (σs)≤x,
and σ′

1 = (σ1)>x. Note that (B \ B1) ⊆ (σ1)>x since all vertices of B \ B1 have
another neighbour to the right of a1.

Imbalance on Threshold Graphs and Bipartite Permutation Graphs 773

Let σ = σ′
s · σ′

1. Observe that each b ∈ B is perfectly balanced in σ, as
each such b has minimum of the imbalances it had in σ1 and σs, at least one
of which obtained the minimum of b with the entirety of N(b) in the ordering.
Furthermore, each a ∈ A has minimum imbalance among all orderings which
perfectly balance N(a) by the same observation.

Let A′
1 = (σ′

1) ∩ A and A′
s = (σ′

s) ∩ A. Let σ∗ be an optimal ordering of G
such that each vertex b ∈ B has φσ∗(b) ∈ {0, 1}, which exists by Theorem 1.

im(G) = im(σ∗) = φσ∗(B) + φσ∗(A′
1) + φσ∗(A′

s)
≥ φσ(B) + φσ(A′

1) + φσ(A′
s) = im(σ) ≥ im(G)

as required. �

The theorem is immediate from the claim. �
Corollary 1. If G is a bipartite permutation graph, im(G) can be computed in
linear time.

Proof. A strong ordering of G = (A,B,E) can be obtained in linear time [4].
Applying Theorem 3 using σA generates an optimal ordering relative to σA in
linear time, which is optimal by Theorem 4. �

4 Threshold Graphs

In this section we show that if G is a threshold graph (defined below), the
imbalance of G can be computed in O(n). Threshold graphs are a subset of split
graphs. Imbalance is NP-complete on split graphs [8].

A graph is a split graph if its vertex set can be partitioned into a clique C
and an independent set I where (C, I) is called a split partition. A graph is a
threshold graph if and only if it has a split partition (C, I) such that vertices of I
(and equivalently the vertices of C) can be ordered by neighbourhood inclusion.
Such a split partition is called a threshold partition. Clearly, threshold graphs
are a subset of split graphs. Determining if a graph is a threshold graph, and
computing a threshold partition if it is, can be computed in linear time [15].

Let (C, I) be a split partition. We may assume that every vertex c ∈ C has
a neighbour in I, as otherwise we may take a new split partition (C ′, I ′) where
C ′ = C \ {c} and I ′ = I ∪ {c}. We will partition I into sets (I0, I1, . . . , I�) such
that I0 is the set of isolated vertices, and N(I1) ⊂ N(I2) ⊂ . . . N(I�), where �
is largest possible. All vertices in Ij have the same neighbours (and therefore
degree) for 0 ≤ j ≤ �. The partition on I defines a partition (C1, C2, . . . , C�) of
C, where C1 = N(I1) and Cj = N(Ij) \ N(Ij−1) for 2 ≤ j ≤ �. Similarly, all
vertices in Cj have the same neighbours (and therefore degree) for 1 ≤ j ≤ �.
Vertices of Ci are on the ith level of the clique, and vertices of Ii are on the ith
level of the independent set. For a threshold partition (C, I), N(Cj) ⊂ N(Ci) and
therefore |N(Ci)| > |N(Cj)| if j > i. Figure 2 shows an example of a threshold
graph with a threshold partition.

The main result requires the following key lemma.

774 J. Gorzny

I1I2I3

C1C2C3

12568

347910

Fig. 2. A threshold graph G with levels of its threshold partition indicated. An ordering
with im(σ) = im(G) = 22 is σ = 〈v1, v2, v5, v3, v4, v6, v7, v8, v9, v10〉.

Lemma 3. Let G be a threshold graph on � ≥ 3 levels and let σ be an ordering
of G. Suppose that either |C1| ≥ 2, or |C1| = 1 and σ is an ordering of G such
that I1 appears as the first |I1| vertices of σ. Then there is an ordering σ′ such
that im(σ′) ≤ im(σ) and ci <σ′ cj for ci ∈ Ci and cj ∈ Cj whenever j > i.

Proof. We define a partial order � on orderings of G, for which each �-minimal
ordering has no inversions (cj , ci) where j > i, cj ∈ Cj , ci ∈ Ci, and cj <σ ci.
We define the ordering � as follows: if inverted(π) < inverted(σ), then π � σ.
We then show that for any σ in which a pair (cj , ci) such that j > i, cj ∈ Cj ,
ci ∈ Ci, and cj <σ ci appears, there exists π with π � σ, and im(π) ≤ im(σ).

Given an ordering σ, we will say that a pair (cj , ci) is an inverted pair if j > i
and cj <σ ci and cj ∈ Cj , ci ∈ Ci; an inverted pair is a bad pair if it is also the
case that N(ci) ∩ σ>ci = N(cj) ∩ σ>ci . For an ordering σ, let inverted(σ) be the
number of inverted pairs in σ.

Let σ be an imbalance ordering for G provided by the lemma hypothesis. We
additionally assume φσ(v) ∈ {0, 1} for all v ∈ I by Theorem 1. If inverted(σ) = 0,
we are done; therefore we may assume that inverted(σ) > 0. Let σ = L·cj ·M ·ci·R
for a pair cj <σ ci.

We will show that σ must contain a bad pair; suppose to the contrary it
does not. Let (cj , ci) be the inverted pair that has both cj and ci as far right
as possible: choose (cj , ci) so that there is no inverted pair (c′

j , c
′
i) such that

cj <σ c′
j , and given that cj is rightmost, there is no inverted pair (cj , c

′
i) such

that ci <σ c′
i. Let X = (N(ci)∩R)\(N(cj)∩R), which must be non-empty since

(cj , ci) is an inverted pair but not a bad pair. Since X is not adjacent to both ci

and cj , X ⊆ I. Since all pendants are at the beginning of the order, or there are
none, and φσ(x) ∈ {0, 1} for all x ∈ X ⊆ I, there must be a cr such that ci <σ cr

and cr ∈ N(x) for any x ∈ X. Since cr ∈ N(x) but cj /∈ N(x), r < j. However,
this contradicts our choice of (cj , ci), as either (ci, cr) is an inverted pair with
cj < ci, or (cj , cr) is an inverted pair with cj < cr. Therefore σ contains a bad
pair.

Let (cj , ci) be the bad pair that places cj as far right as possible and minimizes
the number of vertices between cj and ci in σ: choose (cj , ci) so that there is no
bad pair (c′

j , c
′
i) such that cj <σ c′

j , and given that cj is rightmost, there is no bad

Imbalance on Threshold Graphs and Bipartite Permutation Graphs 775

pair (cj , c
′
i) such that c′

i <σ ci. Since (cj , ci) is a bad pair, N(ci) ∩ R = N(ci) ∩
σ>ci = N(cj) ∩ σ>ci = N(cj) ∩ R which implies that |N(ci) ∩ R| = |N(cj) ∩ R|.

Suppose first that M = ∅. In this case, cj is beside ci. Since there is a
v ∈ N(ci) but v /∈ N(cj) and it must be the case that v <σ cj , ci can be moved
to the left of cj to get τ � σ. No new inverted pairs could have been introduced
by performing such a swap: ci remains to the right of everything in L, and cj

remains to the left of everything in R. Therefore, we may assume that M �= ∅.

– If there is a ct ∈ M ∩ Ct such that t = j, then N(ct) = N(cj) and therefore
(ct, ci) is a more rightmost bad pair (i.e. one with cj <σ ct), contradicting
our choice of (cj , ci).

– If there is a ct ∈ M ∩ Ct such that t > j, then (ct, ci) is a more inverted
rightmost pair. If it is bad, we have reached a contradiction; therefore it must
only be inverted. Let X = (N(ci)∩R)\(N(ct)∩R), which must be non-empty
since (ct, ci) is an inverted pair but not a bad pair. Since X is not adjacent to
both ci and ct, X ⊆ I. Since all pendants are at the beginning of the order,
or there are none, and φσ(x) ∈ {0, 1} for x ∈ X, there must be a cr such that
ci <σ cr and cr ∈ N(x). Since cr ∈ N(x) but ct /∈ N(x), r < t; however, this
contradicts our choice of (cj , ci), as (ct, cr) is a more rightmost bad pair (i.e.
one with cj < ct).

– If there is a ct ∈ M ∩ Ct such that j > t > i, then N(cj) ⊆ N(ct) and
therefore (ct, ci) is a more rightmost bad pair (i.e. one with cj and ct < ci),
contradicting our choice of (cj , ci).

– If there is a ct ∈ M ∩ Ct such that t < i, then (cj , ct) is an inverted pair;
if it is a bad pair, we have reached a contradiction. If (cj , ct) is an inverted
pair, let X = (N(ct)∩σ>ct)\(N(cj)∩σ>ct), which must be non-empty. Since
X is not adjacent to both ct and cj , X ⊆ I. Since all pendants are at the
beginning of the order, or there are none, and φσ(x) ∈ {0, 1} for x ∈ X, there
must be a rightmost x <σ cr such that x ∈ N(cr). Since t < i, r ≤ t < i
(and in particular, r �= i). If cr <σ ci, then N(ci) ⊆ N(cr) and (cj , cr) is a
rightmost bad pair with a smaller distance between the vertices (i.e. one with
cj and cr <σ ci); if ci <σ cr, then (ci, cr) is a more rightmost bad pair (i.e.
one with cj <σ ci). In either case, we have a contradiction.

Therefore, M ⊆ I ∪ Ci.
If cj becomes strictly more balanced by moving |M | vertices to the right (so

that it is immediately left of ci), since ci has a private neighbour to its left, cj

and ci can be swapped, resulting in τ � σ. Since M ⊆ I ∪ Ci, no new inverted
pairs could have been introduced by performing such a swap. Therefore we may
assume that this is not the case, and by Observation 1 we have

|N(cj) ∩ L| ≥ |N(cj) ∩ (M ∪ {ci} ∪ R)| − |M |. (1)

If ci becomes strictly more balanced by moving |M | + 1 vertices to the left, (so
that it is immediately to the left of cj), then τ � σ as it has at least one fewer
inversion: since M ⊆ I ∪ Ci, no new inverted pairs could have been introduced

776 J. Gorzny

by performing such a swap. Therefore we may assume that this is not the case,
and by Observation 2 we have

|N(ci) ∩ (L ∪ {cj} ∪ M)| ≤ |N(ci) ∩ R| + (|M | + 1), (2)

Thus, we have

|N(ci) ∩ R| ≥ |N(ci) ∩ (L ∪ {cj} ∪ M)| − |M | − 1 by (2)
= |N(ci) ∩ L| + |{cj}| + |M | − |M | − 1
= |N(ci) ∩ L|
≥ |N(cj) ∩ L|
≥ |N(cj) ∩ (M ∪ {ci} ∪ R)| − |M | by (1)
≥ |N(cj) ∩ R| + |M | + |{ci}| − |M | > |N(cj) ∩ R|

which is a contradiction to |N(ci) ∩ R| = |N(cj) ∩ R|. Therefore, at least one of
cj or ci can be moved beside the other. �

The following lemmas enable us to prove the theorem for all threshold graphs.

Lemma 4. Let G be a threshold graph on � ≥ 3 levels such that |C1| = 1. If
|I1| ≤ |G \ (C1 ∪ I1)|, then there is an ordering σ such that im(σ) = im(G) and
I1 are the first |I1| vertices of σ.

Proof. If there is an optimal ordering σ such that I1 is entirely contained to the
left of the unique c1 ∈ C1, then we can move I1 to the beginning of the ordering;
if they are contained to the right of c1, they can be moved to the end of the
ordering, at which point the reverse of the order satisfies the lemma requirement.

Suppose to the contrary that G is such that all optimal imbalance orderings
σ of G have some vertices I�

1 (where I�
1 �= ∅) to the left of c1 ∈ C1, and Ir

1 (where
Ir
1 �= ∅) to the right of c1 in any ordering. Let σ0 be any such optimal ordering,

and let σ be the result of simultaneously moving I�
1 as left as possible in σ0 and

Ir
1 as right as possible in σ0 (since all vertices in I1 are pendants, they can move

further away from c1 without changing the total imbalance of the ordering).
First, suppose that |I�

1| �= |Ir
1 |; without loss of generality, assume that |I�

1| >
|Ir

1 | (as otherwise we can reverse σ). Let d = |I�
1| − |Ir

1 | (d > 0). Let G′ be
the result of removing |I�

1| − d = |Ir
1 | vertices from I�

1 and all of Ir
1 and let

σ′ = σG′ . Since σ′ removes the same number of vertices from both sides of c1,
φσ(c1) = φσ′(c1). The pendants removed do not affect the imbalance of any
other vertex in G \ C1, so no other vertex’s imbalance is changed. Therefore,
since σ′ removes 2 · |Ir

1 | pendant vertices from σ, im(σ′) = im(σ) − 2 · |Ir
1 |.

Since G′ is still a threshold graph, and σ′ places all pendants at the beginning
of the ordering, Lemma 3 produces an ordering τ ′ with no worse imbalance
than σ′, and one where c1 is to the left of C \ C1. Applying Theorem 1 to
τ ′ produces an ordering τ ′′ in which all vertices v ∈ I have φτ ′′(v) ∈ {0, 1}.
Since c1 is adjacent to everything, all of the remaining vertices of I�

1 are placed
on the opposite side of G′ \ (C1 ∪ I1) in τ ′′. Now we can pre-pend the 2 · |Ir

1 |

Imbalance on Threshold Graphs and Bipartite Permutation Graphs 777

pendants to τ ′′ to get an ordering σ′′ of G with im(σ′′) = im(τ ′′), since each
pendant adds one to the total imbalance, but decreases the imbalance of c1 by
1. However, m(σ′′) = im(τ ′′) ≤ im(σ′) = im(σ) − 2 · |Ir

1 | < im(σ), contradicting
the optimalty of σ.

Suppose instead that |I�
1| = |Ir

1 |. Let G′ be the result of removing |I�
1|−1 = x

vertices from I�
1 and all of Ir

1 , and let σ′ = σG′ . Since σ′ removes the same almost
number of vertices from both sides of c1, φσ′(c1) = φσ(c1) + 1. The pendants
removed do not affect the imbalance of any other vertex in G \ C1, so no other
vertex’s imbalance is changed. Therefore, since σ′ removes 2 · (x + 1) pendant
vertices from σ, im(σ′) = im(σ) − 2 · (x + 1) + 1. Since G′ is still a threshold
graph, and σ′ places all pendants at the beginning of the ordering, Lemma 3
produces an ordering τ ′ with no worse imbalance than σ′, and one where c1 is to
the left of C \ C1. Applying Theorem 1 to τ ′ produces an ordering τ ′′ in which
all vertices v ∈ I have φτ ′′ ∈ {0, 1}. Since c1 is adjacent to everything, all of
the remaining vertices of I�

1 are placed on the opposite side of G′ \ (C1 ∪ I1) in
τ ′′. Now we can pre-pend the 2 · x + 1 pendants to τ ′′ to get an ordering σ′′ of
G with im(σ′′) = im(τ ′′), since each pendant adds one to the total imbalance,
but decreases the imbalance of c1 by 1. However, im(σ′′) = im(τ ′′) ≤ im(σ′) =
im(σ) − 2 · (x + 1) + 1 < im(σ) (since x ≥ 1), contradicting im(σ) = im(G). �
Lemma 5. Let G be a threshold graph on � ≥ 3 levels such that |C1| = 1. If
|I1| > |G\ (C1 ∪ I1)|, then there is an ordering σ′ such that im(σ′) = im(G) and
ci <σ′ cj for ci ∈ Ci and cj ∈ Cj whenever j > i.

Proof. Remove d = |I1| − |G \ (I1 ∪ C1)| pendants from G to get G′. By Lemma
4, there is an optimal ordering τ ′ of G′ that places all of the remaining pendants
to the left of c1 while minimizing the imbalance in the rest of the graph. Now
add d pendant vertices to τ ′ on alternating sides of c1 to get an optimal ordering
of G. �
Lemma 6. If G be a threshold graph, then there is an ordering σ′ such that
im(σ′) = im(G) and ci <σ′ cj for ci ∈ Ci and cj ∈ Cj whenever j > i.

Proof. If G has at most two levels, then we are done by Theorem 2 (or the
reverse of the ordering it provides). Suppose instead that G has at least three
levels. If |C1| ≥ 2, apply Lemma 3 to any optimal ordering of G and we are done.
Otherwise, |C1| = 1. If |I1| ≤ |G \ (C1 ∪ I1)|, apply Lemma 3 to the ordering
provided by Lemma 4 and we are done. Otherwise, |I1| > |G \ (C1 ∪ I1)| and we
are done by Lemma 5. �
Theorem 5. Imbalance can be solved in time O(n) for threshold graphs.

Proof. Let G = (V,E) with a fixed threshold partition (C, I); therefore C is par-
titioned into level C1, . . . , C� for some �. Let E′ ⊆ E be the set of edges between
vertices C and I, that is, E′ = {(u, v)|u ∈ C, v ∈ I}. Let G′′ = (V,E′), and
construct G′ by adding each edge (u, v) ∈ E such that u, v ∈ C and subdividing
it; call the set of vertices added via subdivision VE . The graph G′ is bipartite
with partition (C, I ∪ VE). Let τ be an ordering of C such that Ci <τ Cj for all

778 J. Gorzny

j > i. By Lemma 6, at least one optimal ordering σ of G is such that σC = τ .
Apply the algorithm of Theorem 3 to get an optimal ordering σ′ of G′, then
move each ve ∈ VE between its end points so that φσ′(ve) = 0, at which point
replacing the each path of length two u, ve, v by an edge (u, v) does not change
the imbalance. �

Similar to optimal Cutwidth orderings on threshold graphs [9], there are
optimal Imbalance orderings where the independent set of the graph is also
ordered by levels of the threshold partition.

Corollary 2 (*1). If G be a threshold graph, then there is an ordering σ′ such
that im(σ′) = im(G) and ci <σ′ cj for ci ∈ Ci and cj ∈ Cj whenever j > i, and
vi <σ′ vj for vi ∈ Ii and vj ∈ Ij whenever j > i.

5 Improved Imbalance Parameterized by Vertex Cover

In this section, we note that the approach of Cygan et al. [5] that was used to
solve a similar problem, Cutwidth, is immediately applicable to Imbalance.
Therefore, given a graph G = (C ∪ I, E) with a vertex cover of size |C| = k, we
can compute the imbalance of G in time O(2knO(1)). The solution uses dynamic
programming and improves the previous algorithm by Fellows et al. [6].

Theorem 6 (*). Let G be a graph with vertex cover of size k. There is an algo-
rithm to solve Imbalance in time O(2knO(1)). Therefore there is a O(2n/2nO(1))
time algorithm for Imbalance on bipartite graphs.

Moreover, strengthening a lemma of [14] and using the exact same reduction
of [5], we can prove the following theorem.

Theorem 7 (*). Imbalance parameterized by the size of the vertex cover does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

6 Conclusion

We have shown that Imbalance can be solved in linear time for bipartite per-
mutation graphs and threshold graphs. The complexity of the problem remains
open for some other restricted graph classes, like cographs, and even trivially per-
fect graphs, which form a proper subset of cographs and a superset of superfragile
graphs. The complexity of Imbalance on interval graphs remains a challenging
open problem. We conjecture that similar results to those presented here are
possible for Optimal Linear Arrangement.

1 Statements marked with a ∗ will be shown in the full version of the paper.

Imbalance on Threshold Graphs and Bipartite Permutation Graphs 779

References

1. Bakken, O.R.: Arrangement problems parameterized by neighbourhood diversity.
Master’s thesis, The University of Bergen (2018)

2. Biedl, T., et al.: Balanced vertex-orderings of graphs. Discrete Appl. Math. 148(1),
27–48 (2005)

3. Brandstädt, A., Spinard, J.P., Le, V.B.: Graph Classes: A Survey, volume 3. Siam
(1999)

4. Chang, J.-M., Ho, C.-W., Ko, M.-T.: LexBFS-ordering in asteroidal triple-free
graphs. ISAAC 1999. LNCS, vol. 1741, pp. 163–172. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-46632-0 17

5. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On cutwidth
parameterized by vertex cover. Algorithmica 68(4), 940–953 (2014)

6. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0 28

7. Gaspers, S., Messinger, M.E., Nowakowski, R.J., Pra�lat, P.: Clean the graph before
you draw it! Inf. Process. Lett. 109(10), 463–467 (2009)

8. Gorzny, J., Buss, J.F.: Imbalance, cutwidth, and the structure of optimal orderings.
In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp.
219–231. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4 18

9. Heggernes, P., Lokshtanov, D., Mihai, R., Papadopoulos, C.: Cutwidth of split
graphs and threshold graphs. SIAM J. Discrete Math. 25(3), 1418–1437 (2011).
https://doi.org/10.1137/080741197

10. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory
46(4), 313–327 (2004)

11. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),
4–32 (1996)

12. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applica-
tions in graph drawing problems. Theoret. Comput. Sci. 172(1–2), 175–193 (1997)

13. Kára, J., Kratochvil, J., Wood, D.R.: On the complexity of the balanced vertex
ordering problem. Discrete Math. Theoret. Comput. Sci. 9 (2007)

14. Lokshtanov, D., Misra, N., Saurabh, S.: Imbalance is fixed parameter tractable.
Inf. Process. Lett. 113(19–21), 714–718 (2013)

15. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics, vol. 56.
Elsevier (1995)

16. Papakostas, A., Tollis, I.G.: Algorithms for area-efficient orthogonal drawings.
Comput. Geom. 9(1–2), 83–110 (1998)

17. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete
Appl. Math. 18(3), 279–292 (1987)

18. Wood, D.R.: Optimal three-dimensional orthogonal graph drawing in the general
position model. Theoret. Comput. Sci. 299(1–3), 151–178 (2003)

19. Wood, D.R.: Minimising the number of bends and volume in 3-dimensional orthog-
onal graph drawings with a diagonal vertex layout. Algorithmica 39(3), 235–253
(2004)

https://doi.org/10.1007/3-540-46632-0_17
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1007/978-3-030-26176-4_18
https://doi.org/10.1137/080741197

Inductive Graph Invariants
and Algorithmic Applications

C. R. Subramanian(B)

The Institute of Mathematical Sciences, HBNI,
CIT Campus, Taramani, Chennai 600113, India

crs@imsc.res.in

Abstract. We introduce and study an inductively defined analogue
fIND() of any increasing graph invariant f(). An invariant f() is increas-
ing if f(H) ≤ f(G) whenever H is an induced subgraph of G. This
inductive analogue simultaneously generalizes and unifies known notions
like degeneracy, inductive independence number, etc into a single generic
notion. For any given increasing f(), this gets us several new invariants
and many of which are also increasing. It is also shown that fIND() is the
minimum (over all orderings) of a value associated with each ordering.

We also explore the possibility of computing fIND() (and a correspond-
ing optimal vertex ordering) and identify some pairs (C, f()) for which
fIND() can be computed efficiently for members of C. In particular, it
includes graphs of bounded fIND() values. Some specific examples (like
the class of chordal graphs) have already been studied extensively.

We further extend this new notion by (i) allowing vertex weighted
graphs, (ii) allowing f() take to take values from a totally ordered
universe with a minimum and (iii) allowing the consideration of r-
neighborhoods for arbitrary but fixed r ≥ 1. Such a generalization is
employed in designing efficient approximations of some graph optimiza-
tion problems. Precisely, we obtain efficient algorithms (by generalizing
the known algorithm of Ye and Borodin [30] for special cases) for approx-
imating optimal weighted induced P-subgraphs and optimal P-colorings
(for hereditary P’s) within multiplicative factors of (essentially) k and
k/(m−1) respectively, where k denotes the inductive analogue (as defined
in this work) of optimal size of an unweighted induced P-subgraph of
the input and m is the minimum size of a forbidden induced subgraph
of P. Our results generalize the previous result on efficiently approxi-
mating maximum independent sets and minimum colorings on graphs of
bounded inductive independence number, to optimal P-subgraphs and
P-colorings for arbitrary hereditary classes P. As a corollary, it is also
shown that any maximal P-subgraph approximates an optimal solution
within a factor of k+1 for unweighted graphs, where k is maximum size
of any induced P-subgraph in any local neighborhood NG(u).

1 Introduction

We consider only finite, simple and labeled graphs. We consider only classes C
of graphs which are closed under graph isomorphism. That is, if G ∈ C and
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 780–801, 2020.
https://doi.org/10.1007/978-3-030-64843-5_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_53&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_53

Inductive Graph Invariants and Algorithmic Applications 781

if H is isomorphic to G, then we have H ∈ C. A graph invariant f(G) is a
nonnegative real-valued function (or more generally a U-valued function for some
arbitrary universe U endowed with a total order and a minimum 0.) such that
f(G) = f(H) if G and H are isomorphic. An invariant f() is increasing if
f(H) ≤ f(G) whenever H is an induced subgraph of G. For this version of the
paper, f() is assumed to be a real-valued function. For the more detailed journal
version, we will make use of the more general assumption of f() being U-valued.

The minimum and maximum degrees (δ(G), Δ(G)) are two basic and widely
employed graph invariants. The notion of degeneracy d(G) of a graph G is defined
as the minimum k such that G admits a k-degenerate ordering. A k-degenerate
ordering is a linear ordering σ = (u1, . . . , un) of V so that each ui has at most k
neighbors in V σ

i := {uj : j ≥ i}. It was introduced by Szekeres and Wilf in [28]
and it can be seen that δ(G) ≤ d(G) ≤ Δ(G) for any G. It is known that d(G)
can be aribitrarily large compared to δ(G) and can also be arbitrarily small
compared to Δ(G). It is also known [28] that d(G) is efficiently computable
for arbitrary graphs. Also, a d(G)-degenerate ordering of G can be computed
efficiently. A k-degenerate graph is one for which d(G) ≤ k.

Several interesting graph classes admit an universal (applicable to all mem-
bers) upper bound on the value of degeneracy. For example, forests are 1-
degenerate, planar graphs are 5-degenerate, graphs of treewidth tw(G) ≤ k
are k-degenerate, any proper minor-closed family of graphs is of degeneracy at
most c (for some constant c associated with the family) and so on. In gen-
eral, graph classes of bounded degeneracy are of interest both from a theo-
retical and an algorithmic point of view. One reason is that a graph G being
k-degenerate implies that every subset S of V (G) induces a subgraph on at
most k|S| edges. Hence, for bounded values of k, G is “sparse everywhere” (as
described in [16]). This property can be exploited to obtain sharp bounds on
certain invariants as well as in algorithmically realising them. For example, it is
well-known that χ(G) ≤ d(G)+1 and α(G) ≥ n

d(G)+1 for any G, where χ(G) and
α(G) denote respectively the chromatic number and independence number of G.
Both of these bounds are also realisable by simple and efficient algorithms. These
two bounds are respectively much better compared to better known bounds of
χ(G) ≤ Δ(G) + 1 and α(G) ≥ n

Δ+1 , when d(G) is “very small”. However, much
of the published works on coloring and independent set are stated in terms of Δ,
both for positive results (like bounds or algorithms) and also for negative results
(like inapproximability results as in [7,18,31]). In particular, the inapproximabil-
ity results do not hold for special classes of graphs like chordal graphs or perfect
graphs where exact determination of both χ() and α() is efficiently realizable.
Chordal graphs are those which admit an ordering σ = (u1, . . . , un) of V so that
for each i, NG(ui) ∩ V σ

i induces a clique in G. Here, NG(ui) denotes the set of
neighbors of ui in G. Such an ordering is referred to as a perfect elimination
ordering (PEO).

Jamison and Mulder [19] generalize the notion of chordal graphs further to
graphs admitting a k-simplicial elimination ordering. Such an ordering is an
ordering (u1, . . . , un) which satisfies: NG(ui) ∩ V σ

i can be partitioned into at

782 C. R. Subramanian

most k cliques, for each i. k = 1 corresponds to a PEO. They did not, however,
introduce an invariant defined in terms of such orderings. We do this as follows:
For a graph G, define its simplicial number s(G) to be the minimum k such that
G admits a k-simplicial elimination ordering.

Recently, Ye and Borodin [30] generalize the notion of chordal graphs further
in another direction to Gs admitting a k -independence ordering. For such an
ordering σ, one requires, for each i, that α(H) ≤ k where H = G[V σ

i ∩ NG(ui)].
They defined the inductive independence number (denoted by λ(G)) to be the
minimum k ≥ 1 such that G admits a k-independence ordering. It was also
observed that each of the several well-known graph classes like chordal graphs
(λ = 1), graphs of treewidth at most k (λ ≤ k), etc admits a fixed bound on
the value of λ(G) of its members. It was also shown in [30] that, for every fixed
k ≥ 1, there is an efficient algorithm for recognizing if an arbitrary G satisfies
λ(G) ≤ k.

Each of d(G), s(G) and λ(G) are defined inductively (that is, in terms of the
value of an optimal ordering). In Sect. 2, we generalize and unify these notions as
special cases of a more generic notion of inductive analogue of an increasing graph
invariant f(). It is based on defining a local analogue of f() and also introducing
an inductive version fIND(). fIND() is defined to be the minimum (over all linear
orderings of V (G)) of the maximum of a set of inductively defined local values. It
is shown that fIND() is sandwiched between the extremes of the local analogues
just as d(G) is sandwiched between δ(G) and Δ(G). A notion of f -inductive
orderings is introduced and they are shown to be optimal achieving the value
of fIND(). We also obtain an alternate and equivalent definition of fIND(). The
proofs of the claims of this section are provided in Section 8 of the more detailed
version [27]. In Section 9 of [27], we illustrate the generic notion of fIND() with
several specific examples of increasing graph invariants. The examples are meant
to help the reader get an appreciation of how an inductive analogue is defined
and how does it compare with other invariants.

In Sect. 3, we address the computation of fIND() and identify some scenarios
when one can efficiently compute fIND and a f -inductive ordering. As a conse-
quence, one obtains several examples of specific pairs of (C, f()) where efficient
computation of fIND over members of C is guaranteed. Only claims are provided
in this section and the proofs of these claims are provided in Section 10 of [27].

In Sect. 4, we generalize the notion of fIND() further in three directions. First,
we allow our graphs to be vertex weighted. Second, we extend the meaning of
locality to r-distance open neighborhoods (rather than just the subgraph induced
by the neighbors). Thirdly, we allow f() to take values from an arbitrary universe
U endowed with a total order ≤ and also a minimum with respect to ≤. The
first generalization is to extend the notion to weighted graphs, the second is to
address some algorithmic applications of this notion where such an extension is
called for, and the third is to provide a more general scenario where U could be
a set of discrete structures (more general than a set of numerical values). The
results of Sect. 2 have corresponding generalized analogues which are stated in
this section. The complete proofs are provided in Section 11 of [27]. Again such

Inductive Graph Invariants and Algorithmic Applications 783

a 3-fold generalization is needed in some applications like (i) designing efficient
approximation algorithms for some optimization problems (maximum sized P-
subgraphs, minimum P-colorings, etc.) associated with hereditary properties.
A notion of fr-inductive ordering (generalizing f -inductive orderings) is defined
and is shown to be an optimal ordering. We use fr

IND(Gw) to denote the weighted,
r-distance generalization of fIND() invariant. Also presented in this section is an
algorithmic result (Theorem 10 based on Algorithm 1 presented in Section 11 of
[27]) on obtaining an approximation to optimal inductive orderings if only an
approximation to the value of f() can be computed efficiently.

A graph class P is hereditary if H ∈ P whenever G ∈ P and H is an
induced subgraph of G. It is well-known that every hereditary P is such that
P = Free(M) where M is the set of vertex minimal counter examples not in
P and Free(M) is defined as the class of graphs G not containing an induced
isomorphic copy of any H ∈ M . A P-subgraph of G is an induced subgraph H of
G such that H ∈ P. The maximum size (|V (H)|) of such a subgraph is denoted
by αP(G) and is an increasing invariant. A (k,P)-coloring of G is an ordered
partition (V1, . . . , Vk) of V (G) such that G[Vi] ∈ P for each i. The minimum
k ≥ 1 such that G admits a (k,P)-coloring is known as its P-chromatic number
and is denoted by χP(G). When P is the class of edgeless graphs, a P-subgraph
is an independent in G and a (k,P)-coloring is a proper k-coloring of G. See [25],
for a collection of upper bounds on χP(G) and list P-chromatic number chP(G).
For a fixed k ≥ 1, when we allow G[Vi] ∈ Pi for each 1 ≤ i ≤ k, we obtain a
(P1, . . . ,Pk)-coloring of G. Each Pi is a hereditary property. See [1,4,8,13,20]
for motivation and for some studies on theoretical and computational aspects of
this notion.

Consider the problem (MPS) of computing, given a Gw, an optimal P-
subgraph. Approximating optimal P-subgraphs have been studied before. Hall-
dorsson [16] presents an algorithm for producing an approximation within a
factor of O

(
n(log log n/ log n)2

)
for arbitrary graphs, provided P fails to con-

tain some clique or some independent set. Halldorsson and Lau [17] present a
�(Δ + 1)/3�-approximation of optimal P-subgraphs. Nishizeki and Chiba [23]
present a PTAS for planar graphs provided P is hereditary and is such that: for
each G, G ∈ P if each connected component of G is in P. Chen [10] extends this
to PTAS for planar graphs for every hereditary P. On the negative side, Lund
and Yannakakis [22] establish that optimal P-subgraphs are not approximable
within a factor of |V |ε (for some ε = ε(P)) for arbitrary graphs unless P = NP ,
if P fails to contain some clique or independent set.

In Sect. 5, we establish the existence, for every P : P = Free(M) for some
finite M , of an algorithm (Algorithm 2 of [27]) for computing an approximation
to maximum weighted P-subgraph of a given vertex weighted graph Gw. The
maximum weight of a P-subgraph is denoted by αP(Gw). We also show (see
Theorem 11) that Algorithm 2 is an efficient one and obtains a (fd

IND(G) + 1)-
approximation to an optimal P-subgraph, provided a fd-inductive ordering is
either efficiently computable or is available as part of the input. Here, d is the
maximum diameter of any H ∈ M and f() = αP(). Here, αP(G) is with respect

784 C. R. Subramanian

to the unweighted graph G. For every fixed B ≥ 0, it is shown that there is an
efficient algorithm to determine if (αP)d

IND(G) ≤ B or not and if so, also to com-
pute a (αP)d-inductive ordering of G. Thus, for unweighted graphs of bounded
(αP)d

IND()values, we obtain an efficiently computable O(1) -approximation for the
optimal P -subgraph of its weighted version. The algorithm is conceptually very
simple and can be thought of as a generalization of a similar algorithm (based
on the well-known Push-and-Pop paradigm) obtained in [3] and re-presented in
[30] for maximum weighted independent sets. The algorithm of [30] obtains a
(λ(G) + 1)-approximation. When P is such that M is not finite, we employ a
stronger assumption on the availability of an efficient algorithm which, given
(G, u), determines if u is part of an induced isomorphic copy (in G) of some
H ∈ M . This assumption is stronger than and implies the efficient testability of
P-membership. The notion of fr

IND(G) plays an important role in the design and
analysis of Algorithm 2. For the unweighted case, Algorithm 2 admits a simpler
and natural formulation Algorithm 3 (see [27]) and we provide a simpler analysis
in Theorem 12.

In Subsect. 5.1, we establish the existence of an algorithm (Algorithm 4 of
[27]) which is an approximation algorithm for the problem (MkPColPS) of
computing, given a weighted Gw and a k ≥ 1, a maximum weighted (k,P)-
colorable induced subgraph. This problem is a generalization of computing a
maximum weighted induced P-subgraph, which corresponds to the case k =
1. Algorithmic study of k = 2 has been done before. See, for example, the
work of Addario-Berry, et al [2] which presents a polynomial time algorithm
for computing a maximum weight induced k-colorable (k fixed but arbitrary)
subgraph over i-triangulaged graphs, a subclass of perfect graphs. It is also
shown by the same authors that this problem (even for k = 2) is NP-hard over
the class of clique-separable graphs, also a subclass of perfect graphs. See also
in this work a few references for practical applications of this problem like VLSI
board design [11,14], genome research [21]. See also the works of [29] for exactly
computing an optimal induced k-colorable subgraph over chordal graphs (for
fixed values of k) and [9] for 2-approximating an optimal solution over chordal
graphs (for arbitrary k).

Algorithm 4, given a Gw, k and also a (αP)d-inductive ordering of G, pro-
duces a solution whose total weight approximates the optimal solution within
a multiplicative factor of (αP)d

IND(G) + 1. In particular, for every k ≥ 1, this
algorithm produces a (k + 1)-approximation of an optimal solution, for graphs
having (αP)d

IND ≤ k. This algorithm is a generalization of Algorithm 2 with a
similar analysis. This result is presented as Theorem 13. This result is a gen-
eralization of a similar result on approximating a maximum weighted induced
k-colorable (standard coloring with k fixed) subgraph presented in [30].

In Subsect. 5.2, we establish the existence of an approximation algorithm
(Algorithm 5 of [27]) for the problem (MP1PkColPS) of computing (for fixed
P1, . . . ,Pk), given a Gw and an ordering σ, a maximum weight (P1, . . . ,Pk)-
colorable induced subgraph, a problem which is a natural generalization of the
MkColPS problem. This algorithm is the same as Algorithm 4 except that for

Inductive Graph Invariants and Algorithmic Applications 785

each i, it makes sure that the i-th component of its output (V1, . . . , Vk) is such
that G[Vi] ∈ Pi. For an appropriately defined inductive ordering (explained
later), the approximation factor is (max{αPi

}i)d
IND(Gw) + 1. Here, d is the

maximum diameter of any element in ∪iMi where Pi = Free(Mi) for each
i = 1, . . . , k. This result is presented as Theorem 14.

In Sect. 6, we study efficient approximation of minimum P-colorings for some
special classes of graphs. Achlioptas [1] established that deciding, given a G, if
χP(G) ≤ k is NP-complete for every fixed k ≥ 2 and for every P = Free({H})
where H is any graph on 3 or more vertices. Hence, even deciding the (2,P)-
colorability of arbitrary graphs is NP-complete except for the special cases of
P = Free({K2}) or P = Free({K2}). For the specific case of standard coloring,
it is known by the result of Zuckermann [31] that it is NP-hard to approximate
χ(G) of arbitrary graphs within a factor of n1−ε, for every ε > 0. We suspect
that similar inapproximability results can be established for several other types
of P-colorings, even though we are not aware of any specific published work along
these lines. However, we establish (see Theorem 15) that a simple and natural
heuristic algorithm (Algorithm 6 of [27]) approximates a minimum P-coloring
in the sense that it uses a number of colors which is within a multiplicative
factor of (essentially) (αP)d

IND(G)/(m − 1) from the optimal value χP(G). The
meaning of d is as before and m = m(M) = min{|V (H)| : H ∈ M}. As before,
we assume that a (αP)d-inductive ordering is either efficiently computable or is
available as part of the input. Hence, for graphs of bounded (αP)d

IND() values,
Algorithm 6 computes an O(1)-approximation for minimum P-coloring. This
result is a generalization of a similar algorithmic result on approximating optimal
(usual proper) colorings on graphs of bounded inductive independence number
presented in [30].

In our opinion, this generalization highlights why the notions of fr
IND() and

fr-inductive orderings are important and deserve to be studied further not only
for their graph theoretical implications but also for their algorithmic implica-
tions. In Sect. 7, we conclude with some remarks and observations.

Outline: In Sects. 1 through 7, we present all new notions, their theoretical
and algorithmic aspects including their applications to the design of efficient
approximation algorithms. In Sects. 8 through 13 of the more detailed version of
this paper [27], we present complete proofs, algorithms, their analyses and also
examples for the benefit of the reader. Throughout, whenever we refer to one of
Sects. 8 through 13, it refers to that section in [27].

A further study of inductive invariants over various graph classes may pos-
sibly lead to identification of new graph classes where one can solve exactly
or approximately several NP-hard graph optimization problems. Identification
of graph classes where one can improve the best-known approximation results
for hard problems has always been an active area of research and our results
(alongwith earlier ones) point to a new direction in this regard.

786 C. R. Subramanian

2 Inductive Versions of Graph Invariants for Unweighted
Graphs

Given G = (V,E) and H = (U,F), we say that H is a vertex induced (shortly
induced) subgraph of G if U ⊆ V and F = {{u, v} ∈ E | u, v ∈ U}. We use
H = G[U] to denote this fact. A graph class C is hereditary if H ∈ C for every
(G,H) such that G ∈ C and H is an induced subgraph of G. Let G denote the
class of all labeled graphs and R+ denote the set of all nonnegative reals. A graph
invariant is a function f : G → R+ such that f(G) = f(H) whenever G and H
are isomorphic. We call a graph invariant f(G) increasing if f(H) ≤ f(G) for
every (G,H) such that H is an induced subgraph of G. For the sake of simplicity
of description, we extend f(G) to the graph G = (V,E) where V = E = ∅ also
and define f(G) = 0 in this case.

Notational Assumptions:

1. For reasons of notational simplicity and since all graphs (that are going to be
considered in the proof arguments) are induced subgraphs of some fixed but
arbitrary G, we will only use f(U) to denote f(G[U]) for every G = (V,E)
and U ⊆ V , whenever G is clear from the context.

2. For a linear ordering σ = (u1, . . . , un) of V and for any j, define V σ
j =

{uj , uj+1, . . . , un} and Gσ
j = G[V σ

j]. Sometimes, we find it convenient to use
uj instead of j in the arguments to obtain a better comprehension. Hence,
we also use V σ

u to denote the set {v | u <σ v} ∪ {u}. Here, we use u <σ v to
denote the fact that σ−1(u) < σ−1(v). Define Gσ

u = G[V σ
u].

For any increasing invariant f(G), we introduce three new invariants defined as
follows (with G = (V,E) and |V | = n):

Definition 1. Given an increasing graph invaraint f(G), define fl(G), fL(G)
and fIND(G) as below:

fl(G) = min{f(NG(u)) | u ∈ V }
fL(G) = max{f(NG(u)) | u ∈ V }

fIND(G) = min
σ=(u1,...,un)

max
j

f(NGσ
j
(uj)) = min

σ:[n]→V
Mσ.

Here, for a linear ordering σ over V , we use Mσ = Mσ(f,G) to denote the
quantity maxj f(NGσ

j
(uj)).

We skip the proofs of the following propositions in this section and they are
presented in Section 8 of [27].

Claim. Each of fl(), fL() and fIND() is a graph invariant, for any invariant f().

We say that an ordering σ = (u1, . . . , un) is a f-inductive ordering if for each j,
uj is a vertex for which f(NGσ

j
(uj)) = fl(V σ

j). It turns out that such orderings
are optimal orderings achieving the minimum in the definition of fIND(G). An
ordering σ is an optimal ordering if Mσ = fIND(G).

Inductive Graph Invariants and Algorithmic Applications 787

Lemma 1. For any increasing f(G), every f-inductive ordering is an optimal
ordering.

As a consequence, it follows that

Theorem 1. For any increasing graph invariant f(G), we have

fIND(G) = max
U⊆V

fl(U).

Moreover, there is a unique maximal set U achieving the maximum.

Corollary 1. For any increasing invariant f(), each of fL() and fIND() is an
increasing invariant.

Remark: fl() is not necessarily an increasing variant even if f() is an increasing
invariant. For example, let f(G) = |V (G)|, an increasing invariant. Then, fIND()
is the same as the degeneracy of G and fL(G) is the same as Δ(G), both are
increasing invariants. But fl(G) is the same as δ(G) which is not an increasing
invariant.

Theorem 2. For any increasing invariant f(G) and for any graph G, we have

fl(G) ≤ fIND(G) ≤ fL(G).

Theorem 3. Let f, g be increasing graph invariants such that f(G) ≤ g(G) for
every G. Then,

(i)fl(G) ≤ gl(G) ; (ii)fL(G) ≤ gL(G) ; (iii)fIND(G) ≤ gIND(G)

for every G.

For a set of concrete examples illustrating the meanings of fl(), fIND(), fL() for
various increasing f()’s, we refer the reader to Section 9 of [27].

3 On the Computation of fIND(G)

A natural algorithmic question that arises in this context is: how efficiently
one can achieve local computation of f(G)? Stated more precisely: for a fixed
hereditary C and an increasing f(), does there exists an efficient algorithm which,
given G ∈ C and u ∈ V (G), computes f(NG(u)). The reason one wants to address
this question is that an efficient computation of f(NG(u)) leads to an efficient
computation fIND(G) and also to efficiently compute a f -inductive ordering of
G, as shown below.

It should be noted (also mentioned in [26]) that efficient local computation
is more of a paradigm of identifying and exploiting graph classes with special
structures than an algorithmic one. As for as the complexity of local computation
for arbitrary graphs is concerned, it is no better than computing f(G). This is
because computing f(G) (for an arbitrary G) can be reduced to computing

788 C. R. Subramanian

f(NH(u)) where H is the graph obtained from G by adding a new universal
vertex u. Hence, if there are inapproximability results like that of Hastad [18] (or
Zuckermann [31]) which states that there is no efficient algorithm to approximate
α(G) for an arbitrary G within a multiplicative factor of n1−ε unless NP = ZPP
(or P = NP), for any ε > 0), they carry over to the local computation over
arbitrary graphs also. Hence, one needs to focus on identifying special classes of
graphs where efficient local computation of f is possible.

In this section, we identify some scenarios where efficient computation of a
f -inductive ordering is possible over a class C. The following theorem identifies
one such scenario. The proof is provided in Section 10 of [27].

Theorem 4. Let f(G) be an increasing invariant and let C be any hereditary
class of graphs for which f(G) is efficiently locally computable. Then, there is
an efficient algorithm which, given an arbitrary G ∈ C, computes fIND(G) and
also computes a f-inductive (and hence an optimal) ordering σ (over V (G))
achieving fIND(G).

Examples of Applications: (i) If C denotes the class of 3-colorable graphs,
then λ(G) = αIND(G) and an α-inductive ordering can be computed effi-
ciently over C. (ii) If C denotes the class of locally bounded treewidth (that
is, tw(G[N(u)]) ≤ B for every u, for some fixed B) graphs, then each of λ(G),
ωIND(G) and χIND(G) can be efficiently computed over C.

Graphs of bounded fIND() value can also be recognized efficiently under
assumptions. These are presented below. Before that, we note that the for any
graph invariant f(), the set {f(G)}G is either finite or a countable set, since
there are only countably many (upto isomorphism) finite graphs. We also make
use of the following assumption that will be useful.

Assumption (X): f is increasing and for any fixed c ≥ 0, Nf (c) = |{x | x ≤
c, x = f(G) for some G}| is finite. Also, there is an efficient oracle Of which,
given c, computes not only Nf (c) but also the distinct values which are at most
c and which are achieved by f(G) for some G.

Examples of invaraints satisfying Assumption (X) are nonnegative integer
valued functions like chromatic number, independence number, clique number,
etc. Many of the well-known graph invariants that are widely studied fall into
this category. The proof of the following result is provided in Section 10 of [27].

Theorem 5. Let f(G) be any increasing invariant satisfying Assumption (X).
Let C be any hereditary class of graphs. Suppose, for every fixed B ≥ 0, there
is an efficient algorithm AB,f () for testing, given G ∈ C and u ∈ V (G), if
f(NG(u)) ≤ B. Then, for every fixed B, there is an efficient algorithm AindB,f ()
for testing, given G ∈ C, if fIND(G) ≤ B and also for computing a f-inductive
ordering achieving fIND(G) provided fIND(G) ≤ B.

Remarks: When f() = α(), we obtain the algorithmic result of [30] as a special
case of the above theorem. There are a number of NP-hard-to-compute parame-
ters like ω() (maximum clique size), ν() (minimum size vertex cover) and dom()

Inductive Graph Invariants and Algorithmic Applications 789

(domination number), for each of which fIND() can be computed efficiently for
an arbitrary graph, by applying the above result. However, one cannot infer
efficient computation of χIND() for arbitrary graphs from the above result since
{(G, u) : χ(NG(u)) ≤ k} is NP-complete for every fixed k ≥ 3. For every k, a
simple polynomial time computable reduction φ(G) = (H,u) (H is G plus a new
universal vertex u adjacent to every v ∈ V (G)) from k-colorability instances,
establishes the NP-completeness.

For k ≥ 0, define Dk = {G : d(G) ≤ k}. Since Dk (for fixed k) is a hereditary
class, the following theorem follows from Theorem 5. The proof is provided in
Section 10 of [27].

Theorem 6. Let k ≥ 0 be any fixed integer. Let f() be any increasing invariant
satisfying (X). Then,

(i) fIND(G) ≤ Bk for each G ∈ Dk, for some constant Bk.
(ii) Suppose that for every B ≤ Bk, there exists an efficient algorithm AB,f ()

for testing, given G ∈ Dk and u ∈ V , if f(NG(u)) ≤ B. Then, there is an
efficient algorithm for computing, given G ∈ Dk, the value of fIND(G) and
also a f-inductive ordering of G.

Remarks: It follows that fIND() is bounded for every graph class of bounded
degeneracy, for every increasing f satisfying (X) even if it is not necessarily
efficiently computable. In particular, each of χIND(), αIND(), ωIND(), νIND() and
domIND() is is bounded for graphs of bounded degeneracy. This is not true
for arbitrary graphs. In this context, we recall that every proper minor-closed
graph class is a class of bounded degeneracy. Also, since D4 includes 4-regular
planar graphs, testing 3-colorability over D4 is NP-complete [12,15]. This, in
turn, implies that testing, given a G ∈ D5 and u ∈ V , if χ(NG(u)) ≤ 3 is NP-
complete. Hence, one cannot infer efficient computation of χIND() over D5 from
Theorem 6. However, efficient computation of χIND over planar graphs (⊆ D5)
is feasible as Corollary 3 below shows.

As an illustration of an application of the above theorem, we obtain the
following corollaries. For any fixed k ≥ 0, let Ck denote the class {G : tw(G) ≤
k}. The next corollary is proved in Section 10 of [27].

Corollary 2. Let k ≥ 0 be any fixed integer and let f be an increasing invariant
satisfying the assumptions of Theorem6 with Dk replaced by Ck. Then, there is
an efficient algorithm for computing, given G ∈ Ck, the value of fIND(G) and
also a f-inductive ordering of G.

Remarks: For each choice of f ∈ {χ, ω, α, ν, dom}, it is known that efficient
computation of f(G) or f(NG(u)) (given G ∈ Ck, u ∈ V (G)) is possible for
every fixed k. By Corollary 2, this implies efficient computation of fIND(G) for
G ∈ Ck.

Corollary 3. For f() = χ(), there is an efficient algorithm for computing
fIND(G) and also an appropriate f-inductive ordering, over planar graphs.

790 C. R. Subramanian

Proof. Let f() = χ(). It follows (from the famous Four-Color theorem of Appel
and Haken [5,6]) that χIND(G) ≤ 4 for planar graphs. It can be seen that NG(u)
induces an outerplanar graph for a planar G and u ∈ V . Also, a χ(G)-coloring
can be efficiently computed for outerplanar graphs as shown in [24]. Combining
all of these and applying Theorem5, we deduce that χIND() and a χ-inductive
ordering are efficiently computable for planar graphs. �

4 r-Distance Inductive Invariants for Weighted Graphs

In Sect. 2, fIND(G) ∈ R+ was defined for unweighted graphs using only the
immediate neighborhood, that is, N(u). We generalize this notion further in
three different directions.

1. Let W be any fixed set. We consider weighted1 graphs Gw where G = (V,E)
and w : V → W is an arbitrary function. Gw1 is isomorphic to Hw2 if there
exists a weight-preserving isomorphism from G to H, that is an isomorphism
φ which also satisfies w2(φ(u)) = w1(u) for each u ∈ V (G). A graph invariant
f(Gw) is any function such that f(Gw1) = f(Hw2) whenever Gw1 and Hw2

are isomorphic. A graph Gw1 is an induced subgraph of Hw2 if (i) G is an
induced subgraph of H, (ii) w1(u) = w2(u) for each u ∈ V (G).

2. We employ the more general r-distance neighborhoods to define our notions.
For r ≥ 0, define Nr

G(u) = {v : v �= u, dist(u, v) ≤ r} is the open r-
neighborhood of u in G. As usual, we omit the subscript G whenever it
is clear from the context. We also omit the weight function w() if it can be
inferred from the context. If G is not connected, define N∞(u) = {v : v �=
u, dist(u, v) ≤ ∞} = V \ {u}. Note that N0(u) = ∅ for every u.

3. We allow f be a U-valued function. Here, U is any universe endowed with
a total order ≤ and also a minimum denoted by 0. For the trivial graph
G = (∅, ∅), we define f(Gw) to be 0. f() is increasing if f(Gw1) ≤ f(Hw2)
whenever Gw1 is an induced subgraph of Hw2 .

Notations:

1. For a given Gw where G = (V,E) and U ⊆ V , we define the subgraph of Gw

induced by U (denoted by Gw[U]) to be G[U]w1 where w1 : U → W satisfies
w1(u) = w(u) for each u ∈ V . We often omit w and simply write G[U] since
w1 is uniquely inferred for induced subgraphs.

2. For a linear ordering σ = (u1, . . . , un) of V (G) and for any j, define V σ
j =

{uj , uj+1, . . . , un} and Gσ
j = G[V σ

j]. Sometimes, we find it convenient to use
uj instead of j in the arguments to obtain better comprehension. Hence, we
also use V σ

u to denote the set {v | u <σ v} ∪ {u}. Here, we use u <σ v to
denote the fact that σ−1(u) < σ−1(v). Define Gσ

u = G[V σ
u].

1 Even though we use the phrase weights for the sake of easy description of algorithmic
applications where the weights are real values, we actually use “weight” to denote
any labeling of vertices with elements from W. Again, this labeling is in addition to
the pairwise distinct labels that vertices already receive as parts of labeled graphs
we consider.

Inductive Graph Invariants and Algorithmic Applications 791

3. For reasons of notational simplicity and since all graphs (that are going to
be considered in the proof arguments) are induced subgraphs of some fixed
but arbitrary graph G, we will only use f(U) to denote f(Gw[U]) for every
U ⊆ V (G), whenever the graph Gw is clear from the context.

4. In particular, for an induced subgraph H of G and a u ∈ V (H), we use
f(Nr

H(u)) to denote f(Gw[Nr
H(u)]).

For every r ∈ P∞ (where P∞ := P∪{∞} and P is the set of positive integers)
and for every increasing invariant f(), define the r-distance inductive analogues
of f() as follows:

Definition 2. Given an increasing graph invaraint f(Gw), define fr
l (Gw),

fr
L(Gw) and fr

IND(Gw) as below:

fr
l (Gw) = min{f(Nr

G(u)) | u ∈ V (G)}
fr

L(Gw) = max{f(Nr
G(u)) | u ∈ V (G)}

fr
IND(Gw) = min

σ=(u1,...,un)
max

j
f(Nr

Gσ
j
(uj)) = min

σ:[n]→V
Mr

σ .

The meanings and assumptions are as before in Definition 1 except that we
employ open r-distance neighborhoods instead of open immediate neighborhoods.

By specializing r = 1, W = ∅, U = R+, the three notions fr
l (), fr

L() and
fr
IND() specialize respectively to the three notions of fl(), fL() and fIND() for

unweighted graphs. Invariants of unweighted graphs are not the same as invari-
ants of weighted graphs with constant weight function, since the invariant may
depend on the actual value of the uniform weight. We skip the proof of the
following claim.

Claim. Each of fr
l (), fr

L() and fr
IND() is a graph invariant, for any invariant f().

We say that an ordering σ = (u1, . . . , un) is a fr-inductive ordering if for
each j, uj is a vertex for which f(Nr

Gσ
j
(uj)) = fr

l ((Gσ
j)w). It will be shown that

such orderings are optimal orderings achieving the minimum in the definition
of fr

IND(Gw). We have the following generalizations of Lemma1, Theorem 1,
Corollary 1, Theorems 2 and 3 whose proofs are generalizations of those of cor-
responding results for the special case of r = 1 (outlined in Sect. 2). Full proofs
are presented in Section 11 of [27].

Lemma 2. For every r ∈ P∞ and for any increasing f , every fr-inductive
ordering is an optimal ordering.

As a consequence, it follows that

Theorem 7. For any r ∈ P∞ and for any increasing graph invariant f(Gw),
we have

fr
IND(Gw) = max

U⊆V
fr

l (U).

Moreover, there is a unique maximal set U achieving the maximum.

792 C. R. Subramanian

Corollary 4. For any r ∈ P∞ and for any increasing invariant f(), each of
fr

L() and fr
IND() is increasing.

Theorem 8. For any r ∈ P∞ and for any increasing invariant f(Gw) and for
any graph Gw, we have

fr
l (Gw) ≤ fr

IND(Gw) ≤ fr
L(Gw).

Theorem 9. Let f, g be increasing graph invariants such that f(Gw) ≤ g(Gw)
for every Gw. Then, for every Gw,

(a) for every r ∈ P ∪ {∞}: (i) fr
l (Gw) ≤ gr

l (Gw) ; (ii) fr
L(Gw) ≤

gr
L(Gw) ; (iii) fr

IND(Gw) ≤ gr
IND(Gw).

(b) for every r1 ≤ r2: (i) fr1
l (Gw) ≤ fr2

l (Gw) ; (ii) fr1
L (Gw) ≤

fr2
L (Gw) ; (iii) fr1

IND(Gw) ≤ fr2
IND(Gw).

An immediate consequence is the following corollary.

Corollary 5. Let f, g be nonnegative real valued and increasing invariants.
Then, for every r1, r2 ∈ P ∪ {∞} and for every Gw, we have:

fr1
IND(Gw), gr2

IND(Gw) ≤ (f + g)r
IND(Gw) ; fr1

IND(Gw), gr2
IND(Gw) ≤ (max(f, g))r

IND(Gw)

where r = max{r1, r2}.
Often the function f() is real-valued and happens to be NP-hard to compute
exactly and only an approximation algorithm is available. In such cases, one
needs to efficiently compute an approximation to fr-inductive orderings. The
following result establishes that it is indeed possible. For the rest of the paper,
by a guarantee function, we mean a nonnegatively real-valued function ρ(n) ≥ 1
which is increasing, that is, ρ(n) ≤ ρ(n + 1). Here, n = |V (G)|. If there exists
an efficient algorithm A which, given a Gw, computes a value A(Gw) satisfying
f(Gw) ≤ A(Gw) ≤ f(Gw) · ρ(n) for each G with |V (G)| = n, then we say that
f is efficiently approximable (from above) within a factor of ρ(n). Note that
we demand approximation (from above) even for invariants (like independence
number of a graph) which is a maximum-type invariant. The estimate A(G) need
not correspond to the value of any solution since it may exceed the maximum
value f(G) of any solution. The proof of this theorem is provided in Section 11
of [27].

Theorem 10. Let ρ() be a guarantee function. Let f be efficiently approximable
(from above by an algorithm A) within a factor of ρ(n). Then, there is an efficient
algorithm (Algorithm 1 of [27]) which, given a Gw, computes an ordering σ of
V that approximates a fr-inductive ordering within a factor of ρ(n). That is,
Mr

σ ≤ fr
IND(Gw) · ρ(n) for every Gw on n vertices.

Examples: As an illustrative application, consider the following example: (i)
graphs of bounded degeneracy: As we noticed earlier, testing, given G ∈ Dk and
u ∈ V , if χ(NG(u)) ≤ 3 is NP-complete, for each k ≥ 5. Hence, we do not yet
know if χIND can be computed efficiently over Dk. However, χ(NG(u)) ≤ k for
each G ∈ Dk. Also, a k-coloring of NG(u) can be efficiently computed. Hence,
any ordering σ satisfies Mσ ≤ k for each Dk.

Inductive Graph Invariants and Algorithmic Applications 793

5 Approximation of Optimal P-Subgraphs

In this section, we show how to apply the inductive invariant notions to obtain
approximation algorithms (with proven guarantees on their performance ratios)
for maximum size induced P-subgraph problems (for hereditary P), on graphs of
bounded fIND() values for some suitable f(). We study both (vertex) weighted
and unweighted versions. Recall that a class P is hereditary if H ∈ P for every
(G,H) such that G ∈ P and H is an induced subgraph of G. Recall that a class
P is hereditary if and only if there exists a M such that P = Free(M) where
M is the class of vertex minimal counter examples not in P . Free(M) is defined
as the class of graphs G such that G has no isomorphic copy of any H ∈ M as
an induced subgraph.

Assumption (Y): Without loss of generality, we can assume that members of
M satisfy the following:

(1) For each H ∈ M with |V (H)| = n, V (H) = [n] = {1, 2, . . . , n}.
(2) For every H1,H2 ∈ M,H1 �= H2, we have H1 �≡ H2. This means that M

contains at most one graph (upto isomorphism) from each equivalence class
of the equivalence relation defined by ≡.

(3) For every H1,H2 ∈ M,H1 �= H2, neither of them is an induced subgraph of
the other.

In what follows, we focus on those properties P for which efficient recognition of
membership in P is possible. Examples of such a P are planar graphs, bipartite
graphs, Free(M) for every finite M . A P-subgraph of G is an induced subgraph
H of G satisfying H ∈ P. Its size is is

∑
u∈V (H) wu where w : V (G) → R+ is the

weight function. We use αP(Gw) to denote the maximum size of a P-subgraph
H of Gw. We often omit mentioning w for the special case of unweighted graphs:
w(u) = 1 for each u. We refer to any such H as an optimal P-subgraph of Gw.
We also use the notation αM (Gw) often in place of αP(Gw). For the special case
of M = {K2}, αM (Gw) is the same as α(Gw) for any G. We refer to the problem
of finding an optimal P-subgraph as the Maximum P-Subgraph (MPS) problem.
Note that αM (Gw) is an increasing graph invariant.

Below, we present a result on approximating the MPS problem on weighted
graphs. The result (Theorem 11) presents Algorithm 2 (presented in Section 12
of [27]) for approximating an optimal P-subgraph. The proof of the theorem is
presented in Section 12 of [27].

Theorem 11. Suppose that P = Free(M) is such that (i) M is finite (hence,
P-membership is efficiently testable), (ii) diam(H) ≤ d for each H ∈ M , for
some fixed d. Then, there is an efficient algorithm (Algorithm 2) which, for a
given Gw and a vertex ordering σ, produces a P-subgraph whose total weight is
within a factor of at most Md

σ + 1 from the weight of an optimal solution.

Note: (i) Recall that Md
σ denotes maxj f(Nd

Gσ
j
(uj)). For both weighted and

unweighted cases, the same f() = αM () (corresponding to the unweighted graph)

794 C. R. Subramanian

is used in determining Mσ. Thus, even if the result is meant for weighted case, its
approximation factor is bounded by a quantity associated with the unweighted
graph. (ii) For the case of P = independent sets (or M = {K2}), the approxi-
mation factor is M1

σ . This can be noticed by a careful perusal of the analysis of
the algorithm.

Remark: The Assumption (i) (M being finite) can be replaced by the following
weaker assumption: there is an efficient algorithm which, given (G, u, v) (u = v
possibly), determines if there exists some T ⊆ V such that (a) u, v ∈ T , (b)
G[T] ≡ H for some H ∈ M . This assumption also implies that P-membership is
efficiently testable. The assumption that M is finite implies this weaker assump-
tion.

We have Md
σ ≤ (αM)d

L(G) for every σ. Also, for every fixed B ≥ 0, an
application of Theorem5 shows that there is an efficient algorithm to determine
if (αP)d

IND(G) ≤ B or not and if so, also to compute a (αP)d-inductive ordering
of G. Hence, the following corollary is obtained.

Corollary 6. Let P, M and d be as assumed in Theorem11. The following hold:

(1) A (αM)d
L(G) + 1-approximation of a maximum weight P-subgraph can be

efficiently obtained for an arbitrary Gw.
(2) Given a (αM)d-inductive ordering σ of V , Algorithm 2 produces a

(αM)d
IND(G) + 1-approximation of maximum weight P-subgraph of Gw.

(3) For every B ≥ 0, there is an efficient algorithm to recognize graphs with
k = (αP)d

IND(G) ≤ B and also to find a (k + 1)-approximation of optimal
P-subgraphs of a weighted graph Gw.

To illustrate the kind of consequences one can derive further, we specialise as
follows: Let P = Free(Kr) be the class of Kr-free graphs, for some r ≥ 3. We
have d = 1. When r = 2, a Kr-free induced subgraph is an independent set
and it is known that optimal independent sets can be efficiently computed over
chordal graphs. Hence we focus on r ≥ 3 and obtain that

Corollary 7. For each r ≥ 3, there is an efficient algorithm which obtains a
r-approximation to a maximum weight induced Kr-free subgraph in a weighted
chordal graph.

Proof. Let σ be any PEO of a chordal G. It follows that (αP)IND(G) ≤ Mσ ≤
r − 1. Applying Theorem11, we deduce the claim. �

Remarks: For every k ≥ 1, a chordal G is k-colorable if and only if G ∈
Free(Kk+1). Hence, the previous corollary leads us to a (k + 1)-approximation
of optimal k-colorable induced subgraphs of chordal graphs. However, this obser-
vation is only to illustrate Theorem 11 and it is to be noted (as explained in the
following subsection) that even a 2-approximation (for even varying k) is possible
for chordal graphs.

Unweighted Case: For this case, wu = 1 for each u. As a result, the set S
computed by the Push Phase of Algorithm 2 itself induces a P-subgraph and

Inductive Graph Invariants and Algorithmic Applications 795

hence the Pop Phase is not executed further. In other words, the algorithm gets
simplified as Algorithm 3 (presented in Section 12 of [27]). Also, Assumption (i)
of Theorem 11 can be replaced by the weaker assumption of: P-membership is
efficiently testable. We thus obtain the following unweighted analogue of Theo-
rem 11. The unweighted case admits a simpler proof and is presented in Section 12
of [27] for the sake of completeness.

Theorem 12. Suppose P = Free(M) is such that diam(H) ≤ d for each H ∈
M , for some fixed d. Suppose also that P-membership is efficiently testable.
Then, for any ordering σ of V (G), the maximal P-subgraph built (by Algorithm
3) using σ is of size within a multiplicative factor Md

σ + 1 from the optimum.

When M = {K2}, the approximation factor is M1
σ . Since Md

σ ≤ (αM)d
L(G) for

every σ, the following interesting graph theoretical observation is obtained.

Corollary 8. Let P, M and d be as assumed in Theorem12. Then, for any G,
every maximal P-subgraph of G is of size within a factor of (αM)d

L(G) + 1 from
an optimal solution.

Hence, for graphs where every local neighborhood N(u) can have at most O(1)-
sized induced P-subgraphs, one can approximate optimal P-subgraphs within
an O(1) multiplicative factor by any maximal solution. In particular, for every
k ≥ 1, the optimal independent set is approximable by any maximal independent
set within a factor of k, for graphs where every local neighborhood can only have
an independent set of size at most k.

5.1 Approximation of Maximum Induced (k,P)-Colorable
Subgraphs

In this subsection, we focus on a related graph optimization problem and design-
ing approximation algorithms for it based on the inductive ordering approach
outlined before. For a hereditary P and an integer k ≥ 1, the class Pk = {G :
χP(G) ≤ k} is a hereditary property. Consider the problem (MkColPS) of
computing, given a Gw, a maximum weighted induced subgraph H of G such
that H is (k,P)-colorable. This is an optimization problem well-defined for every
hereditary P and k ≥ 1. When k = 1, this specializes to the maximum induced
P-subgraph problem discussed above. When P = Free({K2}), this problem
specializes to the maximum induced k-colorable (standard coloring) subgraph
problem.

Since Pk is hereditary, it follows that MKColPS problem is the same as MPS
problem discussed before (with respect to Pk). Hence, we are essentially aiming
to compute an approximation to a αPk

(Gw)-sized Pk-subgraph of Gw. From an
application of Theorem11, it follows that MkColPS is approximable within a
multiplicative factor of (αPk

)d
IND(G)+1, provided a (αPk

)d
IND-inductive ordering

is available as part of the input. Here, d = d(Mk) = max{diam(H) : H ∈ Mk}
where Mk is defined by Pk = Free(Mk).

While this approach works, it is fraught with two shortcomings compared to
another approach that is presented in this subsection. The first one is: d = d(M)

796 C. R. Subramanian

can become large (even unbounded) when we go from P to Pk. An example
illustrating drawback is: P = Free({K2}) and k = 2. P2 is the class of all
2-colorable graphs. Here, αP() = α() and αP2() is the maximum size of an
induced 2-colorable subgraph. Also, d = 1 for P but d = ∞ for P2 since there
are 3-color-critical graphs of arbitrarily large diameter.

The second shortcoming is: it is possible for a class of graphs that αd
IND() is

bounded while (αPk
)d
IND() is unbounded for this class. Here, d represents d(M)

for the appropriate family P or Pk. The previous example (M = {K2} and k = 2)
illustrates this again. αIND() ≤ 5 for planar graphs. However, (αP2)

∞
IND(G) ≥

minu∈V αP2(G\{u}) ≥ n
2 for several infinite families of planar graphs like paths

({Pn}n), cycles ({Cn}n) and wheels ({Cn + K1}n), etc. Hence, for some classes
of graphs, a direct application of Theorem11 will not yield a constant factor
approximation algorithm for the MkColPS problem even if it yields a constant
factor MPS-approximation algorithm for these classes.

Below, we present a result which establishes that it is indeed possible to
ensure the same approximation guarantee (which Theorem 11 provides for MPS)
for the MkColPS problem also under the same assumptions. Even more, we do
not require k to be fixed and can allow k to grow with n. Also, we can include k as
part of the input. This result is a generalization of a similar result obtained in [30]
for k-colorable (standard coloring and fixed k) subgraphs, to (k,P)-subgraphs,
for arbitrary hereditary properties P.

Theorem 13. Suppose that P = Free(M) is such that (i) M is finite (hence,
P-membership is efficiently testable), (ii) diam(H) ≤ d for each H ∈ M , for
some fixed d. There is an efficient algorithm (Algorithm 4) which, for a given
Gw, k ≥ 1 and a vertex ordering σ, produces a (k,P)-colorable induced subgraph
whose total weight is within a factor of at most Md

σ + 1 from that of an optimal
solution.

As before, the assumption of M being finite can be replaced by a weaker
assumption stated in the Remark that appears after the statement of Theo-
rem 11. Algorithm 4 and its analysis are presented in Section 12 of [27]. This
algorithm is essentially Algorithm 2 except that we simultaneously grow k stacks
(by pushing elements) and then simultaneously build k color classes by popping
from the stacks. The analysis is also along similar lines as that of Algorithm 2
and we provide it in complete details in case a reader wants to look at it. Some
of the consequences of the above results are listed below.

Corollary 9. Let P,M and d be as defined in Theorem13. The following are
true:

(a) There is an efficient algorithm which, given a Gw, k and a (αP)d-inductive
ordering of G, produces an induced (k,P)-colorable subgraph of G whose
total weight is within a factor of (αP)d

IND(G) + 1 from that of an optimal
solution.

(b) For every fixed B, there is an efficient algorithm which, given arbitrary
Gw, k, tests if (αP)d

IND(G) ≤ B and if so produces an induced (k,P)-
colorable subgraph within an approximation factor of B + 1.

Inductive Graph Invariants and Algorithmic Applications 797

The above corollary follows immediately from Theorems 13 and 5. If we fix
P = Free({K2}) (and d = 1) and the input G is restricted to chordal graphs,
then every PEO of G is an α-inductive ordering and αIND(G) ≤ 1. Applying
Claim (b) of the previous theorem, we deduce that maximum weight induced
k-colorable subgraph can be approximated within a multiplicative factor of two
over weighted chordal graphs even if k is part of the input. It can also be
established (we skip the details) that one can achieve this approximation in
O(k|V | + |E|) time. This result was obtained by Chakravarty and Roy in [9]
with an inferior running time of O(k(|V | + |E|)). When the input is a weighted
chordal graph, the maximum weight induced k-colorable subgraph problem is
polynomial time solvable for every fixed k but is NP-hard when k is part of the
input as shown in [29].

5.2 Approximation of Maximum Induced (P1, . . . ,Pk)-Colorable
Subgraphs

Here, for fixed (P1, . . . ,Pk), we study the problem of computing an optimal (Pi)i-
colorable induced subgraph of a given Gw. An Algorithm 5 which computes such
an approximation is presented and analyzed in the proof of Theorem14 below.
The algorithm and its proof sketch are presented in Section 12 of [27].

Theorem 14. Let P1 = Free(M1), . . . ,Pk = Free(Mk) be fixed hereditary
properties with diam(H) ≤ d for each H ∈ ∪iMi, for some fixed d. Suppose,
for each i, there is an efficient algorithm for determining, given (G, u, v), if
there exists a T ⊆ V such that u, v ∈ T and G[T] ≡ H for some H ∈ Mi. Then,
there is an efficient algorithm (Algorithm 5) which, for a given Gw and a ver-
tex ordering σ, produces an induced (P1, . . . ,Pk)-colorable subgraph whose total
weight is within a factor of at most Md

σ + 1 from that of an optimal solution.
Here, the relevant increasing invariant is max{αPi

: 1 ≤ i ≤ k}.
Let dc = max{diam(H) : H ∈ Mc} for each c ∈ [k] and d = max{dc : 1 ≤ c ≤ k}.
Define βc = (αPc

)dc

IND() for each c. Define β() = max{αPc
() : 1 ≤ c ≤ k}. Then,

β is an increasing invariant and by Corollary 5, we have βc() ≤ βd
IND() for each

c. Combining, we obtain the following corollary.

Corollary 10. Let (P1, . . . Pk), (M1, . . . ,Mk), β() and d be as defined in Theo-
rem14 and discussed as before. The following are true:

(a) There is an efficient algorithm which, given a Gw and a βd-inductive order-
ing of G, produces an induced (P1, . . . ,Pk)-colorable subgraph of G whose
total weight is within a factor of βd

IND(G) + 1 from that of an optimal solu-
tion.

(b) For every fixed B, there is an efficient algorithm which, given arbitrary Gw,
tests if βd

IND(G) ≤ B and if so produces an induced (Pc)c-colorable subgraph
within an approximation factor of B + 1 from that of an optimal solution.

798 C. R. Subramanian

6 Approximation of Minimum P-Coloring

Below, we study the problem of designing approximation algorithms for P-
coloring a given undirected graph. For the rest of this section, we focus only
on those P = Free(M) where d(M) = max{diam(H) : H ∈ M} exists. We also
assume, without loss of generality, that K2 �∈ M and hence m∗ = m∗(M) =
min{|V (H)| : H ∈ M} satisfies m∗ ≥ 3. When K2 ∈ M , a P-coloring is just
a proper coloring and has been already handled in [30]. Hence, we assume that
m∗ ≥ 3. We obtain the following result on the approximation factor of Algorithm
6 (a simple heuristic presented in Section 13) whose proof is presented in Section
13 of [27].

Theorem 15. Let P = Free(M) be any hereditary class with m∗ ≥ 3 and
d = d(M) is finite. Suppose P-membership is efficiently testable. Define k =
(αP)d

IND(G). Assume that a (αP)d-inductive ordering is part of the input or can
be computed efficiently. Then,

(a) Algorithm 6 is an efficient one and obtains a P-coloring using at most(
k

m∗−1

)
χP(G) + 1 colors provided k ≥ m∗ − 1.

(b) If k < m∗−1, then χP(G) = 1 and Algorithm 6 produces an optimal coloring.

Note: The approximation factor is nearly k
m∗−1 . This factor matches the bound

obtained in [30] for proper colorings since d = 1 and m∗ = 2 for the case of
M = {K2}.

As an illustrative application of the above theorem, restrict the input G to
be a chordal graph and consider P = Free(M) where M = {Kr} for some r ≥ 2.
We have m∗ = r. d = 1. We call a P-coloring as a Kr-free coloring.

Corollary 11. For every r ≥ 3, Algorithm 6 is an efficient one and produces,
given a chordal G, a Kr-free coloring using at most χP(G) + 1 colors.

Proof. For chordal graphs, (αP)IND(G) ≤ r−1 and a (αP)-inductive ordering can
be efficiently computed as explained in the proof of Corollary 7. Now applying
Theorem 15, we obtain the desired conclusion. �

As another illustrative application, let the input G be arbitrary and let P =
{H : Δ(H) ≤ r} (for some r ≥ 1). We have P = Free(M) where M = {H :
|V (H)| = r + 2, Δ(H) = r + 1} and d(M) = 2.

Corollary 12. For every r ≥ 1 and every k ≥ 1, Algorithm 6 is an efficient one
and produces, given an arbitrary G with k = (αP)2IND(G), a P-coloring using at
most

(
� k

r+1�
)

χP(G) + 1 colors.

Proof. For fixed values of k, an (αP)2-inductive ordering of G can be efficiently
computed for those G having k as its corresponding inductive number. Now
applying Theorem15, we obtain the desired conclusion. �

Inductive Graph Invariants and Algorithmic Applications 799

7 Conclusions

A further study of inductive invariants for various graph classes may possibly
lead to identification of new classes where one can solve exactly or approximately
several NP-hard graph optimization problems. Identification of graph classes
where one can improve the best-known approximation results for hard problems
has always been an active area of research and our results (along with earlier
ones) point to a new direction in this regard. A few questions and directions
that we believe are interesting and worth exploring further are:

1. Identify triples (f(), g(), C) where f, g are increasing invariants and C is a
hereditary class, satisfying: g(G) ≤ φ(fIND(G)) for each G ∈ C and for some
fixed φ : R+ → R+.

2. Can the approximation factors of k or k/(m − 1) where k = (αP)d
P(G)

obtained respectively for approximating an optimal P-subgraph or an optimal
P-coloring, be improved further ?

3. Identify pairs (f(), C) where f() is an increasing invariant and C is hereditary,
for which efficient computation of f(Nr

G(u)) is possible for G ∈ C, u ∈ V (G).
4. The notion of inductive invariants can be extended to (graph,vertex) invari-

ants. Examples of such invariants are the maximum size of a clique containing
a given vertex in a graph. A rigorous introduction to (G, u) invariants, their
inductive analogues, bounds, characterizations along with some graph theo-
retical and algorithmic implications and concrete applications will appear in
a longer journal version of this paper.

References

1. Achlioptas, D.: The complexity of G-free colourability. Discret. Math. 165–166,
21–30 (1997). https://doi.org/10.1016/S0012-365X(97)84217-3

2. Addario-Berry, L., Kennedy, W., King, A.D., Li, Z., Reed, B.: Finding a maximum-
weighted induced k-partite subgraph of an i-triangulaged graph. Discret. Appl.
Math. 158(7), 765–770 (2010). https://doi.org/10.1016/j.dam.2008.08.020

3. Akcoglu, K., Aspnes, J., Dasgupta, B., Kao, M.Y.: Opportunity-cost algorithms
for combinatorial auctions. In: Proceedings of Applied Optimization 74: Computa-
tional Methods in Decision-Making, Economics and Finance, pp. 455–479. Kluwer
Academic Publishers (2002)

4. Alekseev, V., Farrugia, A., Lozin, V.: New results on generalized graph coloring.
Discret. Math. Theor. Comput. Sci. 6(2) (2004). HAL:hal-00959005v1

5. Appel, K., Haken, W.: Every planar map is four colorable. Part I. Discharging.
Illinois J. Math. 21(3), 429–490 (1977). https://doi.org/10.1215/ijm/1256049011

6. Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. Part II.
Reducibility. Illinois J. Math. 21(3), 491–567 (1977). https://doi.org/10.1215/ijm/
1256049012

7. Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and independent
set in bounded degree graphs. Theory Comput. 7(1), 27–43 (2011)

8. Brown, J.: The complexity of generalized graph colorings. Discret. Appl. Math.
69(3), 257–270 (1996). https://doi.org/10.1016/0166-218X(96)00096-0

https://doi.org/10.1016/S0012-365X(97)84217-3
https://doi.org/10.1016/j.dam.2008.08.020
https://doi.org/10.1215/ijm/1256049011
https://doi.org/10.1215/ijm/1256049012
https://doi.org/10.1215/ijm/1256049012
https://doi.org/10.1016/0166-218X(96)00096-0

800 C. R. Subramanian

9. Chakaravarthy, V., Roy, S.: Approximating maximum weight k-colorable subgraphs
in chordal graphs. Inf. Process. Lett. 109(7), 365–368 (2009). https://doi.org/10.
1016/j.ipl.2008.12.007

10. Chen, Z.-Z.: Practical approximation schemes for maximum induced-subgraph
problems on K3,3-free or K5-free graphs. In: Meyer, F., Monien, B. (eds.) ICALP
1996. LNCS, vol. 1099, pp. 268–279. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-61440-0 134

11. Choi, H.A., Nakajima, K., Rim, C.: Graph bipartization and via minimization.
SIAM J. Discret. Math. 2(1), 38–47 (1989). https://doi.org/10.1137/0402004

12. Dailey, D.: Uniqueness of colorability and colorability of planar 4-regular graphs
are NP-complete. Discret. Math. 30(3), 289–293 (1980). https://doi.org/10.1016/
0012-365X(80)90236-8

13. Farrugia, A.: Vertex-partitioning into fixed additive induced hereditary properties
is NP-hard. Electron. J. Comb. 11(1) (2004). https://doi.org/10.37236/1799

14. Fouilhoux, P.: Graphes k-partis et conception de circuits VLSI. Universite Blaise
Pascal, Clermont-Ferrand, France (2004)

15. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph prob-
lems. Theor. Comput. Sci. 1(3), 237–267 (1976). https://doi.org/10.1016/0304-
3975(76)90059-1

16. Halldorsson, M.M.: Approximations of weighted independent set and hereditary
subset problems. J. Graph Algorithms Appl. 4(1), 1–16 (2000)

17. Halldorsson, M., Lau, H.C.: Low-degree graph partitioning via local search with
applications to constraint satisfaction, max-cut, and coloring. J. Graph Algorithms
Appl. 1(3), 1–13 (1997)

18. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182(1),
105–142 (1999). https://projecteuclid.org/euclid.acta/1485891205

19. Jamison, R., Mulder, H.: Tolerance intersection graphs on binary trees with con-
stant tolerance 3. Discret. Math. 215, 115–131 (2000)

20. Kratochvil, J., Schiermeyer, I.: On the computational complexity of (o, p)-partition
problems. Discussiones Mathematicae Graph Theory 17, 253–258 (1997)

21. Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R.: SNPs problems, com-
plexity, and algorithms. In: auf der Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161,
pp. 182–193. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44676-
1 15

22. Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems.
In: Lingas, A., Karlsson, R., Carlsson, S. (eds.) ICALP 1993. LNCS, vol. 700, pp.
40–51. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56939-1 60

23. Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. Annals of Dis-
crete Mathematics, vol. 32. Elsevier (1988)

24. Proskurowski, A., Syslo, M.: Efficient vertex- and edge-coloring of outerplanar
graphs. SIAM J. Algebraic Discret. Methods 7(1), 131–136 (2006). https://doi.
org/10.1137/0607016

25. Subramanian, C.R.: List hereditary colorings of graphs. In: Proceedings of ICDM
2008. RMS Lecture Notes Series, vol. 13, pp. 191–205. Ramanujan Mathematical
Society (2010)

26. Subramanian, C.R.: On approximating stochastic PIPs and independent sets
(2018)

27. Subramanian, C.R.: Inductive graph invariants and algorithmic applications
(2020). https://www.imsc.res.in/∼crs/s19shrtL.pdf

28. Szekeres, G., Wilf, H.S.: An inequality for the chromatic number of a graph. J.
Comb. Theory 4, 1–3 (1968)

https://doi.org/10.1016/j.ipl.2008.12.007
https://doi.org/10.1016/j.ipl.2008.12.007
https://doi.org/10.1007/3-540-61440-0_134
https://doi.org/10.1007/3-540-61440-0_134
https://doi.org/10.1137/0402004
https://doi.org/10.1016/0012-365X(80)90236-8
https://doi.org/10.1016/0012-365X(80)90236-8
https://doi.org/10.37236/1799
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0304-3975(76)90059-1
https://projecteuclid.org/euclid.acta/1485891205
https://doi.org/10.1007/3-540-44676-1_15
https://doi.org/10.1007/3-540-44676-1_15
https://doi.org/10.1007/3-540-56939-1_60
https://doi.org/10.1137/0607016
https://doi.org/10.1137/0607016
https://www.imsc.res.in/~crs/s19shrtL.pdf

Inductive Graph Invariants and Algorithmic Applications 801

29. Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for
chordal graphs. Inf. Process. Lett. 24(2), 133–137 (1987). https://doi.org/10.1016/
0020-0190(87)90107-4

30. Ye, Y., Borodin, A.: Elimination graphs. ACM Trans. Algorithms 8(2), 14:1–14:23
(2012)

31. Zuckermann, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput. 3, 103–128 (2007). https://doi.org/10.
4086/toc.2007.v003a006

https://doi.org/10.1016/0020-0190(87)90107-4
https://doi.org/10.1016/0020-0190(87)90107-4
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006

Constructing Order Type Graphs Using
an Axiomatic Approach

Sergey Bereg(B) and Mohammadreza Haghpanah

University of Texas at Dallas, Richardson, TX 75080, USA
{besp,Mohammadreza.Haghpanah}@utdallas.edu

Abstract. A given order type in the plane can be represented by a
corresponding point set. However, it might be difficult to recognize the
orientations of some point triples. Recently, Aichholzer et al. [3] intro-
duced exit graphs for visualizing order types in the plane. We present
a new class of geometric graphs, called OT-graphs, using abstract order
types and their axioms described in the well-known book by Knuth [15].
Each OT-graph corresponds to a unique order type. We develop effi-
cient algorithms for recognizing OT-graphs and computing a minimal
OT-graph for a given order type in the plane. We provide experimental
results on all order types of up to nine points in the plane including a
comparative analysis of exit graphs and OT-graphs.

Keywords: Order type · CC systems · Chirotopes · Oriented matroids

1 Introduction

The orientation of three noncollinear points in the plane is either clockwise CW
or counterclockwise CCW. In this paper we assume that point sets are in general
position the plane. Two finite point sets in the plane have the same order type
if there is a bijection between them preserving orientation of any three distinct
points. The equivalence classes defined by this equivalence relation are the order
types [14].

Recently, Aichholzer et al. [3] asked “... suppose we have discovered an inter-
esting order type, and we would like to illustrate it in a publication.” This is
exactly the problem that we were facing in our recent paper [5] where we found
that the order type 1874 for 9 points from the database [2] provides a (tight)
lower bound for Tverberg partitions with tolerance 2, see Fig. 2(a). Of course,
any order type in the plane can be represented by a corresponding point set (or
explicit coordinates of the points). However, it might be difficult to recognize the
orientations of some point triples. Aichholzer et al. [3] introduced exit graphs
for visualizing order types in the plane. Let S be a set n points in the plane and
let a, b, c ∈ S. Then (a, b) is an exit edge with witness c if there is no p ∈ S such
that line ap separates b from c or line bp separates a from c, see Fig. 1(a). Geo-
metrically, it means that an hourglass defined by a, b, c is empty. The set of exit
edges form the exit graph of S. To verify that (a, b) is an exit edge with witness
c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 802–816, 2020.
https://doi.org/10.1007/978-3-030-64843-5_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_54&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_54

Constructing Order Type Graphs Using an Axiomatic Approach 803

c, one can check that every point p ∈ S \ {a, b, c} is in A∪B, see Fig. 1(a). Note
that A∩S and (B ∩S)∪{c} is a partition of S \ {a, b} by line ab. We will define
a new class of graphs called OT-graphs using such partitions.

a
b

c

A

B

(a) (b)

Fig. 1. (a) Exit edge (a, b) with witness c. The hourglass-shaped region (shown in gray)
is empty of points. (b) An exit graph for 9 points in convex position.

We define an OT-graph on S using two ingredients. First, every edge (a, b)
in an OT-graph is equipped with the partition of S by line ab, i.e. S \ {a, b} =
S+

ab ∪ S−
ab where S+

ab (S−
ab) contains points c ∈ S such that a, b, c has counter-

clockwise (clockwise) orientation. Second, we assume that an OT-graph contains
a sufficient number of edges to decide the order type of points using axioms
described in the well-known book by Knuth [15]. It is easy to visualize the par-
titions of S for the edges of an OT-graph by drawing lines through them. This
may result in a dense drawing, so we omit lines in the drawing if their partitions
can be easily seen. For example, the OT-graph for the order type 1874 for 9
points from the database [2] shown in Fig. 2(b) has ten edges and only two lines
are sufficient. The property of this graph (since it is an OT-graph) is that the
orientation of any triple abc can be decided either (a) directly from the graph if
there is an edge with both endpoints in {a, b, c}, or (b) algebraically using five
axioms [15].

Comparison of OT-Graphs and Exit Graphs. Both exit graphs and OT-graphs
can be used for visualizing order types of points. It is not sufficient for verifying
an order type to just draw such graphs. For exit graphs, one needs to see the
witness and the hourglass for every exit edge. For OT-graphs, one needs to see
only the lines extending the edges. The hourglasses for exit graphs and the lines
for OT-graphs are needed only when some triples of points are almost collinear.

Exit graphs and OT-graphs are also different in the following sense. For a
given order type (as a point set), the exit graph is unique but OT-graphs are not
since OT-graphs are defined using combinatorial axioms of Knuth [15]. Therefore
we have an optimization problem of computing a minimum-size OT-graph for
a given order type. We believe that this optimization problem is NP-hard. For
example, we believe that the OT-graph shown in Fig. 2(b) has the least number

804 S. Bereg and M. Haghpanah

Order type 1874

(a)

1
2

3 4

5
6

7

8

9

(b)

1
2

3 4

5
6

7

8

9

(c)

Fig. 2. (a) The order type 1874 for 9 points from the database [2]. (b) An OT-graph
with 9 edges for the order type 1874 (several OT-graphs with 9 edges were computed
by an extensive search). (c) The exit graph for the order type 1874.

of edges (9) for order type 1874 but we do not have a proof for it. Note that the
OT-graph has 9 edges but the edge graph has 12, see Fig. 2(c) .

Identification of Order Types. Aichholzer et al. [3] suggested requirements for a
graph representing an order type: “... we want to reduce the number of edges in
the drawing as much as possible, but so that the order type remains uniquely
identifiable.” OT-graphs (including the set of edges and the corresponding par-
titions) characterize order types, i.e. each OT-graph corresponds to only one
order type. Unfortunately, it does not hold for the exit graphs. As an example,
Aichholzer et al. [3] constructed two sets each of 14 points1 such that the exit
edges are the same but the order types are different. With respect to minimiz-

1 Using a pseudoline arrangement from [11].

Constructing Order Type Graphs Using an Axiomatic Approach 805

ing the number of edges, we provide a comparative analysis of exit graphs and
OT-graphs of all order types of up to 9 points in Sect. 6. Except few cases,
OT-graphs have smaller number of edges. For example, Fig. 3 shows order type
1268 of 9 points where the exit graph has 15 edges but the OT-graph has only
8 edges. Furthermore, the OT-graph shown in Fig. 3(b) has non-crossing edges.

(a) (b)

Fig. 3. The order type 1268 of 9 points represented as (a) the exit graph and (b) the
OT-graph.

and we provide some algorithms for computing OT-graphs using combinato-
rial proofs and axioms in Sect. 5.

An interesting question is to find the smallest OT-graphs for points in convex
position in the plane. Let cn be the minimum number of edges in an OT-graph
for n points in convex position.

Theorem 1. For any n ≥ 4, cn ≤ �2n/3�.
It is interesting to find exact values of sequence cn. We experimented with our

randomized algorithm from Sect. 5 and conjecture that the bound in Theorem 1
is tight for all n up to 20. It is also interesting that the exit graph for n points
in convex position has n edges, see Fig. 1(b) for an example.

Lower Bound. Another interesting question is to find the smallest OT-graph for
an order type of n points in the plane. Based on our experiments, it is achieved
for points in convex position if n is up to 9. Is it true for any n? One can argue
that 	n/4
 is a lower bound for the number of edges in any OT-graph for n
points in convex position. It is based on the fact that two consecutive points in
the clockwise order along the boundary cannot be both isolated in an OT-graph.

Upper Bound. An obvious upper bound the smallest OT-graph for an order type
of n points is

(
n
2

)
. We prove an upper bound in Sect. 4 which is smaller than n2/4.

The proof uses the idea of restricting the axioms in OT-graphs. Specifically, we
prove the bound by using only Axioms 1, 2, and 3. Surprisingly, in this case,
the smallest OT-graphs for any order type of n points have the same number of
edges depending on n only.

806 S. Bereg and M. Haghpanah

Algorithms. For any set T triples with orientations, one can define its CC-closure
Cl(T) as the set of all triples that can be derived using Axioms 1–5. It is straight-
forward to make an algorithm for testing in O(n5) time whether a set of triples
T is the closure of itself, i.e. Cl(T) = T . This can be modified to an algorithm
for computing the CC-closure for an OT-graph (i.e. the set of triples defined
by G). The algorithm repeats the following step. If new triples are found in the
testing algorithm, they are added to the set of triples. This algorithm has O(n8)
running time. We show that it can be improved to O(n5) time. We also develop
a randomized algorithm for computing an OT-graph for a given order type in
O(n5) time. We implemented it and run on many order types. For example, the
smallest OT-graphs for all order types for n = 4 and n = 5 are shown in Fig. 4.

Fig. 4. Order types for n = 4 and n = 5.

Experiments. In Sect. 6 we provide experimental results using our algorithms on
all order types of up to nine points in the plane. We also discuss a comparative
analysis of exit graphs and OT-graphs using the size of the graphs.

Related Work. Order types are studied extensively, see for example the sur-
veys [10,16]. Aichholzer et al. [4] studied representation of order types using
radial orderings. Cabello [7] proved that the problem of deciding whether there
is a planar straight-line embedding of a graph on a given set of points is NP-
complete. Goaoc et al. [12] explored the application of the theory of limits of
dense graphs to order types. The order types of random point sets were studied
in [8,9] Goaoc and Welzl [13] studied convex hulls of random order types.

2 Preliminaries

Knuth [15] introduced and studied CC-systems (short for “counterclockwise sys-
tems”) using properties of order types for up to five points. A CC-system for n
points assigns true/false value for every ordered triple of points such that they
satisfy the following axioms.

Axiom 1 (cyclic symmetry). pqr =⇒ qrp.
Axiom 2 (antisymmetry). pqr =⇒ ¬prq.
Axiom 3 (nondegeneracy). Either pqr or prq.
Axiom 4 (interiority). tqr ∧ ptr ∧ pqt =⇒ pqr.
Axiom 5 (transitivity). tsp ∧ tsq ∧ tsr ∧ tpq ∧ tqr =⇒ tpr.

Constructing Order Type Graphs Using an Axiomatic Approach 807

Any set of n points in general position in the plane induces a CC-system if we use
the “counterclockwise” relation on the points. The converse is not true due to the
9-point theorem of Pappus [6,15]. When defining a graph for order types using
partitions (by the lines extending the edges) one should be careful. For example,
we can ask whether a given set of orientations of some triples can be extended
somehow to a CC-system. If by “extended” we mean finding a CC-system such
that the given orientations are preserved in the CC-system, then this problem
is NP-complete. Knuth [15] proved that it is NP-complete to decide whether
specified values of fewer than

(
n
3

)
triples can be completed to a CC-system.

We define OT-graphs using the extension of the given orientations by simply
applying 5 axioms. Note that Axioms 1, 2, 4, and 5 imply some orientations.
Axiom 3 also can be formulated as an implication:

Axiom 3’ (nondegeneracy). ¬pqr =⇒ prq.

Definition 2. Let G be a graph for a point set S in the plane and let T be the
set of triples abc such that ab, ac, or bc is an edge of G. Then G is the OT-graph
if the orientation of every triple on S can be derived from T usings Axioms,
1,2,3’,4, and 5.

3 Convex Position

In this section, we explore OT-graphs for point sets in convex position and prove
Theorem 1. Recall that cn is the minimum number of edges in an OT-graph for
n points in convex position. First, we prove that cn ≤ n (Fig. 5).

Lemma 1. Let S be a set of n points in convex position and let G be the graph
(S,E) where E contains the edges of the convex hull of S. Then G is an OT-graph
for S.

pa

pb

pc

pa+1
pb+1

Fig. 5. Proof of Lemma 1.

Proof. Let p0, p1, . . . , pn−1 be the points of S in counterclockwise order. It suf-
fices to prove that any triple papbpc with 0 ≤ a < b < c ≤ n − 1 has a CCW
orientation. We prove it by induction on m = min{b − a, c − b, a − c + n}. In
the base case, m = 1. Then (pa, pb), (pb, pc), or (pc, pa) is in E. Thus, pa, pb, pc

has a CCW orientation.
Suppose that m > 1 and m = c − b. Then a + 1 < b and b + 1 < c. Edges

(pa, pa+1) and (pb, pb+1) imply that triples papa+1pb, papa+1pb+1, papa+1pc, and
papbpb+1 have a CCW orientation. By induction hypothesis, triple papb+1pc has
a CCW orientation. By Axiom 5, papbpc has a CCW orientation.

808 S. Bereg and M. Haghpanah

Proof of Theorem 1. Let p0, p1, . . . , pn−1 be the points of S in counterclockwise
order. We denote set {0, 1, . . . , n − 1} by [n].

First, suppose that n = 3k for some k ≥ 2. Consider a graph G with 2k edges
as shown in Fig. 6. We prove that it is an OT-graph. By Lemma 1, it suffices to
show that for any i, j ∈ [n] with j = i, i + 1 (modulo n), triple pipi+1pj has a
CCW orientation2.

(a) (b)

Fig. 6. OT-graphs for n points in convex position. (a) n = 6, (b) n = 9.

There are 3 cases to consider, see Fig. 7. Case (a) is clear since (pi, pi+1) is
an edge of G. In Case (b), we can assume that j = i + 2, i − 1. Then it follows
by Axiom 5 if we choose t = pi+1, s = pi+2, p = pj , q = pi−1, and r = pi. In
Case (c), we can assume that j = i + 2, i − 1. Knuth [15] proved that Axioms
1, 2, 3, and 5 imply an axiom dual to Axiom 5.

Axiom 5’ (dual transitivity). stp ∧ stq ∧ str ∧ tpq ∧ tqr =⇒ tpr.
Then Case (c) follows by Axiom 5’ if we choose t = pi, s = pi−1, p =

pi+1, q = pi+2, and r = pj .

(a)

pj

.

(b)

pj

.

(c)

pj

.

pi

pi+1

pi

pi+1

pi+1

pi

Fig. 7. Proof of Theorem 1 for n = 3k.

Now, suppose that n = 3k + 1 for some k ≥ 2. Consider a graph G with
2k edges as shown in Fig. 8(a). We prove that it is an OT-graph. By Lemma 1,

2 This condition for a fixed i implies that (pi, pi+1) could be an edge in an OT-graph.

Constructing Order Type Graphs Using an Axiomatic Approach 809

it suffices to show that for any i, j ∈ [n] with j = i, i + 1 (modulo n), tripe
pipi+1pj has a CCW orientation. If pi or pi+1 is an isolated vertex in G then the
argument is the same as in Case (b) and (c) for n = 3k, see Fig. 7(b) and (c).
If (pi, pi+1) is an edge of G then pipi+1pj has a CCW orientation. It remains to
consider the case where (pi, pi+1) is one of two missing edges in the convex hull
at the top, see Fig. 8(a). By symmetry, we assume that (pi, pi+1) is as shown in
Fig. 8(b).

Suppose that vertex pj has degree 2 in G. Let l be the length of path pjpi

in G. We show a CCW orientation of pipi+1pj by induction on l. If l = 1 the
orientation follows from edge pi−1pi of G. If l > 1 then it follows by Axiom 5 if
we choose t = pi+1, s = pi+2, p = pj , q = pj+1, and r = pi. Note that pi+1pjq
has a CCW orientation since (pj , q) is an edge of G. Also, pi+1qpi has a CCW
orientation by the induction hypothesis.

If vertex pj is isolated in G then we choose p, q, r, s, t in the same way, see
Fig. 8(c). Then triple tpq has a CCW orientation from the previous case (pq is
an edge of convex hull). And triple tqr has a CCW orientation from the previous
case (q has degree 2). By Axiom 5 tripe pipi+1pj has a CCW orientation.

(a) (b)

pi

pi+1

pj

s

q

(c)

pi

pi+1

pj

s

q

Fig. 8. Proof of Theorem 1 for n = 3k + 1.

Finally, suppose that n = 3k + 2 for some k ≥ 2. Consider the graph shown
in Fig. 9. It is an OT-graph by the same argument as for n = 3k + 1. ��

Remark. The OT-graphs presented in the proof of Theorem 1 are not unique.
Our program finds also other graphs of the same size, see Fig. 10.

4 Axioms 1, 2, and 3 only

Let e123(S) be the minimum number of edges in an OT-graph for a set S of points
in general position in the plane if only Axioms 1,2, and 3 are used. Surprisingly,
for any set S of n points (i.e. for any order type), the smallest OT-graph always
contains the same number of edges depending on n only.

810 S. Bereg and M. Haghpanah

Fig. 9. OT-graph for n = 3k + 2.

(a) (b) (c) (d)

Fig. 10. OT-graphs for n = 6, 7, 8, 9 points in convex position computed by a program.

Theorem 3. For any set S of n ≥ 2 points in general position in the plane,
e123(S) = �n

2 ��n−1
2 �.

We omit the proof due to space constraint.

5 Algorithms

Let G = (S,E) be an OT-graph for a set S of n points in the plane. Let T (G)
be the set of triples abc such that (a, b), (a, c), or (b, c) is an edge of G. Note that
the orientation of abc is given by the partition of the corresponding edge. We
define the CC-closure of G as the set all triples that can be proven by applying
Axioms 1–5 from T (G). Note that the CC-closure can be defined for any subset
of triples of points with orientations.

Problem 4 (ComputingCC-Closure)

Given an OT-graph G.
Compute the CC-closure of G.

A naive approach to solve ComputingCC-Closure is to use an algorithm
for testing CC-closure.

Problem 5 (TestingCC-Closure)

Constructing Order Type Graphs Using an Axiomatic Approach 811

Given a set of triples with orientations for n points.
Decide whether a new triple can be derived using Axioms 1–5. If so, find a
new triple using Axioms 1–5.

By applying an algorithm for TestingCC-Closure to T (G) we can extend
T (G) (if possible) and solve ComputingCC-Closure. TestingCC-Closure
can be done in O(n5) time (since Axiom 5 requires 5 points). There are

(
n
3

)

triples and, thus, the naive approach takes O(n8) time. We show that it can be
done much faster.

Theorem 6. ComputingCC-Closure can be solved in O(n5) time.

Algorithm 1.

1. Make a list L1 of all input triples with orientations (list L1 stores all triples
with known orientations). Copy L2 = L1.

2. While list L2 is not empty, remove any triple abc from list L2. Apply Axioms
as follows. Find new triples using Axioms 1,2,3’,4, and 5 such that triple abc
is used in the condition of the axiom with the same orientation. If a new triple
(i.e. not in L1) is found, say pqr, then add it to L1 and L2.

3. Return list L1.

Proof. To implement Algorithm 1 efficiently, we store triples of L1 in a 3-
dimensional array A1. The value of A1[a, b, c] is true/false if abc has a CCW/CW
orientation; otherwise A1[a, b, c] =null. Using array A1, we can decide in O(1)
time whether a triple is in list L1 or not. Each triple abc is processed in Step 2
in O(n2) time since
(i) Axioms 1,2, and 3’ can be applied at most one time,
(ii) Axiom 4 can be applied at most n − 3 times and
(iii) Axiom 5 can be applied at most (n − 3)(n − 4) times.
Each triple is added to (and removed from) list L2 at most one time. The num-
ber of triples removed from L2 in Step 2 is O(n3). Therefore, the total time
complexity of the algorithm is O(n5).

In our implementation of Algorithm 1, we do not maintain list L1. Instead,
we compute it in the end using array A1.

The problem of computing the smallest OT-graph for a given order type
seems complicated. Note that, if we restrict the axioms to Axioms 1,2, and 3
then a simple polynomial-time algorithm for computing the smallest OT-graph
exists by Theorem 3 (by constructing two cliques). Next, we extend Algorithm
1 to a randomized algorithm for computing an OT-graph without increasing the
running time. We incrementally add edges to a graph G = (S,E) until G is
an OT-graph for S. We store L1, a list of triples abc such that (a, b), (a, c), or
(b, c) is an edge of G. Note that the orientation of abc can be computed using
the coordinates of a, b, and c in O(1) time. As in Algorithm 1, we have list L2

which is useful for computing the CC-closure of G.

812 S. Bereg and M. Haghpanah

Algorithm 2.
Input: an order type given by a set of points S.
Output: an OT-graph G for S

1. Set E = ∅. Set countCC=0, the number of triples in the CC-closure of
G = (S,E).

2. Compute list R of
(
n
2

)
edges in the complete graph for S.

3. Initialize array A1[n, n, n] with entry values null and empty list L2.
4. While countCC< n(n − 1)(n − 2)

(a) Remove a random edge (a, b) from R.
(b) If A1[a, b, c] =null for all c ∈ S \ {a, b} then continue the “while” loop

otherwise do the following steps (c) and (d).
(c) Add (a, b) to list E. For each c ∈ S \ {a, b} such that Aa[a, b, c] =null,

add one of the triples (a, b, c) or (b, a, c) to list L2 which has a CCW
orientation.

(d) Process list L2 as in Algorithm 1.

Algorithm 2 (if repeated several times) can find the smallest OT-graph for a
given order type, see for example Fig. 10. We also make a program that helps
to verify the proof of an OT-graph. Note that a triple can be proven differently
using Axioms 1–5. We develop a program for finding a human-readable proof.
Once the best OT-graph for a given order type is found, the program computes
a proof only for triples that require Axioms 4 and 5 (Axioms 1–3 are obvious).
For example, Fig. 11 illustrates an OT-graph among all order type of 9 points
and the format of the proof.

Proof:
Triple (7, 2, 0), Axiom 5 [2, 5, 0, 4, 7]
Triple (7, 3, 0), Axiom 5 [3, 2, 0, 4, 7]
Triple (7, 2, 1), Axiom 5 [2, 5, 1, 4, 7]
. . .

2

3

4

6

8

7

5
0

1

Fig. 11. An OT-graph for order type of 9 points and a part of the proof of it. The
format for Axiom 4 is [p, q, r, t] and the format for Axiom 5 is [p, q, r, s, t].

Greedy Algorithm. Each iteration Algorithm 2 is quite fast (for relatively small
n). However, it may require many runs to find small OT-graphs. Another pos-
sibility is a greedy algorithm where all possible edges for adding to the cur-
rent graph are tested and the edge maximizing the size of the CC-closure is

Constructing Order Type Graphs Using an Axiomatic Approach 813

selected. Since the computation of the CC-closure takes O(n5) time, this app-
roach is computationally expensive (it takes O(n7) time for selecting one edge
and O(n9) for constructing the OT-graph). We developed a different greedy
algorithm where the edge maximizing the size of the CC-closure using only
Axioms 1,2,3 is selected. We found an implementation of this algorithm without
increasing the running time, i.e. with running time O(n5). We add a new 2-
dimensional array C[..] for counting triples corresponding to the edges. Initially,
C[a, b] = n − 2 for all pairs (a, b) of points a = b. Every time a new triple,
say abc, is proven using Axioms we subtract one from C[x, y] for all possible
x = y ∈ {a, b, c}. Then, the greedy selection can be done by finding an edge
(a, b) maximizing C[a, b].

The total running time of this algorithm has two components. It is O(n5)
time as in the randomized algorithm plus the total time for processing new array
C[..]. There are O(n3) new triples and each triple requires O(1) to update C[..].
This step takes O(n3) time in total. The computation of a new edge for G takes
O(n2) time. Thus, the total time for computing the edges of G = (S,E) is
O(mn2) where m = |E|. Therefore, the total time for processing array C[..]
is O(n4). Minimal OT-graphs. When an OT-graph with m edges is computed,
it can be checked for minimality. An OT-graph for some order type is minimal
if removal of any edge results in a graph which not an OT-graph, i.e. its CC-
closure does not contain all possible triples. This can be decided by applying the
algorithm for ComputingCC-Closure m times.

6 Experiments

We implemented the randomized algorithm (Algorithm 2) and the greedy algo-
rithm for computing OT-graphs. The programs are written in Java 8 using multi-
threading and thread synchronization. We used a Linux server with 32 CPUs
and 62 GB RAM to execute our program. We have computed the exit graphs and
the OT-graphs on the database of order types [2] for n = 3, 4, . . . , 9. To achieve
current database and ensure the minimality of edges of OT-graphs, we run it
around more than 3 days on the dataset. The results are shown in Table 1.
Our experiments show that in many cases the greedy algorithm outperforms
Algorithm 2 by the size of an OT-graph. Therefore, we iterate the greedy algo-
rithm (with random tie-breaking) first and then iterate Algorithm 2 searching
for a possible improvement. The number of iterations used for the greedy algo-
rithm was 300,1200,10000 for n = 7, 8, 9 respectively. The number of iterations
used for Algorithm 2 significantly larger (100000 for n = 9). About 70% of
OT-graphs in Table 1 were computed using the greedy algorithm. The improve-
ment achieved by Algorithm 2 was rather small: typically one edge reduction
for an order type. The program implementing Algorithm 2 is still running and
hopefully, new OT-graphs will be computed in a few months.

It is interesting that the smallest OT-graphs are achieved for 14 order types
with n = 6, for 2 order types with n = 7, for 26 order types with n = 8, and
for 124 order types with n = 9. There are only 2 order types for n = 6 whose

814 S. Bereg and M. Haghpanah

Table 1. OT-graphs for n up to 9. Column i, i = 1, 2, . . . , 11 contains the number of
OT-graphs with i edges.

n 1 2 3 4 5 6 7 8 9 10 11 Total

3 1 1

4 2 2

5 3 3

6 14 2 16

7 2 79 54 135

8 26 696 1,802 791 3,315

9 1 234 9,379 49,331 73,906 25,671 295 158,817

(a) order type 7 (b) order type 15 (c) order type 17

Fig. 12. Extreme OT-graphs for n = 6 and n = 7. (a), (b) Two order types for
n = 6 maximizing the number of edges. (c) An order type for n = 7 (different from
the convex case) minimizing the number of edges.

OT-graphs require 5 edges. They are shown in Fig. 12(a) and (b). The two order
types for n = 7 that admit OT-graph with 4 edges are shown in Fig. 10(b) (the
convex position) and in Fig. 12(c).

Let µ(n) be the minimum number of edges in an OT-graph for n points.
Based on our experiments, we conjecture that µ(4) = 2, µ(5) = 3, µ(6) =
µ(7) = 4, µ(8) = µ(9) = 5. This can be compared with exit graphs where the
minimum number of edges is the same for n = 5, 6, 7, 8 but is larger for n = 9,
see Fig. 13.

Figure 13(a), (c) shows the distribution of the graph sizes (OT-graph vs exit
graph). Figure 13(b), (d) shows comparison of the graph sizes for each order type
(the order types are sorted by the size of OT-graph and exit graph). Except one
order type for n = 8 and 17 order types for n = 9, the OT-graphs are smaller
that the exit graphs. For n = 9, the maximum size of OT-graph/exit graph is
11/16, respectively. The corresponding total number of edges is 1386819 for OT
graphs and 1673757 for exit graphs which is 82.85%.

Constructing Order Type Graphs Using an Axiomatic Approach 815

(a) (b)

(c) (d)

Fig. 13. The sizes of OT-graphs and exit graphs of order types for (a,b) n = 8 and
(c,d) n = 9. The order types in (a) and (c) are sorted independently for OT-graphs
and exit graphs. The functions in (b) and (d) use the same order type on the x-axis
(the order types are sorted lexicographically).

7 Concluding Remarks

In this paper, we introduced new geometric graphs, OT-graphs, for visualizing
order types in the plane. This new concept gives rise to many interesting ques-
tions. Is it true that the smallest size OT-graphs for all order types of n points
are achieved for points in convex position? Is the bound in Theorem 1 tight?

In many cases there are different OT-graphs of minimum size for the same
order type. One can use other criteria to optimize OT-graphs, for example,
crossings. Figure 4 shows that there exist OT-graphs without crossings for all
order types of 4 and 5 points. Theorem 1 shows that there are OT-graphs without
crossings for points in convex position. Can it be generalized in this sense?

Finally, we plan to run our program on order types for larger values of n
using the database of order types developed by Aichholzer, Aurenhammer, and
Krasser [2]. It is a challenging problem since the number of order types grows as
2Θ(n log n) [1,10] (there are 14,309,547 order types for n = 10.)

816 S. Bereg and M. Haghpanah

References

1. A063666: Euclidean order types: number of realizable order types of n points in
the plane (2001). https://oeis.org/A063666

2. Aichholzer, O., Aurenhammer, F., Krasser, H.: Enumerating order types for small
point sets with applications. Order 19(3), 265–281 (2002)

3. Aichholzer, O., et al.: Minimal representations of order types by geometric graphs.
In: Graph Drawing (Proc. GD 2019), pp. 101–113 (2019)

4. Aichholzer, O., Cardinal, J., Kusters, V., Langerman, S., Valtr, P.: Reconstructing
point set order types from radial orderings. Int. J. Comput. Geom. Appl. 26(03–
04), 167–184 (2016)

5. Bereg, S., Haghpanah, M.: New lower bounds for Tverberg partitions with tolerance
in the plane. Disc. Appl. Math. 283, 596–603 (2020)

6. Bokowski, J., Richter, J., Sturmfels, B.: Nonrealizability proofs in computational
geometry. Disc. Comput. Geom. 5(4), 333–350 (1990). https://doi.org/10.1007/
BF02187794

7. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. J. Graph Algorithms Appl. 10(2), 353–363 (2006)

8. Cardinal, J., Monroy, R.F., Hidalgo-Toscano, C.: Chirotopes of random points in
space are realizable on a small integer grid. In: Friggstad, Z., Carufel, J.D. (eds.)
Proceedings of the 31st Canadian Conference on Computational Geometry, CCCG
2019, University of Alberta, Edmonton, Alberta, Canada, 8–10 August 2019, pp.
44–48 (2019)

9. Devillers, O., Duchon, P., Glisse, M., Goaoc, X.: On order types of random point
sets. CoRR abs/1812.08525 (2018). http://arxiv.org/abs/1812.08525

10. Felsner, S., Goodman, J.E.: Pseudoline arrangements. In: Handbook of Discrete
and Computational Geometry, pp. 125–157. Chapman and Hall/CRC (2017)

11. Felsner, S., Weil, H.: A theorem on higher Bruhat orders. Disc. Comput. Geom.
23(1), 121–127 (2000)

12. Goaoc, X., Hubard, A., de Joannis de Verclos, R., Sereni, J., Volec, J.: Limits of
order types. In: Arge, L., Pach, J. (eds.) 31st International Symposium on Com-
putational Geometry, SoCG 2015, 22–25 June 2015, Eindhoven, The Netherlands.
LIPIcs, vol. 34, pp. 300–314. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2015)

13. Goaoc, X., Welzl, E.: Convex hulls of random order types. In: Cabello, S., Chen,
D.Z. (eds.) 36th International Symposium on Computational Geometry, SoCG
2020, LIPIcs, Zürich, Switzerland, 23–26 June 2020, vol. 164, pp. 49:1–49:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

14. Goodman, J.E., Pollack, R.: Multidimensional sorting. SIAM J. Comput. 12(3),
484–507 (1983)

15. Knuth, D.E. (ed.): Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55611-7

16. Richter-Gebert, J., Ziegler, G.M.: Oriented matroids. In: Handbook of discrete and
computational geometry, pp. 159–184. Chapman and Hall/CRC (2017)

https://oeis.org/A063666
https://doi.org/10.1007/BF02187794
https://doi.org/10.1007/BF02187794
http://arxiv.org/abs/1812.08525
https://doi.org/10.1007/3-540-55611-7

FISSION: A Practical Algorithm
for Computing Minimum Balanced Node

Separators

Johannes Blum(B) , Ruoying Li, and Sabine Storandt

University of Konstanz, Konstanz, Germany
johannes.blum@uni-konstanz.de

Abstract. Given an undirected graph, a balanced node separator is a
set of nodes whose removal splits the graph into connected components of
limited size. Balanced node separators are used for graph partitioning,
for the construction of graph data structures, and for measuring net-
work reliability. It is NP-hard to decide whether a graph has a balanced
node separator of size at most k. Therefore, practical algorithms typi-
cally try to find small separators in a heuristic fashion. In this paper,
we present a branching algorithm that for a given value k either out-
puts a balanced node separator of size at most k or certifies that k is a
valid lower bound. Using this algorithm iteratively for growing values of
k allows us to find a minimum balanced node separator. To make this
algorithm scalable to real-world (road) networks of considerable size, we
first describe pruning rules to reduce the graph size without affecting the
minimum balanced separator size. In addition, we prove several struc-
tural properties of minimum balanced node separators which are then
used to reduce the branching factor and search depth of our algorithm.
We experimentally demonstrate the applicability of our algorithm to
graphs with thousands of nodes and edges. Finally, we showcase the use-
fulness of having minimum balanced separators for judging the quality
of existing heuristics, for improving preprocessing-based route planning
techniques on road networks, and for lower bounding important graph
parameters.

Keywords: Balanced node separator · Exact algorithm · Graph
partitioning · Contraction hierarchies

1 Introduction

When dealing with large graphs or spatial network databases, it is often useful to
partition the data into smaller components to make computations more efficient
and to allow easier local data management. For many applications, as defining

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 817–832, 2020.
https://doi.org/10.1007/978-3-030-64843-5_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_55&domain=pdf
http://orcid.org/0000-0003-1102-3649
https://doi.org/10.1007/978-3-030-64843-5_55

818 J. Blum et al.

geographic districts [9], or for load balancing in parallel graph algorithms [21,29],
it is beneficial if the resulting components are of roughly the same size or at least
do not exceed some upper size bound. Moreover, it is often desired that densely
connected regions end up in one component and only few nodes or edges are at
the border between different components. One possibility to accomplish this is
by (recursively) dividing the graph using balanced node separators.

Definition 1 (α-Balanced Node Separator). Given a graph G(V,E) and
α ∈ [

1
2 , 1

)
, a set B ⊆ V is called an α-balanced node separator if after the

removal of B from G all connected components have size at most α · |V |.
The respective optimization goal is to find the smallest such B. We refer to the
minimum size of an α-balanced node separator as bα.

Balanced node separators are used in scientific computing [15], in VLSI
design [2], and for network connectivity measures [19]. Furthermore, several mod-
ern route planning techniques for road networks rely on breaking down the input
graph into smaller subgraphs [10,12], and for some of them the performance
depends directly on the size of the chosen separators [3]. As it is NP-hard to find
minimum balanced node separators in general graphs [8], practical algorithms
typically compute separators in a heuristic fashion [11,18,25,26]. But without a
scalable method to compute optimal solutions, their quality is difficult to judge.

We devise in this paper the first practical algorithm (called FISSION1) that
computes minimum balanced node separators in large real-world networks. This
then allows us to evaluate how close existing heuristics come to finding the best
possible solution on different kinds of networks. In addition, the size of a min-
imum α-balanced node separator also yields a lower bound for several other
important graph parameters, as e.g., the treewidth or the pathwidth [5]. There
are many graph algorithms which are provably fast in case the graph exhibits
small such parameter values. Hence knowing those values for a given graph allows
to judge the performance of such parameterized algorithms a priori and provides
structural insights. But unfortunately, the computation of the treewidth and the
pathwidth is NP-hard as well, and existing exact algorithms and lower bounding
techniques are limited to small and/or dense graphs. Our novel algorithm, how-
ever, is explicitly designed to perform well on sparse graphs. Figure 1 shows two
examples of minimum balanced node separators computed with our approach.

1 FISSION: A Framework for Improved Small Separator Identification.

FISSION 819

Fig. 1. Minimum balanced node separators (red nodes) computed with FISSION on
a real-world road network (left) and a control-flow graph (right) using α = 1

2
. (Color

figure online)

1.1 Related Work

Theoretical Results on Balanced Separators. Finding an α-balanced node sepa-
rator of size at most k is NP-hard even for k ∈ O(log n) [13]. For constant values
of k, the naive algorithm of testing all subsets of size up to k yields a polyno-
mial time algorithm. However, a running time of Ω(nk) where n = |V | is still
prohibitive for practical use. As there are no known polynomial time approxima-
tion algorithms, pseudo-approximations were investigated for this problem. In a
pseudo-approximation, the balance constraint and the solution size are approx-
imated simultaneously. In [20] it was shown that a slight relaxation of α allows
to get a logarithmic approximation guarantee for bα. For example, for α = 2

3 one
can find a 3

4 -balanced node separator of size at most O(log n) · b2/3 in polyno-
mial time. However, those techniques are not easily applicable to large real-world
inputs. Hence in practice, heuristics are usually used to find small separators.

Practical Tools for Graph Partitioning. A multitude of heuristics was proposed in
previous work to compute sensible graph partitions and concise (balanced) sep-
arators, as e.g. FlowCutter [18] or InertialFlow [27]. PUNCH (partitioning using
natural cut heuristics) is a multi-step heuristic particularly designed to partition
road networks [11] and also leverages flow computations. Software packages as
KaFFPa(E) [24] and KaHIP [26] offer a wide range of general-purpose parti-
tioning algorithms. Buffoon (featured in KaHIP) [23] is custom-tailored for road
networks and uses PUNCH as a subroutine. We note that the quality of those
partitioning heuristics is typically measured in comparison to other heuristics
(e.g. as the percentage by which the size of the separator is smaller). This leaves
the question how close their outputs are to the optimum wide open.

Separator-Based Route Planning. Contraction hierarchies (CH) [14] are cur-
rently one of the most widely used preprocessing-based route planning techniques
for road networks. The preprocessing consists of the construction of a hierarchi-
cal shortcut graph, in which the hop distance of shortest paths is tremendously

820 J. Blum et al.

reduced. Compared to a run of Dijkstra’s algorithm in the original graph, query
answering in the CH-graph is three or more orders of magnitude faster on large
road networks. There exists a variant of CH, so-called customizable contraction
hierarchies (CCH), in which the edge costs can be dynamically changed with-
out the necessity to repeat the whole preprocessing [12]. For the construction
of the CCH-graph, the idea of using nested dissection, that is, recursively sub-
dividing the network through balanced node separators, was introduced in [12]
and empirically shown to work remarkably well. Moreover, this construction
allows to provide theoretical performance guarantees. In [1,3], it was proven
that nested dissection yields an approximation guarantee for the maximum and
average search space size when using minimum 2

3 -balanced node separators. For
practical construction, so far, only heuristics were used to identify good sepa-
rators. Recently, a combination of FlowCutter and InertialFlow was proposed
to enable efficient CCH preprocessing [17]. But with the use of heuristics, the
theoretical performance guarantees are lost.

Bounding Techniques for Graph Parameters There exist several graph parame-
ters which play an important role in the design of parameterized algorithms and
graph analysis, as e.g. the treewidth tw, the pathwidth pw, or the treedepth td.
Often, a low parameter value warrants an efficient algorithm for problems that
are hard in general [4,22]. But as the computation of those parameters is NP-
hard as well, upper and lower bounds have been extensively investigated. For the
treewidth, lower bound techniques using e.g. contraction [7] or brambles [6] were
proposed. Furthermore, the 2016 PACE challenge2 focused on exact treewidth
computation as well as algorithms for determining good upper bounds. For the
treedepth, a recent paper [28] proposes an exact algorithm and an experimental
evaluation on graphs with up to 78 nodes. In [5], it was proven that the follow-
ing hierarchy of graph parameters holds for any α ∈ [

1
2 , 1

)
: bα ≤ tw ≤ pw ≤ td

Therefore, if we can compute bα exactly (or determine a lower bound), we auto-
matically derive a valid lower bound for the other parameters as well.

1.2 Contribution

The main contribution of this paper is the FISSION algorithm, which is the
first method to compute minimum balanced node separators in large networks.
The algorithm features a preprocessing phase in which the input graph size is
significantly reduced, and a branching phase, in which for given α ∈ [

1
2 , 1

)
and

k ∈ N either an α-balanced node separator of size at most k is computed; or it
is certified that no such separator exists. We prove several interesting structural
properties of balanced node separators which are then leveraged to make the
preprocessing as well as the branching phase viable. In the experimental eval-
uation, we consider road networks of different size as well as a benchmark set
of diverse graphs (with instances up to two orders of magnitude larger than the
networks considered in [28]) to demonstrate the applicability of our algorithm

2 https://pacechallenge.wordpress.com/pace-2016/track-a-treewidth/.

https://pacechallenge.wordpress.com/pace-2016/track-a-treewidth/

FISSION 821

and to highlight its benefits and limits. Moreover, we evaluate the usefulness
of FISSION for judging the quality of heuristics, for preprocessing-based route
planning, and for lower bounding important graph parameters.

2 Properties of Minimum Balanced Node Separators

In this section, we prove several structural properties of balanced node separators
in general graphs. While these might be of independent interest, we explicitly
exploit them later to make our FISSION algorithm scalable to large networks.

Given an undirected, connected graph G(V,E), we first investigate the rela-
tionship between structural characteristics of induced subgraphs of G and their
possible share of separator nodes.

Theorem 1 (Induced Subgraphs). Let G′[V ′] be a subgraph of G(V,E) induced
by V ′ ⊂ V with |V ′| ≤ α|V |. Further let N be the set of nodes in V \ V ′ with
a neighbor in V ′. Then there exists an α-balanced node separator B in G with
|B ∩ V ′| < |N |.
Proof. Assume for contradiction, that any minimum α-balanced node separator
B in G contains at least |N | nodes from V ′. Then we can take any such separator
and construct a new separator B′ := (B \ V ′) ∪ N . As |B \ V ′| ≤ |B| − |N | by
assumption, it follows |B′| ≤ |B|. It remains to show that B′ is also an α-balanced
separator to reach a contradiction. Let CC(B) be the node sets of the connected
components in G after the removal of B (that by definition are all of size at most
α · |V |), and CC(B′) the respective sets after the removal of B′. We define for
each component C ∈ CC(B) the node subsets CN = C ∩ N and CV ′ = C ∩ V ′.
For each C ∈ CC(B), there is now one new component C ′ := C \ (V ′ ∪ N) in
CC(B′), if C ′ �= ∅. We observe that |C ′| ≤ |C| holds and hence C ′ adheres to
the size bound. Moreover the union of all these components C ′ plus B′ has to
cover all elements in V \ V ′. Therefore the only other components in CC(B′)
have to be subsets of V ′. But as for V ′ as a whole we have |V ′| ≤ α|V |, none of
those can exceed the size bound. Therefore B′ is an α-balanced node separator
that contains no nodes from V ′ but has size at most the size of B, leading to a
contradiction to our initial assumption.
�
Figure 2 illustrates the theorem on an example.

For the second property, we distinguish two types of nodes in a separator B:
We say a node v ∈ B is in the foam Bf of the separator, if all of its neighbors
are either in B as well or end up in the same connected component after the
removal of B. The other separator nodes are said to be in the separator core Bc.
Note that foam nodes may be necessary to realize the α-bound on the size of the
component, see Fig. 3. But they are also interchangeable with other nodes from
the same (otherwise too large) component. So if the separator core is known, the
foam can easily be added. Hence we now focus on the core.

Theorem 2. Let B be a minimum α-balanced node separator in G(V,E). Fur-
thermore, let v ∈ Bc be a separator node and Π(v) be any subgraph of G that
connects all neighbors of v. Then B ∩ Π(v) �= ∅.

822 J. Blum et al.

Proof. Assume that B ∩ Π(v) = ∅. As v is contained in the separator core, we
know v has two neighbors u and w in G, which end up in different connected
components after the removal of B. However, if there exists a subgraph Π(v)
which connects all pairs of neighbors of v, but does not contain any separator
node, all neighbors of v would end up in the same component, which yields a
contradiction.
�

z
y
x

w
v

u

s
t

a
b c

d
e

f
g

Fig. 2. The three red nodes separate the upper turquoise subgraph (which contains
less than half of the graph nodes) from the remaining graph (green). Hence, there is a
minimum 1

2
-balanced separator, which contains at most two nodes from the turquoise

subgraph. (Color figure on;ine)

Fig. 3. Example graph with 16 nodes and a core separator of size two (red nodes). For
α = 1

2
, the left induced component (marked blue) would be too large as it contains 9

nodes. Selecting any node in that component as foam makes the resulting separator
α-balanced. (Color figure on;ine)

3 The FISSION Algorithm

The FISSION algorithm consists of two phases: An initial preprocessing phase
in which (i) the size of the input graph is reduced without compromising the
size of an optimal α-balanced node separator, and (ii) cluster information are
gained. The second phase then follows the branching paradigm to identify an
α-balanced node separator of size k in case such a separator exists.

FISSION 823

3.1 Preprocessing Phase

Based on the results from Sect. 2, we will now establish pruning rules which help
to reduce the graph size before entering the branching phase of the algorithm.
Furthermore, we will partition the reduced graph into different clusters using
KaHIP [26] and precompute suitable cluster information which will further help
to accelerate the branching phase.

Pruning. Our pruning rules either allow to delete some nodes and edges from the
graph G(V,E) completely without affecting the size of the minimum balanced
node separator therein, or, they allow to merge certain subgraphs of G into single
nodes. To account for the sizes of these subgraphs with respect to our balance
constraint later on, all nodes will be assigned weights which indicate the number
of nodes that were merged into it.

Pruning Rule 1 (Small Components). Any connected component in G of
size at most α · |V | can be deleted.

The connected components in the graph are easily detected using depth-first
search (DFS), and their sizes can be computed along in time linear in the size
of the graph. For any α ≥ 1

2 at most one connected component of size > α · |V |
remains after this step.

Based on Theorem 1, the following property of minimum separators holds.

Corollary 1. Every graph has a minimum α-balanced node separator that con-
tains at most one node from a chain of up to α · |V | nodes of degree two.

This corollary allows to establish the following pruning rule.

Pruning Rule 2 (Degree-2 Chains). Chains of degree-two nodes of length
up to α · |V | can be merged into a single node.

Fig. 4. Figure (a) shows a real-world road network of an area in Germany. Figure (b)
shows the pruned graph and the partition into 20 blocks. Each color represents a block.
The size of a node indicates the number of nodes that were merged into it. (Color figure
online)

824 J. Blum et al.

This can be implemented by selecting a node of degree two which also has
a neighboring node of degree two and to merge these nodes, assigning their
summed weights to the merged node. This process can be repeated as long as
such node pairs exist in the (reduced) graph. In Fig. 2, nodes s, t, . . . , y, z would
be merged into a single degree-two node of weight 8.

For our third pruning rule, we consider cut nodes in the graph. A cut node
in a connected graph G(V,E) is a node v ∈ V whose removal splits G into at
least two connected components.

Pruning Rule 3 (Cut Components). Let v be a cut node in G(V,E) and let
C be a connected component that remains after removing v. If the size of C is
at most α · |V | then C can be merged into v.

In Fig. 2, node a is a cut node. The nodes b, c, d, e, f, g then form a component
C which can be completely merged into a. Node a then receives a weight of 7.
The set of cut nodes in the graph can be computed with a variant of DFS.

The pruning rules are applied in the given order. This only takes linear time
in total. Nevertheless, the achieved graph size reduction might be tremendous,
as shown for an example road-network in Fig. 4.

Clustering. In the reduced graph G∗(V,E), we next try to detect clusters or so
called blocks which exhibit a structure that can be exploited in the branching
phase of the algorithm. More precisely, let V ′ ⊆ V be a set of nodes, then a block
is the subgraph of G∗ induced by V ′. A node v ∈ V ′ is called a gate if there is an
edge (v, w) ∈ E with w ∈ V \ V ′. With T (V ′) ⊂ V ′, we denote the set of gates
in block V ′. According to Theorem 1, we know that an optimal α-balanced node
separator in G∗ contains at most |T (V ′)| nodes from such a block. Hence our
goal is to identify (large) blocks with few gates as this helps to test significantly
fewer node combinations in our branching algorithm.

To compute such blocks, we use KaFFPa from KaHIP to partition the graph
G∗ into n blocks Vi ∪ · · · ∪ Vn = V with Vi ∩ Vj = ∅ for all i �= j, such that
the number of edges between the blocks is small (which then hopefully leads
to small gate numbers as well). We repeat this process for several values of
n to get a large set of interesting block candidates. The imbalance parameter
ε can be used to constraint the block size. For each block Vi, it guarantees
|Vi| ≤ (

1 + ε
100

) · |V |
n . We use ε = 100 in our experiments. For any block V ′, we

call B(V ′) ⊂ V ′ a block separator if its removal from the block splits it into at
least two connected components. We then classify the blocks according to their
inner separator structure:

– Unit. A block V ′ is called a unit, if every block separator B(V ′) whose
removal splits the gates T (V ′) into at least two connected components fulfils
|B(V ′)| ≥ |T (V ′)|.

– Division. A block V ′ is called a division, if there is a block separator B(V ′)
with |B(V ′)| < |T (V ′)|, whose removal splits the gates T (V ′) into at least
two connected components.

FISSION 825

Algorithm 1: CompleteSeparator(B, vi)
1 if |B| > k then
2 return false

3 if N(vi) is connected in G∗[V \ B] then
4 S ← nodes connecting N(vi)
5 for vj ∈ S do
6 if CompleteSeparator(B ∪ {vj}, vi) then
7 return true

8 else
9 compute heaviest connected component X of G∗[V \ B]

10 if X has weight at most α · |V | then
11 return true

12 else
13 S ← {vj ∈ X | j > i}
14 for vj ∈ S do
15 if CompleteSeparator(B ∪ {vj}, vj) then
16 return true

17 return false

3.2 Branching Phase

In general, a branching algorithm has two main ingredients: branching rules and
reduction rules. Branching rules convert the problem to two or more smaller
problems which are then solved recursively, while the reduction rules are used
to simplify the (sub)problem, to avoid unnecessary branching, and to halt the
algorithm. We will now describe how to design a branching algorithm for the
problem of balanced node separator computation.

Basic Algorithm. In the branching phase we want to decide whether the pruned
graph G∗(V,E) has a node separator of size at most k, whose removal splits the
graph into connected components of weight at most α · |V |.

In every step, our algorithm holds a node set B and attempts to complete
it to a balanced separator of size at most k by adding a node from a candidate
set S. Initially, we call the algorithm for every node vi ∈ V for i = 1, . . . , n with
B = ∅. The algorithm then computes a candidate set S and branches on each
node therein. Without dedicated branching and reduction rules, the candidate
set S would simply be the set of all nodes not contained in B, and the algorithm
would basically enumerate all possible node sets of size k to check whether they
are balanced node separators, which would be impractical. Therefore, we next
describe our rules that allow to significantly reduce the candidate set size in
detail. Algorithm 1 depicts the high-level pseudo-code of our approach.

Branching Rules. The selection of a more concise candidate set S is performed
as follows. Let vi be the first node that was added to B and assume that we

826 J. Blum et al.

can complete B = {vi} to a balanced separator B∗, whose core contains vi.
Theorem 2 states that the neighborhood N(vi) of vi cannot be connected in G∗

after removing B∗. Hence if G∗[V \ B] contains some subgraph H connecting
N(vi), then we have B∗ ∩ H �= ∅. After selecting v, which we also call a root
node, we therefore perform a breadth-first search (BFS) in every subsequent
step to determine whether N(vi) is connected in G∗[V \ B]. If this is the case,
we backtrack the paths connecting N(vi) and use the nodes on this path as
the candidate set S. This step drastically reduces the candidate set especially in
sparse graphs. If N(vi) is already disconnected in G∗[V \B], we have cut off some
part of the graph and can check whether the resulting connected components
are already balanced or whether we can make them balanced by adding k − |B|
foam nodes to the separator. If this is not possible, we have to select a new root
node vj , whose neighborhood we try to disconnect in the following steps. To
avoid generating the same separator several times, we only use vj with j > i,
i.e. only nodes with a higher index than the current root (using any fixed order
on the node set). Hence, we get S = {vj ∈ X | j > i} as the candidate set where
X is the remaining connected component violating the balance constraint.

Reduction Rules. Based on the blocks computed in the clustering phase, we can
exclude certain sets B during the branching. Let B∗ be a minimum α-balanced
separator and consider some block U with gate set T (U). If U is a unit, it
follows from Theorem 1 that the core of B∗ contains no node of U \ T (U).
Hence, we do not need to consider U \ T (U) during the branching at all. If
U is a division, Theorem 1 implies that we have either B∗ ∩ U = T (U) or
|B∗ ∩ U | < |T (U)|. This means that during the branching it suffices to consider
sets B with B ∩ U = T (U) or |B ∩ U | < |T (U)|. Especially in large divisions
with small gate sets, this leads to a tremendous reduction of combinations to be
checked.

Running Time. Under worst case assumptions, the branching phase of FISSION
takes exponential time, as it might compute all O(nk) node subsets of size up to k
and check for each whether it constitutes an α-balanced node separator. However,
with the help of our pruning and reduction rules as well as the precomputed
clusters, we can avoid the enumeration of many unnecessary node subsets. The
effectiveness will be empirically justified in our experiments.

4 Experimental Evaluation

We implemented the preprocessing in Python and the branching algorithm in
C++. To calculate graph partitions for cluster computation, we used KaFFPa
from KaHIP 2.10. KaHIP 2.10 was compiled using Clang 11.0.0 with OpenMPI
1.4.1. Experiments were conducted on a single core of an AMDRyzen Thread-
ripper 1950× CPU (clocked at 2.2 GHz) with 128 GB main memory.

4.1 Data and Settings

We use two benchmark data sets in our evaluation:

FISSION 827

OSM Road Networks. The main focus of our work is to enable optimal balanced
node separator computation in road networks. For validation, we extracted real-
world road networks of varying size from the OpenStreetMap project3. The
respective graph details are summarized in Table 1.

Table 1. Number of nodes and edges of our OSM benchmark data (rectangular cut-
outs of the German road network). Each graph consists of one connected component.

Name |V | |E|
OSM1 1000 2065

OSM2 2500 5209

OSM3 4676 9880

OSM4 9200 18970

PACE 2016 Graphs. For a structurally diverse set of graphs, we additionally
consider the 147 public instances of the Parametrized Algorithms and Compu-
tational Experiments challenge of 2016. The challenge was concerned with exact
and heuristic computation of the graph parameter treewidth. The graph set
contains wireless sensor networks, instances from the DIMACS graph colouring
challenge, and social networks among others. The instances are further catego-
rized as easy, medium, hard, and random. Table 2 provides a quick overview. The
graph sizes range from graphs with 9 nodes to graphs with over 30.000 nodes,
with different edge densities. The time limit was set to 30 min per instance in
the challenge.

Table 2. Distribution of the 147 PACE graphs.

Type Easy Medium Hard Random

Exact 50 5 5 9

Heuristic 50 16 2 10

FISSION works for any balance-factor α ∈ [
1
2 , 1

)
. For evaluation, we focus

on α = 1
2 and α = 2

3 as those are the most commonly used parameter choices in
practical as well as theoretical works.

3 openstreetmap.org.

https://www.openstreetmap.org/

828 J. Blum et al.

4.2 Preprocessing Results

We first want to evaluate the effectiveness of our pruning rules. Subsequently,
we discuss how much cluster information was gained in the preprocessing phase.

For each of our 151 input graphs (4 OSM graphs + 147 PACE graph), the
reduced graph could be computed in well beyond a second. In Table 3, the
pruning results for the OSM graphs are given. We see a significant reduction
in the number of nodes and edges for all four graphs. For the smallest graph
(OSM1), this is most pronounced but also for the larger networks we observe a
reduction by 80% on average.

For the PACE graphs, we get a more diverse picture. For some of the graphs,
we have no size reduction at all. For others, less than one percent of the nodes is
still present in the reduced graph. On average, the number of nodes was reduced
by 33% and the number of edges by 30%. For both, OSM and PACE graphs,
the pruning results for α = 1

2 and α = 2
3 were almost identical. This indicates

that our pruning rules were not limited by the requirement that nodes cannot
be merged if the resulting weight exceeds α · |V |.

Regarding the clustering step, running times were typically beyond a second
as well but peaked at around 6 seconds for some of the PACE graphs. For the
OSM graphs, the number of identified unit and division blocks can also be found
in Table 3, and a visualization of a partitioning of OSM4 in Fig. 4.

4.3 Branching Results

Our branching algorithm decides for a given value of k ∈ N whether an α-
balanced node separator of size k exists or not. Hence to find the minimum α-
balanced node separator, we need to feed the algorithm the correct value k = bα

and also certify that no smaller value exists by testing k = bα − 1. As we do
not know the value of bα a priori, we simply test values k = 1, 2, . . . until we
detect the smallest value k for which we get a “true” answer from our branching
algorithm. The respective k value is then automatically the minimum balanced
node separator size for the chosen α, and we of course can also return a separator
node set of that size.

Table 3. Preprocessing results for the OSM graphs and α = 1
2
. The first two columns

describe the percentage of nodes and edges of the original graph that remain after
pruning. The last two columns indicate the number of interesting blocks that were
identified.

Pruning Partitioning

Name %V %E # units # divisions

OSM1 0.8 0.4 2 0

OSM2 22.4 13.5 18 21

OSM3 22.0 13.1 43 44

OSM4 16.2 9.9 48 56

FISSION 829

For all four OSM graphs as well as the 69 PACE exact graphs, we could
compute the optimum solution quickly. For the PACE heuristic graphs, we set a
time out of 30 min per instance. As the category indicates, exact computation of
the treewidth was not necessarily expected to be possible in that time frame. We
could compute the minimum 1

2 -balanced node separator for 28 easy instances,
one medium instance, two random instances and both hard instances, hence
in total 33 out of 78 instances. For α = 2

3 , we could solve three more of the easy
instances. The medium instances that could not be solved all have a very high
edge density. This is disadvantageous for our algorithm, as large node degrees
lead to large candidate set sizes.

For sparse graphs with small separators, though, our branching algorithm
returns solutions often within a few seconds. Figure 5 shows the running time
and the resulting separator size for the 106 instances for which we computed
the minimum 1

2 -balanced node separator. For the remaining 45 instances, we at
least get valid lower bounds for bα by considering the largest value of k for which
our algorithm returned “false”.

Fig. 5. Running times and separator sizes for the benchmark graphs on which FIS-
SION computed the minimum balanced node separator for α = 1

2
within 30min. The

instances are sorted by the resulting separator size to better illustrate the correlation
of separator size and running time.

5 Showcases

Finally, we want to briefly discuss some applications where being able to compute
minimum α-balanced node separators with FISSION is beneficial.

830 J. Blum et al.

Quality Assessment of Heuristics. Heuristics for α-balanced node separator com-
putation are usually evaluated by comparing them to other heuristic approaches
in terms of computed separator size and running time. But the gap between
the computed separator size and minimum balanced separator size bα cannot be
judged this way. If bα is known, however, the quality of heuristics can be assessed
more distinctly. As there exist many different heuristics (that usually also come
with a bunch of tuning parameters), it is beyond the scope of this paper to
comprehensively analyze the quality of them all. But we used “node separator”
from KaHIP with 0-imbalance to compute upper bounds for b1/2 on the PACE
graphs and then compared them to the results of FISSION. For the 102 PACE
instances for which we computed the minimum 1

2 -balanced separator size, the
heuristic returned an optimal solution in 53 cases. For the remaining 49 instances,
the minimum separator contained on average 2.6 fewer nodes than the solution
returned by the heuristic, with a maximum difference of 20 on an instance where
we certified bα = 6. On the exact instances, the running time of FISSION and
KaHIP was very similar. Hence for the 25 exact instances where FISSION com-
puted a smaller separator than KaHIP, it was the overall better algorithm. For
the other instances, KaHIP is significantly faster than FISSION but our results
show the potential for improvements in terms of quality.

Contraction Hierarchies with Guarantees. Next we implemented the CCH route
planning technique based on FISSION. So far, it was only possible to construct
CCH-graphs using heuristics for separator computation and hence the theoretical
approximation guarantees [3] did not hold up. We used FISSION on all recur-
sion levels to compute the CCH-overlay graph on our four OSM graphs. On the
OSM4 graph, the preprocessing took only 16 seconds, including the 1347 mini-
mum separator computations in the created subgraphs. The separator sizes never
exceeded four on any recursion level. We then tested the FISSION algorithm on
an even larger road network with roughly 25 000 nodes. There the preprocessing
took 6 hours to complete. While this of course is orders of magnitudes slower
than the heuristic preprocessing, it demonstrates that approximation guarantee
preserving preprocessing is possible on moderately sized road networks.

Lower Bounds for Graph Parameters. As a last application, we use the separator
sizes computed with FISSION to lower bound the treewidth tw, the pathwidth
pw and the treedepth td of the graph by exploiting bα ≤ tw ≤ pw ≤ td. In our
evaluation, we focus on the comparison to another lower bounding technique
for tw that computes the so called minor-min-width of the graph (see [16] for
details). For the exact instances, we got a larger lower bound for 24 instances
and a matching lower bound for 19 instances. For the heuristic instances, we
got a better bound for 20 instances and a matching bound for 8 instances.
This demonstrates that FISSION is able to produce meaningful lower bounds.
Furthermore, as far as we are aware, it is also the first approach to give non-
trivial lower bounds for bα itself.

FISSION 831

6 Conclusions and Future Work

We introduced FISSION to decide the NP-hard problem whether a graph
exhibits an α-balanced node separator of a given size k in practice. For sparse
graphs and small values of k our approach produces the answer quickly based on
our carefully designed pruning and branching rules. Future work should explore
how to improve the scalability of our algorithm further. For example, the exis-
tence of almost tight upper bounds could help to reduce the number of k-values
that have to be tested. Furthermore, the development of lower bounding tech-
niques would permit to turn our branching algorithm into a branch-and-bound
algorithm that could abort the exploration of branches if the current node set
size plus the lower bound on the number of nodes needed to complete it to a
balanced separator exceeds k.

References

1. Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contraction
hierarchies. Theor. Comput. Sci. 645, 112–127 (2016)

2. Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout problems.
J. Comput. Syst. Sci. 28(2), 300–343 (1984)

3. Blum, J., Storandt, S.: Lower bounds and approximation algorithms for search
space sizes in contraction hierarchies. In: European Symposium on Algorithms.
LIPIcs, vol. 173, pp. 20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020). https://doi.org/10.4230/LIPIcs.ESA.2020.20

4. Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In:
Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-19488-6 110

5. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2),
238–255 (1995)

6. Bodlaender, H.L., Grigoriev, A., Koster, A.M.: Treewidth lower bounds with bram-
bles. Algorithmica 51(1), 81–98 (2008)

7. Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower
bounds. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 628–639.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30140-0 56

8. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-
hard. Inf. Process. Lett. 42(3), 153–159 (1992)

9. Cohen-Addad, V., Klein, P.N., Young, N.E.: Balanced centroidal power diagrams
for redistricting. In: Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 389–396 (2018)

10. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376–387. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20662-
7 32

11. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning
with natural cuts. In: 2011 IEEE International Parallel & Distributed Processing
Symposium, pp. 1135–1146. IEEE (2011)

https://doi.org/10.4230/LIPIcs.ESA.2020.20
https://doi.org/10.1007/3-540-19488-6_110
https://doi.org/10.1007/978-3-540-30140-0_56
https://doi.org/10.1007/978-3-642-20662-7_32
https://doi.org/10.1007/978-3-642-20662-7_32

832 J. Blum et al.

12. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. J. Exp.
Algorithmics (JEA) 21, 1–49 (2016)

13. Feige, U., Mahdian, M.: Finding small balanced separators. In: Proceedings of the
Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 375–384
(2006)

14. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

15. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer.
Anal. 10(2), 345–363 (1973)

16. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. arXiv
preprint arXiv:1207.4109 (2012)

17. Gottesbüren, L., Hamann, M., Uhl, T.N., Wagner, D.: Faster and better nested
dissection orders for customizable contraction hierarchies. Algorithms 12(9), 196
(2019)

18. Hamann, M., Strasser, B.: Graph bisection with pareto optimization. J. Exp. Algo-
rithmics (JEA) 23, 1–34 (2018)

19. Kratsch, D., Kloks, T., Muller, H.: Measuring the vulnerability for classes of inter-
section graphs. Disc. Appl. Math. 77(3), 259–270 (1997)

20. Leighton, F.T., Rao, S.: An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. In:
Symposium on Foundations of Computer Science, pp. 422–431. IEEE Computer
Society (1988). https://doi.org/10.1109/SFCS.1988.21958

21. Li, L., et al.: A simple yet effective balanced edge partition model for parallel
computing. Proc. ACM Meas. Anal. Comput. Syst. 1(1), 1–21 (2017)

22. Planken, L.R., de Weerdt, M.M., van der Krogt, R.P.: Computing all-pairs shortest
paths by leveraging low treewidth. J. Artif. Intell. Res. 43, 353–388 (2012)

23. Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: 2012 Pro-
ceedings of the Fourteenth Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 16–29. SIAM (2012)

24. Sanders, P., Schulz, C.: High quality graph partitioning. Graph Partitioning Graph
Clustering 588(1), 1–17 (2012)

25. Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph parti-
tioning. In: International Symposium on Experimental Algorithms. pp. 164–175.
Springer (2013). https://doi.org/10.1007/978-3-642-38527-8 16

26. Sanders, P., Schulz, C.: Kahip-karlsruhe high quality partitioning (2019)
27. Schild, A., Sommer, C.: On balanced separators in road networks. In: Bampis, E.

(ed.) SEA 2015. LNCS, vol. 9125, pp. 286–297. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20086-6 22

28. Trimble, J.: An algorithm for the exact treedepth problem. In: 18th International
Symposium on Experimental Algorithms (2020)

29. Zeng, J., Yu, H.: A study of graph partitioning schemes for parallel graph commu-
nity detection. Parallel Comput. 58, 131–139 (2016)

http://arxiv.org/abs/1207.4109
https://doi.org/10.1109/SFCS.1988.21958
https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1007/978-3-319-20086-6_22
https://doi.org/10.1007/978-3-319-20086-6_22

Author Index

Alipour, Sharareh 350
Aurora, Pawan 334

Bahreini, Tayebeh 711
Banik, Aritra 515
Bazgan, Cristina 242
Beck, Moritz 547
Bereg, Sergey 802
Blum, Johannes 817
Bshouty, Nader H. 393

Cai, Xuhong 379
Cardei, Ionut 125
Cardei, Mihaela 125
Cazals, Pierre 242
Chakraborty, Barunabha 47
Chaudhary, Juhi 364
Chen, Jie 562
Chen, Shengminjie 624
Chen, Wenping 214
Chlebíková, Janka 242

Daescu, Ovidiu 499
Damerius, Christoph 168
Das, Arun Kumar 47, 515
Das, Sandip 47, 515
Diao, Zhuo 426
Ding, Xingjian 697
Du, Ding-Zhu 697
Du, Hongwei 185, 379, 657, 669
Duan, Lingjie 455
Duan, Zhenhua 289, 320

Fisher, Nathan 711

Gaikwad, Ajinkya 76
Gao, Hong 61
Gao, Suixiang 608, 624, 727
Gorzny, Jan 766
Grosu, Daniel 711
Gu, Qian-Ping 3
Guo, Hongjie 61

Guo, Jianxiong 230, 697
Guo, Songhu 379
Gurski, Frank 743

Haddad-Zaknoon, Catherine A. 393
Haghpanah, Mohammadreza 802
Hanzálek, Zdeněk 107
Higashikawa, Yuya 198
Hladík, Richard 107
Hoi, Gordon 304
Huang, Hejiao 379
Huang, Jingui 562

Inkulu, R. 471
Itoh, Toshiya 486

Jiang, Li 379
Jiang, Zhipeng 727
Jin, Rong 624
Jurkiewicz, Marcin 91

Kamali, Shahin 530
Karrenbauer, Andreas 639
Katoh, Naoki 198
Kling, Peter 168
Komander, Dominique 743
Kovalevskaya, Elizaveta 639

Lauffer, Niklas 151
Lee, Victor C. S. 455, 681
Li, Deying 214, 697
Li, Jianzhong 19, 32, 61
Li, Lingyue 608
Li, Minming 168, 455, 681
Li, Ruoying 817
Li, Songhua 455, 681
Li, Yan 759
Li, Yusheng 759
Liang, Jiajian Leo 3
Liang, Ziwei 185
Lin, Jianan 411
Lindemann, Marvin 743

Liu, Chuang 669
Liu, Jin 320
Liu, Yunlong 562

Ma, Hengzhao 19
Maheshwari, Anil 515
Maity, Soumen 76, 257
Malik, Hemant 499
Minaeva, Anna 107
Miyazaki, Shuichi 486
Mukherjee, Joydeep 47
Mumey, Brendan 140

Nie, Zixiong 669
Nikbakht, Pooya 530

Panda, B. S. 364
Papa, Rafael 125
Parsa, Salman 350
Pryor, Elliott 140

Raju, Dhananjay 151
Rao, Guoyao 214

Sarvottamananda, Swami 515
Satake, Makoto 486
Schneider, Florian 168
Singh, Apurv 471
Storandt, Sabine 817
Subramani, K. 273
Subramanian, C. R. 780

Tang, Zhongzheng 426, 440, 594
Teruyama, Junichi 198
Tian, Cong 320
Tiwary, Hans Raj 334
Topcu, Ufuk 151
Tripathi, Shuvam Kant 76

Wang, Chenhao 440, 594
Wang, XiaoXin 727
Wang, Ye 759
Wang, Yongcai 214
Watase, Koji 198
Wojciechowski, P. 273
Wu, Weili 214

Xiao, Xingxing 32

Yang, Wenguo 230, 608, 624, 727
Yaw, Sean 140
Yi, Eunjeong 577
Yuan, He 185
Yuan, Xiaoshuai 289

Zeng, Guotai 657
Zhang, Chen 657
Zhang, Guochuan 3
Zhang, Mengqi 440, 594
Zhang, Nan 289
Zhang, Ruilong 168
Zhang, Yapu 230
Zhao, Yingchao 440

834 Author Index

	Preface
	Organization
	Contents
	Approximation Algorithms
	Approximate Ridesharing of Personal Vehicles Problem
	1 Introduction
	2 Preliminaries
	3 NP-Hardness Results
	3.1 Both Minimization Problems Are NP-Hard
	3.2 Inapproximability Results
	3.3 NP-Hardness Result for Time Constraint Condition

	4 Approximation Algorithms for Stop Constraint Condition
	4.1 Approximation Algorithms Based on MCMP
	4.2 A More Practical New Approximation Algorithm

	5 Conclusion
	References

	A Sub-linear Time Algorithm for Approximating k-Nearest-Neighbor with Full Quality Guarantee
	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions
	2.2 Minimum Enclosing Spheres
	2.3 Delaunay Triangulation
	2.4 Walking in Delaunay Triangulation
	2.5 (c,r)-NN

	3 Algorithm
	3.1 Preprocessing Algorithm
	3.2 Query Algorithm

	4 Analysis
	4.1 Correctness
	4.2 Complexities

	5 Conclusion
	References

	Sampling-Based Approximate Skyline Calculation on Big Data
	1 Introduction
	2 Problem Definition
	2.1 Skyline Definition

	3 The Baseline Algorithm and Analysis
	3.1 The Algorithm
	3.2 Error Analysis of the Baseline Algorithm
	3.3 Analysis of the Time Complexity

	4 DOUBLE and Analysis
	4.1 Error Analysis of DOUBLE
	4.2 Analysis of Sample Size and Time Complexity

	5 Conclusion
	References

	Approximating k-Orthogonal Line Center
	1 Introduction
	1.1 Previous Results
	1.2 Our Result
	1.3 Organisation of the Paper
	1.4 Overview of the Algorithm

	2 Preliminaries
	3 Description of the Algorithm
	3.1 Phase I of the Algorithm
	3.2 Phase II of the Algorithm
	3.3 Phase III of the Algorithm
	3.4 Running Time of the Algorithm

	4 Conclusion
	References

	Selecting Sources for Query Approximation with Bounded Resources
	1 Introduction
	2 Problem Definition
	2.1 Basic Notions and Quality Metric
	2.2 Problems
	2.3 Complexity Results

	3 Algorithm for Source Selection
	3.1 Algorithm for BNMG
	3.2 Algorithm for BCMG
	3.3 Improvement for Algorithms

	4 Experimental Results
	4.1 Experiment Setup
	4.2 Comparison
	4.3 Efficiency and Scalability

	5 Related Work
	6 Conclusion
	References

	Parameterized Complexity of Satisfactory Partition Problem
	1 Introduction
	2 Polynomial Time Algorithm on Block Graphs
	3 Graphs of Bounded Clique-Width
	4 W[1]-Hardness Parameterized by Treewidth
	5 Conclusion
	References

	An Approximation of the Zero Error Capacity by a Greedy Algorithm
	1 Introduction
	2 Fractional Independence Number
	3 Capacity Approximation
	4 Greedy Algorithms
	5 Community Detection Problems
	References

	Scheduling
	On the Complexity of a Periodic Scheduling Problem with Precedence Relations*-6pt
	1 Introduction
	2 Problem Description
	2.1 Problem Statement
	2.2 Equivalence Proof

	3 Problem Complexity
	3.1 PSPcom
	3.2 Job Shop Scheduling Problem JS3
	3.3 Naive Incomplete Reduction
	3.4 Anchoring Chains

	4 Heuristic Approach
	4.1 Algorithm Overview
	4.2 Experimental Results

	5 Conclusions and Future Work
	References

	Energy-Constrained Drone Delivery Scheduling
	1 Introduction
	2 Related Works
	3 Motivation and Problem Definition
	4 UAS Energy-Constrained Scheduling Algorithm
	5 Performance Evaluation
	6 Conclusions
	References

	Scheduling Jobs with Precedence Constraints to Minimize Peak Demand
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Approximation Algorithm
	5 Evaluation
	6 Conclusions
	References

	Reachability Games for Optimal Multi-agent Scheduling of Tasks with Variable Durations
	1 Introduction
	2 The Agent Resource-Constrained Project Scheduling Problem and Windows
	3 Encoding Valid Schedules as Paths in a Graph
	4 Reachability Games for Optimal Scheduling
	4.1 Two-Player Reachability Games
	4.2 Optimal Scheduling
	4.3 Extracting the Optimal Schedule
	4.4 Minimizing Total Load and Makespan

	5 Experimental Evaluation
	5.1 Qualitative Evaluation
	5.2 Randomized Evaluation and Comparison with an Integer Programming Formulation

	6 Conclusion
	References

	Improved Scheduling with a Shared Resource via Structural Insights
	1 Introduction
	1.1 Basic System Model
	1.2 Related Work
	1.3 Our Contribution

	2 Preliminaries
	3 A Lower Bound for SRJS
	4 Approximation Algorithm and Analysis
	5 Additional Results
	6 Conclusion and Open Problems
	References

	Network Optimization
	Two-Stage Pricing Strategy with Price Discount in Online Social Networks
	1 Introduction
	2 Related Work
	2.1 Propagation Model
	2.2 Pricing Strategy

	3 Preliminaries
	3.1 Propagation Model
	3.2 Problem Formulation

	4 Solution
	4.1 Pricing Strategies
	4.2 Two-Stage with Discount Greedy (TSDG) Algorithm

	5 Evaluations
	5.1 Experimental Setup
	5.2 Profit Results of Different Algorithms

	6 Conclusion
	References

	Almost Linear Time Algorithms for Minsum k-Sink Problems on Dynamic Flow Path Networks
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Aggregate Evacuation Time on a Path

	3 Algorithms
	4 Data Structures Associated with Nodes of T
	5 Conclusion
	References

	Matched Participants Maximization Based on Social Spread
	1 Introduction
	2 Related Work
	3 Problem Model and Analysis
	3.1 Interest-Based Forwarding Model (IF)
	3.2 Matching Strategies
	3.3 The MPM Problems

	4 The Algorithms Designs
	4.1 MRS-Based Algorithm for MPM-NM
	4.2 Sandwich Algorithm for MPM-GM

	5 Experiments
	5.1 Experiment Setup
	5.2 Experiments Result

	6 Conclusions
	References

	Mixed-Case Community Detection Problem in Social Networks
	1 Introduction
	2 Related Works
	3 Problem Definition
	4 Worst-Case Community Detection Problem
	5 Average-Case Community Detection
	6 General-Case Community Detection
	7 Conclusions
	References

	How to Get a Degree-Anonymous Graph Using Minimum Number of Edge Rotations
	1 Introduction
	2 Preliminaries
	3 Feasibility
	4 NP-Hardness
	5 Lower Bound for a k-Degree-Anonymous Graph
	6 Approximation
	7 Polynomial Cases
	7.1 Trees
	7.2 One Degree Class, k=n

	8 Conclusion
	References

	The Small Set Vertex Expansion Problem
	1 Introduction
	2 Preliminaries
	3 Proving Small Set Vertex Expansion is NP-complete
	4 W[1]-Hardness Parameterized by k
	5 FPT Algorithm Parameterized by Neighbourhood Diversity
	6 FPT Algorithm Parameterized by Treewidth
	7 Conclusion
	References

	Complexity and Logic
	On Unit Read-Once Resolutions and Copy Complexity
	1 Introduction
	2 Statement of Problems
	3 Motivation and Related Work
	4 The UROR Problem for Horn Formulas
	5 Copy Complexity and Horn Constraints
	6 Derived-Copy Complexity
	7 The UROR Problem for 2-CNF Formulas
	8 Conclusion
	References

	Propositional Projection Temporal Logic Specification Mining
	1 Introduction
	2 Propositional Projection Temporal Logic
	3 Pattern Library Construction and Trace Generation
	3.1 Pattern and Pattern Library
	3.2 Trace Generation

	4 PPTL Specification Mining
	4.1 The Framework of PPTLMiner
	4.2 Mining Process and Algorithms

	5 Conclusion
	References

	An Improved Exact Algorithm for the Exact Satisfiability Problem
	1 Introduction
	2 Preliminaries
	2.1 Branching Factor and Vector
	2.2 Definitions
	2.3 A Nonstandard Measure

	3 Algorithm
	4 Analysis of Algorithm
	4.1 Line 10 of the Algorithm
	4.2 Line 11 of the Algorithm
	4.3 Line 12 of the Algorithm
	4.4 Line 13 of the Algorithm

	References

	Transforming Multi-matching Nested Traceable Automata to Multi-matching Nested Expressions
	1 Introduction
	2 Multi-matching Nested Words
	2.1 Multi-matching Nested Relation
	2.2 Word Encoding

	3 Multi-matching Nested Languages
	3.1 Multi-matching Nested Expressions
	3.2 Multi-matching Nested Traceable Automata

	4 A Transformation Method from MNTA to MNE
	4.1 Labelled Arcs
	4.2 Transformation
	4.3 Example

	5 Conclusion
	References

	On the Complexity of Some Facet-Defining Inequalities of the QAP-Polytope
	1 Introduction
	1.1 Extension Complexity

	2 Relaxations of QAPn
	3 A New Class of Facet-Defining Inequalities
	4 Membership Testing
	5 Extension Complexity
	References

	Hardness of Segment Cover, Contiguous SAT and Visibility with Uncertain Obstacles
	1 Introduction
	1.1 Problem Statements and Results
	1.2 Relations to Uncertain Visibility
	1.3 Related Work

	2 Reduction
	2.1 Correctness of the Reduction

	3 All-Equal Segment Cover
	4 Approximation
	4.1 Hardness of Approximation for Max-SC

	References

	On the Complexity of Minimum Maximal Uniquely Restricted Matching
	1 Introduction
	2 Preliminaries
	3 Minimum Maximal Uniquely Restricted Matching in Subclasses of Bipartite Graphs
	3.1 Chordal Bipartite Graphs
	3.2 Bipartite Permutation Graphs

	4 Minimum Maximal Uniquely Restricted Matching in Subclasses of Chordal Graphs
	4.1 Chordal Graphs
	4.2 Proper Interval Graphs

	5 APX-completeness for Bounded Degree Graphs
	6 Conclusions
	References

	Search, Facility and Graphs
	A Two-Layers Heuristic Search Algorithm for Milk Run with a New PDPTW Model
	1 Introduction
	2 Problem Description and Model
	3 Algorithm Design
	3.1 Inner Search of Algorithm
	3.2 Outer Search of Algorithm

	4 Computational Experiments
	4.1 Conclusion

	References

	Optimal Deterministic Group Testing Algorithms to Estimate the Number of Defectives
	1 Introduction
	2 Definitions and Preliminary Results
	3 Upper Bound for Non-adaptive Deterministic Algorithms
	4 Lower Bound for Adaptive Deterministic Algorithm
	5 Polynomial Time Adaptive Algorithm
	6 Polynomial Time Non-adaptive Algorithm
	6.1 Algorithms Using Expanders
	6.2 Algorithms Using Extractors and Condensers

	References

	Nearly Complete Characterization of 2-Agent Deterministic Strategyproof Mechanisms for Single Facility Location in Lp Space
	1 Introduction
	2 Preliminaries
	3 Nearly Complete Characterization of Deterministic Mechanisms
	3.1 One-Dimensional Situation
	3.2 Multi-dimensional L2 Situation
	3.3 Multi-dimensional Lp Situation

	4 Two Special Cases
	4.1 Dictatorial Mechanisms
	4.2 Anonymous Mechanisms

	5 Discussion
	References

	Packing and Covering Triangles in Dense Random Graphs
	1 Introduction
	2 G(n,p) Random Graph Model
	3 G(n,m) Random Graph Model
	4 Conclusion and Future Work
	References

	Mechanism Design for Facility Location Games with Candidate Locations
	1 Introduction
	2 Model
	3 Single-Facility Location Games
	3.1 Line Space
	3.2 General Metric Spaces

	4 Two-Facility Location Games
	4.1 Social-Cost Objective
	4.2 Maximum-Cost Objective

	5 Conclusion
	References

	Geometric Problem
	Online Maximum k-Interval Coverage Problem
	1 Introduction
	2 Preliminaries
	3 Lower Bounds
	4 Upper Bounds
	4.1 Dynamic Programming Based Optimal Offline Solution
	4.2 Single-Threshold Online Algorithm
	4.3 Double-Threshold Online Algorithm

	5 Concluding Remarks
	References

	Vertex Fault-Tolerant Spanners for Weighted Points in Polygonal Domains
	1 Introduction
	2 Vertex Fault-Tolerant Spanner for Weighted Points in a Simple Polygon
	3 Vertex Fault-Tolerant Spanner for Weighted Points in a Polygonal Domain
	4 Conclusions
	References

	Competitive Analysis for Two Variants of Online Metric Matching Problem
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Online Metric Matching Problem with Two Servers
	2.2 Online Facility Assignment Problem on a Line
	2.3 Competitive Ratio

	3 Online Metric Matching Problem with Two Servers
	3.1 Upper Bound
	3.2 Lower Bound

	4 Online Facility Assignment Problem on Line
	5 Conclusion
	References

	Guarding Disjoint Orthogonal Polygons in the Plane
	1 Introduction
	2 Related Work
	3 Axis-Aligned Orthogonal Polygons
	4 Arbitrary-Oriented Orthogonal Polygons
	5 Conclusion
	References

	Optimal Strategies in Single Round Voronoi Game on Convex Polygons with Constraints
	1 Introduction
	2 Definitions and Preliminary Concepts
	3 Characterization of Optimal Placements for Alice and Bob
	3.1 A Characterization of Clients of Alice and Bob
	3.2 A Necessary and Sufficient Condition for Alice and Bob

	4 Algorithm to Compute the Common Intersection of Ellipses
	5 Bounds for the Scores in the Voronoi Game on Polygons
	5.1 Tight Lower and Upper Bounds for the Scores in the Voronoi Game on Simple Polygons
	5.2 Bounds on Voronoi Games on Convex Polygons

	6 Strategy for Adversary Bob
	7 Strategy for Server Alice
	7.1 Algorithm to Compute an Optimal Placement of A

	References

	Cutting Stock with Rotation: Packing Square Items into Square Bins
	1 Introduction
	2 A Review of the 1-Bin Square Packing (1BSP) Problem
	3 An APTAS for Square Packing with Rotation
	3.1 Triangle and Trapezoid Packing
	3.2 Packing Large Items
	3.3 Packing Arbitrary Input

	References

	Miscellaneous
	Remotely Useful Greedy Algorithms
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Formal Problem Statement
	3 Hardness and Cost Hierarchy
	4 Greedy Algorithms and Approximation Guarantees
	4.1 Algorithms
	4.2 Approximation Guarantee

	5 Instance-Based Upper Bounds
	6 Experiments
	6.1 Benchmark Graphs
	6.2 Results

	7 Conclusions and Future Work
	References

	Parameterized Algorithms for Fixed-Order Book Drawing with Bounded Number of Crossings per Edge
	1 Introduction
	2 Preliminaries
	3 Parameterization by Both the Maximum Number of Crossings per Edge and the Vertex Cover Number
	3.1 Three Types of Crossing Number Matrices in the Record Set
	3.2 A Parameterized Algorithm for the Problem FDVC

	4 Parameterization by both the Maximum Number of Crossings per Edge and the Pathwidth of the Vertex Ordering
	4.1 Two Types of Crossing Data Matrices in the Record Set
	4.2 A Parameterized Algorithm for the Problem FDPW

	5 Conclusions
	References

	Fractional Maker-Breaker Resolving Game
	1 Introduction
	2 Some Known Results on the MBRG
	3 General Results on the Outcome of the FMBRG
	4 The Outcome of the FMBRG on Some Classes of Graphs
	References

	Price of Fairness in Budget Division for Egalitarian Social Welfare
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Guarantees for Fairness Axioms
	4 Guarantees for Voting Rules
	5 Conclusion
	References

	Inspection Strategy for On-board Fuel Sampling Within Emission Control Areas
	1 Introduction
	2 Description of Ships’ Violation Behaviors
	3 Model Formulation and Algorithm
	4 Results and Discussion
	4.1 Data
	4.2 Optimal Inspection Strategy
	4.3 Analysis of Influencing Factors

	5 Conclusions
	References

	Novel Algorithms for Maximum DS Decomposition
	1 Introduction
	2 Related Works
	3 Deterministic Conditioned Greedy Algorithm
	4 Two Special Cases for Deterministic Conditioned Greedy
	4.1 Case 1
	4.2 Case 2

	5 Random Conditioned Greedy Algorithm
	6 Two Special Cases for Random Conditioned Greedy
	6.1 Case 1
	6.2 Case 2

	7 Conclusions
	References

	Reading Articles Online
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 Lower Bounds
	4 Exploitation of Online Knapsack Algorithms
	5 Threshold Algorithm
	6 Open Questions
	References

	Sensors, Vehicles and Graphs
	An Efficient Mechanism for Resource Allocation in Mobile Edge Computing*-6pt
	1 Introduction
	2 Related Work
	3 System Model
	3.1 System Overview
	3.2 Power Model in MEC
	3.3 Resource Model in MEC
	3.4 Profit Model in MEC

	4 Problem Formulation
	5 Algorithm Design
	6 Simulation Result
	6.1 Simulation Settings
	6.2 Performance Evaluation

	7 Conclusion
	References

	Data Sensing with Limited Mobile Sensors in Sweep Coverage
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 GD-MSDSC
	5 MST-MSDSC
	6 Experimental Results
	7 Conclusions and Future Work
	References

	Trip-Vehicle Assignment Algorithms for Ride-Sharing
	1 Introduction
	2 The Model
	3 Approximation Algorithm
	3.1 Minimum-Weight Fixed-Size Matching with Unmatched Vertex Penalty
	3.2 Algorithm DPAA
	3.3 Approximation Ratio

	4 Dynamic Assignment Algorithm
	4.1 Minimum Weight Matching with Unmatched Vertex Penalty
	4.2 Driver Passenger Greedy Assignment Algorithm (DPGA)
	4.3 Experiments

	5 Conclusions
	References

	Minimum Wireless Charger Placement with Individual Energy Requirement
	1 Introduction
	2 Related Works
	3 System Model and Problem Formulation
	3.1 System Model and Assumptions
	3.2 Problem Formulation

	4 Algorithms for the PIO Problem
	4.1 The Greedy Based Algorithm
	4.2 The Relax Rounding Algorithm

	5 Performance Evaluation
	5.1 Performance Comparison

	6 Conclusions
	References

	An Efficient Algorithm for Routing and Recharging of Electric Vehicles
	1 Introduction
	2 Problem Definition
	2.1 Complexity of EVRRP

	3 Optimal Solution for EVRRP
	4 An Illustrative Example
	5 An Efficient Algorithm for EVRRP
	5.1 Properties of APX-EVRRP

	6 Conclusion
	References

	The Optimization of Self-interference in Wideband Full-Duplex Phased Array with Joint Transmit and Receive Beamforming
	1 Introduction
	2 Models and Algorithms
	3 Simulations and Results
	References

	Graph Problems
	Oriented Coloring of msp-Digraphs and Oriented Co-graphs (Extended Abstract)
	1 Introduction
	2 Preliminaries
	2.1 Graphs and Digraphs
	2.2 Coloring Undirected Graphs
	2.3 Coloring Oriented Graphs

	3 Coloring msp-Digraphs
	4 Coloring Transitive Acyclic Digraphs
	5 Coloring Oriented Co-graphs
	6 Conclusions and Outlook
	References

	Star-Critical Ramsey Number of Large Cycle and Book
	1 Introduction
	2 Proof
	References

	Computing Imbalance-Minimal Orderings for Bipartite Permutation Graphs and Threshold Graphs
	1 Introduction
	2 Preliminaries
	3 Bipartite Permutation Graphs
	4 Threshold Graphs
	5 Improved Imbalance Parameterized by Vertex Cover
	6 Conclusion
	References

	Inductive Graph Invariants and Algorithmic Applications
	1 Introduction
	2 Inductive Versions of Graph Invariants for Unweighted Graphs
	3 On the Computation of fIND(G)
	4 r-Distance Inductive Invariants for Weighted Graphs
	5 Approximation of Optimal P-Subgraphs
	5.1 Approximation of Maximum Induced (k,P)-Colorable Subgraphs
	5.2 Approximation of Maximum Induced (P1, …, Pk)-Colorable Subgraphs

	6 Approximation of Minimum P-Coloring
	7 Conclusions
	References

	Constructing Order Type Graphs Using an Axiomatic Approach
	1 Introduction
	2 Preliminaries
	3 Convex Position
	4 Axioms 1,2, and 3 only
	5 Algorithms
	6 Experiments
	7 Concluding Remarks
	References

	FISSION: A Practical Algorithm for Computing Minimum Balanced Node Separators
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Properties of Minimum Balanced Node Separators
	3 The FISSION Algorithm
	3.1 Preprocessing Phase
	3.2 Branching Phase

	4 Experimental Evaluation
	4.1 Data and Settings
	4.2 Preprocessing Results
	4.3 Branching Results

	5 Showcases
	6 Conclusions and Future Work
	References

	Author Index

