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Abstract. Proofs of partial knowledge demonstrate the possession
of certain subsets of witnesses for a given collection of statements
Z1,...,Zn. Cramer, Damgard, and Schoenmakers (CDS), built proofs
of partial knowledge, given “atomic” protocols for individual statements
xz;, by having the prover randomly secret share the verifier’s challenge
and using the shares as challenges for the atomic protocols. This simple
and highly-influential transformation has been used in numerous appli-
cations, ranging from anonymous credentials to ring signatures.

We consider what happens if, instead of using the shares directly as
challenges, the prover first hashes them. We show that this elementary
enhancement can result in significant benefits:

e the proof contains a single atomic transcript per statement x;,
e it suffices that the atomic protocols are k-special sound for xk > 2,
e when compiled to a signature scheme using the Fiat-Shamir heuris-
tic, its unforgeability can be proved in the non-programmable random
oracle model.
None of the above features is satisfied by the CDS transformation.

Keywords: Sigma-protocols - Random oracles *+ Proof of partial
knowledge

1 Introduction

The focus of this paper is three-move public-coin proof systems. In such proto-
cols, a prover sends an initial message, a, to the verifier who answers back with a
random challenge, e. The prover finally replies with z, based on which the verifier
accepts or rejects the proof. X-protocols [19] are a special class of 3PC protocols
that have been used as building blocks in a wide variety of applications, and
have been the subject of intensive study.
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One property that makes a X-protocol easy to work with is the so-called 2-
special soundness: given any pair of “colliding” transcripts, (a, e, z) and (a, ¢/, 2’)
for e # €', one can efficiently extract a witness w for the instance z being proved.
The zero-knowledge property is exhibited using a specific type of simulator,
which takes z and e as input, and outputs a and z that form an accepting tran-
script. Being public-coin, with a uniformly chosen challenge sent by the verifier,
the protocol can be made non-interactive using the Fiat-Shamir heuristic [26],
where the prover generates the challenge e on its own by applying a hash function
modeled as a random oracle to the initial message a.

Several techniques for efficient composition of X-protocols can be found in the
literature. Among them, the technique by Cramer, Damgard, and Schoenmakers
(CDS for short) is the most popular and well-studied [21]. In its simplest form,
the CDS technique is used for proving the disjunction of n statements x1, ..., x,,
convincing the verifier that the prover knows a witness w for at least one of the
statements x;. To this end, the prover shares a given challenge e into challenges
ée1,...,e, under the constraint that e = e; & - - - @ e, and uses e; as the challenge
in an individual run of the X-protocol for statement x;.

Since the prover can choose in advance all but one shared challenge e;« for
which w;~ is known, it may run the simulator on (z;,e;) for all i # i* and the
prescribed prover algorithm on (x;+,w;«). This enables the prover to complete
the protocol given a witness for at least one out of n instances. If the atomic
protocols are 2-special sound, the compound protocol is 2-special sound as well.

The way in which the verifier challenge is secret-shared can be generalized to
implement any composition predicate that is efficiently computable by a mono-
tone span program [20]. Since the compound protocol remains a X-protocol, it
can also be made non-interactive via the Fiat-Shamir heuristic. While security is
proved in the random oracle model, it does not necessitate trusted setup which
is often required by efficient non-interactive proofs.

1.1 Owur Contribution

We propose a simple enhancement to the CDS composition method and show
that it results in several desirable features. In simple terms, the modification can
be described as follows:

“Hash each share before using it as a challenge”.

As simple as it appears to be, this modification enjoys significant benefits over the
original CDS transformation: (1) in computation and communication efficiency,
(2) in allowing a wider variety of choices for the underlying atomic protocols,
and (3) in the tightness of the analysis in the random oracle model. We now
elaborate on each of these benefits separately.

Recycling of Transcripts for Repeated Statements. In the CDS transformation,
the transcript of the compound protocol contains one instance of the atomic
protocol for each occurrence of a statement x; in the formula or monotone span
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program. In contrast, our proposed transformation allows to “recycle” tran-
scripts of atomic protocols and let them have a single appearance per x;. This
may result in savings in prover computation and communication, whenever base
statements x; occur repeatedly, especially in cases where the monotone span
program describing the compound statement cannot be simplified to have few
occurrences of z;.

Consider for example the following compound statement, described in dis-
junctive normal form: (z1 Az2)V (x1 Ax3)V (23 Axy). Notice that in this case the
instance x7 appears in two clauses (and so does x3). When applying the CDS
transformation, a prover (wishing to protect w; from leaking) must run inde-
pendent executions of the atomic X-protocol for each appearance of x; in the
formula. Otherwise, in case that the initial message a for proving z; is shared by
two transcripts (ag, e1, 21) and (a1, €], 1), it may be the case that e; # ¢} which
would yield a colliding pair of transcripts, enabling, even an honest verifier, to
extract the witness wy for 7. In some cases one may be able to find an equiv-
alent formula with fewer occurrences of specific variables. However, performing
such simplifications in general is a non-trivial and potentially error-prone pro-
cess. Furthermore, in some cases it may simply be not possible. Indeed, a recent
implementation of compound statements [44] is aware of such issues and takes
explicit care to refrain from merging the initial messages for the same statements
in the formula. Their compiler halts when a repeated statement is detected and
let the programmer decide what to do. Such issues were also explicitly considered
in the original CDS protocol. When a share of a challenge exceeds the challenge
space size, CDS explicitly require to repeat the atomic protocol for the same
instance so that the joint challenge space covers the maximum length of the
shared challenges.

By applying a hash function to the secret-shared challenges in all occur-
rences of x; we compress and fit the challenge to the original challenge space
size. Assuming that the hash function is modeled as a random oracle, soundness
is guaranteed by the fact that hashed challenges are randomly and uniformly
distributed. This allows us to run the atomic proof for a given instance z; only
once, independently of how many times it appears in the compound formula,
hence simplifies the protocol. Furthermore, it improves both the running time of
the prover and verifier, and reduces the size of the proof. Consider, for instance,
the compound statement (x1 A z2) V (21 A x3) V (3 A x4) again. The CDS+FS
combination would require six transcripts: one per literal. Ours leads to a proof
with simply four transcripts: one per variable, regardless of the number of occur-
rences in the formula. More concretely, our proof consists of four transcripts
(a1,€1,21), -, (a4, €4, 24) together with secret shares (s, ss,s3,54) where each
(as, ei, z) is accepting with respect to the i-th X-protocol and e; = H(s;). Fur-
thermore, the shares are such that all qualified sets of shares (according to the
dual access structure induced by formula) recover the secret s :== H(aq,...,a4).
In our example this could be enforced by setting s1 = {d1,da}, s2 = {di},
sg = {d2,ds}, and s4 = {d3} where dy + dz + d3 = s. See Sect. 3.2 for a more
detailed comparison between our scheme with previous work in terms of perfor-
mance and proof size.
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Wider Choice for Special Soundness of Atomic Protocols. Special soundness is, by
definition, restricted to the case where two colliding transcripts are necessary and
sufficient for extracting a witness. However, some protocols in the literature are
only known to satisfy a more relaxed k-special soundness requirement, in which
k > 2 colliding transcripts are necessary and sufficient for witness extraction.

The original CDS transformation was designed to only handle 2-special
soundness, and indeed may totally lose soundness if applied to general x-sound
protocols for k > 2 [25]. As an example of 3-special soundness, consider Stern’s
protocol [54], often used in the context of lattices and codes [25,39,40,47]. In
its basic version, a challenge is chosen from {0, 1,2} and a cheating prover, or
zero-knowledge simulator, having no witness can answer to two preliminary cho-
sen challenge values out of the three. The original CDS technique for composing
two runs of the protocol suggests to share challenge e as e = e; + e mod 3
and use e; and ey as a challenge in each run. This is however totally insecure
since a cheating prover may simulate on e; € {0,1} and ey € {1,2} and pick
a proper combination of challenge values for e; and ey to fulfill the constraint
e = e1 +eg mod 3 for any challenge e € {0, 1,2}. Such an attack works even with
parallel repetition of the protocol, with challenge space {0, 1,2}¢ for polynomial
¢, and even after applying the Fiat-Shamir transformation, as the adversary can
similarly attack each coordinate individually and win with probability 1.

Applying an ideal hash function to e; and e; individually makes them uni-
formly distributed over the challenge space. With large enough challenge space,
which can be obtained by parallel repetition of Stern’s basic protocol, this virtu-
ally prevents a cheating prover from controlling the distribution of the challenges.

We prove that this intuition is valid in the random oracle model. As a result,
our scheme is sound even for k-special sound protocols with k > 2. Other well-
known examples of k-special sound protocols ranges from the widely known
GMW protocol for graph 3-colorability [31], and a useful protocol for a binary
opening of Pedersen-like commitments (with 3-special soundness) [10], to a fun
protocol for Sudoku puzzles [32].

Various Flavors of Soundness. We prove soundness in different flavors in the
programmable and /or non-programmable random oracle models (NPROM) [48].
As shown in [18], when viewed as a non-interactive membership argument sys-
tem, CDS composition with Fiat-Shamir (henceforth CDS+FS) is sound in
NPROM provided that underlying protocols are optimally sound. Ours covers
more relaxed statistically sound protocols.

If one of the two hash functions, one used for FS and the other used for
hashing shares, is programmable random oracle, our construction provides sim-
ulation extractability [8], which is a strong form of knowledge soundness. If both
are programmable, and the underlying protocol is unique response where z is
unique for z, a, and e, it is strongly simulation extractable.

Unforgeability in Non-programmable Random Oracle Model. In a recent paper,
Fischlin, Harasser, and Janson [28] show that when the CDS protocol is compiled
into a signature scheme via the Fiat-Shamir transform, its unforgeability against
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adaptive chosen message attacks cannot be (black-box) proved in NPROM. They
aregue that it contrasts to a sequential composition considered in [3].

The share-hashing in our construction circumvents this impossibility result.
A key observation in the (im)possibility argument of [28] is that the sequential
composition in [3] makes hash queries for each underlying protocol execution in
some order, and the order of the queries reveals which instance the adversary is
attacking. In contrast, CDS+FS makes a combined hash query for all underlying
protocol executions at once, thus revealing no information which execution the
adversary is attacking. This difference is precisely what renders the signature
scheme via the sequential composition provably unforgeable in the NPROM,
and CDS+FS not.

Since in our transformation hashing is applied for each execution of the under-
lying protocol, observing the order of the queries reveals which ones the adversary
is attacking, just as in the example above. We are thus able to prove unforge-
ability in the NPROM, using the same proof strategy as developed in [28].

1.2 Applications

Our minor modification to the CDS+FS transformation means that it can serve
as a plug-in replacement for most applications of the CDS protocol, with the
only exceptions being the ones in which using a random oracle is not allowed.

In some cases the applicability of our transformation goes beyond what could
have been achieved by CDS+FS. As a demonstration, consider a generic con-
struction of a ring signature scheme [51] with the following added features: (1)
it supports any monotone formula access structure, (2) it can be built from
k-special-sound X-protocols for hard languages, (3) it is unforgeable against
chosen message and chosen ring attacks in the NPROM, and (4) it is setup-free
in the sense that players do not need to interact to each other or to access public
parameters (except for security parameter) to set up their public-keys.

The CDS+FS transformation is equipped with all the features mentioned
above, and can be used to construct a secure signature scheme in a standard man-
ner. However, we do not know how to prove its unforgeability in the NPROM,
the main difficulty being that, unlike the case of a standard signature scheme, a
ring-signature adversary is allowed to specify the access structure. Let us elab-
orate on this point further below.

In [28], it is shown that a non-interactive argument system for a simple
cyclic graph representing a sequence of disjunctions can be turned into a secure
signature scheme in the NPROM where the public key is a set of instances of a
hard language. In the security argument, the reduction simulates signatures using
a non-tight qualified set of instances, and, by observing queries to the random
oracle, identifies which instance the adversary is attacking. It is then shown that
replacing the target instance with an incorrect one that has no corresponding
witness does not make much difference to the computationally limited adversary
since those instances are supposed to be indistinguishable and signatures can
still be simulated as the remaining correct instances form a qualified set.

In the attack scenario for ring signatures, however, it is the adversary who
chooses the access structure. The adversary can ask a signature on a full set of
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instances so that the only qualified set is tight. Accordingly, signatures cannot
be simulated if an instance is turned into an incorrect one.

Our solution is to form each key by a disjunctive relation over two instances,
and combine them into a single monotone formula. This allows to simulate signa-
tures even if one of the pairs is turned into incorrect, and just as in [28] enables
us to argue that attacking the incorrect instance is unsuccessful in the NPROM.
The resulting scheme yields signatures whose size is linear in the number of
involved public keys.

While there exist more compact ring signature schemes, e.g., [7], with
logarithmic-size signatures and without using random oracles, our construction
is more flexible in the choice of underlying building blocks and in the number of
instantiations. This is on top of being the first scheme provable in the NPROM.

1.3 Related Work

Composition of Proof Systems. The task of proving compound statements in a
zero-knowledge manner can be in principle realized generically by reducing to
some NP-complete language, and in some cases even a flexible and convenient one
such as satisfiability of Quadratic Arithmetic Programs. This approach is flexible,
as it allows to dynamically adjust the statement to be proved depending on the
application at hand. A popular application that has seen prominence recently
is that of proving possession of a preimage of a value under a specified hash
function. Recent implementations demonstrate reasonable performance, though
we are still in early stage of deployment, and further progress is required.

Composition is an active topic also in the context of NIZKs in the common
reference string model. There are number of existing techniques in the literature,
e.g., [2,13,29,33,35,45,50], to implement disjunctive relations for the Groth-
Sahai proofs [36] and Quasi-Adaptive NIZKs [38]. One of the common ideas is
to use arithmetic relations of the form z(x — 1) = 0 that naturally translate
to logical disjunctions: (z = 1) V (x = 0). Another popular approach is to
split a common reference string in two parts so that one of them can be used
for simulation, whereas using a witness for the other part is unavoidable. In
[5], Agrawal, Ganesh, and Mohassel studied efficient monotone composition of
algebraic and non-algebraic statements combining both X-protocols and generic
NIZKs for NP.

The composition technique most relevant to our work is that of ring-like
sequential composition, introduced in [3] and revisited recently in [28], all of
which admit soundness proofs in the NPROM. Recently, [1] consider a general-
ization of sequential composition to so-called acyclicity programming (a model
that is closely related to branching programs), which in some cases goes beyond
CDS composition, the latter being limited to monotone span programs in terms
of expressibility. Still, generally speaking the two transformations are incompa-
rable, and it should be mentioned that both CDS and our current transformation
are able to easily handle the important case of threshold access structures. Pre-
cise proof sizes and computational costs are also incomparable as they depend
on the structure of the compound relation.
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Fiat-Shamir Transform in NPROM and the Standard Model. The issue of pro-
grammability of random oracles in the case the Fiat-Shamir transform is dis-
cussed in [18,42]. They present an efficient FS transformation for constructing
NIZK in the common reference and random oracle models whose zero-knowledge
property does not rely on random oracles and only the proof of soundness
requires a NPROM. The proof for soundness in the NPROM in [18] demands
optimal soundness from the underlying protocol: for every false statement and
every first message, there exists at most one challenge that has a valid response
satisfying the verification predicate.

Not relying on programmable random oracles in the soundness argument of
Fiat-Shamir transform may allow to instantiate the hash function under milder
assumptions such as key dependent message secure encryption [15] or lattice-
based assumptions [14,49] through the notion of correlation intractability [16].
They require the underlying protocol optimally sound [18] and design the hash
function used in the FS transform so that it hardly outputs the bad challenge
for which a valid response exists. Unfortunately, the additional hashing for gen-
erating challenges in our construction makes it hard to follow their approach as
the bad challenge function will depend on the hash function.

Ring Signatures. A fair number of papers devote themselves to improve and
generalize the seminal work of ring signatures scheme in [51]. In [12], a general
monotone access structure is supported for composition of signatures based on
trapdoor permutations. A construction based on X-protocols is presented in [3]
and extended in [43] with a simple mechanism for anonymity revocation, and
in [4] with a support for threshold structures. These early works, followed by,
e.g., [37], achieve the setup-free property in the programmable random oracle
model. We note that the scheme in [4] hashes shared challenges to adjust the
challenge size to incorporate RSA keys in a ring. When the ring consists only of
the discrete-log type ones, it can be seen as a special case of our construction,
a composition of Schnorr proofs with hashed shares, but none of the benefits
claimed in this paper were considered.

There are number of schemes, e.g., [6,11,17,22,23,30,34,41,52,53], that
require trusted setup but provide more flexible access structures and/or achieves
high performance when instantiated with mathematically rich primitives such as
pairings, lattices, and codes. A scheme in [7] is favorable in that the security is
proven in the standard model, no trusted setup is needed, and the proof size is
logarithmic in the number of involved public-keys limiting the access structure
only to a ring.

2 Preliminaries

For a finite set S, we write a <+ S to denote that a is uniformly sampled from S.
We denote the security parameter by A € N. Given two functions f, ¢ : N — [0, 1],
we write f ~ g if the difference |f(\) — g()\)| is asymptotically smaller than the
inverse of any polynomial. A function f is said to be negligible if f ~ 0, whereas
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it is said to be overwhelming when f = 1. For integers m, n, such that n > m, we
denote by [m,n] the range {m, m+1,...,n}. We denote by [n] the range [1,n].
By N* we denote the space of arbitrarily-long sequences of numbers in N. When
A is a probabilistic algorithm, we denote by A(z;7) an execution of A on input
z and random coin r taken from an appropriate domain defined for A. If the
random coin is not important in the context, we simply write as A(x).

Let R: X x W — {0, 1} be a binary relation defined over a set of instances
X and a set of witnesses W. We write (r,w) € R as a shorthand for (z,w)
satisfying R(z,w) = 1. For convenience, we separate instances according to the
security parameter. By Ry, we mean relation R on instances of length A. Let
Ly be the language defined as Lg == {zr € X | Jw € W : R(z,w) = 1}. A
statement is a relation on an instance, which is true if and only if the instance
is in the language defined by the relation. We say that Lg is a hard language
if (z,w) € R is efficiently and uniformly sampleable, and there exists L that
is efficiently sampleable, has no intersection with Lg, and is computationally
indistinguishable from Lg. We abuse notation and write (x,w) < R to represent
uniform sampling of (z,w) satisfying R. For a monotone access structure I" over
[n] and a set of n relations R := (Ry,...,R,), we denote by I'r a relation
obtained by composing relation R; € R following structure I.

2.1 X-protocols

A Y-protocol for relation R is a three-round public-coin proof system that is
special honest verifier zero-knowledge and 2-special sound as defined in the fol-
lowing. It is witness indistinguishable and statistically sound. We also introduce
additional security notions on which we rely when proving stronger properties
about our construction.

Definition 1 (Three-round public-coin proof system). A three-round
public-coin proof system for relation R consists of algorithms (C, Z,V) where:

e a — C(xz,w;r) computes an initial message, a, for the given instance x and
witness w with a random coin v uniformly taken from an appropriate domain.

o 2z — Z(x,w,r e) computes an answer, z, for the given challenge e € {0, 1}*,
and coin r used to generate a on x and w.

e 1/0 — V(x,a,e,z) outputs 1 or 0 for acceptance or rejection, respectively.

We say a three-round public-coin proof system is complete if for every A > 1,
every pair (x,w) € R, where |x| = A, for all e € {0,1}*, for all a — C(x,w;r),
and for all z — Z(xz,w,r,e), V(z,a,e,z) =1 holds.

Definition 2 (Special Honest Verifier Zero-Knowledge). A three-round
public-coin proof system (C,Z,V) is special honest verifier zero knowledge if

there exists a probabilistic polynomial-time algorithm S such that, for every state-

ful PPT adversary A,
Pr[(z,e) «— A(1Y); a «— C(z,w;r); 2 — Z(z,w,7€) : Aa,z) = 1]
~ Pr((z,e) — A(1Y); (a,2) « S(z,e) : Aa,z) = 1]
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where r is sampled form the corresponding distribution and A must output values
such that (z,w) € R and e is in {0, 1}.

Definition 3 (Witness Inidistinguishability). A three-round public-coin
proof system (C,Z,V) is witness indistinguishable if for all x € Lgr, and all
wy, wy satisfying R(x,w1) = R(x,we) = 1, transcripts (a1, e,21) and (ag,e, z2)
distribute identically, where a; — C(z,wi;r;), e — {0,1}*, 2z — Z(xz,w;,r;,e)
fori=1,2.

Special soundness [19] is a special form of knowledge soundness which guar-
antees that, given two colliding transcripts (z, a, {e1, 21}, {€2, 22}), a witness w
(for z) can be extracted efficiently if e; # es. A generalized form of this notion
appears in the literature, e.g., [9,10,34,55]. Intuitively, x-special soundness states
that given k-colliding transcripts (z,a, {e1,21},...,{ex, 2x}), a witness w can
be extracted if all values eq,...,e, are distinct. A question is from which dis-
tribution the challenges should be sampled and with how much probability the
extraction should succeed. In some literature it is asked to hold for any e; and
to succeed perfectly. This is however too strong for our purpose as we would like
to capture a wide variety of protocols, including the parallel version of Stern’s
protocol where an exponential number (but still negligible compared to the size
of the challenge space) of colliding transcripts can be prepared without know-
ing the witness; on the other hand, a small number of collision over uniformly
chosen challenges is sufficient for successful extraction with high probability.
Consequently, we adopt the following definition.

Definition 4 (k-Special Soundness). A three-round public-coin proof sys-
tem is k-special sound with knowledge error € if, there exists a deterministic
polynomial-time algorithm £ such that, for any stateful probabilistic polynomial-
time adversary A, and for all t polynomial in A, it holds:

(z,a) — A(1M)
€1,...,er — {0, 1}~
(Zl,...,Zt) <—A(€1,...,€t)
w— E(x,a,{e1,z1},...,{et, 2t})

Zle V(x,a,e,2;) > K
: A <e

Pr
R(z,w) =0

where every e; is distinct. It is special sound if € is a negligible function and k
1s polynomial in the security parameter. In particular, we say that it is perfectly
special sound if € = 0.

There are different flavors of soundness as a proof of membership. An example
is optimal soundness, which asserts that for any false instance x and any a, there
exists at most one challenge e for which the transcript will pass the verification.
In other words, for any « ¢ Lr and any a, and for all values e € {0, 1}* (except
at most one), V(z,a,e,-) is the zero function. We use more general statistical
soundness allowing negligible error probability.
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Definition 5 (Statistical Soundness). A three-round public-coin proof sys-
tem (C, Z,V) is statistically sound with soundness error e if for any (possibly
unbounded) adversary A, for all x ¢ Lr and all a € {0,1}*,

Prle — {0,1}*; 2 — A(z,a,e) : V(z,a,e,2) = 1] < € .
We say it is statistically sound if es is negligible in X.

In other words, a three-round public-coin proof system is statistical sound
with bound e if and only if for every = ¢ Lr and any a € {0, 1}*, at most a eq
fraction of challenges has an answer that passes the verification.

In order to achieve stronger variant of simulation soundness, we require the
uniqueness of z for (z, a, €). This is the so-called unique response property [24,27]
and was stated in [34] in a general form as follows.

Definition 6 (Quasi-unique response). A X-protocol has quasi-unique
responses if for any security parameter A € N, any polynomial-size v € {0,1}*,
and for any PPT algorithm, the probability that, given 1* and v as input, the
adversary outputs (z,a,e, z,2') satisfying V(z,a,e,z) = V(x,a,e,2') = 1 and
z # 2’ is negligible in \.

2.2 Non-interactive Arguments

We define non-interactive argument systems in a way that captures X-protocols
transformed by the Fiat-Shamir heuristics in the random oracle model. Let R
be a random oracle that returns an independently and uniformly chosen value
in an appropriate domain for every distinct input.

Definition 7 (Non-Interactive Argument System). A non-interactive
argument system for relation R in the random oracle model is a pair of
polynomial-time oracle algorithms (Prove, Verify) that, for random oracle R:

o T — ProveR(x,w) is a probabilistic algorithm that takes an instance x and a
witness w and outputs a proof w.

e 0/1 « VerifyR(ac,W) 15 a deterministic algorithm that takes x and w, and
outputs either 1 or O representing acceptance or rejection, respectively.

It is complete if, for every sufficiently large N€N, and every (x,w) € R,
VerifyR(x,ProveR(x,w)) outputs 1 except with negligible probability in . The
probability is taken over coins of Prove and R.

Definition 8 (Zero-Knowledge). A non-interactive argument system (Prove,
Verify) for relation R is zero-knowledge in the random oracle model if there exists
a PPT stateful algorithm Sim that for all probabilistic polynomial-time distin-
guisher D, Pr[l « D®:O1(1")] — Pr[l « D92(1")] is negligible in \. Oy is an
oracle that, given (z,w) as input, returns L if (x,w) ¢ R, else returns the output
of ProveR(x,w). O and Sim have two input interfaces. Oy forwards any string
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given through the first interface to the first interface of Sim and returns its out-
put. Given (x,w) as input to the second interface, Oy returns L if (x,w) ¢ R,
else forwards x to the second interface of Sim and returns the output. The prob-
ability is taken over coins of D, R, Prove, and Sim.

Definition 9 (Soundness). A non-interactive argument system (Prove, Verify)
for Ly is sound if for any PPT oracle algorithm A, any x ¢ Lg, Pr[r — AR(z) :
1 = Verify™ (z, )] is negligible in \. The probability is taken over coins of A and
R.

Simulation extractability is a stronger notion of simulation soundness. Intu-
itively, it guarantees that even after having seen simulated proofs on arbitrary
instances, the adversary cannot create a valid proof on a fresh instance for which
the knowledge extraction fails. This notion was defined in the common reference
string model in [33] and in the random oracle model in [8].

Definition 10 (Simulation Extractability). A non-interactive zero-
knowledge argument system (Prove, Verify) for relation R with zero-knowledge
simulator Sim is simulation extractable in the random oracle model if, for any
PPToracle algorithm A, there exists an expected polynomial-time algorithm £
for which the following experiment returns 1.

Exprii(A) :
1. Run (z,m) « AS™(1%).
2. Output 1 if 0 — Verify>™(z,7) or x has been queried to the second inter-
face of Sim.
3. Run w « EA(x, 7, 0).
4. Output b := R(z,w).

Parameter o is the view of Sim. It is strongly simulation extractable if the fresh-
ness condition in Step 2 is on (x,7) as a pair instead of just on x.

The above definitions are for the programmable random oracle model. To cast
non-programmable random oracles in the definitions, allow every entity direct
access to the oracle [48].

3 The Share-then-Hash Technique

3.1 Construction

Let n be a polynomial in A. Let SS be a perfect secret sharing scheme over
{0,1}* for an access structure over [n] of size polynomial in n. Let Share be the
sharing algorithm of SS, and D(s) be distribution of outputs from Share(s). For
qualified set A and secret s € {0, 1}#, we denote by D4 (s) the joint distribution
of shares in A. We denote by A€ the set [n]\A and by D the distribution of
shares for the non-qualified set A¢ of A, which is independent of the secret (due
to SS being a perfect secret sharing scheme). For a set of shares S := (s1,...,8,)
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and a set A C [n], we denote by S, the set of shares indexed by A4, i.e., Sy :=
{s; € S|i € A}. For the sake of readability, we assume that S4 identifies A from
its data structure. A perfect secret sharing scheme over secret space {0, 1}* for
polynomial u in A is semi-smooth [21] if on top of standard polynomial-time and
space requirements it satisfies the following properties:

e There exists a polynomial-time algorithm, CheckShares that, given a full set of
shares and a secret, returns 1 if all qualified sets of shares recover the secret.
It returns 0, otherwise.

e There exists a polynomial-time algorithm, Complete that, for any secret s,
any non-qualified set A€, and any set of shares Sac € D 4c, outputs a set of
shares in D(s) that includes S4c as shares for A°.

Note that the presence of CheckShares does not imply that SS is a verifiable
secret sharing scheme where, given a share s; and public parameters, one can
assure consistency of the share. Semi-smooth secret sharing schemes exist for
threshold and general monotone access structures represented by monotone span
programs [20].

Let I be a monotone access structure over [n], and I'* be the dual of I’
defined as A € I'* & A°¢ ' [46]. (Note that the dual operation is an involu-
tion, i.e., (I"*=T".) Let SS = (Share, CheckShares, Complete) be a semi-smooth
perfect secret sharing scheme over {0,1}* for I'*. Let © := (z1,...,2,) be a
set of instances and w := (wy,...,w,) be a witness set where for a qualified
set A € I', let relation R;(x;,w;) = 1 hold for all i € A. Let X; = (C;, Z;, V%)
be a sigma-protocol for relation R;. We assume all YX-protocols have a common
challenge space {0,1}* for certain polynomial p in security parameter A. Let
H,:{0,1}* — {0,1}* and H. : {0,1}* — {0,1}* be hash functions.

Theorem 1. Figure 1 describes a non-interactive argument system for I'g:

e [t is complete and witness indistinguishable.

o [t is zero-knowledge if H. or H. are modeled as programmable random oracles.

o It is a sound membership proof for language Lr, if H. and H, are modeled
as non-programmable random oracles and all X; are statistically sound.

o [t is simulation extractable if H. and H. are random oracles and at least one
is programmable and if and all X; are k-special sound.

o [t is strongly simulation extractable if both H. and H. are programmable
random oracles, and all X; are k-special sound and unique response.

Completeness and witness indistinguishability can be shown as in the original
CDS+FS scheme. Zero-knowledge in the programmable random oracle model is
assured by inspecting the simulators from Fig. 2. The first simulator is for the
case where H,. is programmable and the second one is for the case where H, is
programmable. In the following, we focus on soundness in different flavors and
present a proof sketch for them, without stating concrete bounds, but our argu-
ments are detailed enough to derive full proofs. We use the following proposition
taken from [21].
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Prover(xz, w) :

. Set A:={i|Ri(zi,w;) =1Vi € [n]} and A° := [n] \ A.

. Sample s’ + {0,1}*, and set (si,...,sy,) + Sharer«(s'), Sac := {s}|i € A°}.
For all i € A, set e; := H.(I',x,i,s;), and run (z;, a;) + Si(zi,€;).

For all i € A, set a; + Ci(xi, wi;r;).

. Set s:=Hc(I',x,a1,...,as), and (s1,...,Sn) < Complete . (s, Sac).

For all i € A, set e; .= Ho(I',x,1, s;), and run z; « Z;(x:, wi, r4, €;).

= NN UR R

. Return 7 := {(ai, 2i), Si }icin)-

Verify . (x, 7):

1. Parse 7 as {(ai, 2i), Si }ic[n)-
2. Set s := H.(I',x,a1,...,an) and e; == H.(I',x,1,s;) Vi € [n].

3. Return /\ie["] Vi(xi, ai,ei, zi) N CheckSharesp«(s,s1,...,58n).

Fig. 1. Share-then-Hash CDS+FS for relation I'r.

Proposition 1. Let I' be monotone. A set is qualified in I' if and only if it has
a non-empty intersection with every qualified set in I'*.

Proof (Of soundness as a membership proof system). Suppose that an adversary
A outputs a valid proof # = {(as, %), 5i }ic[n) On instance & = (Z1,...,2,) and
access structure I after making at most ¢ queries to the random oracles. For the
forged proof to be considered a valid forgery (in the soundness game), & must be a
false instance (with respect to I'), i.e., for every qualified set A € I, there must
exist some i € A such that z; ¢ Lg,. Furthermore, CheckSharesp- (5, 51,...,5,)
must be 1, for § := H.(I',&,a1,...,a,); and V;(&;, 4;, é;, 2;) must be accepting
for é; := H.(I',&,1,3;) and all i € [n].

If for some * € [n] such that x;« ¢ Lp,. the adversary did not make query
H.(I',&,i*,§;), since value é;- is assigned uniformly at random by H,, the prob-
ability that 1 = Vs« (+, a;+, €;+, 2;+) for already fixed x;+, a;+, and z;+ is at most
€st *= MaX;c[y)(€st;) Where e, is the statistical soundness error of X;. Similarly, if
H.(&,ay,...,4,) was not queried by the adversary, after the random assignemt
of §, by H,, the probability that CheckSharesr- (8, §1,...,§,) is successful is at
most 274 (§ must be equal to the value determined by §1,...,5,).

Now, let {2 be the set of indices i € [n] where x; ¢ Lg, holds and é; :=
H.(I',&,1,8;) appears before § := H.(I',&,a1,...,a4,) in the view of A. First,
assume that for all qualified sets A€ I', AN {2 is not empty. In virtue of Propo-
sition 1, {2 must be a qualified set in I'* and thus, {§;};c uniquely determines
a secret, s*. Therefore, CheckSharesp« (8, 51,...,8,) = 1 will be satisfied only if
§ equals s*, which happens with probability at most 27# since § is randomly
assigned by H,. independently of {5;}icn.
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Simlp(x) :

. Sample s« {0,1}*, and set (s1,...,Sn) < Sharer=(s).
For all i € [n], set e; .= He(I', @, 1, s:), and (z;,a:) < Si(zi, ;).
Program H. to output s on input (I, x,a1,...,an).

o I

. Return 7 := {(ai, 2i), 8i }ig[n]-

Sim2p(x) :

. For all i € [n], set e; < {0,1}*, and (z;, a;) < Si(zs, €i).
. Set s:= Ho([,@,a1,...,an), and (S1,...,8,) < Sharer=(s).
For all i € [n], program H. to output e; on input (I, 1, $;).

B~ W N

. Return 7 := {(ai, 2:), 5i }ien)-

Fig. 2. Zero-knowledge simulators.

Finally, suppose that there exists A€ ' with AN = (). In this case, there
must exist i* € A with ;+ ¢ Lp,. (remember that & is a false instance) and such
that query é;« := H.(I',&,i*, §;~) appears after query § := H.(I', &, a1,...,a,)
in the view of A. Then, the probability that there exists a Z;+ that can satisfy
Vi (g%, Giny €4%, 2+ ) = 1 for fixed (#;+,a,~) is upper-bound by the statistical
soundness error of Y;«, which is upper-bounded by eg.

Accordingly, a valid proof on a false statement can be produced with proba-
bility at most 2eg + 27H. O

Proof (Of simulation extractability). We first prove the case where H, is pro-
grammable and H,. is non-programmable. Suppose that adversary A playing in
the simulation extractability game, running in time ¢ and performing at most ¢
queries to the random oracle, outputs an instance & = (&1,...,4,) and a valid
proof @ = {(a, %), 8i }icn) on & with probability . For the output to be valid,
it must hold that CheckSharesp-(8,51,...,8,) = 1 for § := H (I, &,a1,...,4,)
and, additionally, for all i € [n], V;(&;, a;, é;,2;) = 1, where é; := H.(I, &,1, 8;).
Furthermore, & must be different from any instance & observed by the simulation
oracle.

The extractor runs the code of A, simulating the proving oracle using Sim1 in
Fig. 2 until a valid proof 7 = {(a;, Z;), 3i }ic[n) ON an instance x is produced. The
extractor then identifies the query H.(I,&,as,...,a,) in the adversaries exe-
cution and forks the execution at this point by providing a different uniformly
chosen value as an answer to this query. By repeating the above forking 27/
times for 7 := kn, the extractor obtains 7 valid proofs with a constant probabil-
ity. We now argue that, if 7 random secrets §® for i = 1,...,7 are shared to n
players in a way that they pass CheckShares consistency check, then, for every
qualified set of players, there is a player who receives at least x distinct shares.
The following lemma states it formally.
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Lemma 1. For sufficiently large polynomial p in A, for any semi-smooth secret
sharing scheme over {0,1}*, for any small constant k, for any constant T >
kn — 2n + 2, for any stateless unbound algorithm B, the following experiment
returns 1 with negligible probability in A.

1. Fori=1to, dos® « {0,1}*, and (s{",...,s?) « B(s").
2. Return 1 if 1 = CheckSharesps (s®,s$”,...,s8%) for alli =1,...,7 and there
exists a qualified set, A, such that, for each j € A, number of distinct shares

among s“) ..., 87 is less than k. Return 0, otherwise.

J

We first prove the following claim.

Claim 1. Let A be a qualified set and assume 7 > k| A|—2|A|+2. The probability
that for all j € A, the set S{” = {s{",...,s{”} has size less than x is at most
(1 —1)(k — 1)lAl2=~,

Proof (Of Lemma 1). Set 7 = kn — 2n + 2. By Claim 1 and a union bound, the
probability that there exists a qualified set A such that |SJ(.T’| <kforallje A
is at most 2™ - (7 — 1)(k — 1)™2~#. If this is not the case, then the set A of all j
such that |S{”| < & is not qualified. 0

Proof (Of Claim 1). We will show that as long as all sets S, j € A have size less
than x, the probability that Y-, , |} = 37, 4 [S}”] is at most (rk— 1)lAlg—#,
Initially, > 4 SV = |A]. By a union bound over 1 < i < T, djea |S57| >
|A| 47 — 1 with probability at least 1 — (7 —1)(x — 1)I412=#. By our choice of 7,
this condition implies |SJ(-T)| > k for some j € A. By the reconstruction property,
there is an injective function R4 that maps valid sequences (s;: j € A) of shares
to secrets s € {0,1}*. Assuming |S](”| < k for all j € A, the image of Rg
evaluated on the product set [[,c 4 S§ can have size at most (rk — 1)I4l. So if
s+ ig chosen at random from {0, 1}#, then the probability it belongs to the
image of Ra(][;ca S§7) is at most (k — 1)I4127#. By the injectivity of Ry, for
any sequence (s""": j € A) that reconstructs to s+, s must reside outside
S for at least one party j € A, so the sum djea |SJ( )| grows as desired. O

According to Lemma 1, with non-negligible probability, it holds that, for
every qualified set A € I'*, there exists i € A that yields (a;, (3{",2{"),...,

(87, 28")) that satisfies 1 = V; (&4, a4, 65, 2) for e := H. (T, m,i,s;”) Since
all e“ ) are distinct except for negligible probability due to the uniform output
from H,, we have r-colliding transcript (a;, (i, 2"),..., (&, 2")) over uni-
formly chosen challenges, which allows to extract w; with overwhelming proba-
bility. What remains is the same as the knowledge soundness proof of the original
CDS scheme; according to Proposition 1, there exists a qualified set A in I" for
which w; for all 7 € A are extracted.

We next sketch a proof for the case where H. is non-programmable and H,
is programmable. This time we do not require Lemma 1. The extractor first runs

the adversary until it obtains a valid forgery. Proof queries from the adversary is
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answered by executing Sim2 in Fig. 2, which programs at most n random points
on H, in each invocation. Then the extractor rewinds the adversary to the point
where it first receives § for query H.(I',&,ay,...,da,). The extractor then con-
tinues the simulation as well as the first run except that it answers every fresh
query to H. with an independently chosen random value. These queries to H,
made after receiving § from H, are for a qualified set, A € I', as we observed in
the proof of soundness since otherwise CheckSharesp« (8, §1,...,8,) in the verifi-
cation returns 1 with probability at most 27#. By repeating the above rewinding
2k /0 times, the extractor obtains x valid forged proofs on (x,as,...,a,) with
a constant probability. The forged proofs constitute x colliding transcripts for
each z;c 4 unless random assignments to H, collide by chance. Thus, by running
the k-special soundness extractor with the colliding transcripts as an input, a
valid witness is obtained except for a negligible probability. We finally note that
H,. must still be modeled as (non-programmable) random oracle to assure that
a; is fixed before §; is queried to H.,. a

Proof (Of strong simulation extractability). This time, we relax the condition
on (&,7) so that it must be different from any pair (a, ) observed by the sim-
ulation oracle. As we have already proved the case of & # « in the above,
we consider # = @ and @ # w happens for some (x,7) observed by the
simulation oracle. Let m = {(as,2i), Si}icin)- If (a1,...,0,) # (a1,...,a4),
then we fork at query H.(I,&,ds,...,a,) and do the same as done in the
proof of simulation extractability. Otherwise, if (ai,...,a,) = (a1,...,a,) and
(81,...,8n) # (81,...,8n), we again fork at query H.(I',&,a1,...,a,). Observe
that the query is made by zero-knowledge simulator. So we cannot answer
to the newly assigned value with the same a;. We instead simulate by using
the same (a;,e;,2;) for every ¢ € [n]. It can be done by programming H,
with the same output é; on a new input s; in each fork. More precisely, for
every new assignment of s to H.(I',&,d1,...,G4,) in the j-th fork, compute
(s,...,89) < Sharer«(s9?). Then define H.(I',x,i,s") by e; used in the orig-
inal run and answer with the same z;. Accordingly, though shares s; appear in
the respective challenge round differ in every fork, simulated transcript (a;, e;, 2;)
remains the same. Now, 7 successful forks leads to extracting witness in a qual-
ified set in I' as before. Due to the quasi-unique response property, we are
already done since (#;,a;, ;) = (2", a{", s{*’) cannot accommodate with restric-
tion (&4, a;, 8i, 2;) # (257, al"; 8§, 2{*) except for negligible probability. O

1 27

3.2 Comparison with CDS

In order to illustrate the efficiency gain and the recycling technique of our new
construction, consider the following general DNF formula on n-variables:

f(l’l, ey ;zzn) = (xj{l,l} VAN /\’Ij{l‘ml}) V...V (:rj{l,l} VAN /\Ij{l,’lng}) 3 (1)

and let N = Zle m; be the total number of literals in f. Let I" be the access
structure over [n] induced by f, and consider the following well-known and widely
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used perfect secret sharing of s € Z,, (for some p-bits prime p) under policy I'*:
Sharep(s) :

sample dy, ..., d¢ + Z, uniformly restricted to d; + ... +d; = s;

set s; == {dk |’L S {j{k,1}7 . 7j{k,mk}} Vk e [f]} Vi € [n],
return (s1,...,585,).

Table 1. Comparison between previous work ([20,21]) and the Share-then-Hash CDS
(this work). Values N, n and ¢ represent the number of literals, number of variables
and number of clauses in the DNF formula (1) respectively. Value « (respectively ()
represents the size in bits of the first message (respectively last message) of sigma
protocols X;. (Challenges are assumed to belong in {0, 1}").

Proof system

Property CDS+FS Share-then-Hash CDS+FS

Proof size  N(a+ )+ ul n(a+¢) + pl
Optimized proof size' N¢+ pl n¢ + pl
Support for (k > 2)-special soundness X v
Unforgeability in NPROM? x v

T When every a is uniquely identified and efficiently recoverable given (e, z).
¥ When considered as a signature scheme. See Section 4.

The CDS+FS technique would yield a proof for I'g consisting of N tran-
scripts where for all k¥ € [(] and k' € [my], transcript (ag iy, ek, Zgry)
is accepting with respect to the jy ,y-th X-protocol. Also, for s =
H(I'x,aq,13,- -, Qm,), it must hold e; + --- 4 e, = s. This results in a total
proof size in bits of:

1+ i (epm larrn ]+ zgnn ) -

Instead, with our scheme from Fig.1, the resulting proof consists of n
transcripts {(a;, 2i) }ie[n)] together with a set of shares {s;};c[n) produced by
the above Share algorithm. Transcript (a;, e;, 2;) is accepting with respect the
i-th X-protocol, where e; = H(I,x,i,s;) for every i € [n] and for s =
H(I'yx,ay,...,ay,), CheckShares(s, s1,...,s,) = 1. In this case, the total proof

size in bits results in':

(510 s8] + Cipu lail + 2l = s+ ey lasl + 2]

We refer to Table1 for a more detailed comparison between the two proof
systems. For simplicity, we assume that all X-protocols require first messages

1 Although the total length of secrets (s1,-..,8n) is N, as above it is enough to store
the ¢ disjunction values (d1,...,d¢) sampled by Share.
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of similar length say |a| = «, and also last messages of similar length |z| = (.
Some Y-protocols are such that, given (e, z), there exists a unique value of a
that makes the transcript accepting and that can be efficiently computed. In
those cases, it is possible to optimize the proof size by not including the a value
of any transcript. During verification, the omitted values are computed from
the corresponding (e, z). Notice that this optimization can be applied to both
schemes and it does not compromise soundness, since the prover has committed
to the final share s (dependent of the a values) through the random oracle H.
Further optimizations may be possible, e.g. reducing the number of shares that
appear in the proof, depending on the access structure.

Observe that the size of proofs produced with the share-then-hash technique
can be dramatically smaller than the size of proofs with standard CDS+F'S since,
in general, N can be much larger than n. This improvement comes from the fact
that share-then-hash proofs include exactly 1 transcript per atomic statement,
which is a notable improvement since many practical scenarios involve complex
and heavy sigma protocols. Having to produce (and then verify) independent
transcripts for the same statement would be undesirable. Finally, notice that
this optimization also brings computational savings since fewer transcripts need
to be produced.

4 Application

This section presents a general ring signature scheme that supports monotone
structures and is unforgeable against chosen message and chosen ring attacks
in the NPROM. Note that when n = 1 the syntax and unforgeability of ring
signature schemes reduce to those for ordinary signature schemes.

Definition 11 (General Ring Signature Scheme). A ring signature scheme
RS is triple of polynomial-time algorithm, described by (KeyGen, Sign, Verify) such
that

o KeyGen(1*) : It takes an input the security parameter 1* and outputs a pair
(vk, sk) of verification and signing key. This execution is proceeded individu-
ally by each player.

e Sign(vk, sk, msg, ") : It takes a set of verification keys vk := (vkq, ..., vky),
a monotone access structure I' over [n], a set of secret keys sk, and a message
msg € {0,1}* and outputs a signature o.

o Verify(vk, msg,o,I") : It takes vk, msg,o, and I', and outputs either 1 for
acceptance, or 0 for rejection.

It is correct, if, for every A € N, n > 1, any monotone access structure I' over
[n], any vk = (vky,...,vk,) and sk = (sk1,...,sky,) that there exists A € I’
such that (vk;, sk;) € KeyGen(1*) holds for all i € A, for all msg € {0,1}*,
RS.Verify(vk, msg, Sign(vk, sk, msg,I"),I") = 1 holds except for negligible prob-
ability.
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Definition 12 (Signer Anonymity). A ring signature scheme is anonymous
if, for any A € N, any n > 1, any monotone structure I' over [n], any
vk = (vky, -+ ,vk,), and any sk® = (skgb), R sk’g’)) for b = 0,1 that there
exists A € I' such that (vki,skgb)) € KeyGen(1*) holds for all i € A, and for
any msg € {0,1}*, two distributions (Uk:,msg,Sign(vk7sk(O)7msg,F)7F) and
(vk, msg, Sign(vk, sk, msg, I'), ') are statistically indistinguishable.

Definition 13 (Unforgeability). A ring signature scheme is unforgeable
against adaptive chosen message and chosen ring attacks if for any sufficiently
large \, any n > 1, any polynomial-time adversary A, the following experiment
returns 1 only with negligible probability in .

Exprgusf,A()\) :
1. Run (vk;, sk;) — RS.KeyGen(1*) for i € [n]. Initialize U with .
2. Run ('vAk:, msg, 7, f) — A€ (vk) where S and C are oracles that:
S: Given (vk',msg, I, A) as input, if vk’ C vk, I' is a monotone structure
over [n'] := [|vK'|], and A € T, it returns o < RS.Sign(vk', sk’, msg, I
where sk’ = (sky,...,sky) that (vk;, sk;) € RS.KeyGen(1*) for all i € A
and sk; = L for alli € [n']\ A. It returns L, otherwise.
C: Given i € [n], it adds vk; to U, and returns sk;.
3. Output 1 if all the following conditions are met.
e 1 = RS.Verify(vk, misg, 7, 1)
o vk C vk
e VAeTl, {vkicvk|ic A} ZU
. (vAk, msg, f’) has never been submitted to S
Otherwise output 0.

For binary relation R, let Ry be disjunctive relation Ry ((z1, z2), (w1, w2)) 1=
R(x1,w1) V R(xe,ws). Let DecompOR be an algorithm that, given a monotone
access structure I" over [n] as input, outputs a monotone access structure A over
2n] that I'g, = Ag holds for Ry == (R, ..., R/Y) and R := (R, ... RC™).
Let X' = (C, Z,V) be a X-protocol for R. Let (Prove, Verify) be a scheme in Fig. 1
using Y. We present our construction of ring signature scheme for monotone
access structure in Fig. 3.

Theorem 2. The scheme in Fig. 3 is a ring signature scheme for monotone
access structure. It is signer anonymous if X is witness indistinguishable. It is
unforgeable against chosen message and ring attacks if Ly is a hard language, X
18 witness indistinguishable and statistically sound, and hash functions H. and
H. are non-programmable random oracles for output space 2 for sufficiently
large .
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RS.KeyGen(1%):

1. Sample (z1,w1) < Rx and (z2,w2) + Ry independently.
2. Output vk := (x1,z2) and sk := (w1, w2).

RS.Sign(vk, sk, msg, I'):

1. Parse vk = (vkW, ... vk™)asa = (z1,...,22,), and sk = (sk™®, ..., sk™)
as w = (w1,...,w2,). (Some sk® can be L. Then waj = waj+1 = L.)

2. Run A < DecompOR(I").

3. Run 7 + Prove,(z,w) including msg in all hashings as input.

4. Output 7 as a signature.

RS.Verify(vk, msg, m, I'):

1. Parse vk = (vk(l), .. .7vk(”>) as ¢ = (1,...,%2n).

2. Run A + DecompOR(I").

3. Run b < Verify , (2, 7) including msg in all hashings as input.
4. Output b

Fig. 3. Proposed ring signature scheme for access structure I".

Proof. Correctness and signer anonymity is almost directly from the complete-
ness and witness indistinguishability of the underlying X' respectively. Thus we
focus on proving unforgeability. Outline of our proof follows that of [28].

Game 1: This is the same as the experiment for the chosen message and
chosen ring attack. Let G; be the event that the experiment in Game i outputs
1. We have Pr[G4] = Pr[ExpreRl’Sf7A(/\) = 1] by definition.

Let C C [n] be the index of the corrupted verification keys in the game.
Let vk, msg, T, and I" be the final output from the adversary. Without
loss of generality, we assume that vk = vk and I" is over [n]. (The adver-
sary can choose I' over a subset of [n]. We can turn such an adversary to
one that outputs I" as we want.) Let # be parsed to & = {(@i, 2:), 8i Yic[2n) -
As a valid forgery, it satisfies C' ¢ I". Furthermore, every (a4, 2;), 8; verifies
as 1 = CheckShares ;. (3,51,...,52,) for § = HC(/i, T, msg,ds,...,a,), and
1=Vi(&;, a8, %) for é; := He(/i,ac7 msg, 1, §;) for i € [2n].

Game 2: We clean up the game by halting at win-by-chance events. As we
argued in the proof of soundness, the adversary must make relevant hash queries
to the corresponding oracles by itself. As also shown in the same place, there
must exist a qualified set A* in A that, for all i € A*, &; := He(/i, x, msg,i,5;)
appears after § := Hc(/i7 x, msg,as,...,a2,) in the view of the adversary. If any
of these are not the case at the end, we let the experiment output 0.

Since these events happen only by chance over the choices of H, and H, for
large enough domain {0, 1}*, we have | Pr[G2] — Pr[G1]| < O(gq/2*) for at most
q times of queries to the random oracles throughout the game.
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Game 3: Uniformly choose i* < [2n] and select z;« as a no-instance, i.e.,
x;+ — L()\) where L is a language that is indistinguishable from Lz and has no
intersection with it.

Let ¢*¢ denote |i*/2], which is the index of the verification key containing
x;+. For now, suppose that i*“ ¢ C happens. Answering to the signing queries
from the adversary can be done by using the remaining witnesses since they are
in a qualified set of A. It is perfect due to the WI property of the underlying
proofs. If the output distribution of the experiment changes noticeably from that
in the previous game, we can construct a successful distinguisher for Lr and L.
Let epg denote the bound for indistinguishability of L. We have |Pr[Gs|i* ¢
C] — PI‘[GQ“ S €hd- R

We now evaluate Pr[G3|i*¢ ¢ C]. Since C ¢ I, there exists i’ € A* that
it ¢ C. We have it = i* with probability 1/2n for uniform *. (Note that, for
this case, i* ¢ C holds as well.) For z; ¢ Lg and fixed a;+, probability that
challenge é; uniformly chosen by He(/i, x, msg,i*, §;+) can have Z;- that satisfies
1 = V(x4x,dix, €5+, 2i=) is bound by the statistical soundness error, denoted by
est, of ¥. We thus have Pr[Gs|i*° ¢ C Al =i*] = 5 - Pr[G3|i*° ¢ C] < es.

By accumulating the all above bounds, we have Pr[ExpreR”Sf’ AN =1 <
O(q/2") + €nd + 2nes which is negligible if ¢, n, and p are polynomials in A,
and €pg and € are negligible in \ as stated. O

5 Concluding Remarks

In this work, we have revisited the CDS composition technique and proposed a
modification, that we coin the share-then-hash methodology. Our simple tech-
nique enhances the previous composition in several flavors, including more com-
pact proofs (one single transcript per atomic statement), better generality (it is
not limited to 2-special sound atomic protocols) and security proofs under weaker
assumptions (soundness can be proven in the non-programmable random oracle
model). Consequently, our results can lead to more efficient, general and secure
cryptographic primitives that rely on proofs of partial knowledge.

Proving lower bounds on the proof size and communication complexity of
partial proofs of knowledge is an appealing target for future work. In particular,
it would be interesting to know if our construction is optimal under some measure
or criteria. Another interesting direction for future work would be explore the
application of our share-then-hash technique to other scenarios.
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