
On the Exact Round Complexity
of Best-of-Both-Worlds Multi-party

Computation

Arpita Patra1, Divya Ravi1(B), and Swati Singla2

1 Indian Institute of Science, Bangalore, India
{arpita,divyar}@iisc.ac.in

2 Google India, Bangalore, India
swatis@iisc.ac.in

Abstract. The two traditional streams of multiparty computation
(MPC) protocols consist of– (a) protocols achieving guaranteed output
delivery (god) or fairness (fn) in the honest-majority setting and (b) pro-
tocols achieving unanimous or selective abort (ua, sa) in the dishonest-
majority setting. The favorable presence of honest majority amongst the
participants is necessary to achieve the stronger notions of god or fn.
While the constructions of each type are abound in the literature, one
class of protocols does not seem to withstand the threat model of the
other. For instance, the honest-majority protocols do not guarantee pri-
vacy of the inputs of the honest parties in the face of dishonest majority
and likewise the dishonest-majority protocols cannot achieve god and
fn, tolerating even a single corruption, let alone dishonest minority. The
promise of the unconventional yet much sought-after species of MPC,
termed as ‘Best-of-Both-Worlds’ (BoBW), is to offer the best possible
security depending on the actual corruption scenario.

This work nearly settles the exact round complexity of two classes of
BoBW protocols differing on the security achieved in the honest-majority
setting, namely god and fn respectively, under the assumption of no setup
(plain model), public setup (CRS) and private setup (CRS + PKI or sim-
ply PKI). The former class necessarily requires the number of parties to
be strictly more than the sum of the bounds of corruptions in the honest-
majority and dishonest-majority setting, for a feasible solution to exist.
Demoting the goal to the second-best attainable security in the honest-
majority setting, the latter class needs no such restriction.

Assuming a network with pair-wise private channels and a broadcast
channel, we show that 5 and 3 rounds are necessary and sufficient for
the class of BoBW MPC with fn under the assumption of ‘no setup’ and
‘public and private setup’ respectively. For the class of BoBW MPC with
god, we show necessity and sufficiency of 3 rounds for the public setup
case and 2 rounds for the private setup case. In the no setup setting, we
show the sufficiency of 5 rounds, while the known lower bound is 4. All
our upper bounds are based on polynomial-time assumptions and assume

Arpita Patra would like to acknowledge financial support from SERB MATRICS (The-
oretical Sciences) Grant 2020 and Google India AI/ML Research Award 2020.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 60–91, 2020.
https://doi.org/10.1007/978-3-030-64840-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_3

On the Exact Round Complexity of BoBW Multi-party Computation 61

black-box simulation. With distinct feasibility conditions, the classes dif-
fer in terms of the round requirement. The bounds are in some cases
different and on a positive note at most one more, compared to the max-
imum of the needs of the honest-majority and dishonest-majority setting.
Our results remain unaffected when security with abort and fairness are
upgraded to their identifiable counterparts.

1 Introduction

In secure multi-party computation (MPC) [1–3], n parties wish to jointly perform
a computation on their private inputs in a way that no adversary A actively
corrupting a coalition of t parties can learn more information than their outputs
(privacy), nor can they affect the outputs of the computation other than by
choosing their own inputs (correctness). MPC protocol comes in distinct flavours
with varying degree of robustness– guaranteed output delivery (god), fairness
(fn), unanimous abort (ua) and selective abort (sa). The strongest security, god,
implies that all parties are guaranteed to obtain the output, regardless of the
adversarial strategy. In the weaker notion of fn, the corrupted parties receive
their output if and only if all honest parties do. In the further weaker guarantee
of ua, fairness may be compromised, yet the adversary cannot break unanimity of
honest parties. That is, either all or none of the honest parties receive the output.
Lastly, sa security, the weakest in the lot, allows the adversary to selectively
deprive some honest parties of the output.

While highly sought-after, the former two properties can only be realised,
when majority of the involved population is honest [4]. In the absence of this
favorable condition, only the latter two notions can be attained. With these dis-
tinct affordable goals, MPC with honest majority [5–11] and dishonest majority
[1,12–17] mark one of the earlier demarcations in the world of MPC. With com-
plementary challenges and techniques, each setting independently stands tall
with spectacular body of work. Yet, the most worrisome shortcoming of these
generic protocols is that: a protocol in one setting completely breaks down in the
other setting i.e. the security promises are very rigid and specific to the setting.
For example, a protocol for honest majority might no longer even be “private”
or “correct” if half (or more) of the parties are corrupted. A protocol that guar-
antees security with ua for arbitrary corruptions cannot pull off the stronger
security of god or fn even if only a “single” party is corrupt. In many real-life
scenarios, it is highly unlikely for anyone to guess upfront how many parties the
adversary is likely to corrupt. In such a scenario, the best a practitioner can do, is
to employ the ‘best’ protocol from her favorite class and hope that the adversary
will be within assumed corruption limit of the employed protocol. If the guess
fails, the employed protocol, depending on whether it is an honest or dishonest
majority protocol, will suffer from the above mentioned issues. The quest for
attaining the best feasible security guarantee in the respective settings of honest
and dishonest majority in a single protocol sets the beginning of a brand new
class of MPC protocols, termed as ‘Best of Both Worlds (BoBW)’ [18–20]. In

62 A. Patra et al.

critical applications like voting [21,22], secure auctions [23], secure aggregation
[24], federated learning and prediction [25,26], financial data analysis [27] and
others, where privacy of the inputs of an honest party needs protection at any
cost and yet a robust completion is called for (as much as theoretically feasible),
BoBW protocols are arguably the best fit.

Denoting the threshold of corruption in honest and dishonest majority case
by t and s respectively, an ideal BoBW MPC should promise the best possi-
ble security in each corruption scenario for any population of size n, as long as
t < n/2 and s < n. Quite contrary to the expectation, the grand beginning of
BoBW MPC with the works of [18–20] is mostly marred with pessimistic results
showing the above goal is impossible for many scenarios. For reactive function-
alities that receive inputs and provide outputs in multiple rounds maintaining
a state information between subsequent invocations, it is impossible to achieve
BoBW security [18]. While theoretical feasibility is not declined, non-reactive or
standard functionalities are shown to be impossible to realise as long as t+s ≥ n
in expected polynomial time (in the security parameter), making any positive
result practically irrelevant [19,20]. A number of meaningful relaxations were
proposed in the literature to get around the impossibility of BoBW security
when t+s ≥ n [19,20]. The most relevant to our work is the relaxation proposed
in [28] where the best possible security of god is compromised to the second-best
notion of fn in the honest-majority setting. Other attempts to circumvent the
impossibility result appear in [18] and [19,29] where the security in dishonest-
majority setting is weakened to allowing the adversary to learn s evaluations
of the function (each time with distinct inputs exclusively corresponding to the
corrupt parties) in the former and achieving a weaker notion of O(1/p)-security
with abort (actions of any polynomial-time adversary in the real world can be
simulated by a polynomial-time adversary in the ideal world such that the distri-
butions of the resulting outcomes cannot be distinguished with probability better
than O(1/p)) in the latter. [18] shows yet another circumvention by weakening
the adversary in dishonest-majority case from active to passive. On the con-
trary, constructions are known when t + s < n is assumed [18], tolerating active
corruptions and giving best possible security in both the honest and dishonest
majority case.

In this work, we consider two types of BoBW MPC protocols and study
their exact round complexity: (a) MPC achieving the best security of god and
ua in the honest and dishonest majority setting respectively assuming s+ t < n,
referred as (god|ua)-BoBW; (b) MPC achieving second-best security notion of
fn in the honest majority and the best possible security of ua in the dishon-
est majority for any n, referred as (fn|ua)-BoBW. The adversary is considered
malicious, rushing and polynomially-bounded in either world. The latter notion
(introduced in [28]) is an elegant and meaningful relaxation that brings back
the true essence of BoBW protocols with no constraint on n, apart from the
natural bounds of t < n/2 and s < n. Furthermore, fn is almost as good as god
for many practical applications where the adversary is rational enough and does
not wish to fail the honest parties at the expense of losing its own output. In

On the Exact Round Complexity of BoBW Multi-party Computation 63

spite of immense practical relevance of BoBW protocols, the question of their
exact round complexity has not been tackled so far. Below, we review relevant
literature on BoBW protocols and exact round complexity of MPC.

1.1 On the Round Complexity of BoBW MPC

The phenomenal body of work done on round complexity catering to various
adversarial settings and network models emphasises its theoretical importance
and practical relevance. For instance, the exact round complexity of MPC inde-
pendently in honest and dishonest majority has been examined and the recent
literature is awash with a bunch of upper bounds that eluded for quite a long
time [16,17,30,31]. We review the round complexity of the honest-majority and
dishonest-majority MPC in the cryptographic setting which define natural yet
possibly loose bounds for the BoBW MPC. To begin with, 2 rounds are known
to be necessary to realize any MPC protocol, regardless of the setting, no mat-
ter whether a setup is assumed or not as long as the setup (when assumed) is
independent of the inputs of the involved parties [32]. In the dishonest-majority
setting, when no setup is assumed (plain model) 4 rounds are necessary [33].
Tight upper bounds appear in [14–17,34], with the latter three presenting con-
structions under polynomial-time assumptions, yet with sa security. In the pres-
ence of a public setup (Common Reference String a.k.a. CRS setting), the lower
bound comes down to 2 rounds [32]. A series of work present matching upper
bounds under various assumptions [13,35,36], culminating with the works of
[30,31] that attain the goal under the minimal assumption of 2-round oblivious
transfer (OT). In the honest-majority setting and in plain model, 3 rounds are
shown to be necessary for fn (and hence for god) protocols, in the presence of
pairwise-private and broadcast channels for t ≥ 2 active corruptions [37] and for
any t as long as n/3 < t < n/2 [38]. The results of [37,38] hold in the presence
of CRS but does not hold in the presence of correlated randomness setup such
as PKI. Circumventing the lower bound of 3 for fn, [39] shows a 2-round 4PC
protocol against a single active corruption achieving god even without a broad-
cast channel. The matching upper bounds appear in [11] for the general case
under public-key assumption, and in [38] for the special case of 3PC under the
minimal assumption of (injective) OWF. In the CRS model, 3 rounds remains
to be the lower bound for fn in a setting where broadcast is the only medium
of communication (broadcast-only setting) [40] and additionally with point-to-
point channels [37,38,41]. Given PKI, the bound can be improved to 2 [40].

In the BoBW setting, constant-round protocols are presented in (or can be
derived from) [18,20] for (god|ua)-BoBW and BoBW where only semi-honest
corruptions are tolerated in the dishonest majority. The recent work of [42]
settled the exact round complexity of the latter class, as a special case of a
strong adversarial model that allows both active (with threshold ta) and passive
(with threshold tp, which subsumes the active corruptions) corruption for a range
of thresholds for (ta, tp) starting from (�n/2�−1, �n/2�) to (0, n−1). Lastly, the
round complexity of BoBW protocols of [29] that achieve 1/p- security with abort

64 A. Patra et al.

in dishonest-majority (and god in honest majority), depends on the polynomial
p(κ) (where κ denotes the security parameter).

1.2 Our Results

This work nearly settles the exact round complexity for two classes of BoBW
protocols, (god|ua)-BoBW and (fn|ua)-BoBW, under the assumption of no setup
(plain model), public setup (CRS) and private setup (CRS + PKI or simply
PKI). The adversary is assumed to be rushing, active and static. The parties are
connected via pair-wise private channels and an additional broadcast channel.
All our upper bounds are based on polynomial-time assumptions and assume
black-box simulation. We summarise our results below.

(fn|ua)-BoBW. We settle the exact round complexity of this class of BoBW
protocols by establishing the necessity and sufficiency of: (a) 5 rounds in the plain
model and (b) 3 rounds in both the public (CRS) and private (CRS+PKI) setup
setting. In the CRS model, the necessity of 3 rounds for honest-majority MPC
achieving fn (and hence for (fn|ua)-BoBW) has been demonstrated in [37,38,40],
the former in a setting where broadcast is the only mode of communication
(broadcast-only) and the latter two additionally with pairwise-private channels.
However, these results do not hold in the presence of PKI. Our lower bound
argument, on the other hand, is resilient to the presence of both CRS and PKI,
and further holds in the presence of broadcast and pairwise-private channels.

Table 1. Summary of results

No setup (plain

model)

Public setup (CRS) Private setup (CRS + PKI)

Honest majority Round: 3 Round: 3 Round: 2

t < n/2 Lower Bound:

[37,38]

Lower Bound: [37,38] Lower Bound: [32]

fn / god Upper Bound:

[11,43]

Upper Bound: [11,40,43] Upper Bound: [40]

Dishonest majority Round: 4 Round: 2 Round: 2

s < n Lower Bound: [33] Lower Bound: [32] Lower Bound: [32]

sa / ua Upper Bound:

[16,17,34]

Upper Bound: [13,35] Upper Bound: [13,35]

(sa only) [30,31,36] [30,31,36]

(fn|ua)-BoBW Round: 5 Round: 3 Round: 3

t < n/2, s < n Lower Bound:

This paper

Lower Bound: [37,38] Upper Bound: This paper

fn & ua Upper Bound:

This paper

Lower Bound: This paper Upper Bound: This paper

(god|ua)-BoBW Round: – Round: 3 Round: 2

t < n/2, t + s < n Lower Bound: 4

[33]

Lower Bound: This paper Lower Bound: [32]

god & ua Upper Bound: 5

This paper

Upper Bound: This paper Upper Bound: This paper

(god|ua)-BoBW. In this regime, we demonstrate that 4, 3 and 2 are the
respective lower bounds in the no-setup, public setup and private setup setting.

On the Exact Round Complexity of BoBW Multi-party Computation 65

The first lower bound follows from the fact that BoBW MPC in this class triv-
ially subsumes the dishonest majority MPC when t = 0 and the lower bound
for dishonest-majority MPC is 4 [33]. The last lower bound follows from the
standard 2-round bound for MPC needed to counter “residual function attack”
[32]. Regarding the lower bound of 3 for the public setup (CRS) setting, we
point that it follows directly from the 2-round impossibility of MPC with fn for
honest majority in the CRS model [37,38,40] for most values of (t, s, n) satisfy-
ing s + t < n. However, these existing results do not rule out the possibility of
2-round (god|ua)-BoBW MPC for (t = 1, s > t, n ≥ 4). (In fact the protocols
of [39,44] circumvent the 3-round lower bound for fn when t = 1, n ≥ 4). We
address this gap by giving a unified proof that works even for s > t, for all values
of t (including t = 1). This is non-trivial and it demonstrably breaks down in
the presence of PKI. The bounds are totally different from the ones for previous
class, owing to the different feasibility condition of s + t < n. While our upper
bound falls merely one short of matching the first lower bound in case of no-
setup, the upper bounds of the other two settings are tight. We leave the question
of designing or alternately proving the impossibility of 4-round (god|ua)-BoBW
MPC protocol as open. Our results summarised and put along with the bounds
known in the honest and dishonest majority setting appear in Table 1.

Extensions. We can boost the security of all our protocols to offer identifi-
ability (i.e. public identifiability of the parties who misbehaved) when abort
happens– (fn|ua)-BoBW protocols with identifiable fairness and abort in honest
and dishonest majority setting respectively and (god|ua)-BoBW protocols with
identifiable abort in dishonest-majority setting. Our lower bound results hold as
is when ua and fn are upgraded to their stronger variants with identifiability.
Furthermore, all our upper bounds relying on CRS have instantiations based
on a weaker setup, referred as common random string, owing to the availability
of 2-round OT [45] and Non-Interactive Zero Knowledge (NIZK) [46] under the
latter setup assumption. Lastly, we also propose few optimizations to minimize
the use of broadcast channels in our compilers upon which our upper bounds
are based. Specifically, these optimizations preserve the round complexity of our
upper bounds at the cost of relaxing the security notion in dishonest majority
setting to sa (as opposed to ua).

1.3 Techniques

(fn|ua)-BoBW. The lower bounds are obtained via a reduction to 3-round OT in
plain model and 1-round OT in private setup setting, both of which are known
to be impossible [32,33] (albeit under the black-box simulation paradigm which
is of concern in this paper). The starting point is a protocol π between 3 parties
which provides fn when 1 party is corrupt and ua when 2 parties are corrupt,
in 4 rounds when no setup is assumed and 2 rounds when private/public setup
is assumed. The heart of the proof lies in devising a function f such that the
realization of f via π, barring its last round, leads to an OT.

66 A. Patra et al.

The upper bounds are settled with a proposed generic compiler that turns
an r-round dishonest-majority MPC protocol achieving ua to an (r + 1)-round
BoBW MPC protocol information-theoretically. The compiler churns out a 5-
round and a 3-round BoBW protocol in the plain model and in the presence of a
CRS respectively, when plugged with appropriate ua-secure dishonest-majority
protocol in the respective setting. Since the constructions of the known 4-round
dishonest-majority MPC relying on polynomial-time assumptions [16,17,34] pro-
vide only sa security, we transform them to achieve ua for our purpose which
invokes non-triviality for [16]. With CRS, the known constructions of [30,31]
achieve unanimity and readily generate 3-round BoBW protocols.

Our compiler motivated by [47] uses the underlying r-round protocol to com-
pute authenticated secret sharing of the output y with a threshold t(< n/2)
enabling the output reconstruction to occur in the last round. Fairness is ensured
given the unanimity of the underlying protocol and the fact that the adversary
(controlling t corrupt parties) has no information about the output y from the
t shares he owns. However, using pairwise MACs for authentication defies una-
nimity in case of arbitrary corruptions because a corrupt party can choose to
provide a verified share to a selected set of honest parties enabling their out-
put reconstruction while causing the rest to abort. To address this, a form of
authentication used in the Information Checking Protocol (ICP) primitive of
[48,49] and unanimously identifiable commitments (UIC) of [50] can be used.
This technique maintains unanimity amongst the honest parties during output
reconstruction.

(god|ua)-BoBW. The non-trivial lower bound for this class is for the CRS
setting. The other bounds imply from the dishonest-majority case. In the CRS
setting, we prove a lower bound of 3 rounds. We start with assuming a 2 round
BoBW protocol π for a specifically articulated 4-party function f . Next, we
consider a sequence of executions of π, with different adversarial strategies in
the order of their increasingly malicious behaviour such that the views of a
certain party stays the same between the executions. This sequence finally leads
us to a strategy where the adversary is able to learn the input of an honest party
breaching privacy, hence coming to a contradiction. The crux of the lower bound
argument lies in the design of the adversarial strategies that shuffle between the
honest and dishonest majority setting encapsulating the challenge in designing
BoBW protocols. This is in contrast to existing lower bounds in traditional
models that deal with a fixed setting and single security notion at a time.

In the presence of a CRS, we build a 3-round protocol in two steps: a) we
provide a generic compiler that transforms a broadcast-only ua-secure 2-round
semi-malicious protocol such as [30,31] to a 3-round broadcast-only BoBW pro-
tocol of this class against a semi-malicious adversary (that follows the protocol
honestly but can choose bad random coins for each round which are available to
the simulator) b) then, the round-preserving compiler of [51] (using NIZKs) is
applied on the above protocol to attain malicious security. The first compiler, in
spirit of [11], ensures god against t non-cooperating corrupt parties in the last
round, via secret-sharing the last-round message of the underlying protocol dur-

On the Exact Round Complexity of BoBW Multi-party Computation 67

ing the penultimate round of the compiled protocol. This is achieved by means
of a garbled circuit sent by each party outputting its last-round message of the
underlying protocol and the shares of the encoded labels with a threshold of s
so that s + 1 parties (in case of honest majority) can come together in the final
round to construct the last-round message of the corrupt parties. This garbled
circuit of a party Pi also takes into account the case when some other parties
abort in the initial rounds of the protocol by taking the list of aborting parties
as input and hard-coding their default input and randomness such that Pi’s last
round message is computed considering default values for parties who aborted.
The compiler is made round-preserving with additional provision of pairwise-
private channels or alternately, PKI. The latter (with PKI) just like its 3-round
avatar can be compiled to a malicious protocol via the compiler of [51].

In the plain model, we provide a 5-round construction which is substantially
more involved than our other upper bounds. To cope up with the demands of
(god|ua)-BoBW security in the plain model, we encountered several roadblocks
that were addressed by adapting some existing techniques combined with new
tricks. The construction proceeds in two steps: a) we boost the security of our
broadcast-only 3-round semi-malicious BoBW protocol to a stronger notion of
delayed-semi-malicious security (where the adversary is required to justify his
messages by giving a valid witness only in the last but one round) and b) we
plug this 3-round BoBW protocol in the compiler of [31] with some additional
modifications to obtain a 5-round BoBW protocol secure against a malicious
adversary. The compiler of [31] takes as input a (k − 1)-round protocol secure
with abort against a delayed-semi-malicious adversary and churns out a k-round
protocol secure with abort against a malicious adversary for any k ≥ 5. The
major challenges in our construction surface in simulation, where we cannot
terminate in the honest-majority case even if the adversary aborts on behalf of
a corrupt party (unlike the compiler of [31] that achieves abort security only).
Furthermore, we observed that the natural simulation strategy to retain the
BoBW guarantee suffered from a subtle flaw, similar to the one pointed in the
work of [52], which we resolve with the help of the idea suggested therein. To
bound the simulation time by expected polynomial-time, we further needed to
introduce two ‘dummy’ rounds (rounds which do not involve messages of the
underlying protocol being compiled) in our compiler as opposed to one as in
[31]. This does not inflate the round complexity as our underlying delayed-semi-
malicious protocol only consumes 3 rounds (instead of 4 as in the case of [31]).
As a step towards resolving the question left open in this work (namely proving
the impossibility or alternately constructing a 4-round (god|ua)-BoBW protocol
under polynomial-time assumption), we present a sketch of a 4-round (god|ua)-
BoBW protocol based on sub-exponentially secure trapdoor permutations and
ZAPs. This construction builds upon the work of [53]. The pictorial roadmap to
obtain the upper bounds is given in the figure below.

68 A. Patra et al.

2-round
Semi-malicious
ua-dishonest-
majority
Broadcast-only
no setup

3-round
Semi-malicious
(god|ua)-BoBW
Broadcast-only
no setup

2-round
Semi-malicious
(god|ua)-BoBW
Broadcast-only
PKI

2-round
Semi-malicious
(god|ua)-BoBW
Broadcast +
private channel
no setup

3-round
Malicious
(god|ua)-BoBW
Broadcast-only
CRS

2-round
Malicious
(god|ua)-BoBW
Broadcast-only
CRS + PKI

3-round
Delayed Semi-
Malicious
(god|ua)-BoBW
Broadcast-Only
no setup

5-round
Malicious
(god|ua)-BoBW
Broadcast-Only
no setup

Sec 5.1.1

Sec 5.1.2

Se
c 5.1

.2

Sec 5.1.3

Sec 5.1.3

[54
]

Sec 5.2.2

1.4 Related Works on BoBW MPC

An orthogonal notion of BoBW security is considered in [28,55,56] where
information-theoretic and computational security is the desired goal in honest
and dishonest majority setting respectively. Avoiding the relaxation to computa-
tional security in dishonest-majority setting, the work of [57] introduces the best
possible information-theoretic guarantee achievable in the honest and dishonest
majority settings simultaneously; i.e. the one that offers standard information-
theoretic security in honest majority and offers residual security (the adversary
cannot learn anything more than the residual function of the honest parties’
inputs) in dishonest-majority setting. A more fine-grained graceful degradation
of security is dealt with in the works of [28,42,58–60] considering a mixed adver-
sary that can simultaneously corrupt in both active and semi-honest style. Lastly,
[61] studies the communication efficiency in the BoBW setting.

1.5 Our Model

Before moving onto the technical section, we detail our model here. We consider
a set of n parties P = {P1, . . . Pn} connected by pairwise-secure and authentic
channels and having access to a broadcast channel. A few protocols in our work
that are referred to as being broadcast-only do not assume private channels. Each
party is modelled as a probabilistic polynomial time (PPT) Turing machine. We
assume that there exists a PPT adversary A, who can corrupt a subset of these
parties. We denote the set of indices corresponding to parties controlled by A
and the honest parties with C and H respectively. We denote the cryptographic
security parameter by κ. A negligible function in κ is denoted by negl(κ). A
function negl(·) is negligible if for every polynomial p(·) there exists a value
N such that for all m > N it holds that negl(m) < 1

p(m) . Lastly, we denote
the ideal functionalities for unanimous abort, fairness and guaranteed output
delivery with Fua, Ffair and Fgod respectively (details appear in full version [54]).

On the Exact Round Complexity of BoBW Multi-party Computation 69

Roadmap. Our lower and upper bounds for (fn|ua)-BoBW appear in Sect. 2–3.
Our lower and upper bounds for (god|ua)-BoBW appear in Sect. 4–5. Our pro-
tocols are proven in real-world and ideal-world paradigm. The detailed security
definitions, complete security proofs and formal definitions of the primitives used
in our upper bounds are described in the full version [54].

2 Lower Bounds for (fn|ua)-BoBW

In this section, we show two lower bounds concerning (fn|ua)-BoBW protocols–
one with no setup and the other with private setup. In the plain model, we show
that it is impossible to design a 4-round (fn|ua)-BoBW protocol (with black-
box simulation). In the CRS setting, the 3-round lower bound for (fn|ua)-BoBW
protocols follows directly from the impossibility of 2-round protocol achieving
fn [37,38,40]. However, they do not hold in the presence of PKI. While the
argument of [40] crucially relies on the adversary being able to eavesdrop com-
munication between two honest parties (which does not hold in the presence
of PKI), the lower bounds of [37,38] also do not hold if PKI is assumed (as
acknowledged/demonstrated in [37,41]). In the setting with CRS and PKI, we
show impossibility of a 2-round protocol. The proof of both our lower bounds
relies on the following theorem, which we formally state and prove below.

Theorem 1. An n-party r-round (fn|ua)-BoBW protocol implies a 2-party (r −
1)-round maliciously-secure oblivious transfer (OT).

Proof. We prove the theorem for n = 3 parties with t = 1 and s = 2 which can
be extended for higher values of n in a natural manner (elaborated in the full
version). Let P = {P1, P2, P3} denote the 3 parties and the adversary A may
corrupt at most two parties. As per the hypothesis, we assume that there exists
a r-round (fn|ua)-BoBW protocol protocol πf that can compute the function f
defined as f((m0,m1), (c,R2), R3) = ((mc +R2 +R3),mc,mc) which simultane-
ously achieves fn when t = 1 parties are corrupt and ua when s = 2 parties are
corrupt. At a high-level, we transform the r-round 3-party protocol πf among
{P1, P2, P3} into a (r − 1)-round 2-party OT protocol between a sender PS with
inputs (m0,m1) and a receiver PR with input c.

Let q = 1−negl(κ) denote the overwhelming probability with which security
of πf holds, where the probability is defined over the choice of setup (in case a
setup is assumed) and the random coins used by the parties. Before describing
the transformation, we present the following lemma:

Lemma 1. Protocol πf must be such that the combined view of {P2, P3} at
the end of Round (r − 1) suffices to compute their output, with overwhelming
probability.

Proof. Consider an adversary A who corrupts only a minority of the parties (t =
1). A controls party P1 with the following strategy: P1 behaves honestly in the
first (r−1) rounds while he simply remains silent in Round r (last round). Since

70 A. Patra et al.

P1 receives all the desired communication throughout the protocol, it follows
directly from correctness of πf (which holds with overwhelming probability q)
that A must be able to compute the output with probability q. Since πf is
assumed to be fair (with probability q) for the case of t = 1, it must hold that
when P1 learns the output, the honest parties P2 and P3 must also be able to
compute the output with overwhelming probability q × q = q2; without any
communication from P1 in Round r. This implies that the combined view of
{P2, P3} at the end of Round (r − 1) must suffice to compute the output with
overwhelming probability q2. ��
Our transformation from πf to a (r − 1)-round OT protocol πOT between a
sender PS with inputs (m0,m1) and a receiver PR with input c goes as follows.
PS emulates the role of P1 during πf while PR emulates the role of both parties
{P2, P3} during πf using random inputs R2, R3 respectively. In more detail,
let mr

i→j denote the communication from Pi to Pj in round r of πf . Then for
r ∈ [r − 1], the interaction in round r of protocol πOT is the following: PS sends
mr

1→2 and mr
1→3 to PR while PR sends mr

2→1 and mr
3→1 to PS . PR computes the

output mc using the combined view of {P2, P3} at the end of Round (r − 1). PS

outputs nothing. Recall that the output of the OT between (PS , PR) is (⊥,mc)
respectively. We now argue that πOT realizes the OT functionality.

Lemma 2. Protocol πOT realizes the OT functionality.

Proof. We first prove that πOT is correct. By Lemma 1, it follows that PR emu-
lating the role of both {P2, P3} of πf must be able to compute the correct output
mc with overwhelming probability by the end of Round (r − 1). We now con-
sider the security properties. First, we consider a corrupt PR (emulating the roles
of {P2, P3} in πf). Since by assumption, πf is a protocol that should preserve
privacy of P1’s input even in the presence of an adversary corrupting {P2, P3}
(s = 2 corruptions), the input m1−c of PS must remain private against a corrupt
PR. Next, we note that privacy of πf against a corrupt P1 (t = 1 corruption)
guarantees that P1 does not learn anything beyond the output (mc + R2 + R3)
in the protocol πf which leaks nothing about c. It thus follows that a corrupt
PS in πOT emulating the role of P1 in πf will also not be able to learn anything
about PR’s input c. More formally, we can construct a simulator for the OT pro-
tocol πOT for the cases of corrupt PR and corrupt PS by invoking the simulator
of πf for the case of dishonest majority (s = 2) and honest majority (t = 1)
respectively. In each case, it follows from the security of πf (which holds with
overwhelming probability) that the simulator of πf would return a view indis-
tinguishable from the real-world view with overwhelming probability; directly
implying the security of the OT protocol πOT. ��
Thus, we can conclude that a (r − 1)-round 2-party OT protocol πOT can be
derived from r-round πf . This concludes the proof of Theorem 1. ��
Theorem 2. There exists a function f for which there is no 4-round (resp.
2 round) protocol computing f in the plain model (resp. with CRS and PKI)

On the Exact Round Complexity of BoBW Multi-party Computation 71

that simultaneously realises– (1) Ffair when t < n/2 parties are corrupted (2)
Fua when s < n parties are corrupted. In the former setting (plain model), we
assume black-box simulation.

Proof. We start with the proof in the plain model, followed by the proof with
CRS and PKI. We assume for contradiction that there exists a 4-round (fn|ua)-
BoBW protocol (with black-box simulation) in the plain model. Then, it follows
from Theorem 1 that there must exist a 3-round 2-party maliciously-secure OT
protocol with black-box simulation in the plain model. We point that this OT
derived as per the transformation of Theorem 1 is a bidirectional OT, where each
round consists of messages from both the OT sender and the receiver. Using the
round-preserving transformation from bidirectional OT to alternating-message
OT (where each round consists of a message from only one of the two parties)
[34], we contradict the necessity of 4 rounds for alternating OT in the plain
model with black-box simulation [33]. This completes the proof for plain model.

Next, we assume for contradiction that there exists a 2-round (fn|ua)-BoBW
MPC protocol in the presence of CRS and PKI. Then, it follows from Theorem
1 that there exists 1-round OT protocol in this model. We have arrived at a
contradiction since non-interactive OT is impossible to achieve in a model with
input-independent setup that includes CRS and PKI (notably 1-round OT con-
structions which use an input-dependent PKI setup such as [62] exist). To be
more specific, a 1-round OT protocol would be vulnerable to the following resid-
ual attack by a corrupt receiver PR: PR can participate in the OT protocol with
input c and get the output mc at the end of the 1-round OT protocol (where
(m0,m1) denote the inputs of sender PS). Now, since the Round 1 messages of
PS and PR are independent of each other, PR can additionally plug in his input
as being (1 − c) to locally compute m1−c as well which is a violation of sender’s
security as per the ideal OT functionality. ��

3 Upper Bounds for (fn|ua)-BoBW

In this section, we construct two upper bounds for the (fn|ua)-BoBW class.
Our upper bounds take 5 and 3 rounds in the plain model and in the CRS set-

ting respectively, tightly matching the lower bounds presented in Sect. 2. We
begin with a general compiler that transforms any n-party r-round actively-
secure MPC protocol achieving ua in dishonest majority into an (r + 1)-round
(fn|ua)-BoBW protocol.

3.1 The Compiler

At a high-level, our compiler uses the compiler of [47] and a form of authentica-
tion used in the Information Checking Protocol (ICP) primitive of [48,49] and
unanimously identifiable commitments (UIC) of [50]. Drawing motivation from
the compiler of [47] from ua to fn in the honest majority setting, our compiler
uses the given r-round protocol achieving ua security to compute an “authenti-
cated” secret sharing with a threshold of t of the output y and reconstruct the

72 A. Patra et al.

output y during the (r + 1)th round. The correct reconstruction is guaranteed
thanks to unanimity offered by the underlying protocol and the authentication
mechanism that makes equivocation of a share hard. Alternatively termed as
error-correcting secret sharing (ECSS) [47], the authenticated secret sharing was
instantiated with pairwise information-theoretic or one-time MAC as a form of
authentication. This, when taken as is in our case, achieves fairness in the hon-
est majority setting as in the original transformation. The sharing threshold t
ensures that the shares of the honest set, consisting of at least t + 1 parties, dic-
tate the reconstruction of the output, no matter whether the corrupted parties
cooperate or not. The pairwise MAC, however, makes it challenging to maintain
unanimity in the dishonest majority case of the transformed protocol, where a
corrupt party may choose to verify its share to selected few enabling their output
reconstruction. This seems to call for a MAC that cannot be manipulated part-
wise to keep the verifiers on different pages. A possible approach to achieve the
property of public verifiability is by means of digital signatures i.e. each party
obtains a signed output share which it broadcasts during reconstruction and can
be verified by remaining parties using a common public verification key (that
the parties obtain as part of the output of the r-round protocol achieving ua).
Alternately, if the form of authentication used in the ICP of [48,49] and UIC of
[50] is used, then digital signatures can be avoided and the compiler (transform-
ing any n-party r-round actively-secure MPC protocol achieving ua in dishonest
majority into an (r + 1)-round (fn|ua)-BoBW protocol) achieves the desirable
property of being information-theoretic (i.t).

Achieving i.t security is a worthwhile goal, as substantiated by its extensive
study in various settings including those where achieving this desirable security
notion demands additional tools. For instance, there are well-known results cir-
cumventing the impossibility of achieving i.t security in dishonest majority by
relying on additional assistance such as tamper-proof hardware tokens [50,63]
and Physically Uncloneable Functions (PUFs) [64,65]. Having an i.t compiler
opens up the possibility of achieving i.t BoBW MPC by plugging in an i.t.
secure dishonest majority protocol (say, that uses hardware tokens/PUFs or
other assistance) in the compiler. The details of the i.t compiler appear in [54].

3.2 The Upper Bounds

Building our round-optimal (fn|ua)-BoBW protocols in the plain and CRS model
involves constructing 2 and 4 round protocols that achieve ua security against
dishonest majority in the respective models. Such protocols when plugged in
our compiler of Sect. 3.1 would directly yield the round-optimal (fn|ua)-BoBW
protocols.

In the CRS setting, the known 2-round protocols of [30,31] achieve ua and
thereby lead to a 3-round (fn|ua)-BoBW protocol, matching the lower bound.
Unfortunately, the existing 4-round MPC protocols in the plain model relying on
polynomial-time assumptions [16,17,34], in spite of convenient use of broadcast,
only satisfy the weaker notion of sa. We demonstrate how the protocol of [16]
and [17,34] can be tweaked to achieve ua in the full version [54]. With respect

On the Exact Round Complexity of BoBW Multi-party Computation 73

to the above mentioned ua protocols, our (fn|ua)-BoBW MPC protocols rely on
the assumption of 2-round OT in the common random/reference string model
and 4-round OT in the plain model.

Theorem 3. Assuming the existence of a 4 (resp., 2) round MPC protocol that
realizes Fua for upto n−1 malicious corruptions in the plain (resp., CRS) model,
there exists a 5 (resp., 3)-round MPC protocol in the plain (resp., CRS) model
that simultaneously realises– (1) Ffair when t < n/2 parties are corrupted (2) Fua

when s < n parties are corrupted.

A minor observation regarding the use of broadcast in our compiler is that
we can replace it with point-to-point communication at the expense of relaxing
ua to sa security in the dishonest majority setting.

Security with Identifiability. Our compiler preserves the property of identifia-
bility. Since the underlying dishonest-majority protocols [30,31] can be boosted
to achieve identifiable abort (as shown by [66]), the upper bound in the CRS
model achieves identifiable fairness and abort in the honest and dishonest major-
ity setting respectively. With respect to the plain model, we show how security
of [17] can be boosted to achieve identifiable abort with minor tweaks, in the
full version. This variant, when compiled using our compiler of Sect. 3.1 would
achieve identifiable fairness and abort in the honest and dishonest majority set-
ting respectively.

4 Lower Bounds for (god|ua)-BoBW

In this section, we prove that it is impossible to design a 2-round (god|ua)-
BoBW protocol with t + s < n in the CRS model. Note that the necessity of
3 rounds for (god|ua)-BoBW protocol for most values of (n, s, t) follows from
the 2-round impossibility of fair MPC for honest majority in the CRS model
[37,38,40]. Accounting for the fact that these existing results do not rule out the
possibility of 2-round (god|ua)-BoBW MPC for (t = 1, s > t, n ≥ 4), we present
a unified proof that works even for s > t, for all values of t (including t = 1). Our
proof approach deals with adversarial strategies that shuffle between the honest
and dishonest majority setting, highlighting the challenge of designing protocols
that simultaneously provide different guarantees for different settings. This is in
contrast to the existing lower bounds of [37,38,40] which deal only with honest
majority setting and single security notion of fn. Lastly, we demonstrate why
our proof breaks down in the presence of PKI. Indeed, we construct a 2-round
(god|ua)-BoBW protocol assuming CRS and PKI in this work.

Theorem 4. Let n, t, s be such that t + s < n and t < n/2. There exist func-
tions f for which there is no two-round protocol in the CRS model computing f
that simultaneously realizes– (1) Fgod when t < n/2 parties are corrupted (2)
Fua when s < n parties are corrupted.

74 A. Patra et al.

Proof. We prove the theorem for n = 4 parties with t = 1 and s = 2. The result
then can be extended for higher values of n in a natural manner (elaborated in
the full version). Let P = {P1, P2, P3, P4} denote the set of 4 parties and A may
corrupt at most two among them. We prove the theorem by contradiction. We
assume that there exists a 2-round (god|ua) BoBW protocol π in the CRS model
that can compute the function f(x1, x2, x3, x4) defined below for Pi’s input xi:
f(x1, x2, x3, x4) = 1 if x1 = x2 = 1; 0 otherwise. By assumption, π achieves god
when t = 1 parties are corrupt and ua security when s = 2 parties are corrupt
(satisfying feasibility criteria t + s < n).

At a high level, we discuss three adversarial strategies A1,A2 and A3 of A.
While both A1 and A3 deal with t = 1 corruption with the adversary corrupt-
ing P1, A2 involves s = 2 corruptions where the adversary corrupts {P3, P4}.
We consider Ai strategy as being launched in execution Σi (i ∈ [3]) of π. The
executions are assumed to be run for the same input tuple (x1, x2,⊥,⊥) and
the same random inputs (r1, r2, r3, r4) of the parties. (Same random inputs are
considered for simplicity and without loss of generality. The same arguments
hold for distribution ensembles as well.) Our executions and adversarial strate-
gies are sequenced in the order of increasingly more non-cooperating malicious
adversaries. Yet, keeping the views of a certain party between two consecutive
executions same, we are able to conclude the party would output the correct
value even in the face of stronger malicious behaviour. Finally, we reach to the
final execution Σ3 where we show that a party can deduce the output in the end
of Round 1 itself. Lastly, we show a strategy for the party to explicitly breach
the input privacy of one of the input-contributing parties.

We assume that the communication done in the second round of π is via
broadcast alone. This holds without loss of generality since the parties can
perform point-to-point communication by exchanging random pads in the first
round and then use these random pads to unmask later broadcasts. We use the
following notation: Let p1i→j denote the pairwise communication from Pi to Pj in
round 1 and br

i denote the broadcast by Pi in round r, where r ∈ [2], {i, j} ∈ [4].
These values may be function of CRS as per the working of the protocol. V�

i

denotes the view of party Pi at the end of execution Σ� (� ∈ [3]) of π. Below we
describe the strategies A1,A2 and A3.

A1: A corrupts P1 here. P1 behaves honestly towards P2 in Round 1, i.e. sends
the messages p11→2, b

1
1 as per the protocol. However P1 does not communi-

cate privately to {P3, P4} in Round 1. In Round 2, P1 behaves honestly as
per the protocol.

A2: A corrupts {P3, P4} here. {P3, P4} behave honestly in Round 1 of the proto-
col. In Round 2, Pk (k ∈ {3, 4}) acts as per the protocol specification when
no private message from P1 is received in Round 1. Specifically, suppose Pk

did not receive p11→k in Round 1. Let b2k denote the message that should be
sent by Pk as per the protocol in Round 2 in such a scenario. Then as per
A2, corrupt Pk sends b2k in Round 2.

On the Exact Round Complexity of BoBW Multi-party Computation 75

A3: Same as in A1 and in addition– during Round 2, P1 simply remains silent i.e.
waits to receive the messages from other parties, but does not communicate
at all.

Next we present the views of the parties in Σ1, Σ2 and Σ3 in Table 2. Here,
b2k (k ∈ {3, 4}) denotes the message that should be sent by Pk according to the
protocol in Round 2 in case Pk did not receive any private communication from
P1 in Round 1.

Table 2. Views of P1, P2, P3, P4 in Σ1, Σ2, Σ3

Σ1 Σ2 Σ3

V1
1 V1

2 V1
3 V1

4 V2
1 V2

2 V2
3 V2

4 V3
1 V3

2 V3
3 V3

4

Input (x1, r1) (x2, r2) r3 r4 (x1, r1) (x2, r2) r3 r4 (x1, r1) (x2, r2) r3 r4

R1 p12→1,
p13→1

p11→2, p
1
3→2, –, p12→3, –, p12→4, p12→1, p

1
3→1 p11→2, p

1
3→2, p11→3, p

1
2→3, p11→4, p

1
2→4, p12→1, p

1
3→1 p11→2, p

1
3→2, –, p12→3, –, p12→4,

p14→1, p14→2, p14→3, p13→4, p14→1, p14→2, p14→3, p13→4, p14→1, p14→2, p14→3, p13→4,

b12, b
1
3,

b14

b11, b
1
3, b

1
4 b11, b

1
2, b

1
4 b11, b

1
2, b

1
3 b12, b

1
3, b

1
4 b11, b

1
3, b

1
4 b11, b

1
2, b

1
4 b11, b

1
2, b

1
3 b12, b

1
3, b

1
4 b11, b

1
3, b

1
4 b11, b

1
2, b

1
4 b11, b

1
2, b

1
3

R2 b22, b
2
3,

b24

b21, b
2
3, b

2
4 b21, b

2
2, b

2
4 b21, b

2
2, b

2
3 b22, b

2
3, b

2
4 b21, b

2
3, b

2
4 b21, b

2
2, b

2
4 b21, b

2
2, b

2
3 b22, b

2
3, b

2
4 –, b23, b

2
4 –, b22, b

2
4 –, b22 b23

We now prove a sequence of lemmas to complete our proof. Let y denote the
output computed as per the inputs (x1, x2) provided by the honest P1 and P2.
Let q = 1 − negl(κ) denote the overwhelming probability with which security of
π holds, where the probability is defined over choice of setup and the random
coins used by the parties.

Lemma 3. The view of P2 is the same in Σ1 and Σ2 and it outputs y in both
with overwhelming probability.

Proof. We observe that as per both strategies A1 and A2, P2 receives com-
munication from P1, P3, P4 as per honest execution in Round 1. In Round 2,
according to A1, corrupt P1 did not send private messages to P3 and P4 who
therefore broadcast b23 and b24 respectively as per protocol specification. On the
other hand, according to A2, corrupt P3 and corrupt P4 send the same messages
respectively as per protocol specification for case when P3, P4 receive no private
message from P1 in Round 1. It is now easy to check (refer Table 2) that V1

2 = V2
2.

Now, since Σ1 involves t = 1 corruption, by assumption, π must be robust (with
overwhelming probability q) and V1

2 must lead to output computation, say of
output y′. Due to view equality, P2 in Σ2 must also output y′ with probability
q. In Σ2, P1 and P2 are honest and their inputs are x1 and x2 respectively. Due
to correctness of π (which holds with overwhelming probability q) during Σ2, it
must then hold that y′ = y i.e. the output computed based on V2

2 is according
to honest P1’s input x1 during Σ2, with overwhelming probability q× q = q2. ��
Lemma 4. The view of P1 is the same in Σ2 and Σ3 and it outputs y in both,
with overwhelming probability.

76 A. Patra et al.

Proof. An honest P2 has the same view in both Σ1 and Σ2 and outputs y with
overwhelming probability as per Lemma 3. As π achieves ua (with probability q)
in the presence of s = 2 corruptions, when P2 learns the output in Σ2, P1 must
learn y in Σ2 with overwhelming probability q2×q = q3. We now show that P1’s
view in Σ2 and Σ3 are the same and so it outputs y in Σ3 with overwhelming
probability q3. First, it is easy to see that the Round 1 communication towards
P1 is as per honest execution in both Σ2, Σ3. Next, recall that as per A2, both
corrupt {P3, P4} send messages in Round 2 according to the scenario when they
didn’t receive any private communication from P1 in Round 1. A similar message
would be sent by honest {P3, P4} in Σ3 who did not receive private message from
corrupt P1 as per A3. Finally, since corrupt P1 behaved honestly to P2 in Round
1 of Σ3 as per A3, the Round 2 communication from P2 is similar to that in
execution Σ2. It is now easy to verify (refer Table 2) that V2

1 = V3
1 from which

output y can be computed. ��
Lemma 5. P2 in Σ3 should learn the output y by the end of Round 1, with
overwhelming probability.

Proof. Firstly, it follows directly from Lemma 4 and the assumption that proto-
col π is robust against t = 1 corruption that all parties including P2 must learn
output y at the end of Σ3 with overwhelming probability q3 × q = q4. Next, we
note that as per strategy A3, P1 only communicates to P2 in Round 1. We argue
that the second round communication from P3, P4 does not impact P2’s output
computation as follows: we observe that the output y depends only on (x1, x2).
Clearly, Round 1 messages of P3, P4 does not depend on x1. Next, since there is
no private communication to P3, P4 from P1 as per strategy A3, the only com-
munication that can possibly hold information on x1 and can impact the round
2 messages of P3, P4 is b11. However, since this is a broadcast message, P2 also
holds this by the end of Round 1 itself. Thus, P2 must be able to compute the
output y at the end of Round 1.

In more detail, P2 can choose randomness r3, r4 on behalf of P3, P4 to locally
emulate their following Round 1 messages {p13→2, p

1
4→2, p

1
3→4, p

1
4→3, b

1
3, b

1
4}. Next,

P2 can now simulate P3’s Round 2 message b23 which is a function of its view
comprising of {p12→3, p

1
4→3, b

1
1, b

1
2, b

1
4} (all of which are available to P2, where b11

was broadcast by P1 in Round 1). Similarly, P2 can locally compute P4’s Round
2 message b24. We can thus conclude that P2’s view at the end of Σ3 comprising
of {p11→2, p

1
3→2, p

1
4→2, b

1
1, b

1
3, b

1
4, b

2
3, b

2
4} can be locally simulated by him at the

end of Round 1 itself from which the output y can be computed. ��
Lemma 6. A corrupt P2 violates the privacy property of π.

Proof. The adversary corrupting P2 participates in the protocol honestly by
fixing input x2 = 0. Since P2 can get the output at the end of Round 1 with
overwhelming probability (Lemma 5), it must be true that P2 can evaluate f
locally by plugging in any value of x2. Now a corrupt P2 can plug in x2 = 1
locally and learn x1 (via the output x1 ∧ x2) with overwhelming probability. In
the ideal world, corrupt P2 must learn nothing beyond the output 0 as it has

On the Exact Round Complexity of BoBW Multi-party Computation 77

participated in the protocol with input 0. But in the execution of π (in which P2

participated honestly with input x2 = 0), P2 has learnt x1 with overwhelming
probability. This is a breach of privacy as P2 learns x1 regardless of his input. ��

Hence, we have arrived at a contradiction, completing proof of Theorem 4.��
We draw attention to the fact that Lemma 5 would not hold in the pres-

ence of any additional setup such as PKI. With additional setup, P3, P4 may
possibly hold some private information (such as their secret key in case of PKI
used to decode P1’s broadcast message in Round 1) that is not available to P2.
Due to this reason, we cannot claim that P2 can emulate Round 2 messages of
{P3, P4} locally at the end of Round 1. However, this holds in case of CRS as
the knowledge of CRS is available to all parties at the beginning of the protocol.

5 Upper Bounds for (god|ua)-BoBW

In this section, we present three (god|ua)-BoBW MPC protocols, assuming t+s <
n which is the feasibility condition for such protocols [20] consuming– a) 3-rounds
with CRS b) 2-rounds with an additional PKI setup c) 5-rounds in plain model.
The first two are round-optimal in light of the lower bound of Sect. 4 and [32]
respectively. The third construction is nearly round-optimal (falls just one short
of the 4-round lower bound of [33]). Among our upper bounds, the construction
in the plain model is considerably more involved and uses several new tricks in
conjugation with existing techniques.

5.1 (god|ua)-BoBW MPC with Public and Private Setup

To arrive at the final destination, the roadmap followed is: (i) A 2-round MPC
achieving ua security is compiled to a 3-round (god|ua)-BoBW MPC protocol,
both against a weaker semi-malicious adversary. With the additional provision
of PKI, this compiler can be turned to a round-preserving one. (ii) The semi-
malicious (god|ua)-BoBW MPC protocols are compiled to malicious ones in CRS
setting via the known round-preserving compiler of [51] (using NIZKs). All the
involved and resultant constructions are in broadcast-only setting. The proto-
col just with CRS tightly upper bounds the 3-round lower bound presented in
Section 4, which accounts for both pair-wise and broadcast channels. The proto-
col with additional PKI setup works in 2 rounds, displaying the power of PKI and
that our lower bound of 3-rounds in Theorem 4 breaks down in the presence of
PKI. Yet, this construction is round optimal, in light of the known impossibility
of 1-round MPC [32].

5.1.1 3-Round (god|ua)-BoBW MPC in Semi-malicious Setting
Here, we present a generic compiler that transforms any 2-round MPC protocol
πua.sm achieving ua security into a 3-round broadcast-only (god|ua)-BoBW MPC
protocol πbw.god.sm assuming t + s < n. Our compiler borrows techniques from
the compiler of [11] which is designed for the honest majority setting and makes

78 A. Patra et al.

suitable modifications to obtain BoBW guarantees. Recall that a semi-malicious
adversary needs to follow the protocol specification, but has the liberty to decide
the input and random coins in each round. Additionally, the parties controlled by
the semi-malicious adversary may choose to abort at any step. The underlying
and the resultant protocol use broadcast as the only medium of communication.

To transform πua.sm to guarantee BoBW security, the compiler banks on the
idea of giving out the Round 2 message of πua.sm in a way that ensures god in
case of honest majority. The dishonest majority protocols usually do not provide
this feature even against a single corruption, let alone a minority. Mimicking the
Round 1 of πua.sm as is, πbw.god.sm achieves this property by essentially giving out
a secret sharing of the Round 2 messages of πua.sm with a threshold of s. When
at most t parties are corrupt, the set of s + 1 honest parties pool their shares to
reconstruct Round 2 messages of πua.sm and compute the output robustly as in
πua.sm. This idea is enabled by encoding (i.e. garbling) the next message functions
of the second round of πua.sm and secret-sharing their encoding information using
a threshold of s in Round 2 and reconstructing the appropriate input labels in
the subsequent round. The next-message circuit of a party Pi hard-codes Round
1 broadcasts of πua.sm, Pi’s input and randomness and the default input and ran-
domness of all the other parties. It takes n flags as input, the jth one indicating
the alive/non-alive status of Pj . Pj turning non-alive (aborting) translates to
the jth flag becoming 0 in which case the circuit makes sure Pj ’s default input
is taken for consideration by internally recomputing Pj ’s first round broadcast
and subsequently using that to compute the Round 2 message of Pi. Since the
flag bits become public by the end of Round 2 (apparent as broadcast is the only
mode of communication), the parties help each other by reconstructing the cor-
rect label, enabling all to compute the garbled next-message functions of all the
parties and subsequently run the output computation of πua.sm. The agreement
of the flag bits further ensures output computation is done on a unique set of
inputs. The transfer of the shares in broadcast-only setting is enabled via setting
up a (public key, secret key) pair in the first round by every party. Broadcast-
ing the encrypted shares emulates sending the share privately. This technique
of garbled circuits computing the augmented next-message function (taking the
list of alive (non-aborting) parties as input) followed by reconstruction of the
appropriate input label was used in the work of [11] for the honest majority
setting. The primary difference in our compiler is with respect to the thresh-
old of the secret-sharing of the labels, to ensure BoBW guarantees. The formal
description of protocol πbw.god.sm, its security and correctness proofs appear in
the full version. We only state the theorems for correctness and security below.

Theorem 5. Protocol πbw.god.sm is correct, except with negligible probability.

Theorem 6. Let (n, s, t) be such that s + t < n. Let πua.sm realises Fua for upto
n−1 semi-malicious corruptions. Then protocol πbw.god.sm realises– (i) Fgod when
at most t < n/2 parties are corrupt and (ii) Fua when at most s < n parties are
corrupt, semi-maliciously in both cases. It takes 3 rounds, assuming that πua.sm

takes 2 rounds.

On the Exact Round Complexity of BoBW Multi-party Computation 79

5.1.2 2-Round (god|ua)-BoBW MPC in Semi-malicious Setting
The compiler of the previous section can be made round preserving by assuming
pair-wise channels or alternately, PKI. The main difference lies in preponing the
actions of Round 2 of πbw.god.sm to Round 1, by exploiting the presence of pri-
vate channels or PKI. We describe these extensions that can be used to obtain a
2-round semi-malicious (god|ua)-BoBW MPC assuming pair-wise channels (pro-
tocol φbw.god.sm) or alternately, PKI (protocol ψbw.god.sm) in the full version.

5.1.3 The Upper Bounds with Public and Private Setup
The 2-round semi-malicious broadcast-only protocol of [30,31] can be plugged
in as πua.sm in our compilers from previous sections to directly yield a 3-round
broadcast-only protocol πbw.god.sm, 2-round protocol φbw.god.sm that uses both
broadcast and pairwise-private channels and 2-round broadcast-only protocol
ψbw.god.sm assuming PKI, all in the semi-malicious setting. Next, the compiler
of [51] that upgrades any broadcast-only semi-malicious protocol to maliciously-
secure by employing NIZKs, can be applied on πbw.god.sm and ψbw.god.sm to yield
a 3-round (god|ua)-BoBW protocol in the CRS model and a 2-round (god|ua)-
BoBW protocol given both CRS and PKI. Note that the compiler of [51]
works only for broadcast-only protocols and cannot be used to boost security of
φbw.god.sm to malicious setting (details appear in full version). Assumption wise,
our upper bound constructions rely on 2-round semi-malicious oblivious transfer
and NIZK in the common random/reference string model upon using the pro-
tocols of [30,31] to realize πua.sm. The formal description of the (god|ua)-BoBW
upper bounds with public and private setup appear in the full version. We state
the theorem below.

Theorem 7. Let (n, s, t) be such that s + t < n. Assuming the existence of a 3-
round (resp., 2-round with PKI) broadcast-only semi-malicious (god|ua)-BoBW
MPC and NIZKs, there exists a 3 (resp., 2)-round MPC protocol in the presence
of CRS (resp., CRS and PKI) that simultaneously achieves (i) Fgod when at
most t < n/2 parties are corrupt and (ii) Fua when at most s < n parties are
corrupt, maliciously in both cases.

Security with Identifiability. Since the compiler of [51] uses NIZKs to prove
correctness of each round, it offers identifiability. Thus our maliciously-secure
(god|ua)-BoBW protocols achieve the stronger notion of identifiable abort in
case of dishonest majority, with no extra assumption. A minor observation is
that we can replace the last round broadcast with point-to-point communication
at the expense of relaxing ua to sa security in the dishonest majority setting.

5.2 Upper Bound for (god|ua)-BoBW MPC in Plain Model

In this section, we present a 5-round (god|ua)-BoBW protocol in the plain model.
For our construction, we resort to the compiler of [31] that transforms any
generic (k − 1)-round delayed-semi-malicious MPC protocol to a k-round mali-
cious MPC protocol for any k ≥ 5. Our 5-round construction comes in two steps:

80 A. Patra et al.

a) first, we show that our 3-round semi-malicious protocol πbw.god.sm (described
in Sect. 5.1.1) is delayed-semi-maliciously secure (refer full version for proof) and
then b) we plug in this 3-round BoBW protocol in a modified compiler of [31] that
carries over the BoBW guarantees, while the original compiler works for security
with abort. Our final 5-round compiled protocol faces several technical difficul-
ties in the proof, brought forth mainly by the need to continue the simulation in
case the protocol must result in god, which needs deep and non-trivial redres-
sals. The techniques we use to tackle the challenges in simulation are also useful
in constructing a 4-round (god|ua)-BoBW protocol based on sub-exponentially
secure trapdoor permutations and ZAPs. We give a sketch of this construction in
the full version (built upon the protocol of [53]) as a step towards resolving the
open question of proving the impossibility or alternately constructing a 4-round
(god|ua)-BoBW protocol under polynomial-time assumptions.

5.2.1 The Compiler of [31]
Substituting k = 5, we recall the relevant details of the compiler of [31]
that transforms a 4-round delayed-semi-malicious protocol φdsm to a 5-round
maliciously-secure protocol π achieving security with abort. The tools used in
this compiler appears in Fig. 1. Each party commits to her input and randomness
using a 2-round statistically binding commitment scheme Com in the first two
rounds. The four rounds of the delayed-semi-malicious protocol φdsm are run as
it is in Round 1, 2, 4 and 5 respectively (Round 3 is skipped) with two additional
sets of public-coin delayed-input witness indistinguishable proofs (WI). The first
set of proofs (WI1) which is completed by Round 4, is associated with the first 3
rounds of φdsm. In addition to proving honest behaviour in these rounds, this set
of proofs enables the simulator of the malicious protocol to extract the inputs
of the corrupt parties, in order to appropriately emulate the adversary for the
delayed-semi-malicious simulator in the last but one round. The second set of
proofs (WI2) which is completed by Round 5, is associated with proving honest
behaviour in all rounds of φdsm. To enable the simulator to pass the WI proofs
without the knowledge of the inputs of the honest parties, it is endowed with
a cheat route (facilitated by the cheating statement of the WI proof, while the
honest statement involves proving honest behaviour wrt inputs committed via
Com) which requires the knowledge of the trapdoor of the corrupt parties; which
the simulator can obtain by rewinding the last 2 rounds of a trapdoor-generation
protocol (Trap) run in the first 3 rounds of the final construction. To enable this
cheat route of the simulator, the compiler has an additional component, namely
4-round non-malleable commitment NMCom run in Rounds 1–4. We refer to the
full version for further details of the compiler.

Next, we give an overview of the simulator S (details appear in [31]) for the 5-
round compiled protocol π that uses the simulator Sφ of the underlying 4-round
protocol φdsm. To emulate the ideal-world adversary corrupting parties in set C,
S invokes the malicious adversary Aπ and simulates a real execution of π for Aπ

by acting on behalf of the honest parties in set H. Recall that the delayed-semi-
malicious security of φdsm guarantees that it is secure against an adversary Aφ

On the Exact Round Complexity of BoBW Multi-party Computation 81

Fig. 1. Tools used in the compiler of [31]

who can choose to behave arbitrarily in the protocol as long as it writes a valid
witness (which consists of an input randomness pair ({xi, ri}i∈C) on behalf of
all corrupt parties) on the witness tape of the simulator Sφ in the penultimate
round such that the witness (x, r) can justify all the messages sent by him. In
order to avail the services of Sφ, S needs to transform the malicious adversary
Aπ to a delayed-semi-malicious adversary Aφ i.e. it needs a mechanism to write
(x, r) on the witness tape of Sφ. This is enabled via extraction of witness i.e.
{xi, ri}i∈C from the WI1 proofs sent by Aπ as the prover via rewinding its last
two rounds (Round 3, 4 of π).

Apart from the above set of rewinds for extraction of corrupt parties’ inputs,
another set of rewinds is required for the following reason: Consider messages of
honest parties simulated by Sφ that are used by S to interact with Aπ during the
execution of π. Here, S cannot convince Aπ in the two sets of WI proofs that these
messages are honestly generated. Hence, he opts for the route of the cheating
statement of the WI proofs which requires the knowledge of the trapdoor of the
corrupt parties. The trapdoor of a party, say Pi consists of two valid message-
signature pairs with respect to the verification key of Pi (described in Fig. 1).
The simulator extracts the trapdoor of parties in C by rewinding the adversary
Aπ in Rounds 2 and 3 till he gets an additional valid message-signature pair. The
trapdoor has been established this way to ensure that only the simulator (and
not the adversary) is capable of passing the proofs via the cheating statement.

Finally, we point that the two sets of rewinds (Round 2–3 and Round 3–4
of π) can be executed by S while maintaining that the interaction with Sφ is
straight-line since Round 3 of the compiled protocol is ‘dummy’ i.e. does not

82 A. Patra et al.

involve messages of φdsm. This ‘dummy’ round is crucial to avoid rewinding of
messages in φdsm. Since there are no messages of φdsm being sent in Round 3, S
can simply replay the messages of φdsm (obtained via Sφ) to simulate Round 2
and Round 4 of π during the rewinds.

5.2.2 Our 5-round BoBW Construction
Our final goal of a (god|ua)-BoBW protocol πbw.god.plain is obtained by apply-
ing the compiler of [31] to our delayed-semi-malicious-secure (god|ua)-BoBW
protocol πbw.god.sm (described in Sect. 5.1.1) with slight modifications. Broadly
speaking, to preserve the BoBW guarantees from semi-malicious to malicious
setting upon applying the compiler, the malicious behaviour of corrupt Pi in the
compiled protocol is translated to an analogous scenario when semi-malicious Pi

aborts (stops communicating) in the underlying protocol πbw.god.sm. Towards this,
we make the following modification: Recall from the construction of πbw.god.sm

that each party Pi is unanimously assigned a boolean indicator i.e. flagi by the
remaining parties which is initialized to 1 and is later set to 0 if Pi aborts (stops)
in the first two rounds. Accounting for malicious behavior, we now require the
value of flagi to be decided based on not just Pi’s decision to abort in a particular
round but also on whether he misbehaves in the publicly-verifiable Trap protocol
or WI proofs. Specifically, if Pi misbehaves in Trap or the first set of proofs WI1

with Pi as prover fails, flagi is set to 0 (analogous to Pi aborting in Round 1 or
2 of πbw.god.sm). Further, if the second set of proofs WI2 with Pi as prover fails,
then the last round message of Pi is discarded (analogous to Pi aborting in last
round of πbw.god.sm).

Next, we point that in our compiled protocol, the 3 rounds of the
underlying semi-malicious protocol πbw.god.sm are run in Rounds 1, 4 and 5
respectively. As opposed to compiler of [31] which needed a single ‘dummy’
round on top of the delayed-semi-malicious protocol, we face an additional
simulation technicality (elaborated in the next section) that demands two
‘dummy’ rounds. This could be enabled while maintaining the round complex-
ity of 5, owing to our 3 (and not 4) round delayed semi-malicious protocol.

Table 3. πbw.god.plain

πbw.god.sm Com Trap NMCom WI1 WI2

Round 1 R1 R1 R1 R1 R1

Round 2 R2 R2 R2 R2 R1

Round 3 R3 R3 R3 R2

Round 4 R2 R4 R4 R3

Round 5 R3 R4

Furthermore, as described earlier, in
order to simulate the WI proofs on
behalf of an honest prover towards
some corrupt verifier Pi, the simula-
tor requires the knowledge of the trap-
door of Pi which would be possible
only if Pi is alive (has not aborted)
during the rounds in which trapdoor
extraction occurs i.e. Round 2 and
Round 3. While the simulator of [31] simply aborts incase any party aborts,
the simulator of our BoBW protocol cannot afford to do so as god must be
achieved even if upto t < n/2 parties abort. We handle this by adding a sup-
plementary condition in our construction, namely, a prover needs to prove the
WI proofs only to verifiers who have been alive until the round in consideration.

On the Exact Round Complexity of BoBW Multi-party Computation 83

Fig. 2. The Modified Compiler for (god|ua)-BoBW MPC (Part 1)

This completes the description of the modifications of our compiler over [31].
The round-by-round interplay of the different components is given in Table 3.
We present our 5-round (god|ua)-BoBW MPC protocol πbw.god.plain (incorporat-
ing the above modifications) in the plain model in Fig 2-3.

5.2.3 Proof-Sketch for 5-round (god|ua)-BoBW Protocol
The simulator for the compiler of [31] runs in different stages. Plugging it for
our 5-round (god|ua)-BoBW construction with appropriate modifications, we
present a high-level overview of the simulation. Let Sbw.god.plain and Sbw.god.sm

denote the simulators corresponding to πbw.god.plain and the underlying delayed
semi-malicious protocol πbw.god.sm respectively. Stage 1 involves running the first
three rounds with the following changes compared to the real-execution of the
protocol: a) Commit to 0 in Com instances (run in Round 1, 2) involving hon-
est party as committer. b) Invoke the simulator for the semi-malicious protocol,

84 A. Patra et al.

Fig. 3. The Modified Compiler for (god|ua)-BoBW MPC (Part 2)

Sbw.god.sm to generate the first message of πbw.god.sm in Round 1 on behalf of hon-
est parties. The rest of the actions in Round 1–3 on behalf of honest parties are
emulated by Sbw.god.plain as per protocol specifications. Note that the simulator
wrt compiler in [31] proceeds beyond the first stage only when the adversary did
not cause an abort on behalf of any corrupt party in Stage 1. Else, it aborts.
This works out because their protocol promises security with abort and hence,
simply terminates if a party aborts. However our protocol, in case of honest
majority, promises god with the output being computed on the actual input of
the parties who have been alive till last but one round. To accommodate this,
Sbw.god.plain cannot simply afford to terminate in case a corrupt party aborts. It
needs to continue the simulation with respect to corrupt parties who are alive,
which demands rewinding. It can thus be inferred that Sbw.god.plain must always

On the Exact Round Complexity of BoBW Multi-party Computation 85

proceed to rewinds unless all the corrupt parties are exposed by adversary in
Stage 1.

The second and the fourth stage, in particular, are concerned with rewinding
of the adversary to enable Sbw.god.plain to extract some information. In Stage 2, the
adversary is reset to the end of Round 1 and Rounds 2, 3 are rewound in order to
enable Sbw.god.plain to extract trapdoor of corrupt parties. In more detail, consider
Trapj→i executed between corrupt sender Pj and honest Pi wrt verification key
vkj→i. Now, Sbw.god.plain acting on behalf of Pi computes the trapdoor of Pj wrt
vkj→i to be two message-signature pairs constituted by one obtained in Stage
1 and the other as a result of rewinding in Stage 2 (note that both signatures
are wrt vkj→i sent in Round 1 of Trapj→i; rewinds involve only Round 2, 3). To
enable continuation of the simulation after Stage 2, which requires the knowledge
of the trapdoors of corrupt parties who are alive, the logical halt condition for
the rewinds is: stop when you have enough! This translates to- stop at the �th

rewind if a valid trapdoor has been obtained for the set of corrupt parties alive
across the �th rewind. Since the �th (last) rewind is expected to provide one valid
(m,σ) pair (i.e. message, signature pair) out of two required for the trapdoor,
all that is required is for the corrupt party to have been alive across at least
one previous rewind. Let the set of parties alive across ith rewind be denoted by
Ai+1 (A1 represents the set of parties that were alive in the execution preceeding
the rewinds i.e. after Stage 1), then the condition formalizes to: halt at rewind
� if A�+1 ⊆ A1 ∪ · · · ∪ A�.

While this condition seems appropriate, it leads to the following subtle issue.
The malicious adversary can exploit this stopping condition by coming up with
a strategy to choose the set of aborting and the alive parties (say, according
to some unknown distribution D pre-determined by the adversary) such that
the final set of alive parties A in the transcript output by the simulator (when
the rewinds halt) will be biased towards the set of parties that were alive in
the earlier rewinds. (Ideally the distribution of the set of alive parties when
simulator halts should be identical to D). This would lead to the view output
by the simulator being distinguishable from the real view. A very similar subtle
issue appears in zero-knowledge (ZK) protocol of [52] - While the details of this
issue of [52] appear in the full version, we give a glimpse into how their scenario is
analogous to ours below. Consider a basic 4-round ZK protocol with the following
skeleton: the verifier commits to a challenge in Round 1 which is subsequently
decommitted in Round 3. The prover responds to the challenge in Round 4. At a
very high-level, the protocol of [52] follows a cut-and-choose paradigm involving
N instances of the above basic protocol. Here, the verifier chooses a random
subset S ⊂ [N] of indices and decommits to the challenges made in those indices
in Round 3. Subsequently, the prover completes the ZK protocol for instances
with indices in S. The simulator for the zero-knowledge acting on behalf of the
honest prover involves rewinds to obtain ‘trapdoors’ corresponding to the indices
in S. However, note that the verifier can choose different S in different rewinds.
Therefore, the simulator is in a position to produce an accepting transcript and
stop at the �th rewind only when it has trapdoors corresponding to all indices in

86 A. Patra et al.

S chosen by the adversary during the �th rewind. However, if the simulation is
stopped at the execution where the above scenario happens for the ‘first’ time,
their protocol suffers an identical drawback as ours. In particular, the malicious
verifier can choose the set of indices S in a manner that the distribution of
the views output by the simulator is not indistinguishable from the real view.
Drawing analogy in a nutshell, the set of indices chosen by the malicious verifier
is analogous to the set of alive corrupt parties in our context (details in full
version). We thereby adopt the solution of [52] and modify our halting condition
as: halt at rewind � if A�+1 ⊆ A1 ∪ · · · ∪ A� and A�+1 � A1 ∪ · · · ∪ A�−1. [52]
gives an elaborate analysis showing why this simulation strategy results in the
right distribution. With this change in simulation of Stage 2, the simulation of
Stage 3 can proceed identical to [31] which involves simulating the WI1 proofs
via the fake statement using the knowledge of trapdoor.

Proceeding to simulation of Stage 4, we recall that the simulator of [31]
involves another set of rewinds in Stage 4 which requires to rewind Round 3
and 4 to extract the witness i.e. the inputs and randomness of the corrupt
parties from WI1. Similar to Stage 2, two successful transcripts are sufficient
for extraction. Thus, the simulator is in a position to halt at �th rewind if all
the corrupt parties that are alive in Stage 4 have been alive across at least one
previous rewind. Next, following the same argument as Stage 2, it seems like the
halting condition for Stage 2 should work, as is, for Stage 4 too.

With this conclusion, we stumbled upon another hurdle elaborated in this
specific scenario: Recall that the trapdoors extracted for corrupt parties in Stage
2 are used here to simulate the WI1 proofs (as described in Stage 3). It is thereby
required that Sbw.god.plain already has the trapdoors for the corrupt parties that
are alive in Stage 4. Let T be the set of trapdoors accumulated at the end of
Stage 2. Consider a party, say Pi, which stopped participating in Round 3 of the
last rewind � of Stage 2 (Pi was alive till Round 2 of �th rewind). Sbw.god.plain still
proceeds to Stage 4 without being bothered about the trapdoor of Pi (as the
halting condition is satisfied). However in Stage 4, when the adversary is reset
to the end of Round 2 of �th rewind, Pi came back to life again in Round 3. The
simulation of WI1 proofs with Pi as a verifier will be stuck if T does not contain
the trapdoor for Pi. Hence, it is required to accommodate the knowledge of set
T during Stage 4. Accordingly Sbw.god.plain does the following in Stage 4: During
each rewind, if a party (say Pi) whose trapdoor is not known becomes alive
during Round 3, store the signature sent by Pi in Round 3 (as part of Trap)
and go back to Stage 2 rewinds (if Pi’s trapdoor is still unknown). Looking
ahead, storing the signature of Pi ensures that the missing trapdoor of Pi in
T can cause Sbw.god.plain to revert to Stage 2 rewinds at most once (if the same
scenario happens again i.e. Pi becomes alive in Round 3 during Stage 4 rewinds,
then another (message, signature) pair wrt verification key of Pi is obtained
in this rewind by Sbw.god.plain; totaling upto 2 pairs which suffices to constitute
valid trapdoor of Pi which can now be added to T). Else, if T comprises of the
trapdoor of all the corrupt parties that are alive during the rewind of Stage 4,
then adhere to the same halting condition as Stage 2. This trick tackles the above

On the Exact Round Complexity of BoBW Multi-party Computation 87

described problematic scenario, while ensuring that the simulation terminates in
polynomial time and maintains indistinguishability of views.

Before concluding the section, we highlight two important features regarding
the simulation of πbw.god.plain: Despite the simulator Sbw.god.plain reverting to Stage
2 rewinds in some cases (unlike the simulation of [31]), the simulation terminates
in polynomial-time since this can occur at most once per corrupt party (as
argued above). Lastly, since there is a possibility of reverting back to simulation
of Round 2 after simulation of Round 4, we keep an additional ‘dummy’ Round 2
as well (on top of ‘dummy’ Round 3 as in [31]) in our construction. This allows us
to maintain the invariant that Sbw.god.sm is never rewound. To be more specific, as
there are no messages of underlying semi-malicious protocol being sent in Round
2, 3; even if Sbw.god.plain needs to return to Stage 2 from Stage 4 (after Round 4 has
been simulated by obtaining the relevant message from Sbw.god.sm) and resume
the simulation from Stage 2 onwards, the message of πbw.god.sm sent in Round 4
can simply be replayed. We are able to accommodate two dummy rounds while
maintaining the round complexity of 5 owing to the privilege that our delayed-
semi-malicious protocol is just 3 rounds. This completes the simulation sketch.
Assumption wise, our construction relies on 2-round semi-malicious oblivious
transfer (a building block of our 3-round delayed-semi-malicious BoBW MPC
πbw.god.sm). We state the formal theorem below.

Theorem 8. Let (n, s, t) be such that s+ t < n. Let πbw.god.sm realises– (i) Fgod

when at most t < n/2 parties are corrupt and (ii) Fua when at most s < n
parties are corrupt, delayed-semi-maliciously in both cases. Then πbw.god.plain in
the plain model realises– (i) Fgod when at most t < n/2 parties are corrupt and
(ii) Fua when at most s < n parties are corrupt, maliciously in both cases. It
takes 5 rounds, assuming that πbw.god.sm takes 3 rounds.

Proof. The proof which includes the complete description of the simulator, a
discussion about its indistinguishability to the real view and its running time
appears in the full version [54]. ��
Extension to Identifiability. We additionally point that the publicly-verifiable
WI proofs render identifiability to our construction. Thus our maliciously-secure
(god|ua)-BoBW protocol achieves the stronger notion of identifiable abort in case
of dishonest majority, with no extra assumption. A minor observation is that we
can replace the last round broadcast with point-to-point communication in our
(god|ua)-BoBW protocol πbw.god.plain at the expense of relaxing ua to sa security
in the dishonest-majority setting.

References

1. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: ACM STOC (1987)

2. Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Multiparty computations ensuring
privacy of each party’s input and correctness of the result. In: Pomerance, C. (ed.)
CRYPTO 1987. LNCS, vol. 293, pp. 87–119. Springer, Heidelberg (1988). https://
doi.org/10.1007/3-540-48184-2 7

https://doi.org/10.1007/3-540-48184-2_7
https://doi.org/10.1007/3-540-48184-2_7

88 A. Patra et al.

3. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS (1982)
4. Cleve, R.: Limits on the security of coin flips when half the processors are faulty

(extended abstract). In: ACM STOC (1986)
5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation (extended abstract). In:
ACM STOC (1988)

6. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: ACM STOC (1988)

7. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: ACM STOC (1989)

8. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: ACM STOC (1990)

9. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

10. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

11. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 395–424. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 14

12. Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest majority: from
passive to active security at low cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 558–576. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 30

13. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

14. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–
677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 22

15. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 16

16. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 17

17. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.:
Promise zero knowledge and its applications to round optimal MPC. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 459–487. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 16

18. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with
guaranteed output delivery in secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 29

19. Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: ACM STOC (2007)

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/11818175_29

On the Exact Round Complexity of BoBW Multi-party Computation 89

20. Ishai, Y., Katz, J., Kushilevitz, E., Lindell, Y., Petrank, E.: On achieving the
“best of both worlds” in secure multiparty computation. SIAM J. Comput. 40(1),
122–141 (2011)

21. Katz, J., Myers, S., Ostrovsky, R.: Cryptographic counters and applications to
electronic voting. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 78–92. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 6

22. Nair, D.G., Binu, V.P., Kumar, G.S.: An improved e-voting scheme using secret
sharing based secure multi-party computation. CoRR (2015)

23. Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-
line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 416–430. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73458-1 30

24. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: ACM CCS (2017)

25. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: ACM CCS (2018)

26. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: IEEESP (2017)

27. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party compu-
tation for financial data analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 57–64. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32946-3 5

28. Lucas, C., Raub, D., Maurer, U.M.: Hybrid-secure MPC: trading information-
theoretic robustness for computational privacy. In: PODC (2010)

29. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computa-
tion without honest majority and the best of both worlds. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 16

30. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

31. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 17

32. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

33. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 16

34. Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round opti-
mal secure multiparty computation from minimal assumptions. Cryptology ePrint
Archive, Report 2019/216 (2019)

35. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

https://doi.org/10.1007/3-540-44987-6_6
https://doi.org/10.1007/978-3-540-73458-1_30
https://doi.org/10.1007/978-3-540-73458-1_30
https://doi.org/10.1007/978-3-642-32946-3_5
https://doi.org/10.1007/978-3-642-32946-3_5
https://doi.org/10.1007/978-3-642-22792-9_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26

90 A. Patra et al.

36. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: FOCS (2017)

37. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 12

38. Patra, A., Ravi, D.: On the exact round complexity of secure three-party computa-
tion. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
425–458. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 15

39. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure compu-
tation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 18

40. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

41. Patra, A., Ravi, D.: On the exact round complexity of secure three-party compu-
tation. Cryptology ePrint Archive, Report 2018/481 (2018)

42. Patra, A., Ravi, D.: Beyond honest majority: the round complexity of fair
and robust multi-party computation. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11921, pp. 456–487. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34578-5 17

43. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Threshold multi-key fhe and
applications to round-optimal MPC. Cryptology ePrint Archive, Report 2018/580
(2018)

44. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

45. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

46. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

47. Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.-H.: Secure protocol
transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 430–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 15

48. Patra, A., Choudhary, A., Rangan, C.P.: Simple and efficient asynchronous byzan-
tine agreement with optimal resilience. In: PODC (2009)

49. Patra, A., Rangan, C.P.: Communication and round efficient information checking
protocol. CoRR (2010)

50. Ishai, Y., Ostrovsky, R., Seyalioglu, H.: Identifying cheaters without an honest
majority. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 21–38. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 2

51. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/978-3-319-96881-0_15
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-030-34578-5_17
https://doi.org/10.1007/978-3-030-34578-5_17
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-642-28914-9_2
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29

On the Exact Round Complexity of BoBW Multi-party Computation 91

52. Hazay, C., Venkitasubramaniam, M.: Round-optimal fully black-box zero-
knowledge arguments from one-way permutations. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 263–285. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03807-6 10

53. Ciampi, M., Ostrovsky, R.: Four-round secure multiparty computation from general
assumptions. Cryptology ePrint Archive, Report 2019/214 (2019)

54. Patra, A., Ravi, D., Singla, S.: On the exact round complexity of best-of-both-
worlds multi-party computation. Cryptology ePrint Archive, Report 2020/1050
(2020). https://eprint.iacr.org/2020/1050

55. Chaum, D.: The spymasters double-agent problem. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 591–602. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 52

56. Hirt, M., Maurer, U., Zikas, V.: MPC vs. SFE: unconditional and computational
security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 1

57. Halevi, S., Ishai, Y., Kushilevitz, E., Rabin, T.: Best possible information-theoretic
MPC. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
255–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 10

58. Hirt, M., Lucas, C., Maurer, U., Raub, D.: Graceful degradation in multi-party
computation (extended abstract). In: Fehr, S. (ed.) ICITS 2011. LNCS, vol.
6673, pp. 163–180. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20728-0 15

59. Hirt, M., Lucas, C., Maurer, U., Raub, D.: Passive corruption in statistical multi-
party computation. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 129–146.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32284-6 8

60. Hirt, M., Maurer, U., Lucas, C.: A dynamic tradeoff between active and pas-
sive corruptions in secure multi-party computation. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 203–219. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 12

61. Genkin, D., Gordon, S.D., Ranellucci, S.: Best of both worlds in secure compu-
tation, with low communication overhead. In: Preneel, B., Vercauteren, F. (eds.)
ACNS 2018. LNCS, vol. 10892, pp. 340–359. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93387-0 18

62. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, New York
(1990). https://doi.org/10.1007/0-387-34805-0 48

63. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 19

64. Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure
computation with (malicious) physically uncloneable functions. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 702–718. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 41

65. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable
functions in the universal composition framework. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 51–70. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 4

66. Cohen, R., Garay, J., Zikas, V.: Broadcast-optimal two-round MPC. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 828–858. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 28

https://doi.org/10.1007/978-3-030-03807-6_10
https://doi.org/10.1007/978-3-030-03807-6_10
https://eprint.iacr.org/2020/1050
https://doi.org/10.1007/0-387-34805-0_52
https://doi.org/10.1007/0-387-34805-0_52
https://doi.org/10.1007/978-3-540-89255-7_1
https://doi.org/10.1007/978-3-030-03810-6_10
https://doi.org/10.1007/978-3-642-20728-0_15
https://doi.org/10.1007/978-3-642-20728-0_15
https://doi.org/10.1007/978-3-642-32284-6_8
https://doi.org/10.1007/978-3-642-40084-1_12
https://doi.org/10.1007/978-3-319-93387-0_18
https://doi.org/10.1007/978-3-319-93387-0_18
https://doi.org/10.1007/0-387-34805-0_48
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-38348-9_41
https://doi.org/10.1007/978-3-642-22792-9_4
https://doi.org/10.1007/978-3-642-22792-9_4
https://doi.org/10.1007/978-3-030-45724-2_28

	On the Exact Round Complexity of Best-of-Both-Worlds Multi-party Computation
	1 Introduction
	1.1 On the Round Complexity of BoBW MPC
	1.2 Our Results
	1.3 Techniques
	1.4 Related Works on BoBW MPC
	1.5 Our Model

	2 Lower Bounds for (fn| ua)-BoBW
	3 Upper Bounds for (fn| ua)-BoBW
	3.1 The Compiler
	3.2 The Upper Bounds

	4 Lower Bounds for (god| ua)-BoBW
	5 Upper Bounds for (god| ua)-BoBW
	5.1 (god| ua)-BoBW MPC with Public and Private Setup
	5.2 Upper Bound for (god| ua)-BoBW MPC in Plain Model

	References

