
Shiho Moriai
Huaxiong Wang (Eds.)

LN
CS

 1
24

93

26th International Conference on the Theory
and Application of Cryptology and Information Security
Daejeon, South Korea, December 7–11, 2020
Proceedings, Part III

Advances in Cryptology –
ASIACRYPT 2020

Lecture Notes in Computer Science 12493

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Shiho Moriai • Huaxiong Wang (Eds.)

Advances in Cryptology –

ASIACRYPT 2020
26th International Conference on the Theory
and Application of Cryptology and Information Security
Daejeon, South Korea, December 7–11, 2020
Proceedings, Part III

123

Editors
Shiho Moriai
Network Security Research Institute (NICT)
Tokyo, Japan

Huaxiong Wang
Nanyang Technological University
Singapore, Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-64839-8 ISBN 978-3-030-64840-4 (eBook)
https://doi.org/10.1007/978-3-030-64840-4

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7669-8922
https://doi.org/10.1007/978-3-030-64840-4

Preface

The 26th Annual International Conference on Theory and Application of Cryptology
and Information Security (ASIACRYPT 2020), was originally planned to be held in
Daejeon, South Korea, during December 7–11, 2020. Due to the COVID-19 pandemic,
it was shifted to an online-only virtual conference.

The conference focused on all technical aspects of cryptology, and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a total of 316 submissions from all over the world, the Program
Committee (PC) selected 85 papers for publication in the proceedings of the confer-
ence. The two program chairs were supported by a PC consisting of 66 leading experts
in aspects of cryptology. Each submission was reviewed by at least three PC members
(or their sub-reviewers) and five PC members were assigned to submissions
co-authored by PC members. The strong conflict of interest rules imposed by the IACR
ensure that papers are not handled by PC members with a close working relationship
with authors. The two program chairs were not allowed to submit a paper, and PC
members were limited to two submissions each. There were approximately 390
external reviewers, whose input was critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and
first-round discussions, the PC selected 205 submissions to proceed to the second
round, including 1 submission with early acceptance. The authors of 204 papers were
then invited to provide a short rebuttal in response to the referee reports. The second
round involved extensive discussions by the PC members.

The three volumes of the conference proceedings contain the revised versions of the
85 papers that were selected, together with the abstracts of 2 invited talks. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The program of ASIACRYPT 2020 featured two excellent invited talks by Shweta
Agrawal and Jung Hee Cheon. The conference also featured a rump session which
contained short presentations on the latest research results of the field.

The PC selected three papers to receive the Best Paper Award, via a voting-based
process that took into account conflicts of interest, which were solicited to submit the
full versions to the Journal of Cryptology: “Finding Collisions in a Quantum World:
Quantum Black-Box Separation of Collision-Resistance and One-Wayness” by Akinori
Hosoyamada and Takashi Yamakawa; “New results on Gimli: full-permutation dis-
tinguishers and improved collisions” by Antonio Flórez Gutiérrez, Gaëtan Leurent,
María Naya-Plasencia, Léo Perrin, André Schrottenloher, and Ferdinand Sibleyras; and
“SQISign: Compact Post-Quantum signatures from Quaternions and Isogenies” by
Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski.

Many people contributed to the success of ASIACRYPT 2020. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge
and expertise, and for the tremendous amount of work that was done with reading
papers and contributing to the discussions. We are greatly indebted to Kwangjo Kim,
the general chair, for his efforts and overall organization. We thank Michel Abdalla,
McCurley, Kay McKelly, and members of the IACR’s emergency pandemic team for
their work in designing and running the virtual format. We thank Steve Galbraith, Joo
Young Lee, and Yu Sasaki for expertly organizing and chairing the rump session. We
are extremely grateful to Zhenzhen Bao for checking all the latex files and for
assembling the files for submission to Springer. Finally, we thank Shai Halevi and the
IACR for setting up and maintaining the Web Submission and Review software, used
by IACR conferences for the paper submission and review process. We also thank
Alfred Hofmann, Anna Kramer, and their colleagues at Springer for handling the
publication of these conference proceedings.

December 2020 Shiho Moriai
Huaxiong Wang

vi Preface

Organization

General Chair

Kwangjo Kim Korea Advanced Institute of Science and Technology
(KAIST), South Korea

Program Chairs

Shiho Moriai Network Security Research Institute (NICT), Japan
Huaxiong Wang Nanyang Technological University, Singapore

Program Committee

Shweta Agrawal IIT Madras, India
Gorjan Alagic University of Maryland, USA
Shi Bai Florida Atlantic University, USA
Zhenzhen Bao Nanyang Technological University, Singapore
Paulo Barreto University of Washington Tacoma, USA
Lejla Batina Radboud University, The Netherlands
Amos Beimel Ben-Gurion University, Israel
Sonia Belaïd CryptoExperts, France
Olivier Blazy University of Limoges, France
Jie Chen East China Normal University, China
Yilei Chen Visa Research, USA
Chen-Mou Cheng Osaka University, Japan
Jun Furukawa NEC Israel Research Center, Israel
David Galindo University of Birmingham, Fetch.AI, UK
Jian Guo Nanyang Technological University, Singapore
Swee-Huay Heng Multimedia University, Malaysia
Xinyi Huang Fujian Normal University, China
Andreas Hülsing TU Eindhoven, The Netherlands
Takanori Isobe University of Hyogo, Japan
David Jao University of Waterloo, evolutionQ, Inc., Canada
Jérémy Jean ANSSI, France
Zhengfeng Ji University of Technology Sydney, Australia
Hyung Tae Lee Jeonbuk National University, South Korea
Jooyoung Lee KAIST, South Korea
Benoît Libert CNRS, ENS, France
Dongdai Lin Chinese Academy of Sciences, China
Helger Lipmaa University of Tartu, Estonia, and Simula UiB, Norway
Feng-Hao Liu Florida Atlantic University, USA

Giorgia Azzurra Marson University of Bern, Switzerland, and NEC Laboratories
Europe, Germany

Daniel Masny Visa Research, USA
Takahiro Matsuda AIST, Japan
Brice Minaud Inria, ENS, France
Shiho Moriai NICT, Japan
Kartik Nayak Duke University, VMware Research, USA
Khoa Nguyen Nanyang Technological University, Singapore
Svetla Nikova KU Leuven, Belgium
Carles Padró UPC, Spain
Jiaxin Pan NTNU, Norway
Arpita Patra Indian Institute of Science, India
Thomas Peters UCL, Belgium
Duong Hieu Phan University of Limoges, France
Raphael C.-W. Phan Monash University, Malaysia
Josef Pieprzyk CSIRO, Australia, and Institute of Computer Science,

Polish Academy of Sciences, Poland
Ling Ren VMware Research, University of Illinois

at Urbana-Champaign, USA
Carla Ràfols Universitat Pompeu Fabra, Spain
Rei Safavi-Naini University of Calgary, Canada
Yu Sasaki NTT laboratories, Japan
Jae Hong Seo Hanyang University, South Korea
Ron Steinfeld Monash University, Australia
Willy Susilo University of Wollongong, Australia
Qiang Tang New Jersey Institute of Technology, USA
Mehdi Tibouchi NTT laboratories, Japan
Huaxiong Wang Nanyang Technological University, Singapore
Xiaoyun Wang Tsinghua University, China
Yongge Wang The University of North Carolina at Charlotte, USA
Chaoping Xing Shanghai Jiao Tong University, China, and NTU,

Singapore
Yu Yu Shanghai Jiao Tong University, China
Mark Zhandry Princeton University, NTT Research, USA

External Reviewers

Behzad Abdolmaleki
Parhat Abla
Mamun Akand
Orestis Alpos
Hiroaki Anada
Benny Applebaum
Diego F. Aranha

Marcel Armour
Gilad Asharov
Man Ho Au
Benedikt Auerbach
Khin Mi Mi Aung
Sepideh Avizheh
Christian Badertscher

Saikrishna
Badrinarayanan

Mir Ali Rezazadeh Baee
Joonsang Baek
Karim Baghery
Gustavo Banegas
Laasya Bangalore

viii Organization

Subhadeep Banik
James Bartusek
Carsten Baum
Rouzbeh Behnia
Aner Ben-Efraim
Fabrice Benhamouda
Francesco Berti
Luk Bettale
Tim Beyne
Shivam Bhasin
Nina Bindel
Nir Bitansky
Xavier Bonnetain
Katharina Boudgoust
Florian Bourse
Zvika Brakerski
Jaqueline Brendel
Olivier Bronchain
Benedikt Bunz
Seyit Camtepe
Ignacio Cascudo
Gaëtan Cassiers
Suvradip Chakraborty
Jorge Chávez Saab
Hao Chen
Hua Chen
Long Chen
Rongmao Chen
Yu Chen
Yuan Chen
Ding-Yuan Cheng
Ji-Jian Chin
Seongbong Choi
Wonseok Choi
Ashish Choudhury
Sherman S. M. Chow
Heewon Chung
Michele Ciampi
Benoît Cogliati
Craig Costello
Nicholas Courtois
Geoffroy Couteau
Alain Couvreur
Daniele Cozzo
Hongrui Cui
Edouard Cuvelier

Jan Czajkowski
João Paulo da Silva
Jan-Pieter D’anvers
Joan Daemen
Ricardo Dahab
Nilanjan Datta
Bernardo David
Gareth Davies
Yi Deng
Amit Deo
Patrick Derbez
Siemen Dhooghe
Hang Dinh
Christoph Dobraunig
Javad Doliskani
Jelle Don
Xiaoyang Dong
Dung Duong
Betül Durak
Avijit Dutta
Sabyasachi Dutta
Sébastien Duval
Ted Eaton
Keita Emura
Muhammed F. Esgin
Thomas Espitau
Xiong Fan
Antonio Faonio
Prastudy Fauzi
Hanwen Feng
Shengyuan Feng
Tamara Finogina
Apostolos Fournaris
Ashley Fraser
Philippe Gaborit
Steven Galbraith
Pierre Galissant
Chaya Ganesh
Romain Gay
Chunpeng Ge
Kai Gellert
Nicholas Genise
Alexandru Gheorghiu
Hossein Ghodosi
Satrajit Ghosh
Benedikt Gierlichs

Kristian Gjøsteen
Aarushi Goel
Huijing Gong
Junqing Gong
Zheng Gong
Alonso González
Rishab Goyal
Benjamin Grégoire
Jiaxin Guan
Cyprien de Saint Guilhem
Aldo Gunsing
Chun Guo
Fuchun Guo
Qian Guo
Felix Günther
Ariel Hamlin
Ben Hamlin
Jinguang Han
Kyoohyung Han
Keisuke Hara
Debiao He
Chloé Hébant
Javier Herranz
Shoichi Hirose
Deukjo Hong
Akinori Hosoyamada
Hector Hougaard
Qiong Huang
Shih-Han Hung
Kathrin Hövelmanns
Akiko Inoue
Tetsu Iwata
Ashwin Jha
Dingding Jia
Shaoquan Jiang
Chanyang Ju
Eliran Kachlon
Saqib A. Kakvi
Ghassan Karame
Sabyasachi Karati
Angshuman Karmakar
Shuichi Katsumata
Marcel Keller
Dongwoo Kim
Jihye Kim
Jinsu Kim

Organization ix

Jiseung Kim
Jongkil Kim
Minkyu Kim
Myungsun Kim
Seongkwang Kim
Taechan Kim
Elena Kirshanova
Fuyuki Kitagawa
Susumu Kiyoshima
Michael Kloss
François Koeune
Lisa Kohl
Markulf Kohlweiss
Chelsea Komlo
Yashvanth Kondi
Nishat Koti
Toomas Krips
Veronika Kuchta
Thijs Laarhoven
Jianchang Lai
Qiqi Lai
Huy Quoc Le
Byeonghak Lee
Changmin Lee
Moon Sung Lee
Liang Li
Shuaishuai Li
Shun Li
Xiangxue Li
Xinyu Li
Ya-Nan Li
Zhe Li
Bei Liang
Cheng-Jun Lin
Fuchun Lin
Wei-Kai Lin
Dongxi Liu
Fukang Liu
Guozhen Liu
Jia Liu
Joseph K. Liu
Meicheng Liu
Qipeng Liu
Shengli Liu
Yunwen Liu
Zhen Liu

Julian Loss
Yuan Lu
Zhenliang Lu
Lin Lyu
Fermi Ma
Hui Ma
Xuecheng Ma
Bernardo Magri
Monosij Maitra
Christian Majenz
Nathan Manohar
Ange Martinelli
Zdenek Martinasek
Ramiro Martínez
Pedro Maat C. Massolino
Loïc Masure
Bart Mennink
Lauren De Meyer
Peihan Miao
Kazuhiko Minematsu
Rafael Misoczki
Tarik Moataz
Tal Moran
Tomoyuki Morimae
Hiraku Morita
Travis Morrison
Pratyay Mukherjee
Sayantan Mukherjee
Pierrick Méaux
Helen Möllering
Michael Naehrig
Yusuke Naito
Maria Naya-Plasencia
Ngoc Khanh Nguyen
Jianting Ning
Ryo Nishimaki
Ariel Nof
Kazuma Ohara
Daniel Esteban Escudero

Ospina
Giorgos Panagiotakos
Bo Pang
Lorenz Panny
Anna Pappa
Anat Paskin-Cherniavsky
Alain Passelègue

Shravani Patil
Sikhar Patranabis
Kateryna Pavlyk
Alice Pellet-Mary
Geovandro Pereira
Thomas Peyrin
Phuong Pham
Stjepan Picek
Zaira Pindado
Rafael del Pino
Rachel Player
Geong Sen Poh
David Pointcheval
Yuriy Polyakov
Ali Poostindouz
Frédéric de Portzamparc
Chen Qian
Tian Qiu
Sai Rahul Rachuri
Adrian Ranea
Divya Ravi
Jean-René Reinhard
Peter Rindal
Francisco

Rodríguez-Henríquez
Mélissa Rossi
Partha Sarathy Roy
Ajith S.
Yusuke Sakai
Kosei Sakamoto
Amin Sakzad
Simona Samardjiska
Olivier Sanders
Partik Sarkar
Santanu Sarkar
John Schanck
André Schrottenloher
Jacob Schuldt
Mahdi Sedaghat
Ignacio Amores Sesar
Siamak Shahandashti
Setareh Sharifian
Yaobin Shen
Sina Shiehian
Kazumasa Shinagawa
Janno Siim

x Organization

Javier Silva
Ricardo Dahab
Siang Meng Sim
Leonie Simpson
Daniel Slamanig
Daniel Smith-Tone
Fang Song
Yongcheng Song
Florian Speelman
Akshayaram Srinivasan
Jun Xu
Igors Stepanovs
Ling Sun
Shi-Feng Sun
Akira Takahashi
Katsuyuki Takashima
Benjamin Hong

Meng Tan
Syh-Yuan Tan
Titouan Tanguy
Adrian Thillard
Miaomiao Tian
Ivan Tjuawinata
Yosuke Todo
Alin Tomescu
Junichi Tomida
Ni Trieu
Viet Cuong Trinh
Ida Tucker
Aleksei Udovenko
Bogdan Ursu
Damien Vergnaud
Fernando Virdia

Srinivas Vivek
Misha Volkhov
Quoc Huy Vu
Alexandre Wallet
Ming Wan
Chenyu Wang
Han Wang
Junwei Wang
Lei Wang
Luping Wang
Qingju Wang
Weijia Wang
Wenhao Wang
Yang Wang
Yuyu Wang
Zhedong Wang
Gaven Watson
Florian Weber
Man Wei
Weiqiang Wen
Thom Wiggers
Zac Williamson
Lennert Wouters
Qianhong Wu
Keita Xagawa
Zejun Xiang
Hanshen Xiao
Xiang Xie
Yanhong Xu
Haiyang Xue
Shota Yamada
Takashi Yamakawa
Sravya Yandamuri

Jianhua Yan
Zhenbin Yan
Bo-Yin Yang
Guomin Yang
Kang Yang
Rupeng Yang
Shao-Jun Yang
Wei-Chuen Yau
Kisoon Yoon
Yong Yu
Zuoxia Yu
Chen Yuan
Tsz Hon Yuen
Aaram Yun
Alexandros Zacharakis
Michal Zajac
Luca Zanolini
Arantxa Zapico
Ming Zeng
Bin Zhang
Bingsheng Zhang
Cong Zhang
Hailong Zhang
Jiang Zhang
Liang Feng Zhang
Xue Zhang
Zhenfei Zhang
Zhifang Zhang
Changan Zhao
Yongjun Zhao
Zhongxiang Zheng
Yihong Zhu
Arne Tobias Ødegaard

Organization xi

Contents – Part III

Multi-party Computation

MOTIF: (Almost) Free Branching in GMW: Via Vector-Scalar
Multiplication . 3

David Heath, Vladimir Kolesnikov, and Stanislav Peceny

Maliciously Secure Matrix Multiplication with Applications
to Private Deep Learning . 31

Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru,
Yongsoo Song, and Sameer Wagh

On the Exact Round Complexity of Best-of-Both-Worlds Multi-party
Computation. 60

Arpita Patra, Divya Ravi, and Swati Singla

MPC with Synchronous Security and Asynchronous Responsiveness 92
Chen-Da Liu-Zhang, Julian Loss, Ueli Maurer, Tal Moran,
and Daniel Tschudi

Secure MPC: Laziness Leads to GOD . 120
Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar,
and Amit Sahai

Asymptotically Good Multiplicative LSSS over Galois Rings
and Applications to MPC over Z=pkZ . 151

Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero,
Matthieu Rambaud, Chaoping Xing, and Chen Yuan

Towards Efficiency-Preserving Round Compression in MPC:
Do Fewer Rounds Mean More Computation? . 181

Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel,
and Abhishek Jain

Circuit Amortization Friendly Encodingsand Their Application
to Statistically Secure Multiparty Computation . 213

Anders Dalskov, Eysa Lee, and Eduardo Soria-Vazquez

Efficient Fully Secure Computation via Distributed
Zero-Knowledge Proofs . 244

Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

Efficient and Round-Optimal Oblivious Transfer and Commitment
with Adaptive Security . 277

Ran Canetti, Pratik Sarkar, and Xiao Wang

Secret Sharing

ALBATROSS: Publicly AttestabLe BATched Randomness Based
On Secret Sharing . 311

Ignacio Cascudo and Bernardo David

Secret-Shared Shuffle . 342
Melissa Chase, Esha Ghosh, and Oxana Poburinnaya

Attribute-Based Encryption

Adaptively Secure Inner Product Encryption from LWE 375
Shuichi Katsumata, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa

Unbounded Dynamic Predicate Compositions in ABE from Standard
Assumptions. 405

Nuttapong Attrapadung and Junichi Tomida

Succinct and Adaptively Secure ABE for ABP from k-Lin 437
Huijia Lin and Ji Luo

Inner-Product Functional Encryption with Fine-Grained Access Control 467
Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu

MoniPoly—An Expressive q-SDH-Based Anonymous Attribute-Based
Credential System . 498

Syh-Yuan Tan and Thomas Groß

Updatable Encryption

The Direction of Updatable Encryption Does Not Matter Much 529
Yao Jiang

Improving Speed and Security in Updatable Encryption Schemes 559
Dan Boneh, Saba Eskandarian, Sam Kim, and Maurice Shih

CCA Updatable Encryption Against Malicious Re-encryption Attacks 590
Long Chen, Yanan Li, and Qiang Tang

Determining the Core Primitive for Optimally Secure Ratcheting 621
Fatih Balli, Paul Rösler, and Serge Vaudenay

xiv Contents – Part III

Zero Knowledge

Cryptography from One-Way Communication: On Completeness of Finite
Channels . 653

Shweta Agrawal, Yuval Ishai, Eyal Kushilevitz, Varun Narayanan,
Manoj Prabhakaran, Vinod Prabhakaran, and Alon Rosen

Succinct Functional Commitment for a Large Class of Arithmetic Circuits . . . 686
Helger Lipmaa and Kateryna Pavlyk

Crowd Verifiable Zero-Knowledge and End-to-End Verifiable Multiparty
Computation. 717

Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias,
and Bingsheng Zhang

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 749
Masayuki Abe, Miguel Ambrona, Andrej Bogdanov, Miyako Ohkubo,
and Alon Rosen

Succinct Diophantine-Satisfiability Arguments . 774
Patrick Towa and Damien Vergnaud

Individual Simulations . 805
Yi Deng

Blockchains and Contact Tracing

KVaC: Key-Value Commitments for Blockchains and Beyond 839
Shashank Agrawal and Srinivasan Raghuraman

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 870
Thai Duong, Duong Hieu Phan, and Ni Trieu

Author Index . 901

Contents – Part III xv

Multi-party Computation

MOTIF: (Almost) Free Branching in GMW

Via Vector-Scalar Multiplication

David Heath(B), Vladimir Kolesnikov, and Stanislav Peceny

Georgia Institute of Technology, Atlanta, GA, USA
{heath.davidanthony,kolesnikov,stan.peceny}@gatech.edu

Abstract. MPC functionalities are increasingly specified in high-level
languages, where control-flow constructions such as conditional state-
ments are extensively used. Today, concretely efficient MPC protocols
are circuit-based and must evaluate all conditional branches at high cost
to hide the taken branch.

The Goldreich-Micali-Wigderson, or GMW, protocol is a foundational
circuit-based technique that realizes MPC for p players and is secure
against up to p− 1 semi-honest corruptions. While GMW requires com-
munication rounds proportional to the computed circuit’s depth, it is
effective in many natural settings.

Our main contribution is MOTIF (Minimizing OTs for IFs), a novel
GMW extension that evaluates conditional branches almost for free by
amortizing Oblivious Transfers (OTs) across branches. That is, we simul-
taneously evaluate multiple independent AND gates, one gate from each
mutually exclusive branch, by representing them as a single cheap vector-
scalar multiplication (VS) gate.

For 2PC with b branches, we simultaneously evaluate up to b AND

gates using only two 1-out-of-2 OTs of b-bit secrets. This is a factor ≈ b
improvement over the state-of-the-art 2b 1-out-of-2 OTs of 1-bit secrets.
Our factor b improvement generalizes to the multiparty setting as well:
b AND gates consume only p(p − 1) 1-out-of-2 OTs of b-bit secrets.

We implemented our approach and report its performance. For 2PC
and a circuit with 16 branches, each comparing two length-65000 bit-
strings, MOTIF outperforms standard GMW in terms of communication
by ≈9.4×. Total wall-clock time is improved by 4.1− 9.2× depending on
network settings.

Our work is in the semi-honest model, tolerating all-but-one
corruptions.

Keywords: MPC · GMW · Conditional branching

1 Introduction

Secure Multiparty Computation (MPC) enables mutually untrusting parties to
compute a function of their private inputs while revealing only the function out-
put. The Goldreich-Micali-Wigderson (GMW) protocol is a foundational tech-
nique that realizes MPC for p players and that tolerates up to p− 1 semi-honest
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 3–30, 2020.
https://doi.org/10.1007/978-3-030-64840-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_1

4 D. Heath et al.

corruptions. In GMW, the players jointly evaluate a circuit C by (1) randomly
secret sharing their private input values, (2) privately evaluating C gate-by-gate,
ensuring that the random secret shares encode the correct value for each wire,
and (3) reconstructing secret shares on the output wires.

While XOR gates are evaluated without interaction, AND gates require com-
munication in the form of oblivious transfer (OT). The bottleneck in GMW
performance is communication incurred by OTs, both in terms of bandwidth
consumption and latency.

In this work, we improve the bandwidth consumption of the GMW
protocol for circuits that include conditional branching. In particular,
we improve by up to the branching factor: for a circuit with b branches, we
reduce bandwidth consumption by up to b×.

The Cost of Round Complexity and GMW Use Cases. GMW requires
a round of communication for each of the circuit’s layers of AND gates1. Because
in many scenarios the network latency is substantial, constant-round protocols,
such as Garbled Circuit (GC) are often preferred.

Nevertheless, there are a number of scenarios where GMW is preferable to
GC and other protocols:

– GMW efficiently supports multiparty computation and is resilient against a
dishonest majority. While multiparty GC protocols exist, they are expensive:
the GC is generated jointly among players such that no small subset of players
can decrypt wire labels. Thus, the GC must be generated inside MPC, which
is expensive.

– Many useful circuits are low-depth or have low-depth variants. GMW’s multi-
round nature is less impactful for low-depth circuits, and prior work has shown
that the protocol can outperform GC in these cases [SZ13].

– It is possible to front-load most of GMW’s bandwidth consumption to a pre-
computation phase. When pre-computation is allowed, GMW can perform
useful work even before the computed function is known. Indeed, given pre-
computed random OTs, GMW consumes only 6 bits per AND gate in the 2PC
setting (1-out-of-2 bit OT can be done by transferring a single one-bit secret
and a single two-bit secret as introduced in [Bea95]); this holds for arbitrary
C. In contrast, GC protocols cannot perform useful work until the circuit is
known2.

1 Circuit depth can be reduced by rebalancing at the cost of increased overall circuit
size [BCE91,BB94]. Further, in the 2PC setting, two-input/one-output gates can be
aggregated into multi-input/multi-output gates and evaluated in one round at cost
exponential in the number of inputs [KKW17,DKS+17].

2 Universal circuits (UCs) can be programmed in an online phase to model any circuit
up to a given size n. Hence, UCs technically allow GC protocols to precompute a
garbling before the circuit topology is known, but at great cost. A UC of size n is
implemented with 3n logn gates [LYZ+20]. Further, large numbers of GC labels (of
total size greater than the garbling of the underlying circuit) must be transferred in
the online phase in order to program the UC.

MOTIF: (Almost) Free Branching in GMW 5

In sum, GMW is suitable for a number of practical scenarios, and its improve-
ment benefits many applications.

Goal: (Almost) Free Branching in GMW. GMW is a circuit-based pro-
tocol, and as such, all of C’s branches must be evaluated by the players. Until
the recent work of [HK20] (whose improvement is not for MPC, but for the sim-
pler zero-knowledge setting), it was widely believed that the cost of branching is
unavoidable in circuit-based protocols. In this work, we show how to essentially
eliminate the cost of branching for GMW. Our technique is wholly different from
that of [HK20]; their ‘stacking’ technique has no obvious analog in GMW due
to the interactive nature of the protocol.

Semi-honest GMW requires two bit-OTs per AND gate per each pair of
players. The cost of such OT includes the transfer of the secrets (cheap, 3 bits
from [Bea95]) and consumes one row of the OT extension matrix (expensive, κ
bits). Evaluation of all but one branch is ultimately discarded by the MPC, and
our goal is to eliminate this waste.

We work in the semi-honest model, which is useful in many scenarios (e.g.
protecting against players who may become corrupted in the future). Further-
more, advances in the semi-honest model often lead to similar advances in the
malicious model. We leave exploring such improvements to future work.

1.1 Our Contributions

– Efficient VS gate. We extend the GMW protocol with gates that we call
‘vector-scalar’ gates (VS). VS gates allow p players to multiply a shared vector
of b bits by a shared scalar bit for only p · (p − 1) OTs. Standard GMW
computes each multiplication separately and thus requires b · p · (p − 1) OTs.
Thus, we reduce bandwidth consumption by b× when evaluating the VS gate.

– (Almost) free conditional branching. We show how to use VS to essen-
tially eliminate the communication cost of inactive branches. Precisely, we
amortize random OTs needed to securely compute AND gates across a con-
ditional. The players must still broadcast several bits per AND gate, but this
cost is small compared to the expensive κ-bit random OTs which we amor-
tize. For a circuit with b branches, we improve communication by up to b× as
compared to state-of-the-art GMW. Our computation costs are also slightly
lower than standard GMW because we process fewer OTs.

– Implementation and evaluation. We implemented our approach in C++
and report performance (see Sect. 9). For 2PC and a circuit with 16 branches,
we improve communication by 9.4× and total wall-clock time by 5.1× on a
LAN and 9.2× on a LAN with shared traffic (i.e. lower bandwidth).

1.2 Presentation Outline

We motivated our work in Sect. 1 and summarized the contributions in Sect. 1.1.
We present related work in Sect. 2, review the basic GMW protocol in Sect. 3,
and introduce notation in Sect. 4.

6 D. Heath et al.

We present a technical summary of our approach in Sect. 5. We formally
specify our protocols in Sect. 6 and provide proofs in Sect. 7. We discuss imple-
mentation details and evaluate performance in Sects. 8 and 9.

2 Related Work

We improve the state-of-the-art Goldreich-Micali-Wigderson (GMW) protocol
[GMW87] by adding an efficient vector-scalar multiplication gate (VS) that is
notably useful for executing conditional branches. We therefore review related
work that improves (1) secure computation of conditional branches and (2) the
classic GMW protocol.

Stacked Garbling. A recent line of work improves communication of GC
with conditional branching in settings where one player knows the evaluated
branch [Kol18,HK20]. [Kol18] is motivated by the use case where the GC gen-
erator knows the taken branch, e.g. while evaluating one of several DB queries.
[HK20] is motivated by ZK proofs.

Prior to these works, it was generally believed that all circuit branches must
be processed and transmitted according to the underlying protocol. [Kol18,HK20]
break this assumption by using communication proportional to only the longest
branch, given that one of the players knows which branch is taken.

Our research direction was inspired by these prior works: we show that com-
munication reduction via conditional branching efficiently carries to GMW as
well. In particular, the OTs used to compute AND gates can be amortized across
branches. Unlike [Kol18,HK20], we do not require any player to know which
branch is taken.

Universal Circuits. Our work improves conditional branching by adding a new
gate primitive that amortizes OTs across branches. Another approach instead
recompiles branches into a new form. Universal circuits (UCs) are programmable
constructions that can evaluate arbitrary circuits up to a given size n. Thus, a
single UC can be programmed to compute any single branch in a conditional,
amortizing the gate costs of the individual branches.

Unfortunately, a UC representing circuits of size n incurs significant overhead
in the number of gates. Decades after Valiant’s original construction [Val76], UC
enjoyed a renewed interest due to its use in MPC, and UC size has steadily
improved [KS08,LMS16,GKS17,AGKS19,KS16,ZYZL18]. The state-of-the-art
UC construction has size 3n log n [LYZ+20]. Even with these improvements,
representing conditional branches with UCs is often impractical. For example, if
we consider branches of size n = 210 gates, the state-of-the-art UC construction
has factor 3 · log(210) = 30× overhead. In addition, programming the UC based
on branch conditions known only to the MPC player is a difficult and expensive
process. Thus, in use cases arising in evaluation of typical programs, UC-based
branch evaluation is slower than näıve circuit evaluation.

[KKW17] observed that UCs are overly general for conditional branching: a
UC can represent any circuit up to size n, while a conditional has a fixed and

MOTIF: (Almost) Free Branching in GMW 7

often small set of publicly known circuits. Correspondingly, [KKW17] general-
ized UCs to Set Universal Circuits (S-UCs). An S-UC can be programmed to
implement any circuit in a fixed set S, rather than the entire universe of circuits
of size n. By constraining the problem to smaller sets, the authors improved
UC overhead. [KKW17] used heuristics to exploit common sub-structures in
the topologies of the circuits in S by overlaying the circuits with one another.
For a specific set of 32 circuits, the authors achieved 6.1× size reduction com-
pared to separately representing each circuit. For 32 circuits, our approach can
improve by up to 32×. Additionally, we do not face the expensive problem of pro-
gramming the conditional based on conditions known only to the MPC player.
Finally, [KKW17] is a heuristic whose performance depends on the specific cir-
cuits. Our approach is much more general.

Oblivious Transfer (OT) Extension and Silent OT. Since OT requires expensive
public-key primitives, efficient GMW relies on OT extension [Bea96,IKNP03].
Our implementation uses the highly performant 1-out-of-2 OT extension of
[IKNP03] as implemented by the EMP-toolkit [WMK16]. More specifically, we
precompute 1-out-of-2 random OTs in a precomputation phase and use the stan-
dard trick [Bea95] to cheaply construct 1-out-of-2 OT from random OT.

With [IKNP03], each 1-out-of-2 OT requires transmission of a κ-bit (e.g.
128-bit) OT matrix row, regardless of the length of the sent secrets. Reducing
the number of consumed OT matrix rows is the source of our improvement: our
VS gate takes advantage of the fact that a single 1-out-of-2 OT of b-bit strings
is much cheaper than b 1-out-of-2 OTs of 1-bit strings, since in the former case
only one κ-bit OT matrix row is consumed.

Silent OT is an exciting recent primitive that generates large numbers of ran-
dom OTs from relatively short pseudorandom correlation generators [BCG+19].
It largely removes the communication overhead of random OT when a large
batch is executed. Currently, [IKNP03] remains more efficient than Silent OT
in many contexts because Silent OT incurs expensive computation and involves
operations with high RAM consumption [BCG+19]. We stress that although we
emphasize communication improvement via amortizing OTs, Silent OT does not
replace our approach. Indeed, our approach yields improvement even if we use
Silent OT, because we reduce the number of needed random OTs, thus allowing
us to run a smaller Silent OT instance. Therefore, our approach significantly
reduces the computation overhead of Silent OT, both in terms of RAM con-
sumption and wall-clock time.

GMW with Multi-input/Multi-output Gates. Prior work [KK13,KKW17,
DKS+17] noticed that the cost of OTs associated with GMW gate evaluation
could be amortized across several gates. [KK13] improved OT for short secrets
by extending [IKNP03] 1-out-of-2 OT to a 1-out-of-n OT at only double the
cost. [KKW17,DKS+17] applied the [KK13] OT to larger gates with more than
the standard two inputs/one output, thus amortizing the OT matrix cost across
several gates. As a secondary benefit, merging several gates into larger gates
reduces the circuit depth and latency overhead.

8 D. Heath et al.

Unfortunately, the above multi-input gate constructions encounter two signif-
icant problems. First, the size of the truth table, and thus bandwidth consump-
tion, grows exponentially in the number of inputs. Therefore, it is unrealistic to
construct multi-gates with large numbers of inputs. Second, gates that encode
arbitrary functions do not cleanly generalize from the two-party to the multi-
party setting. To explain why, we contrast arbitrary gates with AND gates. AND
gates generalize to the multi-party setting because logical AND distributes over
XOR secret shares. Therefore, the multiple players can construct XOR shares of
the AND gate truth table. In contrast, an arbitrary function does not distribute
over shares, and thus players cannot construct shares of the table.

Our VS gate can be viewed as a particularly useful multi-input/multi-output
gate that ANDs (multiplies) any number of vector elements with a scalar. The
advantage of our approach over prior multi-input/multi-output gates is that our
approach is based on algebra, not on the brute-force encoding of truth-tables.
This algebra scales well both to any number of inputs/outputs and to any number
of players. Of course, the most important difference is the key application of our
approach – efficient branching – which was not achievable with prior work.

Arithmetic MPC and Vector OLE. A number of works presented arithmetic
generalizations of MPC in the GMW style, e.g. [IPS09,ADI+17]. Modern works
in this area can efficiently multiply arbitrary field elements using a generaliza-
tion of 1-out-of-2 string OT called ‘vector oblivious linear function evaluation’
(vOLE) [ADI+17,BCGI18,DGN+17]. In addition, these works point out that
field scalar-vector multiplication can be efficiently achieved with two vOLEs,
and emphasize the usefulness of this technique for efficient linear algebra oper-
ations (e.g., matrix multiplication). Because we work with Boolean circuits, we
do not need generalized vOLEs, and instead more efficiently base our vector-
ization directly on the efficient OT extension technique [IKNP03]. Importantly,
our branching application benefits from multiplication of relatively small vec-
tors (of size equal to the branching factors), while break-even points of prior
constructions imply their usefulness with much longer vectors.

Our work applies efficient scalar-vector multiplication to the unobvious and
important use case of conditional branching.

Constant-Overhead MPC. Ishai et al. [IKOS08] proposed a constant-overhead
GMW-based MPC. They observe that once sufficiently many random OTs are
available to the players, the remainder of the protocol can be done with constant
overhead per Boolean gate. They exhibit a construction of such a pool of OTs
with constant cost per OT. For this, [IKOS08] relies on Beaver’s non-black-box
OT extension [Bea96], decomposable randomized encoding and an NC0 PRG.
While asymptotically [IKOS08]’s cost is optimal, in concrete terms, it is imprac-
tically high. Our work does not achieve constant factor overhead, but similarly
improves OT utilization and is concretely efficient.

GMW Optimizations. [CHK+12] showed that GMW is particularly suitable in
low-latency network settings and that it outperforms GCs in certain scenarios.

MOTIF: (Almost) Free Branching in GMW 9

[CHK+12] further showed an application in a set of online marketplaces such
as a mobile social network, where a provider helps its users connect according
to mutual interests. Their implementation used multi-threaded programming to
take advantage of inherent parallelism available in the execution of OT and the
evaluation of AND gates of the same depth.

[SZ13] introduced several low-level computation improvements, such as using
SIMD instructions and performing load-balancing, and circuit representation
improvements, such as choosing low-depth circuits even at the cost of larger
overall circuits. [SZ13] also elaborated on a number of examples where GMW
is suitable, including a privacy-preserving face recognition with Eigenfaces
[EFG+09,HKS+10,SSW10] or Hamming distance [OPJM10]. We draw our key
evaluation benchmark, a log-depth bitstring comparison circuit, from [SZ13].

3 GMW Protocol Review

The GMW protocol allows p semi-honest players to securely compute a Boolean
function of their private inputs. The key invariant is that on each wire, the p
players together hold an XOR secret share of the truth value.

Consider p players P1, ..., Pp who together evaluate a Boolean circuit C. For a
wire a, we denote Pi’s share of a as ai. The players step through C gate-by-gate:

– For each wire a corresponding to an input bit from player Pi, Pi uniformly
samples a p-bit XOR secret share of a and sends a share to each player.

– To compute an XOR gate c = a ⊕ b, the players locally add their shares:

(a1 ⊕ ... ⊕ ap) ⊕ (b1 ⊕ ... ⊕ bp) = (a1 ⊕ b1) ⊕ ... ⊕ (ap ⊕ bp)

– To compute an AND gate, the players communicate. Consider an AND Gate
c = ab and the following equality:

c = ab = (a1 ⊕ ... ⊕ ap)(b1 ⊕ ... ⊕ bp) =

⎛
⎝ ⊕

i,j∈1..p

aibj

⎞
⎠

That is, to compute an AND gate it suffices for each pair of players to multiply
together their respective shares and then for the players to locally XOR the
results. Consider two players Pi and Pj . The players compute shares of aibj
and ajbi via 1-out-of-2 OT: To compute aibj , Pi first samples a uniform bit
xi. Then, the players perform 1-out-of-2 OT where Pj inputs bj as her choice
bit and Pi submits as input xi and xi ⊕ ai. Let xj be Pj ’s OT output and
note that xi ⊕ xj = aibj . Pi XORs together her OT outputs with aibi (which
is computed locally) and outputs the sum.

– For each output wire a, the players reconstruct the cleartext output by broad-
casting their share and then locally XORing all shares.

Thus, the GMW protocol securely computes an arbitrary function by con-
suming p(p − 1) OTs per AND gate. Our construction uses this same protocol,
except that we replace AND gates by a generalized VS gate that ANDs an entire
vector of bits with a scalar bit for p(p − 1) OTs. As our key use-case, we show
that this improves conditional branching.

10 D. Heath et al.

4 Notation

– We use p to denote the number of players.
– We use subscript notation to associate a variable with a player. E.g., ai is the

share of wire a held by player Pi.
– t denotes the ‘active’ branch in a conditional i.e. a branch that is taken during

the oblivious execution. t̄ implies an ‘inactive’ branch.
– In this work, we manipulate strings of bits as vectors:

• Superscript notation denotes vector indexes. E.g. ai refers to the i-th
index of a vector a.
• We denote a vector of bits by writing parenthesized comma-separated
values. E.g., (a, b, c) is a vector of a, b, and c.
• We use n to denote the length of a vector.
• When two vectors are known to have the same length, we use ⊕ to
denote the bitwise XOR sum:

(a1, . . . , an) ⊕ (b1, . . . , bn) = (a1 ⊕ b1, . . . , an ⊕ bn)

• We indicate a vector scalar Boolean product by writing the scalar to
the left of the vector:

a(b1, . . . , bn) = (ab1, . . . , abn)

5 Technical Overview

Our approach amortizes OTs across conditional branches. Section 6 formalizes
this approach in technical detail. In this section, we explain at a high level.

Recall, that GMW computes AND (Boolean multiplication) gates via 1-out-
of-2 OT. Suppose that we wish to multiply an entire vector of Boolean bits
(b1, . . . , bn) by the same scalar a. I.e., we wish to compute (ab1, . . . , abn). MOTIF
amortizes the expensive 1-out-of-2 OTs needed to multiply each shared vector
element by a shared scalar (hence the notation VS for vector-scalar). Namely, to
evaluate n AND gates of this form, instead of using n · p · (p − 1) OTs of length-1
secrets, we use only p ·(p−1) OTs of length-n secrets. This reduces consumption
of the OT extension matrix rows, the most expensive resource in the GMW
evaluation.

We first show how we achieve this cheap vector scalar multiplication. Then,
we show how this tool is used to reduce the cost of conditional branching.

In this section, for simplicity, we focus on the case of b = 2 branches and
p = 2 players. Our approach naturally generalizes to arbitrary b and p, and we
formally present our constructions in full generality in Sect. 6.

5.1 VS Gates

As we showed in Sect. 3, a single AND gate computed amongst p players requires
p(p−1) 1-out-of-2 OTs. Our VS gate construction consumes the same number of

MOTIF: (Almost) Free Branching in GMW 11

OTs, but multiplies an entire vector of bits by a scalar bit. Suppose two players
P1, P2 wish to compute the following vector operation:

a(b, c) = (ab, ac)

where a = a1 ⊕ a2, b = b1 ⊕ b2, and c = c1 ⊕ c2 are GMW secret shared between
P1, P2. Note the following equality:

a(b, c) = (a1 ⊕ a2)(b1 ⊕ b2, c1 ⊕ c2) XOR shares
= (a1b1 ⊕ a1b2 ⊕ a2b1 ⊕ a2b2, a1c1 ⊕ a1c2 ⊕ a2c1 ⊕ a2c2) distribute
= a1(b1, c1) ⊕ a1(b2, c2) ⊕ a2(b1, c1) ⊕ a2(b2, c2) group

The first and fourth summands can be computed locally by the respective play-
ers. Thus, we need only show how to compute a1(b2, c2) (the remaining third
summand is computed symmetrically). To compute this vector AND, the players
perform a single 1-out-of-2 OT of length-2 secrets. Here, P2 plays the OT sender
and P1 the receiver. P2 draws two uniform bits x and y and allows P1 to choose
between the following two secrets:

(x, y) (x ⊕ b2, y ⊕ c2)

P1 chooses based on a1 and hence receives (x⊕a1b2, y⊕a1c2). P2 uses the vector
(x, y) as her secret share of this summand. Thus, the players successfully hold
shares of a1(b2, c2).

Put together, the full vector multiplication a(b, c) uses only two 1-out-of-2
OTs of length-2 secrets. Our VS gate generalizes to arbitrary numbers of players
and vector lengths: a vector scaling of b elements between p players requires
p(p − 1) 1-out-of-2 OTs of length b secrets.

5.2 MOTIF: (Almost) Free Conditional Branching in GMW

We now show how VS gates allow improved conditional branching. We amortize
OTs used by AND gates across conditional branches. Branches may be arbitrary,
having different topologies and operating on independent wires.

For simplicity, consider a circuit that has only two branches and that is
computed by only two players; our approach generalizes to b branches and n
players. Since the two branches are conditionally composed, one branch is ‘active’
(i.e. taken) and one is ‘inactive’.

Our key invariant is that on all wires of the inactive branch the players hold
a share of 0, whereas on the active branch they hold valid shares. We begin by
showing how AND gates interact with this invariant. In particular, the invariant
allows AND gates across different conditional branches to be simultaneously com-
puted by a single VS gate. Then we show how all gates maintain the invariant
and how we enter/leave branches.

12 D. Heath et al.

AND Gates. Our key optimization allows the players to consider simultaneously
one AND gate from each branch. For example, suppose the players wish to com-
pute both a1b1 and a2b2 where a1, b1 are wires in branch 1 and a2, b2 are wires
in branch 2. Despite the fact that the players compute two gates, they need only
two 1-out-of-2 OTs. Let t be the taken branch. Hence xt, yt are active wires and
xt̄, yt̄ are both 0. Observe the following equalities:

(xt ⊕ xt̄)yt = (xt ⊕ 0)yt = xtyt

(xt ⊕ xt̄)yt̄ = (xt ⊕ 0)0 = 0

Thus if we efficiently compute both (xt⊕xt̄)yt and (xt⊕xt̄)yt̄, then we propagate
the invariant: the active branch’s AND output wire receives the correct value while
the inactive branch’s wire receives 0. These products reduce to a vector-scalar
product computed by our VS gate:

(xt ⊕ xt̄)(yt, yt̄)

Thus, we compute two AND gates for the price of one. This technique generalizes
to arbitrary numbers of branches: to compute b AND gates across b branches, our
approach consumes two OTs of length b secrets.

Additional Details. Our optimization relies on ensuring all inactive wires hold
0. We now show how we establish this invariant upon entering a branch, how
non-AND gates maintain the invariant, and how we leave conditionals.

– Demultiplexing. ‘Entering’ a conditional is controlled by a condition bit, a
single bit whose value determines which of the two branches should be taken.
To enter a conditional with two branches, we demultiplex the input values
based on the condition bit. That is, we AND the branch inputs with the condi-
tion bit. More precisely, for the input to branch 1, i.e. the branch taken if the
condition bit holds 1, we AND the input bits with the condition bit. Symmet-
rically, for branch 0, we AND each input bit with the NOT of the condition bit.
Thus, we obtain a vector of valid inputs for the active branch and a vector
of all 0s for the inactive branch. Because we multiply all inputs by the same
two bits, we can use VS gates to efficiently implement the demultiplexer. In
order to implement more than two branches, we nest conditionals.

– XOR gates. XOR gates trivially maintain our invariant: an XOR gate with two
0 inputs outputs 0.

– NOT gates. Native NOT gates would break our invariant: a NOT gate with input
0 outputs 1. Thus, we do not natively support NOT gates. Fortunately, we can
construct NOT gates from XOR gates. To do so, we maintain a distinguished
‘true’ wire in each branch. We ensure, by demultiplexing, that the ‘true’ wire
holds logical 1 on all active branches and logical 0 on all inactive branches.
A NOT gate of a wire can thus be achieved by XORing the wire with ‘true’.

– Multiplexing. To ‘leave’ a conditional, we resolve the output wires of the two
branches: we propagate the output values on the active branch and discard

MOTIF: (Almost) Free Branching in GMW 13

the output of the inactive branch. Fortunately, our invariant means that this
operation is extremely cheap: to multiplex the output values of wires on the
active and inactive branches, we simply XOR corresponding wires together.

Branch Layer Alignment. As GMW is an interactive scheme, at any time we
can only evaluate gates whose input shares have already been computed (ready
gates), and thus we cannot include ‘future round’ AND gates into the current VS
computation. In each round of GMW computation, we can only amortize OTs
over the ready gates.

That is, in p-party GMW, in each round our technique eliminates all OTs,
except for the total of p(p − 1) · max(wi) OTs, where wi is the number of AND
gates in the current layer of branch i. Clearly, the more aligned (i.e. having a
similar number of AND gates in each circuit layer) the circuit branches are, the
higher the performance improvement.

In our experiments, we demonstrate the maximum achievable benefit of our
construction by evaluating perfectly aligned circuits. While typical circuits will
not have perfectly aligned branches, we do not expect them to have a poor
alignment either, particularly if the branching factor is high. We leave improving
alignment, perhaps via compilation techniques, as future work.

6 MOTIF: Formalization and Protocol Construction

We now formalize MOTIF, our GMW extension that supports efficient branching.
As in the standard GMW protocol, our approach represents functions as circuits
composed from a collection of low-level gates. We presented the core technical
ideas of our approach in Sect. 5; the following discussion assumes a familiarity
with Sect. 5.

Underlying Idea. We implement efficient branching by simultaneous evalua-
tion of multiple independent AND gates, one gate from each mutually exclusive
branch, by representing them as a single cheap VS gate.

Presentation Roadmap. Our formalization involves intertwined low-level
cryptographic, programming language, and circuit technical details.

In Sect. 6.1 we motivate our compilation sequence, which takes a program
with if branches written in a high-level language and outputs a straight-line cir-
cuit that uses VS gates. We do not yet explain in detail how it is achieved, absent
a necessary formalization of circuits and gates, which we provide in Sect. 6.2.
Armed with the formalization, we explain in Sect. 6.3 how vectorized VS gates
facilitate branching in a straight-line circuit: we provide a formal algorithm
(Fig. 1) that generates a straight-line circuit with VS gates implementing branch-
ing over two circuits C0, C1.

Then, having converted a program/circuit with branching into a VS cir-
cuit defined in Sect. 6.2, we focus on efficient secure evaluation of the latter.
In Sect. 6.4, we complete our formalization by defining cleartext semantics.
In Sect. 6.5, we present a complete protocol, Π - MOTIF, with proofs in Sect. 7.

14 D. Heath et al.

6.1 Compiling Conditionals to Straight-Line VS Circuits

Our approach is concerned primarily with the efficient handling of conditional
branching. Therefore, we begin our formalization by discussing how conditional
branches can be efficiently represented in terms of only XOR and VS gates.

Assume that the user’s MPC functionality is encoded in some high-level lan-
guage as a program with branching. The user hands this high-level functionality
to a compiler which translates the high-level-language program into a low-level
collection of gates. To interface with our approach, the compiler should output
a circuit that contains XOR and VS gates.

It is thus the job of the compiler to translate conditionals into the VS circuit.
Recall (from Sect. 5.2) that our key branching invariant requires that all inactive
branches hold 0 values on all wires. Consider b branches, where each branch i
computes the conjunction xiyi, and where xi, yi are independent values carried
by i-th branch’s wires. Due to the key invariant, and as discussed in detail
in Sect. 5.2, the following vector-scalar product simultaneously computes these
b ANDs:

(x1 ⊕ . . . ⊕ xb)(y1, . . . , yb)

The compiler’s job is to output VS gates that simultaneously compute AND gates
in this manner. In Sect. 6.3 we show how a compiler can merge the gates of two
branches in order to amortize AND gates as just described. First, we describe the
syntax needed for this compiler algorithm and for our protocol.

6.2 Circuit Formal Syntax

Because we add a new gate primitive, we cannot use the community-held implicit
syntax of Boolean circuits. Thus, we formalize the syntax and semantics of our
modified circuits such that we can prove correctness and security.

Gate Syntax. Our approach handles two kinds of gates: XOR gates, which can
be evaluated locally, and vector-scalar gates (VS), a new type of gate, which
multiplies a vector of bits by a scalar for the cost of only p(p − 1) OTs. An XOR
gate has two input wires a, b and an output wire c and computes c ← a ⊕ b. We
denote an XOR gate by writing XOR(c, a, b). A vector-scalar gate VS takes as input
a scalar a and a vector (b1, . . . , bn) and computes:

(c1, . . . , cn) ← a(b1, . . . , bn)

We denote a vector-scalar gate by writing VS((c1, . . . , cn), a, (b1, . . . , bn)). We also
formalize the input/output wires of the circuit. We denote an input wire a whose
value is given by player P by writing INPUT(P, a). Finally, we indicate that wire
a is an output wire by writing OUTPUT(a). Formally, let variables a, b, c, . . . be
arbitrary wires and let P be an arbitrary player. The space of gates is denoted:

G ::= XOR(c, a, b) | VS((c1, . . . , cn), a, (b1, . . . , bn)) | INPUT(P, a) | OUTPUT(a)

MOTIF: (Almost) Free Branching in GMW 15

NOT Gates. Typically, Boolean techniques support gates that perform logical
NOT. As discussed in Sect. 5, we do not natively support NOT gates as they
would break the correctness of VS implementation of conditional branches: our
invariant requires all inactive wires to hold shares of 0, and NOT gates flip 0 to 1.
Accordingly, our formal syntax does not include NOT gates. Instead, we build NOT
gates from XOR gates and a per branch auxiliary distinguished wire aux, which
is set by the MPC player to aux = 1 in the active branch, and to aux = 0 in
all inactive branches. Then ¬a = a ⊕ aux, which implements NOT in the active
branch and preserves monotonicity in the inactive branches.

Circuit Syntax. A circuit is a list of gates. We do not need to “connect” the
gates in the circuit, since gates already refer to specific wire ids. Formally, let
g1, . . . , gk ∈ G be arbitrary gates. The space of circuits with k gates is denoted:

C ::= (g1, . . . , gk)

We consider a circuit to be valid only if the gates are in a topological order :
i.e., a wire must appear as a gate output before it is used as a subsequent gate
input. In upcoming discussion, we assume circuits are valid.

Circuit Layers. In our implementation, our circuit syntax groups collections of
gates into layers, such that all VS gates of the same depth can be computed in
constant communication rounds. We omit this layering from our formalization to
keep notation simple, but emphasize that the required change is straightforward.

6.3 Merging Conditional Branches

As discussed in Sect. 6.1, we view the problem of translating from programs with
conditional branches to circuits in our syntax as a problem for a compiler. In
this section, we specify an algorithm merge (Sect. 1) that demonstrates how a
compiler can combine VS gates from each branch into a single VS gate (of course,
the standard AND gate is a special case of the VS gate).

For simplicity, assume that the high-level source language contains only
binary branching, perhaps through if statements. Even in this simplified model,
the programmer can nest if statements to achieve arbitrary branching. We also
assume that the compiler can translate low-level program statements into cir-
cuits (e.g., assignment statements are converted into circuits).

Consider two branches of an if statement, and suppose that the compiler
already recursively compiled the body of both branches into two circuits C0

and C1. To finish translating the if statement while taking advantage of our
approach, the compiler should merge together VS gates in C0 and C1. merge is
one technique for performing this combining operation. merge takes C0 and C1

as arguments and outputs a single circuit that computes both input circuits,
but that uses fewer VS gates than simply concatenating C0 and C1. At a high
level, merge walks the two input circuits gate-by-gate. It eagerly moves XOR gates
from the input circuits to the output circuit until the next gate in both circuits

16 D. Heath et al.

def merge(C0, C1) :

m ← |C0| ; n ← |C1|
out ← λ

� Initialize counters that point into the two respective circuits.

i ← 1 ; j ← 1

� Continue to loop until gates from both input circuits are exhausted.

while(i ≤ m and j ≤ n) :

� Eagerly pull XOR gates from both input circuits.

while(i ≤ m and C0[i] is an XOR gate) :

out.push(C0[i])

i ← i + 1

while(j ≤ n and C1[j] is an XOR gate) :

out.push(C1[j])

j ← j + 1

� Now, the next gate in both circuits either

� does not exist (i.e. the branch has no gates left) or is a VS gate.

if i ≤ m and j ≤ n :

� The general case: both branches have a VS gate that can be merged.

VS((c10, . . . , c
k
0), a0, (b10, . . . , c

k
0)) ← C0[i]

VS((c11, . . . , c
k
1), a1, (b11, . . . , c

k
1)) ← C1[j]

� The compiler allocates a fresh wire for the XOR output

a ← freshWire()

� Recall, our invariant ensures that at runtime either a0 or a1 holds 0.

out.push(XOR(a, a0, a1))

out.push(VS((c10, . . . , c
k
0 , c11, . . . , c

k
1), a, (b10, . . . , b

k
0 , b11, . . . , b

k
1)

else if i ≤ m :

out.push(C0[i])

i ← i + 1

else if j ≤ n :

out.push(C0[j])

j ← j + 1

return out

Fig. 1. merge, a compiler algorithm, demonstrates how two branch circuits can be
merged into one while joining together VS gates. By using an algorithm like merge, a
compiler can use our approach to amortize the cost of OTs across conditional branches.

MOTIF: (Almost) Free Branching in GMW 17

is a VS gate. merge combines these two VS gates into one by concatenating the
two vectors and by XORing the two scalars. merge assumes that circuits inside of
conditionals do not contain INPUT or OUTPUT wires.

By recursively applying merge across many conditional branches, a compiler
can achieve up to b× reduction in the number of VS gates.

Merging Layers. As discussed in Sect. 6.2, our formalization does not account
for circuit layers (i.e. VS gates that occur at the same multiplicative depth) for
simplicity. In order to avoid increasing latency, merging must take care to pre-
serve layers: merging VS gates across layers can increase the overall multiplicative
depth and add communication rounds. Thus, the compiler must be careful when
merging gates.

One straightforward technique, which we implemented, is to only merge
together VS gates of the same depth. That is, our implementation introduces
an extra loop which combines all VS gates that are grouped in the same layer
instead of handling VS gates one at a time. Even this straightforward strategy is
likely to yield large improvements, particularly if the branching factor is high.

More optimal approaches exist, and the problem of maximally amortizing
OTs across branches thus becomes a relatively interesting compilers problem. An
intelligent compiler could allocate gates to different layers in order to maximally
match up VS gates across branches without increasing depth. An even more
intelligent compiler could account for network settings in order to decide when it
is worth it to increase multiplicative depth in exchange for better layer alignment.

6.4 Circuit Cleartext Semantics

Prior discussion showed that a Boolean circuit with branches can be represented
as a straight-line VS circuit. We present our MPC protocol for evaluating such
circuits in formal detail in Sect. 6.5.

In order to demonstrate that our protocol is correct, we require a formal
semantics. I.e., we require the functionality that the protocol achieves. In this
section, we specify the formal semantics of circuits as the algorithm eval listed
in Fig. 2. eval maintains a circuit wiring: a map from wire indexes to Boolean
values. Each gate reads values from the wiring for input wires and/or writes
values to the wiring for output wires.

6.5 Our Protocol

In this section, we formalize our protocol Π - MOTIF, which securely implements
the semantics of eval (Fig. 2):

Construction 1. (Protocol Π - MOTIF) Π - MOTIF is defined in Figs. 3 and 4.

Theorems in Sect. 7 imply the following:

Theorem 1. Construction 1 implements the functionality eval (Fig. 2) and is
secure against up to p − 1 semi-honest corruptions in the OT-hybrid model.

18 D. Heath et al.

Fig. 2. The cleartext semantics for a circuit C ∈ C run between p players. Each player
i’s input is modeled as a string of bits inpi. The method pop pops the first value from
the string. Each gate manipulates a wiring, which is a map from wire indexes to values.
The output of evaluation is a string of bits out.

Figure 3 lists our high level protocol Π - MOTIF from the perspective of an
arbitrary player Pi. For the reader familiar with the detail of the classic GMW
protocol, the only essential difference between the classic protocol and ours is
that we handle VS gates by invoking an instance of our Π - VS protocol.

Π - MOTIF ensures that the p players hold random XOR secret shares of the truth
values on the already computed wires. This invariant ensures both correctness
and security: the protocol is correct because the output wires’ secret shares can
be reconstructed to the correct truth value. The protocol is secure because the
XOR secret shares are uniformly random, and hence no player’s share (or any strict
subset’s shares) gives any information about the truth value on a particular wire.
We argue these facts in detail in our proofs (Sect. 7).

Like the functionality eval, Π - MOTIF proceeds by case analysis on gates:

MOTIF: (Almost) Free Branching in GMW 19

Fig. 3. Our protocol Π - MOTIF from the perspective of player i. Π - MOTIF performs the
same tasks as the classic GMW protocol except for VS gates, where we delegate to the
sub-protocol Π - VS.

20 D. Heath et al.

– XOR. The players locally XOR their shares. Because XOR is commutative and
associative, this local computation correctly implements the functionality.

– VS. We delegate VS gates to a separate protocol Π - VS (Fig. 4). Recall, VS
simultaneously multiplies an entire n-element Boolean vector (x1, . . . , xn) by a
Boolean scalar a, as follows: Let p be the number of players holding XOR shares
of a and x1, ..., xn. Consider an arbitrary k-th vector element xk. Π - VS is based
on the following equivalence:

axk = (a1 ⊕ . . . ⊕ ap)(xk
1 ⊕ . . . ⊕ xk

p) =
p⊕

i=1

⎛
⎝

p⊕
j=1

aix
k
j

⎞
⎠ (1)

Now, the sums
⊕p

j=1 aix
k
j can be delivered to player Pi simultaneously for all

k ∈ [1, ..., n] via only (p − 1) n-bit string 1-out-of-2 OTs executed with the
p−1 other players. Once this is done for all p players (using a total of p(p−1)
OTs of n-bit strings), the result is a secret sharing of the vector (ax1, ..., axn).
OT senders introduce uniform masks to protect the secrecy of their shares
xk
j . The VS protocol is formalized in Fig. 4.

– INPUT. Each input wire has a designated player who provides the input value.
In Π - MOTIF, this player distributes a share of a single bit from their input. Our
formalization assumes two procedures: (1) sendShares constructs a uniform
XOR secret share of a given value and sends the shares to all p players and (2)
recvShare is the symmetric procedure that receives a single share from the
sending player.

– OUTPUT. For output wires, the players simply reconstruct their XOR secret
shares. Our formalization assumes a protocol reconstruct which handles
these details. reconstruct instructs each player to broadcast their share to
all other players. Then, each player locally XORs together all shares.

7 Proofs

Now that we have formalized Π - MOTIF, we prove that it is correct and secure.

7.1 Proof of Correctness

Π - MOTIF implements the functionality eval (Fig. 2):

Theorem 2 (Π - MOTIFCorrectness). For all circuits C ∈ C and all input bit-
strings inp1, . . . , inpp:

eval(C, inp1, . . . , inpp) = Π - MOTIF(C, inp1, . . . , inpp)

Proof. By induction on C. The invariant is that gate input wires hold XOR secret
shares of corresponding cleartext values.

We proceed by case analysis of an individual gate g, showing that the invari-
ant is propagated from input wires to output wires.

MOTIF: (Almost) Free Branching in GMW 21

Fig. 4. Protocol Π - VS from the perspective of player i. Π - VS explains how the players
perform a vector-scalar multiplication. draw uniformly draws a random bit-vector of
the specified length. OTSend and OTRecv respectively send and receive a 1-out-of-2 OT
of n-bit secrets. In practice, we precompute all random OTs at the start of the protocol.

– Suppose g is an input INPUT(i, a). Then Pi secret shares her input bit and
distributes it amongst players, trivially establishing the invariant on wire a.

– Suppose g is an XOR gate XOR(c, a, b). By induction, the input wires a and b
hold correct shares. In Π - MOTIF, the players locally sum their shares. Thus,

22 D. Heath et al.

the output wire c holds a correct sharing of the XOR of the input shares:

(a1 ⊕ . . . ⊕ ap) ⊕ (b1 ⊕ . . . ⊕ bp) = (a1 ⊕ b1) ⊕ . . . ⊕ (ap ⊕ bp)

– Suppose g is a vector-scalar gate VS((c1, . . . , cn), a, (b1, . . . , bn)). By induction,
a, b1, . . . , bn hold correct shares. Consider an arbitrary vector element bk. The
specification eval requires that the corresponding output wire ck obtains a
secret sharing of abk. Recall the crucial AND equality given by Equation (1):

abk = (a1 ⊕ . . . ⊕ ap)(bk1 ⊕ . . . ⊕ bkp) =
p⊕

i=1

⎛
⎝

p⊕
j=1

aib
k
j

⎞
⎠

The protocol Π - VS (Fig. 4) uses local computation and OTs to simultaneously
compute a secret sharing of the above XOR sum for each vector element. In
particular, for each element bk, each player Pi computes a share

⊕p
j=1 aib

k
j

(with added random masks). Thus, for each vector element bk, the players
hold correct XOR secret shares, which they store on the wire ck.

– Suppose g is an output OUTPUT(a). By induction, wire a holds correct secret
shares. Thus, when the players reconstruct their shares they obtain the correct
truth value for wire a.

Π - MOTIF is correct.
��

7.2 Proof of Security

We now prove Π - MOTIF secure in the OT-hybrid model. Π - MOTIF uses 1-out-of-2
OT as an oracle functionality.

Our proof is nearly identical to that of classic GMW. The difference between
the two proofs is that our protocol uses VS gates whereas classic GMW uses
AND gates. Both proofs show that interactions involving AND/VS gates can be
simulated by uniform bits.

Theorem 3 (Π - MOTIFSecurity). Π - MOTIF is secure against semi-honest cor-
ruption of up to p − 1 players in the OT-hybrid model.

Proof. By construction of a simulator S that simulates the view of a player P1,
and an argument that S generalizes to arbitrary strict subsets of players.

At a high level, S computes simulated secret shares on all circuit wires and
adds simulated messages to P1’s simulated view. The crucial property is that
all wire values, except outputs and inputs belonging to P1, are indistinguishable
from uniform bits.

– Consider an input wire. First, suppose that this wire belongs to P1. In this
case, P1 receives no messages. Hence, S need not modify P1’s view. Instead,
S samples a uniform bit as an XOR secret share of P1’s input and adds it to
the circuit wiring.

MOTIF: (Almost) Free Branching in GMW 23

Next, suppose that the input wire belongs to some other player Pi�=1. Recall
that Pi�=1 uniformly samples an XOR secret share of her input and sends one
share to P1. Thus, S simulates an input wire by drawing a uniform bit. S
adds this bit to P1’s view and to the circuit wiring.

– XOR gates are computed locally. Hence, S need not modify P1’s view. Instead,
S simply XORs the gate’s simulated input shares and adds the output share
to the wiring.

– Consider a VS gate. In the real world, P1 interacts with OT twice per every
other player (once as a sender and once as a receiver). On send interactions,
P1 receives no output, so the interaction is trivially simulated. Receiving OTs
is more complex. Recall that for a VS gate (see Fig. 4), each player Pi�=1 sends
via OT either a random string x or x ⊕ b where b is Pi�=1’s shares for all of
the scaled wires. Note that in this second message, b is masked by x. Since
P1 obtains only one of these messages from the OT oracle, both are indistin-
guishable from uniform bits. Thus, S simulates each OT output by drawing
uniform bits. Now, S updates the simulated wiring by XORing the simulated
input shares with the simulated OT messages (see Fig. 4, Equation (1) for
the required computation) and places the results on the VS gate output wires.

– Consider an output wire. In the real world, P1 receives all other players’
shares and XORs them with her own share. S must take care that P1’s view is
consistent with this XORed output value. In particular, S draws uniform bits
to simulate messages for all uncorrupted players except for one. For this last
player, S simulates a message by XORing these drawn bits with P1’s simulated
share (stored in the wiring) and the desired output.

Thus, S simulates P1’s view.
Now, we argue that S is generalizable to any strict subset of players. Because

of the symmetry of the protocol, S is clearly applicable to any one player. Gen-
eralizing to more than one player relies on the fact that players’ values are XOR
secret shares. Thus, holding k player shares gives no information about the other
players’ views. S is easily modified to simulate more messages, i.e. to simulate
the messages received by all simulated players.

Π - MOTIF is secure against semi-honest corruption of up to p − 1 players.
��

8 Implementation

We implemented MOTIF in C++ using GCC’s experimental support for C++20. Our
implementation consists of a circuit compiler, which converts code with condi-
tionals into circuits, and a circuit evaluator, which implements our protocol.

Our compiler accepts a C++ program written in a stylized vocabulary. This
vocabulary allows programs with overloaded C++ Boolean operations that con-
struct Boolean circuits (from the programmer’s perspective, this stylized vocab-
ulary is similar to that of EMP’s circuit generation library). We add a special

24 D. Heath et al.

IF/THEN/ELSE branching syntax that constructs circuits with conditionals of two
branches. Higher branching factor is achieved by nesting.

The compiler outputs XOR and VS gates listed in order of depth. The compiler
also optionally outputs standard GMW circuits (i.e., without our conditional
optimization) for benchmarking purposes.

Our implementation of the MPC protocol Π - MOTIF is natural, but we point
out some of its more interesting aspects. We use 1-out-of-2 [IKNP03] OT as
implemented by EMP [WMK16]. Each pair of players precomputes enough OT
matrix rows for the MPC evaluation. Players evaluate circuits layer-by-layer as
specified by the compiler output. In the case of standard GMW, players evaluate
each AND gate by consuming two OT matrix rows per each pair of players. In
Π - MOTIF, players consume the same number of OT matrix rows, but evaluate
our more expressive VS gates. The benefit of our approach is that up to b× fewer
VS gates (vs AND gates) are needed to implement b branches, thus reducing the
number of consumed OT rows. In both the reference protocol and our optimized
protocol, we parallelize OTs for AND/VS gates in the same circuit layer. Thus,
communication rounds are proportional to the circuit’s multiplicative depth.

9 Performance Evaluation

We compare Π - MOTIF to the standard GMW protocol [GMW87]. All experi-
ments were run on a commodity laptop running Ubuntu 19.04 with an Intel(R)
Core(TM) i5-8350U CPU @ 1.70 GHz and 16 GB RAM. All players were run on
the same machine, and network settings were configured with the tc command.
We sampled data points over 200 runs, averaging the middle 100 results.

In our experiments, the computed circuit consists of b branches, each imple-
menting the same log-depth string-comparison circuit, which checks the equality
of two length-65000 bitstrings. The active branch is selected based on private
variables chosen by the players. In more realistic circuits, each conditional branch
would have a different topology. We use the same circuit across branches so that
it is easy to understand branching improvement: all branches have the same size.

We emphasize that our compiler does not ‘optimize away’ conditionals: i.e.,
even though each branch is the same circuit, all branches are still evaluated by
both protocols. We use a string-comparison circuit because it is indicative of the
kinds of circuits where GMW excels: the string-comparison circuit has low-depth.
This circuit was suggested as a useful application of GMW by [SZ13].

Choice of Benchmark Circuit and Layering. As discussed in Sect. 5.2, our app-
roach cannot always fully amortize OTs across branches because we must pre-
serve the circuit’s multiplicative depth. Thus, in p-party GMW, in each round
our technique eliminates all OTs, except for the total of p(p − 1) · max(wi)
OTs, where wi is the number of AND gates in the current layer of branch i. The
effectiveness of our approach thus varies depending on the relative alignment of
branch layers. Branches that are highly aligned (i.e., have similar numbers of
AND gates in each layer) enjoy significant improvement.

MOTIF: (Almost) Free Branching in GMW 25

Because our experiment uses the same circuit in each branch, we achieve
perfect alignment. Thus, our experiments show the maximum benefit that our
technique can provide. We emphasize that our approach always reduces the
number of required OTs, because each circuit layer of each branch must have at
least 1 AND gate that can be combined into a VS gate. Additionally, as we discuss
in Sect. 6.3, compiler technologies can be applied to improve the alignment of
misaligned circuits, further improving the benefit of our approach.

Fig. 5. 2PC comparison of Π - MOTIF against standard GMW. We plot the following
metrics as functions of the branching factor (i.e. the number of branches in the overall
conditional): the overall per-player communication (top-left), the wall-clock time to
complete the protocol on a LAN (top-right), the wall-clock time to complete the proto-
col on a LAN where other processes share bandwidth (bottom-left), and the wall-clock
time on a WAN (bottom-right).

9.1 2PC Improvement over Standard GMW

We first compare the performance of Π - MOTIF to that of standard GMW in
the 2PC setting. Specifically, we run the branching string-comparison circuit
between two players on 3 different simulated network settings:

1. LAN: A simulated gigabit ethernet connection with 1 Gbps bandwidth and
2 ms round-trip latency.

2. Shared LAN: A simulated shared local area network connection where the
protocol shares network bandwidth with a number of other processes. The
connection features 50 Mbps bandwidth and 2 ms round-trip latency.

26 D. Heath et al.

Fig. 6. Per-player communication improvement for our 2PC string comparison exper-
iment as a function of the number of branches.

3. WAN: A simulated wide area network connection with 100 Mbps bandwidth
and 20 ms round-trip latency.

Figure 5 plots the total protocol wall-clock time in each network setting and
the total per-player communication. For further reference, Fig. 6 tabulates our
communication improvement as a function of branching factor. Note that total
communication is independent of the network settings.

Discussion. In all metrics, our approach significantly improves performance:

– Communication. Our approach improves communication by up to 9.4×.
There are several reasons we do not achieve the full 16× improvement at
branching factor 16. First, both the standard GMW approach and ours
must perform the same number of base OTs to set up an OT extension
matrix [IKNP03]. This adds a small amount of communication (around
20 KB) common to both approaches, which cuts slightly into our advantage.
Second, the online communication for the body of each branch is the same
in both approaches. That is, although we amortize the κ-bit strings sent for
random OTs, we do not amortize the six bits per AND gate needed in the
‘online’ phase of the protocol. Finally, we pay communication cost for the
demultiplexer at the start of each branch. Recall that we AND branch inputs
with the branch condition to ensure that all inactive branches have 0 on each
wire. Although the demultiplexer is achieved using only one VS gate (and
hence two OTs) per branch, the ‘online’ cost of multiplying 65000 wires by
the branch condition is significant. The relative cost of demultiplexers varies
with the number of inputs to each branch: circuits with small inputs incur
less demultiplexer overhead. The string comparison circuit has a particularly
costly demultiplexer because the circuit has a large number of input bits
relative to the number of gates in the circuit.

– LAN wall-clock time. On a fast LAN network, our approach’s improve-
ment is diminished compared to our communication improvement. Even so,
we improve by approximately 5.1× over standard GMW at 16 branches. A
1Gbps network is very fast, and our modest hardware struggles to fill the
communication pipe. With better hardware and low-level implementation
improvements, our wall-clock improvement would approach 9.4×.

MOTIF: (Almost) Free Branching in GMW 27

– Shared LAN wall-clock time. On the more constrained shared LAN net-
work, our approach excels. We achieve an approximate 9.2× speedup com-
pared to standard GMW at 16 branches. On this slower network, our hard-
ware and implementation easily keep up with the network, and hence we very
nearly match the 9.4× communication improvement.

– WAN wall-clock time. On this high-latency network our advantage is less
pronounced. Still, we achieve a 4.1× speedup compared to standard GMW
at 16 branches. This high-latency network highlights the weakness of GMW’s
multi-round nature. Because we do not reduce the number of rounds, our
approach incurs the same total latency as standard GMW, and hence our
improvement is diminished.

Fig. 7. MPC per-player communication usage of both Π - MOTIF and of standard GMW
as a function of the number of players. Note that, like standard GMW, our approach
uses per-player communication linear in the number of players.

9.2 Scaling to MPC

For our second experiment, we emphasize our approach’s efficient scaling to the
multiparty setting. This experiment uses the same branching string-comparison
circuit as the first, but fixes the number of branches to 16. We run this 16-branch
circuit among varying numbers of MPC players. We plot the results of this
experiment in Fig. 7.

Discussion. The key takeaway of this second experiment is that MOTIF works well
in the multiparty setting. In particular, our approach’s branching optimization
does not add extra costs compared to standard GMW: both techniques use total
communication quadratic in the number of players.

28 D. Heath et al.

References

[ADI+17] Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure
arithmetic computation with constant computational overhead. Cryptology
ePrint Archive, Report 2017/617 (2017). http://eprint.iacr.org/2017/617

[AGKS19] Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scal-
able universal circuits. Cryptology ePrint Archive, Report 2019/348 (2019).
https://eprint.iacr.org/2019/348

[BB94] Bonet, M.L., Buss, S.R.: Size-depth tradeoff for Boolean formulae. Inf. Pro-
cess. Lett. 49, 151–155 (1994)

[BCE91] Bshouty, N.H., Cleve, R., Eberly, W.: Size-depth tradeoffs for algebraic for-
mulae. In: 32nd FOCS, pp. 334–341. IEEE Computer Society Press, October
1991

[BCG+19] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp.
489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-
8 16

[BCGI18] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In:
Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp.
896–912. ACM Press, October 2018

[Bea95] Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-44750-4 8

[Bea96] Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: 28th ACM STOC, pp. 479–488. ACM Press, May 1996

[CHK+12] Choi, S.G., Hwang, K.-W., Katz, J., Malkin, T., Rubenstein, D.: Secure
multi-party computation of Boolean circuits with applications to privacy in
on-line marketplaces. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol.
7178, pp. 416–432. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27954-6 26

[DGN+17] Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE:
efficient actively secure two-party computation from oblivious linear function
evaluation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, pp. 2263–2276. ACM Press, October/November 2017

[DKS+17] Dessouky, G., Koushanfar, F., Sadeghi, A.-R., Schneider, T., Zeitouni, S.,
Zohner, M.: Pushing the communication barrier in secure computation using
lookup tables. In: NDSS 2017. The Internet Society, February/March 2017

[EFG+09] Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft,
T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.)
PETS 2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03168-7 14

[GKS17] Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit con-
structions. Cryptology ePrint Archive, Report 2017/798 (2017). http://
eprint.iacr.org/2017/798

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.)
19th ACM STOC, pp. 218–229. ACM Press, May 1987

http://eprint.iacr.org/2017/617
https://eprint.iacr.org/2019/348
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/978-3-642-27954-6_26
https://doi.org/10.1007/978-3-642-27954-6_26
https://doi.org/10.1007/978-3-642-03168-7_14
http://eprint.iacr.org/2017/798
http://eprint.iacr.org/2017/798

MOTIF: (Almost) Free Branching in GMW 29

[HK20] Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge
proofs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 569–598. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45727-3 19

[HKS+10] Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.:
TASTY: Tool for automating secure two-party computations. Cryptology
ePrint Archive, Report 2010/365 (2010). http://eprint.iacr.org/2010/365

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers
efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–
161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4 9

[IKOS08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with con-
stant computational overhead. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM
STOC, pp. 433–442. ACM Press, May 2008

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00457-5 18

[KK13] Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring
short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40084-1 4

[KKW17] Kennedy, W.S., Kolesnikov, V., Wilfong, G.: Overlaying conditional cir-
cuit clauses for secure computation. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10625, pp. 499–528. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 18

[Kol18] Kolesnikov, V.: Free IF: how to omit inactive branches and implement S-
universal garbled circuit (almost) for free. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018. LNCS, vol. 11274, pp. 34–58. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3 2

[KS08] Kolesnikov, V., Schneider, T.: A practical universal circuit construction and
secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS,
vol. 5143, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85230-8 7

[KS16] Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin,
M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 699–728.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 27

[LMS16] Lipmaa, H., Mohassel, P., Sadeghian, S.: Valiant’s universal circuit: Improve-
ments, implementation, and applications. Cryptology ePrint Archive,
Report 2016/017 (2016). http://eprint.iacr.org/2016/017

[LYZ+20] Liu, H., Yu, Y., Zhao, S., Zhang, J., Liu, W.: Pushing the limits of valiant’s
universal circuits: Simpler, tighter and more compact. IACR Cryptology
ePrint Archive, 2020:161 (2020)

[OPJM10] Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI - a system
for secure face identification. In: 2010 IEEE Symposium on Security and
Privacy, pp. 239–254. IEEE Computer Society Press, May 2010

[SSW10] Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving
face recognition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984,
pp. 229–244. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14423-3 16

https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
http://eprint.iacr.org/2010/365
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-319-70697-9_18
https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-662-49890-3_27
http://eprint.iacr.org/2016/017
https://doi.org/10.1007/978-3-642-14423-3_16
https://doi.org/10.1007/978-3-642-14423-3_16

30 D. Heath et al.

[SZ13] Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party compu-
tation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol.
7859, pp. 275–292. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39884-1 23

[Val76] Valiant, L.G.: Universal circuits (preliminary report). In: STOC, pp. 196–
203, New York, NY, USA. ACM Press (1976)

[WMK16] Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty
computation toolkit (2016). https://github.com/emp-toolkit

[ZYZL18] Zhao, S., Yu, Y., Zhang, J., Liu, H.: Valiant’s universal circuits revisited: an
overall improvement and a lower bound. Cryptology ePrint Archive, Report
2018/943 (2018). https://eprint.iacr.org/2018/943

https://doi.org/10.1007/978-3-642-39884-1_23
https://doi.org/10.1007/978-3-642-39884-1_23
https://github.com/emp-toolkit
https://eprint.iacr.org/2018/943

Maliciously Secure Matrix Multiplication
with Applications to Private Deep

Learning

Hao Chen1, Miran Kim2, Ilya Razenshteyn3, Dragos Rotaru4,5, Yongsoo Song3,
and Sameer Wagh6,7(B)

1 Facebook, Menlo Park, USA
haoche@fb.com

2 Ulsan National Institute of Science and Technology, Ulsan, South Korea
mirankim@unist.ac.kr

3 Microsoft Research, Redmond, USA
{ilyaraz,yongsoo.song}@microsoft.com

4 imec-COSIC, KU Leuven, Leuven, Belgium
5 Cape Privacy, New York, USA

dragos@capeprivacy.com
6 Princeton University, Princeton, NJ, USA

swagh@alumni.princeton.edu
7 University of California, Berkeley, USA

Abstract. Computing on data in a manner that preserve the pri-
vacy is of growing importance. Multi-Party Computation (MPC) and
Homomorphic Encryption (HE) are two cryptographic techniques for
privacy-preserving computations. In this work, we have developed effi-
cient UC-secure multiparty protocols for matrix multiplications and two-
dimensional convolutions. We built upon the SPDZ framework and inte-
grated the state-of-the-art HE algorithms for matrix multiplication. Our
protocol achieved communication cost linear only in the input and output
dimensions and not on the number of multiplication operations. We elimi-
nate the “triple sacrifice” step of SPDZ to improve efficiency and simplify
the zero-knowledge proofs. We implemented our protocols and bench-
marked them against the SPDZ LowGear variant (Keller et al. Euro-
crypt’18). For multiplying two square matrices of size 128, we reduced
the communication cost from 1.54 GB to 12.46 MB, an improvement of
over two orders of magnitude that only improves with larger matrix sizes.
For evaluating all convolution layers of the ResNet-50 neural network,
the communication reduces cost from 5 TB to 41 GB.

Keywords: Multi-party computation · Dishonest majority ·
Homomorphic encryption

Work done while Sameer, Dragos, and Hao were at Microsoft Research, Redmond.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 31–59, 2020.
https://doi.org/10.1007/978-3-030-64840-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_2

32 H. Chen et al.

1 Introduction

Secure Multiparty Computation (MPC) allows a set of parties to compute over
their inputs while keeping them private. Over the span of few decades this field
turned theoretical ideas into practical implementations that allow to compute
even one billion Boolean gates per second [2] with an honest majority of parties.
The growth of computing on encrypted data has sparked interest in combining
MPC with Machine Learning (ML), which allows distrusting parties to perform
ML tasks such as evaluating private decision trees and support vector machines
[35] or evaluating and training neural networks, on their joint data [4,31,33,34,
37].

One important building block in all these works is secure matrix multiplica-
tion, which is often achieved by computing many dot products a · b. In the case
of honest majority this problem has a straightforward solution: parties multiply
locally each entry ai ·bi and then re-randomize the sum

∑
i ai ·bi to the other par-

ties. Hence, the cost of a dot product is a single opening which is independent
of the vector sizes. However, in the case of dishonest majority the dot prod-
uct protocol must use some correlated randomness (e.g. Beaver triples) for each
multiplication since the secret sharing scheme is no longer multiplicative. Such a
triple requires expensive public key operations and a lot of research focused on
computing triples more efficiently via somewhat homomorphic encryption (HE)
or oblivious transfer [6,19,26,27].

The SPDZ framework [5,18,19,27] is a state-of-the-art protocol for dishonest-
majority MPC under one of the strongest adversarial settings – it assumes all-
but-one corruption and malicious security, meaning that all parties except one
can be controlled by the adversary, and can arbitrarily deviate from the pro-
tocol description. Moreover, SPDZ is proven secure under the Universal Com-
posability (UC) framework of Cannetti [11], which means in particular that it
is still secure when composed arbitrarily with other MPC protocols. Under this
framework, even if a fast matrix multiplication algorithm such as Strassen’s algo-
rithm is used, securely multiplying two n × n matrices in SPDZ uses at least
O(n2.8) authenticated Beaver triples. This is prohibitively expensive when tar-
geting applications with a large number and sizes of matrix multiplications. For
instance, the deep convolutional neural network (CNN) ResNet50 [24] requires
more than 4 billion multiplications of plaintext values1. Currently, the best two-
party triple generation algorithm over a 128-bit prime field produces 30, 000
triples per second on modest hardware and requires a communication of 15 kbits
per party [27]. Using such an approach, the preprocessing phase for evaluating
convolution layers of ResNet50 will require each party to send 5 TB of data. Our
work reduces the communication by a factor of about 121×, while keeping the
same adversarial setting.

1 This is considering the scenario that both the model (i.e., ResNet weights) and
inference inputs are secret shared.

Maliciously Secure Matrix Multiplication with Applications 33

1.1 Our Contributions

We summarize our contributions below:

1. We integrate the idea of classical Beaver triples to multiple matrices into the
dishonest majority SPDZ framework (this idea has been explored previously
in the semi-honest setting in works such as [15,34,37]). This enables com-
puting any bilinear operation efficiently in a dishonest majority MPC setting.
We focus on two types of bilinear operations, matrix multiplications and two-
dimensional convolutions. We call the correlated randomness ‘matrix triple’
and ‘convolution triple’, respectively. We then applied the state-of-the-art
algorithm for HE matrix multiplication [25] to efficiently generate authen-
ticated matrix triples with low communication complexity. Such algorithms
allow us to have a communication cost linear in the size of the input and out-
put, and independent of the complexity of the operation itself, in both offline
and online phases. For example, in terms of matrix multiplication of n-by-
n matrices, our method reduced the communication from O(n3) to O(n2)
required by SPDZ, with similar computational overhead.

2. We introduced some further optimizations to the offline phase of SPDZ:
– We avoid the “sacrifice” procedure in SPDZ via switching to slightly

larger HE parameters which supports circuits of one more depth. By
doing this, we saved a factor of (almost) two in overall communication
and computation.

– We optimized the zero-knowledge proof of plaintext knowledge in the
offline phase of SPDZ, reducing the amortized communication overhead
for proving each ciphertext from 2.5 to roughly 1.5.

3. We demonstrated the concrete efficiency of our protocols for (1) private
matrix multiplications and (2) private neural network inference in the two-
party case. In the former case, we benchmarked the private matrix multiplica-
tions over various matrix sizes while in the latter, we benchmarked evaluation
of all convolution layers of ResNet-50, a massive, state-of-the-art neural net-
work for image classification with 52 layers. The preprocessing phase improves
by a factor of at least 121 compared to SPDZ. We integrated the convolution
triples in MP-SPDZ [20] to evaluate the online phase ResNet-50 convolutions.
Our approach reduces the online communication overhead from 86.9 GB to
only 0.54 GB (for a plaintext modulus p ≈ 2128), which amounts to a factor of
at least 150× improvement over the existing matrix multiplication in SPDZ
using Strassen’s algorithm.

1.2 Related Works

To the best of our knowledge, our work is the first to consider efficient linear
algebra in the context of dishonest majority MPC. Previous research works pri-
marily focused on evaluating relatively small ML models such as support vector
machines or decision trees [16,32]. However, for deep convolutional neural net-
works (CNN) the linear operations occupy a significant part of the computation.
We give a brief overview on some recent protocols for combining MPC with ML:

34 H. Chen et al.

1. In ABY3 [33], Mohassel and Rindal mix secret sharing with garbled circuits
for the three party case with honest majority. While their work introduces
many clever techniques to perform share conversions, it is hard to estimate
its performance on deep neural networks such as ResNet50 since their opti-
mizations are circuit dependent and precision sensitive. It is also unclear how
to extend their techniques to support an arbitrary number of parties with a
dishonest majority.

2. SecureNN [37] operates under the same trust assumption as ABY3: three
party protocols with honest majority. While they also introduced some clever
techniques to compute the sign function in MPC over rings, these only work
for their specific setting.

3. Barak et al. [4] used quantized datatypes instead of fixed point arithmetic
to realize secure inference on Google’s MobileNets. They have implemented
secure quantized dot products to perform the convolutions in MobileNets
for various adversary structures (semi-honest, honest majority, and dishon-
est majority). If the convolutions are done by evaluating dot products, they
incur an O(n3) communication cost for convolving two n × n matrices in the
dishonest majority case. Our work would cut down a factor of n from their
communication cost.

4. Helen [38] proposed a protocol for distributed convex optimization by con-
verting between SPDZ and the Paillier additively homomorphic encryption
(AHE) scheme. They use zero-knowledge proofs on top of Paillier for secure
matrix-vector multiplication in the dishonest majority setting. Instead, our
work does not need costly conversions, utilizes more efficient lattice-based
AHE scheme, and is fully compatible with the SPDZ framework.

5. Jiang et al. [25] is a more recent protocol and strictly outperforms [39] – the
latter takes 19 s to multiply two 128×128 matrices whereas the former only
takes 5 s and we outperform Jiang et al.

1.3 Roadmap

We present preliminary materials in Sect. 2. In Sect. 3, we introduce our changes
to the SPDZ framework to better support bilinear operations, including an algo-
rithm to generate authenticated matrix triples, an optimization which removes
the sacrifice procedure, and optimizations on the ZKPoPK. We go on to present
the experimental results for private matrix multiplication, private nearest neigh-
bor search, and private evaluation of ResNet-50 in Sect. 4. Finally, we conclude
in Sect. 5.

2 Preliminaries

2.1 Notation

We use x to denote vectors i.e., x = (x1, . . . , xk) for some k specified in the
context. We also use the notation [k] to denote the set {1, 2, . . . , k}. For a positive
integer q, we identify Zq = Z ∩ (−q/2, q/2]. For a finite set S, U(S) denotes a
uniform distribution over S.

Maliciously Secure Matrix Multiplication with Applications 35

Adversarial Setting. Our protocols in this work follow the same adversarial
setting as SPDZ, meaning that they are secure under all-but-one corruption and
malicious security (we will refer to this setting as dishonest majority for short).
Also, our protocol is proven secure under the UC framework [10], a property
inherited from SPDZ.

2.2 Authenticated Shares in SPDZ

Let n be the number of parties involved in the multi-party computation. In the
SPDZ framework, all computations are performed over the finite field Zp with
prime p. We use �x�α to denote “authenticated shares”, i.e., the i-th party holds
(xi, mi) such that x ≡ x0 + . . . + xn−1 (mod p) and α · x ≡ m0 + . . . + mn−1

(mod p). The parties also hold shares αi of the global MAC key α ≡ α0 + . . . +
αn−1 (mod p). In other words,

�x�α := {(xi,mi, αi)}n
i=1 such that

∑

i

mi ≡
(

∑

i

αi

)

·
(

∑

i

xi

)

(mod p)
(1)

2.3 Bilinear Triples

Beaver’s multiplication triple technique is widely used in secure computation in
both semi-honest and malicious settings. [6,19,34,37]. Let F be a finite field.
Recall that a multiplication triple is a tuple ([a], [b], [c]) where a, b ∈ F are
random elements such that c = a · b. Here [x] represents an additive sharing of
x where each party has a share xi such that

∑n
i=1 xi = x. These multiplication

triples can be utilized to perform private multiplication: in order to multiply
secret-shared values x and y. The parties reveal x − a and y − b, and compute
[x · y] = (x−a) · (y − b)+ [a] · (y − b)+ (x−a) · [b]+ [c]. In the dishonest majority
malicious adversarial setting, SPDZ enhances the above to authenticated triples
(�a�,�b�,�c�).

Mohassel and Zhang [34] generalized the above notion to “matrix triples”
and applied it to secure training of machine learning models in the semi-honest
setting. We take this idea further and consider triples for any bilinear operation.
Then, we integrate them with the SPDZ preprocessing framework to provide
security in the dishonest majority malicious adversarial setting.

Bilinear Triples. Let l,m, k be positive integers and let � : Fl × F
m → F

k

be a bilinear function2. Then, we define a �-triple as a tuple of secret sharings
[a], [b], [a � b] where a, b are uniformly random. Given such a triple, it is simple
to securely compute a secret sharing of x � y given secret sharings of x and y

2 A function � is called bilinear if it satisfies the relations (αx1 + x2) � y = α(x1 �
y)+x2 � y and x� (αy1 + y2) = α(x� y1)+x� y2 for arbitrary α ∈ F, x1, x2, x ∈ F

l

and y1, y2, y ∈ F
k.

36 H. Chen et al.

following Beaver’s method verbatim. Note that when � is scalar multiplication,
we get back Beaver’s multiplication triple; when � is matrix multiplication, we
get the matrix triple in [34]. Another example is convolution, described in more
detail below.

Using �-triples instead of Beaver triples for securely computing bilinear oper-
ations has an advantage of lower communication cost in the triple consumption
phase. For example, multiplying two n-by-n matrices with Beaver triples would
cost O(n3) field elements being communicated, or O(nlog 7+o(1)) using Strassen’s
algorithm, whereas using matrix triple only amounts to O(n2) communication
cost. Importantly, we will see that using �-triples could also reduce the commu-
nication cost in the triple generation phase, via homomorphic encryption.

Convolutions. Convolution is a bilinear operation between tensors widely used
by deep neural networks [28,30]. Here we will define and discuss two-dimensional
convolutions, since they are used by a ResNet network [24] we use for bench-
marking, but our approach can be easily generalized to all dimensions.

Let Aijk be an input tensor, where 1 ≤ i ≤ h and 1 ≤ j ≤ w are spatial
coordinates, and 1 ≤ k ≤ s is the channel. Suppose we would like to compute
an (2l + 1) × (2l + 1)-convolution for some l ≥ 0, given by a tensor BΔi,Δj,k,k′ ,
where −l ≤ Δi,Δj ≤ l are shifts of the spatial coordinates, and 1 ≤ k ≤ s and
1 ≤ k′ ≤ s′ are the channels. The resulting tensor Cijk′ = conv(A,B) has h × w
spatial coordinates and s′ channels and is defined via the formula:

Cijk′ =
∑

Δi,Δj,k

Ai+Δi,j+Δj,k · BΔi,Δj,k,k′ ,

where in the right-hand side, we set the entries of A to be zero if i + Δi or
j + Δj are outside of the ranges [1;h] and [1;w], respectively. Since convolution
is bilinear, we can consider convolution triples, that is secret shares of uniformly
random tensors A,B and secret shares of conv(A,B).

We can reduce convolution to matrix multiplication as follows: we create
an wh × (2l + 1)2 · s matrix A with A(i,j)(Δi,Δj,k) = Ai+Δi,j+Δj,k, as well as
an (2l + 1)2 · s × s′ matrix B defined as: B(Δi,Δj,k)k′ = BΔi,Δj,k,k′ . Then one
can extract C from the product C = AB (which is of size wh × s′) as fol-
lows: Cijk′ = C(i,j)k′ . Note that 1 × 1 convolution (l = 0) is exactly matrix
multiplication. When l > 0, one of the matrices A is obtained from (2l + 1)2

stacked permuted instances of the flattening of A. Overall, using this reduction,
we can compute the convolution in O((2l + 1)2 · whss′) operations3. Thus, eval-
uating the convolution using the authenticated Beaver triples in SPDZ requires
O((2l + 1)2 · whss′) communication. In contrast, using our convolution triples
yields a communication cost of merely O((wh + s′) · s · (2l + 1)2). Sometimes,
one is willing to stride the convolution. This simply corresponds to the regular
sampling of the i, j coordinates of the answer. In terms of matrix multiplications,
this corresponds to sampling a subset of rows of A.
3 In principle, one can speed it up using Fourier or Winograd transforms [29], but we

leave the study of these algorithms in the secure setting for the future work.

Maliciously Secure Matrix Multiplication with Applications 37

2.4 The BFV Scheme

We use the Fan-Vercauteren variant of Brakerski’s scale-invariant HE scheme [8,
21], which we shall refer to as the BFV scheme. For a power-of-two integer N ,
we denote by R = Z[X]/(XN +1) and Rq = Zq[X]/(XN +1) the ring of integers
of (2N)-th cyclotomic field and its residue ring modulo q. We define ‖a‖∞ of an
element a ∈ Rq as the infinite norm of its coefficient vector in Z

N
q . A secret key

sk = s ∈ R is sampled uniformly from the set R3 of ternary polynomials with
coefficients in {0,±1}. A public key of BFV is generated by

pk = (−a · s + e, a) ∈ R2
q , (2)

for a ← U(Rq) and e ← χ from the error distribution χ over R. We set χ to
be a discrete Gaussian with a small variance and let ρ be an upper bound of
χ, i.e., |e| ≤ ρ holds with an overwhelming probability where e ← χ. The BFV
encryption and decryption procedures are given by the following formulas:

Enc : m �→ cm = u · pk + (Δ · m + e0, e1) (mod q),

Dec : cm �→ m = �Δ−1 · (c0 + c1 · s) (mod p),
(3)

where cm = (c0, c1), m ∈ Rp is the message to be encrypted, Δ = �q/p�, u ←
U(R3), e0, e1 ← χ, and �· denotes the nearest integer function. For the remain-
der of the paper, we use the shorthand rm = (u, e0, e1) ∈ R3 to denote the
randomness used for encrypting a plaintext m. We write cm = Enc(m, rm) when
the randomness is taken as input of encryption.

We define the normalized norm of randomness rm by ‖rm‖ =
max{‖u‖∞ , ρ−1 · ‖e0‖∞ , ρ−1 · ‖e1‖∞}. For B > 0, we call c a B-ciphertext
if there exists m ∈ Rp and rm = (u, e0, e1) ∈ R3 such that ‖rm‖ ≤ B and
c = Encpk(m, rm). We also use UB to denote a uniform distribution over the set
of triples r = (u, e0, e1) ∈ R3 such that ‖r‖ ≤ B.

The native plaintext space of BFV is Rp, but we can exploit the Discrete
Fourier Transform (DFT) over Zp to pack multiple values in a single ciphertext
and support parallel computation in a single instruction multiple data (SIMD)
manner. We choose a plaintext modulus satisfying p = 1 (mod 2N) so that
XN +1 =

∏
i∈Z

×
2N

(X −ζi) for a primitive 2N -th root of unity ζ of the finite field
Zp. Hence, we can use the packing technique via the ring isomorphism Rp → Z

N
p ,

m(X) �→ (m(ζi))i∈Z
×
2N

.
Recall that the multiplicative group Z

×
2N is isomorphic to Z2 × ZN/2. In our

implementation, we encode two vectors of length N/2 into a single element of
Rp using this algebraic structure. The BFV scheme support the simultaneous
rotation of these two based on the homomorphic evaluation of automorphism
X �→ X5. More generally, we can perform an arbitrary linear transformation on
these two vectors by combining homomorphic rotation and plaintext-ciphertext
multiplication in BFV. The complexity of a linear transformation is mainly
dominated by k rotations where k ≤ N/2 is the number of nonzero diago-
nals (A0,i, A1,i+1 . . . , AN/2−1,i−1) of its matrix representation A ∈ Z

N/2×N/2
p .

We refer the reader to [22] for details.

38 H. Chen et al.

2.5 Matrix Multiplication Using HE

We recall the protocol from [25] which transforms square matrix multiplications
into HE-friendly operations. For a d×d square matrix A = (ai,j)0≤i,j<d, we first
define useful permutations σ, τ , φ, and ψ on the set Z

d×d
p . For simplicity, we

assume that N/2 = d2. All the indices will be considered as integers modulo d.
Let σ(A)i,j = ai,i+j , τ(A)i,j = ai+j,j , φ(A)i,j = ai,j+1, and ψ(A)i,j = ai+1,j .
Then for two square matrices A,B of order d, we can express the matrix product
A × B as follows:

A × B =
d−1∑

k=0

(
φk ◦ σ(A)

) � (
ψk ◦ τ(B)

)
, (4)

where � denotes the component-wise multiplication between matrices (see
Sect. 3.1 of [25] for more detail).

We can identify a matrix of order d × d with a vector of length d2 via the
encoding map Z

d2

p → Z
d×d
p , a = (a0, . . . , ad2−1) �→ A = (ad·i+j)0≤i,j<d. A

ciphertext will be called an encryption of A if it is an encryption of the plaintext
vector a. Suppose that we are given two ciphertexts cA and cB that encrypt
σ(A) and τ(B), respectively. Then we define the homomorphic matrix product
by

cA � cB =
d−1∑

k=0

(
φk(cA) � ψk(cB)

)
, (5)

where c� c′ denotes the homomorphic multiplication between two ciphertexts c
and c′. The permutations φk and ψk are fixed linear transformations over Z

d2

p ,
which can be evaluated as described above. The evaluation of a permutation
includes only two homomorphic rotations since the matrix representation of φk

or ψk has two nonzero diagonals. It follows from Eq. (4) that cA � cB is an
encryption of A × B.

The authors of [25] implemented the matrix multiplication algorithm over
the CKKS scheme [14], while we apply the same algorithm to the BFV scheme
encrypting two vectors of dimension (N/2) with entries in Zp. We will encrypt
two square matrices A and B of size d =

√
N/2 in a single ciphertext. As

noted in Sect. 2.4, the BFV scheme supports parallel arithmetic operations and
permutations on two vectors. Hence, we can perform two homomorphic matrix
multiplications simultaneously by fully utilizing the slots.

3 Protocol Specification

We describe our major contributions in this section. First, we propose our algo-
rithm for generating authenticated matrix triples. Then, we introduce two other
optimizations. The first one improves the triple generation phase, by carefully
choosing the HE parameters to avoid the sacrifice stage. The second one improves
the zero-knowledge proof of knowledge in SPDZ.

Maliciously Secure Matrix Multiplication with Applications 39

3.1 Generation of Bilinear Triples

In this section we present our main contribution, which can be thought of as an
improvement to the SPDZ framework to support efficient bilinear operations, in
particular matrix multiplications and convolutions. Recall that the offline phase
of the SPDZ framework generates Beaver triples, which means that to multiply
two square matrices of size d we need to consume M(d) triples, where M(d)
is the complexity of the matrix multiplication algorithm of choice. In order to
minimize the communication overhead, we designed new offline phases for gen-
erating matrix and convolution triples. We use HE algorithms to generate these
triples in the offline phase. In the online phase, they are consumed in essentially
the same way as Beaver triples. Such triples allow us to have communication
linear in the size of the input and output, and independent of the number of
multiplications, in both offline and online phases.

On a high level, our protocol for generating authenticated matrix triples
works as follows. First, each party Pi select uniformly random matrices Ai, Bi

and send an encryption of these matrix. Then, the parties engage in the n-party
zero-knowledge proof, and obtain encryptions of A =

∑
Ai and B =

∑
Bi

with bounded noise. Next, parties use the homomorphic matrix multiplication
algorithm recalled in Sect. 2.5 to compute an encryption of C = AB. Finally, the
parties use homomorphic multiplication to compute encryptions of αA,αB,αC,
and perform distributed decryption on the resulting ciphertexts. In this way,
the parties end up with a valid authenticated triples (�A�α, �B�α, �C�α). We
provide the formal description of our pre-processing protocol in Fig. 1, with the
distributed decryption protocol in Fig. 2.

Theorem 1. In the (FPrep, FCommit)-hybrid model, the protocol ΠOnline imple-
ments FOnline with statistical security against any static, active adversary cor-
rupting up to n − 1 parties.

Theorem 2. If the underlying cryptosystem is somewhat homomorphic and
IND-CPA secure, then ΠPrep (Fig. 1) implements FPrep with computational secu-
rity against any static, active adversary corrupting up to n − 1 parties, in the
(FKeyGen, FRand)-hybrid model.

Theorem 3. The protocol ΠDDec securely implements FKeyGenDec in the FKeyGen-
hybrid model with statistical security against any static adversary corrupting upto
n − 1 parties if B′ is an upper bound on the noise of the input ciphertext, and
B′ · 2n · 2secdd < Δ.

For proof of Theorems 1, 2, and 3 please refer to the extended version at
https://eprint.iacr.org/2020/451.

3.2 Authenticating Triples Without Sacrifice

To introduce this optimization, we first recall the technique of authenticated
multiplication triples as proposed by the SPDZ line of work [18,19]. In the frame-
work, there is a global MAC key α ∈ Fp and parties have access to a ciphertext

https://eprint.iacr.org/2020/451

40 H. Chen et al.

Fig. 1. Protocol for generating various preprocessing material

Maliciously Secure Matrix Multiplication with Applications 41

Fig. 2. Protocol for distributed decryption.

cα encrypting α, here the ciphertext is generated via an HE scheme, whose pub-
lic key is known to all parties and the secret key is secret-shared among the
parties4. During the triple generation phase, parties obtain ciphertexts cx, cy, cz
where supposedly the relation z = xy holds. In order to authenticate the secret
values x, y and z, the parties engage in an AddMacs subroutine (this is a com-
mon procedure to prevent malicious behavior for dishonest majority protocols,
cf. [18,19]), in which parties compute and then jointly decrypt cα � ct to obtain
secret shares of α · t for t ∈ {x, y, z}. However, a malicious adversary can inject
an error term ε into z such that z = xy + ε, and the AddMacs subroutine
could authenticate such an incorrect triple, which corrupts the final computa-
tion result. In order to resolve this issue, a step called sacrifice was introduced,
where one triple is consumed to check the correctness of the other. Sacrificing
brings a two times overhead to the complexity of the triple generation phase.

We begin by noting that SPDZ only uses a depth-1 HE, i.e., the underlying
HE scheme could support one multiplication. Recall that in the SPDZ triple
generation, after computing a ciphertext cz = cx � cy, the Reshare procedure is
called which outputs secret shares of z′ and a new ciphertext cz′ with smaller
noise than cz. Then, the AddMacs procedure is called, which produces authenti-
cated share �z′�α. In particular, to generate shares of the MAC on z, prior work
requires that the distributed decryption subroutine to be called on z to get a
level-1 ciphertext (z′) that enables adding the MAC on it. This way, an additive
error introduced in z can be “authenticated” using the AddMacs procedure by
the adversary. To prevent against such an attack, prior work required a sacri-
fice of one triple with other which was proved to ensure that the triples do not
have an error. The MacCheck ensures that any such additive error introduced is
caught with high probability.

4 The initialize phase in ΠPrep will require Diag flag similar to [18,19] to ensure that
the ciphertext encodes the same MAC key in the same slots.

42 H. Chen et al.

In our work, we modify the HE parameters to support larger depth, in par-
ticular depth-2 computation. The homomorphic encryption product (z = xy) is
done over public ciphertexts and hence z is guaranteed to equal xy. However,
to add MACs to the product z, we do not need to run a distributed decryption
protocol (we only need it for generating the shares of z but not for the MAC
generation). In our work, we directly call the AddMacs routine on the public
ciphertext for z, i.e., cαz = cz � cα, and perform distributed decryption on cαz

to obtain the MAC shares. This ensure that the additive error introduced by
the adversary when running DDec on cz to get shares of z is independent of α
from the additive error introduced in the DDec of cαz. This way, we eliminate
the need for a sacrifice and simply rely on the MacCheck subroutine to catch
malicious behavior.

Thus, we save the computation and communication by a factor of two, with
a less-than-two additional overhead due to the need to increase underlying HE
parameters to support larger depth computations. This optimization is particu-
larly useful in our bilinear triple generation protocol, since in this case we already
need to increase the HE parameters in order to run the homomorphic matrix
multiplication algorithm, and the overhead of supporting just one more depth is
small.

3.3 Improved ZKPoPK Based on BFV Scheme

In the SPDZ offline phase, parties need to use a homomorphic encryption scheme
(the BGV scheme of Brakerski, Gentry, and Vaikuntanathan [9]) to encrypt ran-
dom values, and broadcast these encryptions. Then, they run homomorphic eval-
uation and distributed decryption to generate the multiplication triples. Since
parties could be malicious, each party needs to prove that it is providing a valid
ciphertext. In the context of BGV, this means the coefficients of the message and
randomness used in the encryption method must be bounded in size. This zero-
knowledge proof of plaintext knowledge (ZKPoPK) follows a 3-move Schnorr
protocol pattern. The goal is to prove knowledge of message x and encryption
randomness r with bounded size, such that cx,r = b. The prover chooses some
random mask values yx, yr and sends cyx,yr

to the verifier. After the verifier
selects a challenge e the prover sends back the masked values zx = yx + e · x
and zr = yr + e · r. Finally, the verifier checks whether czx,zr

= cyx,yr
+ e · b and

whether the noise and plaintext bounds are correct on producing cx by checking
the norm of zx and zr. The state-of-the-art ZKPoPK in [5] enhances the above
approach by designing an n-prover protocol which adds the ability to prove the
validity of sum of n ciphertexts instead of proving each individual ones.

Our Modification. We note that the BFV homomorphic encryption scheme of
Brakerski/Fan-Vercauteren [8,21] provides the same functionalities as the BGV
scheme, while the two schemes have some subtle differences, which we will exploit
for our improved zero-knowledge proof. In particular, BFV allows selecting the
plaintext modulus p to divide the ciphertext modulus q, which is not allowed

Maliciously Secure Matrix Multiplication with Applications 43

in BGV5. We will use this fact to simplify and reduce the complexity of the
zero-knowledge proof of plaintext knowledge (ZKPoPK) component in SPDZ.

Recall that the BGV encryption of a message m with public key pk and
randomness (u, e0, e1) is

c = u · pk + (m + pe0, pe1) (mod q). (6)

Although an honest party would encrypt a message m ∈ Rp with ‖m‖∞ ≤ p/2,
a malicious party can use any m ∈ R, and the excess part m− [m]p goes into the
noise of the ciphertext. Hence the prover needs to prove that ‖m‖∞ is not too
large. This is done by having the prover send encryptions of random messages y
with log ‖y‖∞ ≈ seczk + log p and later reveal a linear combination of y and m.
On the other hand, in the BFV scheme, an encryption of m is the form of

c = u · pk + (Δ · m + e0, e1) (mod q), where Δ = �q/p. (7)

Suppose p divides q, then Δ = q/p exactly, and using a message m ∈ R in the
encryption algorithm is equivalent to using [m]p due to the automatic reduction
modulo q on the ciphertexts. Therefore, the prover in our ZKPoPK only needs
to prove upper bounds on the encryption randomness, and it suffices to sample
the “masking elements” y as random elements in Rp. This reduces the size of
the proof, since we reduce the coefficients of the masked plaintexts sent by the
prover (the terms zi in [5, Figure 1]) from log p+log seczk bits down to log p bits.

ZKPoPK. The zero-knowledge proof of knowledge we describe next (Fig. 3) is
a n-party ZKP used in the preprocessing phase. The n players all simultaneously
act as the provers and the verifiers. Sampling is an algorithm that describes the
behavior of honest parties to generate their ciphertexts and broadcast them to
the other parties. This algorithm satisfies the relation given in Eq. 8. However,
ΠPoPK provides weaker guarantees as given in Eq. 9 which will be sufficient for the
preprocessing phase6. In particular, the protocol introduces a soundness slack
in the bounds that can be proven on the witness. The protocol works in the
standard 3-move Schnorr protocol pattern as described below:

1. Each party Pi independently runs the “commitment” algorithm on (xi, wi) to
get (commi, statei) ← Commit(xi, wi) and broadcasts commi to all the other
parties.

2. The n parties jointly generate a challenge w (produced via a call to an ideal
functionality FRand)

3. Each party Pi independently runs the “response” algorithm to get respi ←
Response(statei, w)

4. Each party Pi independently runs the “verification” algorithm and accept if
the output is true: Verify({commi, respi}i∈[n], w) == True.

5 gcd(p, q) = 1 is required for security of BGV.
6 This is the worst case guarantee when all provers are dishonest while at least one

verifier is honest, which in the case when provers and verifiers are the same entities
is the dishonest majority model.

44 H. Chen et al.

Ru,Honest
PoPK =

{ (
(x1, . . . , xn) , (w1, . . . , wn)

)
,

xi =
(
ci1, . . . , c

i
u

)
, wi =

(
(ai

1, r
i
a1

), . . . (ai
u, ri

au
)
)

:
cak

= Encpk(ak, rak
) and

‖rak
‖ ≤ n where

cak
=

∑

i

ciak
and rak

=
∑

i

ri
ak

}

(8)

Ru,2
PoPK =

{(
(x1, . . . , xn) , (w1, . . . , wn)

)
,

xi =
(
ci1, . . . , c

i
u

)
, wi =

(
(ai

1, r
i
a1

), . . . (ai
u, ri

au
)
)

:
2 · cak

= Encpk(2 · ak, 2 · rak
) and

‖2rak
‖ ≤ Nnu · 2seczk+1 where

cak
=

∑

i

ciak
and rak

=
∑

i

ri
ak

}

(9)

Before we describe the protocol, we reiterate some key notation. The normal-
ized norm of randomness rm by ‖rm‖ = max{‖u‖∞ , ρ−1 · ‖e0‖∞ , ρ−1 · ‖e1‖∞}.
For B > 0, we call c a B-ciphertext if there exists m ∈ Rp and rm = (u, e0, e1) ∈
R3 such that ‖rm‖ ≤ B and c = Encpk(m, rm). We also use UB to denote a uni-
form distribution over the set of triples r = (u, e0, e1) ∈ R3 such that ‖r‖ ≤ B.
We set ρ = 20 following [5] to ensure the randomness r from an honest party
satisfies ‖r‖ ≤ 1 with overwhelming probability. Furthermore, we also use the
following distributions (specifically the third) in the description of the protocol:

1. ZO(0.5, k): This distribution generates a vector of size k with elements
{xi}k

i=1 chosen from {−1, 0,+1} such that the Pr(xi = −1) = 0.25,Pr(xi =
+1) = 0.25, and Pr(xi = 0) = 0.5 for all i ∈ [k].

2. DN (σ2, k): This distribution generates a vector of size k with elements drawn
according to an approximation to the discrete Gaussian distribution with
variance σ2.

3. RG(0.5, σ2, k): This distribution generates a triple of elements (u, e0, e1)
where u ← ZO(0.5, k) and e0, e1 ← DN (σ2, k).

Improvements Compared to Prior Work. In our protocol, the hiding on
the message (zi

l) is information-theoretic (as opposed to statistical hiding in
TopGear) and hence does not need any check during the verification phase. This
is due choosing p | q in underlying BFV scheme. In addition, the ZKPoPK in
[5] sends the polynomials zi

l and ri
zl

as elements in Rq, which is more than
necessary since q is typically large but these polynomials are supposed to have
bounded norm. We can reduce this cost by sending zi

l and ri
zl

in bounded size
(since zi

l ∈ U(Rp) and all the coefficients of ri
zl

should be bounded by u · 2seczk

Maliciously Secure Matrix Multiplication with Applications 45

Fig. 3. Protocol for proof of plaintext knowledge.

46 H. Chen et al.

or ρ · u · 2seczk). In this way, we can also omit the check on size of rzl
in Step 3

of Verify phase.
Note that the “slack” in the ZKP provides looser bounds on the norms of

values as well as multiplied the values themselves by a factor of 2. This is a
consequence of the zero-knowledge proof. Figure 1 shows how to account for this
by modifying the preprocessing protocol to takes these slacks into consideration.
The above describes the zero-knowledge proof protocol. We define the security
of the ZKPoPK similar to prior work [5] and present it below for completeness.

Theorem 4. The n-party ZKPoPK-protocol defined by ΠPoPK satisfies the fol-
lowing three properties:

1. Correctness: If all parties Pi, with inputs sampled using the Sampling algo-
rithm (in ΠPoPK, Fig. 3), follow the protocol honestly, then an honest verifier
will accept with probability one.

2. Soundness: Let A = (A1,A2,A3) be a tuple of PPT algorithms and let
ε ∈ [0, 1). Consider the following game:

(1a) A1 takes no input and outputs I ⊂ [n], {xi}i∈I and stateA1 .
(1b) Choose (xj , wj) ← Sampling(j) for each Pj , j /∈ I.
(1c) Compute (commj , statej) ← Commit(xj , wj) for j /∈ I.
(2a) A2 on input stateA1 , {xj , commj}j /∈I output stateA2 , {commi}i∈I .
(3a) Choose a

uniformly random w and compute respj ← Response(statej , w) for
j /∈ I.

(4a) A3 on input stateA2 , w, {respj}j /∈I outputs {respi}i∈I .
(4b) A wins the game if Verify({commi, respi}i∈[n], w) = True.

Suppose A wins the game with probability δ > ε. Then there exists a PPT
algorithm Extract which for any fixed output of A1, honestly generated inputs
given by {xj , wj , commj , statej}j /∈I , and black-box access to A2,A3 outputs
{wi}i∈I such that Ru,2

PoPK (Eq. 9) holds in at most f(secs)/(δ − ε) steps, where
f(·) is a positive polynomial and ε = 2−secs (secs is the soundness security
parameter).

3. Honest-verifier zero knowledge: There exists a PPT algorithm SI indexed
by a set I ⊂ [n], which takes as input an element in the language given by rela-
tion Ru,Honest

PoPK (Eq. 8) and a challenge w, and outputs tuples {commi, respi}i∈I

such that this output is statistically indistinguishable from a valid execution of
the protocol (the statistical indistinguishability parameter is denoted by seczk).

Proof of Theorem4 is presented in AppendixA.

4 Experimental Results

We present our experimental results for the applications of our protocols to pri-
vate matrix multiplication and neural network inference. We start with describ-
ing some further optimizations. Then, we present noise growth estimates for
the homomorphic matrix multiplication algorithms, followed by our concrete

Maliciously Secure Matrix Multiplication with Applications 47

parameter instantiation, before proceeding to present our experimental results.
The main results are presented over 3 application scenarios (1) private matrix
multiplications (2) private nearest neighbor search and (3) private inference of
ResNet-50.

4.1 Evaluation Set-Up and Parameter Estimation

Next, we describe the optimization used for the homomorphic matrix multi-
plication, the general noise estimation bounds, and lastly, describe a choice of
parameters that satisfy all these constraints which we use in the following eval-
uations.

Further Optimizations. On top of the baseline implementation, we apply the
following optimization techniques for the homomorphic matrix multiplication.

– A lazy key-switching technique can be applied to the last multiplication
step of Eq. (5). To be precise, we compute tensor products between φk(cA)
and ψk(cB) and aggregate all the resulting ciphertexts. In the end, the key-
switching operation is performed only once to relinearize the output cipher-
text.

– The hoisting technique of [23] can be applied to our case to reduce the com-
plexity of rotations in the generation of φk ◦ σ(A) and ψk ◦ τ(B). Since there
are many rotations done on the same input ciphertext, one can compute the
common part of computation that only depend on the input, and therefore it
can be significantly faster than applying each rotation separately.

– As described in [25], homomorphic matrix multiplication can be extended
to matrices of an arbitrary size. Given the packing structure of BFV (pre-
sented in Sect. 2), the two rows of BFV encoding operate identically and
without interference, so it is easy to pack two matrices in a single ciphertext.
Additionally, we can use the interlacing technique of [25] to encrypt multiple
matrices in each plaintext row and carry out matrix operations in parallel,
thereby amortizing it over many operations. On the other hand, when an
input matrix is too large to be encrypted in a single ciphertext, we split
it into block-size matrices and encrypt them separately in different cipher-
texts. A large matrix operation can be expressed as a composition of several
block-size matrix operations. Instead of computing block-wise multiplications
separately, we precompute and store the permutations of block matrices not
to repeat the same computation in individual products.

Noise Estimation of Homomorphic Matrix Multiplication. In order to
optimally choose the parameters of the HE scheme, we perform a noise analy-
sis of our algorithms. The noise bounds of ciphertexts are updated during the
computation with respect to the following analysis.

48 H. Chen et al.

– Encryption: Suppose that c = Encpk(m, rm) for a message m and randomness
rm = (u, e0, e1) such that ‖rm‖ ≤ B. Then, we have

c[0] + c[1] · s = Δ · m + (u · e + e0 + e1 · s) (mod q)

and the encryption noise eenc = u · e + e0 + e1 · s is bounded by ‖eenc‖∞ ≤
Bρ(1 + 2N). If a ciphertext is honestly generated, then we derive the bound
Bclean = ρ(1 + 2N) since ‖rm‖ ≤ 1. However, our ZKPoPK only guarantees
that 2cm = Encpk(2m, 2rm) for some ‖2rm‖ ≤ Nnu · 2seczk+1 and so the noise
of 2cm is bounded by Bdishonest

clean = Nnu · 2seczk+1 · ρ(1 + 2N).
– Plaintext-ciphertext product: The noise of resulting ciphertext is the product

of an initial noise e ∈ R and a plaintext p such that ‖p‖∞ ≤ p. Hence a new
noise bound is ‖p · e‖∞ ≤ N · ‖p‖∞ ‖e‖∞ ≤ Np · ‖e‖∞.

– Rotation: In our protocols, all ciphertexts are generated with PoPKs which
provide an upper bound Nnu · 2seczk of the size of encryption randomness
r = (u, e0, e1). Hence the noise of a ciphertext u ·(pk[0]+pk[1] ·s)+(e0+e1 ·s)
also has an exponential bound in seczk. Since we introduce a special modulus
to use the modulus-raising technique in our key-switching algorithm, the noise
from homomorphic rotation is Õ(N) which is negligible compared to the noise
parameter of ciphertexts. Hence the homomorphic rotation does not change
the upper bound of noise.

– Multiplication: Given two ciphertexts c1, c2, we have ci[0] + ci[1] · s = qIi +
Δ ·mi +ei over R for some Ii ∈ R, plaintext mi ∈ Rp and noise ei ∈ R. Their
product scaled by Δ is Δ · m1m2 + e′ modulo q for some noise e′ ≈ p(I1e2 +
I2e1) (other terms are exponentially small compared to this dominating one).
We note that ‖Ii‖∞ ≤ N and so ‖e′‖∞ ≤ 2N2p · max{‖e1‖∞ , ‖e2‖∞}. In
certain cases, multiplication is followed by a key-switching procedure, which
introduces a negligible noise, similar to the case of rotation.

– Matrix product: The permutation ψk(·) is not simply a rotation but the
composition of two maskings and rotations, where a masking refers a spe-
cific scalar multiplication which zeros out some values in plaintext slots. It
increases the noise bound of input ciphertext by a factor of Np. To sum up, for
input ciphertexts cA, cB of noise eA and eB , respectively, the noise of each term
σk(cA) � τk(cB) is bounded by 2N2p · 2Np · max{‖eA‖∞ , ‖eB‖∞} and their
sum cA�cB has a noise with the upper bound 4dN3p2 ·max{‖eA‖∞ , ‖eB‖∞}.

Concrete Parameter Choices. In our experiments, we set seczk = 128,
secdd = 80, and log p = 128. For the BFV scheme, we chose N = 215, log q = 720
and the standard deviation σ = 8/

√
2π, same as in [5] and [27]. This parameter

set enjoys computational security of more than 128 bits [12]. In the ZKPoPK
protocol (Fig. 3), we use u = 2v and similar to TopGear [5] set v = 16. For nota-
tional convenience, we let |Rm| denote the set of polynomials of degree N with
non-negative integer coefficients bounded above by m, and let |Rm| denote the
number of bits needed to represent an element of Rm. Hence |Rm| = N log m.

Maliciously Secure Matrix Multiplication with Applications 49

4.2 Private Matrix Multiplication

Communication Cost. We calculate the communication cost of our private
matrix multiplication protocol for 128 × 128 matrices, noting that the commu-
nication cost scales linearly with the number of entries in the matrix7. In the
online phase, the parties open two matrices (say of size d × d), so the communi-
cation is 2d2 log p bits per matrix multiplication. The dominating cost occurs in
the offline phase, which we break down further into three parts: the ciphertexts,
the ZKPoPK procedure, and the distributed decryption (i.e. DDec) procedure.
Each ciphertext takes 2|Rq| bits; the ZKPoPK can be used to prove u cipher-
texts while it sends v = u/2 additional ciphertexts together with v “openings”.
Here, as seen in Fig. 3, each opening consists of one element in Rp, one element in
Ru·2seczk and two elements in Rρ·u·2seczk ; finally, the protocol requires 4 invocations
to DDec, which requires each party to send 4|Rq| bits.

Note that one invocation of the protocol generates two matrix triples, due to
the fact that we optimally use the 215 = 1282 · 2 slots in our HE scheme. Hence,
the amortized communication cost sent by each party in the offline phase is

1
2

(

6|Rq| +
1
u

v(2|Rq| + u · log2 N + (1 + 2 log2 ρ)|Ru·2seczk | + |Rp|)
)

≈ 1
2

(

6|Rq| +
1
u

v(2|Rq| + u · log2 N + 9.64|Ru·2seczk | + |Rp|)
) (10)

With our parameter settings, this amounts to around 12.46MB of data sent
by each party.

Comparison with LowGear [27]. We compare our communication cost with
the preprocessing required by the SPDZ protocol to multiply 128×128 matrices:
the LowGear protocol takes 15 kbits per triple, and we assume that we need
d2.8 triples. Setting d = 128, this amounts to a 1.54 GB communication cost of
sent by each party. So we reduced the communication by roughly two orders of
magnitude for 128-dimensional matrix multiplication.

Concrete Efficiency. We now present the performance of our secure matrix
multiplication protocol over various matrix sizes. Our source code was developed
in C++ with Microsoft SEAL version 3.3 [36]. All the experiments were done
on a machine with an Intel Xeon Platinum 8168 2.7 GHz featuring 16 cores. The
compiler was GNU version 7.4.0 (-O3), and we used GMP version 6.1.2 and NTL
version 11.3.3.

Table 1 shows results for microbenchmarks on homomorphic matrix compu-
tation for a two party scenario and various components of the matrix triple
generation process. We split the input matrices into 128 × 128 matrix blocks.
7 Note that we did not include the cost of one-time set-up, which consists of generating

all the required keys for the HE scheme and generating and proving the encryptions
of shares of the MAC key.

50 H. Chen et al.

We found that key generation takes about 83 s and it takes about 191 ms to
encrypt two input square matrices of size 128 as a single ciphertext, yielding
an amortized rate of 96 ms per matrix. The second column gives the amortized
encryption timing per matrix. We note that a one time set-up cost is to prepare
appropriate masking plaintext polynomials that will be used for performing per-
mutation ψk(·), which takes around 14.5 s. In the third and fourth columns
labeled “Permutation”, we give timings per matrix for generating the encrypted
permutations of blocks of A and B, respectively. The fifth column labeled “Block
comp.” gives the amortized time taken for additions and multiplications on block
matrices.

Theoretical Complexity. Suppose the input matrix of size n is partitioned
into k2 blocks of size d (we have d = 128 in our experiments). Then the encryp-
tion cost is O(k2). On the other hand, the computational costs of generating
permutations of block matrices and performing block computation are O(k2)
and O(k3), respectively. These trends can be seen in Table 1.

In Table 2 we document the experimental latency associated with the com-
munication cost of our protocol. In the LAN setting, two parties are deployed
in the same geographic network (N. Virginia on Amazon EC2, bandwidth about
5Gbps, ping time 20 ms). In the WAN setting, they were deployed in different
geographic settings (N. Virginia and N. California on Amazon EC2, bandwidth
about 320 Mbps, ping time 70 ms). SPDZ uses a 25 Gbps link for LAN and
50 Mbps for WAN (WAN numbers are extrapolated from Overdrive [27]).

Table 1. Microbenchmarks: All timings measured in seconds; 16 threads were used for
columns labeled “Permutation” and “Block comp”, and a single thread was used for
other operations; the ZkPoPK time is amortized over u = 32 ciphertexts.

Matrix size Encrypt time Permutation Block comp. ZkPoPK AddMacs time DDec time

of A of B Prover Verifier

128 × 128 0.10 1.8 0.9 1.4 0.047 0.09 0.6 1

256 × 256 0.38 5.6 2.3 10.1 0.188 0.35 2.4 4

384 × 384 0.86 12.8 4.9 34.0 0.79 0.81 5.4 9

512 × 512 1.52 21.8 8.0 79.6 1.41 1.44 9.6 16

1024 × 1024 6.08 79.6 32.9 648 3 5.63 38.4 64

Finally, Tables 3 provides total time estimates on matrix multiplications in
the LAN and WAN settings respectively. Total-16, SPDZ-16 refer to timings
using 16 threads and Total-1, SPDZ-1 refer to single-threaded implementations.
As can be seen from the table, our approach is between 16×–40× faster than
prior art and improves with larger matrix sizes.

4.3 Private Nearest Neighbors

In the batched version of the private nearest neighbor search (NNS) problem,
one party holds a dataset X of n vectors in d-dimensional Euclidean space, and

Maliciously Secure Matrix Multiplication with Applications 51

the other party holds several d-dimensional query vectors q1, q2, . . . , qb. The task
is to compute securely for each query k nearest data vectors with respect to the
Euclidean distance. There is a large body of work on this topic (see [13] for an
overview). However, we are not aware of any previous work that solves the prob-
lem in the dishonest majority malicious adversarial model. Most of the secure
NNS algorithms first (securely) compute secret shares of distances between every
query vector and every dataset vector and then perform top-k selection. Distance
computation can easily be reduced to matrix multiplication for matrices of size
n × d and d × b and thus in the dishonest majority security model, we can use
our protocol to perform distance computation.

Table 2. Communication overhead accounting for the round complexity and amount
of data sent between parties.

Matrix Communication time

Sizes LAN WAN

128 × 128 0.010 s 2.05 s

256 × 256 0.039 s 8.19 s

384 × 384 0.091 s 18.44 s

512 × 512 0.161 s 32.78 s

1024 × 1024 0.647 s 131.15 s

As an example, we will consider the largest NNS instance that was solved
securely to date [13]: the subset of the Deep1B dataset [3] with n = 107, d =
96. If we would like to compute distances between b = 128 queries and the
whole dataset, we would need to multiply 78125 pairs of square matrices of size
128. Since each matrix multiplication requires 12.46 MB of communication per
party in the offline phase, the overall distance computation requires 7.6 GB per
party per query. On 16 threads, our protocols roughly require 30 min per query.
LowGear equipped with the Strassen algorithm, on the other hand, requires at
least 500 million Beavers triples per query. Running on 16 threads, this amounts
to at least 80 min, and takes more than 1 TB of communication. Note that these
performances numbers are obtained from our microbenchmarks rather than from
running actual experiments.

4.4 Private Inference of ResNet-50

We can use our protocol to perform convolutions of a neural network securely.
Here we discuss it in the context of the ResNet-50 network [24]. Note that for
this discussion we ignore ReLUs, batch normalization, and pooling layers and
focus on convolutions only.

All the convolutions in the ResNet-50 network require 3298 multiplications
of pairs of 128 × 128 matrices. We will now follow the benchmarks from Table 3

52 H. Chen et al.

Table 3. Benchmarks for private matrix multiplication over various sizes. Note that
the timings for SPDZ are obtained by measuring the throughput of triple generation.

Matrix sizes Total-16 Total-1 SPDZ-16 SPDZ-1

time time

LAN 128 × 128 5.9 s 36.1 s 8.41 s 128 s

256 × 256 25.5 s 214.5 s 58.9 s 900 s

384 × 384 68.3 s 653.6 s 3 min 46.8 min

512 × 512 2.3 min 24.5 min 6.87 min 105min

1024 × 1024 14.5 min 173min 52.02 min 735min

WAN 128 × 128 7.95 s 38.15 s 1.61 min 24.6 min

256 × 256 33.5 s 222.6 s 11.32 min 2.88 h

384 × 384 68.34 s 672.0 s 34.6 min 9 h

512 × 512 2.35 min 25.0 min 1.32 h 20.2 h

1024 × 1024 16.51 min 175.1 min 10 h 5.88 days

to estimate the preprocessing cost of computing these products securely. Since
each multiplication requires 12.46 MB of communication per party, the total
communication would be 41 GB per party. Estimating the running time for
preprocessing phase on 16 threads, we obtain 7.4 h per query.

On the other hand doing Strassen multiplications with LowGear would
require at least 2.7 billion Beavers triples, so when run with 16 triple generation
threads, this amounts to at least 7.6 h of running time and 5 TB of communica-
tion.

Adding RELUs into the Costs. ResNet-50 architecture requires a total of
9,608,704 ReLUs. To compute a RELU in MPC, one needs to have access to
a protocol for random shared bit generation �b�. Using existing techniques, the
cost of such a RELU protocol is two-fold: in terms of preprocessing, it requires
122 triples and 105 random bits8 whereas the online cost of RELU is 8 rounds of
communication and 1 extra openings. A more careful analysis of SCALE/MP-
SPDZ implementation of RELU reveals that there are exactly 119 field elements
sent per party in the online phase.

On top of the RELUs, each multiplication involving a Beaver triple requires
two field elements opened per party hence some extra 256 bits. In Table 4 we sum-
marize the estimated costs using LowGear and SPDZ-online versus our imple-
mentation of the online phase which uses convolution triples. Note that our
current implementation does not support RELUs so we estimate that part. In
Table 4 the “Conv” keyword denotes the evaluation of the convolution layers
only. As can be seen from the table, our approach brings down the online cost of

8 This is assuming p ≈ 2128 and a comparison with statistical security secs = 40 - see
SCALE-MAMBA documentation for more details [1].

Maliciously Secure Matrix Multiplication with Applications 53

the convolution layers by at least two orders of magnitude compared with classic
SPDZ Beaver triples.

Table 4. Estimated communication costs for 2-party private inference in a dishonest
majority malicious adversarial setting on ResNet-50 without the batch norm layers.

Protocol Communication (GB)

Preprocessing Online

Conv [27] 5,092 }
124× 86.91 }

160×
Conv (ours) 41 0.54

Conv + RELUs [27] 9,225 }
2.2× 105.2 }

5.6×
Conv + RELUs (ours) 4,133 18.83

5 Conclusion

In this work, we reduced the overhead of computing linear operations in the
SPDZ framework for dishonest-majority MPC. First, we demonstrate a novel
way of generating pre-processing data for bilinear operations such as matrix
multiplication and convolutions in the SPDZ framework, where the communi-
cation cost does not depend on the number of multiplications but only depends
on the input and output size. We achieved this by leveraging state-of-the-art
homomorphic encryption algorithms for linear operations into SPDZ. We gen-
eralized the notion of authenticated Beaver triples to arbitrary bilinear opera-
tions and adapted the state-of-the-art homomorphic matrix multiplication algo-
rithm to generate authenticated “matrix triples” and “convolution triples.” We
also removed the sacrifice stage of SPDZ via increasing the parameters of the
HE scheme to allow one more multiplication, and optimized the SPDZ zero-
knowledge proof via the usage of BFV homomorphic encryption scheme, which
further improved performance. Our protocol requires O(n2) total communica-
tion to multiply two n × n matrices, compared to O(n2.8) from SPDZ. In terms
of concrete efficiency, to securely multiply two 128 × 128 matrices, our protocol
is at least one order of magnitude faster in terms of latency and as much as
two orders of magnitude more communication efficient compared to prior art.
Furthermore, this improvement only increases as the dimensions of the matrices
increase. We believe our protocols improves the state-of-the-art in dishonest-
majority secure computation, particularly in tasks that require a large number
of linear operations such as private machine learning inference and training.

Acknowledgements. The authors thank the anonymous reviewers for their valuable
comments and suggestions. The work of Miran Kim was supported by Institute of
Information & communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No.2020-0-01336, Artificial Intelligence graduate
school support (UNIST)). Dragos Rotaru has been supported in part by the Defense
Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems

54 H. Chen et al.

Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070, by the Office of
the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA) via Contract No. 2019-1902070006, by the CyberSecurity Research
Flanders with reference number VR20192203 and by ERC Advanced Grant ERC-2015-
AdG-IMPaCT. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views
of the ODNI, United States Air Force, IARPA, DARPA, the US Government, FWO
or ERC. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annotation therein.

A Security Proof of Our Zero Knowledge Protocol

We split the proof into the 3 components – completeness, soundness, and the
zero-knowledge property.

Completeness. For completeness, a true statement must be verified correctly
when both the prover and verifier are honest. In this case, completeness follows
directly from the construction as the relation czl

= cyl
+ (w · ca)l is linear in

its arguments and works component-wise as well as from the fact that the BFV
encryption procedure is linear in the message and the randomness. The noise
bound (in Verify 3 of Fig. 3) is obtained by:

‖rzl
‖ =

∥
∥
∥
∥
∥

∑

i

ri
zl

∥
∥
∥
∥
∥

≤
∑

i

(∥
∥ri

yl

∥
∥ +

∥
∥(w · ri

a)l

∥
∥
)

≤ nu · 2seczk
(11)

where the last equality holds with an overwhelming probability since∥
∥(w · ri

a)l

∥
∥ ≤ u and ri

yl
is a sample from Uu·2seczk .

Zero-Knowledge. To prove zero-knowledge, we need to show that for a true
statement, the verifier learns nothing more than the fact that the statement is
true. This is done by showing that the verifier (in this case all the parties), given
access only to the statement to be proven (cak

= Encpk(ak, rak
)) but no access

to prover, can produce a transcript that is statistically indistinguishable from
the real transcript, in this case, {ciak

}, {ciyl
}, w, {zi

l}, {ri
zl

} where k ∈ [u], l ∈ [v],
and i ∈ [n].

Assuming a set of corrupt parties A ⊂ [n], we simulate an accepting tran-
script for the set of honest parties, i.e., Pi where i /∈ A by first choosing the
challenge matrix w. Once w is fixed, generate zi

l ← Rp and ri
zl

← Uu·2seczk for
i /∈ A. Finally, compute ciyl

← Encpk(zi
l , r

i
zl

) − (w · ci
a)l. Next, we argue that

each of {ri
zl

}, {zi
l}, and {ciyl

} has the same distribution in the real and simulated
transcripts (w is straightforward and {ciak

} are in the proof statement). ri
zl

has
the same distribution in both the transcripts as it is generated from the same
distribution except for an additive factor which is from an exponentially smaller

Maliciously Secure Matrix Multiplication with Applications 55

distribution. The distributions of zi
l are uniformly random elements from Rp

and hence are exactly the same. Finally, the distribution of ciyl
is a uniformly

random u · 2seczk-ciphertext in both the real and simulated transcript as (w · ci
a)l

is a u-ciphertext.

Soundness. To prove knowledge soundness, we follow the techniques of [5,
7]. Informally, we show that if there exists a prover P (as a function of the
adversarial corruptions) that can succeed with probability ε > 2−secs , then there
exists a knowledge extractor running in poly(secs) · ε−1 that can extract the
witnesses {(ai

k, ri
ak

)}k∈[u]. We effectively construct a polynomial time extractor
Ek for each witness (ai

k, ri
ak

) and k ∈ [u]. The extractor Ek, which acts as the
verifier, given access to such a prover P , performs the following steps:

(i) Send random challenges w to the prover P until it outputs an accepting
transcript. Let us denote this accepting transcript by (zi

l , r
i
zl

). This runs in
expected time 1/ε.

(ii) Select a new random challenge w̃ identical to w except the k-th column. This
ensures that w − w̃ is a matrix with all zeros except in the k-th column,
where the entries are elements of R of the form a − b �= 0 where a, b ∈
{0} ∪ {±Xj}0≤j<N .

(iii) Send challenge matrices to the prover P until one of two things happen
(a) A successful transcript is generated with w̃.
(b) There are t = �secs · ε−1 unsuccessful challenges.

(iv) The extractors aborts in case (iii)(b). In case (iii)(a), the extractor outputs
the two successful transcripts along with the challenges.

If the extractor outputs two transcripts successfully, then we can use the result-
ing two conversations to compute the witness (ai

k, ri
ak

) efficiently. We describe
this argument next. However, it is important to note here that the soundness
argument is not complete until we show that (1) the above extractor runs in
poly(secs)/ε time and (2) aborts with low probability. We break down the proof
into the above three steps.

Runtime. The runtime is easiest to argue and follows directly from the descrip-
tion of the extractor.

Probability of Aborting. To bound the failure probability of the extractor, we
follow the line of argument from [17]. Let wk denote the k-th column of the
challenge matrix w and w−k the rest of the challenge matrix, i.e., w except the
k-th column. We construct a binary matrix H such that each row corresponds
to a choice of randomness σ used by the prover P and a choice of challenge
w−k and each column corresponds to a choice of wk. The entry Hσ,w−k,wk

is 1
if the verifier accepts the transcripts for this random choice σ and challenge w.
When the extractor uses P as a blackbox and submits a random challenge w,
it is equivalent to probing an entry in the matrix H. By rewinding the prover
P, we can probe another entry in the matrix H in the same row (same internal

56 H. Chen et al.

randomness, i.e., w̃) and these two transcripts can be used to extract the witness
(ai

k, ri
ak

) efficiently.
Now, we look at the number of ones in each row of H. We note that each row

has (2N + 1)v entries (the size of the challenge space wk). A row is called heavy
if it contains at least (ε/2) × (2N + 1)v ones. A simple application of Markov
inequality implies that at least half of the ones are located in the heavy rows
since ε is the ratio of the number of ones to the size of entire matrix H. Setting
v ≥ (secs +2)/ log2(2N +1), we get at least (ε/2) · (2N +1)v ≥ 2 ones in each of
the heavy rows. Now, from the description, it is clear that the extractor aborts
in the following two cases:

Fig. 4. Visual aid to assist the exposition of the witness extraction. Here cidl = cizl − c̃izl
and e = w − w̃ is a matrix with zeros everywhere except the k-th column.

1. The first successful challenge is not in a heavy row.
2. The first successful challenge is in a heavy row but we do not hit another one

in t = �4secs/ε tries.

The first probability as we just saw is ≤ 1/2. For second probability, each suc-
cessful attempt happens with probability ≥ ε/2 − (2N + 1)−v > ε/4. Hence, the
probability of aborting from the second case is at most

(1 − ε/4)t < exp (−t · ε/4) < 2−secs (12)

Adding these up, the probability that the extractor aborts is < 1/2 + 2−secs .

Witness Extraction. The final piece of completing the soundness proof is the
witness extraction and associated bounds. Given two accepting transcripts
(w, {zi

l , r
i
zl

}) and (w̃, {z̃i
l , r̃

i
zl

}), we set cizl
= Encpk(zi

l , r
i
zl

) and c̃izl
= Encpk(z̃i

l , r̃
i
zl

).
Let us consider the matrix with entries cdl

= czl
− c̃zl

and another matrix w − w̃
with 0’s everywhere except the k-th column.

We can see that this set of linear constraints allows us to find the witness,
one index at a time. In particular, at least one of the elk �= 0 and consequently,
zi

l , r
i
zl

, z̃i
l , and r̃i

zl
along with elk can be used to extract, respectively, the plaintext

and randomness ai
k and ri

ak
(which encrypts to Ci

k). The exact relations can be
written as follows:

ai
k = e−1

lk · (zi
l − z̃i

l)

ri
ak

= e−1
lk · (ri

zl
− r̃i

zl
)

(13)

Maliciously Secure Matrix Multiplication with Applications 57

Finally, to estimate the noise, we use the following result from [7]:

Lemma 1. The quantity 2/(Xi − Xj) for 0 ≤ i �= j < N is a polynomial in R
with coefficients in {0,±1}.
As a consequence of the above,

∥
∥2/(Xi − Xj)

∥
∥

∞ ≤ 1. We use this to bound the
norm of 2 · ai

k and 2 · ri
ak

from Eq. 13. In particular,
∥
∥2 · ri

ak

∥
∥ ≤ N · ‖2/elk‖∞ · ∥

∥ri
zl

− r̃i
zl

∥
∥ ≤ 2N · u · 2seczk . (14)

Therefore, 2·ciak
= Enc(2·ak, 2·ri

ak
) and ‖2 · rak

‖ ≤ Nnu·2seczk+1. This completes
the proof. ��

References

1. Aly, A., et al.: SCALE-MAMBA v1.2: Documentation (2018)
2. Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - break-

ing the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security
and Privacy, San Jose, CA, USA, 22–26 May 2017, pp. 843–862. IEEE Computer
Society Press (2017)

3. Babenko, A., Lempitsky, V.: Efficient indexing of billion-scale datasets of deep
descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 2055–2063 (2016)

4. Barak, A., Escudero, D., Dalskov, A., Keller, M.: Secure evaluation of quantized
neural networks. Cryptology ePrint Archive, Report 2019/131 (2019). https://
eprint.iacr.org/2019/131

5. Baum, C., Cozzo, D., Smart, N.P.: Using topgear in overdrive: A more efficient
zkpok for spdz. Cryptology ePrint Archive, Report 2019/035 (2019). https://
eprint.iacr.org/2019/035

6. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

7. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 29

8. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3),
13 (2014)

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42Nd IEEE Symposium on Foundations of Com-
puter Science, FOCS 2001, pp. 136–145 (2001)

11. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

https://eprint.iacr.org/2019/131
https://eprint.iacr.org/2019/131
https://eprint.iacr.org/2019/035
https://eprint.iacr.org/2019/035
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50

58 H. Chen et al.

12. Chase, M., et al.: Security of homomorphic encryption. HomomorphicEncryp-
tion.org, Redmond WA, USA, Technical report (2017)

13. Chen, H., Chillotti, I., Dong, Y., Poburinnaya, O., Razenshteyn, I., Sanns,
M.S.R.: Scaling up secure approximate k-nearest neighbors search. arXiv preprint
arXiv:1904.02033 (2019)

14. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

15. Cock, M.D., Dowsley, R., Nascimento, A.C., Newman, S.C.: Fast, privacy preserv-
ing linear regression over distributed datasets based on pre-distributed data. In:
Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, pp.
3–14 (2015)

16. Damg̊ard, I., Escudero, D., Frederiksen, T., Keller, M., Scholl, P., Volgushev, N.:
New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
1102–1120 (2019)

17. Damg̊ard, I.: On σ-protocols. University of Aarhus, Department for Computer
Science, Lecture Notes (2002)

18. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority–or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

19. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

20. Data61. MP-SPDZ (2019). https://github.com/data61/MP-SPDZ
21. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR

Cryptol. ePrint Arch. 2012, 144 (2012)
22. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)

CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

23. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in HElib. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 93–120.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 4

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

25. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: ACM Conference on Computer and Com-
munications Security (CCS), pp. 1209–1222 (2018)

26. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd Conference on Computer
and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 830–842.
ACM Press (2016)

27. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

http://arxiv.org/abs/1904.02033
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://github.com/data61/MP-SPDZ
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-78372-7_6

Maliciously Secure Matrix Multiplication with Applications 59

28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

29. Lavin, A., Gray, S.: Fast algorithms for convolutional neural networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4013–4021 (2016)

30. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional
neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

31. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
MiniONN transformations. In: Bhavani, M., Thuraisingham, D.E., Tal, M., Xu,
D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications
Security, Dallas, TX, USA, 31 October–2 November 2017, pp. 619–631. ACM Press
(2017)

32. Makri, E., Rotaru, D., Smart, N.P., Vercauteren, F.: EPIC: efficient private image
classification (or: learning from the masters). In: Matsui, M. (ed.) CT-RSA 2019.
LNCS, vol. 11405, pp. 473–492. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-12612-4 24

33. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: Lie, D., Mannan, M., Backes, M., Wang, X.F. (eds.) ACM CCS 2018: 25th
Conference on Computer and Communications Security, Toronto, ON, Canada,
15–19 October 2018, pp. 35–52. ACM Press (2018)

34. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy, San Jose,
CA, USA, 22–26 May 2017, pp. 19–38. IEEE Computer Society Press (2017)

35. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushan-
far, F.: Chameleon: a hybrid secure computation framework for machine learning
applications. In: Kim, J., Ahn, G.J., Kim, S., Kim, Y., López, J., Kim, T. (eds.)
ASIACCS 18: 13th ACM Symposium on Information, Computer and Communi-
cations Security, Incheon, Republic of Korea, 2–6 April 2018, pp. 707–721. ACM
Press (2018)

36. Microsoft SEAL (release 3.3), Microsoft Research, Redmond, WA (2019).https://
github.com/Microsoft/SEAL

37. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for
neural network training. In: Privacy Enhancing Technologies Symposium (PETS)
(2019)

38. Zheng, W., Popa, R.A., Gonzalez, J.E., Stoica, I.: Helen: maliciously secure coopet-
itive learning for linear models. arXiv preprint arXiv:1907.07212 (2019)

39. Mishra, P.K., Rathee, D., Duong, D.H., Yasuda, M.: Fast secure matrix multiplica-
tions over ring-based homomorphic encryption. IACR Cryptol. ePrint Arch. 2018,
663 (2018)

https://doi.org/10.1007/978-3-030-12612-4_24
https://doi.org/10.1007/978-3-030-12612-4_24
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
http://arxiv.org/abs/1907.07212

On the Exact Round Complexity
of Best-of-Both-Worlds Multi-party

Computation

Arpita Patra1, Divya Ravi1(B), and Swati Singla2

1 Indian Institute of Science, Bangalore, India
{arpita,divyar}@iisc.ac.in

2 Google India, Bangalore, India
swatis@iisc.ac.in

Abstract. The two traditional streams of multiparty computation
(MPC) protocols consist of– (a) protocols achieving guaranteed output
delivery (god) or fairness (fn) in the honest-majority setting and (b) pro-
tocols achieving unanimous or selective abort (ua, sa) in the dishonest-
majority setting. The favorable presence of honest majority amongst the
participants is necessary to achieve the stronger notions of god or fn.
While the constructions of each type are abound in the literature, one
class of protocols does not seem to withstand the threat model of the
other. For instance, the honest-majority protocols do not guarantee pri-
vacy of the inputs of the honest parties in the face of dishonest majority
and likewise the dishonest-majority protocols cannot achieve god and
fn, tolerating even a single corruption, let alone dishonest minority. The
promise of the unconventional yet much sought-after species of MPC,
termed as ‘Best-of-Both-Worlds’ (BoBW), is to offer the best possible
security depending on the actual corruption scenario.

This work nearly settles the exact round complexity of two classes of
BoBW protocols differing on the security achieved in the honest-majority
setting, namely god and fn respectively, under the assumption of no setup
(plain model), public setup (CRS) and private setup (CRS + PKI or sim-
ply PKI). The former class necessarily requires the number of parties to
be strictly more than the sum of the bounds of corruptions in the honest-
majority and dishonest-majority setting, for a feasible solution to exist.
Demoting the goal to the second-best attainable security in the honest-
majority setting, the latter class needs no such restriction.

Assuming a network with pair-wise private channels and a broadcast
channel, we show that 5 and 3 rounds are necessary and sufficient for
the class of BoBW MPC with fn under the assumption of ‘no setup’ and
‘public and private setup’ respectively. For the class of BoBW MPC with
god, we show necessity and sufficiency of 3 rounds for the public setup
case and 2 rounds for the private setup case. In the no setup setting, we
show the sufficiency of 5 rounds, while the known lower bound is 4. All
our upper bounds are based on polynomial-time assumptions and assume

Arpita Patra would like to acknowledge financial support from SERB MATRICS (The-
oretical Sciences) Grant 2020 and Google India AI/ML Research Award 2020.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 60–91, 2020.
https://doi.org/10.1007/978-3-030-64840-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_3

On the Exact Round Complexity of BoBW Multi-party Computation 61

black-box simulation. With distinct feasibility conditions, the classes dif-
fer in terms of the round requirement. The bounds are in some cases
different and on a positive note at most one more, compared to the max-
imum of the needs of the honest-majority and dishonest-majority setting.
Our results remain unaffected when security with abort and fairness are
upgraded to their identifiable counterparts.

1 Introduction

In secure multi-party computation (MPC) [1–3], n parties wish to jointly perform
a computation on their private inputs in a way that no adversary A actively
corrupting a coalition of t parties can learn more information than their outputs
(privacy), nor can they affect the outputs of the computation other than by
choosing their own inputs (correctness). MPC protocol comes in distinct flavours
with varying degree of robustness– guaranteed output delivery (god), fairness
(fn), unanimous abort (ua) and selective abort (sa). The strongest security, god,
implies that all parties are guaranteed to obtain the output, regardless of the
adversarial strategy. In the weaker notion of fn, the corrupted parties receive
their output if and only if all honest parties do. In the further weaker guarantee
of ua, fairness may be compromised, yet the adversary cannot break unanimity of
honest parties. That is, either all or none of the honest parties receive the output.
Lastly, sa security, the weakest in the lot, allows the adversary to selectively
deprive some honest parties of the output.

While highly sought-after, the former two properties can only be realised,
when majority of the involved population is honest [4]. In the absence of this
favorable condition, only the latter two notions can be attained. With these dis-
tinct affordable goals, MPC with honest majority [5–11] and dishonest majority
[1,12–17] mark one of the earlier demarcations in the world of MPC. With com-
plementary challenges and techniques, each setting independently stands tall
with spectacular body of work. Yet, the most worrisome shortcoming of these
generic protocols is that: a protocol in one setting completely breaks down in the
other setting i.e. the security promises are very rigid and specific to the setting.
For example, a protocol for honest majority might no longer even be “private”
or “correct” if half (or more) of the parties are corrupted. A protocol that guar-
antees security with ua for arbitrary corruptions cannot pull off the stronger
security of god or fn even if only a “single” party is corrupt. In many real-life
scenarios, it is highly unlikely for anyone to guess upfront how many parties the
adversary is likely to corrupt. In such a scenario, the best a practitioner can do, is
to employ the ‘best’ protocol from her favorite class and hope that the adversary
will be within assumed corruption limit of the employed protocol. If the guess
fails, the employed protocol, depending on whether it is an honest or dishonest
majority protocol, will suffer from the above mentioned issues. The quest for
attaining the best feasible security guarantee in the respective settings of honest
and dishonest majority in a single protocol sets the beginning of a brand new
class of MPC protocols, termed as ‘Best of Both Worlds (BoBW)’ [18–20]. In

62 A. Patra et al.

critical applications like voting [21,22], secure auctions [23], secure aggregation
[24], federated learning and prediction [25,26], financial data analysis [27] and
others, where privacy of the inputs of an honest party needs protection at any
cost and yet a robust completion is called for (as much as theoretically feasible),
BoBW protocols are arguably the best fit.

Denoting the threshold of corruption in honest and dishonest majority case
by t and s respectively, an ideal BoBW MPC should promise the best possi-
ble security in each corruption scenario for any population of size n, as long as
t < n/2 and s < n. Quite contrary to the expectation, the grand beginning of
BoBW MPC with the works of [18–20] is mostly marred with pessimistic results
showing the above goal is impossible for many scenarios. For reactive function-
alities that receive inputs and provide outputs in multiple rounds maintaining
a state information between subsequent invocations, it is impossible to achieve
BoBW security [18]. While theoretical feasibility is not declined, non-reactive or
standard functionalities are shown to be impossible to realise as long as t+s ≥ n
in expected polynomial time (in the security parameter), making any positive
result practically irrelevant [19,20]. A number of meaningful relaxations were
proposed in the literature to get around the impossibility of BoBW security
when t+s ≥ n [19,20]. The most relevant to our work is the relaxation proposed
in [28] where the best possible security of god is compromised to the second-best
notion of fn in the honest-majority setting. Other attempts to circumvent the
impossibility result appear in [18] and [19,29] where the security in dishonest-
majority setting is weakened to allowing the adversary to learn s evaluations
of the function (each time with distinct inputs exclusively corresponding to the
corrupt parties) in the former and achieving a weaker notion of O(1/p)-security
with abort (actions of any polynomial-time adversary in the real world can be
simulated by a polynomial-time adversary in the ideal world such that the distri-
butions of the resulting outcomes cannot be distinguished with probability better
than O(1/p)) in the latter. [18] shows yet another circumvention by weakening
the adversary in dishonest-majority case from active to passive. On the con-
trary, constructions are known when t + s < n is assumed [18], tolerating active
corruptions and giving best possible security in both the honest and dishonest
majority case.

In this work, we consider two types of BoBW MPC protocols and study
their exact round complexity: (a) MPC achieving the best security of god and
ua in the honest and dishonest majority setting respectively assuming s+ t < n,
referred as (god|ua)-BoBW; (b) MPC achieving second-best security notion of
fn in the honest majority and the best possible security of ua in the dishon-
est majority for any n, referred as (fn|ua)-BoBW. The adversary is considered
malicious, rushing and polynomially-bounded in either world. The latter notion
(introduced in [28]) is an elegant and meaningful relaxation that brings back
the true essence of BoBW protocols with no constraint on n, apart from the
natural bounds of t < n/2 and s < n. Furthermore, fn is almost as good as god
for many practical applications where the adversary is rational enough and does
not wish to fail the honest parties at the expense of losing its own output. In

On the Exact Round Complexity of BoBW Multi-party Computation 63

spite of immense practical relevance of BoBW protocols, the question of their
exact round complexity has not been tackled so far. Below, we review relevant
literature on BoBW protocols and exact round complexity of MPC.

1.1 On the Round Complexity of BoBW MPC

The phenomenal body of work done on round complexity catering to various
adversarial settings and network models emphasises its theoretical importance
and practical relevance. For instance, the exact round complexity of MPC inde-
pendently in honest and dishonest majority has been examined and the recent
literature is awash with a bunch of upper bounds that eluded for quite a long
time [16,17,30,31]. We review the round complexity of the honest-majority and
dishonest-majority MPC in the cryptographic setting which define natural yet
possibly loose bounds for the BoBW MPC. To begin with, 2 rounds are known
to be necessary to realize any MPC protocol, regardless of the setting, no mat-
ter whether a setup is assumed or not as long as the setup (when assumed) is
independent of the inputs of the involved parties [32]. In the dishonest-majority
setting, when no setup is assumed (plain model) 4 rounds are necessary [33].
Tight upper bounds appear in [14–17,34], with the latter three presenting con-
structions under polynomial-time assumptions, yet with sa security. In the pres-
ence of a public setup (Common Reference String a.k.a. CRS setting), the lower
bound comes down to 2 rounds [32]. A series of work present matching upper
bounds under various assumptions [13,35,36], culminating with the works of
[30,31] that attain the goal under the minimal assumption of 2-round oblivious
transfer (OT). In the honest-majority setting and in plain model, 3 rounds are
shown to be necessary for fn (and hence for god) protocols, in the presence of
pairwise-private and broadcast channels for t ≥ 2 active corruptions [37] and for
any t as long as n/3 < t < n/2 [38]. The results of [37,38] hold in the presence
of CRS but does not hold in the presence of correlated randomness setup such
as PKI. Circumventing the lower bound of 3 for fn, [39] shows a 2-round 4PC
protocol against a single active corruption achieving god even without a broad-
cast channel. The matching upper bounds appear in [11] for the general case
under public-key assumption, and in [38] for the special case of 3PC under the
minimal assumption of (injective) OWF. In the CRS model, 3 rounds remains
to be the lower bound for fn in a setting where broadcast is the only medium
of communication (broadcast-only setting) [40] and additionally with point-to-
point channels [37,38,41]. Given PKI, the bound can be improved to 2 [40].

In the BoBW setting, constant-round protocols are presented in (or can be
derived from) [18,20] for (god|ua)-BoBW and BoBW where only semi-honest
corruptions are tolerated in the dishonest majority. The recent work of [42]
settled the exact round complexity of the latter class, as a special case of a
strong adversarial model that allows both active (with threshold ta) and passive
(with threshold tp, which subsumes the active corruptions) corruption for a range
of thresholds for (ta, tp) starting from (�n/2�−1, �n/2�) to (0, n−1). Lastly, the
round complexity of BoBW protocols of [29] that achieve 1/p- security with abort

64 A. Patra et al.

in dishonest-majority (and god in honest majority), depends on the polynomial
p(κ) (where κ denotes the security parameter).

1.2 Our Results

This work nearly settles the exact round complexity for two classes of BoBW
protocols, (god|ua)-BoBW and (fn|ua)-BoBW, under the assumption of no setup
(plain model), public setup (CRS) and private setup (CRS + PKI or simply
PKI). The adversary is assumed to be rushing, active and static. The parties are
connected via pair-wise private channels and an additional broadcast channel.
All our upper bounds are based on polynomial-time assumptions and assume
black-box simulation. We summarise our results below.

(fn|ua)-BoBW. We settle the exact round complexity of this class of BoBW
protocols by establishing the necessity and sufficiency of: (a) 5 rounds in the plain
model and (b) 3 rounds in both the public (CRS) and private (CRS+PKI) setup
setting. In the CRS model, the necessity of 3 rounds for honest-majority MPC
achieving fn (and hence for (fn|ua)-BoBW) has been demonstrated in [37,38,40],
the former in a setting where broadcast is the only mode of communication
(broadcast-only) and the latter two additionally with pairwise-private channels.
However, these results do not hold in the presence of PKI. Our lower bound
argument, on the other hand, is resilient to the presence of both CRS and PKI,
and further holds in the presence of broadcast and pairwise-private channels.

Table 1. Summary of results

No setup (plain

model)

Public setup (CRS) Private setup (CRS + PKI)

Honest majority Round: 3 Round: 3 Round: 2

t < n/2 Lower Bound:

[37,38]

Lower Bound: [37,38] Lower Bound: [32]

fn / god Upper Bound:

[11,43]

Upper Bound: [11,40,43] Upper Bound: [40]

Dishonest majority Round: 4 Round: 2 Round: 2

s < n Lower Bound: [33] Lower Bound: [32] Lower Bound: [32]

sa / ua Upper Bound:

[16,17,34]

Upper Bound: [13,35] Upper Bound: [13,35]

(sa only) [30,31,36] [30,31,36]

(fn|ua)-BoBW Round: 5 Round: 3 Round: 3

t < n/2, s < n Lower Bound:

This paper

Lower Bound: [37,38] Upper Bound: This paper

fn & ua Upper Bound:

This paper

Lower Bound: This paper Upper Bound: This paper

(god|ua)-BoBW Round: – Round: 3 Round: 2

t < n/2, t + s < n Lower Bound: 4

[33]

Lower Bound: This paper Lower Bound: [32]

god & ua Upper Bound: 5

This paper

Upper Bound: This paper Upper Bound: This paper

(god|ua)-BoBW. In this regime, we demonstrate that 4, 3 and 2 are the
respective lower bounds in the no-setup, public setup and private setup setting.

On the Exact Round Complexity of BoBW Multi-party Computation 65

The first lower bound follows from the fact that BoBW MPC in this class triv-
ially subsumes the dishonest majority MPC when t = 0 and the lower bound
for dishonest-majority MPC is 4 [33]. The last lower bound follows from the
standard 2-round bound for MPC needed to counter “residual function attack”
[32]. Regarding the lower bound of 3 for the public setup (CRS) setting, we
point that it follows directly from the 2-round impossibility of MPC with fn for
honest majority in the CRS model [37,38,40] for most values of (t, s, n) satisfy-
ing s + t < n. However, these existing results do not rule out the possibility of
2-round (god|ua)-BoBW MPC for (t = 1, s > t, n ≥ 4). (In fact the protocols
of [39,44] circumvent the 3-round lower bound for fn when t = 1, n ≥ 4). We
address this gap by giving a unified proof that works even for s > t, for all values
of t (including t = 1). This is non-trivial and it demonstrably breaks down in
the presence of PKI. The bounds are totally different from the ones for previous
class, owing to the different feasibility condition of s + t < n. While our upper
bound falls merely one short of matching the first lower bound in case of no-
setup, the upper bounds of the other two settings are tight. We leave the question
of designing or alternately proving the impossibility of 4-round (god|ua)-BoBW
MPC protocol as open. Our results summarised and put along with the bounds
known in the honest and dishonest majority setting appear in Table 1.

Extensions. We can boost the security of all our protocols to offer identifi-
ability (i.e. public identifiability of the parties who misbehaved) when abort
happens– (fn|ua)-BoBW protocols with identifiable fairness and abort in honest
and dishonest majority setting respectively and (god|ua)-BoBW protocols with
identifiable abort in dishonest-majority setting. Our lower bound results hold as
is when ua and fn are upgraded to their stronger variants with identifiability.
Furthermore, all our upper bounds relying on CRS have instantiations based
on a weaker setup, referred as common random string, owing to the availability
of 2-round OT [45] and Non-Interactive Zero Knowledge (NIZK) [46] under the
latter setup assumption. Lastly, we also propose few optimizations to minimize
the use of broadcast channels in our compilers upon which our upper bounds
are based. Specifically, these optimizations preserve the round complexity of our
upper bounds at the cost of relaxing the security notion in dishonest majority
setting to sa (as opposed to ua).

1.3 Techniques

(fn|ua)-BoBW. The lower bounds are obtained via a reduction to 3-round OT in
plain model and 1-round OT in private setup setting, both of which are known
to be impossible [32,33] (albeit under the black-box simulation paradigm which
is of concern in this paper). The starting point is a protocol π between 3 parties
which provides fn when 1 party is corrupt and ua when 2 parties are corrupt,
in 4 rounds when no setup is assumed and 2 rounds when private/public setup
is assumed. The heart of the proof lies in devising a function f such that the
realization of f via π, barring its last round, leads to an OT.

66 A. Patra et al.

The upper bounds are settled with a proposed generic compiler that turns
an r-round dishonest-majority MPC protocol achieving ua to an (r + 1)-round
BoBW MPC protocol information-theoretically. The compiler churns out a 5-
round and a 3-round BoBW protocol in the plain model and in the presence of a
CRS respectively, when plugged with appropriate ua-secure dishonest-majority
protocol in the respective setting. Since the constructions of the known 4-round
dishonest-majority MPC relying on polynomial-time assumptions [16,17,34] pro-
vide only sa security, we transform them to achieve ua for our purpose which
invokes non-triviality for [16]. With CRS, the known constructions of [30,31]
achieve unanimity and readily generate 3-round BoBW protocols.

Our compiler motivated by [47] uses the underlying r-round protocol to com-
pute authenticated secret sharing of the output y with a threshold t(< n/2)
enabling the output reconstruction to occur in the last round. Fairness is ensured
given the unanimity of the underlying protocol and the fact that the adversary
(controlling t corrupt parties) has no information about the output y from the
t shares he owns. However, using pairwise MACs for authentication defies una-
nimity in case of arbitrary corruptions because a corrupt party can choose to
provide a verified share to a selected set of honest parties enabling their out-
put reconstruction while causing the rest to abort. To address this, a form of
authentication used in the Information Checking Protocol (ICP) primitive of
[48,49] and unanimously identifiable commitments (UIC) of [50] can be used.
This technique maintains unanimity amongst the honest parties during output
reconstruction.

(god|ua)-BoBW. The non-trivial lower bound for this class is for the CRS
setting. The other bounds imply from the dishonest-majority case. In the CRS
setting, we prove a lower bound of 3 rounds. We start with assuming a 2 round
BoBW protocol π for a specifically articulated 4-party function f . Next, we
consider a sequence of executions of π, with different adversarial strategies in
the order of their increasingly malicious behaviour such that the views of a
certain party stays the same between the executions. This sequence finally leads
us to a strategy where the adversary is able to learn the input of an honest party
breaching privacy, hence coming to a contradiction. The crux of the lower bound
argument lies in the design of the adversarial strategies that shuffle between the
honest and dishonest majority setting encapsulating the challenge in designing
BoBW protocols. This is in contrast to existing lower bounds in traditional
models that deal with a fixed setting and single security notion at a time.

In the presence of a CRS, we build a 3-round protocol in two steps: a) we
provide a generic compiler that transforms a broadcast-only ua-secure 2-round
semi-malicious protocol such as [30,31] to a 3-round broadcast-only BoBW pro-
tocol of this class against a semi-malicious adversary (that follows the protocol
honestly but can choose bad random coins for each round which are available to
the simulator) b) then, the round-preserving compiler of [51] (using NIZKs) is
applied on the above protocol to attain malicious security. The first compiler, in
spirit of [11], ensures god against t non-cooperating corrupt parties in the last
round, via secret-sharing the last-round message of the underlying protocol dur-

On the Exact Round Complexity of BoBW Multi-party Computation 67

ing the penultimate round of the compiled protocol. This is achieved by means
of a garbled circuit sent by each party outputting its last-round message of the
underlying protocol and the shares of the encoded labels with a threshold of s
so that s + 1 parties (in case of honest majority) can come together in the final
round to construct the last-round message of the corrupt parties. This garbled
circuit of a party Pi also takes into account the case when some other parties
abort in the initial rounds of the protocol by taking the list of aborting parties
as input and hard-coding their default input and randomness such that Pi’s last
round message is computed considering default values for parties who aborted.
The compiler is made round-preserving with additional provision of pairwise-
private channels or alternately, PKI. The latter (with PKI) just like its 3-round
avatar can be compiled to a malicious protocol via the compiler of [51].

In the plain model, we provide a 5-round construction which is substantially
more involved than our other upper bounds. To cope up with the demands of
(god|ua)-BoBW security in the plain model, we encountered several roadblocks
that were addressed by adapting some existing techniques combined with new
tricks. The construction proceeds in two steps: a) we boost the security of our
broadcast-only 3-round semi-malicious BoBW protocol to a stronger notion of
delayed-semi-malicious security (where the adversary is required to justify his
messages by giving a valid witness only in the last but one round) and b) we
plug this 3-round BoBW protocol in the compiler of [31] with some additional
modifications to obtain a 5-round BoBW protocol secure against a malicious
adversary. The compiler of [31] takes as input a (k − 1)-round protocol secure
with abort against a delayed-semi-malicious adversary and churns out a k-round
protocol secure with abort against a malicious adversary for any k ≥ 5. The
major challenges in our construction surface in simulation, where we cannot
terminate in the honest-majority case even if the adversary aborts on behalf of
a corrupt party (unlike the compiler of [31] that achieves abort security only).
Furthermore, we observed that the natural simulation strategy to retain the
BoBW guarantee suffered from a subtle flaw, similar to the one pointed in the
work of [52], which we resolve with the help of the idea suggested therein. To
bound the simulation time by expected polynomial-time, we further needed to
introduce two ‘dummy’ rounds (rounds which do not involve messages of the
underlying protocol being compiled) in our compiler as opposed to one as in
[31]. This does not inflate the round complexity as our underlying delayed-semi-
malicious protocol only consumes 3 rounds (instead of 4 as in the case of [31]).
As a step towards resolving the question left open in this work (namely proving
the impossibility or alternately constructing a 4-round (god|ua)-BoBW protocol
under polynomial-time assumption), we present a sketch of a 4-round (god|ua)-
BoBW protocol based on sub-exponentially secure trapdoor permutations and
ZAPs. This construction builds upon the work of [53]. The pictorial roadmap to
obtain the upper bounds is given in the figure below.

68 A. Patra et al.

2-round
Semi-malicious
ua-dishonest-
majority
Broadcast-only
no setup

3-round
Semi-malicious
(god|ua)-BoBW
Broadcast-only
no setup

2-round
Semi-malicious
(god|ua)-BoBW
Broadcast-only
PKI

2-round
Semi-malicious
(god|ua)-BoBW
Broadcast +
private channel
no setup

3-round
Malicious
(god|ua)-BoBW
Broadcast-only
CRS

2-round
Malicious
(god|ua)-BoBW
Broadcast-only
CRS + PKI

3-round
Delayed Semi-
Malicious
(god|ua)-BoBW
Broadcast-Only
no setup

5-round
Malicious
(god|ua)-BoBW
Broadcast-Only
no setup

Sec 5.1.1

Sec 5.1.2

Se
c 5.1

.2

Sec 5.1.3

Sec 5.1.3

[54
]

Sec 5.2.2

1.4 Related Works on BoBW MPC

An orthogonal notion of BoBW security is considered in [28,55,56] where
information-theoretic and computational security is the desired goal in honest
and dishonest majority setting respectively. Avoiding the relaxation to computa-
tional security in dishonest-majority setting, the work of [57] introduces the best
possible information-theoretic guarantee achievable in the honest and dishonest
majority settings simultaneously; i.e. the one that offers standard information-
theoretic security in honest majority and offers residual security (the adversary
cannot learn anything more than the residual function of the honest parties’
inputs) in dishonest-majority setting. A more fine-grained graceful degradation
of security is dealt with in the works of [28,42,58–60] considering a mixed adver-
sary that can simultaneously corrupt in both active and semi-honest style. Lastly,
[61] studies the communication efficiency in the BoBW setting.

1.5 Our Model

Before moving onto the technical section, we detail our model here. We consider
a set of n parties P = {P1, . . . Pn} connected by pairwise-secure and authentic
channels and having access to a broadcast channel. A few protocols in our work
that are referred to as being broadcast-only do not assume private channels. Each
party is modelled as a probabilistic polynomial time (PPT) Turing machine. We
assume that there exists a PPT adversary A, who can corrupt a subset of these
parties. We denote the set of indices corresponding to parties controlled by A
and the honest parties with C and H respectively. We denote the cryptographic
security parameter by κ. A negligible function in κ is denoted by negl(κ). A
function negl(·) is negligible if for every polynomial p(·) there exists a value
N such that for all m > N it holds that negl(m) < 1

p(m) . Lastly, we denote
the ideal functionalities for unanimous abort, fairness and guaranteed output
delivery with Fua, Ffair and Fgod respectively (details appear in full version [54]).

On the Exact Round Complexity of BoBW Multi-party Computation 69

Roadmap. Our lower and upper bounds for (fn|ua)-BoBW appear in Sect. 2–3.
Our lower and upper bounds for (god|ua)-BoBW appear in Sect. 4–5. Our pro-
tocols are proven in real-world and ideal-world paradigm. The detailed security
definitions, complete security proofs and formal definitions of the primitives used
in our upper bounds are described in the full version [54].

2 Lower Bounds for (fn|ua)-BoBW

In this section, we show two lower bounds concerning (fn|ua)-BoBW protocols–
one with no setup and the other with private setup. In the plain model, we show
that it is impossible to design a 4-round (fn|ua)-BoBW protocol (with black-
box simulation). In the CRS setting, the 3-round lower bound for (fn|ua)-BoBW
protocols follows directly from the impossibility of 2-round protocol achieving
fn [37,38,40]. However, they do not hold in the presence of PKI. While the
argument of [40] crucially relies on the adversary being able to eavesdrop com-
munication between two honest parties (which does not hold in the presence
of PKI), the lower bounds of [37,38] also do not hold if PKI is assumed (as
acknowledged/demonstrated in [37,41]). In the setting with CRS and PKI, we
show impossibility of a 2-round protocol. The proof of both our lower bounds
relies on the following theorem, which we formally state and prove below.

Theorem 1. An n-party r-round (fn|ua)-BoBW protocol implies a 2-party (r −
1)-round maliciously-secure oblivious transfer (OT).

Proof. We prove the theorem for n = 3 parties with t = 1 and s = 2 which can
be extended for higher values of n in a natural manner (elaborated in the full
version). Let P = {P1, P2, P3} denote the 3 parties and the adversary A may
corrupt at most two parties. As per the hypothesis, we assume that there exists
a r-round (fn|ua)-BoBW protocol protocol πf that can compute the function f
defined as f((m0,m1), (c,R2), R3) = ((mc +R2 +R3),mc,mc) which simultane-
ously achieves fn when t = 1 parties are corrupt and ua when s = 2 parties are
corrupt. At a high-level, we transform the r-round 3-party protocol πf among
{P1, P2, P3} into a (r − 1)-round 2-party OT protocol between a sender PS with
inputs (m0,m1) and a receiver PR with input c.

Let q = 1−negl(κ) denote the overwhelming probability with which security
of πf holds, where the probability is defined over the choice of setup (in case a
setup is assumed) and the random coins used by the parties. Before describing
the transformation, we present the following lemma:

Lemma 1. Protocol πf must be such that the combined view of {P2, P3} at
the end of Round (r − 1) suffices to compute their output, with overwhelming
probability.

Proof. Consider an adversary A who corrupts only a minority of the parties (t =
1). A controls party P1 with the following strategy: P1 behaves honestly in the
first (r−1) rounds while he simply remains silent in Round r (last round). Since

70 A. Patra et al.

P1 receives all the desired communication throughout the protocol, it follows
directly from correctness of πf (which holds with overwhelming probability q)
that A must be able to compute the output with probability q. Since πf is
assumed to be fair (with probability q) for the case of t = 1, it must hold that
when P1 learns the output, the honest parties P2 and P3 must also be able to
compute the output with overwhelming probability q × q = q2; without any
communication from P1 in Round r. This implies that the combined view of
{P2, P3} at the end of Round (r − 1) must suffice to compute the output with
overwhelming probability q2. ��
Our transformation from πf to a (r − 1)-round OT protocol πOT between a
sender PS with inputs (m0,m1) and a receiver PR with input c goes as follows.
PS emulates the role of P1 during πf while PR emulates the role of both parties
{P2, P3} during πf using random inputs R2, R3 respectively. In more detail,
let mr

i→j denote the communication from Pi to Pj in round r of πf . Then for
r ∈ [r − 1], the interaction in round r of protocol πOT is the following: PS sends
mr

1→2 and mr
1→3 to PR while PR sends mr

2→1 and mr
3→1 to PS . PR computes the

output mc using the combined view of {P2, P3} at the end of Round (r − 1). PS

outputs nothing. Recall that the output of the OT between (PS , PR) is (⊥,mc)
respectively. We now argue that πOT realizes the OT functionality.

Lemma 2. Protocol πOT realizes the OT functionality.

Proof. We first prove that πOT is correct. By Lemma 1, it follows that PR emu-
lating the role of both {P2, P3} of πf must be able to compute the correct output
mc with overwhelming probability by the end of Round (r − 1). We now con-
sider the security properties. First, we consider a corrupt PR (emulating the roles
of {P2, P3} in πf). Since by assumption, πf is a protocol that should preserve
privacy of P1’s input even in the presence of an adversary corrupting {P2, P3}
(s = 2 corruptions), the input m1−c of PS must remain private against a corrupt
PR. Next, we note that privacy of πf against a corrupt P1 (t = 1 corruption)
guarantees that P1 does not learn anything beyond the output (mc + R2 + R3)
in the protocol πf which leaks nothing about c. It thus follows that a corrupt
PS in πOT emulating the role of P1 in πf will also not be able to learn anything
about PR’s input c. More formally, we can construct a simulator for the OT pro-
tocol πOT for the cases of corrupt PR and corrupt PS by invoking the simulator
of πf for the case of dishonest majority (s = 2) and honest majority (t = 1)
respectively. In each case, it follows from the security of πf (which holds with
overwhelming probability) that the simulator of πf would return a view indis-
tinguishable from the real-world view with overwhelming probability; directly
implying the security of the OT protocol πOT. ��
Thus, we can conclude that a (r − 1)-round 2-party OT protocol πOT can be
derived from r-round πf . This concludes the proof of Theorem 1. ��
Theorem 2. There exists a function f for which there is no 4-round (resp.
2 round) protocol computing f in the plain model (resp. with CRS and PKI)

On the Exact Round Complexity of BoBW Multi-party Computation 71

that simultaneously realises– (1) Ffair when t < n/2 parties are corrupted (2)
Fua when s < n parties are corrupted. In the former setting (plain model), we
assume black-box simulation.

Proof. We start with the proof in the plain model, followed by the proof with
CRS and PKI. We assume for contradiction that there exists a 4-round (fn|ua)-
BoBW protocol (with black-box simulation) in the plain model. Then, it follows
from Theorem 1 that there must exist a 3-round 2-party maliciously-secure OT
protocol with black-box simulation in the plain model. We point that this OT
derived as per the transformation of Theorem 1 is a bidirectional OT, where each
round consists of messages from both the OT sender and the receiver. Using the
round-preserving transformation from bidirectional OT to alternating-message
OT (where each round consists of a message from only one of the two parties)
[34], we contradict the necessity of 4 rounds for alternating OT in the plain
model with black-box simulation [33]. This completes the proof for plain model.

Next, we assume for contradiction that there exists a 2-round (fn|ua)-BoBW
MPC protocol in the presence of CRS and PKI. Then, it follows from Theorem
1 that there exists 1-round OT protocol in this model. We have arrived at a
contradiction since non-interactive OT is impossible to achieve in a model with
input-independent setup that includes CRS and PKI (notably 1-round OT con-
structions which use an input-dependent PKI setup such as [62] exist). To be
more specific, a 1-round OT protocol would be vulnerable to the following resid-
ual attack by a corrupt receiver PR: PR can participate in the OT protocol with
input c and get the output mc at the end of the 1-round OT protocol (where
(m0,m1) denote the inputs of sender PS). Now, since the Round 1 messages of
PS and PR are independent of each other, PR can additionally plug in his input
as being (1 − c) to locally compute m1−c as well which is a violation of sender’s
security as per the ideal OT functionality. ��

3 Upper Bounds for (fn|ua)-BoBW

In this section, we construct two upper bounds for the (fn|ua)-BoBW class.
Our upper bounds take 5 and 3 rounds in the plain model and in the CRS set-

ting respectively, tightly matching the lower bounds presented in Sect. 2. We
begin with a general compiler that transforms any n-party r-round actively-
secure MPC protocol achieving ua in dishonest majority into an (r + 1)-round
(fn|ua)-BoBW protocol.

3.1 The Compiler

At a high-level, our compiler uses the compiler of [47] and a form of authentica-
tion used in the Information Checking Protocol (ICP) primitive of [48,49] and
unanimously identifiable commitments (UIC) of [50]. Drawing motivation from
the compiler of [47] from ua to fn in the honest majority setting, our compiler
uses the given r-round protocol achieving ua security to compute an “authenti-
cated” secret sharing with a threshold of t of the output y and reconstruct the

72 A. Patra et al.

output y during the (r + 1)th round. The correct reconstruction is guaranteed
thanks to unanimity offered by the underlying protocol and the authentication
mechanism that makes equivocation of a share hard. Alternatively termed as
error-correcting secret sharing (ECSS) [47], the authenticated secret sharing was
instantiated with pairwise information-theoretic or one-time MAC as a form of
authentication. This, when taken as is in our case, achieves fairness in the hon-
est majority setting as in the original transformation. The sharing threshold t
ensures that the shares of the honest set, consisting of at least t + 1 parties, dic-
tate the reconstruction of the output, no matter whether the corrupted parties
cooperate or not. The pairwise MAC, however, makes it challenging to maintain
unanimity in the dishonest majority case of the transformed protocol, where a
corrupt party may choose to verify its share to selected few enabling their output
reconstruction. This seems to call for a MAC that cannot be manipulated part-
wise to keep the verifiers on different pages. A possible approach to achieve the
property of public verifiability is by means of digital signatures i.e. each party
obtains a signed output share which it broadcasts during reconstruction and can
be verified by remaining parties using a common public verification key (that
the parties obtain as part of the output of the r-round protocol achieving ua).
Alternately, if the form of authentication used in the ICP of [48,49] and UIC of
[50] is used, then digital signatures can be avoided and the compiler (transform-
ing any n-party r-round actively-secure MPC protocol achieving ua in dishonest
majority into an (r + 1)-round (fn|ua)-BoBW protocol) achieves the desirable
property of being information-theoretic (i.t).

Achieving i.t security is a worthwhile goal, as substantiated by its extensive
study in various settings including those where achieving this desirable security
notion demands additional tools. For instance, there are well-known results cir-
cumventing the impossibility of achieving i.t security in dishonest majority by
relying on additional assistance such as tamper-proof hardware tokens [50,63]
and Physically Uncloneable Functions (PUFs) [64,65]. Having an i.t compiler
opens up the possibility of achieving i.t BoBW MPC by plugging in an i.t.
secure dishonest majority protocol (say, that uses hardware tokens/PUFs or
other assistance) in the compiler. The details of the i.t compiler appear in [54].

3.2 The Upper Bounds

Building our round-optimal (fn|ua)-BoBW protocols in the plain and CRS model
involves constructing 2 and 4 round protocols that achieve ua security against
dishonest majority in the respective models. Such protocols when plugged in
our compiler of Sect. 3.1 would directly yield the round-optimal (fn|ua)-BoBW
protocols.

In the CRS setting, the known 2-round protocols of [30,31] achieve ua and
thereby lead to a 3-round (fn|ua)-BoBW protocol, matching the lower bound.
Unfortunately, the existing 4-round MPC protocols in the plain model relying on
polynomial-time assumptions [16,17,34], in spite of convenient use of broadcast,
only satisfy the weaker notion of sa. We demonstrate how the protocol of [16]
and [17,34] can be tweaked to achieve ua in the full version [54]. With respect

On the Exact Round Complexity of BoBW Multi-party Computation 73

to the above mentioned ua protocols, our (fn|ua)-BoBW MPC protocols rely on
the assumption of 2-round OT in the common random/reference string model
and 4-round OT in the plain model.

Theorem 3. Assuming the existence of a 4 (resp., 2) round MPC protocol that
realizes Fua for upto n−1 malicious corruptions in the plain (resp., CRS) model,
there exists a 5 (resp., 3)-round MPC protocol in the plain (resp., CRS) model
that simultaneously realises– (1) Ffair when t < n/2 parties are corrupted (2) Fua

when s < n parties are corrupted.

A minor observation regarding the use of broadcast in our compiler is that
we can replace it with point-to-point communication at the expense of relaxing
ua to sa security in the dishonest majority setting.

Security with Identifiability. Our compiler preserves the property of identifia-
bility. Since the underlying dishonest-majority protocols [30,31] can be boosted
to achieve identifiable abort (as shown by [66]), the upper bound in the CRS
model achieves identifiable fairness and abort in the honest and dishonest major-
ity setting respectively. With respect to the plain model, we show how security
of [17] can be boosted to achieve identifiable abort with minor tweaks, in the
full version. This variant, when compiled using our compiler of Sect. 3.1 would
achieve identifiable fairness and abort in the honest and dishonest majority set-
ting respectively.

4 Lower Bounds for (god|ua)-BoBW

In this section, we prove that it is impossible to design a 2-round (god|ua)-
BoBW protocol with t + s < n in the CRS model. Note that the necessity of
3 rounds for (god|ua)-BoBW protocol for most values of (n, s, t) follows from
the 2-round impossibility of fair MPC for honest majority in the CRS model
[37,38,40]. Accounting for the fact that these existing results do not rule out the
possibility of 2-round (god|ua)-BoBW MPC for (t = 1, s > t, n ≥ 4), we present
a unified proof that works even for s > t, for all values of t (including t = 1). Our
proof approach deals with adversarial strategies that shuffle between the honest
and dishonest majority setting, highlighting the challenge of designing protocols
that simultaneously provide different guarantees for different settings. This is in
contrast to the existing lower bounds of [37,38,40] which deal only with honest
majority setting and single security notion of fn. Lastly, we demonstrate why
our proof breaks down in the presence of PKI. Indeed, we construct a 2-round
(god|ua)-BoBW protocol assuming CRS and PKI in this work.

Theorem 4. Let n, t, s be such that t + s < n and t < n/2. There exist func-
tions f for which there is no two-round protocol in the CRS model computing f
that simultaneously realizes– (1) Fgod when t < n/2 parties are corrupted (2)
Fua when s < n parties are corrupted.

74 A. Patra et al.

Proof. We prove the theorem for n = 4 parties with t = 1 and s = 2. The result
then can be extended for higher values of n in a natural manner (elaborated in
the full version). Let P = {P1, P2, P3, P4} denote the set of 4 parties and A may
corrupt at most two among them. We prove the theorem by contradiction. We
assume that there exists a 2-round (god|ua) BoBW protocol π in the CRS model
that can compute the function f(x1, x2, x3, x4) defined below for Pi’s input xi:
f(x1, x2, x3, x4) = 1 if x1 = x2 = 1; 0 otherwise. By assumption, π achieves god
when t = 1 parties are corrupt and ua security when s = 2 parties are corrupt
(satisfying feasibility criteria t + s < n).

At a high level, we discuss three adversarial strategies A1,A2 and A3 of A.
While both A1 and A3 deal with t = 1 corruption with the adversary corrupt-
ing P1, A2 involves s = 2 corruptions where the adversary corrupts {P3, P4}.
We consider Ai strategy as being launched in execution Σi (i ∈ [3]) of π. The
executions are assumed to be run for the same input tuple (x1, x2,⊥,⊥) and
the same random inputs (r1, r2, r3, r4) of the parties. (Same random inputs are
considered for simplicity and without loss of generality. The same arguments
hold for distribution ensembles as well.) Our executions and adversarial strate-
gies are sequenced in the order of increasingly more non-cooperating malicious
adversaries. Yet, keeping the views of a certain party between two consecutive
executions same, we are able to conclude the party would output the correct
value even in the face of stronger malicious behaviour. Finally, we reach to the
final execution Σ3 where we show that a party can deduce the output in the end
of Round 1 itself. Lastly, we show a strategy for the party to explicitly breach
the input privacy of one of the input-contributing parties.

We assume that the communication done in the second round of π is via
broadcast alone. This holds without loss of generality since the parties can
perform point-to-point communication by exchanging random pads in the first
round and then use these random pads to unmask later broadcasts. We use the
following notation: Let p1i→j denote the pairwise communication from Pi to Pj in
round 1 and br

i denote the broadcast by Pi in round r, where r ∈ [2], {i, j} ∈ [4].
These values may be function of CRS as per the working of the protocol. V�

i

denotes the view of party Pi at the end of execution Σ� (� ∈ [3]) of π. Below we
describe the strategies A1,A2 and A3.

A1: A corrupts P1 here. P1 behaves honestly towards P2 in Round 1, i.e. sends
the messages p11→2, b

1
1 as per the protocol. However P1 does not communi-

cate privately to {P3, P4} in Round 1. In Round 2, P1 behaves honestly as
per the protocol.

A2: A corrupts {P3, P4} here. {P3, P4} behave honestly in Round 1 of the proto-
col. In Round 2, Pk (k ∈ {3, 4}) acts as per the protocol specification when
no private message from P1 is received in Round 1. Specifically, suppose Pk

did not receive p11→k in Round 1. Let b2k denote the message that should be
sent by Pk as per the protocol in Round 2 in such a scenario. Then as per
A2, corrupt Pk sends b2k in Round 2.

On the Exact Round Complexity of BoBW Multi-party Computation 75

A3: Same as in A1 and in addition– during Round 2, P1 simply remains silent i.e.
waits to receive the messages from other parties, but does not communicate
at all.

Next we present the views of the parties in Σ1, Σ2 and Σ3 in Table 2. Here,
b2k (k ∈ {3, 4}) denotes the message that should be sent by Pk according to the
protocol in Round 2 in case Pk did not receive any private communication from
P1 in Round 1.

Table 2. Views of P1, P2, P3, P4 in Σ1, Σ2, Σ3

Σ1 Σ2 Σ3

V1
1 V1

2 V1
3 V1

4 V2
1 V2

2 V2
3 V2

4 V3
1 V3

2 V3
3 V3

4

Input (x1, r1) (x2, r2) r3 r4 (x1, r1) (x2, r2) r3 r4 (x1, r1) (x2, r2) r3 r4

R1 p12→1,
p13→1

p11→2, p
1
3→2, –, p12→3, –, p12→4, p12→1, p

1
3→1 p11→2, p

1
3→2, p11→3, p

1
2→3, p11→4, p

1
2→4, p12→1, p

1
3→1 p11→2, p

1
3→2, –, p12→3, –, p12→4,

p14→1, p14→2, p14→3, p13→4, p14→1, p14→2, p14→3, p13→4, p14→1, p14→2, p14→3, p13→4,

b12, b
1
3,

b14

b11, b
1
3, b

1
4 b11, b

1
2, b

1
4 b11, b

1
2, b

1
3 b12, b

1
3, b

1
4 b11, b

1
3, b

1
4 b11, b

1
2, b

1
4 b11, b

1
2, b

1
3 b12, b

1
3, b

1
4 b11, b

1
3, b

1
4 b11, b

1
2, b

1
4 b11, b

1
2, b

1
3

R2 b22, b
2
3,

b24

b21, b
2
3, b

2
4 b21, b

2
2, b

2
4 b21, b

2
2, b

2
3 b22, b

2
3, b

2
4 b21, b

2
3, b

2
4 b21, b

2
2, b

2
4 b21, b

2
2, b

2
3 b22, b

2
3, b

2
4 –, b23, b

2
4 –, b22, b

2
4 –, b22 b23

We now prove a sequence of lemmas to complete our proof. Let y denote the
output computed as per the inputs (x1, x2) provided by the honest P1 and P2.
Let q = 1 − negl(κ) denote the overwhelming probability with which security of
π holds, where the probability is defined over choice of setup and the random
coins used by the parties.

Lemma 3. The view of P2 is the same in Σ1 and Σ2 and it outputs y in both
with overwhelming probability.

Proof. We observe that as per both strategies A1 and A2, P2 receives com-
munication from P1, P3, P4 as per honest execution in Round 1. In Round 2,
according to A1, corrupt P1 did not send private messages to P3 and P4 who
therefore broadcast b23 and b24 respectively as per protocol specification. On the
other hand, according to A2, corrupt P3 and corrupt P4 send the same messages
respectively as per protocol specification for case when P3, P4 receive no private
message from P1 in Round 1. It is now easy to check (refer Table 2) that V1

2 = V2
2.

Now, since Σ1 involves t = 1 corruption, by assumption, π must be robust (with
overwhelming probability q) and V1

2 must lead to output computation, say of
output y′. Due to view equality, P2 in Σ2 must also output y′ with probability
q. In Σ2, P1 and P2 are honest and their inputs are x1 and x2 respectively. Due
to correctness of π (which holds with overwhelming probability q) during Σ2, it
must then hold that y′ = y i.e. the output computed based on V2

2 is according
to honest P1’s input x1 during Σ2, with overwhelming probability q× q = q2. ��
Lemma 4. The view of P1 is the same in Σ2 and Σ3 and it outputs y in both,
with overwhelming probability.

76 A. Patra et al.

Proof. An honest P2 has the same view in both Σ1 and Σ2 and outputs y with
overwhelming probability as per Lemma 3. As π achieves ua (with probability q)
in the presence of s = 2 corruptions, when P2 learns the output in Σ2, P1 must
learn y in Σ2 with overwhelming probability q2×q = q3. We now show that P1’s
view in Σ2 and Σ3 are the same and so it outputs y in Σ3 with overwhelming
probability q3. First, it is easy to see that the Round 1 communication towards
P1 is as per honest execution in both Σ2, Σ3. Next, recall that as per A2, both
corrupt {P3, P4} send messages in Round 2 according to the scenario when they
didn’t receive any private communication from P1 in Round 1. A similar message
would be sent by honest {P3, P4} in Σ3 who did not receive private message from
corrupt P1 as per A3. Finally, since corrupt P1 behaved honestly to P2 in Round
1 of Σ3 as per A3, the Round 2 communication from P2 is similar to that in
execution Σ2. It is now easy to verify (refer Table 2) that V2

1 = V3
1 from which

output y can be computed. ��
Lemma 5. P2 in Σ3 should learn the output y by the end of Round 1, with
overwhelming probability.

Proof. Firstly, it follows directly from Lemma 4 and the assumption that proto-
col π is robust against t = 1 corruption that all parties including P2 must learn
output y at the end of Σ3 with overwhelming probability q3 × q = q4. Next, we
note that as per strategy A3, P1 only communicates to P2 in Round 1. We argue
that the second round communication from P3, P4 does not impact P2’s output
computation as follows: we observe that the output y depends only on (x1, x2).
Clearly, Round 1 messages of P3, P4 does not depend on x1. Next, since there is
no private communication to P3, P4 from P1 as per strategy A3, the only com-
munication that can possibly hold information on x1 and can impact the round
2 messages of P3, P4 is b11. However, since this is a broadcast message, P2 also
holds this by the end of Round 1 itself. Thus, P2 must be able to compute the
output y at the end of Round 1.

In more detail, P2 can choose randomness r3, r4 on behalf of P3, P4 to locally
emulate their following Round 1 messages {p13→2, p

1
4→2, p

1
3→4, p

1
4→3, b

1
3, b

1
4}. Next,

P2 can now simulate P3’s Round 2 message b23 which is a function of its view
comprising of {p12→3, p

1
4→3, b

1
1, b

1
2, b

1
4} (all of which are available to P2, where b11

was broadcast by P1 in Round 1). Similarly, P2 can locally compute P4’s Round
2 message b24. We can thus conclude that P2’s view at the end of Σ3 comprising
of {p11→2, p

1
3→2, p

1
4→2, b

1
1, b

1
3, b

1
4, b

2
3, b

2
4} can be locally simulated by him at the

end of Round 1 itself from which the output y can be computed. ��
Lemma 6. A corrupt P2 violates the privacy property of π.

Proof. The adversary corrupting P2 participates in the protocol honestly by
fixing input x2 = 0. Since P2 can get the output at the end of Round 1 with
overwhelming probability (Lemma 5), it must be true that P2 can evaluate f
locally by plugging in any value of x2. Now a corrupt P2 can plug in x2 = 1
locally and learn x1 (via the output x1 ∧ x2) with overwhelming probability. In
the ideal world, corrupt P2 must learn nothing beyond the output 0 as it has

On the Exact Round Complexity of BoBW Multi-party Computation 77

participated in the protocol with input 0. But in the execution of π (in which P2

participated honestly with input x2 = 0), P2 has learnt x1 with overwhelming
probability. This is a breach of privacy as P2 learns x1 regardless of his input. ��

Hence, we have arrived at a contradiction, completing proof of Theorem 4.��
We draw attention to the fact that Lemma 5 would not hold in the pres-

ence of any additional setup such as PKI. With additional setup, P3, P4 may
possibly hold some private information (such as their secret key in case of PKI
used to decode P1’s broadcast message in Round 1) that is not available to P2.
Due to this reason, we cannot claim that P2 can emulate Round 2 messages of
{P3, P4} locally at the end of Round 1. However, this holds in case of CRS as
the knowledge of CRS is available to all parties at the beginning of the protocol.

5 Upper Bounds for (god|ua)-BoBW

In this section, we present three (god|ua)-BoBW MPC protocols, assuming t+s <
n which is the feasibility condition for such protocols [20] consuming– a) 3-rounds
with CRS b) 2-rounds with an additional PKI setup c) 5-rounds in plain model.
The first two are round-optimal in light of the lower bound of Sect. 4 and [32]
respectively. The third construction is nearly round-optimal (falls just one short
of the 4-round lower bound of [33]). Among our upper bounds, the construction
in the plain model is considerably more involved and uses several new tricks in
conjugation with existing techniques.

5.1 (god|ua)-BoBW MPC with Public and Private Setup

To arrive at the final destination, the roadmap followed is: (i) A 2-round MPC
achieving ua security is compiled to a 3-round (god|ua)-BoBW MPC protocol,
both against a weaker semi-malicious adversary. With the additional provision
of PKI, this compiler can be turned to a round-preserving one. (ii) The semi-
malicious (god|ua)-BoBW MPC protocols are compiled to malicious ones in CRS
setting via the known round-preserving compiler of [51] (using NIZKs). All the
involved and resultant constructions are in broadcast-only setting. The proto-
col just with CRS tightly upper bounds the 3-round lower bound presented in
Section 4, which accounts for both pair-wise and broadcast channels. The proto-
col with additional PKI setup works in 2 rounds, displaying the power of PKI and
that our lower bound of 3-rounds in Theorem 4 breaks down in the presence of
PKI. Yet, this construction is round optimal, in light of the known impossibility
of 1-round MPC [32].

5.1.1 3-Round (god|ua)-BoBW MPC in Semi-malicious Setting
Here, we present a generic compiler that transforms any 2-round MPC protocol
πua.sm achieving ua security into a 3-round broadcast-only (god|ua)-BoBW MPC
protocol πbw.god.sm assuming t + s < n. Our compiler borrows techniques from
the compiler of [11] which is designed for the honest majority setting and makes

78 A. Patra et al.

suitable modifications to obtain BoBW guarantees. Recall that a semi-malicious
adversary needs to follow the protocol specification, but has the liberty to decide
the input and random coins in each round. Additionally, the parties controlled by
the semi-malicious adversary may choose to abort at any step. The underlying
and the resultant protocol use broadcast as the only medium of communication.

To transform πua.sm to guarantee BoBW security, the compiler banks on the
idea of giving out the Round 2 message of πua.sm in a way that ensures god in
case of honest majority. The dishonest majority protocols usually do not provide
this feature even against a single corruption, let alone a minority. Mimicking the
Round 1 of πua.sm as is, πbw.god.sm achieves this property by essentially giving out
a secret sharing of the Round 2 messages of πua.sm with a threshold of s. When
at most t parties are corrupt, the set of s + 1 honest parties pool their shares to
reconstruct Round 2 messages of πua.sm and compute the output robustly as in
πua.sm. This idea is enabled by encoding (i.e. garbling) the next message functions
of the second round of πua.sm and secret-sharing their encoding information using
a threshold of s in Round 2 and reconstructing the appropriate input labels in
the subsequent round. The next-message circuit of a party Pi hard-codes Round
1 broadcasts of πua.sm, Pi’s input and randomness and the default input and ran-
domness of all the other parties. It takes n flags as input, the jth one indicating
the alive/non-alive status of Pj . Pj turning non-alive (aborting) translates to
the jth flag becoming 0 in which case the circuit makes sure Pj ’s default input
is taken for consideration by internally recomputing Pj ’s first round broadcast
and subsequently using that to compute the Round 2 message of Pi. Since the
flag bits become public by the end of Round 2 (apparent as broadcast is the only
mode of communication), the parties help each other by reconstructing the cor-
rect label, enabling all to compute the garbled next-message functions of all the
parties and subsequently run the output computation of πua.sm. The agreement
of the flag bits further ensures output computation is done on a unique set of
inputs. The transfer of the shares in broadcast-only setting is enabled via setting
up a (public key, secret key) pair in the first round by every party. Broadcast-
ing the encrypted shares emulates sending the share privately. This technique
of garbled circuits computing the augmented next-message function (taking the
list of alive (non-aborting) parties as input) followed by reconstruction of the
appropriate input label was used in the work of [11] for the honest majority
setting. The primary difference in our compiler is with respect to the thresh-
old of the secret-sharing of the labels, to ensure BoBW guarantees. The formal
description of protocol πbw.god.sm, its security and correctness proofs appear in
the full version. We only state the theorems for correctness and security below.

Theorem 5. Protocol πbw.god.sm is correct, except with negligible probability.

Theorem 6. Let (n, s, t) be such that s + t < n. Let πua.sm realises Fua for upto
n−1 semi-malicious corruptions. Then protocol πbw.god.sm realises– (i) Fgod when
at most t < n/2 parties are corrupt and (ii) Fua when at most s < n parties are
corrupt, semi-maliciously in both cases. It takes 3 rounds, assuming that πua.sm

takes 2 rounds.

On the Exact Round Complexity of BoBW Multi-party Computation 79

5.1.2 2-Round (god|ua)-BoBW MPC in Semi-malicious Setting
The compiler of the previous section can be made round preserving by assuming
pair-wise channels or alternately, PKI. The main difference lies in preponing the
actions of Round 2 of πbw.god.sm to Round 1, by exploiting the presence of pri-
vate channels or PKI. We describe these extensions that can be used to obtain a
2-round semi-malicious (god|ua)-BoBW MPC assuming pair-wise channels (pro-
tocol φbw.god.sm) or alternately, PKI (protocol ψbw.god.sm) in the full version.

5.1.3 The Upper Bounds with Public and Private Setup
The 2-round semi-malicious broadcast-only protocol of [30,31] can be plugged
in as πua.sm in our compilers from previous sections to directly yield a 3-round
broadcast-only protocol πbw.god.sm, 2-round protocol φbw.god.sm that uses both
broadcast and pairwise-private channels and 2-round broadcast-only protocol
ψbw.god.sm assuming PKI, all in the semi-malicious setting. Next, the compiler
of [51] that upgrades any broadcast-only semi-malicious protocol to maliciously-
secure by employing NIZKs, can be applied on πbw.god.sm and ψbw.god.sm to yield
a 3-round (god|ua)-BoBW protocol in the CRS model and a 2-round (god|ua)-
BoBW protocol given both CRS and PKI. Note that the compiler of [51]
works only for broadcast-only protocols and cannot be used to boost security of
φbw.god.sm to malicious setting (details appear in full version). Assumption wise,
our upper bound constructions rely on 2-round semi-malicious oblivious transfer
and NIZK in the common random/reference string model upon using the pro-
tocols of [30,31] to realize πua.sm. The formal description of the (god|ua)-BoBW
upper bounds with public and private setup appear in the full version. We state
the theorem below.

Theorem 7. Let (n, s, t) be such that s + t < n. Assuming the existence of a 3-
round (resp., 2-round with PKI) broadcast-only semi-malicious (god|ua)-BoBW
MPC and NIZKs, there exists a 3 (resp., 2)-round MPC protocol in the presence
of CRS (resp., CRS and PKI) that simultaneously achieves (i) Fgod when at
most t < n/2 parties are corrupt and (ii) Fua when at most s < n parties are
corrupt, maliciously in both cases.

Security with Identifiability. Since the compiler of [51] uses NIZKs to prove
correctness of each round, it offers identifiability. Thus our maliciously-secure
(god|ua)-BoBW protocols achieve the stronger notion of identifiable abort in
case of dishonest majority, with no extra assumption. A minor observation is
that we can replace the last round broadcast with point-to-point communication
at the expense of relaxing ua to sa security in the dishonest majority setting.

5.2 Upper Bound for (god|ua)-BoBW MPC in Plain Model

In this section, we present a 5-round (god|ua)-BoBW protocol in the plain model.
For our construction, we resort to the compiler of [31] that transforms any
generic (k − 1)-round delayed-semi-malicious MPC protocol to a k-round mali-
cious MPC protocol for any k ≥ 5. Our 5-round construction comes in two steps:

80 A. Patra et al.

a) first, we show that our 3-round semi-malicious protocol πbw.god.sm (described
in Sect. 5.1.1) is delayed-semi-maliciously secure (refer full version for proof) and
then b) we plug in this 3-round BoBW protocol in a modified compiler of [31] that
carries over the BoBW guarantees, while the original compiler works for security
with abort. Our final 5-round compiled protocol faces several technical difficul-
ties in the proof, brought forth mainly by the need to continue the simulation in
case the protocol must result in god, which needs deep and non-trivial redres-
sals. The techniques we use to tackle the challenges in simulation are also useful
in constructing a 4-round (god|ua)-BoBW protocol based on sub-exponentially
secure trapdoor permutations and ZAPs. We give a sketch of this construction in
the full version (built upon the protocol of [53]) as a step towards resolving the
open question of proving the impossibility or alternately constructing a 4-round
(god|ua)-BoBW protocol under polynomial-time assumptions.

5.2.1 The Compiler of [31]
Substituting k = 5, we recall the relevant details of the compiler of [31]
that transforms a 4-round delayed-semi-malicious protocol φdsm to a 5-round
maliciously-secure protocol π achieving security with abort. The tools used in
this compiler appears in Fig. 1. Each party commits to her input and randomness
using a 2-round statistically binding commitment scheme Com in the first two
rounds. The four rounds of the delayed-semi-malicious protocol φdsm are run as
it is in Round 1, 2, 4 and 5 respectively (Round 3 is skipped) with two additional
sets of public-coin delayed-input witness indistinguishable proofs (WI). The first
set of proofs (WI1) which is completed by Round 4, is associated with the first 3
rounds of φdsm. In addition to proving honest behaviour in these rounds, this set
of proofs enables the simulator of the malicious protocol to extract the inputs
of the corrupt parties, in order to appropriately emulate the adversary for the
delayed-semi-malicious simulator in the last but one round. The second set of
proofs (WI2) which is completed by Round 5, is associated with proving honest
behaviour in all rounds of φdsm. To enable the simulator to pass the WI proofs
without the knowledge of the inputs of the honest parties, it is endowed with
a cheat route (facilitated by the cheating statement of the WI proof, while the
honest statement involves proving honest behaviour wrt inputs committed via
Com) which requires the knowledge of the trapdoor of the corrupt parties; which
the simulator can obtain by rewinding the last 2 rounds of a trapdoor-generation
protocol (Trap) run in the first 3 rounds of the final construction. To enable this
cheat route of the simulator, the compiler has an additional component, namely
4-round non-malleable commitment NMCom run in Rounds 1–4. We refer to the
full version for further details of the compiler.

Next, we give an overview of the simulator S (details appear in [31]) for the 5-
round compiled protocol π that uses the simulator Sφ of the underlying 4-round
protocol φdsm. To emulate the ideal-world adversary corrupting parties in set C,
S invokes the malicious adversary Aπ and simulates a real execution of π for Aπ

by acting on behalf of the honest parties in set H. Recall that the delayed-semi-
malicious security of φdsm guarantees that it is secure against an adversary Aφ

On the Exact Round Complexity of BoBW Multi-party Computation 81

Fig. 1. Tools used in the compiler of [31]

who can choose to behave arbitrarily in the protocol as long as it writes a valid
witness (which consists of an input randomness pair ({xi, ri}i∈C) on behalf of
all corrupt parties) on the witness tape of the simulator Sφ in the penultimate
round such that the witness (x, r) can justify all the messages sent by him. In
order to avail the services of Sφ, S needs to transform the malicious adversary
Aπ to a delayed-semi-malicious adversary Aφ i.e. it needs a mechanism to write
(x, r) on the witness tape of Sφ. This is enabled via extraction of witness i.e.
{xi, ri}i∈C from the WI1 proofs sent by Aπ as the prover via rewinding its last
two rounds (Round 3, 4 of π).

Apart from the above set of rewinds for extraction of corrupt parties’ inputs,
another set of rewinds is required for the following reason: Consider messages of
honest parties simulated by Sφ that are used by S to interact with Aπ during the
execution of π. Here, S cannot convince Aπ in the two sets of WI proofs that these
messages are honestly generated. Hence, he opts for the route of the cheating
statement of the WI proofs which requires the knowledge of the trapdoor of the
corrupt parties. The trapdoor of a party, say Pi consists of two valid message-
signature pairs with respect to the verification key of Pi (described in Fig. 1).
The simulator extracts the trapdoor of parties in C by rewinding the adversary
Aπ in Rounds 2 and 3 till he gets an additional valid message-signature pair. The
trapdoor has been established this way to ensure that only the simulator (and
not the adversary) is capable of passing the proofs via the cheating statement.

Finally, we point that the two sets of rewinds (Round 2–3 and Round 3–4
of π) can be executed by S while maintaining that the interaction with Sφ is
straight-line since Round 3 of the compiled protocol is ‘dummy’ i.e. does not

82 A. Patra et al.

involve messages of φdsm. This ‘dummy’ round is crucial to avoid rewinding of
messages in φdsm. Since there are no messages of φdsm being sent in Round 3, S
can simply replay the messages of φdsm (obtained via Sφ) to simulate Round 2
and Round 4 of π during the rewinds.

5.2.2 Our 5-round BoBW Construction
Our final goal of a (god|ua)-BoBW protocol πbw.god.plain is obtained by apply-
ing the compiler of [31] to our delayed-semi-malicious-secure (god|ua)-BoBW
protocol πbw.god.sm (described in Sect. 5.1.1) with slight modifications. Broadly
speaking, to preserve the BoBW guarantees from semi-malicious to malicious
setting upon applying the compiler, the malicious behaviour of corrupt Pi in the
compiled protocol is translated to an analogous scenario when semi-malicious Pi

aborts (stops communicating) in the underlying protocol πbw.god.sm. Towards this,
we make the following modification: Recall from the construction of πbw.god.sm

that each party Pi is unanimously assigned a boolean indicator i.e. flagi by the
remaining parties which is initialized to 1 and is later set to 0 if Pi aborts (stops)
in the first two rounds. Accounting for malicious behavior, we now require the
value of flagi to be decided based on not just Pi’s decision to abort in a particular
round but also on whether he misbehaves in the publicly-verifiable Trap protocol
or WI proofs. Specifically, if Pi misbehaves in Trap or the first set of proofs WI1

with Pi as prover fails, flagi is set to 0 (analogous to Pi aborting in Round 1 or
2 of πbw.god.sm). Further, if the second set of proofs WI2 with Pi as prover fails,
then the last round message of Pi is discarded (analogous to Pi aborting in last
round of πbw.god.sm).

Next, we point that in our compiled protocol, the 3 rounds of the
underlying semi-malicious protocol πbw.god.sm are run in Rounds 1, 4 and 5
respectively. As opposed to compiler of [31] which needed a single ‘dummy’
round on top of the delayed-semi-malicious protocol, we face an additional
simulation technicality (elaborated in the next section) that demands two
‘dummy’ rounds. This could be enabled while maintaining the round complex-
ity of 5, owing to our 3 (and not 4) round delayed semi-malicious protocol.

Table 3. πbw.god.plain

πbw.god.sm Com Trap NMCom WI1 WI2

Round 1 R1 R1 R1 R1 R1

Round 2 R2 R2 R2 R2 R1

Round 3 R3 R3 R3 R2

Round 4 R2 R4 R4 R3

Round 5 R3 R4

Furthermore, as described earlier, in
order to simulate the WI proofs on
behalf of an honest prover towards
some corrupt verifier Pi, the simula-
tor requires the knowledge of the trap-
door of Pi which would be possible
only if Pi is alive (has not aborted)
during the rounds in which trapdoor
extraction occurs i.e. Round 2 and
Round 3. While the simulator of [31] simply aborts incase any party aborts,
the simulator of our BoBW protocol cannot afford to do so as god must be
achieved even if upto t < n/2 parties abort. We handle this by adding a sup-
plementary condition in our construction, namely, a prover needs to prove the
WI proofs only to verifiers who have been alive until the round in consideration.

On the Exact Round Complexity of BoBW Multi-party Computation 83

Fig. 2. The Modified Compiler for (god|ua)-BoBW MPC (Part 1)

This completes the description of the modifications of our compiler over [31].
The round-by-round interplay of the different components is given in Table 3.
We present our 5-round (god|ua)-BoBW MPC protocol πbw.god.plain (incorporat-
ing the above modifications) in the plain model in Fig 2-3.

5.2.3 Proof-Sketch for 5-round (god|ua)-BoBW Protocol
The simulator for the compiler of [31] runs in different stages. Plugging it for
our 5-round (god|ua)-BoBW construction with appropriate modifications, we
present a high-level overview of the simulation. Let Sbw.god.plain and Sbw.god.sm

denote the simulators corresponding to πbw.god.plain and the underlying delayed
semi-malicious protocol πbw.god.sm respectively. Stage 1 involves running the first
three rounds with the following changes compared to the real-execution of the
protocol: a) Commit to 0 in Com instances (run in Round 1, 2) involving hon-
est party as committer. b) Invoke the simulator for the semi-malicious protocol,

84 A. Patra et al.

Fig. 3. The Modified Compiler for (god|ua)-BoBW MPC (Part 2)

Sbw.god.sm to generate the first message of πbw.god.sm in Round 1 on behalf of hon-
est parties. The rest of the actions in Round 1–3 on behalf of honest parties are
emulated by Sbw.god.plain as per protocol specifications. Note that the simulator
wrt compiler in [31] proceeds beyond the first stage only when the adversary did
not cause an abort on behalf of any corrupt party in Stage 1. Else, it aborts.
This works out because their protocol promises security with abort and hence,
simply terminates if a party aborts. However our protocol, in case of honest
majority, promises god with the output being computed on the actual input of
the parties who have been alive till last but one round. To accommodate this,
Sbw.god.plain cannot simply afford to terminate in case a corrupt party aborts. It
needs to continue the simulation with respect to corrupt parties who are alive,
which demands rewinding. It can thus be inferred that Sbw.god.plain must always

On the Exact Round Complexity of BoBW Multi-party Computation 85

proceed to rewinds unless all the corrupt parties are exposed by adversary in
Stage 1.

The second and the fourth stage, in particular, are concerned with rewinding
of the adversary to enable Sbw.god.plain to extract some information. In Stage 2, the
adversary is reset to the end of Round 1 and Rounds 2, 3 are rewound in order to
enable Sbw.god.plain to extract trapdoor of corrupt parties. In more detail, consider
Trapj→i executed between corrupt sender Pj and honest Pi wrt verification key
vkj→i. Now, Sbw.god.plain acting on behalf of Pi computes the trapdoor of Pj wrt
vkj→i to be two message-signature pairs constituted by one obtained in Stage
1 and the other as a result of rewinding in Stage 2 (note that both signatures
are wrt vkj→i sent in Round 1 of Trapj→i; rewinds involve only Round 2, 3). To
enable continuation of the simulation after Stage 2, which requires the knowledge
of the trapdoors of corrupt parties who are alive, the logical halt condition for
the rewinds is: stop when you have enough! This translates to- stop at the �th

rewind if a valid trapdoor has been obtained for the set of corrupt parties alive
across the �th rewind. Since the �th (last) rewind is expected to provide one valid
(m,σ) pair (i.e. message, signature pair) out of two required for the trapdoor,
all that is required is for the corrupt party to have been alive across at least
one previous rewind. Let the set of parties alive across ith rewind be denoted by
Ai+1 (A1 represents the set of parties that were alive in the execution preceeding
the rewinds i.e. after Stage 1), then the condition formalizes to: halt at rewind
� if A�+1 ⊆ A1 ∪ · · · ∪ A�.

While this condition seems appropriate, it leads to the following subtle issue.
The malicious adversary can exploit this stopping condition by coming up with
a strategy to choose the set of aborting and the alive parties (say, according
to some unknown distribution D pre-determined by the adversary) such that
the final set of alive parties A in the transcript output by the simulator (when
the rewinds halt) will be biased towards the set of parties that were alive in
the earlier rewinds. (Ideally the distribution of the set of alive parties when
simulator halts should be identical to D). This would lead to the view output
by the simulator being distinguishable from the real view. A very similar subtle
issue appears in zero-knowledge (ZK) protocol of [52] - While the details of this
issue of [52] appear in the full version, we give a glimpse into how their scenario is
analogous to ours below. Consider a basic 4-round ZK protocol with the following
skeleton: the verifier commits to a challenge in Round 1 which is subsequently
decommitted in Round 3. The prover responds to the challenge in Round 4. At a
very high-level, the protocol of [52] follows a cut-and-choose paradigm involving
N instances of the above basic protocol. Here, the verifier chooses a random
subset S ⊂ [N] of indices and decommits to the challenges made in those indices
in Round 3. Subsequently, the prover completes the ZK protocol for instances
with indices in S. The simulator for the zero-knowledge acting on behalf of the
honest prover involves rewinds to obtain ‘trapdoors’ corresponding to the indices
in S. However, note that the verifier can choose different S in different rewinds.
Therefore, the simulator is in a position to produce an accepting transcript and
stop at the �th rewind only when it has trapdoors corresponding to all indices in

86 A. Patra et al.

S chosen by the adversary during the �th rewind. However, if the simulation is
stopped at the execution where the above scenario happens for the ‘first’ time,
their protocol suffers an identical drawback as ours. In particular, the malicious
verifier can choose the set of indices S in a manner that the distribution of
the views output by the simulator is not indistinguishable from the real view.
Drawing analogy in a nutshell, the set of indices chosen by the malicious verifier
is analogous to the set of alive corrupt parties in our context (details in full
version). We thereby adopt the solution of [52] and modify our halting condition
as: halt at rewind � if A�+1 ⊆ A1 ∪ · · · ∪ A� and A�+1 � A1 ∪ · · · ∪ A�−1. [52]
gives an elaborate analysis showing why this simulation strategy results in the
right distribution. With this change in simulation of Stage 2, the simulation of
Stage 3 can proceed identical to [31] which involves simulating the WI1 proofs
via the fake statement using the knowledge of trapdoor.

Proceeding to simulation of Stage 4, we recall that the simulator of [31]
involves another set of rewinds in Stage 4 which requires to rewind Round 3
and 4 to extract the witness i.e. the inputs and randomness of the corrupt
parties from WI1. Similar to Stage 2, two successful transcripts are sufficient
for extraction. Thus, the simulator is in a position to halt at �th rewind if all
the corrupt parties that are alive in Stage 4 have been alive across at least one
previous rewind. Next, following the same argument as Stage 2, it seems like the
halting condition for Stage 2 should work, as is, for Stage 4 too.

With this conclusion, we stumbled upon another hurdle elaborated in this
specific scenario: Recall that the trapdoors extracted for corrupt parties in Stage
2 are used here to simulate the WI1 proofs (as described in Stage 3). It is thereby
required that Sbw.god.plain already has the trapdoors for the corrupt parties that
are alive in Stage 4. Let T be the set of trapdoors accumulated at the end of
Stage 2. Consider a party, say Pi, which stopped participating in Round 3 of the
last rewind � of Stage 2 (Pi was alive till Round 2 of �th rewind). Sbw.god.plain still
proceeds to Stage 4 without being bothered about the trapdoor of Pi (as the
halting condition is satisfied). However in Stage 4, when the adversary is reset
to the end of Round 2 of �th rewind, Pi came back to life again in Round 3. The
simulation of WI1 proofs with Pi as a verifier will be stuck if T does not contain
the trapdoor for Pi. Hence, it is required to accommodate the knowledge of set
T during Stage 4. Accordingly Sbw.god.plain does the following in Stage 4: During
each rewind, if a party (say Pi) whose trapdoor is not known becomes alive
during Round 3, store the signature sent by Pi in Round 3 (as part of Trap)
and go back to Stage 2 rewinds (if Pi’s trapdoor is still unknown). Looking
ahead, storing the signature of Pi ensures that the missing trapdoor of Pi in
T can cause Sbw.god.plain to revert to Stage 2 rewinds at most once (if the same
scenario happens again i.e. Pi becomes alive in Round 3 during Stage 4 rewinds,
then another (message, signature) pair wrt verification key of Pi is obtained
in this rewind by Sbw.god.plain; totaling upto 2 pairs which suffices to constitute
valid trapdoor of Pi which can now be added to T). Else, if T comprises of the
trapdoor of all the corrupt parties that are alive during the rewind of Stage 4,
then adhere to the same halting condition as Stage 2. This trick tackles the above

On the Exact Round Complexity of BoBW Multi-party Computation 87

described problematic scenario, while ensuring that the simulation terminates in
polynomial time and maintains indistinguishability of views.

Before concluding the section, we highlight two important features regarding
the simulation of πbw.god.plain: Despite the simulator Sbw.god.plain reverting to Stage
2 rewinds in some cases (unlike the simulation of [31]), the simulation terminates
in polynomial-time since this can occur at most once per corrupt party (as
argued above). Lastly, since there is a possibility of reverting back to simulation
of Round 2 after simulation of Round 4, we keep an additional ‘dummy’ Round 2
as well (on top of ‘dummy’ Round 3 as in [31]) in our construction. This allows us
to maintain the invariant that Sbw.god.sm is never rewound. To be more specific, as
there are no messages of underlying semi-malicious protocol being sent in Round
2, 3; even if Sbw.god.plain needs to return to Stage 2 from Stage 4 (after Round 4 has
been simulated by obtaining the relevant message from Sbw.god.sm) and resume
the simulation from Stage 2 onwards, the message of πbw.god.sm sent in Round 4
can simply be replayed. We are able to accommodate two dummy rounds while
maintaining the round complexity of 5 owing to the privilege that our delayed-
semi-malicious protocol is just 3 rounds. This completes the simulation sketch.
Assumption wise, our construction relies on 2-round semi-malicious oblivious
transfer (a building block of our 3-round delayed-semi-malicious BoBW MPC
πbw.god.sm). We state the formal theorem below.

Theorem 8. Let (n, s, t) be such that s+ t < n. Let πbw.god.sm realises– (i) Fgod

when at most t < n/2 parties are corrupt and (ii) Fua when at most s < n
parties are corrupt, delayed-semi-maliciously in both cases. Then πbw.god.plain in
the plain model realises– (i) Fgod when at most t < n/2 parties are corrupt and
(ii) Fua when at most s < n parties are corrupt, maliciously in both cases. It
takes 5 rounds, assuming that πbw.god.sm takes 3 rounds.

Proof. The proof which includes the complete description of the simulator, a
discussion about its indistinguishability to the real view and its running time
appears in the full version [54]. ��
Extension to Identifiability. We additionally point that the publicly-verifiable
WI proofs render identifiability to our construction. Thus our maliciously-secure
(god|ua)-BoBW protocol achieves the stronger notion of identifiable abort in case
of dishonest majority, with no extra assumption. A minor observation is that we
can replace the last round broadcast with point-to-point communication in our
(god|ua)-BoBW protocol πbw.god.plain at the expense of relaxing ua to sa security
in the dishonest-majority setting.

References

1. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: ACM STOC (1987)

2. Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Multiparty computations ensuring
privacy of each party’s input and correctness of the result. In: Pomerance, C. (ed.)
CRYPTO 1987. LNCS, vol. 293, pp. 87–119. Springer, Heidelberg (1988). https://
doi.org/10.1007/3-540-48184-2 7

https://doi.org/10.1007/3-540-48184-2_7
https://doi.org/10.1007/3-540-48184-2_7

88 A. Patra et al.

3. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS (1982)
4. Cleve, R.: Limits on the security of coin flips when half the processors are faulty

(extended abstract). In: ACM STOC (1986)
5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation (extended abstract). In:
ACM STOC (1988)

6. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: ACM STOC (1988)

7. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: ACM STOC (1989)

8. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: ACM STOC (1990)

9. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

10. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

11. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 395–424. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 14

12. Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest majority: from
passive to active security at low cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 558–576. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 30

13. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

14. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–
677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 22

15. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 16

16. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 17

17. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.:
Promise zero knowledge and its applications to round optimal MPC. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 459–487. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 16

18. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with
guaranteed output delivery in secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 29

19. Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: ACM STOC (2007)

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/11818175_29

On the Exact Round Complexity of BoBW Multi-party Computation 89

20. Ishai, Y., Katz, J., Kushilevitz, E., Lindell, Y., Petrank, E.: On achieving the
“best of both worlds” in secure multiparty computation. SIAM J. Comput. 40(1),
122–141 (2011)

21. Katz, J., Myers, S., Ostrovsky, R.: Cryptographic counters and applications to
electronic voting. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 78–92. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 6

22. Nair, D.G., Binu, V.P., Kumar, G.S.: An improved e-voting scheme using secret
sharing based secure multi-party computation. CoRR (2015)

23. Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-
line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 416–430. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73458-1 30

24. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: ACM CCS (2017)

25. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: ACM CCS (2018)

26. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: IEEESP (2017)

27. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party compu-
tation for financial data analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 57–64. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32946-3 5

28. Lucas, C., Raub, D., Maurer, U.M.: Hybrid-secure MPC: trading information-
theoretic robustness for computational privacy. In: PODC (2010)

29. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computa-
tion without honest majority and the best of both worlds. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 16

30. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

31. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 17

32. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

33. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 16

34. Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round opti-
mal secure multiparty computation from minimal assumptions. Cryptology ePrint
Archive, Report 2019/216 (2019)

35. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

https://doi.org/10.1007/3-540-44987-6_6
https://doi.org/10.1007/978-3-540-73458-1_30
https://doi.org/10.1007/978-3-540-73458-1_30
https://doi.org/10.1007/978-3-642-32946-3_5
https://doi.org/10.1007/978-3-642-32946-3_5
https://doi.org/10.1007/978-3-642-22792-9_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26

90 A. Patra et al.

36. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: FOCS (2017)

37. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 12

38. Patra, A., Ravi, D.: On the exact round complexity of secure three-party computa-
tion. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
425–458. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 15

39. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure compu-
tation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 18

40. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

41. Patra, A., Ravi, D.: On the exact round complexity of secure three-party compu-
tation. Cryptology ePrint Archive, Report 2018/481 (2018)

42. Patra, A., Ravi, D.: Beyond honest majority: the round complexity of fair
and robust multi-party computation. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11921, pp. 456–487. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34578-5 17

43. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Threshold multi-key fhe and
applications to round-optimal MPC. Cryptology ePrint Archive, Report 2018/580
(2018)

44. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

45. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

46. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

47. Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.-H.: Secure protocol
transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 430–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 15

48. Patra, A., Choudhary, A., Rangan, C.P.: Simple and efficient asynchronous byzan-
tine agreement with optimal resilience. In: PODC (2009)

49. Patra, A., Rangan, C.P.: Communication and round efficient information checking
protocol. CoRR (2010)

50. Ishai, Y., Ostrovsky, R., Seyalioglu, H.: Identifying cheaters without an honest
majority. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 21–38. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 2

51. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/978-3-319-96881-0_15
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-030-34578-5_17
https://doi.org/10.1007/978-3-030-34578-5_17
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-642-28914-9_2
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29

On the Exact Round Complexity of BoBW Multi-party Computation 91

52. Hazay, C., Venkitasubramaniam, M.: Round-optimal fully black-box zero-
knowledge arguments from one-way permutations. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 263–285. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03807-6 10

53. Ciampi, M., Ostrovsky, R.: Four-round secure multiparty computation from general
assumptions. Cryptology ePrint Archive, Report 2019/214 (2019)

54. Patra, A., Ravi, D., Singla, S.: On the exact round complexity of best-of-both-
worlds multi-party computation. Cryptology ePrint Archive, Report 2020/1050
(2020). https://eprint.iacr.org/2020/1050

55. Chaum, D.: The spymasters double-agent problem. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 591–602. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 52

56. Hirt, M., Maurer, U., Zikas, V.: MPC vs. SFE: unconditional and computational
security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 1

57. Halevi, S., Ishai, Y., Kushilevitz, E., Rabin, T.: Best possible information-theoretic
MPC. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
255–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 10

58. Hirt, M., Lucas, C., Maurer, U., Raub, D.: Graceful degradation in multi-party
computation (extended abstract). In: Fehr, S. (ed.) ICITS 2011. LNCS, vol.
6673, pp. 163–180. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20728-0 15

59. Hirt, M., Lucas, C., Maurer, U., Raub, D.: Passive corruption in statistical multi-
party computation. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 129–146.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32284-6 8

60. Hirt, M., Maurer, U., Lucas, C.: A dynamic tradeoff between active and pas-
sive corruptions in secure multi-party computation. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 203–219. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 12

61. Genkin, D., Gordon, S.D., Ranellucci, S.: Best of both worlds in secure compu-
tation, with low communication overhead. In: Preneel, B., Vercauteren, F. (eds.)
ACNS 2018. LNCS, vol. 10892, pp. 340–359. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93387-0 18

62. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, New York
(1990). https://doi.org/10.1007/0-387-34805-0 48

63. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 19

64. Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure
computation with (malicious) physically uncloneable functions. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 702–718. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 41

65. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable
functions in the universal composition framework. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 51–70. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 4

66. Cohen, R., Garay, J., Zikas, V.: Broadcast-optimal two-round MPC. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 828–858. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 28

https://doi.org/10.1007/978-3-030-03807-6_10
https://doi.org/10.1007/978-3-030-03807-6_10
https://eprint.iacr.org/2020/1050
https://doi.org/10.1007/0-387-34805-0_52
https://doi.org/10.1007/0-387-34805-0_52
https://doi.org/10.1007/978-3-540-89255-7_1
https://doi.org/10.1007/978-3-030-03810-6_10
https://doi.org/10.1007/978-3-642-20728-0_15
https://doi.org/10.1007/978-3-642-20728-0_15
https://doi.org/10.1007/978-3-642-32284-6_8
https://doi.org/10.1007/978-3-642-40084-1_12
https://doi.org/10.1007/978-3-319-93387-0_18
https://doi.org/10.1007/978-3-319-93387-0_18
https://doi.org/10.1007/0-387-34805-0_48
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-38348-9_41
https://doi.org/10.1007/978-3-642-22792-9_4
https://doi.org/10.1007/978-3-642-22792-9_4
https://doi.org/10.1007/978-3-030-45724-2_28

MPC with Synchronous Security
and Asynchronous Responsiveness

Chen-Da Liu-Zhang1(B), Julian Loss2, Ueli Maurer1, Tal Moran3,
and Daniel Tschudi4

1 ETH Zurich, Zurich, Switzerland
{lichen,maurer}@inf.ethz.ch

2 University of Maryland, College Park, USA
lossjulian@gmail.com

3 IDC Herzliya, Herzliya, Israel
talm@idc.ac.il

4 Concordium, Zurich, Switzerland
dt@concordium.com

Abstract. Two paradigms for secure MPC are synchronous and asyn-
chronous protocols. While synchronous protocols tolerate more corrup-
tions and allow every party to give its input, they are very slow because
the speed depends on the conservatively assumed worst-case delay Δ of
the network. In contrast, asynchronous protocols allow parties to obtain
output as fast as the actual network allows, a property called responsive-
ness, but unavoidably have lower resilience and parties with slow network
connections cannot give input.

It is natural to wonder whether it is possible to leverage synchronous
MPC protocols to achieve responsiveness, hence obtaining the advan-
tages of both paradigms: full security with responsiveness up to t cor-
ruptions, and extended security (full security or security with unanimous
abort) with no responsiveness up to T ≥ t corruptions. We settle the
question by providing matching feasibility and impossibility results:

– For the case of unanimous abort as extended security, there is an
MPC protocol if and only if T + 2t < n.

– For the case of full security as extended security, there is an MPC
protocol if and only if T < n

2 and T + 2t < n. In particular, setting
t = n

4 allows to achieve a fully secure MPC for honest majority,
which in addition benefits from having substantial responsiveness.

1 Introduction

In the context of multiparty computation (MPC), a set of mutually distrustful
parties wish to jointly compute a function by running a distributed protocol.
The protocol is deemed secure if every party obtains the correct output and if

T. Moran—Supported in part by ISF grant no. 1790/13 and by the Bar-Ilan Cyber-
center.
D. Tschudi—Author was supported by advanced ERC grant MPCPRO.
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 92–119, 2020.
https://doi.org/10.1007/978-3-030-64840-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_4

MPC with Synchronous Security and Asynchronous Responsiveness 93

it does not reveal any more information about the parties’ inputs than what
can be inferred from the output. Moreover, these guarantees should be met even
if some of the parties can maliciously deviate from the protocol description.
Broadly speaking, MPC protocols exist in two regimes of synchrony. First, there
are synchronous protocols which assume that parties share a common clock and
messages sent by honest parties can be delayed by at most some a priori known
bounded time. Synchronous protocols typically proceed in rounds of length Δ,
ensuring that any message sent at the beginning of a round by an honest party
will arrive by the end of that round at its intended recipient. On the upside, such
strong timing assumptions allow to obtain protocols with an optimal resilience
of 1

2n corruptions for the case of full security [2,5,13,20,27,45], and of arbitrary
number of corruptions for the case of security with (unanimous) abort and no
fairness [23,29]. On the downside, especially in real-world networks where the
actual maximal network delay δ is hard to predict, Δ has to be chosen rather
pessimistically, and synchronous protocols fail to take advantage of a fast net-
work.

The second type of protocols that we will study in this work are asynchronous
protocols. Such protocols do not require synchronized clocks or an a priori known
bounded network delay to work properly. As such, they function correctly under
much more realistic network assumptions. Moreover, asynchronous protocols
have the benefit of running at the actual speed of the network, i.e., they run
in time that depends only on δ, but not on Δ; a notion that we shall refer to
as responsiveness [41]. This speed and robustness comes at a price, however: it
can easily be seen that no asynchronous protocol that implements an arbitrary
function can tolerate 1

3n maliciously corrupted parties [6]. We ask the natural
question of whether it is possible to leverage synchronous MPC protocols to also
achieve responsiveness:

Is there a (synchronous) MPC protocol that allows to simultaneously achieve
full security with responsiveness up to t corruptions, and some form of extended
security (full security, unanimous abort) up to T ≥ t corruptions?

We settle the question with tight feasibility and impossibility results:

– For the case where unanimous abort is required as extended security, this is
possible if and only if T + 2t < n.

– For the case where full security is required as extended security, this is possible
if and only if T < n

2 and T + 2t < n.

1.1 Technical Overview of Our Results

The Model. We first introduce a new composable model of functionalities in
the UC framework [11], which captures the guarantees that protocols from both
asynchronous and synchronous worlds achieve in a very general fashion. Our

94 C.-D. Liu-Zhang et al.

model allows to capture multiple distinct guarantees such as privacy, correct-
ness, or responsiveness, each of which is guaranteed to hold for (possibly) differ-
ent thresholds of corruption. In contrast to previous works, we do not capture the
guarantees as protocol properties, but rather as part of the ideal functionality.
This allows to use the ideal functionality as an assumed functionality in further
steps of the composition, without the need to keep track of the properties of the
real-world protocols.

Real World Functionalities. Our protocols work with public-key infrastructure
(PKI) and common-reference string (CRS) as setup. Parties have access to a
synchronized global clock functionality Gclk and a communication network of
authenticated channels with unknown upper bound δ, corresponding to the max-
imal network delay. This value is unknown to the honest parties. Instead, pro-
tocols make use of a conservatively assumed worst-case delay Δ � δ. Within δ,
the adversary can schedule the messages arbitrarily.

Ideal Functionality. In order to capture the guarantees that asynchronous and
synchronous protocols achieve in a fine-grained manner, we describe an ideal
functionality Fhyb which allows parties to jointly evaluate a function. At a high
level, Fhyb is composed of two phases; an asynchronous and a synchronous phase,
separated by some pre-defined time-out. Each party can obtain a unique identi-
cal output in either phase. As in asynchronous protocols, the outputs obtained
during the asynchronous phase are obtained fast, i.e., at a time which depends
on the actual maximal network delay δ, but not on the conservatively assumed
worst-case network delay Δ. Let us describe the guarantees that Fhyb provides.

If there are up to t corruptions, Fhyb achieves full security with responsive-
ness. That is, honest parties obtain a correct and identical output, and honest
parties’ inputs remain private. Moreover, they obtain an output yasynch by a time
proportional to the actual network delay δ. Unavoidably, this means that Fhyb

may ignore up to t inputs from honest parties.
If there are up to T ≥ t corruptions, Fhyb can give output at two different

points in time τ1 ≤ τ2. Either all parties obtain yasynch before time τ1 (there
might be some parties which obtained yasynch in the asynchronous phase), or
all parties obtain the output ysync by time τ2, which is guaranteed to take into
account all inputs from honest parties. For the output ysync, we consider two
versions: Ffs

hyb
which guarantees full security up to T corruptions implying that

ysync is the correct output, and Fua
hyb

which guarantees security with unanimous
abort up to T corruptions, meaning that the adversary can set ysync to ⊥.

We depict in Fig. 1 a time-line showing the point in time at which the honest
parties obtain the output, depending on the number of corruptions.

Black-Box Compiler. We give a generic black-box compiler that combines
an asynchronous MPC protocol with a synchronous MPC protocol and gives a
hybrid protocol that combines beneficial properties from both the synchronous
and asynchronous regime, very roughly in the following way: Using threshold
encryption and assuming 1) a two-threshold asynchronous protocol with full

MPC with Synchronous Security and Asynchronous Responsiveness 95

Fig. 1. The dotted vertical line separates the asynchronous and the synchronous phase.
The orange dot shows the latest point in time when honest parties get output. The
output yasynch takes into account n − t inputs, whereas ysync takes into account all
inputs. Up to t corruptions all parties obtain yasynch fast. In the other case, either all
parties obtain yasynch by τ1, or all parties obtain ysync by τ2, which is the correct output
for Ffs

hyb, and may be ⊥ for Fua
hyb.

security up to t corruptions and security with no termination (correctness and
privacy) up to T ≥ t corruptions, and 2) a synchronous protocol with extended
security (full security or security with unanimous abort) up to T corruptions,
the compiler provides full security with responsiveness up to t corruptions, and
extended security up to T corruptions, for any T + 2t < n.

For the first sub-protocol 1), we show how to modify the asynchronous MPC
protocol by Cohen [18] to obtain the trade-off mentioned above when used in
our aforementioned compiler. We separate the termination threshold from all
other security guarantees. That is, we achieve an asynchronous protocol that
terminates (in a responsive and fully-secure manner) for any t < 1

3n, and provides
security without termination up to T < n − 2t corruptions.

The second sub-protocol 2) can be achieved with known protocols; for T < n
in the case of security with unanimous abort (e.g. [23,29]) and for T < n/2 for
full security (e.g. [2,5,13,20,27,45]).

Compiler Description. We now give an outline of our compiler. At a high level,
the idea of our compiler is to first run an asynchronous protocol until some
pre-defined timeout. Upon timing out, the parties switch to a synchronous com-
putation. If sufficiently many parties are honest, the honest parties obtain their
output at the actual speed of network. The main challenge is to ensure that if
even a single party obtains output during the asynchronous phase, the output
will not be changed during the synchronous phase. This would be problematic for
two reasons: First, because the combined protocol would offer no improvement

96 C.-D. Liu-Zhang et al.

over a standard synchronous protocol in terms of responsiveness; if a party does
not know if the output it obtains during the asynchronous phase will be later
changed during the synchronous phase, then this output is essentially useless to
that party. Therefore, if this were indeed the case, then one could run just the
synchronous part of the protocol. Second, computing two different outputs may
be problematic for privacy reasons, as two different outputs give the adversary
more information about the honest parties’ inputs than what it should be able
to infer. Our solution to this problem is to have the asynchronous protocol out-
put a threshold ciphertext [y] of the actual output y. Prior to running the hybrid
protocol, the parties each obtain a key share di such that k out of n parties
can jointly decrypt the ciphertext by pooling their shares. This way, if we set
k = n−t, where t is the responsiveness threshold, we are ensured that sufficiently
many parties will pool their shares during the asynchronous phase, given that
fewer than t parties are corrupt. Therefore, every honest party should be able
to decrypt and learn the output during the asynchronous phase, thus ensuring
responsiveness. On the other hand, our compiler ensures that if any honest party
gives out its share during the asynchronous phase after seeing the ciphertext [y]
being output by the asynchronous protocol, then the only possible output during
the synchronous phase can be y. Finally, our compiler has a mechanism to detect
whether no honest party has made its share public yet. In this case, we can safely
recompute the result during the synchronous phase of the hybrid protocol, as
we can be certain that the adversary does not have sufficient shares to learn the
output from the asynchronous phase.

Two-Threshold Asynchronous MPC Protocol. Finally, in Sect. 5, we show how
to obtain an asynchronous MPC protocol to achieve trade-offs between termi-
nation and security (correctness and privacy). While many asynchronous MPC
protocols (e.g. [14,15,18,32,43]) can be adapted to the two-threshold setting, we
choose to adapt the protocol in [18] for simplicity.

The protocol in [18] achieves all guarantees simultaneously for the corruption
threshold 1

3n. At a high level, the idea of this protocol is to use a threshold fully
homomorphic encryption scheme (TFHE) with threshold k = 1

3n and let parties
distribute encryption shares of their inputs to each other. Then, parties agree
on a common set of at least 2

3n parties, whose inputs will be taken into account
during the function evaluation. In this step, n Byzantine Agreement protocols
are run. Parties can then locally evaluate the function which is to be computed
on their respective input shares by carrying out the corresponding (homomor-
phic) arithmetic operations on these shares. After this local computation has
succeeded, parties pool their shares of the computation’s result to decrypt the
final output of the protocol. We modify the thresholds in this protocol in the
following manner. Instead of setting k = 1

3n, we set k = 3
4n. Intuitively, assum-

ing a perfect Byzantine Agreement (BA) functionality, this modification has the
effect that the adversary needs to corrupt 3

4n parties to break privacy, but can
prevent the protocol from terminating by withholding decryption shares when-
ever it corrupts more than 1

4n parties. However, one can see that if one realizes

MPC with Synchronous Security and Asynchronous Responsiveness 97

the BA functionality using a traditional protocol with validity and consistency
thresholds 1

3n, the overall statement will only have security 1
3n.

We show how to improve the security threshold T of the protocol by using,
as a sub-component, an asynchronous BA protocol which trades liveness for
consistency without sacrificing validity. Our protocol inherits the thresholds of
the improved BA protocol, achieving any T < n − 2t, where t is the termination
threshold.

1.2 Synchronous Protocols over an Asynchronous Network

We argue that it is not trivial to enhance a synchronous MPC protocol to achieve
responsiveness. Two ways to execute a synchronous protocol over a network with
unknown delay δ are as follows:

Time-Out Based. Perhaps the easiest approach to execute a synchronous pro-
tocol over this network is to model each round using Δ clock ticks, where Δ is
a known upper bound on the network delay. In this case, the output is obtained
at a time which depends on Δ. Note that Δ has to be set high enough to accom-
modate any conditions, and such that any honest party has enough time to
perform its local computation; if an honest party is slightly later than Δ in any
round, it will be considered corrupted throughout the whole computation. In
realistic settings where δ is hard to predict, we will have that Δ � δ. Hence,
any synchronous protocol (even constant-round) is slow.

Notification Based. A well-known approach (see e.g. [39]) to “speed up” a
synchronous protocol is to let the parties simulate a synchronized clock in an
event-based fashion over an asynchronous network. More concretely, the idea is
that each party broadcasts a notification once it finishes a particular round i
and only advances to round i + 1 upon receiving a notification for round i from
all parties. It is not hard to see that this approach does not achieve the respon-
siveness guarantees we aim for. To this end, observe that a single corrupted
party Pj can make all parties wait Δ clock ticks in each round, simply by not
sending a notification in this particular round. Note that parties cannot infer
that Pi is corrupted, unless they wait for Δ clock ticks, because δ is unknown.
Hence, unless there are no corruptions, an approach along these lines can not
ensure responsiveness. In contrast, our protocol guarantees that parties obtain
fast outputs as long as there are up to t corruptions.

1.3 Related Work

Despite being a very natural direction of research, compilers for achieving trade-
offs between asynchronous and synchronous protocol have only begun to be
studied in relatively recent works.

Pass and Shi study a hybrid type of state-machine replication (SMR) proto-
col in [41] which confirms transactions at an asynchronous speed and works in
the model of mildly adaptive malicious corruptions; such corruptions take a short
time to take effect and as such model a slightly weaker adversary than one that

98 C.-D. Liu-Zhang et al.

is fully adaptive. Subsequently, Pass and Shi show a general paradigm for SMR
protocols with optimistic confirmation of transactions called Thunderella [42].
In their work, they show how to achieve optimistic transaction confirmation (at
asynchronous network speed) as long as the majority of some designated commit-
tee and a party called the ‘accelerator’ are honest and faithfully notarize trans-
actions for confirmation. If the committee or the accelerator become corrupted,
the protocol uses a synchronous SMR protocol to recover and eventually switch
back to the asynchronous path of the protocol. Their protocol achieves safety
and liveness against a fully adaptive adversary, but can easily be kept on the
slow, synchronous path forever in this case. Subsequently, Loss and Moran [40]
showed how to obtain compilers for the simpler case of BA that achieve tradeoffs
between responsiveness and safety against a fully adaptive adversary.

The work by Guo et al. [30] introduced a model which weakens classical syn-
chrony. There, the adversary can interrupt the communication between certain
sets of parties, as long as in each round there is a (possibly different) connected
component with an honest majority of the nodes. Although their focus is not on
responsive protocols, the authors include an MPC responsive protocol, based on
threshold FHE for the case of full-security as extended security. Our protocols
differ from theirs in various aspects: 1) In contrast to their protocol, our approach
is conceptually simpler and allows to plug-in any asynchronous and synchronous
protocol in a black-box manner and automatically inherit the thresholds for each
of the guarantees, and the assumptions from each of the protocols. For example,
we can plug-in a synchronous protocol with full security and unanimous abort,
and obtain the corresponding guarantees; one could further consider other types
of guarantees, or design MPC protocols from different types of assumptions
which would all be inherited automatically from our compiler; 2) We phrase all
our results in the UC framework and capture in a very general fashion the guar-
antees that the protocol provides as part of the ideal functionality. This leads
to some differences, e.g. our ideal functionality allows to capture responsiveness
guarantees; also allows to take into account in the computation the inputs from
all parties in some cases.

Further Related Work. Best-of-both worlds compilers for distributed pro-
tocols (in particular MPC protocols) come in many flavours and we are only
able to list an incomplete summary of related work. Goldreich and Petrank [28]
give a black-box compiler for Byzantine agreement which focuses on achieving
protocols which have expected constant round termination, but in the worst
case terminate after a fixed number of rounds. Kursawe [38] gives a protocol for
Byzantine agreement that has an optimistic synchronous path which achieves
Byzantine agreement if every party behaves honestly and the network is well-
behaved. If the synchronous path fails, then parties fall back to an asynchronous
path which is robust to network partitions. However, the overall protocol tol-
erates only 1

3n corrupted parties in order to still achieve safety and liveness. A
recent line of works [7–9] studied protocols resilient to t2 corruptions when run in
a synchronous network and also to t1 corruptions if the network is asynchronous,
for 0 < t1 < 1

3n ≤ t2 < 1
2n. A line of works [3,4,16,44] consider the setting where

MPC with Synchronous Security and Asynchronous Responsiveness 99

parties have a few synchronous rounds before switching to fully asynchronous
computation. Here, one can achieve protocols with better security guarantees
than purely asynchronous ones. Finally, the line of works [24,25,31,34,35] con-
sider different thresholds to achieve more fine-grained security guarantees.

Worth mentioning, are the works of [34,35], which consider MPC protocols
with full security up for an honest majority t, and security with abort for a dis-
honest majority T . Our protocols achieve results in this direction as well, except
that our threshold t includes responsiveness as well. Note that the impossibility
of [35], where it is shown that T + t ≥ n is impossible does not apply to our
work, since we consider a weaker trade-off T + 2t < n. Moreover, the fact that
our threshold t for full security case includes responsiveness as well is essential
to prove that the bound T + 2t < n is tight.

2 Preliminaries

Threshold Encryption Scheme. We assume the existence of a secure public-
key encryption scheme which enables threshold decryption.

Definition 1. A threshold encryption scheme is a public-key encryption scheme
which has the following two additional properties:

– The key generation algorithm is parameterized by (t, n) and outputs (ek, dk) =
Gen(t,n)(1κ), where ek is the public key, and dk = (dk1, . . . , dkn) is the list of
private keys.

– Given a ciphertext c and a secret key share dki, there is an algorithm that
outputs di = DecSharedki(c), such that (d1, . . . , dn) forms a t-out-of-n sharing
of the plaintext m = Decdk(c). Moreover, with t decryption shares {di}, one
can reconstruct the plaintext m = Rec({di}).

Digital Signature Scheme. We assume the existence of a digital signature
scheme unforgettable against adaptively chosen message attacks. Given a signing
key sk and a verification key vk, let Signsk and Vervk the signing and verification
functions. We write σ = Signsk(m) meaning using sk, sign a plaintext m to
obtain a signature σ. Moreover, we write Vervk(m, σ) = 1 to indicate that σ is a
valid signature on m.

3 Model

Notation. We denote by κ the security parameter, P = {P1, . . . , Pn} the set of
n parties and by H the set of honest parties.

3.1 Adversary

We consider a static adversary, who can corrupt up to f parties at the onset of the
execution and make them deviate from the protocol arbitrarily. The adversary
is also computationally bounded.

100 C.-D. Liu-Zhang et al.

3.2 Communication Network and Clocks

We borrow ideas from a standard model for UC synchronous communication
[36,37]. Parties have access to functionalities and global functionalities [12]. More
concretely, parties have access to a synchronized global clock functionality Gclk,
and a network functionality Fδ

net
of pairwise authenticated channels with an

unknown upper bound on the message delay δ.
At a high level, the model captures the two guarantees that parties have in the

synchronous model of communication. First, every party must be activated each
clock tick, and second, every party is able to perform all its local computation
before the next tick. Both guarantees are captured via the clock functionality
Gclk. It maintains the global time τ , initially set to 0, and a round-ready flag
di = 0, for each party Pi. Each clock tick, Gclk sets the flag to di = 1 whenever
a party sends a confirmation (that it is ready) to the clock. Once the flag is set
for every honest party, the clock counter is increased and the flags are reset to
0 again. This ensures that all honest parties are activated in each clock tick.

Functionality Gclk

The clock functionality stores a counter τ , initially set to 0. For each honest party
Pi it stores flag di, initialized to 0.

ReadClock:

1: On input (ReadClock), return τ .
Ready:

1: On input (ClockReady) from honest party Pi set di = 1 and notify the
adversary.

ClockUpdate: Every activation, the functionality runs the following code before

doing anything else:
1: if for every honest party Pi it holds di = 1 then
2: Set di = 0 for every honest party Pi and τ = τ + 1.
3: end if

The UC standard communication network does not consider any delivery
guarantees. Hence, we consider the functionality Fδ

net
which models a complete

network of pairwise authenticated channels with an unknown upper bound δ
corresponding to the real delay in the network. The network is connected to the
clock functionality Gclk. It works in a fetch-based mode: parties need to actively
query for the messages in order to receive them. For each message m sent from Pi

to Pj , Fnet creates a unique identifier idm for the tuple (Tinit, Tend, Pi, Pj , m).
This identifier is used to refer to a message circulating the network in a concise
way. The field Tinit indicates the time at which the message was sent, whereas
Tend is the time at which the message is made available to the receiver. At first,
the time Tend is initialized to Tinit + 1.

MPC with Synchronous Security and Asynchronous Responsiveness 101

Whenever a new message is input to the buffer of Fnet, the adversary is
informed about both the content of the message and its identifier. It is then
allowed to modify the delivery time Tend by any finite amount. For that, it inputs
an integer value T along with some corresponding identifier idm with the effect
that the corresponding tuple (Tinit, Tend, Pi, Pj , m) is modified to (Tinit, Tend +
T, Pi, Pj , m). Moreover, to capture that there is an upper bound on the delay of
the messages, the network does not accept more than δ accumulated delay for
any identifier idm. That is, Fnet checks that Tend ≤ Tinit + δ. Also, observe that
the adversary has the power to schedule the delivery of messages: we allow it to
input delays more than once, which are added to the current amount of delay.
If the adversary wants to deliver a message during the next activation, it can
input a negative delay. We remark, that the traditional model of an asynchronous
network with eventual delivery can be modeled by setting δ = ∞.

Functionality Fδ
net

The functionality is connected to a clock functionality Gclk. It is parameterized by
a positive constant δ (the real delay upper bound only known to the adversary).
It also stores the current time τ and keeps a buffer of messages buffer which
initially is empty.
Each time the functionality is activated it first queries Gclk for the current time
and updates τ accordingly.

Message transmission:

1: At the onset of the execution, output δ to the adversary.
2: On input (Send, i, j, m) from party Pi, Fnet creates a new identifier idm and

records the tuple (τ, τ + 1, Pi, Pj , m, idm) in buffer. Then, it sends the tuple
(Sent, Pi, Pj , m, idm) to the adversary.

3: On input (FetchMessages, i) from Pi, for each message tuple
(Tinit, Tend, Pk, Pi, m, idm) from buffer where Tend ≤ τ , the functionality
removes the tuple from buffer and outputs (k, m) to Pi.

4: On input (Delay, D, id) from the adversary, if there exists a tuple
(Tinit, Tend, Pi, Pj , m, id) in buffer and Tend + D ≤ Tinit + δ, then set
Tend = Tend + D and return (Delay-ok) to the adversary. Otherwise, ignore
the message.

3.3 Ideal World

We introduce ideal functionality Ffs
hyb

(resp. Fua
hyb

) which allows to capture the
guarantees that asynchronous and synchronous protocols for secure function
evaluation offer in a fine-grained manner. The functionality has access to the
global functionality Gclk, and allows parties to evaluate a function f . The idea is
that up to t corruptions, parties have full security and responsiveness. Moreover,
in the case of Ffs

hyb
, if up to t ≤ T < n/2 parties are corrupted, full security

is guaranteed, i.e. all honest parties obtain the correct and identical output,

102 C.-D. Liu-Zhang et al.

and the inputs from honest parties remain secret. The functionality Fua
hyb

is the
same, except that it guarantees security with unanimous abort up to t ≤ T < n
corruptions instead of full security, i.e., honest parties obtain the correct output
or unanimously obtain ⊥.

The number of inputs that the function is guaranteed to take into account
and the time at which it provides output depends the number of corruptions.
The time-out divides the execution into two phases: an asynchronous and a
synchronous phase.

– If there are up to t corruptions, parties are guaranteed to obtain an output at
time τasynch, which depends on δ. This fast output is identical to every party
and is guaranteed to take into account at least n − t inputs, i.e. can ignore
the inputs from up to t honest parties.

– Otherwise, the parties are guaranteed to obtain the same output, but at a
time which depends on Δ. More concretely, there are two latest points in time
at which parties can obtain an output after the time-out occurs: τOD < τOND.
Either all parties obtain the output by τOD, which is guaranteed to take into
account n − t inputs, or all parties obtain output at a later time τOND, which
is guaranteed to take into account all inputs.

The adversary can in addition gain certain capabilities depending on the
amount of corruption it performs. More technically, we introduce a tamper func-
tion Tamper, parametrized by a tuple of thresholds (t, T). This allows to nat-
urally capture the different guarantees for the two corruption thresholds t and
T . Basically, if the number of corruptions is greater than t, the adversary can
prevent the parties to obtain fast outputs. And beyond T , no security guarantee
is ensured, as the adversary learns the inputs from the honest parties and can
choose the outputs as well.

Tamper Function. The ideal functionality is parameterized by a tamper func-
tion, which indicates the adversary’s capabilities depending on the threshold.
We consider two thresholds: T for full security, and t for responsiveness.

Definition 2. We define the ideal functionality with parameters (t, T) if it has
the following tamper function TamperHyb

t,T :

Function TamperHyb

t,T

// Flags indicating violation of c correctness, p privacy, r responsiveness
(c, p, r) = TamperHyb

t,T , where:
– c = 1, p = 1 if and only if |P \ H| > T .
– r = 1 if and only if |P \ H| > t

The ideal functionality has in addition a set of parameters. It contains a
parameter τasynch which models the maximum output delay in the asynchronous
phase, and parameters τOD and τOND which model the output delays for an output

MPC with Synchronous Security and Asynchronous Responsiveness 103

that takes into account n − t inputs, or an output with all the inputs. One can
think of τasynch = O(δ), and τOD < τOND are times which depend on Δ.

In addition, it keeps the following local variables:

– FastOutput indicates if the output contains n − t inputs or all inputs.
– τ keeps the current time.
– τtout is the pre-defined time-out to switch between the two phases.
– sync indicates the phase being executed (asynchronous or synchronous).
– xi, yi the input and output for party Pi.
– wi indicates if the adversary decided to not deliver output yi in the asyn-

chronous phase. The adversary can only use this capability if the number of
corruptions is larger than t.

– I keeps the set of parties whose input are taken into account for the fast
output.

Functionality Ffs
hyb

The functionality is connected to a global clock Gclk.
The functionality is parametrized by δ, τasynch, τOD, τOND, Tamper, τtout and the
function to evaluate f .
The functionality stores variables FastOutput, τ , sync, xi, yi, wi. These variables
are initialized as FastOutput = false, τ = 0, sync = false, xi = ⊥, and
yi = wi = ⊥.
It keeps I = H, where H is the set of honest parties, and a set C = ∅.

Timeout/Clock :

Each time the functionality is activated, query Gclk for the current time and
update τ accordingly.
If τ ≥ τtout, set sync = true. If FastOutput = false, compute y1 = · · · =
yn = f(x1, . . . , xn).

Asynchronous Phase If sync = false do the following:

– At the onset of the execution, output δ and τasynch to the adversary.
– On input (Input, vi, sid) from party Pi:

• If some party has received output, ignore this message. Otherwise, set
xi = vi.

• If xi �= ⊥ for each Pi ∈ I, set each output to yj = f(x′
1, . . . , x′

n), where
x′
i = xi for each Pi ∈ I ∪ (P \ H) and x′

i = ⊥ otherwise.
• Output (Input, Pi, sid) to the adversary.

– On input (GetOutput, sid) from Pi do the following:
• If the output has not been set yet or is blocked, i.e., yi = ⊥ or wi =

aBlocked, ignore this message.
• If τ ≥ τasynch output (output, yi, sid) to Pi and set FastOutput = true.
• Otherwise, output (output, Pi, sid) to the adversary.

Synchronous Phase If sync = true do the following:

104 C.-D. Liu-Zhang et al.

– On input (GetOutput, sid) from party Pi

• If FastOutput = true and τ ≥ τtout + τOD, it outputs (Output, yi, sid)
to Pi.

• If FastOutput = false and τ ≥ τtout + τOND, it outputs (Output, yi, sid)
to Pi.

Adversary

Upon each party corruption, update (c, p, r) = TamperHyb

t,T .
// Core Set and Delivery of Outputs

1: Upon receiving a message (No-Input, P ′, sid) from the adversary, if sync =
false, P ′ is a subset of P of size |P ′| ≤ tr and y1 = · · · = yn = ⊥, set
I = H \ P ′.

2: On input (DeliverOutput, i, sid) from the adversary, if yi �= ⊥ and sync =
false, output (output, yi, sid) to Pi and set FastOutput = true.
// Adversary’s capabilities

3: On input (TamperOutput, Pi, y′
i, sid) from the adversary, if c = 1, set yi =

y′
i.

4: If p = 1, output (x1, . . . , xn) to the adversary.
5: On input (BlockAsynchOutput, Pi, sid) from the adversary, if r = 1 and

sync = false, set wi = aBlocked.

In the version where Fua
hyb

provides security with unanimous abort and no
fairness, the adversary can in addition choose to set the output to ⊥ for all
honest parties and learn the output ysync, in the case FastOutput = false.

4 Compiler

In this section, we present a protocol which realizes the ideal functionality pre-
sented in the previous section. The protocol works with a setup FSetup, where
parties have access to a public-key infrastructure used to sign values, and keys
for a threshold encryption scheme.

The protocol uses a number of sub-protocols:
– ΠZK is a bilateral zero-knowledge protocol which allows a party to prove

knowledge of a witness corresponding to a statement.
– ΠaMPC is an asynchronous MPC protocol that provides full security up to t

corruptions, and security without termination (correctness and privacy) up to
T ≥ t corruptions.

– Πfs
sMPC (resp. Πua

sMPC) is a synchronous MPC protocol with full security (resp.
security with unanimous abort) up to T corruptions.

– ΠsBC is a synchronous broadcast protocol secure up to T corruptions.

4.1 Key-Distribution Setup

The compiler works with a key distribution setup. The setup can be computed
once for multiple instances of the protocol, without knowing the parties’ inputs
nor the function to evaluate.

MPC with Synchronous Security and Asynchronous Responsiveness 105

As usual, we describe our compiler in a hybrid model where parties have
access to an ideal functionality FSetup. At a very high level, FSetup allows to
distribute the keys for a threshold encryption scheme and a digital signature
scheme. The threshold encryption scheme here does not need to be homomorphic.
More concretely, it provides to each party Pi a global public key ek and a private
key share dki. Moreover, it gives a PKI infrastructure. That is, it gives to each
party Pi a signing key ski and the verification keys of all parties (vk1, . . . , vkn).

We describe the two setups, PKI setup FPKI and threshold encryption setup
FTE independently. The setup of the protocol consists of includes both function-
alities FSetup = [FPKI, FTE].
Digital Signature Setup. The protocol assumes a signature setup. That is,
each party Pi has a pair secret key and verification key (ski, vki), where vki is
known to all parties.
Threshold Encryption Setup. The protocol assumes also a threshold encryp-
tion setup, which allows each party to access a global public key ek and a private
key share dki.

4.2 Zero-Knowledge

The protocol ΠZK is a bilateral zero-knowledge protocol which allows a party to
prove knowledge of a witness corresponding to a statement. The protocol must
be UC-secure, meaning that it has to UC-realize the Fzk functionality, described
in the full version for completeness. As shown in [21], such a protocol exists in
the FCRS-hybrid model for any relation. For this protocol, we need proofs of
correct decryption, where the relation is parametrized by a threshold encryption
scheme. The statement consists of ek, a ciphertext c, and a decryption share d.
The witness is a decryption key share dki such that d = Decdki(c).

4.3 Synchronous MPC

Classical synchronous MPC protocols [2,5,13,20,27,45], for Πfs
sMPC can be proven

to UC-realize an ideal MPC functionality Ffs
sync

(described in the full version
for completeness) up to T < n/2 corruptions, which allows a set of n parties
to evaluate a specific function f . For the case of unanimous abort, where the
adversary is allowed to set the output ⊥, one can instantiate Πua

sMPC for any T < n
[23,29].

4.4 Synchronous Byzantine Broadcast

A Byzantine broadcast primitive allows a party Ps, called the sender, to consis-
tently distribute a message among a set of parties P.

Definition 3. Let Π be a protocol executed by parties P1, . . . , Pn, where a desig-
nated sender Ps initially holds an input v, and parties terminate upon generating
output. Π is a T -secure broadcast protocol if the following conditions hold up to
T corruptions:

106 C.-D. Liu-Zhang et al.

– Validity: If the sender Ps is honest, every honest party outputs the sender’s
message v.

– Consistency: All honest parties output the same message.

The classical result of Dolev-Strong [22] shows that synchronous broadcast
protocol ΠsBC can be achieved for any T < n, assuming a public-key infrastruc-
ture. The protocol UC-realizes the synchronous broadcast functionality FsBC

(which is a synchronous MPC functionality, where the output is the sender’s
input) for our setting with static corruptions [26,36].

4.5 Asynchronous MPC

In this section we formally define what it means for a protocol ΠaMPC to achieve
full security up to t corruptions and security without termination (correctness
and privacy) up to T ≥ t corruptions. In Sect. 5.2 we show how to achieve such
a protocol.

In a nutshell, the idea is that the protocol realizes an ideal MPC functionality
which is parametrized with the two thresholds (t, T). If the adversary corrupts
up to t parties, all honest parties obtain all the security guarantees as a con-
ventional asynchronous MPC functionality. If the adversary corrupts t ≤ f ≤ T
parties, it is allowed to block any party from obtaining output; however, those
parties that obtain output, are ensured to obtain the correct output, and privacy
is still guaranteed. Finally, if the adversary corrupts f > T parties, no guarantees
remain: the adversary learns the inputs from all honest parties and can choose
the outputs to be anything.

To model formally an asynchronous MPC functionality, we borrow ideas from
[19,36]. In traditional asynchronous protocols, the parties are guaranteed to
eventually receive output, meaning that the adversary can delay the output of
honest parties in an arbitrary but finite manner. The reason for this is that
the assumed network guarantees eventual delivery. One can make the simple
observation that if the network has an unknown upper bound δ, then the adver-
sary can delay the outputs of honest parties up to time τasynch = τ(δ), which
is a function of δ. The guarantee obtained in an asynchronous MPC with even-
tual delivery (e.g. as in [19]) is a special case of our functionality, namely when
τasynch = ∞. We describe it for the case where τasynch is a fixed time, but one
can model τasynch to be probabilistic as well.

It is known that asynchronous protocols cannot achieve simultaneously fast
termination (at a time which depends on δ) and input completeness. This is
because δ is unknown and hence it is impossible to distinguish between an honest
slow party and an actively corrupted party. If fast termination must be ensured
even when up to t parties are corrupted, the parties can only wait for n − t
inputs. Since the adversary is able to schedule the delivery of messages from
honest parties, it can also typically choose exactly a set of parties P ′ ⊆ P,
|P ′| ≤ t, whose input is not considered. Therefore, the ideal functionality also
allows the simulator to choose this set. As in [19], and similar to the network

MPC with Synchronous Security and Asynchronous Responsiveness 107

functionality Fδ
net

, we use a “fetch-based” mode functionality and allow the
simulator to specify a delay on the delivery to every party.

Functionality Fasync

Fasync is connected to a global clock functionality Gclk. It is parameterized by
a set P of n parties, a function f , a tamper function Tampert,T , a delay δ, and
a maximum delay τasynch. It initializes the variables xi = yi = ⊥, τin = ⊥ and
τi = 0 for each party Pi ∈ P and the variable I = H, where H is the set of honest
parties.
Upon receiving input from any party or the adversary, it queries Fclock for the
current time and updates τ accordingly.
Party Pi:

1: On input (Input, vi, sid) from party Pi:
– If some party has received output, ignore this message. Otherwise, set

xi = vi.
– If xi �= ⊥ for each Pi ∈ I, set each output to yj = f(x′

1, . . . , x′
n), where

x′
i = xi for each Pi ∈ I ∪ (P \ H) and x′

i = ⊥ otherwise. Set τin = τ .
– Output (Input, Pi, sid) to the adversary.

2: On input (GetOutput, sid) from Pi, if the output is not set or is blocked,
i.e., yi ∈ {⊥, 	}, ignore the message. Otherwise, if the current time is larger
than the time set by the adversary, τ ≥ τi, output (Output, yi, sid) to Pi.

Adversary:

1: Upon receiving a message (No-Input, P ′, sid) from the adversary, if P ′ is a
subset of P of size |P ′| ≤ t and y1 = · · · = yn = ⊥, set I = H \ P ′.

2: On input (SetOutputTime, Pi, τ ′, sid) from the adversary, if τin �= ⊥ and
τ ′ < τin + τasynch, set τi = τ ′.

Upon each party corruption, update (c, p, l) = TamperAsynch

t,T .
1: On input (TamperOutput, Pi, y′

i, sid) from the adversary, if c = 1, set yi =
y′
i.

2: If p = 1, output (x1, . . . , xn) to the adversary.
3: On input (BlockOutput, Pi, sid) from the adversary, if l = 1, set yi = 	.

Similar to Fhyb, we parametrize the functionality by a tamper function to
capture the guarantees depending on the set of corrupted parties. The Fasync

functionality has the tamper function TamperAsynch

t,T , where the adversary can
tamper with the output value and learn the inputs if the number of corruptions
is larger than T , and is allowed to block the delivery of the outputs if the number
of corruptions is larger than t.

Definition 4. We define an asynchronous MPC functionality with full security
t and security without termination T , if it has the tamper function TamperAsynch

t,T :

108 C.-D. Liu-Zhang et al.

Function TamperAsynch

t,T

(c, p, l) = TamperAsynch

t,T , where:
– c = 1, p = 1 if and only if |P \ H| > T .
– l = 1 if and only if |P \ H| > t.

4.6 Protocol Compiler

The protocol has two phases: an asynchronous phase and a synchronous phase,
separated by a pre-defined timeout. The timeout is set large enough (using Δ
and the number of asynchronous rounds) so that the asynchronous phase should
have supposedly terminated if there were not too many corruptions.

During the asynchronous phase, parties may obtain an output yasynch. We
need to ensure (1) that if an honest party obtains an output yasynch during the
asynchronous phase, then every other honest party obtains this output as well;
and (2) that the adversary does not learn two outputs. We remark that even if
the function to evaluate is the same, the output obtained from the synchronous
MPC protocol ΠsMPC is not necessarily yasynch. This is because in an asynchronous
protocol ΠaMPC, up to t inputs from honest parties can be ignored. This is the
reason why we require that ΠaMPC evaluates the function f ′ = Encek(f). During
the synchronous phase, parties agree on whether they execute the synchronous
protocol ΠsMPC. The parties will invoke ΠsMPC only if it is guaranteed that the
adversary did not obtain yasynch. Also, if the parties do not invoke ΠsMPC, it is
guaranteed that they can jointly decrypt the output yasynch.

Asynchronous Phase. In this phase, parties optimistically execute ΠaMPC.
When a party Pi obtains as output a ciphertext c = [y] from ΠaMPC, it sends
a signature of c and collects a list L of n− t signatures on the same c. Once such
list L is collected, it runs a robust threshold decryption protocol. For that, Pi

computes a decryption share di = Decdki(c), and proves using ΠZK to each Pj

that di is a correct decryption share of c. Upon receiving di and a correct proof
of decryption share for c from n− t parties, compute and output yi = Rec({dj}).

Synchronous Phase. After the timeout, parties execute a synchronous broad-
cast protocol to send a pair list-ciphertext (c, L), where L contains at least n − t
signatures on c, if such a list was collected during the asynchronous phase. If a
party receives via broadcast any valid L, then it sends its decryption share di

and runs the same robust threshold decryption protocol as above. Otherwise,
parties execute the synchronous MPC ΠsMPC.

Observe that if an honest party collects a list L of n − t signatures on a
ciphertext [y] during the asynchronous phase, it broadcasts the pair ([y], L) dur-
ing the synchronous phase. Then, every honest party obtains at least a valid pair
([y], L) after the broadcast round finishes. By a standard quorum argument, if
there are up to T < n−2t corruptions, there cannot be two signature lists of size
n − t on different values. Given that honest parties only sign the correct output

MPC with Synchronous Security and Asynchronous Responsiveness 109

ciphertext [yasynch] from ΠaMPC, this is the only value that can gather a list of sig-
natures. Hence, all parties are instructed to run the robust threshold decryption
protocol, and if there are up to t corruptions, every honest party is guaranteed
to receive enough decryption shares to obtain the output yasynch. On the other
hand, if no honest party obtained such a pair during the asynchronous phase, it
is guaranteed that the adversary did not learn yasynch, since no honest party sent
its decryption share. However, it might be that the adversary collected a valid
([yasynch], L′). The adversary can then decide whether to broadcast a valid pair.
If it does, every party will hold this pair and everyone outputs yasynch as before.
And if it does not, no honest party holds a valid pair after the broadcast round,
and every party can safely run the synchronous MPC protocol ΠsMPC.

We remark that it is not enough that upon the timeout parties simply send
([y], L), because the parties need to have agreement on whether or not to invoke
ΠsMPC. It can happen that the adversary is the only one who collected ([y], L).

Protocol ΠΔ
hyb(Pi)

The party stores the current time τ , a flag sync = false and a variable τsync = ⊥.
Let τtout = Tasynch(Δ) + Tzk(Δ) + Δ be a known upper bound on the time to
execute the asynchronous phase, composed of protocols ΠaMPC, ΠZK and a network
transmission message. Also, let Tzk(Δ) denote an upper bound on the time to
execute ΠZK.
Clock / Timeout Each time the party is activated do the following:

1: Query Gclk for the current time and updates τ accordingly.
2: If τ ≥ τtout, set sync = true and τsync = τ .
Setup:

1: If activated for the first time input (GetKeys, sid) to FSetup. We denote the
public key ek, a (n − t, n)-share dki of the corresponding secret key dk, the
signing key sk and the verification key vk.

Asynchronous Phase: If sync = false handle the following commands.

– On input (Input, xi, sid) (and following activations) do
1: Execute ΠaMPC with input xi and wait until an output c is received.
2: Send (c, Sign(c, sk)) to every other party using Fnet.
3: Receive signatures and values via Fnet until you received n − t signatures

L = (σ1, . . . , σl) on a value c.
4: Send (c, L) to every party using Fnet.
5: Receive message lists (c, L′). For each such list send (c, L′) to every party

using Fnet.
6: Once done with the above, compute di = Decdki(c), and prove, using Fzk,

to each Pj , that di is a correct decryption share of c.
7: Upon receiving n− t correct decryption shares for c, compute and output

y = Rec({dj}).
– At every clock tick, if it is not possible to progress with the list above, send

(ClockReady) to Gclk.

110 C.-D. Liu-Zhang et al.

Synchronous Phase: If sync = true and τ ≥ τsync, stop all previous steps and
do the following commands.

– On input (ClockReady) do:
1: Send (ClockReady) to Gclk.
2: if τ ≥ τsync then
3: Use ΠsBC to broadcast (c, L), for each pair (c, L) received during the

Asynchronous Phase.
4: Wait until ΠsBC terminated. If a pair (c, L) was received as output,

compute di = Decdki(c), and prove, using Fzk, to each Pj , that di is a
correct decryption share of c. Otherwise, if no pair (c, L) was received,
run the synchronous MPC protocol Πfs

sMPC with input xi.
5: end if

– If there was an output (c′, L′) from ΠsBC, wait for Tzk(Δ) clock ticks. After
that, if n − t correct decryption shares dj are received from Fnet, compute
and reconstruct the value y = Rec({dj}) from c, and output y. Otherwise, if
there was no output (c, L′) from ΠsBC, output the output received from Πfs

sMPC.

Let Tzk(δ), Tsync(Δ), TBC(Δ), Tasynch(δ) be the corresponding time to execute
the protocols ΠZK, ΠsMPC, ΠsBC and ΠaMPC, respectively. We state the following
theorem, and the proof is formally described in the full version. The communi-
cation complexity is inherited from the corresponding sub-protocols.

Theorem 1. Assuming PKI and CRS, for any Δ ≥ δ, ΠΔ
hyb realizes Ffs

hyb
with

full security with responsiveness t and full security min{T, n−2t}. The maximum
delay of the asynchronous phase is τasynch = Tasynch(δ) + Tzk(δ) + δ, and of the
synchronous phase is τOD = TBC(Δ) + Tzk(Δ) for a fast output with n − t inputs,
and otherwise is τOND = TBC(Δ) + Tsync(Δ) for an output with all the inputs.

By replacing the invocation of Πfs
sMPC to Πua

sMPC, one realizes Fua
hyb

for the same
parameters. Let ΠΔ

hyb-ua denote the same protocol as ΠΔ
hyb, except that the invo-

cation of Πfs
sMPC is replaced by Πua

sMPC.

Theorem 2. Assuming PKI and CRS, for any Δ ≥ δ, ΠΔ
hyb-ua realizes Fua

hyb
with

full security with responsiveness t and security with unanimous abort min{T, n−
2t}. The maximum delay of the asynchronous phase is τasynch = Tasynch(δ) +
Tzk(δ) + δ, and of the synchronous phase is τOD = TBC(Δ) + Tzk(Δ) for a fast
output with n− t inputs, and otherwise is τOND = TBC(Δ)+Tsync(Δ) for an output
with all the inputs.

5 Asynchronous Protocols

In this section, we show how to obtain ΠaMPC with full security with respon-
siveness up to t corruptions and security (correctness and privacy) up to T
corruptions, for any t < n

3 and any T < n − 2t.

MPC with Synchronous Security and Asynchronous Responsiveness 111

Technical Remark. In our model, parties have access to a synchronized clock.
The asynchronous protocols do not read the clock, but in our model they need
to specify at which point the parties send a (ClockReady) message to Gclk,
so that the clock advances. Observe that we do not model time within a single
asynchronous round (between fetching and sending messages), or computation
time. Hence, in an asynchronous protocol, at every activation, each party Pi

fetches the messages from the assumed functionalities, and then checks whether
it has any message available that it can send. If so, it sends the corresponding
message. Otherwise, it sends a (ClockReady) message to Gclk.

5.1 Asynchronous Byzantine Agreement

The goal of Byzantine agreement is to allow a set of parties to agree on a common
value.

Definition 5. Let Π be a protocol executed by parties P1, . . . , Pn, where each
party Pi initially holds an input vi and parties terminate upon generating output.

– Validity: Π is t-valid if the following holds whenever up to t parties are cor-
rupted: if every honest party has the same input value v, then every honest
party that outputs, outputs v.

– Consistency: Π is t-consistent if the following holds whenever up to t parties
are corrupted: every honest party which outputs, outputs the same value.

– Liveness: Π is t-live if the following holds whenever up to t parties are cor-
rupted: every honest party outputs a value.

The first step is to obtain an asynchronous Byzantine Agreement protocol
ΠaBA with higher consistency threshold. In the full version, we formally prove
security of such a protocol ΠaBA in the UC framework for any validity tv, con-
sistency tc and termination tl, such that tl ≤ tv < n

3 and tc + 2tl < n.
The general idea is to trade termination by consistency, while keeping validity.

The protocol is quite simple. First, each party Pi runs with input xi a regular
Byzantine agreement protocol secure up to a single threshold t′ = tv < n/3. Once
an output x is obtained from the BA, it computes a signature σ = Sign(x, sk)
and sends it to every other party. Once n − tl signatures on a value x′ are
collected, the party sends the list containing the signatures along with the value
x′ to every other party, and terminates with output x′. Since there cannot be
two lists of n − tl signatures on different values if there are up to tc < n − 2tl

corruptions, this prevents parties to output different values if there are up to
tc < n − 2tl corruptions. On the other hand, termination is reduced to tl. One
can also verify that validity is inherited from the regular BA protocol: if every
honest party starts with input x, no honest party signs any other value x′ �= x,
and hence there cannot be a list of n − tl signatures on x′, given that tl ≤ tv.

Lemma 1. There is a Byzantine agreement protocol ΠaBA with validity, consis-
tency and termination parameters (tv, tc, tl), for any tl < n

3 , tl ≤ tv < n
3 and

tc < n − 2tl, assuming a PKI infrastructure setup FPKI. The expected maximum
delay for the output is τaba = O(δ).

112 C.-D. Liu-Zhang et al.

5.2 Two-Threshold Asynchronous MPC

In order to realize Fasync with full security up to t and security with no ter-
mination (correctness and privacy) up to T , where t < n

3 and T + 2t < n, we
follow the ideas from [18,32,33], and replace the single-threshold asynchronous
BA protocol for the one that we obtained in Sect. 5.1 with increased consistency
tc < n − 2tl.

The protocol works with a threshold FHE setup, similar to [18], which we
model with the functionality FFHE

Setup
, which is the same as FSetup from Sect. 4.1,

except that the threshold encryption scheme is fully-homomorphic. For com-
pleteness, we review the definition in the full version.

The protocol uses in addition a number of sub-protocols:

– ΠaBA is a Byzantine agreement protocol with liveness threshold tl = t < n/3,
validity t ≤ tv < n/3 and consistency tc = T < n − 2t.

– ΠZK is a bilateral zero-knowledge protocol, similar to the one in Sect. 4.

Very roughly, the protocol asks each party Pi to encrypt its input xi and
distribute it to all parties. Then, parties homomorphically evaluate the function
over the encrypted inputs to obtain an encrypted output, and jointly decrypt
the output. Of course, the protocol does not work like that. In order to achieve
robustness, we need that every party proves in zero-knowledge the correctness
of essentially every value provided during the protocol execution.

We are interested in zero-knowledge proofs for two relations, parametrized
by a threshold encryption scheme with public encryption key ek:

1. Proof of Plaintext Knowledge: The statement consists of ek, and a ciphertext
c. The witness consists of a plaintext m and randomness r such that c =
Encek(m; r).

2. Proof of Correct Decryption: The statement consists of ek, a ciphertext c,
and a decryption share d. The witness consists of a decryption key share dki,
such that d = Decdki(c).

The protocol proceeds in three phases: the input stage, the computation and
threshold-decryption stage, and the termination stage.
Input Stage. The goal of the input stage is to define an encrypted input for
each party. In order to ensure that the inputs are independent, the parties are
required to perform a proof of plaintext knowledge of their ciphertext. It is known
that input completeness and guaranteed termination cannot be simultaneously
achieved in asynchronous networks, since one cannot distinguish between an
honest slow party and an actively corrupted party. Given that we only guarantee
termination up to t corruptions, we can take into account n − t input providers.

The input stage is as follows: each party Pi encrypts its input to obtain a
ciphertext ci. It then constructs a certificate πi that Pi knows the plaintext of
ci and that ci is the only input of Pi, using bilateral zero-knowledge proofs and
signatures. It then sends (ci, πi) to every other party, and constructs a certificate
of distribution disti, which works as a non-interactive proof that (ci, πi) was
distributed to at least n − t parties. This certificate is sent to every party.

MPC with Synchronous Security and Asynchronous Responsiveness 113

After Pi collects n − t certificates of distribution, it knows that at least n − t
parties have proved knowledge of the plaintext of their input ciphertext and
distributed the ciphertext correctly to n− t parties. If the number of corruptions
is smaller than n − t, this implies that each of the n − t parties have proved
knowledge of the plaintext of their input ciphertext and also have distributed the
ciphertext to at least 1 honest party. At this point, if each party is instructed to
echo the certified inputs they saw, then every honest party will end up holding
the n − t certified inputs. To determine who they are, the parties compute a
common set of input providers. For that, n asynchronous Byzantine Agreement
protocols are run, each one to decide whether a party’s input will be taken into
account. To ensure that the size of the common set is at least n − t, each party
Pi inputs 1 to the BAs of those parties for which it saw a certified input. It then
waits until there are n − t ones from the BAs before inputting any 0.

Protocol Π
input
aMPC (Pi)

The protocol keeps sets Si and Di, initially empty. Let xi be the input for Pi.
Setup:

1: If activated for the first time input (GetKeys, sid) to FFHE
Setup

. We denote the
public key ek, a (n − t, n)-share dki of the corresponding secret key dk, the
signing key sk and the verification key vk.

Plaintext Knowledge and Distribution:

1: Compute ci = Encek(xi).
2: Prove to each Pj knowledge of the plaintext of ci, using ΠZK.
3: Upon receiving a correct proof of plaintext knowledge for a ciphertext cj from

Pj , send σpopk
i = Signski(cj) to Pj .

4: Upon receiving n−t signatures {σpopk
j }, compute πi = {σpopk

j } and send (ci, πi)
to all parties.

5: Upon receiving a message (cj , πj) from Pj , send σdist
i = Signski((cj , πj)) to

Pj . Add (j, (cj , πj)) to Si.
6: Upon receiving n − t signatures {σdist

j }, compute disti = {σdist
j } and send

((ci, πi), disti) to all parties.
7: Upon receiving ((cj , πj), distj) from Pj , add j to Di.
Select Input Providers: Once |Di| > n − t, stop the above rules and proceed
as follows:
1: Send Si to every party.
2: Once n − t sets {Sj} are collected, let R =

⋃
j

Sj and enter n asynchronous
Byzantine agreement protocols ΠaBA with inputs v1, . . . , vn ∈ {0, 1}, where
vj = 1 if ∃(j, (cj , πj)) ∈ R. Keep adding possibly new received sets to R.

3: Wait until there are at least n − t outputs which are one. Then, input 0 for
the BAs which do not have input yet.

4: Let w1, . . . , wn be the outputs of the BAs.
5: Let CoreSet := {j|wj = 1}.
6: For each j ∈ CoreSet with (j, (cj , πj)) ∈ R, send (j, (cj , πj)) to all parties.

Wait until each tuple (j, (cj , πj)), j ∈ CoreSet is received.

114 C.-D. Liu-Zhang et al.

Computation and Threshold-Decryption Stage. After input stage, parties
have agreed on a common subset CoreSet of size at least n − t parties, and each
party holds the n − t ciphertexts corresponding to the encryption of the input
from each party in CoreSet. In the computation stage, the parties homomorphi-
cally evaluate the function, resulting on the ciphertext c encrypting the output.
In the threshold-decryption stage, each party Pi computes the decryption share
di = Decdki(c), and proves in zero-knowledge simultaneously towards all parties
that the decryption share is correct. Once n − t correct decryption shares on the
same ciphertext are collected, Pi reconstructs the output yi.

Protocol Π
comp
aMPC (Pi)

Start once Πinput
aMPC (Pi) is completed. Let CoreSet be the resulting set of at least

n − t parties, and let the input ciphertexts be cj , for each j ∈ CoreSet.
Function Evaluation:

1: For each j /∈ CoreSet, assume a default valid ciphertext cj for Pj .
2: Locally compute the homomorphic evaluation of the function c =

fek(c1, . . . , cn).
Threshold Decryption:

1: Compute a decryption share di = Decdki(c).
2: Prove, using ΠZK, to each Pj that di is a correct decryption share of c.
3: Upon receiving a correct proof of decryption share for a ciphertext c′ and

decryption share dj from Pj , send σpocs
i = Signski((dj , c′)) to Pj .

4: Upon receiving n − t signatures {σpocs
j } on the same pair (di, c′), compute

ProofSharei = {σpocs
j } and send ((di, c′), ProofSharei) to all parties.

5: Upon receiving n − t valid pairs ((dj , c′), ProofSharej) for the same c′, com-
pute the output yi = Rec({dj}).

Termination Stage. The termination stage ensures that all honest parties
terminate with the same output. This stage is essentially a Bracha broadcast
[10] of the output value. The idea is that each party Pi votes for one output yi

and continuously collects outputs votes. More concretely, Pi sends yi to every
other party. If Pi receives n−2t votes on the same value y, it knows that y is the
correct output (because at least an honest party obtained the value y as output if
the security threshold T < n−2t is satisfied). Hence, if no output was computed
yet, it sets yi = y as its output and sends yi to every other party. Observe that
if the security threshold is not satisfied, the adversary can tamper the outputs,
but so can the simulator. Once n − t votes on the same value y are collected,
terminate with output y. If a party receives n − t votes on y, and termination
should be guaranteed (f ≤ t), there are n − 2t honest parties that voted for y,
and hence every honest party which did not output will at some point collect
n − 2t votes on y, and hence will also vote for y. Since each honest party which
terminated voted for y and each honest party which did not terminated voted
for y as well, this means that all honest parties which did not terminate will
receive n − t votes for y.

MPC with Synchronous Security and Asynchronous Responsiveness 115

Protocol Πterm
aMPC (Pi)

During the overall protocol, execute this protocol concurrently.
Waiting for Output:

1: Wait until the output c is computed from Πcomp
aMPC (Pi).

Adopt Output:

1: Wait until receiving n − 2t votes for the same value y.
2: Adopt y as output, and send y to every other party.
Termination:

1: Wait until receiving n − t votes for the same value y.
2: Terminate.

Let us denote ΠaMPC the protocol that executes concurrently the protocols
Π

input
aMPC , Π

comp
aMPC and Πterm

aMPC . Each party, at every activation, tries to progress with
any of the subprotocols. If they cannot, they output (ClockReady) to Gclk so
that the clock advances. In full version we prove the following theorem.

Theorem 3. The protocol ΠaMPC uses FFHE
Setup

as setup and realizes Fasync on
any function f on the inputs, with full security up to t corruptions and security
without termination up to T , for any t < n/3 and T +2t < n. The total maximum
delay for the honest parties to obtain output is τasynch = τaba(δ) + 2τzk(δ) + 9δ.

6 Impossibility Results

In this section we argue that the obtained trade-offs are optimal. We prove
that any MPC protocol that achieves full security with responsiveness up to t
corruptions, and extended security with unanimous abort up to T corruptions
needs to satisfy T + 2t < n. Since full security is stronger than security with
unanimous abort, these bounds also hold for the case where the extended security
is full security.

Lemma 2. Let t, T be such that T + 2t ≥ n. There is no MPC protocol Π
that achieves full security with responsiveness up to t corruptions, and extended
security with unanimous abort up to T ≥ t corruptions.

Proof. Let δ be the unknown delay upper bound. Moreover, let δ′ 	 δ be such
that the time to execute Π when messages are scheduled within δ′ is τ(δ′) < δ.

Assume without loss of generality that 3t = n. We prove impossibility for
the case where the function to be computed is the majority function. Consider
three sets S0, S1 and S, where |S0| = |S1| = t and |S| = T .

First, consider an execution where parties in S0 and S are honest and have
input 0, and parties in S1 are corrupted and crash. Moreover, the adversary
instantly delivers the messages between S0 and S (within δ′). Since full security
with responsiveness is guaranteed, parties in S0 output 0 at time τ(δ′). Similarly,

116 C.-D. Liu-Zhang et al.

in an execution where parties in S1 and S are honest and have input 1, the parties
in S1 output at time τ(δ′).

Now, consider an execution where S is corrupted, and the parties in S0
and S1 have inputs 0 and 1 respectively. The corrupted parties in S emulate an
honest protocol execution with input b ∈ {0, 1} with the parties in Sb. Moreover,
the adversary delays δ the messages between S0 and S1. A party in S0 (resp.
S1) cannot distinguish between the two executions, because it outputs at time
τ(δ′) < δ, and hence outputs 0 (resp. 1).

However, since T parties are corrupted, the protocol provides security with
unanimous abort meaning that in the ideal world all honest parties output the
same value (which may be ⊥).

This contradicts the fact that Π achieves full security with responsiveness
up to t corruptions and unanimous abort up to T corruptions. ��

In addition, classical bounds in synchronous MPC with full security, show
that full security for dishonest majority T ≥ n/2 is impossible [17]. As a conse-
quence, MPC with extended full security is impossible for dishonest majority.

7 Conclusions

We summarize all our results. Using the compiler from Sect. 4 and the following
instantiations:

– A bilateral zero-knowledge protocol like in [21], which uses CRS.
– A synchronous MPC with full security (resp. unanimous abort) for T < n/2

(resp. T < n), using a protocol such as [5,27] (resp. [23,29]).
– A synchronous broadcast protocol for T < n such as [22] from PKI.
– An asynchronous MPC with full security up to t < n/3 and security without

termination up to T < n − 2t, as described in Sect. 5.2, based on PKI and
threshold FHE (achievable from CRS [1]).

We obtain the following corollaries, where Tsync(Δ) and TBC(Δ) are the run-
ning times for the synchronous MPC protocol and the synchronous broadcast:

Corollary 1. There exists a protocol parametrized by Δ ≥ δ, which realizes Ffs
hyb

on any function f , with full security with responsiveness t and full security T
for any t < n

3 and T < min{n/2, n − 2t}, in the (Gclk, Fδ
net

, FPKI, FCRS)-hybrid
world. The expected maximum delay of the asynchronous phase is τasynch = O(δ),
and the maximum delay of the synchronous phase is τOD = TBC(Δ) + Tzk(Δ) if
an output was delivered in the asynchronous phase, and otherwise is τOND =
TBC(Δ) + Tsync(Δ).

For tr = n
4 , we obtain Ffs

hyb
with correctness with privacy for any ts < n

2 .

Corollary 2. There exists a protocol parametrized by Δ ≥ δ, which realizes
Fua

hyb
on any function f , with full security with responsiveness t and full security

T for any t < n
3 and T < n − 2t, in the (Gclk, Fδ

net
, FPKI, FCRS)-hybrid world.

MPC with Synchronous Security and Asynchronous Responsiveness 117

The expected maximum delay of the asynchronous phase is τasynch = O(δ), and
the maximum delay of the synchronous phase is τOD = TBC(Δ) + Tzk(Δ) if an
output was delivered in the asynchronous phase, and otherwise is τOND = TBC(Δ)+
Tsync(Δ).

References
1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:

Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

3. Beerliova-Trubiniova, Z., Hirt, M., Buus Nielsen, J.: Almost-asynchronous MPC
with faulty minority. Cryptology ePrint Archive, Report 2008/416 (2008). http://
eprint.iacr.org/2008/416

4. Beerliová-Trub́ıniová, Z., Hirt, M., Buus Nielsen, J.: On the theoretical gap between
synchronous and asynchronous MPC protocols. In: PODC, Zurich, Switzerland
(2010)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

6. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: Anderson, J., Toueg, S. (eds.) 13th ACM
PODC, pp. 183–192. ACM, August 1994

7. Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous
fallback guarantees. In: Theory of Cryptography Conference (2019)

8. Blum, E., Katz, J., Loss, J.: Network-agnostic state machine replication. Cryptol-
ogy ePrint Archive, Report 2020/142 (2020). https://eprint.iacr.org/2020/142

9. Blum, E., Liu-Zhang, C.-D., Loss, J.: Always have a backup plan: fully secure
synchronous MPC with asynchronous fallback. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 707–731. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 25

10. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
(JACM) 32(4), 824–840 (1985)

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

12. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

13. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988

14. Choudhury, A.: Optimally-resilient unconditionally-secure asynchronous multi-
party computation revisited. Cryptology ePrint Archive, Report 2020/906 (2020).
https://eprint.iacr.org/2020/906

15. Choudhury, A., Patra, A.: Optimally resilient asynchronous MPC with linear com-
munication complexity. In: Proceedings of the 2015 International Conference on
Distributed Computing and Networking, pp. 1–10 (2015)

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
http://eprint.iacr.org/2008/416
http://eprint.iacr.org/2008/416
https://eprint.iacr.org/2020/142
https://doi.org/10.1007/978-3-030-56880-1_25
https://doi.org/10.1007/978-3-540-70936-7_4
https://eprint.iacr.org/2020/906

118 C.-D. Liu-Zhang et al.

16. Choudhury, A., Patra, A., Ravi, D.: Round and communication efficient
unconditionally-secure MPC with t<n/3 in partially synchronous network. In:
ICITS 2017 (2017)

17. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th ACM STOC, pp. 364–369. ACM Press, May 1986

18. Cohen, R.: Asynchronous secure multiparty computation in constant time. In:
Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS,
vol. 9615, pp. 183–207. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49387-8 8

19. Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 33

20. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

21. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

22. Dolev, D., Raymond Strong, H.: Authenticated algorithms for byzantine agree-
ment. SIAM J. Comput. 12(4), 656–666 (1983)

23. Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable byzantine
agreement secure against faulty majorities. In: Ricciardi, A. (ed.) 21st ACM PODC,
pp. 118–126. ACM, July 2002

24. Fitzi, M., Hirt, M., Holenstein, T., Wullschleger, J.: Two-threshold broadcast
and detectable multi-party computation. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 51–67. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-39200-9 4

25. Fitzi, M., Holenstein, T., Wullschleger, J.: Multi-party computation with hybrid
security. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 419–438. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24676-3 25

26. Garay, J.A., Katz, J., Kumaresan, R., Zhou,H.-S.: Adaptively secure broadcast,
revisited. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, pp. 179–186 (2011)

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

28. Goldreich, O., Petrank, E.: The best of both worlds: guaranteeing termination
in fast randomized byzantine agreement protocols. Tech. rep. Computer Science
Department, Technion (1990)

29. Goldwasser, S., Lindell, Y.: Secure computation without a broadcast channel. In:
16th International Symposium on Distributed Computing (DISC). Citeseer (2002)

30. Guo, Y., Pass, R., Shi, E.: Synchronous, with a chance of partition tolerance. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 499–
529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 18

31. Hirt, M., Maurer, U., Lucas, C.: A dynamic tradeoff between active and pas-
sive corruptions in secure multi-party computation. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 203–219. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 12

https://doi.org/10.1007/978-3-662-49387-8_8
https://doi.org/10.1007/978-3-662-49387-8_8
https://doi.org/10.1007/978-3-662-53890-6_33
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-39200-9_4
https://doi.org/10.1007/3-540-39200-9_4
https://doi.org/10.1007/978-3-540-24676-3_25
https://doi.org/10.1007/978-3-540-24676-3_25
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/978-3-642-40084-1_12

MPC with Synchronous Security and Asynchronous Responsiveness 119

32. Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party
computation with optimal resilience. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 19

33. Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with
quadratic communication. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp.
473–485. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-
3 39

34. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with
guaranteed output delivery in secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 29

35. Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 11–20. ACM Press, June
2007

36. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

37. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

38. Kursawe, K.: Optimistic asynchronous byzantine agreement (2000)
39. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols

and security under composition. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp.
109–118. ACM Press, May 2006

40. Loss, J., Moran, T.: Combining asynchronous and synchronous byzantine agree-
ment: the best of both worlds. Cryptology ePrint Archive, Report 2018/235 (2018).
https://eprint.iacr.org/2018/235

41. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless
model. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 91. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

42. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 1

43. Patra, A., Choudhary, A., Rangan, C.P.: Communication efficient statistical asyn-
chronous multiparty computation with optimal resilience. In: Bao, F., Yung, M.,
Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 179–197. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5 14

44. Patra, A., Ravi, D.: On the power of hybrid networks in multi-party computation.
IEEE Trans. Inf. Theo. 64(6), 4207–4227 (2018)

45. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press,
May 1989

https://doi.org/10.1007/11426639_19
https://doi.org/10.1007/11426639_19
https://doi.org/10.1007/978-3-540-70583-3_39
https://doi.org/10.1007/978-3-540-70583-3_39
https://doi.org/10.1007/11818175_29
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://eprint.iacr.org/2018/235
https://doi.org/10.1007/978-3-319-78375-8_1
https://doi.org/10.1007/978-3-642-16342-5_14

Secure MPC: Laziness Leads to GOD

Saikrishna Badrinarayanan1, Aayush Jain2, Nathan Manohar2(B),
and Amit Sahai2

1 Visa Research, Palo Alto, USA
sabadrin@visa.com

2 UCLA and Center for Encrypted Functionalities, Los Angeles, USA
{aayushjain,nmanohar,sahai}@cs.ucla.edu

Abstract. Motivated by what we call “honest but lazy” parties in the
context of secure multi party computation, we revisit the notion of multi-
key FHE schemes (MFHE). In MFHE, any message encrypted using
a public key pki can be “expanded” so that the resulting ciphertext
is encrypted with respect to a set of public keys (pk1, .., pkn). Such
expanded ciphertexts can be homomorphically evaluated with respect
to any circuit to generate a ciphertext ct. Then, this ciphertext ct can
be partially decrypted using a secret key ski (corresponding to the pub-
lic key pki) to produce a partial decryption pi. Finally, these partial
decryptions {pi}i∈[n] can be combined to recover the output. However,
this definition of MFHE works only for n-out-of-n access structures and,
thus, each node in the system is a point of failure. In the context of “hon-
est but lazy” parties, it is necessary to be able to decrypt even when only
given a subset of partial decryptions (say t out of n). In order to solve
this problem, we introduce a new notion of multi-key FHE designed to
handle arbitrary access patterns that can reconstruct the output. We call
it a threshold multi-key FHE scheme (TMFHE).

Our main contributions are the following:
– We formally define and construct TMFHE for any access structure

given by a monotone boolean formula, assuming LWE.
– We construct the first simulation-extractable multi-string NIZK from

polynomially hard LWE.
– We use TMFHE and our multi-string NIZK to obtain the first round-

optimal (three round) MPC protocol in the plain model with guar-
anteed output delivery secure against malicious adversaries or, more
generally, mixed adversaries (which supports “honest but lazy” par-
ties), assuming LWE.

– Our MPC protocols simultaneously achieve security against the
maximum number of corruptions under which guaranteed output
delivery is achievable, depth-proportional communication complex-
ity, and reusability.

1 Introduction

Starting with the breakthrough work of Gentry [21], fully homomorphic encryp-
tion (FHE) has been extensively studied over a long sequence of works (see
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 120–150, 2020.
https://doi.org/10.1007/978-3-030-64840-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_5

Secure MPC: Laziness Leads to GOD 121

e.g. [6,8,9,21,22]). In an FHE scheme, given a public key pk and a ciphertext of
a message m encrypted using this public key, a user can homomorphically eval-
uate this ciphertext with respect to any circuit C to generate a new ciphertext
ct that is an encryption of C(m) without learning anything about the message.
Then, the decryptor, using the secret key sk can decrypt this message to recover
the output C(m). However, traditionally, FHE schemes are single-key in nature:
that is, they can be used to perform arbitrary computation on data encrypted
using the same public key.

In this work, we build a new multi-party generalization of FHE that we call
Threshold Multi-Key FHE, which we build from the LWE assumption. We then
use this new primitive to achieve efficient secure multi-party protocols (MPC)
in a model that allows for some honest parties to be “lazy”, as we discuss below.
Subsequent to our work, our Threshold Multi-Key FHE was used in [26], which
explicitly extends our MPC model with honest but lazy parties to also allow
lazy parties to return in future rounds and builds upon our MPC protocol to
achieve their results. We believe both our notion of Threshold Multi-Key FHE
and our MPC model and protocol will continue to find other applications, as
well (see e.g. [13], for another subsequent result that builds upon ours). We now
elaborate on our contributions.

Multi-key FHE. Lopez-Alt et al. [32] introduced the notion of multi-key fully
homomorphic encryption. Informally, in a multi-key FHE scheme, any message
encrypted using a public key pki can be “expanded” so that the resulting cipher-
text is encrypted with respect to a set of public keys (pk1, .., pkn). Such expanded
ciphertexts can be homomorphically evaluated with respect to any circuit to gen-
erate a ciphertext ct. Then, this ciphertext ct can be partially decrypted using a
secret key ski (corresponding to the public key pki) to produce a partial decryp-
tion pi. Finally, these partial decryptions {pi}i∈[n] can be combined to recover
the output. In addition to the semantic security of encryption, a multi-key FHE
scheme also requires that given any expanded (and possibly evaluated) cipher-
text ct encrypting a message m, any set of (n−1) secret keys {ski}i�=i∗ for any i∗,
and the message m, it is possible to statistically simulate the partial decryption
pi∗ . Multi-key FHE has been extensively studied [7,14,33,34] and has proven
particularly useful in the context of building round-efficient secure multiparty
computation protocols for protocols achieving security with abort. Recall that
in security with abort, a single party that aborts could potentially prevent all
honest parties from receiving the output.

1.1 A New Primitive: Threshold Multi-key FHE

However, none of the existing multi-key FHE schemes enable the output to
be reconstructed unless all the n partial decryptions are given out and hence
they only “work” for n-out-of-n access structures. Unfortunately, this leads to
situations where every secret key owner in the system represents a single point
of failure, since if their partial decryption is not given out, it is not possible to
recover the output. This is sufficient for protocols only achieving security with

122 S. Badrinarayanan et al.

abort, as this security notion allows the functionality to fail if even a single
party misbehaves. If we want to create schemes that are capable of handling
failures, we would necessarily want one to be able to decrypt even when one
only possesses a subset of partial decryptions (say t out of n).

At first glance, it seems that our goal is simply incompatible with the notion
of multi-key FHE. For instance, suppose that a ciphertext encrypting m under a
public key pk can be combined with two public keys pk′ and pk′′, and “expanded”
into a ciphertext encrypting m under a 2-out-of-3 threshold under the triple
of public keys {pk, pk′, pk′′}. Such a feature would imply the insecurity of the
original encryption, since an adversary could sample the public keys {pk′, pk′′}
together with their secret keys {sk′, sk′′}, and then use the two secret keys
{sk′, sk′′} to obtain m using the expanded ciphertext.

In order to solve this problem, we introduce a new notion of threshold multi-
key FHE1 where ciphertexts cannot be “expanded.” Instead, in our notion,
given a collection of public keys {pk1, . . . , pkn}, it is possible for an encryp-
tor to encrypt a message m with respect to an access pattern such as t-out-of-n.
Then this ciphertext would only be decryptable by combining partial decryp-
tions obtained from holders of at least t corresponding secret keys. As we show
in this work, it turns out that this functionality is sufficient for obtaining new
applications to MPC (see below for details).

In this work, we first formally define threshold multi-key FHE in a general
way, and then we show to construct this new primitive from the learning with
errors (LWE) assumption. Formally, we show the following theorem:

Theorem 1 (Informal). Assuming LWE, there exists a secure threshold multi-
key FHE scheme for the class of access structures A induced by all monotone
boolean formulas.

In Sect. 2, we describe the challenges and techniques involved in our con-
struction. Our next contribution is an application of threshold multi-key FHE
in the context of round-optimal secure MPC protocols with guaranteed output
delivery (GOD).

1.2 Application to Round-Optimal MPC

Secure multi-party computation (MPC) [23,36,37] has been a problem of funda-
mental interest in cryptography. In an MPC protocol, a set of mutually distrust-
ing parties can evaluate a function on their joint inputs while maintaining privacy
of their respective inputs. Over the last few decades, much of the work related
to MPC has been devoted to achieving stronger security guarantees and improv-
ing efficiency with respect to various parameters such as round complexity and
communication complexity. In this work, we further advance our understanding
of this landscape with threshold multi-key FHE being the main technical tool.
1 We remark that in fact, some existing standard multi-key FHE schemes [33] also

sometimes used the term threshold multi-key FHE to refer to their primitive, which
requires an n-out-of-n threshold. We will use threshold multi-key FHE to denote
only our stronger notion supporting general thresholds.

Secure MPC: Laziness Leads to GOD 123

MPC Supporting “Honest but Lazy” Parties. In traditional MPC, every party is
required to remain online and participate completely in the protocol execution.
This applies not only to “classical” MPC protocols where every party has to
participate and send a message in every round of the protocol, but also to other
interesting variants such as protocols in the client-server setting where all the
servers are required to remain active until the end of the protocol execution.
We refer the reader to Sect. 1.4 for a more detailed comparison with related
works. In other words, traditional MPC protocols decide to treat a “lazy” party
that just aborts midway into the protocol execution as a corrupt party that is
colluding with the other corrupt parties, and this is addressed in different ways.
In some cases, all parties abort the protocol execution while in other cases, the
“lazy” party is just discarded and all the other parties compute the function
on their joint inputs alone. We believe that such an outlook is undesirable as
there are several reasons why even an honest party might have to abort and
become “lazy” during the execution of a protocol without having to be deemed
as colluding with the corrupt parties. A few potential reasons include:

– Connectivity - A party might lose connectivity and hence be unable to con-
tinue the protocol.

– Computational resources - A computationally weak party might be unable to
perform intensive computation and hence be forced to exit the protocol.

– Interest - At some point, a party might just lose interest in that protocol
execution due to other higher priority tasks that come up.

Motivated by the above realistic scenarios, we would like to construct MPC
protocols that can handle “honest but lazy” parties without simply lumping
them in with the other corrupted parties (since treating all aborting parties
as “malicious” will unrealistically enhance the power of the adversary and limit
our protocol’s capabilities). Furthermore, we would like our protocol to be robust
to aborting parties (that is, have guaranteed output delivery). Informally, this
means that at the end of the protocol execution, regardless of the behavior of
the adversary, the honest parties can still compute the output of the function
on all their joint inputs (with either a default or the actual input for each of the
corrupted parties). Ideally, we would like to achieve a stronger form of guaran-
teed output delivery, where, when possible, the output of the protocol is with
respect to the actual input of all the “honest but lazy” parties, rather than some
default input. This is akin to stating that provided an “honest but lazy” party
actually sent a message dependent on its input, the protocol will compute the
functionality with respect to this party’s input, regardless of whether or not the
party aborted during the rest of the protocol. We call this property input fidelity.
In this work, we ask

Can we construct round-optimal protocols in the plain model that achieve the
above desiderata?

If such protocols are achievable, then

Can these protocols handle the maximum number of possible corruptions?

124 S. Badrinarayanan et al.

What can we say about the assumptions, communication complexity, and
reusability of such protocols?

Using our new primitive, threshold multi-key FHE, we are able to answer
all the above satisfactorily. We construct the first round-optimal (three-round)
MPC protocol in the plain model that achieves our desired properties. Moreover,
our protocol is capable on handling the maximum number of corruptions that a
protocol can possibly support while achieving the desired properties. Our proto-
col relies only on the learning with errors (LWE) assumption. Furthermore, our
protocol has depth-proportional communication complexity and is reusable.

Formalizing Our Desired Properties. Formally, we study MPC with guaranteed
output delivery in the presence of threshold mixed adversaries, introduced by
Fitzi et al. [19,20]. In this setting, a threshold mixed adversary A is allowed
to corrupt three sets of parties (AMal,ASh,AFc) such that the following holds:
(i) |AMal| ≤ tMal, |ASh| ≤ tSh, and |AFc| ≤ tFc, for a tuple of thresholds
(tMal, tSh, tFc). (ii) The set of parties in AMal are maliciously corrupted meaning
that the adversary can choose to behave using any arbitrary polynomial time
algorithm on behalf of each of them. (iii) The set of parties in ASh are corrupted
in a semi-honest manner and so the adversary is required to follow the protocol
execution honestly on behalf of each of them. (iv) The set of parties in AFc

are corrupted in a fail-corrupt manner meaning that for each party in this set,
the adversary can specify when that party is required to abort the protocol
execution. Until then, these parties follow the protocol execution honestly. Note
that the adversary never gets to see the inputs or internal state of any of the fail-
corrupt parties and hence these parties capture our motivation of “honest but
lazy” parties - where their laziness is enforced by the adversary in the security
game.

In this work, our goal is to build a round-optimal MPC protocol with guaran-
teed output delivery in this model that also simultaneously satisfies the following
desirable properties:

– Security Against the Maximum Number of Corruptions: Security
should hold against a threshold mixed adversary that can corrupt the maxi-
mum number of parties under which guaranteed output delivery is achievable.

– Input Fidelity: In line with our motivation, we want our protocol to satisfy
not only guaranteed output delivery, but also the stronger property that the
output of the computation is a function of the joint inputs of all parties,
including those that aborted after a “certain point”. Intuitively, we would
like our protocol to be divided into two phases - an input commitment phase
and a computation phase. We refer to the end of the input commitment phase
as this “point.” That is, in the scenario where the adversary corrupts a set of
parties in a fail-corrupt manner, for every fail-corrupt party Pi that aborts
after the input commitment phase, its input yi that is used to compute the
final output C(y1, . . . , yn) is set to be its actual input xi used in the protocol
so far and not a default input ⊥. Recall that this aligns with our original

Secure MPC: Laziness Leads to GOD 125

motivation where we wish to not discard honest but lazy parties and deem
them to be corrupt.

– Depth-Proportional Communication Complexity: For any function f ,
the communication complexity of the protocol should be poly(λ, d,N, �inp)
where N is the number of parties, λ is the security parameter, �inp is the
input length for each party, d is the depth of the circuit computing f .

– Reusability: Given the transcript of the input commitment phase of the
protocol, the computation phase of the protocol should be able to be reused
across an unbounded polynomial number of executions to compute different
functions on the same fixed joint inputs of all the parties.

Prior to our work, much of the focus in this model was on obtaining feasibility
results, understanding under what corruption patterns is secure computation
even possible, and improving the communication complexity. We refer to Sect. 1.4
for a more detailed discussion on the prior work in this model. In particular, Hirt
et al. [27] showed that in the setting of a threshold mixed adversary, MPC with
guaranteed output delivery is possible if and only if 2tMal + tSh + tFc < N ,
where N is the total number of parties. Since we are interested in guaranteed
output delivery, we focus on constructing MPC protocols that are secure against
(tMal, tSh, tFc)-threshold mixed adversaries, for any (tMal, tSh, tFc) satisfying
the above inequality. Furthermore, in light of the result of Gordon et al. [24]
showing that three rounds are required for MPC with guaranteed output delivery
in the traditional model (this can be viewed as a special case of the threshold
mixed adversary model, where tSh and tFc are both 0), we observe that a three
round protocol will be round-optimal in this setting.

Utilizing our new primitive, threshold multi-key FHE, given any tuple of
thresholds (tMal, tSh, tFc) satisfying the Hirt et al. [27] inequality, we construct
the first round-optimal (three-round) MPC protocol with guaranteed output
delivery that is secure against such a threshold mixed adversary. Since guaran-
teed output delivery is possible if and only if the Hirt et al. [27] inequality holds,
our resulting protocol is optimal in terms of the best possible corruption we can
tolerate. The first two rounds of our protocol form the input commitment phase,
and round 3 is the computation phase. Our protocol has input fidelity, in the
sense that the functionality is computed with respect to the inputs of all parties
that did not abort in the first two rounds, even if that party aborts in round
three. Additionally, given the transcript of the input commitment phase (the first
two rounds of the protocol), the third round can be reused across an unbounded
polynomial number of executions to compute different functions on the same
fixed joint inputs of all parties. Our protocol also has depth-proportional com-
munication complexity. Formally, we show the following result:

Theorem 2 (Informal). Assuming learning with errors (LWE), for any
function f on N inputs, for any tuple of thresholds (tMal, tSh, tFc) satisfying
2tMal + tSh + tFc < N , there exists a three-round MPC protocol with guaran-
teed output delivery in the plain model that is secure against a (tMal, tSh, tFc)-
mixed adversary. The protocol has input fidelity, depth-proportional communica-
tion complexity, and is reusable.

126 S. Badrinarayanan et al.

By instantiating Theorem 2 with the (�N/2 − 1�, 0, 0)-mixed adversary we
achieve an interesting result in the traditional MPC world in the plain model:
in particular, notice that this setting corresponds to an honest majority of par-
ties and as a result, we get a three round MPC protocol in the plain model
with guaranteed output delivery. As mentioned previously, our protocol is round
optimal for this setting as well due to the lower bound of Gordon et al. [24]. For-
mally, we achieve the following corollary, matching the round complexity of the
recent independent work [1], but for the first time, also achieving input fidelity,
reusability, and depth-proportional communication complexity, assuming only
LWE.

Corollary 1 (Informal). Assuming LWE, for any function f , there exists a
three-round MPC protocol with guaranteed output delivery in the plain model in
the presence of an honest majority.

1.3 Multi-string NIZK from LWE

As a stepping stone to achieving Theorem 2, we first consider the weaker
setting of a (tSm, tSh, tFc)-semi-malicious mixed adversary that corrupts the
sets (ASm,ASh,AFc) of parties such that the first set of parties ASm, with
|ASm| ≤ tSm, is only corrupted in a semi-malicious manner - that is, on behalf
of each party in this set, the adversary can pick any arbitrary randomness of
its choice but using this randomness, the party is required to execute the pro-
tocol honestly. We define this formally in the technical sections. Once we have
constructed a protocol that is secure against a semi-malicious mixed adversary,
we are able to bootstrap it to one that is secure against a (malicious) mixed
adversary in the plain model using a multi-string non-interactive zero knowl-
edge (NIZK) argument.

In a multi-string NIZK argument system, introduced in the work of Groth
and Ostrovsky [25], a set of parties can each generate one CRS that can then
be combined to compute one unified CRS which is used to compute NIZKs.
The guarantee is that as long as a majority of the individual CRS strings are
honestly generated, the argument system is correct and secure. Unfortunately,
one of the tools in the construction of multi-string NIZKs in [25] was a Zap [16],
which is not known from polynomially hard LWE. In order to obtain Theorem 2
assuming only polynomially hard LWE, we construct a (simulation-extractable)
multi-string NIZK directly from LWE, which may be of independent interest.
Formally, we show the following.

Theorem 3 (Informal). Assuming polynomially hard LWE, there exists a
simulation-extractable multi-string NIZK for NP.

1.4 Independent and Subsequent Work

We discuss related work in detail in the full version of the paper.

Secure MPC: Laziness Leads to GOD 127

Independent Work. Recently, in an independent work, Ananth et. al [1] also
constructed a three-round honest majority MPC protocol with guaranteed out-
put delivery in the plain model, assuming PKE and ZAPs. Their techniques are
substantially different from ours, and we note that if we instantiate our protocol
with the (�N/2 − 1�, 0, 0) tuple of thresholds, we are able to match their result,
assuming LWE, as shown in Corollary 1. Moreover, our protocol simultaneously
achieves depth-proportional communication complexity and reusability, proper-
ties not achievable by their protocol. Furthermore, we note that our general
protocol can handle threshold mixed adversaries, whereas their protocol is only
secure against malicious adversaries in the honest majority setting.

Subsequent Works. The work of [15] (which cites us as prior work) can use
a threshold PKI model, which is a very strong form of certified PKI model,
to achieve some of our results (guaranteed output delivery, depth proportional
communication) in 2 rounds. In this work, we do not make any trust assump-
tions. However, we observe that our protocol already gives a 2-round protocol
with a much weaker form of PKI where the public keys can be any arbitrary
string. Thus, our work also implies results in a “plain” PKI setting. Last-round
reusability, which we achieve, was also not studied in [15]. However, we note
that the focus of [15] was to understand adaptive security in the context of
communication efficient protocols, which we do not study.

A recent series of works [10,11,28,31,35] have developed a framework for
instantiating the Fiat-Shamir transform [18] using a hash function that satisfies
a property called correlation-intractability [12]. This culminated in the work of
Peikert and Shiehian [35], who were able to obtain the first NIZK from LWE
by constructing a correlation-intractable hash function family for (bounded) cir-
cuits from LWE. Following this, there have been two works [2,30], subsequent
to ours, that construct two message statistically witness indistinguishable ZAP
arguments from quasipolynomial LWE. From this, using the work of [25] one
can construct a multi-string NIZK from quasipolynomial LWE. We obtain a
multi-string NIZK argument system assuming only the polynomial hardness of
LWE.

2 Technical Overview

We first describe the challenges involved in defining and constructing our new
primitive of threshold multi-key FHE in the next subsection. This is followed by
the techniques involved in constructing our round-optimal MPC protocol with
guaranteed output delivery. Finally, we discuss the techniques used to construct
a multi-string NIZK from LWE.

2.1 Threshold Multi-key FHE (TMFHE)

Definitional Challenges. Recall that we would like to construct a version of
multi-key FHE that only requires some (say t out of n) of the partial decryption

128 S. Badrinarayanan et al.

shares in order to reconstruct the output as opposed to all n partial decryptions,
as is required in all existing multi-key FHE schemes.

At first glance, it is not even clear how to define such a notion. The most
direct approach leads to a definition that is impossible to achieve. Consider for
example the n/2-out-of-n access structure. In this case, if we follow the standard
procedure used by known multi-key FHE schemes, any evaluator can expand a
ciphertext encrypting a message m with respect to public key pkn to a ciphertext
ct with respect to the set of public keys (pk1, ..., pkn). Then, the evaluator can
use secret keys sk1, .., skn/2 to learn the value of m, as the set {1 . . . , n/2}
satisfies the access structure. However, in doing so, an adversary can learn m
without knowing skn, breaking the semantic security of the encryption scheme
with respect to (pkn, skn) and leading to a notion that provides no security.

Although we seem to have arrived at a notion that is not meaningful at all,
we note that the issue with the above approach is that a ciphertext encrypted
with respect to a public key pk can be expanded to one encrypted with respect
to many public keys. However, if we prevent ciphertexts from being expanded,
there is hope of achieving a meaningful notion. Expanding on this idea, we arrive
at the following (informal) definition. Any party can generate its own key pair
(pk, sk). Any encryptor can compute ct ← Encrypt(pk1, .., pkn,A,m). Given two
(or more) ciphertexts encrypted with respect to the same set of public keys
and the same access structure A, it is possible to homomorphically evaluate a
circuit on these ciphertexts and partially decrypt the resulting ciphertext using
any secret key ski to recover a partial decryption pi. Given {pi}i∈B for some B
satisfying A, one can reconstruct the output. Roughly, we require two security
guarantees from the scheme.

1. Given {ski}i∈S for some S /∈ A,

Encrypt(pk1, . . . , pkn,A,m0) ≈c Encrypt(pk1, .., pkn,A,m1)

for any two equal length messages m0,m1.
2. Given a ciphertext ct for an underlying message m and {ski}i∈S for any

maximally unqualified set2 S /∈ A (for example (n/2 − 1) of the parties for
the example above), it is possible to statistically simulate a partial decryption
pi for any i ∈ [n].

For technical reasons, we require a more nuanced security definition, and we
refer the reader to Sect. 4 for the details.

Construction Overview. In order to construct TMFHE, one could try many
approaches to build on top of existing multi-key FHE schemes. For example,
one could try the following. Given any set of public keys (pk1, .., pkn), generate
ciphertexts ctS ← Encrypt({pki}i∈S ,m) for all minimally valid sets S ∈ A. How-
ever, such an approach is not feasible for access structures such as n/2−out-of-n

2 By maximally unqualified set S, we mean that for any i ∈ [n]\S, (S ∪ {i}) ∈ A.
Similarly, a set S is minimally qualified if for any i ∈ [S], (S\{i}) /∈ A.

Secure MPC: Laziness Leads to GOD 129

as then the encryptor has to compute encryptions for roughly
(

n
n/2

)
subsets,

which is super-polynomial.
To overcome this limitation, we use the tool of threshold FHE introduced in

the work of Boneh et al. [4]. In a threshold FHE scheme, the setup algorithm
samples a single public key fpk and n secret key shares (fsk1, .., fskn) for a secret
key fsk that are shared according to the access structure A. Using the public key
fpk, an encryptor can encrypt a message m to receive a ciphertext ct (which may
be evaluated). This ciphertext can then be partially decrypted independently
using key shares ski to compute a partial decryption pi. Then using these {pi}i∈S

for any set S ∈ A, one can recover m. Security properties are two fold:

– Given {ski}i∈S for some S /∈ A, Encrypt(pk,A,m0) ≈c Encrypt(pk,A,m1) for
any two equal length messages m0,m1.

– Second, given a ciphertext ct with underlying message m and {ski}i∈S for any
maximally unqualified S /∈ A, it is possible to statistically simulate partial
decryptions pi for any i ∈ [n].

We make the following useful observations about threshold FHE which will
aid us in our construction.

1. The setup algorithm of the scheme of [4] first samples (pk, sk) ←
FHE.Setup(1λ) and then secret shares sk according to the access struc-
ture using a “special purpose” secret sharing scheme to compute shares
(sk1, .., skn) so that the reconstruction involves just addition of some sub-
set of shares. Looking ahead to the security proof, this feature allows us to
easily simulate partial decryptions.

2. The encryption procedure just involves encrypting the message m using an
underlying FHE scheme.

3. The underlying FHE scheme can be instantiated using most of the known
homomorphic encryption schemes satisfying a few general properties.

Thus, we observe that, in particular, the multi-key FHE schemes of both [7,33],
can be used to instantiate the underlying FHE scheme in threshold FHE. This
can then be used to evaluate on multiple ciphertexts encrypted with respect
to different public keys - since, using multi-key FHE, one can expand on vari-
ous ciphertexts and evaluate jointly on them. However, at this point, it is still
not clear how to compute (or simulate) partial decryptions, especially since the
threshold FHE construction of [4] only handled underlying FHE schemes where
the ciphertext was encrypted with respect to a single public key. However, we
observe the following property of the multi-key FHE schemes of both [7,33].
Suppose we have two ciphertexts, ct1 and ct2 that are encrypted under public
keys fpk1 and fpk2, respectively. In the multi-key FHE scheme, we can expand
these ciphertexts to ĉt1 and ĉt2, each encrypted under the set of public keys
{fpk1, fpk2}. If the secret keys corresponding to fpk1 and fpk2 are fsk1 and fsk2,
respectively, then the secret key for decryption of ĉt1 and ĉt2 (and any cipher-
text computed by evaluating on these ciphertexts) is [fsk1, fsk2]. In a standard
threshold FHE scheme, the secret key would be secret shared across n parties.

130 S. Badrinarayanan et al.

For simplicity, assume that we secret share according to the n out of n access
structure. Let party i’s shares of fsk1 and fsk2 be denoted by fsk1,i and fsk2,i,
respectively. Since the decryption procedure of the multi-key FHE scheme is
linear and the secret sharing of fsk1 and fsk2 is also linear and, crucially, with
respect to the same access structure, one could have party i partially decrypt by
running the decryption procedure of the multi-key FHE scheme using the secret
key [fsk1,i, fsk2,i]. Given these partial decryptions, one could combine them to
recover the message by adding them as specified by the reconstruction procedure
of the secret sharing scheme.

The above gives intuition as to how one might construct threshold multi-key
FHE, but several points are still unclear. In particular, we noted that in order to
achieve a meaningful notion, we want an encryptor to encrypt with respect to a
public key set and an access structure. The idea is that the public key set that
an encryptor encrypts with respect to is not a public key set of the underlying
MFHE scheme, but rather simply a set of public keys for a public-key encryption
scheme. These public keys serve as a means to send the corresponding multi-key
FHE secret key shares to the other parties. At a high level, encryption works by
generating a multi-key FHE public key fpk and secret key shares fsk1, . . . , fskn

corresponding to the access structure A. The encryptor then encrypts fski under
pki and includes this in the ciphertext. This allows a set of parties satisfying the
access structure to use their secret keys ski of the public-key scheme to recover
the necessary fski’s to decrypt the ciphertext. Furthermore, as we noted above,
standard multi-key FHE expansion and evaluation will result in a ciphertext
that can be decrypted by concatenating the secret key shares for each of the
ciphertexts.

The above discussion is highly simplified and is meant to provide the reader
with some intuition behind our construction. We ignored various subtle points
and refer the reader to the main technical sections for the details. As a conse-
quence of our techniques, we are able to directly simulate partial decryptions
against an adversary that corrupts any set S 	∈ A, not only a maximally unqual-
ified one. The constructions of [7,33] could only simulate against a maximally
unqualified set (N − 1 out of the N parties in their case) and relied on a trans-
formation to achieve simulation security against any unqualified corrupted set.

2.2 MPC with Guaranteed Output Delivery

Recall that a (tMal, tSh, tFc)-threshold mixed adversary is one which corrupts
three sets of parties (AMal,ASh,AFc) with |AMal| ≤ tMal, |ASh| ≤ tSh, and
|AFc| ≤ tFc that behave as follows: the set of parties in AMal are completely
malicious and can behave arbitrarily as per the adversary’s choice, the set of
parties in ASh are corrupted in a semi-honest manner meaning that they are
required to follow the protocol behavior correctly and the set of parties in AFc

are corrupted in a fail-corrupt manner meaning that for each party in this set,
the adversary can choose to abort the protocol execution at any point. Crucially,
the adversary does not get to see the internal state of any fail-corrupt party.
Intuitively, we can imagine these fail-corrupt parties as honest “lazy” parties

Secure MPC: Laziness Leads to GOD 131

whose aborting/laziness is controlled by the adversary. In this work, we focus
on the setting of static corruptions where the adversary is required to specify all
three sets apriori. Of course, note that for each fail-corrupt party, the adversary
still has the luxury to determine adaptively when each party is expected to abort.

Our three-round MPC protocol secure against a threshold mixed adversary
follows the same recipe as in the works of Mukherjee and Wichs [33] and Brak-
erski et al. [7] who construct MPC protocols from multi-key FHE. We adapt it
to instead use the underlying system as a threshold multi-key FHE scheme. Fur-
ther, we will parametrize our protocol using an access structure A which will be
used to run the setup of the threshold multi-key FHE scheme. Recall that since
we are interested in the setting where guaranteed output delivery is possible,
we require that (tMal, tSh, tFc) respect the Hirt et al. [27] inequality. That is,
2tMal + tSh + tFc < N . In our protocol, given a threshold tuple (tMal, tSh, tFc),
A will be set as the (N − tMal − tFc)-out-of-N access structure. This ensures
that tMal + tSh, the maximum number of parties for which the adversary can
view the internal state is less than the required threshold to satisfy the access
structure.

Security Against Semi-Malicious Mixed Adversaries. Let’s first consider
the simpler setting where the first set of corrupted parties AMal can only be semi-
malicious. That is, on behalf of each of them, the adversary can pick randomness
of its choice but the parties are required to follow the protocol behavior honestly
using this randomness. The adversary may also choose to have these parties
abort at any time. A more formal definition is given in the full version. The
overall structure of our MPC protocol with respect to any access structure is the
following:

– In round 1, each party generates its parameters and public key for the thresh-
old multi-key FHE scheme.

– In round 2, each party individually encrypts its input with respect to the
combined set of public keys and access structure and broadcasts the cipher-
text.

– All parties can now homomorphically compute a threshold multi-key FHE
encryption of the output, with respect to the functionality under considera-
tion. Then, each party broadcasts a partial decryption of the output using its
secret key. The partial decryptions can be combined to recover the output in
plaintext.

It can be readily observed from the definition of threshold multi-key FHE
that this protocol satisfies correctness and security even in the presence of a
threshold mixed adversary (with semi-malicious corruptions), where some lazy
honest parties could drop off from the protocol execution at any point as deter-
mined by the fail-corrupt corruption. Furthermore, the fact that the protocol has
guaranteed output delivery can be observed by noting that at most tMal + tFc

parties will abort. So, at least N − tMal − tFc parties will remain, which is suffi-
cient to recover the output. Note that since we have restricted the adversary to

132 S. Badrinarayanan et al.

behave semi-maliciously instead of maliciously on the set AMal, every message
sent will be “valid.”

One key difference from the previous works [7,33] is the following: in the
standard model MPC protocols of [7,33], due to the design of the multi-key
FHE primitive, the protocol is secure only against a semi-malicious adversary
that corrupts all but one party. They then need to transform it to a protocol
that is secure against an adversary that can corrupt any arbitrary number of
parties up to all but one of them. In our MPC protocol, the security guarantee
given by the threshold multi-key FHE scheme allows us to prove a more general
statement that our protocol is in fact secure even if the adversary chooses to
corrupt fewer parties than it is capable of (it chooses to corrupt less than the
threshold number of parties).

Handling Malicious Adversaries. The final step in achieving our MPC pro-
tocol is to allow the set AMal to be maliciously corrupted. One way to do this
would be to use a NIZK and have each party send a proof in each round that
they computed their message properly; if the NIZK proof does not verify, the
party would be treated as malicious and ignored. Unfortunately, using a NIZK
would require us to introduce a CRS, and we want our protocol to be in the
plain model.

Round One: Malicious. To do so, the first crucial observation we make is that
the underlying semi-malicious protocol (without a NIZK) in the plain model is
already in fact secure against an adversary that can behave maliciously only in
the first round. The reason is that the first round message, which consists of
the adversary’s parameters for the threshold multi-key FHE scheme, is simply
a random matrix and a public key. To argue semi-malicious security, we only
needed the following two properties:

– The honest parties’ matrices are generated uniformly at random.3

– The simulator, before the beginning of round three, only needs to know the
randomness used by the adversary in the second round to generate its cipher-
text. In particular, the simulator does not need to know a corresponding
secret key for the public key sent by the adversary in round 1.

As a result, we did not require the input or randomness used by the adversary
to generate its round one messages, and hence our protocol is secure against an
adversary that can behave maliciously in round one.

Multi-string NIZK. Armed with the above property, we note that our proto-
col no longer needs to prove correctness of round one messages using a NIZK.
Therefore, we will use the first round messages of all parties to try to collectively
generate a valid CRS that can then be used to generate the NIZKs and achieve a
construction in the plain model. The notion of multi-string NIZKs, introduced in
the work of Groth and Ostrovsky [25] exactly fits this requirement. As discussed

3 This was a wonderful observation made in the work of Brakerski et al. [7].

Secure MPC: Laziness Leads to GOD 133

previously, in a multi-string NIZK argument system, a set of parties can each
generate one CRS that can then be combined to compute one unified CRS which
is used to compute NIZKs. The guarantee is that as long as a majority of the
individual CRS strings are honestly generated, the argument system is correct
and secure4.

In our protocol, we can use this primitive as follows: in round 1, each party
generates an individual CRS for the multi-string NIZK system. At the end of
round 1, all parties can combine the above set of CRS strings to compute one
unified CRS that can then be used to compute NIZKs. In rounds 2 and 3, each
party also sends a NIZK along with their message, and the other parties make
sure the NIZK verifies. If the NIZK does not verify, the party that submitted an
invalid message is ignored for the rest of the protocol and treated as if it had
aborted instead.

There is one additional hurdle to ensuring that a multi-string NIZK suffices
for our setting. The multi-string NIZK is only secure if a majority of the CRSs
are honestly generated. However, we want our protocol to be secure against any
(tMal, tSh, tFc)- mixed adversary, where 2tMal+ tSh+ tFc < N . In particular, we
need the multi-string NIZK to be secure in settings without an honest majority!
Fortunately, the multi-string NIZK is still secure in our setting, provided that the
CRSs are uniformly random strings. To see why this is the case, we first observe
that tFc, the number of fail-corrupt parties does not present any difficulties. This
is because these parties fall under the “honest but lazy” parties in our motivation,
and so while the adversary can force them to abort, the adversary can never
learn any internal state information of these parties or cause them to behave
dishonestly. Therefore, any CRS output by these parties will be an honest CRS,
and so choosing to not have these parties abort prior to round 1 only increases
the number of honest CRSs that are output. The second observation is that any
semi-honest corruptions also do not cause any difficulties. This is because the
honest procedure for generating a CRS is to simply sample a random string.
Therefore, even if an adversary semi-honestly corrupts a party, it can neither
prevent it from outputting an honestly generated random string nor learn any
state information that could compromise the random string. Therefore, all the
CRSs output by the semi-honest corrupt and fail-corrupt parties are honest, and
since 2tMal + tSh + tFc < N , it follows that a majority of the CRSs are honestly
generated. Therefore, security of the multi-string NIZK system holds and we
obtain a plain model construction. In this work, we construct a multi-string
NIZK from LWE that satisfies this additional property required of the CRS and
we elaborate more on this construction now.

2.3 Multi-string NIZK from LWE

The above demonstrated that a simulation-extractable multi-string NIZK would
allow us to obtain our round-optimal MPC protocol. However, a multi-string

4 As is the case with compiling semi-malicious protocols into malicious secure ones,
we need the NIZK to be simulation-extractable.

134 S. Badrinarayanan et al.

NIZK is not known to exist from LWE. Previously it was known from statisti-
cally sound ZAPS as shown in the work of [25]. However, ZAPs are not known
to exist from polynomially hard LWE. One might think that we could use the
recent result of Peikert and Shiehian [35], which constructs either a statistically-
sound NIZK in the common reference string model or a computationally-sound
NIZK in the common random string model. One might think that we could use
the transformation of Dwork and Naor [16] to obtain a ZAP from LWE and
then apply the transformation of [25]. However, this does not work, since their
transformation crucially requires a statistically-sound NIZK in the common ran-
dom string model, which is not known from polynomially hard LWE (the recent
works of [2,30] construct such ZAPs from quasipolynomial LWE). Therefore, we
require a different approach. We construct the first multi-string NIZK from LWE
and use it as a tool in obtaining our round-optimal MPC result.

Our construction proceeds in two main steps. We first build a multi-string
non-interactive witness indistinguishable (NIWI) argument from LWE and then
show how to bootstrap it to obtain a simulation-extractable multi-string NIZK.

A recent series of works [10,11,28,31,35] have developed a framework for
instantiating the Fiat-Shamir transform [18] using a hash function that satisfies
a property called correlation-intractability [12]. This culminated in the work of
Peikert and Shiehian [35], who were able to obtain the first NIZK from LWE
by constructing a correlation-intractable hash function family for (bounded) cir-
cuits from LWE. The notion of a correlation-intractable hash function family
is defined formally in the full version. Informally, a hash function family H is
correlation-intractable for a relation R if given a sampled key K, it is hard to
find an x such that (x,HK(x)) ∈ R. Following the formula introduced in the
above works, we will apply the Fiat-Shamir transform to the Σ protocol for
Graph Hamiltonicity by Blum [3] in order to obtain our multi-string NIZK.

Multi-string NIWI from LWE. The first step is to construct a multi-string
NIWI from LWE. A multi-string NIWI is defined analogously to a multi-string
NIZK. That is, in a multi-string NIWI, a set of parties can each generate one
CRS that can then be combined to compute one unified CRS which is used to
compute NIWIs. The guarantee is that as long as a majority of the individual
CRS strings are honestly generated, the argument system is correct and secure.

To construct the multi-string NIWI, we first construct a non-interactive com-
mitment scheme in the multi-string model with the property that the scheme
remains hiding and binding provided that a majority of the CRSs are honestly
generated. At a high level, this is done by having each CRS be a public key pki

of a public key encryption (PKE) scheme. To commit to a message m, one sim-
ply secret shares m using a
n/2� + 1-out-of-n secret sharing scheme to obtain
shares (m1, . . . ,mn), then encrypts mi under pki, and outputs these n cipher-
texts as the commitment. Since a majority of the public keys were generated
honestly, a majority of the shares are hidden by the encryption, so the com-
mitment scheme satisfies hiding. By the correctness of the PKE scheme, the
resulting commitment scheme must also be binding. Furthermore, we observe

Secure MPC: Laziness Leads to GOD 135

that this commitment scheme also has an associated trapdoor that facilitates
extraction of the message committed. In particular, any majority of the secret
keys ski can be used as a trapdoor as they can recover a majority of message
shares from the commitment and, therefore, the message.

The multi-string NIWI is built by having each party generate its CRS in the
setup phase as a public key pki of a PKE scheme and a hash key Ki from the
correlation hash function family H. To prove a statement x ∈ L using a witness
w, we run λ parallel repetitions of the Σ protocol using the above commitment
scheme as the underlying commitment scheme and making it non-interactive via
the Fiat-Shamir transformation, with the hash function instantiated using HKi

.
A proof is the transcript of all the parallel executions of the Σ protocol. Sound-
ness follows from the correlation-intractability of the hash function family H, the
binding property of the commitment scheme and the soundness of the underlying
Σ protocol. Witness indistinguishability follows from the witness indistinguisha-
bility of the underlying Σ protocol and the fact that the commitment scheme is
hiding even if a minority of shares are learned. We refer the reader to the full
version for more details.

Obtaining a Multi-string NIZK. In order to obtain a multi-string NIZK from
our multi-string NIWI, we use the standard trick found in [17,25] each party
also generates a random string ri as part of their CRS and the statement that
is proven using the multi-string NIWI now is that x ∈ L OR a majority of the
ri’s are actually the output of a pseudorandom generator G. Soundness and zero
knowledge then follow via standard arguments, and we refer the reader to the
full version for more details. We then observe that we can also prove simulation-
extractability of our multi-string NIZK if we additionally use the commitment
scheme from before once again and require the prover to commit to its witness
using this scheme. The statement being proved using the multi-string NIWI
would now be that either x ∈ L using a witness w that was committed OR
a majority of the ri’s are actually the output of a pseudorandom generator G.
Further, in order to prove that the scheme is simulation extractable, here, we will
instantiate all the underlying PKE schemes inside the extra commitment scheme
(for the witness) with CCA-secure PKE schemes. As a result, our extractor for
the simulation-extractable NIZK can use the secret keys of all the honest parties
for this extra commitment scheme as a trapdoor to learn the witness associated
with the adversary’s proof. We refer the reader to the full version for more details
about the proof.

Finally, recall that in order to use the multi-string NIZK in our MPC pro-
tocol, we require that the CRS generated by each party is a uniformly random
string. However, in our construction, in addition to the random string r, the
CRS consists of two public keys (one for committing to the witness and one for
the commitment used in the Σ protocol) and a hash key K for a correlation-
intractable hash function family H. We will use an encryption scheme whose pub-
lic keys are statistically-close to uniform and we also observe that the hash key is
statistically-close to uniform. This ensures that the CRS is also statistically-close

136 S. Badrinarayanan et al.

to uniform. We then prove that this is in fact sufficient for the MPC application
and we don’t require the CRS to be a uniformly random string. We refer to the
full version for more details.

Roadmap. We define some preliminaries in Sect. 3. Then, we formally define
threshold multi-key FHE in Sect. 4 and give our construction in Sect. 5. In Sect. 6,
we describe our round optimal MPC protocol with guaranteed output delivery
against threshold mixed adversaries. Finally, in Sect. 7, we construct multi-string
NIZKs.

3 Preliminaries

We denote the security parameter by λ. For an integer n ∈ N, we use [n] to denote
the set {1, 2, . . . , n}. We use D0

∼=c D1 to denote that two distributions D0,D1

are computationally indistinguishable. We use negl(λ) to denote a function that
is negligible in λ. We use x ← A to denote that x is the output of a ran-
domized algorithm A, where the randomness of A is sampled from the uniform
distribution. We use PPT as an abbreviation for probabilistic polynomial-time.
Whenever we write {xj}j∈S for a set of parties S, we assume that the party j
that xj corresponds to is included in S. When we say an error distribution is
E-bounded, we mean that the errors are in [−E,E].

Cryptographic Primitives. We formally define secret sharing, correlation
intractable hash functions, simulation-extractable multi-string NIZKs, and
Sigma protocols in the full version. We also define MPC against a threshold
mixed adversary with guaranteed output delivery following the works of [19,20]
in the full version of the paper.

Guaranteed Output Delivery (GOD). Consider an MPC protocol π amongst N
parties. Informally, π is said to possess guaranteed output delivery (GOD) if
for every PPT malicious adversary, for all possible sets of inputs {x1, . . . , xN},
for any function f , the following holds: At the end of the execution of π, every
honest party outputs f(y1, . . . , yn) where yi = xi for every honest party Pi and
yj = xj/⊥ for every corrupt party Pj .

3.1 Multi-key FHE

We recall the definition of multi-key FHE in the plain model with distributed
setup as found in [7].

Definition 1 (MFHE). A multi-key fully homomorphic encryption scheme is
a tuple of PPT algorithms

MFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)

satisfying the following specifications:

Secure MPC: Laziness Leads to GOD 137

paramsi ← DistSetup(1λ, 1d, 1N , i): It takes as input a security parameter λ, a
circuit depth d, the maximal number of parties N , and a party index i. It
outputs the public parameters paramsi associated with the ith party, where
paramsi ∈ {0, 1}poly(λ,d,N) for some polynomial poly. We assume implicitly
that all the following algorithms take the public parameters of all parties as
input, where we define params = params1|| . . . ||paramsN .

(pk, sk) ← KeyGen(params): It takes as input the public parameters params and
outputs a key pair (pk, sk).

ct ← Encrypt(pk,m): It takes as input a public key pk and a plaintext m ∈ {0, 1}λ

and outputs a ciphertext ct. Throughout, we will assume that all ciphertexts
include the public key(s) that they are encrypted under.

ĉt ← Eval(C, ct1, . . . , ct�): It takes as input a boolean circuit C : ({0, 1}λ)� →
{0, 1} ∈ Cλ of depth ≤ d and ciphertexts ct1, . . . , ct� for � ≤ N . It outputs an
evaluated ciphertext ĉt.

pi ← PartDec(i, sk, ĉt): It takes as input an index i, a secret key sk and an
evaluated ciphertext ĉt and outputs a partial decryption pi.

μ̂ ← FinDec(p1, . . . , p�): It takes as input partial decryptions p1, . . . , p� and deter-
ministically outputs a plaintext μ̂ ∈ {0, 1,⊥}.

We require that for any parameters {paramsi ← Setup(1λ, 1d, 1N , i)}i∈[N],
any key pairs {(pki, ski) ← KeyGen(params)}i∈[N], any plaintexts m1, . . . ,m� ∈
{0, 1}λ for � ≤ N , any sequence I1, . . . , I� ∈ [N] of indices, and any boolean
circuit C : {0, 1}� → {0, 1} ∈ Cλ of depth ≤ d, the following is satisfied:

Correctness. Let cti = Encrypt(pkIi ,mi) for 1 ≤ i ≤ �, ĉt =
Eval(C, ct1, . . . , ct�), and pi = PartDec(i, skIi , ĉt) for all i ∈ [�]. With all
but negligible probability in λ over the coins of Setup, KeyGen, Encrypt, and
PartDec,

FinDec(p1, . . . , p�) = C(m1, . . . ,m�).

Compactness of Ciphertexts. There exists a polynomial, poly, such that
|ct| ≤ poly(λ, d,N) for any ciphertext ct generated from the algorithms of
MFHE.

Semantic Security of Encryption. Any PPT adversary A has only negligi-
ble advantage as a function of λ over the coins of all the algorithms in the
following game:
1. On input the security parameter 1λ, a circuit depth 1d, and the number

of parties 1N , the adversary A outputs a non-corrupted party i.
2. Run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given paramsi.
3. The adversary outputs {paramsj}j∈[N]\{i}.
4. params is set to params1|| . . . ||paramsN . Run KeyGen(params) →

(pki, ski). The adversary is given pki.
5. The adversary outputs two messages m0,m1 ∈ {0, 1}λ.
6. The adversary is given ct ← Encrypt(pki,mb) for a random b ∈ {0, 1}.
7. The adversary outputs b′ and wins if b = b′.

138 S. Badrinarayanan et al.

Simulation Security. There exists a stateful PPT algorithm Sim such that for
any PPT adversary A, we have that the experiments ExptA,Real(1λ, 1d, 1N)
and ExptA,Sim(1λ, 1d, 1N) as defined below are statistically close as a function
of λ over the coins of all the algorithms. The experiments are defined as
follows:
ExptA,Real(1λ, 1d, 1N):

1. On input the security parameter 1λ, a circuit depth 1d, and the number
of parties 1N , the adversary A a non-corrupted party i.

2. Run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given
paramsi.

3. The adversary outputs {paramsj}j∈[N]\{i}.
4. params is set to params1|| . . . ||paramsN . Sample N − 1 key pairs

KeyGen(params) → (pkj , skj) for j ∈ [N]\{i}. The adversary is given
{(pkj , skj)}j∈[N]\{i}.

5. The adversary outputs randomness rKeyGeni used to generate (pki, ski),
m1, . . . ,m� ∈ {0, 1}λ, I1, . . . , I� ∈ [N], and a set of circuits {Ck :
({0, 1}λ)� → {0, 1}}k∈[t] with each Ck ∈ C for some � ≤ N and some
t = poly(λ, d,N).

6. Set (pki, ski) ← KeyGen(params; rKeyGeni). The adversary is given
ctj ← Enc(pkIj ,mj) for 1 ≤ j ≤ � and the evaluated ciphertexts
ĉtk ← Eval(Ck, ct1, . . . , ct�) for all k ∈ [t].

7. The adversary is given pi,k ← PartDec(i, ski, ĉtk) for all k ∈ [t].
8. A outputs out. The output of the experiment is out.

ExptA,Sim(1λ, 1d, 1N):
1. On input the security parameter 1λ, a circuit depth 1d, and the number

of parties 1N , the adversary A a non-corrupted party i.
2. Run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given

paramsi.
3. The adversary outputs {paramsj}j∈[N]\{i}.
4. params is set to params1|| . . . ||paramsN . Sample N − 1 key pairs

KeyGen(params) → (pkj , skj) for j ∈ [N]\{i}. The adversary is given
{(pkj , skj)}j∈[N]\{i}.

5. The adversary outputs randomness rKeyGeni used to generate (pki, ski),
m1, . . . ,m� ∈ {0, 1}λ, I1, . . . , I� ∈ [N], and a set of circuits {Ck :
({0, 1}λ)� → {0, 1}}k∈[t] with each Ck ∈ C for some � ≤ N and some
t = poly(λ, d,N).

6. Set (pki, ski) ← KeyGen(params; rKeyGeni). The adversary is given
ctj ← Enc(pkIj ,mj) for 1 ≤ j ≤ � and the evaluated ciphertexts
ĉtk ← Eval(Ck, ct1, . . . , ct�) for all k ∈ [t].

7. Define μk = Ck(m1, . . . ,m�). For all k ∈ [t], the adversary is given
pi,k ← Sim(μk, ĉt, i, {skj}j∈[N]\{i}).

8. A outputs out. The output of the experiment is out.

Secure MPC: Laziness Leads to GOD 139

4 Threshold Multi-key FHE: Definition

In this section, we present the definition of threshold multi-key fully homomor-
phic encryption (TMFHE) in the plain model with distributed setup5. TMFHE
will be the main building block in our MPC protocol.

Definition 2 (TMFHE). Let P = {P1, . . . , PN} be a set of parties and let S be
a class of efficient access structures on P . A threshold multi-key fully homomor-
phic encryption scheme supporting up to N parties is a tuple of PPT algorithms

TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)

satisfying the following specifications:

paramsi ← DistSetup(1λ, 1d, 1N , i): It takes as input a security parameter λ,
a circuit depth d, the maximal number of parties N , and a party index i. It
outputs the public parameters paramsi associated with the ith party. We define
params = params1|| . . . ||paramsN .

(pk, sk) ← KeyGen(1λ): It takes as input the security parameter λ and outputs a
key pair (pk, sk).

ct ← Encrypt(params, pk1, . . . , pkN ,A,m): It takes as input the public parameters
params, public keys pk1, . . . , pkN , an access structure A over P and a plaintext
m ∈ {0, 1}λ and outputs a ciphertext ct. Throughout, we will assume that
all ciphertexts include the public parameters, the public keys, and the access
structure that they are encrypted under.

ĉt ← Eval(C, ct1, . . . , ct�): It takes as input a boolean circuit C : ({0, 1}λ)� →
{0, 1} ∈ Cλ of depth ≤ d and ciphertexts ct1, . . . , ct� for � = poly(N). It
outputs an evaluated ciphertext ĉt.

pi ← PartDec(i, sk, ĉt): It takes as input an index i, a secret key sk and an
evaluated ciphertext ĉt and outputs a partial decryption pi.

μ̂ ← FinDec(B): It takes as input a set B = {pi}i∈S for some S ⊆ {P1, . . . , PN}
where we recall that we identify a party Pi with its index i. It deterministically
outputs a plaintext μ̂ ∈ {0, 1,⊥}.

We require that for any parameters {paramsi ← DistSetup(1λ, 1d, 1N , i)}i∈[N],
any key pairs {(pki, ski) ← KeyGen(1λ)}i∈[N], any supported access structure A

over P , any plaintexts m1, . . . ,m� ∈ {0, 1}λ for � = poly(N), and any boolean
circuit C : ({0, 1}λ)� → {0, 1} ∈ Cλ of depth ≤ d, the following is satisfied:

Correctness. Let cti = Encrypt(params, pk1, . . . , pkN ,A,mi) for 1 ≤ i ≤ �, ĉt =
Eval(C, ct1, . . . , ct�), and B = {PartDec(i, ski, ĉt)}i∈S. With all but negligible
probability in λ over the coins of DistSetup, KeyGen, Encrypt, and PartDec,

FinDec(B) =

{
C(m1, . . . ,m�), S ∈ A

⊥ S 	∈ A.

5 Note that we can instead define TMFHE with a single trusted setup, which will
allow us to construct MPC protocols in the CRS model as in [33]. However, our
main focus is on the plain model, and therefore, we use decentralized setup as in [7].

140 S. Badrinarayanan et al.

Compactness of Ciphertexts. There exists a polynomial, poly, such that
|ct| ≤ poly(λ, d,N) for any ciphertext ct generated from the algorithms of
TMFHE.

Simulation Security. There exist PPT algorithms Sim1,Sim2 such that for any
PPT adversary A, we have that the experiments ExptA,Real(1λ, 1d, 1N) and
ExptA,Sim(1λ, 1d, 1N) are computationally indistinguishable.
ExptA,Real(1λ, 1d, 1N):

1. On input the security parameter 1λ, a circuit depth 1d, and the maxi-
mal number of parties 1N , the adversary A outputs an access structure
A ∈ S over N parties and a maximal set S ⊆ [N] such that S 	∈ A.

2. For i ∈ [N], run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is
given {paramsi}i∈[N]. Sample key pairs KeyGen(1λ) → (pki, ski) for
i ∈ [N]. The adversary is given {pki}i∈[N] and {ski}i∈S.

3. The adversary then outputs messages m1, . . . ,m� ∈ {0, 1}λ for � =
poly(N).

4. params is set to the concatenation of the paramsi’s for i ∈ [N]. Let
PK = {pki}i∈[N]. The adversary is given cti ← Enc(params,PK,
A,mi) for i ∈ [�].

5. The adversary issues polynomially many queries of the form
(Ck : ({0, 1}λ)� → {0, 1}), where Ck ∈ C. Let the evaluated cipher-
text be ĉtk ← Eval(Ck, ct1, . . . , ct�). After each query, the adversary
receives pi,k ← PartDec(i, ski, ĉtk) for all i ∈ [N]\S.

6. A outputs out. The output of the experiment is out.
ExptA,Sim(1λ, 1d, 1N):

1. On input the security parameter 1λ, a circuit depth 1d, and the maxi-
mal number of parties 1N , the adversary A outputs an access structure
A ∈ S over N parties and a maximal set S ⊆ [N] such that S 	∈ A.

2. For i ∈ [N], run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is
given {paramsi}i∈[N]. Sample key pairs KeyGen(1λ) → (pki, ski) for
i ∈ [N]. The adversary is given {pki}i∈[N] and {ski}i∈S.

3. The adversary then outputs messages m1, . . . ,m� ∈ {0, 1}λ for � =
poly(N).

4. params is set to the concatenation of the paramsi’s for i ∈ [N]. Let
PK = {pki}i∈[N]. The adversary is given {cti}i∈[�] ← Sim1(params,
PK,A).

5. The adversary issues polynomially many queries of the form
(Ck : ({0, 1}λ)� → {0, 1}), where Ck ∈ C. Let the evaluated cipher-
text be ĉtk ← Eval(Ck, ct1, . . . , ct�). After each query, the adver-
sary receives {pi,k}i�∈S ← Sim2(μk, ĉtk, S, {ski}i∈S), where μk =
Ck({mi}i∈[�]).

6. A outputs out. The output of the experiment is out.

The security notion is inspired by the security definitions of multi-key FHE [7,
33] suitably adapted to the context of general access structures. Observe that
the above definition captures both the semantic security of ciphertexts and the
simulation security of partial decryptions.

Secure MPC: Laziness Leads to GOD 141

Looking ahead to our MPC protocol, we will actually need some stronger
guarantees from the TMFHE scheme, which adds complexity to the security
definition. In our MPC protocol, the adversary is allowed to choose which hon-
est parties abort in each round and is rushing, so he is allowed to control the
randomness of corrupted parties as a function of the honest parties. We capture
this by allowing the simulator of the TMFHE scheme to be stateful. Additionally,
since the adversary in MPC is rushing, it is allowed to see the honest parame-
ters/ciphertexts before it picks its parameters/ciphertexts.

The (more general) formal definition we use is deferred to the full version.

5 Threshold Multi-key FHE: Construction

In this section, we construct threshold multi-key FHE as defined in Sect. 4. For-
mally, we show the following.

Theorem 4 (TMFHE). Assuming LWE, there exists a secure threshold multi-
key FHE scheme for the class of access structures {0, 1}-LSSSD. In particular,
there exists a secure TMFHE scheme for any access structure induced by a mono-
tone boolean formula and any t out of N access structure.

We use several ingredients. First, we initialize a multi-key FHE scheme using
the construction in [7]. Then, we utilize the techniques in the construction of
threshold FHE in [29]6, which shows how to transform a generic FHE scheme
satisfying several properties into a threshold FHE scheme. We observe that the
multi-key FHE construction of [7] is “compatible” with the thresholdizing trans-
formation described in [29]. Finally, we use a public key encryption scheme to
tie everything together.

In more detail, examining the construction of [29], we note that it is compat-
ible with a generic FHE scheme where:

1. The secret key sk is a vector in Z
m
q for some prime q.

2. The decryption function Dec can be broken into two algorithms Dec0,Dec1
where Dec0(sk, ct) computes a linear function in sk and ct to output μ �q/2�+
e for some bounded error e ∈ [−E,E] with E << q, where ct is an encryption
of μ. Dec1 then takes this resulting value and rounds to recover μ.

We note that the construction of multi-key FHE in [7] satisfies these required
properties. Furthermore, it satisfies the following additional properties that will
be useful to note in the construction.

1. An evaluated ciphertext ĉt that encrypts a bit μ with respect to public keys
pk1, . . . , pk� is a matrix that satisfies

s · ĉt ≈ μs · G

for a gadget matrix G and s = (sk1|| . . . ||sk�), where ski is the secret key
corresponding to public key pki. Each ski is of the form (si||1).

6 We note that the work of Boneh et al. [4] is a merge of [29] and [5].

142 S. Badrinarayanan et al.

2. There exists a low-norm vector v such that Gv = (0, 0, . . . , �q/2�)T . Decryp-
tion proceeds by evaluating s · ĉt · v and then outputs 1 if the resulting value
is closer to �q/2� than 0 and 0 otherwise.

Furthermore, [29] shows the following result.

Theorem 5. ([29]). For any access structure A on N parties induced by a
monotone boolean formula, there exists a {0, 1}-LSSSD scheme of a vector
s ∈ Z

m
q where each party P receives at most w shares of the form si ∈ Z

m
q

for w = poly(N).

5.1 Construction

Let MFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec) be a multi-key FHE
scheme instantiated with the construction in [7]. Let PKE = (Setup,Enc,Dec)
be a public-key encryption scheme. Let χsm denote the uniform distribution on
the interval [−Esm, Esm] for a value Esm to be determined.

Our threshold multi-key FHE construction TMFHE is given as follows:

DistSetup(1λ, 1d, 1N , i): Run MFHE.DistSetup(1λ, 1d, 1N , i) → paramsi and out-
put paramsi.

KeyGen(1λ): Run PKE.Setup(1λ) → (pk, sk) and output (pk, sk).
Encrypt(params, pk1, . . . , pkN ,A,m): Run MFHE.KeyGen(params) → (fpk, fsk).

Compute {fski,j}i∈[N],j∈[w] for some w = poly(N) by applying the
{0, 1}-LSSSD scheme associated with A to fsk to . Set ct′ ← MFHE.Enc(fpk,m)
and for i ∈ [N], set cti = PKE.Enc(pki, {fski,j}j∈[w]). Output

ct = (ct′, ct1, . . . , ctN).

Eval(C, ct1, . . . , ct�): Parse cti as (ct′i, cti,1, . . . , cti,N). Let fpki be the MFHE pub-
lic key associated with ct′i. Run MFHE.Eval(C, ct′1, . . . , ct

′
�) → ĉt

′
. Output

ĉt = (ĉt′, {cti,j}(i,j)∈[�]×[N]).

PartDec(i, sk, ĉt): Parse ĉt as (ĉt′, {ctk,j}(k,j)∈[�]×[N]). For every k ∈ [�], run
PKE.Dec(sk, ctk,i) → {fskk,i,j}j∈[w]. For t ∈ [w], compute

(fsk1,i,t||fsk2,i,t|| . . . ||fsk�,i,t) · ĉt′ · v + esm
t → p′

t,

where esm
t ← χsm and v is the low-norm vector used for decryption in [7]

described above. Output pi = (i, {p′
t}t∈[w]).

FinDec(B): Parse B as {(i, {p′
t}t∈[w])}i∈S for some set S of indices. If S 	∈ A,

output ⊥. If S ∈ A, apply the {0, 1}-LSSSD reconstruction to get ≈ μ̂ �q/2�.
Then, round to recover μ̂.

We defer the proofs of correctness, compactness, and security to the full version.

Secure MPC: Laziness Leads to GOD 143

Instantiation. In order for correctness to hold, we required that E+NwEsm <
q/4. For security, we required that NwE/Esm = negl(λ). Recall that w =
poly(N). Let W = poly(N) be an upper bound for the set of access structures
supported by the scheme. Then, setting E/Esm < λ− log2 λ and Esm < q/8NW
gives us an instantiation that satisfies both correctness and security. The MFHE
scheme of [7] can be instantiated with such properties assuming a variant of the
learning with errors assumption, which is as hard as approximating the shortest
vector problem to within a subexponential factor.

6 Round-Optimal MPC with Guaranteed Output
Delivery Secure Against Threshold Mixed Adversaries

In this section, we use threshold multi-key FHE to construct a round-optimal
(three-round) MPC protocol in the plain model with guaranteed output deliv-
ery that is secure against a threshold mixed adversary (defined in the full
version), assuming LWE. Our protocol supports all functionalities computable
by polynomial-sized circuits and is parameterized by a tuple of thresholds
(tMal, tSh, tFc) that represent the number of malicious, semi-honest, and fail-
corrupt corruptions that the adversary is allowed to make, respectively. Our
protocol has guaranteed output delivery and is secure provided that 2tMal +
tSh + tFc < N , the Hirt et al. [27] inequality that characterizes the threshold
values under with guaranteed output delivery is possible to achieve.

Thus, our resulting protocol is both optimal in terms of the best possible
corruption we can tolerate and also round-optimal (since at least three rounds
are required for a protocol to have guaranteed output delivery, as shown by
Gordon et al. [24]). Moreover, our protocol has depth-proportional communica-
tion complexity, is reusable, and has input fidelity for “honest but lazy” parties.
Formally, we show the following.

Theorem 6. Assuming LWE, for any function f , for any tuple of thresholds
(tMal, tSh, tFc) satisfying 2tMal + tSh + tFc < N , there exists a three-round MPC
protocol with guaranteed output delivery in the plain model that is secure against
a (tMal, tSh, tFc)-mixed adversary. Furthermore, the protocol is reusable, has com-
munication complexity poly(λ, d,N), where d is the depth of the circuit computing
f and the functionality is computed with respect to the inputs of all parties that
send valid messages in the first two rounds.

Note that our result in the mixed adversary setting is in fact broader and more
general than the traditional MPC setting. By instantiating Theorem 6 with the
(�N/2−1�, 0, 0)-mixed adversary (this corresponds to the honest-majority setting
against a malicious adversary), we immediately obtain the following corollary.

Corollary 2. Assuming LWE, for any function f , there exists a three-round
MPC protocol with guaranteed output delivery in the plain model that is secure
against a malicious adversary in the honest majority setting. Furthermore, the
protocol is reusable and has communication complexity poly(λ, d,N), where d is
the depth of the circuit computing f .

144 S. Badrinarayanan et al.

Like Theorem 6, this result is round-optimal and supports the maximum
possible number of corruptions.

6.1 Security Against a Semi-malicious Mixed Adversary

As a stepping stone to showing Theorem 6, we first construct a protocol that
satisfies all the properties of Theorem 6, except that it is only secure against
a semi-malicious mixed adversary (defined in the full version), which is sim-
ply a mixed adversary that corrupts some parties semi-maliciously, rather than
maliciously. We describe below our three-round MPC protocol that is secure
against a (tSm, tSh, tFc)-semi-malicious mixed adversary A = (ASm,ASh,AFc)
for 2tSm + tSh + tFc < N .

Notation: Consider N parties P1, . . . , PN with inputs x1, . . . , xN , respectively,
who wish to evaluate a boolean circuit C with depth ≤ d. Without loss of general-
ity, assume |xi| = λ ∀i ∈ [N]. Let (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)
be the previously constructed threshold multi-key FHE scheme. Fix
(tSm, tSh, tFc) satisfying 2tSm + tSh + tFc < N . Let A be the (N − tSm − tFc)-
out-of-N threshold access structure.

Protocol: We now describe our construction.

– Input Commitment Phase:
• Round 1: Each party Pi does the following:
1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to obtain paramsi.
2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).
3. Output (paramsi, pki).

• Round 2: Each party Pi does the following:
1. Parse the message (if one was sent) from Pj as (paramsj , pkj). Let

S1 ⊆ [N] be the set of parties that sent a message in round 1.
2. Truncate each paramsj for j ∈ S1 to the appropriate size given |S1|7.

Set params as the concatenation of the truncated paramsj ’s for j ∈
S1. Set PK = {pkj}j∈S1 . Let A

′ be the access structure induced by
restricting A to the parties in S1 (that is, the (N − tSm − tFc)-out-
of-|S1| access structure).

3. Run TMFHE.Encrypt(params,PK,A′, xi) to compute cti.
4. Output cti.

– Computation Phase:
• Round 3: Each party Pi does the following:
1. Parse the previous message (if one was sent) from Pj as ctj . Let

S2 ⊆ [N] be the set of parties that sent a message in round 2. Let
CT = {ctj}j∈S2 . Let C ′ be the circuit induced by hardcoding the
inputs to C corresponding to parties not in S2 to be 0λ.

7 Note that the paramsi of each party in the MFHE construction in [7] and, therefore,
also in our TMFHE construction, are simply random matrices Ai of a size dependent
on N . Therefore, truncating the matrix to the appropriate size for a scheme with |S1|
parties is equivalent to having run the distributed setup algorithm for |S1| parties.

Secure MPC: Laziness Leads to GOD 145

2. Run TMFHE.Eval(C ′, CT) to obtain ĉt.
3. Run TMFHE.PartDec(i, ski, ĉt) to obtain pi.
4. Output pi.

– Output Computation: Each party Pi does the following:
1. Parse the previous message (if one was sent) from Pj as pj . Let S3 ⊆ [N]

be the set of parties that sent a message in round 3.
2. Take any set S ⊆ S3 with S ∈ A and run TMFHE.FinDec(B) where

B = {pj}j∈S to recover μ̂. If no such set exists, output ⊥.

We defer the proofs of correctness, security, and the properties of the above
protocol to the full version.

6.2 Handling a Malicious Mixed Adversary

In the above protocol, the adversary can only corrupt some subset ASm of the
parties semi-maliciously, some subset ASh in a semi-honest manner and another
subset AFc in a fail-corrupt manner. In order to show Theorem 6, we need to
allow the adversary to corrupt the first subset ASm maliciously.

Our first observation is that the protocol is secure even against mixed adver-
saries that are allowed make parties in ASm behave maliciously in round 1, but
only semi-maliciously in rounds 2 and 3. After noting this, we further observe
that if we had a simulation-extractable multi-string NIZK [25] in the plain model
where the honest party’s behavior when generating a CRS is to simply sample a
uniformly random string8, then we could upgrade to security against malicious
mixed adversaries. We simply have each party send a reference string CRS in
round 1 and then require each party to also provide a NIZK argument in rounds
2 and 3 using these CRSs to ensure that they submitted a valid message in that
round. As mentioned previously, the multi-string NIZK is only secure if a major-
ity of the CRSs are honestly generated. However, we want our protocol to be
secure against any (tMal, tSh, tFc)- mixed adversary, where 2tMal+tSh+tFc < N .
In particular, we are no longer in the honest majority setting. As discussed ear-
lier, this is not an issue because only the CRSs corresponding to a maliciously-
corrupted party could be dishonestly generated and since the honest-generation
behavior is to simply output a uniformly random string, a party that is semi-
honestly corrupted will also output a perfectly good CRS. Furthermore, since
the number of maliciously-corrupted parties is a minority of the total number of
parties that send a CRS, a majority of the CRSs will be honestly generated and
security of the multi-string NIZK holds.

Security Against a Round 1 Malicious Mixed Adversary. We begin by
showing security of the protocol in Sect. 6.1 against a semi-malicious mixed
adversary that can behave maliciously in round 1. Since paramsi in the MFHE

8 For ease of exposition, we assume here that the honest CRS is a uniformly random
string. However, there is a subtle technical issue, which we handle in Sect. 7 where
we construct the multi-string NIZK.

146 S. Badrinarayanan et al.

construction in [7] is simply a matrix Ai of random entries, it follows that every
Ai output of a malicious adversary could also have been output by a semi-
malicious adversary that chose the appropriate randomness (we can simply trun-
cate the message or pad it with 0’s if the malicious adversary sends a message of
inappropriate length). However, a malicious adversary may send a pki that does
not correspond to any possible public key output by the TMFHE.KeyGen algo-
rithm. So, in the proof, the simulator does not receive the randomness rKeyGeni

used by the adversary to compute the round 1 message for a corrupted party
and therefore does not receive ski for corrupted parties. However, as we saw in
Sect. 5, the simulator does not need to know ski or rKeyGeni . Rather, it suffices
to know (xi, r

Encrypt
i), the input and randomness used to compute a corrupted

party’s round 2 message in order to simulate. Thus, an analogous simulator and
proof can be used to show security against this adversary.

Upgrading to Malicious Security via Multi-string NIZKs. We now show
how to use a simulation-extractable multi-string NIZK with uniformly random
CRSs to upgrade the protocol in Sect. 6.1 to one that achieves Theorem 6. The
final step is to show that such a multi-string NIZK can be built from LWE. This
was not previously known, and we show this in Sect. 7.

Construction. Let TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)
be the previously constructed threshold multi-key FHE scheme from Sect. 5 with
the underlying PKE scheme instantiated with one where any string is a valid pub-
lic key (a dense cryptosystem). Fix (tMal, tSh, tFc) satisfying 2tMal+tSh+tFc <
N . Let A be the N − tMal − tFc-out-of-N threshold access structure. Let
NIZK = (Gen,Prove,Verify) be a simulation-extractable multi-string NIZK. To
compare against our previous protocol in Sect. 6.1, we highlight the changes in
red.

– Round 1: Each party Pi does the following:
1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to obtain paramsi.
2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).
3. Run NIZK.Gen(1λ′

) to compute crsi, where λ′ = poly(λ, d,N) is the size
of statements that will be proven.

4. Output (paramsi, pki, crsi).
– Round 2: Each party Pi does the following:

1. Parse the message (if one was sent) from Pj as (paramsj , pkj , crsj) by
appropriately truncating or padding with 0’s if it was of incorrect length.
Let S1 ⊆ [N] be the set of parties that sent a message in round 1.

2. Truncate each paramsj for j ∈ S1 to the appropriate size given |S1|. Set
params as the concatenation of the truncated paramsj ’s for j ∈ S1. Set
PK = {pkj}j∈S1 . Let CRS = {crsj}j∈S1 . Let A

′ be the access structure
induced by restricting A to the parties in S1 (that is, the (N − tSm− tFc)-
out-of-|S1| access structure).

3. Sample randomness ri and run TMFHE.Encrypt(params,PK,A′, xi; ri) to
compute cti.

Secure MPC: Laziness Leads to GOD 147

4. Run NIZK.Prove(CRS, yi, (xi, ri)) to compute πi, where yi is the state-
ment that there exists some input x and randomness r such that
TMFHE.Encrypt(params,PK,A′, x; r) = cti.

5. Output (cti, πi).
– Round 3: Each party Pi does the following:

1. Parse the previous message (if one was sent) from Pj as (ctj , πj) and
check that NIZK.Verify(CRS, yj , πj) = 1. Let S2 ⊆ S1 be the set of parties
that sent a message in round 2 that passed the verification. Let CT =
{ctj}j∈S2 . Let C ′ be the circuit induced by hardcoding the inputs to C
corresponding to parties not in S2 to be 0λ.

2. Run TMFHE.Eval(C ′, CT) to compute ĉt.
3. Sample randomness r′

i and run TMFHE.PartDec(i, ski, ĉt; r′
i) to compute

pi.
4. Run NIZK.Prove(CRS, zi, (ski, r

′
i)) to compute π′

i, where zi is the state-
ment that there exists randomness r, r′ such that TMFHE.KeyGen(1λ; r) =
(pki, sk) and TMFHE.PartDec(i, sk, ĉt; r′) = pi.

5. Output (pi, π
′
i).

– Output Computation: Each party Pi does the following:
1. Parse the previous message (if one was sent) from Pj as (pj , π

′
j) and check

that NIZK.Verify(CRS, zj , π
′
j) = 1. Let S3 ⊆ S2 be the set of parties that

sent a message in round 3 that passed verification.
2. Take any set S ⊆ S3 with S ∈ A

′ and run TMFHE.FinDec(B) where
B = {pj}j∈S to recover μ̂. If no such set exists, output ⊥.

We defer the formal proofs to the full version.

7 Multi-string NIZKs

In this section, we build a simulation-extractable multi-string NIZK argument
system for NP based on the learning with errors (LWE) assumption. We first
show how to build a multi-string non-interactive witness indistinguishable argu-
ment system (NIWI) from LWE. We then give a transformation from multi-string
NIWI to multi-string simulation-extractable NIZK that follows along the lines of
the work of Groth and Ostrovsky [25]. Formally, we show the following results:

Theorem 7. Assuming LWE, there exists a multi-string non-interactive witness
indistinguishable argument system for NP.

Theorem 8. Assuming LWE, there exists a multi-string simulation-extractable
NIZK argument system for NP.

We defer this section to the full version.

Acknowledgements. Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar,
and Amit Sahai were supported in part from DARPA SAFEWARE and SIEVE awards,
NTT Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant
2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an

148 S. Badrinarayanan et al.

equipment grant from Intel, and an Okawa Foundation Research Grant. This material
is based upon work supported by the Defense Advanced Research Projects Agency
through Award HR00112020024 and the ARL under Contract W911NF-15-C- 0205.
The views expressed are those of the authors and do not reflect the official policy or posi-
tion of the Department of Defense, the National Science Foundation, NTT Research,
or the U.S. Government. Saikrishna Badrinarayanan was also partially supported by
an IBM PhD fellowship. Aayush Jain was also partially supported by a Google PhD
fellowship.

References

1. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 395–424. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 14

2. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical
ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12107, pp. 642–667. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45727-3 22

3. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians. vol. 1, p. 2. Citeseer (1986)

4. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 19

5. Boneh, D., Gennaro, R., Goldfeder, S., Kim, S.: A lattice-based universal thresh-
oldizer for cryptographic systems. IACR Cryptol. ePrint Arch. 2017, 251 (2017).
http://eprint.iacr.org/2017/251

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: ITCS, pp. 309–325 (2012)

7. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Theory of Cryptography (2017)

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106 (2011)

9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

10. Canetti, R., et al.: Fiat-Shamir: from practice to theory (2019)
11. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation

intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–122. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 4

12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

13. Chan, T.H., Chung, K., Lin, W., Shi, E.: MPC for MPC: secure computation on
a massively parallel computing architecture. In: ITCS (2020)

https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
http://eprint.iacr.org/2017/251
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-319-78381-9_4

Secure MPC: Laziness Leads to GOD 149

14. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 31

15. Cohen, R., Shelat, A., Wichs, D.: Adaptively secure MPC with sublinear communi-
cation complexity. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 30–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 2

16. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007). https://doi.org/10.1137/S0097539703426817

17. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

19. Fitzi, M., Hirt, M., Maurer, U.: Trading correctness for privacy in unconditional
multi-party computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 121–136. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055724

20. Fitzi, M., Hirt, M., Maurer, U.: General adversaries in unconditional multi-party
computation. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999.
LNCS, vol. 1716, pp. 232–246. Springer, Heidelberg (1999). https://doi.org/10.
1007/978-3-540-48000-6 19

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

22. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC,
pp. 218–229. ACM (1987)

24. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

25. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 18

26. Guo, Y., Pass, R., Shi, E.: Synchronous, with a chance of partition tolerance. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 499–
529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 18

27. Hirt, M., Maurer, U., Zikas, V.: MPC vs. SFE: unconditional and computational
security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 1

28. Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions
(or: one-way product functions and their applications). In: FOCS (2018)

29. Jain, A., Rasmussen, P.M.R., Sahai, A.: Threshold fully homomorphic encryption.
ePrint (2017). https://eprint.iacr.org/2017/257

30. Jain, A., Jin, Z.: Statistical zap arguments from quasi-polynomial LWE. IACR
Crypt. ePrint Arch. 2019, 839 (2019)

https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1137/S0097539703426817
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/BFb0055724
https://doi.org/10.1007/978-3-540-48000-6_19
https://doi.org/10.1007/978-3-540-48000-6_19
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/978-3-540-89255-7_1
https://eprint.iacr.org/2017/257

150 S. Badrinarayanan et al.

31. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 8

32. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234
(2012)

33. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

34. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: TCC Part II
(2016)

35. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

36. Yao, A.C.: Protocols for secure computations. In: SFCS (1982)
37. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS,

pp. 162–167 (1986)

https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4

Asymptotically Good Multiplicative LSSS
over Galois Rings and Applications

to MPC over Z/pk
Z

Mark Abspoel1(B), Ronald Cramer1,2, Ivan Damg̊ard3, Daniel Escudero3,
Matthieu Rambaud4, Chaoping Xing5, and Chen Yuan1

1 Centrum Wiskunde and Informatica (CWI), Amsterdam, The Netherlands
abspoel@cwi.nl

2 Mathematisch Instituut, Leiden University, Leiden, The Netherlands
3 Aarhus University, Aarhus, Denmark

4 Telecom Paris, Institut Polytechnique de Paris, Paris, France
5 School of Electronic Information and Electric Engineering,

Shanghai Jiaotong University, Shanghai, China

Abstract. We study information-theoretic multiparty computation
(MPC) protocols over rings Z/pk

Z that have good asymptotic communi-
cation complexity for a large number of players. An important ingredient
for such protocols is arithmetic secret sharing, i.e., linear secret-sharing
schemes with multiplicative properties. The standard way to obtain these
over fields is with a family of linear codes C, such that C, C⊥ and C2 are
asymptotically good (strongly multiplicative). For our purposes here it
suffices if the square code C2 is not the whole space, i.e., has codimension
at least 1 (multiplicative).

Our approach is to lift such a family of codes defined over a finite field
F to a Galois ring, which is a local ring that has F as its residue field
and that contains Z/pk

Z as a subring, and thus enables arithmetic that
is compatible with both structures. Although arbitrary lifts preserve the
distance and dual distance of a code, as we demonstrate with a counterex-
ample, the multiplicative property is not preserved. We work around this
issue by showing a dedicated lift that preserves self-orthogonality (as well
as distance and dual distance), for p ≥ 3. Self-orthogonal codes are mul-
tiplicative, therefore we can use existing results of asymptotically good
self-dual codes over fields to obtain arithmetic secret sharing over Galois
rings. For p = 2 we obtain multiplicativity by using existing techniques of
secret-sharing using both C and C⊥, incurring a constant overhead. As a
result, we obtain asymptotically good arithmetic secret-sharing schemes
over Galois rings.

With these schemes in hand, we extend existing field-based MPC pro-
tocols to obtain MPC over Z/pk

Z, in the setting of a submaximal adver-
sary corrupting less than a fraction 1/2− ε of the players, where ε > 0 is
arbitrarily small. We consider 3 different corruption models. For passive
and active security with abort, our protocols communicate O(n) bits per
multiplication. For full security with guaranteed output delivery we use
a preprocessing model and get O(n) bits per multiplication in the online

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 151–180, 2020.
https://doi.org/10.1007/978-3-030-64840-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_6

152 M. Abspoel et al.

phase and O(n log n) bits per multiplication in the offline phase. Thus,
we obtain true linear bit complexities, without the common assumption
that the ring size depends on the number of players.

1 Introduction

A secret-sharing scheme is a mathematical object that disperses a secret element
into n shares. Combined, the shares determine the secret, but individual shares,
and limited subsets of them, contain no information about the secret. In linear
secret-sharing schemes (LSSS), given several secret-shared elements, linear oper-
ations on the secrets correspond to linear operations on the shares. LSSS are the
cornerstone of information-theoretic multiparty computation (MPC) protocols,
but they also have applications in other domains of cryptography.

LSSS and MPC are typically defined over finite fields (e.g., the secret and the
shares are elements of the same finite field), which have a rich algebraic structure.
A natural question is whether we can extend some of these techniques to other
structures, such as rings Z/pk

Z where k > 0 is an integer and p is a prime. This
question is not only motivated in theory: some results [3,18] show that MPC
over Z/2k

Z with k = 32 or k = 64 can offer many practical benefits compared to
fields, partly due to the compatibility of binary arithmetic in modern hardware.
Feasibility of LSSS and MPC over these rings, as well as theoretical benefits,
were already demonstrated back in 2003 based on black-box secret sharing [14].

Recently, MPC directly over these rings has been shown, in both the cryp-
tographic dishonest majority setting [12] as well as the information-theoretic
setting [2], by extending and generalizing existing techniques over fields. Both of
these approaches use a single LSSS defined over Z/pk

Z: additive secret sharing
and a variant of Shamir’s secret sharing, respectively. It is natural to wonder
whether techniques for other LSSS can be extended to these rings, to obtain
desirable properties such as good asymptotic complexity.

In this work, we study the lifting of linear codes defined over finite fields
to Galois rings, which are a natural generalization of both finite fields and our
rings of interest Z/pk

Z. In a way, Galois rings are analogues of finite fields:
informally, a Galois ring is to Z/pk

Z, what a finite field is to the prime field Fp.
Therefore, to extend existing techniques over finite fields to work over Z/pk

Z,
it is necessary to consider Galois rings. As shown in Sect. 3, lifting preserves
the essential properties of linear codes (distance, dual distance) that make them
suitable as LSSS.

However, extending the theory of LSSS to Galois rings is not straightforward,
due to the reduced structure and the presence of non-invertible elements. Thus, a
priori it is not clear if properties of LSSS over fields carry over when considering
these constructions over Galois rings. The above leads to the following question:
Can we obtain “good” LSSS over a Galois ring? More precisely, we focus on
realizing families of LSSS indexed by n, the number of shares, with privacy and
reconstruction thresholds arbitrarily close to n/2, and with the information rate
tending to a positive constant. The most widely known construction of LSSS

Asymptotically Good Multiplicative LSSS over Galois Rings 153

over fields, Shamir secret sharing, does not satisfy the rate condition as it is
based on polynomial interpolation and therefore the shares have to be at least
log(n) in length. This issue was addressed over fields in the work of [10], using
non-trivial results on random codes.

The above question is relevant for MPC that is asymptotically optimal, i.e.,
secure multiplication that has a total communication complexity linear in the
number of players [16]. For information-theoretic MPC we typically care about
arithmetic secret-sharing schemes, or synonymously, LSSS with multiplicativity:
given two secret-shared elements, their product is a linear function of the pairwise
products of shares. However, as we shall demonstrate with a counterexample in
Sect. 3, multiplicativity does not directly lift.

True linear complexity is hard to achieve, and in fact conjectured to be
impossible in the maximal adversary case n = 2t+1 for the single-circuit setting.1

Many state-of-the-art protocols such as [5,21] state a linear complexity, but the
complexity is given in the number of field elements communicated. If the field is
fixed and the number of players tends to infinity, this obscures a log(n) factor in
the bit-complexity of the protocol. Over fields, this asymptotic factor does not
affect the complexity for practical ranges of parameters, since the field size is
usually much larger than the number of players. However, for our rings Z/pk

Z

this issue is more pressing, since the comparable requirement is that p > n rather
than pk > n [2], thus leading to a log(n) factor immediately if for example p = 2.
Removing this log(n) overhead is thus worthwhile and in fact highly desired,
since it would achieve a constant complexity per party: even if more parties join
the computation, the communication per party does not increase.

1.1 Our Contributions

We show that some of the results for LSSS over a finite field F also hold over
a Galois ring R that contains F as a residue field, by arbitrarily lifting the
associated code over F to R, and showing that certain relevant properties are
preserved.

First, in Sect. 3, we show that we can obtain explicit good families of linear
codes over Galois rings. In what follows, R is a large enough Galois ring.

Theorem 1 (informal). There exists an explicit family of R-linear codes over
R with |R| = Oε(1) such that its relative distance is at least 1

2 − ε and relative
dual distance is at least 1

2 − ε. In particular, there exists an explicit family of
self-dual codes over R with relative distance at least 1

2 − ε.

It is well-known that any linear code over a field with good parameters
yields a good linear secret-sharing scheme [25], and it is straightforward to show
this also holds over Galois rings. However, to get the arithmetic secret-sharing
schemes that we need, we also need good parameters for the square of the code.

1 LSSS with these parameters are equivalent to MDS codes, hence if the MDS con-
jecture if true, then the field size has to grow with the number of players. When
evaluating a circuit multiple times in parallel, this can be mitigated [9].

154 M. Abspoel et al.

We demonstrate with a counterexample that these parameters are not preserved
by arbitrary lifts.

We work around this issue by showing a dedicated lift for p > 2 that preserves
self-orthogonality in Sect. 3.1. For p = 2 we secret-share elements using both C
and C⊥, at the expense of increasing the share size by a factor of two. Both of
these approaches rely on techniques from [13] to obtain arithmetic secret sharing
via a code and its dual, and we demonstrate in Sect. 4 that these extend to Galois
rings. We capture the asymptotic result in the following theorem.

Theorem 2 (informal). There exists a family of R-arithmetic secret-sharing
schemes Σ1, Σ2, . . . over R with |R| = Oε(1) such that the number of players
n(Σi) → ∞, and the schemes have t(Σi) ≥ (1/2 − ε)n(Σi)-privacy and r(Σi) ≥
(1/2 − ε)n(Σi)-reconstruction.

To illustrate the power of our results on arithmetic secret sharing, we apply
them to the problem of communication-efficient honest-majority MPC over
Z/pk

Z. This problem has only recently been studied in [2], but the authors were
more concerned with feasibility rather than achieving optimal communication
complexity. In particular, their protocol is based on the (no longer state-of-the-
art) protocol of [4], which has O(n2 log(n)) complexity in the number of parties.
Here, the log(n) factor comes from polynomial interpolation, as discussed above.
Plugging in our LSSS we immediately remove this log(n) factor and obtain true
quadratic complexity for the adversary regime of t < (1/2 − ε)n, analogously to
the work of [10] over fields.

We further improve the complexity, for three different regimes:

1. (Section 5) For passive security, we present a protocol that obtains an amor-
tized communication complexity of O(n) bits per multiplication gate.

2. (Section 6) For active security with abort, we present a protocol with an
amortized communication complexity of O(n) bits per multiplication gate.

3. (Section 7) For full active security with guaranteed output delivery, we obtain
an amortized communication complexity of O(n log(n)) bits for the offline
phase and O(n) bits for online phase. This solves the open problem from [2].

The last protocol is the most involved, since we adapt the protocol of [6]
to work over Galois rings. Here we achieve linear complexity only in the online
phase, as we still rely on polynomial interpolation to efficiently verify multipli-
cation triples in the preprocessing phase. This matches the state-of-the-art over
fields until the very recent result of [22]. However, since their protocol also uses
the constructions of [6], our techniques can be combined with theirs to achieve
linear complexity for the preprocessing phase.2

1.2 Overview of Our Techniques

We mainly use elementary (arbitrary) liftings from codes C over a finite field F to
a Galois ring that contains F as its residue field, and Z/pk

Z as a subring. This way
2 Ignoring terms that are sublinear in the circuit size.

Asymptotically Good Multiplicative LSSS over Galois Rings 155

we leverage results from codes over fields directly. For example, since there exist
explicit families of codes with asymptotically good distance and dual distance
over a finite field F, we also obtain explicit families of codes with asymptotically
good distance and dual distance over R.

Once we obtain arithmetic secret sharing over R we can use it to get MPC
over Z/pk

Z. Our general template to obtain an MPC protocol is to first develop
protocols over R itself, and since Z/pk

Z is a subring of R, we can supply inputs
in Z/pk

Z and then evaluate a circuit over R to securely obtain the correct output
in Z/pk

Z
3,4

Our passively secure protocol over R follows the template of [17], which
consists of preprocessing so-called “double-sharings” and then using them to
compute secure multiplications in the online phase. Since our construction of
arithmetic secret sharing does not come directly from a code, we abstract the
underlying technique to work on arbitrary arithmetic secret-sharing schemes.
We do not have access to Vandermonde matrices over R directly, but we fix this
by moving to an extension of Galois rings without amortized overhead using the
“tensoring trick” from [9] together with the interpolation theorems from [2].

To get our actively secure protocol with abort, we make the simple but
powerful observation that our protocol above is already actively secure up to
additive attacks, i.e., the only attack that an adversary may carry out is to add
a chosen value to the outputs of multiplications that is independent of the inputs.
We obtain our actively secure protocol with abort by compiling our passively
secure protocol with the recent work of [3], preserving linear complexity.5

Finally, for our actively secure protocol with guaranteed output delivery we
use our arithmetic secret-sharing scheme as a building block and extend the
protocol of [6], which is defined over a field in the t < n/2 regime. We show the
check of authentication tags generalizes to our setting, and show how to compute
the authentication tags (based on “twisted sharings”) using our secret-sharing
scheme. We also adapt the batch verification of triples.

1.3 Related Work

Honest majority MPC over rings has been already studied in [14] via black-box
secret sharing, but their computational overhead is rather large. This problem
was not revisited until very recently, with the work of [2], which presented effi-
cient constructions using Galois rings, showing their potential benefits in the
3 One may think initially that R is more general than Z/pk

Z and thefore computation
over Z/pk

Z is implied trivially by computation over R by taking the degree of the
extension to be 1. However, note that the degree of the extension is constrained to
be Ω(logp(ε

−1)), which is constant for a fixed ε > 0, but it is not necessarily equal
to 1.

4 For passive security the condition on the inputs is trivial to satisfy, but for active
security some extra check needs to be added, which was already addressed in [2] for
the case of Galois rings.

5 Although their compiler is described for Z/pk
Z, it also applies to arbitrary Galois

rings.

156 M. Abspoel et al.

theory of MPC. They provide a protocol for multiplication with O(n log n) bits
of total communication per gate, for the t < n/3 setting. This log(n) factor
comes from using Shamir’s scheme, and removing it requires codes with good
distance of the square, or asymptotically good families of reverse multiplication-
friendly embeddings, which as we illustrate in Example 2 are out of reach of our
elementary lifting methods. Both were very recently claimed by [15], and illus-
trated with protocols for the t < n/3 setting. The tools developed in the present
work enable up to honest majority, so are therefore complementary. Also, the
recent work of [3] considers honest majority MPC over Z/2k

Z, but they achieve
only security with abort and they do so with a communication complexity of
O(n log(n)) for both online and offline phases.

On the other hand, there are several other works in the context of honest-
majority MPC over fields. We have already mentioned the work of Ben-Sasson
et al. [6], that proposes a protocol in the honest-majority setting with guaranteed
output delivery and near-linear communication complexity, and constitutes the
basis of our protocol in Sect. 7. More recently, the protocol of [22] improves upon
the protocol in [6] by introducing a novel method for verifying the correctness of
multiplication triples. In the setting of security with abort the line of research
is richer, with many protocols proposed in the last few years that aim at pro-
viding concrete practical efficiency. For example, an efficient general compiler
from active security up to additive attacks to active security is presented in [11],
which improves upon the methods built in [24]. The work of [26] also improves
upon [24] by extending it using similar ideas as the batch triple check presented
in [6]. Also, very recently, an efficient method to achieve actively secure three
party computation was presented [8], building on top of the distributed zero
knowledge proof techniques introduced in [7]. Although the authors of this work
do consider an extension of their protocol to the ring Z/2k

Z, but it is unlikely
to be efficient in practice as they make use of a Galois ring of a degree that is
roughly equal to the security parameter.

2 Preliminaries

2.1 Linear Codes over Finite Fields

Let Fq be the finite field with q elements, and let F
n
q be the Fq-vector space

consisting of n copies of Fq. A code C ⊆ F
n
q is a set of row vectors in F

n
q . The

rate of C is defined as logq |C|
n . For a vector x = (x1, . . . , xn) its Hamming weight

is the number of nonzero coordinates: wH(x) = |{i ∈ [n] | xi �= 0}|, where we
write [n] := {1, . . . , n}. If y = (y1, . . . , yn) ∈ F

n
q is another vector, the Hamming

distance between x and y is the number of coordinates in which they differ
d(x,y) = |{i ∈ [n] | xi �= yi}| = wH(x − y). The minimum distance of a code C
is defined as d(C) = minx�=y∈C d(x,y).

In the following, let C ⊆ F
n
q be a linear subspace; we then say C is a linear

code. The dimension of C is the dimension of C as a vector space. If C has
k = dim(C) and d = d(C), we say C is a [n, k, d]-linear code over Fq. A matrix

Asymptotically Good Multiplicative LSSS over Galois Rings 157

G is a generator matrix for C if its rows form a basis for C. The dual code of
C is defined as C⊥ = {x ∈ F

n
q | ∀y ∈ C : xyT = 0}. One can see that C⊥ is a

linear code with dimension n − dimFq
(C). The dual distance of C is defined as

the minimum distance of C⊥, and is denoted as d⊥(C).
In this paper, we are mostly concerned with the minimum distance d and

dual distance d⊥ of a linear code C. For applications to secret sharing, we want
both of these to be large, since they imply (n−d+1)-reconstruction and (d⊥−1)-
privacy for secret-sharing scheme associated to the code. There is a large body
of works dedicated to determining the achievable distance and dual distance of
a code. In this work, we are particularly interested in the asymptotic behavior
of d and d⊥. To characterize this asymptotic behavior, we look at the relative
distance δ = d

n and relative dual distance δ⊥ = d⊥
n .

Definition 1. A family C1, C2, . . . of linear codes over a fixed finite field, where
each Ci has parameters [ni, ki, di] and dual distance d⊥

i , is said to have relative
distance δ and relative dual distance δ⊥ if the following holds:

1. lim
i→∞

ni = ∞

2. lim inf
i→∞

di

ni
≥ δ, lim inf

i→∞
d⊥

i

ni
≥ δ⊥.

We stress that we study this asymptotic behaviour only for a family of codes
defined over the same finite field.

In general, there are two ways to construct a family of codes with large
relative distance and relative dual distance. One way is through a random argu-
ment that gives a family of codes reaching the Gilbert-Varshamov bound. For
a finite field Fq with q < 49, this Gilbert-Varshamov Bound is the best lower
bound known. When q ≥ 49 is a square, there exists an explicit construction
of algebraic geometric codes outperforming the random codes, i.e., there exists
a family of algebraic geometric codes attaining the celebrated Vlăduţ-Drinfeld
bound [19]. We skip the details of these codes and refer the interested reader to
[28]. The family of algebraic geometric codes attaining the celebrated Vlăduţ-
Drinfeld bound meets the following condition.

Proposition 1. Let q be any prime power. Then there exists an explicit family
of codes over a fixed finite field Fq2 with relative distance δ and relative dual
distance δ⊥ as long as δ and δ⊥ satisfy

δ + δ⊥ ≤ 1 − 2
q − 1

. (1)

A similar result holds for self-dual codes [27], i.e., there exists an explicit
family of self-dual codes reaching the Vlăduţ-Drinfeld bound.

Proposition 2. Let ε > 0 be any small constant. Then, for any q ≥ 2/ε there
exists an explicit family of codes over a fixed finite field Fq2 such that its relative

158 M. Abspoel et al.

distance δ ≥ 1
2 − ε and its relative dual distance δ⊥ ≥ 1

2 − ε. Moreover, there
exists an explicit family of self-dual codes over a fixed finite field Fq2 with relative
distance δ ≥ 1

2 − ε.

2.2 Galois Rings

Galois rings are a natural analogue to finite fields: roughly, Galois rings are to
Z/pk

Z what finite fields are to prime-order fields Fp. As such, these rings have
rich structure and they share many properties with finite fields. In fact, Galois
rings are a strict generalization of finite fields, since setting k = 1 one obtains
exactly the finite fields.

Definition 2. Let p be a prime number and let k be a positive integer. Let
g(Y) ∈ (Z/pk

Z)[Y] be a monic polynomial such that its reduction modulo p is
an irreducible polynomial in Fp[Y]. The ring

R := (Z/pk
Z)[Y]/ (g(Y))

is called a Galois ring.

Proposition 3. R has the following properties:

1. It is a local ring, i.e. it has a unique maximal ideal (p) � R. We have that
R/(p) ∼= F := Fph , where h denotes the degree of g.

2. The Lenstra constant of R is ph, which gives the maximum number of interpo-
lation points in Shamir’s (because the pairwise differences must be invertible)

3. For any prime p, positive integer k, and positive integer h there exists a Galois
ring as defined above, and any two of them with identical parameters p, k, h
are isomorphic. We may therefore write R = GR(pk, h).

4. If e is any positive integer, then R is a subring of R̂ = GR(pk, h · e).
There is a polynomial ĝ ∈ R[X] that is irreducible modulo p, such that
R̂ = R[X]/(ĝ(X)). There is a natural R-module isomorphism Re → R̂.

Remark 1. Also, we have a natural ring embedding Z/pk
Z ↪→ R, given by map-

ping x �→ x mod g(Y). Moreover, there is another way to uniquely represent the
elements of R. Since R/(p) ∼= F, let ξ be a non-zero element of order ph − 1 in
R and define the subset

I = {0, 1, ξ, . . . , ξph−2} ⊂ R . (2)

Then, any element a ∈ R can be uniquely written as

a = a0 + a1p + a2p
2 + · · · + ak−1p

k−1 where a0, . . . , ak−1 ∈ I .

This decomposition also allows us to define “division by powers of p”. Indeed,
notice that given an element a = a0 + a1p + a2p

2 + · · · + ak−1p
k−1 ∈ R and a

positive integer u, we have that pu divides a if and only if ai = 0 for all i < u.
If this is the case, we then define a/pu := au + au+1p + · · · + ak−1p

k−u−1 ∈

Asymptotically Good Multiplicative LSSS over Galois Rings 159

GR(pk−u, h); notice that a/pu ≡ au (mod p). If u is maximal and a is non-zero
in R, then a/pu ∈ R∗.

Finally, Item 1 of Proposition 3 gives rise to the canonical map π : R → F

(“reduction modulo p”), which we shall frequently use. It is easy to see that π|I
is bijection, and in particular we have a one-to-one correspondence between I
and Fph . Given x ∈ R we shall also write x = π(x).

3 Codes over Galois Rings

In this section, we show how to obtain codes over Galois rings. Although there
is a large body of works dedicated to linear codes, most of it only deals with
codes over finite fields. For the purpose of asymptotically good secret-sharing
schemes, we need a family of codes over Galois rings whose rate and relative
distance tends to a positive constant.

We obtain such codes by arbitrarily lifting linear codes defined over some
finite field F, such as the ones from Proposition 1, to a Galois ring whose residue
field is F. We show that the lifted codes have at least the same distance and
dual distance as the original codes, hence using Proposition 1 we obtain a good
family of codes over Galois rings of arbitrary characteristic pk.

For the particular case of self-orthogonal codes defined over a field of charac-
teristic �= 2, we give an explicit lift that preserves self-orthogonality in Sect. 3.1.
Self-orthogonal codes satisfy a multiplicative property that is needed for arith-
metic secret sharing. In Sect. 4 we show how to extend existing techniques to
obtain multiplication for p = 2, but this comes at the cost of doubling the share
size.

Let R = GR(pk, h) be a Galois ring with residue field F = Fph . We define
a linear code C of length n over R to be a free R-submodule of Rn. We define
its dimension as dim(C) = rankR(C). Recall the canonical homomorphism π :
R → F. For convenience we will also write π for the induced map on vectors or
matrices defined over R, and write x := π(x) for x ∈ Rn and M = π(M) for a
matrix M over R.

Proposition 4. Let C be a linear code over R. Then the following statements
hold:

1. rankR C = dimF C, where C = π(C) ⊆ F
n is the reduction of C modulo p.

2. If c �= 0 ∈ C we may write c = pmy, for 0 ≤ m < k and π(y) �= 0 ∈ C.

Proof. Let us prove the first claim. Since C ⊆ Rn is a linear code, it has an
R-basis e1, . . . , et ∈ Rn. Then, it is clear that C is an F-linear code spanned by
π(e1), . . . , π(et). If we can show that π(e1), . . . , π(et) are linearly independent
over F, then we are done. Assume this is false, so there exist λ1, . . . , λk ∈ F not
all equal to 0 such that

∑t
i=1 λiπ(ei) = 0. Let λ′

i = π−1(λi) ∈ I ⊆ R, then it
holds that

∑t
i=1 λ′

iei ∈ pR, since

π

(
t∑

i=1

λ′
iei

)

=
t∑

i=1

λiπ(ei) = 0.

160 M. Abspoel et al.

It follows that
∑t

i=1 pk−1λ′
iei = 0 and pk−1λ′

1, . . . , p
k−1λ′

t are not all zero. This
contradicts the claim that e1, . . . , et form a basis of C.

We turn to the second claim. Let G be a t × n matrix over R whose rows
form a basis e1, . . . , et of C. We may represent C = {xG : x ∈ Rt}. We call
G the generator matrix of C, which gives a linear isomorphism between Rt and
C. Let c = xG be any nonzero codeword in C. Since G is an isomorphism, x is
also a nonzero vector. By Remark 1, we write x = pmx1 with 0 ≤ m < k and
x1 �= 0 ∈ It. This follows that c = pmx1G. Let y = x1G and the desired result
follows as π(y) = π(x1)π(G) ∈ C is a nonzero codeword. ��
Lemma 1. Let C ⊆ Rn be a linear code. We have d(C) ≥ d(C).

Proof. Let G be the generator matrix of C. Since C is a linear code, it suffices
to bound the weight of its codewords. For any c �= 0 ∈ C, by Proposition 4 we
can write c = pmy for some y �= 0 ∈ C and m < k. Note that y is a nonzero
codeword of C. Thus, wH(c) ≥ wH(y) ≥ d(C). The proof is completed. ��
Example 1. It is hopeless to control the minimum distance without the
freeness assumption. Consider the code C := 〈(1, 1, . . . , 1)〉 of two ele-
ments code over (F2)n, with distance n. We can lift the code to Z/22Z as
C := 〈(1, 1, . . . , 1), (2, 0, . . . , 0)〉 which is non-free, because of the bad element
(2, 0, . . . , 0). Then d(C) = 1 � d(C) = n.

Like for codes over a field, we can similarly define the dual code over R. The
dual code of C is defined as C⊥ = {c ∈ Rn | cyT = 0 for all y ∈ C}.

Lemma 2. Assume that C ⊆ Rn is a t-dimensional R-linear code. Then, C⊥ ⊆
Rn is a (n − t)-dimensional R-linear code. Moreover, the minimum distance of
C⊥ is lower bounded by the minimum distance of the dual code of C.

Proof. Let G be the generator matrix of C. Every element in C⊥ is a solution
to the linear equation GxT = 0 over R, and vice versa. This implies that C⊥ is
the kernel ker(G) of the R-linear map GxT . The image im(G) of GxT is C, a
free module of Rn with rank t. The homomorphism theorem of modules states
that Rn/ ker(G) ∼= im(G). Thus, the kernel is also free and has rank n − t. By
our definition, ker(G) is a linear code of dimension n − t over R.

It remains to lower bound the minimum distance of C⊥. Given any codeword
c �= 0 ∈ C⊥, we have GcT = 0. Moreover, by Remark 1, we can write c = pmy
for 0 ≤ m < k and y �= 0 ∈ It. Reducing modulo p gives GyT = 0 over Fph . This
implies that y is a nonzero codeword in the dual code of C. Then, the desired
result follows. ��

We now define the square of a linear code C over R. Given x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ Rn denote their componentwise (Schur) product as x ∗ y =
(x1y1, . . . , xnyn) ∈ Rn. The square code C∗2 is defined as spanR{x ∗ y ∈
Rn | x,y ∈ C}. We emphasize that this square code C∗2 is an R-module but
not necessarily a free R-module. We say C is t-strongly multiplicative if the

Asymptotically Good Multiplicative LSSS over Galois Rings 161

minimum distance d(C), its dual distance d⊥(C) and the distance of the square
d(C∗2) are at least t.

One may wonder whether strong multiplication is preserved when lifting.
Unfortunately, our next example shows that we can have poor distance of the
square code C∗2 even if C

∗2
is a square code with large distance.

Example 2. Let C1 and C2 be linear code over Fph such that C∗2
1 and C∗2

2 have
distance d1 and d2 respectively. Let S = GR(p3, h) and C be a code over S
defined as C =

{(
π−1(c1), p π−1(c2)

) ∣
∣ c1 ∈ C1, c2 ∈ C2

}
. It is clear that C =

{(c1, 0) | c1 ∈ C1} whose square code has minimum distance d1. On the other
hand, since C∗2

2 has distance d2, let y2 ∈ C∗2
2 be a codeword with weight d2.

Then, we have that (0, p2π(y2)) ∈ C∗2, and therefore the minimum distance of
C∗2 is at most d2. The desired result follows if we pick d2 to be a small number
and d1 to a big number.

Unlike the distance and dual distance of the lifted code, strong multiplication
does not automatically carry over. We now give a brief argument for uniformity,
which shall be important when using our codes for secret sharing later on.

Lemma 3. Let C ⊆ Rn be a submodule, and let U ⊆ [n] be an index set with
|U | ≤ d(C⊥) − 1. Then the projection CU of C onto the coordinates of U equals
the whole space R|U |.

Proof. We argue by contradiction. Note that CU is also an R-module, so we may
write CU =

∑t
i=1 Rxi with t ≤ |U |. Here, CU may be non-free. Let M be an

t × |U | matrix whose rows are x1, . . . ,xt. Recall M = π(M) is the reduction of
M modulo p.

We first show that if |CU | < R|U |, then the rank of M is less than |U |. It
is obvious if t < |U |. When t = |U |, since |CU | < R|U |, x1, . . . ,xt are linearly
dependent over R. Therefore, there exist λ1, . . . , λt ∈ R, not all equal to 0, such
that

∑t
i=1 λixi = 0. Let m be maximal such that pm divides all of λ1, . . . , λt.

Then, we have
∑t

i=1
λi

pm xi = 0. This implies that
∑t

i=1 π(λi

pm)π(xi) = 0 over
F where π(λ1

pm), . . . , π(λt

pm) ∈ F are not all zero. Therefore, π(x1), . . . , π(xt) are
linearly dependent and the rank of M is less than |U |.

Let cT be the nonzero solution to McT = 0 over F. Then, we have
Mpk−1π−1(c)T = 0 over R. Extend pk−1π−1(c)T to a vector c′ in Rn by setting
i-th component with i /∈ U to be zero. Clearly, c′ is a codeword of the dual code
C⊥. However, wH(c′) = wH(c) ≤ |U | and a contradiction occurs. ��

3.1 Constructing a Self-orthogonal Code over R

By a judicious choice of lift, we show that for p ≥ 3 we can preserve self-
orthogonality of a code over F when lifting to R.

Theorem 3. Assume that there is a [n, t, d] self-orthogonal code C over the
finite field Fph with dual distance d⊥ and p ≥ 3. Then, there is a [n, t, d] self-
orthogonal code Ck with dual distance d⊥ over the Galois ring GR(pk, h) for

162 M. Abspoel et al.

any positive integer k. Moreover, given an explicit generator matrix of C the
generator matrix of Ck is explicit.

Proof. We lift the self-orthogonal code C increasing k step by step. For each
step, we specify the lifted code by its generator matrix. Define Rk := GR(pk, h).
By Definition 2, Rk contains Z/pk

Z as a subring, and its residue field is Fph .
Our first step is to lift self-orthogonal code from Fph to R2 = GR(p2, h). Let

C be an [n, t, d] self-orthogonal code over Fph and G =
(
I A

)
6 be the generator

matrix of C. Due to the bijection between I and Fph , we could find a matrix
G =

(
I A

)
with G ∈ π−1(G) whose entries are in I. Self-orthogonality of C

implies that

GGT = AAT + I = A × A
T

+ I = 0 (mod p).

That means that all the entries in GGT are elements in the ideal pR. By
Remark 1, we can find a matrix S1 over I such that I + AAT = pS1 (mod p)2.
It is clear that we can choose S1 to be symmetric. Note that 2 is a unit in Rk

as p �= 2 and we can define A1 = A + 2−1pS1A. Let G1 =
(
I A1

)
and let C1 be

the code whose generator matrix is G1. Obviously, G1 is defined over R2. Next,
we show that C1 is indeed a self-orthogonal code over R2. To see this, we have

G1G
T
1 = I + AAT +

p

2
(S1AAT + AAT S1)

= pS1 +
p

2
S1(pS1 − I) +

p

2
(pS1 − I)S1

= pS1 − pS1 = 0 (mod p2).

The first equality follows from the fact that S1 is a symmetric matrix. It remains
to bound the minimum distance of C1. Observe that the reduced code of C1 is
C. By Lemma 1, the distance of C1 is lower bounded by that of C. We can
apply the same argument to its dual distance by observing that the generator
matrix of C⊥

1 is
(−AT

1 I
)
, whose reduction modulo p, the matrix

(−AT I
)
, is the

generator matrix of C⊥, and therefore C1 is free. Now, C2 is a self-orthogonal
code over R2 satisfying all the claims in our theorem. In a same manner, we can
the lift code C2 to a code C3 over R3. By induction, we obtain a code Ck over
Rk for any k ≥ 1 satisfying all the claims in our theorem. ��

Note that a self-dual code is also a self-orthogonal code. Theorem 3 together
with Proposition 2 gives the following.

Corollary 1. Let ε > 0 be any small constant, k any positive integer and ph ≥
4
ε2 be any square with p an odd prime. Then there exists an explicit family of
self-dual codes over Galois ring GR(pk, h) with relative distance δ ≥ 1

2 − ε.

6 We use bar notation to represent the fact that these matrices are defined over Fph .

Asymptotically Good Multiplicative LSSS over Galois Rings 163

3.2 Code and Dual Code over R

In our last subsection, we constructed a self-orthogonal code C over the Galois
ring GR(pk, h) with p ≥ 3, by lifting a self-orthogonal code over the finite field
Fph . We may use these to construct an arithmetic secret-sharing scheme, as we
will see in Section 4. However, our technique only works for p ≥ 3, and of course
especially for MPC purposes the case p = 2 is also very interesting. The existence
of asymptotically good self-orthogonal codes over these rings is not yet known.
To get around this obstacle, we replace the self-orthogonal code with code and
its dual code in our secret-sharing scheme. This will incur the cost of doubling
the share size, and hence doubling the communication complexity of the MPC
protocols build on top of it.

The following is dedicated to lifting a code together with its dual code from
the finite field Fph to the Galois ring GR(pk, h). Our lifting technique maintains
the minimum distance of our code and its dual code.

Theorem 4. Assume that there is a [n, t, d] linear code C over the finite field
Fph with dual distance d⊥. Then, there is a [n, t, d] linear code Ck with dual
distance d⊥ over the Galois ring GR(pk, h), for any integer k. Moreover, the
generator matrices of Ck and its dual code are explicit as long as the generator
matrix of C is explicit.

Proof. Let G and H be the generator matrix and parity check matrix, respec-
tively, of C. Note that H is also the generator matrix of C⊥, the dual code of
C over Fph . We have GHT = 0 (mod p) and thus GHT = pM (mod p2), for
some matrix M defined over Fph . Since G is a generator matrix of C, its rank is
t. There exists (n − t) × n matrix A1 such that GAT

1 = −M (mod p). It follows
that G(H + pA1)T = GHT + pGAT

1 = 0 (mod p2).
Let C2 be the linear code over GR(p2, h) with generator matrix G. We claim

that the dual code C⊥
2 of C2 has generator matrix H + pA1. By Lemma 2, the

dual code C⊥
2 has dimension n−t. To see this, we first note that H+pA1 has rank

rankF
ph

(H) = n− t due to Proposition 4. Moreover, any codeword generated by
H + pA1 is a solution to Gx = 0 over R2 since G(H + pA1)T = 0 (mod p2).

These two facts lead to the conclusion that H + pA1 is indeed the genera-
tor matrix of C⊥

2 over GR(p2, h). The distance and dual distance comes from
Lemma 1 and Lemma 2. In the same manner, one can show that Ck is a linear
code over GR(pk, h) with generator matrix G for any k ≥ 1. In the meantime, by
Lemma 1 the minimum distance and dual distance of Ck are lower bounded by
d and d⊥ respectively. The dual code of Ck is specified by its generator matrix
H + pA1 + · · · + pk−1Ak−1. ��

Theorem 4 combined with Proposition 2 gives the following result.

Theorem 5. Let ε > 0 be any small constant and ph ≥ 4
ε2 be any square. There

exists an explicit family of codes over the Galois ring GR(pk, h) with relative
distance δ ≥ 1

2 − ε and relative dual distance δ⊥ ≥ 1
2 − ε for any integer k.

164 M. Abspoel et al.

4 Arithmetic Secret-Sharing over Galois Rings

In this section we construct an arithmetic secret-sharing scheme over a Galois
ring R starting from an R-linear code C together with its dual C⊥, by extending
techniques from [13]. In this section, let R = GR(pk, h), and suppose C ⊆ Rn+1

is a linear code with distance d and dual distance d⊥. We first provide a brief
overview of the techniques, before fixing the slightly heavier notation in Sect. 4.1
that we use to write the protocols in the remaining sections of this paper.

As for nomenclature, note that the difference between arithmetic and linear
secret sharing is that the former is an LSSS with multiplication. We say an
LSSS has multiplication if there exists a multiplication operator ∗ on shares,
such that given secrets x and y with respective share vectors (x1, . . . , xn) and
(y1, . . . , yn) then the product x · y is linearly determined by the ∗-products of
shares x1 ∗ y1, . . . , xn ∗ yn. Here we are explicit about the operator ∗ because
in the arithmetic secret-sharing scheme that we construct, the shares are not
elements of R, but rather each share is given by 2 elements in R. These pairs of
R-elements form an R-algebra with the operator ∗, which we define below.

Informally, a secret-sharing scheme has t-privacy if for any share vector, any
t coordinates are independent of the secret, and it has r-reconstruction if any r
coordinates of a share vector jointly determine the secret. For a full formalization
of an arithmetic secret-sharing scheme over R, we refer to the full version of our
paper [1].

Via Massey’s construction [25] we may obtain an LSSS from a code over
a field with good parameters, and this generalizes to Galois rings, as follows.
To share s ∈ R, we sample a codeword c = (s, c1, . . . , cn) ∈ C uniformly at
random and let ci be the i-th share. Due to properties of the dual distance
d⊥, we can show that for any subset T ⊆ [n] with |T | ≤ d⊥ − 2 and s ∈ R,
{(ci)i∈T : (s, c1, . . . , cn) ∈ C} = R|T |. This implies (d⊥ − 2)-privacy. From the
minimum distance of C it follows that the LSSS has (n − d + 1)-reconstruction.

To use a secret-sharing scheme for MPC, we need the multiplicative property.
The LSSS constructed above has multiplication if and only if its square code C∗2

has minimum distance d(C∗2) ≥ 1. Unfortunately, the codes from Theorem 5
do not satisfy this property. However, by simultaneously secret-sharing values
in C and in the dual code C⊥, we can obtain multiplication with the following
construction from [13].

To secret-share s ∈ R, we sample a codeword x = (s, x1, . . . , xn) ∈ C and
a codeword y = (s, y1, . . . , yn) ∈ C⊥ uniformly at random. The i-th share is
now a pair (xi, yi). The privacy of this scheme is min{d − 2, d⊥ − 2} and it
is min{n − d + 1, n − d⊥ + 1}-reconstruction. Now suppose we have another
secret-shared element u ∈ R shared as x′ = (u, x′

1, . . . , x
′
n) ∈ C and y′ =

(u, y′
1, . . . , y

′
n) ∈ C⊥. For the product su, we see that

∑n
i=1 xiy

′
i = −su (and also∑n

i=1 yix
′
i = −su).

Asymptotically Good Multiplicative LSSS over Galois Rings 165

4.1 Formalization

We now formalize the scheme and define the notation which we shall use in the
remaining sections. Recall C is of length n+1. Let C̃ ⊆ Rn denote the projection
of C onto its last n coordinates, and similarly for C̃⊥ ⊆ Rn. Let ψ : C̃ → R be
the R-module homomorphism given by ψ(x1, . . . , xn) = x where x ∈ R is the
unique element such that (x, x1, . . . , xn) ∈ C. Note that this map is well-defined
if d ≥ 2. Similarly define ψ′ : C̃⊥ → R as (x′

1, . . . , x
′
n) �→ x′. We equip R ⊕ R

with the product (a, b)
 (c, d) = (ad, bc); this defines an R-algebra which we
denote A.

Consider the R-submodule of An given by

D = {((x1, x
′
1), . . . , (xn, x′

n)) | x ∈ C̃,x′ ∈ C̃⊥, ψ(x) = ψ′(x′)} ⊆ An,

and define the map ψ : D → R by ((x1, x
′
1), . . . , (xn, x′

n)) �→ ψ(x)(= ψ′(x′)).
We may think of D as the space of consistent sharings, and ψ as the map that
reconstructs the secret. For s ∈ R we write [s] to denote an element of D that
maps to s under ψ.

When we use the secret-sharing scheme in the protocol, we also occasionally
need to operate on publicly known values. Let θ ∈ ψ−1(1) ⊂ D be a fixed
publicly known sharing of 1 ∈ R. A public value x ∈ R can be associated with
the canonical sharing xθ ∈ D.

Now consider the R-module homomorphism φ : Rn → R given by φ(x) =
−∑n

i=1 xi. Define the R-submodule of An given by

M = {((x1, x
′
1), . . . , (xn, x′

n)) : φ(x) = φ(x′)} ⊆ An,

which intuitively corresponds to redundant additive shares. The reason why we
have the redundancy will be made clear in a moment, but at a high level it exists
due to the fact that additive shares of the product of two [·]-shared secrets can
be obtained in two different ways. As we did with D, we define the R-module
homomorphism φ : M → R given by ((x1, x

′
1), . . . , (xn, x′

n)) �→ φ(x)(= φ(x′)),
and for s ∈ R we write 〈s〉 to denote an element of M that maps to s under φ.

For x,y ∈ An we define x ∗ y as the point-wise product of these vectors
(under the product in A, which is
). We define

D∗2 = spanR{x ∗ y | x,y ∈ D} ⊆ An,

which corresponds at a high level to the operations we performed in the previous
paragraphs to obtain additive shares of the product of two secrets.

Proposition 5. Let x,y ∈ D. Then x ∗ y ∈ M and moreover φ(x ∗ y) =
ψ(x) · ψ(y).

Proof. Write (xi, x
′
i) and (yi, y

′
i) for the i-th entry of x and y, respectively, for

i = 1, . . . , n. The i-th entry of x∗y is (xiy
′
i, x

′
iyi), via the
-product. There exists

(x0, x1, . . . , xn) ∈ C and (y′
0, y

′
1, . . . , y

′
n) ∈ C⊥, hence

∑n
i=1 xiy

′
i = −x0y

′
0 =

−ψ(x)ψ(y′). Similarly, there exists (x′
0, x

′
1, . . . , x

′
n) ∈ C and (y0, y1, . . . , yn) ∈

C⊥, hence
∑n

i=1 x′
iyi = −x′

0y0 = −ψ(x′)ψ(y). The claim follows. ��

166 M. Abspoel et al.

In terms of shares, we may write the proposition above as [x] ∗ [y] = 〈x · y〉.
We obtain the following properties.

Theorem 6. The scheme above (n − d + 2)-reconstruction and (d(C
⊥

) − 2)-
privacy.

Proof. ψ is a well-defined R-module homomorphism. Also ψ is surjective, since
by Lemma 3 the projection of C onto the zero-th coordinate (corresponding
to the secret) is surjective. The map φ : D∗2 → Z is surjective and satisfies
ψ(x ∗ y) = ψ(x)ψ(y).

If U ⊆ {0, . . . , n} is an index set of cardinality d(C
⊥

) − 2 then projecting
C onto {0} ∪ U is uniform by Lemma 3, and privacy follows. If x ∈ D has
xU = 0 for |U | = n − d + 2 then since the only codeword in C with weight
≤ n− (n− d+2)+1 = d− 1 is 0, we have ψ(x) = 0, and reconstruction follows.
��

As a corollary, by instantiating these codes with the ones we obtained in
Corollary 1, we get our main result.

Theorem 7. Let ε > 0, and let h be an integer such that ph ≥ 4
ε2 . Then there

exists a family of R-ASSS Σ1, Σ2, . . . with R = GR(pk, h), such that the number
of players n(Σi) → ∞, and the schemes have t(Σi) ≥ (1/2 − ε)n(Σi) privacy
and r(Σi) ≥ (1/2 − ε)n(Σi) reconstruction.

5 Passive Security

In this and the upcoming sections, we fix ε > 0 and consider the Galois ring R
of degree h = Ω(logp(ε−1)) over Z/pk

Z. We consider the family of LSSS over R
from Theorem 7. We reuse the notation from Sect. 4.1: fixing n ∈ N, we denote
by [x] the shares of a secret element x ∈ R, and each of these shares belong to
the share space A = R2. We denote by 〈x〉 shares under the “square” secret-
sharing scheme, and recall that given [x] and [y], the parties can perform local
computation on their shares to obtain 〈x · y〉, and we denote this by 〈x · y〉 =
[x] ∗ [y]. Whenever we say that parties reconstruct a secret [x] (or 〈x〉), we mean
that the parties send their shares to P1, who uses the reconstruction function to
compute x and then sends x to all other parties.

To get a passively secure protocol with perfect security we use the standard
approach in MPC of preprocessing some data that can be used to handle multi-
plication gates efficiently. We follow the template from [17], except that instead
of using Reed-Solomon codes, which would lead to a complexity of O(n log(n)),
we use our linear secret-sharing scheme [·], allowing us to obtain complexity
linear in the number of players.

The techniques from [17] consist, in general, of four main phases:

1. The parties generate “random double-sharings” in a preprocessing phase.
2. The parties use the preprocessed material to distribute inputs.

Asymptotically Good Multiplicative LSSS over Galois Rings 167

3. The parties compute the circuit in a gate-by-gate basis. Addition gates are
computed locally. Multiplication gates make use of the double-sharings.

4. The output wires are reconstructed towards the parties.

Most of these techniques extend seamlessly to the R setting. The biggest issue
lies in the generation of the random double-sharings, which uses a Vandermonde
matrix in order to achieve linear complexity, and although these matrices do
exist over R = GR(pk, h) if h = Ω(log(n)) [2], our goal here is to avoid this
overhead. In Sect. 5.1, we show how to get around this issue by moving to a
Galois ring extension.

The protocol we describe in the next few subsections proves the following
theorem.

Theorem 8. For every n, p, k ∈ N, with p a prime, for every ε > 0 and for every
arithmetic circuit C over R = GR(pk, h) with h = Ω(logp(ε−1)), there exists an
n-party MPC protocol that securely computes C against an unbounded semi-
honest adversary corrupting up to t <

(
1
2 − ε

) · n players with a communication
complexity of O(k · log p · h · |C| · n).

For constant p, k, ε, and by embedding Z/pk
Z in R, we obtain the following as

a simple corollary.

Theorem 9. For every n ∈ N and for every arithmetic circuit C over Z/pk
Z

there exists an n-party MPC protocol that securely computes C against an
unbounded semi-honest adversary corrupting up to t <

(
1
2 − ε

) · n players with
an amortized communication complexity per multiplication gate of O(n).

5.1 Offline Phase

As preprocessed material the parties need many shares of the form ([r], 〈r〉),
where r ∈ R is uniformly random. The basic template used in the literature to
achieve this comes from [17], and it uses the fact that Vandermonde matrices
are good randomness extractors. However, we cannot use these matrices in our
setting since they require the prime p to be at least n, which is not the case for
us. Naively, one can use a Galois ring extension in which these matrices exist,
as in [2], but this would lose linear complexity. There are two solutions to this
problem.

One solution is instead of a hyperinvertible matrix to use the generator matrix
of a [n, u, d] linear code over R, with d ≥ t+1. This yields u random elements at
the cost of n2 elements of R communicated, which if the rate and distance are
linear in n leads to linear complexity. By Theorem 5 we know such codes exist.

The second solution is to move to a Galois ring extension S with high enough
Lenstra constant, such that there is a non-singular n × n Vandermonde matrix.
Instead of simply embedding R ↪→ S, we use a tensor product Rs ∼= R⊗R S ∼= S,
where s is the degree of the extension [2,9]. We can take the tensor product of
the secret-sharing scheme; the result is a secret-sharing scheme that can be
interpreted as s parallel sharings of R. In this way n − t random elements of

168 M. Abspoel et al.

S can be obtained at the cost of n2 elements of S communicated. Since each
random sharing of S can be interpreted as s random sharings of R, this leads to
linear communication per random sharing.

5.2 Online Phase

Now we describe how the parties can securely compute any circuit assuming
they have preprocessed enough random sharings ([r], 〈r〉).

Online Phase

Input Phase. Pi secret-shares its input xi ∈ R as follows.
1. The parties take a preprocessed ([r], 〈r〉) and reconstruct [r]

towards Pi.
2. Pi broadcasts the difference xi − r to all parties.
3. The parties compute [xi] = (xi − r) + [r].

Addition Gates. The parties compute locally [x + y] = [x] + [y].
Multiplication Gates. To multiply [x] and [y], the parties use a pre-

processed value ([r], 〈r〉) as follows.
1. The parties compute 〈x · y〉 ← [x] · [y].
2. The parties compute 〈x · y − r〉 = 〈x · y〉− 〈r〉 and reconstruct this

value.
3. The parties compute [x · y] = [r] + (x · y − r).

Output Wires. For every shared output wire [w], the parties recon-
struct w.

The complexity of the protocol above is dominated by the reconstructions
in the multiplication gates. Each such reconstruction involves sending O(n) ele-
ments in A. Since these elements have bit-length O(k · log(p) · h), the overall
complexity of these reconstructions is O(k · log(p) · h · |C| · n).

6 Active Security with Abort

Even though we present an actively secure protocol with guaranteed output
delivery in Sect. 7, it is still worth mentioning that a much simpler protocol can
be envisioned if one is aiming for security with abort.

Our starting observation is that the online multiplication protocol presented
previously is secure up to additive attacks, as defined in [20], or, put more
precisely, the only attack that an active adversary can carry out is to cause the
result of the multiplication to be wrong by an additive amount that is known
by him and that is completely independent of the inputs. To see why this is the
case, we observe that if the preprocessed pair ([r], 〈r〉) is correctly shared, then
the only thing that the adversary can do in the online phase is broadcasting7 an
7 To handle the active case we must have a proper broadcast channel, that is, we

need to assume a the existence of a broadcast functionality. This is required in the
setting of honest majority setting with statistical security, that is, a statistically
secure protocol that instantiates a broadcast functionality cannot exist [23].

Asymptotically Good Multiplicative LSSS over Galois Rings 169

incorrect difference r − xy + δ (assuming that P1 is corrupted), but the effect
of this is that the final shares the parties get are [xy + δ], which constitutes an
additive attack. Furthermore, the preprocessed pairs can be guaranteed to be
consistent by a simple extension to the preprocessing protocol in Sect. 5.1 that
adds a consistency check at the end (for instance as in done in [2] or in [12]).

Very recently it was shown in [3] how to compile any protocol over rings
that is secure up to additive attacks to an actively secure protocol. Given that
our multiplication protocol satisfies this condition (and it can be verified that
it satisfies the other conditions required by the compiler), we obtain an actively
secure protocol by feeding our protocol from the previous section through the
compiler from [3]. The resulting protocol has linear communication in the number
of parties.

7 Active Security with Guaranteed Output Delivery

The main theorem we prove in this section is the following.

Theorem 10. For every n, p, k ∈ N, with p a prime, for every ε > 0 and for
every arithmetic circuit C over R = GR(pk, h) with h = Ω(logp(ε−1)), there
exists an n-party MPC protocol that securely computes C with guaranteed output
delivery against an unbounded active adversary corrupting up to t <

(
1
2 − ε

) ·
n players, with negligible failure probability in κ ∈ N, offline communication
complexity of O(k · log p · (h · |C| · n · log(n) + n7 · κ)), and online communication
complexity of O(k · log p · h · |C| · n).

Typically, we regard p, k and ε (and therefore h) as constants, so that the
only variables are n,C and κ. In this case, we see that the amortized complexity
per multiplication is O(n) for the online phase, and O(n log(n)) for the offline
phase. Furthermore, computation over Z/pk

Z can be obtained by embedding the
computation into a Galois ring R of constant degree h, and adding a check of
input correctness as in [2]. The following theorem is thus obtained as a corollary.

Theorem 11. For every constants p, k ∈ N, with p a prime, every constant
ε > 0, and for every arithmetic circuit C over Z/pk

Z there exists an n-party
MPC protocol that securely computes C with guaranteed output delivery against
an unbounded active adversary corrupting up to t <

(
1
2 − ε

) · n players, with
negligible failure probability in κ, amortized offline communication complexity of
O(n log(n)) per multiplication gate and amortized online communication com-
plexity of O(n) per multiplication gate.

The rest of this section is devoted to proving Theorem 10. We do so by
adapting the protocol from [6] over fields, which we refer to as the BFO protocol,
to work over a Galois ring R, while also making use of our LSSS from Sect. 4. Due
to space constraints, we only detail the most essential modifications to the BFO
protocol, and assume some of the terminology from [6] as given. An overview
of the BFO protocol and more details can be found in the full version of this
paper [1].

170 M. Abspoel et al.

In order to extend the BFO protocol to our setting while preserving its effi-
ciency, we mostly need to adapt the preprocessing phase. Arguments regarding
dispute control carry over immediately, since they are essentially combinato-
rial in nature. In the next sections we discuss how to adapt the preprocessing:
the verification of multiplication triples is in Sect. 7.4, and the computation of
the tags is sketched in Sect. 7.3. Additionally, the fact that these tags provide
the required authentication features when instantiated over Galois rings is not
trivial, and we discuss this thoroughly in Sect. 7.3.

We stress that our goal here is not to present a full-fledged self-contained
MPC protocol, but rather to describe our novel techniques and extensions to
the BFO protocol. Hence, we assume familiarity with the work of [6] and we
omit most of its heavy machinery, especially everything that extends seamlessly
to Galois rings. We also remark that, even though we assume the existence
of a broadcast channel implicitly (as the dispute control layer requires it), our
complexity analysis does not include the cost of these broadcasts, which is equal
to the corresponding cost in [6] and is independent of the circuit size.

Finally, we notice that the techniques from [22], which improve the complex-
ity of the protocol from [6] by removing an additive term of n2d, where d is
the depth of the circuit, rely mostly on the batch triple check from [6], which
we extend in Sect. 7.4 to the Galois ring setting. Hence, the optimizations from
[22] can be also applied to Galois rings, resulting in a much more efficient pro-
tocol that does not have a quadratic communication complexity in terms of the
numbers of parties and the depth of the circuit.

7.1 Different Types of Shares

From now on, we fix R = GR(pk, h) and S = GR(pk, κ). Notice that we may view
S as an extension of R of degree κ/h. The BFO protocol follows the template
from Sect. 5, except that it has an additional mechanism to ensure that whenever
the adversary cheats this can be detected and the computation can continue. This
is achieved by using different types of secret-sharings (especially 2-level sharings,
defined below), which create enough “redundancy” for the parties to be able to
interactively8 correct any error the adversary may introduce.

The multiple types of sharings considered for our extension of the BFO pro-
tocol are found below—for the intuition on these definitions we refer the reader
to [6]. Note that these sharings were originally defined purely in the context
of Shamir’s secret-sharing scheme. We plug in the family of LSSS over R from
Theorem 7 and get a more general setting: not only because our LSSS is defined
over a Galois ring, but also because it does not have information rate 1, i.e., the
shares do not have the same size as the secret.

Single sharing. These are the sharings [x] as defined using our LSSS. The
secret space is R, and the share space is A. They are the analogue to the
degree-t Shamir sharings from [6].

8 In contrast to the t < n/3 case in which an appropriate choice of the code allows for
non-interactive error correction.

Asymptotically Good Multiplicative LSSS over Galois Rings 171

Square sharing. These are the shares 〈x〉 under the “square” secret-sharing
scheme. The secret space is R, and the share space is A. As in Sect. 5, they
are the analogue to the degree-2t Shamir sharings from [6].
Twisted single sharing. These are defined with respect to a coordinate i ∈
{1, . . . , n}. Let x ∈ A. We denote by �x�i an element x = (x1, . . . , xn) ∈ D
such that ψ(x) = 0 and xi = x. One may view this as a sharing of 0 such
that i-th share equals x.
Twisted square sharing. These are defined with respect to a coordinate i ∈
{1, . . . , n}. Let x ∈ A. We denote by 〈x〉i an element x = (x1, . . . , xn) ∈ M
such that φ(x) = 0 and xi = x. One may view this as square sharing of 0
such that the i-th share equals x.
Two-level single sharing. The secret space is R and the share space is An. For
x ∈ R, we define �x� as an n × n matrix (xi,j)

j=1,...,n
i=1,...,n ∈ An×n, such that:

1. The j-th share is the j-th column.
2. Each i-th row xi = (xi,1, . . . , xi,n) is a vector in D, i.e., it constitutes a

single sharing [xi] of some element xi ∈ R.
3. We have x1 + · · · + xn = x.

Two-level square sharing. Denoted 〈〈x〉〉. It is identical to a two-level single
sharing, except the rows are vectors in M , and hence constitute square shar-
ings 〈xi〉.

7.2 Secret Sharing over a Galois Ring Extension

In [6], some subprotocols need a field size that is exponential in the security
parameter in order to ensure negligible cheating probability. To this end, most
of the protocol is defined over a smaller field, but occasionally they move to a
large field extension, in a way such that the overall complexity is not negatively
affected. Over fields and using Shamir secret sharing, it is straightforward to
use shares defined over the base field and the extension field together, since the
arithmetic is compatible. For our protocols, we use a Galois ring extension and
we show that the arithmetic is compatible as well.

Let L be a Galois ring extension of R of degree r, i.e., L = GR(pk, h · r).
Intuitively, the secret-sharing scheme [·] (and similarly for 〈·〉) over R can be
extended to L as follows. First, fix an R-basis ω1, . . . , ωr of L. To secret-share
an element α ∈ L, write α =

∑r
i=1 ai · ωi, and set [α]L := ([a1], . . . , [ar]). More

details can be found in the full version of this paper [1].

7.3 Authentication Tags

In the BFO protocol, whenever some cheating is detected, parties resort to dis-
pute control in order to partially identify the cheater. One of the critical points
in which the adversary can cheat in the protocol is when sending shares in order
to reconstruct shared values, since in principle any corrupt party can lie about
its own share. In order to be able to detect who sent a wrong share, the parties
need an additional mechanism that somehow “binds” a party to its own share.
This is precisely the purpose of the two-level shares defined in Sect. 7.1: the share

172 M. Abspoel et al.

of each party Pi is also shared among the other parties, so the parties can check
whether Pi is lying about its share by reconstructing it from the two-level shares.

Unfortunately, nothing prevents the parties to also lie in the reconstruction
of the two-level shares themselves. In order to deal with this situation, authenti-
cation tags are put in place, which allow a party to announce a share and prove
that it is correct, or more precisely, prove that it is the same share that was
created at the beginning of the protocol, which was guaranteed to be correct.

At a high level, the tags over fields in the BFO protocol work as follows.9

Consider a value s ∈ Fq that is shared as [s] = (s1, . . . , sn) ∈ F
n
q using Shamir

LSSS. Player Pi holds share si ∈ F
n
q , and to prevent him from lying about his

share, Pi is given a tag τ = μ ·si +ν, where the key μ, ν ∈ F
n
q is random and only

known by some verifier Pj . At the time of opening, Pi has to present a share
s′

i = si + δ plus a tag τ ′ = τ + Δ, where δ,Δ ∈ Fq may be nonzero for the case

of a corrupt Pi, and the verifier Pj checks whether τ ′ ?= μ · s′
i + ν. This check

passes if and only if Δ = μ · δ. If Pi attempts to cheat (i.e., δ �= 0) and if the
verifier Pj is honest, then Pi does not know the random μ, and therefore check
must fail with high probability (assuming the field is large). This can be seen by
using that δ �= 0 is invertible, so Δ · δ−1 = μ, which due to the randomness of μ
cannot be satisfied.

Adapting this to our setting is not straightforward because of two reasons.
First, Galois rings are not fields for k > 1 and therefore the argument above
does not apply directly, since δ �= 0 need not be invertible. Fortunately, using
the ideas from [2] we still can show that the equation Δ = μ · δ holds with
negligible probability. However, the second issue is more delicate and it has to
do with the fact that in our setting each share in [s] is not a single Galois ring
element but it is actually an element of A = R2.

We handle this second issue by extending the authentication scheme from
above not only from Fq to R, but to A. At a high level, the tag corresponding to
a share si ∈ A is computed as τ = μ
 si + ν ∈ A, for the key μ, ν ∈ A. Cheating
in this new MAC scheme corresponds to solving equations of the form Δ = μ
δ,
for some Δ, δ ∈ A, which intuitively cannot be satisfied since it corresponds to
two similar equations over R. We develop the details in what follows.

Definition and Properties of the Tags. We use the same template as the
MAC scheme from [6], which authenticates batches instead of individual values.
Let {(sj,1, . . . , sj,κ/h)}�

j=1 ∈ (Rh)�. Recall from Proposition 3 that Rκ/h ∼= S, so
we may think of each (sj,1, . . . , sj,κ/h) as one single element σj ∈ S. Following
Sect. 7.2, we consider shares [σj]S which can be obtained by sharing each of its
coordinates as [sj,i]. By writing [sj,i] = (sj,i,1, . . . , sj,i,n) ∈ Dn and considering
the vector (sj,1,w, . . . , sj,κ/h,w) ∈ Aκ/h for j ∈ {1, . . . , �} and w ∈ {1, . . . , n},
which we identify with an element σj,w ∈ AS where AS = spanS(A), we can see
that [σj]S = (σj,1, . . . , σj,n) ∈ (AS)n.

9 As we will see, the scheme is a bit more complex since the values are tagged in blocks
rather than individually, but we will not consider this for now.

Asymptotically Good Multiplicative LSSS over Galois Rings 173

Notice that the S-algebra AS can be seen simply as S2, with the product
operation defined as (α, α′)
 (β, β′) = (α · β′, α′ · β). With this in hand we can
define what it means for the shares of σ to be authenticated.

Definition 3. (Informal.)10 We say that the � · κ
h shares {[sj,i]}�,κ/h

j=1,i=1 are
authenticated if for every pair of players Pu, Pv the following holds:

– Pv has a random key μ ∈ (AS)� and ν ∈ AS.
– Pu has a tag τ ∈ AS

– τ = μ � σ + ν, where σ = (σ1,u, . . . , σ�,u) ∈ (AS)� and � denotes the dot
product operator.

Proposition 6 argues that the tags defined above serve their purpose, i.e. a
corrupt Pu cannot lie about any of his shares sj,i,u and still present a valid tag
without an honest Pv detecting this. The proof follows a similar argument as
the one sketched before over fields for the BFO protocol. However, we first need
to show that the S-algebra AS , even though it is not a field, and not even a
Galois ring, does have good properties in terms of roots of linear equations. This
is shown in the following lemma, which can be seen as an analogue of Lemma 6
to the S-algebra AS , but considers multivariate polynomials of degree 1.

Lemma 4. Let L = GR(pk, r) and let B = L2 be the L-algebra with multiplica-
tion given by (α, α′)
 (β, β′) = (αβ′, α′β). Let α ∈ B� and γ ∈ B. If α �= 0,
then Prβ←B� [α � β = γ] ≤ �

pr .

Proof. Suppose that (α1, . . . , α�) � (β1, . . . , β�) = γ, and suppose that α �= 0.
Without loss of generality, assume that α1 �= 0, so α1
 β1 = ρ, with ρ =
γ − ∑�

j=2 αj
 βj . Let π1, π2 be the canonical L-algebra homomorphisms B → L
of projection onto the first and second coordinate, respectively. Since α1 �= 0,
for at least one of i = 1 or i = 2 we have πi(α1) �= 0. Then πi(ρ) = πi(α1
β1) =
πi(α1)πi(β1) is a nonzero polynomial of degree 1 over L (in the variable πi(β1)),
which occurs with probability at most 1/pr according to Lemma 6. ��
Proposition 6. (Informal) Suppose that the shares {[sj,i]}�,κ/h

j=1,i=1 are authen-
ticated, and let Pu, Pv be two players, where Pv is honest. If Pu announces
potentially incorrect shares s′

j,i,u = sj,i,u + δj,i,u and a potentially incorrect tag

τ ′ = τ + Δ, then the check τ ′ ?= μ � σ′ + ν will succeed with probability at most
1

pκ .

Proof. The errors δj,i,u translate into an error vector δ ∈ (AL)� such that the
check is performed on σ′ = σ+δ. Furthermore, δ = 0 if and only if δj,i,u = 0 for
all i ∈ {1, . . . , κ/h} and j ∈ {1, . . . , �}, so checking that the shares announced
by Pu are correct amounts to checking that δ = 0.

It is easy to see that the check passes if and only if Δ = μ � δ + ν. Invoking
Lemma 4 completes the proof. ��
10 The statement is incomplete since we are deliberately omitting many details like the

dispute control layer, which determines which parties should get which type of tags,
or how the keys are reused. We refer to [6] for these details.

174 M. Abspoel et al.

We conclude that once the tags are in place, these can be used to prevent
corrupt parties to lie about their shares whenever some fault localization is
required at the dispute control layer. We refer the reader to [6] for the details
about how these tags are exactly used.

Computation of the Tags. In the previous paragraphs we showed that the
tags, once computed and distributed, provide the required authentication prop-
erties. However, we did not deal with the way that these tags are computed. An
important contribution of [6] was showing an efficient method for the compu-
tation of these tags, which saves in communication and that is crucial for the
overall efficiency.

At a very high level, their method works as follows: First, observe that the
task of computing the tags can be seen as a two-party protocol between party Pu

and party Pv, where Pu inputs the share vector σ, Pv inputs the keys μ ∈ (AS)�,
ν ∈ AS , and Pu gets the output τ . The idea is to use a “Mini-MPC” protocol
for this computation, but to ensure efficiency of the whole protocol distributing
the inputs must be done with little communication. This is where the concept
of twisted shares defined in Sect. 7.1 comes into play: one of the inputs, σ, is
actually a share, and therefore it is already “shared”. We discuss this idea in a
bit more detail in what follows, but first we begin with the crucial property of
twisted shares that motivates their consideration in a first place.

Lemma 5. Let R = GR(pk, h), let x, y ∈ R and suppose they are shared as
[x] = (x1, . . . , xn) ∈ An, �y�i = (y1, . . . , yn) ∈ An. Then [x] ∗ �y�i = 〈〈xi
 y〉〉.
Furthermore, an analogous property holds for the LSSS obtained by extending to
a Galois ring extension L.

Proof. By definition, �y�i can be seen as [0]. Then, using Proposition 5, we see
that [x] ∗ �y�i = [x] ∗ [0] = 〈0〉. Furthermore, the i-th entry of this vector is
xi
 yi = xi
 y, which concludes the proof of the lemma. ��

With this lemma in hand we can sketch the Mini-MPC protocol that the
parties Pu, Pv use to compute the tags. First, let us assume for simplicity that
� = 1 and that R = S, so the MAC is simply τ = μ
 σ + ν ∈ A. Let [s] be such
that its u-th share is σ (recall that the tags are used to authenticate shares, so
σ is a share of some secret). The protocol, at a high level, proceeds as follows:

1. Pv samples μ, ν ∈ A.
2. Pv distributes twisted shares of μ and double twisted shares of ν, i.e.,

�μ�u, 〈ν〉u.
3. The parties compute [s] ∗ �μ�u + 〈ν〉u, which by Lemma 5 equals 〈〈σ
μ+ ν〉〉.
4. The parties send these shares to Pu for reconstruction.
5. The correctness of the tags is verified via standard cut-and-choose techniques.

We refer the reader to protocol TagComp in [6] for the full details of the
protocol to compute the tags. We remark that the core aspects of this protocol
that depend on working over a field have been already addressed above, and the
rest of the protocol translates directly to our setting.

Asymptotically Good Multiplicative LSSS over Galois Rings 175

Complexity Analysis. With the due modifications the resulting TagComp proto-
col over R has a communication complexity of O(k · log2(p) · (m · n · h + n5 · κ))
for computing the tags in one single segment. Since m = O(|C|)/n2, multiplying
by the n2 segments yields O(k · log2(p) · (|C| · n · h + n7 · κ)).

7.4 Batched Triple Sacrifice

The task here is to compute the M = O(|C|) multiplication triples necessary for
the execution of online phase. Computing them can be done in a similar way
as in Sect. 5, but their correctness will not be guaranteed. As before, due to the
dispute control layer, m = M/n2 triples are checked in each segment. One of the
key novelties of the BFO protocol is a technique for checking these triples with
a complexity that is roughly O(n log(n) + κ) per triple.11 This is achieved by
dividing the m triples to be checked into batches of size N = n2 each, developing
a procedure that checks these N triples with complexity O(N ·n · log(n)+n2 ·κ),
which, by multiplying by the number of batches m/N , yields O(m·(n·log(n)+κ)).

Before we adapt their protocol to our setting, we begin by revisiting their
techniques over fields here. Consider a field Fq with at least 2N elements, where
N = n2, and let x1, . . . , x2N−1 be different points in Fq. Suppose the parties
have shares over this field {�ai�, �bi�, �ci�}N

i=1 where ci is supposed to be ai · bi.
The parties check their consistency as follows:

1. Define f(X), g(X) ∈ Fq[X] to be the polynomials of degree at most N − 1
such that f(xk) = ak and g(xk) = bk for k = 1, . . . , N .

2. The parties compute shares of ak := f(xk) and bk := g(xk) for k = N +
1, . . . , 2N − 1 by taking an appropriate linear combination (over Fq) of the
shares {�ak�}N

k=1 and {�bk�}N
k=1, respectively.

3. Define h(X) as the polynomial of degree at most 2N − 2 given by h(X) =
f(X)·g(X), notice that it should be the case that ck = h(xk) for k = 1, . . . , N .

4. Use a passively secure multiplication protocol to compute (potentially incor-
rectly) �ck� := �ak� · �bk� for k = N + 1, . . . , 2N − 1. Now the parties have
shares of 2N − 1 points on the polynomial h(X).

5. Sample a random σ ∈ Fqκ and compute shares over Fqκ of f(σ), g(σ), h(σ) ∈
Fqκ by taking a linear combination over Fqκ of {�ak�}N

k=1, {�bk�}N
k=1 and

{�ck�}2N−1
k=1 , respectively.

6. Perform some check over these shares to verify that f(σ) · g(σ) = h(σ).

When extending the above protocol over rings there are several complications
that appear. One immediate concern is the argument that shows that checking
the polynomial equality f(X)·g(X) = h(X) can be done by evaluating a random
point. To show this still holds, we invoke the following lemma from [2, Lemma
2].

Lemma 6. Let f ∈ R[X] polynomial of arbitrary degree � > 0. Then
Prx←R[f(x) = 0] ≤ �

pκ , where x is drawn uniformly from R.

11 A simple optimization in [6] transforms this into O(n log(n)) for the case in which
κ = poly(n). This optimization also applies to our setting.

176 M. Abspoel et al.

One issue that appears is that we do not necessarily have enough points
x1, . . . , x2N−1 ∈ R for interpolation over our ring R. We fix this by using a
Galois ring extension L of degree O(log(N)) = O(log(n)) for the interpolation,
which introduces an overhead of log(n) in the multiplications �ck� = �ak� · �bk�
for k = N + 1, . . . , 2N − 1. We remark that this is the only place of the whole
protocol where the log(n) overhead appears.

The final effect of this is that the complexity of the preprocessing phase
becomes O(|C| · (n · log(n)+κ)), which is not fully linear, but it is already better
than the best protocol known for this setting [2], which has a complexity of
O(|C| ·n2 · log(n)).12 Furthermore, our online phase is fully linear, i.e., O(|C| ·n).
This has an interpretation in practice: in the offline phase the communication
per party increases logarithmically as the number of parties gets larger, but
in the online phase, this communication remains constant. This supports the
rationale of the offline/online paradigm: expensive computations can be pushed
to a function-independent preprocessing phase, and in the online phase where the
inputs and the function are actually instantitated, the computation is cheaper.

We describe our protocol for batched triple generation in Fig. 1. It is very
similar to the corresponding protocol in [6] except that in our case we use proper-
ties of Galois rings to argue about the security of the construction. The security
of our construction is argued below in proposition 7. It shows that if there is at
least one triple that is incorrect then it will be detected in the final check with
high probability.

Proposition 7. Let {(�ai�R, �bi�R, �ci�R)}N
i=1 be the triples inputted to Protocol

BatchedTriples, and suppose that ci = ai · bi + di for i = 1, . . . , N . If the honest
parties output OK at the end of the protocol, then di = 0 for all i with probability
at least 1 − 1

pκ .

Thanks to the properties of Galois rings that we have exploited throughout
the paper, the proof follows along the same lines as the corresponding proof in
[6], and we will not replicate it here.

Complexity Analysis. Similar to the analysis in the field case done at the begin-
ning of this section, the complexity of checking the m triples in one segment
using BatchedTriples is O(k · log2(p) · m · (n · log(N) · h + κ)). By multiplying by
the number of segments n2, and recalling that N = n2 and m = O(|C|)/n2, we
obtain O(k · log2(p) · |C| · (n · log(n) · h + κ)). Furthermore, the optimization in
[6] of using N = n2+c where κ(n) = O(nc) applies also in our case and results
in a complexity of O(k · log2(p) · |C| · n · log(n) · h).

12 We notice, however, that the extension of Shamir secret sharing to R from [2] is
likely to be compatible with the BFO protocol using some of the ideas introduced
in our work. The resulting protocol would have the same offline complexity as our
construction, but the online complexity would be O(|C|n log(n)), unlike ours which
is O(|C|n). On the other hand, the threshold would be maximal.

Asymptotically Good Multiplicative LSSS over Galois Rings 177

Fig. 1. Protocol for checking the correctness of several triples

Remark 2. The log(n) overhead we have in the preprocessing appears in a very
specific stage, and we can even remove it assuming a functionality that produces
additive shares of matrix outer products efficiently.

Optimizing the Batch Triple Verification. We can use the tools we have devel-
oped to further optimize our triple check procedure by adapting the more recent
protocol of [22]. Their batch check protocol builds on top of the one we use from
[6], and also makes use of polynomial interpolation, which as we have shown
extends to Galois rings. This would lead to a more efficient protocol.

178 M. Abspoel et al.

7.5 Putting the Pieces Together

Using the building blocks described in previous sections, we obtain a protocol
over R = GR(pk, h) whose offline phase has a total communication complexity
of O(k · log p · (h · |C| · n · log(n) + n7 · κ)). The online phase, which follows the
exact same template as in [6, Section 3.4], has a total communication complexity
of O(k · log p · h · |C| · n). This proves Theorem 10.

8 Conclusions and Future Work

Our work shows that results from coding theory over fields can be leveraged to
obtain corresponding results over the more general Galois rings, which include as
a particular case the practically relevant ring Z/2k

Z. Although not all properties
automatically lift (e.g., multiplicativity), we presented techniques to overcome
these issues and still get meaningful coding-theoretic tools over Galois rings, that
can be applied to MPC.

We showed that information-theoretic honest-majority MPC over rings which
scales well with the number of parties is possible. Our protocols have linear com-
munication complexity, except for the offline phase of our protocol with guaran-
teed output delivery from Sect. 7, which has a log(n) overhead. The complexity
can be further reduced by combining our results with the work of [21].

Finally, like in [6], the communication complexity of our construction remains
linear if the circuit is not too narrow. This restriction was removed in [21] for
the case of t < n/3, and then in [22] for the case of t < n/2. As we mentioned
in Sect. 7, the techniques from that paper can also be adapted to Galois rings.

Acknowledgements. The authors thank Gabriele Spini for helpful discussions in the
early stages of this research project. This work has been supported by the European
Union Horizon 2020 research and innovation programme under grant agreements No.
74079 (ALGSTRONGCRYPTO) and No. 669255 (MPCPRO), and by an SJTU-Huawei
project.

References

1. Abspoel, M., et al.: Asymptotically good multiplicative LSSS over Galois rings and
applications to MPC over Z/pk

Z. Cryptology ePrint Archive (2020)
2. Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Efficient

information-theoretic secure multiparty computation over Z/pk
Z via Galois rings.

In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 471–501.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 19

3. Abspoel, M., Dalskov, A., Escudero, D., Nof, A.: An efficient passive-to-active
compiler for honest-majority MPC over rings. Cryptology ePrint Archive, Report
2019/1298 (2019). https://eprint.iacr.org/2019/1298

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 16

https://doi.org/10.1007/978-3-030-36030-6_19
https://eprint.iacr.org/2019/1298
https://doi.org/10.1007/11681878_16

Asymptotically Good Multiplicative LSSS over Galois Rings 179

5. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13

6. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

7. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-Knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 67–97. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 3

8. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party compu-
tation via sublinear distributed zero-knowledge proofs. In: Cavallaro, L., Kinder,
J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 869–886. ACM Press (2019)

9. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-
theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 395–426. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 14

10. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure
computation from random error correcting codes. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72540-4 17

11. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

12. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPD Z2k : effi-
cient MPC mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 26

13. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

14. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation
over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 37

15. Cramer, R., Rambaud, M., Xing, C.: Asymptotically-good arithmetic secret shar-
ing over Z/pk

Z with strong multiplication and its applications to efficient MPC.
IACR Cryptol. ePrint Arch. 2019, 832 (2019)

16. Damg̊ard, I., Larsen, K.G., Nielsen, J.B.: Communication lower bounds for statis-
tically secure MPC, with or without preprocessing. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 61–84. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 3

17. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

18. Damg̊ard, I., Escudero, D., Frederiksen, T., Keller, M., Scholl, P., Volgushev, N.:
New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy (SP), Los
Alamitos, CA, USA, May 2019, pp. 1325–1343. IEEE Computer Society (2019)

https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-540-72540-4_17
https://doi.org/10.1007/978-3-540-72540-4_17
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1007/978-3-030-26951-7_3
https://doi.org/10.1007/978-3-540-74143-5_32

180 M. Abspoel et al.

19. Garcia, A., Stichtenoth, H.: A tower of Artin-Schreier extensions of function fields
attaining the Drinfeld-Vladut bound. Inventiones mathematicae 121(1), 211–222
(1995)

20. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: Shmoys, D.B. (ed.)
46th ACM STOC, pp. 495–504. ACM Press (2014)

21. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC with
guaranteed output delivery. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11693, pp. 85–114. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26951-7 4

22. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest
majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12171, pp. 618–646. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1 22

23. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. In: Concur-
rency: The Works of Leslie Lamport, pp. 203–226 (2019)

24. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 259–276. ACM Press
(2017)

25. Massey, J.L.: Some applications of coding theory in cryptography. In: Farrell, P.F.
(ed.) Codes and Ciphers, Cryptography and Coding IV, pp. 33–47. Formara Lt.,
Esses (1995)

26. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority
MPC by batchwise multiplication verification. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 17

27. Stichtenoth, H.: Transitive and self-dual codes attaining the Tsfasman-Vlăduţ-Zink
bound. IEEE Trans. Inf. Theor. 52(5), 2218–2224 (2006)

28. Stichtenoth, H.: Algebraic Function Fields and Codes, 2nd edn. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-76878-4

https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-540-76878-4

Towards Efficiency-Preserving Round
Compression in MPC

Do Fewer Rounds Mean More Computation?

Prabhanjan Ananth1(B), Arka Rai Choudhuri2 , Aarushi Goel2,
and Abhishek Jain2

1 University of California, Santa Barbara, USA
prabhanjan@cs.ucsb.edu

2 Johns Hopkins University, Baltimore, USA
{achoud,aarushig,abhishek}@cs.jhu.edu

Abstract. Reducing the rounds of interaction in secure multiparty com-
putation (MPC) protocols has been the topic of study of many works.
One popular approach to reduce rounds is to construct round compres-
sion compilers. A round compression compiler is one that takes a highly
interactive protocol and transforms it into a protocol with far fewer
rounds. The design of round compression compilers has traditionally
focused on preserving the security properties of the underlying protocol
and in particular, not much attention has been given towards preserving
their computational and communication efficiency. Indeed, the recent
round compression compilers that yield round-optimal MPC protocols
incur large computational and communication overhead.

In this work, we initiate the study of efficiency-preserving round com-
pression compilers, i.e. compilers that translate the efficiency benefits
of the underlying highly interactive protocols to the fewer round set-
ting. Focusing on the honest majority setting (with near-optimal cor-
ruption threshold 1

2
− ε, for any ε > 0), we devise a new compiler that

yields two round (i.e., round optimal) semi-honest MPC with similar
communication efficiency as the underlying (arbitrary round) protocol.
By applying our compiler on the most efficient known MPC protocols,
we obtain a two-round semi-honest protocol based on one-way functions,
with total communication (and per-party computation) cost ˜O(s + n4)
– a significant improvement over prior two-round protocols with cost
˜O(nτs + nτ+1d), where τ ≥ 2, s is the size of the circuit computing the
function and d the corresponding depth. Our result can also be extended
to handle malicious adversaries, either using stronger assumptions in the
public key infrastructure (PKI) model, or in the plain model using an
extra round.

An artifact of our approach is that the resultant protocol is “unbal-
anced” in the amount of computation performed by different parties.
We give evidence that this is necessary in our setting. Our impossibility
result makes novel use of the “MPC-in-the-head” paradigm which has
typically been used to demonstrate feasibility results.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 181–212, 2020.
https://doi.org/10.1007/978-3-030-64840-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_7&domain=pdf
http://orcid.org/0000-0003-0452-3426
https://doi.org/10.1007/978-3-030-64840-4_7

182 P. Ananth et al.

1 Introduction

Understanding the minimal rounds of interaction required to carry out a crypto-
graphic task has been the subject of extensive study over the past few decades.
While ad-hoc techniques are often used to obtain low round complexity solutions,
a more systematic approach adopted in the literature is to build a round compres-
sion compiler. As the name suggests, a round compression compiler transforms a
highly interactive protocol into one with far fewer rounds. The celebrated com-
piler of Fiat and Shamir [22] is one such example that transforms a public-coin
interactive proof system into a non-interactive one (in the random oracle model).

Recently, a sequence of works have designed round compression compilers
to resolve major open problems in cryptography. For instance, the recent result
on non-interactive zero knowledge proofs for NP from learning with errors was
designed by instantiating the Fiat-Shamir methodology [11,38]. In the context
of secure multiparty computation (MPC) [6,12,29,40] – the focus of this work –
a recent sequence of exciting works devised novel round compression compilers
to construct round-optimal MPC protocols based on minimal assumptions [1–
4,7,24,25].

Rounds vs Computation in MPC. In this work, we continue the study of
round compression in MPC. Starting from [5], round compression in MPC has
been extensively studied over the years in a variety of models. Traditionally, most
works have focused on devising compilers that preserve the security properties
of the underlying protocol. However, not much emphasis has been placed on
preserving the computational and communication efficiency.

Indeed, the recent round compression compilers that yield round-optimal
MPC [1–4,7,24,25] incur a large overhead in computation and communication.
Some of these compilers work in the setting where a majority of parties are
allowed to be dishonest, while others require a majority of the parties to be hon-
est. In this work, we focus on the latter setting, referred to as honest majority. In
this setting, consider an arbitrary round MPC protocol with total computational
work W = W (n, s), where n denotes the number of parties executing the protocol
and s denotes the size of the circuit implementing the function being computed.
Then, applying the compilers of [1–4,24] on such a protocol yields a two round
protocol with total communication and per-party computation ˜O(nτ ·W), where
τ ≥ 2, ignoring multiplicative factors in security parameter. Plugging in the most
efficient known multi-round MPC protocols [15,16,26] with total cost ˜O(s+nd)
(where d is the circuit depth), we obtain a two round protocol with significantly
worse total communication (and per-party computation) ˜O(nτs + nτ+1d).

The above state of affairs raises the question: does round compression neces-
sarily require high computational and communication cost? If not, can we design
efficiency-preserving round compression compilers for MPC that preserve both
the security as well as the computational and communication efficiency of the
underlying protocol?

Towards Efficiency-Preserving Round Compression in MPC 183

1.1 Our Results

We study efficiency-preserving round compression compilers for MPC. As a first
step in this direction, we narrow our focus on the honest majority setting.

Our main result stated below holds with respect to semi-honest adversaries.
Later, we also discuss extensions to the case of malicious adversaries.

Theorem 1 (Informal). Let n be the number of parties and let λ be the secu-
rity parameter, such that n is polynomially related to λ. Assuming one-way func-
tions, there is a round compression compiler that transforms a semi-honest secure
MPC protocol Π for any n-party functionality F into a two-round semi-honest
secure protocol Π ′ for F with the following properties:

– If Π tolerates corruption threshold ε, then Π ′ tolerates ε′, for arbitrary con-
stants ε′ < ε < 1

2 .
– If the total computation cost of Π is W = W (n, s), where s is the circuit size

representation of F , then the amortized per-party computation cost and total
communication cost of Π ′ is

Õ
(

(W (log2(n), s) + n4)
)

,

where the ˜O notation suppresses polynomial factors in λ and polylog factors
in n.

To handle smaller values of n, we can use a hybrid mode of compilation: if n is
small, simply use existing compilers; for larger values of n, one should use our
compiler.

Comparison with Prior Work. Our compiler performs significantly better
than previous compilers [1,3,4] that yield two-round protocols with total com-
munication and per-party computation cost of Õ(nτW (n, s)), where τ ≥ 2. All
of these existing two round compilers [1,3,4] rely on the following high level
idea1- they view the entire computation done in the underlying protocol as a
circuit and then require all the parties to communicate at least one-bit for each
gate in this circuit, with every other party over pair-wise private channels in the
first round. This adds a multiplicative overhead of at least n2 in the complexity
of the resulting protocol. Infact, the exact overhead in these compilers might
even be more than n2, because these are not the only messages that the parties
compute and send in those compilers. However, for comparison, it suffices for us
to use a conservative approximation, i.e., τ ≥ 2.

On the other hand, by applying our compiler on the most asymptotically
efficient MPC protocols [15,16,26] with total computation cost W (n, s) = ˜O(s+
nd), we obtain a two-round protocol with total communication and per-party
computation cost Õ(s + n4). In contrast, applying previous compilers on the
same protocols yields two-round protocols with total communication and per-
party computation cost Õ(nτ · s + nτ+1d), where τ > 2.
1 While this idea is made explicit in [3,4], it is easy to observe that [1] also implicitly

uses the same idea.

184 P. Ananth et al.

Extensions. With suitable modifications to the above compiler, we can obtain
additional results that achieve different tradeoffs, both in the case of semi-honest
and malicious adversaries.

– Semi-honest: The above compiler can be easily modified such that the total (as
opposed to amortized per-party) computation cost is ˜O(W (log2(n), s) + n4),
at the cost of increasing a round of interaction.2

– Malicious: The above compiler can also be easily modified to work against
malicious adversaries, yielding either two round protocols in the PKI model
assuming verifiable random functions [37], or three round protocols in the
plain model without additional assumptions. Both these protocols achieve
the standard notion of security with abort, assuming that the underlying
protocol also achieves the same security.

Impossibility of Balanced Protocols. Our compiler utilizes a committee-
based approach which has been used in many prior works in the larger round
setting. A caveat of this approach is that it results in unbalanced protocols where
a small subset of parties (namely, the committee members) perform much of the
“heavy” computation, while other parties only do “light” computation. Fur-
thermore, this approach also yields a sub-optimal corruption threshold (i.e.,
n > 2t + 1, where t is the number of corrupted parties). In view of this, we
investigate whether this is inherent.

We give evidence that our approach is “tight” by showing that there exists
some functionality for which there does not exist a balanced constant round
(even insecure) MPC protocol with total computational cost ˜O(s). In contrast,
our compiler yields an unbalanced constant-round secure MPC protocol with
roughly the same total cost (ignoring additive terms).

1.2 Our Techniques

In this section we describe the main ideas underlying our results. In Sect. 1.2.1
we give an overview of our techniques for designing efficiency-preserving round-
compression compilers. Later, in Sect. 1.2.2, we describe ideas for proving impos-
sibility of balanced constant-round MPC protocols with total computation cost
Õ(s). Throughout this section we assume τ ≥ 2, and is hereby omitted for clarity
of exposition.

1.2.1 Efficiency-Preservation via Committees
We now proceed to describe the techniques used in our compiler. At a high-level,
we devise a two step approach:

– Step 1: Special Two Round MPC. First, given a potentially highly inter-
active MPC protocol with total computational work W = W (n, s), where s

2 If there are only a constant number of parties that are recipients of the output, then
the resultant protocol from Theorem 1 already achieves this result.

Towards Efficiency-Preserving Round Compression in MPC 185

is the size of the circuit and n is the number of parties, we apply a round-
compression compiler to obtain a special two round protocol with some spe-
cific structural properties. The total computational complexity of this special
MPC is proportional to Õ(nτ · W).3 Even though it does not achieve our
desired efficiency, its structural properties are crucially used in the second
step.

– Step 2: Efficiency Boost. We then leverage the structural properties of the
special two round MPC to transform it into a new protocol with the same
round complexity, but improved asymptotic computational and communica-
tion complexity.

We postpone the discussion on the structural properties required from the two
round protocol. Instead, we first focus on Step 2; the efficiency boosting trans-
formation would then guide us towards identifying these structural properties.

Starting Ideas for Efficiency Boost. We first focus on the semi-honest set-
ting, and defer the malicious case to later. Given a special two-round MPC, our
starting idea for improving its efficiency is to use the classical committee-based
approach, where the bulk of the computation is “delegated” to a small committee
of parties, while the remaining parties do very little work.

More specifically, the main idea in a committee-based approach is to first
elect a “small” committee, while ensuring that a majority of the parties in the
committee are honest and letting these elected parties run the actual protocol.
Since the parties not elected to the committee are no longer doing any work, we
need a mechanism to allow these parties to transfer their inputs to the committee
members. To ensure privacy of their inputs, the parties who are not elected in
the committee, secret-share their inputs amongst the committee members. The
elected committee then runs an MPC computing a modified functionality F ′,
that collects all the secret shares of all the non-elected parties, reconstructs their
inputs, and computed the original function F . Unlike the original function F , F ′

requires inputs from only the elected committee members, which as described
above, also implicitly contains the remaining parties’ inputs. Since the cost of
the computation is dominated by the number of parties involved in the “heavy”
computation, it suffices to use a committee of size poly-logarithmic in the total
number of parties to yield non-trivial savings in the total cost.

In order to prevent an adversary from corrupting a majority of the members
in the committee, it is important to choose the committee at random. This
means that the identities of the committee members are unknown to all parties
at the start of the protocol; instead, we must implement a committee election
mechanism during the protocol execution. Let Π be the two-round protocol
obtained by applying the round-compression compiler in the first step. Now,

3 While special MPC with total computation proportional to Õ(nτ · W) can be con-
structed (as we discuss later), the second step of our approach is actually less sensitive
to the exact asymptotic complexity of special MPC. In particular, the exact depen-
dence on n is not very important as long the total computation in special MPC has
only linear dependence on W .

186 P. Ananth et al.

applying the committee-based approach over Π, we get the following five round
protocol Π ′:

1. Round 1. Each party tosses an appropriately biased coin to decide whether
or not it will be in the committee and reveals the result to all other parties.

2. Round 2. The parties that are not part of the committee secret share their
inputs amongst the committee members.

3. Round 3. The committee members compute and send their first round mes-
sages in π.

4. Round 4. The committee members compute and send their second round
messages in π.

5. Round 5. The committee members reconstruct the output and then send
the output to all other parties.

Since the bulk of the computation is performed by the committee members, the
amortized per-party computation in Π ′ depends only on polylog(n) as opposed
to poly(n). The main problem however, is that Π ′ requires five rounds, while we
seek a two round protocol.

Committee-Based Approach in Two-Rounds. Towards obtaining a two
round protocol, we start with the observation that if protocol Π allows for
public reconstruction of output based on the transcript of the last round, then
Rounds 4 and 5 of Π ′ can be parallelized. Indeed, this property is satisfied by
the protocol output by our compiler in Step 14 and is also true for other recent
round-compression compilers [2,7,25]. While this yields a saving of one round, it
is not clear how to proceed further. Indeed, to obtain a two-round protocol, the
task of electing a committee and sharing of inputs by the remaining parties must
be parallelized with the computation done by the committee members using Π.
In other words, Rounds 1, 2 and 3 must seemingly be executed in the first round
of Π ′, and Round 4 in the second round. This, however, raises some fundamental
challenges:

1. Challenge 1: Sharing of Inputs. If the committee election happens in
parallel with input sharing, the non-committee members (henceforth referred
to as the clients) would not know the identities of the committee members
(henceforth referred to as the servers) at the time of distributing their inputs.
How can the clients secret share their inputs with the servers, without knowing
their identities? It seems like there is no way to get around this, which means
that the servers must start their computation without knowing their “entire
input”. But parallelizing committee election and input sharing is crucial both
for the correctness and security. Indeed, in any two round MPC protocol, the
private inputs of all parties must be “fixed” in the first round to prevent input
resetting attacks [32].

4 Protocols obtained by applying the compiler from [1] always satisfy this property,
while the compilers in [3,4], yield protocols that satisfy the “public reconstruction of
outputs” property only when applied to a (multi-round) protocols that also satisfy
this property.

Towards Efficiency-Preserving Round Compression in MPC 187

2. Challenge 2: Blind Computation. All known two-round honest majority
MPC protocols based on minimal assumptions [1–4,24] necessarily rely on
the use of private channels in the first round. Since the committee election
and computation must happen simultaneously, it is not clear how the servers
would exchange private channel messages in the first round without knowing
each other’s identities. It seems like we require the servers to start their
computation “in the blind”.

To address these two challenges, we require some structural properties from Π.
We now describe them.

Special Two Round MPC. We require the following two structural properties
from the special two round MPC in Step 1:

1. Decomposability: The first round messages of each party in a special two
round MPC protocol can be decomposed into: (i) “light” messages that
depend on the input but whose computational complexity is independent of
W , and (ii) “heavy” messages that are independent of the input but whose
computational complexity may depend on W . The light and heavy messages
may share common randomness.

2. Independence: The private channel messages in a special two round MPC
protocol should be independent of the inputs of the parties.

At a first glance, these properties may seem quite unconventional and strong.
Indeed, our main technical contribution is in identifying these rather unconven-
tional and specific structural properties of two-round protocols and then leverag-
ing these properties for efficiency gains in the setting of two rounds. In particular,
as we describe below, the decomposability property, with additional delegation
of computation techniques, is used to address Challenge 1 and the independence
property is used to address Challenge 2. Moreover, as we discuss later, these
properties can, in fact, be achieved generically.

Solving Challenge 1. Towards explaining our main ideas, let us first consider
a simpler scenario where Π only consists of broadcast channel messages (we
deal with private channel messages later while addressing challenge 2). As noted
earlier, the main issue in parallelizing input distribution and committee election
is that the servers cannot know their entire input in the first round, yet the first
round messages of the protocol must fix the inputs of all the parties. Moreover,
the second round messages of all parties can also depend on the entire first round
transcript (which in turn must depend on the inputs).

To address these problems, a natural starting idea is to require the clients to
aid the servers in the computation of the first and second round messages of Π
while still achieving the desired efficiency. Let us first focus on the second round
messages of Π; specifically, that of a particular server (say) Si. Our first idea
is to run a separate helper protocol involving all parties (servers and clients) to
help compute the second round messages of Si. This helper protocol can take
the input shares from all clients and the randomness from all servers to first
internally compute the first round messages of all servers and then compute

188 P. Ananth et al.

and output the second round message of Si. A naive implementation of this
approach, however, runs into an obvious problem: since the per-party complexity
for computing second round messages of the servers in Π is Õ(nτ · W), the size
of the functionality implemented by the helper protocol, and thereby the per-
party computation performed by the clients, also has the same total complexity
of Õ(nτ · W).

Towards addressing this problem, we first use a delegation of computation
approach implemented via garbled circuits and a modified two-round helper
protocol as follows:

– We require the server Si to garble and send its second round next-message
function of Π in the second round of Π ′. This circuit takes as input the
entire first round transcript of Π and computes, and outputs, Si’s second
round messages in Π.

– The input wire labels for this garbled circuit are computed via a modified two-
round helper protocol for a specific functionality. This functionality takes as
input, secret-shares from the clients and randomness used to compute the first
round messages from the servers. It also takes as input all of the garbled circuit
input wire labels from Si. It internally computes the first round message of
all servers and then selects and outputs the corresponding input wire labels.

Thus far we have ignored the first round messages and an observant reader may
notice that this solution still does not suffice; indeed, since the size of the first
round messages in Π is also proportional to Õ(nτ · W), the clients still need to
spend the same computational effort.

Our main conceptual idea to overcome this problem is to leverage the decom-
posability property of special MPC. Recall that the decomposability property
requires that in the first round, each party sends computationally light messages
depend on its input and computationally heavy messages that are independent
of its input. We leverage this property as follows: we require the servers to com-
pute (on their own) and send the heavy messages in the first round, which can
then be hardwired in the circuit that Si garbles in the second round. The helper
protocol involving all parties is now only required to compute the input wire
labels corresponding to the light messages, as opposed to the entire first round
messages, which is efficient. Moreover, this also ensures that the inputs of all
parties are indeed fixed in the first round, which is necessary for security.

Finally, we remark that if the light messages in Π can be computed using
a degree-1 computation over the parties’ inputs, then we can use lightweight
protocols such as [36] (satisfying security with abort) for quadratic functionalities
to further reduce the work done by clients. We later show that our compiler from
Step 1 achieves this property as well.

Solving Challenge 2. While so far we have only considered the simplified set-
ting of broadcast-only protocols, in reality, our protocol Π from the first step
(necessarily) consists of both the broadcast and P2P messages. As described ear-
lier, this creates the challenge that the servers cannot send P2P messages to each
other in the first round without knowing their identities. Since the computation

Towards Efficiency-Preserving Round Compression in MPC 189

must start in the first round itself, we need a mechanism for “computing in the
blind”.

We implement such a mechanism by allowing the servers to encrypt their
private channel messages and broadcasting them in the first round and then
enabling others to somehow compute on these encrypted messages. To help com-
pute on the encrypted messages, we again utilize a delegation of computation
approach:

– Each server garbles a circuit that takes the decryption key as input and
decrypts the corresponding first round encrypted message that was intended
for it and computes its second round message.

– Wire labels corresponding to the decryption key are computed via a helper
protocol involving all properties, similar to the solution to the previous chal-
lenge. Since the helper protocol is only responsible for computing labels corre-
sponding to the decryption keys, the total work done by the parties (especially
clients) in this helper protocol does not depend upon the complexity of the
next-message functions of the parties in Π.

An observant reader, however, may notice that this approach fails completely,
if the P2P messages in Π were dependent on the input. Indeed, since the servers
do not have access to their entire input in the first round, it is unclear how they
would compute and encrypt these messages in such a case.

Our next conceptual idea to overcome this problem is to leverage the inde-
pendence property of special MPC. Recall that this property requires all of the
private channel messages in Π to be independent of the inputs. Given this prop-
erty, the above solution already works.

Realizing Special Two Round MPC. Recall that a special two-round MPC
must satisfy the following requirements:

1. Structural Properties: It must satisfy the decomposability and indepen-
dence properties defined earlier.

2. Complexity: The total communication complexity of the special MPC must
be Õ(nτ · W). (As discussed earlier, the key requirement here is the linear
dependence on W , whereas the exact multiplicative dependence on n is less
important since this special MPC is only executed by polylog(n)-sized) com-
mittee of parties.)

We address each of these requirements separately. There is a surprisingly simple
approach for achieving the structural properties generically. Specifically, we show
that any two-round protocol π with the delayed-function property5 can be made
to achieve these structural properties without affecting its asymptotic efficiency.
The idea is to have each party Pi sample a random mask ri for its input xi,

5 At a high level, a two-round MPC protocol satisfies the delayed-function property
if the first round messages of the honest parties are computed independent of the
functionality, but may depend on the size of the circuit implementing the function-
ality.

190 P. Ananth et al.

and broadcast xi ⊕ ri in the first round. Additionally, the parties run π on a
modified functionality f ′

x1⊕ri,...,xn⊕rn
that has x1 ⊕ ri, . . . , xn ⊕ rn hardwired in

its description, such that

f ′
x1⊕ri,...,xn⊕rn

(r1, . . . , rn) = f(x1, . . . , xn),

where f is the original functionality. It is easy to see that because of this simple
modification, the first round messages of party Pi in the modified protocol Π can
now be decomposed into a “light” message xi ⊕ ri that depends on its input and
“heavy” messages which correspond to its first round messages in π. Moreover,
because of the delayed-function property of π, these “heavy” first round messages
in Π are independent of their actual inputs. This already achieves decompos-
ability. With regards to independence property, we first note that the above
transformation already ensures that the first round private channel messages in
Π are independent of the parties’ inputs. However, their second round private
channel messages may still depend on their inputs. Towards this, we observe that
any two-round protocol that makes use of private channel messages in the second
round can be modified into one that only uses broadcast channel messages in the
second round. This can be done by letting the parties exchange one-time pads
with each other in the first round, and then broadcasting their second round
messages encrypted under these one-time pads. With this modification, we can
also achieve independence.

Since the above approach works generically with any protocol that satis-
fies the delayed-function property, it can also be applied to a delayed-function
variant of [1,3,4]. We note that while [1] already satisfies the delayed function
property, the two-round compilers of [3,4] do not. A simple modification to this
construction can yield two-round protocols with delayed-function property with-
out compromising its efficiency. We refer the reader to the full version for details
on this modification.

Moreover, when applied to an interactive protocol with total computation
W , the compilers of [1,3,4] already yield two-round protocols with total com-
munication at least Õ(nτ ·W). Hence, in summary, either of the recent two-round
protocols [1,3,4] in the honest majority setting, with the above modifications,
can be used to obtain a two-round special MPC with all of the required proper-
ties.

Summary (so far). Putting the above solutions together, we now
obtain a two-round semi-honest protocol that achieves total communica-
tion complexity Õ(W (polylog(n), s) + n4)6 and total computation complexity
Õ(nW (polylog(n), s)+n5) if we elect a committee of size polylog(n). The compu-
tation complexity is higher than the communication complexity. This is because
in order to reconstruct the output, all the parties must locally compute on all the
second round messages of all parties, which adds a multiplicative overhead of n

6 For this technical overview, some details of the protocol are omitted. The resultant
protocol incurs an additive term of n4, which is elaborate upon in the technical
section.

Towards Efficiency-Preserving Round Compression in MPC 191

to the computation complexity. We note that we are limited to this computation
complexity in two rounds, since we do not know of any two round compilers with
better and more efficient output reconstruction algorithms. However, if we add
another round such that only one of the parties the output at the second round
and broadcasts it to others in the third round, we can get optimal computational
efficiency.7

Handling Malicious Adversaries. The above approach only works against
semi-honest adversaries. For the malicious setting, we need to start with a mali-
cious special two round MPC protocol. We are now faced with the following
additional issues in the malicious setting:

1. Input Consistency. Recall that in the semi-honest protocol proposed above,
the servers are required to use the same randomness as input in multiple sub-
protocols: (1) for computing its “heavy” first round messages in Π and (2)
in the helper protocol for computing its “light” first round messages. Since
the light messages depend on the inputs of clients, if a malicious server does
not use the input randomness consistently in the two sub-protocols, it could
potentially change the input share of an honest client.

2. Malicious Secure Committee Election. Our naive way of doing a com-
mittee election where the parties can randomly elect themselves to be in the
committee, clearly does not work in the malicious setting. A corrupt party
can always elect it self to be in the committee.

Towards describing our solution to the first problem, let us first address why
simply compiling a maliciously secure protocol Π with the compiler described
above is not sufficient. Recall that in general, a maliciously secure protocol can-
not prevent adversarial parties from choosing their inputs arbitrarily. However,
in the above compiler, since the underlying (maliciously secure) protocol Π is
only run amongst the committee members and their inputs also contain input
shares of the honest clients, we cannot afford to let them choose their entire
input arbitrarily.

To prevent this, we make use of one-time message authentication codes (
MACs). The honest clients compute a MAC over each of their input shares. For
the MAC’s to be verified, they must be checked, and hence require the key.
However, providing a (potentially corrupt) server with the MAC key defeats the
purpose, since there is no longer any security. Therefore, for each input share,
we shall create MACs with each of the server keys, i.e., one corresponding to
each server. These keys are sent to the respective servers, while the input share
and all the corresponding MAC tags are sent only to the designated server. The
functionality computed by the protocol Π is modified to first check if for each
input share that it gets as input, all its corresponding MACs are valid. As long
as there is an honest party, for which the adversary does not have access to the
key, it cannot create a mauled tag that will verify with that key. We use the

7 Alternatively, if the number of parties computing the output are already a constant,
then even the two round protocol achieves optimal computation.

192 P. Ananth et al.

helper protocols exactly as described earlier with the only exception that now
instead of just their input shares, the clients also communicate these MACs and
MAC keys to the servers via the helper protocol.

To implement a maliciously secure committee election protocol, we use the
following standard techniques:

– Using VRFs: We use the strategy from Algorand [27] based on verifi-
able random functions (VRFs) [37]. This is implemented in the reusable8

correlated randomness model where the adversarial corruption may happen
after the setup. We note that since VRFs are known from non-interactive
witness indistinguishability proofs (NIWIs)[8,30], we get a resulting mali-
ciously secure two-round protocol in the correlated randomness model based
on NIWI, whose communication complexity is Õ(W (polylog(n), s) + nτ+4)
and total computation complexity is Õ(nW (polylog(n), s) + nτ+5).9

– Feige’s Lightest Bin Protocol [21]: This gives a statistically secure com-
mittee election protocol. However each party learns whether or not it is in
the committee only at the end of this protocol, so it adds another round
at the start of the two-round protocol. As a result we get a three-round
maliciously secure protocol in the plain model, whose communication com-
plexity is Õ(W (polylog(n), s) + nτ+4) and total computation complexity is
Õ(nW (polylog(n), s) + nτ+5).

Comparison with Existing Maliciously Secure Compilers: By applying
our compiler on the most asymptotically efficient MPC protocols [15,16,26] with
total computation cost W (n, s) = ˜O(s+nd), we obtain a two-round protocol with
total communication and per-party computation cost Õ(s + nτ+4). In contrast,
applying previous maliciously secure compilers on the same protocols yields two-
round protocols with total communication and per-party computation cost Õ(nτ ·
s + nτ+1d + nτ+2), where τ > 2.

1.2.2 Impossibility of Balanced Protocols
While our approach gives an efficiency preserving compiler in 3 rounds, a draw-
back of our compiler is that it yields unbalanced protocols with sub-optimal
corruption threshold of t < n/2. This is a consequence of our committee-based
approach. Next, we provide some evidence towards the fact that a committee-
based approach is necessary. In particular, we show that it is impossible to
obtain a constant round MPC protocol with equal division of labor, where the
total work done by parties is Õ(|C|), where |C| is the size of the circuit imple-
menting the functionality. We show this impossibility using the player emulation
methodology [13,33,35]. To the best of our knowledge, this is the first time that
this paradigm is used for proving a negative result.

8 A simpler solution using non-reusable correlated randomness can be obtained using
regular digital signatures which are known from one-way functions.

9 As for the semi-honest setting, the additive term will be elaborated upon in the
technical sections.

Towards Efficiency-Preserving Round Compression in MPC 193

Let us assume that there exists an r−round MPC protocol Π, where the total
work done by each party is approximately Õ(|C|)/n, where r is some constant. In
other words, the size (and depth) of the circuit implementing the next-message
function of each party is Õ(|C|)/n. In every round, we can recursively use proto-
col Π to implement the next-message function of each party. The total number
of rounds in the resulting protocol is r2, while the total work done by each party
in each round is still Õ(|C|)/n, it can now be computed using n-parallel circuits
each of depth Õ(|C|)/n2.

If we repeat this approach of recursively replacing the next-message function
of each party in each round with an execution of Π for k iterations, we get a
protocol with rk rounds where in each round, the next message function of each
party can be computed using a circuit of depth Õ(|C|)/nk. Let k, c be constants
such that Õ(|C|)/nk = c. In each round the total computation done by the
parties can be viewed as an execution of n-parallel circuits, each of depth at
most c. Overall, the total work done by the parties in the final protocol, can be
viewed as an execution of n−parallel circuits, each of depth at most c·rk = O(1).

This approach can be used to reduce any arbitrary-depth circuit C into a
constant-depth circuit, which is a contradiction since we know that functions
like parity are not computable in constant depth.

1.3 Related Work

The study of multiparty computation was initiated in the seminal works of [6,
12,29,40]. Beaver et al. [5] initiated the study of constant round protocols in
the honest majority setting. Subsequently, there has been extensive work in the
study of constant round protocols, resulting in round optimal protocols both in
the honest majority and dishonest majority settings [1–4,7,23–25].

Further, the design of efficient protocols have been studied in both the com-
putational and information theoretic settings [9,14–18,20,34,39,41]. Some of
these results [15,16] achieve optimal computational and communication com-
plexity of Õ(s). Similar to us, their results also have an additive factors which
are polynomial in both the security parameter and number of parties.

Committee based techniques have been used primarily in the context of scal-
able computation, where the goal is to build secure computation protocols that
scale well with a large number of parties. Of these, the works of [9,10,19,39,41]
seek to reduce computational and communication complexity work in the large
round setting. See [39] and the references therein for for a detailed survey of the
use of committee based techniques in the context of scalable computation. To
the best of our knowledge no prior works apply committee based approaches in
the two round setting. This is perhaps unsurprising given the recency of the two
round protocols based on standard assumptions.

194 P. Ananth et al.

1.4 Full Version

Due to space constraints, preliminaries, details of the proofs, and complexity
calculations have been omitted from this manuscript, and can be found in the
full version of the paper.

2 Two-Round Efficiency Preserving Compiler in the
Client-Server Model

In order to describe our compiler in a manner that easily extends to the malicious
setting, we will present our solution in two steps, spread across Sects. 2 and 3.
In this section, we construct a maliciously secure efficiency preserving, round
compression compiler in the Client-Server model.

Recall that in the client-server model, every party is designated to be either
a client or a server, and is additionally aware of the roles of all the other parties.
The clients share their inputs among all the servers (servers may additionally
have inputs), who in turn do the computation and broadcast the result. Later in
Sect. 3, we will show how this protocol in the client-server model can be extended
to obtain an efficiency preserving compiler in the plain model, namely, where the
parties do not have any pre-designated roles assigned to them.

The rest of this section is organized as follows. First, we present a two-
round special MPC with some specific structural properties in Sect. 2.1. Then in
Sect. 2.2, we make use of the properties of this protocol to present a two-round,
maliciously secure, efficiency preserving compiler in the client server model.

2.1 Special Two-Round MPC

As discussed in the technical overview, given an interactive protocol with total
computation work W , as a starting step, we need to transform it into a two-round
special MPC protocol that satisfies the following properties:

1. Decomposability: The first round messages of each party in Π can be
decomposed into “light” messages that depend on the input but not W , and
“heavy” messages that depend on W but not on the input; however they may
share common randomness.

2. Independence: The private channel messages in Π are independent of the
inputs.

3. Complexity: The total computation complexity of the resulting protocol
should only be linearly dependent on W .

We state the following lemma proven in the full version of our paper.

Lemma 1. Let λ be the security parameter. There is a round compression com-
piler that transforms a maliciously (and semi-honest, resp.) secure MPC protocol
π for any n-party functionality F into a two-round maliciously (and semi-honest,
resp) secure protocol Π for F with the following properties:

Towards Efficiency-Preserving Round Compression in MPC 195

1. If π tolerates corruption threshold ε, then Π tolerates ε′, for arbitrary con-
stants ε′ < ε < 1/2.

2. If the computational cost of π is W = W (n, s), where s is the circuit size
representation of F , then the amortized per-party computational cost of Π is
O(nτW) and the per-party communication cost of Π is O(nτ−1W).

3. Each party in Π sends messages over both private channels and a broadcast
channel in the first round. While in the second round, each party only sends
messages over a broadcast channel.

4. Each party Pi in Π broadcasts its masked input (xi ⊕ γi) in the first round,
where xi is its input and γi is a random value. The rest of its first round
broadcast messages are independent of its input but may depend on ri.

5. The private channel message of each party Pi in Π is independent of its input
xi but may depend on ri.

Remark 1. We note that we consider the computation of functions represented
by circuits consisting of AND, OR and NOT gates.

2.2 From Special MPC to Efficiency Preserving Compiler in the
Client-Server Model

Now that we have a two-round protocol Π with the desired structural properties
from Lemma 1, we use it to present a two-round maliciously secure, efficiency
preserving compiler in the client-server model. Since our protocol works in the
client server model, for ease of presentation we use indices with different fonts
for referring to specific servers and clients: i ∈ n for servers (double-struck) and
i ∈ n for clients (bold).

Protocol Overview. At a high level, given n servers and n clients, where
n + n = n, the semi-honest protocol works as follows. Each client generates n
additive secret shares of its input - one for each server. The servers then engage
in a single execution of the two round protocol Π to compute the function. As
mentioned in the introduction, this doesn’t work directly and requires servers
delegating their second round computation to a garbled circuit. The correspond-
ing keys for the circuit are computed by a two round helper protocol Πhelp that
all parties participate in.

For security against malicious adversaries, we must prevent a malicious server
from modifying the input shares of an honest client and make use of one-time
message authentication codes (MACs) to enforce consistency checks. So, in addi-
tion to secret sharing their inputs, the clients compute n MAC’s on each of their
shares using a different MAC key. The functionality computed by the protocol
Π first checks if inputs and their corresponding MACs are valid. Only if this
check succeeds, does it start computing on them. We use the helper protocol
Πhelp exactly as described earlier with the only addition that now instead of just
their input shares, the clients also communicate these MACs and MAC keys to
the servers via the helper protocol.

Formally, we prove the following theorem. In this theorem we also enlist
additional properties achieved by our resulting protocol. These properties are

196 P. Ananth et al.

crucially used by our compiler in Sect. 3 to obtain an efficiency preserving com-
piler in the plain model. We refer the reader to Sect. 3 for a detailed discussion
on the relevance of these properties.

Theorem 2. Let n be the number of parties and λ be the security parameter.
Assuming one-way functions, there is a round compression compiler that trans-
forms a maliciously (and semi-honest, resp.) secure MPC protocol Π for any
n-input functionality F into a two-round maliciously (and semi-honestly, resp.)
secure protocol Φ for F in the client-server model with the following properties:

1. Let n be the number of servers and n = n − n be the number of clients. If
the computational cost of π is W = W (n, s), where s is the circuit size rep-
resentation of F , then the amortized per-party computational cost and total
communication of maliciously (and semi-honest, resp.) secure protocol Φ is
˜O(W (n, s) + nτ+4), (and ˜O(W (n, s) + n4), resp.), where the ˜O notation sup-
presses suppresses polynomial factors in λ and n.

2. If π tolerates corruption threshold ε, then Φ tolerates ε′, for arbitrary constants
ε′ < ε < 1/2 corruptions in the server set and ε corruptions in the client set.

3. Each party can send messages over both private channels and a broadcast
channel in the first round in Φ. While in the second round, each party only
sends messages over a broadcast channel.

4. The private channel messages sent by clients in Φ are independent of the role
(client/server) of the receiving party in the protocol.

5. The total length of messages sent by all clients is O(n2nn3λ3) in the semi-
honest case and ˜O(nτ−1n3n3λ3 + nn3nτ+1λ) in the malicious case.

6. The private channel messages sent by servers in Φ can be divided into mes-
sages that are independent of the role (client/server) of the receiving party
and ones that are specifically intended for other server parties.

7. The total length of messages sent by all servers in Φ is O(n4nnλ3+nτ+1Wλ)
in the semi-honest case and ˜O(nτ−1n5nλ3 + n3nnτ+1λ) + nτ+1Wλ in the
malicious case.

We now give a constructive proof of Theorem 2 using the protocol described
below.

2.2.1 Construction
We start by establishing some notations that will be used throughout this section.

Notations. We use various underlying protocols for different functionalities in
our construction. We use ΠX to denote the underlying protocol used for comput-
ing functionality FX . The rth next message function of protocol ΠX is denoted
by Πr

X . We use multiple instantiations of these underlying protocols. In the rth

round of the yth instantiation of ΠX , we use Mr,y
X [i, j] to the message that server i

sends to client j and Mr,y
X [i] denotes the message that it broadcasts. Iy

X [i] denotes
the input of server i in the yth instantiation of ΠX . Often times, we replace some
indices in the above notations with symbols such as •, � or ∗ to denote a set. For
instance Mr,y

X [i, •] = {Mr,y
X [i, j]}j∈n. Similarly, � is used to denote all servers and

Towards Efficiency-Preserving Round Compression in MPC 197

∗ is used for referring to all clients and all parties respective. The collection of
labels (of a garbled circuit) are denoted as lab := {labi,0, labi,0}i∈[L]. Projection
of a string of c ∈ {0, 1,⊥}L is defined as Projection(c, lab) = {labi,c[i]}i∈[L], where
labi,⊥ is defined to be ⊥. The output of Projection is treated as a string. For con-
venience, we also specify that ⊥ under the XOR operation remains unchanged.
Specifically, ∀b ∈ {0, 1}, b ⊕ ⊥=⊥. Wherever necessary, we augment the protocol
description with comments denoted as //comment.

Next, we list the building blocks used in our construction.

Building Blocks. The main primitives required in this construction for com-
puting an n-input functionality F are the following:

1. An unconditionally secure message authentication scheme (MAC,Verify).
2. A two-round protocol Πaug [4] for n parties output by the compiler in Lemma

1, for the function Faug defined in Fig. 1.

Fig. 1. The augmented function Faug

Faug takes inputs from n parties, and parses each input as: (1)its own input;
(2) input shares (from parties not involved in the computation of F ′); (3)
MAC tags for each share; (4) MAC keys to verify tags.10

Upon aggregation the functionality checks if all the MAC tags verify. If the
verification succeeds, input shares are used to reconstruct inputs of the parties
not involved in the computation. Output the result on evaluating F on the
inputs (both parties’ own and reconstructed).

3. A Garbled Circuit scheme GC = {Gen,Garb,Eval} based on one-way functions.
4. A two-round maliciously secure honest majority protocol [4] Πhelp comput-

ing function Fhelp, which helps the client select labels, of a garbled circuit,
corresponding to its input share (Fig. 2).

10 The MAC keys correspond to tags held by other parites.

198 P. Ananth et al.

Fig. 2. The function Fhelp

Fhelp separates out its participants into two sets, clients and servers. In addi-
tion, it designates two special parties: client Ci, and server Sj. Ci provides
input xi, and Sj provides input γj. Additionally, all servers (including Sj)
provide as input labels to a garbled circuit. The other clients do not have any
inputs. The functionality outputs to all parties the projection of the labels
corresponding to xi ⊕ γj. Since the parties have asymmetric roles, the next
message function of this protocol additionally takes one of these labels as
input (sen, rec, lrec, hel) to specify the exact role of the party.

Remark 2. Throughout this work, B will be used to denote broadcast messages.

Protocol. For each i ∈ [n], server i has input xi and for each i ∈ [n], client i
has input xi. For simplicity we assume that each these inputs are of length 1.
Our protocol easily extends to the setting with longer inputs. We assume that
every party samples a sufficiently long random string at the start of the protocol,
which is used appropriately throughout the protocol. Therefore we remove the
randomness from protocol description and assume that it is implicit in all the
algorithms used in the protocol.

Round 1. Each client Ci for i ∈ [n] computes the following:

1. Computes n additive shares of xi:
⊕n

j=1 x[i, j] = xi

2. Authentication tags for each share: ∀j, � ∈ [n], sample k�
i→j ←$ {0, 1}λ and com-

pute tag�
i→j := MAC(k�

i→j , x[i, j]).

3. Aggregate inputs: ∀j ∈ [n], Ihelp[i, j] := x[i, j] ◦ {

tag�
i→j

}

�∈[n]
◦

{

kji→�

}

�∈[n]

4. First round of Πhelp:

1. ∀j ∈ [n]: (i, j)-th instance as sender, M
1,(i,j)
help [i, ∗] ← Π1

help(i, sen, Ihelp[i, j])

2. ∀j ∈ [n] \ {i} ,k ∈ [n]: (j,k)-th instance as helper, M
1,(j,k)
help [i, ∗] ←

Π1
help(i, hel, ⊥)

5. ∀j ∈ [n], send M
1,(•,�)
help [i, j] to server Sj .

6. ∀j ∈ [n], send M
1,(•,�)
help [i, j] to client Cj.

Towards Efficiency-Preserving Round Compression in MPC 199

Each server Si for i ∈ [n] computes the following:

1. Sets Iaug[i] := xi ◦ Ihelp[•, i], where Ihelp[•, i] = ⊥ of appropriate length. //This
indicates the missing inputs that are contributed by the clients.

2. Computes first round messages of Π with random mask γi ←$ {0, 1}|Iaug[i]|:
(

(Iaug[i] ⊕ γi), M
1
aug[i,
], M1aug[i]

) ← Π1
aug(i, Iaug[i], γi)

3. Samples wire labels for a garbled circuit: labi [•,
] ← Gen(1λ).
4. First round of Πhelp:

(a) ∀j ∈ [n]: (j, i)-th instance as receiver, set I
(j,i)
help [i] = γi|j ◦ labi [j, i] and com-

putes M
1,(j,i)
help [i, ∗] ← Π1

help

(

i, rec, I
(j,i)
help [i]

)

//γi|j denotes the part of γi that is used to mask input Iaug[i, j].

(b) ∀k ∈ [n]\{i} , j ∈ [n]: (j,k)th instance as label receiver, set I
(j,k)
help [i] = labi [j,k]

and computes M
1,(j,k)
help [i, ∗] ← Π1

help

(

i, lrec, I
(j,k)
help [i]

)

5. ∀j ∈ [n], send M
1,(•,�)
help [i, j], M1aug[i, j] to server Sj

6. ∀j ∈ [n], send M
1,(•,�)
help [i, j] to client Cj.

7. Broadcast M1[i] :=
(

M1aug[i], (Iaug[i] ⊕ γi)
)

Round 2.

– Each client Ci for i ∈ [n] computes and broadcasts second round messages of

Πhelp: ∀k ∈ [n], j ∈ [n], (j,k)-th instance: M
2,(j,k)
help [i] ← Π2

help

(

i, M
1,(j,k)
help [∗, i]

)

– Each server Si for i ∈ [n]:
1. Second round of Πhelp: ∀k ∈ [n], j ∈ [n] (j,k)-th instance: computes

M
2,(j,k)
help [i] ← Π2

help

(

i, M
1,(j,k)
help [∗, i]

)

2. Garbled circuit: sets ckti := P
[

i, M1aug[
], M1aug[
, i], {(Iaug[j] ⊕ γj)}j∈[n]

]

and

computes P̃i ← Garb
(

Pi , labi [•,
]
)

, where program P is as defined in figure
3.

3. Broadcast
(

M
2,(•,�)
help [i], P̃i

)

Output Computation. Each every client and server computes the following:

1. Output of Πhelp: ∀j ∈ [n],k ∈ [n] ˜labi [j,k] := Π3
help

(

Mhelp,(j,k)[∗]
)

2. Evaluate garbled circuits: ∀i ∈ [n], M2aug[i] := Eval(P̃i , ˜labi [
, •])
3. Output of Π, y := Π3

aug(M
2
aug[
])

4. Output y.

Fig. 3. Program P

200 P. Ananth et al.

The security proof of the protocol can be found in the full version.

Semi Honest Protocol. We note that for the semi-honest variant of the above
protocol, the MAC checks are no longer needed. Therefore, Fhelp can be simpli-
fied. The rest of the protocol remains the same, except that we can instantiate
the underlying protocols used in this protocol with their semi-honest variants.

Complexity. Note that there are n·n instances of Πhelp. Given that Πhelp imple-
ments a quadratic functionality, the resulting circuit computed by each instance
has size O(λ2 · n2). Also, each instance is run by all n parties. Importantly, the
circuit size is independent of s, size of circuit representing the underlying pro-
tocol. There is also a single instance of Πaug computing a circuit of size s with
n parties. From the described properties of the underlying protocols, this gives
us a protocol with the desired complexity. The details of the exact calculations
are presented in the full version.

3 Efficiency Preserving Compiler in the Plain Model

In this section we go from the compiler in the client-server model in Sect. 2 to
present our main result, namely an efficient two-round compiler in the plain
model. Formally we prove the following theorem.

Theorem 3. Let n be the number of parties and λ be the security parameter,
such that n is polynomially related to λ and let k be set to log2(n).

1. Assuming one-way functions, there is a round compression compiler that
transforms a semi-honest MPC protocol π for any n-party functionality F
into a two-round semi-honest protocol Π ′ for F with the following properties:
(a) If π tolerates corruption threshold ε, then Π ′ tolerates ε′, for arbitrary

constants ε′ < ε < 1
2 .

(b) If the computational cost of π is W = W (n, s), where s is the circuit
size representation of F , then the amortized per-party computational cost
and total communication cost of Π ′ is O

(

(W (k, s + kn) + n4λ2) · λ · k3
)

.

We will denote this by ˜O(W (k, s + kn)kτ−2 + n4), where the ˜O notation
suppresses polynomial factors in k and λ. For most known protocols, the
additive term in the circuit size (kn) will be suppressed by the additive
term of n4 simplifying the expression to ˜O(W (k, s) + n4).

2. Assuming one-way functions, there is a round compression compiler that
transforms a maliciously secure MPC protocol π for any n-party functionality
F into a three-round maliciously secure protocol Π ′ for F that satisfies prop-
erties 1(a) and amortized per-party computational cost ˜O(W (k, s) + nτ+4).

3. Assuming NIWIs, there is a round compression compiler that transforms a
maliciously secure MPC protocol π for any n-party functionality F into a
two-round maliciously secure protocol Π ′ in the reusable correlated random-
ness setup model for F that satisfies properties 1(a) and amortized per-party
computational cost ˜O(W (k, s) + nτ+4).

Towards Efficiency-Preserving Round Compression in MPC 201

Overview. We now present an overview of the compiler that builds on the
protocol output by the compiler from Sect. 2 (Theorem 2) in the client-server
model to get a compiler in the plain model. Along the way, we shall discuss the
relevant properties used from Theorem 2. We shall do this in two steps.

1. Phase One: Compile the protocol in Sect. 2 to a protocol in the Felection-
hybrid model. In this model, at the start of the protocol, each party receives
a bit from Felection indicating whether it is in the committee. The functionality
Felection is described in Fig. 4.

2. Phase Two: Instantiate Felection based on the desired security properties of
the final protocol.

Fig. 4. The randomized functionality that selects a k-sized committee in expectation

The main challenge in going from the client-server model to the plain model
is that parties are no longer aware of the roles of the other parties, i.e. which
parties are clients and which are servers. To get around this issue, we will leverage
the fact that Felection guarantees that every party knows whether it is a server,
but doesn’t know its index in the server set.

Since the party doesn’t know its role (index) in the server (resp. client) set, it
computes messages assuming all n (resp. n) roles. At the end of the first round,
when all parties are aware of the elected committee based on the messages sent,
the irrelevant messages are discarded. But a problem with this approach is that
the protocol involves private messages, which require knowledge of the recipient’s
role. Based on the properties listed in Theorem 2 from Sect. 2, we can divide the
private messages into two categories which are handled differently:

Private Message Independent of the Role of the Receiving Party. This
is the case for all private messages sent by the clients, and some of the pri-
vate messages sent by the servers. This is an easy setting to handle since these
messages can be sent privately without the need to know the recipient’s role.

Private Message Intended for the Parties in the Server Set. This is
of concern only to parties that are elected into the committee. Since a party
is not aware of other elected parties, these messages cannot be sent privately.
Instead, the party masks these messages, and broadcasts the masked messages.

202 P. Ananth et al.

But we want the designated party to receive the mask, and unmask the message
to proceed with the computation. We seem to be back where we started, but
we use a solution similar to Sect. 2, where the second round computation of the
server parties are delegated to a garbled circuit. Now, the party generating the
mask initiates a helper protocol that will enable the appropriate party’s garbled
circuit to receive the mask, thereby allowing to proceed with the computation.
To ensure there is no complexity blow-up by involving all parties, we make
sure that the size of the computation involving all parties is independent of the
underlying circuit. This is easily done by utilizing a pseudo-random generator
(PRG) to generate the masks.

The relevance of the other properties listed in Theorem 2 is in the efficiency
of the resultant protocol.

3.1 Phase One: Felection-hybrid Model

In this section, we shall perform the first step of our compilation. Namely, we
shall compile the protocol in Sect. 2 from the client-server model to a protocol
in the Felection-hybrid model. To differentiate from the client-server models, we
shall refer to parties “elected” to be in the server set to be a part of a committee.

Building Blocks. The main primitives required in this construction are the
following:

1. The two-round protocol Πfc-s from Sect. 2 in the client-server model.
For this section, we shall use the following notation to refer to the first round
messages of Πfc-s . There are special first round messages11 that are privately
sent among the servers, these will be denoted by an additional S: M1fc-s

[i, j,S]
indicates the special message sent from server indexed by i to the server
indexed by j. Other messages are denoted as previous sections with M1fc-s

[i, j]
indicating a message from party i to j (with appropriate font to differenti-
ate between clients and severs). Broadcast messages correspondingly defined.
Additionally, as before, we group messages corresponding clients (•), servers
(�) or all parties (∗).

2. A Garbled Circuit scheme GC = {Gen,Garb,Eval}.
3. A two-round maliciously secure honest majority protocol ΠmOT computing

function FmOT described in Fig. 5.
FmOT is similar to a multi-party variant of oblivious transfer. There are two
designated parties, sender (sen) and receiver (rec) with inputs b and (x0, x1)
respectively, while all other parties are referred to as helper (hel) parties.
FmOT outputs xb to all the parties.
Our protocol will use multiple instance of the ΠmOT protocol, which is indexed
by indices corresponding to (sender, receiver).

4. A pseudo-random generator PRG : {0, 1}λ → {0, 1}poly(λ).

11 This will correspond to the messages whose size depend on the size of the circuit
being computed.

Towards Efficiency-Preserving Round Compression in MPC 203

Fig. 5. The function FmOT where Pi acts as the sender and Pj acts as receiver

As explained earlier, prior to sending the first round messages, a party is
only aware if it is in the committee, but not its role (index) in the committee
(or outside). In our protocol, depending on whether party Pi is in the committee
(resp. outside), Pi computes the first round message for every possible role in
the committee (resp. outside). The index of the sender in the protocol message
is thus denoted by (i, j) (resp. (i, j)) to indicate Pi’s message for role j in the
committee (resp. role j outside).

Although no party is aware of the roles of the other parties at the start of
the first round of the protocol, there is an implicit mapping from the set of all
parties to the corresponding role in the committee (or outside). Q (resp. Q)
denotes this mapping. At the end of the first round, all parties will be able to
locally compute both the mappings and discard the relevant messages. We shall
also abuse notation slightly and use Q and Q to denote the corresponding sets.

Protocol. Let P = {P1, · · · , Pn} be the set of parties in the protocol and let
the corresponding inputs be x1, · · · , xn. We now give a formal description of the
protocol in the Felection-hybrid model. We assume parties sample appropriate
random strings in the protocol description.

Initialization-Election. At the start of the protocol, each party Pi receives a bit
from Felection. If the received bit is 1, then Pi is a committee member, else it is a
non-committee member.

Round 1. Each non-committee member Pi for i ∈ Q computes the following:

1. For i ∈ [n] compute the first round of the following assuming role i:
– Client message in Πfc-s : M

1
fc-s [(i, i), ∗] ← Π1

fc-s(i, xi)

– ∀j,k ∈ [n], (j,k)-th instance of ΠmOT as helper: M
1,(j,k)
mOT [(i, i), ∗] ←

Π1
mOT(hel, ⊥)

2. For every j, send
(

i, M1fc-s [(i, •), j], M
1,(�,�)
mOT [(i, •), j]

)

to Pj privately.

3. Broadcast M1fc-s [(i, •), B].

Each committee members Pi for i ∈ Q computes the following:

1. For i ∈ [n] compute the first round of the following assuming role i:

204 P. Ananth et al.

(a) First round server messages in Πfc-s : M1fc-s [(i, i), ∗], M1fc-s [(i, i),
, S] ←
Π1

fc-s(i, xi)
(b) Sample PRG seeds s[(i, i),
]
(c) Wire labels for a garbled circuit: lab(i,i)[
, (i, i)] ← Gen(1λ)
(d) ∀j ∈ [n]: ct[(i, i), j] := M1fc-s [(i, i), j, S] ⊕ PRG(s[(i, i), j])
(e) First round of ΠmOT, for every j ∈ [n],

i. (i, j)-th instance as sender: M
1,(i,j)
mOT [(i, i), ∗] ← Π1

mOT(sen, s[(i, i), j]).

ii. (j, i)-th instance as receiver: M
1,(j,i)
mOT [(i, i), ∗] ← Π1

mOT(rec, lab(i,i)[j, (i, i)]).

iii. for every k ∈ [n], (j,k)-th instance as helper: M
1,(j,k)
mOT [(i, i), ∗] ←

Π1
mOT(hel, ⊥).

2. For every j ∈ [n], send
(

i, M1fc-s [(i,
), j], M
1,(�,�)
mOT [(i,
), j]

)

to Pj .

3. Broadcast msg1i :=
(

i, M1fc-s [(i,
), B], ct[(i,
),
]
)

At the end of Round 1. Each party locally computes the mappings Q and Q,
discards the extra messages and updates sender index from (i,Q(i)) to i(= Q(i)) for
Pi in the committee and (i,Q(i)) to i(= Q(i)) for Pi not in the committee.

Round 2. Each committee member Pi for i ∈ Q sets i := Q(i) and computes:

1. A garbled circuit as Pi ← Garb(Pi , labi [
, i]) where Pi is computed as
Pi := Pplain[xi , ct[
, i], M1fc-s [∗, B], M1fc-s [∗, i]] where Pplain defined in Figure 6.

2. ∀j,k ∈ [n], (j,k)-th instance of ΠmOT: M
2,(j,k)
mOT [i, B] ← Π2

mOT(M
1,(j,k)
mOT [∗, i]).

3. Broadcast Pi , M
2,(�,�)
mOT [i, B]

Each non-committee member Pi for i ∈ Q sets i := Q(i) and computes:

1. Client messages in Πfc-s : M
2
fc-s [i, B] ← Π2

fc-s(M
1
fc-s [∗, B], M1fc-s [∗, i])

2. ∀j,k ∈ [n], (j,k)-th instance of ΠmOT: M
2,(j,k)
mOT [i, B] ← Π2

mOT(M
1,(j,k)
mOT [∗, i]).

3. Broadcast M2fc-s [i, B], M
2,(�,�)
mOT [i, B].

Output Computation. Each party does the following:

1. ∀j,k ∈ [n] output of ΠmOT: ˜labk [j,k] ← Πout
mOT(M

2,(j,k)
mOT [∗, B]).

2. ∀i ∈ [n], evaluate the garbled circuits: M2fc-s [i, B] ← Eval(Pi , ˜labk [
,k])
3. Output y ← Πout

fc-s(M
2
fc-s [∗, B])

Fig. 6. Program Pplain unmasks the first round messages sent via broadcast, and com-
putes the second round messages of Πfc-s .

Towards Efficiency-Preserving Round Compression in MPC 205

The security proof of the protocol can be found in the full version of the paper.

Complexity. Note that there are n2 instances of ΠmOT, where the sender has
inputs of length O(λ), while the receiver has inputs of length O(λ2). Given
that ΠmOT implements a quadratic functionality, the resulting circuit computed
by each instance has size O(λ2). Also, each instance is run by all n parties.
Importantly, the circuit size is independent of s, size of circuit representing the
underlying protocol. There is an additional overhead of parties not knowing their
own role in the committee. Finally, there is a single instance of Πfc-s computed by
all parties. The cost then follows from the properties of the underlying protocols
and the details are presented in the full version.

3.2 Phase Two

We can now complete the description of our compiler by instantiating the ran-
domized functionality Felection used in the protocol described in the Felection-
hybrid model. We consider three different settings, which will lead to corre-
sponding results. The settings are (a) semi-honest; (b) malicious in the reusable
correlated randomness model; (c) malicious in the plain model.

Semi-honest. For the semi-honest setting, the protocol idea is simple: every
party tosses appropriately biased coins to determine if it is in the committee. The
only thing left to do is to determine the right parameters so that we have a com-
mittee with poly-logarithmic size and honest majority. This is a non-interactive
process, and the resultant protocol is given below. The committee size will be
(1 − δ) · k, where δ is any non-zero constant.

Round 1. Each party does the following:
– Toss a coin that outputs 1 with probability p = k

n . If output 1, it assumes
it is a part of the committee and computes the messages

– If it is in the committee, pick an element ai ←$Zq, from an exponentially
sized field Zq. This is to pick the relative position within the committee
and trim the committee if needed.

– All parties compute the client messages, and the parties that assumed
they were in the committee additionally compute server messages. This
is because the committee might be larger than the final size, and a party
make not make it to the final committee.

– Only parties that assumed they were in the committee broadcast their ai

value.
Round 2. On receiving the first round messages, each party knows both (a)

which parties are in the committee; and (b) the relative roles of each party
in the committee. This follows from picking the committee to be the ordered
set of first (1− δ) ·k parties based on their broadcast ai. It then executed the
rest of the protocol appropriately.

Since each party independently samples coins to determine if it is in the
committee, the expected party size is k. If we set k = Ω(log2(n)), from the

206 P. Ananth et al.

Chernoff bound, other than with negligible probability, the size of the committee
is > (1 − δ) log2(n), and thus will not end up with a smaller committee. By a
similar argument, it is easy to see that other than with negligible probability,
honest majority is maintained in the committee. This gives us a resultant two
round semi-honest protocol in the plain model.

Lemma 2. Assuming the that the fraction of adversarial parties are bounded
by

(

1
2 − ε

)

for some ε > 0, our constructed protocol is a two round semi-honest
protocol.

Remark 3. While our protocol is proven in the malicious setting, we instanti-
ate the underlying protocols with their corresponding semi-honest versions. The
semi-honest versions also satisfy Lemma 1.

The security of the protocol follows from the composition theorem for semi-
honest protocols [28].

Malicious in the Reusable Correlated Randomness Model.We consider
the setting of the reusable correlated randomness model, where the trusted set up
can select the public and private keys for a verifiable random function (VRF)[37].
We then follow the same strategy of selecting a committee as done in Algorand
[27]. While they select committees by weight, we set the weights for each party
to be identical (say 1).

Specifically, the trusted parties select public/private key pairs (pki, ski) for
each party i, and a random seed. Additionally, a threshold τ is picked based on
the required size of the committee.

Round 1. Each party receives the public key for all parties, and a public/private
key pair (pki, ski) unique to it. It then evaluates the VRF to determine if it is
in the committee. It then computes the first round messages of the Phase one
protocol, and also broadcasts the messages indicating it is in the committee.

Round 2. Compute the second round messages of the Phase one protocol.

We allow the adversary to adaptively pick the parties it corrupts having seen
only the public keys for all parties and the private keys for the parties it has
corrupted thus far.

As stated in [27], we have the following two properties. Given a random seed,
VRF outputs a pseudorandom value. Hence the parties are randomly picked into
the committee. An adversary that does not know the secret key ski for party i
cannot guess if i was chosen at all (more precisely, the adversary cannot guess
any better than just by randomly guessing).

This lets us allow the adversary to adaptively corrupt parties based on the
public keys, seed and the secret keys of the parties it has corrupted thus far.
This would give us a two round protocol, maliciously secure against an adaptive
adversary in the presence of trusted set up.

Lemma 3. Assuming the that the fraction of adversarial parties are bounded by
(

1
2 − ε

)

for some ε > 0, our constructed protocol is a two round protocol in the
trusted set up model secure against malicious adversaries.

Towards Efficiency-Preserving Round Compression in MPC 207

We note that the best known constructions for VRFs are based on non-
interactive witness indistinguishable proofs (NIWIs) [8,30], which are in turn
known from the assumption of bilinear maps [31].

Malicious in the Plain Model. In the malicious setting, we cannot let the
parties locally sample coins. Instead, we run Feige’s lightest bin protocol [21] to
determine the committee. The protocol gives a method of selecting a committee
of approximately k parties for a given parameter k. It is a single round protocol,
where the parties broadcast their choice of a random bin in the set

[

n
k

]

. This
adds an additional round to the start of the protocol.

Round 1. Every party broadcasts a random bin in the set
[

n
log2(n)

]

.
Round 2. Each party knows whether they are in the committee based on the

received broadcast, by picking the (1 − δ) · k lightest bins. In fact at the end
of this round, we get a stronger property that every party is aware of the role
of every party in the protocol, i.e. whether a given party is in the committee.

Now each party can compute first round messages of the protocol from
Phase one.

Round 3. Each party computes second round messages of the protocol from
Phase one.

The following lemma from [21] is relevant to us.

Lemma 4 ([21]). For k = log2 n, if the number of corrupted parties is βn, for
any constant δ > 0, other than with negligible probability in n, the size of the
committee C will be elected such that:

Bound on Size: (1 − β − δ) log2 n ≤ |C| ≤ log2 n;
Honest Parties in Committee: # honest parties in the committee is ≥ ((1 −

β − δ) log2 n).

In our setting, β <
(

1
2 − ε

)

, which guarantees an honest majority in the com-
mittee. This gives us a resultant three round maliciously secure protocol in the
plain model.

Lemma 5. Assuming the that the fraction of adversarial parties are bounded by
(

1
2 − ε

)

for some ε > 0, our constructed protocol is a three round protocol secure
against malicious adversaries.

The security of the protocol follows from the sequential composition theorem
[28].

Remark 4. We note that both Fhelp and FmOT resemble the multiparty homo-
morphic OT (M-OT) functionality described in [1]. These functionalities can
be seen as special cases of the M-OT functionality, but we’ve described them
separately for ease of notation.

208 P. Ananth et al.

4 Impossibility Result

In this section we prove our impossibility result showing that our committee
based approaches are inherent to the results we achieve.

Theorem 4. There exists an n-party function F , such that there does not exist
an n-party, r-round balanced scalable (possibly insecure) MPC protocol, where
each party does asymptotically equal amount of work, computing a circuit C of
size s, where r is some constant, and the protocol can be represented by a circuit
of size Õ(s) defined over the basis {AND,OR,NOT}.
Proof. We make a novel use of the “MPC in the head” paradigm [35] to prove
this theorem.

Let us assume for contradiction that for every n-party functionality F , there
exists an r-round scalable MPC protocol Π computing F , where r is a constant
and each party can be represented as a circuit over the basis {AND,OR,NOT}
of size Õ(s)/n. Let Π.NMFi, j be the next-message function of party i (for each
i ∈ [n]) in round j (for each j ∈ [r]). Since r is a constant, the size of the circuit
implementing the next-message function of each party i ∈ [n] in each round
j ∈ [r] is

|Π.NMFi,j | =
Õ(s)
rn

=
Õ(s)

n

Hence, depth of each next message function |Π.NMFi,j |d = Õ(s)/n.

Base Step. We now modify Π to Π1 as follows: for each i ∈ [n], j ∈ [r], we
execute MPC protocol Π (let us denote this execution by Π1,i,j) to implement
Π.NMFi,j . The size of the circuit implementing the next-message function of
each party i′ ∈ [n] in each round j′ ∈ [r] of this sub-protocol Π1,i,j is

|Π1,i,j .NMFi′,j′ | =
Õ(|Π.NMFi,j |)

n
=

Õ(s)
n2

Hence, depth of each next message function in each sub-protocol
|Π1,i,j .NMFi′,j′ |d = Õ(s)/n2.

The total number of rounds in the resulting protocol Π1 is r2 and in each
round j′ ∈ [r2], the next message function of each party i′ ∈ [n] is

Π1.NMFi′,j′ = Π1,1,j .NMFi′,j′ || . . . ||Π1,n,j .NMFi′,j′

where j = j′ mod r. Note that since this is a parallel composition of n circuits,
each of depth Õ(s)/n2, the depth of each next message function in the modified
protocol Π1 = Õ(s)/n2.

Let p be a constant such that Õ(s)/np is some constant c. Now for each
k ∈ {2, . . . , p − 1}, we perform the following recursion step.

Recursion Step. We modify the rk-round protocol Πk−1 to obtain Πk as fol-
lows: for each i ∈ [n], j ∈ [rk], we execute MPC protocol Π (let us denote this
execution by Πk,i,j) to implement Πk−1.NMFi,j . Similar to before, the depth of

Towards Efficiency-Preserving Round Compression in MPC 209

the circuit implementing the next-message function of each party i′ ∈ [n] in each
round j′ ∈ [r] of this sub-protocol Πk,i,j is

|Πk,i,j .NMFi′,j′ |d =
Õ(|Πk−1.NMFi,j |d)

n
=

Õ(s)
nk+1

The total number of rounds in the resulting protocol Π1 is r2 and in each
round j′ ∈ [rk+1], the next message function of each party i′ ∈ [n] is

Πk.NMFi′,j′ = Πk,1,j .NMFi′,j′ || . . . ||Πk,n,j .NMFi′,j′

where j = j′ mod r. Again since this is a parallel composition of n circuits, each
of depth Õ(s)/nk+1, the depth of each next message function in the resulting
modified protocol Π1 = Õ(s)/nk+1.

Protocol Πp−1. The depth of the next message function of each party in each
round, in the final rp-round protocol Πp−1 is

Õ(s)
np

= c

Thus the final modified protocol Πp−1 can be viewed as a circuit of depth
(c× No. of rounds) = c ·rp = O(1). Moreover, the size of this circuit is poly(s).

This means that every n-party functionality F representable by a polynomial-
sized circuit, also admits a constant-depth polynomial-sized circuit over the basis
{AND,OR,NOT} and thus is in AC0. However note that there are functions like
parity and majority that are not in AC0. Therefore, this is a clear contradiction.

Acknowledgments. Arka Rai Choudhuri, Aarushi Goel and Abhishek Jain are sup-
ported in part by DARPA/ARL Safeware Grant W911NF-15-C-0213, NSF CNS-
1814919, NSF CAREER 1942789, Samsung Global Research Outreach award and Johns
Hopkins University Catalyst award. Arka Rai Choudhuri is also supported by NSF
Grants CNS-1908181, CNS-1414023, and the Office of Naval Research Grant N00014-
19-1-2294. Aarushi Goel is also supported in part by NSF Grants CNS-1653110 and
CNS-1801479 and the Office of Naval Research under contract N00014-19-1-2292.

References

1. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 395–424. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 14

2. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-theoretic
MPC with malicious security. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11477, pp. 532–561. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 19

3. Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in two
rounds. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp.
152–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 6

https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-030-17656-3_19
https://doi.org/10.1007/978-3-030-17656-3_19
https://doi.org/10.1007/978-3-030-03807-6_6

210 P. Ananth et al.

4. Applebaum, B., Brakerski, Z., Tsabary, R.: Degree 2 is complete for the round-
complexity of malicious MPC. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11477, pp. 504–531. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 18

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990.
https://doi.org/10.1145/100216.100287

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988. https://doi.org/10.1145/62212.
62213

7. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via Garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 17

8. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. Lecture Notes
in Computer Science, vol. 10678, pp. 567–594. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 19

9. Boyle, E., Chung, K.-M., Pass, R.: Large-scale secure computation: multi-party
computation for (Parallel) RAM programs. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. Lecture Notes in Computer Science, vol. 9216, pp. 742–762.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 36

10. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-
party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 21

11. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC (2019)
12. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols

(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988.
https://doi.org/10.1145/62212.62214

13. Cohen, G., Damg̊ard, I.B., Ishai, Y., Kölker, J., Miltersen, P.B., Raz, R., Rothblum,
R.D.: Efficient multiparty protocols via log-depth threshold formulae. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 185–202. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 11

14. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg, August 2006.
https://doi.org/10.1007/11818175 30

15. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

16. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

17. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

18. Dani, V., King, V., Movahedi, M., Saia, J.: Brief announcement: breaking the
O(nm) bit barrier, secure multiparty computation with a static adversary. In: ACM

https://doi.org/10.1007/978-3-030-17656-3_18
https://doi.org/10.1007/978-3-030-17656-3_18
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-662-48000-7_36
https://doi.org/10.1007/978-3-642-36594-2_21
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-642-40084-1_11
https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-540-74143-5_32

Towards Efficiency-Preserving Round Compression in MPC 211

Symposium on Principles of Distributed Computing, PODC 2012, 16–18 July 2012,
Funchal, Madeira, Portugal, pp. 227–228 (2012)

19. Dani, V., King, V., Movahedi, M., Saia, J.: Quorums quicken queries: efficient asyn-
chronous secure multiparty computation. In: Chatterjee, M., Cao, J., Kothapalli,
K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 242–256. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-45249-9 16

20. Dani, V., King, V., Movahedi, M., Saia, J., Zamani, M.: Secure multi-party com-
putation in large networks. Distrib. Comput. 30(3), 193–229 (2017)

21. Feige, U.: Noncryptographic selection protocols. In: 40th FOCS, pp. 142–153.
IEEE Computer Society Press, October 1999. https://doi.org/10.1109/SFFCS.
1999.814586

22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg, August 1987. https://doi.org/10.1007/3-540-
47721-7 12

23. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

24. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and
black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239,
pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 5

25. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

26. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 35

27. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, 28–31 October 2017, Shanghai, China, pp. 51–68
(2017)

28. Goldreich, O.: The Foundations of Cryptography, vol. 2, Basic Applications. Cam-
bridge University Press, Cambridge (2004)

29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987. https://doi.org/10.1145/28395.28420

30. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 18

31. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012)

32. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

33. Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect
multiparty computation. J. Cryptol. 13(1), 31–60 (2000)

https://doi.org/10.1007/978-3-642-45249-9_16
https://doi.org/10.1109/SFFCS.1999.814586
https://doi.org/10.1109/SFFCS.1999.814586
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8

212 P. Ananth et al.

34. Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear communication
complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 28

35. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

36. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

37. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS,
pp. 120–130. IEEE Computer Society Press, October 1999. https://doi.org/10.
1109/SFFCS.1999.814584

38. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. Tech. rep., Cryptology ePrint Archive Report 2019/158 (2019).
https://eprint.iacr.org/2019/158

39. Saia, J., Zamani, M.: Recent results in scalable multi-party computation. In: SOF-
SEM 2015: Proceedings of the Theory and Practice of Computer Science - 41st
International Conference on Current Trends in Theory and Practice of Computer
Science, 24–29 January 2015, Pec pod Sněžkou, Czech Republic, pp. 24–44 (2015)

40. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science, pp. 162–167. IEEE (1986)

41. Zamani, M., Movahedi, M., Saia, J.: Millions of millionaires: multiparty compu-
tation in large networks. IACR Cryptol. ePrint Arch. 2014, 149 (2014). https://
eprint.iacr.org/2014/149

https://doi.org/10.1007/11818175_28
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://eprint.iacr.org/2019/158
https://eprint.iacr.org/2014/149
https://eprint.iacr.org/2014/149

Circuit Amortization Friendly
Encodingsand Their Application
to Statistically Secure Multiparty

Computation

Anders Dalskov1(B), Eysa Lee2, and Eduardo Soria-Vazquez1

1 Aarhus University, Aarhus, Denmark
{anderspkd,eduardo}@cs.au.dk

2 Northeastern University, Boston, USA
eysa@ccs.neu.edu

Abstract. At CRYPTO 2018, Cascudo et al. introduced Reverse Mul-
tiplication Friendly Embeddings (RMFEs). These are a mechanism to
compute δ parallel evaluations of the same arithmetic circuit over a field
Fq at the cost of a single evaluation of that circuit in Fqd , where δ < d.
Due to this inequality, RMFEs are a useful tool when protocols require
to work over Fqd but one is only interested in computing over Fq. In this
work we introduce Circuit Amortization Friendly Encodings (CAFEs),
which generalize RMFEs while having concrete efficiency in mind. For
a Galois Ring R = GR(2k, d), CAFEs allow to compute certain circuits
over Z2k at the cost of a single secure multiplication in R. We present
three CAFE instantiations, which we apply to the protocol for MPC
over Z2k via Galois Rings by Abspoel et al. (TCC 2019). Our proto-
cols allow for efficient switching between the different CAFEs, as well
as between computation over GR(2k, d) and F2d in a way that preserves
the CAFE in both rings. This adaptability leads to efficiency gains for
e.g. Machine Learning applications, which can be represented as highly
parallel circuits over Z2k followed by bit-wise operations. From an imple-
mentation of our techniques, we estimate that an SVM can be evaluated
on 250 images in parallel up to ×7 more efficiently using our techniques,
compared to the protocol from Abspoel et al. (TCC 2019).

1 Introduction

Secure Multi-Party Computation (MPC) protocols allow any n parties to com-
pute any function on their secret data, while revealing nothing beyond the func-
tion’s output. This is guaranteed even in the presence of an adversary A who
corrupts and coordinates up to t of the participants. The capabilities of A deter-
mine the main limitations of MPC, as well as the most relevant techniques to
construct such protocols.

One of the main distinctions is whether corrupted parties follow the protocol
(but try to extract additional information from its execution) or if they arbitrar-
ily deviate from it. The former is known as passive corruption, whereas the latter
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 213–243, 2020.
https://doi.org/10.1007/978-3-030-64840-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_8&domain=pdf
http://orcid.org/0000-0002-4882-0230
https://doi.org/10.1007/978-3-030-64840-4_8

214 A. Dalskov et al.

is active. Additionally, A could have limited computational resources, or rather
be unbounded. Finally, one of the most important aspects is whether corrupted
parties constitute a minority (t < n/2) or not and, if so, whether t < n/3.

All practical protocols capable of resisting a computationally unbounded,
active adversary are based in linear secret sharing schemes (LSSS), such as
Shamir’s LSSS [18]. Most of them follow a “gate-by-gate” paradigm1, where a
boolean (or arithmetic) circuit is computed on secret-shared inputs one gate at a
time. As the secret sharing scheme is linear, addition gates can then be computed
without interaction among the parties. Non-linear operations, such as multiply-
ing two secrets together, are more complicated. In fact, for all known protocols
in this setting which are able to compute any function efficiently, multiplica-
tion gates require running some interactive sub-protocol. If some preprocessed
correlated randomness is assumed, this usually consists in “opening” (i.e. recon-
structing to all parties) a linear combination of such randomness with either
the inputs (e.g. when using Beaver triples [4]) or the outputs (e.g. when using
double-shares [5]) of the multiplication gate. The protocol maintains the invari-
ant that inputs and outputs of any processed gate are secret-shared in the same
way, so that they can be combined and used as inputs to other gates.

Frequently, one is interested in computing functions which are naturally rep-
resented as either a boolean circuit or an arithmetic circuit over Z2k . Neverthe-
less, be it in order to achieve some security parameter [15] or because the number
of parties is bounded by the LSSS and the ring where computation takes place
[1,18], it is often required to “lift” the computation to a large enough exten-
sion ring. As a concrete example, when the goal is to evaluate a boolean circuit
(resp. a circuit over Z2k) using Shamir-style MPC, the computation has to take
place over F2d (resp. GR(2k, d), the degree-d Galois extension of Z2k), where
d = log(n + 1). This incurs on a multiplicative overhead of d in communica-
tion and d2 in computation, where the latter can be asymptotically reduced to
quasi-linear in d using FFT-style techniques.

Having the above in mind, the authors in [8] and [10] introduced Reverse
Multiplication Friendly Embeddings (RMFEs), which exploit the inherent over-
head induced by the extension degree d as a mechanism to compute in parallel
δ < d copies of the boolean (resp. Z2k) circuit that was the original target.
Namely, through RMFEs, a single multiplication in F2d (resp. GR(2k, d)) trans-
lates into a component-wise multiplication in F

δ
2 (resp. Zδ

2k). Interested in asymp-
totic results, most of the RMFE constructions provided by the authors involved
algebraic geometry tools2, whose concrete computational efficiency is unclear
and for which the exact ratio δ/d might only become interesting for very large
values of d.

In this work we propose Circuit Amortization Friendly Encodings (CAFEs)
as a generalization of the RMFE paradigm, where we compute certain subcircuits

1 A notable exception here are protocols based on lookup tables, such as those
described in [9] or [14].

2 As an exception, their most practical construction, given in [8] for boolean circuits,
builds on polynomial interpolation.

Circuit Amortization Friendly Encodings and Their Application 215

Table 1. Encoding schemes. All rows assume a single “opening” in R = GR(2k, d).

Name #Inputs (in R) Expressiveness (as a Z2k -subcircuit)

Näıve [1] 2 Circuits with 1 multiplication and 1 output

InnerProd 2 Inner products of length ≈ d/2

SIMD 2 ≈ d0.6 parallel circuits w/ 1 mult. and 1 output each

Näıve [1] m Depth 1 circuit with m multiplications and 1 output

FLEX m Depth 1 circuit with m multiplications and d outputs

over Z2k at the cost of a single multiplication in R = GR(2k, d). Furthermore, as
the extension degree d is usually very small, we focus our attention on concrete
rather than asymptotic efficiency and provide an implementation which experi-
mentally validates our claims. We apply our techniques to the protocol for MPC
over Z2k via Galois Rings by Abspoel et al. [1], but we expect our framework
to be useful for other protocols as well. Note that by setting k = 1 we obtain
CAFEs for boolean circuits at the cost of a multiplication in F2d .

The use of CAFEs allows us to match the efficiency improvements they
provide with a “subcircuit-by-subcircuit” rather than “gate-by-gate” view of
computation. Such view (and more general ones) is shared among many peo-
ple programming MPC, who view LSSS-based protocols as a series of linear
combinations and “openings” (secret reconstruction) rather than addition and
multiplication gates. In Table 1 we show our three CAFE proposals, which allow
computing commonly found subcircuits, and compare them with using the pro-
tocol by Abspoel et al. [1]. The RMFEs from [10] can be seen as a different
proposal for the Single Instruction Multiple Data (SIMD) CAFE.

From a more theoretical perspective, Circuit Amortization Friendly Encod-
ings (and RMFEs in particular) constitute a partial answer to the question “what
can we securely compute at the cost of one multiplication?”, rather than the more
usual “what is the cost of securely computing one multiplication?”. This means,
among other things, that our CAFEs can be naturally combined with packed
secret sharing techniques such as [13].

Bit-Wise Operations. Our previous discussion focused on the matter of comput-
ing circuits over Z2k . Many practical applications, however, make use of bit-wise
operations in order to compute e.g. comparisons between integers. These opera-
tions can be emulated in Z2k even when k > 1, but doing so loses the advantage
of XOR being “for free”: Whereas XOR is linear in Z2, it is not in Z2k . In fact,
for a, b ∈ {0, 1}, we have that a XOR b = a + b − 2ab mod 2k, so XOR reduces
to a multiplication in Z2k , which requires communication.

A solution to this problem is the use of doubly-authenticated bits (daBits)
[17], which are secret, random bits shared in two different algebraic structures.
In our case, these structures are GR(2k, d) and F2d , where we further make use
our CAFEs in order to compute sub-circuits over Z2k and F2, respectively.

216 A. Dalskov et al.

1.1 Technical Overview and Contributions

The fact of being constantly switching between different algebraic structures
(Z2k , GR(2k, d),F2 and F2d) in an actively secure way introduces several techni-
cal challenges in our protocols, as we do not want the costs introduced by these
transformations to outweigh the benefit from using CAFEs. In order to deal with
these, we devise efficient protocols for creating correlated encoded randomness.

Both for efficiency and simplicity of presentation, we restrict ourselves to
the non-robust MPC scenario, where the adversary is able to abort the protocol
after seeing its outputs. This way we avoid describing (now standard) player
elimination techniques [1,5], the absence of which allows us to introduce batch
checking mechanisms for double-shares and daBits. Concretely, the use of our
batch checking allows us to duplicate the throughput of correlated randomness
production via hyper-invertible matrices [1,3,5,8]. Furthermore, even when using
hyper-invertible matrices over R = GR(2k, d), the batch check is compatible with
the production of double-shares which are bound by Z2k -linear relations, such
as those required for our CAFEs.

To the best of our knowledge, this is the first time batch checking is applied
to MPC protocols using hyper-invertible matrices, even in non-robust protocols
such as [3]. We remark that our non-robust preprocessing protocols using this
technique can still be used in the robust scenario in an optimistic way: Namely,
if an abort is induced by the batch check failure, parties can switch to the slower,
robust protocols. As no actual inputs to the MPC protocol have been provided
yet, our optimistic variant remains both secure and robust.

We would like to highlight that our concrete CAFE constructions are mostly
a clever combination of combinatorics, circuit randomization and multilinear
algebra. The individual components are generally simple, which we see as a
positive rather than a negative aspect of our work. Simple protocols usually
lead to more efficient implementations, which is something we back with our
experiments. Finally, we make a conscious effort to present our techniques in the
most elementary way, so that they are as broadly accessible as possible within
the community. In particular, we avoid using formal abstractions such as d-fold
generalized linear secret sharing from [8], which are useful and we implicitly use,
but we feel they could clog our presentation.

2 Preliminaries

We use n to denote the number of parties, among which t < n/3 are corrupted.
Denote by P = {P1, . . . ,Pn} the set of parties. We use boldface letters x to
denote vectors, for which we index their elements starting at 0, i.e., if x ∈ Rδ,
x = (x0, . . . , xδ−1). If X is a set, x ← X denotes a uniform random sampling
from X, the result of which is assigned to the variable x. Finally, [n] is used to
denote the set {0, . . . , n − 1} and [a, b] with a < b to denote the set {a, . . . , b}.
Let λ be the statistical security parameter.

Circuit Amortization Friendly Encodings and Their Application 217

2.1 Commutative Algebra

We briefly recall some previous results from commutative ring theory, as well as
the background for Galois Rings we will need. In this subsection, R denotes a
commutative ring with identity.

Definition 1. Let α0, . . . , αm−1 ∈ R. We call A = {α0, . . . , αm−1} an excep-
tional set if and only if αi − αj ∈ R∗ for all i, j ∈ [m] with i �= j. We define the
Lenstra constant of R to be the size of the biggest exceptional subset of R.

The following is a generalization of the Schwartz-Zippel lemma which we will
need throughout the paper.

Lemma 1 ([6]). Let R be a commutative ring and f : Rn → R be an n-variate
non-zero polynomial. Let A ⊆ R be an exceptional set. Then

Pr
x←An

[f(x) = 0] ≤ deg f

|A| .

2.2 Galois Rings

Galois Rings are the unique degree-d Galois extension of rings of the form Zpk ,
where p is a prime. Whereas for k = 1 such an extension yields the Galois Field
Fpd , for k > 1 Galois Rings contain zero-divisors, in particular the multiples of
p. We will use the following, equivalent definition of Galois Rings, as it is better
suited for our purposes.

Definition 2. A Galois Ring is a ring of the form R = Zpk [X]/(h(X)) where
p is a prime, k ≥ 1 and h(X) ∈ Zpk [X] is a monic polynomial of degree d ≥ 1
such that its reduction modulo p yields an irreducible polynomial in Fp[X].

Once p, k and d has been fixed in Definition 2, any valid choice of h(X) ∈
Zpk [X] will result in the same R, up to isomorphism. Hence, we shall denote
such a ring as R = GR(pk, d).

The ring R = GR(pk, d) is of characteristic pk and all its ideals (pi) form the
chain

R ⊃ (p) ⊃ (p2) ⊃ · · · ⊃ (pk−1) ⊃ (pk) = 0.

Thus, for i ∈ [1, k] we can define the natural homomorphisms πi : R → R/(pi)
which are computed by “reducing modulo pi”. Notice that R/(pi) ∼= GR(pi, d),
so by computing the quotient of R with its unique maximal ideal (p) we will
obtain the finite field Fpd . Furthermore, all non-units of R are nilpotent and
they constitute (p). We will need the following lemma:

Lemma 2. The Lenstra constant of GR(pk, d) is pd.

In order to reason about Galois Ring elements and their arithmetic, we will
sometimes describe them as it naturally follows from Definition 2. We will refer

218 A. Dalskov et al.

to such explicit description as the additive representation of a. More concretely,
any element of a ∈ GR(pk, d) can be described as

a = a0 + a1 · ξ + . . . + ad−1 · ξd−1, (1)

where ai ∈ Zpk and ξ is a root of h(X), i.e. GR(pk, d) ∼= Zpk [ξ].
Our work focuses in Galois Rings of the form R = GR(2k, d), hence of char-

acteristic 2k, maximal ideal (2), Lenstra constant 2d and such that R/(2) ∼= F2d .
Notice that in such case a ∈ R is a unit (i.e. a /∈ (2)) if and only if, given its
additive representation, there is at least one i ∈ [d] such that ai ≡ 1 mod 2.

2.3 Shamir’s Secret Sharing over Galois Rings

Shamir’s secret sharing scheme [18] extends to any commutative ring with iden-
tity, as long as it contains an exceptional set of size at least n + 1 [1]. Given
the fact that the Lenstra constant of a Galois Ring R = GR(2k, d) is 2d, we can
construct Shamir’s secret sharing for R if d ≥ log(n+1). We provide the precise
construction in ΠShare(s, t) (Protocol 1).

Protocol 1. ΠShare(s, t) — Degree-t Shamir’s LSSS over Galois Rings.

Let R = GR(2k, d) be a Galois Ring such that log(n + 1) ≤ d and let
A = {α0, α1, . . . , αn} ⊂ R be an exceptional set. Let Pi be the Dealer of the
secret, with input s ∈ R.

1. Pi samples a random degree-t polynomial p(X) ∈ R[X] such that p(α0) =
s.

2. Pi defines its own share as p(αi) and sends p(αj) to Pj for all j �= i.

Denote the output as 〈s〉R
t = (p(α1), . . . , p(αn)), a “degree-t sharing” of s.

Since {αi}n
i=0 is an exceptional set, Lagrange interpolation can be used with

t + 1 points to interpolate p(X) and thus recover the secret. We denote the
sharing of a value a as 〈a〉. Whenever there could be confusion about whether
a is shared in one of two rings R or R̃, we will use 〈a〉R and 〈a〉R̃ to avoid
misunderstandings.

To run MPC using Shamir’s scheme we also need the following protocols,
which are standard and we provide in the full version.

– Private reconstruction ΠrPriv(Pi, s): This reconstructs a Shamir secret shared
value to a single party. This only requires every party apart from Pi commu-
nicate a single element for a total of n − 1 elements.

– Public reconstruction ΠrPub(s0, . . . , sn−t−1): This reconstructs n − t Shamir
secret shared values simultaneously to all parties. To do so, parties privately
reconstruct a single share to each party, followed by each party sending the
reconstructed value to all other parties. This protocol requires communicating
a total of 2 · n · (n − 1) elements.

Circuit Amortization Friendly Encodings and Their Application 219

2.4 Hyper-Invertible Matrices over Galois Rings

Hyper-Invertible Matrices (HIMs) were introduced in [5] as a tool to gener-
ate secret correlated randomness in information-theoretic MPC. Their original
description was limited to matrix whose entries are Finite Field elements, but
HIMs naturally generalize to rings having big enough exceptional sets, as shown
in [1].

Definition 3. Let M be a r-by-c matrix. We say that M is Hyper-Invertible if,
for all A ⊆ [r], B ⊆ [c] with |A| = |B| > 0, the sub-matrix MB

A is invertible,
where MA denotes the matrix consisting of the rows i ∈ A of M , MB denotes
the matrix consisting of the columns j ∈ B of M , and MB

A = (MA)B.

For constructions of hyper-invertible matrices over Finite Fields and rings, we
refer the reader to [5] and [1].

The technical reason why hyper-invertible matrices are a powerful instrument
in MPC is the following lemma from [5].

Lemma 3. Let M ∈ Rm×m be a hyper-invertible matrix, and let y = Mx.
Then, for all A,B ⊆ [m] with |A|+ |B| = m, there exists a R-linear isomorphism
φ : Rm → Rm such that φ(xA,yB) = (xĀ,yB̄), where Ā = [m] \ A and B̄ =
[m] \ B.

Informally, it states that any combination of m inputs/outputs of the R-linear
isomorphism induced by a square hyper-invertible matrix are uniquely deter-
mined by the remaining m inputs/outputs. This is key in enabling the “player
elimination” mechanism, which relies in revealing each of 2t outputs to a different
party. Player elimination enables, in turn, robust MPC.

Lemma 4. Let P1, . . . , Pn be parties out of which at most t are corrupted.
Let M ∈ R(n−t)×n be a hyper-invertible matrix. Let y = M · x, where y =
(y1, . . . , yn−t), x = (x1, . . . , xn) and each xi ∈ R is a secret, uniformly ran-
dom input chosen by party Pi. No Adversary can distinguish any yj ∈ R from
uniformly random.

Proof. Let H ⊂ [1, n] be a set of indices corresponding to any n − t honest
parties. We have that y = M ·x = MH ·xH +M H̄ ·xH̄ . Denote zH = MH ·xH .
As M is hyper-invertible, MH and all its entries are invertible. Then, as xH

consists only of secret, random values; we have that zH ∈ Rn−t is uniformly
random. Thus, so is y = (y1, . . . , yn−t). ��

3 Switching Between Galois Rings and Galois Fields

Computation over Z2k , while attractive for many applications, is not the best
choice for operating on the level of bits. In fact, for many applications where
Z2k shines, such as machine learning, specialized conversion protocols are often
employed to deal with certain computations that cannot easily be expressed as

220 A. Dalskov et al.

arithmetic in Z2k . For example, comparing two numbers a and b is equivalent to
computing the result of the comparison 0 < a − b, which amounts to extracting
the most significant bit of a − b (in two’s complement, this bit is 1 if the result
is negative, i.e., b > a and 0 otherwise). Common for many protocols for MSB
extraction, is a need for a secret-shared representation of the bit-decomposition of
a number. If we know v0, . . . , vk−1 such that v =

∑k−1
i=0 2ivi then MSB extraction

is easy. Obtaining secret-shares of v0, . . . , vk−1 given a secret-sharing of v can
be done in the following way. Suppose we have k pairs of values (〈bi〉F2d , 〈bi〉R);
that is, the same bit bi secret-shared in R as well as in F2d . First we open the
value z = 〈v〉R + 〈∑i 2ibi〉R after which z is decomposed into bits. Notice that
everyone now has a masked version of v + b in its bit representation (where
b =

∑k−1
i=0 2ibi), as well as secret-shares of the bits of b. Finally, shares of the

bits of v can be obtained by computing a binary adder.
Efficiently generating tuples of the kind (〈bi〉F2d , 〈bi〉R) has been the topic

of recent work such as [17], and more recently [12]. Both these works present a
generic approach (i.e., generating bits for any two algebraic structures). We will
instead focus on the specific case where the bits are shared over R = GR(2k, d)
and the residue field of R, that is F2d .

Let R̃ = GR(2k̃, d) and R = GR(2k, d) be two Galois Rings such that k̃ > k.
Let πk : R̃ → R be the “reduction modulo 2k” map.

Lemma 5. Let Ã = {α0, . . . , αm−1} ⊂ R̃ be an exceptional set. Then A =
πk(Ã) = {πk(α0), . . . , πk(αm−1)} is an exceptional set in R.

Proof. For any αi, αj ∈ Ã such that αi �= αj , let βi,j ∈ R̃ be the inverse of
αi − αj ∈ R̃. We have the following equalities, all derived form the fact that πk

is an homomorphism:

πk(βi,j) · (πk(αi) − πk(αj)) = πk(βi,j) · πk(αi − αj) = πk(βi,j · (αi − αj))
= πk(1R̃) = 1R.

Hence, A = {πk(α0), . . . , πk(αm−1)} ⊂ R is an exceptional set. ��
Proposition 1. The “reduction modulo 2k” map πk : R̃ → R commutes with
Shamir secret sharing. More precisely, given a ∈ R̃ shared as 〈a〉R̃ using an
exceptional set Ã ⊂ R̃, then

πk(〈a〉R̃) = 〈πk(a)〉R,

where the shares of 〈πk(a)〉R use the exceptional set A = πk(Ã) ⊂ R and they
are computed by applying πk to the shares of 〈a〉R̃.

Proof. Let p̃(X) ∈ R̃[X] be the polynomial such that 〈a〉R̃ = (p̃(α1), . . . , p̃(αn))
and denote p(X) = πk(p̃(X)) ∈ R[X]. As p̃(X) is of degree at most m − 1, so
is p(X). Additionally, observe that πk(p̃(αi)) = πk(p̃(πk(αi))) = p(πk(αi)). As
shown in [1, Theorem 3], which follows from the Chinese Remainder Theorem

Circuit Amortization Friendly Encodings and Their Application 221

over rings, there is an isomorphism between p(X) ∈ R[X] and any m evaluations
of p(X) at points of the same exceptional set A ⊂ R. We conclude that

〈πk(a)〉R = (p(πk(α1)), . . . , p(πk(αn)))

= (πk(p̃(α1)), . . . , πk(p̃(αn))) = πk(〈a〉R̃). ��
Notice that, as a corollary of the previous proposition, we have that for any

k̃ ≥ 1, π1(〈a〉R̃) = 〈π1(a)〉F, where F = F2d is the residue field of R̃.

3.1 Double Authenticated Bits

In Sect. 4 we present concrete protocols for generating shares of random bits.
Here we outline the general technique that we will be using.

With the properties of R outlined in the previous section, a pair of secret-
shared bits—one in R and the other in F2d—is easy to obtain: We first generate
a secret shared bit 〈b〉R in R and then use the observation in Proposition 1 to
obtain 〈b〉F2d by simply having each party locally truncate their share of 〈b〉R

modulo 2.
It remains to discuss how to produce a random 〈b〉R, b ∈ {0, 1}. For this,

we will adapt the RandBit protocol from [11], which produces such values when
R = Z2k . We will make use of their following lemma when proving our protocols.

Lemma 6 ([11]). Let
 > 2. If a ∈ Z is such that a2 ≡ 1 mod 2�, then a is
congruent modulo 2� to one among {1,−1, 2�−1 − 1, 2�−1 + 1}.

4 Circuit Amortization Friendly Encodings

Given some private a1, . . . , am ∈ Z2k , consider that we want to securely compute
some circuit C taking them as inputs. In what we will call the näıve encoding
(which is the approach in [1] and [2]), sharings of the inputs 〈a1〉t, . . . , 〈am〉t

would have to be produced by first embedding each ai ∈ Z2k into R = GR(2k, d),
individually. Any multiplication gate in C would then be computed in the usual
way, that is, given 〈a〉t, 〈b〉t and a double sharing (〈r〉t, 〈r〉2t):

Protocol 2. Πonline-ds — Standard Online use of double-shares.

1. Parties locally compute 〈c〉2t = 〈a〉t · 〈b〉t.
2. Publicly reconstruct 〈z〉 = 〈c〉2t − 〈r〉2t.
3. Compute 〈c〉t = z + 〈r〉t.

However, this approach makes no use of the extension degree of R, and as
we previously outlined in Table 1, it would incur on more communication (and
computation) than the encodings we are about to present.

222 A. Dalskov et al.

By making explicit the act of encoding the Z2k elements on which we want to
compute into elements in R, we can generalize the above protocol in the following
way. For a circuit C with 2 · δ1 inputs, δ2 outputs, and where δ2 ≤ δ1, define two
Z2k -linear homomorphisms Ein : (Z2k)δ1 → R and Eout : (Z2k)δ2 → R satisfying

Ein(a) · Ein(b) + Eout(c) = Eout(C(a,b) + c). (2)

Using Ein and Eout, Protocol 2 can be generalized as shown in Protocol 3:

Protocol 3. Πonline-enc-ds — Online use of encoded double-shares.

1. Parties locally compute 〈Ein(a) · Ein(b)〉2t = 〈Ein(a)〉t · 〈Ein(b)〉t.
2. Publicly reconstruct 〈Eout(C(a, b) − r)〉2t = 〈Ein(a) · Ein(b)〉2t −

〈Eout(r)〉2t.
3. From Eout(C(a, b) − r), compute Ein(C(a, b) − r).
4. Finally, define 〈Ein(C(a, b))〉t = Ein(C(a, b) − r) + 〈Ein(r)〉t.

Notice that by setting C(a, b) = a · b and encodings Ein(a) = Eout(a) = a we
get the näıve encoding and Protocol 2.

In the following, we present alternative definitions of Ein and Eout which work
for the more expressive circuits from Table 1: In Sect. 4.2 we give what we call
FLEX encoding, InnerProd encoding in Sect. 4.3, and finally SIMD encoding in
Sect. 4.4. The main challenge will be to produce pairs (〈Eout(r)〉2t, 〈Ein(r)t〉) in
an efficient manner. We also show how to produce random bits 〈b〉 ∈ {0, 1} ⊂ Z2k

compatible with each CAFE: For example, for the SIMD encoding we produce
sharings of the form 〈Eout(b)〉R

t , where b = (b0, . . . , bδ−1) and each bi ← {0, 1}
independently. Each presentation is concluded with an analysis of the technique’s
efficiency and expressiveness. An overview of our CAFEs and how they relate
to each other is given in Fig. 1. By setting k = 1, we obtain the finite field
equivalent of our protocols, but without exploiting the fact of being in a structure
of characteristic two. Finally, note that, through the use of daBits, we can switch
between values with a given encoding in GR(2k, d) and their bit decomposition,
using the same encoding, in F2d

We briefly note that parties must check if private secret-shared inputs in
the online phase are correctly encoded and not arbitrary elements from R. In
the näıve case, this corresponds to verifying that parties input Z2k elements [1].
In our CAFEs, this can be done with the aid of preprocessing by making use
of the fact that Ein-encoded (resp. Eout-encoded) values will constitute a Z2k -
module. In the offline phase, parties generate shares of random encodings. Then,
in the online phase, to verify that some share is of the form 〈Ein(a)〉t, parties
can use a random share 〈Ein(r)〉t to open and check that the sum Ein(a + r) =
Ein(a) + Ein(r) is in the Z2k -module defined by Ein.

Circuit Amortization Friendly Encodings and Their Application 223

Fig. 1. Overview of how our Circuit Amortization Friendly Encodings relate to one
another. The direction of an edge indicates the transformation from one type of encod-
ing to another. Dashed lines indicate protocols which we do not explicitly provide in
this work, but which are easy to build from the ones we give.

4.1 Hyper-Invertible Matrices and Z2k -Modules

Let ΦM : Rn → Rn−t be the R-module homomorphism defined by multiplication
with a hyper-invertible matrix M ∈ R(n−t)×n, i.e. ΦM (x) = y, where y = Mx.
ΦM is trivial to define, as all the elements of M,x, and y belong to the ring R.
As the input and output encodings of CAFEs can be seen as some Z2k -module
N , we also need to define a Z2k -module homomorphism from multiplication by
M ∈ R(n−t)×n which preserves the properties of hyper-invertible matrices. We
will denote such homomorphism by ΨM : (Nd)n → (Nd)n−t.

As Nd is a Z2k -module, we know how to multiply its elements with scalars
from Z2k . But how can we multiply the elements of Nd with scalars from R,
the degree-d extension of Z2k? For the reader familiar with tensor products the
answer is simple: Nd is isomorphic to R ⊗Z2k

N as a Z2k -module, but R ⊗Z2k
N

can also be seen as an R-module compatible with the Z2k -module structure Nd.
Aiming for a broader audience, our following exposition will refrain from using
tensor products, giving instead explicit formulas to compute y = ΨM (x). We
refer those interested in a more systematic path towards the tensor product
argument to the sections on interleaved generalized secret sharing schemes in
[8], where all the mentions to vector spaces and finite fields can be replaced
by modules and Galois Rings without any harm. The tensoring technique was
also implicitly used by the authors of [1] when producing double-shares of Zpk

elements using matrices in (GR(pk, d))n×n.
Z2k-linear action of b ∈ R on Nd: Towards our goal of defining the Z2k -

module homomorphism ΨM : (Nd)n → (Nd)n−t, let us start by looking at how
the product between any a, b ∈ R is computed. If we express a in its addi-

224 A. Dalskov et al.

tive representation, a =
∑

�∈[d] a� · ξ�, multiplication by b can be seen as the
Z2k -module homomorphism φb : Zd

2k → Z
d
2k which maps the coefficients of a’s

additive representation to those of c = φb(a). We can represent this by the
following matrix-vector product:

⎡

⎢
⎣

c0
...

cd−1

⎤

⎥
⎦ =Mb ·

⎡

⎢
⎣

a0

...
ad−1

⎤

⎥
⎦ (3)

where Mb ∈ Z
d×d
2k is defined by φb. More explicitly, we know that

c = b · a = a0b0 + . . . + (
∑

i,j∈[d],
i+j=�

aibj) · ξ� + . . . + ad−1bd−1 · ξ2d−2, (4)

from which we reduce to the coefficients (c0, . . . , cd−1) ∈ Z
d
2k of c’s additive

representation, according to the polynomial h(X) such that R = Z2k [X]/(h(X)).
Hence, Mb can be written as the following sum, where the first matrix is lower
diagonal and Hb represents the reduction by the quotient polynomial in Eq. (4):

Mb =

⎡

⎢
⎢
⎢
⎣

b0
b1 b0
...

...
. . .

bd−1 bd−2 . . . b0

⎤

⎥
⎥
⎥
⎦

+ Hb

As R is isomorphic Z
d
2k , what we have shown in Eq. (3) is the Z2k -linear action

of “multiplying by b” on an element a ∈ Nd when N = Z2k . Informally, we can
simply substitute the ai ∈ Z2k coefficients in Eq. (3) with ai ∈ N , where N is a
Z2k -module. As each ci would then be a Z2k -linear combination of the ai’s, we
have that ci ∈ N .

The Z2k-module homomorphism ΨM : (Nd)n → (Nd)n−t: Now, let
M ∈ R(n−t)×n be a (hyper-invertible) matrix and x = (x1, . . . , xn) ∈ Rn,
y = (y1, . . . , yn−t) ∈ Rn−t be vectors such that y = Mx. We then have that

yi = mi,1 · x1 + . . . + mi,n · xn = φmi,1(x1) + . . . + φmi,n
(xn)

where (mi,1, . . . ,mi,n) ∈ Rn is the i-th row of M and φmi,j
is the “multiplication

by mi,j” map. Hence, if we represent xj , yi ∈ R in their additive representations
and each of the Z2k -module homomorphisms φmi,j

as in Eq. (3), we obtain:

(yi,0, . . . , yi,d−1) = Mmi,1(x1,0, . . . , x1,d−1) + . . . + Mmi,n
(xn,0, . . . , xn,d−1)

Circuit Amortization Friendly Encodings and Their Application 225

This leads to a “block-wise” view of the product of hyper-invertible matrices
with elements from Rn ∼= (Zd

2k)n, which we depict in Eq. (5).

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1,0

...
y1,d−1

...
yn−t,0

...
yn−t,d−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Mm1,1 . . . Mm1,n

...
. . .

...
...

. . .
...

Mmn−t,1 . . . Mmn−t,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1,0

...
x1,d−1

...

...
xn,0

...
xn,d−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

The same way we did in Eq. (3), we can replace x ∈ (Zd
2k)n,y ∈ (Zd

2k)n−t

with x ∈ (Nd)n,y ∈ (Nd)n−t. In other words, we can simply substitute each
xi,�, yj,� ∈ Z2k in Eq. (5) with xi,�, yj,� ∈ N . This way, we have defined the
Z2k -module homomorphism ΨM : (Nd)n → (Nd)n−t. When writing y = ΨM (x)
while specifying each xi,�, yj,� ∈ N , we will use semicolons to preserve the lines
breaking up x ∈ (Nd)n and y ∈ (Nd)n−t into blocks of size d as in Eq. (5).

Finally, the following lemma tells us that ΨM preserves the guarantees pro-
vided by Lemma 4.

Lemma 7. Let R = GR(2k, d) and let N be a Z2k -module. Consider the same
hypothesis as in Lemma 4 but with x ∈ (R ⊗Z2k

N)n and y ∈ (R ⊗Z2k
N)n−t, so

that now xi, yj ∈ Nd. For j ∈ [1, n − t], parse yj = (yj,0, . . . , yj,d−1) ∈ Nd. No
Adversary can distinguish any yj,� ∈ N from uniformly random.

Proof. Let H ⊂ [1, n] be a set of indices corresponding to any n − t honest
parties. Express y = M · x = MH · xH + M H̄ · xH̄ and denote zH = MH · xH .
As M is hyper-invertible, MH and all its entries are invertible. If we adopt the
“block-wise” view from Eq. (5), H is selecting among the pre-established size-d
blocks and mi,j being invertible translates into Mmi,j

being invertible. Due to
this and the fact that xH ∈ (Nd)n−t consist only of secret, random values, we
have that zH ∈ (Nd)n−t is uniformly random. Thus, so is y ∈ (Nd)n−t, which
in turn implies that the values yj,� ∈ N are i.i.d. uniformly random. ��

4.2 FLEX Encodings

Given m secret-shared values encoded as in the näıve [1] setting, our FLEX
encoding shows how to compute a circuit C with d outputs and multiplication
depth one. Such a circuit could of course be computed in the näıve setting, using
d openings in R; however we show how to compute it using only a single opening.

The encoding works as follows: During preprocessing, parties produce
“double-shares” of the form (〈r0〉t, 〈r1〉t, . . . , 〈rd−1〉t, 〈r〉2t) where r =

∑d−1
i=0 ri ·

ξi. Given inputs {〈ai〉t}i∈[m], parties compute C(〈a0〉t, . . . , 〈am−1〉t). Let 〈zj〉2t

226 A. Dalskov et al.

for j ∈ [d] denote the resultant shares. To reduce the degree of these d shares,
parties do the following:

1. Locally compute 〈z〉2t =
∑d−1

i=0 〈zi〉2t · ξi.
2. Open 〈w〉2t = 〈z〉2t − 〈r〉2t.
3. Parse w in its additive form as w ≡ ∑d−1

i=0 wi · ξi.
4. Each party defines 〈zj〉t as 〈zj〉t := wj + 〈rj〉t for j ∈ [d].

Double Share Generation. It remains to be shown how to generate a double-
sharing for this encoding. ΠFLEXds in Protocol 4 shows how to do so using Hyper-
Invertible matrices. We remark that our protocol takes a different approach
than previous work, in that we utilize the Hyper-Invertible matrices only for
generating the double-sharings. By separating generation of the double-sharings
from their checking, we produce double-shares much more efficiently than [1], as
we can now batch check all the generated double-shares at once.

Protocol 4. ΠFLEXds — Double-sharings for FLEX encoding.

Let M ∈ R(n−t)×n be a Hyper-Invertible matrix and let ΨM : (Nd)n →
(Nd)n−t be as defined in Section 4.1 and depicted in Equation (5).

Generate. Parties produce a batch of d · (n − t) random double-shares as
follows:
1. For i ∈ [n],
 ∈ [d], each Pi samples at random si

� ∈ Z2k and computes
si =

∑d−1
�=0 si

�·ξ�. Call ΠShare(si
�, t) and ΠShare(si, 2t) to distribute 〈si

�〉t

and 〈si〉2t shares to all parties in P.
2. Parties compute (〈r1〉2t, . . . , 〈r(n−t)〉2t) = M · (〈s1〉2t, . . . , 〈sn〉2t).
3. Parties compute:

(〈r10〉, . . . , 〈r1d−1〉; . . . ; 〈rn−t
0 〉, . . . , 〈rn−t

d−1〉)
= ΨM

(〈s10〉, . . . , 〈s1d−1〉; . . . ; 〈sn
0 〉, . . . , 〈sn

d−1〉
)

Batch Check. Let m be the number of batches generated in the previous
step. Assume that m(n − t) > λ. Throughout, j ∈ [m] identifies each
batch.
I. Z2k-outputs: We check that each 〈ri

j,�〉t is a sharing of a Z2k element.
1. For each 〈ri

j,�〉t and τ ∈ [λ], call χi,τ
j,� ← Frand({0, 1}) to obtain a

random bit.
2. For each τ ∈ [λ], compute:

〈xτ 〉t =
m−1∑

j=0

n−t∑

i=1

d−1∑

�=0

χi,τ
j,� · 〈ri

j,�〉t.

3. Call ΠrPub(x0, . . . , xλ−1). If xτ �∈ Z2k for τ ∈ [λ], abort.

Circuit Amortization Friendly Encodings and Their Application 227

4. For τ ∈ [λ] pick a tuple (iτ , jτ ,
τ) ∈ ([m]×[1, n−t]×[d]) such that
χiτ ,τ

jτ ,�τ
= 1 and discard the shares 〈riτ

jτ ,0〉t, . . . , 〈riτ

jτ ,d−1〉t, 〈riτ
jτ

〉2t.
These shares are considered as having acted like masks in the
computation of 〈xτ 〉t as a linear combination.

II. Equality: Next we check that each double-share satisfies 〈ri
j〉2t =

∑d−1
�=0 〈ri

j,�〉t · ξ�. Let λ̄ such that λ̄d > λ.
1. For τ ∈ [λ̄], j ∈ [m] and i ∈ [1, n− t]. Call χi,τ

j ← Frand(A), where
A is an exceptional set of R of length 2d.

2. For τ ∈ [λ̄], compute:

〈yτ 〉2t =
m−1∑

j=0

n−t∑

i=1

χi,τ
j · (〈ri

j〉2t −
d−1∑

�=0

〈ri
j,�〉t · ξ�).

Call ΠrPub(y0, . . . , yλ̄−1). If yτ �= 0 for any τ ∈ [λ̄], abort.
Output. Let D = {(iτ , jτ) | τ ∈ [λ]} be a set of indices corresponding to the

discarded values in Step I.4 of Batch Check. For (i, j) ∈ ([m]×[1, n−t])\D
output the double-shares 〈ri

j,0〉t, . . . , 〈ri
j,d−1〉t, 〈ri

j〉2t as valid.

Theorem 1. ΠFLEXds in Protocol 4 securely produces a minimum of m·(n−t)−λ
valid double-sharings for the FLEX encoding.

Proof. Let A ⊂ [1, n] denote the indices of the parties corrupted by A and assume
a non-aborting execution ΠFLEXds. We do not care about the abort scenario, as
in such case all double-shares are discarded and, furthermore, no private MPC
inputs have been yet provided.

Correctness. In an honest protocol execution, it follows from the discussion
in Sect. 4.1 that ΠFLEXds produces double-shares of the right form. When A
deviates from the protocol, we need to look at what is implied by the non-
aborting execution of Batch Check.

I. Z2k-outputs: See each shared value 〈ri
j,�〉t in its unique additive representa-

tion, i.e. ri
j,� =

∑d−1
ι=0 ri

j,�,ι · ξι where ri
j,�,ι ∈ Z2k . What we want to prove is

that 〈ri
j,�〉t = 〈ri

j,�,0〉t or, in other words, that ri
j,�,ι = 0 for ι ∈ [1, d − 1]. For

τ ∈ [λ], define also xτ =
∑d−1

ι=0 xτ,ι · ξι. Then we have that:

xτ,ι =
m∑

j=1

n−t∑

i=1

d−1∑

�=0

χi,τ
j,� · ri

j,�,ι, ι ∈ {1, . . . , d − 1}.

Let M = m · (n − t) · d. We can look at xτ,ι as the evaluation in χi,τ
j,� of an

M -variate polynomial f of degree one with coefficients ri
j,�,ι ∈ Z2k . Assume

f is not the zero polynomial (i.e. that there exists any ri
j,�,ι �= 0). Then,

228 A. Dalskov et al.

by applying the Schwartz-Zippel Lemma (c.f. Lemma 1), as each variable
is evaluated only in elements of the exceptional set A = {0, 1} ⊂ Z2k , we
have that Prχτ ←{0,1}M [xτ,ι = 0] = Prχτ ←{0,1}M [f(χτ) = 0] ≤ 1/2. Let
χ = (χ1, . . . ,χλ). We conclude that for ι ∈ {1, . . . , d − 1}:

Pr
χ←{0,1}M·λ

[x0,ι = . . . = xλ,ι = 0] ≤ 2−λ.

Applying a union bound, the previous equation implies that the Adversary
can produce a ri

j,� /∈ Z2k (i.e. a ri
j,�,ι �= 0 for ι �= 0) with a success probability

of at most (d − 1) · 2−λ.
II. Equality: Let m̃ = m · (n − t) · d. We apply the Schwartz-Zippel Lemma

(c.f. Lemma 1), where each variable is evaluated only in elements of the
exceptional set A ⊂ GR(2k, d) of size |A| = 2d. For τ ∈ [λ̃], we have that
Prχτ ←Am̃ [yτ = 0] = Prχτ ←Am̃ [f(χτ) = 0] ≤ 2−d. Let χ = (χ1, . . . ,χλ̃), we
conclude:

Pr
χ←Am̃·λ̃

[y0 = . . . = yλ̃ = 0] ≤ 2−λ̃·d,

As λ̃ · d > λ, we are done.

Privacy. Let’s first look at the Generate step. The Adversary knows at most t
of the degree-2t inputs to which the hyper-invertible matrix M is applied, namely
{〈si〉2t}i∈A. By Lemma 4, we know that the values {〈ri〉2t}i∈[1,n] are secret and
uniformly random. For the degree-t sharings, A know t blocks of inputs, namely
{〈si

0〉t, . . . , 〈si
d−1〉t}i∈A. By Lemma 7, we know that the values {〈ri

�〉t}i∈[1,n],�∈[d]

are secret and i.i.d. uniformly random from A’s perspective.
Finally, the outputs of Batch Check do not leak any information on the

output 〈r〉 values. This follows from the fact that yτ = 0 and that each revealed
xτ is one-time padded by the discarded 〈r〉 values indexed by the set D =
{(iτ , jτ) | τ ∈ [λ]}. ��
Generation of Random Bits for FLEX Encoding. In Protocol 5 ΠFLEXbits,
we give an adaptation of the RandBit protocol of [11] to producing shares over
R. Moreover, applying FLEX encoding enables us to produce batches of d random
bits, compared to producing a single random bit if we were to only replace the
arithmetic sharing with Shamir secret sharing over R.

Protocol 5. ΠFLEXbits—Random bits for the FLEX encoding.

Let R̃ = GR(2k+2, d), R = GR(2k, d). Parties produce m batches of d
random bits as follows:

1. For j ∈ [m],
 ∈ [d] parties produce shares 〈uj,�〉R̃
t of secret, random

uj,� ∈ Z2k+2 . This can be done as in the ΠFLEXds (Protocol 4) by skipping
steps related to the degree 2t sharings, including skipping Step II. of
Batch Check.

Circuit Amortization Friendly Encodings and Their Application 229

2. Compute 〈aj,�〉R̃
t = 2 · 〈uj,�〉R̃

t + 1 and 〈(aj,�)2〉R̃
2t = 〈aj,�〉R̃

t · 〈aj,�〉R̃
t .

3. Compute 〈ej〉R̃
2t = 〈(aj,0)2〉R̃

2t + 〈(aj,1)2〉R̃
2t · ξ + · · · + 〈(aj,d−1)2〉R̃

2t · ξd−1.
4. Call ΠrPub to reconstruct ej for all j ∈ [m] and parse each revealed value

ej in its additive form as ej = ej,0 + ej,1 · ξ + · · · + ej,d−1 · ξd−1

5. For j ∈ [m],
 ∈ [d], let cj,� be the smallest square root modulo 2k+2 of
ej,� and let c−1

j,� be its inverse.

6. Each party computes 〈dj,�〉R̃
t = c−1

j,� · 〈aj,�〉R̃
t + 1.

7. Parties then divides their shares of dj,� by 2. This division is well-defined,
and we denote the result of this operation 〈b̃j,�〉R̃

t .
8. Parties output 〈bj,�〉R

t = πk(〈b̃j,�〉R̃
t).

Proposition 2. ΠFLEXbits in Protocol 5 securely produces m ·d shares of random
bits for the FLEX encoding.

Proof. Our proof, as our protocol, is very similar to that of [11, Proposition IV.1].
We limit our discussion to correctness, as privacy follows from the properties of
the secret sharing scheme. Observe that the coefficients ej,� ∈ Z2k+2 of ej ’s
additive representation are all odd integers, since aj,� = 2 · uj,� + 1. Hence, cj,�

is also odd, which implies the existence of c−1
j,� . Now, as both c−1

j,� and aj,� are
square roots of ej,�, we have that:

(c−1
j,� · aj,�)2 ≡ c−2

j,� · a2
j,� ≡ e−1

j,� · ej,� ≡ 1 mod 2k+2

Thus, by Lemma 6, c−1
j,� · aj,� ≡ ±1 mod 2k+1. Moreover, 1 and −1 are as likely

in this last congruence, since aj,� is guaranteed to be a uniformly random odd
value (because uj,� is uniformly random) and c−1

j,� is chosen in a unique, pre-
established way. Hence, dj,� = c−1

j,� · aj,� + 1 is congruent to a uniformly random
value among {0, 2} modulo 2k+1.

Finally, we need to argue about the “division by two” of dj,�, which results in
a b̃j,� that is congruent (with the same probability) to either 0 or 1 modulo 2k.
We perform such “division” by looking at the shares of 〈dj,�〉R̃ as elements of Z,
so this operation is well-defined as long as each share of dj,� is an even number.
Notice that this is the case, since:

〈dj,�〉R̃
t = c−1

j,� · (2 · 〈uj,�〉R̃
t + 1) + 1 = 2 · c−1

j,� · 〈uj,�〉R̃
t + (1 + c−1

j,�)

As c−1
j,� is invertible in Z2k+2 , it is odd. Hence, an even public constant (1 + c−1

j,�)

is added to 2 · c−1
j,� · 〈uj,�〉R̃

t . As the shares of the latter value are clearly even
(since they are the result of multiplying by an even public constant), we can
conclude that all the shares of 〈dj,�〉R̃

t are even. Finally, observe that if we re-
interpret the new divided shares of dj,� as elements of Z2k+1 , it could be that their
reconstruction is not an element among {0, 1}, but rather among {0, 1, 2k, 2k+1}.
Hence, we need to compute 〈πk(b̃j,�)〉R

t , which we can just do by computing
πk(〈b̃j,�〉R̃) as shown in Proposition 1. ��

230 A. Dalskov et al.

Analysis. We now analyze the FLEX encoding. This works over näıve shares (i.e.
by embedding Z2k into GR(2k, d), as in [1]) and outputs näıve shares. Online,
it can be used to compute any depth 1 circuit with any number of inputs and d
outputs at the cost of opening a single element in R.

Double shares for the FLEX encoding can be precomputed in batches of d·(n−
t) with n ·d calls to ΠShare(·, t) and n calls to ΠShare(·, 2t). Checking these double
shares requires (λ + λ̄)/(n − t) invocations of ΠrPub. Notice the communication
cost of the Batch Check step of ΠFLEXds is independent of the number of shares
being checked as long as m · (n − t) > λ, where m is the number of batches of
shares generated. The amortized communication cost is therefore approximately
3(d+1)

2 calls to ΠShare per double-share.
ΠFLEXds can be adapted to generate shares of random Z2k elements by skip-

ping steps related to degree-2t shares. Doing so yields batches of d·(n−t) random
shares with d calls to ΠShare, and only requires λ/(n − t) calls to ΠrPub for the
Batch Check. Producing shares of
 random bits in ΠFLEXbits then only requires
generating shares of
 random Z2k+2 elements and
/(d · (n − t)) calls to ΠrPub.

4.3 InnerProd Encodings

Given sharings of the inputs, inner products can be computed with a single
opening in our previous FLEX encoding, which incurs very little communication.
Nevertheless, there are two major problems with such an approach: First, one
still needs to individually share each of the elements in the input vectors. Second,
the amount of multiplications to be computed is the same as in the näıve case.

In order to overcome such limitations, we introduce our InnerProd encoding
technique. Let δ be the encoding capacity of the encoding and consider the fol-
lowing two Galois Ring elements a, b ∈ R given in their additive representation:

a = a0 + a1 · ξ + · · · + aδ−1 · ξδ−1,

b = bδ−1 · ξδ + bδ−2 · ξδ+1 + · · · + b0 · ξ2δ−1. (6)

Our goal is that, by computing c = a·b, one can retrieve the value
∑δ−1

i=0 ai ·bi

as the coefficient associated to ξ2δ−1 in c. In order to achieve this, we need
to impose two restrictions on δ. Let h(X) be the degree-d polynomial used to
represent the Galois Ring, i.e. R = Z2k [X]/(h(X)). Define d̃ to be the degree
of the second-highest monomial in h(X). The following bounds on δ need to be
imposed:

1. δ < (d + 1)/2. This is to ensure that b can be defined in Eq. (6).
2. δ < d − d̃ + 1. This is in order to avoid “wrap-around” terms to be added to

the coefficient associated to ξ2δ−1 in c.

Circuit Amortization Friendly Encodings and Their Application 231

More precisely, we define encodings Einn
in,L,Einn

in,R,Einn
out of a,b ∈ (Z2k)δ, c ∈ Z2k

as follows:

Einn
in,L(a) = a0 + a1 · ξ + · · · + aδ−1 · ξδ−1,

Einn
in,R(b) = bδ−1 · ξδ + bδ−2 · ξδ+1 + · · · + b0 · ξ2δ−1,

Einn
out (c) = c · ξ2δ−1 +

∑

�∈[d],� �=2δ−1

r� · ξ�, r� ← Z2k .

Double Shares from InnerProd to FLEX (ΠInnerProd-to-FLEXds). The results
of the InnerProd encoding can be easily converted into inputs of the FLEX
encoding by producing double shares. For a randomly sampled r ← GR(2k, d),
r =

∑d−1
i=0 ri · ξi, these are of the form 〈r〉2t, 〈r2δ−1〉t or, what is the same,

〈Einn
out (r2δ−1)〉2t, 〈r2δ−1〉t. Thus, these double shares can be produced exactly as

in ΠFLEXds (Protocol 4) by ignoring d − 1 of the degree-t shares.

Generation of Random Bits for InnerProd Encoding. Random bits can be
generated in exactly the same way as in the previous encoding (see ΠFLEXbits Pro-
tocol 5). Nevertheless, those bits are not quite enough for values in the InnerProd
encoding. In particular, they cannot be used as-is for masking a value encoded
according to Einn

out . Let c = Einn
in,L(a) · Einn

in,R(b). If we write c =
∑d−1

i=0 ci · ξi, we
have that c2δ−1 has the result of the inner product between a and b, but the
other components of c leak further information on the input vectors. Hence,
when reconstructing c, we will need a single random mask r satisfying that
r =

∑
�∈[d],� �=2δ−1 r� · ξ�, i.e. ensuring that r2δ−1 = 0. Such values can be pro-

duced using the same ideas as in ΠFLEXds or, more efficiently as we only need to
produce one such mask for each bit decomposition in the protocol, by adapting
the RandEl protocol of [1].

Analysis. As input, InnerProd encoding takes two sharings encoded as described
above. The output is an element of R ∼= Z

d
2k with the inner product as its

(2δ − 1)’th coefficient. The online cost is a single opening in R, and the offline
cost is the same as for FLEX encoding (since double-shares are produced with
the same protocol). It is worth remarking here that one can compute inner
products with näıve shares as well, at the same online communication cost.
I.e., given näıve sharings 〈a0〉, . . . , 〈ak−1〉 and 〈b0〉, . . . , 〈bk−1〉 for some k, the
inner product can be computed as 〈c〉 =

∑k−1
i=0 〈ai〉〈bi〉, because addition does

not increase the degree of a share. However, InnerProd encoding allows us to
decrease local computation (in the online phase) by around a factor of d/2,
which is significant as operations in R are non-trivial.

4.4 SIMD Encodings

Our final encoding allows us to compute multiple circuits in parallel. Hence,
we dub it SIMD, i.e., Single Instruction Multiple Data. Reverse Multiplication
Friendly Embeddings (RMFEs), as introduced in [8,10], can also be seen as

232 A. Dalskov et al.

a SIMD encoding. On a technical level, the combinatorial problem behind our
SIMD construction has been previously applied in the context of packing for
homomorphic encryption [16] and leakage-resilient MPC [7].

Let δ denote the encoding capacity, and let I = {i0, . . . , iδ−1} and J =
{j0, . . . , jδ−1} be index sets. The sets I, J will describe in which positions of an
element in R we will “store” encoded Z2k elements. More precisely, we define
two Z2k -linear encodings ESIMD

in , ESIMD
out of a ∈ (Z2k)δ as follows:

ESIMD
in (a) = a0 · ξi0 + a1 · ξi1 + · · · + aδ−1 · ξiδ−1 ,

ESIMD
out (a) =

δ−1∑

k=0

ak · ξjk +
∑

�∈[d]\J

r� · ξ�, r� ← Z2k

Regardless of how we choose I and J , we have that adding ESIMD
in -encodings (resp.

ESIMD
out -encodings) results in an ESIMD

in -encoding (rep. ESIMD
out -encodings). Neverthe-

less, we further ask our encodings to satisfy the relation given by Eq. (2). In
particular, we want following equality to hold:

ESIMD
in (a) · ESIMD

in (b) + ESIMD
out (c) = ESIMD

out (a ∗ b + c) (7)

where ∗ denotes the component-wise product. In order to achieve this, we need
to introduce the following restrictions to the way the index sets are chosen.

1. j� = 2 · i�. This implies that the product a�b� ends up in the degree j� mono-
mial.

2. For all i� ∈ I we require that i� < d/2, so that no wrap-around happens
during reduction in R.

3. For all i�, iι ∈ I that are pairwise different, then i� + iι /∈ J . This implies
that cross products between a� and bι (and aι and bδ) do not end up on a
monomial of J .

Under these restrictions, we obtain the following when multiplying ESIMD
in (a) and

ESIMD
in (b):

ESIMD
in (a) · ESIMD

in (b) = (a0 · ξi0 + · · · + aδ−1 · ξiδ−1) · (b0 · ξi0 + · · · + bδ−1 · ξiδ−1)

=
∑

�∈[δ]

(

a�b� · ξj� +
∑

ι∈([δ]\{�})
(a�bι + aιb�) · ξi�+iι

)

.

Notice that this is different from ESIMD
out (a ∗b), as the monomials of degree j /∈ J

have coefficients which have not been sampled independently and uniformly at
random from Z2k . Yet, we have that Eq. (7) holds.

Turning our attention to δ, asymptotically we have δ ∼ d0.6, as pointed out
by [16]. However, for small values of d this allows for relatively large values of δ.
Taking into account that in Shamir secret sharing over Galois Rings (or small
finite fields) we would have that d = O(log n), we get reasonable values for δ
despite the poor asymptotic. Table 2 provides some examples of the index sets
defining ESIMD

in and ESIMD
out for different values of d.

Circuit Amortization Friendly Encodings and Their Application 233

Table 2. Examples of I and J for different values of d.

d δ I J

3–6 2 {0, 1} {0, 2}
7–8 3 {0, 1, 3} {0, 2, 6}
9–16 4 {0, 1, 3, 4} {0, 2, 6, 8}
17 5 {0, 1, 3, 7, 8} {0, 2, 6, 14, 16}

Double Share Generation. Protocol 6 shows how to generate double-shares
for SIMD encoding. As in our previous protocols, this is a two-step process, where
we first generate shares in batches and then we check for correctness all of them
at once.

Protocol 6. ΠSIMDds — Double-sharings for SIMD encoding.

Let M ∈ R(n−t)×n be a Hyper-Invertible matrix and δ the packing capability
of R. Let ΨM : (Nd)n → (Nd)n−t be as defined in Section 4.1 (Equation (5)).

Generate. Parties produce a batch of d · (n − t) random double-shares as
follows:
1. For
 ∈ [d], each party Pi samples si

� ← (Z2k)δ and calls both
ΠShare(Ein(si

�), t) and ΠShare(Eout(si
�), 2t).

2. Parties apply ΨM to their degree-t and degree-2t shares in the same
way:

(〈Ein(r10)〉, . . . , 〈Ein(r1d−1)〉; . . . ; 〈Ein(rn−t
0)〉, . . . , 〈Ein(rn−t

d−1)〉)
= ΨM

(〈Ein(s10)〉, . . . , 〈Ein(s1d−1)〉; . . . ; 〈Ein(sn
0)〉, . . . , 〈Ein(sn

d−1)〉
)

(〈Eout(r10)〉, . . . , 〈Eout(r1d−1)〉; . . . ; 〈Eout(rn−t
0)〉, . . . , 〈Eout(rn−t

d−1)〉)
= ΨM

(〈Eout(s10)〉, . . . , 〈Eout(s1d−1)〉; . . . ; 〈Eout(sn
0)〉, . . . , 〈Eout(sn

d−1)〉
)

Batch Check. Let m be the number of batches produced in the previous
step. We need to check that the degree t and degree 2t shares are using
their respective encodings (I and J). We also verify that both shares
encode the same vector r. Throughout, j ∈ [m] identifies each batch.
1. For each 〈Ein(ri

j,�)〉, 〈Eout(ri
j,�)〉 and τ ∈ [λ], parties generate a ran-

dom bit χi,τ
j,� ← Frand({0, 1}).

234 A. Dalskov et al.

2. For τ ∈ [λ], parties compute:

〈xτ 〉t =
m−1∑

j=0

n−t∑

i=1

d−1∑

�=0

χi,τ
j,� · 〈Ein(ri

j,�)〉t

〈yτ 〉2t =
m−1∑

j=0

n−t∑

i=1

d−1∑

�=0

χi,τ
j,� · 〈Eout(ri

j,�)〉2t

and call ΠrPub to reconstruct both xτ , yτ .
3. If for any τ ∈ [λ] parties observe either that

– xτ is not a I-encoding (i.e. xτ /∈ Im(Ein)), or
– E−1

in (xτ) �= E−1
out(yτ)

then they abort.
4. For τ ∈ [λ], let (iτ , jτ ,
τ) ∈ {[m] × [1, n − t] × [d]} be a triplet of

indices such that χiτ ,τ
jτ ,�τ

= 1. Define D = {(iτ , jτ ,
τ) | τ ∈ [λ]}.
Output. For (i, j,
) ∈ {[m]× [1, n− t]× [d]}\D, where D is defined on Step

4 of Batch Check, output the double sharings (〈Ein(ri
j,�)〉t, 〈Eout(ri

j,�)〉2t).

Theorem 2. ΠSIMDds in Protocol 6 securely produces m · (n − t) · d − λ valid
double-sharings for the SIMD encoding.

Proof. Let A ⊂ [1, n] denote the indices of the parties corrupted by A and assume
a non-aborting execution ΠSIMDds. We do not care about the abort scenario, as
in such case all double-shares are discarded and, furthermore, no private MPC
inputs have been yet provided.

Correctness. In an honest protocol execution, it follows from the discussion
in Sect. 4.1 that ΠSIMDds produces double-shares of the right form. When A
deviates from the protocol, we need to look at what is implied by the non-
aborting execution of Batch Check.

Denote by 〈ri
j,�〉 (resp. 〈r̃i

j,�〉) the output from Generate that in a fully
honest execution would be 〈Ein(rj,�)〉t (resp. 〈Eout(rj,�)〉2t). Batch Check has
two goals. The first one is ensuring that 〈ri

j,�〉 (resp. 〈r̃i
j,�〉) is actually an Ein-

encoding (resp. Eout-encoding). In particular, if we see each ri
j,� ∈ R in its unique

additive representation ri
j,� =

∑d−1
ι=0 ri

j,�,ι · ξι (where ri
j,�,ι ∈ Z2k), we want to

prove that ∀ι /∈ I, ri
j,�,ι = 0. Applying the same reasoning as in the proof of the

Z2k-outputs step of ΠFLEXds (see Theorem 1), we conclude from the Schwartz-
Zippel Lemma that this happens with probability at most (d − |I|) · 2−λ.

Express r̃i
j,�, xτ , yτ in their unique additive representations, i.e. r̃i

j,� =
∑d−1

ι=0 r̃i
j,�,ι · ξι and similarly for the others. The second goal of Batch Check

is proving that ∀ι ∈ I, ri
j,�,ι = r̃i

j,�,2ι. Let M = m · (n − t) · d. We can look at
fτ,ι = xi

τ,ι − yi
τ,2ι as an M -variate linear polynomial, where the coefficients are

Circuit Amortization Friendly Encodings and Their Application 235

ri
j,�,ι − r̃i

j,�,2ι and the variables are evaluated at χi,τ
j,� ∈ {0, 1}. Once again, by

the Schwartz-Zippel Lemma, we have that if fτ,ι is not identically equal to zero,
then Prχτ ←AM [fτ,ι(χτ) = 0] ≤ 1/2. Hence, ∀ι ∈ I, if we let χ = (χ1, . . . ,χλ),
then Prχ←{0,1}M·λ [f0,ι = . . . = fλ,ι = 0] ≤ 2−λ. Applying a union bound we can
conclude that, if the test passes, it is at most with probability |I| · 2−λ that we
do not have the same ri

j,� on the Ein and the Eout encodings.

Privacy. Let’s first look at the Generate step. For the degree-t and the degree-
2t shares, respectively, the Adversary knows at most t blocks of inputs, namely
{〈Ein(si

0)〉t, . . . , 〈Ein(si
d−1)〉t}i∈A and {〈Eout(si

0)〉2t, . . . , 〈Eout(si
d−1)〉2t}i∈A. By

Lemma 7, we know that the values {〈Ein(ri
�)〉t, 〈Eout(ri

�)〉2t}i∈[1,n],�∈[d] are secret
and i.i.d. uniformly random from A’s perspective.

Finally, the outputs of Batch Check do not leak any information on the
output values. This follows from the fact that each revealed (xτ , yτ) is one-time
padded by the discarded values indexed by the set D = {(iτ , jτ) | τ ∈ [λ]}. ��
Random Bit Generation for SIMD. This section we give a way for producing
shares of random bits for SIMD, but first we introduce an intermediate protocol
for producing shares of ESIMD

out (a), where a ∈ (Z2k)δ is some fixed, known vector.
This is given in Protocol 7 as ΠSIMDout.

At a high level, ΠSIMDout works by having parties generate zero shares and
offsetting these zero shares by a. Producing shares of zero is done in the same
manner as producing random ESIMD

out shares in ΠSIMDds by having parties instead
use s = 0. Batch checking also works in the same way as in ΠSIMDds, with parties
checking yτ = ESIMD

out (0). Proof of Proposition 3 follows the proof of Theorem 2.

Protocol 7. ΠSIMDout — Producing 〈Eout(a)〉 for a fixed a.

Let M ∈ R(n−t)×n a Hyper-Invertible matrix and let ΨM : (Nd)n →
(Nd)n−t be as defined in Section 4.1 and depicted in Equation (5). Let
δ the packing capability of R. Denote by 0 the all-zero vector of length
δ and parse the input a ∈ Z

δ
2k as a = (a0, . . . , aδ−1). Recall that Eout is

defined by J = {j0, . . . , jδ−1}.

Generate. Parties produce a batch of d · (n − t) random Eout-sharings of
zero as follows:
1. For
 ∈ [d], each Pi samples zi

� = Eout(0) and calls ΠShare(zi
�, t).

2. Parties apply ΨM to their shares in the following way:

(〈Z1
0 〉, . . . , 〈Z1

d−1〉, . . . , 〈Zn−t
0 〉, . . . , 〈Zn−t

d−1〉)
= ΨM

(〈z10〉, . . . , 〈z1d−1〉, . . . , 〈zn
0 〉, . . . , 〈zn

d−1〉
)

Batch Check. Let m be the number of batches produced in the previous
step. For j ∈ [m],
 ∈ [d] and i ∈ [1, n − t], we need to verify that
〈Zi

j,�〉 = Eout(0).

236 A. Dalskov et al.

1. For each 〈Zi
j,�〉 and τ ∈ [λ], parties sample χi,τ

j,� ← Frand({0, 1}).
2. For τ ∈ [λ], parties compute:

〈xτ 〉 =
m−1∑

j=0

n−t∑

i=1

d−1∑

�=0

χi,τ
j,� · 〈Zi

j,�〉

and call ΠrPub to reconstruct xτ .
3. If for any τ ∈ [λ] parties observe that E−1

out(xτ) �= 0, they abort.
4. For τ ∈ [λ], let (iτ , jτ ,
τ) ∈ {[m] × [1, n − t] × [d]} be a triplet of

indices such that χiτ ,τ
jτ ,�τ

= 1. Define D = {(iτ , jτ ,
τ) | τ ∈ [λ]}.

Output. Let A =
∑δ−1

k=0 ak · Xjk . For (i, j,
) ∈ {[m] × [1, n − t] × [d]} \ D,
where D is defined on Step 4 of Batch Check, output the m · (n− t) ·d−λ
different sharings of a as 〈Eout(a)〉 = 〈Zi

j,�〉 + A.

Proposition 3. ΠSIMDout in Protocol 7 securely produces a minimum of m ·(n−
t) · d − δ shares of a public value for the SIMD encoding.

ΠSIMDbits in Protocol 8 gives a way of generating shares of the form
〈ESIMD

out (b)〉, where b ← {0, 1}δ. Similar to ΠFLEXbits, this follows the outline
of the RandBit protocol of [11]. The main differences are in Steps 3 and 6 where
add ESIMD

out shares of some publicly know values, which we produce using ΠSIMDout.
The reason for this is that elements in ESIMD

out have uniformly random coefficients
in the positions j /∈ J . As the multiplication of two ESIMD

in values introduces
the result of some cross-products of the Z2k encoded values in such positions,
we need to add these secret sharings of ESIMD

out (0) and ESIMD
out (1) as a masking

mechanism. By Eq. (7), we obtain the displayed results.

Protocol 8. ΠSIMDbits — Random bits for SIMD encoding.

Let R̃ = GR(2k+2, d), R = GR(2k, d), and δ the packing capability of R.
Denote 0 and 1 be the all-zero and all-one vectors of length δ, respectively.
For j ∈ [m], parties produce 〈Eout(bj)〉t, where bj ← {0, 1}δ as follows:

1. For j ∈ [m] parties produce shares 〈Ein(uj)〉R̃
t of secret, random uj =

(uj,0, . . . , uj,δ−1) ∈ (Z2k+2)δ. This can be done as in ΠSIMDds (Protocol 6)
by skipping the generation of Eout values there and hence the computation
of yτ .

2. Compute 〈Ein(aj)〉R̃
t = 2 · 〈Ein(uj)〉R̃

t + Ein(1).
3. Compute 〈Eout(a2j)〉R̃

2t = 〈Ein(aj)〉R̃
t · 〈Ein(aj)〉R̃

t + 〈Eout(0)〉R̃
t where

〈Eout(0)〉R̃
t is produced using Protocol 7.

4. Call ΠrPub to reconstruct 〈Eout(a2j)〉R̃
2t for all j ∈ [m] and parse the

revealed a2j as a vector (a2
j,0, . . . , a

2
j,δ−1) ∈ (Z2k+2)δ.

Circuit Amortization Friendly Encodings and Their Application 237

5. For
 ∈ [δ], let cj,� be the smallest root modulo 2k+2 of a2
j,� and let c−1

j,�

be its inverse. Write c−1
j = (c−1

j,0 , . . . , c−1
j,δ−1).

6. Compute 〈Eout(dj)〉R̃
t = Ein(c−1

j) · 〈Ein(aj)〉R̃
t + 〈Eout(1)〉R̃

t , where

〈Eout(1)〉R̃
t is produced using Protocol 7.

7. Finally, each party divides their share of 〈Eout(dj)〉R̃
t by 2. We denote

the result of this operation 〈Eout(bj)〉R
t , which is our final output.

Proposition 4. ΠSIMDbits in Protocol 8 securely produces shares of m · δ ran-
dom bits for the SIMD encoding, where δ is the SIMD packing capacity of
R = GR(2k, d).

Analysis. We now discuss the SIMD encoding. This encoding can compute in
parallel δ ≈ d/4 + 1 circuits that each have one multiplication and one output.

Batches of d ·(n−t) double shares for SIMD encoding can be generated in the
offline phase with 2 ·d ·n calls to ΠShare. Similar to the FLEX Batch Check, the
communication cost of the Batch Check of SIMD double shares is independent
of the number of batches produced. Checking m batches of double shares can be
done with 2 · λ/(n − t) calls to ΠrPub.

Producing d · (n− t) shares of encodings (both fixed values or random) takes
d calls to ΠShare. The cost of the batch check in either of these cases takes
λ/(n − t) calls to ΠrPub. Producing m random bits takes m/(n − t) calls to
ΠShare, (λ + m)/(n − t) calls to ΠrPub, and 2 · m calls to ΠSIMDout.

5 Efficiency Analysis

We implemented ΠFLEXds and ΠSIMDds and compared them with a double-share
generation protocol extracted from [1, Figure 2] as a baseline.3 We provide var-
ious microbenchmarks for different stages of these protocols, as well as our
InnerProd encoding scheme. For each of these protocols, we are mainly inter-
ested in their throughput, but we also compare our approach with that of [1] for
a specific circuit in Sect. 5.5.

5.1 Experiment Setup

We set k = 64 and d = 4. With k = 64, all operations in Z2k can take place on
uint64 t types, and setting d = 4 lets us support up to 15 parties. Our Galois
Ring is therefore GR(264, 4) = Z264 [X]/(h(X)) where h(X) = X4 + X + 1. Our

3 Although the protocol in [1] is used to generate sharings of random elements, it
is trivial to modify it to generate double-shares to use for multiplication: The same
random element is shared twice with degree t and 2t, and when the check is performed
we additionally check that the opened shares are equal.

238 A. Dalskov et al.

implementation was written in C++ and the code can be found at https://
github.com/eysalee/cafe. Openmp was used in various places to speed up local
computation.

Experiments were run on c5.9xlarge machines on a local network. Each
machine is equipped with 36 cores, 76 gb of memory, and are connected with a
10 Gpbs network. The average rtt between machines is 0.29 ms.

Everlasting/Computational Security. Our experiments constitute a prototype
and hence are not a statistically secure implementation of our protocols. If we
ignore the (obvious) fact that we do not use pure randomness in ΠShare, we
actually implement an everlasting version of our protocols [19]. In more detail,
our protocols are secure against adversaries that are computationally unlimited
after the protocol execution. This stems from the fact that we implement Frand in
a computationally secure fashion, so that we can toss coins non-interactively once
a PRG seed is sampled. Thus, our overall protocol is everlasting-secure, since
we only require Frand to be computationally unpredictable during the protocol
execution, but once the randomness has already been sampled, an unbounded
adversary breaking the PRG cannot harm the protocol.

5.2 Experiments

We experimentally investigate the efficiency of the preprocessing protocols pre-
sented in Protocol 4 (ΠFLEXds) and Protocol 6 (ΠSIMDds) by comparing them
against a double share procedure presented extracted from [1]. For each proto-
col, we measured the running time of the generation step as well as the batch
check. For the protocol in [1], the generation step encompasses generating ran-
domness, sending shares and evaluating the hyper-invertible matrices. The check
step involves reconstructing 2t double-shares per batch and verifying that (1)
the reconstructed tuple are Z2k elements and (2) that the two shares are the
shame (thus being a valid double share). We note that our implementation of [1]
uses ΠrPub rather than ΠrPriv, making it somewhat sub-optimal. Nevertheless, we
remark that the communication complexity of ΠrPub is roughly just twice that
of ΠrPriv, and that the extra round in ΠrPub will not affect much our reported
numbers due to the low network latency. Hence, even with this quantitative
inaccuracies, the qualitative results of our experiments remain the same.

We ran each protocol several times and took the average of the running
time. Each protocol was run with n set to 4, 7, 10 and 13 parties (thus giving us
thresholds 1, 2, 3 and 4). For each n we generated 1260, 12 600, 63 000, 126 000
and 630 000 double-shares.4 For our InnerProd encoding, we report on local com-
putation times. Since generating double shares for this encoding is captured by
the experiments pertaining to ΠFLEXds, looking at the speedup in terms of local
computation is more insightful.

4 A quirk in our implementation requires the number of double shares that are gener-
ated to be divisible by the different batch sizes.

https://github.com/eysalee/cafe
https://github.com/eysalee/cafe

Circuit Amortization Friendly Encodings and Their Application 239

Fig. 2. Running time generating a varying number of shares for fixed number of parties.

Fig. 3. Varying the number of parties who generate 126k double-shares.

Finally, we use our results to analytically obtain the running time of evalu-
ating an SVM on 100 inputs in parallel. This is done both to get an intuition
about the cost of our protocols in connection with a real application, as well as
to showcase the functionality of our SIMD encoding.

5.3 Results

Figure 2 shows running time for increasing number of double share generation for
a fixed number of parties (4 and 13).5 Interestingly, we see that the näıve double-
share protocol of [1] is faster for a smaller number of parties. However, when the
number of parties increase, our protocols are a lot more efficient.

We can further see this fact in Fig. 3. Indeed, the running time of both our
protocols increase only slightly when the number of parties increase. This demon-
strates the benefit of the check we utilize, which does not depend on the number
5 Our experiments lack a data point for FLEX in the case of 630k shares.

240 A. Dalskov et al.

Fig. 4. Running time for the generation (left) and check (right) step of double share
protocols, for variable number of parties generating 126k double-shares.

of parties, as opposed to the protocol in [1] which need to open 2t shares per
batch. We note that the plots for our protocols should ideally follow a parabolic
curve as well, but that it would increase at a much slower rate than the curve
for [1]. We explain this difference by the relatively small number of data points
as well as the fact that local computation is in many cases a dominant factor.
We return to this point in the next section.

Finally, we consider the distribution of time spent when generating, respec-
tively checking shares. Figure 4 shows timings presented in Fig. 3, but separated
into the generation step and checking step.

We clearly see that the generation step of each protocol is not that different.
On the other hand, the right graph in Fig. 4 clearly shows the benefit of the check
step in our protocol. This graph also shows that we are not making an unfair
comparison by having sub optimal protocol for [1]. Indeed, even if this protocol
communicated half the number of bits, the general trend we see would still be
present, and the extra round does not impact the result as the round-trip-time
in our setup is less than 0.3 ms.

5.4 Micro Benchmarks

We also run a number of micro-benchmarks. First, we look at the speedup by
using our InnerProd encoding. Not surprisingly, we see a speedup approaching
×2. The table below shows local computation times of computing inner products
of varying lengths (with the length denoted as multiplies of 100 000).

Length 0.1 1 10 100 500
Näıve [1] (ns) 298.7 320.7 404.9 421.0 461.1
InnerProd (ns) 207.2 104.0 289.5 350.5 347.1

Circuit Amortization Friendly Encodings and Their Application 241

We further perform timings of the local computation that is performed in
the generation step of ΠFLEXds and ΠSIMDds, as this is where the majority of
computation is spent. The table below provides some insight in this regard.

double-shares 1 260 12 600 63 000 126 000 630 000
SIMD (s) 0.03 0.12 0.47 0.91 4.44
FLEX (s) 0.05 0.13 0.51 0.99 4.87
Näıve [1] (s) 0.01 0.07 0.31 0.61 3.00

We see a small difference in times between our protocols and the one in [1];
besides slight variations in programming style (which may affect compiler opti-
mizations), the main difference comes from the added processing (e.g., encoding)
of the random values that is needed in our protocols; something which does not
exist in the protocol of [1].

5.5 Extrapolation to Practical Applications

Finally, we examine the running time of evaluating an SVM using our SIMD
encoding, and compare this with the protocol of [1]. To be concrete, we consider
a linear SVM on a dataset of 3072 features and 10 classes.6 Thus, the function we
wish to evaluate is f(x) = argmaxi(wix+bi) where wi and bi are the parameters
of the model, and i denotes a class. This computation can be expressed as follows:
Compute z = Wx + b, where W is a matrix with the vectors wi arranged in
the rows. z will be a 10 × k vector, where k denotes the number of images, and
the remaining step is to find the index of the entry with the highest value, for
which we can use a bit-sliced circuit which requires 1216 AND gates since we
have 10 classes and 64 bit wide values. We present here two cost formulas that
can be used to derive the number of double-shares required to evaluate an SVM
on k images. How we arrive at these formulas is described in the full version:

Näıve case: C0(k) = k(1216 + 2 · 64 · 10).

SIMD case: CSIMD(k) = k/2(1216 + 2.5 · 64 · 10).

Acknowledgements. We thank the Asiacrypt 2020 reviewers for their useful feed-
back. Eduardo Soria-Vazquez was supported by the Carlsberg Foundation under the
Semper Ardens Research Project CF18-112 (BCM). Anders Dalskov was supported by
the Danish Independent Research Council under Grant-ID DFF-6108-00169 (FoCC).
Eysa Lee was supported by the National Science Foundation grant 1646671 and Office of
the Director of National Intelligence (ODNI), Intelligence Advanced Research Project
Activity (IARPA) under contract number 2019-19-020700009 (ACHILLES).

References

1. Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over Z/pk

Z via Galois rings.
In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 471–501.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 19

6 This matches an SVM trained on the CIFAR10 image prediction problem.

https://doi.org/10.1007/978-3-030-36030-6_19

242 A. Dalskov et al.

2. Abspoel, M., Dalskov, A., Escudero, D., Nof. A.: An efficient passive-to-active
compiler for honest-majority MPC over rings. Cryptology ePrint Archive, Report
2019/1298 (2019). https://eprint.iacr.org/2019/1298

3. Barak, A., Hirt, M., Koskas, L., Lindell, Y.: An end-to-end system for large scale
P2P MPC-as-a-service and low-bandwidth MPC for weak participants. In: Lie, D.,
Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 695–712. ACM
Press, October 2018

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

5. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13

6. Bishnoi, A., Clark, P.L., Potukuchi, A., Schmitt, J.R.: On zeros of a polynomial in
a finite grid. Comb. Prob. Comput. 27(3), 310–333 (2018)

7. Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation based on leaky cor-
relations: high resilience setting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 3–32. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63715-0 1

8. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-
theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 395–426. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 14

9. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11477, pp. 473–503. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3 17

10. Cramer, R., Rambaud, M., Xing, C.: Asymptotically-good arithmetic secret shar-
ing over Z/p�

Z with strong multiplication and its applications to efficient MPC.
Cryptology ePrint Archive, Report 2019/832 (2019). https://eprint.iacr.org/2019/
832

11. Damg̊ard, I., Escudero, D., Frederiksen, T.K., Keller, M., Scholl, P., Volgushev,
N.: New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy, pp. 1102–
1120. IEEE Computer Society Press, May 2019

12. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primitives
for MPC over mixed arithmetic-binary circuits. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 823–852. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 29

13. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: 24th ACM STOC, pp. 699–710. ACM Press, May 1992

14. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–
249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 12

15. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October
2016

https://eprint.iacr.org/2019/1298
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-319-63715-0_1
https://doi.org/10.1007/978-3-319-63715-0_1
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17
https://eprint.iacr.org/2019/832
https://eprint.iacr.org/2019/832
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-319-61204-1_12

Circuit Amortization Friendly Encodings and Their Application 243

16. Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: efficient secure MPC over
Z2k from somewhat homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020.
LNCS, vol. 12006, pp. 254–283. Springer, Heidelberg (2020)

17. Rotaru, D., Wood, T.: MArBled circuits: mixing arithmetic and Boolean circuits
with active security. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019.
LNCS, vol. 11898, pp. 227–249. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-35423-7 12

18. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

19. Unruh, D.: Everlasting multi-party computation. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 380–397. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 22

https://doi.org/10.1007/978-3-030-35423-7_12
https://doi.org/10.1007/978-3-030-35423-7_12
https://doi.org/10.1007/978-3-642-40084-1_22

Efficient Fully Secure Computation via
Distributed Zero-Knowledge Proofs

Elette Boyle1, Niv Gilboa2, Yuval Ishai3, and Ariel Nof3(B)

1 IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu

2 Ben-Gurion Univeristy, Beersheba, Israel
gilboa@bgu.ac.il

3 Technion, Haifa, Israel
{yuvali,ariel.nof}@cs.technion.ac.il

Abstract. Secure computation protocols enable mutually distrusting
parties to compute a function of their private inputs while revealing noth-
ing but the output. Protocols with full security (also known as guaranteed
output delivery) in particular protect against denial-of-service attacks,
guaranteeing that honest parties receive a correct output. This feature
can be realized in the presence of an honest majority, and significant
research effort has gone toward attaining full security with good asymp-
totic and concrete efficiency.

We present an efficient protocol for any constant number of parties
n, with full security against t < n/2 corrupted parties, that makes a
black-box use of a pseudorandom generator. Our protocol evaluates an
arithmetic circuit C over a finite ring R (either a finite field or R = Z2k)
with communication complexity of 3t

2t+1
S + o(S) R-elements per party,

where S is the number of multiplication gates in C (namely, < 1.5 ele-
ments per party per gate). This matches the best known protocols for
the semi-honest model up to the sublinear additive term. For a small
number of parties n, this improves over a recent protocol of Goyal et al.
(Crypto 2020) by a constant factor for circuits over large fields, and by
at least an Ω(log n) factor for Boolean circuits or circuits over rings.

Our protocol provides new methods for applying the distributed zero-
knowledge proofs of Boneh et al. (Crypto 2019), which only require log-
arithmic communication, for compiling semi-honest protocols into fully
secure ones in the more challenging case of t > 1 corrupted parties. Our
protocol relies on replicated secret sharing to minimize communication
and simplify the mechanism for achieving full security. This results in
computational cost that scales exponentially with n.

E. Boyle—Supported by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and
ERC Project HSS (852952).
N. Gilboa—Supported by ISF grant 2951/20, ERC grant 876110, and a grant by the
BGU Cyber Center.
Y. Ishai and A. Nof—Supported by ERC Project NTSC (742754), ISF grant 2774/20,
NSF-BSF grant 2015782, and BSF grant 2018393.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 244–276, 2020.
https://doi.org/10.1007/978-3-030-64840-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_9

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 245

Our main protocol builds on a new honest-majority protocol for ver-
ifying the correctness of multiplication triples by making a general use
of distributed zero-knowledge proofs. While the protocol only achieves
the weaker notion of security with abort, it applies to any linear secret-
sharing scheme and provides a conceptually simpler, more general, and
more efficient alternative to previous protocols from the literature. In
particular, it can be combined with the Fiat-Shamir heuristic to simul-
taneously achieve logarithmic communication complexity and constant
round complexity.

1 Introduction

Protocols for secure computation [2,7,19,38] enable a set of parties with private
inputs to compute a joint function of their inputs while revealing nothing but
the output. Secure computation protocols provide a general-purpose tool for
computing on sensitive data while eliminating single points of failure.

Beyond privacy and correctness, a highly desirable feature of such protocols
is guaranteed output delivery, also known as full security, where honest parties
are guaranteed to receive the final output of computation. This is in contrast to
weaker notions of security, such as security with abort or fairness, which leave
protocols vulnerable to denial-of-service attacks.

Full security can be achieved with an honest majority, namely when there are
n ≥ 3 parties of which at most t < n/2 are corrupted. This holds uncondition-
ally given secure point-to-point channels and a broadcast primitive [35] (where
the latter can be realized from a public-key infrastructure using digital signa-
tures [12]), or alternatively using only secure channels assuming t < n/3 [2,7].
However, despite intensive research efforts, there is still a significant efficiency
gap between the best known protocols achieving full security and those achieving
weaker notions. We focus on the communication complexity of such protocols,
which in the domain of concretely efficient protocols typically dominates overall
cost. In this work, “concretely efficient” is interpreted as making only black-box
use of a pseudo-random generator (PRG).1

A useful metric for measuring efficiency of fully secure protocols is the ratio
between the communication cost of the protocol and that of the best known
protocol with a “minimal” level of security, namely security against semi-honest
parties, who act as prescribed by the protocol but try to learn additional infor-
mation from messages they receive. Minimizing the overhead of full security
has been the subject of a large body of work; see [5,6,21,23,26] and references
therein. Here we focus on the more challenging case of a minimal honest majority
(t < n/2). The ultimate goal is to obtain full security with the same communi-
cation complexity as the best known protocols that achieve semi-honest security,
up to sublinear additive terms.
1 As opposed to expensive cryptographic tools such as fully homomorphic encryp-

tion [17,36], where communication is asymptotically small but overall concrete costs
are high. In the context of protecting against malicious parties, a PRG is not known
to imply sublinear-communication arguments for NP in the standard setting.

246 E. Boyle et al.

The most relevant state of the art toward this goal is captured by two recent
works: Boyle et al. [5] in the special case of 3 parties (i.e., n = 3, t = 1), and
Goyal et al. [23] that approaches the goal for general n.

For the special case of 3 parties, the fully secure protocol of Boyle et al. [5]
matches the amortized cost of the best known semi-honest protocol in this setting
(due to Araki et al. [1]). More specifically, the protocol from [5] evaluates an arith-
metic circuit C over a finite ring R with an amortized communication cost of a
single R-element per party per multiplication gate.2 The protocol applies to rings
R that are either finite fields or rings of the form R = Z2k , and in particular applies
to Boolean circuits with an amortized cost of just 1 bit per party per AND gate.

Very recently, Goyal et al. [23] presented a fully secure protocol for arbitrary
n that applies to the case where R is a large finite field, and provides informa-
tion theoretic security. In the case that parties do not deviate from the protocol,
the amortized per-party communication cost is 5.5 field elements, matching that
of the best known information-theoretic semi-honest protocol. However, several
gaps remain to the ultimate goal. If cheating occurs, the amortized communica-
tion cost of the protocol increases to 7.5 field elements per party, above the 5.5
semi-honest baseline. Further, by allowing black-box use of PRGs in the place of
information theoretic security, the semi-honest baseline can be improved. Finally,
the protocol of [23] only applies to the case that R is a finite field, as opposed to
more general rings, and the quoted communication complexity is achieved only
when the field is large. For instance, for Boolean circuits the protocol induces
an additional log n factor. Overall, removing these limitations introduces several
challenges which require new techniques.

In this work, we make progress toward closing the remaining gaps, focusing
our attention on the practically motivated case of a constant number of par-
ties3 n. Even in this setting, designing fully secure protocols is a challenging
task. Indeed, concretely efficient protocols in an even more restricted settings
of n = 3, 4 or 5 parties, of which only t = 1 may be corrupted, have been the
target of several previous works (e.g., [5,6,20,25,31,33]). However, these proto-
cols are heavily tailored to the case t = 1, and there are multiple difficulties one
encounters when trying to efficiently extend them to larger t.

For a constant threshold t and n = 2t + 1, the relevant semi-honest baseline
is a protocol from [4] that optimizes a protocol of Damg̊ard and Nielsen [11]
using pseudorandom secret sharing [10,18]. The amortized communication cost
is 3t

2t+1 (< 1.5) R-elements per party per multiplication gate. This sets our target
communication goal for full security.

2 Namely, communication of S + o(S) ring elements per party, where S is the number
of multiplication gates in C.

3 More generally, our main protocol incurs computation and storage costs that scale
exponentially with n. However, these costs involve only symmetric cryptography and
can be shifted almost entirely to an offline phase, before the inputs are known.

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 247

Relaxing full security to security with abort, this goal was recently met by
Boyle et al. [4]. For the case of non-constant t, the amortized overhead of security
with abort was also eliminated recently, first for n = 3t + 1 parties by Furukawa
and Lindell [15] and then for n = 2t + 1 parties by Goyal and Song [22]. (A
similar result, with a bigger sublinear additive term, can be obtained from the
technique of [4].) However, in all these protocols, the parties immediately abort
whenever cheating is detected. As always, the challenge of full security is in safely
recovering to completion in the case corrupt parties send improper messages,
withhold information, or exit the computation prematurely.

1.1 Our Contributions

Our main contribution is a secure computation protocol for any constant number
of parties n = 2t + 1 that achieves full security against up to t malicious par-
ties with the same amortized communication as for the best known semi-honest
protocol mentioned above. Our protocol applies to both Boolean and arithmetic
circuits, and even over the rings Z2k . It uses a broadcast channel Fbc (necessary
to achieve full security in this setting, where broadcast is not possible without
setup [34]), and makes only black-box use of a PRG. The total size of strings
communicated over Fbc is sublinear in the circuit size.

A basic building block in our construction is an arbitrary n-party protocol
Πmult for private multiplication based on replicated secret-sharing [27]. In such a
protocol, inputs to a multiplication gate are shared by replicated secret sharing,
and if all parties act honestly then in the end of the protocol the product of the
inputs is also shared by the same scheme. Furthermore, even if t malicious parties
act dishonestly in the protocol, they do not obtain information on the inputs
of the honest parties. The usefulness of replicated secret sharing for simplifying
general secure computation protocols was first pointed out by Maurer [30]. The
most communication-efficient instance of a protocol of this type was given by
Boyle et al. [4], combining the approach of Damg̊ard and Nielsen [11] with the
pseudorandom secret sharing technique of Cramer et al. [10] (see also [18]).

Our first result shows how to use this building block in a generic way to
achieve full security with only sublinear additive communication overhead when
no cheating occurs. When cheating does occur, there is an additional additive
term that grows linearly with a circuit “width” parameter W . Intuitively, the
circuit width captures the amount of space required by the computation.

At a very high level, the protocol starts by using Πmult to privately com-
pute shares of the outputs of all multiplication gates, without reconstructing
them. It then ensures that these outputs are correct by applying distributed
zero-knowledge proofs, i.e., proofs of a statement on an input that is distributed
between several verifiers. Such proofs for simple languages, including the “degree-
2 languages” we require, can have sublinear (in fact, logarithmic) length in the
size of the statement [4], which we use to achieve low communication overhead.
A major challenge that we solve is efficient recovery from failures. We achieve
this by a careful combination of a player elimination approach (cf. [24]) with an

248 E. Boyle et al.

authentication mechanism (cf. [35]). Our particular way of combining these tech-
niques takes advantage of the redundancy provided by replicated secret sharing
and the amortization enabled by pseudorandom secret sharing.

Using the concrete instantiation of Πmult from [4,11], we can eliminate the
extra O(W) additive overhead and obtain the following main result.

Theorem 1.1 (Efficient fully secure MPC for constant n). Let R be a
finite field or a ring of the form Z2k , let t ≥ 1 be a constant security threshold
and n = 2t + 1. Then, assuming a black-box access to a PRG, there is a fully
t-secure n-party protocol that evaluates an arithmetic circuit over R, with S
multiplication gates, by communicating 3t

2t+1S + o(S) ring elements per party.

Compared to the recent protocol from [23], this improves the worst-case amor-
tized communication by at least a factor of 5 over big fields, and by at least a
5 log2 n factor for Boolean circuits and circuits over Z2k . Moreover, unlike the
protocol from [23], here we can match the amortized cost of the best known
semi-honest protocol even when cheating occurs. However, unlike the protocol
from [23], our protocol is restricted to a constant number of parties and provides
computational (rather than information-theoretic) security.

The Simpler Case of Security-with-Abort. As an intermediate step in
constructing fully secure protocols, we develop a protocol that is only secure-
with-abort, i.e., the adversary can force the honest parties to abort without
receiving an output. Unlike our main protocol, here we apply a general com-
pilation technique that is not restricted to replicated secret sharing or a small
number of parties. Instead, we give a simple protocol for verifying the correct-
ness of secret-shared multiplication triples by making a general use of (sublinear-
communication) distributed zero-knowledge proofs. The main difference between
the triple verification task and distributed zero knowledge is that in the latter
there is a prover who knows all of the (distributed) secrets, whereas in the for-
mer there is no such prover. Nevertheless, we show that triple verification can be
efficiently reduced to distributed zero knowledge. The high-level idea is to view
the shares held by all parties except Pi as a secret-sharing of the share held by Pi.
This allows each party to prove to the other parties that a computation it locally
performed on its shares was done correctly using distributed zero knowledge.

We stress that unlike similar verification protocols from [3,4,22], our app-
roach is very general and can rely on any instantiation of the underlying dis-
tributed proofs primitives. In particular, using the distributed zero-knowledge
protocols from [4,5], the verification cost is logarithmic in the size of the circuit.
This is similar to a verification procedure from [22] and better than the square-
root complexity of an earlier triple verification protocol from [4]. Compared to
the protocol from [22], our approach is more general, and can rely on any dis-
tributed zero-knowledge protocol for degree-2 languages, which in fact reduces to
a “zero-knowledge fully-linear IOP” for such languages [4]. Another advantage
of our triple verification protocol over that of [22] is that it can be combined
with the Fiat-Shamir heuristic to simultaneously achieve logarithmic communi-
cation complexity and constant (as opposed to logarithmic) round complexity.
See Sect. 4.3 for a detailed discussion of concrete efficiency.

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 249

As in the generic version of our main theorem, we can apply the above tech-
nique to compile any semi-honest MPC protocol that builds on a private multi-
plication sub-protocol into a similar protocol that achieves security-with-abort.
However, in the current case the private multiplication sub-protocol Πmult can
use any linear secret-sharing scheme, in particular Shamir’s scheme [37]. As a
result, our compiler can yield protocols that are efficient for any (super-constant)
number of parties n. This is captured by the following theorem.

Theorem 1.2 (Security-with-abort compiler for any n, informal). Let
R be either a finite field or a ring of the form Z2k , let t ≥ 1 be a security thresh-
old, and n = 2t + 1. Then, assuming a black-box access to any n-party t-private
protocol Πmult for multiplying linearly shared secrets over R, there is an n-party
protocol Π for arithmetic circuits over R with the following security and effi-
ciency properties. The protocol Π is t-secure-with-abort, with the same type
of security (information-theoretic or computational) as Πmult. It evaluates an
arithmetic circuit with S multiplication gates using communication complexity
of |Πmult| · S + on(S) elements of R, where |Πmult| is the communication com-
plexity of Πmult, and on hides polynomial terms in n.

Theorem 1.2 can be viewed as a more general alternative to the recent proto-
col from [22], which is tailored to a special kind of semi-honest protocol. Our
approach is more general both in its treatment of the underlying multiplication
sub-protocol and in the use of general distributed zero-knowledge proofs.

2 Preliminaries

Notation. Let P1, . . . , Pn be the set of parties and let t be such that n = 2t + 1.
In this work, we assume that there exists an honest majority and so the number
of corrupted parties is at most t. We use [n] to denote the set {1, . . . , n}. We
denote by F a finite field and by Z2k the ring of integers modulo 2k. We use the
notation R to denote a ring that can either be a finite field or the ring Z2k . We
use �x� to denote a secret sharing of x with threshold t (as defined below) and
〈x〉 to denote an additive sharing of x.

2.1 Computation Model

In this work, we model the computation that represent the functionality the
parties wish to compute, as a straight-line program, with addition and multipli-
cation instructions [9]. The advantage of this representation is that it captures
the notion of width, which is defined to be the maximal numbers of registers
required to store memory during the computation.

250 E. Boyle et al.

Definition 2.1 (Straight-line programs). A straight-line program over a ring
R consists of an arbitrary sequence of the four following instructions, each with
a unique identifier id:

– Load an input into memory: (id, R̂j ← xi).
– Add values in memory: (id, R̂k ← R̂i + R̂j).
– Multiply two values in memory: (id, R̂k ← R̂i · R̂j).
– Output value from memory, as element of R: (id,Oi ← R̂j).

where x1, . . . , xn are the inputs, O1, . . . , On are the outputs and R̂1, . . . , R̂W are
registers holding memory. We define the size of a program P as the number of
multiplication instructions and denote it by S. We define the width of P as the
number of registers W .

Every arithmetic circuit with S multiplication gates can be converted into a
straight-line program of size S by sorting its gates in an arbitrary topological
order. We will assume for simplicity that each party has a single input and
receives a single output. Our constructions can be easily adapted to the setting
of multiple inputs and outputs per party.

2.2 Threshold Linear Secret Sharing Schemes

Definition 2.2 A t-out-of-n secret sharing scheme is a protocol for a dealer
holding a secret value v and n parties P1, . . . , Pn. The scheme consists of two
interactive algorithms: share(v), which outputs shares �v� = (v1, . . . , vn) and
reconstruct(�v�T , i), which given the shares vj , j ∈ T ⊆ {1, . . . , n} outputs v or ⊥.
The dealer runs share(v) and provides Pi with a share of the secret vi. A subset
of users T run reconstruct(�v�T , i) to reveal the secret to party Pi by sending
their shares to Pi. The scheme must ensure that no subset of t shares provide
any information on v, but that v = reconstruct(�v�T , i) for any T , |T | ≥ t + 1.
We say that a sharing is consistent if reconstruct(�v�T , i) = reconstruct(�v�T ′ , i)
for any two sets of honest parties T, T ′ ⊆ {1, . . . , n}, and |T |, |T ′| ≥ t + 1.

Verifiable Secret Sharing (VSS). We say that share(v) is verifiable if at the end
of share(v), either the parties hold a consistent sharing of the secret or the honest
parties abort. This is achieved by adding a consistency check after each party
receives its shares from the dealer. We will describe consistency checks for the
secret sharing schemes used in our work below.

Authenticated Secret Sharing. We say that a secret sharing scheme is authen-
ticated if, assuming that the sharing phase was correctly executed, malicious
parties cannot prevent the correct reconstruction of the secret by tampering
with their shares. (Authenticated secret sharing is sometimes also referred to as
robust secret sharing.) We remark that it is not straightforward to achieve this
when t ≥ n/3, as standard error-correcting techniques do not suffice. In fact,
perfect reconstruction is provably impossible to achieve in this setting, and one
must settle for statistically small error probability. There is a recent line of work

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 251

on optimizing the efficiency of authenticated secret sharing; see [13] and refer-
ences therein. However, the asymptotically good constructions are quite complex
and are not attractive when the number of parties are small. In this work, we
only need to make minimal use of this primitive which is independent of the
size of the circuit. Thus, any implementation will suffice. An example for such a
simple implementation is the well-known construction of Rabin and Ben-Or [35]
based on pairwise authentication of shares.

Local Linear Operations and Multiplication. In this work, we require that linear
operations over a ring for a given secret sharing scheme can be carried out locally.
In particular, given �x�, �y� and some public constant c, the parties can compute:
(1) �x + y� (2) �c · x� and (3) �c + x�. We use the notation �x� + �y�, c · �x� and
c+ �x� to denote the three local procedures respectively that achieve this. Thus,
we have �x + y� = �x� + �y�, �c · x� = c · �x� and �c + x� = c + �x�.

While a linear secret sharing scheme does not allow multiplication of shares
without interaction, we assume that given �x� and �y�, the parties can locally
compute 〈x · y〉 (thus the interaction is required for reducing the threshold). We
denote the operation of computing the product’s additive sharing by �x� · �y�.

Local Conversion From �x� to �xi�. Given a consistent sharing �x�, we require
that the parties are able to locally generate a consistent sharing �xi�, where xi

is the share of x held by party Pi.

Instantiation 1: Replicated Secret Sharing [27]. To share a secret x ∈ R,
for each subset T of t parties the dealer hands a random share xT to the parties
in T = {P1, . . . , Pn} \ T , under the constraint that x =

∑

T⊂{P1,...,Pn}: |T |=t

xT .

The share held by each party Pi is the tuple consisting of all xT such that Pi ∈ T .
Thus, the number of shares is

(
n
t

)
and each party holds

(
n−1

t

)
shares.

It is easy to see that replicated secret sharing scheme is linear over R and
allows local multiplication to obtain an additive sharing of the product when
t < n/2. Local conversion from �x� to �xi� can be done by sharing each com-
ponent xT that Pi holds separately. For each T for which Pi ∈ T , every party
Pj ∈ T will hold xT , while parties not it T will set their share to be 0.

Pairwise Consistency. Observe that since n = 2t + 1 in our setting, each share
is held by a subset of t + 1 parties. Thus, a sharing is inconsistent if a cheating
dealer hands different values to honest parties in the same subset. In order to
verify that a sharing is consistent, it suffices that every pair of parties verify that
they hold the same share for each subset T , which includes both parties. This
can be done with low communication by having these parties compare a hash
of their joint shares. Observe that if pairwise inconsistency is detected then this
pair can ask the dealer to publish the conflicted share, as in this case, this share
is already known to the adversary.

252 E. Boyle et al.

Instantiation 2: Shamir’s Secret Sharing [37]. In this well-known scheme,
the dealer defines a random polynomial p(x) of degree t over a finite field F such
that the constant term is the secret. Each party is associated with a distinct
non-zero field element α ∈ F and receives p(α) as its share of the secret. Linear
operations on secrets can be computed locally on the shares, since polynomial
interpolation is a linear operation. In addition, given shares of x and y, the
parties can locally multiply their shares to obtain a sharing of degree 2t of x · y.

Finally, observe that since each share is a point on a polynomial, then a
consistent sharing �x� is also a consistent sharing of Pi’s share xi, written as �xi�
(the only difference is that now the secret is not stored at the point 0 but at the
point αi).

Polynomial Consistency. A Shamir secret sharing is consistent if all shares
(p(α1) = β1, . . . , p(αn) = βn) lie on the same degree-t polynomial. A simple
way to check the consistency of m sharings: (β1,1, . . . , β1,n),. . .,(βm,1, . . . , βm,n)
together in a batch is to generate n random coefficients c1, . . . , cn ∈ F and
a random degree-t polynomial q(x), compute (

∑m
i=1 ciβi,1 + q(α1), . . . ,

∑m
i=1

ciβi,n + q(αn)), open the shares, and check that they lie on a degree t
polynomial.

We stress that Shamir’s scheme can be used only in our base secure-with-
abort construction. The fully secure construction relies on properties that hold
only for replicated secret sharing.

2.3 Πmult – Private Multiplication Protocol

In our main protocol, the parties first compute each multiplication instruction
using a protocol Πmult that satisfies only the following a weak notion of security
and then run a verification protocol to detect and recover from cheating.

Definition 2.3. Let Πmult be an n-party protocol that takes as inputs �x� and
�y� and outputs �z�. We say that Πmult is a private multiplication protocol in the
presence of a malicious adversary controlling up to t parties if it satisfies two
properties.

Correctness. If �x� and �y� are consistent sharings and all the parties follow
the protocol’s instructions, then �z� is a consistent sharing of z = x · y.

Privacy. Denote the set of honest parties by J and denote the vector of all
input shares held by the honest parties by uJ . Then, for every adversary A
controlling up to t parties, and for every two vectors of shares uJ ,u′

J the view
that A has in the protocol when the honest parties hold uJ is computationally
indistinguishable from its view when the honest parties hold u′

J .

We say that Πmult is a replicated and private multiplication protocol if in
addition to the correctness and privacy properties it holds that if �x� and �y� are
consistent sharings of x and y in a replicated secret sharing scheme for threshold
t, and all the parties follow the protocol’s instructions, then �z� is a consistent
sharing of z = x · y in the same replicated secret sharing scheme for threshold t.

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 253

The latter property in the above definition will be used in our fully secure
construction.

Instantiation: The DN [11] Multiplication Protocol. In the DN protocol,
the parties prepare in advance two random sharings �r�, 〈r〉 which are used in
the following way. First, the parties locally compute 〈x · y − r〉 = �x� · �y� − 〈r〉
and send the result to P1. Then, P1 reconstructs x · y − r and sends it back to
the parties. The parties then locally compute �x · y� = x · y − r + �r�. A simple
optimization to the second step is having P1 share x ·y − r to the parties instead
of sending it in the clear. Then, we can let the shares of t parties be 0 and
let the shares of the remaining parties be computed given the value of xy − r
and the t zero shares (for replicated secret sharing this translates into having
the share given to one subset of t + 1 parties being x · y − r and the remaining
shares being 0). Thus, we can have P1 send xy − r to t parties, and then P1 and
these t parties can locally compute their shares of xy − r and add them to their
shares of r, while the remaining parties set their output to be their shares of r.
Thus, the overall communication in the online step is n − 1 + t elements, and
so 2t+1−1+t

2t+1 ≤ 1.5 elements per party. The masking of all sent messages in this
protocol with random value guarantees that the protocol satisfies the privacy
requirement. For the offline step, it is possible to produce �r�, 〈r〉 without any
interaction [10] or using interaction but with reduced computational overhead
for large number of parties [11] (using hyper-invertible matrices). We refer the
reader to [8,29] for exact analysis.

In the full version of this paper, we describe other instantiations for Πmult

that can be usefull in some settings.

2.4 Other Basic Ideal Functionalities

Let Frand(t) be an ideal functionality that hands the parties a sharing of a
random secret value with threshold t, while allowing the adversary to choose
the corrupted parties’ shares. This functionality can be realized for both Shamir
and the replicated secret sharing scheme [10,11]. We remark that for replicated
secret sharing, the functionality can be realized without any interaction (except
for a setup step) [10], which makes the protocol fully secure. This is of high
importance for our fully secure construction.

Let Fcoin be an ideal functionality that hands the parties fresh random coins.
In the security with abort model, it can be realized by calling Frand and opening
the result. To achieve full security, heavier machinery is required. Nevertheless,
we can reduce the number of calls to this functionality to the size of the security
parameter (as it is possible to call it only to generate a seed r from which all
the required randomness is derived.

254 E. Boyle et al.

Finally, Let Fbc be a secure broadcast functionality which allows the parties
to broadcast a message to all the other parties. We remark that use of a broadcast
channel is necessary to achieve full security within this setting, where broadcast
is not possible without setup [34]. Full security of Fbc is achievable given PKI
setup [35]. The number of times this functionality is called will be sublinear in
the size of the circuit and so any reasonable implementation will suffice.

3 Prove Correctness of Degree-2 Relations over Shared
Data

In this section, we present the main building block for our constructions: a
protocol that allows the parties to prove that a degree-2 computation over their
shares was carried-out correctly. Specifically, in our protocol, we have a party Pi

who wishes to prove that the following equation holds:

c −
L∑

k=1

(ak · bk) = 0 (1)

where c, {ak}L
k=1 and {bk}L

k=1 are known to Pi and are secret shared among
the parties via a consistent t-out-of-n linear secret sharing scheme (see Defini-
tion 2.2). We note that the above task can be seen as an application of the dis-
tributed zero-knowledge proof system defined in [4]. In the setting of distributed
zero-knowledge proofs there is a prover who wishes to prove a statement in zero-
knowledge, where the statement is held in a distributed manner across multiple
verifiers. An example for a statement that is distributed across verifiers, is our
setting in which the statement is secret shared among the verifiers. As in any
zero-knowledge proof system, the definition of distributed zero-knowledge inter-
active proofs requires that three properties will be satisfied: completeness (if
the statement is correct and the parties follow the protocol, then the verifiers
will output accept with probability 1), soundness (if the statement is incorrect,
then the honest verifiers will output accept only with a small probability) and
zero-knowledge (no information about the inputs is leaked during the execution).
However, in distributed zero-knowledge proof protocols, the above requirements
should be met even if the prover colludes with a subset of verifiers. As shown
in [4], for low-degree relations it is possible to construct zero-knowledge proof
protocols with sub-linear communication complexity. In Sect. 3.1, we rely on one
of their ideas to design a highly-efficient protocol to prove that Eq. (1) holds. In
Sect. 3.2 we take a step further and provide a protocol where an honest prover
can also identify a cheating verifier in case the proof is rejected.

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 255

3.1 The Functionality Fabort
proveDeg2Rel - Prove Correctness with Abort

We begin with a protocol that is secure with abort, i.e., it allows a malicious ver-
ifier to cause honest parties to reject even when the statement is correct. In this
section, we assume that the prover knows also �c� (i.e., the shares of all parties
of c)4. In contrast, for the aks and bks, Pi does not need to know the other par-
ties’ shares, and in fact, in this case, Pi’s share is the secret itself. We compute
the ideal functionality Fabort

proveDeg2Rel. The functionality checks that Eq. (1) holds
using the honest parties’ shares. This is sufficient since in the honest majority
setting, the honest parties’ shares fully determine both the secret and the cor-
rupted parties’ shares. Observe that in case the equation holds, Fabort

proveDeg2Rel

lets the adversary determine the output (i.e., accept or reject) for each party,
whereas if the equation does not hold, the output is always reject. Note also that
in case the prover is corrupt, Fabort

proveDeg2Rel hands the adversary S also the inputs,
and all shares of c (since these are known anyway to the real world adversary).

FUNCTIONALITY 3.1. (Fabort
proveDeg2Rel- Prove Correctness of a Shared

Secret)
Let S be the ideal world adversary controlling a subset < n/2 of corrupted
parties.
The functionality Fabort

proveDeg2Rel works with S and honest parties holding con-
sistent t-out-of-n secret sharings �c�, {�ak�}L

k=1, {�bk�}L
k=1.

Fabort
proveDeg2Rel is invoked by an index i sent from the honest parties and works

as follows:

1. Fabort
proveDeg2Rel receives from the honest parties their shares of c, {ak}L

k=1

and {bk}L
k=1.

2. Fabort
proveDeg2Rel computes c, {ak}L

k=1 and {bk}L
k=1. Then, it computes the

corrupted parties’ shares of these values and sends them to S. If Pi is
corrupted, then it sends also �c�, {ak}L

k=1 and {bk}L
k=1 to S.

3. Fabort
proveDeg2Rel checks that Eq. (1) holds.

If it holds, then it sends accept to S to receive back outj ∈ {accept, reject}
for each honest party Pj , which is handed to party Pj .
Otherwise, it sends reject to S and the honest parties.

Computing Fabort
proveDeg2Rel Using Distributed Zero-Knowledge Proofs. While the

definition of Fabort
proveDeg2Rel yields a setting which is similar to the setting of dis-

tributed zero-knowledge proofs defined in [4], there is still one difference. The
zero-knowledge property in the definition of [4] considers only privacy in the
presence of a subset of verifiers. Here however we assume that the prover does
not know the verifiers’ shares of the aks and bks. Thus, the proof protocol must
also prevent the prover from learning any information on these shares. Thus,

4 It is possible to avoid this assumption, but it nevertheless holds for our verification
protocol that uses this proof as a building block.

256 E. Boyle et al.

any distributed zero-knowledge proof used to realize Fabort
proveDeg2Rel must provide

this stronger requirement.

A Concrete Protocol to Compute Fabort
proveDeg2Rel. We next show how to compute

this functionality using the fully linear interactive oracle proof from [4] with
low communication. The idea works as follows. First, the parties define a g-gate
g (ν1, . . . , νL) =

∑L/2
�=1 ν2�−1 · ν2�. We now can write Eq. (1) as

c − g
(
a1, b1, . . . , aL/2, bL/2

) − g
(
aL/2+1, bL/2+1, . . . , aL, bL

)
= 0.

Next, the prover Pi, who knows all inputs, computes the output of the two g gates
and verifiably secret shares them to the parties. Let g1 = g

(
a1, b1, . . . , aL/2, bL/2

)

and g2 = g
(
aL/2+1, bL/2+1, . . . , aL, bL

)
. Thus, the parties hold now a t-out-of-

n secret sharing of c, g1 and g2. Hence, the parties can locally compute �b� =
�c� − �g1� − �g2� and check that b = 0 by revealing their shares of b. Since an
honest majority exists, the adversary cannot do any harm in the opening beyond
causing the parties to abort. However, this is not enough; a corrupted Pi may cheat
when sharing g1 and g2. To prevent this, the parties carry-out an additional test.
Let f1, . . . fL be polynomials defined in the following way: for each e ∈ [L], fe(1) is
the eth input to the first g-gate, and fe(2) is the eth input to the second g-gate. It
follows that fe is a linear function (i.e., polynomial of degree-1). Next, define the
polynomial q(x) = g(f1(x), . . . , fL(x)). From the definition of q, it follows that:
(1) q(1) is the output of the first g-gate and q(2) is the output of the second; (2) q is
of degree-2 (since g is a circuit of of multiplicative depth-1 and the f polynomials
are of degree-1). Now, to check that Pi shared the correct q(1) and q(2), it suffices
to check that q(r) = g(f1(r), . . . , fL(r)) for some random r in the ring/field. To
carry-out the check, the parties can locally compute a t-out-of-n secret sharings of
q(r) and f1(r), . . . , fL(r) via Lagrange interpolation over their shares (note that
this is a local linear operation), open these sharings and check the equality in the
clear. This requires that Pi will share also q(3), so that the parties have enough
points on q (and so r cannot be in {1, 2, 3})). Note however that opening L shares
results with communication cost that is linear in L. To achieve communication
that is logarithmic in L, instead of opening, we let Pi prove that

q(r) − g(f1(r), . . . , fL(r)) = 0 (2)

by repeating the exact same process as above. This is possible since Eq. (2) has
the same form as Eq. (1) and since all parties hold a consistent sharing of all
the inputs to Eq. (2). Note that this time we only have L inputs (instead of 2L).
Thus, the parties can repeat the process log L times, until there are only small
constant number of inputs and then check equality to 0 by opening. One subtle
security issue that arise here is that fe(r) is a linear combination of inputs. Thus,
to securely open it, the parties randomize the f polynomials by adding (only in
the last step) a random point to each polynomial. This is achieved by using Frand

to generate an additional shared point for each of f polynomials. Note that the
degree of q is now 4 (since the degree of f was increased to 2) and so Pi needs
to share 5 points on q instead of 3. As an additional optimization, we also deffer

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 257

the check of equality to 0 of the b values to the end, and then perform a single
check by taking a random linear combination of all b values generated in each
step of the recursion. As we will argue below, the cost per step in the recursion
is constant, and so since we have log L steps, the overall communication cost is
logarithmic in L. The protocol is formalized in Protocol 3.2.

Cheating Probability for Finite Fields. We now compute the probability that
the parties output accept, even though Eq. (1) does not hold, when the protocol
is executed over finite fields. Note that for this to hold, the prover Pi has two
choices: (i) not to cheat in the protocol, hoping that the linear combination of the
b values will yield 0. This will happen with probability 1

F
; (ii) cheat when sharing

the points on the polynomial q. This means that q
= g(f1, . . . , fL) and so the
polynomial h(x) = q(x)−g(f1(x), . . . , fL(x)) is not the zero polynomial. Thus, by
the Schwartz–Zippel lemma, the probability that h(r) = 0 for a randomly chosen
r ∈ F\{1, 2, 3} is bounded by 2

|F|−3 (since the degree of the polynomial h is 2) in
the first log L − 1 rounds and 4

|F|−5 in the last round (since then the degree of h

is 4). Observe that for the prover to successfully cheat, this event should happen
in one of the iterations of the protocol. Thus, the overall cheating probability
is bounded by 2(log L−1)

|F|−3 + 4
|F|−5 < 2 log L+4

|F|−5 . Finally, note that 1
F

< 2 log L
|F|−3 and so

a malicious prover will increase its success cheating probability by cheating as
in (ii). If the field is not large enough to achieve the desired level of security, the
parties can repeat the protocol several times.

We prove that Protocol 3.2 securely computes Fabort
proveDeg2Rel in the full version

of the paper.

Extending the Protocol to the Ring Z2k . The main challenge in extending the
verification protocol to rings, and in particular the ring Z2k , is that we require
interpolation and not all elements in a ring have an inverse. To overcome this,
the solution suggested in [4,5] is to work over the extension ring Z2k [x]/f(x), i.e.,
the ring of all polynomials with coefficients in Z2k working modulo a polynomial
f that is of the right degree and is irreducible over Z2. As shown in [4,5], this
enables to define enough points on the polynomial that allow interpolation.

We note that the cheating probability when working with the extension ring
and hence the statistical error of the protocol is different, since the number of roots
of a polynomial defined over a ring, is larger than its degree. For a program with
m multiplication instructions, the error will be roughly 2 log m+4

2d
, where d is the

extension degree. We refer the reader to [4,5] for more details. Nevertheless, the
main observation here is that the communication when using this solution blows
up only by a constant, and so asymptotically the complexity remains the same.

Cost Analysis. In the first log L − 1 iterations, the prover shares 3 ring ele-
ments in each iteration. In the last round, the prover shares 5 elements, followed
by opening 4 shared elements. Using a PRG, it is possible to share a secret by
sending t ≈ n/2 ring elements, and opening a secret requires transmission of
n2 elements. To realize Fcoin (with abort) it suffices to open a random sharing.
Hence, in this case, the overall communication cost per party is

(1.5 + n − 1) log(L − 1) + 2.5 + 4(n − 1) ≈ n · log(L) + 4n field elements.

258 E. Boyle et al.

PROTOCOL 3.2. (Securely Computing Fabort
proveDeg2Rel)

– Inputs: Prover Pi holds 2L + 1 inputs c, {ak}L
k=1, {bk}L

k=1. The parties
hold a consistent t-out-of-n secret sharing of each of these inputs. Pi knows
all shares of c.

– The protocol:
1. The parties set L̄ = L.
2. For l = 1 to log L̄ − 1:

(a) The parties define linear polynomials f1, f2 . . . , fL such that for
each e ∈ [L] the polynomial fe is defined by the two points:

fe(1) =

{
a� e

2 � if e mod 2 = 1

b e
2

if e mod 2 = 0
fe(2) =

{
aL

2 +� e
2 � if e mod 2 = 1

bL
2 + e

2
if e mod 2 = 0

(b) Let q(x) = g(f1(x), . . . , fL(x)) be a polynomial of degree 2, where

g(f1(x), . . . , fL(x)) =

L/2∑
�=1

f2�−1(x) · f2�(x).

Then, Pi locally computes q(1), q(2), q(3) and verifiably secret
shares (VSS) them to the other parties (If the check consistency
fails for some party, then it outputs reject).

(c) The parties locally compute �bl� = �c� − �q(1)� − �q(2)� and store
the result.

(d) The parties call Fcoin to receive a random r ∈ R \ {1, 2, 3}.
(e) The parties locally compute �q(r)� and �f1(r)�, . . . , �fL(r)� via

Lagrange interpolation.
(f) The parties set c ← q(r), and ∀k ∈ [L/2] : ak ← f2k−1(r), bk ←

f2k(r) and L ← L/2.
3. The parties exit the loop with L = 2 and inputs c, a1, a2, b1, b2 that

are known to Pi and are secret shared among the parties. Then:
(a) The parties call Frand to receive �w1� and �w2�, where w1, w2 ∈ R

are Pi’s shares. Then, they define two polynomials f1, f2 of degree-
2 such that: f1(0) = w1, f1(1) = a1, f1(2) = a2 and f2(0) =
w2, f2(1) = b1, f2(2) = b2.

(b) Party Pi defines a polynomial q(x) = g(f1(x), f2(x)) where
g(f1(x), f2(x)) = f1(x) · f2(x). Thus, q is of degree-4. Then, Pi

computes q(0), q(1), . . . , q(4).
(c) Party Pi verifiably secret shares (VSS) the points q(0), q(1), . . . ,

q(4) to the other parties (If the check consistency fails for some
party, then it outputs reject).

(d) The parties locally compute �blog L� = �c� − �q(1)� − �q(2)�.
(e) The parties call Fcoin to receive random r, γ1, . . . γlog L ∈ R.
(f) The parties locally compute �b� =

∑log L
l=1 γl · �bl�.

(g) The parties locally compute �f1(r)�, �f2(r)� and �q(r)� via
Lagrange interpolation.

(h) The parties run reconstruct(�b�, j), reconstruct(�q(r)�, j),
reconstruct(�f1(r)�, j) and reconstruct(�f2(r)�, j) for each j ∈ [n].
If any party received ⊥ in any of these executions or if b �= 0 or
q(r) �= f1(r) · f2(r), then it outputs reject. Otherwise, the parties
output accept.

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 259

The asymptotic communication complexity is thus O(n log L + n). When the
verified shared triples are defined over a ring, then the cost is multiplied with
the degree of extension d. We ignore here the cost of consistency checks (in the
VSS protocol) that can typically be batched together with a small constant cost.

For the computational cost, we remark that while our protocol requires many
interpolations, all polynomials used in the protocol are of small degree (up to 4).
Thus, the number of operations (i.e., multiplications and additions) required for
each interpolation is a small constant. The number of polynomials that we have
in the protocol is L + 1 in the first iteration, L/2 + 1 in the second, L/4 + 1 in
the third and so on. Over log L iterations, we thus have O(L) polynomials and
so the overall computational cost is also O(L) operations.

A Constant-Round Protocol Using the Fiat-Shamir Transform. The
number of rounds in Protocol 3.2 is logarithmic in the size of the input. In the full
version of the paper, we show how to use the Fiat-Shamir transform [14] to reduce
interaction and achieve constant number of rounds. This transform applies to
public-coin protocols and proceeds by letting the prover generating the challenge
in each round on its own, by applying a random oracle H : {0, 1}∗ → {0, 1}κ to
the concatenation of the messages exchanged so far. In our protocol, the prover
secret shares 3 elements in each round. This means that the random oracle should
be applied on the shares sent to all the parties. This seems problematic, since
the shares are private information which cannot be revealed, and so the verifiers
have no way to compute the public randomness. Nevertheless, we show how to
solve it by changing slightly the protocol.

Batching n Proofs Together. In our protocols, we will call Protocol 3.2 n
times in parallel, each time for one of the parties participating in the multi-
party computation. Naively, this means that the communication cost per party
will be O(n2 log L + n2). We now show how to batch together these n proofs,
reducing the cost to O(n log L + n).

To reduce the term O(n2 log L) to O(n log L), one simply need to call Fcoin

once for each round of the n proofs. The parties can jointly generate a seed from
which all the randomness is derived.

To reduce the term O(n2) to O(n), recall first that in our proof the parties
perform two tests: (i) they check that b = 0 and (ii) they check that q(r) = f1(r)·
f2(r). These checks are carried-out by opening the secret shared b, f1(r), f2(r)
and q(r) and checking that (i) and (ii) hold in the clear.

It is immediate to see that the first check can be compressed to one single
check by taking a random linear combination of the b values in n proofs and
opening the result. For the second check, we observe that verifying (ii) across
n proofs is equivalent to check the correctness of n multiplication triples. This
can be done in O(n) complexity and O(1) rounds via the verification technique
of [32]. We present the details in the full version, where we show that the overall
communication per party for running n proofs in parallel is

n log L + 8n field elements

260 E. Boyle et al.

and the asymptotic complexity is O(n log L + n) as required.

3.2 The Ideal Functionality FcheatIdntfy
proveDeg2Rel- Prove Correctness with

Cheating Identification

In this section, we augment our protocol to prove degree-2 relations over shared
data to achieve an additional property: if the protocol ends with the par-
ties rejecting the proof, then in addition to reject, the parties will also out-
put a pair of parties, with the guarantee that one of these parties belongs
to the set of corrupted parties. Our protocol computes the ideal functionality
FcheatIdntfy

proveDeg2Rel defined in Functionality 3.3. The functionality works the same as
the Fabort

proveDeg2Rel functionality defined in the previous section, with one addition:
in case the output is reject, it outputs a pair of parties’ indices. These contain
the index of the prover and of an additional party chosen by the ideal world
adversary S. If Pi is corrupted, then S is allowed to pick any party it wishes.
Otherwise, it must pick an index of a corrupted party. This ensures that one
of the chosen parties is corrupted: in the first case, it is the prover, whereas
in the second case S hands a corrupted party’s index. Note also that in this
functionality, unlike Fabort

proveDeg2Rel, all honest parties output the same output.

FUNCTIONALITY 3.3. (FcheatIdntfy
proveDeg2Rel- Prove Correctness - Identify Cheat-

ing)
Let S be the ideal world adversary controlling a subset < n/2 of corrupted
parties. The functionality FcheatIdntfy

proveDeg2Rel is invoked by an index i sent from the

honest parties and works exactly as Fabort
proveDeg2Rel with the following modifica-

tion:
If Eq. (1) holds, then FcheatIdntfy

proveDeg2Rel sends accept to S, to receive back out ∈
{accept, reject}. Then, FcheatIdntfy

proveDeg2Rel sends out to the honest parties. If Eq. (1)

does not hold, then FcheatIdntfy
proveDeg2Rel sends reject to the honest parties.

If the output handed to the honest parties is reject:

– If Pi is corrupted, then S sends an index j ∈ [n] to FcheatIdntfy
proveDeg2Rel.

If Pi is honest, then S send an index j where Pj is corrupted.
– FcheatIdntfy

proveDeg2Rel sends the pair (i, j) to the honest parties.

To compute functionality we use Protocol 3.2 from the previous section,
with one additional step: in case that the parties reject the proof, the prover is
asked to identify a party who cheated in the execution. Then, the pair of parties
outputted by the protocol includes the prover and the party that was pointed
at by the prover. Clearly, if the prover is corrupted, then regardless of the party
it chooses, the output pair will contain a corrupted party. However, it is not
clear how an honest prover will identify a party who cheated in the protocol
(note that in this case, we know that the degree-2 relation holds, and so if the
protocol ends with a reject, then it means that someone sent incorrect messages

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 261

during the execution of the proof-of-correctness protocol). To allow an honest
prover to correctly identify cheaters, we require the following additional property
from our protocol: the shares held by the parties should be known to the prover.
To leverage this property, we first observe the following fact:

Fact 3.4. Each message sent by each verifier Pj in Protocol 3.2 is a determin-
istic function of (1) messages received from the prover Pi; (2) its inputs to the
protocol; and (3) randomness received from Fcoin and Frand.

This implies that if the inputs of all parties and the randomness chosen during
the execution are known to Pi, then it can compute by himself the messages that
should be sent by the other parties, and so Pi can identify cheating parties that
send incorrect messages. We stress that this fact does not mean that Pi knows
in advance what messages should be sent in the execution, since these depend
on randomness received in the execution only after Pi sends his messages. Thus,
knowing the shares held by all parties does not break the soundness of the
protocol, which rely on the randomness of the evaluated point r - randomness
which Pi cannot predict.

Our protocol is described and proved in the full version of the paper. It is
identical to Protocol 3.2 with the following modifications in the last steps: (i)
the random sharings of f1(0) and f2(0) are now verifiably secret shared by Pi

(this is allowed since Pi knows now all the inputs and essential to achieve the
property of Pi knowing the messages that should be sent by all other parties);
(ii) the messages to reconstruct the secrets are now broadcast (to ensure anony-
mous output) and (iii) if the parties reject the proof, the prover Pi identify a
cheating party and broadcasts its index to the other parties.

Batching n Proofs Together and Communication Cost. In Sect. 3.1 we showed
a way to batch n proofs together when only security with abort is considered.
This enabled us to reduce communication complexity of n proofs ran in parallel
from O(n2 log L + n2) to O(n log L + n) elements sent per party. While the opti-
mization to reduce the term O(n2 log L) to O(n log L) can be used here as well
(call Fcoin once for each round for all protocols), we note that it is impossible to
batch all the checks at the end of the protocol together, since then the prover
will lose the ability to identify cheaters.

Thus, the communication cost of running n proofs together per party is

n log L + 4n · |Fbc| field elements.

4 Secure Computation of Any Straight-Line Program
with Abort

In this section we present a base construction, which is only secure with abort.
Given a straight-line program P , the protocol computes P (x) in two stages. It
first executes a protocol which computes P (x) using a private multiplication pro-
tocol, as defined in Sect. 2.3. It then runs a verification protocol which requires

262 E. Boyle et al.

communication that is sublinear in the program’s size S. If the verification pro-
tocol accepts then the value of P (x) is correct, while if the verification protocol
rejects then the honest parties abort the protocol.

The protocol can be based on any linear threshold secret-sharing as defined
in Sect. 2.2 and works for both finite fields and the ring Z2k . When instantiating
the protocol with Shamir’s secret sharing scheme, the obtained protocol matches
the complexity achieved by the protocol of [22] for finite fields and arbitrary
number of parties. When using replicated secret sharing as the underlying secret
sharing scehme, the obtained protocol improves upon the result of [4] for constant
number of parties over the ring Z2k ; while the additive sub-linear term in [4] is
square root of the size of the program, in our protocol it is logarithmic in the
program’s size.

4.1 Verifying Correctness of Multiplications with Abort

In this section, we show how the parties can verify correctness of many mul-
tiplication triples with sub-linear communication complexity in the number of
triples. A multiplication triple in a ring R is a secret shared tuple �x�, �y�, �z�
such that z = x·y. In other words, a triple shares both the inputs and the output
of a multiplication instruction.

At the beginning of the protocol, the parties hold sharings of many multi-
plication triples denoted by (�x1�, �y1�, �z1�), . . . , (�xm�, �ym�, �zm�) and want to
verify that zi = xi · yi for each i ∈ [m]. The ideal functionality we compute is
defined in Functionality 4.1. Observe that it allows the ideal world adversary S
to force rejection even if all triples are correct. In contrast, if there exists a triple
which is incorrect, then the output will always be reject. Note also that Fabort

vrfy

hands S the corrupted parties’ shares of all triples and the additive difference
dk = zk − xk · yk when dk
= 0 (i.e., the triple is incorrect). This is justified by
the fact that, as we will see, these are known anyway to the adversary in the
main protocol that works in the Fabort

vrfy -hybrid model. Moreover, in many private
multiplication protocols, the adversary is even allowed to choose the additive
difference (see [8,16,29]).

FUNCTIONALITY 4.1. (Fabort
vrfy - Verify Correctness of Multiplica-

tions)
Let S be the ideal world adversary controlling a subset of < n/2 corrupted
parties. The functionality Fabort

vrfy is invoked by the honest parties sending their

shares of m multiplication triples {(xk, yk, zk)m
k=1} to Fabort

vrfy .

Then, Fabort
vrfy computes all secrets and the corrupted parties’ shares which are

sent to S.
Then, it checks that zk = xk · yk for all k ∈ [m]. If this holds, it sends accept
to S. In this case, it waits for S to send outj ∈ {accept, reject} which is then
handed to the honest party Pj . Otherwise, Fabort

vrfy sends reject to S and the
honest parties. In addition, it sends dk = zk − xk · yk for each k ∈ [m] for
which dk �= 0 to S.

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 263

To compute this functionality efficiently, the parties take a random linear
combination β =

∑m
k=1 θk · (zk −xk · yk) (where θk is random and jointly chosen

by the parties) and wish to check that β = 0. Observe that since β is a 2-degree
function of {(xk, yk, zk)m

k=1}, and these are secret shared via a linear threshold
scheme among the parties, it follows that the parties can locally compute an
additive sharing of β. At this point, we would want the parties to open the sharing
of β and check equality to 0. However, an additive sharing has no robustness in
it and so the parties have no way to verify that the received shares are correct.
To overcome this, we first ask the parties to secret share their additive shares of
ψ =

∑m
k=1 θk · (xk · yk) in a verifiable way. Denote by ψi the additive share of

ψ held by party Pi. Once the parties hold �ψi� for each i ∈ [n], the parties can
compute �β� =

∑m
k=1 θk · �zk� − ∑n

i=1�ψ
i� and reconstruct the value of β. By

the properties of the reconstruct procedure, the corrupted parties cannot do any
harm beyond causing an abort. However, this is not enough since a corrupted
party can share any value it wishes. Thus, the parties need to verify that each
party shared the correct value. Towards achieving this, recall that one of the
properties of the secret sharing scheme, is that it allows local conversion from
�xk�, �yk� to �xi

k�, �yi
k� where xi

k, yi
k are the shares of xk, yk held by party Pi

respectively. Thus, the parties wish to verify that

∀i ∈ [n] :
m∑

k=1

θk · (�xi
k� · �yi

k�) − �ψi� = 0. (3)

Letting �ci� = �ψi�, �ai
k� = θk · �xi

k� and �bi
k� = �yi

k� we have that the par-
ties ensure that ∀i ∈ [n] : �ci� − ∑m

k=1�a
i
k� · �bi

k� = 0. This is exactly the type
of statement that can be verified using Fabort

proveDeg2Rel defined in Sect. 3. Hence,
the parties call Fabort

proveDeg2Rel and proceed only if it outputs accept. The formal
description of the protocol and a security proof appear in the full version of the
paper.

Extending the Protocol to the Ring Z2k . If the parties work over the ring Z2k ,
then the statistical error of the protocol is only 1/2. To achieve an error which
is sufficiently small, the parties can choose θ1, . . . , θm from a larger ring Z2k+s .
Then, the probability that β = 0 when ∃k ∈ [m] : dk = zk − xk · yk
= 0 will be
at most 2−s.

Communication Complexity. Note that in the protocol each party only shares
one element and reconstructs one element. The cost of computing Fabort

vrfy thus
equals to the cost of calling n copies of Fabort

proveDeg2Rel plus a small constant cost.
By the analysis in Sect. 3.1, we conclude that the cost is O(n log m + n).

4.2 The Main Protocol

Our main protocol works in the Fabort
vrfy -hybrid model. In the protocol, the parties

first verifiably secret shares their inputs to the other parties. Then, they compute

264 E. Boyle et al.

Table 1. Field elements sent per party in the verification of m multiplication triples,
per one triple, when Shamir’s secret sharing is used, for different sizes of m and number
of parties n. The numbers are computed via the formula (10n + n · log m) · 1

m
and the

statistical error is 2 log m+4
|F|−5

.

Field elements per party per triple# of multiplication

triples (m) n = 25 n = 50 n = 500 n = 1000

215 0.02 0.03 0.38 0.76

220 0.0007 0.001 0.01 0.02

225 0.00002 0.00005 0.0005 0.001

230 0.0000009 0.000002 0.00002 0.0003

the program using Πmult. Before revealing the outputs, they call Fabort
vrfy to verify

the correctness of all multiplication triples. If the output received from Fabort
vrfy is

reject, then they abort. Otherwise, they proceed to reconstruct the output. The
formal description appears in the full version of the paper.

Communication Complexity. Let m be the number of multiplication gates in
the program and let |Πmult| be the communication cost per party when running
Πmult. Thus, the communication cost is |Πmult| · m + O(log m · n). Amortized
over the size of the program and assuming that m >> n, we have that the cost
per gate is |Πmult|.

Practical Instantiations. Our protocol can be instantiated using both replicated
and Shamir’s secret sharing schemes (see Sect. 2.2). The former is usually used
for small number of parties and when working over rings, whereas the latter is
usually preferred when the number of parties grows, due to the fact that the
size of each share grows at most logarithmically with n. For Πmult, it is possible
to use protocols such as [1,28] (for 3 parties) or the DN protocol [11] for any
number of parties. As shown in Sect. 2.3 (see also [4], the communication cost of
the semi-honest DN protocol with replicated secret-sharing and pseudorandom
secret sharing is less than 1.5 ring elements per party per multiplication. This
dominates the amortized cost of our main protocol.

4.3 Concrete Efficiency

To illustrate the efficiency of our protocol, we measured the exact communication
cost of our verification protocol, for various program sizes and number of parties.
In Table 1, we present the number of field elements sent per party amortized
over the size of the program, when instantiating our protocol with Shamir’s
secret sharing scheme. The reported numbers in the table can be seen as the
cost of strengthening security from semi-honest to malicious, per multiplication
instruction. As can be seen, the communication overhead of our verification
protocol is so low, that even when the number of parties is increased to 1000,

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 265

Table 2. Ring elements sent per party in the verification of m multiplication triples,
per one triple, for different sizes of m and number of parties n, when the semi-honest
computation is over the ring Z2k and using replicated secret sharing scheme. The
numbers are computed via the formula

((
n−1

t

) · 2 + 2.5n + n log(m)
) · 1

m
· d, where the

extension degree d satisfies the condition d > 40 + log(2 log m + 4) to achieve statistical
error of 2−40.

Ring elements sent per party per triple# of multiplication

triples (m) n = 3 n = 5 n = 7 n = 9 n = 11

215 0.002 0.13 0.22 0.41 0.97

220 0.00008 0.005 0.008 0.01 0.03

225 0.000003 0.0002 0.0003 0.0005 0.001

230 0.0000001 0.000007 0.00001 0.00001 0.00005

the cost is still less just 0.76 field element per instruction. We note that when
the field is small, the verification protocol can be “lifted” to an extension field F

of the same characteristic, without changing the base semi-honest protocol. As
a result, the statistical error can be reduced to (roughly) an inverse of the size
of the extension field.

In Table 2 we present the communication cost when our protocol is used
to compute a program defined over the ring Z2k for some k ≥ 1 (when k = 1
this is equivalent to computing a binary circuit), with replicated secret sharing
as the underlying secret sharing scheme. Recall that in this case, the verifica-
tion protocol is carried-out over an extension ring (see the end of Sect. 3.1). To
compute the number of ring elements sent in the verification protocol, we thus
multiply the communication cost obtained over fields with the degree extension
d (since the size of each element is increased by a factor of d). The extension
degree depends on the desired statistical error, which is approximately 2 log m+4

2d
.

This means in particular that for security of s bits, the extension degree should
satisfy the condition d > s + log(2 log m + 4). In Table 2, we report the number
of sent ring elements per instruction for each party, with statistical error of at
most 2−40, and so it suffices to set d = 46. In addition, each opening of a secret
requires each party to send

(
n−1

t

)
elements. However, note that this is not the

case for sharing a secret, since here we can have all subsets except one derive
their share from a pre-distributed seed (known also to the dealer), and have the
dealer send just one share (to adjust the secret) to one subset of t+1 shares. This
means that sharing a secret yields cost of 0.5 ring elements per party, exactly
as for Shamir’s secret sharing. Due to the fast increase of the share’s size in this
scheme, we report the cost up to 11 parties. Note that even for n = 11, programs
of size ≥ 215) can be computed in the presence of malicious adversaries, while
paying an extra cost of less than 1 ring elements per instruction beyond the cost
of semi-honest security.

For the computational cost, we saw that in Fabort
proveDeg2Rel the number of local

operations is O(m) with small constants. Observe that in Fabort
vrfy the parties only

266 E. Boyle et al.

Table 3. Comparison to previous works of communication and round complexity, when
verifying m multiplication triples by n parties.

Communication per party

(field elements)
of rounds

Nordholt et al. [32] O(m + n) O(1)

Boneh et al. [4] O(n
√

m + n) O(1)

Goyal et al. [22] O(n log m + n) O(log m)

This work (with Fiat-Shamir) O(n logm + n) O(1)

need to compute a linear combination of m inputs and so the cost is roughly m
operations. Since we have n calls to Fabort

proveDeg2Rel, the overall cost is n · O(m).

Comparison to Previous Works. In Table 3 we compare our security-with-abort
verification protocol with previous works. As can be seen, our work as well
as [4,22] achieve sublinear communication, whereas [32] achieves only linear com-
munication in the amount of verified triples m. Our improvement compared to [4]
is that our sublinear additive term is logarithmic in m rather than just square
root of m. Compared to [22], we are able to use the Fiat-Shamir transform to
achieve constant number of rounds (see Sect. 3.1), whereas in their protocol, the
parties carry out a joint multiparty computation is each step of the protocol,
and so it is unclear how to reduce interaction via the Fiat-Shamir transform.

5 Achieving Full Security for Constant Number of Parties

In this section, we show how to augment our base construction to full security,
including fairness and guaranteed output delivery, without changing the amor-
tized communication cost.

Our protocol works by having the parties divide the program into segments
and compute each segment separately. For each segment, the parties work in
the same way as before, that is, computing it first using a private multiplica-
tion protocol and then running a verification protocol. However, we change the
verification protocol so that it will give the parties more information besides
outputting merely accept or reject. Specifically, in the case of reject, the verifica-
tion protocol will also output a pair of parties in conflict, such that at least one
of them is guaranteed to be corrupted. Once such a pair is known, the parties
will remove both parties from the protocol and recompute the segment without
them. Since one of the eliminated parties is corrupt, it follows that an honest
majority is maintained even though the number of parties was reduced by two.
Removing two parties and restarting the segment computation without them
raises several challenges. In particular, the parties need to carefully move from a
t-out-of-n sharing to a (t − 1)-out-of-(n − 2) secret sharing. Our solution to this
includes having authentication tags over the shares, which prevent corrupted

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 267

parties from cheating in the process. We present a novel technique for comput-
ing these tags efficiently, requiring a single tag for all the shares held by a subset
of t + 1 parties and using sublinear communication in the number of shares.
We stress that authentication is required only for the secrets that are stored in
memory when moving from one layer to the next layer. This fact together with
the sublinear communication of our verification protocol implies that the overall
amortized communication cost per multiplication instruction remains |Πmult|.

The construction in this section is designed for replicated secret sharing
scheme only and thus we assume that the number of parties n is constant. Our
construction depends on two properties that hold for replicated secret sharing:
(1) Pair-wise consistency: when opening a secret, the opening will fail if there
exist two parties which do not agree on a certain share. If we know in advance
that the sharing was consistent, such a disagreement can occur only with a cor-
rupted party. This is used in our protocol to find a pair of disputed parties, where
at least one of them is guaranteed to be corrupt. (2) For each input held by a
party Pi, we can define a consistent secret sharing of this input, which is known
to Pi. This holds since any secret held by Pi is known to t other parties and so
it is possible to define a sharing where the share of one subset of t + 1 parties
is the input itself, whereas the shares of the other subsets is 0. This property is
required in our verification protocol when each party proves it behaved honestly
when sharing a secret.

This section is organized as follows. In Sect. 5.1 we present the updated ver-
ification protocol which allows identification of a pair of conflicting parties to
eliminate. In Sect. 5.2 we present two additional sub-protocols which are required
for our construction. Finally, in Sect. 5.3 we present the main protocol for com-
puting any arithmetic program.

5.1 Joint Verification of Multiplications with Cheating Identification

In this section, we present the verification protocol, with the property that when
cheating took place in the execution of the private multiplication protocol, the
parties will be able to identify a pair of conflicting parties (and not just reject the
computation). Our protocol realizes the functionality F full

vrfy formally described
in Functionality 5.1, which is defined similarly to Fabort

vrfy but with two differ-
ences: first, the parties always receive the same output. Second, if the trusted
party computing F full

vrfy outputs reject (which means that there exists an incor-
rect multiplication triple), then the ideal world adversary can pick one of two
options: provide a pair of parties to eliminate, where at least one of them is a
corrupted party, or let F full

vrfy detect such pair. In the latter, F full
vrfy receives the

inputs, randomness and views of the honest parties when computing some incor-
rect multiplication triple. Then, based on this information, F full

vrfy finds a pair of
conflicting parties and outputs it to the parties.

Our protocol to compute F full
vrfy is an extension of our protocol from Sect. 4.1.

In order to add the cheating identification property to our verification protocol,
we need to provide a mechanism to identify a pair of conflicting parties in each
step for which the parties may output reject in the original protocol. There are 4

268 E. Boyle et al.

FUNCTIONALITY 5.1. (F full
vrfy- Verify Mult. with Cheating Identification)

Let S be the ideal world adversary controlling a subset < n/2 of corrupted
parties. The functionality F full

vrfy is invoked by the honest parties sending their

shares of m multiplication triples {(xk, yk, zk)m
k=1} to F full

vrfy.

Then, F full
vrfy computes all secrets and the corrupted parties’ shares. These shares

are sent to S.
Then, it checks that zk = xk · yk for all k ∈ [m]. If this holds, it sends accept
to S. Otherwise, it sends reject to S and dk = zk − xk · yk for each k ∈ [m]
such that dk �= 0. Then:

– If F full
vrfy sent accept, then it waits for S to send out ∈ {accept, reject} which

is then handed to the honest parties. If out = reject, then S is required
to send a pair of indices (i, j) to F full

vrfy with at least one of them being a

corrupted party. Then, F full
vrfy hands (i, j) to the honest parties.

– If F full
vrfy sent reject, then S chooses one of the next two options:

• Send a pair of indices (i, j) to F full
vrfy with at least one of them being a

corrupted party. Then, F full
vrfy hands (i, j) to the honest parties.

• Ask F full
vrfy to find a pair of conflicting parties in the k̄th multiplication.

Then, F full
vrfy commands the honest parties to send their inputs, random-

ness and views in the execution to compute k̄th triple. Then, based on
this information, F full

vrfy computes the messages that should have been
sent by each corrupted party, and find a pair of parties Pi, Pj , where
Pj received an incorrect message. Then, F full

vrfy sends (i, j) to the honest
parties and S.

such steps: (i) when the VSS protocol to share the additive shares fails due to
inconsistency; (ii) when Fabort

proveDeg2Rel returns reject; (iii) when the opening of β
fails due to inconsistency; and (iv) when the parties output reject since β
= 0.

Note that in (i), we can simply ask the dealer to broadcast any share for
which pair-wise inconsistency exist. Since this can happen only with shares that
are known to the adversary, no secret information is never revealed. To identify
a pair of conflicting parties in case (iii), we use the pairwise-consistency check of
replicated secret sharing to identify a disputed pair. Namely, that inconsistency
can occur only when an honest party and a corrupted party disagree on the
value of a share held by both of them. Note that in addition we need that
the messages in the consistency check will broadcast (via Fbc), otherwise the
parties may not agree on the disputed pair they output. For (ii), we simply
use FcheatIdntfy

proveDeg2Rel. Recall that our protocol to realize FcheatIdntfy
proveDeg2Rel requires that

the proving party will know the shares held by the other parties. This indeed
holds for replicated secret sharing, since the parties convert �xk�, �yk�, �zk� to
�xi

k�, �yi
k�, �zi

k� by setting the shares of all subsets T for which Pi /∈ T to be 0
(see Sect. 2.2). Finally, for case (iv), if the parties reject since β
= 0, we observe
that this means that no one cheated in the verification protocol itself (with high
probability). Thus, the parties can conclude that cheating took place in one
of the calls to the private multiplication protocol to compute the program. The
parties thus continue to localize the fault by running a binary search on the set of

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 269

multiplication triples, aiming to find the first triple k where the corrupted party
have cheated and zk
= xk · yk. In each step of the search, the parties repeat the
verification protocol on a smaller set of triples. The search will continue at the
worst case (i.e., if no execution have ended with obtaining a pair of conflicting
parties), until the parties are left with one incorrect triple. Finally, the parties
can check the execution of the multiplication protocol for computing this triple,
and use it to find a pair of disputing parties. For this final check, we define
an ideal functionality FminiMPC that receives the input, randomness and view
of each honest party in the multiplication protocol and output the first pair
of parties for which incoming and sent messages do not match. Observe that
this functionality is called just once for the entire computation and so its cost
is amortized away, regardless of the way it is realized. We provide a formal
description of the protocol and proof of security in the full version of the paper.

Cheating Probability. Assume that there is one incorrect triple. Then, if the
adversary does not cheat in the verification protocol, then this triple will be
tested in at most log m executions of the protocol. In each execution, the prob-
ability that it will pass the test is bounded by 1

|F| . This holds since the parties
will output accept in this case only if the random linear combination cause the
opened value to be 0. Note that if the output of the parties is accept when exam-
ining a set of triples, then they stop the search in this set. Thus, an incorrect
triple has log m attempts to be accepted. The overall cheating probability is
therefore bounded by log m · 1

|F| .
We remark that the protocol can be extended to work over a ring in the same

way as for Fabort
vrfy . See the remark at the end of Sect. 4.1.

Communication Cost. Our protocol is recursive. In jth step of the recursion, the
parties secret share one element, reconstruct one element (using Fbc) and call
FcheatIdntfy

proveDeg2Rel for each party over a set of triples of size m/2j . Sharing a secret
requires each party to send

(
n
t

)
elements (we ignore here the consistency check

which can be typically done with constant cost), reconstruction requires sending(
n−1

t

)
elements by each party and the cost of n invocations of FcheatIdntfy

proveDeg2Rel,
as shown in Sect. 3.2, is n log(m/2j) + 4n · (

n−1
t

) · |Fbc| per party. Overall, the
obtained cost per party is roughly

(
n

t

)
· log m +

(
n − 1

t

)
· log m · 4n · |Fbc| + n · log m · log

√
m ring elements.

(4)
For constant number of parties, the asymptotic cost is roughly
O (log m · log

√
m)), which is sublinear in m. We remind the reader that when

the triples were computed over the ring Z2k , then the verification protocol is
carried-out over an extension ring; see the end of Sect. 4.2 for more details.

270 E. Boyle et al.

5.2 Two Additional Building Blocks

Computing Authentication Tags. We next show how to compute an authen-
tication tag over shares held by a subset T of t+1 parties. Let xT

1 , . . . , xT
L be the

shares held by the parties in T . The authentication tag τT is computed as follows:
τT =

∑L
k=1 uT

k · xT
k + vT , where uT = (uT

1 , . . . , uT
L) and vT are random secret

keys that are shared among the parties using authenticated secret sharing (see
definition in Sect. 2). Observe that for the long vector uT it is possible to secret
share a random seed from which the key is expanded, thus using the expensive
mechanism of authenticated secret sharing only small constant number of times.

To compute the tag we observe that the parties can first locally compute an
additive sharing of

∑m
k=1 uT

k ·xT
k . This is done by taking �uT

k � · �xT
k �, where �xT

k �
is simply defined such that the share held by subset T is xT

k and the shares held
by the other subsets is 0. Then, we let each party secret share each additive
share and prove that it shared the correct secret. The observation here is that
we can utilize the functionality FcheatIdntfy

proveDeg2Rel for this proof, as the additive share
each party computes and shares to the other parties, is a 2-degree function of
inputs that are verifiably shared among the other parties. If all proofs passed the
check, then the parties can locally add the shared secrets, add �vT � to the result
and reconstruct the obtained tag. If the reconstructions fails due to pair-wise
inconsistency, then the parties obtain a conflicting pair of parties.

Formally, The parties work as follows:
Πauth(xT

1 , . . . , xT
L, �uT �, �vT �):

1. The parties locally compute 〈zT 〉 =
〈∑L

k=1 uT
k · xT

k

〉
=

∑L
k=1�u

T
k � · �xT

k �

2. Let zT,i the additive share of zT held by Pi. Note that by definition zT,i = 0
for each Pi /∈ T . Then, each party Pi ∈ T verifiably secret shares (VSS) zT,i

to the other parties.
3. For each i ∈ [n] such that Pi ∈ T , the parties convert �uT

k � to �uT,i
k � for each

k ∈ [L] and send �zT,i� and
(
�uT

k �, �xT
k �

)L

k=1
to FcheatIdntfy

proveDeg2Rel.
4. If the parties received reject, (i, j) from FcheatIdntfy

proveDeg2Rel in any of the calls in
the previous step, then the parties output the first pair of conflicting parties
(Pi, Pj). Otherwise, they proceed to the next step.

5. The parties locally compute �τT � =
∑

i | Pi∈T �zT,i� + �vT �.
6. The parties reveal τT by sending their shares via Fbc to each other. If the

shares are inconsistent, then the parties output the first pair of parties for
which pair-wise consistency exists. Otherwise, they output τT .

Communication Complexity. We note that in practice the parties can call
FcheatIdntfy

proveDeg2Rel once per party for all shares (over the same layer of instructions).
Thus, the cost is dominated by each party secret sharing its additive sharing of
zT , and opening the shared tag at the end. Overall, this means that for each
subset T of t+1 parties, the cost per party is

(
n
t

)
+ |FcheatIdntfy

proveDeg2Rel|+
(
n−1

t

) · |Fbc|.

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 271

Player Elimination and Recovery. We next show how the parties can remove
a pair of conflicting parties and restart the computation without them.

Denote the parties to eliminate by Pi and Pj . The goal is to recompute the
segment, but with less parties. Since we are guaranteed that at least one of the
parties is corrupted, then we move from a t-out-of-n secret sharing to a (t − 1)-
out-of-(n − 2) secret sharing (i.e., the number of parties is reduced by 2 and the
threshold is reduced by 1). In order to achieve this, we distinguish between three
types of shares:

– Shares that are known to either Pi or Pj : In this case, no action is needed
by the parties, as each such share is now known to t active parties, which is
exactly what needed by the updated threshold.

– Shares that are known to both Pi and Pj : Shares in this category are held by
a subset T of t + 1 parties, with Pi, Pj ∈ T . Since we require that from now
on each share will be held by a subset of t parties, it suffices to reveal this
share to a subset T ′ of t parties, which will add the share to its current share.
To minimize communication, we can take T ′ = T \ {Pi, Pj}∪{Pk} for some
Pk /∈ T . This implies that we need all parties in T to send the share to Pk.This
is where the authentication tags are being used. Each party that holds the
share sends it to Pk. However, corrupted parties may send incorrect values.
Thus, the keys used to authenticate the share are also being revealed (recall
that they are secret shared using an authentication secret sharing scheme
and so cheating is not possible when opening these values). Once the keys are
revealed, party Pk checks for each share it received, that the tag is correct
given the authentication keys (i.e., that τT =

∑L
k=1 uT

k · xT
k + vT). Since in

each subset there exists at least one honest party, then at least one of the
possible shares is correct, and so the check will pass for this share.

– Shares that are not known to both Pi and Pj : Note that each such share is
known to a set of t + 1 active parties. Since the threshold is now reduced to
t, we just let one subset of t parties (there are exactly

(
t+1

t

)
= t + 1 such

subsets) locally add this share to the share already held by it. Note that the
parties can locally update the authentication tag for the updated share of
this subset, by simply adding the tag of the added share to the existing tag.

Observe that only for shares in the second category interaction is required.
There are

(
n−2
t−1

)
such shares, which are transmitted from t + 1 parties to a sin-

gle party. Recall that this cost is paid only for shares that are stored between
segments of the program. Nevertheless, later we will see that for specific instan-
tiations, it is possible to eliminate this cost completely.

5.3 The Main Protocol

In this section, we describe our main protocol to compute any straight-line pro-
gram. Our protocol computes the program segment by segment. Throughout the
protocol we maintain the following invariant: at the beginning of each segment’s
computation, the parties hold a consistent sharing of the values on the input

272 E. Boyle et al.

layer of the segment, an authentication tag for the shares held by each subset of
t + 1 parties on the input layer and an authenticated secret sharing of the keys
used to compute the tag. A computation of a segment includes using private mul-
tiplication and computing authentication tags for the shares on the output layer
of the segment. Then, the parties use the verification protocol to verify that the
output is correct. If the verification succeeds, then the parties can proceed to the
next segment. Otherwise, the parties hold a pair of parties to eliminate. In this
case, they apply the player elimination and recovery subprotocol and recompute
the segment with less two parties and updated secret sharing of the input layer.
To achieve fairness when outputs are revealed we use again the authentication
mechanism. Here however, we cannot authenticate all shares held by a subset
T together, since the shares may be intended to different parties. Thus, for the
output layer of the entire program, the parties compute new authentication tags
for each subset of shares intended to party Pi and held by a subset of parties T .
The formal description can be found in the full version of this paper.

Size of the Segments. Each time we repeat the computation of a segment, it
means that one corrupted party was eliminated. Thus, each segment can be
computed at most t times. If we split the program to O(n2) equally sized seg-
ments (i.e., with the same amount of multiplication instructions), then amortized
over the entire program, it can be shown that the average number of repetitions
per instruction is approximately 1.

Communication Complexity for Constant Number of Parties. For each seg-
ment with m/O(n2) multiplication instructions, we call Πmult for each multi-
plication, call Πauth for each subset of t + 1 parties at the output layer and
call F full

vrfy once. The asymptotic cost of F full
vrfy per party for a segment of size

m/n2 is O(log(m/n2) · log
√

m/n2). Thus, the cost of computing the segment
is m

n2 · |Πmult| + O(log(m/n2) · log
√

m/n2). Summing over all O(n2) segments,
the cost per party is thus m · |Πmult| + O(n2 log(m/n2) · log

√
m/n2). Letting

the program’s size S be its number of multiplication instructions, and assum-
ing that n is constant, the cost of our protocol per multiplication per party is
|Πmult| + o(S).

If cheating took place, then the parties need to recover shares held by the
eliminated parties for each secret stored in memory between the segments. The
number of such secrets is bounded by the width of the program W . Thus, in case
of cheating the cost per party is |Πmult| · S + O(W) + o(S). Note that W ≤ S
and in many cases, W will be much smaller than S, and so O(W) can be ignored.

Removing the O(W) Term when Πmult is Instantiated with [11]. If we
instantiate Πmult with the DN protocol [11], then as explained in Sect. 2.3, the
cost of Πmult is 1.5 elements per party. We next show how it is possible to recover
from cheating without increasing the communication cost, improving upon our
general construction from Sect. 5.2. Recall that in the DN protocol, the output
shares (of each multiplication) are computed by taking �r� + (xy − r), where

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 273

�r� is a sharing of a random r that was generated in the offline step (possibly
without any interaction), and xy − r is computed by party P1 (the parties send
him masked additive shares of x ·y). Note that xy−r is in fact sent from P1 only
to one subset of t + 1 parties (including P1 itself), denoted by T . Now, assume
that cheating was detected and two parties, say Pi and Pj are eliminated. To
recover the computation, it suffices that the parties will generate a new �r� with
the updated t − 1 threshold, and that one subset of t active parties will add
xy − r to its share of r. If the eliminated parties are not both in T , then this can
be done without interaction. However, if both of them are in T , then xy − r is
known now only to t−1 active parties. Thus, we require that some party Pk /∈ T
will learn xy − r. To this end, we ask party P� ∈ T (
= i, j) to send xy − r
to Pk. To detect whether P� sent the correct value, we use the authentication
mechanism as before. Specifically, the parties compute authentication tags for all
xy−r received during the computation (for secrets that are outputs of segments
only). Thus, if the authentication succeeds, then Pk has the correct xy − r and
the parties can recompute the segment. Otherwise, Pk accuse P� of sending him
an incorrect value. Note that in this case, we know again that either Pk or P� are
corrupted. Moreover, this is a new pair of conflicted parties that does not overlap
with the original pair. In this case, we restart the recovery process to remove 4
parties and update the sharings to a (t − 2)-out-of-(n − 4) secret sharing. As
before, we ask a party from T to send xy − r to a party outside of T , with both
parties not being one of the eliminated parties, and so on. Note that the process
can end with two outcomes: (1) At some point, no one complains. In this case,
the parties successfully removed t′ < t pair of parties, where in each pair, one
of the parties is guaranteed to be corrupted. The parties thus can continue the
computation. (2) The parties keep adding pair of conflicted parties to the list,
until we are left with one honest party. This holds since we started with t − 1
active parties in T , and t outside of T . Thus, at some point there will remain
one party outside of T . This party must be honest since we overall eliminated
t pairs of semi-corrupted parties, with the property that one of them must be
corrupted. Since there are t corrupted parties, the remaining party is honest.
In this case, following the 3-party construction of [5], this honest party can be
used as a trusted party and complete the computation. Note that in the above
process, each pair that is eliminated requires the transmission of one element.
However, in future multiplications, the overall communication is reduced by
at least one element, since a party that is eliminated, will not be part of the
interaction anymore. Thus, amortized over the circuit, the recovery process is
communication-free. The overall cost of our entire protocol is thus 1.5 ·S +o(S),
with no dependency on the width of the circuit.

274 E. Boyle et al.

References

1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: ACM CCS
(2016)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
ACM Symposium on Theory of Computing (1988)

3. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

4. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 67–97. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 3

5. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party compu-
tation via sublinear distributed zero-knowledge proofs. In: ACM CCS (2019)

6. Byali, M., Hazay, C., Patra, A., Singla, S.: Fast actively secure five-party compu-
tation with security beyond abort. In: ACM CCS (2019)

7. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: ACM Symposium on Theory of Computing (1988)

8. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

9. Cleve, R.: Towards optimal simulations of formulas by bounded-width programs.
In: ACM Symposium on Theory of Computing (1990)

10. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

11. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

12. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

13. Fehr, S., Yuan, C.: Towards optimal robust secret sharing with security against
a rushing adversary. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11478, pp. 472–499. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17659-4 16

14. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

15. Furukawa, J., Lindell, Y.: Two-thirds honest-majority MPC for malicious adver-
saries at almost the cost of semi-honest. In: ACM CCS (2019)

16. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: STOC (2014)

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM sympo-
sium on Theory of computing (2009)

https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-030-17659-4_16
https://doi.org/10.1007/978-3-030-17659-4_16
https://doi.org/10.1007/3-540-47721-7_12

Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs 275

18. Gilboa, N., Ishai, Y.: Compressing cryptographic resources. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 591–608. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 37

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: ACM Symposium on
Theory of Computing (1987)

20. Gordon, S.D., Ranellucci, S., Wang, X.: Secure computation with low communica-
tion from cross-checking. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11274, pp. 59–85. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03332-3 3

21. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional mpc with
guaranteed output delivery. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11693, pp. 85–114. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26951-7 4

22. Goyal, V., Song, Y.: Malicious security comes free in honest-majority MPC. IACR
Cryptol. ePrint Arch. (2020)

23. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest
majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12171, pp. 618–646. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1 22

24. Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party computation. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 12

25. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure compu-
tation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 18

26. Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.-H.: Secure protocol
transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 430–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 15

27. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electron. Commun. Jpn. 72(9), 56–64 (1989)

28. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: ACM CCS (2018)

29. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: ACM CCS (2017)

30. Maurer, U.M.: Secure multi-party computation made simple. Discret. Appl. Math.
154(2), 370–381 (2006)

31. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
the garbled circuit approach. In: ACM CCS (2015)

32. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority
MPC by batchwise multiplication verification. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 17

33. Patra, A., Ravi, D.: On the exact round complexity of secure three-party computa-
tion. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
425–458. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 15

34. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

https://doi.org/10.1007/3-540-48405-1_37
https://doi.org/10.1007/978-3-030-03332-3_3
https://doi.org/10.1007/978-3-030-03332-3_3
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-96881-0_15

276 E. Boyle et al.

35. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: ACM Symposium on Theory of Computing (1989)

36. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. In: Demillo, R.D., et al. (eds.) Foundations of Secure Computa-
tion. Academic Press, New York (1978)

37. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
38. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: Sympo-

sium on Foundations of Computer Science (1986)

Efficient and Round-Optimal Oblivious
Transfer and Commitment

with Adaptive Security

Ran Canetti1(B), Pratik Sarkar1, and Xiao Wang2

1 Boston University, Boston, USA
{canetti,pratik93}@bu.edu

2 Northwestern University, Evanston, USA
wangxiao@cs.northwestern.edu

Abstract. We construct the most efficient two-round adaptively secure
bit-OT in the Common Random String (CRS) model. The scheme is
UC secure under the Decisional Diffie-Hellman (DDH) assumption. It
incurs O(1) exponentiations and sends O(1) group elements, whereas
the state of the art requires O(κ2) exponentiations and communicates
poly(κ) bits, where κ is the computational security parameter. Along
the way, we obtain several other efficient UC-secure OT protocols under
DDH:

– The most efficient yet two-round adaptive string-OT protocol
assuming global programmable random oracle. Furthermore, the
protocol can be made non-interactive in the simultaneous message
setting, assuming random inputs for the sender.

– The first two-round string-OT with amortized constant exponenti-
ations and communication overhead which is secure in the global
observable random oracle model.

– The first two-round receiver equivocal string-OT in the CRS model
that incurs constant computation and communication overhead.

We also obtain the first non-interactive adaptive string UC-commitment
in the CRS model which incurs a sublinear communication overhead in
the security parameter. Specifically, we commit to polylog(κ) bits while
communicating O(κ) bits. Moreover, it is additively homomorphic.

We can also extend our results to the single CRS model where multiple
sessions share the same CRS. As a corollary, we obtain a two-round
adaptively secure MPC protocol in this model.

1 Introduction

Oblivious Transfer (OT), introduced in [23,41], is one of the main pillars of
secure distributed computation. Indeed, OT is a crucial building block for many
MPC protocols, e.g. [4,5,27,28,33,42]. As a result, significant amount of research
has been dedicated to constructing OT protocols that are efficient enough and
secure enough to be of practical use.

This work was supported by the IARPA ACHILLES project, the NSF MACS project
and NSF grant CNS-1422965. The first author is a member of the Check Point Institute
for Information Security.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 277–308, 2020.
https://doi.org/10.1007/978-3-030-64840-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_10

278 R. Canetti et al.

Table 1. Comparing our actively-secure UC-OT protocols with state-of-the-art DDH-
based 2-round actively-secure UC-OT protocols.

Setting Protocols Setup Security Sender-input size (bits) Exponentiations Communication (bits)

1 [36] GPRO Adaptive κ 6 4log |G| + 2κ

[6] Adaptive κ 11 6κ

πaOT-GPRO (Fig. 4)1 Adaptive κ 5 2log |G|+2κ

2 [10] GORO Static κ O(κ) O(κ2)

πsOT-GORO (Fig. 6)2 κ 5 2log |G|+2κ

3 [40]3 CReS Static log |G| 11 6log |G|
πsOT-CRS(Fig. 8) CRS log |G| 8 5log |G|

4 [25] CRS Receiver equivocal log |G| poly(κ) poly(κ)

[5]3 CReS log |G| O(κ) O(κ2)

πreOT-CRS(Fig. 7) CRS log |G| 9 5log |G|
5 [5]3 CReS Adaptive 1 Ω(κ2) + 2 · NCEE = O(κ2) poly(κ)

πaOT-CRS (Fig. 10)4 CRS 1 11 + 2 NCEE = O(1) 6 log |G| + 2 NCEC = O(κ)

Note: The computational security parameter is κ and G denotes a group where DDH
holds with log |G| = O(κ). NCEE and NCEC denotes the exponentation and commu-
nication cost of an augmented NCE on a bit respectively. It can be instantiated using
the DDH-based scheme of [16] where NCEC = O(κ) and NCEE = O(1). 1πaOT-GPRO

requires a one-time communication of 2 group elements and κ bits and computation of
4 exponentiations. 2πsOT-GORO requires a one-time communication of 2 group elements
and κ bits and computation of 2 NIZKPoKs and 5 exponentiations. 3Can be instanti-
ated from QR and LWE too. 4πaOT-CRS has a one-time communication cost of log |G|
and one exponentiation.

Designing good OT protocols is a multi-dimensional challenge: One obvious
dimension is the complexity, in terms of computational and communication over-
head, as well as the number of rounds. Another dimension is the level of security
guaranteed. Here the standard measure is Universally Composable (UC) security
[8], in order to enable seamless modular composition into larger MPC protocols.
Yet another dimension is the setup used. Commonplace models include the com-
mon random string model (CRS), the common reference string (CReS) model
and the random oracle (RO) model. (Recall that UC-secure OT does not exist
in the plain model [9], thus it is essential to use some sort of setup.) Yet another
dimension is the computational hardness assumptions used.

A final dimension, which is the focus of this work, is whether security is
guaranteed for adaptive corruption of one or both of the participants, or alter-
natively only for the static case where one of the parties is corrupted, and the
corruption takes place before the computation starts. Indeed, most of the recent
works towards efficient OT concentrates on the static case, e.g. [10,22,36,40].

We concentrate on the case of two-round, adaptively UC-secure OT. We only
consider the case of malicious adversaries. It is easy to see that two rounds is
the minimum possible, even for static OT. Furthermore, two-round OT enables
two-round MPC [3–5,27] which is again round-optimal. More importantly, the
efficiency of the two-round MPC protocol crucially depends on the efficiency of
the underlying two-round UC-OT protocol. Still, there is a dearth of efficient
two-round adaptively UC-secure OT protocols which can tolerate malicious cor-
ruptions.

Efficient and Round-Optimal Oblivious Transfer and Commitment 279

1.1 Our Contributions

We present a number of two-round UC-secure OT protocols. Our protocols are
all based on the plain DDH assumption and work with any group where DDH is
hard. While the protocols are quite different and in particular work in very dif-
ferent settings, they all use the same underlying methodology, which we sketch
in Sect. 1.2. But first we summarize our results and compare it with the relevant
state-of-the-art protocols. We organize the presentation and comparison based
on the setup assumptions - the global random oracle (GRO) model, and the
common reference and random string models. A stronger notion of RO is the
GRO model where the same instance of RO is shared globally among different
sessions. We have results in the global observable random oracle (GORO) model
and the global programmable random oracle (GPRO) model. Our results are fur-
ther subdivided into cases based on static and adaptive corruptions. A detailed
comparison can be found in Table 1. We assume that the number of bits required
to represent a group element (for which DDH holds) is O(κ). For example, the
DDH assumption holds in the elliptic curve groups and a group element can be
represented with O(κ) bits.

Global Random Oracle Model. Our protocols are proven to be secure in
the well established GRO [7,10] model. Our results in the GRO model are as
follows:

– Efficient Adaptive OT in Programmable GRO Model. The work of
“Simplest OT” [18] presented a 3-round OT in the programmable RO (PRO)
model, which was later shown as not UC-statically secure [6,34]. Inspired by
their protocol, we design a 2-round adaptively secure OT πaOT-GPRO in the
GPRO model. Our protocol requires roughly 5 exponentiations and commu-
nicates 2 group elements and 2κ bits when the sender’s input messages are κ
bits long and the computational security parameter is κ.

State-of-the-Art. The work of [6] presents an adaptively secure OT assum-
ing DDH. They require 11 exponentiations and 5κ bits of communication.
The work of [36] obtains a two-round OT based on DDH using 6 exponen-
tiations. They obtained static security assuming PRO. We observe that it
can be proven to be adaptively secure under the same assumptions. They
also provide an optimized variant requiring 4 exponentiations under the non-
standard assumption of Interactive DDH, which is not known to be reducible
to standard DDH. The work of [29] presented a 8 round adaptive OT protocol
from semi-honest UC adaptive-OT and observable GRO (i.e. GORO) model
in the tamper-proof hardware model. We do not compare with them due to
difference in the underlying setup assumptions. A detailed comparison with
other protocols is shown as Setting 1 in Table 1.

– One-Round Random OT in the GPRO + Short Single CRS Model.
Our GPRO-based protocol can be further improved to obtain a one-round

280 R. Canetti et al.

random OT (where the sender’s messages are randomly chosen) πaROT-GPRO

in the simultaneous message (where the parties can send messages in parallel)
setting assuming a single short CRS of two group elements. By single CRS, we
refer to the setting of [11] where the same CRS is shared among all sessions
and the simulator knows the trapdoor of the CRS. In our protocols, each
random OT requires communicating 2 group elements and computing roughly
5 exponentiations. This is particularly useful to compute the base OT in OT
extension [32,39] non-interactively during the offline phase.

State-of-the-Art. In comparison, the work of [36] can obtain a one-round
random OT in the simultaneous message setting from non-interactive Key
Agreement protocols. Assuming DDH, they can instantiate their protocol
using 6 exponentiations.1 The work of [14] presented an OT with selective
failure from CDH assumption and proven its security for O(κ) OTs together.
The work by Doerner et al. [21] presented an OT with selective failure based
on observable RO (ORO) and used it to obtain OT extension while computing
roughly 3 exponentiations per base-OT and 1 NIZKpok. However, their OT
requires 5 rounds of interaction and communication of 4 group elements and
3κ bit strings, yielding a 6 round OT extension. On the other hand, our
protocol would give a 3 round OT extension with communication of 2 group
elements per base-OT and it should outperform theirs in the WAN setting
where interaction dominates the computation time.

– Static OT in the Observable GRO Model. We replace the GPRO by
a non-programmable GORO, with an extra one-time cost of 2 NIZKPoKs
for Discrete Log and 5 exponentiations, which can be reused across mul-
tiple executions. One-time cost is a cost that is incurred only once per
session/subsession even if multiple OT protocols are run in that ses-
sion/subsession between the pair of parties. The remaining per-OT cost of
this protocol is 5 exponentiations, except that now the protocol is only stat-
ically secure.

State-of-the-Art. In comparison, the only two-round OT protocol from
GORO is known from [10]. The authors generate a statically-secure one-sided
simulatable OT under DDH assumption. It is used to obtain a UC-secure 2PC
protocol using garbled circuits [3]. The 2PC can be instantiated as an UC-
secure OT protocol. Each such OT would cost O(κ) exponentiations, which
cannot be amortized for large number of OTs. A detailed comparison can be
found in Setting 2 of Table 1.

Common Random String Model. Next we present our results in the CRS
model. We would like to note that the state-of-the-art protocols are in a stronger
1 They have an optimized variant (in Appendix D.2 of their paper) from Interactive

DDH requiring 4 exponentiations based on a non-standard assumption, not known
to be reducible to standard DDH assumption.

Efficient and Round-Optimal Oblivious Transfer and Commitment 281

model, i.e. the common reference string model and yet we work in the common
random string model and still outperform them. Our results and detailed com-
parison follows:

– Static OT in the CRS Model. We replace the GRO with a non pro-
grammable CRS. This gives us an efficient two-round static OT πsOT-CRS

which requires 8 exponentiations and communication of 5 group elements.

State-of-the-Art. In contrast, The state-of-the-art is obtained by [40] in
the common reference string model from DDH, Quadratic Residuosity (QR)
and Learning with Errors (LWE). Their DDH based instantiation required 11
exponentiations and communicated 6 group elements, while other instantia-
tions required more. Following this, [17] presented constructions in the single
common reference string model (of [11]), which is a weaker setup assumption.
They have a 2 round construction from Decision Linear Assumption which
requires 20 exponentiations and they have a 4 round construction from DDH
and Decisional Composite Residuosity Assumption. The recent work of [22]
presents a theoretical construction based on CDH and Learning with Parity.
Detailed comparison can be found in Setting 3 of Table 1.

– Receiver Equivocal OT in the CRS Model. Next, we add security
against adaptive corruption of receiver at the cost of one extra exponenti-
ation. This yields a receiver equivocal OT πreOT-CRS which requires 9 expo-
nentiations and communication of 5 group elements. Such an OT can find
useful applications in efficient adaptively-secure zero knowledge [24] schemes.

State-of-the-Art. Previous receiver equivocal OT protocol of [25] required
somewhere equivocal encryption leading to a practically infeasible solution.
On the other hand, [5] required O(κ) instances of static string-OTs and
non-blackbox usage of non-interactive equivocal commitment to construct
a receiver equivocal OT. A detailed comparison can be found in Setting 4 of
Table 1.

– Adaptive OT in the CRS Model. Finally, we add sender equivocation
in our receiver equivocal OT to obtain a semi-adaptive OT (which is secure
against static corruption of one party and adaptive corruption of another
party) πsaOT-CRS in two rounds. Then, we apply the transformation of [5] to
obtain our adaptively-secure bit OT πaOT-CRS in two rounds. Their transfor-
mation upgrades a semi-adaptively secure OT to an adaptively secure OT in
the augmented NCE model. Our final protocol πaOT-CRS computes 11 expo-
nentiations and communicates 7 group elements. In addition, it encrypts 2
bits using augmented NCE. Upon instantiating the NCE scheme using the
DDH-based protocol of [16], we obtain the first two round adaptively secure
bit-OT which has constant communication and computation overhead.

282 R. Canetti et al.

Table 2. Comparing our protocol with state-of-the-art adaptively secure (without
erasures) UC commitment schemes where the commitment size is O(κ) bits

Protocols Message No. of rounds Setup Assumptions

bit length Commit Decommit

[9] 1 1 1 CReS DDH + UOWHF

[11] 1 1 1 CReS TDP

[1] 1 1 1 CReS SXDH

[2] 1 1 1 CReS DDH

[20] κ 3 1 CReS DCR

[19] κ 3 1 CReS DCR + SRSA

Our DDH-based
protocol (Fig. 12)

polylog(κ) 1 1 CRS DDH

Notations:
UOWHF - Universal One-Way Hash Functions
TDP - Trapdoor Permutations, SXDH - Symmetric External Diffie–Hellman,
DCR - Decisional Composite Residuosity, SRSA - Strong RSA

State-of-the-Art. In this setting, few works [12,26,26] achieve adaptive
security based on general two-round MPC protocol using indistinguishability
obfuscation. The only round optimal adaptively-secure protocol under stan-
dard computational assumption is due to [5] from DDH, LWE, and QR. They
obtain a semi-adaptive bit-OT by garbling a non-interactive equivocal com-
mitment scheme using equivocal garbling techniques of [13]. The construction
also requires O(κ2) invocations to a static string OT with oblivious sam-
pleability property. Then, they provide a generic transformation to obtain
an adaptively secure bit OT from a semi-adaptively secure bit-OT in the
augmented NCE model. On efficiency measures, the work of [5] constructs
the equivocal garbled circuit by communicating poly(κ) bits and their semi-
adaptive bit OT requires O(κ2) exponentiations, thus yielding a feasibility
result. In contrast, our protocol is concretely efficient. We have compared
with their protocol in Setting 5 of Table 1.

– Non-interactive Adaptive Commitment. As an independent result, we
demonstrate that the first message of any two-round receiver equivocal OT
behaves as an adaptively-secure commitment. By applying this result to our
receiver equivocal OT πreOT-CRS, we obtain the first non-interactive adaptive
string commitment scheme with sublinear communication in κ. More specifi-
cally, we commit polylog(κ) bits using 4 exponentiations and communicating
2 group elements. Interestingly, our scheme is additively homomorphic.

State-of-the-Art. On the other hand, the previous non-interactive
adaptively-secure commitment schemes [1,2,9,11] in the common reference
string model were bit commitments requiring O(1) exponentiations and O(κ)
bits communication to commit a bit. There are string commitments [19,20]

Efficient and Round-Optimal Oblivious Transfer and Commitment 283

but they require 3 rounds of interaction for commitment. The work of [30]
presented a theoretical construction from the minimal assumption of pub-
lic key encryption with oblivious ciphertext generation. It has an interactive
commitment phase and communicates O(κ2) bits to commit to a single bit.
Table 2 provides a qualitative comparison of our protocol with other schemes.

Single Common Random String Model. Currently, our results in this sub-
section are in the local CRS model. We can extend it to the single common
random string, i.e. sCRS model of [11], where all parties share the same sCRS
for their subsessions. A subsession is computed between a pair of parties with
unique roles (party A is the sender of an OT subsession and Party B is the
receiver). The local CRS is generated from sCRS by the parties during the pro-
tocol. There can be multiple instances of the same protocol within a subsession
with the same local CRS between same parties with their roles preserved, i.e. A
will be the sender and B will be the receiver. The simulator knows the hidden
trapdoors for sCRS. This benefit comes at a cost of keeping the sCRS length to
4κ + 2 group elements. The length is independent of the number of parties or
the number of instances of the protocol being run. However, we assume that the
subsession ids are chosen statically by the environment Z before seeing sCRS.
Using our adaptive OT and commitment protocol in the sCRS model, we obtain
a two-round adaptively secure MPC protocol in the sCRS model. Similar result
was observed in the work of [5].

1.2 Key Insights

Our OT protocols are in the dual-mode [35,40] paradigm. In this paradigm,
the protocol can be either in extractable mode or equivocal mode based on the
mode of the setup assumption. In the extractable mode, the input of a corrupt
receiver can be extracted by a simulator(playing the role of sender) using a
trapdoor; whereas in the equivocal mode the simulator(playing the role of honest
receiver) can use the trapdoor to compute randomness that would equivocate
the receiver’s message to both bit values b ∈ {0, 1}. This would enable the
simulator to extract a corrupt sender’s input messages corresponding to both
bit values. Previous protocols ensured that the real world protocol was always in
the extractable mode by programming the setup distribution [35,40]. However,
this required programming the setup based on which party is statically corrupt
and this was incompatible with adaptive security.

The novelty of our paper lies in programming the mode of the protocol, during
the protocol execution, without explicitly programming the setup. We achieve
this by relying on the Computational Diffie-Hellman(CDH) and DDH assump-
tion. The protocols either start off with a common random string - (g, h, T1) or
generate one by invoking the GRO on a random string. The receiver is required
to generate T2 and execute the OT protocol using (g, h, T1, T2) as the setup
tuple. The protocol ensures that if the tuple is non-DDH then the protocol is
in extractable mode, else it is in equivocal mode. The CDH assumption guaran-
tees that the tuple is a non-DDH tuple and hence the real world protocol is in

284 R. Canetti et al.

extractable mode. Meanwhile, the simulator can compute T2 = htd s.t. the tuple
is in equivocal mode by using the trapdoor td = logg T1. The simulated tuple
is indistinguishable from real tuple due to DDH assumption. This trick follows
by carefully tweaking the DDH based instantiation of the PWV framework such
that it satisfies an additional property, i.e. the CRS for the protocol will be in
extractable mode (a.k.a messy mode according to PVW) and it can be set to
equivocal mode (a.k.a decryption mode according to PVW) by the simulator,
given a trapdoor. This enables simulation in the adaptive setting as the simu-
lator can conveniently program the CRS based on which party gets corrupted.
Extending our techniques to hold under additional assumptions is an intriguing
open question, especially LWE and QR since PVW can be instantiated from
them. See Sect. 3 for a more detailed overview.

Paper Organization. In the next section, we introduce some notations and impor-
tant concepts used in this paper. In Sect. 3, we present the key intuitions behind
our protocols. This is followed by our results in the global random oracle model
in Sect. 4. Then, we replace the random oracle assumption with a CRS setup to
obtain a receiver equivocal OT in Sec. 5. Our optimized static-OT is present in
the same section. In Sect. 6 we add sender equivocation in our receiver equivocal
OT to obtain adaptively-secure OT in the CRS model. We present our inde-
pendent result on adaptively-secure commitment scheme in Sect. 7. Finally, we
conclude by replacing our local CRS with a single CRS in Sect. 8. In the same
section we provide our two round adaptive MPC protocol in the single CRS
model.

2 Preliminaries

Notations. We denote by a ← D a uniform sampling of an element a from a
distribution D. The set of elements {1, . . . , n} is represented by [n]. We denote
polylog(a) and poly(b) as polynomials in log a and b respectively. We denote a
probabilistic polynomial time algorithm as PPT. We denote the computational
security parameter by κ. Let Zq denote the field of order q, where q = p−1

2
and p are primes. Let G be the multiplicative group corresponding to Z

∗
p with

generator g, where DDH assumption holds. We denote the set of natural numbers
as N. When a party S gets corrupted we denote it by S∗. Our protocols have the
following naming convention π〈sec〉〈prot〉-〈setup〉 where 〈sec〉 refers to the security
model and it can be either s (static), re (receiver equivocal) or a (adaptive).
〈prot〉 refers to the protocol which is either OT or ROT or COM based on OT
or random OT or commitment protocol respectively. Similarly, 〈setup〉 refers to
the setup assumption where it can be either PRO (PRO model) or ORO (ORO
model) or CRS (CRS). Our security proofs are in the Universal Composability
(UC) framework of [8]. We refer to the original paper for details.

Global Random Oracle Model. We present the global random oracle func-
tionality from [7] in Fig. 1. It allows a simulator to observe illegitimate queries
that are made by the adversary from outside the session by invoking the

Efficient and Round-Optimal Oblivious Transfer and Commitment 285

FGRO

FGRO is parameterized by a domain D and range R and it proceeds as follows,
running on security parameter κ:

– FGRO maintains a list L (which is initially empty) of pairs of values (ŝid, m̂, ĥ),
s.t. m̂ ∈ D, ĥ ∈ R and ŝid is a session id.

– Upon receiving a value (Query, m, sid′) (where m ∈ D) from a party P, from
session with session id sid, perform the following: If there is a pair (sid′, m, ĥ),
for some ĥ ∈ R, in the list L, set h := ĥ. If there is no such pair, sample
h ←R R and store the pair (sid′, m, h) in L. If sid �= sid′, then add (sid′, m, h)
to the illegitimate query set Qsid. Once h is set, reply to the activating machine
with (HashConfirm, h).

– Upon receiving a value (Observe, sid) from the adversary: If Qsid does not exist
then set Qsid = ⊥. Output Qsid to the adversary.

– Upon receiving a value (Program, m, h′, sid) from the adversary, if there exists
an entry (sid, m, h) and h �= h′ then ignore this input. Else, set L = L∪(sid, m, h)
and prog = prog ∪ m and return (ProgramConfirm) to adversary.

– Upon receiving a value (IsProgrammed, m, sid′) from a party (P, sid), if sid �=
sid′ then ignore the input. Else, set b = 1 if m ∈ prog. Otherwise set b = 0.
Return (IsProgrammedResult, b) to the calling entity.

Fig. 1. The ideal functionality FGRO for global random oracle

Observe command. It also enables the simulator to program (using the Pro-
gram command) the random oracle on unqueried input points. Meanwhile, an
adversary can also program (using the Program command) the random oracle
on a point but an honest party can check whether that point has been pro-
grammed or not by invoking the IsProgrammed command. In the ideal world,
a simulator can successfully program the RO since it can always return the
result of IsProgrammed command as 0 when the adversary invokes it to ver-
ify whether a point has been programmed or not. More details can be found in
Sect. 8 of [7]. In our OT protocols we require multiple instances of the GRO due
different distributions on the domain and range of the GRO. We denote them as
FGRO1, FGRO2 and so on. We assume FGROi is indexed by a parameter i ∈ N, in
addition to sid. We avoid writing i as part of the parameters to avoid notation
overloading.

Common Random String Model. In this assumption, the parties of a session
sid have access to a string randomly sampled from a distribution. A CRS is local
to the session sid and should not be used for protocols outside the session. In
the security proof, the simulator would have access to the trapdoors of the CRS
which would enable him to simulate the ideal world adversary. In the MPC
literature, the acronym CRS can also refer to common reference string which
is a stronger assumption than common random string. In this paper, we always
use CRS for common random string unless explicitly mentioned. We also use the

286 R. Canetti et al.

FOT

FOT interacts with a sender S and a receiver R as follows:
– On input (Choose, rec, sid, b) from R where b ∈ {0, 1}; if no message of the form

(rec, sid, b) has been recorded in the memory, store (rec, sid, b) and send (rec, sid)
to S.

– On input (Transfer, sen, sid, (a0, a1)) from S with a0, a1 ∈ {0, 1}n, if no mes-
sage of the form (sen, sid, (a0, a1)) is recorded and a message of the form
(rec, sid, b) is stored, send (sent, sid, ab) to R and (sent, sid) to S. Ignore future
messages with the same sid.

Fig. 2. The ideal functionality FOT for oblivious transfer

FCOM

FCOM interacts with committer C and verifier V as follows:
– On receiving input ((Commit,V),C, sid, m) from C, if (sid,C,V, m′) has been

recorded, ignore the input. Else record the tuple (sid,C,V, m) and send
(Receipt, sid,C,V) to V.

– On receiving input (Decommit,C, sid) from C, if there is a record of the form
(sid,C,V, m′) return (Decommit, sid,C,V, m′) to V. Otherwise, ignore the in-
put.

Fig. 3. The ideal functionality FCOM for commitment scheme

single CRS model [11] where a single CRS - sCRS is shared among all sessions
and the simulator knows the trapdoor of the sCRS.

Oblivious Transfer. In a 1-out-of-2 OT, we have a sender (S) holding two
inputs a0, a1 ∈ {0, 1}n and a receiver (R) holding a choice bit b. The correctness
of OT means that R will obtain ab as the outcome of the protocol. At the same
time, S should learn nothing about b, and R should learn nothing about the
other input of S, namely ab̄. The ideal OT functionality FOT is shown in Fig. 2.
We also consider the multi-session variant FmOT (Fig. 13) where multiple parties
can run pairwise OT protocols, while sharing the same setup resources. This
captures our OT protocols in the single CRS model.

Adversarial Model. We initially consider security against static corruptions by a
malicious adversary. Later, we need different levels of adaptive security and we
enlist them as follows:

– Static Corruption: The adversary corrupts the parties at the beginning of the
protocol.

– Receiver Equivocal Corruption: The adversary corrupts sender statically and
he corrupts the receiver adaptively.

– Sender Equivocal Corruption: The adversary corrupts receiver statically and
he corrupts the sender adaptively.

Efficient and Round-Optimal Oblivious Transfer and Commitment 287

– Semi-adaptive Corruption: The adversary corrupts one party statically and
the other party adaptively.

– Adaptive Corruption: The adversary corrupts both parties adaptively. This
scenario covers the previous corruption cases.

Commitment. A commitment scheme allows a committing party C to compute
a commitment c to a message m, using randomness r, towards a party V in the
Commit phase. Later in the Decommit phase, C can open c to m by sending the
decommitment to V. The commitment should hide m from a corrupt V∗. Binding
ensures that a corrupt C∗ cannot open c to a different message m′ �= m. In
addition, UC-secure commitments require a simulator (for honest V) to extract
the message committed by C∗. Also, it enables a simulator (for honest C) to
commit to 0 and later open it to any valid message by using the trapdoor.
The ideal commitment functionality FCOM is shown in Fig. 3. We also consider
the multi-session [11] variant FmCOM (Fig. 14) where multiple parties can run
pairwise commitment schemes protocols, while sharing the same setup resources.
This captures our commitment scheme in the single CRS model.

Non-committing Encryption. A non-committing encryption consists of three
algorithms NCE = (Gen;Enc;Dec). It is a public key encryption scheme which
allows a simulator to encrypt a plaintext in the presence of an adaptive adversary.
Given a trapdoor, the simulator (on behalf of the honest party) can produce some
dummy ciphertext c without the knowledge of any plaintext m. Later when the
honest party gets corrupted and the simulator produces matching randomness
(or decryption key) s.t. c decrypts to m. More formally, it is defined as follows.

Definition 1. (Non-committing Encryption). A non-committing (bit)
encryption scheme (NCE) consists of a tuple (NCE.Gen,NCE.Enc,NCE.Dec,
NCE.S) where (NCE.Gen,NCE.Enc,NCE.Dec) is an IND-CPA public key encryp-
tion scheme and NCE.S is the simulation satisfying the following property: for
b ∈ {0, 1} the following distributions are computationally indistinguishable:

{(pk, c, rG, rE) : (pk, sk) ← NCE.Gen(1κ; rG), c = NCE.Enc(pk, b; rE)}κ,b ≈
{(pk, c, rb

G, rb
E) : (pk, c, r0G, r0E , r1G, r1E) ← NCE.S(1κ)}κ,b.

Definition 2. (Augmented Non-committing Encryption). An aug-
mented NCE scheme consists of a tuple of algorithms (NCE.Gen,NCE.Enc,
NCE.Dec,NCE.S, NCE.GenObl,NCE.GenInv) where (NCE.Gen,NCE.Enc,
NCE.Dec,NCE.S) is an NCE and:

– Oblivious Sampling: NCE.GenObl(1κ) obliviously generates a public key pk
(without knowing the associated secret key sk.

– Inverse Key Sampling: NCE.GenInv(pk) explains the randomness for the key
pk satisfying the following property.
Obliviousness: The following distributions are indistinguishable:

{(pk, r) : pk ← NCE.GenObl(1κ; r)}κ ≈
{(pk, r′) : (pk, sk) ← NCE.Gen(1κ); r′ ← NCE.GenInv(pk)}κ .

288 R. Canetti et al.

Definition 3. (Computational Diffie-Hellman Assumption). We say
that the CDH assumption holds in a group G if for any PPT adversary A,

Pr[A(g, h, T) = Z] = neg(κ).

holds, where h, T ← G, and T = gt, Z = ht.

Definition 4. (Decisional Diffie-Hellman Assumption). We say that the
DDH assumption holds in a group G if for any PPT adversary A,

|Pr[A(g, h, T, Y) = 1] − Pr[A(g, h, T, Z) = 1]| = neg(κ).

holds, where h, T, Y ← G and T = gt, Z = ht.

3 Technical Overview

In this section, we will provide a high-level overview of our main constructions.
Full technical details can be found in later sections.

3.1 Adaptively Secure OT in the Global Programmable RO Model

The “Simplest OT protocol” [18] is a three-round OT protocol in the pro-
grammable RO model. S sends the first message as T = gr, using some secret
randomness r ← Zq. R uses the sender’s message to compute the second mes-
sage as B = gαT b based on his input bit b using some secret receiver randomness
α ← Zq. Upon receiving B, the sender reuses the secret randomness r to compute
the OT third message as follows:

c0 = FGRO (Br) ⊕ m0

c1 = FGRO

((
B

T

)r)
⊕ m1

(1)

The receiver decrypts mb = cb ⊕ FGRO(sid, Tα). A corrupt R∗ cannot obtain
both messages as it requires computing T r (as it involves querying Br and
(B

T)r) to the RO. Such a computation is hard by CDH assumption as T = gr is
randomly sampled by S and kept secret from R. On the other hand, a corrupted
S∗ cannot guess b as b is perfectly hidden in B (since α and α − r are valid
receiver randomness for bits 0 and 1). This also disrupts a corrupt receiver’s
input extraction by the simulator as b is not binded to B. The only way to
extract the input of R∗ is when he invokes FGRO on Bα to decrypt mb. However,
such a weak extraction process is insufficient for UC-secure protocols (GC-based
protocols) where this OT protocol might be used and it has been pointed out by
the work of [6,34]. To tackle this issue, the protocol should bind the receiver’s
input bit b to the receiver’s message. Here our goals are: 1) fix this protocol to be
fully UC-secure; 2) reduce the round complexity of the protocol to two rounds.

Efficient and Round-Optimal Oblivious Transfer and Commitment 289

Our Solution. We reduce the round complexity by generating T as an OT
parameter using a GRO. The receiver generates T by invoking the GRO on
a randomly sampled seed. He constructs B = gαT b based on bit b. The sender
samples a random r from Zq and encrypt his message as in Eq. 1. The sender also
sends z = gr so that the receiver can decrypt mb = cb ⊕ FGRO(sid, zα). Security
follows from the the security of Simplest OT. And sender’s messages are hidden
due to CDH assumption. However, the receiver’s bit cannot be extracted from
the receiver’s message as it is perfectly hidden.

Now we will add a mechanism such that the receiver’s bit can be extracted
from the receiver’s message. Intuitively, the protocol is modified in such a way
that the receiver runs two instances (using two different OT parameters) of the
modified Simplest OT using the same randomness α. The sender encrypts his
message by combining these two instances. Finally, the receiver uses α to decrypt
mb. Security ensures that a corrupt receiver cannot decrypt m0 or m1 if the two
instances are not computed using α. And a simulator can extract the corrupt
receiver’s input bit from the two instances if they are correctly constructed. This
ensures input extraction of a corrupt receiver, thus giving us a round optimal
UC-secure OT with high concrete efficiency.

More formally, the receiver R generates (h, T1, T2) as receiver OT parameters
using the GRO. He constructs two instances as B = gαT b

1 and H = hαT b
2 using

the same randomness α. He sends seed and (B,H) to the sender S. Next, S
samples r, s from Zq and computes the sender OT parameter z = grhs. The
sender combines the two OT instance by computing the ciphertexts:

c0 = FGRO (sid, BrHs) ⊕ m0, and c1 = FGRO

(
sid,

(
B

T1

)r

·
(

H

T2

)s)
⊕ m1.

The receiver computes mb = cb ⊕ FGRO(sid, zα). This new scheme supports
extraction of a corrupt receiver’s input bit if the simulator knows x s.t. h = gx.
The simulator extracts b = 0 if H = Bx, else if H

T2
= (B

T1
)x then he sets

b = 1. Otherwise, the receiver message is malformed and b is set as ⊥. Extrac-
tion always succeeds unless (g, h, T1, T2) forms a DDH tuple. In such a case
(g, h, T1, T2) = (g, gx, gt, gxt) and both extraction cases will satisfy. However,
such an event occurs with negligible probability since (h, T1, T2) is generated
using a random oracle. Sender’s messages are hidden from a corrupt receiver
due to CDH assumption. Simulation against a corrupt sender proceeds by pro-
gramming the GRO s.t (g, h, T1, T2) is a DDH tuple. The simulator (playing the
role of honest R) sets B = gα and H = hα as receiver message. Upon obtain-
ing the second OT message from the corrupt sender, the simulator extracts m0

and m1 by using randomness α and α − t respectively. The corrupt sender can-
not distinguish between the real and ideal world OT parameters due to DDH
assumption. Also, B and H perfectly hides b in the ideal world.

Our protocol is more efficient than the state-of-the-art two-round UC-secure
OT [36,40]. Furthermore, if we are interested in random OTs, then S needs to
communicate only the OT parameter z for all the OTs. This would yield a non-
interactive random OT at the cost of 5 exponentiations and 2 group elements (i.e.

290 R. Canetti et al.

R communicates (B,H) for each random OT). The same protocol is adaptively
secure in the programmable random oracle model, and can be modified to use an
global observable RO but only provide static security. See Sect. 4 for full details.

3.2 Receiver Equivocal Oblivious Transfer in the CRS Model

Our next goal is to obtain efficient UC-secure OT with only a common random
string setup. We replace the GRO by partially setting the receiver OT parameters
as the CRS, consisting of three random group elements (g, h, T1). The receiver
is required to generate T2 as part of the protocol and use it to compute B
and H following the previous protocol (Sect. 3.1). T2 will be reused for multiple
OT instances in the same session. It is guaranteed that a corrupt receiver will
compute T2 s.t. the tuple is non-DDH due to the CDH assumption. In such a
case, the simulator for a corrupt receiver can extract b from B and H given
x, where h = gx. On the other hand, the simulator (playing role of honest
receiver) for a corrupt sender can compute T2 s.t. (g, h, T1, T2) is a DDH tuple,
given the trapdoor t s.t. T1 = gt. It would allow him to extract corrupt sender’s
input messages from (c0, c1) and equivocate (B,H) = (gα, hα) to open to bit b
by opening the receiver’s randomness as α − bt. This provides security against
adaptive corruption of receiver. The sender’s algorithm is similar to the one in
Sect. 3.1 where the ciphertexts are formed as follows:

c0 = BrHs · m0, and c1 =
(

B

T1

)r

·
(

H

T2

)s

· m1

However, the sender’s randomness (r, s) has to be unique for each OT instance,
else the sender’s OT messages - (c0, c1), will leak about the sender’s input mes-
sages - (m0,m1). Thus, we obtain a two-round OT protocol which is secure
against static corruption of the sender and adaptive corruption of the receiver in
the common random string model. Our protocol requires 9 exponentiations and
communication of 6 group elements, where one group element (i.e. T2) can be
reused; reducing the communication overhead to 5 group elements. We can fur-
ther optimize our computation cost to 8 exponentiations if we sacrifice receiver
equivocal property and instead settle for static security. In contrast, the only
other two-round protocol [40] in this model requires 11 exponentiations and
communication of 6 group elements in the common reference string model. Note
that the protocol here is receiver-equivocal, which will be made fully adaptive
in the following subsection.

3.3 Adaptively Secure Oblivious Transfer in the CRS Model

Finally, we would like to add sender equivocation to the above protocol. It
requires a simulator to simulate the OT second message without the knowl-
edge of sender’s input. Upon post-execution corruption of sender, the simula-
tor should provide the randomness s.t. the OT second message corresponds to
sender’s original input (m0,m1). In our current protocol, the second OT message

Efficient and Round-Optimal Oblivious Transfer and Commitment 291

is computed based on B and H using the randomness r and s. The simulator
(playing the role of an honest sender) sets cb̄ randomly and opening it to mb̄

requires the knowledge of receiver’s randomness - α. Also, such an equivocation
would be possible only if the tuple - CRS and T2, is a non-DDH tuple as z and
pb̄ = cb̄

mb̄
are two separate equations in r and s. When the tuple is a DDH one

(which is required for receiver equivocation when the receiver is corrupted post-
execution) then we can write pb̄ = zα+(−1)bt. It is not possible to provide r and
s s.t. a random cb̄ opens to pb̄ · mb̄, where pb̄ gets fixed by α and z, and mb̄ is
chosen by the adaptive adversary in post-execution corruption. Thus, it seems
receiver and sender equivocation will not be possible simultaneously if we follow
this approach.

We address this challenge by modifying the sender protocol. We construct
a semi-adaptive OT protocol by slightly tweaking our receiver equivocal OT
protocol. Then we apply the transformation of [5] which uplifts a semi-adaptive
OT into to an adaptively secure OT using augmented NCE. A semi-adaptive
OT is one which is secure against static corruption of one party and adaptive
corruption of another party. Our semi-adaptive OT construction is described as
follows. The sender encrypts only bit messages mi ∈ {0, 1} in ciphertext (zi, ci),
for i ∈ {0, 1}, using independent randomness (ri, si). If mi = 1 then sender
encrypts it using the sender protocol as follows:

zi = grihsi

ci =
(

B

T i
i

)ri
(

H

T i
2

)si

· mi =
(

B

T i
i

)ri
(

H

T i
2

)si

· 1 =
(

B

T i
i

)ri
(

H

T i
2

)si

If mi = 0, then sender samples zi and ci as random group elements. Upon
receiving (z0, c0, z1, c1), the receiver computes y = cb ·z−α

b . If y = 1, then receiver
outputs mb = 1, else he outputs mb = 0. In this new construction, mb̄ remains
hidden in cb̄ from the corrupt receiver due to DDH assumption. Moreover, it
solves our previous problem of equivocating sender’s OT message - cb̄. Here, the
simulator (playing the role of honest sender) can always compute (zb̄, cb̄) s.t. they
encrypt mb̄ = 1 using randomness (rb̄, sb̄). Later, when sender gets corrupted
post-execution, the simulator can claim (zb̄, cb̄) was randomly sampled if mb̄ = 0,
else provide the randomness as (rb̄, sb̄) if mb̄ = 1. Adversary cannot decrypt mb̄

from cb̄ since T
rb̄
1 makes cb̄ pseudorandom due to DDH assumption.

Thus, our new protocol is secure against semi-adaptive corruptions of par-
ties. Next, we use the transformation of [5] to make it adaptively secure using
augmented NCE. The receiver generates an NCE key pair (pkb, sk) corresponding
to his input bit b. He samples another NCE public key pkb̄ obliviously for bit b̄.
He sends these two public keys to the sender. The sender additively secret shares
his inputs:

m0 = x0 ⊕ y0,m1 = x1 ⊕ y1.

He runs the semi-adaptive OT protocol with inputs (x0, x1) and encrypts y0 and
y1 using pk0 and pk1 respectively.

e0 = NCE.Enc(pk0, y0), e1 = NCE.Enc(pk1, y1).

292 R. Canetti et al.

The sender sends the semi-adaptive OT messages and (e0, e1) to the receiver. The
honest receiver obtains xb from the OT and yb. A corrupt receiver can obtain yb̄

in addition, if he sampled (pkb̄, skb̄) using the NCE.Gen algorithm. Our final pro-
tocol is secure against adaptive corruption of both parties. Consider the setting
where both parties are honest initially and the simulator has to construct their
view. The adaptive simulator runs the semi-adaptive simulator for the underly-
ing semi-adaptive OT with static corruption of sender and adaptive corruption
of receiver. The honest sender algorithm is run with inputs (x0, x1), sampled
as random bits. Suppose the sender gets corrupted first in post-execution then
e0 and e1 can be equivocated s.t. y0 = x0 ⊕ m0 and y1 = x1 ⊕ m1. Indistin-
guishability proceeds due to the NCE property. Next, when the receiver gets
corrupted the simulator obtains b. He uses the adaptive simulator for receiver in
the semi-adaptive OT. The simulator also uses the inverse samplability property
of the NCE to claim that pkb was generated honestly and pkb̄ obliviously. If the
receiver gets corrupted first, then the receiver’s simulation doesn’t change. For
the sender side, the simulator sets yb = xb ⊕ mb. Later, when sender gets cor-
rupted and simulator obtains mb̄ the simulator equivocates eb̄ s.t. yb̄ = xb̄ ⊕ nb̄.
Indistinguishability proceeds since the adversary does not posses the secret key
skb̄ as pkb̄ was supposed to be obliviously sampled. As a result, the simulator
successfully equivocates eb̄. More details of our protocol can be found in Sect. 6.

3.4 Non-interactive Commitment with Adaptive Security

As an independent result, we prove that the first (i.e. receiver’s) message of
any two-round 1-out-of-M receiver equivocal OT can be considered as an UC-
secure non-interactive commitment to receiver’s input. It can also withstand
adaptive corruption of the parties involved in the commitment scheme. The
committer C commits to his message b ∈ M (where M is the message space
for the commitment) as c by invoking the receiver algorithm on choice b with
randomness α. Decommitment follows by providing the randomness α for the
receiver’s OT message.

We can show that the commitment scheme satisfies the properties of an UC
commitment- binding, hiding, extractable and equivocal, by relying on the secu-
rity of the underlying receiver equivocal OT protocol. Binding of the commit-
ment follows from sender security as a corrupt receiver cannot produce different
randomness α′ s.t. c can be used to decrypt mb̄ (where mi is S’s ith message for
i ∈ M) where b̄ ∈ M and b̄ �= b. Hiding of b is ensured from the OT security guar-
antees for an honest receiver against a corrupt sender. A corrupter committer’s
input b is extracted by running the extraction algorithm of the OT simulator for
a corrupt receiver. Finally, the commitment can be opened correctly by running
the simulator (who is playing the role of honest OT receiver) and its equivoca-
tion algorithm (when receiver gets corrupted adaptively in post-execution). The
commitment scheme is also secure against adaptive corruption as the simula-
tor (for the honest committer in the commitment scheme) can always produce
randomness α′, which is consistent with message b, by running the adaptive
simulator for the OT.

Efficient and Round-Optimal Oblivious Transfer and Commitment 293

πaOT-GPRO

– Public Inputs: Group G, field Zq and generator g of group G.
– Private Inputs: S has two κ-bit inputs (m0, m1) ∈ {0, 1}κ and R has a choice

bit b.
– Functionalities: Global Random Oracles FGRO1 : {0, 1}κ → G

3 and FGRO2 :
G → {0, 1}κ.

Choose:
– R samples seed ← {0, 1}κ and computes (h, T1, T2) ← FGRO1(sid, seed).
– R samples α ← Zq and sets B = gαT b

1 and H = hαT b
2 .

– Receiver Parameters: R sends seed as OT parameters.
– R sends (B, H) to S.
Transfer:
– S invokes FGRO1 on (IsProgrammed, seed, sid) and aborts if it returns 1.
– S computes (h, T1, T2) ← FGRO1(sid, seed).
– S samples r, s ← Zq and computes z = grhs.
– S computes c0 = FGRO2 (sid, BrHs)⊕m0 and c1 = FGRO2

(
sid, (B

T1
)r(H

T2
)s

)
⊕m1.

– Sender Parameters: S sends z to R as OT parameters.
– S sends (c0, c1) to R.
Local Computation by R:
– R computes mb = cb ⊕ FGRO2(sid, zα).

Fig. 4. Adaptively secure oblivious transfer in the global programmable random oracle
model

When we compile our πreOT-CRS protocol with this result, we obtain a non-
interactive commitment c = (B,H) = (gαTm

1 , hαTm
2) for polylog(κ) bit messages

using four exponentiations and communication of two group elements. We can
only commit to polylog(κ)-bit messages or messages from poly(κ)-sized message
space M since our PPT simulator runs in O(|M|) time to extract a corrupt
receiver’s input by matching the following condition for each i ∈ M:

if
H

T i
2

?=
(

B

T i
1

)x

output i.

Our detailed transformation from a receiver equivocal OT to an adaptive com-
mitment can be found in Sect. 7.

4 Oblivious Transfer in the Global Random Oracle Model

In Sect. 4.1, we first show an efficient 2-round OT in the Global programmable
RO model secure against adaptive adversaries. Then, we present a set of opti-
mizations that can bring the efficiency at par with the Simplest OT by Chou
and Orlandi [18] while requiring only one simultaneous round. In Sect. 4.2, we
will show how to adapt our protocol to work in the global observable RO model
but with only static security.

294 R. Canetti et al.

πaROT-GPRO

– Public Inputs: Group G, field Zq, generator g of group G and global CRS =
(g, h).

– Functionalities: Random Oracles FGRO1 : {0, 1}κ → G
3 and FGRO2 : G →

{0, 1}κ.

Receiver’s Simultaneous Message:
– R samples seed ← {0, 1}κ and computes (T1, T2) ← FGRO1(sid, seed).
– R samples b ← {0, 1} and α ← Zq

– R sets B = gαT b
1 and H = hαT b

2 .
– Receiver Parameters: R sends seed as OT parameters.
– R sends (B, H) to S.
Sender’s Simultaneous Message:
– S samples r, s ← Zq and computes z = grhs.
– Sender Parameters: S sends z to R as OT parameters.
Local Computation by R:
– R computes pb = FGRO2(sid, zα) and outputs (b, pb).
Local Computation by S:

– S outputs p0 = FGRO2 (sid, BrHs) and p1 = FGRO2

(
sid,

(
B
T1

)r (
H
T2

)s)
.

Fig. 5. Fully optimized random oblivious transfer with one simultaneous round

4.1 Adaptively Secure OT in the Global Programmable RO Model

As we have discussed in details the main intuition behind our protocol in
Sect. 3.1, we will proceed to the full description. Our protocol πaOT-GPRO in the
PRO model is presented in Fig. 4. Security of our protocol has been summarized
in Theorem 1 and the full proof can be found in [15].

Theorem 1. Assuming the Decisional Diffie-Hellman holds in group G, then
πaOT-GPRO UC-securely implements FOT functionality in presence of adaptive
adversaries in the global programmable random oracle model.

Practical Optimizations. The above OT protocol requires computing 9 expo-
nentiations and communication of 3 group elements and 3 strings of length κ
for one OT. However, the sender can reuse r, s for multiple instances of the OT
protocol. Let Bi and Hi be the receiver’s message for the i-th OT instance. The
sender will compute his OT message by reusing T r

1 , T s
2 and z. He can compute

ci,0 = FGRO2 (sid, i, BrHs) ⊕ mi,0 and ci,1 = FGRO2

(
sid, i,

(
B
T1

)r (
H
T2

)s)
⊕ mi,1.

This reduces the overhead to 5 exponentiations and communication of 2 group
elements and 2κ bit strings in the amortized setting. Our second observation is
that many practical use of OT depends on OT extension [31] which in turn needs
a base OT protocol on random messages, namely random OT. In the random OT

Efficient and Round-Optimal Oblivious Transfer and Commitment 295

πsOT-GORO

– Functionalities : Random oracles FGRO1 : {0, 1}κ → G
2, FGRO2 : G → {0, 1}κ.

– Public Inputs : Group G, field Zq and generator g of group G.
– Private Inputs : S has κ-bit inputs (m0, m1) and R has input choice bit b.

Choose:
– R samples x ← Zq and computes h = gx. He also computes an NIZKPoK

πR = (∃x : h = gx). He samples seed ← {0, 1}κ and sets (T1, T2) =
FGRO1(sid, sid, seed).

– R samples α ← Zq and computes B = gαT b
1 and H = hαT b

2 .
– Receiver Parameters: R sends (h, πR, seed) as OT parameters to S.
– R sends (B, H) to S.
Transfer:
– S verifies πR using h and computes (T1, T2) ← FGRO1(sid, seed).
– S samples r, s ← Zq and computes z = grhs. He also computes an NIZKPoK

πS = (∃r, s : w = grhs).
– S computes c0 = FGRO2(sid, BrHs) ⊕ m0 and c1 = FGRO2(sid, (B

T1
)r(H

T2
)s) ⊕ m1.

– Sender Parameters: S sends (z, πS) as OT parameters to R.
– S sends (c0, c1) to R.
Local Computation by R :
– R verifies πS using z.
– R computes mb = cb ⊕ FGRO2(sid, zα).

Fig. 6. Statically secure oblivious transfer in the observable random oracle model

variant of our OT protocol, the sender’s messages will be random pads (p0, p1)

where p0 = FGRO2 (sid, BrHs) and p1 = FGRO2

(
sid,

(
B
T1

)r (
H
T2

)s)
.

The receiver obtains pb = FGRO2(sid, zα) as output. In such a case, the
receiver needs to send (B,H) for each OT and the sender only needs to send
z = grhs, which can be reused for multiple OT instances. One can observe that
the sender’s and receiver’s messages are independent of each other and depends
only on (g, h). Thus, we can consider a setup consisting of a global CRS = (g, h)
and a global programmable RO. The receiver computes (B,H) and sends it
to the sender. Simultaneously, the sender can compute z and send it over to
the receiver; thus resulting in a non-interactive random OT which requires 5
exponentiations and communication of 2 group elements per OT. This protocol
is also secure against mauling attacks by a rushing adversary, who can either
corrupt the sender or the receiver. A corrupt receiver can break security only
if (g, h, T1, T2) is a DDH tuple where (g, h, T1) is the CRS; which occurs with
negligible probability due to CDH assumption. Security against a corrupt sender
is ensured by programming the GRO s.t. the tuple is a DDH tuple. In such a
case R’s message, i.e. (B,H), perfectly hides R’s input. Indistinguishability of
the tuple follows from DDH.

296 R. Canetti et al.

Our protocol πaROT-GPRO is presented in Fig. 5. To compute n OTs, we only
need 4 + 5n exponentiations and communication of 2n + 1 group elements and
one κ-bit string. In contrast, the state-of-the-art OT extension protocol (from
PRO based OT) of [36] requires 6n exponentiations and requires sending 4n
group elements. The protocol of [21] requires lesser computation but they need
5 rounds of interaction for their OT. Thus, our protocol will outperform them
in WAN setting where interaction is expensive.

4.2 Statically Secure OT in the Global Observable RO Model

The work of [37] has shown a separation between programmable RO and non-
programmable RO. Therefore, we show how to change our protocol to work
with an observable GRO. Our protocol is statically secure and has the same
computation and communication overhead as the GPRO-based protocol, except
now the parties need to compute one NIZKPoK each. We present the GORO-
based OT protocol πsOT-GORO in Fig. 6.

The only difference from the PRO-based scheme lies in the generation of
the CRS and the OT parameters. The (T1, T2) is generated by invoking FGRO1

on seed. The other group element h is generated by R and he also produces an
NIZKPoK of x s.t. h = gx. We perform this because the simulator for a corrupt
receiver needs the knowledge of x to extract the receiver’s input, which would
not be possible if all three elements were generated using the ORO. However, this
limits the possibility of extracting a corrupt sender’s input by programming the
RO to return a DDH tuple. So, the sender is required to produce an NIZKPoK
of r and s. This allows the simulator for a corrupt sender to extract r and s; thus
extracting the input messages of the corrupt sender. The rest of the proof follows
from the static security proof of our PRO-based scheme Security is summarized
in Theorem 2 and the full proof can be found in [15].

Theorem 2. Assuming the Decisional Diffie-Hellman holds in group G, then
πsOT-GORO UC-securely implements FOT functionality in presence of static adver-
saries in the observable random oracle model.

We would like to point out that NIZK is known to be impossible in the ORO
model [38]. However, we only need a relaxed NIZK and allow programming the
RO in the security reduction while the simulator is restricted only to the observ-
ability feature. Such a relaxation is also utilized to circumvent the impossibility
of NIZKs in ORO domain in prior related work [21].

Our protocol needs 5 exponentiations and communication of 2 group ele-
ments and two κ-bit strings. In addition, we require a one-time computation
of 2 NIZKPoKs and 5 exponentiations and one-time communication of 2 group
elements and κ bits. The only other 2 round GORO-based OT protocol is a
feasibility result by [10].

5 Receiver Adaptively Secure OT in the CRS Model

In this section, we replace our use of GRO in πaOT-GPRO by a common random
string (CRS). Such a relaxation in the setup assumption results in degradation

Efficient and Round-Optimal Oblivious Transfer and Commitment 297

πreOT-CRS

– Public Inputs: Group G with a generator g, field Zq, and CRS = (g, h, T1).
– Private Inputs: S has inputs (m0, m1) where m0, m1 ∈ G; R has input choice

bit b.

Choose:
– R samples T2 ← G.
– R samples α ← Zq and sets B = gαT b

1 and H = hαT b
2 .

– R sends T2 and (B, H) to S.
Transfer:
– S samples r, s ← Zq and computes z = grhs.
– S computes c0 = BrHs · m0 and c1 = (B

T1
)r(H

T2
)s · m1.

– S sends z and (c0, c1) to R.
Local Computation by R:
– R computes mb = cb.z

−α.

Fig. 7. Oblivious transfer secure against adaptive receiver corruption

of the security and efficiency of the protocol. We lose security against adaptive
corruption of sender, resulting in a receiver-equivocal OT which is secure against
adaptive corruption of receiver. The computation overhead also increases to 9
exponentiations and 5 group elements as the sender’s randomness cannot be
reused for multiple instances of the OT protocol as it will leak the individual
sender messages from the OT messages. The intuition of our protocol has been
discussed in Sect. 3.2 and Fig. 7 gives a detailed description of our protocol. The
CRS consists of 3 group elements CRS = (g, h, T1) and it requires to satisfy two
properties for the security to hold.

Properties of CRS. The CRS for the subprotocols should satisfy the following
two properties:

– Property 1: Given (g, h, T1) it should be computationally infeasible to obtain
a T2 s.t. (g, h, T1, T2) is a DDH tuple. This is ensured in our protocol since an
adversary computing such a T2 (i.e. the tuple is DDH) can be used to break
the CDH assumption in a blackbox manner by invoking it in a OT session.
The CDH adversary will set the CRS s.t. (h, T1) is the CDH challenge and it
will return T2 as the CDH response.

– Property 2: Given a simulated tuple (g, h, T1, T2), where T2 = ht and T1 = gt,
it should be indistinguishable from a random tuple. An adversary who can
distinguish the tuples can be used to break the DDH assumption. The DDH
adversary forwards the DDH challenge tuple as the tuple to this adversary
and forwards the answer of this adversary as the DDH answer. In addition,
or simulation purposes we provide the simulator with the trapdoors- (x, t) for
the CRS = (g, h, T1) s.t. h = gx and T1 = gt.

298 R. Canetti et al.

πsOT-CRS

– Public Inputs: Group G, field Zq and generator g of group G, CRS = (g, h, T).
– Private Inputs: S has κ-bit inputs (m0, m1) and R has input choice bit b.

Choose:
– R samples α ← Zq and sets B = gαT b and H = hα.
– R sends (B, H) to S.
Transfer:
– S samples r, s ← Zq and computes z = grhs.
– S computes c0 = BrHs · m0 and c1 = (B

T
)rHs · m1.

– S sends z and (c0, c1) to R.
Local Computation by R:
– R computes mb = cb.z

−α.

Fig. 8. Static oblivious transfer in the CRS model

We require the first property for arguing security against a statically cor-
rupt receiver. Given the CRS the corrupt receiver should not be able to set
it in the equivocal mode. It will be in the extractable mode to ensure extrac-
tion of receiver’s input. On the other hand, if the receiver is honest, then the
simulated receiver can set the CRS in the equivocal by using Property 2. This
allows extracting both messages of the sender and simulate the honest receiver’s
view during post-execution corruption. Security of our protocol is summarized
in Theorem 3 and the full proof can be found in [15].

Theorem 3. Assuming the Decisional Diffie-Hellman holds in group G, then
πreOT-CRS UC-securely implements FOT functionality in presence of a statically
corrupted sender and an adaptively corrupted receiver in the common random
string model.

5.1 Efficient Static OT

We can further optimize our protocol πreOT-CRS for static corruption by removing
T2 from the protocol and henceforth renaming T1 to T . In πreOT-CRS, the element
T2 was required solely for the purpose of equivocating receiver’s view. Our mod-
ified protocol πsOT-CRS is presented in Fig. 8. This gives us a two-round static
OT in the common random string model which computes 8 exponentiations and
communicates 5 group elements. This outperforms the state-of-the-art [40] pro-
tocol which requires 11 exponentiations and communication of 6 group elements
to obtain a two-round static OT in the common reference string model.

Efficient and Round-Optimal Oblivious Transfer and Commitment 299

πsaOT-CRS

– Public Inputs :Group G, field Zq and generator g of group G, CRS = (g, h, T1).
– Private Inputs : S has bit inputs (m0, m1) and R has input choice bit b.

Choose:
– R samples T2 ← G.
– R samples α ← Zq and sets B = gαT b

1 and H = hαT b
2 .

– R sends T2 and (B, H) to S.
Transfer:
– If m0 = 1, S samples r0, s0 ← Zq and computes z0 = gr0hs0 and c0 = Br0Hs0 .

Else, he samples c0, z0 ← G

– If m1 = 1, S samples r1, s1 ← Zq and computes z1 = gr1hs1 and c1 =
(B

T1
)r1(H

T2
)s1 . Else, he samples c1, z1 ← G.

– S sends (z0, c0) and (z1, c1) to R.
Local Computation by R :
– R computes yb = NCE.Dec(sk, eb).
– R sets xb = 1 if cb = zα

b else he sets xb = 0.
– R outputs mb = yb ⊕ xb.

Fig. 9. Semi-adaptively secure oblivious transfer

πaOT-CRS

– Primitives : Semi-adaptive OT πsaOT-CRS = (R1, S,R2), Augmented
Non Committing Encryption NCE = (NCE.Gen,NCE.Enc,NCE.Dec,
NCE.GenObl,NCE.GenInv).

– Public Inputs : CRS of πsaOT-CRS.
– Private Inputs : S has bit inputs (m0, m1) and R has input choice bit b.

Choose:
– R invokes (OTR, stR) ← πsaOT-CRS.R1(CRS, b).
– R generates {pkb, sk} ← NCE.Gen(1κ) and pkb̄ ← NCE.Gen(1κ).
– R sends (OTR, pk0, pk1) to S.
Transfer:
– S randomly samples y0, y1 ← {0, 1} and computes x0 = y0 ⊕ m0 and x1 =

y1 ⊕ m1.
– S invokes (OTS, stS) ← πsaOT-CRS.S(CRS, (x0, x1),OTR) and sends OTS to R.
– S sends e0 = NCE.Enc(pk, y0) and e1 = NCE.Enc(pk, y1) to R.
Local Computation by R :
– R decrypts yb = NCE.Dec(sk, eb) and computes xb =

πsaOT-CRS.R2(CRS, stR, b,OTS).
– R outputs mb = yb ⊕ xb.

Fig. 10. Adaptively secure oblivious transfer from semi-adaptively secure OT protocol
using augmented NCE by [5]

300 R. Canetti et al.

πaCOM-CRS

– Private Inputs: C has private input b ∈ M.
– Public Inputs: Both parties have a common random string CRSOT in πreOT-CRS.

Commit Phase: C samples some randomness α, computes c = OT1(b;α), and
sends c as commitment to V.
Decommit Phase: C sends (b, α) as the decommitment.
Verification Phase: Upon receiving c and (b, α), V checks if c

?= OT1(b;α).

Fig. 11. Adaptively secure non-interactive commitment from πreOT-CRS = (OT1,OT2)

6 Adaptively Secure Oblivious Transfer in the CRS
Model

Our protocol πreOT-CRS presented in the previous section is only secure against
adaptive corruption of receiver. In this section, we make it secure against full
adaptive corruption. In the overview section we constructed a semi-adaptive pro-
tocol first and then applied the [5] transformation using an augmented NCE to
obtain our final protocol. See Sect. 3.3 for a high-level introduction. We first
present our semi-adaptive OT protocol in Fig. 9 and then we present our com-
plete protocol in Fig. 10.

6.1 Semi-adaptively Secure OT

We first present our semi-adaptive OT πsaOT-CRS protocol in Fig. 9. Security of
our protocol is summarized in Theorem 4 and the full proof can be found in [15].

Theorem 4. Assuming the Decisional Diffie-Hellman holds in group G, then
πsaOT-CRS UC-securely implements FOT functionality in presence of semi-
adaptively corrupted malicious parties in the common random string model.

6.2 Obtaining Full Adaptive Security

Next, we apply the transformation of [5] to obtain our adaptively secure OT
protocol πaOT-CRS from our semi-adaptively secure OT protocol πsaOT-CRS in the
augmented NCE model. For completeness we have presented the [5] transforma-
tion in Fig. 10 and it is summarized in Theorem 5.

Theorem 5. [5] Assuming πsaOT-CRS is a two-round semi-adaptively secure OT
protocol and NCE is an augmented non-committing encryption scheme then pro-
tocol πaOT-CRS UC-securely implements FOT functionality in presence of adap-
tively corrupted malicious parties in the common random string model.

Efficient and Round-Optimal Oblivious Transfer and Commitment 301

πCOM-DDH

– Private Inputs: C has private input b ∈ M.
– Public Inputs: Both parties have a CRS = (g, h, T1) where g, h, T1 ∈ G.

Commit Phase: C samples T2 ← G. He sends T2 as the commitment scheme
parameter. C samples α ← Zq and computes B = gαT b

1 and H = hαT b
2 . He sends

c = (B, H) as commitment to V.
Decommit Phase: C sends (b, α) as the decommitment.
Verification Phase: Upon receiving {T2, (c, α, b)}, V interprets c = (B, H) and
verifies B

?= gαT b
1 and H

?= hαT b
2 . R aborts if verification fails; otherwise R accepts

the decommitment.

Fig. 12. Adaptively secure non-interactive commitment in the CRS model

Assuming DDH, πsaOT-CRS (Fig. 9) is a semi-adaptively secure OT from 4.
Upon instantiating the NCE by the DDH-based augmented NCE scheme of [16]
we obtain an adaptively secure bit-OT scheme from DDH. Thus, we can solely
construct our adaptively secure OT from DDH.

Theorem 6. Assuming DDH assumption holds, our protocol πaOT-CRS (Fig. 10)
UC-securely implements FOT functionality in presence of adaptively corrupted
malicious parties in the common random string model.

Efficiency. Our final protocol requires 11 exponentiations and communication
of 7 group elements. One of the group element, i.e. T2 can be reused. In addi-
tion, it requires communicating 2 augmented NCE public keys and computing
augmented NCE encryptions of 2 bits. We can instantiate our NCE scheme using
the DDH-based protocol of [16] which computes O(1) exponentiations and com-
municates O(κ) bits for encrypting each bit. This yields the first two round
adaptively secure bit-OT which has constant communication and computation
overhead.

In contrast, the only other two round adaptive OT protocol of [5] uses
communication-intensive tools like equivocal garbled circuits communicating
poly(κ) bits. They also incur a computation overhead of O(κ2) exponentiations.

7 Adaptively Secure Non-Interactive Commitment in the
CRS Model

In this section, we present a transformation from any two-round receiver equivo-
cal OT to a non-interactive adaptive commitment scheme. The high-level descrip-
tion can be found in Sect. 3.4. Let πreOT-CRS = (OT1,OT2) denote a two-round
receiver equivocal OT, where both OT1 and OT2 are PPT algorithms: OT1 out-
puts the receiver’s OT message c and internal state st. Then our commitment
to message b ∈ M with randomness α will be c where {c, st} = OT1(b;α). The

302 R. Canetti et al.

decommitment for c will be (b, α). The verifier V runs OT1 algorithm on (b, α)
to check the validity of the decommitment. Our protocol is presented in Fig. 11
and the security is summarized in Theorem 7. The proof of the theorem can be
found in [15].

Theorem 7. Assuming that πreOT-CRS = (OT1,OT2) is a secure receiver equiv-
ocal OT, in the CRS model, then our protocol πaCOM-CRS (Fig. 11) UC-securely
implements FCOM functionality against adaptive adversaries in the CRS model.

7.1 Concrete Instantiation and Efficiency

We apply our DDH-based receiver equivocal OT in Fig. 7 to the above com-
piler and get a concretely efficient adaptive commitment as shown in Fig. 12.
It requires four exponentiations and communicating two group elements for
committing to a polylog(κ) bit message in the common random string model.
Decommitment incurs similar computation overhead and communicating the
message and a field element. This gives us the first adaptive string commit-
ment with a constant number of exponentiations and O(κ) communication.
The current state of the art non-interactive protocols with adaptive security
[1,2,9,11] are all bit commitments. Moreover, our protocol also supports additive
homomorphism which can be verified as Commit(m1;α1)+Commit(m2;α2) =
Commit(m1 + m2;α1 + α2).

8 Results in the Single CRS Model

In this section, we replace the per-session local CRS with a single “master”
random string sCRS that can be reused by multiple pairs of parties for multi-
ple sessions. Specifically, the parties will use the master random string sCRS to
generate a per-session CRS − (g, h, T1) and will then use the protocol from the
previous section with that CRS. We present our multi-session OT and multi-
session commitment functionalities FmOT and FCOM in Figs. 13 and 14 respec-
tively. For simplicity, we will describe FmOT and the same holds true for FmCOM.
The parties participate in one session, with id sid, which implements FmOT. One
of the parties intializes the session by invoking Initialization with the list L
of all the subsession ids. Then each subsession consists of multiple instances of
FOT between a specific pair of parties with unique roles. This is ensured by
considering a counter j alongwith subsession id ssid in the functionality.

While implementing the functionalities, each subsession is associated with a
unique �-bit identifier, which we call the sub-session id ssid. The ssid may contain
the identities of the two parties, as well as additional information that makes
the session unique. Each participant will locally compute the session-specific
reference string from the master reference string and the ssid. We assume that
the ssid strings are generated by the environment Z before seeing the sCRS
by invoking the Initialization phase with a list L of subsession ids through a

Efficient and Round-Optimal Oblivious Transfer and Commitment 303

FmOT

FmOT interacts with a sender S, having party id (ssid, sen) and a receiver R, having
party id (ssid, rec, in a session with id sid as follows:
– On input (Initialization, sid, L) from a party, where L is the list of subsession

ids; store s = sid and L, and send (Initialized, sid) to the party. Ignore future
initialization messages with same sid.

– On input (Choose, (sid, ssid, j, rec), b) from R, where b ∈ {0, 1}, j > 0; abort if
sid �= s or ssid /∈ L, if no message of the form (ssid, j, rec, b) has been recorded
in the memory, store (ssid, j, rec, b) and send (ssid, j, rec) to S.

– On input (Transfer, (sid, ssid, j, sen), (a0, a1)) from S with a0, a1 ∈ {0, 1}n, j >
0, abort if sid �= s or ssid /∈ L, if no message of the form (ssid, j, sen, (a0, a1))
is recorded and a message of the form (ssid, j, rec, b) is stored, send
(sent, ssid, j, sen, ab) to R and (sent, ssid, j, rec) to S. Ignore future messages with
the ids - (ssid, j, sen) and (ssid, j, rec).

Fig. 13. The ideal functionality FmOT for multi-session oblivious transfer

FmCOM

FCOM interacts with committer C, having party id (ssid,C), and verifier V, having
party id (ssid,V) in a session with id sid as follows:
– On input (Initialization, sid, L) from a party, where L is the list of subsession

ids; store s = sid and L, and send (Initialized, sid) to the party. Ignore future
initialization messages with same sid.

– On receiving input ((Commit,V), (sid, ssid, j,C), m) from C for j > 0, abort if
sid �= s or ssid /∈ L, if (ssid, j,C,V, m′) has been recorded, ignore the input. Else
record the tuple (ssid, j,C,V, m) and send (Receipt, ssid, j,C,V) to V.

– On receiving input (Decommit, (sid, ssid, j,C)) for j > 0 from C, abort if
sid �= s or ssid /∈ L, if there is a record of the form (ssid, j,C,V, m) return
(Decommit, ssid, j,C,V, m) to V. Otherwise, ignore the input.

Fig. 14. The ideal functionality FCOM for multi-session commitment scheme

party. The master random string sCRS will contain (g, h) and 2� random group
elements- (ui,0, ui,1) for i ∈ [�]:

sCRS =

[
(g, h), {ui,0, ui,1}i∈[�]

]

The random string CRSssid for some ssid will consist of (g, h, T1), where ssidi

denotes the ith bit of ssid and T1 is constructed as follows:

T1 = Πi∈[�]ui,ssidi
.

Once the CRSssid for the session is computed, the parties run protocol
πaOT-CRS from Sect. 6 (for OT), or protocol πCOM-DDH from Sect. 7 (for Commit-

304 R. Canetti et al.

ment), using CRSssid as the reference string for the session. For security reasons,
we need � = 2κ as the security degrades by a factor |L|2

2� . In [15] we demonstrate
that CRSssid satisfies the two properties (Sect. 5) that are required for arguing
security of each OT/commitment in the subsessions.

On Statically Chosen List L of ssids. We require that the subsession ids be
chosen by the environment Z before seeing sCRS. This has been ensured since
Z has to invoke the Initialization phase (in Figs. 13 and 14) with a list L
of subsession ids through a party. This allows us to construct an adversary for
CDH (or DDH) from an adversary who breaks the security of property 1 (or 2)
of CRSssid. The reduction works by modifying the sCRS and planting an instance
of CDH/DDH in one of the subsessions based on the coresponding ssid. Instead,
if we allowed Z to adaptively choose the subsession ids after accessing sCRS,
then the reduction fails. It would require guessing the subsession id since the
adversary chooses the subsession id adaptively. There are 2� possible subsession
ids, where |ssid| = � = O(κ). Thus, the reduction succeeds only with negligible
probability. We leave it as an interesting open question to obtain such protocols
where we allow the environment to adaptively choose the subsession ids after
seeing sCRS.

8.1 Adaptively Secure OT in the sCRS Model

We obtain a two round adaptively secure OT protocol in sCRS model where in
each subsession ssid the parties run πaOT-CRS using CRSssid. Our OT protocol
and its security proof can be found in [15].

Theorem 8. Assuming that πaOT-CRS implements FOT in the local CRS model,
then there exists an OT protocol that UC-securely implements FmOT functionality
(Fig. 13) against adaptive adversaries in the sCRS model.

8.2 Adaptively Secure Non-interactive Commitment in the sCRS
Model

We obtain a non-interactive adaptively secure commitment scheme in sCRS
model. In each subsession ssid the parties run πCOM-DDH with CRSssid. The com-
mitment scheme and its security proof can be found in [15].

Theorem 9. Assuming πCOM-DDH implements FCOM in local CRS model, then
there exists a non-interactive commitment protocol that UC-securely implements
FmCOM functionality (Fig. 14) against adaptive adversaries in sCRS model.

8.3 Adaptively Secure MPC in the sCRS Model

We discuss our two round adaptively-secure MPC protocol π in the sCRS model.

Efficient and Round-Optimal Oblivious Transfer and Commitment 305

Theorem 10. Let π′ be a two round adaptively secure MPC protocol in the
(FOT,FCOM) model. Then π is a two round adaptively secure MPC protocol in
the sCRS model.

Proof. By applying Theorem 8 and Theorem 9 we obtain an OT and commit-
ment protocol that implements FmOT and FmCOM functionality in sCRS model.
Multiple sessions of FOT is simulated given access to a session of FmOT. Each
session of FOT with session id s is simulated as a subsession with id s in FmOT.
Similarly, each session of FCOM with session id s′ is simulated as a subsession
with id s′ in FmCOM.

Two round adaptively secure MPC protocol π′ in the (FOT,FCOM) model
can be obtained from [5]. They compiled a N -party malicious constant-round
adaptively secure MPC protocol π′′ into a 2 round N -party malicious constant-
round adaptively secure MPC protocol π′, in the presence of FOT. The work
of [13] obtained π′′ in the FCOM and FZK by applying the adaptive malicious
transformation of [11] on the semi-honest constant round MPC protocol obtained
from equivocal garbled circuits. Finally, FZK is implemented by [9] in the presence
of adaptive corruptions in the FCOM-model.

Acknowledgements. We would like to thank the anonymous reviewers (and the sub-
reviewers) of the Asiacrypt’20 program committee for their valuable feedback.

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-
friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-42033-7 12

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Removing erasures with explain-
able Hash proof systems. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp.
151–174. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-
8 7

3. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

4. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 17

5. Benhamouda, F., Lin, H., Polychroniadou, A., Venkitasubramaniam, M.: Two-
round adaptively secure multiparty computation from standard assumptions. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 175–205.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 7

6. Byali, M., Patra, A., Ravi, D., Sarkar, P.: Fast and universally-composable obliv-
ious transfer and commitment scheme with adaptive security. Cryptology ePrint
Archive, Report 2017/1165 (2017). https://eprint.iacr.org/2017/1165

https://doi.org/10.1007/978-3-642-42033-7_12
https://doi.org/10.1007/978-3-642-42033-7_12
https://doi.org/10.1007/978-3-662-54365-8_7
https://doi.org/10.1007/978-3-662-54365-8_7
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-030-03807-6_7
https://eprint.iacr.org/2017/1165

306 R. Canetti et al.

7. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78381-9 11

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

9. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

10. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 597–608. ACM
Press, November 2014

11. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

12. Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Better two-round adaptive
multi-party computation. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 396–
427. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 14

13. Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Equivocating Yao:
constant-round adaptively secure multiparty computation in the plain model. In:
Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM STOC, pp. 497–509. ACM
Press, June 2017

14. Canetti, R., Sarkar, P., Wang, X.: Blazing fast OT for three-round UC OT exten-
sion. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS,
vol. 12111, pp. 299–327. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45388-6 11

15. Canetti, R., Sarkar, P., Wang, X.: Efficient and round-optimal oblivious transfer
and commitment with adaptive security. IACR Cryptol. ePrint Arch. 2020, 545
(2020). https://eprint.iacr.org/2020/545

16. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10366-7 17

17. Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and com-
posable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 6

18. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 3

19. Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable commitment
schemes. In: 35th ACM STOC, pp. 426–437. ACM Press, June 2003

20. Damg̊ard, I., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 37

21. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy,
pp. 980–997. IEEE Computer Society Press, May 2018

https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-662-54388-7_14
https://doi.org/10.1007/978-3-030-45388-6_11
https://doi.org/10.1007/978-3-030-45388-6_11
https://eprint.iacr.org/2020/545
https://doi.org/10.1007/978-3-642-10366-7_17
https://doi.org/10.1007/978-3-642-36362-7_6
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/3-540-45708-9_37

Efficient and Round-Optimal Oblivious Transfer and Commitment 307

22. Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious
transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 768–797. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 26

23. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 205–210.
Plenum Press, New York, USA (1982)

24. Ganesh, C., Kondi, Y., Patra, A., Sarkar, P.: Efficient adaptively secure zero-
knowledge from Garbled circuits. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10770, pp. 499–529. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76581-5 17

25. Garg, S., Miao, P., Srinivasan, A.: Two-round multiparty secure computation min-
imizing public key operations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 273–301. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 10

26. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (Mar (2015)

27. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

28. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

29. Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Constant round adap-
tively secure protocols in the Tamper-Proof Hardware model. In: Fehr, S. (ed.)
PKC 2017. LNCS, vol. 10175, pp. 428–460. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54388-7 15

30. Hazay, C., Venkitasubramaniam, M.: On black-box complexity of universally com-
posable security in the CRS model. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 183–209. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48800-3 8

31. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

32. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
724–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 35

33. Kilian, J.: Zero-knowledge with log-space verifiers. In: 29th FOCS, pp. 25–35. IEEE
Computer Society Press, October 1988

34. Li, B., Micciancio, D.: Equational security proofs of oblivious transfer protocols. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 527–553.
Springer, Heidelberg (Mar (2018)

https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1007/978-3-319-76581-5_17
https://doi.org/10.1007/978-3-319-76581-5_17
https://doi.org/10.1007/978-3-319-96878-0_10
https://doi.org/10.1007/978-3-319-96878-0_10
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-662-54388-7_15
https://doi.org/10.1007/978-3-662-54388-7_15
https://doi.org/10.1007/978-3-662-48800-3_8
https://doi.org/10.1007/978-3-662-48800-3_8
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35

308 R. Canetti et al.

35. Lindell, Y.: An efficient transform from Sigma protocols to NIZK with a CRS
and non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46494-6 5

36. Masny, D., Rindal, P.: Endemic oblivious transfer. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 309–326. ACM Press, November
2019

37. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 8

38. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 19

39. Patra, A., Sarkar, P., Suresh, A.: Fast actively secure OT extension for short
secrets. In: NDSS 2017. The Internet Society, February/March 2017

40. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

41. Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptol. ePrint
Arch. Rep. 2005, 187 (2005). http://eprint.iacr.org/2005/187

42. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
http://eprint.iacr.org/2005/187

Secret Sharing

ALBATROSS: Publicly AttestabLe
BATched Randomness Based On Secret

Sharing

Ignacio Cascudo1(B) and Bernardo David2

1 IMDEA Software Institute, Madrid, Spain
ignacio.cascudo@imdea.org

2 IT University of Copenhagen, Copenhagen, Denmark
bernardo@bmdavid.com

Abstract. In this paper we present ALBATROSS, a family of multi-
party randomness generation protocols with guaranteed output delivery
and public verification that allows to trade off corruption tolerance for
a much improved amortized computational complexity. Our basic stand
alone protocol is based on publicly verifiable secret sharing (PVSS) and
is secure under in the random oracle model under the decisional Diffie-
Hellman (DDH) hardness assumption. We also address the important
issue of constructing Universally Composable randomness beacons, show-
ing two UC versions of Albatross: one based on simple UC NIZKs and
another one based on novel efficient “designated verifier” homomorphic
commitments. Interestingly this latter version can be instantiated from
a global random oracle under the weaker Computational Diffie-Hellman
(CDH) assumption. An execution of ALBATROSS with n parties, out of
which up to t = (1/2 − ε) · n are corrupt for a constant ε > 0, generates
Θ(n2) uniformly random values, requiring in the worst case an amortized
cost per party of Θ(log n) exponentiations per random value. We signif-
icantly improve on the SCRAPE protocol (Cascudo and David, ACNS
17), which required Θ(n2) exponentiations per party to generate one uni-
formly random value. This is mainly achieved via two techniques: first,
the use of packed Shamir secret sharing for the PVSS; second, the use of
linear t-resilient functions (computed via a Fast Fourier Transform-based
algorithm) to improve the randomness extraction.

1 Introduction

Randomness is essential for constructing provably secure cryptographic primi-
tives and protocols. While in many cases it is sufficient to assume that each party
executing a cryptographic construction has access to a local trusted source of
unbiased uniform randomness, many applications (e.g. electronic voting [1] and

B. David—Work partially done while visiting IMDEA Software Institute. This work
was supported by a grant from Concordium Foundation, DFF grant number 9040-
00399B (TrA2C) and Protocol Labs grant S2LEDGE.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 311–341, 2020.
https://doi.org/10.1007/978-3-030-64840-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_11

312 I. Cascudo and B. David

anonymous messaging [35,36]) require a randomness beacon [30] that can period-
ically provide fresh random values to all parties. Constructing such a randomness
beacon without relying on a trusted third party requires a multiparty protocol
that can be executed in such a way that all parties are convinced that an unbi-
ased random value is obtained after the execution terminates, even if a fraction
of these parties are corrupted. Moreover, in certain scenarios (e.g. in electronic
voting [1]) it might be necessary to employ a publicly verifiable randomness
beacon, which allows for third parties who did not participate in the beacon’s
execution to verify that indeed a given random value was successfully obtained
after a certain execution. To raise the challenge of constructing such randomness
beacons even more, there are classes of protocols that require a publicly veri-
fiable randomness beacon with guaranteed output delivery, meaning that the
protocol is guaranteed to terminate and output an unbiased random value no
matter what actively corrupted parties do. A prominent class of protocols requir-
ing publicly verifiable randomness beacons with guaranteed output delivery is
that of Proof-of-Stake based blockchain consensus protocols [18,23], which are
the main energy-efficient alternative to wasteful Proof-of-Work based blockchain
consensus protocols [21,25].

Related Works: A number of randomness beacons aiming at being amenable to
blockchain consensus applications have been proposed based on techniques such
as Verifiable Delay Functions (VDF) [6], randomness extraction from data in the
blockchain [2], Publicly Verifiable Secret Sharing [12,23,33] or Verifiable Ran-
dom Functions [15,18]. However, most of these schemes do not guarantee either
the generation of perfectly uniformly random values [2,15,18] or that a value
will be generated regardless of adversarial behavior [33]. Those methods that do
have those two guarantees suffer from high computational and communication
complexity [23] or even higher computational complexity in order to improve
communication complexity [6]. Another issue with VDF based approaches is
that their security relies on very precise estimates of the average concrete com-
plexity of certain computational tasks (i.e. how much time it takes an adversary
to compute a VDF), which are hard to obtain for real world systems. While
SCRAPE [12] does improve on [23], it can still be further improved, as is the
goal of this work. Moreover, none of the protocols that guarantee generation
of truly unbiased uniformly random values have any composability guarantees.
This is a very important issue, since these protocols are not used in isolation but
as building blocks of more complex systems and thus need composability.

Our Contributions: We present ALBATROSS, a family of multiparty random-
ness generation protocol with guaranteed output delivery and public verification,
where parties generate Θ(n2) independent and uniformly random elements in a
group and where the computational complexity for each party in the worst case
is of Θ(log n) group exponentiations (the most computationally expensive oper-
ation in the protocol) per random element generated, as long as the number of
corrupted parties is t = n/2 − Θ(n). Our contributions are summarized below:

– The first randomness beacon with Θ(log n) group exponentiations per party.

ALBATROSS 313

– The first Universally Composable randomness beacon producing unbiased
uniformly random values.

– The first randomness beacon based on the Computational Diffie-Hellman
(CDH) assumption via novel “designated verifier” homomorphic commit-
ments, which might be of independent interest.

Our basic stand alone protocol builds on SCRAPE [12], a protocol based
on publicly verifiable secret sharing (PVSS). We depart from the variant of
SCRAPE based on the Decisional Diffie-Hellman (DDH) assumption, which
required Θ(n2) group exponentiations per party to generate just one uniformly
random element in the group, but tolerated any dishonest minority. Therefore,
what we obtain is a trade-off of corruption tolerance in exchange for a much more
efficient randomness generation, under the same assumptions (DDH hardness,
RO model). We gain efficiency for ALBATROSS in the suboptimal corruption
scenario by introducing two main techniques on top of SCRAPE, that in fact can
be applied independently from each other: the first one is the use of “packed” (or
“ramp”) Shamir secret sharing in the PVSS, and the second is the use of privacy
amplification through t-resilient functions that allows to extract more uniform
randomness from a vector of group elements from which the adversary may con-
trol some of the coordinates. Applying these techniques requires us to overcome
significant obstacles (see below) but using them together allows ALBATROSS
to achieve the complexity of Θ(log n) exponentiations per party and random
group element. Moreover, this complexity is worst case: the log n factor only
appears if a large number of parties refuse to open the secrets they have com-
mitted to, thereby forcing the PVSS reconstruction on many secrets, and a less
efficient output phase. Otherwise (if e.g. all parties act honestly) the amortized
complexity is of O(1) exponentiation per party and element generated.

Our Techniques: In order to create a uniformly random element in a group
in a multiparty setting, a natural idea is to have every party select a random
element of that group and then have the output be the group operation applied
to all those elements. However, the last party in acting can see the choices of the
other parties and change her mind about her input, so a natural solution is to
have every party commit to their random choice first. Yet, the adversary can still
wait until everyone else has opened their commitments and decide on whether
they want to open or not based on the observed result, which clearly biases the
output. In order to solve this, we can have parties commit to the secrets by using
a publicly verifiable secret sharing scheme to secret-share them among the other
parties as proposed in [12,23]. The idea is that public verifiability guarantees
that the secret will be able to be opened even if the dealer refuses to reveal the
secrets. The final randomness is constructed from all these opened secrets.

In the case of SCRAPE the PVSS consists in creating Shamir shares σi for a
secret s in a finite field Zq, and publishing the encryption of σi under the public
key pki of party i. More concretely, the encryption is pkσi

i , and pki = hski for h a
generator of a DDH-hard group Gq of cardinality q; what party i can decrypt is
not really the Shamir share σi, but rather hσi . However these values are enough
to reconstruct hs which acts as a uniformly random choice in the group by

314 I. Cascudo and B. David

the party who chose s. The final randomness is
∏

hsa

. Public verifiability of the
secret sharing is achieved in SCRAPE by having the dealer commit to the shares
independently via some other generator g of the group (i.e. they publish gσi),
proving that these commitments contain the same Shamir shares via discrete
logarithm equality proofs, or DLEQs, and then having verifiers use a procedure
to check that the shares are indeed evaluations of a low-degree polynomial. In
this paper we will use a different proof, but we remark that the latter technique,
which we call LocalLDEI test, will be of use in another part of our protocol
(namely it is used to verify that hs is correctly reconstructed).

In ALBATROSS we assume that the adversary corrupts at most t parties
where n − 2t = � = Θ(n). The output of the protocol will be �2 elements of Gq.

Larger Randomness via Packed Shamir Secret Sharing. In this subopti-
mal corruption scenario, we can use packed Shamir secret sharing, which allows
to secret-share a vector of � elements from a field (rather than a single element).
The key point is that every share is still one element of the field and therefore
the sharing has the same computational cost (Θ(n) exponentiations) as using
regular Shamir secret sharing. However, there is still a problem that we need to
address: the complexity of the reconstruction of the secret vector from the shares
increases by the same factor as the secret size (from Θ(n) to Θ(n2) exponentia-
tions). To mitigate this we use the following strategy: each secret vector will be
reconstructed only by a random subset of c parties (independently of each other).
Verifying that a reconstruction is correct only requires Θ(n) exponentiations, by
using the aforementioned LocalLDEI . The point is that if we assign c = log n,
then with large probability there will be only at most a small constant number
of secret tuples that were not correctly reconstructed by any of the c(n) parties
and therefore it does not add too much complexity for the parties to compute
those. The final complexity of this phase is then O(n2 log n) exponentiations for
each party, in the worst case.

Larger Randomness via Resilient Functions. To simplify, let us first assume
that packed secret sharing has not been used. In that case, right before the output
phase from SCRAPE, parties will know a value hsa for each of the parties Pa

in the set C of parties that successfully PVSS’ed their secrets (to simplify, let
us say C = {P1, P2, . . . , P|C|}), where h is a generator of a group of order q. In
the original version of SCRAPE, parties then compute the final randomness as
∏|C|

a=1 hsa , which is the same as h
∑|C|

a=1 sa .
Instead, in ALBATROSS, we use a randomness extraction technique based on

a linear t-resilient function, given by a matrix M , in such a way that the parties
instead output a vector of random elements (hr1 , ..., hrm) where (r1, ..., rm) =
M(s1, . . . , s|C|). The resilient function has the property that the output vector
is uniformly distributed as long as |C| − t inputs are uniformly distributed, even
if the other t are completely controlled by the adversary. If in addition packed
secret sharing has been used, one can simply use the same strategy for each of
the � coordinates of the secret vectors created by the parties. In this way we can
create �2 independently distributed uniformly random elements of the group.

ALBATROSS 315

An obstacle to this randomness extraction strategy is that, in the presence
of corrupted parties some of the inputs si may not be known if the dealers of
these values have refused to open them, since PVSS reconstruction only allows
to retrieve the values hsi . Then the computation of the resilient function needs
to be done in the exponent which in principle appears to require either O(n3)
exponentiations, or a distributed computation like in the PVSS reconstruction.

Fortunately, in this case the following idea allows to perform this compu-
tation much more efficiently: we choose M to be certain type of Vandermonde
matrix so that applying M is evaluating a polynomial (with coefficients given
by the si) on several n-th roots of unity. Then we adapt the Cooley-Tukey fast
Fourier transform algorithm to work in the exponent of the group and compute
the output with n2 log n exponentiations, which in practice is almost as fast as
the best-case scenario where the si are known. This gives the claim amortized
complexity of O(log n) exponentiations per party and random element computed.

Additional Techniques to Decrease Complexity. We further reduce the
complexity of the PVSS used in ALBATROSS, with an idea which can also be
used in SCRAPE [12]. It concerns public verification that a published sharing is
correct, i.e. that it is of the form pk

p(i)
i for some polynomial of bounded degree,

say at most k. Instead of the additional commitment to the shares used in [12],
we use standard Σ-protocol ideas that allow to prove this type of statement,
which turns out to improve the constants in the computational complexity. We
call this type of proof a low degree exponent interpolation (LDEI) proof.

Universal Composability. We extend our basic stand alone protocol to obtain
two versions that are secure in the Universal Composability (UC) framework [10],
which is arguably one of the strongest security guarantees one can ask from a
protocol. In particular, proving a protocol UC secure ensures that it can be used
as a building block for more complex systems while retaining its security guar-
antees, which is essential for randomness beacons. We obtain the first UC-secure
version of ALBATROSS by employing UC non-interactive zero knowledge proofs
(NIZKs) for discrete logarithm relations, which can be realized at a reasonable
overhead. The second version explores a new primitive that we introduce and
construct called “designated verifier” homomorphic commitments, which allows
a sender to open a commitment towards one specific receiver in such a way that
this receiver can later prove to a third party that the opening revealed a certain
message. Instead of using DDH based encryption schemes as before, we now have
the parties commit to their shares using our new commitment scheme and rely
on its homomorphic properties to perform the LDEI proofs that ensure share
validity. Interestingly, this approach yields a protocol secure under the weaker
CDH assumption in the random oracle model.

2 Preliminaries

[n] denotes the set {1, 2, . . . , n} and [m,n] denotes the set {m,m + 1, . . . , n}.
We denote vectors with black font lowercase letters, i.e. v. Given a vector v =

316 I. Cascudo and B. David

(v1, . . . , vn) and a subset I ⊆ [n], we denote by vI the vector of length |I| with
coordinates vi, i ∈ I in the same order they are in v. Throughout the paper, q
will be a prime number and Zq = Z/qZ is a finite field of q elements. For a field
F, Fm×n is the set of m×n matrices with coefficients in F. Moreover, we denote
by F[X]≤m the vector space of polynomials in F[X] with degree at most m. For
a set X , let x

$← X denote x chosen uniformly at random from X ; and for a
distribution Y, let y

$← Y denote y sampled according to the distribution Y.

Polynomial Interpolation and Lagrange Basis. We recall a few well known
facts regarding polynomial interpolation in fields.

Definition 1 (Lagrange basis). Let F be a field, and S = {a1, . . . , ar} ⊆ F. A
basis of F[X]≤r−1, called the Lagrange basis for S, is given by {Lai,S(X) : i ∈ [r]}
defined by

Lai,S(X) =
∏

aj∈S\{ai}

X − aj

ai − aj
.

Lemma 1. Let F be a field, and S = {a1, . . . , ar} ⊆ F. Then the map
F[X]≤r−1 → F

r given by f(X) �→ (f(a1), . . . , f(ar)) is a bijection, and the
preimage of (b1, . . . , br) ∈ F

r is given by f(X) =
∑r

i=1 bi · Lai,S(X).

Packed Shamir Secret Sharing. From now on we work on the finite field
Zq. Shamir secret sharing scheme [32] allows to share a secret s ∈ Zq among a
set of n parties (where n < q) so that for some specified 1 ≤ t < n, the secret
can be reconstructed from any set of t + 1 shares via Lagrange interpolation
(t + 1-reconstruction), while any t or less shares convey no information about it
(t-privacy). In Shamir scheme each share is also in Zq and therefore of the same
size of the secret.

Packed Shamir secret sharing scheme [5,20] is a generalization that allows
for sharing a vector in Z

�
q while each share is still one element of Zq. Standard

Shamir is the case � = 1. Packing comes at the inevitable cost of sacrificing
the threshold nature of Shamir’s scheme, which is replaced by an (optimal)
quasithreshold (often called “ramp”) behavior, namely there is t-privacy and
t + � reconstruction. The description of the sharing and reconstruction (from
t + � shares) algorithms can be found in Fig. 1.

Remark 1. The points 0,−1, . . . ,−(� − 1) (for the secret) and 1, . . . , n (for the
shares) can be replaced by any set of n + � pairwise distinct points. In this
case the reconstruction coefficients should be changed accordingly. Choosing
other evaluation points may be beneficial due to efficient algorithms for both
computing the shares and the Lagrange coefficients [34]. In this work we will not
focus on optimizing this aspect and use the aforementioned points for notational
simplicity.

Linear Codes. The Hamming weight of a vector c ∈ Z
n
q is the number of

nonzero coordinates of c. An [n, k, d]q-linear error correcting code C is a vector

ALBATROSS 317

Packed Shamir secret sharing

Packed Shamir secret sharing over Zq for � secrets with n parties, t-privacy and
t + �-reconstruction. We require n + � ≤ q, 1 ≤ t, t + � ≤ n.
Sharing algorithm.
On input (s0, s1, . . . , s�−1) ∈ Z

�
q:

– The dealer chooses a polynomial uniformly at random in the affine space

{f ∈ Zq[X]≤t+�−1, f(0) = s0, f(−1) = s1, . . . , f(−(� − 1)) = s�−1}.

– For i = 1, . . . , n, the dealer sends f(i) to the i-th party.
Reconstruction algorithm.
On input the shares σi = f(i), i ∈ Q for a set of parties Q ⊆ [n], with |Q| = t + �.
– For m = 0, . . . , � − 1, parties compute

sm =
∑
i∈Q

σiLi,Q(−m) =
∑
i∈Q

σi

∏
j∈Q,j �=i

−m − j

i − j

– Output (s0, s1, . . . , s�−1)

Fig. 1. Packed Shamir secret sharing (sharing algorithm)

subspace of Zn
q of dimension k and minimum distance d, i.e., the smallest Ham-

ming weight of a nonzero codeword in C is exactly d. A generator matrix is a
matrix M ∈ Z

k×n
q such that C = {m · M : m ∈ Z

k
q}.

Given n pairwise distinct points x1, . . . , xn in Z
n
q , a Reed Solomon of length

n and dimension k is defined as = {(f(x1), . . . , f(xn)) : f ∈ Zq[X],deg f < k}. It
is well known that this is an [n, k, n − k + 1]q-linear code, and therefore achieves
the largest possible minimum distance for a code of that length and dimension.
These codes are called MDS (maximum distance separable).

The dual code of a code C, denoted C⊥, is the vector space consisting of
all vectors c⊥ ∈ Z

n
q such that 〈c, c⊥〉 = 0 for all c ∈ C where 〈·, ·〉 denotes

the standard inner product. For the Reed-Solomon code above, its dual is the
following so-called generalized Reed-Solomon code

C⊥ = {(u1 · f∗(x1), . . . , un · f∗(xn)) : g ∈ Zq[X],deg f∗ < n − k}

where u1, ..., un are fixed elements of Zn
q , namely ui =

∏n
j=1,j �=i(xi − xj)−1.

Linear Perfect Resilient Functions. Our optimizations make use of random-
ness extractors which are linear over Zq and hence given by a matrix M ∈ Z

u×r
q

satisfying the following property: the knowledge of any t coordinates of the input
gives no information about the output (as long as the other r− t coordinates are
chosen uniformly at random). This notion is known as linear perfect t-resilient
function [16].

Definition 2. A Zq-linear (perfect) t-resilient function (t-RF for short) is a
linear function Z

r
q → Z

u
q given by x �→ M · x such that for any I ⊆ [r] of size t,

318 I. Cascudo and B. David

and any aI = (aj)j∈I ∈ Z
t
q, the distribution of M ·x conditioned to xI = aI and

to x[r]\I being uniformly random in Z
r−t
q , is uniform in Z

u
q .

Note that such a function can only exist if u ≤ r − t. We have the following
characterization in terms of linear codes.

Theorem 1 [16]. An u × r matrix M induces a linear t-RF if and only if M is
a generator matrix for an [r, u, t + 1]q-linear code.

Remark 2. Remember that with our notation for linear codes, the generator
matrix acts on the right for encoding a message, i.e. m �→ m ·M . In other words
the encoding function for the linear code and the corresponding resilient function
given by the generator matrix as in Theorem1 are “transpose from each other”.

A t-RF for the optimal case u = r − t is given by any generator matrix of
an [r, r − t, t + 1]q MDS code, for example a matrix M with Mij = ai−1

j for
i ∈ [r − t], j ∈ [r], where all aj ’s are distinct, which generates a Reed-Solomon
code. It will be advantageous for us to fix an element ω ∈ Z

∗
q of order at least

r − t and set aj = ωj−1, that is we will use the matrix M = M(ω, r − t, r) where

Mij = ω(i−1)(j−1), i ∈ [r − t], j ∈ [r]

Then M · x = (f(1), f(ω), · · · , f(ωr−t−1)) where f(X) := x0 + x1X + x2X
2 +

· · · + xr−1X
r−1, and we can use the Fast Fourier transform to compute M · x

very efficiently, as we explain later.

3 Basic Algorithms and Protocols

In this section we introduce some algorithms and subprotocols which we will
need in several parts of our protocols, and which are relatively straight-forward
modifications of known techniques.

3.1 Proof of Discrete Logarithm Equality

We will need a zero-knowledge proof that given g1, ..., gm and x1, ..., xm the
discrete logarithms of every xi with base gi are equal. That is xi = gα

i for all
i ∈ [m] for some common α ∈ Zq. Looking ahead, these proofs will be used by
parties in the PVSS to ensure they have decrypted shares correctly. A sigma-
protocol performing DLEQ proofs for m = 2 was given in [14]. We can easily
adapt that protocol to general m as follows:

1. The prover samples w ← Zq and, for all i ∈ [m], computes ai = gw
i and sends

ai to the verifier.
2. The verifier sends a challenge e ← Zq to the prover.
3. The prover sends a response z = w − αe to the verifier.
4. The verifier accepts if ai = gz

i xe
i for all i ∈ [m].

ALBATROSS 319

We transform this proof into a non-interactive zero-knowledge proof of knowl-
edge of α in the random oracle model via the Fiat-Shamir heuristic [19,29]:

– The prover computes e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am), for H(·) a
random oracle (that will be instantiated by a cryptographic hash function)
and z as above. The proof is (a1, . . . , am, e, z).

– The verifier checks that e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am) and that
ai = gz

i xe
i for all i.

This proof requires m exponentiations for the prover and 2m for the verifier.

3.2 Proofs and Checks of Low-Degree Exponent Interpolation

We consider the following statement: given generators g1, g2, . . . , gm of a cyclic
group Gq of prime order q, pairwise distinct elements α1, α2, . . . , αm in Zq and
an integer 1 ≤ k < m, known by prover and verifier, the claim is that a tuple
(x1, x2, . . . , xm) ∈ G

m
q is of the form (gp(α1)

1 , g
p(α2)
2 , . . . , g

p(αm)
m) for a polynomial

p(X) in Zq[X]≤k. We will encounter this statement in two different versions:

– In the first situation, we need a zero-knowledge proof of knowledge of p(X)
by the prover. This type of proof will be used for a dealer in the publicly
verifiable secret sharing scheme to prove correctness of sharing. We call this
proof LDEI((gi)i∈[m], (αi)i∈[m], k, (xi)i∈[m]).

– In the second situation, we have no prover, but on the other hand we have
g1 = g2 = · · · = gm. In that case we will use a locally computable check
from [12]: indeed, verifiers can check by themselves that the statement is
correct with high probability. This type of check will be used to verify cor-
rectness of reconstruction of a (packed) secret efficiently. We call such check
LocalLDEI((αi)i∈[m], k, (xi)i∈[m])).1

In [12], the first type of proof was constructed by using a DLEQ proof of
knowledge of common exponent to reduce that statement to one of the second
type and then using the local check we just mentioned. However, this is unnec-
essarily expensive both in terms of communication and computation. Indeed, a
simpler Σ-protocol for that problem is given in Fig. 2.

Proposition 1. Protocol LDEI in Fig. 2 is an honest-verifier zero-knowledge
proof of knowledge for the given statement.

Proof. The proof of this proposition follows standard arguments in Σ-protocol
theory and is given in the full version of this paper [13].

Applying Fiat-Shamir heuristic we transform this into a non-interactive
proof:

1 This type of statement is independent of the generator g1 of the group we choose: it
is true for a given generator if and only if it is true for all of them.

320 I. Cascudo and B. David

Protocol LDEI (ZK PoK of Low-Degree Exponent Interpolation)

Public parameters: prime q, cyclic group Gq of prime order q, g1, ..., gm generators
of Gq, α1, α2, . . . , αm pairwise distinct elements in Zq, integer 1 ≤ k < m.
Statement: (x1, x2, . . . , xm) ∈

{(
g

p(α1)
1 , g

p(α2)
2 , . . . , g

p(αm)
m

)
: p ∈ Zq[X], deg p ≤ k

}
and the prover knows p.

Protocol:
– Sender chooses r(X) ∈ Zq[X]≤k uniformly at random and sends ai = g

r(αi)
i for

all i ∈ [m] to the verifier.
– Verifier chooses e ∈ Zq uniformly at random.
– Sender sends z(X) = e · p(X) + r(X) to the verifier
– Verifier checks that z(X) ∈ Zq[X]≤k and xe

i · ai = g
z(αi)
i for all i ∈ [m].

Fig. 2. Protocol LDEI zero-knowledge proof of knowledge of low-degree exponent
interpolation.

– The sender chooses r ∈ Zq[X]≤k uniformly at random and computes ai =
g

r(αi)
i for all i = 1, . . . ,m, e = H(x1, x2, . . . , xm, a1, a2, . . . , am) and z =

e · p + r. The proof is then (a1, a2, . . . , am, e, z).
– The verifier checks that z ∈ Zq[X]≤k, that xe

i · ai = g
z(αi)
i holds for all

i = 1, . . . , m and that e = H(x1, x2, . . . , xm, a1, a2, . . . , am).

Now we consider the second type of situation mentioned above. The local
check is given in Fig. 3.

Algorithm LocalLDEI to Verify Low-Degree Exponent Interpolation

Public parameters: prime q, cyclic group Gq of prime order q, integer m.
Input: pairwise distinct elements (α1, α2, . . . , αm) in Zq, integer 1 ≤ k < m, tuple
(x1, x2, . . . , xm) ∈ Gq, a group generator g.
Statement: (x1, x2, . . . , xm) ∈

{(
gp(α1), gp(α2), . . . , gp(αm)

)
: p ∈ Zq[X], deg p ≤ k

}
.

Algorithm:
– Verifier defines ui = 1/

∏
��=i(αi − α�) for all i = 1, . . . , m.

– Verifier chooses a polynomial p∗ uniformly at random in Zq[X]≤m−k−2 \ {0}
and computes vi = ui · p∗(αi) for all i.

– Verifier checks that m
i=1 xvi

i = 1 and accepts if and only if that is the case.

Fig. 3. Algorithm LocalLDEI to verify low-degree exponent interpolation

Proposition 2. The local test LocalLDEI in Fig. 3 always accepts if the state-
ment is true and rejects with probability at least 1− 1/q if the statement is false.

ALBATROSS 321

Correctness is based on the fact that the vector (u1p∗(α1), . . . , unp∗(αm))
is in the dual code C⊥ of the Reed Solomon code C given by the vectors
(p(α1), . . . , p(αm)) with deg p ≤ k, hence if the exponents of the xi’s (in base
g) indeed form a codeword in C, the verifier is computing the inner product of
two orthogonal vectors in the exponent. Soundness follows from the fact that, if
the vector is not a codeword in C, then a uniformly random element in C⊥ will
only be orthogonal to that vector of exponents with probability less than 1/q.
See [12, Lemma 1] for more information about this claim.

3.3 Applying Resilient Functions “in the Exponent”

In our protocol we will need to apply resilient functions in the following way.
Let h1, . . . , hr be public elements of Gq, chosen by different parties, so that
hi = hxi (for some certain public generator h of the group) and xi is only known
to the party that has chosen it. Our goal is to extract (ĥ1, . . . , ĥu) ∈ G

u
q which

is uniformly random in the view of an adversary who has control over up to t of
the initial elements xi. In order to do that, we take a t-resilient function from
Z

r
q to Z

u
q given by a matrix M and apply it to the exponents, i.e., we define

ĥi = hyi where x �→ y = M · x; this satisfies the desired properties. Because the
resilient function is linear, the values ĥi can be computed from the hi by group
operations, without needing the exponents xi. We define the following notation.

Definition 3. As above, let Gq be a group of order q in multiplicative notation.
Given a matrix M = (Mij) in Z

u×r
q and a vector h = (h1, h2, . . . , hr) ∈ G

r
q, we

define ĥ = M
 h ∈ G
u
q , as ĥ = (ĥ1, ĥ2, . . . , ĥr), where ĥi =

∏u
k=1 hMik

k .

Remark 3. Given a generator h of Gq, if we write h = (hx1 , hx2 , . . . , hxr), x =
(x1, x2, . . . , xr), then M
 h = (hy1 , hy2 , . . . , hyr) where (y1, y2, . . . , yr) = M · x.

Now let M = M(ω, r − t, r) as in Sect. 2. In order to minimize the number
of exponentiations that we need to compute M
 h recall first that M · x =
(f(1), f(ω), . . . , f(ωr−t−1)), where f is the polynomial with coefficients fi =
xi+1, for i ∈ [0, r − 1]. Assuming there exists n > r − t − 1 a power of 2 that
divides q − 1, we can choose ω to be a n-th root of unity for n and use the well
known Cooley-Tukey recursive algorithm [17] for computing the Fast Fourier
Transform. The algorithm in fact evaluates a polynomial of degree up to n − 1
on all powers of ω up to ωn−1 with O(n log n) multiplications. We can just set
fj = 0 for j ≥ r, and ignore the evaluations in ωi, for i ≥ r − t. In our situation
the xi’s are not known; we use the fact that in the Cooley-Tukey algorithm all
operations on the xi are linear, so we can operate on the values hi = hxi instead.
The resulting algorithm is then given in Fig. 4 (since we denoted fi = xi+1, then
hi = hfi−1).

At every recursion level of the algorithm, it needs to compute in total n
exponentiations, and therefore the total number of exponentiations in Gq is
n log2 n. In fact, half of these are inversions, which are typically faster.

322 I. Cascudo and B. David

“Cooley-Tukey FFT in the exponent” algorithm FFTE

Parameters: A large prime q, and a group Gq of cardinality q.
Input: An integer n = 2k dividing q − 1, a tuple h = (h1, h2, . . . , hn) ∈ G

n
q , and an

n-th root of unity ω ∈ Zq.
Output: The tuple ĥ = (ĥ1, ĥ2, . . . , ĥn) = M ′ � h ∈ G

n
q , where M ′ ∈ Z

n×n
q is given

by M ′
ij = ω(i−1)(j−1) for i, j ∈ [n].

If n = 1, return h1.
Else:
– For j = 1, . . . , n/2, compute vj = hj · hj+n/2, v∗

j = (hj · (hj+n/2)−1)ωj−1
. Set

v = (v1, v2, . . . , vn/2), v∗ = (v∗
1 , v∗

2 , . . . , v∗
n/2).

– Apply the algorithm recursively to (n/2,v, ω2) and on (n/2,v∗, ω2) obtaining
outputs v = (v1, v2, . . . , vn/2) and v∗ = (v∗

1, v∗
2, . . . , v∗

n/2) respectively.
– Return (v1, v∗

1, v2, v∗
2, . . . , vn/2, v∗

n/2).

Fig. 4. Algorithm FFTE (Cooley-Tukey FFT in the exponent)

4 ALBATROSS Protocols

We will now present our main protocols for multiparty randomness generation.
We assume n participants, at most t < (n − 1)/2 of which can be corrupted by
some active static adversary. We define then � = n−2t > 0. Note that n−t = t+�,
so we use these two quantities interchangeably. For asymptotics, we consider
that both t and � are Θ(n), in particular t = τ · n for some 0 < τ < 1/2. The n
participants have access to a public ledger, where they can publish information
that can be seen by the other parties and external verifiers.

Our protocols take place in a group Gq of prime cardinality q, where we
assume that the Decisional Diffie-Hellman problem is hard. Furthermore, in order
to use the FFTE algorithm we require that Gq has large 2-adicity, i.e., that q−1
is divisible by a large power of two 2u. Concretely we need 2u > n − t. DDH-
hard elliptic curve groups with large 2-adicity are known, for example both the
Tweedledee and Tweedledum curves from [8] satisfy this property for u = 33,
which is more than enough for any practical application.

4.1 A PVSS Based on Packed Shamir Secret Sharing

As a first step, we show a generalization of a PVSS from [12], where we use
packed Shamir secret sharing in order to share several secrets at essentially the
same cost for the sharing and public verification phases. In addition, correctness
of the shares is instead verified using the LDEI proof. This is different than in
[12] where the dealer needed to commit to the shares using a different generator
of the group, and correctness of the sharing was proved using a combination
of DLEQ proofs and the LocalLDEI check, which is less efficient. In Fig. 5, we

ALBATROSS 323

Protocol πPPV SS

Let h be a generator of a group Gq of order q. Let H(·) be a random oracle.
Protocol πPPV SS is run between n parties P1, . . . , Pn, a dealer D and an external
verifier V (in fact any number of external verifiers) who have access to a public
ledger where they can post information for later verification.

1. Setup: Party Pi generates a secret key ski ← Zq, a public key pki = hski and
registers the public key pki by posting it to the public ledger, for 1 ≤ i ≤ n.

2. Distribution: The dealer D samples a polynomial p(X) ← Zq[X]≤t+�−1 and
sets s0 = p(0), s1 = p(−1), . . . , s�−1 = p(−(� − 1)). The secrets are defined to
be S0 = hs0 , S1 = hs1 , . . . , S�−1 = hs�−1 . D computes Shamir shares σi = p(i)
for 1 ≤ i ≤ n. D encrypts the shares as σ̂i = pkσi

i and publishes (σ̂1, . . . , σ̂n)
in the public ledger along with the proof LDEI that σ̂i = pk

p(i)
i for some p of

degree at most t + � − 1.
3. Verification: The verifier checks the proof LDEI.

Fig. 5. Protocol πPPV SS

present the share distribution and verification of the correctness of the shares of
the new PVSS. We discuss the reconstruction of the secret later.

Under the DDH assumption, πPPV SS satisfies the property of IND1-secrecy
as defined in [12] (adapted from [22,31]), which requires that given t shares and
a vector x′ = (s′

0, s
′
1, . . . , s

′
�−1), the adversary cannot tell whether x′ is the actual

vector of secrets.

Definition 4. Indistinguishability of secrets (IND1-secrecy). We say
that the PVSS is IND1-secret if for any polynomial time adversary APriv cor-
rupting at most t − 1 parties, APriv has negligible advantage in the following
game played against a challenger.

1. The challenger runs the Setup phase of the PVSS as the dealer and sends all
public information to APriv. Moreover, it creates secret and public keys for
all honest parties, and sends the corresponding public keys to APriv.

2. APriv creates secret keys for the corrupted parties and sends the corresponding
public keys to the challenger.

3. The challenger chooses values x0 and x1 at random in the space of secrets.
Furthermore it chooses b ← {0, 1} uniformly at random. It runs the Dis-
tribution phase of the protocol with x0 as secret. It sends APriv all public
information generated in that phase, together with xb.

4. APriv outputs a guess b′ ∈ {0, 1}.

The advantage of APriv is defined as |Pr[b = b′] − 1/2|.

Proposition 3. Protocol πPPV SS is IND1-secret under the DDH assumption.

We prove this proposition in the full version of the paper [13], but we note that
the proof follows from similar techniques as in the security analysis of the PVSS

324 I. Cascudo and B. David

in SCRAPE [12] and shows IND1-secrecy based on the �-DDH hardness assump-
tion, which claims that given (g, gα, gβ0 , gβ1 , · · · , gβ�−1 , gγ0 , gγ1 , · · · , gγ�−1) where
the γi either have all been sampled at random from Zq or are equal to α · βi,
it is hard to distinguish both situations. However, when � is polynomial in the
security parameter (as is the case here) �-DDH is equivalent to DDH, see [26].

We now discuss how to reconstruct secrets in πPPV SS . Rather than giving one
protocol, in Fig. 6 we present a number of subprotocols that can be combined in
order to reconstruct a secret. The reason is to have some flexibility about which
parties will execute the reconstruction algorithm and which ones will verify the
reconstruction in the final randomness generation protocol.

In the share decryption protocol party Pi, using secret key ski, decrypts the
share σ̂i and publishes the obtained value hσi . Moreover Pi posts a DLEQ proof
to guarantee correctness of the share decryption; if several secret tuples need to
be reconstructed, this will be done by a batch DLEQ proof.

Once n − t values hσi have been correctly decrypted (by a set of parties
Q), any party can compute the � secret values Sj = hsj using the reconstruc-
tion algorithm RecQ, which boils down to applying Lagrange interpolation in
the exponent. Note that since Lagrange interpolation is a linear operation, the
exponents σi do not need to be known, one can operate on the values hσi instead.

However, the computational complexity of this algorithm is high (O(n2)
exponentiations) so we introduce the reconstruction verification algorithm
RecV erQ which allows any party to check whether a claimed reconstruction
is correct at a reduced complexity (O(n) exponentiations). RecV erQ uses the
local test LocalLDEI that was presented in Fig. 3.

We remark that the most expensive computation is reconstruction of a secret
which requires O(n2) exponentiations.

4.2 Scheduling of Non-private Computations

In ALBATROSS, parties may need to carry out a number of computations of
the form M
h, where M ∈ Z

r×m
q , h ∈ G

m
q for some r,m = O(n). This occurs if

parties decide not to reveal their PVSSed secrets, and it happens at two moments
of the computation: when reconstructing the secrets from the PVSS and when
applying the resilient function at the output phase of the protocol.

These computations do not involve private information but especially in the
PVSS they are expensive, requiring O(n2) exponentiations. Applying a resilient
function via our FFTE algorithm is considerably cheaper (it requires O(n log n)
exponentiations), but depending on the application it still may make sense to
apply the distributed computation techniques we are going to introduce.

On the other hand, given a purported output for such a computation, veri-
fying their correctness can be done locally in a cheaper way (O(n) exponentia-
tions) using respectively the tests LocalLDEI for verifying PVSS reconstruction
and a similar test which we call LocalLExp for verifying the correct application
of FFTE (since we will not strictly need LocalLExp, we will not describe it here
but it can be found in the full version of our paper).

ALBATROSS 325

Reconstruction protocol and algorithms in πPPV SS

Protocols used in the reconstruction of secrets in PVSS πPPV SS from Figure 5.
Same conditions and notations as there.

– Share decryption (for Pi): On input σ̂i, pki, decrypt share σ̃i = σ̂
1

ski
i = hσi

and publish it in the ledger together with PROOFi = DLEQ((h, σ̃i), (pki, σ̂i))
(showing that the decrypted share σ̃i corresponds to σ̂i).

– Amortized share decryption (for Pi): If the PVSS has been used several
times where Pi has received in each case a share σ̂a

i , Pi can decrypt shares as
above but publish one single proof PROOFi = DLEQ((h, (σ̃a

i)a), (pki, (σ̂a
i)a)).

– Share decryption verification: Apply the verification algorithm of the
DLEQ proof PROOFi and complain if this is not correct.

– Secret reconstruction algorithm RecQ: On input {σ̃i}i∈Q for a set Q of
exactly n − t indices, for j ∈ [� − 1]:

• Set λ
(j)
i =

∏
m:m∈Q,m�=i

−j−m
i−m

for all i ∈ Q and compute

Sj =
∏
i∈Q

(σ̃i)λ
(j)
i =

∏
i∈Q

hp(i)λ
(j)
i = hp(−j) = hsj ,

• Publish the values Sj .
– Reconstruction verification algorithm RecV erQ: On input

(S0, S1, . . . , S�−1, {σ̃i}i∈Q), and calling Q = {i1, . . . , in−t} execute

LocalLDEI((αj)j∈[−(�−1),n−t], t + � − 1, (Σj)j∈[−(�−1),n−t]),

where αj = j and Σj = S−j for j ∈ [−(� − 1), 0] and αj = ij , Σj = σ̃ij for
j ∈ [1, n − t].

Fig. 6. Reconstruction protocols and algorithms in πPPV SS

In the worst case where Θ(n) parties abort after having correctly PVSSed
their secrets, Θ(n) computations of each type need to be carried out. We balance
the computational complexity of the parties as follows: for each of the tasks taski

to be computed, a random set of computing parties Ai is chosen of cardinality
around some fixed value c(n), who independently compute the task and publish
their claimed outputs; the remaining parties verify which one of the outputs is
correct, and if none of them is, they compute the tasks themselves.

Remark 4. The choice of Ai has no consequences for the correctness and security
of our protocols. The adversary may at most slow down the computation if it
can arrange too many sets Ai to contain no honest parties, but this requires
a considerable amount of biasing of the randomness source. We will derive this
randomness using a random oracle applied to the transcript of the protocol up to
that moment, and assume for simplicity that each party has probability roughly
c(n)/n to belong to each Ai.

Let T = {task1, ..., taskf(n)} be a set of computation tasks, each of which
consists of applying the same algorithm AlgComp to an input ini. Likewise,

326 I. Cascudo and B. David

let AlgV er be a verifying algorithm that given an input in and a purported
output out always accepts if the output is correct and rejects it with very large
probability if it is incorrect. We apply the protocol in Fig. 7.

Computational Complexity. We assume that |P| = Θ(n), and that AlgComp
requires ccost(n) group exponentiations while AlgV er needs vcost(n). On
expectation, each party will participate as computing party for O(f(n) · c(n)/n)
tasks and as verifier for the rest, in each case needing to verify at most c(n) com-
putations. Note that we schedule the verifications so that parties check first the
most common claimed output, as this will likely be the correct one. For a given
taski, if Ai contains at least one honest party, then one of the verifications will
be correct. Ai contains only corrupt parties with probability τ c(n) where τ = t/n
and therefore we can assume that the number of i’s for which this happens will
be at most O(τ c(n)f(n)), so parties will need to additionally apply AlgComp
on this number of tasks. Therefore the number of exponentiations per party is
ccost(n) · O((c(n)/n + τ c(n)) · f(n)) + vcost(n) · O (c(n) · (1 − c(n)/n) · f(n)) .

Distributed computation protocol DistComp(T , P, c(n))

For each i = 1, . . . , f(n):
– A random subset Ai ⊆ P of c(n) parties is selected.
– Each party Pj ∈ Ai independently executes AlgComp(ini) and publishes

outPj . Let Li be the list of published claimed outputs for taski ordered from
most frequent (the one that is claimed to be the output by more parties in Ai)
to least frequent.

– Each party Pk ∈ P \ Ai does the following
• Pk applies AlgV er(ini, out) for out ∈ Li in the order they appear in Li

until she finds a correct one, and accepts this as output of taski.
• If none of the out ∈ Li passes the test, Pk computes AlgComp(ini) and

sets the result as output for taski.

Fig. 7. Distributed computation protocol DistComp(T ,P, c(n))

PVSS Reconstruction. In the case of reconstruction of the PVSS’ed values, we
have AlgComp = Rec (Fig. 6), which has complexity ccost(n) = O(n2) and
AlgV er is RecV er where vcost(n) = O(n). The number of computations f(n)
equals the number of corrupted parties that correctly share a secret but later
decide not to reveal it. In the worst case f(n) = Θ(n). In that case, setting
c(n) = log n gives a computational complexity of O(n2 log n) exponentiations. In
fact the selection c(n) = log n is preferable unless f(n) is small (f(n) = O(log n))
where c(n) = n (everybody reconstructs the f(n) computations independently)
is a better choice. For the sake of simplicity we will use c(n) = log n in the
description of the protocols.

ALBATROSS 327

Output Reconstruction via FFTE. For this case we always have f(n) = � =
Θ(n). We use FFTE as AlgComp, so ccost(n) = O(n log n), while AlgV er is
LocalLExp where vcost(n) = O(n). Setting c(n) = |P|, c(n) = log n or c(n) =
Θ(1) all give O(n2 log n) exponentiations in the worst case.

Setting c(n) = Θ(1) (a small constant number of parties computes each task,
the rest verify) has a better best case asymptotic complexity: if every party acts
honestly each party needs O(n2) exponentiations.

On the other hand, c(n) = |P| corresponds to every party carrying out the
output computation by herself, so we do not really need DistComp (and hence
neither do we need LocalLExp). This requires less use of the ledger and a smaller
round complexity, as the output of the majority is guaranteed to be correct.
Moreover the practical complexity of FFTE is very good, so in practice this
option is computationally fast. We henceforth prefer this option, and leave c(n) =
Θ(1) as an alternative.

4.3 The ALBATROSS Multiparty Randomness Generation
Algorithm

Next we present our randomness generation protocol ALBATROSS. We first
introduce the following notation for having a matrix act on a matrix of group
elements, by being applied to the matrix formed by their exponents.

Definition 5. As above, let Gq be a group of order q, and h be a generator.
Given a matrix A = (Aij) in Z

m1×m2
q and a matrix B = (Bij) ∈ G

m2×m3
q , we

define C = A
 B ∈ G
m1×m3
q with entries Cij =

∏m2
k=1 BAik

kj .

Remark 5. An alternative way to write this is C = hA·D, where D in Z
m2×m3
q is

the matrix containing the discrete logs (in base h) of B, i.e. Dij = DLogh(Bij).
But we remark that we do not need to know D to compute C.

The protocol can be found in Fig. 8 and Fig. 9. In Fig. 8 we detail the first
two phases Commit and Reveal: in the Commit phase the parties share random
tuples (hsa

0 , . . . , hsa
�−1) and prove correctness of the sharing. In the Reveal phase

parties first verify correctness of other sharings. Once n− t correct sharings have
been posted,2 the set C of parties that successfully posted correct sharings now
open the sharing polynomials. The remaining parties verify this is consistent
with the encrypted shares. If all parties in C open secrets correctly, then all
parties learn the exponents sa

i and compute the final output by applying the
resilient function in a very efficient manner, as explained in Fig. 9, step 4’.

If some parties do not correctly open their secret tuples, the remaining parties
will use the PVSS reconstruction routine to retrieve the values hsa

j , and then
compute the final output from the reconstructed values, now computing the
resilient functions in the exponent. This is explained in Fig. 9.
2 This is since n − t is the maximum we can guarantee if t parties are corrupted.

However we can also adapt our protocol to work with more than n − t parties in C
if these come before a given time limit.

328 I. Cascudo and B. David

Note that once a party gets into the set C, her PVSS is correct (with over-
whelming probability) and her tuple of secrets will be used in the final output,
no matter the behaviour of that party from that point on. This is important:
it prevents that the adversary biases the final randomness by initially playing
honestly so that corrupted parties get into C, and at that point deciding whether
or not to open the secrets of each corrupted party conditioned on what other
parties open. The fact that the honest parties can reconstruct the secrets from
any party in C makes this behaviour useless to bias the output. On the other
hand, the properties of the resilient function prevent the corrupted parties from
biasing the output before knowing the honest parties’ inputs.

Theorem 2. With overwhelming probability, the protocol ΠALB has guaranteed
output delivery and outputs a tuple of elements uniformly distributed in G

�2

q , as
long as the active, static, computationally bounded adversary corrupts at most t
parties (where 2t + � = n).

Proof. This theorem is based on the remarks above and formally proven in the
full version of this paper [13].

Computational Complexity: Group Exponentiations. In Table 1 we col-
lect the complexity of ALBATROSS in terms of number of group exponentiations
per party, comparing it with the SCRAPE protocol, where for ALBATROSS we
assume � = Θ(n). For the figures in the table, we consider both the worst case
where Θ(n) parties in C do not open their secrets in the Reveal phase, and the
best case where all the parties open their secrets. As we can see the amortized
cost for generating a random group element goes down from O(n2) exponentia-
tions to O(log n) in the first case and O(1) in the second.

More in detail, in the Commit phase, both sharing a tuple of � elements in
the group costs O(n) exponentiations and proving their correctness take O(n)
exponentiations. The Reveal phase takes O(n2) exponentiations since every party
checks the LDEI proofs of O(n) parties, each costing O(n) exponentiations, and
similarly they later execute, for every party that reveals their sharing polynomial,
O(n) exponentiations to check that this is consistent with the encrypted shares.

In the worst case O(n) parties from C do not open their secrets. The Recovery
phase requires each then O(n2 log n) exponentiations per party, as explained
in Sect. 4.2. The Output phase also requires O(n2 log n) exponentiations since
FFTE is used O(n) times (or if the alternative distributed technique is used,
the complexity is also O(n2 log n) by the discussion in Sect. 4.2.

In the best case, all parties from C reveal their sharing polynomials correctly,
the Recovery phase is not necessary and the Output phase requires O(n2) expo-
nentiations per party as parties can compute the result directly by reconstructing
the exponents first (where in addition one can use the standard FFT in Zq).

Computational Complexity: Other Operations. The total number of addi-
tional computation of group operations (aside from the ones involved in com-
puting group exponentiations) is O(n2 log n). With regard to operations in the
field Zq, parties need to carry out a total of O(n) computations of polynomials

ALBATROSS 329

Protocol ΠALB (Commit and Reveal phases)

Protocol ΠALB is run between a set P of n parties P1, . . . , Pn who have access to a
public ledger where they can post information for later verification. It is assumed
that the Setup phase of πPPV SS is already done and the public keys pki of each
party Pi are already registered in the ledger. In addition, the parties have agreed
on a Vandermonde (n − 2t) × (n − t)-matrix M = M(ω, n − 2t, n − t) with ω ∈ Z

∗
q

as specified in section 2.

1. Commit: For 1 ≤ j ≤ n:
– Party Pj executes the Distribution phase of the PVSS as Dealer for

� = n − 2t secrets, publishing the encrypted shares σ̂j
1, . . . , σ̂

j
n and shar-

ing correctness verification information LDEIj on the public ledger, also
learning the secrets hs

j
0 , . . . , hs

j
�−1 and the exponents sj

0, . . . , s
j
�−1.

2. Reveal:
– For every set of encrypted shares σ̂j

1, . . . , σ̂
j
n and the verification information

LDEIj published in the public ledger, all parties run the Verification phase
of the PVSS sub protocol.

– Once n − t parties have posted a valid sharing on the ledger (we call C the
set of these parties) each party Pj ∈ C reveals her sharing polynomial pj .

– Every party now verifies that indeed pj is the sharing polynomial that Pj

used in step 1 by reproducing the Distribution phase of Pj , i.e., computing
the secrets sj

i and shares σj
i of Pj , and verifying that σ̂j

i is indeed equal to

pk
σ

j
i

i . Note that at the same time they have computed the vector of secrets
of Pj , i.e., (sj

0, . . . , s
j
�−1).

– At this point, if every party in C has opened their secrets correctly, go to
step 4′ in Figure 9. Otherwise proceed to step 3 in Figure 9

Fig. 8. Protocol ΠALB (commit and reveal phases)

of degree O(n) in sets of O(n) points, which are always subsets of the evaluation
points for the secrets and share. In order to speed this computation up we can
use 2n − th roots of unity as evaluation points (instead of [−� − 1, n]) and make
use of the FFT yielding a total of O(n2 log n) basic operations in Zq. We also
need to compute Lagrange coefficients and the values ui in LocalLDEI but this
is done only once per party. In addition, the recent article [34] has presented
efficient algorithms for all these computations.

Smaller Outputs. ALBATROSS outputs O(n2) random elements in the group
Gq. However, if parties do not need such large output, the protocol can be
adapted to have a smaller output and a decreased complexity (even though the
amortized complexity will be worse than the full ALBATROSS). In fact there are
a couple of alternatives to achieve this: The first is to use standard (i.e., “non-
packed” Shamir’s secret sharing, so a single group element is shared per party,
as in SCRAPE; yet the resilient function based technique is still used to achieve
an output of O(n) (assuming t = (1/2 − ε)n). This yields a total computational
complexity per party of O(n2) exponentiations (O(n) per output). A similar

330 I. Cascudo and B. David

Protocol ΠALB continued (Recovery and Output phase)

3 Recovery: Let CA be the set of parties Pa ∈ C that do not publish the openings
of their secrets in the Reveal phase, or that publish an erroneous opening.
– Every party Pj ∈ P executes the Amortized Share Decryption protocol for

all PVSSs where a party Pa ∈ CA was the dealer as described in Figure 6.
That is, Pj posts all decrypted shares σ̃a

j and a unique PROOFj =
DLEQ((h, (σ̃a

j)Pa∈CA)(pk, (σ̂a
j)Pa∈CA)) to the public ledger.

– Each party Pi ∈ P verifies each proof PROOFj published by some Pj .
– Once a set Q of n − t parties publish valid decrypted shares, the secrets

are reconstructed as follows:
For every Pa ∈ CA, we define taskRec,a to be the computation of
(hsa

0 , . . . , hsa
�−1) from the decrypted shares with AlgComp = RecQ as de-

scribed in PVSS reconstruction. Let TRec = {taskRec,a}Pa∈CA .
Parties call DistComp(TRec, P, log n), where DistComp is as described in
Figure 7 (where AlgV er = RecV erQ, as in Figure 6) using as randomness
the output of a random oracle applied to the transcript so far.

4 Output: Let T be the (n − t) × � matrix with rows indexed by the parties in
C and where the row corresponding to Pa ∈ C is (hsa

0 , . . . , hsa
�−1).

– Each computes the � × �-matrix R = M � T by applying FFTE to each
column T (j) of T , resulting in column R(j) of R (since R(j) = M �T (j) and
M is Vandermonde) for j ∈ [0, � − 1]. a.

– Parties output the �2 elements of R as final randomness.
4’ Alternative output: if every party in C has opened her secrets correctly in

step Reveal, then:
– Parties compute R = M � T in the following way:

Let S be the (n − t) × � matrix with rows indexed by the parties in C and
where the row corresponding to Pa ∈ C is (sa

0 , . . . , sa
�−1). Then each party

computes U = M · S ∈ Z
�×�
q (using the standard FFT in Zq to compute

each column) and R = hU . b

– Parties output the �2 elements of R as final randomness.

aAlternatively DistComp can be used to distribute the computation, using com-
mittees of size O(1) to compute each column and a local test to verify these com-
putations, see discussion in Section 4.2 and full version of the paper

bMeaning the (i, j)-th element in R is hy where y is the (i, j)-th element in U

Fig. 9. Protocol ΠALB continued

alternative is to instead use ALBATROSS as presented until the Recovery phase,
and then only a subset I ⊂ [0, � − 1] of the coordinates of the secret vectors is
used to construct a smaller output, and the rest is ignored. Then parties only
need to recover those coordinates and apply the output phase to them. The
advantage is that at a later point the remaining unused coordinates can be used
on demand, if more randomness is needed (however it is important to note this
unused randomness can not be considered secret anymore at this point, as it is
computable from the information available to every party). If initially only O(n)

ALBATROSS 331

Table 1. Computational complexity in terms of numbers of exponentiations for each
phase of the protocols, and exponentiations per created element (per party).

Scheme Output

size

Complexity (# group exponentiations) Amortized

complexity

Commit Reveal Recovery Output Total

SCRAPE 1 O(n) O(n2) O(n2) O(1) O(n2) O(n2)

ALBATROSS, worst case O(n2) O(n) O(n2) O(n2 log n) O(n2 log n) O(n2 log n) O(log n)

ALBATROSS, best case O(n2) O(n) O(n2) - O(n2) O(n2) O(1)

random elements are needed, we set |I| = O(1) and need O(n2) exponentiations
per party (O(n) per output). We give more details in the full version.

Implementation. A toy implementation of some of the algorithms used in
ALBATROSS can be found in [27].

5 Making ALBATROSS Universally Composable

In the previous sections, we constructed a packed PVSS scheme πPPV SS and
used it to construct a guaranteed output delivery (G.O.D.) randomness beacon
ΠALB . However, as in previous G.O.D. unbiasable randomness beacons [12,23],
we only argue stand alone security for this protocol. In the remainder of this
work, we show that ΠALB can be lifted to achieve Universally Composability
by two different approaches: 1. using UC-secure zero knowledge proofs of knowl-
edge for the LDEI and DLEQ relations defined above, and 2. using UC-secure
additively homomorphic commitments. We describe the UC framework, ideal
functionalities and additional modelling details in the full version [13].

Modeling Randomness Beacons in UC. We are interested in realizing a
publicly verifiable G.O.D. coin tossing ideal functionality that functions as a
randomness beacon (i.e. it allows any third party verifier to check whether a
given output was previously generated by the functionality). We define such a
functionality Fm,D

CT in Fig. 10. Notice that it provides random outputs once all
honest parties activate it with (Toss, sid) independently from dishonest parties’
behavior. We realize this simple functionality for single shot coin tossing because
it allows us to focus on the main aspects of our techniques. In order to obtain a
stream of random values as in a traditional beacon, all parties can periodically
call this functionality with a fresh sid.

5.1 Using UC-Secure Zero Knowledge Proofs

Our first approach is to modify the commit and reveal phases of Protocol ΠALB

and use NIZK ideal functionalities as setup (along with an authenticated public
bulletin board ideal functionality FAPBB as defined in the full version [13])
in order to obtain an UC-secure version of protocol. The crucial difference is
that instead of having all parties reveal the randomness of the PVSS sharing

332 I. Cascudo and B. David

Functionality Fk,D
CT

Fk,D
CT is parameterized by k ∈ N and a distribution D, interacting with a set of

parties P = {P1, . . . , Pn}, a set of verifiers V and an adversary S through the
following interfaces:

Toss: Upon receiving (Toss, sid) from all honest parties in P, uniformly sample k

random elements x1, . . . , xk
$← D and send (Tossed, sid, x1, . . . , xk) to all parties

in P.
Verify: Upon receiving (Verify, sid, x1, . . . , xk) from Vj ∈ V, if (Tossed,
sid, x1, . . . , xk) has been sent to all parties in P set f = 1, otherwise, set f = 0.
Send (Verified, sid, x1, . . . , xk, f) to Vj .

Fig. 10. Functionality Fk,D
CT for G.O.D. publicly verifiable coin tossing.

algorithm (i.e. the polynomial p(X)) in the reveal phase in order to verify that
certain random inputs were previously shared in the commit phase, we have the
parties commit to their random inputs using an equivocal commitment and then
generate a NIZK proof that the random inputs in the commitments correspond
to the ones shared by the PVSS scheme in the commit phase. In the reveal phase,
the parties simply open their commitments. In case a commitment is not opened,
the honest parties use the PVSS reconstruction to recover the random input.
Intuitively, using an equivocal commitment scheme and ideal NIZKs allows the
simulator to first extract all the random inputs shared by the adversary and later
equivocate the simulated parties’ commitment openings in order to trick the
adversary into accepting arbitrary random inputs from simulated honest parties
that result in the same randomness as obtained from FCT. Protocol ΠCT−ZK is
presented in Figs. 11 and 12.

Pedersen Commitments. We will use a Pedersen commitment [28], which is an
equivocal commitment, i.e. it allows a simulator who knows a trapdoor to open a
commitment to any arbitrary message. In this scheme, all parties are assumed to
know generators g, h of a group Gq of prime order q chosen uniformly at random
such that the discrete logarithm of h on base g is unknown. In order to commit
to a message m ∈ Zq, a sender samples a randomness r

$← Zq and computes a
commitment c = gmhr, which can be later opened by revealing (m, r). In order
to verify that an opening (m′, r′) for a commitment c is valid, a receiver simply
checks that c = gm′

hr′
. However, a simulator who knows a trapdoor td such

that h = gtd can open c = gmhr to any arbitrary message m′ by computing
r′ = m+td·r−m′

td and revealing (m′, r′). For a message m ∈ Zq and randomness
r ∈ Zq, we denote a commitment c as Com(m, r), the opening of c as Open(m, r)
and the opening of c to an arbitrary message m′ ∈ Zq given trapdoor td as
TDOpen(m, r,m′, td).

ALBATROSS 333

Protocol ΠCT−ZK (Initialization, Commit and Reveal)
It is assumed that FCRS provides Pedersen commitment parameters gp, hp ∈ Gq

and a Vandermonde (n − 2t) × (n − t)-matrix M = M(ω, n − 2t, n − t) with
ω ∈ Z

∗
q as specified in section 2. We denote the commitment and open procedures

of a Pedersen commitment as Com(m, r) and Open(m, r), respectively. Protocol
ΠCT−ZK is run between a set P = {P1, . . . , Pn} (out of which at most t are cor-
rupted) and a set of verifiers V interacting with each other and with functionalities
FCRS, FAPBB , FLDEI

NIZK , FDLEQ
NIZK , FCOMC

NIZK as follows:
1. Initialization: Upon being activated for the first time, all parties in P and V

send (CRS, sid) to FCRS, obtaining (CRS, sid, gp, hp, M). Each party Pi ∈ P
samples ski ← Zq, computes pki = hski and sends (Post, sid,MID, pki) to
FAPBB using a fresh MID. Finally, all parties obtain all pki from FAPBB .

2. Commit: For 1 ≤ j ≤ n:
(a) Party Pj executes the Distribution phase of of πPPV SS (Figure 5) as Dealer

for � = n−2t random inputs using FLDEI
NIZK to compute the NIZKs, obtaining

encrypted shares σ̂j
1, . . . , σ̂

j
n, a NIZK proof πj

LDEI , secrets hs
j
0 , . . . , hs

j
�−1

and exponents sj
0, . . . , s

j
�−1.

(b) Pj computes Com(sj
0, r

j
0), . . . ,Com(sj

�−1, r
j
�−1) (with fresh randomness

rj
0, . . . , r

j
�−1 ← Zq) and obtains from FCOMC

NIZK a NIZK proof πj
COMC that

these commitments contain the same secrets sj
0, . . . , s

j
�−1 as σ̂j

1, . . . , σ̂
j
n.

(c) Pj sends (Post, sid,MID, (σ̂j
1, . . . , σ̂

j
n, πj

LDEI ,Com(sj
0, r

j
0), . . . ,

Com(sj
�−1, r

j
�−1), π

j
COMC)) to FAPBB using a fresh MID.

3. Reveal:
(a) All parties in P send (Read, sid) to FAPBB , receive (Read, sid, M)

and, for every new (Pi, sid,MID, (σ̂j
1, . . . , σ̂

j
n, πj

LDEI ,Com(sj
0, r

j
0), . . . ,

Com(sj
�−1, r

j
�−1), π

j
COMC)) in M, verify proof πj

COMC using FCOMC
NIZK and

run the Verification phase of πPPV SS (Figure 5) using FLDEI
NIZK .

(b) Once n − t parties have posted valid σ̂j
1, . . . , σ̂

j
n, πj

LDEI and
Com(sj

0, r
j
0), . . . ,Com(sj

�−1, r
j
�−1), π

j
COMC on FAPBB (we call C

the set of these parties) each party Pj ∈ C sends (Post,
sid,MID, Open(sj

0, r0,j), . . . ,Open(sj
�−1, r�−1,j)

)
) to FAPBB using a

fresh MID, for j ∈ C.
(c) All parties in Pi send (Read, sid) to FAPBB , receive (Read, sid, M) and

check that (Pi, sid,MID, Open(sj
0, r0,j), . . . ,Open(sj

�−1, r�−1,j)
)
) is in M

for all j ∈ C. Once this check succeeds, all parties in P verify that these cor-
respond to the secrets that were shared, by computing all hs

j
i and checking

the consistency of these values with the published shares with the check
LocalLDEI , in the same way that they would do in Figure 6.

(d) If any of the checks in the previous step fails, proceed to the recovery phase
of Figure 12. Otherwise, if every party in C has opened their secrets cor-
rectly, parties compute R = M �T as follows. Let S be the (n−t)×� matrix
with rows indexed by the parties in C and where the row corresponding to
Pa ∈ C is (sa

0 , . . . , sa
�−1). All parties in P compute U = M · S ∈ Z

�×�
q and

R = hU , outputting the �2 elements of R as final randomness.

Fig. 11. Protocol ΠCT−ZK , optimistic case (initialization, commit and reveal).

334 I. Cascudo and B. David

Protocol ΠCT−ZK continued, pessimistic case (Recovery phase)

4 Recovery: Let CA be the set of parties Pa ∈ C that do not publish a valid
opening of their commitments in the reveal phase. Every party Pj ∈ P proceed
as follows:
(a) Execute the Share Decryption protocol for each PVSS where a party

Pa ∈ CA was the dealer as described in Figure 6 using FDLEQ
NIZK to com-

pute πj
DLEQ. Pj sends (Post, sid,MID, ({σ̃a

j }Pa∈CA , πj
DLEQ)) to FAPBB

using a fresh MID.
(b) Send (Read, sid) to FAPBB , receive (Read, sid, M) and, for every new

(Pi, sid,MID, ({σ̃a
j }Pa∈CA , πj

DLEQ)) in M, verify proof πj
DLEQ using

FDLEQ
NIZK .

(c) Once a set Q of n − t parties have posted valid decrypted shares on
FAPBB , the secrets are reconstructed as follows. For every Pa ∈ CA, we
define taskRec,a to be the computation of (hsa

0 , . . . , hsa
�−1) from the de-

crypted shares with RecQ as described in PVSS reconstruction. Let TRec =
{taskRec,a}Pa∈CA . Then call DistComp(TRec, P, log n), where DistComp
is as described in Figure 7 with AlgComp = RecQ and AlgV er = RecV erQ
(Figure 6), taking all inputs from FAPBB and posting all outputs to
FAPBB .

(d) Send (Read, sid) to FAPBB , obtaining M. Let T be the (n− t)× � matrix
with rows indexed by the parties in C and where the row corresponding to
Pa ∈ C is (hsa

0 , . . . , hsa
�−1), which are obtained from M.

(e) Each computes the � × �-matrix R = M � T by applying FFTE to each
column T (j) of T , resulting in column R(j) of R (since R(j) = M �T (j) and
M is Vandermonde) for j ∈ [0, � − 1].

(f) Output the �2 elements of R as final randomness.
5 Verify: On input (Verify, sid, x1, . . . , xk), a verifier Vi ∈ V checks that the

protocol transcript registered in FAPBB is valid using the verification interfaces
of FLDEI

NIZK , FDLEQ
NIZK , FCOMC

NIZK . If the transcript is valid and results in output
x1, . . . , xk, AlgV eri sets b = 1, else, it sets b = 0. Vi outputs (Verified,
sid, x1, . . . , xk, b).

Fig. 12. Protocol ΠCT−ZK continued, pessimistic case (recovery phase)

NIZKs. We use three instances of functionality FR
NIZK. The first one is FLDEI

NIZK ,
which is parameterized with relation LDEI (Sect. 3). The second one is
FDLEQ

NIZK , which is parameterized with relation DLEQ for multiple statements
DLEQ((h, (σ̃i

j)i∈I)(pk, (σ̂i
j)i∈I)) (Sect. 3). The third and final one is FCOMC

NIZK ,
which is parameterized with a relation COMC showing that commitments
Com(sj

0, r
j
0), . . . ,Com(sj

�−1, r
j
�−1) contain the same secrets sj

0, . . . , s
j
�−1 as in the

encrypted shares σ̂j
1, . . . , σ̂

j
n generated by πPPV SS (Fig. 5).

CRS and Bulletin Board. In order to simplify our protocol description and secu-
rity analysis, we assume that parties have access to a CRS containing the public
parameters for the Pedersen equivocal commitment scheme and Vandermonde
matrix for the PVSS scheme πPPV SS . Moreover, a CRS would be necessary to

ALBATROSS 335

realize the instances of FR
NIZK we use. Nevertheless, we remark that the parties

could generate all of these values in a publicly verifiable way through a mul-
tiparty computation protocol [7] and register them in the authenticated public
bulletin board functionality in the beginning of the protocol.

Communication Model. Formally, for the sake of simplicity, we describe our pro-
tocol using an ideal authenticated public bulletin board FAPBB that guarantees
all messages appear immediately in the order they are received and become
immutable. However, we remark that our protocols can be proven secure in a
semi-synchronous communication model with a public ledger where messages are
arbitrarily delayed and re-ordered by the adversary but eventually registered (i.e.
the adversary cannot drop messages or induce an infinite delay). Notice that the
protocol proceeds to each of its steps once n − t parties (i.e. at least all hon-
est parties) post their messages to FAPBB, so it is guaranteed to terminate if
honest party messages are delivered eventually regardless of the order in which
these messages appear or of the delay for such messages to become immutable.
Using the terminology of [3,21], if we were to use a blockchain based public
ledger instead of FAPBB, each point we state that the parties wait for n− t valid
messages to be posted to FAPBB could be adapted to having the parties wait
for enough rounds such that it is guaranteed by the chain growth property that
a large number enough blocks are added to the ledger in such a way that the
chain quality property guarantees that at least one of these blocks is honest (i.e.
containing honest party messages) and that enough blocks are guaranteed to be
added after this honest block so that the common prefix property guarantees
that all honest parties have this block in their local view of the ledger. A similar
analysis has been done in [18,23] in their constructions of randomness beacons.

Complexity. We execute essentially the same steps of Protocol ΠALB with the
added overhead of having each party compute Pedersen Commitments to their
secrets and generate a NIZK showing these secrets are the same as the ones
shared through the PVSS scheme. Using the combined approaches of [9,24] to
obtain these NIZKs, the approximate extra overhead of using UC NIZKs in rela-
tion to the stand alone NIZKs of ΠALB will be that of computing 2 evaluations
of the Paillier cryptosystem’s homomorphism and 4 modular exponentiations
over Gq per each secret value in the witness for each NIZK. In the Commit and
Reveal phases, this yields an approximate fixed extra cost of 4n2 evaluations
of the Paillier cryptosystem’s homomorphism and 8n2 modular exponentiations
over Gq for generating and verifying NIZKs with FLDEI

NIZK and FCOMC
NIZK . In the

recovery phase, if a parties fail to open their commitments, there is an extra
costs of 2a(n − t) evaluations of the Paillier cryptosystem’s homomorphism
and 4a(n − t) modular exponentiations over Gq for generating and verifying
NIZKs with FDLEQ

NIZK . In terms of communication, the approximate extra over-
head is of one Paillier ciphertext and two integer commitments per each secret
value in the witness for each NIZK, yielding an approximate total overhead of
(n2 + a(n− t)) · |Paillier|+(2n2 + a(n− t)) · |Gq| bits where |Paillier| is the length
of a Paillier ciphertext and |Gq| is the length of a Gq element.

336 I. Cascudo and B. David

Theorem 3. Protocol ΠCT−ZK UC-realizes Fk,D
CT for k = �2 = (n − 2t)2 and

D = {hs|h ∈ Gq, s
$← Zq} in the FCRS,FAPBB ,FLDEI

NIZK ,FDLEQ
NIZK ,FCOMC

NIZK -hybrid
model with static security against an active adversary A corrupting corrupts at
most t parties (where 2t + � = n) parties under the DDH assumption.

Proof. We prove this theorem in the full version [13].

5.2 Using Designated Verifier Homomorphic Commitments

In the stand alone version of ALBATROSS and the first UC-secure version we
construct, the main idea is to encrypt shares of random secrets obtained from
packed Shamir secret sharing and prove in zero knowledge that those shares were
consistently generated. Later on, zero knowledge proofs are used again to prove
that decrypted were correctly obtained from the ciphertexts that have already
been verified for consistency, ensuring secrets can be properly reconstructed.
We now explore an alternative where we instead commit to their shares using
a UC additively homomorphic commitment scheme and perform a version the
LocalLDEI check on the committed shares and open the resulting commitment
in order to prove that their shares were correctly generated. In order to do that,
we need a new notion of a UC additively homomorphic commitment that allows
for the sender to open a commitments to an specific share towards a specific
party (so that only that party learns its share) but allows for those parties to
later prove that they have received a valid opening or not, allowing the other
parties to reconstruct the secrets from the opened shares. In the remainder of
this section, we introduce our new definition of such a commitment scheme and
show how it can be used along with FAPBB to realize Fk,D

CT .

Designated Verifier Commitments. We define a new flavor of multi-receiver
commitments that we call Designated Verifier Commitments, meaning that they
allow a sender to open a certain commitment only towards a certain receiver
in such a way that this receiver can later prove that the commitment was cor-
rectly opened (also revealing its message) or that the opening was not valid.
Moreover, we give this commitments the ability to evaluate linear functions on
committed values and reveal only the result of these evaluations but not the
individual values used as input, a property that is called additive homomor-
phism. We depart from the multi-receiver additively homomorphic commitment
functionality from [11] and augment it with designated verifier opening and ver-
ification interfaces. Functionality FDVHCOM is presented in Fig. 13. The basic
idea to realize this functionality is that we make two important changes to the
protocol of [11]: 1. all protocol messages are posted to the authenticated bul-
letin board FAPBB ; 2. designated openings are done by encrypting the opening
information from the protocol of [11] with the designated verifier’s public key
for a cryptosystem with plaintext verification [4], which allows the designated
verifier to later publicly prove that a certain (in)valid commitment opening was
in the ciphertext. Interestingly, FDVHCOM can be realized in the global random
oracle model under the Computational Diffie Hellman (CDH) assumption. We
show how to realize FDVHCOM in the full version [13].

ALBATROSS 337

Functionality FDVHCOM

FDVHCOM keeps two initially empty lists opendes and openpub. FDVHCOM interacts
with a sender PS , a set of receivers P = {P1, . . . , Pt}, a set of verifiers V and an
adversary S and proceeds as follows:
– Commit Phase: The length of the committed messages λ is fixed and known

to all parties.
• Upon receiving a message (commit, sid, ssid, PS , P,m) from PS , where

m ∈ {0, 1}λ, record the tuple (ssid, PS , P,m) and send the message
(receipt, sid, ssid, PS , P) to every receiver Pi ∈ P and S. Ignore any fu-
ture commit messages with the same ssid from PS to P .

• If a message (abort, sid) is received from S, the functionality halts.
– Addition: Upon receiving a message (add, sid, ssid1, ssid2, ssid3, PS , P) from

PS : If tuples (ssid1, PS , P,m1), (ssid2, PS , P,m2) were previously recorded
and ssid3 is unused, record (ssid3, PS , P,m1 + m2) and send the message
(add, sid, ssid1, ssid2, ssid3, PS , P, success) to PS , every Pi ∈ P and S.

– Schedule Public Open: Upon receiving a message (P − Open, sid, ssid) from
PS , if a tuple (ssid, PS , P,m) was previously recorded, append ssid to openpub.

– Schedule Designated Open: Upon receiving a message
(D − Open, sid, Pd, ssid) from PS for Pd ∈ P , if a tuple (ssid, PS , P,m)
was previously recorded, append (Pd, ssid) to opendes.

– Execute Open: Upon receiving a message (Do − Open, sid) from PS :
• For every ssid ∈ openpub, send (p-reveal, sid, PS , P, ssid,m) to every re-

ceiver Pi ∈ P where m is in the recorded tuple (ssid, PS , P,m).
• For every pair (Pd, ssid) ∈ opendes send (d-reveal, sid, PS , Pd, ssid) to

every receiver in P and send (d-reveal, sid, PS , Pd, ssid,m) to Pd where
m is in the recorded tuple (ssid, PS , P,m).

Stop responding to P − Open, D − Open and Do − Open queries.
– Reveal Designated Open Upon receiving message (Reveal-D-Open,

sid, Pd, ssid) from Pd, if (Pd, ssid) ∈ opendes and Execute Open has happened,
send (p-reveal, sid, PS , P, ssid,m) to every receiver Pi ∈ P where m is in the
recorded tuple (ssid, PS , P,m).

– Verify Upon receiving (Verify, sid, ssid, PS ,m) from Vj ∈ V, if (p-reveal,
sid, PS , P, ssid,m) was sent to every receiver Pi ∈ P , set f = 1, else, set f = 0.
Send (Verified, sid, ssid, PS ,m, f) to Vj .

Fig. 13. Functionality FDVHCOM

Realizing Fk,D
CT with ΠC T −C OM . The main idea in constructing Proto-

col ΠCT−COM is to have each party compute shares of their random secrets
using packed Shamir secret sharing and then generate designated verifier com-
mitments FDVHCOM to each share. Next, each party proves that their commit-
ted shares are valid by executing the LocalLDEI test on the committed shares
(instead of group exponents), which involves evaluating a linear function on the
committed shares and publicly opening the commitment containing the result of
this evaluation. At the same time, each party performs designated openings of
each committed share towards one of the other parties, who verify that they have

338 I. Cascudo and B. David

Protocol ΠCT−COM

Let � = n − 2t. We assume the parties have a Vandermonde (�) × (n − t)-matrix
M = M(ω, �, n− t) with ω ∈ Z

∗
q as specified in section 2. Protocol ΠCT−COM is run

between a set P = {P1, . . . , Pn} (out of which at most t are corrupted) and a set of
verifiers V interacting with each other and with functionalities FAPBB , FDVHCOM

as follows:

1. Commit: On input (Toss, sid), every party Pi ∈ P proceeds as follows:
(a) Pi acts as dealer in Shamir packed secret sharing, sampling a polynomial

p(X) ← Zq[X]≤t+�−1 such that s0 = p(0), s1 = p(−1), . . . , s�−1 = p(−(� −
1)) and computing shares σi = p(i) for 1 ≤ i ≤ n.

(b) For 1 ≤ j ≤ n, Pi picks an unused ssidi
j and sends (commit,

sid, ssidj , Pi, P, σj) to FDVHCOM.
(c) Pi uses the Addition interface of FDVHCOM to evaluate the LocalLDEI

test on the committed shares identified by ssidi
1, . . . , ssid

i
n obtaining a

new commitment identified by ssidi
LDEI . The random polynomial used by

LocalLDEI is sampled via de Fiat-Shamir heuristic using the output of a
global random oracle queried on the protocol transcript so far.

(d) Pi sends (P − Open, sid, ssidi
LDEI) to FDVHCOM (scheduling a public open-

ing the commitment with the LocalLDEI result) and, for 1 ≤ j ≤ n, sends
(D − Open, sid, Pj , ssid

i
j) to FDVHCOM (scheduling the delegated opening

of share σj towards Pj). Finally, Pi sends (Do − Open, sid) to FDVHCOM

execute all openings and sends (Post, sid,MID,mi
LDEI) to FAPBB using

a fresh MID (registering the result of the LDEI test on the bulletin board).
(e) For 1 ≤ j ≤ n, Pi checks that it has received (p-reveal,

sid, Pj , P, ssidj
LDEI , 0) (meaning that the shares from Pj passed

the LocalLDEI test), (d-reveal, sid, Pj , Pi, ssid
j
i , σ

j
i) and (d-reveal,

sid, Pj , Pi, ssid
j
j′) for every j′ = 1, . . . , n, j′ = j (meaning that Pj

opened each committed share towards the right designated verifier) from
FDVHCOM. We call the set of parties for which this check succeeds C, which
is guaranteed to contain at least n − t parties (all honest parties).

2. Reveal and Output: Every party Pi ∈ P proceeds as follows:
(a) For every party Pj ∈ C, Pi sends (Reveal-D-Open, sid, Pi, ssid

j
i) to

FDVHCOM and (Post, sid,MID, σj
i) to FAPBB using a fresh MID.

(b) After the n − t honest parties open their committed shares, perform the
recovery procedure of ΠALB directly on the set of shares σj

o such that
Pj ∈ C and Po revealed its shares in the previous step (which is guaranteed
to contain at least n− t shares revealed by the honest parties). Output the
�2 elements of R as final randomness.

3. Verify: On input (Verify, sid, x1, . . . , xk), a verifier Vi ∈ V checks that the
protocol transcript registered in FAPBB is valid using the verification interface
of FDVHCOM. If the transcript is valid and results in output x1, . . . , xk, AlgV eri

sets b = 1, else, it sets b = 0. Vi outputs (Verified, sid, x1, . . . , xk, b).

Fig. 14. Protocol ΠCT−COM .

ALBATROSS 339

obtained a valid designated opening and post a message to FAPBB confirming
that this check succeeded. After a high enough number of parties successfully
confirms this check for each of the sets of committed shares, each party publicly
opens all of their committed shares, allowing the other parties to reconstruct the
secrets. If one of the parties does not open all of their shares, the honest par-
ties can still reconstruct the secrets by revealing the designated openings they
received for their shares. We present Protocol ΠCT−COM in Fig. 14 and state its
security in Theorem 4. Since FDVHCOM can be realized in the global random ora-
cle model under the Computational Diffie Hellman (CDH) assumption as shown
in the full version [13], we obtain an instantiation of Fk,D

CT with security based
on CDH.

Theorem 4. Protocol ΠCT−COM UC-realizes Fk,D
CT for k = �2 = (n − 2t)2

and D = {hs|h ∈ Gq, s
$← Zq} in the FDVHCOM,FAPBB-hybrid model with

static security against an active adversary A corrupting at most t parties (where
2t + � = n).

Proof. This theorem is proven in the full version [13].

Acknowledgements. The authors would like to thank the anonymous reviewers for
their suggestions, Diego Aranha, Ronald Cramer and Dario Fiore for useful discussions
and Eva Palandjian for the implementation in [27] and remarks about the initial draft.

References

1. Adida, B.: Helios: web-based open-audit voting. In: Proceedings of the 17th
USENIX Security Symposium, pp. 335–348 (2008)

2. Azouvi, S., McCorry, P., Meiklejohn, S.: Winning the caucus race: continuous leader
election via public randomness. CoRR, abs/1801.07965 (2018)

3. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

4. Baum, C., David, B., Dowsley, R.: A framework for universally composable publicly
verifiable cryptographic protocols. Cryptology ePrint Archive, Report 2020/207
(2020). https://eprint.iacr.org/2020/207

5. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakley, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-39568-7 20

6. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

7. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. In: Zohar, A., et al. (eds.) FC
2018. LNCS, vol. 10958, pp. 64–77. Springer, Heidelberg (2019). https://doi.org/
10.1007/978-3-662-58820-8 5

8. Bowe, S., Grigg, J., Hopwood, D.: Halo: recursive proof composition without a
trusted setup. IACR Cryptology ePrint Archive, 2019:1021 (2019)

https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://eprint.iacr.org/2020/207
https://doi.org/10.1007/3-540-39568-7_20
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5

340 I. Cascudo and B. David

9. Camenisch, J., Krenn, S., Shoup, V.: A framework for practical universally com-
posable zero-knowledge protocols. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 449–467. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 24

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

11. Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Dowsley, R., Giacomelli, I.:
Efficient UC commitment extension with homomorphism for free (and applica-
tions). In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS,
vol. 11922, pp. 606–635. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34621-8 22

12. Cascudo, I., David, B.: SCRAPE: scalable randomness attested by public entities.
In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp.
537–556. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 27

13. Cascudo, I., David, B.: ALBATROSS: publicly attestable batched randomness
based on secret sharing (full version). Cryptology ePrint Archive, Report 2020/644
(2020). https://eprint.iacr.org/2020/644

14. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

15. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019)

16. Chor, B., Goldreich, O., H̊astad, J., Friedman, J., Rudich, S., Smolensky, R.: The
bit extraction problem of t-resilient functions. In: 26th Annual Symposium on
Foundations of Computer Science, Portland, Oregon, USA, 21–23 October 1985,
pp. 396–407 (1985)

17. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comp. 19, 297–301 (1965)

18. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

20. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada, 4–6 May 1992, pp.
699–710 (1992)

21. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

22. Heidarvand, S., Villar, J.L.: Public verifiability from pairings in secret sharing
schemes. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol.
5381, pp. 294–308. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04159-4 19

https://doi.org/10.1007/978-3-642-25385-0_24
https://doi.org/10.1007/978-3-642-25385-0_24
https://doi.org/10.1007/978-3-030-34621-8_22
https://doi.org/10.1007/978-3-030-34621-8_22
https://doi.org/10.1007/978-3-319-61204-1_27
https://eprint.iacr.org/2020/644
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-642-04159-4_19
https://doi.org/10.1007/978-3-642-04159-4_19

ALBATROSS 341

23. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

24. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and
non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part I. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46494-6 5

25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Manuscript (2008).
https://bitcoin.org/bitcoin.pdf

26. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

27. Palandjian, E.: Implementation of ALBATROSS. https://github.com/evapln/
albatross

28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

29. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

30. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2),
256–267 (1983)

31. Ruiz, A., Villar, J.L.: Publicly verfiable secret sharing from Paillier’s cryptosystem.
In: WEWoRC 2005, pp. 98–108 (2005)

32. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
33. Syta, E., et al.: Scalable bias-resistant distributed randomness. In: 2017 IEEE

Symposium on Security and Privacy, SP 2017, pp. 444–460 (2017)
34. Tomescu, A., et al.: Towards scalable threshold cryptosystems. In: IEEE Sympo-

sium on Security and Privacy, pp. 1367–1383 (2020)
35. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable private

messaging resistant to traffic analysis. In: Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP 2015, pp. 137–152 (2015)

36. Wolinsky, D.I., Corrigan-Gibbs, H., Ford, B., Johnson, A.: Dissent in numbers:
making strong anonymity scale. In: Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, OSDI 2012, pp. 179–192 (2012)

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
https://bitcoin.org/bitcoin.pdf
https://github.com/evapln/albatross
https://github.com/evapln/albatross
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-68339-9_33

Secret-Shared Shuffle

Melissa Chase1(B), Esha Ghosh1(B), and Oxana Poburinnaya2(B)

1 Microsoft Research, Redmond, USA
melissac@microsoft.com, Esha.Ghosh@microsoft.com
2 University of Rochester/Ligero Inc., Rochester, USA

oxanapob@bu.edu

Abstract. Generating additive secret shares of a shuffled dataset - such
that neither party knows the order in which it is permuted - is a fun-
damental building block in many protocols, such as secure collaborative
filtering, oblivious sorting, and secure function evaluation on set inter-
section. Traditional approaches to this problem either involve expensive
public-key based crypto or using symmetric crypto on permutation net-
works. While public-key-based solutions are bandwidth efficient, they are
computation-heavy. On the other hand, constructions based on permu-
tation networks are communication-bound, especially when the dataset
contains large elements, for e.g., feature vectors in an ML context.

We design a new 2-party protocol for this task of computing secret
shares of shuffled data, which we refer to as secret-shared shuffle. Our
protocol is secure against a static semi-honest adversary. At the heart of
our approach is a new primitive we define (which we call “Share Trans-
lation”) that generates two sets of pseudorandom values “correlated via
the permutation”. This allows us to reduce the problem of shuffling the
dataset to the problem of shuffling pseudorandom values, which enables
optimizations both in computation and communication. We then design
a Share Translation protocol based on oblivious transfer and puncturable
PRFs.

Our final protocol for secret-shared shuffle uses lightweight operations
like XOR and PRGs, and in particular doesn’t use public-key operations
besides the base OTs. As a result, our protocol is concretely more effi-
cient than the existing solutions. In particular, we are two-three orders
of magnitude faster than public-key-based approach and one order of
magnitude faster compared to the best known symmetric-key approach
when the elements are moderately large.

Keywords: Secure shuffle · Secure function evaluation · Puncturable
PRF

O. Poburinnaya—Work was partially done while doing internship at Microsoft
Research.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-64840-4 12) contains supplementary material, which is
available to authorized users.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 342–372, 2020.
https://doi.org/10.1007/978-3-030-64840-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_12
https://doi.org/10.1007/978-3-030-64840-4_12
https://doi.org/10.1007/978-3-030-64840-4_12

Secret-Shared Shuffle 343

1 Introduction

Machine Learning algorithms are data-hungry: more data leads to more accurate
models. On the other hand, privacy of data is becoming exceedingly important,
for social, business and policy compliance reasons (e.g. GDPR). There has been
decades of groundbreaking work in the academic literature in developing cryp-
tographic technology for collaborative computation, but it still has some signif-
icant bottlenecks in terms of wide-scale adoption. Although theoretical results
demonstrate the possibility of generic secure computation, they are not efficient
enough to be adopted, both in terms of computation and communication size.
For instance, Google cited network cost as a major hindrance in adopting cryp-
tographic secure computation solution [12].

Secret-Shared Shuffle. In this work, we focus on computation and communica-
tion efficiency of a building block used in many important secure computation
protocols, which we call “secret-shared shuffle”. Secret-shared shuffle is a pro-
tocol which allows two parties to jointly shuffle data and obtain additive secret
shares of the result - without any party learning the permutation corresponding
to the shuffle. (In the remainder of this paper, by secret sharing we will always
mean additive secret sharing.)

Motivation. To see the importance of secret-shared shuffle, consider the task
of securely evaluating some function on the intersection of two sets belonging
to two parties - in particular, the intersection itself should also remain secret.
As a concrete example, consider a merchant who wants to analyze efficiency of
its online ads by running some ML algorithm on the data which contains the
information about users who both (a) saw the ad and (b) made a purchase. Such
data is split between the ad supplier (who knows which person clicked which add)
and the merchant (who knows which person made a purchase). Thus, ML should
be run on set intersection of the two databases - and both ML and set intersection
have to be computed using secure multi-party computation protocols (MPC).

To do this securely, ideally we would use a private set intersection protocol
which outputs an intersection in some “encrypted” form - e.g. by encrypting or
secret sharing elements in the intersection - and then evaluate the ML function
securely under MPC. However, currently known efficient protocols for private
set intersection do not output an encrypted intersection: instead they output an
encrypted indicator vector - i.e. a vector of bits indicating if each element is in
the intersection or not [5]. This difference is very important, since in the former
case one could run the ML function (under MPC) directly on the encrypted
intersection, whereas in the latter case such MPC has to be run on the whole
database, and the elements not in the intersection have to be filtered out under
the MPC. Needless to say, this incurs unnecessary overhead, especially in cases
where the intersection is relatively small compared to the input sets.

In other words, ideally we would want to get rid of non-intersection elements
before running the rest of the MPC. A natural way to do this without compro-
mising security is to shuffle the encrypted elements together with the encrypted

344 M. Chase et al.

indicator vector. Then parties can reveal the indicator vector and discard ele-
ments which are not in the intersection. Note that it is crucial that neither party
learns how exactly the elements were permuted; otherwise this party could learn
whether some of its elements are in the intersection or not. Also note that the
requirement on the secrecy of the permutation implies that the result of the
shuffle has to be in some encrypted or secret-shared form (in order to prevent
linking original and shuffled elements), hence naturally leading to the notion of
secret-shared shuffle.

Known Techniques and Their Limitations. For convenience, let us look at “a
half” of a secret-shared shuffle, which we call Permute+Share: in this protocol
P0 holds a permutation π and P1 holds the database x, and they would like
to learn secret shares of permuted database1. While this problem can be solved
by any generic MPC, to the best of our knowledge, there are two specialized
solutions for this problem, which differ in how exactly the permuting happens.
One approach is to give P0’s shares of x to P1 in some encrypted form, let
P1 permute them according to π under the encryption, rerandomize them, and
return them to P0. This is a folklore solution that uses rerandomizable additively
homomorphic public-key encryption, and because of that it is compute-intensive.
We elaborately describe this solution in the full version. The other approach is to
start with secret-shared x and jointly compute atomic swaps, until all elements
arrive to their target location. To prevent linking, each atomic swap should
also rerandomize the shares. This approach is taken by [15,22], who let parties
jointly apply a permutation network to the shares, where each atomic swap is
implemented using oblivious transfer (OT) in [22] and garbled circuit in [15]. The
downside of this approach is its communication complexity which is proportional
to � · N log N , where N is the number of elements in the database and � is the
bitlength of each element. This overhead seems to be inherent in approaches
based on joint computation of atomic swaps, since each element has to be fully
fed into at least log N swaps.

We also note that there exist efficient protocols for secure shuffle in the 3 party
setting (e.g. see [4] and references within). We note that our 2 party setting is
very different from 3 party setting, which allows for honest majority and thus
for simpler and more efficient constructions.

Our Contribution. We propose a novel approach to design a protocol for
secret-shared shuffle, secure in the semi-honest model. Our protocol is param-
eterized by a value T , which can be chosen to optimize performance for a
given tradeoff between network bandwith and computation cost. Our proto-
col runs in 3 rounds (6 messages) with communication only proportional to
λN log N + N� log N/ log T , where λ is security parameter, N is the number of
elements in the database and � is the size of each element. In our experiments on
databases of size 220-232 the optimal value for T is between 16 and 256, so we can

1 Note that one can get secret-shared shuffle by combining two instance of Per-
mute+Share.

Secret-Shared Shuffle 345

think of log T as a number between 4 an 8. Note that the size � of the element
could be very large (e.g. each element could be a feature vector in ML algo-
rithm), in which case the term N� log N/ log T dominates, and thus it could be
a significant improvement compared to communication in permutation-network-
based approach, which is proportional to �N log N . While the computation cost
of our protocol, dominated by (NT log N/ log T)(�/λ), is asymptotically worse
than that of a PKE-based or permutation network-based approach, our proto-
col uses lightweight crypto primitives (XORs and PRGs) and does not require
any public-key operations besides a set of base OTs, thus resulting in a con-
cretely efficient protocol. We compute the concrete cost of our protocol and
estimate its performance over different networks (bandwidth 1 Gbps, 100 Mbps
and 72 Mbps). For large values of �, we see a two to three orders of magni-
tude improvement over the best known public key based approach and an order
of magnitude improvement over the best known symmetric key approach. The
details of our experiment are in Sect. 7.

At the heart of our construction is a new primitive which we call Share Trans-
lation functionality. This functionality outputs two sets of pseudorandom values
- one per party - with a special permutation-related dependency between them,
and we show that this is enough to implement secret-shared shuffle. Conceptu-
ally, this functionality allows us to push the problem of permuting the data down
to the problem of permuting preudorandom values2. This can be seen as the ana-
logue of beaver triples or tiny tables for permutations rather than arithmetic or
boolean computations.

Our Share Translation has quadratic running time (in N), and thus imple-
menting secret-shared shuffle directly using Share Translation protocol becomes
too prohibitive, even with lightweight operations like XOR and PRG. This brings
us to the second crucial part of our construction: we devise a way to represent
any permutation as a combination of several permutations πi, where each πi

itself consists of several disjoint permutations, each acting on few elements. We
find such decomposition using the special structure of Benes permutation net-
work. This decomposition allows us to apply our Share Translation protocol to
small individual disjoint permutations rather than big final permutation, allow-
ing our protocol for secret-shared shuffle to achieve the claimed running time.
We leverage the particular structure of our Share Translation protocol to make
sure that this transformation doesn’t increase the number of rounds.

1.1 Applications

Collaborative Filtering. One immediate application of our shuffle protocol is to
allow two parties who hold shares of a set of elements to filter out elements that
satisfy a certain criterion. This could include removing poorly formed or out-
lier elements. Or it could be used after a PSI protocol [5,23,24] or in database
2 This in particular allows us to avoid the �N log N communication price of the per-

mutation network-based approach (which stems from the fact that one has to feed
the whole �-bit element into each atomic swap of a permutation network, to retain
security).

346 M. Chase et al.

join [21] to remove elements that were not matched. If we are willing to reveal
the number of elements meeting this criterion, we can use a shuffle to securely
remove these elements so that subsequent operations can be evaluated only on
the resulting smaller set, which is particularly valuable if the subsequent compu-
tation is expensive (e.g. a machine learning task [20]). To do this, we first shuffle
the set, then apply a 2PC to each element to evaluate the criterion, revealing
the result bit in the clear, and finally remove those items whose result is 1.

Sorting Under 2PC. Our secret shared shuffle protocol can also be used to
build efficient protocols for other fundamental operations. For example, in order
to sort a list of secret shared elements and output the resulting secret shares,
we can use the shuffle-and-reveal approach proposed by [14] together with our
secret-shared shuffle. The idea in [14] is that if the data is shuffled first, then
sorting algorithms can reveal the result of each comparison operation in the
clear without compromizing security. Thus their approach is to first shuffle the
data, and then run a sorting algorithm where each comparison is done under
2PC, with the result revealed in the clear. This yields more efficient protocols
than the standard oblivious sorting protocol based on sorting networks; those
protocols either have huge constants [1] or require O(N log2 N) running time
(using Bitonic Sorting network), where N is the number of elements in the
database. Note that in many cases we want to sort not just a set of elements,
but also some associated data for each element.

Sort, in addition to being a fundamental operation, can be used to find the
top k results in a list, to evaluate the median or quantiles, to find outliers, and
so on.

Secure Computation for RAM Programs. There has been a line of work starting
with [8,9,11,17–19,26,28] that looks at secure computation for RAM programs
(as opposed to circuits). The primary building block in these constructions is
oblivious RAM (ORAM), which allows to hide memory accesses made by the
computation. A naive way to initialize ORAM is to perform an ORAM write
operation for each input item, but the concrete costs on this are very high.
[17,28] show that this can be made much more efficient using a shuffle: the
parties simply permute their entries using a random secret shared permutation
and then store them as the ORAM memory. [28] achieve significant improvements
by using garbled circuits to implement a permutation network; as we will see in
Sect. 7 our solution far outperforms this approach, so we should get significant
performance improvements for this application. Note that in ORAM it is often
beneficial to have somewhat large block size, and our protocol for secret-shared
shuffle is especially advantageous in the setting where elements are large.

1.2 Technical Overview

Notation. By bold letters x,a, b, r,Δ we denote vectors of N elements, and by
x[j] we denote the j-th element of x. By π(x), where π is a permutation, we
denote the permuted vector (x[π(1)], . . . ,x[π(N)]).

Secret-Shared Shuffle 347

Secret-Shared Shuffle. Recall that the goal of the secret-shared shuffle is to let
parties learn secret shares of a shuffled dataset. More concretely, consider parties
P0, P1, where P1 owns database x. Our goal is to build a protocol which allows P0

to learn r and P1 to learn r⊕π(x), but nothing more; here r is a random vector
of the same size as the database, and π is a random permutation of appropriate
size. Our protocol also works for the case when x was secret shared between P0

and P1 to begin with (instead of being an input of one party).
Secret-shared shuffle can be easily built given its variant, which we call Per-

mute+Share, where one of the parties chooses the permutation. That is, in this
protocol P0 holds π and P1 holds x, and as before, they would like to learn r and
r⊕π(x), respectively. Indeed, secret-shared shuffle can be obtained by executing
Permute+Share twice, where first P0 and then P1 chooses the permutation (note
that in the second execution the database is itself already secret-shared). Thus,
in the rest of the introduction we describe how to build Permute+Share.

Our construction proceeds in several steps: first we explain how to build Per-
mute+Share using another protocol called Share Translation. Then we build the
latter from oblivious punctured vector primitive, which can be in turn imple-
mented using a GGM-based PRF and oblivious transfer with low communica-
tion. Note that we are going to describe our protocols using ⊕ (XOR) operation
for simplicity, however, in the main body we instead use a more general syntax
with addition and subtraction, to allow our protocols to work in different groups.

Building Simplified Permute+Share from Share Translation. We first describe a
simplified and inefficient version of Permute+Share; the running time of this
protocol is proportional to the square of the size of the database. Later in the
introduction we explain how we exploit the structure of Benes permutation net-
work [2] to achieve our final protocol.

As a starting point, consider the following idea: P1 chooses random masks
a = (a[1], . . . ,a[N]) and sends its masked data x ⊕ a to P0. Now P0 and P1

together hold a secret-shared x, albeit not permuted. Note that P0 knows the
permutation π and could easily locally rearrange its shares in order of π(x ⊕a).
However, P1 doesn’t know π and thus cannot rearrange a into π(a). Further,
any protocol which allows P1 to learn π(a) would immediately reveal π to P1,
since P1 also knows a.

Therefore, instead of choosing a single set of masks, P1 should choose two
different and independent sets of masks, a and b, where a, as before, is used to
hide x from P0, and b will become the final P1’s share of π(x). However, now P0

has a problem: since P1’s share is b, P0’s share should be π(x) ⊕ b; however, P0

only receives x ⊕ a from P1, and has no way of “translating” it into π(x) ⊕ b.
Thus we additionally let parties execute a Share Translation protocol to allow P0

obtain a “translation function” Δ = π(a)⊕b, as we explain next in more detail:
Share Translation protocol takes as input permutation π from P0 and outputs

vectors Δ to P0 and a, b to P1, such that Δ = π(a) ⊕ b, and, roughly speaking,

348 M. Chase et al.

a, b look random3. A simple version of Permute+Share can be obtained from
Share Translation as follows:

1. P0 and P1 execute a Share Translation protocol, where P0 holds input π,
receives output Δ, and P1 receives output a, b.

2. P1 sends x ⊕ a to P0 and sets its final share to b.
3. P0 sets its share to π(x ⊕ a) ⊕ Δ. Note that this is equal to π(x) ⊕ π(a) ⊕

π(a) ⊕ b = π(x) ⊕ b, and therefore the parties indeed obtain secret-shared
π(x).

In other words, the share translation vector Δ allows P0 to translate “shares
of x under a” into “shares of permuted x under b”.

Note that the Share Translation protocol can be viewed as a variant of Per-
mute+Share protocol, with a difference that the “data” which is being permuted
and shared is pseudorandom and out of parties’ control (i.e. it is chosen by the
protocol): indeed, in Share Translation protocol P1 receives the “pseudorandom
data” a, and in addition P0 and P1 receive Δ = π(a) ⊕ b and b, respectively,
which can be thought of as shares of π(a). In other words, we reduced the
problem of permuting the fixed data x to the problem of permuting some pseu-
dorandom, out-of-control data a. In the following paragraphs we explain how
we can exploit pseudorandomness of a and b to build Share Translation protocol
with reduced communication complexity.

Building Share Translation from Oblivious Punctured Vector. We start with defin-
ing an Oblivious Punctured Vector protocol (OPV), which is essentially an
(n−1)-out-of-n random oblivious transfer4: this protocol, on input j ∈ [N] from
P0, allows parties to jointly generate vector v with random-looking elements
such that:

– P0 learns all vector elements except for its j-th element v[j];
– P1 learns the whole vector v (but doesn’t learn index j)5.

We use OPV to build Share Translation as follows: the parties are going to
run N executions of OPV protocol to generate N vectors v1, . . . ,vN , where P0’s
input in execution i is π(i). Consider an N × N matrix {vi[j]}i,j∈N2 . By the
properties of OPV protocol, P1 learns the whole matrix, and P0 learns the matrix
except for elements corresponding to the permutation, i.e. it learns nothing about
v1[π(1)], . . . ,vN [π(N)] (see Fig. 1).

Then P1 sets elements of a, b to be column- and row-wise sums of the matrix
elements, i.e. for all i ∈ N it sets a[i] ← ⊕

j

vj [i], and for all j ∈ N it sets b[j] ←

3 More precisely, P1 shouldn’t learn anything about π, and P0 shouldn’t learn a, b,
except for what is revealed by π and Δ (note that it still learns, e.g., aπ(1) ⊕ b1).

4 We note that similar definitions were developed independently in [3,25].
5 Note that this is very similar to 1-out of-N OT- except that j specifies which element

P0 doesn’t learn - and in fact is almost the same as N −1-out of-N OT. The difference
is that in our primitive vector v is pseudorandom and given by the protocol to the
parties (rather than chosen by the sender as in standard OT). We use this fact to
save on communication.

Secret-Shared Shuffle 349

Each a[i] is set as XOR of elements of column i
Each b[j] is set as XOR of elements of row j

[i] is set as XOR of elements
of row i and column (i).

→

→

(i)

i

P0 Pxirtam derutcnup sniatbo : 1: obtains full matrix

Fig. 1. (left) P0 receives a “punctured” matrix, which is missing elements at positions
(i, π(i)). Note that the missing elements are not needed to compute Δ. (right) P1

receives the full matrix and uses it to compute masks a, b.

⊕

i

vj [i]. P0 computes Δ[i] by taking the sum of column π(i) (except the element

vi[π(i)] which it doesn’t know) and adding the sum of row i (again, except the

element vi[π(i)] which it doesn’t know), i.e. it sets Δ[i] ←
(

⊕

j �=i

vj [π(i)]

)

⊕
(

⊕

j �=π(i)

vi[j]

)

.

Correctness of this protocol can be immediately verified: indeed, each Δ[i] =
a[π(i)]⊕b[i], since the missing value vi[π(i)] participates in the sum a[π(i)]⊕b[i]
twice and therefore doesn’t influence the result. For security, note that P0 doesn’t
learn anything about a, b (except for Δ), since it is missing exactly one element
from each row and column of the matrix; the missing element acts as a one-
time pad and hides each a[i], b[j] from P0. P1 doesn’t learn anything about the
permutation π due to index hiding property of the OPV protocol.

Note that this protocol has running time proportional to N2 - we will show
how to reduce this below.

Building Oblivious Punctured Vector from OT and PRFs. Oblivious Punctured
Vector can be implemented using any (n−1)-out-of-n OT, but in order to make
it communication-efficient, we devise a new technique which was inspired by
the protocol for distributed point function by Doerner and Shelat [6]. The same
technique appears in concurrent and independent works6 of Schoppmann et al.
and Boyle et al. [3,25] in the context of silent OT extension and vector-OLE.

In the beginning of the protocol P1 computes v by choosing key for
GGM PRF at random, denoted seedε, and setting each v[i] ← PRF (seedε; i),
i ∈ [N]. Recall that in GGM construction the key is treated as a prg seed,
6 Our work was submitted to Eurocrypt 2020 on September 26, 2019, and [3,25]

appeared in the public domain (ePrint) roughly at at the same time.

350 M. Chase et al.

which implicitly defines a binary tree with leaves containing PRF evaluations
F (1), F (2), . . . , F (N). In other words, we set vector v to contain values at the
leaves of the tree.

Let P0’s input in the OPV protocol be j. This means that P0 should learn
leaves F (i), i �= j, as a result of the protocol. This can be done as follows. Let
us denote internal seeds in the tree by {seedγ}, where γ is a string describing
the position of the node in the tree (in particular, at the root γ = ε, an empty
string). Let’s assume for concreteness that the first bit of j is 1. The parties are
going to run 1-out of-2 OT protocol, where P0’s input is the complement of the
first bit of j, i.e. 0, and P1’s inputs are seed0, seed1. This allows P0 to recover
seed0 and therefore to locally compute the left half of the tree, i.e. all values
F (1), . . . , F (N/2), and corresponding intermediate seeds.

Next, assume the second bit of j is 0. Note that the parties could run 1-out
of-4 OT to let P0 learn seed11 and therefore locally compute the right quarter of
the tree F (3N/4), . . . , F (N), then run 1-out of-8 OT and so on. However, this
approach would require eventually sending 1-out of N OT, which defeats the
initial purpose of having log N 1-out of-2 OTs only.

Instead, we let P0 learn seed11 in a different way: we let P1 send only two
values, via 1-out-of-2-OT: the first value is the sum of seeds which are left chil-
dren, i.e. seed00 ⊕ seed10, and the second value is the sum of seeds which are
right children, i.e. seed01 ⊕ seed11. Since P0 already knows the whole left subtree
and in particular seed00 and seed01, it can receive seed01 ⊕ seed11 from the OT
protocol and add seed01 to it to obtain seed11. (We note that this idea of send-
ing the sums of left and right children is coming from the work of Doerner and
Shelat [6]).

More generally, the parties execute log N 1-out-of-2 OTs - one for each level
of the tree - where at each level k the first input to OT is the sum of all odd
seeds at that level, and the second input to OT is the sum of all even seeds at
that level. It can be seen that each sum contains exactly one term which P0

doesn’t know yet, and therefore it can receive the appropriate sum (depending
on the k-th bit of j) and subtract other seeds from it to learn the next seed of
the subtree. Note that these OT’s can be executed in parallel.

Note that the running time of the parties is proportional to the vector size,
but their communication size only depends on its logarithm.

Applying Share Translation to the Decomposed Permutation. Recall that, while
communication complexity in our protocol is low, computation complexity is
proportional to the size of the database squared, and thus is only efficient for a
small database. To deal with this issue, we change the way how Permute+Share
is built from Share Translation : instead of applying Share Translation to the whole
permutation π directly, we first split the permutation π into smaller permutations
in a special way, then apply Share Translation to each separate permutation to get
multiple shares, and then recombine these shares to obtain shares with respect
to π.

More concretely, the idea is to split the permutation π into a composition
of multiple permutations π1 ◦ . . . ◦ πd, such that each πi is itself a composition

Secret-Shared Shuffle 351

B

C

D

BA

BA

x000

x001

x010

x011

x100

x101

x110

x111

Layer 1 Layer 2

B

C

D

BA

BA

x000

x001

x010

x011

x100

x101

x110

x111

...

Layer 1 Layer 2

Fig. 2. (left) The first two layers of the Benes permutation network for 8 elements.
A link indicates that the corresponding elements are potentially swapped, depending
on the underlying permutation. (right) A grouping of these layers into two disjoint
permutations acting on 4 elements each: one acting on white elements and the other
acting on black elements.

of several disjoint permutations, each acting on T elements, for some parameter
T . We refer to this as (T, d)−subpermutation representation of π. Such a repre-
sentation can be found using a special structure of Benes permutation network.
For instance, as shown on Fig. 2, the first two layers of a network on 8 elements
can be split into two permutations, acting on T = 4 elements each, where the
first permutation acts on odd elements and the second permutation acts on even
elements. We present the full description of our decomposition in Sect. 6.2.

With such a decomposition in place, parties can run parallel executions of
Share Translation , each acting on domain of size T . Note that, since the running
time of a single Share Translation is proportional to the domain size squared, it
is better to choose relatively small T . In our experiments, the typical optimal
values of T were 16, 128, 256, depending on other parameters.

Note that setting T = N corresponds to our simplified Permute+Share proto-
col described before, and setting T = 2 results in essentially computing the per-
mutation network, where each swap is implemented in a somewhat-complicated
way (using Share Translation protocol). Thus, this scheme can be thought of as
a golden middle between the two approaches.

It remains to note that parties can run all executions of Share Translation in
parallel (as opposed to taking multiple rounds, following the layered structure of
the permutation network). To achieve this, in all execution except for the first
ones, P1 instead of sending initial masked data x ⊕ a should send correction
vector anew ⊕ bold, which can be added to the shares of P0 in order to obtain
x ⊕ anew. We refer the reader to Sect. 6.2 for more details.

Achieving Simulation-Based Definition. We note that the protocols we described
so far only achieve indistinguishability-based definition, but not simulation-based
definition. The problem is that the output values are only pseudo-random, and

352 M. Chase et al.

parties in the protocols know their succinct “preimages” (like the GGM PRF
root). Thus, the simulator, given a random string as an output of the protocol,
cannot simulate internal state of that party since it would amount to compressing
a random string.

To achieve simulation-based definition, we slightly modify the original Per-
mute+Share protocol as follows: we additionally instruct P1 to sample random
string w of the size of the database and send it to P0, together with x⊕a. Then
P0 should set its share to be π(x ⊕ a) ⊕ Δ ⊕ w, and P1 should set its share to
be b ⊕ w. In other words, P1 should additionally secret-share its vector b using
random w. Such a protocol can be simulated by a simulator who executes Share
Translation protocol honestly (obtaining some a′, b′,Δ′) and then sets simulated
w to be z ⊕ b′ (where z is the output of Permute+Share protocol simulated by
an external simulator).

2 Notations

We denote the security parameter as λ. The bit length of each element in the
input set is �, � = poly(λ). We denote an upper bound on the size of the database
as N . Ideal functionality is denoted as F . We will denote vectors with bold fonts
and individual elements with indices. For example, v is a vector of N elements
where each individual element is denoted as vi. ←$ denotes selected uniformly
at random from a domain. By SN we denote the group of all permutations on
N elements.

We also make use of the following notation:

Exec: Let
Π be a two-party protocol. By (output0, output1) ← execΠ(λ;x0, x1; r0, r1)
we denote the concatenated outputs of all parties after the execution of the
protocol Π with security parameter λ on inputs x0, x1 using randomness
r0, r1.

View: Let Π be a two-party protocol. By viewΠ
b (λ;x0, x1; r0, r1) we denote the

view of party b when parties P0 and P1 run the protocol Π with security
parameter λ on inputs x0, x1 using randomness r0, r1. The view of each party
includes its inputs, random coins, all messages it receives, and its outputs.
When the context is clear, we also write viewb for short.

Honest-but-Curious Security for a 2PC: Honest-but-curious security for a 2PC
protocol Π evaluating function F is defined in terms of the following two exper-
iments:

IDEALF
sim,b(λ, x0, x1) evaluates F(x0, x1) to obtain output (y0, y1) runs the state-

ful simulator sim(1λ, b, xb, yb) which produces a simulated view viewb for party
Pb. The output of the experiment is (viewb, y1−b).

REALΠ
b (λ, x0, x1) runs the protocol with security parameter λ between honest

parties P0 with input x0 and P1 with input x1 who obtain outputs y0, y1
respectively. It outputs (viewb, y1−b).

Secret-Shared Shuffle 353

Definition 1. Protocol Π realizes F in the honest-but-curious setting if there
exists a PPT simulator sim such that for all inputs x0, x1, and corrupt parties
b ∈ {0, 1} the two experiments are indistinguishable.

Pseudo Random Generator. Let {G}λ be a family of polynomial size circuits
where each Gλ : {0, 1}m(λ) → {0, 1}l(λ), l(λ) ≥ m(λ). {G}λ is a PRG if the
following distributions are computationally indistinguishable:

{D1}λ = {G(s) : s ← {0, 1}m(λ)}, {D2}λ = {x : x ← {0, 1}l(λ)}
We will omit the dependence of m and l on λ for simplicity. When l = 2m,

we call this a length doubling PRG.

Oblivious Transfer (OT). OT is a secure 2-party protocol that realizes the func-
tionality FOT : ((str0, str1), b) = (⊥, strb) where str0, str1 ∈ {0, 1}k, b ∈ {0, 1}.

3 Oblivious Punctured Vector (OPV)

3.1 Definition and Security Properties

An Oblivious Punctured Vector (OPV) for domain D is an interactive protocol
between two parties, P0 and P1, where parties’ inputs are ((1λ, n), (1λ, n, i)) and
their outputs are (v0,v1), respectively. Here λ is the security parameter that
determines the running time of the protocol, vb, b ∈ {0, 1} are vectors of length
n, i ∈ [n] and vb ∈ [D]n.

This protocol lets the two parties jointly generate vector v with random-
looking elements such that: 1) P0 learns the whole vector v but doesn’t learn
index i. 2) P1 learns all vector elements except for its i-th element v[i]. So we
define the protocol to be correct if v1[j] = v0[j] ∀j �= i.

To capture the first property, we want to say that an adversarial P0, who is
given two distinct indices i, i′ ∈ [n], i �= i′ and participates in two executions of
the protocol, one where party P1 holds i, and the other, where P1 holds i′, cannot
tell the two executions apart. We call this property Position hiding. To capture
the second property, we want to say that an adversarial P1, who, in addition to
its view in the protocol execution, receives the vector v0, cannot differentiate
between the two cases: when v0 is generated according to exec and when v0

is generated according to exec, then v0[i] is replaced a random string from the
domain. We call this security property Value hiding. We define the properties
formally below.

Correctness. For any sufficiently large security parameter λ ∈ N, for any n ∈
N, i ∈ [n], if (v0,v1) ← execOPV((λn), (λ, n, i)) and vb ∈ [D]n, b ∈ {0, 1}, then
v1[j] = v0[j] ∀j �= i.

Position Hiding. For any sufficiently large security parameter λ ∈ N, n ∈
N, i, i′ ∈ [n], the following distributions are computationally indistinguishable:

D1 = {(v0,v1) ← execOPV((1λ, n), (1λ, n, i)) : (1λ, n, i, i′, view0)}
D2 = {(v0,v1) ← execOPV((1λ, n), (1λ, n, i′)) : (1λ, n, i, i′, view0)}

354 M. Chase et al.

Value Hiding. For any sufficiently large security parameter λ ∈ N, for any n ∈
N, i ∈ [n], the following distributions are computationally indistinguishable:

D1 = {(v0,v1) ← execOPV((1λ, n), (1λ, n, i)) : (1λ, n, i,v0, view1)}
D2 = {((v0,v1) ← execOPV((1λ, n), (1λ, n, i)),v0[i] := r where r ←$

D :

(1λ, n, i,v0, view1)}}

Construction: We defer the formal construction and security proof of Theo-
rem 1 to the full version. For an informal description of the construction, please
refer to Sect. 1.2.

Please note that we only count the cryptographic operations while analyzing
the computation complexity of our protocols.

Theorem 1. The OPV construction satisfies position and value hiding as
defined in Definition Sect. 3.1. The protocol runs n (1-out-of-2) OT on messages
of length λ bits in parallel. The communication cost is that of the OTs and the
computation cost is the cost of these OTs + n length-doubling PRG computations
for each party7, where λ is a security parameter and n is the number of elements
in the vector.

3.2 OPV Construction for Longer Strings

Let OPVD denote the interactive protocol between two parties, P0 and P1, where
parties’ inputs are ((1λ, n), (1λ, n, i)) and their outputs are (v0,v1), where vb ∈
[D]n and D is strings of length λ. We construct OPVD′ where D

′ is strings of
length � ≥ λ using OPVD and a PRG G : {0, 1}λ → {0, 1}� as follows.

– Run (v0,v1) ← execOPVD((1λ, n), (1λ, n, i)
– Party Pb, b ∈ {0, 1} does the following: for each vb[j], j ∈ [1, n], expand it to

a �-bit string using G(vb[j]), i.e., v′
b[j] ← G(vb[j]). Pb’s output is v′

b.

Theorem 2. If OPVD satisfies correctness, position and value hiding as defined
in Definition Sect. 3.1, and G is a secure PRG, then our construction for OPVD′

satisfies correctness, position and value hiding as well. The round complexity
and communication cost is the same as the cost of OPVD. The computation cost
includes the computation cost of OPVD + n λ-bit-to-�-bit PRGs.

Proof. Correctness: By the correctness of OPVD, v0[j] = v1[j], ∀j �= i. There-
fore, by our construction, v′

0[j] = v′
1[j], ∀j �= i.

Position Hiding: For the sake of contradiction, suppose not. Then, there exists a
distinguisher D that breaks the position hiding property of OPVD′ . We use D to
build a distinguisher A that breaks the position hiding property of OPVD as fol-
lows. A receives (1λ, n, i, i′, viewOPVD

0) as input, where viewOPVD

0 contains v0. For

7 We give the concrete cost of OT and OPV in Sect. 7.

Secret-Shared Shuffle 355

every v0[j], j ∈ [1, n], A computes v′
0[j] = G(v0[j]). Then it constructs view

OPV
D′

0 ,
which is viewOPVD

0 , augmented with v′
0[j]. A forwards (1λ, n, i, i′, viewOPV

D′
0) to D.

Thus, A directly inherits the success probability D.

Value Hiding: Recall that we are trying to prove the following two distributions
are computationally indistinguishable.

D1 = {(v′
0,v

′
1) ← execOPV

D′ ((1λ, n), (1λ, n, i)) : (1λ, n, i,v′
0, view

OPV
D′

1)}
D2 = {((v′

0,v
′
1) ← execOPV

D′ ((1λ, n), (1λ, n, i)),v′
0[i] := r where r ←$

D
′ :

(1λ, n, i,v′
0, view

OPV
D′

1)}
The proof will proceed through a series of hybrid steps. We define a series of

distributions as follows.

H0: D1 = {(v′
0,v

′
1) ← execOPV

D′ ((1λ, n), (1λ, n, i)) : (1λ, n, i,v′
0, view

OPV
D′

1)}
H1: Identical to the previous distribution except the following: generate

(v0,v1) ← execOPVD((1λ, n), (1λ, n, i)), then set v0[i] := r where r ←$
D

and set v′
0[i] ← G(v′

0[i]). By the value-hiding property of OPVD, H0,H1 are
identical.

H2: Identical to the previous distribution except the following: instead of com-
puting v′

0[i] ← G(v′
0[i]), set v′

0[i] := r′ where r′ ←$
D

′. By the security
property of PRG, H1,H2 are identical. Note that distribution H2 is identical
to D2. So this concludes the proof of value hiding. ��

4 Share Translation Protocol

4.1 Definition

Share Translation (ST) protocol with parameters (N, �) is an interactive proto-
col between two parties, P0 and P1, where parties’ inputs are (π,⊥) and their
outputs are (Δ, (a, b)), respectively. Here π is a permutation on N elements,
and Δ,a, b are all vectors of N elements in group G, where each element can
be represented with � bits. The protocol should satisfy the following correctness
and security guarantees:

Correctness: For each sufficiently large security parameter λ, for each π ∈ SN ,
and for each r0, r1 of appropriate length, let (Δ, (a, b)) ← execST(λ;π,⊥; r0, r1).
Then it should hold that Δ = b − π(a).

This definition can be modified in a straightforward way for statistical or
computational correctness.

Permutation Hiding: For all sufficiently large λ it should hold that for all π, π′ ∈
SN ,

viewST
1 (λ;π,⊥; r0, r1) ≈ viewST

1 (λ;π′,⊥; r0, r1),

where indistinguishability holds over uniformly chosen r0, r1.

356 M. Chase et al.

Share Hiding: For all sufficiently large λ it should hold that for any π ∈ SN ,

(a, b, viewST
0 (λ;π,⊥; r0, r1)) ≈ (a′, b′, viewST

0 (λ;π,⊥; r0, r1)),

where (Δ,a, b) = execST(λ;π,⊥; r0, r1), a′ ←$
G

N , b′ = Δ + π(a′), and indis-
tinguishability holds over uniformly chosen r0, r1.

4.2 Construction

We build Share Translation protocol out of an Oblivious Punctured Vector (OPV)
protocol for domain D = G. Let π be P0’s input in Share Translation protocol.
The protocol proceeds as follows:

1. P0 and P1 run N executions of the OPV protocol in parallel, where P0 uses
π(i) as its input in execution i, for i ∈ [N]. Denote v′

i,vi to be the outputs
of the OPV protocol in execution i, for parties P0 and P1, respectively, and
denote v′

i[j],vi[j] to be j-th elements of these vectors.
2. For each i ∈ [N] P0 sets Δ[i] ← ∑

j �=π(i)

v′
i[j]−

∑

j �=i

v′
j [π(i)]. It sets its output to

be Δ = (Δ[1], . . . ,Δ[N]).
3. For each i ∈ [N] P1 sets bi ← ∑

j

vi[j], ai ← ∑

j

vj [i]. It sets (a, b) as its

output, where a = (a[1], . . . ,a[N]), b = (b[1], . . . , b[N]).

Theorem 3. The construction described above satisfies correctness, permuta-
tion hiding and share hiding, assuming underlying OPV protocol satisfies cor-
rectness, value hiding and position hiding. The round complexity, communication
and computation cost of this protocol are equal to those of N instances of OPV
run in parallel.

Correctness. For any i ∈ [N] we have

Δi =
∑

j �=π(i)

v′
i[j] −

∑

j �=i

v′
j [π(i)]

(1)
=

∑

j �=π(i)

vi[j] −
∑

j �=i

vj [π(i)]
(2)
=

(2)
=

∑

j∈[N]

vi[j] −
∑

j∈[N]

vj [π(i)] = bi − aπ(i).

Here (1) follows from correctness of the OPV protocol, and (2) holds since
we add and subtract the same value vi[π(i)]. Note that a computationally (resp.,
statistically, perfectly) correct OPV protocol results in a computationally (resp.,
statistically, perfectly) correct ST protocol.

Secret-Shared Shuffle 357

Permutation Hiding. Recall that we need to show that for all π, π′ ∈ SN ,

viewST
1 (λ;π,⊥; r0, r1) ≈ viewST

1 (λ;π′,⊥; r0, r1).

We show this indistinguishability in a sequence of hybrids H0,H1, . . . , HN ,
where:

– H0 = viewST
1 (λ;π,⊥; r0, r1), for uniformly chosen r0, r1,

– HN = viewST
1 (λ;π′,⊥; r0, r1), for uniformly chosen r0, r1,

– For 1 ≤ i < N , Hi = view
(i)
1 (λ; (π, π′),⊥; r0, r1), where view

(i)
1 (λ; (π, π′),⊥;

r0, r1) is a view of P1 in the modified Share Translation protocol where party
P0 uses π′(j) as its input in OPV executions 1 ≤ j ≤ i and π(j) as its input
in OPV executions i < j ≤ N . r0, r1 are uniformly chosen.

We argue that for each 1 ≤ i ≤ N Hi ≈ Hi−1 due to position-hiding property
of the OPV protocol, and therefore H0 ≈ HN .

Indeed, note that the only difference between Hi and Hi−1 is that in i-
th execution of OPV party P0 uses input π′(i) instead of π(i). Therefore if
some PPT adversary distinguishes between Hi and Hi−1, then we break position
hiding of OPV as follows. Given the challenge in the OPV position hiding game
(π(i), π′(i), viewOPV

1 (λ;x,⊥; rOPV
0 , rOPV

1)), where rOPV
0 , rOPV

1 are uniformly chosen
randomness of P0 and P1 in the OPV protocol, and viewOPV

1 is a view of P1

in OPV protocol (which uses randomness rOPV
0 , rOPV

1 and P0’s input x which is
either π(i) or π′(i)), we execute the rest N − 1 OPV protocols honestly using
uniform randomness for each party and setting P0’s input to π′(j) (for executions
j < i) and π(j) (for executions j > i). Let vj , j = 1, . . . , N , be the output of P1

in j-th execution of OPV.
We give the adversary P1’s view in all N OPV executions (including

viewOPV
1 (λ;x,⊥; rOPV

0 , rOPV
1) of i-th execution which we received as a challenge).

Depending on whether challenge input x was π(i) or π′(i), the distribution the
adversary sees is either Hi−1 or Hi. Therefore, if the adversary distinguishes
between the two distributions, we can break position hiding of OPV protocol
with the same success probability.

Share Hiding. Recall that we need to show that for any π ∈ SN ,

(a, b, viewST
0 (λ;π,⊥; r0, r1)) ≈ (a′, b′, viewST

0 (λ;π,⊥; r0, r1)),

where a, b are true shares produced by the protocol, and a′, b′ are uniformly
random, subject to Δ = b − π(a).

We show this indistinguishability in a sequence of hybrids H0,H1, . . . , HN ,
where:

– H0 = (a, b, viewST
0 (λ;π,⊥; r0, r1)), for uniformly chosen r0, r1,

– HN = (a′, b′, viewST
0 (λ;π,⊥; r0, r1)), for uniformly chosen r0, r1,a

′, and b′ =
Δ + π(a), where (Δ,a, b) = execST(λ;π,⊥; r0, r1),

358 M. Chase et al.

– Hi = (a(i), b(i), viewST
0 (λ;π,⊥; r0, r1)), where (Δ,a, b) =

execST(λ;π,⊥; r0, r1) is the output of the Share Translation protocol for ran-
dom r1, r2, a(i) = (a(i)

1 , . . . ,a
(i)
N) is such that a

(i)
j is uniformly chosen for

1 ≤ j ≤ i, a
(i)
j = aj for i < j ≤ N , and b(i) = Δ + π(a(i)).

We argue that for each 1 ≤ i ≤ N Hi ≈ Hi−1, by reducing it to value
hiding of OPV protocol. Indeed, note that the only difference between Hi and
Hi−1 is that a

(i)
i is generated uniformly at random, rather then set to the true

output of the protocol. Therefore if some PPT adversary distinguishes between
Hi and Hi−1, then we break security of OPV as follows. Assume we are given the
challenge (vi, view

OPV
0 (λ;π(i),⊥; rOPV

0 , rOPV
1)), where rOPV

0 , rOPV
1 are uniformly

chosen randomness of P0 and P1 in the OPV protocol, and viewOPV
0 is a view

of P0 in OPV protocol (which uses randomness rOPV
0 , rOPV

1 and P0’s input π(i)),
and challenge vi is either the true output of P1, or the output of P1 except
that vi[π(i)] is set to a uniform value. We execute the rest N −1 OPV protocols
honestly using uniform randomness for each party and setting P0’s input to π(j),
for j �= i. Let’s denote the outputs of each OPV execution j �= i as (vj ,v

′
j).

Then we compute a(i), b(i) as follows:

– b(i)[k] ← ∑

j

vk[j], for each k ∈ [N],

– a(i)[k] ← ∑

j

vj [k], for each k ∈ [N],

Then we give the adversary a(i), b(i), and the views of party P0 in all N OPV
executions (including the challenge view viewOPV

0 (λ;π(i),⊥;
rOPV
0 , rOPV

1) of i-th execution). Depending on whether challenge vi[π(i)] was uni-
form or not, the distribution the adversary sees is either Hi−1 or Hi.

Thus, we showed that H0 and HN are indistinguishable, as required.

5 (T, d)−Subpermutation Representation Based on
Benes Permutation Network

In this section we describe how to obtain (T, d)−subpermutation representation,
which is used in our final construction of Share Translation and secret-shared
shuffle in Sect. 6. That is, we show how to represent any permutation π ∈ SN ,
where N = 2n for some integer n, as a composition of permutations π1 ◦ . . . ◦πd,
such that each πi is itself a composition of several disjoint permutations, each
acting on T elements, for some parameter T . In our construction d = 2� log N

log T �−1.
Our decomposition is based on the special structure of the Benes permuta-

tion network. This network has 2 log N −1 layers, each containing N/2 2-element
permutations (that is, each is either an identity permutation or a swap). Specifi-
cally, if inputs are numbered with index 1, . . . , N , where each index is expressed
in binary as σ1, . . . , σn, then the j−th layer and the 2 log N − j-th layer contain
2-element permutations, each acting on elements number σ1 . . . σj−10σj+1, . . . σn

and σ1 . . . σj−11σj+1, . . . σn, for all σ1, . . . σj−1, σj+1, . . . , σn ∈ {0, 1}n−1.

Secret-Shared Shuffle 359

Now we describe our decomposition of π into π1 ◦ . . .◦πd. For any parameter
T = 2t, t ∈ N, set d = 2�n

t � − 1, and consider Benes network for π. We set π1

to consist of first t layers 1, . . . , t of this network, π2 to consist of next t layers
t+1, . . . , 2t, and so on, except for the middle permutation π� d

2 �+1 which consists

of 2t − 1 layers in the middle8. That is, we set each πi, for i = 1, . . . ,
⌊

d
2

⌋
, to

consist of t consecutive layers number i · t − (t − 1), . . . , i · t − 1, i · t, and πi

for i =
⌊

d
2

⌋
+ 2, . . . , d are defined symmetrically. From the description of Benes

layers above, it follows that these t consecutive layers do not permute all N
elements together, but instead only permute elements within each group of the
form σ1, . . . , σi(t−1)xσi·t+1, . . . , σn, where x includes all t-bit strings, and the
remaining n − t bits σ1, . . . , σi(t−1), σi·t+1, . . . , σn are fixed. Therefore it follows
that each πi, i �= ⌊

d
2

⌋
+ 1, consists of 2n−t = N/T disjoint permutations, each

acting on 2t = T elements. Similarly, the middle permutation π� d
2 �+1, consisting

of 2t − 1 layers in the middle of the network, only permutes elements within
each group of the form σ1, . . . , σn−tx, and thus can also be represented as a
combination of N/T disjoint permutations each acting on T elements.

Finally, note that the total number of permutations is � (2n−1)−(2t−1)
t � +

1 = 2�n
t � − 1. Therefore, π = π1 ◦ . . . ◦ πd is indeed a (T, d)-subpermutation

representation of π, for d = 2�n
t � − 1.

6 Permute and Share and Secret-Shared Shuffle

Recall that we use π(x) for a permutation π and vector x to mean the permu-
tation which produces xπ(1), ..., xπ(N).

We will use the Share Translation scheme we presented in the previous scheme
to construct first a secure computation for permuting and secret sharing elements
where one party chooses the permutation and the other the elements, and then
a construction for a full secret-shared shuffle.

6.1 Definitions

We consider the following functionality, which we call Permute+Share, in which
one party provides as input a permutation π, and the other party provides as
input a set of elements x in group G, and the output is secret shares of the
permuted elements:

FPermute+Share[N,�](π,x) = (r, π(x) − r), where r ←$
G

N .

We can also consider the equivalent functionality when the permutation or
the initial database is secret shared as input. (Here we consider a secret sharing of
permutation π which consists of two permutations π0, π1 such that π = π0 ◦π1.)

8 For a more general case, when log T doesn’t divide log N , there are 2n− 1− t(d− 1)
layers in the middle.

360 M. Chase et al.

Finally, we define the secret shared shuffle functionality:

FSecretSharedShuffle[N,�](x0,x1) = (r, π(x0 + x1) − r),

where r ←$
G

N and π is a random permutation over N elements.

6.2 Permute + Share from Share Translation

Let ShareTransT be a protocol satisfying the definition in Sect. 4 for permu-
tations on T elements in group G, where each element can be represented in
� bits. Let T, d be some parameters such that any permutation in SN has
(T, d)−subpermutation representation (e.g. d = 2� log N

log T � − 1 for any T =
2t, as described in Sect. 5). We construct our permute and share protocol
Permute + Share using (T, d)−subpermutation representation as follows.

1. P0 computes the (T, d)-subpermutation representation π1, . . . , πd of its input
π.

2. For each layer i, the parties run N/T instances of ShareTransT , with P0

providing as input the N/T permutations making up πi. (Note that all of
these instances and layers can be run in parallel.) For each i, P1 obtains
a(i,1), . . . ,a(i,N/T) and b(i,1), . . . , b(i,N/T). Call the combined vectors a(i) and
b(i). Similarly, P0 obtains Δ(i,1), . . . ,Δ(i,N/T), which we will call Δ(i).

3. For each i ∈ 1, . . . , d − 1, P1 computes δ(i) = a(i+1) − b(i) and sends it to P0.
P1 also sends m = x + a(1), and samples and sends random w. P1 outputs
b = w − b(d)

4. P0 computes Δ = Δ(d) + πd(δ(d−1) + Δ(d−1) + πd−1(δ(d−2) + Δ(d−2) + +
π2(δ(1) + Δ(1)) and outputs π(m) + Δ − w.

Theorem 4. Let N and � be the number of elements in the database and the
size of each element, respectively, and let T, d be arbitrary parameters such that
any permutation in SN has (T, d)−subpermutation representation. Then the con-
struction described above is a Permute+Share protocol secure against static semi-
honest corruptions with the following efficiency:

– The communication cost is (d + 1)N� bits together with the cost of dN/T
Share Translation protocols on T elements each, run in parallel,

– The computation cost is equal to the cost of dN/T Share Translation protocols
on T elements each, run in parallel.9

Correctness. By correctness of ShareTransT , for all i Δ(i) = b(i) − πi(a(i)). This
means that for all i, δ(i)+Δ(i) = a(i+1)−b(i)+b(i)−πi(a(i)) = a(i+1)−πi(a(i)).

9 We give a concrete cost analysis on Sect. 7.

Secret-Shared Shuffle 361

Thus, the final Δ produced by P0 is

Δ
(d)

+ πd(δ
(d−1)

+ Δ
(d−1)

+ πd−1(δ
(d−2)

+ Δ
(d−2)

+ . . . + π2(δ
(1)

+ Δ
(1)

)

=Δ
(d)

+ πd(a
(d) − πd−1(a

(d−1)
) + πd−1(a

(d−1) − πd−2(a
(d−2)

) + . . . + π2(a
(2) − π1a

(1)
)))

=Δ
(d)

+ πd(a
(d) − πd−1(. . . π2(π1a

(1)
)))

=b
(d) − πd(a

(d)
) + πd(a

(d) − πd−1(. . . π2(π1a
(1)

)))

=b
(d) − πd(πd−1(. . . π2(π1(a

(1)
))))

=b
(d) − π(a

(1)
)

The output for P0, P1 is:

π(m) + Δ − w, w − b(d)

=π(x + a(1)) + Δ − w, w − (Δ + π(a(1)))

=π(x) + π(a1)) + Δ − w, −Δ − π(a(1)) + w

If we let r = π(x)+π(a(1))+Δ−w, we see that this has the correct distribution.

Security. Our simulator behaves as follows: If b = 0 (i.e. P0 is corrupt):
sim(1λ, 0, π,y0) will first generate the subpermutations for π as described
above, and then internally run all of the ShareTransT protocols to obtain
simulated view for P0 and a(1), . . . ,a(d), b(1), . . . , b(d). Let Δ(1), . . . ,Δ(d) be
the corresponding values computed by P0 in these protocols. Choose random
δ(1), . . . , δ(d−1). It then computes Δ as in step 4 of the protocol and sets
w = −y0 + π(m) + Δ. It outputs the views from the ShareTransT protocols
and the messages m,w, δ(1), . . . , δ(d).

If b = 1 (i.e. P1 is corrupt): sim(1λ, 1,x,y1) will pick random π′, compute
the subpermutations, internally run the ShareTransT protocols with these per-
mutations to obtain the views for P1, and compute b(d) from these runs as in
the real protocol. It will set the random tape w = y1 + b(d). It outputs the view
from the ShareTransT protocols and the random tape w.

We show that this simulator produces an ideal experiment that is indistin-
guishable from the real experiment. We start with the case where b = 0 and
show this through a series of games:

Real Game: Runs the real experiment. The output is P0’s view (its input, the
view0s from the Share Translation protocols and the messages m, w, and
δ(1), . . . , δ(d−1) it receives), and the honest P1’s input x and output w − b.

Game 1: As in the previous game except in step 2, compute Δ(i) as b(i)−πi(a(i)

instead of through the ShareTransT protocols. This is identical by correctness
of Share Translation .

Game 2: As in the previous game except after step 2 for each i we sample
random a′(i) and compute b′(i) = πi(a′(i)) + Δ(i), and then use these values
in place of a(i), b(i) in steps 3 and 4.
We can show that this is indistinguishable via a series of hybrids, where in
hybrid Hi, we use a′(j), b′(j) for the output of the first i ShareTransT protocols
and a(j), b(j) for the rest. Then Hi,Hi+1 are indistinguishable by the share
hiding property of ShareTransT .

362 M. Chase et al.

Game 3: As above, but choose random m, δ(1), . . . , δ(d−1). Set a′(1) = m − x.
For i = 1 . . . d, compute b′(i) = πi(a′(i))+Δ(i) as above, and then set a′(i+1) =
δ(i) − b(i). Note that this is distributed identically to Game 2.

Game Simulated: The only difference between the simulated game and Game
3 is that in Game 3, w is chosen at random, and P1’s output is computed as
w − b′(d), while in Game Simulated, P1’s output is random r and w is set to
−y0 + π(m) + Δ = −(π(x) − r) + π(m) + Δ = π(a′(1)) + r + Δ = b′(d) + r
by construction of Δ. Thus, the two games are identical.

We argue the case when b = 1 as follows:

Real Game: Runs the real experiment. The output is P1’s view (it’s input
x, view1 from the Share Translation protocol and the random string w it
chooses) and the honest P0’s input π and output π(m) + Δ − w where Δ is
as computed in step 4 of the protocol.

Game 1: As in the previous game, but P0’s output is π(x)+b(d) −w. Note that
π(x) + b(d) − w = π(x + a(1)) + b(d) − π(a(1)) − w = π(m) + Δ − w where
a(1), b(d) are the values P1 obtains from the first and last layer ShareTranst

protocols.
Game 2: As in the previous game except run the ShareTransT protocols with

π′
1, . . . , π

′
d derived from a random permutation π′.

We can show that this is indistinguishable via a series of hybrids, where in
hybrid Hi, we use the subpermutations derived from π′ for the first i proto-
cols, and the subpermutations derived from π for the rest. Then Hi,Hi+1 are
indistinguishable by the permutation hiding property of ShareTransT .

Game Simulated: As in the previous game except choose random r and set
w = π(x) − r + b(d). This is identically distributed to Game 1 and identical
to the ideal experiment.

6.3 Secret Shared Shuffle from Permute+Share

The Secret Shared Shuffle protocol proceeds as follows:

0. P0 and P1 each choose a random permutation π0, π1 ← SN .
1. P0 and P1 run the Permute+Share protocol to apply π0 to x1, resulting in

shares x
(1)
0 for P0 and x

(1)
1 for P1.

2. P0 computes x
(2)
0 = π0(x0) + x

(1)
0 .

3. P1 and P0 run the Permute + Share protocol to apply π1 to x
(2)
0 , resulting in

shares x
(3)
1 for P1 and x

(3)
0 for P0.

4. P1 computes x
(4)
1 = π1(x

(1)
1) + x

(3)
1 .

5. P0 outputs x
(3)
0 and P1 outputs x

(4)
1 .

Theorem 5. The construction above is a Secret Shared Shuffle protocol secure
against static semi-honest corruptions. It’s communication and computation cost
is that of invokes 2 sequential Permute+Share’s. (See footnote 9).

Secret-Shared Shuffle 363

Correctness. The output for P0, P1 is:

x
(3)
0 , x

(4)
1

=x
(3)
0 , π1(x

(1)
1) + x

(3)
1

=π1(x
(2)
0) − r(3), π1(x

(1)
1) + r(3)

=π1(π0(x0) + x
(1)
0) − r(3), π1(x

(1)
1) + r(3)

=π1(π0(x0) + r(1)) − r(3), π1(π0(x1) − r(1)) + r(3)

=π1(π0(x0)) + π1(r(1)) − r(3), π1(π0(x1)) − (π1(r(1)) − r(3))

Where r(1) and r(3) are the values generated by the first and second invocations
of Permute+Share. If we let r = π1(π0(x0)) + π1(r(1)) − r(3) and π = π1 ◦ π0 we
see that this has the correct distribution.

Security. Our simulator behaves as follows:
If b = 0 (i.e. P0 is corrupt): sim(1λ, 0,x0,y0) will choose random π0,x

(1)
0 , set

x
(2)
0 = π0(x0) + x

(1)
0 , simulate the view from the first Permute+Share with

simPermute+Share(1λ, 0, π0,x
(1)
0), and simulate the view from the second Per-

mute+Share with simPermute+Share(1λ, 1,x
(2)
0 ,y0).

If b = 1 (i.e. P1 is corrupt): sim(1λ, 1,x1,y1) will choose random π1,x
(1)
1 , set

x
(3)
1 = y1 − π1(x

(1)
1), simulate the view from the first Permute+Share with

simPermute+Share(1λ, 1,x1,x
(1)
1), and simulate the view from the second Per-

mute+Share with simPermute+Share(1λ, 0, π1,x
(3)
1).

We show that this simulator produces an ideal experiment that is indistin-
guishable from the real experiment. We start with the case where b = 0 and
show this through a series of games:

Real Game: Runs the real experiment.
The output is P0’s view (its input x0, view

(1)
0 , view

(2)
0 from the two Per-

mute+Share protocols including the outputs x
(1)
0 ,x

(3)
0 , and the honest P1’s

input x1 and output x
(4)
1 = π1(x

(1)
1) + x

(3)
1 .

Game 1: In step 1, first compute FPermute+Share(π0,x1), i.e. choose ran-
dom r(1), and set x

(1)
0 = r(1) and x

(1)
1 = π0(x1) − r(1). Then run the

Permute+Share simulator to generate the view view
(1)
0

′
for the first Per-

mute+Share.
The output is P0’s view (its input x0, view

(1)
0

′
, view

(2)
0 from the two Per-

mute+Share protocols including its outputs from those protocols x
(1)
0 = r(1)

and x
(3)
0), and the honest P1’s input x1 and output x

(4)
1 = π1(x

(1)
1) + x

(3)
1 =

π1(π0(x1) − r(1)) + x
(3)
1 .

This is indistinguishable by security of the Permute+Shareprotocol.

364 M. Chase et al.

Game 2: In step 3, first compute FPermute+Share(π1,x
(2)
0), i.e. choose random

r(3) and set x
(3)
1 = r(3) and x

(3)
0 = π1(x

(2)
0) − r(3). Then run the Per-

mute+Share simulator to generate the view view
(2)
0

′
for the second Per-

mute+Share.
The output is P0’s view (its input x0, view

(1)
0

′
, view

(2)
0

′
from the two Per-

mute+Share protocols including its outputs from those protocols x
(1)
0 = r(1)

and x
(3)
0 = π1(x

(2)
0) − r(3)), and the honest P1’s input x1 and output

x
(4)
1 = π1(π0(x1) − r(1)) + x

(3)
1 = π1(π0(x1) − r(1)) + r(3).

This is again indistinguishable by security of the Permute+Share protocol.
Game 3: Choose random π, r,x

(1)
0 . Set π1 = π ◦ π−1

0 , r(1) = x
(1)
0 and r(3) =

π1(π0(x0)) + π1(r(1)) − r. Other than that, proceed as in Game 2.
The output is P0’s view (its input x0, view

(1)
0

′
, view

(2)
0

′
from the two Per-

mute+Share protocols including its outputs from those protocols x
(1)
0 = r(1)

and x
(3)
0), and the honest P1’s input x1 and output x(4)).

This is identically distributed to Game 2. P1’s output in this game is

x
(4)
1 = π1(x

(1)
1) + x

(3)
1

= π1(x
(1)
1) + π1(x

(2)
0) − x

(3)
0

= π1(x
(1)
1) + π1(π0(x0) + x

(1)
0) − x

(3)
0

= π1(π0(x1) − x
(1)
0) + π1(π0(x0) + x

(1)
0) − x

(3)
0

= π1(π0(x1 + x0)) − x
(3)
0

= π(x1 + x0) − x
(3)
0

Thus, this is identical to the ideal experiment.

Next, we turn to the case where b = 1.

Real Game: Runs the real experiment
Game 1: In step 1, first compute FPermute+Share(π0,x1), i.e. choose random x

(1)
0 ,

and then compute x
(1)
1 = π0(x1)−x

(1)
0 . Then run the Permute+Share simula-

tor to generate the view for the first Permute+Share. This is indistinguishable
by security of the Permute+Share protocol.

Game 2: In step 3, first compute FPermute+Share(π1,x
(2)
0), i.e. choose random x

(3)
1 ,

and then compute x
(3)
0 = π1(x

(2)
0) − x

(3)
1 . Then run the Permute+Share sim-

ulator to generate the view for the second Permute+Share. This is again
indistinguishable by security of the Permute+Share protocol.

Game 3: Choose random x
(3)
0 . Set x

(3)
1 = π1(x

(2)
0) − x

(3)
0 . Other than that,

proceed as in Game 2. This is identically distributed to Game 2.
Game 4: Choose random π, set π0 = π−1

1 ◦ π and set x
(3)
1 = π(x0 + x1) −

π1(x
(1)
1) − x

(3)
0 . Note that this means x

(4)
1 = π(x0 + x1) − x

(3)
0 so this is

distributed identically to the ideal experiment. Note also that this is distributed
identically to Game 3, because:

Secret-Shared Shuffle 365

π1(x
(2)
0) − x

(3)
0

= π1(π0(x0) + x
(1)
0) − x

(3)
0

= π1(π0(x0) + π0(x1) − x
(1)
1) − x

(3)
0

= π1(π0(x0 + x1)) − π1(x
(1)
1) − x

(3)
0

= π(x0 + x1) − π1(x
(1)
1) − x

(3)
0

7 Experimental Evaluation

In this section, we compare the solution for our Permute + Share with public key
based solution and with the best previous permutation network based solution
[22]. We consider Permute + Share where party P0 starts with a permutation π
and party P1 starts with a input vector x of N strings in {0, 1}�.

We take a microbenchmarking approach to estimating the cost of the two
protocols, where we first empirically estimate the cost of the individual opera-
tions (AES computations or RSA group operations), and then use that number
to estimate the cost of the full protocol, by plugging the time of individual
operations into the formula for execution time of the protocol. For example,
for our protocol and the protocol of [22], both of which are dominated by AES
operations, we estimate the cost as follows:

1. We compute the computation cost in terms of number of AES calls.
2. We empirically estimate the cost for a computing fixed key AES (per 128-bit

block).
3. We compute the communication cost in bits.
4. Then we compute the time to communicate the calculated number of bits

using various networks (bandwidth 72 Mbps, 100 Mbps and 1 Gbps).
5. The total time reported is number of AES calls × the cost of a single AES +

the size of communication/sbandwidth.

In the following we will describe our cost estimates in more detail and then
present a detailed comparison. First we discuss some specifics on how we imple-
ment AES and how we analyze the cost of OT, then we present formulas for
the number of basic operations required for each solution, then we describe how
we estimate the cost of these operations, and finally we present the detailed
efficiency comparison.

7.1 More Detail on Cost of OT and AES

Fixed key Block Ciphers. The symmetric key based protocols (ours and the one
described in [22]) rely on two fundamental building blocks, namely, Oblivious
Transfer extension (OTe) [16] and GGM PRG [10]. Typically, published OTe
protocols are based on a hash function that is modeled as a random oracle.

366 M. Chase et al.

However, in most of the recent implementations, the hash function is instanti-
ated, somewhat haphazardly, using fixed key block ciphers (AES). In a recent
work [13], the authors provided a principled way of implementing [16] using fixed
key AES and formally proved that it is secure. The authors also propose that
the length doubling PRG used in GGM [10] can be implemented using fixed
key AES for better efficiency, though they do not prove it. Here, we first prove
that it is safe to use this optimized PRG construction [13], and then use it in
our experiments. In our experiments, we will also use the fixed-key AES-based
length extension technique for stretching short messages into longer ones (both
for OTe and for OPV message length extension) described in Section 6.1 in [13].

The optimized PRG construction is based on correlation-robust hash (CRH)
function [13,16]. Roughly, H is said to be correlation-robust if the keyed function
fR(x) = H(x ⊕ R) is pseudorandom, as long as R is sufficiently random. Given
a CRH H, the length doubling PRG is constructed as follows: G(x) = H(1⊕x)◦
H(2 ⊕ x). We give more details in the full version.

In our experiments, we will use the following concrete instantiation of
CRH [13]: H(x) = π(x) ⊕ x where π(.) is a fixed key block cipher, e.g. AES.

OT Extension Costs. The computation in OT extension consists of O(m�) bit-
wise operations (ANDs an XORs), running λ public key OTs, and O(m+m�/λ)
AES operations as discussed above. This means that for sufficiently large m,
like those we consider, the cost is dominated by the AES operations, as can be
verified empirically using any standard OT library. For example, we benchmark
Naor-Pinkas base OT (dubbed NPOT) using [27] and the average time to run
128 base OTs is 13 ms. As a result, we can focus our analysis of computational
costs on the AES operations.

In our experiments, we simulate the cost of OT-extension as follows. The
cost is reported in number of fixed-key AES calls for sender and receiver and
communication is reported in number of bits. For random OT’s on strings of
length � > λ = 128 bits, we use IKNP OT-extension protocol with fixed-key
AES optimization [13]. The cost of m Random OTs on messages of length � bits
is shown in Table 1, where the terms 2m�/λ for sender and m�/λ for receiver are
for extending the random messages from λ to � bits. We denote this functionality
as ROTm

� . For � = λ, no message length extension is required (both for ROT and
SOT). Fixed message OT’s or standard OTs (SOT) are obtained from ROT by
using the ROT messages as one-time pads for the actual messages. So SOTm

� adds
an additional 2m� bits of communication over ROTm

� , i.e., the communication
cost of SOTm

� is m(λ + 2�) bits. There is no additional computation overhead
(except some additional XORs, which we ignore).

Secret-Shared Shuffle 367

Table 1. The computation and communication cost for variants of OT extension.

OT Sender Receiver Communication (bits)

ROTm
λ 3m 3m mλ

ROTm
� 3m + 2m�/λ 3m + m�/λ mλ

SOTm
� 3m + 2m�/λ 3m + m�/λ m(λ + 2�)

SOTm
λ 3m 3m 3mλ

7.2 Analyzing the Cost of Each Solution

As discussed above, in the following estimates we only count computation time
of AES, not base OTs or XORs, since the latter are fairly small.

Let N be the number of elements in the database, � be the length of each
element, λ be the security parameter, and T be the size of subpermutations. Let
d = 2�log N/ log T � − 1.

Our Protocol: The compute cost of our Permute + Share protocol is the compute
cost of dN/T ShareTransT ’s, where d = 2�log N/ log T � − 1. The communication
includes the cost of dN/T ShareTransT ’s + (d + 1)N� bits.

Each ShareTransT protocol requires SOTT log T
λ and T 2(2 + �/λ) local fixed

key AES calls (for both parties) which includes PRG calls in the GGM tree
and message length extension and for the underlying OPV protocol. There is no
additional communication over the cost of SOTT log T

λ .

Computation Cost. The number of AES calls (for each of sender and receiver)
is the following:

3dN log T + dNT (2 + �/λ)

Communication Cost. Communication in number of bits is the following:

3dNλ log T + (d + 1)N�

Protocol from [22]: This Permute + Share requires SOT
N log N−N/2
2l and has an

additional 2N� bits communication overhead.
So, the total computation and computation costs are the following:

Computation Cost: Number of AES calls for receiver (receiver is slightly more
efficient than sender) in the protocol of [22] is the following:

3(N log N − N/2) + 2(�/λ)(N log N − N/2)

Communication Cost: Communication in number of bits in the protocol of [22]
is the following:

(N log N − N/2)(λ + 4�) + 2N�

368 M. Chase et al.

Paillier Based Solution. In the full version we describe a solution based on
additively homomorphic encryption in which P1 encrypts his data and sends it
to P0, who permutes the ciphertexts, randomizes them, and adds a random share
to each before returning them to P0; P0 outputs the decryptions and P1 outputs
the random shares he added.

In this protocol, since every element of x has to be encrypted and the encryp-
tion message space in defined to be Zn, each element has to be broken into blocks
of size n. This means that P0 computes N ∗ ��/n� encryptions and P1 computes
N ∗ ��/n� ciphertext randomizations and ciphertext-plaintext multiplications.
The communication for this protocol is N ∗ ��/n� ∗ 2n bits. To get a very rough
estimate of the cost of Paillier encryption and randomization+multiplication, we
measure the cost of an RSA signing operation with modulus n. Note that this is
a significant underestimate since Paillier operations actually happen in Z

2
n, and

since the RSA signer knows the factorization of n, while P1 does not.

7.3 Microbenchmarking

To estimate the per block cost of AES, we use the permute block function in prp
of [27] to benchmark the cost of a fixed key AES-ECB 128 per 128-bit block
(we use security parameter λ = 128 for our experiments). To get this cost, we
run fixed key AES for different numbers of blocks (4096, 8192, 12288) to get the
amortized cost of a single AES. We repeat each experiment 100 times and then
report the average amortized cost per 128-bit block (no significant variance was
noticeable).

For estimating the cost of a single encryption and a single ciphertext random-
ization for the Paillier based protocol, we use the RSA signing cost for modulus
of size 4096. We get this cost using the OpenSSL benchmark [7] by running the
command openssl speed.

The costs we get are the following: AES-ECB 128: 3.5 ns, RSA 4096 signing
0.17 s. All the benchmarks are run on a Macbook Pro 2017 with a 3.1 GHz Intel
core i-7 processor and 16 GB of 2133 MHz LPDDR3 RAM.

7.4 Performance Comparison

We estimate the performance of the different constructions described above. For
this estimation, we experiment with three different database sizes, N = 220, 224

and 232 elements and three different network bandwidths, 72 Mbps, 100 Mbps
and 1 Gbps. We vary the length of each element in the database from 640 bits
to 64000 bits. This range of values is roughly inspired from Machine Learning
training applications which has 100s to 1000s of features (with each feature
represented by a 64 bit integer).

In the following graphs on Figs. 3, 4 and 5 we report the estimated running
time of our protocol and the protocol from [22]. We do not report the running
time of the PKE based protocol in the graphs since they are 2–3 orders of magni-
tude slower compared to our protocol. Instead we summarize their performance
in Table 2.

Secret-Shared Shuffle 369

Table 2. Comparative performance of
our protocol vs PKE based protocol

N T Bandwidth PKE time/Our time

220 16 1Gbps 3000–7000x

220 128 72 bps 400–600x

232 16 1Gbps 1900–4000x

232 256 72Mbps 260-400x

Table 3. Comparative performance of
our protocol vs [22] based protocol for
N = T = 128

Bandwidth [22] time/Our time

1Gbps 3–5x

100Gbps 4–11x

72Mbps 5–12x

In addition, we summarize how we compare with the protocol from [22] for
relatively small N but long elements (640–64000 bits) in Table 3. We get a
performance gain of 3–12x depending on the speed of the network.

Fig. 3. Total running time of Permute+Share for 72Mbps network

7.5 Choosing Optimal Subpermutation Size T

We choose the best value of T empirically: by fixing desired N, �, enumerating
over all possible T from 2 to N , and using the following formula to find the
running time for each value of T (as before, d is set to be 2�log N/ log T � − 1),
which is: (3dN log T + dNT (2+ �/λ)) ·TimePerAES+(3dNλ log T +(d+1)N�) ·
TimePerBitSent. We give more details in the full version.

370 M. Chase et al.

Fig. 4. Total running time of Permute+Share for 100 Mbps network

Fig. 5. Total running time of Permute+Share for 1 Gbps network

Acknowledgements. We are very grateful to the anonymous reviewers of Asiacrypt
2020, who have found inconsistencies in our experimental data, which was caused by
a bug in our script. This version contains an updated estimates.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An o(n log n) sorting network. In: Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, 25–27 April, 1983,
Boston, Massachusetts, USA, pp. 1–9 (1983)

2. Benes, V.E.: Optimal rearrangeable multistage connecting networks. Bell Syst.
Techn. J. 43(4), 1641–1656 (1964)

Secret-Shared Shuffle 371

3. Boyle, E., et al.: Efficient two-round ot extension and silent non-interactive secure
computation. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, pp. 291–308. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3319535.3354255

4. Chida, K., Hamada, K., Ikarashi, D., Kikuchi, R., Kiribuchi, N., Pinkas, B.: An effi-
cient secure three-party sorting protocol with an honest majority. IACR Cryptol.
ePrint Arch. 2019, 695 (2019). https://eprint.iacr.org/2019/695

5. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. In: Proceedings of the Security and Cryptography for Networks -
11th International Conference, SCN 2018, Amalfi, Italy, 5–7 September, 2018, pp.
464–482 (2018)

6. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30–03 November, 2017, pp. 523–535 (2017)

7. Foundation, O.S.: OpenSSL. https://www.openssl.org/
8. Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM computation

in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
491–520. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 19

9. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 23

10. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986). https://doi.org/10.1145/6490.6503, http://doi.acm.
org/10.1145/6490.6503

11. Gordon, S.D., et al.: Secure two-party computation in sublinear (amortized) time.
In: the ACM Conference on Computer and Communications Security, CCS 2012,
Raleigh, NC, USA, 16–18 October, 2012, pp. 513–524 (2012)

12. Group, B.C.: Bristol Cryptography Blog. http://bristolcrypto.blogspot.com/2017/
01/rwc-2017-secure-mpc-at-google.html

13. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. Cryptology ePrint Archive, Report 2019/074 (2019).
https://eprint.iacr.org/2019/074

14. Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: an effi-
cient sorting algorithm for practical secure multi-party computation. IACR Cryp-
tology ePrint Archive 2014, 121 (2014). http://eprint.iacr.org/2014/121

15. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

16. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

17. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 27

18. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient ram-model
secure computation. In: 2014 IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, 18–21 May 2014, pp. 623–638 (2014)

19. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a programming
framework for secure computation. In: 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17–21, 2015, pp. 359–376 (2015)

https://doi.org/10.1145/3319535.3354255
https://eprint.iacr.org/2019/695
https://www.openssl.org/
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1145/6490.6503
http://doi.acm.org/10.1145/6490.6503
http://doi.acm.org/10.1145/6490.6503
http://bristolcrypto.blogspot.com/2017/01/rwc-2017-secure-mpc-at-google.html
http://bristolcrypto.blogspot.com/2017/01/rwc-2017-secure-mpc-at-google.html
https://eprint.iacr.org/2019/074
http://eprint.iacr.org/2014/121
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-662-45608-8_27

372 M. Chase et al.

20. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38, May 2017. https://doi.org/10.1109/SP.2017.12

21. Mohassel, P., Rindal, P., Rosulek, M.: Fast database joins for secret shared data.
Cryptology ePrint Archive, Report 2019/518 (2019). https://eprint.iacr.org/2019/
518

22. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for
private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 33

23. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based psi
with linear communication. Cryptology ePrint Archive, Report 2019/241 (2019).
https://eprint.iacr.org/2019/241

24. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient Circuit-Based PSI via
Cuckoo Hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78372-7 5

25. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-ole:
improved constructions and implementation. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, pp.
1055–1072. Association for Computing Machinery, New York (2019). https://doi.
org/10.1145/3319535.3363228

26. Wang, X., Gordon, S.D., McIntosh, A., Katz, J.: Secure computation of MIPS
machine code. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9879, pp. 99–117. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45741-3 6

27. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: efficient MultiParty computa-
tion toolkit (2016). https://github.com/emp-toolkit

28. Zahur, S., et al.: Revisiting square-root ORAM: efficient random access, pp. 218–
234 (2016)

https://doi.org/10.1109/SP.2017.12
https://eprint.iacr.org/2019/518
https://eprint.iacr.org/2019/518
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://eprint.iacr.org/2019/241
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1007/978-3-319-45741-3_6
https://doi.org/10.1007/978-3-319-45741-3_6
https://github.com/emp-toolkit

Attribute-Based Encryption

Adaptively Secure Inner Product
Encryption from LWE

Shuichi Katsumata1, Ryo Nishimaki2, Shota Yamada1,
and Takashi Yamakawa2(B)

1 AIST, Tokyo, Japan
{shuichi.katsumata,yamada-shota}@aist.go.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
{ryo.nishimaki.zk,takashi.yamakawa.ga}@hco.ntt.co.jp

Abstract. Attribute-based encryption (ABE) is an advanced form of
encryption scheme allowing for access policies to be embedded within
the secret keys and ciphertexts. By now, we have ABEs supporting
numerous types of policies based on hardness assumptions over bilinear
maps and lattices. However, one of the distinguishing differences between
ABEs based on these two breeds of assumptions is that the former
can achieve adaptive security for quite expressible policies (e.g., inner-
products, boolean formula) while the latter can not. Recently, two adap-
tively secure lattice-based ABEs have appeared and changed the state
of affairs: a non-zero inner-product (NIPE) encryption by Katsumata
and Yamada (PKC’19) and an ABE for t-CNF policies by Tsabary
(CRYPTO’19). However, the policies supported by these ABEs are still
quite limited and do not embrace the more interesting policies that have
been studied in the literature. Notably, constructing an adaptively secure
inner-product encryption (IPE) based on lattices still remains open.

In this work, we propose the first adaptively secure IPE based on
the learning with errors (LWE) assumption with sub-exponential mod-
ulus size (without resorting to complexity leveraging). Concretely, our
IPE supports inner-products over the integers Z with polynomial sized
entries and satisfies adaptively weakly-attribute-hiding security. We also
show how to convert such an IPE to an IPE supporting inner-products
over Zp for a polynomial-sized p and a fuzzy identity-based encryption
(FIBE) for small and large universes. Our result builds on the ideas
presented in Tsabary (CRYPTO’19), which uses constrained pseudo-
random functions (CPRF) in a semi-generic way to achieve adaptively
secure ABEs, and the recent lattice-based adaptively secure CPRF for
inner-products by Davidson et al. (CRYPTO’20). Our main observation
is realizing how to weaken the conforming CPRF property introduced
in Tsabary (CRYPTO’19) by taking advantage of the specific linearity
property enjoyed by the lattice evaluation algorithms by Boneh et al.
(EUROCRYPT’14).

1 Introduction

An attribute-based encryption (ABE) [44] is an advanced form of public-key
encryption (PKE) that allows the sender to specify in a more general way about
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 375–404, 2020.
https://doi.org/10.1007/978-3-030-64840-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_13

376 S. Katsumata et al.

who should be able to decrypt. In an ABE for predicate P : X × Y → {0, 1},
decryption of a ciphertext associated with an attribute y is only possible by a
secret key associated with an attribute x such that P(x,y) = 1. For instance,
identity-based encryption (IBE) [9,22] is a special form of ABE where an equality
predicate is considered.

Over the past decade and a half, we have seen exciting progress in the design
and security analysis of ABEs. Each subsequent work provides improvements
in various aspects including security, expressiveness of predicates, or underlying
assumptions. While the earlier constructions were mainly based on bilinear maps,
e.g., [8,11,32,34,44,45], by now we have plenty of constructions based on lattices
as well, e.g., [1,3,10,19,25,28]. Some of the types of ABEs that have attracted
more attention than others in the literature include (but not limited to), fuzzy
IBE [2,44], inner-product encryption (IPE) [3,34,36], ABE for boolean formu-
lae [32,36], and ABE for P/poly circuits [10,28]. Regarding the expressiveness
of predicates, lattice-based ABEs seem to achieve stronger results than bilinear
map-based ABEs since the former allows for predicates expressible by P/poly
circuits, whereas the latter is restricted to boolean formulae.

Adaptive Security. While lattice-based ABEs have richer expressiveness, bilin-
ear map-based ABEs can realize stronger security. Specifically, they can address
adaptive security (in the standard model) for quite expressive predicates. Here,
adaptive security states that, even if an adversary can obtain polynomially many
secret keys for any attribute x and adaptively query for a challenge ciphertext
associated with an attribute y∗ such that P(x,y∗) = 0, it still cannot learn
the message encrypted within the challenge ciphertext. This clearly captures
the real-life scenario where an adversary can adaptively choose which attributes
to attack. In some cases, we may consider the much weaker selective security,
where an adversary must declare which attribute y∗ it will query as the challenge
at the beginning of the security game. In general, we can convert a selectively
secure scheme to an adaptively secure scheme by employing complexity lever-
aging, where the reduction algorithm simply guesses the challenge attribute at
the outset of the game. However, this is often undesirable as such proofs incur
an exponential security loss and necessitate in relying on exponentially hard
assumptions. Using bilinear maps, we know how to directly construct adaptively
secure fuzzy IBE [20,49], IPE [20,36,38,49], and even ABE for boolean formu-
lae [5,6,20,36,39,49] from standard (polynomial) assumptions.

On the other hand, our knowledge of adaptively secure lattice-based ABEs is
still quite limited. Notably, most of the lattice-based ABEs are only selectively
secure. For almost a decade, the only adaptively secure scheme we knew how
to construct from lattices was limited to the most simplistic form of ABE, an
IBE [1,19]. Considering that we had a lattice-based selectively secure ABE for
the powerful predicate class of P/poly circuits, this situation on adaptive secu-
rity was unsatisfactory. Recently, the state of affairs changed: Katsumata and
Yamada [33] proposed an adaptively secure non-zero IPE (NIPE), and Tsabary
[46] proposed an adaptively secure ABE for t-CNF predicates. The latter predi-
cate consists of formulas in conjunctive normal form where each clause depends

Adaptively Secure Inner Product Encryption from LWE 377

on at most t bits of the input, for any constant t. The former work is based on
a generic construction from adaptively secure functional encryption for inner-
products [4], whereas the latter work ingeniously extends the adaptively secure
bilinear map-based IBE of Gentry [24] to the lattice setting by utilizing a special
type of constrained pseudorandom function (CPRF) [12,13,35]. Unfortunately,
NIPE nor ABE for t-CNF is not expressive enough to capture the more inter-
esting types of ABE such as fuzzy IBE or IPE, let al.one ABE for boolean
formulae or P/poly. Therefore, the gap between the bilinear map setting and the
lattice setting regarding adaptive security still remains quite large and dissatis-
fying. Indeed, constructing an adaptively secure IPE based on lattices is widely
regarded as one of the long-standing open problems in lattice-based ABE.

1.1 Our Contribution

In this work, we propose the first lattice-based adaptively secure IPE over the
integers Z. In addition, we show several extensions of our main result to realize
other types of ABEs such as fuzzy IBE. The results are summarized below and
in Table 1. All of the following schemes are secure under the learning with errors
(LWE) assumption with sub-exponential modulus size.

– We construct an adaptively secure IPE over the integers (Z) with polynomial
sized entries. The predicate is defined as P : Z × Z → {0, 1}, where Z is a
subset of Z� with bounded polynomial sized entries and P(x,y) = 1 if and
only if 〈x,y〉 = 0 over Z.

– We construct an adaptively secure IPE over the ring Zp for p = poly(κ). The
predicate Pmod : Z�

p × Z
�
p → {0, 1} is defined similarly to above, where now

Pmod(x,y) = 1 if and only if 〈x,y〉 = 0 mod p.
– We construct an adaptively secure fuzzy IBE for small and large universe with

threshold T . Specifically, the predicate is defined as Pfuz : Dn × Dn → {0, 1},
where D is a set of either polynomial size (i.e., small universe) or exponential
size (i.e., large universe) and Pfuz(x,y) = 1 if and only if HD(x,y) ≤ n − T .
Here, HD denotes the hamming distance. That is, if x and y are identical in
more than T -positions, then Pfuz(x,y) = 1.

Though we mainly focus on proving payload-hiding for these constructions,
we can generically upgrade payload-hiding ABE to be weakly-attribute-hiding
by using lockable obfuscation, which is known to exist under the LWE assump-
tion with sub-exponential modulus size [31,50]. Therefore, we obtain adaptively
weakly-attribute-hiding ABE for the above classes of predicates under the LWE
assumption with sub-exponential modulus size. We note that this does not
require an additional assumption since our payload-hiding constructions already
rely on the same assumption.

The first construction is obtained by extending the recent result by Tsabary
[46], while the second and third constructions are obtained by a generic trans-
formation of the first construction.

378 S. Katsumata et al.

Table 1. Existing adaptively secure lattice-based ABE.

Reference Type of predicate LWE Asmp.
ABB’10 [1], CHKP’10 [19] IBE and HIBE w/ O(1)-hierarchy poly

KY’19 [33] NIPE over
Z w/ poly-size entries
Z w/ exp-size entries
Zp w/ poly and exp-size p†

poly

poly

subexp

Tsabary’19 [46] (CP-)ABE for t-CNF where t = O(1) subexp

Ours IPE over Z w/ poly-size entries subexp

Ours IPE over Zp w/ poly-size p subexp

Ours Fuzzy IBE w/ small and large universe subexp

† : The key generation algorithm is stateful for NIPE over Zp.

1.2 Technical Overview

We provide a detailed overview of our first (main) result regarding an adaptively
secure IPE over the integers (Z) and provide some discussions on how to extend
it to ABE with other types of useful predicates. For our first result, we first
extend the framework of Tsabary [46] and exploit a specific linearity property
of the lattice evaluation algorithms of Boneh et al. [10]. We then make a subtle
(yet crucial) modification to the CPRF for inner-products over the integer by
Davidson et al. [23] so as to be compatible with our extended framework for
achieving adaptively secure ABEs.

Note. In the following, to make the presentation clearer, we treat ABE as either
a ciphertext-policy (CP) ABE or a key-policy (KP) ABE interchangeably. In CP-
ABE, an attribute associated to a ciphertext represents a policy f ∈ Y, which
is described as a circuit, and we define the predicate P(x, f) := f(x). That is,
the predicate is satisfied if f(x) = 1. KP-ABE is defined analogously. Note that
IPE can be viewed as both a CP and KP-ABE since the roles of the attributes
associated with the secret key and the ciphertext are symmetric.

Reviewing Previous Results. Due to the somewhat lattice-heavy nature of our
result, we review the relevant known results. For those who are up-to-date with
the result of Tsabary [46] may safely skip to “Our Results”. We first provide some
background on lattice evaluation algorithms [10]. We then review the framework
developed by Tsabary [46] for achieving adaptively secure ABEs (for t-CNF).

Selectively Secure (KP-)ABE Based on Homomorphic Evaluation. We
recall the selectively secure ABE by Boneh et al. [10], which is the basic recipe
for constructing lattice-based ABEs. Let A ∈ Z

n×�m
q be a public matrix and

G ∈ Z
n×m
q be the so-called (public) gadget matrix whose trapdoor is known

[37]. Then, there exists two deterministic efficiently computable lattice evaluation
algorithms PubEval and CtEval such that for any f : {0, 1}� → {0, 1} and x ∈
{0, 1}�, the following property holds.1

– PubEval(f,A) → Af ,

1 We note that f can also be represented as an arithmetic circuit.

Adaptively Secure Inner Product Encryption from LWE 379

– CtEval(f,x,A, s�(A − x� ⊗ G) + noise) → s�(Af − f(x) ⊗ G) + noise,

where noise denotes some term whose size is much smaller than q which we can
ignore. In words, CtEval is an algorithm that allows to convert a ciphertext (or
an encoding) of x w.r.t. matrix A into a ciphertext of f(x) w.r.t. matrix Af ,
where Af is the same matrix output by PubEval. In the following, we assume
that the output of CtEval statistically hides the value x, which is possible by
adding sufficiently large noise.

Fig. 1. PubEval and CtEval. In all figures, symbol ≈ means that we hide (or ignore)
the noise part in ciphertexts.

We provide an overview of how to construct a (KP-)ABE. The public param-
eters consist of a matrix A and a vector u. Let f̂ be a negation of the function
f , that is, f̂(x) := 1− f(x). To generate a secret key for function f , the KeyGen

algorithm first runs Af̂ ← PubEval(f̂ ,A) as in Equation (1) below. Then the
secret key skf is sampled as a short vector ef such that Af̂ef = u.2 To gen-
erate a ciphertext for attribute x with message M ∈ {0, 1}, the Enc algorithm
generates a LWE sample of the form ct0 := s�u + noise + M · 	q/2
 and ctx
as depicted on the l.h.s. of Equation (2). To decrypt with a secret key skf , the
Dec algorithm first runs CtEval(f̂ ,x,A, ctx) to generate ctx,f̂ as depicted on
the r.h.s. of Equation (2). Here, notice that the ciphertext is converted into a
ciphertext that encodes the matrix Af̂ used during KeyGen (both boxed in Equa-
tions (1) and (2)). Then, if the predicate is satisfied, i.e., f(x) = 1 ⇔ f̂(x) = 0,
then ctx,f = s�Af̂ + noise. Therefore, using ef , the message can be recovered
by computing ct0 − 〈ctx,f , ef 〉 and rounding appropriately.

Now, selective security follows by embedding the LWE problem in the
challenge ciphertext. Specifically, the reduction algorithm is given an LWE
instance ([u|B], [v0|v]), where [v0|v] is either random or of the form [v0|v] =
s�[u|B] + noise. It then implicitly sets A := BR + x∗� ⊗ G where x∗ is the
challenge attribute the adversary commits to at the outset of the security game
and R is a random matrix with small entries and sets the challenge ciphertext as
(ct0 := v0 +M · 	q/2
, ctx∗ := v). It can be checked that if [v0|v] is a valid LWE
instance, then the challenge is distributed as in the actual security game. Other-
wise, the challenge ciphertext is uniformly random. Finally, we remark that sim-
ulating secret keys for policy f such that f(x∗) = 0 is possible since there exists
2 To be accurate, we require an extra matrix A0 for which we know a trapdoor in

order to sample such a short vector. However, we simplify the exposition for the
sake of clarity.

380 S. Katsumata et al.

Fig. 2. Illustration of the selectively secure ABE by BGG+14. The thin (resp. thick)
black arrow describes running algorithm PubEval (resp. CtEval). The items on top of
the arrows denote the required input to run the respective algorithms. This is the same
for all subsequent figures. In Equation (2), the l.h.s. and r.h.s. are generated by Enc
and Dec, respectively.

a special lattice evaluation algorithm (only used during the security proof) that
allows the reduction algorithm to convert Af̂ into BRf̂ + f̂(x∗)⊗G = BRf̂ +G,
where Rf̂ is a matrix with short norm. We omit the details on what or how to
use Rf̂ as it is not important for this overview and refer the readers to [10].

We end by emphasizing that the above reduction technique only works in
the selective setting because the adversary commits to x∗ at the outset of the
game; if it did not, then the reduction algorithm will not be able to set A as
B+ x∗� ⊗ G in the public parameter.

Adaptively Secure IBE à la Gentry [24] and Tsabary [46].3 Before getting
into adaptively secure ABEs, we first consider the simpler adaptively secure
IBEs. We overview the so-called “tagging” technique [24,46]. In the real scheme,
a secret key and a ciphertext for an identity id are associated with random “tags”
rid. The scheme is set up so that decryption only works if the tag value rid of
the secret key skid is different from the tag value r̃id of the ciphertext for an
identity id. In case the tags are sampled from an exponentially large space, such
a scheme only has a negligible probability of a decryption failure. At a high level,
the scheme will be tweaked so that the reduction algorithm assigns exactly one
random tag rid per identity id; a secret key and a challenge ciphertext for the
same identity id are tagged by the same rid. In addition, the reduction algorithm
will only be able to simulate a secret key and a challenge ciphertext w.r.t. this
unique tag rid. Here, this tweak will remain unnoticed by the adversary since
a valid adversary never asks for a secret key and a challenge ciphertext for the
same identity id.

We briefly review how Tsabary [46] cleverly carried out this idea in the
lattice-setting. The public parameter now includes a description of a pseudo-

3 One can also see this construction as an analogy of Waters’ dual system framework
[48].

Adaptively Secure Inner Product Encryption from LWE 381

random function PRF, and the master secret key includes a seed k for the
PRF. To generate a secret key for identity id, the KeyGen algorithm com-
putes the random tag rid ← PRF.Eval(k, id). It then sequentially runs Aeval

id ←
PubEval(PRF.Eval(·, id),A) and Aeq

id,rid
← PubEval(Eqrid

(·),Aeval
id) as in Equa-

tion (3) below, where Eqrid
(r̃id) = 1 if and only if rid = r̃id. As before, it

then samples a short vector eid such that Aeq
id,rid

eid = u. The final secret
key is skid := (rid, eid). To generate a ciphertext for identity id with mes-
sage M, the Enc algorithm first samples a random PRF key ˜k and generates
ct0 := s�u+noise+M·	q/2
 as before. It then generates ct

˜k as depicted in the l.h.s
of Equation (4) and further executes ctevalid ← CtEval(PRF.Eval(·, id),˜k,A, ct

˜k) as
depicted in the r.h.s of Equation (4). The final ciphertext is ct := (r̃id, ct0, ctevalid),
where r̃id ← PRF.Eval(˜k, id). Effectively, the Enc algorithm has constructed a
ciphertext that is bound to an identity id and a random tag r̃id; observe that
Aeval

id is the same matrix that appears during KeyGen (in a single-framed box).
Here, we note that the noise term in ctid does not leak any information on the PRF
key ˜k by our assumption. Now, to decrypt, the Dec algorithm, with knowledge
of both the random tag rid and r̃id, runs cteqid,rid

← CtEval(Eqrid
(·), r̃id,Aeval

id , ctevalid)
as depicted in the r.h.s. of Equation (5). At this point, the ciphertext is con-
verted into a ciphertext that encodes the matrix Aeq

id,rid
used during KeyGen (in

a double-framed box), and we have Eqrid
(r̃id) = 0 since rid �= r̃id with all but a

negligible probability. Hence, since cteqid,rid
= s�Aeq

id,rid
+ noise, the Dec algorithm

can decrypt the ciphertext using the short vector eid included in the secret key
following the same argument as before.

Fig. 3. Illustration of the adaptively secure IBE by Tsabary.

382 S. Katsumata et al.

The key observation is that a ciphertext for an identity id is generated from
ct

˜k that only depends on the PRF key. Notably, adaptive security can be achieved
(informally) because the reduction algorithm no longer needs to guess the chal-
lenge identity id and by the adaptive pseudorandomness of the PRF. We provide
a proof sketc.h to get a better intuition for the more complex subsequent ABE
construction: We first modify the security game so that the challenger no longer
needs to explicitly embed ˜k in the ciphertext. Namely, the challenger simply com-
putes Aid using PubEval, which it can run without knowledge of ˜k, and directly
generates ctevalid using r̃id. This is statistically the same as in the real scheme since
the noise term statistically hides ˜k due to the assumption. Now, we can invoke
the adaptive pseudorandomness of the PRF. The reduction algorithm generates
the random tag associated with the challenge ciphertext by implicitly using the
seed k included in the master secret key (by querying its own PRF challenger)
instead of sampling a fresh ˜k. Note that the random tag associated with the secret
key and challenge ciphertext for the same id are identical now. We then switch
back to the real scheme where the Enc algorithm first constructs ctk, where the
only difference is that k is encoded rather than a random PRF seed ˜k. At this
point, we can rely on the same argument as the selective security of [10] since
k is known at the outset of the game and the reduction algorithm (which is the
LWE adversary) can set A := B+ k� ⊗G. The challenge ciphertext for any id∗

can be computed by simply running CtEval on ctk = v, where v = s�B+ noise
for a valid LWE instance. In addition, a secret key for any id can be simulated as
well since we have Aeq

id,rid
= BReq

id,rid
+ Eqrid

(rid)⊗G = BReq
id,rid

+G for a matrix
Req

id,rid
with low norm.

Adaptively Secure (CP-)ABE Using (conforming) Constrained PRF.
Tsabary [46] made the keen observation of using a CPRF instead of a standard
PRF in the above idea to construct an ABE. A CPRF allows a user to learn
constrained keys to evaluate the PRF only on inputs x satisfied by a constraint
f . Let k be the secret key (i.e., seed) to the “base” PRF. Algorithm CPRF.Eval
takes as an input k and x and outputs a random value rx as a standard PRF.
Algorithm CPRF.Constrain takes as input k and a constraint f , represented as a
circuit, and outputs a constrained key kconf . Then, algorithm CPRF.ConstrainEval
takes as input kconf and x and outputs r′

x, where r′
x = rx if the input is satisfied

by the constraint, i.e., f(x) = 1. Now (adaptive) pseudorandomness of a CPRF
stipulates that even if an adversary can adaptively query CPRF.Eval(k, ·) on
any input of its choice and receive a constrained key kconf for any constraint f ,
the value CPRF.Eval(k,x∗) remains pseudorandom to the adversary as long as
f(x∗) = 0.

We now explain an initially flawed but informative approach of plugging in a
CPRF in the above idea to construct a (CP-)ABE and explain how Tsabary [46]
overcomes it. The master secret key for the ABE now includes the secret key k for
the CPRF. To generate a secret key for an attribute x, the KeyGen algorithm first
computes a random tag rx ← CPRF.Eval(k,x). It then sequentially runs Aeval

x ←
PubEval(CPRF.Eval(·,x),A) and Aeq

x,rx
← PubEval(Eqrx

(·),Aeval
x) as in Equa-

tion (6) below. Finally, a short vector ex such that Aeq
x,rx

ex = u is sampled. The

Adaptively Secure Inner Product Encryption from LWE 383

final secret key is skx := (rx, ex). To encrypt with respect to a policy f , the Enc
algorithm prepares a constrained key for f , which will later be used to derive ran-
dom tags for any x during decryption. Specifically, it first samples a fresh secret
key ˜k for the CPRF and generates ct0 := s�u+noise+M·	q/2
 as before. It then
generates ct

˜k and further executes ctconf ← CtEval(CPRF.Constrain(·, f),˜k,A, ct
˜k)

as depicted in Equation (7). The final ciphertext is ct := (˜kconf , ct0, ct
con
f), where

˜kconf ← CPRF.Constrain(˜k, f) is a constrained key and note that ctconf statistically
hides the information on ˜k. Observe that the ciphertext encodes the policy f .

Fig. 4. Illustration of the high-level structure of the adaptively secure CP-ABE by
Tsabary.

However, at this point, the problem becomes apparent: Decryption no longer
works. What the decryptor in possession of secret key skx can do is to convert the
ciphertext ctconf into ctevalx ← CtEval(CPRF.ConstrainEval(·,x),˜kconf ,Acon

f , ctconf) as
depicted in Equation (8). In addition, it can further convert it into cteqx,rx

←
CtEval(Eqrx

(·), r̃x, ̂Aeval
x , ctevalx), where r̃x = CPRF.ConstrainEval(˜kconf ,x). How-

ever, the secret key ex satisfying Aeq
x,rx

ex = u is useless for decryption because
the (intermediate) matrices Aeval

x and ̂Aeval
x in the single-framed box and the

shadowed single-framed box, respectively, are different. Therefore, the tagging
via CPRFs idea even fails to provide a correct ABE.

384 S. Katsumata et al.

The main idea of Tsabary [46] to overcome this issue was taking advantage
of the particular composition property of the lattice evaluation algorithms [10].
Specifically, for any matrix A and circuits h, g1, and g2, where h and g2 ◦ g1 are
described identically as circuits, the following evaluated matrices Ah and Ag2◦g1

are the same, that is, Ah = Ag2◦g1 :

1. Ah ← PubEval(h,A),
2. Ag2◦g1 ← PubEval(g2,PubEval(g1,A)).

Then, due to the correctness of PubEval and CtEval, when ct = s�(A−z⊗G)+
noise, ciphertexts cth and ctg2◦g1 are both of the form s�(Ah −h(z)⊗G)+noise.
To take advantage of this property in the above CPRF idea, Tsabary required
that the following algorithms are represented as identical circuits in case f(x) =
1:

CPRF.Eval(·,x) ≡cir CPRF.ConstrainEval(CPRF.Constrain(·, f),x), (9)

where C ≡cir C ′ denotes that circuits C and C ′ are identical.4 Here, this
corresponds to setting h = CPRF.Eval(·,x), g1 = CPRF.Constrain(·, f), g2 =
CPRF.ConstrainEval(·,x), and z = ˜k� in the above. Tsabary [46] coins CPRFs
with such a property as conforming CPRFs. Effectively, matrices Aeval

x and ̂Aeval
x

in Equations (6) and (8) are identical if we use such a conforming CPRF. Conse-
quently, we have Aeq

x,rx
= ̂Aeq

x,rx
. Therefore, decryption is now well-defined since

the short vector ex can be used as expected.
The security proof of the scheme follows almost identically to the adaptive

IBE setting: During the simulation, we first erase the information on ˜k from the
challenge ciphertext and then apply adaptive pseudorandomness to replace ˜kconf

with the real constrained key kconf . Then, we undo the change and encode k in
the challenge ciphertext in place of ˜k. At this point, the reduction algorithm can
embed its LWE problem in the challenge ciphertext. Note that we can swap ˜kconf

with kconf because the ABE adversary can only obtain secret keys (that includes
the output of CPRF.Eval(k, ·)) for attributes x such that f(x) = 0. In particular,
the adversary cannot use kf to check whether the random tag associated with
the secret key is generated by k or not.

The final remaining issue is whether such an adaptively secure conforming
CPRF exists or not. Fortunately, the CPRF for bit-fixing predicates by Davidson
et al. [23] (with a minor tweak) enjoyed such properties. Tsabary [46] further
extended this CPRF to predicates expressed by t-CNF. Therefore, combining
everything together, Tsabary obtained an adaptively secure (CP-)ABE for t-
CNF policies.

Our Results. We are now prepared to explain our result. We first show why and
how to weaken the conforming CPRF property required in the (semi-)generic

4 More precisely, Tsabary [46] required that the circuit representation of
CPRF.Eval(·,x) and the effective sub-circuit of CPRF.ConstrainEval(CPRF.Constrain(
·, f),x) are required to be the same.

Adaptively Secure Inner Product Encryption from LWE 385

construction of Tsabary [46]. We then present how to obtain such a CPRF for
inner-products over Z from LWE building on top of the recent CPRF proposal
of Davidson et al. [23]. By carefully combining them, we obtain the first lattice-
based IPE over Z. Finally, we briefly mention how to extend our IPE over Z to
other types of useful ABE.

Weakening the Condition on Conforming CPRF. Combining the dis-
cussion thus far, an adaptively secure conforming CPRF for a more expressive
constraint class F will immediately yield a (CP-)ABE for the policy class F
based on Tsabary’s proof methodology. Put differently, the goal now is to con-
struct an adaptively secure CPRF such that for all f ∈ F and x where f(x) = 1,
Equation (9) holds. However, this turns out to be an extremely strong require-
ment which we only know how to construct using the CPRF for t-CNF [23,46].
This CPRF for t-CNF is based on a combinatoric approach using PRFs and
differs significantly from all other (selectively secure) CPRFs for more expres-
sive constraints that rely on algebraic tools such as bilinear-maps or lattices,
e.g., [7,15,16,18,21,41]. That being said, there is one recent lattice-based CPRF
for inner-products over Z by Davidson et al. [23] that comes somewhat close to
what is required. Let us review their CPRF and explain how it fails short to fit
in Tsabary’s proof methodology.

A CPRF for inner-products over Z is a CPRF where the inputs and con-
straints are provided by vectors x,y ∈ [−B,B]� for some integer B. A con-
strained key kcony for vector y should allow to compute the same random value
as the secret key k (i.e., the “base” seed) for all inputs x such that 〈x,y〉 = 0 over
Z. In Davidson et al. [23] the secret key k is simply a random matrix-vector pair
(S,d) sampled uniformly random over [−β̄, β̄]n×� × [−β, β]n for some integers
β̄ and β, where β̄ is sub-exponentially large.5 In addition, a matrix B $← Z

n×m
q′

is provided as a public parameter. To evaluate on x using the secret key k,
the CPRF.Eval algorithm first converts B to a specific matrix Bx associated
to x (whose detail is irrelevant for this overview). Then, it computes a vec-
tor kintx := Sx ∈ Z

n called an intermediate key, and finally outputs the ran-
dom value rx = 	kint�x Bx
p ∈ Z

m
p . Here, 	a
p denotes rounding of an element

a ∈ Zq′ to Zp by multiplying it by (p/q′) and rounding the result.6 The con-
strained key kcony is simply defined as kcony := S + d ⊗ y� ∈ Z

n×�. To evaluate
on x using the constrained key kcony , the CPRF.ConstrainEval algorithm first pre-
pares Bx as done by CPRF.Eval and then computes the constrained intermediate
key kcon-inty,x := (S + d ⊗ y�)x ∈ Z

n×�, and finally outputs the random value
r′
x = 	kcon-int�y,x Bx
p ∈ Z

m
p . Observe that if 〈x,y〉 = 0 over Z, then kintx = kcon-inty,x .

Therefore, CPRF.Eval(k,x) = CPRF.ConstrainEval(ky,x) in case 〈x,y〉 = 0 as
desired. Davidson et al. [23] proved that such a CPRF is adaptively secure based
on the LWE assumption with sub-exponential modulus size.
5 In their original scheme, d is not included in the secret key but generated when

constraining the secret key. However, this modification is w.l.o.g and will be vital
for our purpose.

6 Looking ahead, we note the moduli (q′, p) used by the CPRF is different from the
modulus q used by the ABE.

386 S. Katsumata et al.

On first glance this CPRF may seem to satisfy the conforming property
(Equation (9)) since the secret key k = S and the constrained key kcony =
S + d ⊗ y� are both matrices over Z

n×�, and the intermediate keys kintx and
kcon-inty,x are equivalent in case 〈x,y〉 = 0 and are used identically (as a circuit)
to compute rx. However, under closer inspection, it is clear that Equation (9)
does not hold. Specifically, CPRF.Constrain(k,y) computes kcony = (S+ d⊗ y�);
a computation that depends on the constraint vector y, while CPRF.Eval(k,x)
does not internally perform such computation. Therefore, CPRF.Eval(·,x) can-
not be identical as a circuit as CPRF.ConstrainEval(CPRF.Constrain(·,y),x). In
the context of ABE, this means that the KeyGen algorithm and Enc/Dec algo-
rithms will not be able to agree on the same matrix, and hence, correctness
no longer holds. Although both algorithms CPRF.Eval and CPRF.ConstrainEval
share a striking resemblance, it seems one step short of satisfying the conforming
property of Tsabary.

Our main idea to overcome this issue is weakening the conforming property
required by Tsabary [46] by noticing another particular linearity property of the
lattice evaluation algorithms of [10]. Specifically, for any matrix A and linear
functions h, g1, and g2 such that h and g2 ◦ g1 are functionally equivalent, the
matices Ah and Ag2◦g1 evaluated using PubEval as in Items 1 and 2 are in fact
equivalent (i.e., Ah = Ag2◦g1). By correctness of PubEval and CtEval, we then
also have cth = ctg2◦g1 . Here, the main observation is that we no longer require
the strong property of h ≡cir g2◦g1, but only require a slightly milder property of
h and g2 ◦ g1 being functionally equivalent, that is, have the same input/output.

Let us see how this property can be used. Notice that the above CPRF of
Davidson et al. [23] has the following structure. Algorithm CPRF.Eval(k,x) can
be broken up in linear and non-linear algorithms: CPRF.EvalLin(k,x) → kintx and
CPRF.EvalNonLin(kintx ,x) → rx.7 Namely, we have

CPRF.Eval(k,x) = CPRF.EvalNonLin(CPRF.EvalLin(k,x),x).

Similarly, CPRF.ConstrainEval(ky,x) can be broken up in linear and non-linear
algorithms: CPRF.ConstrainEvalLin(kcony ,x) → kcon-inty,x and CPRF.ConstrainEvalNonLin

(kcon-inty,x ,x) → rx. In addition, from above, we know that we have the following
property:

1. if 〈x,y〉 = 0 over Z, then CPRF.EvalLin(·,x) and CPRF.ConstrainEvalLin(
CPRF.Constrain(·,y),x) are both linear functions that are functionally equiv-
alent (in particular, kintx = kcon-inty,x), and

2. the non-linear algorithms satisfy CPRF.EvalNonLin(·,x) ≡cir CPRF.ConstrainEval

NonLin(·,x). Namely, they are identical circuits.

Importing these properties to the ABE setting, we get a transition of matrices
and ciphertext for KeyGen,Enc, and Dec as in Figure 5.

Notice the matrices in red (Aint
x and Acon-int

y,x) are identical due to the property
in Item 1 and the linearity property of PubEval and CtEval. Moreover, due to
7 Concretely, the non-linear part does a rounding operation modulo a certain integer
p followed by an evaluation of a hash function.

Adaptively Secure Inner Product Encryption from LWE 387

Fig. 5. Illustration of our adaptively secure IPE.

the property in Item 2, the subsequent evaluated ciphertexts ctevalx and cteqx,rx

correctly encode the matrices Aeval
x and Aeq

x,rx
, respectively, which correspond to

those computed during KeyGen. Combining all of these observations, it seems we
have successfully weakened the conforming property required by Tsabary [46] and
showed that the CPRF of Davidson et al. [23] suffices to instantiate the generic
(CP-)ABE construction. However, we show that a problem still remains.

Bit Decomposing and Tweaking Davidson et al.’s CPRF [23]. To under-
stand the problem, let us take a closer look at how the CtEval algorithm is used
in Equations (11) and (12). First, observe that the output of the linear function
CPRF.EvalLin(k,x), or equivalently, the output of CPRF.ConstrainEvalLin(CPRF.
Constrain(k,y),x) is over Z rather than over {0, 1}. More specifically, the output
kintx (= kcon-inty,x) is of the form Sx ∈ [−β̃, β̃]n, where β̃ is some sub-exponentially
large integer. Therefore, the ciphertext ctcon-intx ≈ s�(Acon-int

y,x −˜kcon-int�y,x ⊗G) com-
puted within the Dec algorithm encodes ˜kcon-inty,x as integers over [−β̃, β̃]n. Now,
the Dec algorithm must further convert this ciphertext to ctevalx ≈ s�(Aeval

x − r̃x⊗
G), where r̃x = CPRF.ConstrainEvalNonLin(kcon-inty,x ,x) = 	kcon-int�x,y Bx
p ∈ Z

m
p .

The problem is: is this efficiently computable? Since Bx can be precomputed

388 S. Katsumata et al.

and kcon-int�x,y Bx is a linear function of kcon-intx,y , the problem boils down to the
following question:

Given x ∈ [−β̃, β̃] and ct = s�(A+ x ⊗G) + noise (mod q) as inputs, can
we efficiently compute ctp ≈ s�(Ap + 	x
p ·G), where 0 < β̃ < p < q and
β̃ is sub-exponentially large and Ap is some publicly computable matrix
independent of the value x?

Unfortunately, this problem turns out to be quite difficult, and as far as our
knowledge goes, we do not know how to achieve this.8 One of the main reason
for the difficulty is that we cannot efficiently simulate arithmetic operations over
the ring Zp by an arithmetic circuit over another ring Zq when the input is
provided as a sub-exponentially large integer (and not as a bit-string).

To circumvent this seemingly difficult problem, we incorporate two additional
ideas. First, we consider an easier problem compared to above where β̃ is guar-
anteed to be only polynomially large. In this case, we show that the problem is
indeed solvable. Notably, if |x| is only polynomially large, then we can efficiently
compute the bit-decomposition of x by an arithmetic circuit over the ring Zq

by using Lagrange interpolation. That is, there exists an efficiently computable
degree-2β̃ polynomial pi over Zq such that pi(x) computes the i-th bit of the bit-
decomposition of x. Therefore, given ct ≈ s�(A+x⊗G) as input, we first com-
pute ctbd ≈ s�(Abd +BitDecomp(x)⊗G) by using the polynomials (pi)i, where
Abd = PubEval(A,BitDecomp(·)). We then compute ctp ≈ s�(Ap + 	x
p ⊗ G),
where we use the fact that arithmetic operations over the ring Zp can be effi-
ciently simulated with an arithmetic circuit over another ring Zq in case the
input is provided as a bit-string.

The remaining problem is whether β̃ in the CPRF of Davidson et al. [23] can
be set to be polynomially large rather than sub-exponentially large. Very roughly,
Davidson et al. required β̃ to be sub-exponentially large to argue that with all
but a negligible probability, the absolute value of all the entries in S ∈ Z

n×�

is smaller than some specified value. However, we notice that we can complete
the same security proof by only requiring that the absolute value of most of the
entries in S is smaller than a specified value. This small change allows us to use
a finer probabilistic argument on the entries of S, which in return, allows us to
set β̃ only polynomially large.

By combining all the pieces, we obtain the first lattice-based adaptively secure
IPE over Z with polynomial-sized entries. We note that our construction requires
LWE with a sub-exponential modulus since the underlying CPRF of [23] requires
it, and also, since we need to homomorphically compute the non-linear circuit
CPRF.EvalNonLin.

Extending IPE Over Z to Other ABEs. Finally, we also show how to extend
our adaptively secure IPE over Z with polynomial-sized entries to other useful
ABE using generic conversions. That is, the ideas are not limited to our specific
lattice-based construction. Specifically, we obtain the following three lattice-
based adaptively secure ABEs for the first time: IPE over the ring Zp for p =
8 We note that a solution to this question will directly give us the desired result.

Adaptively Secure Inner Product Encryption from LWE 389

poly(κ), fuzzy IBE for small and large universes with threshold T . The first two
generic conversions are almost folklore. To obtain fuzzy IBE for large universe,
we use error correcting codes with a polynomial-sized alphabet (such as Reed-
Solomon codes [42]) to encode an exponentially large element to a string of
polynomially large elements with polynomial length. We then use the fuzzy IBE
for small universe with an appropriate threshold to simulate the large universe.

1.3 Related Works

Brakerski and Vaikuntanathan [17] constructed a lattice-based ABE for all cir-
cuits with a weaker adaptive security called the semi-adaptive security, where an
adversary can declare the challenge attribute after seeing the public parameter
but before making any key query. Subsequently, Goyal, Koppula and Waters [30]
showed that we can convert any selectively secure ABE into a semi-adaptively
secure one.

Recently, Wang et al. [47] gave a framework to construct lattice-based adap-
tively secure ABE by extending the dual system framework [48] into the lattice
setting. However, their instantiation based on the LWE assumption only yields
bounded collusion-resistant ABE where an adversary can obtain only bounded
number of decryption keys that is fixed at the setup phase. We note that such an
ABE trivially follows from the bounded collusion-resistant functional encryption
scheme based on any PKE by Gorbunov, Vaikuntanathan, and Wee [27].

2 Preliminaries

We use standard cryptographic notations and refer the readers to the full version
for reference.

2.1 Lattices

In this work, we only use standard tools from lattices such as bounding norms of
discrete Gaussian distributions, gadget matrices, and sampling with trapdoors.
Therefore, we omit the details to the full version. Below, we introduce the main
hardness assumption we use in this work for completeness.

Definition 2.1 ([43], Learning with Errors). For integers n,m, a prime q >
2, an error distribution χ over Z, and a PPT algorithm A, the advantage for
the learning with errors problem LWEn,m,q,χ of A is defined as follows:

Adv
LWEn,m,q,χ

A =
∣

∣

∣Pr
[A(

A, s�A+ z�)

= 1
] − Pr

[A(

A,b�)

= 1
]

∣

∣

∣

where A ← Z
n×m
q , s ← Z

n
q , b ← Z

m
q , z ← χm. We say that the LWE assumption

holds if AdvLWEn,m,q,χ

A is negligible for all PPT algorithm A.

390 S. Katsumata et al.

The (decisional) LWEn,m,q,DZ,αq
for αq > 2

√
n has been shown by Regev [43] via

a quantum reduction to be as hard as approximating the worst-case SIVP and
GapSVP problems to within Õ(n/α) factors in the �2-norm in the worst case. In
the subsequent works (partial) dequantumization of the reduction were achieved
[14,40]. The worst-case problems are believed to be hard even for subexponential
approximation factors, and in particular, the LWE problem with subexponential
modulus size is believed to be hard. We note that this is different from assuming
the subexponential LWE assumption where we allow for adversaries even with
subexponentially small advantage.

2.2 Attribute-Based Encryption

Let P : X × Y → {0, 1} where X and Y are sets. An attribute-based encryp-
tion (ABE) for P (with the message space {0, 1}) consists of PPT algorithms
(Setup,KeyGen,Enc,Dec): Setup(1κ) outputs a pair public parameter and master
secret key (pp,msk); KeyGen(pp,msk, x) outputs a secret key skx for attribute x;
Enc(pp, y,M) outputs a ciphertext cty for attribute y and message M ∈ {0, 1};
and Dec(pp, skx, cty) outputs M if P(x, y) = 1.

An ABE is said to be (adaptively) payload-hiding, if it is infeasible for an
adversary to tell apart a random ciphertext and a valid ciphertext for attribute
y∗ and message M∗ of its choice, even if it is given polynomially many secret
keys skx for P(x, y) = 0. Here, adaptive security dictates that an adversary can
adaptively choose the challenge attribute y∗ even after seeing polynomially many
secret keys skx. The formal definition is omitted to the full version.

Inner-product Encryption. In this study, we consider ABEs for the following
predicate. Let P be the inner-product predicate with domain X = Y = Zn

where Z is a subset of Z. That is, for x,y ∈ Zn, P(x,y) = 1 if 〈x,y〉 = 0 and
P(x,y) = 0 otherwise. We call this inner-production encryption (IPE) over the
integers (Z).

We also consider a variant where the inner-product is taken over Zp for
p a prime. Concretely, let Pmod be the inner-product predicate with domain
X = Y = Z

n
p such that for x,y ∈ Z

n
p , Pmod(x,y) = 1 if 〈x,y〉 = 0 mod p and

P(x,y) = 0 otherwise. We call this IPE over Zp.

Fuzzy Identity-based Encryption. We also consider the following predicate. Let
Pfuz be the fuzzy predicate with domain X n = Yn = Dn and threshold T (> 0)
such that for x,y ∈ Dn, Pfuz(x,y) = 1 if HD(x,y) ≤ n − T and Pfuz(x,y) = 0
otherwise. Here, HD : Dn×Dn → [0, n] denotes the hamming distance. That is, if
x and y are identical in more than T -positions, then Pfuz(x,y) = 1. We call this
fuzzy identity-based encryption (IBE) for small universe when |D| = poly(κ),
and fuzzy IBE for large universe when |D| = exp(κ).

2.3 Constrained Pseudorandom Functions

A constrained pseudorandom function for (D,R,K, C) is defined by the five
PPT algorithms ΠCPRF = (CPRF.Setup,CPRF.Gen, CPRF.Eval,CPRF.Constrain,

Adaptively Secure Inner Product Encryption from LWE 391

CPRF.ConstrainEval) where: CPRF.Setup(1κ) outputs a set of public parameter
pp; CPRF.Gen(pp) outputs a master key K; CPRF.Eval(pp,K, x) outputs a random
value r; CPRF.Constrain(K, C) outputs a constrained key Kcon

C associated with
constraint C; and CPRF.ConstrainEval(pp,Kcon

C , x) outputs the same value as
CPRF.Eval(pp,K, x) when C(x) = 1.

A CPRF is said to be (adaptive) pseudorandomness on constrained points,
when informally, it infeasible for an adversary to evaluate on a point when only
given constrained keys that are constrained on that particular point. Here, adap-
tive security dictates that an adversary can adaptively query the constrained
keys even after seeing polynomially many evaluations. The formal definition is
omitted to the full version.

3 Lattice Evaluations

In this section, we show various lattice evaluation algorithms that will be used in
the description of our IPE scheme in Sec. 5. We start by recalling the following
lemma, which is an abstraction of the evaluation algorithms developed in a long
sequence of works [10,26,29,37].
Lemma 3.1 ([46, Theorem 2.5]). There exist efficient deterministic algorithms
EvalF and EvalFX such that for all n, q, � ∈ N and m ≥ n�log q�, for any depth
d boolean circuit f : {0, 1}� → {0, 1}k, input x ∈ {0, 1}�, and matrix A ∈
Z

n×m(�+1)
q , the outputs H := EvalF(f,A) and ̂H := EvalFX(f, x,A) are both in

Z
m(�+1)×m(k+1) and it holds that ‖H‖∞, ‖ ̂H‖∞ ≤ (2m)d, and

[A − (1, x) ⊗ G] ̂H = AH − (1, f(x)) ⊗ G mod q.

Moreover, for any pair of circuits f : {0, 1}� → {0, 1}k, g : {0, 1}k → {0, 1}t

and for any matrix A ∈ Z
n×m(�+1)
q , the outputs Hf := EvalF(f,A), Hg :=

EvalF(g,AHf) and Hg◦f := EvalF(g ◦ f,A) satisfy HfHg = Hg◦f .
Here, we note that unlike in the original theorem [46, Theorem 2.5], we

would require the constant 1 term to handle functions with a constant term.
More details are provided in the full version.

In the following, we generalize the above lemma so that we can treat the case
where x and f(x) are integer vectors rather than bit strings. We first consider
the case where function f is a linear function over Z� in Sec. 3.1. The algorithm
we give is essentially the same as that given in the previous work [10], but we will
make a key observation that the evaluation results of two functions are the same
as long as they are functionally equivalent even if they are expressed as different
(arithmetic) circuits. In Sec. 3.2, we consider the case where f is a specific type
of non-linear function taking a vector x ∈ Z

� as input; f initially computes a
binary representation of the input x, and then computes an arbitrary function
represented by a boolean circuit over that binarized input. We note that an
evaluation algorithm for arithmetic circuits over Z in previous work [10] is not
enough for our purpose. This is because the binary representation of an integer
may not be efficiently computable by an arithmetic circuit over Z in case the
integer is super-polynomially large.

392 S. Katsumata et al.

3.1 Linear Evaluation

Here, we deal with linear functions over Z that are expressed by arithmetic
circuits.

Definition 3.1. For a (homogeneous) linear function f : Z� → Z
k, we denote

the unique matrix that represents f by Mf . That is, Mf = (mi,j)i∈[�],j∈[k] ∈
Z

�×k is the matrix such that we have f(x)� = x� · Mf . We denote ‖f‖∞ to
mean ‖Mf‖∞ and call ‖f‖∞ the norm of f .

The following lemma gives an evaluation algorithm for linear functions. The
proof can be checked easily and is omitted to the full version.

Lemma 3.2. There exist efficient deterministic algorithms EvalLin such that for
all n,m, q, � ∈ N, for any linear function f : Z� → Z

k, input x ∈ Z
�, and matrix

A ∈ Z
n×m(�+1)
q , the output Mf := EvalLin(f) is in Z

m(�+1)×m(k+1) and it holds
that ‖Mf‖∞ = max{1, ‖f‖∞}, and

[A − (1,x�) ⊗ G]Mf = AMf − (1, f(x)�) ⊗ G mod q.

Moreover, for any tuple of linear functions f : Z� → Z
k, g : Zk → Z

t, and h :
Z

� → Z
t such that g ◦ f(x) = h(x) for all x ∈ Z

�, the outputs Mf := EvalLin(f),
Mg := EvalLin(g) and Mh := EvalLin(h) satisfy MfMg = Mh.

Looking ahead, the latter part of the above lemma is a key property for our
generalization of the Tsabary’s framework [46] when constructing adaptively
secure ABE. Note that in the general non-linear case, an analogue of this prop-
erty only holds when g ◦ f and h are expressed exactly as the same circuit (See
Lemma 3.1).

3.2 Non-linear Evaluation

Next, we consider the non-linear case where f takes as input a vector x ∈ Z
�.

Specifically, f first computes the binary decomposition of x, and then performs
an arbitrary computation represented by a boolean circuit. Since the latter part
of the computation can be handled by Lemma 3.1, all we have to do is to give a
homomorphic evaluation algorithm that handles the former part of the compu-
tation. The following lemma enables us to do this as long as ‖x‖∞ is bounded
by some polynomial in κ. At a high level, when ‖x‖∞ is only a polynomial, we
would be able to efficiently compute the bit-decomposition of x using Lagrange
interpolation. We omit the proof to the full version. In the statement below, we
focus on the case of � = 1.

Lemma 3.3. There exist efficient deterministic algorithms EvalBD and
EvalBDX such that for all n,m,M ∈ N, prime q satisfying q > 2M + 1 and
m ≥ n�log q�, x ∈ [−M,M], and for any matrix A ∈ Z

n×2m
q , the outputs

Adaptively Secure Inner Product Encryption from LWE 393

H := EvalBD(1M ,A) and ̂H := EvalBDX(1M , x,A) are both in Z
2m×m	log q
 and

it holds that ‖H‖∞, ‖ ̂H‖∞ ≤ (2mM)2M+1, and

[A − (1, x) ⊗ G] ̂H = AH − BitDecomp(x) ⊗ G mod q (13)

where BitDecomp(x) ∈ {0, 1}	log q
 denotes the bit decomposition of x.

Finally, we combine Lemmata 3.1 and 3.3, to obtain our desired lemma. Let
q and M be integers such that q > 2M +1. In the following lemma, we deal with
function f : [−M,M]� → {0, 1}k that can be represented by a Boolean circuit
f̃ : {0, 1}�	log q
 → {0, 1}k in the sense that we have

f(x) = f̃(BitDecomp(x1), . . . ,BitDecomp(x�))

for any x ∈ [−M,M]�. The proof is quite standard and is omitted to the full
version.

Lemma 3.4. There exist efficient deterministic algorithms EvalFbd and
EvalFXbd such that for all n,m, �,M ∈ N, prime q satisfying q > 2M + 1
and m ≥ n�log q�, for any function f : [−M,M]� → {0, 1}k that can be
expressed as an efficient depth d boolean circuit f̃ : {0, 1}�	log q
 → {0, 1}k,
for every x ∈ [−M,M]�, and for any matrix A ∈ Z

n×m(�+1)
q , the outputs H :=

EvalFbd(1M , f,A) and ̂H := EvalFXbd(1M , f,x,A) are both in Z
m(�+1)×m(k+1)

and it holds that ‖H‖∞, ‖ ̂H‖∞ ≤ ��log q�(2mM)d+2M+2 and

[A − (1,x�) ⊗ G] ̂H = AH − (1, f(x)) ⊗ G mod q. (14)

4 IPE-Conforming CPRF

In this section, we introduce the notion of IPE-conforming CPRF and instantiate
it from the LWE assumption. An IPE-conforming CPRF is the main building
block for our adaptively secure IPE schemes. Although Tsabary presents how to
achieve adaptively secure ABE by using conforming CPRFs, the requirements
on conforming CPRFs are quite strong and it seems very difficult to achieve
such conforming CPRFs for inner-products. To achieve adaptively secure IPE,
we relax the requirements.

4.1 Definition

Here, we define an IPE-conforming CPRF.

Definition 4.1. A CPRF scheme ΠCPRF = (CPRF.Setup,CPRF.Eval,CPRF.Constrain,

CPRF.ConstrainEval) that supports inner products over D := [−B,B]� ⊂ Z
� is

said to be IPE-conforming if it satisfies the following properties:

394 S. Katsumata et al.

– Partial linear evaluation (Definition 4.2)
– Key simulation (Definition 4.3)
– Uniformity (Definition 4.4)

The partial linear evaluation property is a relaxed variant of the gradual eval-
uation property for conforming CPRFs defined by Tsabary [46]. Recall that the
gradual evaluation property of Tsabary [46] requires that (a sub-circuit of) the
composition of CPRF.Constrain and CPRF.ConstrainEval is identical to CPRF.Eval
as a circuit. On the other hand, we only require that they are identical as (arith-
metic) circuits excluding the linear computation. The precise definition follows.

Definition 4.2 (Partial linear evaluation). The algorithm CPRF.Eval (resp.
CPRF.ConstrainEval) can be divided into a linear part CPRF.EvalLin (resp.
CPRF.ConstrainEvalLin) and a non-linear part CPRF.EvalNonLin (resp. CPRF.
ConstrainEvalNonLin) with the following syntax:

– CPRF.EvalLin(K,x) → Kint
x ∈ Z

ξ,
– CPRF.EvalNonLin(pp,Kint

x ,x) → PRF(K,x),
– CPRF.ConstrainEvalLin(Kcon

y ,x) → Kcon-int
y,x ∈ Z

ξ,
– CPRF.ConstrainEvalNonLin(pp,Kcon-int

y,x ,x) → PRF(K,x),

where the superscript int stands for “intermediate key” and Kcon
y denotes the

constrained key for the inner-product constraint for vector y. Specifically, we
have

CPRF.EvalNonLin(pp,CPRF.EvalLin(K,x),x) = CPRF.Eval(K,x)

and

CPRF.ConstrainEvalNonLin(pp,CPRF.ConstrainEvalLin(K,x),x)
= CPRF.ConstrainEval(K,x).

We require the following:

1. CPRF.EvalNonLin and CPRF.ConstrainEvalNonLin are exactly the same algo-
rithms. That is, they are expressed identically as circuits.

2. For any x,y such that 〈x,y〉 = 0 and K
$← CPRF.Setup(pp) where pp

$←
CPRF.Setup(1κ), we have

CPRF.EvalLin(K,x) = CPRF.ConstrainEvalLin(CPRF.Constrain(K,y),x).

Or equivalently, we have Kint
x = Kcon-int

y,x .
3. K, Kcon

y , Kint
x , and Kcon-int

y,x are integer vectors. Also, for any x,y ∈ D,
algorithms CPRF.Constrain(·,y), CPRF.EvalLin(·,x) and CPRF.ConstrainEvalLin

(·,x) are linear functions over Z. Moreover, their norms are at most
poly(κ, �,B). (See Definition 3.1 for the definition of a norm of a linear func-
tion.)

Adaptively Secure Inner Product Encryption from LWE 395

4. We have ‖Kint
x ‖∞ = poly(κ, �,B) where pp

$← CPRF.Setup(1κ), K
$←

CPRF.Setup(pp), and Kint
x := CPRF.EvalLin(K,x).

We stress that, in the second item above, we do not require that
CPRF.EvalLin(K,x) and CPRF.ConstrainEvalLin(CPRF.Constrain(K,y),x) to be
identical as (arithmetic) circuits; they are only required to have the same
input/output. This is a crucial difference from the notion of conforming CPRF
by Tsabary [46].

The key simulation property is essentially the same as defined by
Tsabary [46].

Definition 4.3 (Key simulation). The key simulation security is defined by
the following game between an adversary A and a challenger:

Setup: At the beginning of the game, the challenger generates the public param-
eter pp

$← CPRF.Setup(1κ) and master key K
$← CPRF.Gen(pp), and sends pp

to A.
Queries: A can adaptively make unbounded number of evaluation queries. Upon

a query x ∈ D, the challenger returns r
$← CPRF.Eval(pp,K,x).

Challenge Phase: At some point, A makes a challenge query y∗ ∈ D. Then
the challenger uniformly picks coin

$← {0, 1}. If coin = 0, then the challenger
samples ˜K

$← CPRF.Gen(pp) and returns ˜Kcon
y∗

$← CPRF.Constrain(˜K,y∗) and
otherwise returns Kcon

y∗
$← CPRF.Constrain(K,y∗).

Queries: After the challenge phase, A may continue to adaptively make
unbounded number of evaluation queries. Upon a query x ∈ D, the challenger
returns r

$← CPRF.Eval(pp,K,x).
Guess: Eventually, A outputs ̂coin as a guess for coin.

We say the adversary A wins the game if ̂coin = coin and for any evalua-
tion query x, we have 〈x,y∗〉 �= 0. We require that for all PPT adversary A,
|Pr[A wins] − 1/2| = negl(κ) holds.

We note that the key simulation property easily follows from the adaptive
single-key security of a standard CPRF.

Lemma 4.1 (Implicit in [46]). If ΠCPRF is adaptively single-key secure, then
it also satisfies the key simulation property.

The uniformity requires that for any fixed input, the PRF value is uniform
over the random choice of a key.

Definition 4.4 (Uniformity). For all x ∈ D and r ∈ R, we have

Pr[CPRF.Eval(K,x) = r : pp $← CPRF.Setup(1κ),K $← CPRF.Setup(pp)] = 1/|R|.

We note that this is a very mild property, and we can generically add this
property by applying a one-time pad. Namely, suppose that we include a uniform
string R ∈ R in K, and slightly modify the evaluation algorithm so that it outputs

396 S. Katsumata et al.

the XOR of the original output and R. Then it is clear that the resulting scheme
satisfies the uniformity property. Moreover, it is easy to see that this conversion
preserves the partial linear evaluation property and key simulation property.
Combining this observation with Lemma4.1, we obtain the following lemma.

Lemma 4.2. If there exists a CPRF for inner-products that satisfies the par-
tial linear evaluation property and the adaptive single-key security, then there
exists an IPE-conforming CPRF that satisfies the partial linear evaluation, key
simulation, and uniformity properties.

Following [46], we use the following notations in Sec. 5:

– U lin
k→x: A linear function computing CPRF.EvalLin(·,x).

– U lin
k→y: A linear function computing CPRF.Constrain(·,y).

– U lin
y→x: A linear function computing CPRF.ConstrainEvalLin(·,x).

– Unon-lin
x : A (not necesarily linear) function that computes

CPRF.EvalNonLin(pp, ·,x) (= CPRF.ConstrainEvalNonLin(pp, ·,x)).
Note that U lin

k→x and U lin
y→x◦U lin

k→y are functionally equivalent for any x,y ∈ D
such that 〈x,y〉 = 0 by Item 2 of Definition 4.2.

4.2 Construction

We show that a variant of the LWE-based CPRF recently proposed by Davidson
et al. [23] satisfies the required property. The scheme and security proof are
largely the same as theirs. The detais can be found in the full version. Then we
obtain the following theorem.

Theorem 4.1. There exists an IPE-conforming CPRF assuming the LWE
assumption with sub-exponential modulus size.

5 Adaptively Secure IPE

In this section, we give a construction of an adaptively secure IPE scheme. The
scheme will deal with inner products over vectors D := [−B,B]� ⊂ Z

� for any
arbitrarily chosen B(κ) = poly(κ) and �(κ) = poly(κ). The main ingredient of the
construction is a CPRF scheme ΠCPRF = (CPRF.Setup,CPRF.Gen,CPRF.Eval,
CPRF.Constrain,CPRF.ConstrainEval) for inner products over vectors in D :=
[−B,B]� ⊂ Z

� with IPE conforming property (See Definition 4.1). We assume
that the size of the range R of the CPRF is super-polynomial in κ. We can
instantiate such CPRF by the scheme in Theorem 4.1. To describe our scheme,
we introduce the following parameters.

– For simplicity of notation, we assume that K, Kint
x , and Kcon

y are integer vectors
with the same dimension s(κ). This can be realized by choosing s(κ) to be the
maximum length of these vectors and padding the vectors with smaller dimen-
sions by zeros. It is easy to see that the partial linear evaluation property and
the security of the CPRF are preserved with this modification. Furthermore,
by the efficiency of the CPRF, we can set s(κ) = poly(B(κ), �(κ)) = poly(κ).

Adaptively Secure Inner Product Encryption from LWE 397

– We let M(κ) be an upper bound on ‖Kint
x ‖∞ and the norms of U lin

k→x, U lin
k→y,

and Unon-lin
x , where we refer to Definition 3.1 for the definition of norm for lin-

ear functions. By Items 3 and 4 of Definition 4.2, these quantities are bounded
by poly(κ, �(κ), B(κ)) ≤ poly(κ). We therefore can set M(κ) = poly(κ).

– We let η(κ) to be the length of the output of the CPRF represented as a binary
string. Namely, we have R ⊆ {0, 1}η, where R is the range of the CPRF.
We also assume 1/|R| = negl(κ) without loss of generality. If the CPRF
does not satisfy the property, we can satisfy this by running ω(κ) number
of the CPRF in parallel. We can easily see that this preserves the partial
linear evaluation (Definition 4.2), key simulation security (Definition 4.3),
and uniformity (Definition 4.4) properties.

– We let d(κ) be an upper bound on the depth of the circuits Unon-lin
x and Eqr,

where Eqr : {0, 1}η → {0, 1} is the circuit that on input r̃ ∈ {0, 1}η returns 1
if and only if r = r̃ for r ∈ {0, 1}η. We have that d(κ) = poly(κ, �(κ), B(κ)) ≤
poly(κ) by the efficiency of the CPRF.

Then our IPE scheme ΠIPE = (IPE.Setup, IPE.Enc, IPE.KeyGen, IPE.Dec) is
described as follows. The lattice dimension n(κ) and m(κ), LWE modulus q(κ),
LWE noise distribution χ, Gaussian parameters τ0(κ) and τ(κ), and width of
noise Γ (κ) in the scheme will be specified right after the description of the
scheme.

IPE.Setup(1κ): On input the security parameter 1κ, it generates ppCPRF
$←

CPRF.Setup(1κ), k $← CPRF.Gen(ppCPRF),9 samples (B,B−1
τ0) $←

TrapGen(1n, 1m, q), A $← Z
n×m(s+1)
q , and v $← Z

n
q , and outputs pp :=

(B,A,v, ppCPRF) and msk := (B−1
τ0 ,k).

IPE.Enc(pp,y,M): On input the public parameter pp, a vector y ∈ [−B,B]�,
and a message M ∈ {0, 1}, it generates ˜k $← CPRF.Gen(ppCPRF) and samples
s $← Z

n
q , e0

$← χm, e1
$← [−Γ, Γ]m(s+1), and e2

$← χ. It then computes
˜kcon
y ← CPRF.Constrain(˜k, Cy), sets

c0 = s�B+e�
0 , c1 = s�[Acon

y −(1(˜kcon
y)�)⊗G]+e�

1 , c2 = s�v+e2+M	q/2

where Acon
y = AMk→y for Mk→y ← EvalLin(U lin

k→y), and outputs ct :=
(˜kcon

y , c0, c1, c2).
IPE.KeyGen(pp,msk,x): On input the master secret key msk = (B−1

τ0 ,k) and a
vector x ∈ [−B,B]�, it computes r := CPRF.Eval(k,x),

Mk→x ← EvalLin(U lin
k→x), Aint

x := AMk→x,

Hx ← EvalFbd(1M , Unon-lin
x ,Aint

x), Aeval
x := Aint

x Hx

Hr ← EvalF(Eqr,A
eval
x), Aeq

x,r := Aeval
x Hr,

9 We use k instead of K to denote the master secret key of CPRF for making it clear
that it is a vector.

398 S. Katsumata et al.

It then parses

Aeq
x,r → [Aeq

x,r,0||Aeq
x,r,1] ∈ Z

n×m
q × Z

n×m
q ,

samples u $← [B||Aeq
x,r,1]

−1
τ (v) by using the trapdoor B−1

τ0 , and outputs skx :=
(r,u).

IPE.Dec(pp, skx, ct,y,x): On input a secret key skx = (r,u), a ciphertext ct =
(˜kcon

y , c0, c1, c2), and vectors y ∈ [−B,B]� and x ∈ [−B,B]�, it computes
˜kint
x := U lin

y→x(˜k
con
y) and r̃ := Unon-lin

x (˜kint
x) and aborts if r = r̃. Otherwise, it

computes

My→x ← EvalLin(U lin
y→x), ̂Hx ← EvalFXbd(1M , Unon-lin

x , ˜kint
x ,Aint

x),
̂Hr ← EvalFX(Eqr, r̃,A

eval
x)

where Aint
x , and Aeval

x are computed as in IPE.KeyGen. Then it computes
u := c2 − [c0||c1My→x

̂Hx
̂Hr[0m||Im]�]u, and output 1 if |u| ≥ q/4 and 0

otherwise.

A concrete parameter candidate and the correctness of the scheme are pro-
vided in the full version. We note that the parameters are set in a way that the
LWE assumption with sub-exponential modulus size is believed to be hard. The
security of our scheme is provided by the following theorem.

Theorem 5.1. Under the hardness of the LWEn,m,q,DZ,χ
problem, ΠIPE is adap-

tively payload-hiding if ΠCPRF is IPE-conforming.

Proof. (sketc.h) We consider the following sequance of games between a valid
adversary A and a challenger. In the following, we only give brief explanations
on why each game is indistinguishable from the previous game. A full proof can
be found in the full version. Below, let Ei denote the probability that ̂coin = coin
holds in Gamei.

Game0: This is the original adaptive security game. Specifically the game pro-
ceeds as follows:

– The challenger generates ppCPRF
$← CPRF.Setup(1κ), k $←

CPRF.Gen(ppCPRF), samples (B,B−1
τ0) $← TrapGen(1n, 1m, q), A $←

Z
n×m(s+1)
q , and v $← Z

n
q , sets pp := (B,A,v, ppCPRF), and gives pp to

A.
– Given pp, A makes unbounded number of key generation queries and one

challenge query in arbitrary order.
–Key Generation: When A makes a key generation query x ∈ [−B,B]�,

the challenger computes r := CPRF.Eval(k,x),

Mk→x ← EvalLin(U lin
k→x), Aint

x := AMk→x,

Hx ← EvalFbd(1M , Unon-lin
x ,Aint

x), Aeval
x := Aint

x Hx

Hr ← EvalF(Eqr,A
eval
x), Aeq

x,r := Aeval
x Hr,

Aeq
x,r,1 := Aeq

x,r[0m||Im]�,

Adaptively Secure Inner Product Encryption from LWE 399

samples u $← [B||Aeq
x,r,1]

−1
τ (v) by using the trapdoor B−1

τ0 , and returns
skx := (r,u) to A.

–Challenge: When A makes a challenge query y∗, the challenger randomly
picks coin

$← {0, 1}, generates ˜k $← CPRF.Gen(ppCPRF) and ˜kcon
y∗ ←

CPRF.Constrain(˜k, Cy∗), samples s $← Z
n
q , e0

$← χm, e1
$← [−Γ, Γ]m(s+1),

e2
$← χ, and sets

c0 = s�B+ e�
0 , c1 = s�[Acon

y∗ − (1(˜kcon
y∗)�) ⊗ G] + e�

1 ,

c2 = s�v + e2 + coin	q/2

where Acon

y∗ = AMk→y∗ for Mk→y∗ ← EvalLin(U lin
k→y∗), and returns

ct∗ := (˜kcon
y∗ , c0, c1, c2) to A.

– Finally, A outputs its guess ̂coin.
By the definition of E0, the advantage of A is |Pr[E0] − 1/2|.

Game1: This game is identical to the previous game except that ˜kcon
y∗ used in the

challenge ciphertext is replaced with kcon
y∗

$← CPRF.Constrain(k,y∗).

By a straightforward reduction to key-simulatability of the CPRF, we have
|Pr[E1] − Pr[E0]| = negl(κ).

Game2: This game is identical to the previous game except that A is generated
as A := BR+ (1,k�) ⊗ G where R $← {−1, 0, 1}m×m(s+1).

By the leftover hash lemma, we have |Pr[E2] − Pr[E1]| = negl(κ).
Game3: This game is identical to the previous game except that c1 is generated

as c1 := c0RMk→y∗ + e�
1 .

By Lemma 3.2, we can show that we have

c0RMk→y∗ + e�
1 = s�[Acon

y∗ − (1(kcon
y∗)�) ⊗ G] + e�

0 RMk→y∗ + e�
1 .

Moreover, by our choice of parameters, we can show that the distribution
of e�

0 RMk→y∗ + e�
1 is statistically close to that of e�

1 . Therefore, we have
|Pr[E3] − Pr[E2]| = negl(κ).

Game4: This game is identical to the previous game except that in each key
generation, u is generated as u $← [B||BRMk→x

̂Hx
̂Hr[0m||Im]� +G]−1

τ (v)
where ̂Hx ← EvalFXbd(1M , Unon-lin

x ,kint
x ,Aint

x) and ̂Hr
$← EvalFX(Eqr, r,A

eq
x).

We note that this can be done using RMk→x
̂Hx

̂Hr[0m||Im]� instead of using
B−1

τ0 if the norm of RMk→x
̂Hx

̂Hr[0m||Im]� is small enough by a standard
lattice trapdoor technique [1,37].

By Lemma 3.2 and Lemma 3.4, we can show that we have

BRMk→x
̂Hx

̂Hr

[

0m

Im

]

+G = Aeq
x,r,1.

Moreover, by our choice of parameters, we can show that the norm of
RMk→x

̂Hx
̂Hr[0m||Im]� is small enough for sampling u in the above way.

Therefore, |Pr[E4] − Pr[E3]| = negl(κ).

400 S. Katsumata et al.

Game5: This game is identical to the previous game except that B is generated
as B $← Z

n×m
q instead of being generated with the trapdoor B−1

τ0 . We note
that this can be done since B−1

τ0 is no longer used due to the modification
made in Game4.

Since a matrix sampled with a trapdoor is almost uniformly distributed [25],
we have |Pr[E5] − Pr[E4]| = negl(κ).

Game6: This game is identical to the previous game except that c0 and c2 are
generated as c0

$← Z
m
q and c2

$← Zq.
We can show that we have |Pr[E6] − Pr[E5]| = negl(κ) by a straightforward
reduction to the LWE assumption. Moreover, we have Pr[E6] = 1/2 since no
information of coin is given to A in this game.

Combining the above, we obtain |Pr[E0] − 1/2| = negl(κ), which concludes the
proof of Theorem 5.1.

6 Extensions to Other Adaptively Secure Predicate
Encryptions

In this section, we show how to extend our IPE over the integers Z from the
previous section to other types of ABEs. Specifically, we provide the following
type of adaptive ABEs: IPE over Zp for p = poly(κ) and fuzzy IBE for small
and large universe. We achieve these extensions by encoding the attributes for
one predicate to attributes in another predicate. Thus, our transformations are
simple and the security reductions are straightforward. Since the former two
generic constructions are almost folklore, we provide the formal description in
the full version.

In the following, we first show how to encode a fuzzy predicate for large
universe D (i.e., D is exponentially large) into a fuzzy predicate for small universe
D′ (i.e., D is polynomially large). First, we define some parameters and functions.
Let D = {0, 1}d be the alphabet domain of a FIBE for large universe where
d = poly(κ). That is, a = (a1, . . . ,aL) ∈ DL is a (row) vector of identities in
FIBE for large universe. Let T be the threshold that satisfies 1 ≤ T ≤ L. For a
set S, a positive integer k, and a vector x,y ∈ Sk, let HDSk(x,y) be the number
of i ∈ [k] such that x[i] �= y[i].

We use an error correcting code (ECC) ECC : D → Gn such that |G| =
poly(κ) and n > d. For simplicity, we use Reed-Solomon code [42]. More con-
cretely, we consider a ∈ D as a polynomial pa(X) :=

∑d
i=1 a[i]Xi−1 over

G := Fq where q is a prime such that n < q = poly(κ) and a codeword is
f(a) = (pa(1), ..., pa(n)). Then, HDGn(f(a), f(b)) ≥ n−d+1 holds for a �= b ∈ D.
We naturally extend the domain of f to DL. That is, ECC : DL → (Gn)L

By the property of ECC, it holds that

0 ≤ HDDL(a,b) ≤ L − T =⇒ 0 ≤ HDGnL(f(a), f(b)) ≤ (L − T)n

L − T + 1 ≤ HDDL(a,b) ≤ L =⇒ (L − T + 1)(n − d+ 1) ≤ HDGnL(f(a), f(b)) ≤ Ln

Adaptively Secure Inner Product Encryption from LWE 401

for two identities a = (a1, ..., aL),b = (b1, ..., bL) ∈ DL. Therefore, for a fixed T ,
we will set (n, d) as

(L − T)n < (L − T + 1)(n − d + 1). (15)

This allows us to argue that a “gap” exists in the hamming distance defined over
polynomially large domains if there is a “gap” in the hamming distance defined
over exponentially large domains.

Notably, we can reduce a fuzzy predicate Pexp for exponentially large alpha-
bet strings to a fuzzy predicate Ppoly for polynomially large alphabet strings.
That is, we first encode a ∈ DL into f(a) ∈ GnL by using an ECC. Then, if
the threshold of Pexp is T , we set the threshold of Ppoly to be Tn. Lastly, we set
n > (d − 1)(L − T + 1) to satisfy Equation (15). Notice n is some polynomial in
κ since d = poly(κ), L = poly(κ), and 0 ≤ T ≤ L.

Translating the above encoding technique to the ABE context is straightfor-
ward and is omitted to the full version.

Acknowledgement. We thank anonymous reviewers for their helpful comments.
The first and the third authors were supported by JST CREST Grant Number
JPMJCR19F6 and JSPS KAKENHI Grant Number JP19H01109.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

2. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional
encryption for threshold functions (or fuzzy ibe) from lattices. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297.
Springer, Heidelberg (2012)

3. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0_2

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. Part III, volume 9816 of LNCS, pp. 333–362. Springer, Heidelberg (2016)

5. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014)

6. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6_20

7. Attrapadung, N., Matsuda, T., Nishimaki, R., Yamada, S., Yamakawa, T.: Con-
strained PRFs for NC1 in traditional groups. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. Part II, volume 10992 of LNCS, pp. 543–574. Springer, Heidelberg
(2018)

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20

402 S. Katsumata et al.

8. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptol. 24(4), 659–693 (2011)

9. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

10. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

11. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

12. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. Part II, volume 8270 of
LNCS, pp. 280–300. Springer, Heidelberg (2013)

13. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

14. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC, pp. 575–584. ACM Press, June 2013

15. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. Part I, volume
10677 of LNCS, pp. 264–302. Springer, Heidelberg (2017)

16. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7_1

17. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. Part
III, volume 9816 of LNCS, pp. 363–384. Springer, Heidelberg (2016)

18. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE. In:
Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 446–476.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_16

19. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2012)

20. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via
predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. Part
II, volume 9057 of LNCS, pp. 595–624. Springer, Heidelberg (2015)

21. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. Part II, volume 10992 of LNCS, pp. 577–607. Springer, Heidelberg
(2018)

22. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_32

23. Davidson, A., Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Adap-
tively secure constrained pseudorandom functions in the standard model. CRYPTO
2020, 111 (2020)

24. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11761679_27

https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/11761679_27

Adaptively Secure Inner Product Encryption from LWE 403

25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

26. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. Part I, volume 8042 of LNCS, pp. 75–92.
Springer, Heidelberg (2013)

27. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

28. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. J. ACM 62(6), 45:1–45:33 (2015)

29. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM
STOC, pp. 469–477. ACM Press, June 2015

30. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling function-
alities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 361–388. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5_14

31. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: Umans, C. (ed.) 58th
FOCS, pp. 612–621. IEEE Computer Society Press, October 2017

32. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di
Vimercati, S. (eds.)ACM CCS 2006, pp. 89–98. ACM Press, October / November
2006. Available as Cryptology ePrint Archive Report 2006/309

33. Katsumata, S., Yamada, S.: Non-zero inner product encryption schemes from var-
ious assumptions: LWE, DDH and DCR. In: Lin, D., Sako, K. (eds.) PKC 2019.
Part II, volume 11443 of LNCS, pp. 158–188. Springer, Heidelberg (2019)

34. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. J. Cryptol. 26(2), 191–224 (2013)

35. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A-R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013, pp. 669–684. ACM Press, November 2013

36. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: attribute-based encryption and (Hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–
91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

37. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

38. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner prod-
uct encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)

39. Okamoto, T., Takashima, K.: Fully secure functional encryption with a large class
of relations from the decisional linear assumption. J. Cryptol. 32(4), 1491–1573
(2019)

40. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342.
ACM Press, May / June 2009

https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-642-13190-5_4

404 S. Katsumata et al.

41. Peikert, C., Shiehian, S.: Privately constraining and programming PRFs, the LWE
way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. Part II, volume 10770 of LNCS,
pp. 675–701. Springer, Heidelberg (2018)

42. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. SIAM J. Com-
put. 8(2), 300–304 (1960)

43. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

44. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

45. Shi, E., Bethencourt, J., Chan, H.T.-H., Song, X.D., Perrig, A.: Multi-dimensional
range query over encrypted data. In: 2007 IEEE Symposium on Security and Pri-
vacy, pp. 350–364. IEEE Computer Society Press, May 2007

46. Tsabary, R.: Fully secure attribute-based encryption for t-CNF from LWE. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. Part I, volume 11692 of LNCS,
pp. 62–85. Springer, Heidelberg (2019)

47. Wang, G., Wan, M., Liu, Z., Dawu, G.: Dual system in lattice: fully secure abe
from lwe assumption. IACR Cryptol. ePrint Arch. 2020, 64 (2020)

48. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

49. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

50. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: Umans, C. (ed.) 58th FOCS, pp. 600–611. IEEE Computer Society Press, Octo-
ber 2017

Unbounded Dynamic Predicate
Compositions in ABE from Standard

Assumptions

Nuttapong Attrapadung1(B) and Junichi Tomida2(B)

1 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

n.attrapadung@aist.go.jp
2 NTT Corporation, Tokyo, Japan
junichi.tomida.vw@hco.ntt.co.jp

Abstract. At Eurocrypt’19, Attrapadung presented several transfor-
mations that dynamically compose a set of attribute-based encryption
(ABE) schemes for simpler predicates into a new ABE scheme for more
expressive predicates. Due to the powerful unbounded and modular
nature of his compositions, many new ABE schemes can be obtained
in a systematic manner. However, his approach heavily relies on q-type
assumptions, which are not standard. Devising such powerful composi-
tions from standard assumptions was left as an important open problem.
In this paper, we present a new framework for constructing ABE schemes
that allow unbounded and dynamic predicate compositions among them,
and show that the adaptive security of these composed ABE will be pre-
served by relying only on the standard matrix Diffie-Hellman (MDDH)
assumption. This thus resolves the open problem posed by Attrapadung.
As for applications, we obtain various ABEs that are the first such instan-
tiations of their kinds from standard assumptions. These include the
following adaptively secure large-universe ABEs for Boolean formulae
under MDDH:

– The first completely unbounded monotone key-policy (KP)/
ciphertext-policy (CP) ABE. Such ABE was recently proposed, but
only for the KP and small-universe flavor (Kowalczyk and Wee,
Eurocrypt’19).

– The first completely unbounded non-monotone KP/CP-ABE. Espe-
cially, our ABEs support a new type of non-monotonicity that sub-
sumes previous two types of non-monotonicity, namely, by Ostro-
vsky et al. (CCS’07) and by Okamoto and Takashima (CRYPTO’10).

– The first (non-monotone) KP and CP-ABE with constant-size
ciphertexts and secret keys, respectively.

– The first KP and CP-ABE with constant-size secret keys and cipher-
texts, respectively.

At the core of our framework lies a new partially symmetric design of the
core 1-key 1-ciphertext oracle component called Key Encoding Indistin-
guishability, which exploits the symmetry so as to obtain compositions.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 405–436, 2020.
https://doi.org/10.1007/978-3-030-64840-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_14

406 N. Attrapadung and J. Tomida

Keywords: Attribute-based encryption · Predicate compositions ·
k-Lin · Completely unbounded ABE · Non-monotone ABE · Succinct
ABE · Boolean formula

1 Introduction

Attribute-based encryption (ABE) is a generalized form of public-key encryption
that allows fine-grained access control over encrypted data [24,33]. In a broader
sense of ABE, each scheme specifies a predicate P : X × Y → {0, 1}, where X and
Y are ciphertext and secret-key attribute universes, respectively. All users can
encrypt a message with an arbitrary attribute x ∈ X. An owner of a master secret
key can generate a secret key for an arbitrary attribute y ∈ Y. A ciphertext for
attribute x is decryptable with a secret key for attribute y if and only if x and
y satisfy the predicate P, i.e., P(x, y) = 1. This is in contrast to the traditional
public-key encryption, in which only one legitimate user can decrypt a ciphertext.

One of central research topics in ABE is to explore what kind of predi-
cates for which ABE can be realized. This is important in practice since if one
attempts to realize an access control system based on ABE, the underlying pred-
icate must be able to express all decryption conditions that appear in the sys-
tem. A line of works has shown that we can realize ABE for various predicates:
ABE for span programs, (non-)deterministic finite automata, polynomial-sized
circuits, and so on [4,14,23–25,31,33,37]. These works directly construct ABE
schemes for targeting predicates. In contrast, there is also another approach
to construct ABE schemes for more expressive new predicates by transforma-
tions and combinations of known predicates [6,7,9,13]. The state of the art on
this approach is the work by Attrapadung [9], who proposed a framework for
dynamic predicate compositions and introduced new ABE schemes such as ABE
for key-policy (KP)/ciphertext-policy (CP) augmentation over predicate sets,
nested-policy ABE, and mixed-policy ABE. The salient feature of these ABE
schemes is that they allow unbounded and dynamic predicate compositions, that
is, they do not impose any restriction on the size and structure of composition
policy. This is in contrast to previous works [6,7,13], which allow only static
(i.e., a-priori fixed) compositions. He also showed that his framework captures
predicates that are known but whose adaptively secure ABE instance was still
open such as the predicate for completely unbounded non-monotone ABE.

The framework of [9] modularly constructs new predicates with correspond-
ing pair encoding schemes (PES), which are encoding systems that yield concise
expressions of ABE schemes [7]. It is shown in [9] that a nested application
of three transformations of predicates, namely, direct sum, dual transformation,
and KP augmentation over a single predicate (we call it just KP augmentation in
what follows), is sufficiently powerful to obtain expressive predicates, such as the
predicates for KP/CP augmentation over predicate sets, nested-policy ABE, and
completely unbounded non-monotone ABE. He also demonstrates the transfor-
mations of PESs that correspond to the three transformations of the predicates.
Hence, starting from known predicates and corresponding PESs, one can obtain

Unbounded Dynamic Predicate Compositions in ABE 407

Table 1. Comparison among frameworks that compose multiple predicates over ABE.

Framework Composition type Comp. class Input primitive Assumption

ABS17 [6] Static Boolean formulae Predicate encodings
(info.-theoretic)

MDDH

Att19 [9] Unbounded, Dynamic SP, BP, DFA Pair encodings with symbolic
security

q-ratio

This work Unbounded, Dynamic Boolean formulae Pair encodings with info.-theoretic
security or with Key-Encoding
Indistinguishability

MDDH

Note: SP, BP, DFA stand for span programs, branching programs, deterministic, finite
automata, respectively.

a new transformed predicate along with its PES. Additionally, all PESs obtained
in his framework can be used to instantiate a secure ABE scheme.

A crucial fact that his framework relies on is that the transformations of PESs
preserve the symbolic property, introduced by Agrawal and Chase [3]. That is, he
proved that all transformed PESs in his framework satisfy the symbolic property
if the starting PESs satisfy the symbolic property. Agrawal and Chase showed
that an ABE scheme induced by a PES with the symbolic property is adaptively
secure under the q-ratio assumption [3]. Thus, we can use known predicates that
have a PES with the symbolic property to construct a new expressive predicate
and the corresponding PES, which results in a secure ABE scheme.

One drawback of his framework is the necessity of the q-ratio assumption,
which is one of so-called q-type assumptions. The q-ratio assumption is parame-
trized with two parameters d1 and d2 and becomes stronger as they grow. We
require that the q-ratio assumption holds with respect to sufficiently large d1
and d2 to assure the security of most ABE schemes because these parameters
depend on adversary’s behavior. However, the q-ratio assumption is a new com-
plex assumption and thus not well-understood. Hence, it is desirable if we can
transform PESs and instantiate an ABE scheme from a transformed PES under
well-understood standard assumptions like the matrix Diffie-Hellman assump-
tion (which includes k-Lin as a special case), instead of q-type assumptions. The
realization of such a framework yields many important new ABEs from standard
assumptions but has been left as an open problem by Attrapadung [9].

1.1 Our Contributions

New Framework. We give an affirmative answer to the problem and present
a new framework for transforming predicates and constructing ABE schemes
on prime-order bilinear groups, which relies on only the standard matrix Diffie-
Hellman (MDDH) assumption. Following [9], our framework also composes a new
predicate by combining three essential transformations, namely, the direct sum,
dual transformation, and KP augmentation. Nested applications of these trans-
formations yield various expressive predicates and ABE schemes. Our framework
introduces a new property on PESs that satisfies the two requirements under the

408 N. Attrapadung and J. Tomida

Table 2. Comparison among unbounded ABE schemes.

References Large

universe

Adaptive

security

Multi-

use

Static

assumption

Without

RO

Non-

monotonicity

Prime-

order

KP/CP

LW11 [27] � � � � KP

OT12 [30] � � � � �(OT) � KP, CP

RW13 [32] � � � � KP, CP

YAHK14 [39] � � � �(OSW) � KP, CP

Att14 [7] � � � � KP

AY15 [13] � � � � CP

Att16 [8] � � � � � KP, CP

AC17a [3] � � � � � KP, CP

AC17b [2] � � � � KP, CP

CGKW18 [16] � � � � KP, CP

KW19 [26] � � � � � KP

Att19 [9] � � � � �(OSW) � KP, CP

TKN19 [35] � � � � �(OT) � KP, CP

Ours 1 � � � � � � KP, CP

Ours 2 � � � � � �(OSWOT) � KP, CP

Note: KP, CP is for key-policy, ciphertext-policy. RO is for random oracles. We consider three types of

non-monotone ABE: OT-type (Okamoto-Takashima [30]), OSW-type (Ostrovsky-Sahai-Waters [31]), and a

new unified type (OSWOT) (see Sect. 6).

MDDH assumption: the preservation of the property in the transformations and
the induction of the adaptive security of the resulting ABE scheme.

Note that there are two differences between our framework and that by Attra-
padung [9] (we provide a comparison among composition frameworks in Table 1).
First, our KP augmentation is done with Boolean formulae, whereas that by
Attrapadung is augmentation with span programs, branching programs, and
deterministic finite automata (realizing them from standard assumptions is an
interesting open problem). Second, starting predicates need to have a PES with
a certain information-theoretic property, whereas those in his framework only
require a PES with the symbolic property. Note that the latter may be attain-
able by larger classes of predicates (but the symbolic property would require
q-type assumptions). Nevertheless, our framework is still sufficiently powerful to
realize many ABE schemes of which instantiations under the standard assump-
tions have remained open before our work.

New Instantiations. Via our new framework, we obtain the following ABE
instantiations for important specific predicates. We emphasize that all the instan-
tiations are large-universe constructions, which have a super-poly size attribute
domain. Their comparisons to previous schemes are given in Tables 2, 3, 4 and 5.

1. The first adaptively secure completely unbounded KP/CP-ABE for mono-
tone Boolean formulae under MDDH.1 Previously, such an adaptively secure

1 To be more precise, we describe some terms. Unbounded ABE [27] refers to schemes
that have no bounds on the sizes of attribute sets (inputs to a Boolean formula) and
policies (Boolean formulae). Multi-use refers to the property that any attribute can
be used arbitrarily many times in one policy. Completely unbounded ABE refers to
unbounded large-universe ABE with multi-use (see e.g., [9]).

Unbounded Dynamic Predicate Compositions in ABE 409

Table 3. Closer comparison among adaptively secure unbounded ABE with multi-use
in the standard model.

References KP/CP Large univ. Static assump. Non-monoton. |pk| |ct| |sk|
Att14 [7], Att16 [8], AC17a [3] KP � O(1) O(t) O(n)

KW19 [26] KP � O(1) O(t) O(n)

Att19 [9] KP � �(OSW) O(1) O(t) O(n)

Ours 1 KP � � O(1) O(t) O(n)

Ours 2 KP � � �(OSWOT) O(1) O(t) O(n)

AY15 [13], Att16 [8], AC17a [3] CP � O(1) O(n) O(t)

Att19 [9] CP � �(OSW) O(1) O(n) O(t)

Ours 1 CP � � O(1) O(n) O(t)

Ours 2 CP � � �(OSWOT) O(1) O(n) O(t)

Table 4. Comparison among ABE with constant-size ciphertexts (|ct| = O(1)).

References KP/CP Large

univ.

Adapt.

security

Static

assumptn.

Non-

monoton.

Prime-

order

|pk| |sk|

ALP11 [11] KP � �(OSW) � O(T) O(Tn)

Att14 [7] KP � � O(T) O(Tn)

CW14 [17] KP � O(T) O(Tn)

Tak14 [34] KP � � �(OSW) � O(T) O(Tn)

Att16 [8] KP � � � O(T) O(Tn)

AC17a [3] KP � � � O(T) O(Tn)

Att19 [9] KP � � �(OSW) � O(T2) O(T3n)

Ours 3 KP � � � �(OSW) � O(T) O(Tn)

AHY15 [10]CP � � �(OSW) � O((TN)2λ) O((TN)4λ2)

AC16 [1] CP � � O(N(T + M)) O(N2T + NM)

Att19 [9] CP � � �(OSW) � O(N2 + NM) O(t(N3 + N2M))

Ours 5 CP � � � � Õ((M + Tλ)2)Õ((M + Tλ)4)

Table 5. Comparison among ABE with constant-size keys (|sk| = O(1)).

References KP/CPLarge

univ.

Adapt.

security

Static

assumptn.

Non-

monoton.

Prime-

order

|pk| |ct|

AY15 [13] CP � � O(T) O(Tn)

Att16 [8] CP � � � O(T) O(Tn)

AC17a [3] CP � � � O(T) O(Tn)

Att19 [9] CP � � �(OSW) � O(T2) O(T3n)

Ours 4 CP � � � �(OSW) � O(T) O(Tn)

AHY15 [10]KP � � �(OSW) � O((TN)2λ) O((TN)4λ2)

Att19 [9] KP � � �(OSW) � O(N2 + NM) O(t(N3 + N2M))

Ours 6 KP � � � � Õ((M + Tλ)2)Õ((M + Tλ)4)

Notes for Table 3, 4 and 5: we denote t = |attribute set|, n is the input length of a Boolean formula,

while T, N are the maximum bound for t, n, respectively (if required). M is the maximum bound

for the size of Boolean formulae (if required). λ is the security parameter, i.e., λ = �log p�.

KP/CP-ABE relies on either q-type assumptions [3,8,9] or the one-use restric-
tion (each attribute is usable at most once in a policy) [16,30]. Note that the
recent unbounded KP-ABE with multi-use by Kowalczyk and Wee [26, Sect.
A] is a small-universe construction, i.e., the attribute domain size is (a priori
unbounded) polynomial.

410 N. Attrapadung and J. Tomida

2. The first adaptively secure completely unbounded KP/CP-ABE for non-
monotone Boolean formulae under MDDH. Furthermore, our ABE schemes
support a new type of non-monotonicity that conflates the two types of exist-
ing non-monotonicity by Ostrovsky, Sahai, and Waters (OSW) [31] and by
Okamoto and Takashima (OT) [29]. In other words, both OSW-non-monotone
ABE and OT-non-monotone ABE can be captured as a special case of our
non-monotone ABE. Previously, an adaptively secure unbounded ABE for
non-monotone formulae is either the OSW-type and based on q-type assump-
tion [9] or the OT-type with the one-use restriction [30].

3. The first adaptively secure KP/CP-ABE with constant-size ciphertexts/secret
keys under MDDH for (OSW-non-)monotone Boolean formulae, respectively.

4. The first (adaptively secure) KP/CP-ABE with constant-size secret keys/
ciphertexts under MDDH for monotone Boolean formulae, respectively.

Note that almost all previous ABE with constant-size ciphertexts or keys
rely on q-type assumptions [1,3,7–10,13], even when considering only selective
security. There are only two exceptions: KP-ABE with constant-size ciphertexts
of [17,34], but these only achieves semi-adaptive security.

Discussions. We clarify that our framework allows us to construct ABEs that
are hard to obtain even if given the recent groundbreaking work by Kowalczyk
and Wee (KW), who solved the multi-use problem in the adaptive setting and
also presented an unbounded KP-ABE scheme with multi-use [26]. Most notably,
we can construct completely unbounded OSW-non-monotone KP/CP-ABEs via
our framework in a systematic manner (our newly defined non-monotone ABE
subsumes OSW-non-monotone ABE). Prior to our work, there are no unbounded
OSW-non-monotone ABE schemes based on static assumptions even with the
one-use restriction (Table 2). This means that the KW technique, which is useful
for the multi-use problem, does not directly help to realize unbounded OSW-
non-monotone ABE.

We next highlight that our ABE for the newly defined non-monotonicity
is practically meaningful, besides providing a theoretical interest. Intuitively, it
allows a ciphertext to be assigned with multiple attribute sets each with a “tag”.
This, in turns, allows flexible blacklisting access controls in dynamic systems
where new attributes can be added on into the system after deployment. We
will describe it in Sect. 6 (with more details and formal definitions in the full
version). We remark that, in small universe ABE, we can use monotone ABE
as non-monotone ABE by preparing both positive and negative attributes [31].
However, this is not the case in large-universe ABE since we cannot attach an
exponentially large number of negative attributes to ciphertexts or secret keys.
Hence, for large-universe ABE, non-monotone variant is essentially more difficult
to obtain.

From these, we believe that it is challenging and important to devise a modu-
lar framework that allows us to construct such ABEs from standard assumptions.

Unbounded Dynamic Predicate Compositions in ABE 411

1.2 Technical Overview of Our Framework

We first recall the three main basic predicate transformations/compositions sim-
ilarly to [9], namely, the Dual, the KP augmentation, and the Direct sum. For a
predicate P : X × Y → {0, 1}, we define the first two, Dual[P], KP1[P], as2

Dual[P] (y, x) = P(x, y)

KP1[P]
(
x, Y =

(
(y1, . . . , yn), f

))
= f

(
P(x, y1), . . . ,P(x, yn)

)
.

We remark two things: a composition policy f : {0, 1}n → {0, 1} is a part of
the key attribute Y ; the “1” in KP1 refers to the single predicate P and a single
ciphertext attribute x. Next, for a set of predicates P = {P1, . . . ,Pk}, we define
its direct sum DS[P] as follows. Here i, j specifies predicate Pi,Pj , respectively.

DS[P]
(
(i, x), (j, y)

)
= 1 iff i = j ∧ Pi(x, y) = 1.

It is shown in [9] that the three transforms imply the “full” KP augmentation
over predicate sets, denoted KP[P] (notice the absent of “1”), defined as follows.
For a set X = {(i1, x1), . . . , (it, xt)} and vector Y = ((j1, y1), . . . , (jn, yn), f), let

KP[P]
(
X, Y

)
= f(b1, . . . , bn) where bv = 1 iff ∃iu=jv

: Pjv
(xu, yv) = 1

It is this full composition that we quantify the static vs dynamic, bounded vs
unbounded features: it is static if f is fixed (and hence so does n), otherwise it
is dynamic over the class of f ; it is unbounded when n is unbounded.

We briefly explain its direct applications. Setting P′ = {E}, where E is the
equality predicate (IBE), we obtain the completely unbounded KP-ABE for
monotone policies, that is, ABE for KP[P′] implies Ours 1 in Table 2. Similarly,
setting P′′ = {E, Ē}, where Ē is the negation of E, basically yields that for
non-monotone policies (see other precise ways to define its variants in the full
version).

As motivated in [9], the seemingly unrelated Dual indeed plays a crucial role
in bootstrapping KP1 to KP (i.e., even when considering bootstrapping over sole
key-policy flavors, and not considering across dual flavors, namely ciphertext-
policy). Intuitively, this is since the full KP “intrinsically” contains a ciphertext-
policy predicate as given by Dual[KP1[P]]

(
X ′ =

(
(x1, . . . , xt), fOR

)
, y

)
, where

X ′ with the OR policy here is another way to express the set X in KP. “Nesting”
KP1 and Dual ◦ KP1 together then yields KP (cf. [9]). Note also that the direct
sum is used to “glue” predicates in P to single predicate; it is not needed for the
case of a singleton P (such as P′ above). Now that KP is reduced to the much
simpler KP1, Dual (and DS), we will deal with these basic transforms.

Background on PES. We now briefly recall PES [7], as refined in [3]. Infor-
mally, a PES for P : X × Y → {0, 1} is represented by a variable α, five vectors
of variables (w, s, ŝ, r, r̂), and two sets of polynomials (called ciphertext and key

2 For simplicity, we omit writing their domains here. See formal treatments in Sect. 4.

412 N. Attrapadung and J. Tomida

encodings, resp.) on these variables (cx(s, ŝ,w),ky(α, r, r̂,w)) that depend on
x ∈ X and y ∈ Y, respectively. We require that s contains a variable s0. Let
N = p1p2 for primes p1, p2, and e : G × H → GT be bilinear groups of order
N . Let gi, hi be generators of the subgroups Gi,Hi of order pi for i ∈ {1, 2},
respectively, and g = g1g2, h = h1h2. Then, an ABE scheme in composite-order
groups based on PES can be described as follows: pk = (gw

1 , e(g1, h)α) and

ctx = (gs
1, g

cx(s,ŝ,w)
1 , e(g1, h)s0αm), sky = (hr

1, h
ky(α,r,r̂,w)
1 h

ky(α,0,r̂,0)
2),

where (α,w, s, ŝ, r, r̂) ← Z
t
N (t is the total number of the variables). We require

that each polynomial of cx is a linear combination of monomials siwj and ŝk

(where si ∈ s, ŝk ∈ ŝ, wj ∈ w). This yields the linearity of cx over s, ŝ, when
fixing w. Analogous properties go for key encodings. As an example, a PES
for IBE [7] has the form cx = s0(w1x + w2), ky = α + r1(w1y + w2), where
w = (w1, w2), s = s0, r = r1 (and no ŝ, r̂). In what follows in this section, we
write cx(s, ŝ,w) and ky(α, r, r̂,w) to implicitly include s and r, respectively.

Our Goal: Three Main Implications. Since the symbolic property works only
with the q-ratio assumption, we need a completely different new notion on PES
that is preserved via the transformations, and that, at the same time, implies the
adaptive security of the induced ABE scheme under standard assumptions. To
this end, in this work, we introduce a new central notion called Key-Encoding
Indistinguishability for PES, denoted KE-ind. Our goal is to design KE-ind in
such a way that the following theorems (stated informally below) hold. The first
states the preservation of KE-ind under the transformation. The second states
that KE-ind implies adaptively secure ABE under MDDH.

Informal Theorem 1. For a composition C ∈ {Dual,DS,KP1}, if there exists
a PES for P that satisfies KE-ind, then there exists a PES for C[P] that satisfies
KE-ind under MDDH. (Note that for DS, its input is a predicate set P.)

Informal Theorem 2. If there exists a PES for P that satisfies KE-ind, then
there exists an adaptively secure ABE scheme for P under MDDH.

The third theorem finally tells us how to achieve KE-ind via the existing
information-theoretic notion of PES called perfect master-key hiding (PMH) of
PES as defined in [7]. PMH requires that the following two distributions are
identical with respect to (α,w, s, ŝ, r, r̂) ← Z

t
N :

{cx(s, ŝ,w),ky(α, r, r̂,w)} and {cx(s, ŝ,w),ky(0, r, r̂,w)}. (1)

Informal Theorem 3. If a PES satisfies the PMH property, then the same
PES also satisfies KE-ind under MDDH.

From these theorems, we have the following corollary.

Informal Corollary 1. If there exists a PES for P satisfying the PMH, then
there exists an adaptively secure ABE for the composed predicate C1 ◦ · · · ◦Cn[P]
under MDDH, where Ci ∈ {Dual,DS,KP1}. (For DS inputs are sets.)

Unbounded Dynamic Predicate Compositions in ABE 413

We can start from such information-theoretic PESs for basic predicates in
[6,7], such as IBE, and obtain adaptively secure ABE for composed predicates.

To obtain these theorems, it remains to properly design KE-ind.

Designing Key-Encoding Indistinguishability. For simplicity, we explain
our framework in composite-order bilinear groups in this overview since we can
basically convert ABE constructions in composite-order groups into those in
prime-order groups via the framework by Chen et al. [15,16,20]. Note that the
MDDH assumption in prime-order groups corresponds to the subgroup (SG)
assumptions in composite-order groups (see e.g., [16]).

Our starting point is to define KE-ind to be exactly the computationally
master-key hiding (CMH) property [7], which is a relaxed notion of PMH
(and we would obtain Theorem 3 above). We say that a PES Γ specified by
(α,w, s, ŝ, r, r̂, cx,ky) for P satisfies CMH if the following advantage of A is
negligible:

AdvCMH
A,Γ (λ) =

∣∣∣∣Pr
[
β = β′ β ← {0, 1}

β′ ← AcO(·),kOβ(·)(g1, g2, h1, h2)

]
− 1

2

∣∣∣∣ ,

where the ciphertext encoding oracle cO takes x ∈ X and outputs g
cx(s,ŝ,w)
2 ,

while the key encoding oracle kOβ takes y ∈ Y and outputs h
ky(βα,r,r̂,w)
2 , where

α,w, s, ŝ, r, r̂ are random. Here A can query each oracle once with R(x, y) = 0.
Attrapadung showed that if we have a PES for P with CMH, then we can obtain
an adaptively secure ABE scheme for P assuming the SG assumption [7] (this
implies Theorem 2). Thus, if we could show that CMH is preserved via the
transformations black(this would imply Theorem 1), we would achieve the goal.

Unfortunately, we quickly found out that this approach fails; in particular,
we do not know how to preserve CMH via the KP1 transformation. Assume that
we use the same KP1 transformation as in [9], which transforms a PES Γ for P
to a PES Γ ′ for KP1[P] to be exactly the same as Γ except that

k′
Y (α, r′, r̂′,w) = {kyi

(σi, ri, r̂i,w)}i∈[n]

and r′ = {ri}i∈[n], r̂′ = {r̂i}i∈[n], where {σi}i∈[n] are secret shares of α with
respect to f . (Here, primed variables are for Γ ′.) Our goal here is to construct a
reduction that breaks CMH of Γ internally using an adversary that breaks CMH
of Γ ′. One hopeful strategy is to limit f to Boolean formulae and consider a series
of hybrids as the KW framework [26]. However, this idea does not work as the

reduction cannot simulate {h
kyi

(σi,ri,r̂i,w)
2 }i�=j when randomizing h

kyj
(σj ,rj ,r̂j ,w)

2

due to the absence of hw
2 . Including hw

2 in the input of the CMH adversary does
not solve the problem since this makes PMH not imply CMH, and Theorem 3
does not hold in such a definition (observe that in Eq. (1), w is not given out).
Our next observation here is that we will need a property on indistinguishability
of H2 elements where the output of kOβ is simulatable without hw

2 .

First Step: Subgroups vs Entire Groups. Our first idea is to make the
outputs of cO and kOβ use entire groups G,H instead of only subgroups G2,H2,

414 N. Attrapadung and J. Tomida

which can be seen as an extension of the technique by Tomida et al. [35]. A new
candidate property (say, Cand1) for Γ is then defined as follows:

AdvCand1A,Γ (λ) =
∣∣∣∣Pr

[
β = β′ β ← {0, 1}, w ← Z

ω
N

β′ ← AcO(·),kOβ(·)(g1, h1, h2, g
w
1 , hw

1)

]
− 1

2

∣∣∣∣ ,

where gcx(s,ŝ,w) ← cO(x) and h
ky(0,r,r̂,w)
1 h

ky(βα,0,r̂,0)
2 ← kOβ(y) where α, s, ŝ, r, r̂

are random. Crucially, now, g2 is not given out to A.
Cand1 implies an adaptive security of the ABE scheme from Γ (and we obtain

Theorem 2). Intuitively, the indistinguishability of the H2 elements in the output
of kOβ implies the indistinguishability between normal and semi-functional keys,
which then implies the adaptive security of the ABE scheme via the dual system
technique [36]. Next, Cand1 can be shown to be implied by PMH and the SG
assumption (and we obtain Theorem 3) as follows (also recall linearity of ky):

h
ky(0,r,r̂,w)
1 h

ky(0,0,r̂,0)
2 ≈c

SG
− · h

ky(0,r,r̂,w)
2 ≈s

PMH
− · h

ky(α,r,r̂,w)
2 ≈c

SG
− · h

ky(α,0,r̂,0)
2 .

Note that “−” is the same element in H1, and ≈c,≈s are computational and
statistical indistinguishability, respectively. The purpose for making g2 absent
in A’s input is to use the SG assumption that claims hr

1 ≈c hr. In this way, we
can prove that Cand1 is preserved in KP1 for Boolean formulae by extending
the KW framework. Intuitively, the reduction goes through as it can simulate
Ki = h

kyi
(0,ri,r̂i,w)

1 h
kyi

(σi,0,r̂i,0)
2 without hw

2 (observe that there is no w in the
exponent to h2 in Ki).

However, it turns out that Cand1 is not preserved in Dual. Assume that we
use the same Dual transformation as in [3], which transforms a PES Γ for P to a
PES Γ for Dual[P] as follows: first let the variables for Γ be w′ = (w0,w), s′ =
(snew, r), ŝ′ = r̂, r′ = s, r̂′ = ŝ and define the two encodings for Γ as

c′
y(s′, ŝ′,w′) = ky(sneww0, r, r̂,w), k′

x(α, r′, r̂′,w′) = (cx(s, ŝ,w), α − s0w0),

where w0, snew are new variables, and snew takes a role of s0 in Γ . To prove the
preservation of Cand1 in Dual, we need to construct a reduction R that breaks
Cand1 of Γ internally using an adversary A against (Cand1 of) Γ . A crucial fact
here is that the roles of G and H are “switched”, that is, R uses its input G and
H as H and G for the input of A, respectively. This is since R needs the reply
of cOR to answer A’s query to kOA (and analogously for kOR to cOA). Now the
problem arises as R does not possess g2, but this very term will be needed to
supply to A’s input as h2 (recall the “switching” of G and H). Also recall that
h2 was necessary to prove Theorem 2 (to simulate semi-functional keys).

Second Step: Parametrized vs Same-at-once. To solve the above prob-
lem, instead of preserving the same property from Γ to Γ , we will establish an
implication over slightly different properties on Γ and Γ . Namely, we use more
subgroups by letting N = p1 · · · pz and parametrize the candidate property as
(z, �)-Cand2, where z, � ∈ N s.t. z ≥ �. Defining bilinear groups e : G × H → GT

Unbounded Dynamic Predicate Compositions in ABE 415

of order N and its subgroups naturally, we then define Adv
(z,�)-Cand2
A,Γ (λ) as

∣∣∣∣Pr
[
β=β′ β ← {0, 1}, w ← Z

ω
N

β′←AcO(·),kOβ(·)(g1, h1, g�+1, . . . , gz, h�, . . . , hz, g
w
1 , hw

1)

]
−1

2

∣∣∣∣ (2)

where gcx(s,ŝ,w) ← cO(x) and h
ky(0,r,r̂,w)
1 h

ky(βα,0,r̂,0)
� ← kOβ(y). In this way, we

have that g� is absent (generalizing the absence of g2, so as to establish Theorem 3
as in the first step), but now, at the same time, we can also potentially establish
the implication over Dual that (z, �− 1)-Cand2 of Γ implies (z, �)-Cand2 of Γ for
� ≥ 2 in the sense that the reduction R possesses g�, . . . , gz (as per the former
notion) which can be used to exactly simulate h�, . . . , hz (giving to the adversary
A against the latter notion), where we recall the switching of G and H.

Final Step: Wrapping up (Partial) Symmetries in Two Oracles. In the
above, we generalize the functionality of the subgroups G2,H2 directly to G�,H�

and hence obtain the above design of the oracle kO. However, this design fails
when we try to use the reply of cOR to answer A’s query to kOA (as presumably
required in the reduction). This is since the former is an element of the entire
group, while the latter is in the subgroup with generators h1, h�; however, A

possesses g�+1 and thus can simply distinguish the two. A similar failure occurs
analogously when relating kOR to cOA. To solve this, we need to re-design also
the two oracles carefully (satisfying not only this particular preservation of Dual
that we are discussing but also all the required 3 theorems). To this end, our
solution is to define them in partially (and not fully) symmetrical manner:

g
cx(s,0,w)
1 g

cx((s0,0),0,w)
[2,�] gcx(0,ŝ,0) ← cO(x),

h
ky(0,r,0,w)
1 h

ky(βα,0,0,0)
� hky(0,0,r̂,0) ← kOβ(y),

and also additionally give out T = (g[1,�], . . . , g[1,z], h[1,�+1], . . . , h[1,z]) (as inputs
to A in Eq. (2)), where we denote g[a,b] = ga · · · gb for a ≤ b. Intuitively, the
forms of cOR and kOA are now somewhat symmetric, except the difference lying
in the subgroups with indexes 2, . . . , � − 1, and we observe that the adversary
does not possess an element from these subgroups so as to distinguish the two;
therefore, we can use the former to simulate the latter, under the SG assumption.
The additional input T is essential for the other oracle simulation (from kOR to
cOA). Crucially, giving out individual generators such as g2, . . . , g� would destroy
the “absence” requirement (essential for Theorem 3); while, on the other hand,
giving out the elements like g[1,i] do work.

This completes our design rational of (z, �)-KE-ind (in the composite-order-
groups flavor). Note that � is incremented by 1 after applying one Dual conver-
sion. Starting from (z, 1)-KE-ind, we have that z − 1 is the maximum number of
Dual applications. Thus, by choosing z depending on the number of dual appli-
cations to obtain a target predicate P, we can instantiate a secure ABE scheme
for P. Also note that (z, �)-KE-ind will require s to consist of only s0 so that
it is implied by PMH. We call it single-variable PMH. Note that PESs with

416 N. Attrapadung and J. Tomida

single-variable PMH are still more general encodings than predicate encodings
[6,38].

All in all, our conceptually new insight is the partially symmetric design of the
core 1-key 1-ciphertext component (our KE-ind) so as to incorporate Dual (crucial
in bootstrapping KP1 to KP). This differs to other similar core components in the
literature, notably, the “1-ABE” in [26]. We discuss more in the next subsection.

1.3 Technical Comparisons to Previous Unbounded ABE and More

Our framework allows us to modularly construct unbounded ABE schemes.
Thus, one may wonder how our framework compares to previous unbounded
ABE schemes from static assumptions [16,26,27,30]. Basically, these ABE
schemes rely on so-called “nested dual system technique”, in which entropy
in secret keys is increased via entropy propagation between a secret key and
ciphertext. All these works uses the IBE predicate as a source of entropy.

Intuitively, when instantiating our framework to completely unbounded
monotone ABE, such an entropy propagation can be viewed as being decom-
posed into modular parts, namely, the PMH (of a PES for IBE), the KP1 trans-
form, and the Dual transform (recall that we apply KP1 and Dual◦KP1 to IBE in
a nested manner to achieve such an ABE instance [9]). This predicate transfor-
mations implicitly trace a similar hybrid sequence to that by Lewko and Waters
(LW) [27], borrowing the power of the KW framework (the piecewise guessing
framework) to do it in the adaptive setting. An important fact here is that our
framework uses the KW framework in a “nested” manner. Intuitively, this is the
reason why our ABE schemes can be constructed as large-universe constructions
similarly to the LW unbounded scheme. On the other hand, the KW unbounded
scheme [26] is obtained by directly applying the KW framework (not in a nested
manner) to the unbounded small-universe ABE scheme in [16]. This, in turn,
inherently poses a linear cost of the universe size U in the security loss (and
hence U cannot be super-polynomially large) for the KW scheme (see Table 6).

Another advantage of our framework over the KW scheme is that we do
not use the subgroup DDH assumption [16], which requires a k-dimensional
semi-functional space for the k-Lin assumption. In contrast, 1-dimensional semi-
functional spaces suffice for our framework. This yields asymptotically smaller
ciphertexts and keys than the KW scheme (asymptotic in k, see Table 6).

Table 6. Comparison with unbounded KP-ABE from Dk-MDDH by KW19 [26].

References Security loss |pk| |ct| |sk|
KW19 [26] O(Uqsk)2

O(B) (5k2 + k)|G1| ((3k + 1)t + 2k + 1)|G1| ((5k + 2)n + (2k + 1)m)|G2|
+k|GT| +|GT|

Ours 1 O(qsk)2
O(B) (4k2 + 8k)|G1| ((2k + 4)t + k + 2)|G1| (3k + 6)n|G2|

+k|GT| +|GT|
Note: U is the attribute domain size, qsk is the maximum number of secret key queries,
B is the maximum depth of formulae, t = |attribute set|, m and n are the number of
gates and the input length of a formula, respectively.

Unbounded Dynamic Predicate Compositions in ABE 417

Full Version of This paper. Due to limited spaces, we defer details such as
omitted proofs, details on instantiations, and discussions regarding more recent
related works (such as [4,5,21,22,28]) to the full version of this paper [12].

2 Preliminaries

Notation. For a natural number m,n ∈ N, [m] denotes a set {1, . . . , m}, [m]+

denotes a set {0, . . . , m}, and [m,n] denotes a set {m, . . . , n}. For a set S, s ← S
denotes that s is uniformly chosen from S. We treat vectors as column vec-
tors unless specified otherwise. For a generator gi of a cyclic group Gi of order
p and a ∈ Zp, [a]i denotes ga

i . Furthermore, for a matrix A = (aj,�)j,� over
Zp, [A]i denotes a matrix over Gi whose (j, �)-th entry is g

aj,�

i . For vectors x =
(x1, . . . , xn) and y = (y1, . . . , yn) ∈ Z

n
p , let e([x]1, [y]2) = e(g1, g2)〈x,y〉 be a func-

tion that computes the inner product on the exponent by
∏

i∈[n] e([xi]1, [yi]2).
A function f : N → R is called negligible if f(λ) = λ−ω(1) and denotes
f(λ) ≤ negl(λ). For families of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we
denote X ≈c Y (resp. X ≈s Y) as computational indistinguishability (resp. sta-
tistical indistinguishability). For an interactive game G, 〈A,G〉 denotes the out-
put of A in G.

Matrix Notation. Throughout the paper, we use the following matrix notation.
For a regular matrix M ∈ GLk+ζ(Zp), we define M, mi, M∗, and m∗

i as follows.
M and mi denote a matrix and a vector consist of the first k columns and the
(k + i)-th column of M, respectively. Similarly, M∗ and m∗

i denote a matrix
and vector consist of the first k columns and the (k + i)-th column of (M

	
)−1,

respectively. We have the relations, M	m∗
i = 0 and m	

i m∗
i = 1 for i ∈ [ζ]. We

also uses the following notations:

span(M,m1, . . . ,mn) = {v | ∃u ∈ Z
k+n
p ,v = (M||m1|| . . . ||mn)u},

Ker(M,m1, . . . ,mn) = {v | (M||m1|| . . . ||mn)	v = 0}.

2.1 Basic Definitions and Tools

Boolean Formula and NC1. A monotone Boolean formula can be represented
by a Boolean circuit of which all gates have fan-in 2 and fan-out 1. More pre-
cisely, we specify a monotone Boolean formula by a tuple f = (n,w,m,G)
where n,w,m ∈ N represents the number of input wires, the number of all
wires (including the input wires), and the number of gates, respectively, while
G : [m] → {AND, OR} × [w]3 is a function that specifies the gate type, the two
incoming wires, and the outgoing wire of each gate. To specify G, we first let
all the wires and gates to be numbered. The wire numbers range from 1 to w;
while those of gates range from 1 to m. For each gate i ∈ [m], the information
G(i) = (T, a, b, c) tells us that T is the type of the gate i, while a and b specify
its incoming wires, and c specifies its outgoing wire. By convention, we always
number the wires so that a < b < c. The computation of Boolean formula f on

418 N. Attrapadung and J. Tomida

an input in {0, 1}n is defined naturally; we often abuse the notation and treat f
as a function f : {0, 1}n → {0, 1}.

A non-monotone Boolean formula additionally contains NOT gates, which
have fan-in 1 and fan-out 1. It is well-known that, via De Morgan’s law, we can
express any non-monotone Boolean formula by one in which all the NOT gates
are placed on the input wires (and the number of gates of the latter formula is
two times of that of the former). Hence, we can specify a non-monotone Boolean
formula as a tuple f = (n,w,m,G,Σ), where Σ : [n] → {Positive,Negative}
naturally specifies if the input wire i ∈ [n] is a negative one or not.

Standard complexity theory tells us that circuit complexity class NC1 and
Boolean formulae are equivalent. It is known also that NC1 is equivalent to the
class captured by log-depth Boolean formulae (see e.g., [26]). Thus, the circuit
complexity class captured by Boolean formulae is equivalent to the class captured
by log-depth Boolean formulae.

Definition 1 (Linear Secret Sharing Scheme). A linear secret sharing
scheme (LSSS) for a function class F consists of two algorithms Share and Rec.

Share(f,h): It takes a function f ∈ F where f : {0, 1}n → {0, 1} and a vector
h ∈ Z

γ
p . Then, outputs shares h1, . . . ,hn ∈ Z

γ
p .

Rec(f, x, {hi}xi=1): It takes f : {0, 1}n → {0, 1}, a bit string x = (x1, . . . , xn) ∈
{0, 1}n and shares {hi}xi=1. Then, outputs a vector h′ or ⊥.

In particular, Rec computes a linear function on shares to reconstruct a secret;
h =

∑
xi=1 aihi where each ai is determined by f . A LSSS has two properties.

Correctness: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 1,

Pr[Rec(f, x, {hi}xi=1) = h | h1, . . . ,hn ← Share(f,h)] = 1.

Security: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 0, and h1, . . . ,hn ←
Share(f,h), shares {hi}xi=1 have no information about h.

Definition 2 (Bilinear Groups). A description of bilinear groups G = (p,G1,
G2, GT, g1, g2, e) consist of a prime p, cyclic groups G1, G2, GT of order p, gener-
ators g1 and g2 of G1 and G2 respectively, and a bilinear map e : G1×G2 → GT,
which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha
1 , h

b
2) = e(h1, h2)ab.

– (Non-degeneracy): For generators g1, g2; gT = e(g1, g2) is a generator of GT.

A bilinear group generator GBG(1λ) takes a security parameter 1λ and outputs
a description of bilinear groups G with a Ω(λ)-bit prime p.

Definition 3 (Dj,k-MDDH Assumption [19]). For j > k, let Dj,k be a
matrix distribution over matrices in Z

j×k
p , which outputs a full-rank matrix with

overwhelming probability. Denote Dk+1,k = Dk. We can assume that, wlog, the
first k rows of a matrix chosen from Dj,k form an invertible matrix. We consider
the following distribution: G ← GBG(1λ), A ← Dj,k, v ← Z

k
p, t0 = Av, t1 ←

Unbounded Dynamic Predicate Compositions in ABE 419

Z
j
p, Pi,β = (G, [A]i, [tβ]i). We say that the Dj,k-MDDH assumption holds with

respect to GBG if, for any PPT adversary A,

Adv
Dj ,k -MDDH
A (λ) = max

i∈{1,2}
|Pr[1 ← A(Pi,0)] − Pr[1 ← A(Pi,1)]| ≤ negl(λ).

Uniform Distribution. Let Uj,k be a uniform distribution over Zj×k
p . Then, the

following hold with tight reductions: Dk-MDDH ⇒ Uk-MDDH ⇒ Uj,k-MDDH.

Random Self-reducibility. We can obtain arbitrarily many instances of the
Dk-MDDH problem without additional security loss. For any n ∈ N, we define
the following distribution: G ← GBG(1λ), A ← Dk, V ← Z

k×n
p , T0 =

AV, T1 ← Z
(k+1)×n
p , Pi,β = (G, [A]i, [Tβ]i). The n-fold Dk-MDDH assumption

is similarly defined to the Dk-MDDH assumption. Then, n-fold Dk-MDDH is
tightly reduced to Dk-MDDH. That is, Dk-MDDH ⇒ n-Dk-MDDH.

2.2 Attribute-Based Encryption

Predicate Family. Let P = {Pκ : Xκ×Yκ → {0, 1} |κ ∈ K} be a predicate fam-
ily where Xκ and Yκ denote “ciphertext attribute” and “key attribute” spaces.
The index κ denotes a list of some parameters such as bounds on some quantities
(hence K depends on that predicate). We often omit κ if the context is clear.

Definition 4 (Attribute-Based Encryption). An attribute-based encryp-
tion (ABE) scheme for a predicate family P consists of four algorithms:

Setup(1λ, κ)]: It takes a security parameter 1λ, and an index κ as inputs, and
outputs a public key pk and a master secret key msk.

Enc(pk, x,M)]: It takes pk, an attribute x ∈ X and a message M ∈ M as inputs,
and outputs a ciphertext ctx. (Note that we let M be specified in pk.)

KeyGen(pk,msk, y)]: It takes pk,msk, and an attribute y ∈ Y as inputs, and
outputs a secret key sky.

Dec(pk, ctx, sky)]: It takes pk, ctx and sky as inputs, and outputs a message M ′

or a symbol ⊥.

Correctness/Security. The standard correctness is specified by the property
if P(x, y) = 1 then ctx can be decrypted by sky. The standard security notion is
called adaptive security. We refer these to the full version.

3 Pair Encoding Schemes

A pair encoding scheme (PES), introduced by Attrapadung [7], is an encoding
system used in a general framework to construct ABE. Structures of a ciphertext
and secret keys of an ABE scheme can be concisely captured by polynomials,
and its decryption procedure can be represented by matrices. A PES is defined
as a set of algorithms that output these polynomials or matrices. Intuitively, the
polynomials specify the structures of exponent of group elements in a ciphertext
and secret key, and the matrices specify coefficients used in the decryption.

420 N. Attrapadung and J. Tomida

3.1 Pair Encoding Scheme Definition

Definition 5 (Pair Encoding Schemes). Let Pκ : Xκ × Yκ → {0, 1} be a
predicate family, indexed by κ = (N, par), where par specifies some parameters.
A PES for Pκ is given by four deterministic polynomial-time algorithms:

– Param(par) → ω. When given par as input, Param outputs ω ∈ N that specifies
the number of common variables, which we denote by w = (w1, . . . , wω).

– EncCt(x,N) → (n1, n2, c(s, ŝ,w)). On input N ∈ N, x ∈ X(N,par), EncCt
outputs a vector of polynomial c = (c1, . . . , cn3) in non-lone variables
s = (s0, s1, . . . , sn1) and lone variables ŝ = (ŝ1, . . . , ŝn2) as follows, where
θi,z, θi,t,j ∈ ZN :

c(s, ŝ,w) = {
∑

z∈[n2]

θi,z ŝz +
∑

t∈[n1]+,j∈[ω]

θi,t,jwjst}i∈[n3].

– EncKey(y,N) → (m1,m2,k(r, r̂,w)). On input N ∈ N and y ∈ Y(N,par),
EncKey outputs a vector of polynomial k = (k1, . . . , km3) in non-lone variables
r = (r1, . . . , rm1) and lone variables r̂ = (α, r̂1, . . . , r̂m2) as follows, where
φi, φi,u, φi,v,j ∈ ZN :

k(r, r̂,w) = {φiα +
∑

u∈[m2]

φi,ur̂u +
∑

v∈[m1],j∈[ω]

φi,v,jwjrv}i∈[m3].

– Pair(x, y,N) → (E,E). On input N , and both x, and y, Pair outputs two
matrices E,E of sizes (n1 + 1) × m3 and n3 × m1, respectively.

Correctness. A PES is said to be correct if for every κ = (N, par), x ∈ Xκ and
y ∈ Yκ such that Pκ(x, y) = 1, then sEk	 +cEr	 = αs0 holds symbolically. The
left-hand side is indeed a linear combination of stkp and cqrv, for t ∈ [n1]+, p ∈
[m3], q ∈ [n3], v ∈ [m1]. Hence, an equivalent way to describe Pair and correctness
together at once is to show such a linear combination that evaluates to αs0.

Terminology. We denote (r̂1, . . . , r̂m2) by r̂−α. Following [3], a variable is called
lone as it is not multiplied with any wj (otherwise called non-lone). Furthermore,
since α, s0 are treated distinguishably in defining correctness, we also often call
them the special lone and non-lone variable, respectively. Throughout the paper,
we fix N in index κ as prime p, which is an order of bilinear groups used to
construct an ABE scheme. For notational conciseness, we consider that κ only
specifies par, and p is hard-coded in EncCt, EncKey, and Pair.

Evaluating PES with Vectors/Matrices. We can evaluate ciphertext encod-
ing c(s, ŝ,w) with the following substitution from scalar variables to vec-
tors/matrices as follows. Let d ∈ N. Each st is substituted by a vector st ∈ Z

d
N .

Each ŝz is substituted by a vector ŝz ∈ Z
d
N . Each wj is substituted by a matrix

Unbounded Dynamic Predicate Compositions in ABE 421

Wj ∈ Z
d×d
N . Let S = (s0, . . . , sn1) ∈ Z

d×(n1+1)
N , Ŝ = (ŝ1, . . . , ŝn2) ∈ Z

d×n2
N , and

W = (W1, . . . ,Wω), we then define

c(S, Ŝ,W) = {
∑

z∈[n2]

θi,z ŝz +
∑

t∈[n1]+,j∈[ω]

θi,t,jW	
j st}i∈[n3],

k(R, R̂,W) = {φih +
∑

u∈[m2]

φi,ur̂u +
∑

v∈[m1],j∈[ω]

φi,v,jWjrv}i∈[m3].

3.2 Security Properties of PESs

Definition 6 (Perfect Master-Key Hiding (PMH) [7]). Let Γ =
(Param,EncCt,EncKey,Pair) be a PES for a predicate faimily Pκ : Xκ ×
Yκ → {0, 1}. We say that Γ satisfies perfect master-key hiding (PMH) if
the following holds. Let ω ← Param(par), (n1, n2, c(s, ŝ,w)) ← EncCt(x), and
(m1,m2,k(r, r̂,w)) ← EncKey(y). Then, for all κ and (x, y) ∈ Xκ ×Yκ such that
Pκ(x, y) = 0, the two distributions are identical, where the probability is taken
over s ← Z

n1+1
p , ŝ ← Z

n2
p , r ← Z

m1
p , α ← Zp, r̂−α ← Z

m2
p , and w ← Z

ω
p .

{s, r, c(s, ŝ,w),k(r, (0, r̂−α),w)} and {s, r, c(s, ŝ,w),k(r, (α, r̂−α),w)}.

Definition 7 (Single-Variable PMH). We say that Γ satisfies single-variable
PMH if Γ is PMH and n1 = 0 for all x ∈ Xκ, where (n1, n2, c(s, ŝ,w)) ←
EncCt(x). In other words, EncCt uses only s0 for non-lone variable.

Note that Ambrona et al. showed that all predicate encodings [38] can be
seen as a PES with single-variable PMH [6].

We next introduce the (ζ, �)-key-encoding indistinguishability ((ζ, �)-KE-ind),
which is a central security property in our framework, where we consider several
transformations of PESs. The crucial feature on (ζ, �)-KE-ind is two-fold: it is
preserved after transformations, and it leads to the adaptive security of the
resulting ABE scheme.

Definition 8 ((ζ, �)-KE-ind). Let Γ = (Param,EncCt,EncKey,Pair) be a PES
for a predicate family Pκ : Xκ × Yκ → {0, 1}. Let ζ, � ∈ N such that � ≤ ζ.
We say that Γ satisfies (ζ, �)-KE-ind if the following holds. Consider a game
G
(ζ,�)-KE-ind
β defined in Fig. 1, in which an adversary A can adaptively query OX

and OY with x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 0, respectively. A is
allowed to query each oracle at most once. Then, for all η ∈ {1, 2}, we have
G
(ζ,�)-KE-ind
0 ≈c G

(ζ,�)-KE-ind
1 .

Note that we can omit the terms that correspond to g[1,i], h[1,i] of the
composite-order variant in the introduction by giving a∗

i ,b
∗
i as Zp elements to

A.
The following theorem says that all PESs with single-variable PMH satisfy

(ζ, �)-KE-ind for all ζ, � ∈ N. We defer its proof to the full version.

422 N. Attrapadung and J. Tomida

Fig. 1. (ζ, �)-KE-ind game.

Theorem 4 ((ζ, �)-KE-ind of PES with Single-Variable PMH). Let Γ be
a PES with single-variable PMH. Then, for all constants ζ, � ∈ N, Γ satis-
fies (ζ, �)-KE-ind under the Dk -MDDH assumption. More precisely, for all PPT
adversaries A, there exists a PPT adversary B such that

Adv
(ζ,�)-KE-ind
A,Γ (λ) ≤ 2AdvDk -MDDH

B (λ) + 2−Ω(λ).

4 Predicate Transformations

In this section, we present several transformations for predicates, which enable
us to construct a more expressive predicate from simple predicates. As shown
later in Sect. 6, these transformations are sufficiently powerful to construct ABE
schemes whose constructions from standard assumptions are still unknown. Con-
cretely, we introduce four transformations called the direct sum, dual transfor-
mation, KP augmentation, and CP augmentation. Because the CP augmentation
is obtained from the dual transformation and KP augmentation, the former three
transformations are sufficient for our framework. We also present the correspond-
ing transformations of PESs for each predicate transformation and prove that
these PES transformations preserve the (ζ, �)-KE-ind property. Starting from
PESs with the single-variable PMH, which already satisfy (ζ, �)-KE-ind, we can
obtain a PES for a expressive predicate that satisfies (ζ ′, ζ ′)-KE-ind for some
constant ζ ′. Finally, we show that we can use the PES with (ζ ′, ζ ′)-KE-ind to
construct an adaptively secure ABE scheme in Sect. 5.

Unbounded Dynamic Predicate Compositions in ABE 423

4.1 Direct Sum of Predicate Families

Definition 9 (Direct Sum [9]). Let P
(i)
κi : X(i)

κi × Y
(i)
κi → {0, 1} be a predicate

family. Let κ = (κ1, . . . , κd). A predicate family for the direct sum of a predicate
family set Pκ = (P(1)

κ1 , . . . ,P
(d)
κd), denoted by DS[Pκ] : X̄κ×Ȳκ → {0, 1}, is defined

as follows: let X̄κ =
⋃

i∈[d]({i} × X
(i)
κi), Ȳκ =

⋃
i∈[d]({i} × Y

(i)
κi), and define

DS[Pκ]((ix, x), (iy, y)) ⇔ (ix = iy) ∧ (P(iy)
κiy

(x, y) = 1).

We sometimes use another notation, P(1)
κ1 � · · · � P

(d)
κd , to denotes DS[Pκ].

PES for DS[Pκ]. Let Γi = (Parami,EncCti,EncKeyi,Pairi) be a PES
for P

(i)
κi . We construct a PES for DS[Pκ], denoted by DS-Trans(Γ) =

(Param′,EncCt′,EncKey′,Pair′), where Γ = (Γ1, . . . , Γd).

– Param′(par) → ω′: Run ωi ← Parami(par) and output
∑

i∈[d] ωi. This specifies

common variables w′ = (w(1), . . . ,w(d)), where w(i) = (w(i)
1 , . . . , w

(i)
ωi).

– EncCt′((ix, x)) → (n′
1, n

′
2, c

′(s′, ŝ′,w′)):
• Output (n1, n2, c(s, ŝ,w(ix))) ← EncCtix

(x).
• Define n′

1 = n1, n′
2 = n2, s′ = s, and ŝ′ = ŝ.

– EncKey′((iy, y)) → (m′
1,m

′
2,k

′(r′, r̂′,w′)):
• Output (m1,m2,k(r, r̂,w(iy))) ← EncKeyiy

(y).
• Define m′

1 = m1, m′
2 = m2, r′ = r, and r̂′ = r̂.

– Pair′((ix, x), (iy, y)) → (E′, Ē′) and correctness:
• Output (E, Ē) ← Pairiy

(x, y).
• Correctness of Pair′ directly follows from that of Pairiy

.

Theorem 5 ((ζ, �)-KE-ind of DS-Trans(Γ)). If Γi satisfies (ζ, �)-KE-ind for all
i ∈ [d], then DS-Trans(Γ) satisfies (ζ, �)-KE-ind. More precisely, for all PPT
adversaries A, there exist PPT adversary B such that

Adv
(ζ,�)-KE-ind
A,DS-Trans(Γ)(λ) ≤ d max

i∈[d]
Adv

(ζ,�)-KE-ind
B,Γi

(λ).

Proof. For β ∈ {0, 1}, we can describe the (ζ, �)-KE-ind game G
(ζ,�)-KE-ind
β for

DS-Trans(Γ) as shown in Fig. 2. To prove the theorem, we consider an adver-
sary B, which samples t ← [d] and interacts with OX(t) and OY(t) of the (ζ, �)-
KE-ind game for Γt. B internally runs an adversary A against (ζ, �)-KE-ind of
DS-Trans(Γ) and interacts with it as follows:

1. Let ωi ← Parami(par). B is given (G, [A]η, [B]3−η, {a∗
i }i∈[�,ζ], {b∗

i }i∈[�+1,ζ],

{[W	
t,jA]η, [Wt,jB]3−η}j∈[ωt]). It then samples Wi = (Wi,1, . . . ,Wi,ωi

) ←
(Z(k+ζ)×(k+ζ)

p)ωi for i ∈ [d]\t.
2. B gives to A the following elements: G, [A]η, [B]3−η, {a∗

i }i∈[�,ζ], {b∗
i }i∈[�+1,ζ],

together with {[W	
i,jA]η, [Wi,jB]3−η}i∈[d],j∈[ωi]

3. For A’s query to OX̄ on (ix, x), B replies as follows:

424 N. Attrapadung and J. Tomida

Fig. 2. (ζ, �)-KE-ind game for DS-Trans(Γ).

– If ix = t, B queries its own oracle OX(t) on x and gives the reply, which
is ([S]η, [c(S, Ŝ,Wt)]η), to A.

– If ix �= t, B computes c(s, ŝ,w(ix)),S, and Ŝ as show below, and gives
([S]η, [c(S, Ŝ,Wix

)]η) to A:

(n1, n2, c(s, ŝ,w(ix))) ← EncCtix
(x), c0 ← Ker(a∗

�+1, . . . ,a
∗
ζ),

s1, . . . , sn1 ← Z
k
p, ŝ1, . . . , ŝn2 ← Z

k+ζ
p

S = (c0,As1, . . . ,Asn1), Ŝ = (ŝ1, . . . , ŝn2).

Note that span(A,a1, . . . ,a�) = Ker(a∗
�+1, . . . ,a

∗
ζ).

4. For A’s query to OȲ on (iy, y), B replies as follows:
– If iy = t, B queries its own oracle OY(t) on y and gives the reply, which

is ([R]3−η, [k(R, R̂,Wt)]3−η), to A. Note that the first element of R̂ is h
(if β = 0) or h + μa∗

� (if β = 1).
– If iy �= t, B aborts the interaction with A and outputs a random bit β′

5. B outputs A’s output as it is.

In the above experiment, B correctly simulates OX̄. Since B aborts the experi-
ment if iy �= t, we focus on the case of iy = t, which occurs with probability 1/d.
Note that since ix = t ⇒ P(t)(x, y) = 0 from the game condition for DS-Trans(Γ),
B follow the game condition for Γt. If β = 0 in the KE-ind game for Γt, A’s view
corresponds to that in G

(ζ,�)-KE-ind
0 , and it corresponds to G

(ζ,�)-KE-ind
1 otherwise.

Thus, we have Pr[iy = t] ·Adv(ζ,�)-KE-ind
A,DS-Trans(Γ)(λ)+Pr[iy �= t] ·0 ≤ Adv

(ζ,�)-KE-ind
B,Γt

(λ) ≤
maxi∈[d] Adv

(ζ,�)-KE-ind
B,Γi

(λ). This concludes the proof. ��

Unbounded Dynamic Predicate Compositions in ABE 425

4.2 Dual Predicates

Recall that the dual of Pκ : Xκ × Yκ → {0, 1} is Dual[Pκ] : X̄κ × Ȳκ → {0, 1}
where X̄κ = Yκ and Ȳκ = Xκ, and Dual[Pκ](x, y) = Pκ(y, x).

PES for Dual[Pκ]. Let Γ = (Param,EncCt,EncKey,Pair) be a PES for Pκ. We
construct a PES for Dual[Pκ], denoted by Dual-Trans(Γ) as follows.

– Param′(par) → ω′: Run ω ← Param(par) and output ω + 1. This specifies
common variables w′ = (w0, w1, . . . , wω), where w0 is a new common variable.

– EncCt′(x) → (n′
1, n

′
2, c

′(s′, ŝ′,w′)):
• Run (m1,m2,k(r, r̂,w)) ← EncKey(x). Let snew be a new special non-

lone variable. Polynomials c′(s′, ŝ′,w′) are defined the same as k(r, r̂,w)
except that α is replaced with sneww0.

• Define n′
1 = m1, n′

2 = m2, s′ = (snew, r), and ŝ′ = r̂−α.
– EncKey′(y) → (m′

1,m
′
2,k

′(r′, r̂′,w)):
• Run (n1, n2, c(s, ŝ,w)) ← EncCt(y). Let αnew be a new special lone vari-

able. Polynomials k′(r′, r̂′,w′) are defined the same as c(s, ŝ,w) except
that a polynomial αnew−s0w0 is added as the first element of k′(r′, r̂′,w′).

• Define m′
1 = n1 + 1, m′

2 = n2, r′ = s, and r̂′ = (αnew, ŝ).
– Pair′(x, y) → (E′, Ē′) and correctness:

• Run (E, Ē) ← Pair(y, x). Define E′ =
(
1

Ē�
)

and Ē′ = E	.
• For correctness, we have

s′E′k′	 + c′Ē′r′	 =(snew, r)
(
1

Ē�
)
(αnew − s0w0, c)	 + k|α
→sneww0E

	s	

=snewαnew − snews0w0 + snews0w0 = snewαnew.

Theorem 6 ((ζ, �)-KE-ind of Dual-Trans(Γ)). Let 2 ≤ � ≤ ζ. If Γ satisfies
(ζ, �−1)-KE-ind, then Dual-Trans(Γ) satisfies (ζ, �)-KE-ind under the Dk -MDDH
assumption. More precisely, for all PPT adversaries A, there exist PPT adver-
saries B1 and B2 such that

Adv
(ζ,�)-KE-ind
A,Dual-Trans(Γ)(λ) ≤ Adv

(ζ,�−1)-KE-ind
B1,Γ (λ) + 2AdvDk -MDDH

B2
(λ) + 2−Ω(λ).

Proof. For β ∈ {0, 1}, we can describe the (ζ, �)-KE-ind game G
(ζ,�)-KE-ind
β for

Dual-Trans(Γ) as shown in Fig. 3. To show this theorem, we consider two inter-
mediate hybrids H1 and H2, which are also described in Fig. 3. That is, H1

(resp. H2) is defined the same as G
(ζ,�)-KE-ind
0 (resp. G(ζ,�)-KE-ind

1) except that d0,
the first elements of R generated in OȲ, is set as d0 ← span(B,b1, . . . ,b�−1)
instead of Br0 where r0 ← Z

k
p. From Lemma 1,2,3 below, we have G(ζ,�)-KE-ind

0 ≈c

H1 ≈c H2 ≈c G
(ζ,�)-KE-ind
1 . This concludes the proof. ��

Lemma 1. For all PPT adversaries A, there exists a PPT adversary B such
that |Pr[〈A,G

(ζ,�)-KE-ind
0 〉 = 1] − Pr[〈A,H1〉 = 1]| ≤ AdvDk -MDDH

B (λ).

426 N. Attrapadung and J. Tomida

Fig. 3. (ζ, �)-KE-ind game for Dual-Trans(Γ).

Proof. We describe the reduction algorithm B. B is given an instance of Uk+�−1,k

problem, (G, [M]3−η, [tβ]3−η) where t0 = Mu and t1 = v, where u ← Z
k
p and

v ← Z
k+�−1
p . Then, B chooses X ← GLk+ζ(Zp) and sets

B = X
(

̂M
M I�−1

Iζ−�+1

)
, (B

	
)−1 = (X)−1

(
(̂M�)−1 −(̂M�)−1M�

I�−1
Iζ−�+1

)
,

where M̂ is the matrix consisting of the first k rows of M, and M is that
consisting of the last � − 1 rows of M. Then, B can compute

[B]3−η =
[
X

(
M
O

)]

3−η

, (b∗
�+1|| . . . ||b∗

ζ) = (X)−1

(
O

Iζ−�

)
.

B generates A and W by itself and computes the input P for A from them.
When A queries OX̄, B replies honestly as shown in Fig. 3. When A queries OȲ,
B replies honestly except that it sets

[d0]3−η =
[
X

(
tβ

0

)]

3−η

, [R]3−η = [(d0,Br1, . . . ,Brm1)]3−η.

Now since we can write tβ =
(

̂M
M

)
u1 + β

(
O

I�−1

)
u2, where u1 ← Z

k
p and u2 ←

Z
�−1
p , we have that d0 is uniformly distributed in span(B) if β = 0, and in

span(B,b1, . . . ,b�−1) otherwise. Thus, the view of A corresponds to G
(ζ,�)-KE-ind
0

if β = 0, and H1 otherwise. This concludes the proof. ��

Unbounded Dynamic Predicate Compositions in ABE 427

Lemma 2. For all PPT adversaries A, there exists a PPT adversary B such
that |Pr[〈A,H1〉 = 1] − Pr[〈A,H2〉 = 1]| ≤ Adv

(ζ,�−1)-KE-ind
B,Γ (λ) + 2−Ω(λ).

Proof. We show that the outputs of OȲ in H1 and H2 are computationally indis-
tinguishable if the PES Γ for Pκ satisfies (ζ, � − 1)-KE-ind. We construct a PPT
adversary B against (ζ, � − 1)-KE-ind of Γ that internally runs a PPT distin-
guisher A between H1 and H2. B behaves as follows.

1. B is given an input of (ζ, � − 1)-KE-ind game for Γ , (G, [M]3−η, [N]η,
{m∗

i }i∈[�−1,ζ], {n∗
i }i∈[�,ζ], {[V	

i M]3−η, [ViN]η}i∈[ω]). B implicitly defines
that A = N, B = M, and Wi = V	

i for i ∈ [ω].
2. B samples W0 ← Z

(k+ζ)×(k+ζ)
p and gives P = (G, [A]η, [B]3−η, {a∗

i }i∈[�,ζ],

{b∗
i }i∈[�+1,ζ], {[W	

i A]η, [WiB]3−η}i∈[ω]+) to A.
3. For A’s query to OX̄ on x, B samples c0 ← Ker(a∗

�+1, . . . ,a
∗
ζ) and queries its

own oracle OY on (x,W	
0 c0) to obtain ([T]η, [k(T, T̂,V)]η), where

T = (Nt0,Nt1, . . . ,Ntm1) = (At0,At1, . . . ,Atm1),

T̂ = (W	
0 c0 + βμ̂m∗

�−1, t̂1, . . . , t̂m2) = (W	
0 c0 + βμ̂b∗

�−1, t̂1, . . . , t̂m2),

V = (V1, . . . ,Vω) = (W	
1 , . . . ,W	

ω).

Note that μ̂ is a random value in Zp chosen by OY. B implicitly defines that
si = ti for i ∈ [m1]+, ŝi = t̂i for i ∈ [m2], S = T, Ŝ = T̂, and W =
V. B replies ([c0]η, [S]η, [k(S, Ŝ,W)]η) to A. Note that span(A,a1, . . . ,a�) =
Ker(a∗

�+1, . . . ,a
∗
ζ).

4. For A’s query to OȲ with y and h, B queries its own oracle OX on y to obtain
([U]3−η, [c(U, Û,V)]3−η), where

U = (o0,Mu1, . . . ,Mun1) = (o0,Bu1, . . . ,Bun1), Û = (û1, . . . , ûn2).

Note that o0 is randomly distributed in span(M,m1, . . . ,m�−1), which equals
to span(B,b1, . . . ,b�−1). B implicitly defines that ri = ui for i ∈ [n1],
r̂i = ûi for i ∈ [n2], R = U, R̂ = Û, and d0 = o0. B replies
([h − W0d0]3−η, [R]3−η, [c(R, R̂,W)]3−η) to A.

5. B outputs A’s output as it is.

At a glance, this simulation seems that the distribution of the reply from OX̄ is
changed. However, entire views of A correspond to H1 and H2. To see this, we
redefine W0 as W0 = W̃0 − βμ̂

a∗�
� c0

a∗
�b

∗�
�−1 where W̃0 ← Z

(k+ζ)×(k+ζ)
p . Clearly,

this does not change the distribution of W0. This affects A’s view as follows:

P : W	
0 A = W̃	

0 A, W0B = W̃0B.

OX̄ : W	
0 c0 + βμ̂b∗

�−1 = W̃	
0 c0.

OȲ : h − W0d0 = h − W̃0d0 +
βμ̂b∗�

�−1d0

a∗�
� c0

a∗
� = h − W̃0d0 + βμa∗

� .

428 N. Attrapadung and J. Tomida

Because μ̂ is randomly distributed in Zp, we can set μ = μ̂b∗�
�−1d0

a∗�
� c0

if b∗�
�−1d0 �= 0

and a∗�
� c0 �= 0. Since c0 and d0 are randomly distributed in span(A,a1, . . . ,a�)

and span(B,b1, . . . ,b�−1), respectively, this is the case with an overwhelming
probability. Thus, A’s view corresponds to H1 if β = 0 in the (ζ, �)-KE-ind game
of Γ , and it corresponds to H2 otherwise. This concludes the proof. ��
Lemma 3. For all PPT adversaries A, there exists a PPT adversary B such
that |Pr[〈A,H2〉 = 1] − Pr[〈A,G

(ζ,�)-KE-ind
1 〉 = 1]| ≤ AdvDk -MDDH

B (λ).

The proof of Lemma 3 is similar to Lemma 1, and hence we omit it here.

4.3 Key-Policy Augmentation

Definition 10 (Key-Policy Augmentation). A predicate family for key-
policy Boolean formula augmentation over a single predicate family Pκ : Xκ ×
Yκ → {0, 1}, denoted by KBF1[Pκ] : X̄κ × Ȳκ → {0, 1}, where X̄κ = Xκ and
Ȳκ =

⋃
i∈N

(Yi
κ × Fi), where Fi consists of all monotone Boolean formulae with

input length i, is defined as follows. For x ∈ X̄κ and y = ((y1, . . . , yn), f) ∈ Ȳκ

where f : {0, 1}n → {0, 1}, we define

KBF1[Pκ](x, y) = f
(
Pκ(x, y1), . . . ,Pκ(x, yn)

)
.

We use KBF1OR[Pκ] (resp. KBF1AND[Pκ]) to denote a predicate family that
is the same as KBF1[Pκ] except that Fi in Ȳκ consists of monotone Boolean
formulae whose all gates are OR (resp. AND) gates. The “1” in KBF1 refers to the
property that the augmentation is over one predicate family. An augmentation
over a set of predicate families follows analogously to [9], and we defer to Sect. 6
(and more details in the full version). In dynamic compositions, f can be chosen
freely (as opposed to static ones, where f is fixed). Unbounded compositions
mean n is unbounded.

PES for KBF1[Pκ]. Let Γ = (Param,EncCt,EncKey,Pair) be a PES for Pκ. We
construct a PES for KBF1[Pκ], denoted by KBF1-Trans(Γ) as follows. Let Sharep
be the linear secret sharing algorithm on polynomials defined in Fig. 4.

– Param′(par) = Param(par) and EncCt′(x) = EncCt(x)
– EncKey′((y1, . . . , yn), f) → (m′

1,m
′
2,k

′(r′, r̂′,w)):
• For i ∈ [n], run EncKey(yi) to obtain n sets of polynomials k(1), . . . ,k(n),

where k(i) = k(r(i), r̂(i),w).
• Let τ be a number of AND gates in f . Let αnew be a new special lone

variable and u = (u1, . . . , uτ) be new lone variables. Let σ1, . . . , σn be
polynomials that are an output of Sharep(f, αnew,u). A new set of poly-
nomials k′(i) is defined the same as k(i) except that the variable α(i) in
each polynomial is replaced with σi.

• Define m′
1 = nm1, m′

2 = τ + nm2, and k′(r′, r̂′,w) = (k′(1), . . . ,k′(n)).
Note that r′ = (r(1), . . . , r(n)) and r̂′ = (αnew,u, r̂(1)−α(1) , . . . , r̂

(n)

−α(n)).

Unbounded Dynamic Predicate Compositions in ABE 429

Fig. 4. Linear secret sharing scheme for Boolean formulae on polynomials.

– Pair′(x, y) → (E′, Ē′) and correctness:
• Let polynomials σ1, . . . , σn be an output of Sharep(f, αnew,u). It is not

hard to see that, for all b = (b1, . . . , bn) ∈ {0, 1}n such that f(b) = 1,
there exists a set S ⊆ {i | bi = 1} such that

∑
i∈S σi = αnew. Thus,

if x and y = ((y1, . . . , yn), f) satisfy KBF1[Pκ](x, y) = 1, there exists
S ⊆ {i | Pκ(x, yi) = 1} such that

∑
i∈S σi = αnew.

• For i ∈ S, run Pair(x, yi) → (E(i), Ē(i)), satisfying sE(i)k(i)�
+

cĒ(i)r(i)
�

= σis0. Then, we can obtain
∑

i∈S σis0 = αnews0 by the linear
combination.

Theorem 7 ((ζ, �)-KE-ind of KBF1-Trans(Γ)). Let B be the maximum depth of
f chosen by A in the (ζ, �)-KE-ind game for KBF1-Trans(Γ). If Γ satisfies (ζ, �)-
KE-ind, then KBF1-Trans(Γ) satisfies (ζ, �)-KE-ind as long as B = O(log λ).
That is, for all PPT adversaries A, there exists a PPT adversary B such that

Adv
(ζ,�)-KE-ind
A,KBF1-Trans(Γ)(λ) ≤ 29B+1Adv

(ζ,�)-KE-ind
B,Γ (λ).

We prove Lemma 7 by extending the techniques regarding pebbling arguments
that Kowalczyk-Wee [26] have introduced in proving adaptive security of their
ABE schemes for formulae with multi-use. We defer the proof to the full version.

Ciphertext-Policy Augmentation. Analogously to [9], for a predicate family
P, we define its CP augmentation predicate—denoted as CBF1[P]—as the dual of
KBF1[P′] where P′ is the dual of P. Therefore, we can use the dual conversion—
applying two times–sandwiching KBF1-Trans, to obtain a PES conversion for
CBF1[P]. See the full version for more details.

4.4 Conforming PES for ABE

We can apply our transformations, namely, direct sum, dual, and key-policy aug-
mentation, to a predicate family set Pκ multiple times to obtain a new predicate
family Pκ. When we apply a PES to construct an ABE scheme, (ζ ′, ζ ′)-KE-ind for

430 N. Attrapadung and J. Tomida

some constant ζ ′ implies the adaptive security of the resulting ABE scheme. The
following theorem says that if we have predicate families Pκ = (P(1)

κ1 , . . . ,P
(d)
κd)

that satisfy (ζ, �)-KE-ind for all constants �, ζ ∈ N, we can construct an ABE
scheme for a predicate family Pκ obtained by applying the above transforma-
tions to Pκ arbitrarily many times.

To state the theorem formally, we define a composed predicate set
fc(Pκ) for a predicate family set Pκ = (P(1)

κ1 , . . . ,P
(d)
κd). Let P̄κ be a

predicate family set that consists of all predicate families obtained by
applying one of transformations, (DS,Dual,KBF1), to Pκ. That is, P̄κ =
(DS[Pκ], {Dual[P(i)

κi]}i∈[d], {KBF1[P(i)
κi]}i∈[d]) (we do not consider DS for a sub-

set of Pκ, because it can be embedded into DS[Pκ]). Let f be a deterministic
procedure defined as f(Pκ) = Pκ ∪ P̄κ. Denote f ◦ . . . ◦ f(Pκ) where f appears
c times by fc(Pκ). Then, we have the following theorem.

Theorem 8. For all constant c and predicate family sets Pκ = (P(1)
κ1 , . . . ,P

(d)
κd),

each of whose elements has a corresponding PES with (ζ, �)-KE-ind for all con-
stants ζ, � ∈ N, there exists a constant ζ ′ such that Pκ ∈ fc(Pκ) has a PES that
satisfies (ζ ′, ζ ′)-KE-ind under the Dk -MDDH assumption.

Proof. Let Γ = (Γ1, . . . , Γd) be PESs for (P(1)
κ1 , . . . ,P

(d)
κd), respectively. We can

construct a PES Γ for P by applying PES transformations in Sects. 4.1, 4.2 and
4.3 to Γ multiple times. Let δ be the maximum number of Dual-Trans that is
applied to each single PES Γi to obtain Γ . For instance, δ in the following PES
is 2 because the first Γ2 is transformed by Dual-Trans twice, and the others are
transformed by Dual-Trans less that twice.

KBF1-Trans (DS-Trans (Dual-Trans (DS-Trans (Γ1,Dual-Trans (Γ2))) , Γ2, Γ3)) .

Then, it is not hard to see that we can construct Γ with (ζ ′, ζ ′)-KE-ind for
ζ ′ = δ + 1. This directly follows from Theorems 5 to 7. ��
Corollary 2. Let Pκ = (P(1)

κ1 , . . . ,P
(d)
κd) be predicate families that have a PES

with single-variable PMH. Then, we have a PES for Pκ ∈ fc(Pκ) with (ζ ′, ζ ′)-
KE-ind for a constant ζ ′ under the Dk -MDDH assumption, where ζ ′ − 1 is the
maximum number of Dual applied to each single predicate P

(i)
κi to obtain Pκ.

This corollary directly follows from Theorems 4 and 8.

5 ABE from PES

In this section, we present our ABE scheme. We can construct an ABE scheme
for any predicate family Pκ and a corresponding PES obtained in our framework
if the PES satisfies (ζ, ζ)-KE-ind for some constant ζ ∈ N.

Construction. Let Γ = (Param,EncCt,EncKey,Pair) be a PES with (ζ, ζ)-
KE-ind for a predicate family Pκ : Xκ × Yκ → {0, 1}. Then, we can construct an
ABE scheme for predicate Pκ as follows.

Unbounded Dynamic Predicate Compositions in ABE 431

Setup(1λ, κ): Parse par from κ. It outputs pk and msk as follows.

ω ← Param(par), G ← GBG(1λ), A,B ← Z
(k+ζ)×(k+ζ)
p , h ← Z

k+ζ
p ,

W = (W1, . . . ,Wω) ← (Z(k+ζ)×(k+ζ)
p)ω,

pk=(G, [A]1, [W	
1 A]1, . . . , [W	

ω A]1, [A	h]T), msk=(B,h,W1, . . . ,Wω).

Enc(pk, x,M): It takes pk, x ∈ Xκ, and M ∈ GT as inputs, and outputs ctx by
computing as follows.

(n1, n2, c(s, ŝ,w)) ← EncCt(x), s0, s1, . . . , sn1 ← Z
k
p, ŝ1, . . . , ŝn2 ← Z

k+ζ
p

S = (As0,As1, . . . ,Asn1), Ŝ = (ŝ1, . . . , ŝn2)

ctx = (ct1, ct2, ct3) = ([S]1, [c(S, Ŝ,W)]1, [s	
0 A	h]TM).

KeyGen(pk,msk, y): It takes pk, msk, and y ∈ Yκ as inputs, and outputs sky by
computing as follows.

(m1,m2,k(r, r̂,w)) ← EncKey(y), r1, . . . , rm1 ← Z
k
p, r̂1, . . . , r̂m2 ← Z

k+ζ
p

R = (Br1, . . . ,Brm1), R̂ = (h, r̂1, . . . , r̂m2)

sky = (sk1, sk2) = ([R]2, [k(R, R̂,W)]2).

Dec(pk, ctx, sky): It takes pk, ctx = (ct1, ct2, ct3), and sky = (sk1, sk2) such that
Pκ(x, y) = 1. Let (E, Ē) ← Pair(x, y). It outputs M ′ = ct3/Ω where

Ω =
∏

i∈[n1+1]
j∈[m3]

e(ct1,i, sk2,j)ei,j ·
∏

i∈[n3]
j∈[m1]

e(ct2,i, sk1,j)ēi,j , (3)

and where cti,j and ski,j refer to the j-th element of cti and ski, respectively,
and ei,j and ēi,j refer to the (i, j)-th element of E and Ē, respectively.

Correctness. In defining ctx, sky, we effectively map variables of PES to vec-
tors/matrice as si �→ s	

i A	, ŝj �→ ŝ	
j , rv �→ Brv, r̂u �→ r̂u, α �→ h, and

wn �→ Wn. Therefore, intuitively, the correctness of PES, which we recall that
it is the relation:

∑
i∈[n1+1],j∈[m3]

ei,jsi−1kj +
∑

i∈[n3],j∈[m1]
ēi,jcirj = αs0, will

preserve to exactly the relation Ω = [s	
0 A	h]T, where Ω is defined in Eq. (3).

Theorem 9. Suppose Γ satisfies (ζ, ζ)-KE-ind. Then, our ABE scheme is adap-
tively secure under the Dk -MDDH assumption. Let qsk be the maximum number
of A’s queries to KeyGen. For any PPT adversary A, there exist PPT adversaries
B1 and B2 such that

AdvABEA (λ) ≤ AdvDk -MDDH
B1

(λ) + qskAdv
(ζ,ζ)-KE-ind
B2,Γ (λ).

Proof. The proof follows the dual system methodology [36]. We consider a series
of hybrids H1 and H2,j for j ∈ [qsk]. To define each hybrid, we introduce a

432 N. Attrapadung and J. Tomida

so-called semi-functional (SF) ciphertext and secret key, which are generated
differently from normal ones. Specifically, an SF-ciphertext is generated as

(n1, n2, c(s, ŝ,w)) ← EncCt(x), s1, . . . , sn1 ← Z
k
p, c0 , ŝ1, . . . , ŝn2 ← Z

k+ζ
p ,

S = (c0 ,As1, . . . ,Asn1), Ŝ = (ŝ1, . . . , ŝn2),

ctx = (ct1, ct2, ct3) = ([S]1, [c(S, Ŝ,W)]1, [c	
0 h]TM).

An SF-secret key is generated as

(m1,m2,k(r, r̂,w)) ← EncKey(y), r1, . . . , rm1 ← Z
k
p, r̂1, . . . , r̂m2 ← Z

k+ζ
p ,

μ ← Zp , R = (Br1, . . . ,Brm1), R̂ = (h + μa∗
ζ , r̂1, . . . , r̂m2),

sky = (sk1, sk2) = ([R]2, [k(R, R̂,W)]2).
(4)

In the hybrids, the distribution of secret keys and the challenge ciphertext are
modified as follows:

H1: Same as the original game G except that the challenge ciphertext is SF.
H2,j(j ∈ [qsk]): Same as H1 except that the first j secret keys given to A are SF.

We prove (in the full version) that G ≈c H1 ≈c H2,1 ≈c, . . . ,≈c H2,qsk and A’s
advantage in H2,qsk is statistically close to 0. From these and the fact AdvABEA (λ) =
|Pr[〈A,G〉 = β] − 1/2|, we have that Theorem 9 holds. ��

6 Extensions, Instantiations, and Applications

We obtain many applications in an analogous manner to the applications in [9].

Extended Framework. On the framework level, we obtain key-policy augmen-
tation over a set of predicate families, denoted KBF, which is more powerful than
the augmentation over a single predicate family (KBF1), as done in Sect. 4.3.
This follows exactly the same modular approach as in [9]. That is, in our con-
text, we can show that KBF is implied by KBF1 together with the direct sum and
CBF1OR. We defer the details to the full version. Moreover, more applications
such as nested-policy ABE can also be obtained analogously to [9].

New Instantiations. On the instantiation level, we have showed the result
overview in the introduction. Here, we briefly describe how to obtain such instan-
tiations. The full details are deferred to the full version.

– Completely unbounded ABE for monotone Boolean formulae. Analogously
to [9], we have that this predicate (in the key-policy flavor) is exactly
KBF1[PIBBE], where PIBBE is the predicate for ID-based broadcast encryption.
IBBE can then be augmented from IBE, of which we know a PMH-secure
PES from e.g., [7]. The CP flavor is obtained by the dual conversion.

Unbounded Dynamic Predicate Compositions in ABE 433

– Completely unbounded ABE for non-monotone Boolean formulae (the OSW
type). This is also analogous to [9], where we consider two-mode IBBE
(TIBBE), which can be then obtained by IBE and its negated predicate.

– Non-monotone KP-ABE with constant-size ciphertexts. A monotone variant
is obtained by simply using the PMH-secure PES for IBBE with constant-size
ciphertext encodings. Such a PES can be extracted from the PES for doubly
spatial predicate in [7]. Since our KBF1-Trans preserves ciphertext encoding
sizes, the converted scheme also obtains constant-size ciphertext encodings.
For the non-monotone case, such a PES for TIBBE can be obtained by the
disjunction of IBBE and negated IBBE (NIBBE). The latter can be viewed
as a special case of negated doubly spatial predicate in [7], of which PES with
constant-size encodings was reported. We directly construct a new TIBBE,
which is two times efficient than the generic one from the disjunction (see the
full version).

– CP-ABE with constant-size ciphertexts. First note that we consider schemes
with some bound on the size of policies (Boolean formulae), which the same
requirement as CP-ABE with constant-size ciphertexts of [1,9,10]. We obtain
this by two steps. First we show that, when considering small-universe, KP-
ABE implies CP-ABE (for Boolean formulae, with the bounded condition).
We use the depth-universal circuit [18] in this conversion. Second we show that
CP-ABE with small universe implies CP-ABE with large universe (again for
Boolean formulae, with the bounded condition). To the best of our knowledge,
these conversions were not known and can be of an independent interest,
as they are applied to ABE in general (not necessarily to PES). Note that
we cannot do that as Attrapadung et al. [10] did, who considered similar
implications in the case of more powerful span programs.

– ABE with constant-size keys. CP/KP-ABE with constant-size keys is
obtained by the dual of KP/CP-ABE with constant-size ciphertexts, respec-
tively.

New Applications. As a new application, we provide a new unified predi-
cate related to non-monotone ABE. Previously, there are two types of non-
monotone ABE: the OSW type (Ostrovsky, Sahai, and Waters [31]) and the OT
type (Okamoto and Takashima [30]). In the OSW type, a sub-predicate P (y,X)
amounts to check if an attribute is not in a set, e.g., if y �∈ X, while the OT type,
a label tag is also attached, but a sub-predicate P ′((tag, y), (tag, x)) only checks
the inequality on the same tag, e.g., if tag = tag ∧ y �= x. Intuitively, the OSW
type has a disadvantage in that the non-membership test takes the complement
over the whole universe and this may be too much for some applications, where
we would like to consider multiple sub-universe and confine the complement
to only in the related sub-universe. On the other hand, the OT type confines
the non-membership to those with the same tag, but the non-membership test
is enabled only with the set of single element, e.g., {x}. We unify both types
to overcome both disadvantages; that is, a sub-predicate P ′((tag, y), (tag,X))
would check if tag = tag ∧ y �∈ X. We remark that when considering large-
universe monotone ABE, there is no benefit to consider multiple spaces, since

434 N. Attrapadung and J. Tomida

Zp is already exponentially large, and we can just treat a hashed value H(tag, y)
as an attribute in Zp. In non-monotone ABE, we have to check the equality
(of tags) and the non-membership at once, and the approach by hashing does
not work. We motivate more on the unified non-monotone ABE, and provide
definitions and constructions in the full version.

Acknowledgement. Nuttapong Attrapadung was partly supported by JST CREST
Grant Number JPMJCR19F6, and by JSPS KAKENHI Kiban-A Grant Number
19H01109.

References

1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
259–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-
0 10

2. Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: ACM
CCS 2017, pp. 665–682 (2017)

3. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

4. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for
nondeterministic finite automata from LWE. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 765–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 26

5. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic
finite automata from DLIN. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11892, pp. 91–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36033-7 4

6. Ambrona, M., Barthe, G., Schmidt, B.: Generic transformations of predicate encod-
ings: constructions and applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 36–66. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63688-7 2

7. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

8. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 20

9. Attrapadung, N.: Unbounded dynamic predicate compositions in attribute-based
encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476,
pp. 34–67. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 2

10. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of
predicate encryption and applications to ABE with various compactness tradeoffs.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 575–601.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 24

https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-030-26951-7_26
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-319-63688-7_2
https://doi.org/10.1007/978-3-319-63688-7_2
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-030-17653-2_2
https://doi.org/10.1007/978-3-662-48797-6_24

Unbounded Dynamic Predicate Compositions in ABE 435

11. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

12. Attrapadung, N., Tomida, J.: Unbounded Dynamic Predicate Compositions in
ABE from Standard Assumptions. Cryptology ePrint Archive, Report 2020/231
(2020). https://eprint.iacr.org/2020/231. (The full version of this paper)

13. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg, K.
(ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16715-2 5

14. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

15. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

16. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 19

17. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10879-7 16

18. Cook, S., Hoover, H.: A depth-universal circuit. SIAM J. Comp. 14, 4 (1985)
19. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework

for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)
20. Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to stan-

dard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 21

21. Gong, J., Waters, B., Wee, H.: ABE for DFA from k-Lin. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 732–764. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 25

22. Gong, J., Wee, H.: Adaptively secure ABE for DFA from k-Lin and more. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 278–308.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 10

23. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: ACM STOC 2013, pp. 545–554 (2013)

24. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)

25. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

26. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NCs1 from k-lin. J.
Cryptol. 33(3), 954–1002 (2019). https://doi.org/10.1007/s00145-019-09335-x

https://doi.org/10.1007/978-3-642-19379-8_6
https://eprint.iacr.org/2020/231
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-662-53890-6_21
https://doi.org/10.1007/978-3-030-26951-7_25
https://doi.org/10.1007/978-3-030-45727-3_10
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/s00145-019-09335-x

436 N. Attrapadung and J. Tomida

27. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

28. Lin, H., Luo, J.: Compact adaptively secure ABE from k-lin: Beyond NC1 and
towards NL. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 247–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3 9

29. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

30. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

31. Ostrovsky, R., Sahai, A., Water, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM CCS 2007, pp. 195–203 (2007)

32. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM CCS 2013, pp. 463–474 (2013)

33. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

34. Takashima, K.: Expressive attribute-based encryption with constant-size cipher-
texts from the decisional linear assumption. In: Abdalla, M., De Prisco, R. (eds.)
SCN 2014. LNCS, vol. 8642, pp. 298–317. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-10879-7 17

35. Tomida, J., Kawahara, Y., Nishimaki, R.: Fast, compact, and expressive attribute-
based encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020. LNCS, vol. 12110, pp. 3–33. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45374-9 1

36. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

37. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 14

38. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

39. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and com-
pact constructions for non-monotonic attribute-based encryption. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54631-0 16

https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-030-45727-3_9
https://doi.org/10.1007/978-3-030-45727-3_9
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/978-3-319-10879-7_17
https://doi.org/10.1007/978-3-319-10879-7_17
https://doi.org/10.1007/978-3-030-45374-9_1
https://doi.org/10.1007/978-3-030-45374-9_1
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54631-0_16

Succinct and Adaptively Secure ABE
for ABP from k-Lin

Huijia Lin(B) and Ji Luo(B)

University of Washington, Seattle, USA
{rachel,luoji}@cs.washington.edu

Abstract. We present succinct and adaptively secure attribute-based
encryption (ABE) schemes for arithmetic branching programs, based on
k-Lin in pairing groups. Our key-policy ABE scheme has ciphertexts
of constant size, independent of the length of the attributes, and our
ciphertext-policy ABE scheme has secret keys of constant size. Our
schemes improve upon the recent succinct ABE schemes in [Tomida and
Attrapadung, ePrint ’20], which only handles Boolean formulae. All other
prior succinct ABE schemes either achieve only selective security or rely
on q-type assumptions.

Our schemes are obtained through a general and modular approach
that combines a public-key inner product functional encryption satis-
fying a new security notion called gradual simulation security and an
information-theoretic randomized encoding scheme called arithmetic key
garbling scheme.

1 Introduction

Attribute-based encryption (ABE) [21] is an advanced form of public-key encryp-
tion for enforcing fine-grained access control. In the key-policy version, an
authority generates a pair of master public and secret keys mpk,msk. Given
mpk, everyone can encrypt a message m with an attribute x to get a cipher-
text ctx(m). Using the master secret key msk, the authority can issue a secret
key sky tied to a policy y. Decrypting a ciphertext ctx(m) using sky recovers
the encrypted message m if the attribute x satisfies the policy y. Otherwise, no
information about m is revealed. The security requirement of ABE mandates
collusion resistance—no information of m should be revealed, even when mul-
tiple secret keys are issued, as long as none of them individually decrypts the
ciphertext (i.e., the attribute satisfies none of the associated policies).

Over the past decade, a plethora of ABE schemes have been proposed for
different expressive classes of policies, achieving different trade-offs between effi-
ciency, security, and assumptions. Meanwhile, ABE has found numerous cryp-
tographic and security applications. A primary desirata of ABE schemes is effi-
ciency, in particular, having fast encryption algorithms and small ciphertexts. It
turns out that the size of ABE ciphertexts can be independent of the length of
the attribute x, and dependent only on the length of the message m and secu-
rity parameter—we say such ciphertexts are succinct or have constant size (in
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 437–466, 2020.
https://doi.org/10.1007/978-3-030-64840-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_15&domain=pdf
http://orcid.org/0000-0003-1225-5310
https://doi.org/10.1007/978-3-030-64840-4_15

438 H. Lin and J. Luo

attribute length). Proposed first in [11] as a goal, succinct ciphertexts are pos-
sible because ABE does not require hiding the attribute x, and the decryption
algorithm can take x as input in the clear. Consequently, ciphertexts only need
to contain enough information of x to enforce the integrity of computation on
x, which does not necessitate encoding the entire x.

Succinct ABE are highly desirable. For practical applications of ABE where
long attributes are involved for sophisticated access control, succinct ciphertexts
are much more preferable. From a theoretical point of view, succinct cipher-
texts have (asymptotically) optimal size, as dependency on the message length
and security parameter is inevitable. From a technical point of view, succinct
ABE provides interesting mechanism for enforcing the integrity of computation
without encoding the input. So far, several succinct ABE schemes have been
proposed [5–7,22,23,27,28], but almost all schemes either rely on non-standard
assumption or provide only weak security, as summarized in Tables 1 and 2.

Our Results. In this work, we first construct a succinct key-policy ABE (KP-
ABE) simultaneously satisfying the following properties.

(1) Expressiveness. Support policies expressed as arithmetic branching programs
(ABPs).

(2) Security. Satisfy adaptive security, as opposed to selective or semi-adaptive
security.

(3) Assumption. Based on the standard assumptions as opposed to, e.g., q-type
assumptions. Specifically, our scheme relies on the matrix decisional Diffie–
Hellman (MDDH) assumption over pairing groups.

(4) Efficiency. Has succinct ciphertext.
Concretely, each ciphertext consists of 5 group elements when assuming
SXDH, and 2k + 3 elements for MDDHk (implied by k-Lin). Decryption
involves the same number of pairing operations. Additionally, our scheme
can work with the more efficient asymmetric prime-order pairing groups.

Next, we construct ciphertext-policy ABE (CP-ABE) with the same proper-
ties. Here, the secret keys are tied to attributes and ciphertexts to policies, and
succinctness refers to having constant-size secret keys. Our scheme has keys con-
sisting of 7 group elements based on SXDH and 3k + 4 based on MDDHk.

Besides succinctness (4), achieving the strong notion of adaptive security (2)
based on standard assumptions (3) is also highly desirable from both a practical
and a theoretical point of view. Prior to this work, only the recent construction
of (KP and CP) ABE schemes by Tomida and Attrapadung [23] simultaneously
achieves (2)–(4), and their scheme handles policies expressed as Boolean for-
mulae. Our construction expands the class of policies to arithmetic branching
programs, which is a more expressive model of computation. Our succinct ABE
is also the first scheme natively supporting arithmetic computation over large
fields,1 whereas all prior succinct ABE schemes (even ones relying on q-type

1 One can always convert an arithmetic computation into a Boolean one, which we
consider non-native.

Succinct and Adaptively Secure ABE for ABP from k-Lin 439

Table 1. KP-ABE schemes with succinct ciphertext.

Reference Policy Assumption Adaptive |mpk| |sk| |ct| Dec

ALP [7] MSP q-type 2n + 1 m(n + 1) 3 3

YAHK [27] MSP q-type n + 2 m(n + 1) 2 2

Tak [22] MSP 2-Lin � 18(2n + 1) 6m(n + 1) 17 17

Att [5] MSP q-type � 6n + 42 3m(n + 3) + 9 18 18

ZGT+ [28] MSP k-Lin � 2k2(n + 1) 2km(n + 1) 4k 4k

TA [23] NC1 MDDHk � � k(k + 1)(n + 3) (k + 1)m(n + 2) 2k + 2 2k + 2

Sect. 5 ABP MDDHk � � k(k + 2)(n + 2)
(k + 1)m(n + 2)

+ m
2k + 3 2k + 3

MSP: monotone span programs. NC1: Boolean formulae. ABP: arithmetic branching programs.

n = attribute length, m = policy size, p = group order.

|mpk|, |sk|, |ct| counts non-generator elements in source groups.

Dec counts the number of pairing operations in decryption.

Schemes based on k-Lin can be based on MDDHk at the cost of a few more elements in mpk.

ABE for arithmetic span programs can be obtained by reduction to MSP [6].

Table 2. CP-ABE schemes with succinct secret key.

Reference Policy Assumption Adaptive |mpk| |sk| |ct| Dec

Att [5] MSP q-type � 6n + 54 24 3m(n + 3) + 15 24

AHY [6] ASP q-type � O(n log p) O(1) O(mn log p) O(1)

TA [23] NC1 MDDHk � � O(k2n) O(k) O(kmn) O(k)

Ours [18] ABP MDDHk � � k(k + 1)(n + 4)

+ k
3k + 4

(k + 1)m(n + 2)

+ m + k + 1
3k + 4

assumptions and/or achieving only selective security) only work natively with
Boolean computation. Lastly, we note that even when relaxing the efficiency
requirement from having succinct ciphertext to compact ciphertext, whose size
grows linearly with the length of the attribute, only a few schemes [13,15,17]
simultaneously achieve (2)–(4), and the most expressive class of policies sup-
ported is also ABP, due to [17].

Our Techniques. The recent work of [17] presented a general framework for
constructing compact adaptively secure ABE from MDDH. In this work, we
improve their general framework to achieve succinctness. The framework of [17]
yields linear-size ciphertexts because it crucially relies on function-hiding inner-
product functional encryption (IPFE) [10,19]. IPFE allows issuing secret keys
and ciphertexts tied to vectors v,u respectively, and decryption reveals their
inner product 〈u,v〉. The function-hiding property guarantees that nothing
about u,v beyond the inner product is revealed, which entails that ciphertexts
and secret keys must have size linear in the length of the vectors.

Towards succinctness, our key idea is relaxing function-hiding to a new and
weaker guarantee, called gradual simulation security, where only the vectors
encrypted in the ciphertexts are hidden. Such IPFE can have succinct (constant-
size) secret keys and can be public-key. We use new ideas to modify the frame-
work of [17] to work with the weaker gradual simulation security and obtain suc-

440 H. Lin and J. Luo

cinct ciphertexts. Furthermore, we extend the framework to construct ciphertext-
policy ABE, which is not handled in [17]. In summary, our techniques give a
general and modular approach for constructing succinct and adaptively secure
(KP and CP) ABE from MDDH.

Organization. In Sect. 1.1, we give an overview of how we construct our ABE
schemes using inner-product functional encryption (IPFE) schemes with grad-
ual simulation security and dual system encryption. We discuss related works
in Sect. 1.2. After introducing the preliminaries in Sect. 2, we define gradual
simulation security of IPFE and construct such an IPFE scheme in Sect. 3. In
Sect. 4, we define 1-ABE and construct CP-1-ABE for ABP with succinct keys
from gradually simulation-secure IPFE with succinct keys. In Sect. 5, we show
how to construct KP-ABE with succinct ciphertexts using our CP-1-ABE and
dual system encryption. Due to the lack of space, we refer the reader to the full
version [18] for our construction of CP-ABE with succinct keys similarly to our
KP-ABE construction.

1.1 Technical Overview

In this section, we give an overview of our construction of succinct ABE schemes,
following the roadmap shown in Fig. 1.

gradually simulation-secure
IPFE

piecewise secure
AKGS

CP-1-ABE
dual system
encryption KP-ABE

trivial

KP-1-ABE
dual system
encryption CP-ABE

Fig. 1. The roadmap of our constructions.

1-ABE. The core of many ABE schemes is a 1-key 1-ciphertext secure secret-key
ABE, or 1-ABE for short. Our construction improves the recent 1-ABE scheme
for ABP by Lin and Luo (LL) [17], which achieves adaptive security but not
succinctness.

Suppose we want decryption to recover the message μ ∈ Zp if (and only
if) f(x) �= 0 for policy function f : Z

n
p → Zp and attribute x ∈ Z

n
p . This is

Succinct and Adaptively Secure ABE for ABP from k-Lin 441

equivalent to computing μf(x) upon decryption. The basic idea of the LL 1-
ABE is that when a key (tied to f, μ)2 and a ciphertext (tied to x) are put
together, one can compute a randomized encoding of μf(x), denoted by μ̂f(x),
which reveals μf(x) and hence μ if f(x) �= 0. Since in ABE, we do not try to
hide f or x, the randomized encoding only needs to hide μ beyond the output
μf(x), referred to as the partially hiding property, first introduced by [14]. Due
to the weak security guarantee, partially hiding randomized encoding can have
extremely simple structure. In particular, LL defined a refined version of such
randomized encoding, called arithmetic key garbling scheme (AKGS), with the
following properties:

Linear Encoding. The encoding is in the form of

μ̂f(x) =
(
L1(x), . . . , Lm(x)

)
,

where Lj ’s are affine functions of x and the coefficients of Lj ’s are linear in
the message μ and the garbling randomness. Lj ’s are called label functions and
�j = Lj(x) are called labels.

Linear Evaluation. There is a procedure Eval that can compute μf(x) from f,x
and the labels:

Eval(f,x, �1, . . . , �m) = μf(x).

Importantly, Eval is linear in the labels.3

The basic security of AKGS is simulation security. There needs to be an
efficient simulator Sim that can perfectly simulate the labels given f,x, μf(x):

Sim(f,x, μf(x)) → (�1, . . . , �m) ≡ (
L1(x), . . . , Lm(x)

)
.

Since the label functions are affine in x thus linear in (1,x), the labels �j = Lj(x)
can be securely computed using a function-hiding IPFE. In IPFE, keys isk(v)
and ciphertexts ict(u) are generated for vectors v,u, and decryption yields their
inner product 〈u,v〉 but nothing else. More precisely, function-hiding says two
sets of keys and ciphertexts encoding different vectors are indistinguishable as
long as they yield identical inner products:
({iskj(vj)}, {icti(ui)}

)≈({iskj(v′
j)}, {icti(u′

i)}
)

if 〈ui,vj〉 = 〈u′
i,v

′
j〉 for all i, j.

That is, all vectors no matter encoded in keys or ciphertexts are protected. More-
over, function-hiding should hold even when these vectors are chosen adaptively
by the adversary, depending on previously observed keys and ciphertexts.

In the LL 1-ABE scheme, an ABE key consists of many IPFE keys encod-
ing the coefficients of the label functions (also denoted by Lj), and an ABE

2 The reason why we put the message μ in the key will become clear later in the
overview.

3 In contrast, linear evaluation is impossible for fully hiding randomized encoding that
hides x and f .

442 H. Lin and J. Luo

ciphertext is an IPFE ciphertext encrypting (1,x), as illustrated below in Real
Algorithms. When they are put together, IPFE decryption recovers exactly the
labels �j = Lj(x) = 〈Lj , (1,x)〉, from which we can recover μf(x) using the
evaluation procedure. A technicality is that known IPFE are built from pairing
groups, and decryption only reveals μf(x) in the exponent of the target group.
Nevertheless, one can recover μf(x) also in the exponent, thanks to the linearity
of AKGS evaluation.

Intuitively, the LL scheme is secure since IPFE only reveals the labels, and
AKGS security guarantees only μf(x) is revealed, given the labels. It is simple
to formalize this idea in the selective setting, where x is chosen before querying
the key for f . By the function-hiding property, it is indistinguishable to hardwire
the labels in the IPFE keys as follows.

Real Algorithms Hybrid{
ctx: ict (1,x)

skf,μ: {iskj(Lj)}j∈[m]

}
≈
{

ctx: ict (1 , x)
skf,μ: {iskj(Lj(x) , 0)}j∈[m]

}

After labels Lj(x) are hardwired and label functions removed, AKGS security
guarantees that the labels only reveal μf(x), and μ is hidden if f(x) = 0. Observe
that for selective security, we only need hiding in the keys and not the ciphertext.

The above proof fails for adaptive security, in particular in the case where
the secret key is queried before the ciphertext (we will focus on this harder case
below). At key generation time, x is unknown and consequently the labels Lj(x)
are unknown. We also do not want to hardwire all the labels in the ciphertext
as that would make the ciphertext as large as the policy. LL solves this problem
by relying on a stronger security notion of AKGS called piecewise security :

– The marginal distribution of �2, . . . , �m is uniformly random, and �1 can be
reversely computed from these other labels �2, . . . , �m and f,x, by finding the
unique �1 satisfying the constraint of evaluation correctness.4

– The other labels are marginally random even given the coefficients of all
subsequent label functions, i.e.,
(
Lj(x), Lj+1, . . . , Lm

) ≡ (
z, Lj+1, . . . , Lm

)
for z

$← Zp, for all j > 1.

The first property implies a specific simulation strategy: Simply sample
�2, . . . , �m as random, then solve for �1 from the correctness constraint. This
strategy is particularly suitable for the adaptive setting, as only the simulation
of �1 depends on the input x. Thus, a conceivable simulation strategy for 1-ABE
is to hardwire �2, . . . , �m in the secret key and �1 in the ciphertext. This would
not hurt the compactness of the ciphertext.

4 The original definition only requires �1 to be reversely sampleable. In [17], it is
shown that the two are equivalent for piecewise security, and we stick to the simpler
definition in this overview. In the full definition, �1 also depends on the computation
result. For the purpose of this overview, the result is always μf(x) = 0 as the
adversary is restricted to non-decrypting queries.

Succinct and Adaptively Secure ABE for ABP from k-Lin 443

Proving the indistinguishability of the real and the simulated worlds takes
two steps. In the first step, the first label �1 = L1(x) is hardwired into the IPFE
ciphertext ict, and then changed to be reversely computed from the other labels
and f,x, which is possible since by the time we generate ict, we know both f
and x. In the second step, each iskj for j > 1 is, one by one, switched from
encoding the label function to encoding a random label. To do so, the jth label
�j = Lj(x) is first hardwired into ict, after which it is switched to random relying
on piecewise security, and lastly moved back to iskj . Observe that the proof uses
two extra slots in the vectors (one for �1, the other for each �j temporarily) and
relies on hiding in both the keys and the ciphertext.

Lightweight Alternative to Function-Hiding. In a function-hiding IPFE,
keys and ciphertexts must be of size at least linear in the vector dimension. This
means the resulting ABE scheme can never be succinct. Our first observation
is that function-hiding IPFE is an overkill. Since in ABE, x is not required to
be hidden, it is quite wasteful to protect it inside an IPFE ciphertext. Indeed,
selective security of the LL scheme does not rely on hiding in the ciphertext.

Our idea to achieve succinctness is to use a non-function-hiding IPFE scheme
instead, e.g., public-key IPFE. Usually the vector in the key is included verbatim
as part of the key, and the “essence” of the key (excluding the vector itself) could
be significantly shorter than the vector. Indeed, many known public-key IPFE
schemes [1,3] have succinct keys.

Since the coefficients of the label functions (which contains information about
μ and the garbling randomness) must be hidden for the 1-ABE to be secure,
and x is public, we should encrypt the coefficients of the label functions in IPFE
ciphertexts and use an IPFE key for (1,x) to compute the garbling. Since the
message μ is together with f and the generation of IPFE ciphertexts is public-
key, the 1-ABE scheme is more like a public-key ciphertext-policy ABE than a
secret-key ABE, except we only consider security given a single key for some
attribute x. Therefore, we redefine 1-ABE as 1-key secure public-key CP-ABE,5

and the idea is to construct it from a public key IPFE and AKGS as follows:

skx: isk (1,x)
ctf,μ: {ictj(Lj)}j∈[m]

}
IPFE−−−→
Dec

{〈Lj , (1,x)〉 = Lj(x) = �j}j∈[m]
AKGS−−−−→
Eval

μf(x).

Our CP-1-ABE is x-selectively secure if the underlying IPFE is
indistinguishability-secure, similar to the selective security of LL scheme.

However, it is not immediate that we can prove adaptive security of this new
scheme. The LL adaptive security proof requires hardwiring �1 and one of �j ’s
with x, which is now encoded in the secret key without hiding property. Taking
a step back, hardwiring a label is really about removing its label function and
only using the label, which is the inner product yielded by IPFE decryption.
Our idea is to use simulation security to achieve this goal. A simulator for a

5 This definition has the advantage of automatically being multi-ciphertext secure (if
secure at all) over the secret-key definition. It is also more convenient to use in
reductions for full ABE.

444 H. Lin and J. Luo

public-key IPFE can simulate the master public key, the secret keys, and one
(or a few) ciphertext, using only the inner products, and the simulator can do
so adaptively. Let us take simulating one ciphertext as an example.

Real Simulation
⎧
⎪⎪⎨

⎪⎪⎩

mpk
{iskj(vj)}j≤J∗

ict (u)
{iskj(vj)}j>J∗

⎫
⎪⎪⎬

⎪⎪⎭
≈

⎧
⎪⎪⎨

⎪⎪⎩

m̃pk

{ĩskj(vj | ∅)}j≤J∗

ĩct (∅ | {〈u,vj〉}j≤J∗)
{ĩskj(vj | 〈u,vj〉)}j>J∗

⎫
⎪⎪⎬

⎪⎪⎭
(�)

J∗ is the number of keys issued before ciphertext generation. On the left are the
honestly generated master public key, secret keys, and ciphertext. On the right
is their simulation. The vertical bar separates what the real algorithms use and
what the simulator (additionally) use. Since public-key IPFE completely reveals
the key vectors,6 they are always provided to the simulator. As for the other
values:

– Before ciphertext simulation, there is no additional information supplied.
– When the ciphertext is simulated, the vector u is not provided, but its inner

products with already simulated keys are provided to the simulator.7

– After ciphertext simulation, when simulating a key for vj , the inner product
〈u,vj〉 is provided with vj .

Observe that the values after the vertical bar are exactly those computable
using the functionality of IPFE at that time, so in simulation, anything about
the encrypted vector not yet computable by the functionality of IPFE, simply
does not exist (information-theoretically) at all. In the setting of our CP-1-ABE,
we will simulate an IPFE ciphertext to remove its corresponding label function
and only retain the label. Looking from the perspective of hardwiring, when we
issue skx = isk(1,x) after we have created the ciphertext ctf,μ (in which ictj
has been simulated), the inner product �j is supplied to the simulator when we
simulate isk, after the simulation of ictj . This means the label �j is hardwired
into isk.

Let us exemplify the proof of adaptive security in the more difficult case
where skx is queried after ctf,μ. First, we simulate ict1 so that the first label is
hardwired into isk.

Real Algorithms �1 Hardwired
⎧
⎨

⎩

ctf,μ: ict1(L1)
{ictj(Lj)}j>1

skx: isk (1,x)

⎫
⎬

⎭
≈

⎧
⎨

⎩

ctf,μ: ĩct1(∅ | ∅)
{ictj(Lj)}j>1

skx: ĩsk (1,x | �1 = L1(x))

⎫
⎬

⎭

6 Anyone can encrypt the standard basis vectors using mpk, and use decryption algo-
rithm to obtain each component of the vector in a secret key.

7 Though the number J∗ of inner products with already simulated keys is unbounded,
since the vectors {vj}j≤J∗ in the keys are public, these inner products are determined
by those with any maximal subset of linearly independent vj ’s, the number of which
will not exceed the dimension. As such, the simulated ciphertext can still be compact.

Succinct and Adaptively Secure ABE for ABP from k-Lin 445

(We omitted the master public key for brevity.) Note that ictj ’s for j > 1 do not
use ciphertext simulation but are created using the master public key (honest or
simulated). Once �1 is hardwired, we can instead solve for it from the correctness
equation.

The second step is to switch ictj(Lj) to ictj(�j ,0) for �j
$← Zp one by one, i.e.,

to simulate �j as random. To do so, we first simulate ictj (hardwiring �j = Lj(x)
into isk), then switch �j to random (via piecewise security), and lastly revert ictj
back to encryption (not simulated), but encrypting (�j ,0) instead.

During the proof, there are at most two simulated ciphertexts at any time, so
it appears that we can just use a simulation-secure IPFE capable of simulating
at most two ciphertexts. This is not the case. The tricky part is that the usual
definition of simulation security in (�) only requires the real world to be indis-
tinguishable from simulation. However, in the step of simulating �j as random,
we need to switch ictj to simulation when ĩct1 is already simulated (and sym-
metrically, reverting ĩctj back to encryption while keeping ĩct1 simulated). It is
unclear whether this transition is indistinguishable just via simulation security,
because the definition says nothing about the indistinguishability of simulating
one more ciphertext when there is already one simulated ciphertext, i.e.,

(m̃pk, ĩct1, ict2, {ĩskj}j) ≈ (m̃pk, ĩct1, ĩct2, {ĩskj}j) ?

Note that when we want to simulate �j , the computation of �1 has complicated
dependency on x,8 and we cannot hope to get around the issue by first reverting
ĩct1 back to normal encryption then simultaneously simulating ict1, ictj , because
we do not know what to encrypt in ict1.

Gradually Simulation-Secure IPFE. To solve the problem above, we define
a stronger notion of simulation security, called gradual simulation security. It
bridges the gap by capturing the idea that it is indistinguishable to simulate more
ciphertexts even when some ciphertexts (and all the keys) are already simulated,
as long as the total number of simulated ciphertexts does not exceed a preselected
threshold. We show that the IPFE scheme in [3] can be adapted for gradual
simulation security. The length of secret keys grows linearly in the maximum
number of simulated ciphertexts, but not in the vector dimension. Plugging it
into our CP-1-ABE construction, we obtain a CP-1-ABE with succinct keys.
8 In fact, the computation is as complex as the computation of f(x).

446 H. Lin and J. Luo

We remark that another way to get around the issue of simulation security
is to notice that there are at most two ciphertexts simulated at any time and
one of them is ict1. Therefore, we can simply prepare two instances of IPFE
(with independently generated master public and secret keys), one dedicated to
ict1 and the other to ictj ’s (for j > 1). During the proof, the instance for ict1
is always simulated, and the other instance is switched between simulation and
normal. The downside of this method is that using two instances doubles 1-ABE
key size. In contrast, the solution using gradually simulation-secure IPFE only
needs one more Zp element in CP-1-ABE key.

Comparison with Previous Techniques. Previous works constructing succinct
ABE only natively support Boolean computations, whereas our method natively
supports arithmetic computations. In [5–7,22,27], succinct ABE schemes are
constructed from a special succinct ABE for set-membership policies (keys are
tied to a set S and ciphertexts are tied to an element x; decryption succeeds
if x ∈ S). Based on ABE for set-membership policies, one can obtain ABE for
monotone span programs, or policies admitting linear secret sharing schemes.
Those ingredients (the special ABE, MSP, LSS) are inherently only native to
Boolean computations. Among them, the work of [6] constructs succinct ABE
for arithmetic span programs by reduction to MSP at the cost of a Θ(log p)
blow-up in key sizes.

In [23,28], succinct ABE schemes are implicitly based on IPFE with succinct
keys. The IPFE is only used to compute linear secret sharing schemes, and is
used in a non-black-box way. In contrast, our 1-ABE can be constructed from
any IPFE in a modular and black-box fashion, and we use it for arithmetic
branching programs.

Dual System Encryption for Full ABE. To lift our CP-1-ABE to full KP-
ABE, we need to flip the position of attributes and policies. Our idea is to use
CP-1-ABE as a key encapsulation mechanism. More specifically, a KP-ABE key
for policy f is a CP-1-ABE ciphertext cpct(f, μ), where μ is the message in CP-
1-ABE and encapsulated key in KP-ABE. A KP-ABE ciphertext for attribute
x and message m consists of a CP-1-ABE key cpsk(x) and the masked message
μ + m. If decryption is authorized, CP-1-ABE decryption will give us μ, which
can be used to unmask the message. Observe that the security of KP-ABE aligns
with the security of CP-1-ABE, namely, in the KP-ABE security game:

– We only need to handle one ciphertext, for which we rely on 1-key security
of CP-1-ABE.

– We need to handle multiple keys, which corresponds to multi-ciphertext secu-
rity of CP-1-ABE. Since our CP-1-ABE is public-key, it indeed satisfies multi-
ciphertext security given only one key.

However, we need to resolve the issue that encryption of KP-ABE is now secret-
key, since we need to know both the master secret key of CP-1-ABE and μ (part
of the master secret key of KP-ABE) to generate KP-ABE ciphertext.

Succinct and Adaptively Secure ABE for ABP from k-Lin 447

We observe that our CP-1-ABE is linear, i.e., the spaces of cpmsk, cpsk, cpct,
messages are vector spaces over Zp, and9

k1cpsk(cpmsk1,x) +k2cpsk(cpmsk2,x) = cpsk(k1cpmsk1 + k2cpmsk2,x),
k1cpct(cpmsk1, f, μ1) +k2cpct(cpmsk1, f, μ2)

= cpct(k1cpmsk1 + k2cpmsk2, f, k1μ1 + k2μ2).

Here, cpsk(cpmsk,x) and cpct(cpmsk, f, μ) represent that they are generated in
the CP-1-ABE instance whose master secret key is cpmsk. We instantiate our
CP-1-ABE with an IPFE such that the keys are linear in the master secret key
and the ciphertexts are linear in both the master secret key and the encrypted
vector. CP-1-ABE master secret key and keys are IPFE master secret key and
keys, so cpsk’s are linear in cpmsk. CP-1-ABE ciphertexts are IPFE ciphertexts
for the label functions of AKGS, and AKGS is linear with respect to the message
μ, so cpct’s are linear in msk, μ.

Let G be an additive prime-order group generated by P and write [[a]] = aP .
Concretely, cpmsk and cpsk’s will be Zp elements. Now if we encode cpmsk in G,
by linearity we can compute cpsk in G, and we denote this fact by

[[cpsk(cpmsk,x)]] = cpsk([[cpmsk]],x).

Assume for the moment that this can also be done for cpct’s and decryption still
works.10 Given the linearity, we can employ dual system encryption [24] to make
the scheme public-key. In prime-order groups, the classic dual system encryption
can be regarded as hash proof systems based on MDDHk [9,12].11

Take MDDH1 (DDH assumption) for example. KP-ABE prepares two
instances of CP-1-ABE and two messages, and publishes the projection of them
along a randomly sampled vector (b1, b2) in the exponent:

kpmpk = [[b1, b2, b1cpmsk1 + b2cpmsk2, b1μ1 + b2μ2]] for b1, b2
$← Zp,

kpmsk = (cpmpk1, cpmpk2, cpmsk1, cpmsk2, μ1, μ2).

Encryption is now public-key. A KP-ABE ciphertext simply uses a random CP-
1-ABE master secret key in the projected space (a.k.a. normal space in dual
system encryption) and use the projected μ to mask the message. A KP-ABE
key consists of two CP-1-ABE ciphertexts, one in each instance encrypting the
corresponding encapsulated key.

kpct(x,m) =
(
s[[b1, b2]], cpsk(s[[b1cpmsk1 + b2cpmsk2]],x),m + s[[b1μ1 + b2μ2]]

)

for s
$← Zp,

kpsk(f) =
(
cpct(cpmsk1, f, μ1), cpct(cpmsk2, f, μ2)

)
.

9 The randomness in key generation/encryption should also take part in the linear
homomorphism, but we omit it in this overview for brevity.

10 In our case, cpct’s are already group-encoded, and this is where pairing comes in.
11 A few examples are [3,13,15,26]. Wee [25] also notices that certain usage of dual

system encryption in composite-order groups is reminiscent of hash proof systems.
There are other ways to use dual system encryption that are not captured by hash
proof systems.

448 H. Lin and J. Luo

To decrypt, we first use linearity to combine the two CP-1-ABE ciphertexts into

cpct([[sb1cpmsk1 + sb2cpmsk2]], f, [[sb1μ1 + sb2μ2]])
= [[sb1]]cpct(cpmsk1, f, μ1) + [[sb2]]cpct(cpmsk2, f, μ2).

The master secret key of the combined cpct matches that of the cpsk in the KP-
ABE ciphertext, and CP-1-ABE decryption will recover [[sb1μ1 + sb2μ2]], using
which we can unmask to obtain the message m.

To argue security, we first replace [[sb1, sb2]] used in the challenge ciphertext
by [[a1, a2]] for random a1, a2

$← Zp (using DDH), which is not co-linear with
(b1, b2) with overwhelming probability. Ciphertexts in this form are said to be
semi-functional in dual system encryption.

By the linearity, we can look at the ABE scheme from a new basis, namely
(b1, b2), (a1, a2). We denote the CP-1-ABE components and μ’s in this basis with
prime, e.g., cpmsk′

1 = b1cpmsk1 + b2cpmsk2 and cpmsk′
2 = a1cpmsk1 + a2cpmsk2.

The KP-ABE master public key reveals cpmsk′
1 but not cpmsk′

2. A KP-ABE
secret key for policy f is essentially cpct(cpmsk′

1, f, μ′
1) and cpct(cpmsk′

2, f, μ′
2).

The challenge ciphertext has cpsk(cpmsk′
2,x), and the message is masked by

μ′
2. By CP-1-ABE security, μ′

2 (in cpct’s) should be hidden, which means the
message in the challenge ciphertext is hidden by μ′

2.
The proof completes by replacing μ′

2 in all the KP-ABE keys by random.
ABE keys in this form are said to be semi-functional in dual system encryption.

Lastly, to base the scheme on MDDHk, we use k +1 instances of CP-1-ABE,
publish a k-dimensional projection (normal space), and reserve the unpublished
dimension for the security proof (semi-functional space).

CP-ABE from KP-1-ABE. By symmetry, we can apply the transformation
to obtain CP-ABE from KP-1-ABE. Moreover, our KP-ABE trivially serves as
a KP-1-ABE. Therefore, the scheme is (ignoring group encoding)

cpmpk = (d1, d2, d1kpmsk1 + d2kpmsk2, d1ν1 + d2ν2) for d1, d2
$← Zp,

cpmsk = (kpmpk1, kpmpk2, kpmsk1, kpmsk2, ν1, ν2),

cpsk =
(
kpct(kpmsk1,x, ν1), kpct(kpmsk2,x, ν2)

)
,

cpct =
(
td1, td2, kpsk(t(d1msk1 + d2msk2), f),m + t(d1ν1 + d2ν2)

)
for t

$← Zp.

Again, KP-1-ABE is used to encapsulate keys ν1, ν2, whose projection masks the
message in CP-ABE. Dual system encryption or hash proof system is used to
obtain public-key encryption by publishing a random projection of KP-1-ABE
master secret keys (in this case, along (d1, d2)).

One final observation is that only μ1, μ2 in KP-(1-)ABE need to be duplicated
and projected, yielding only a small overhead in CP-ABE compared to KP-ABE.
We leave the details to the full version [18].

We note that once we obtain KP-ABE from CP-1-ABE, going to CP-ABE
using the same method is natural and simple.

Succinct and Adaptively Secure ABE for ABP from k-Lin 449

1.2 Related Works

Succinct ABE. We compare our scheme with previous KP-ABE schemes with
constant-size ciphertexts in Table 1 and CP-ABE schemes with constant-size
secret keys in Table 2.

Compact ABE. Previous schemes achieving compactness (linear-size keys and
ciphertexts, also known as “unbounded multi-use of attributes”) and adaptive
security based on standard assumptions are [15,23] for Boolean formulae, [13]
for Boolean branching programs, and [17] for arithmetic branching programs.
Among them, only [23] achieves succinctness.

ABE with Succinct f -Part. From pairing, we know several ABE schemes with
succinct x-part (ciphertexts in KP-ABE and keys in CP-ABE) and compact f -
part (linear in the size of f), including ones in this work. One can also investigate
succinctness in f -part (keys in KP-ABE and ciphertexts in CP-ABE). So far,
the only schemes with succinct f -part are KP-ABE for polynomial-sized circuits
based on LWE [8] and CP-ABE schemes for NC1 based on LWE and pairing [4],
in which the size of f -part depends on the depth but not the size of the circuit.
Yet these schemes have compact but non-succinct x-part.

Unbounded ABE. Our succinct ABE schemes have master public key of size
linear in the attribute length. In general, one can further improve the size of
master keys to be a constant, which requires the scheme to be able to handle
attributes of any polynomial length. Such schemes are called unbounded ABE.
So far, there are unbounded and compact ABE schemes (e.g., [15] for NC1). It
remains an interesting open problem to construct unbounded succinct schemes.

In summary, to the best of our knowledge, our schemes achieve one of the
currently best trade-offs in terms of master key/secret key/ciphertext sizes.

2 Preliminaries

For two matrices A,B, their tensor product is denoted by A⊗B. An affine func-
tion f : Z

n
p → Zp over prime field Zp is conveniently associated with its coefficient

vector f ∈ Z
n+1
p (the same letter in boldface) such that f(x) = fT

(
1
x

)
.

2.1 Arithmetic Branching Programs and Arithmetic Key Garbling

In this paper, we consider the class of decryption policies defined by arithmetic
branching programs [20].

Definition 1 (ABP). An arithmetic branching program (ABP) f = (V,E,
s, t, p, n, w) consists of a directed acyclic graph (V,E), two distinguished ver-
tices s, t ∈ V , a prime field order p, an arity n, and a weight function

450 H. Lin and J. Luo

w : E × Z
n
p → Zp that is affine in the second input. It computes the function

f : Z
n
p → Zp (written as the same letter) defined by

f(x) =
∑

s-t path
e1···ei

i∏

j=1

w(ej ,x).

Its size (denoted by |f |) is |V |. It induces two zero-test predicates:

f�=0(x) =

{
0, if f(x) = 0;
1, if f(x) �= 0;

f=0(x) = ¬f�=0(x).

Denote by ABP (resp. ABPn
p) the class of all ABPs (resp. of field order p and

arity n), and by ztABPn
p the set of zero-test predicates induced by ABPs in ABPn

p .

We rely on an arithmetic key garbling scheme for ABP.

Definition 2 (AKGS). Let F = {f} be a class of functions f : Z
n
p → Zp. An

arithmetic key garbling scheme (AKGS) for F consists of two efficient algo-
rithms:

– Garble(f, α, β; r) takes a function f : Z
n
p → Zp ∈ F and two secrets α, β ∈ Zp

as input, and uses uniform randomness r ∈ Z
m′
p . It outputs coefficient vectors

L1, . . . ,Lm ∈ Z
n+1
p of m affine functions L1, . . . , Lm : Z

n
p → Zp (called label

functions). The vectors Lj are linear in (α, β, r). The amount of randomness
m′ and the number m of label functions are solely determined by f , and m is
called the garbling size of f .

– Eval(f,x, �1, . . . , �m) takes as input a function f : Z
n
p → Zp ∈ F , an input

x ∈ Z
n
p , and m labels �1, . . . , �m ∈ Zp. It outputs γ ∈ Zp that is linear in

�1, . . . , �m.

The scheme is required to be correct, i.e., for all f : Z
n
p → Zp ∈ F , α, β ∈ Zp,

x ∈ Z
n
p , it holds that

Pr

[
(L1, . . . ,Lm) $← Garble(f, α, β)
∀j ∈ [m], �j ← Lj(x)

: Eval(f,x, �1, . . . , �m) = αf(x) + β

]

= 1.

We rely on the strong notion of piecewise security recently introduced in [17].

Definition 3 (piecewise security). Let (Garble,Eval) be an AKGS for some func-
tion class F . The scheme is piecewise secure if it satisfies the following two
properties:

– The first label is reversely sampleable given the input, the output, and the
other labels. That is, there is an efficient algorithm RevSamp such that for all
f : Z

n
p → Zp ∈ F , α, β ∈ Zp,x ∈ Z

n
p , the following distributions are identical:

Succinct and Adaptively Secure ABE for ABP from k-Lin 451

{
(L1, . . . ,Lm)

$← Garble(f, α, β)

�1 ← L1(x)
: (�1,L2, . . . ,Lm)

}

≡

⎧⎪⎨
⎪⎩

(L1, . . . ,Lm)
$← Garble(f, α, β)

�j ← Lj(x) for j ∈ [m], j > 1

�1 ← RevSamp
(
f,x, αf(x) + β, �2, . . . , �m

) : (�1,L2, . . . ,Lm)

⎫⎪⎬
⎪⎭.

– The other labels are marginally random even given all the subsequent label
functions. That is, for all f : Z

n
p → Zp ∈ F , α, β ∈ Zp,x ∈ Z

n
p , suppose the

garbling size of f is m, then for all j ∈ [m], j > 1, the following distributions
are identical:

{
(L1, . . . ,Lm) $← Garble(f, α, β)

�j ← Lj(x)
: (�j ,Lj+1, . . . ,Lm)

}

≡
{

(L1, . . . ,Lm) $← Garble(f, α, β)

�j
$← Zp

: (�j ,Lj+1, . . . ,Lm)

}

.

A piecewise secure AKGS is known for ABPs:

Lemma 4 ([14,17]). There exists a piecewise secure AKGS for ABP, for which
the garbling size of an ABP is the same as its size.

Throughout the paper, we will use a vectorized version of the garbling algorithm.
Let α,β ∈ Z

k
p, then Garble(f,α,β) is executed component-wise with indepen-

dent randomness and the output are concatenated:

for t ∈ [k]: (L(t)
1 , . . . ,L(t)

m) $← Garble(f,α[t],β[t]);

for j ∈ [m]: Lj =

⎛

⎜
⎜
⎝

L(1)
j
...

L(k)
j

⎞

⎟
⎟
⎠ =

k∑

t=1

ej ⊗ L(t)
j ;

output(L1, . . . ,Lm).

Here, ej ∈ Z
k
p are the standard basis vectors and Lj ’s are column vectors of

length k(n + 1). In the vectorized version, the randomness is a matrix and each
row of the matrix is used for one invocation of the non-vectorized garbling. This
notation is compatible with tensor products:

Lemma 5 (mixing and stitching). Suppose f : Z
n
p → Zp.

Let α,β ∈ Z
k
p,R ∈ Z

k×m′
p , c ∈ Z

k
p, and define

(L1, . . . ,Lm) ← Garble(f,α,β;R), (L′
1, . . . ,L

′
m) ← Garble(f, cTα, cTβ; cTR),

then LT
j (c ⊗ In+1) = (L′

j)
T for all j ∈ [m].

Now let α, β ∈ Zp, r ∈ Z
m′
p ,d ∈ Z

k
p, and define

(L′
1, . . . ,L

′
j) ← Garble(f, α, β; r), (L1, . . . ,Lj) ← Garble(f, αd, βd;drT),

then d ⊗ L′
j = Lj for all j ∈ [m].

452 H. Lin and J. Luo

2.2 Attribute-Based Encryption

In the definition below, we explicitly take the description of policy/attribute out
of the secret key/ciphertext so that we can characterize succinctness.

Definition 6 (ABE). Let M = {Mλ}λ∈N be a sequence of message sets and
P = {Pλ}λ∈N a sequence of predicate families with Pλ =

{
P : XP × YP →

{0, 1}}. An attribute-based encryption (ABE) scheme for message space M
and predicate space P consists of four efficient algorithms:

– Setup(1λ, P) takes as input the security parameter 1λ and a predicate P ∈ Pλ,
and outputs a pair of master public/secret keys (mpk,msk).

– KeyGen(msk, y) takes as input a policy y ∈ YP and outputs a secret key sk.
– Enc(mpk, x, g) takes as input an attribute x ∈ XP and a message g ∈ Mλ,

and outputs a ciphertext ct.
– Dec(sk, y, ct, x) takes as input a secret key, the policy of the key, a ciphertext,

and the attribute of the ciphertext, and is supposed to recover the message if
P (x, y) = 1.

The scheme is required to be correct, i.e., for all λ ∈ N, g ∈ Mλ, P ∈ Pλ, x ∈ XP ,
y ∈ YP such that P (x, y) = 1,

Pr

⎡

⎢
⎢
⎣

(mpk,msk) $← Setup(1λ, P)

sk
$← KeyGen(msk, y)

ct
$← Enc(mpk, x, g)

: Dec(sk, y, ct, x) = g

⎤

⎥
⎥
⎦ = 1.

Definition 7 (ABE for ABP). Let p = p(λ) be a sequence of prime numbers.
A key-policy ABE (KP-ABE) for ABP over Zp(λ) is defined for the following
predicate family:

P = {Pλ}, Pλ =
{
Pλ,n : Z

n
p(λ) × ztABPn

p(λ) → {0, 1}}, Pλ,n(x, y) = y(x).

In a ciphertext-policy ABE (CP-ABE) for ABP over Zp(λ), the predicates are

Pλ,n : ztABPn
p(λ) × Z

n
p(λ) → {0, 1}, (y,x) �→ y(x).

Definition 8 (succinct ABE). An ABE scheme has succinct ciphertext if the
length of ct is a fixed polynomial in security parameter λ (independent of the
length of x, y and the choice of P). Similarly, the scheme has succinct secret key
if the length of sk is a fixed polynomial in λ.

The above definition does not rule out trivially succinct schemes, e.g., one only
supporting x, y of length at most λ. In this work, we construct KP-ABE for ABP
with succinct ciphertexts and CP-ABE for ABP with succinct secret keys. These
constructions are non-trivial because Setup can be run with any predicate Pλ,n

for attribute length n, the scheme works with policies of arbitrary size, and the
ciphertexts in KP-ABE and the secret keys in CP-ABE have fixed size poly(λ),
independent of n.

Security. We consider the standard IND-CPA security of ABE.

Succinct and Adaptively Secure ABE for ABP from k-Lin 453

Definition 9 (IND-CPA of ABE [16]). Adopt the notations in Definition 6. The
scheme is IND-CPA secure if Exp0CPA ≈ Exp1CPA, where Expb

CPA with adversary
A proceeds as follows:

– Setup. Launch A(1λ) and receive from it a predicate P ∈ Pλ. Run (mpk,msk)
$← Setup(1λ, P) and send mpk to A.

– Query I. Repeat the following for arbitrarily many rounds determined by A:
In each round, A submits a policy yq ∈ YP for a secret key. Upon this query,
run skq

$← KeyGen(msk, y) and send skq to A.
– Challenge. The adversary submits the challenge attribute x∗ ∈ XP and two

messages g0, g1 ∈ Mλ. Run ct
$← Enc(mpk, x, gb) and return ct to A.

– Query II. Same as Query I.
– Guess. The adversary outputs a bit b′. The outcome of the experiment is b′

if P (x∗, yq) = 0 for all yq queried in Query I/II. Otherwise, the outcome is
set to 0.

2.3 Pairing Groups and Matrix Diffie–Hellman Assumption

Throughout the paper, we use a sequence of pairing groups

G = {(Gλ,1, Gλ,2, Gλ,T, gλ,1, gλ,2, eλ)}λ∈N,

where Gλ,1, Gλ,2, Gλ,T are groups of prime order p = p(λ), and Gλ,1 (resp. Gλ,2)
is generated by gλ,1 (resp. gλ,2). The maps eλ : Gλ,1 × Gλ,2 → Gλ,T are

– bilinear: eλ

(
ga

λ,1, g
b
λ,2

)
=
(
eλ(gλ,1, gλ,2)

)ab for all a, b ∈ Zp(λ); and

– non-degenerate: gλ,T
def== eλ(gλ,1, gλ,2) generates Gλ,T.

The group operations as well as the pairing eλ must be efficiently computable.
When we talk about one group without thinking about pairing, the subscripts

1, 2,T are dropped.

Bracket Notation. Fix a security parameter, for i = 1, 2,T, we write [[A]]i for
gAλ,i, where the exponentiation is element-wise. When bracket notation is used,
group operations are written additively and pairing is written multiplicatively, so
that [[A]]i +[[B]]i = [[A+B]]i and [[A]]1[[B]]2 = [[A]]2[[B]]1 = [[AB]]T. Furthermore,
numbers can always operate with group elements, e.g., A[[B]]1 = [[AB]]1.

Matrix Diffie–Hellman Assumption. In this paper, we rely on the MDDH
assumptions.

Definition 10 (MDDH [12]). Let G = {(Gλ, gλ)}λ∈N be a sequence of groups of
prime order p = p(λ) with their generators, and � = �(λ), q = q(λ) polynomials.
The MDDHq

k,� assumption holds in G if

{[[A,STA]]}λ∈N ≈ {[[A,CT]]}λ∈N forA $← Z
k×�(λ)
p(λ) ,S $← Z

k×q(λ)
p(λ) ,C $← Z

�(λ)×q(λ)
p(λ) .

By default, � = k + 1 and q = 1. It is known [12] that k-Lin implies MDDHk,
which further implies MDDHq

k,� for any polynomial �, q.

454 H. Lin and J. Luo

3 IPFE with Gradual Simulation Security

In this work, we consider IPFE schemes based on MDDH-hard groups (poten-
tially without pairing), where the ciphertext encodes the encrypted vector in
the exponent of the group, and decryption computes the inner product in the
exponent. In our definition below, we directly define such group-based IPFE.
The definition can be easily modified for IPFE that are not group-based.

Definition 11 (IPFE). Let G = {(Gλ, gλ)}λ∈N be a sequence of groups of prime
order p = p(λ) with their generators. A G-encoded public-key inner-product
functional encryption (IPFE) scheme consists of four efficient algorithms:

– Setup(1λ, 1n, 1T) takes as input the security parameter 1λ, the dimension 1n

of the vectors, and an additional parameter 1T (see Definition 12). It outputs
a pair of master public/secret keys (mpk,msk).

– KeyGen(msk,v) takes the master secret key and a vector as input, and outputs
a secret key sk.

– Enc(mpk, [[u]]) takes the master public key and a vector (encoded in G) as
input, and outputs a ciphertext ct.

– Dec(sk,v, ct) takes a secret key, the vector in the secret key, and a ciphertext
as input, and is supposed to compute the inner product in the exponent.

The scheme is required to be correct, meaning that for all λ, n, T ∈ N,
u,v ∈ Z

n
p(λ), it holds that

Pr

⎡

⎢
⎢
⎣

(mpk,msk) $← Setup(1λ, 1n, 1T)

sk
$← KeyGen(msk,v)

ct
$← Enc(msk, [[u]])

: Dec(sk,v, ct) = [[uTv]]

⎤

⎥
⎥
⎦ = 1.

The scheme is succinct if the length of sk is independent of n and only depends
on λ, T .

Setup algorithm in the above definition takes an additional input 1T specifying
the desired level of simulation security, which we define next.

Gradual Simulation Security. When building the 1-ABE scheme, we rely
on the notion of gradual simulation security, which is stronger than the usual
simulation security (see [2]). Roughly speaking, on top of the requirement that
simulation should be indistinguishable from the real scheme, the notion stipu-
lates that even when some ciphertexts are already simulated, whether another
ciphertext is honest or simulated should be indistinguishable. The parameter T
specifies the maximum number of ciphertexts that can be simulated.

To navigate around the many indices involved in the definition, it is the
easiest to keep in mind that i (hence I, I∗, It) always counts the ciphertexts, and
that j (hence J, J∗, Jt) always counts the keys.

Definition 12 (gradual simulation security). Adopt the notations in Defini-
tion 11. A simulator consists of three efficient algorithms:

Succinct and Adaptively Secure ABE for ABP from k-Lin 455

– SimSetup(1λ, 1n, 1T) takes the same input as Setup, and outputs a simulated
master public key mpk and an internal state st.12

– SimKeyGen(st,v, z1, . . . , zI) takes as input the internal state st, a vector v,
and a list z1, . . . , zI of inner products in Zp(λ) (which are the intended inner
products between this simulated key and all previously simulated ciphertexts).
It outputs a simulated secret key sk and a new state st′.

– SimEnc(st, z1, . . . , zJ) takes as input the internal state st and a list z1, . . . , zJ

of inner products in Zp(λ) (which are the intended inner products between this
simulated ciphertext and all previously simulated keys). It outputs a simulated
ciphertext ct and a new state st′.

The simulator gradually T -simulates the scheme if it satisfies both key simula-
tion security and T -ciphertext simulation security defined below.

An IPFE scheme is gradually T -simulation-secure if it can be gradually T -
simulated by some simulator. The scheme is gradually simulation-secure if there
exists a simulator such that the simulator gradually T -simulates the scheme for
all T = poly(λ).

Key Simulation Security. Roughly speaking, this captures the idea that it is
indistinguishable to interact with the real authority (who generates and dis-
tributes mpk and sk’s) versus the simulator issuing simulated mpk and sk’s (with-
out simulating any ciphertext). We require Expreal ≈ Expsim, which proceed as
follows when run with an adversary A:

– Setup. Launch A(1λ) and receive from it (1n, 1T). Run

in Expreal: (mpk,msk) $← Setup(1λ, 1n, 1T)

in Expsim: (mpk, st) $← SimSetup(1λ, 1n, 1T)

and send mpk to A.
– Challenge. Repeat the following for arbitrarily many rounds determined

by A: In each round, A submits a vector vj . Upon this challenge, run

in Expreal: skj
$← KeyGen(msk,vj)

in Expsim: (skj , st
′) $← SimKeyGen(st,vj) st ← st′

and send skj to A.
– Guess. The adversary outputs a bit b′, the outcome of the experiment.

We emphasize that there is no ciphertext challenge in the experiments. The
adversary can generate ciphertexts on its own using mpk.

T-Ciphertext Simulation Security. Roughly speaking, this captures the idea that
when interacting with the simulator, it is indistinguishable whether any subset of
12 It is understood that the state is maintained by one instance of simulator, and except

in definitions, its creation, persistence, and update are suppressed when there is no
danger of ambiguity.

456 H. Lin and J. Luo

ciphertexts are normally generated or simulated, as long as at most T ciphertexts
are simulated. In the experiments below, we denote by zi,j ∈ Zp the decryption
outcome (inner product) between the jth simulated secret key (ordered tempo-
rally among all queried secret keys) and the ith simulated ciphertext (ordered
temporally among all queried ciphertexts, excluding the challenge ciphertext).
We also let It, Jt be the number of simulated ciphertexts (excluding the challenge
ciphertext) and secret keys at any time t. Expb

T -GS (b ∈ {0, 1}) with adversary
A proceeds as follows:

– Setup. Launch A(1λ) and receive from it (1n, 1T). Run

(mpk, st) $← SimSetup(1λ, 1n, 1T)

and send mpk to A.
– Query I. Repeat the following for arbitrarily many rounds determined by A:

In each round, A has 2 options.
• Key Simulation Query : A can submit a vector vj with a list z≤It,j of

inner products for a secret key skj . The list z≤It,j consists of z1,j , . . . , zIt,j ,
all the decryption outcomes between skj and the simulated ciphertexts
queried up to this point. Upon this query, run

(skj , st
′) $← SimKeyGen(st,vj , z1,j , . . . , zIt,j) st ← st′

and send skj to A.
• Ciphertext Simulation Query : A can submit a list zi,≤Jt

of inner products
for a simulated ciphertext cti. The list zi,≤Jt

consists of zi,1, . . . , zi,Jt
,

all the decryption outcomes between cti and the simulated secret keys
queried up to this point. Upon this query, run

(cti, st′)
$← SimEnc(st, zi,1, . . . , zi,Jt

) st ← st′

and send cti to A.
– Challenge. The adversary submits a vector u∗. Upon the challenge, let the

total number of secret key queries in Query I be J∗ and the total number of
ciphertext queries in Query I be I∗, run

b = 0: ct∗ $← Enc(mpk, [[u∗]])

b = 1: ct∗ $← SimEnc
(
st, (u∗)Tv1, . . . , (u∗)TvJ∗

)
st ← st′

and send ct∗ to A.
– Query II. Same as Query I, except that in Exp1T -GS, for each secret key query

vj , we put (u∗)Tvj immediately after zI∗,j in the argument list of SimKeyGen
so that the simulator gets the correct list of inner products:

b = 0: (skj , st
′) $← SimKeyGen(st,vj , z1,j , . . . , zI∗,j , zI∗+1,j , . . . , zIt,j);

b = 1: (skj , st
′) $← SimKeyGen(st,vj , z1,j , . . . , zI∗,j , (u

∗)Tvj , zI∗+1,j , . . . , zIt,j);

st ← st′ (in either case).

Succinct and Adaptively Secure ABE for ABP from k-Lin 457

– Guess. The adversary outputs a bit b′. The outcome of the experiment is b′

if both constraints are satisfied:
• the total number of ciphertext simulation queries in Query I/II is less

than T ;
• the equation {uT

i vj = zi,j ∀i, j} (about ui’s) has a solution.
Otherwise, the outcome is set to 0.

Remarks. In Exp1T -GS, the challenge ciphertext ct∗ is generated in the same way
as the other simulated ciphertexts, and in Query II the inner products between
skj and ct∗ are appropriately positioned. From the simulator’s perspective, there
is no indication which ciphertext is the challenge ciphertext. This definition
ensures that the simulator cannot behave differently depending on whether a
particular ciphertext is the challenge or not, and simplifies the application of
gradual simulation security in our construction of ABE.

Note that the simulator receives inner products zi,j in the clear and the
adversary submits challenge u∗ in Expb

T -GS in the clear, though the input to
encryption and the output of decryption are group-encoded. This is necessary
as otherwise, the simulator must solve discrete logarithm in G.

We note that when T = 1, gradual simulation security becomes the standard
notion of simulation security. On the other hand, simulation security does not
imply gradual simulation security. So this definition is a strict generalization of
simulation security.

3.1 Construction of Gradually Simulation-Secure IPFE

The IPFE scheme in [3] has been proven simulation-secure [2]. We show that it
can be adapted for gradual simulation security. The scheme has succinct keys,
whose length grows linearly in T and polynomially in λ, and is independent of
n, which eventually translates into the succinctness of our ABE scheme.

Construction 13 ([3]). The construction is described for a fixed value of λ,
and λ is suppressed for brevity. Let G be a group (with generator g) of prime
order p such that MDDHk holds in G. Our G-encoded IPFE works as follows:

– Setup(1n, 1T) takes as input the dimension n and the maximum number T

of simulated ciphertexts. It samples A $← Z
k×(k+T)
p ,W $← Z

(k+T)×n
p and out-

puts mpk = [[A,AW]],msk = W.
– KeyGen(msk,v) outputs sk = Wv.
– Enc(mpk, [[u]]) samples s $← Z

k
p and outputs ct = (sT[[A]], sT[[AW]] + [[uT]]).

– Dec(sk,v, ct) parses ct as ([[cT]], [[tT]]) and outputs −[[cT]]sk + [[tT]]v.

The correctness is readily verified by

−[[cT]]sk + [[tT]]v = [[−(sTA)(Wv) + (sTAW + uT)v]] = [[uTv]].

The scheme is succinct as sk consists of k + T elements in Zp, independent of n.

458 H. Lin and J. Luo

Theorem 14. Suppose in Construction 13, the MDDHk assumption holds in G,
then the constructed scheme is gradually simulation-secure, and the T in the
security definition is the T as input of Setup.

The simulator for our scheme is built modularly upon that for the one-time pad
IPFE scheme, which we sketc.h below. We refer the readers to the full version
for a more detailed exposition.

One-Time Pad IPFE. OTP-IPFE is a secret-key IPFE:

– Setup(p, 1n) samples the master secret key msk = w $← Z
n
p .

– KeyGen(msk,v) outputs the secret key sk = wTv for v ∈ Z
n
p .

– Enc(msk,u) outputs the ciphertext ct = (w + u)T.
– Dec(sk,v, ct) outputs −sk + ctv as the inner product.

Correctness is readily verified by −sk + ctv = −wTv + (w + u)Tv = uTv.
The scheme satisfies perfect simulation security for one ciphertext (defined

similarly to the usual simulation security). The simulator works as follows:

– SimSetup(p, 1n) samples the internal state as st = (w̃,⊥) with w̃ $← Z
n
p .

(Here, ⊥ means that the ciphertext has not been simulated.)
– SimKeyGen(st,vj) simulates a pre-challenge key for vj as skj = w̃Tvj and

updates the state to st′ = (st,vj).
– SimEnc(st, z1, . . . , zJ∗) simulates the challenge ciphertext as a uniformly ran-

dom solution ct∗ of

−w̃Tvj + ct∗vj = zj ∀j ∈ [J∗],

and updates the state to st′ = (⊥, ct∗) so that it knows the ciphertext has
been simulated. (Here, J∗ is the number of keys queried before ciphertext
simulation, and zj is the intended inner product between the ciphertext and
the jth key.)

– SimKeyGen(st,vj , zj) simulates a post-challenge key for vj as skj = ct∗vj −zj

and does not update the state.

Dual System Encryption and Simulator. Construction 13 can be seen as
dual system encryption applied to OTP-IPFE. There are k + T instances of
OTP-IPFE with the master secret keys being W ∈ Z

(k+T)×n
p . We publish k

projections of them (the normal space) in the master public key (i.e., AW with
A ∈ Z

k×(k+T)
p), and reserve T instances (the semi-functional space) for the

simulator.
To simulate, we first switch the ciphertext into the semi-functional form,

which means it uses an OTP-IPFE instance independent of the master public
key. Then, we employ a change of variable to explicitly separate out the instance
(also known as using the parameter hiding property). Lastly, the simulation can
be delegated to OTP-IPFE simulator.

Succinct and Adaptively Secure ABE for ABP from k-Lin 459

Let us take T = 1 for example. The first step is

ct∗ = ([[sTA]], [[sTAW + uT]])
MDDHk≈ ([[cT]], [[cTW + uT]]) for c $← Z

k+1
p .

The second step is to perform a change of variable W = W̃+a⊥wT, where W,w
are random and a⊥ is the vector such that Aa⊥ = 0 and cTa⊥ = 1 (which
uniquely exists with overwhelming probability). With this change of variable,
the keys and the challenge ciphertext become

mpk = ([[A]], [[AW̃]]),

skj = W̃vj + a⊥ wTvj ,

ct∗ = ([[cT]], [[cTW̃ + (w + u)T]]).

The terms highlighted in the boxes are exactly the keys and ciphertexts of OTP-
IPFE with master secret key w, and the last step is to use OTP-IPFE simulator
to simulate these terms.

For general T , we simply prepare uniformly random c1, . . . , cT for each sim-
ulated ciphertext, and set W = W̃ + a⊥

1 wT
1 + · · · + a⊥

T wT
T , where a⊥

1 , . . . ,a⊥
T

are the solution to Aa⊥
i = 0, cTi a⊥

i = 1, and cTi a⊥
i′ = 0 for all i �= i′, so that

the T instances for simulation do not “interfere” with each other. The keys and
ciphertexts after replacing OTP-IPFE by simulation are

mpk = ([[A]], [[AW̃]]),

skj = W̃vj + a⊥
1 SimKeyGen(st1,vj , z1,j) + · · · + a⊥

T SimKeyGen(stT ,vj , zT,j),

ct∗i = ([[cTi]], [[cTi W̃ + SimEnc(sti, zi,1, . . . , zi,Jt
)]]),

which is how our simulator for Construction 13 works. Here, st1, . . . , stT track T
independent instances of OTP-IPFE simulator. We refer the reader to the full
version for the security proof.

4 Ciphertext-Policy 1-ABE for ABP

In this section, we construct the core component of our adaptively secure ABE,
called 1-ABE, from any gradually 2-simulation-secure IPFE. A 1-ABE has the
same syntax as an ABE, except that

– The message space is Zp for some p and decryption only needs to recover the
message encoded in (another) group.

– In the security definition, the adversary is allowed to query at most one secret
key.

– In the security definition, the adversary only chooses the attribute but not
the message. The message is 0 in one experiment (Exp01-ABE), and is uniformly
random in the other experiment (Exp11-ABE).13

13 The adversary also does not receive the potential random message.

460 H. Lin and J. Luo

The relaxation of decryption correctness and the change of messages in the
security definition are because 1-ABE will be used to encapsulate keys for full
ABE. In full ABE, the group-encoded decryption result of 1-ABE is used to
mask the message, and we argue security by replacing the encapsulated key by
random.

ABE constructions in some previous works such as [15,17] go through an
intermediate step of building a secret-key 1-ABE that is 1-key 1-ciphertext
secure. In the secret-key setting, keys and ciphertexts are symmetric, and conse-
quently there is no distinction between ciphertext-policy and key-policy 1-ABE.
In contrast, our 1-ABE is public-key and 1-key secure. This asymmetry sepa-
rates CP-1-ABE and KP-1-ABE. We remark that 1-ABE in [15,17] can be easily
modified to fit our definition as CP-1-ABE. We will see that our definition is
easier to use in reductions for full ABE.

Construction 15 (CP-1-ABE). The construction is described for a fixed value
of λ, and λ is suppressed for brevity. Let G be a group (with generator g) of prime
order p, (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a G-encoded IPFE, and
(Garble,Eval) be an AKGS for ABP. We construct a 1-ABE for predicate space

P = {Pn |n ∈ N}, Pn(y,x) = y(x) for y ∈ ztABPn
p ,x ∈ Z

n
p .

The scheme works as follows:

– Setup(1n) takes as input the attribute length (i.e., Pn is represented by 1n)
and outputs (mpk,msk) $← IPFE.Setup(1n+1).

– KeyGen(msk,x) outputs sk
$← IPFE.KeyGen

(
msk, (1,x)

)
.

Note: If the underlying IPFE has succinct secret keys, so does this scheme.
For instance, when instantiated with Construction 13 with T = 2 under DDH,
each secret key consists of just three group elements.

– Enc(mpk, y, μ) garbles y with μ and encrypts the label functions in IPFE
ciphertexts as follows:

if y = f�=0: α ← μ, β ← 0;

if y = f=0: α
$← Zp, β ← μ;

(L1, . . . ,Lm) $← Garble(f, α, β),

for j ∈ [m]: ictj
$← IPFE.Enc(mpk, [[Lj]]).

The algorithm outputs ct = (ict1, . . . , ictm).
– Dec(sk,x, ct, y) takes as input a secret key sk for x and a ciphertext ct for y.

If y(x) = 0, the algorithm outputs ⊥ and stops. Otherwise, it computes

for j ∈ [m]: [[�j]] ← IPFE.Dec(sk, ictj)

[[μ′]] ←
{

1
f(x)Eval(f,x, [[�1, . . . , �m]]), if y = f�=0;

Eval(f,x, [[�1, . . . , �m]]), if y = f=0;

and outputs [[μ′]] as the message.

Succinct and Adaptively Secure ABE for ABP from k-Lin 461

Note: We show that the scheme is correct. By the correctness of IPFE, we
have

�j = LT
j

(
1
x

)
= Lj(x),

where Lj ’s are the label functions defined by Garble. Since Eval is linear in
the labels, it can be performed in the exponent. By the correctness of AKGS,

if y = f�=0, f(x) �= 0: μ′ = 1
f(x) (αf(x) + β) = 1

f(x) (μf(x) + 0) = μ;

if y = f=0, f(x) = 0: μ′ = αf(x) + β = α · 0 + μ = μ.

Theorem 16. Suppose in Construction 15, the IPFE is gradually 2-simulation-
secure and the AKGS is piecewise secure, then the constructed 1-ABE is secure.

We refer the reader to the full version for the proof.

5 Key-Policy ABE for ABP

In this section, we apply the classic dual system encryption to obtain full KP-
ABE from CP-1-ABE instantiated with the IPFE in Sect. 3.1.

Construction 17 (KP-ABE). The construction is described for a fixed value
of λ, and λ is suppressed for brevity. Let G1, G2, GT be pairing groups of prime
order p for which MDDHk holds in G1, G2, and let (Garble,Eval) be an AKGS
for ABP. We construct an ABE for message space GT and predicate space

P = {Pn |n ∈ N}, Pn(x, y) = y(x) for x ∈ Z
n
p , y ∈ ztABPn

p .

The scheme works as follows:

– Setup(1n) takes as input the attribute length (i.e., Pn is represented by 1n).
It samples and sets

A $← Z
k×(k+2)
p ,B $← Z

k×(k+1)
p , W $← Z

(k+2)×(k+1)(n+1)
p ,μ

$← Z
k+1
p ,

xpk = ([[BT]]1, [[W(BT ⊗ In+1)]]1), fpk = ([[A]]2, [[AW]]2),

mpk = ([[μTBT]]T, xpk), msk = (fpk,μ).

Note: We explain the connection with CP-1-ABE and dual system encryption
(as demonstrated in Sect. 1.1). The matrix W = (W1 · · · Wk+1) consists
of k + 1 master secret keys of CP-1-ABE concatenated by columns, each of
shape (k + 2) × (n + 1). Its projection along a vector b = (b1, . . . , bk+1)T is

b1W1 + · · · + bk+1Wk+1 = W1 · b1In+1 + · · · + Wk+1 · bk+1In+1

= (W1 · · · Wk+1)

⎛

⎜
⎝

b1In+1

...
bk+1In+1

⎞

⎟
⎠ = W(b ⊗ In+1).

The matrix B = (bT
1 · · · bT

k)T consists of all the projection vectors, and
W(BT ⊗ In+1) is the projections of W along B concatenated by columns.

462 H. Lin and J. Luo

– KeyGen(msk, y) garbles y with μ as follows:

if y = f�=0: α ← μ, β ← 0;

if y = f=0: α
$← Z

k+1
p , β ← μ;

(L1, . . . ,Lm) $← Garble(f,α,β).

It samples sj
$← Z

k
p for j ∈ [m] and sets

skj,1 = sTj [[A]]2, skj,2 = sTj [[AW]]2 + [[LT
j]]2.

The algorithm outputs sk = (sk1,1, sk1,2, . . . , skm,1, skm,2).
Note: Generating a key in KP-ABE means encrypting μ in each CP-1-ABE
instance, which boils down to generating IPFE ciphertexts, as shown above.

– Enc(mpk,x, g) samples r $← Z
k
p and sets

ct1 = [[BT]]1r, ct2 = [[W(BT ⊗ In+1)]]1

(
r ⊗

(
1
x

))
, ct3 = [[μTBT]]Tr + g.

The algorithms outputs ct = (ct1, ct2, ct3).
Note: We remark that r (resp. BTr) is the coefficients of random linear com-
bination w.r.t. the projections (resp. the CP-1-ABE instances). Here, ct2 cor-
responds to a CP-1-ABE key w.r.t. randomly combined master secret key
W(BTr ⊗ In+1), which is an IPFE secret key for

(
1
x

)
, i.e.,

ct2 = [[W(BTr ⊗ In+1)
(

1
x

)
]]1.

The ciphertext consists of 2k + 3 elements in G1 and one element in GT,
hence is succinct.

– Dec(sk, y, ct,x) first checks whether y(x) = 1. If not, it outputs ⊥ and termi-
nates. Otherwise, it parses sk, ct as defined in KeyGen,Enc, computes

for j ∈ [m]: [[�j]]T = −skj,1ct2 + skj,2

(
ct1 ⊗

(
1
x

))
;

[[μ′]]T ←
{

1
f(x)Eval(f,x, [[�1, . . . , �m]]T), if y = f�=0;

Eval(f,x, [[�1, . . . , �m]]T), if y = f=0;

and outputs ct3 − [[μ′]]T as the recovered message.
Note: We show that the scheme is correct. By definition (also cf. Construc-
tion 13),

�j = −sTj AW(BT ⊗ In+1)
(
r ⊗

(
1
x

))
+ (sTj AW + LT

j)
(
BTr ⊗

(
1
x

))

= LT
j

(
BTr ⊗

(
1
x

))
= LT

j

(
BTr ⊗ In+1

)
(

1
x

)
.

Succinct and Adaptively Secure ABE for ABP from k-Lin 463

By Lemma 5, if we define (L′
1, . . . ,L

′
m) ← Garble(f, rTBα, rTBβ; rTBR),

where R is the randomness used to generate Lj’s, then

�j = LT
j

(
BTr ⊗ In+1

)
(

1
x

)
= (L′

j)
T

(
1
x

)
= L′

j(x).

By the correctness of AKGS, we have

Eval(f,x, �1, . . . , �m) = rTBαf(x) + rTBβ.

In the two cases where decryption should succeed,

if y = f�=0, f(x) �= 0: μ′ = 1
f(x) (r

TBμf(x) + rTB0) = rTBμ;

if y = f=0, f(x) = 0: μ′ = rTBαf(x) + rTBμ = rTBμ.

Therefore, in both cases, we have ct3− [[μ′]]T = [[μTBTr]]T +g− [[rTBμ]]T = g.

Minimizing Pairing Operations. The number of pairing operations in the
decryption algorithm appears to depend on the garbling size of the policy and
the attribute length. It can be reduced to 2k +3 as follows.14 Since Eval is linear
in the labels, the decryption algorithm can first find γ1, . . . , γm ∈ Zp such that

Eval(f,x, �1, . . . , �m) =
m∑

j=1

γj�j .

The computation of [[μ′]]T can be rewritten as

[[μ′]]T =
m∑

j=1

γj [[�j]]T =
m∑

j=1

γj

(
−skj,1ct2 + skj,2

(
ct1 ⊗

(
1
x

)))

= −
⎛

⎝
m∑

j=1

γjskj,1

⎞

⎠ ct2 +

⎛

⎝
m∑

j=1

γjskj,2

⎞

⎠
(
Ik+1 ⊗

(
1
x

))
ct1.

Note that ct1, ct2 consist of k + 1, k + 2 group elements and only these elements
(in G1) take part in pairing. Therefore, the formula above only uses 2k+3 pairing
operations.

There are further optimizations possible, such as appropriately choosing
which group of the two source groups to use for the secret key to reduce the
cost of exponentiation in decryption. Next, we proceed to the security of our
scheme.

14 Syntactically, we use the pairing groups in black box, and there are only 2k + 3
elements in G1 in a ciphertext and no element in G1 in a secret key, so the operations
can always be regrouped to use at most 2k+3 pairing operations. The content below
provides the concrete regrouping method.

464 H. Lin and J. Luo

Theorem 18. Suppose in Construction 17, MDDHk holds in both G1 and G2,
and the AKGS is piecewise secure, then the constructed scheme is IND-CPA
secure.

We refer the reader to the full version for the proof.

Acknowledgments. The authors were supported by NSF grants CNS-1528178, CNS-
1929901, CNS-1936825 (CAREER), CNS-2026774, a Hellman Fellowship, a JP Morgan
AI Research Award, the Defense Advanced Research Projects Agency (DARPA) and
Army Research Office (ARO) under Contract No. W911NF-15-C-0236, and a subcon-
tract No. 2017-002 through Galois. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense, the National Sci-
ence Foundation, or the U.S. Government. The authors thank the anonymous reviewers
for their valuable comments.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Agrawal, S., Libert, B., Maitra, M., Titiu, R.: Adaptive simulation security for
inner product functional encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 34–64. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45374-9 2

3. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

4. Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and LWE.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 13–43.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 2

5. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 20

6. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of
predicate encryption and applications to ABE with various compactness tradeoffs.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 575–601.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 24

7. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

8. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-030-45374-9_2
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-030-45721-1_2
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-48797-6_24
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30

Succinct and Adaptively Secure ABE for ABP from k-Lin 465

9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

10. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 7

11. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy
attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li,
H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00843-6 2

12. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

13. Gong, J., Wee, H.: Adaptively secure ABE for DFA from k -Lin and more. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 278–308.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 10

14. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43948-7 54

15. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k -Lin.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 3–33.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 1

16. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

17. Lin, H., Luo, J.: Compact adaptively secure ABE from k -Lin: beyond NC1 and
towards NL. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 247–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3 9

18. Lin, H., Luo, J.: Succinct and adaptively secure ABE for arithmetic branching
programs from k-Lin. Cryptology ePrint Archive (2020). (to appear)

19. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS,
pp. 11–20. IEEE Computer Society Press, October 2016. https://doi.org/10.1109/
FOCS.2016.11

20. Nisan, N.: Lower bounds for non-commutative computation (extended abstract).
In: 23rd ACM STOC, pp. 410–418. ACM Press, May 1991. https://doi.org/10.
1145/103418.103462

21. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

22. Takashima, K.: Expressive attribute-based encryption with constant-size cipher-
texts from the decisional linear assumption. In: Abdalla, M., De Prisco, R. (eds.)
SCN 2014. LNCS, vol. 8642, pp. 298–317. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-10879-7 17

https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-642-00843-6_2
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-030-45727-3_10
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-030-45727-3_9
https://doi.org/10.1007/978-3-030-45727-3_9
https://doi.org/10.1109/FOCS.2016.11
https://doi.org/10.1109/FOCS.2016.11
https://doi.org/10.1145/103418.103462
https://doi.org/10.1145/103418.103462
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-319-10879-7_17
https://doi.org/10.1007/978-3-319-10879-7_17

466 H. Lin and J. Luo

23. Tomida, J., Attrapadung, N.: Unbounded dynamic predicate compositions in ABE
from standard assumptions. Cryptology ePrint Archive, Report 2020/231 (2020).
https://eprint.iacr.org/2020/231

24. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

25. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

26. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 8

27. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and com-
pact constructions for non-monotonic attribute-based encryption. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54631-0 16

28. Zhang, K., et al.: Practical and efficient attribute-based encryption with constant-
size ciphertexts in outsourced verifiable computation. In: Chen, X., Wang, X.,
Huang, X. (eds.) ASIACCS 2016, pp. 269–279. ACM Press, May/Jun 2016

https://eprint.iacr.org/2020/231
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1007/978-3-642-54631-0_16

Inner-Product Functional Encryption
with Fine-Grained Access Control

Michel Abdalla1,2(B) , Dario Catalano3 , Romain Gay4 ,
and Bogdan Ursu5

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
michel.abdalla@ens.fr

2 Inria, Paris, France
3 Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy

catalano@dmi.unict.it
4 IBM Zurich, Zurich, Switzerland

romain.rgay@gmail.com
5 Department of Computer Science, ETH Zurich, Zurich, Switzerland

bogdan.ursu@inf.ethz.ch

Abstract. We construct new functional encryption schemes that com-
bine the access control functionality of attribute-based encryption with
the possibility of performing linear operations on the encrypted data.
While such a primitive could be easily realized from fully fledged func-
tional encryption schemes, what makes our result interesting is the fact
that our schemes simultaneously achieve all the following properties.
They are public-key, efficient and can be proved secure under standard
and well established assumptions (such as LWE or pairings). Further-
more, security is guaranteed in the setting where adversaries are allowed
to get functional keys that decrypt the challenge ciphertext. Our first
results are two functional encryption schemes for the family of func-
tions that allow users to embed policies (expressed by monotone span
programs) in the encrypted data, so that one can generate functional
keys to compute weighted sums on the latter. Both schemes are pairing-
based and quite generic: they combine the ALS functional encryption
scheme for inner products from Crypto 2016 with any attribute-based
encryption schemes relying on the dual-system encryption methodology.
As an additional bonus, they yield simple and elegant multi-input exten-
sions essentially for free, thereby broadening the set of applications for
such schemes. Multi-input is a particularly desirable feature in our set-
ting, since it gives a finer access control over the encrypted data, by
allowing users to associate different access policies to different parts of
the encrypted data. Our second result builds identity-based functional
encryption for inner products from lattices. This is achieved by carefully
combining existing IBE schemes from lattices with adapted, LWE-based,
variants of ALS. We point out to intrinsic technical bottlenecks to obtain
richer forms of access control from lattices. From a conceptual point of
view, all our results can be seen as further evidence that more expressive
forms of functional encryption can be realized under standard assump-
tions and with little computational overhead.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 467–497, 2020.
https://doi.org/10.1007/978-3-030-64840-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_16&domain=pdf
http://orcid.org/0000-0002-2447-4329
http://orcid.org/0000-0001-9677-944X
http://orcid.org/0000-0002-9083-5794
http://orcid.org/0000-0003-4576-1826
https://doi.org/10.1007/978-3-030-64840-4_16

468 M. Abdalla et al.

1 Introduction

Public-key encryption allows the owner of a secret key sk to decrypt any cipher-
text created with respect to a corresponding public key pk. At the same time,
without sk, one should not be able to extract any information whatsoever about
the encrypted plaintext. This all-or-nothing feature is becoming restrictive nowa-
days as, in many applications, a much more fine grained access control to data is
required. Functional encryption addresses this need by providing an encryption
mechanism where decryption keys are associated with functions. Specifically,
given a ciphertext Enc(m) and a secret key skf associated to some function f ,
the holder of skf learns f(m) and nothing else.

Security for functional encryption is formalized via a variant of the standard
indistinguishability notion. In a nutshell, this notion states that an adversary
who is allowed to see secret keys corresponding to functions f1, . . . fn should not
be able to say which of the challenge messages m0 or m1 has been encrypted, as
long as fi(m0) = fi(m1), for all i. This indistinguishability notion has been pro-
posed in [25,50] and shown inadequate for certain, somewhat complex, function-
alities. These authors also suggested an alternative, simulation based, security
notion that however turns out to be impossible to achieve for general function-
alities without introducing additional restrictions. See [25,50] for details.

Since its introduction, functional encryption has attracted a lot of interest.
Known results can be broadly categorized as focusing on (1) feasibility results
for general functionalities, and on (2) concrete, efficient realizations for restricted
functionalities of practical interest. Constructions of the first type are all horren-
dously inefficient. Also, they either rely on quite unstable assumptions (e.g. indis-
tinguishability obfuscation) or impose severe restrictions on the number of secret
keys that can be issued. Constructions of the second type, on the other hand, are
known only for the case of linear functions and quadratic functions. Over the last
few years, significant research efforts have been devoted to the quest of improving
these constructions along different directions. For the case of the inner-product
functionality (IPFE) [3], this meant, for instance, improved security guaran-
tees (e.g. [4,11,20,26]), function hiding realizations (e.g. [22,32,33]), multi-input
extensions (e.g. [5,7]), decentralized schemes (e.g. [1,2,30,46]), unbounded-size
vectors (e.g. [34,54]) and specialized variants (e.g. [19]). For the case of quadratic
functions, current schemes are limited to [18,35] in the public-key setting. Note
that FE for inner products, which is the focus of this work, can be used a build-
ing block to obtain FE for quadratic functions. This fact, implicit in [18], is made
explicit in [35] and in the private-key variants [14,47].

In spite of these efforts, only a few convincing practical applications of the
primitive have been proposed so far. Notable examples include the recent non
interactive protocol for hidden-weight coin flips from [31], a practical construc-
tion of function-hiding inner product FE with applications such as in biometric
authentication, nearest-neighbor search on encrypted data in [45], an application
of functional encryption for quadratic functions for performing private inference
on encrypted data in [51].

Inner-Product Functional Encryption with Fine-Grained Access Control 469

A possible explanation for this is that, behind its charming theoretical
appearance, functional encryption hides a fragile and potentially dangerous
nature: each new released secret key inherently leaks information. This becomes
particularly painful for the case of inner products, as, when encrypting plain-
texts of length, say, n, holding n secret keys allows, in general, to recover the
full plaintext completely. While this might seem inherent in the nature of IPFE,
one might wonder if additional measures might be put in place to reduce leakage
and make the primitive more appealing for applications. Think for instance of
the case of a medical database. To preserve privacy while maintaining the pos-
sibility of performing simple descriptive statistics (such as the weighted mean)
on the data, one might decide to encrypt the database using IPFE. A drawback
of this solution, however, is that the confidentiality of the whole database is
compromised if a sufficiently large number of different keys is released. This is
problematic since this threshold might be easy to reach when many users access
the database.

A natural way to limit the inherent information leakage of existing IPFE
schemes would be to use FE primitives with more sophisticated functionalities.
Ideally, this primitive should allow to embed access policies in the (encrypted)
data while allowing to compute weighted sums on the latter. More precisely, each
key should allow to obtain the desired inner product only when some appropriate
access policy is satisfied. Going back to our medical example, this means that
the confidentiality of a particular database entry would be compromised only if
sufficiently many different keys satisfying the ciphertext policy associated with
that entry are released.

Another way to look at the question, is providing additional security guaran-
tees with respect to basic identity or attribute based encryption schemes. These
typically control who is authorized to decrypt the data. Still, once the data is
accessed, no additional control is possible: authorized users get the full informa-
tion, while others get nothing. In this sense, it is natural to consider encryption
primitives that, beyond access control, also permit to more carefully tune the
information leakage.

Notice that the mechanisms above are easy to realize if one is willing to
resort to functional encryption schemes for general functionalities. The trouble
with this is that such a solution would be of little (if any) practical interest. Our
goal, on the other hand, is to develop a scheme that implements the features
above while retaining as much as possible all the nice properties of currently
known IPFEs.

This motivates the following question.

Is it possible to develop an efficient, public-key, functional encryption scheme
that allows users both to embed access policies in the encrypted data and to
generate decryption keys to compute inner products on the data?

A Trivial Generic Approach. Since ABE and IPFE are both well-studied
primitives, the first natural question is whether we can easily combine exist-
ing schemes to achieve our target notion. In the target scheme, each cipher-
text is associated with a predicate P and encrypts a vector x. Each functional

470 M. Abdalla et al.

decryption key sky ,att is associated with an attribute att and a vector y. Decryp-
tion recovers 〈x,y〉 if P(att) = 1. If it is not the case, no information about x
should be revealed.

Now, consider the approach of encrypting a plaintext via an IPFE and then
encrypting the resulting ciphertext via the ABE. This is not secure against col-
lusions as, once the outer ciphertext is decrypted, the inner one becomes com-
pletely independent from the ABE. To see why, assume we have keys for sky0,att0

and sky1,att0 and a ciphertext ct, encrypting a vector x under the predicate P
such that P(att0) = 1 and P(att1) = 0. The trivial solution allows to use sky0,att0

to obtain the original IPFE ciphertext, which can then be used with sky1,att1 to
obtain 〈x,y1〉 (even though we should only have been able to compute 〈x,y0〉).
This means that mix-and-match attacks are possible. In fact, there seems to be
no trivial solution to this problem.

Another Trivial Generic Approach. One other approach to limit the leakage
is by encrypting various databases under a different IPFE public key for every
recipient. Apart from the fact that this leads to a prohibitive blow-up in size,
it would not be possible to aggregate data between different databases. Our
solution has neither of these limitations and ensures that the ciphertext size is
independent of the number of potential recipients.

Our Contributions. In this paper, we construct schemes for inner-product
functional encryption with fine-grained access control. Our realizations are both
efficient and provably secure under standard and well-established assumptions.

The key distinguishing feature of our constructions is that they can be proved
secure in the, technically more challenging, setting where the adversary is allowed
to (get keys to) decrypt the challenge ciphertext. Let us explain this more in
detail. Popular specializations of functional encryption (such as identity-based
encryption (IBE) [23,53] and attribute-based encryption [42,52]) are ones where
the message is interpreted as a pair (I,m), where m is the actual message (often
called the “payload”) and I is a string, referred to as the index (or in the context
of ciphertext-policy ABE [21], a predicate), that can be either public or private.
For these schemes, confidentiality of the payload is guaranteed as long as no
decryption keys associated with attributes that satisfy the predicate are issued.
In our case, we still guarantee a meaningful security notion when keys which
allow users to decrypt the payload are issued.

Private-index schemes also provide meaningful security guarantees when keys
that decrypt are leaked, namely, they still hide the index in that case. How-
ever, as opposed to public-index schemes, for which we have constructions for
all circuits from standard assumptions [24,40], such schemes can only handle
restrictive policies, that are expressed by orthogonality testing (also referred to
as inner-product encryption [44]), or assume a weaker security property, called
weak attribute hiding, which limits the set of keys that the adversary can get.
Namely, this property dictates that the adversary is only allowed to ask secret
keys corresponding to functions that cannot be used to decrypt the challenge
ciphertext. As observed in [41], a fully attribute-hiding predicate encryption for

Inner-Product Functional Encryption with Fine-Grained Access Control 471

circuits would bring us tantalizing close to getting indistinguishability obfusca-
tion, which explains why they are much harder to realize in practice.

We consider both public-index schemes where policies are expressive (they
can be expressed by monotone span programs, which capture Boolean formulas),
and private-index schemes for orthogonality testing (which captures constant
depth Boolean formulas). In both settings, we permit a fine-tuned access to the
payload, which, from a technical point of view, involve providing security even
when the adversary obtains keys that decrypt the challenge ciphertext (even in
the public-index case).

IP-FE with fine-grained access control from pairings. Our first main
result is the construction of functional encryption schemes for the family of
functions that allows users to embed policies on the encrypted data, so that one
can generate decryption keys that computes weighted sums on the latter. More
precisely, in our schemes, each ciphertext is associated with a predicate P and
encrypts a (small norm) vector x. Each functional decryption key is associated
with an attribute att and a (small norm) vector y. Decryption recovers 〈x,y〉
if att satisfies P. If this is not the case, security guarantees that no information
about x is revealed.

Our constructions are quite generic and show that it is possible to combine
existing pairing-based attribute-based encryption with the IPFE from [11]. Our
construction relies on any attribute-based encryption that uses the dual-system
encryption methodology [56]. In particular, we provide a modular framework
that turns any ABE that supports the class of predicates P into a functional
encryption scheme for the functions described by an attribute att ∈ U and a
vector y, that given as input a vector x and a predicate P ∈ P, outputs 〈x,y〉
if P(att) = 1 and ⊥ otherwise. For correctness to hold we require that both x
and y are vectors of polynomially-bounded dimension and norm. We consider
both the case where the policy P associated with a ciphertext is public, or at
the contrary, remains hidden. As explained previously, leveraging state of the
art pairing-based ABE, we obtain an FE for P described by monotone span
programs, and an FE for P for any constant depth formula, where the formula
itself remains hidden.

From a technical point of view, our first realization combines the IPFE from
[11] with any predicate encoding for prime-order pairing groups. In a nutshell,
predicate encodings [16,57] are a one-time secure, private key, statistical vari-
ant of ABE that are much simpler to construct and to deal with. The result-
ing construction achieves simulation security, but only in a selective sense, and
unfortunately this happens to be the case even if the underlying building blocks
achieve adaptive security. Informally, this comes from the fact that our secu-
rity model explicitly allows the adversary to (get keys to) decrypt the challenge
ciphertext. Technically, this means that, throughout the security proof, only
functional decryption keys associated with pairs (att,y) for which P∗(att) = 0
can be turned into semi-functional ones (here P∗ denotes the predicate chosen by
the adversary for the challenge ciphertext). Following the dual-system encryption
methodology, semi-functional keys refer to keys that cannot decrypt successfully

472 M. Abdalla et al.

the challenge ciphertext, but can decrypt correctly any other honestly generated
ciphertext. Keys for which P∗(att) = 1 cannot be turned semi-functional as oth-
erwise they would fail to (correctly) decrypt the challenge ciphertext. Such a
decryption issue does not arise in typical ABE settings, as their security model
explicitly prevents the adversary to decrypt the challenge ciphertext.

Our second construction circumvents this difficulty and obtains adaptive
security by generalizing the techniques introduced in [49], later improved in
[28] in the context of fully-hiding predicate encryption for inner product test-
ing. Indeed, in fully-hiding predicate encryption, the proof also has to explic-
itly deal with the decryption issue sketched above. To do so, we introduce the
notion of function encoding, which is the analogue of predicate encoding for func-
tional encryption. Recall that predicate encodings, introduced in [16,57], are a
“dumbed-down” version of ABE, and provide a framework to extend the dual
system encryption methodology introduced by [56] in the context of adaptively-
secure IBE to a broad class of ABE, including inner product testing, or Boolean
formulas. In our case, we use the abstraction of function encoding to generalize
the information-theoretic argument from [28] to capture a broad class of func-
tional encryption, including inner-product FE with access control expressed by
inner-product testing, Boolean formulas, and more.

Similarly to predicate encoding, which has received significant interest (par-
ticularly as its more general form referred to as Conditional-Disclosure of Secret,
e.g. [15,37,39,48]), we believe the notion of function encoding could be interest-
ing on its own.

In a nutshell, functional encodings enhance a more sophisticated information
theoretic argument than traditional Dual System Encryption, where secret keys
are switched to a semi-functional mode that still allows them to decrypt the
challenge ciphertext, but yield different information than normally generated
secret keys. Indeed, in the security proof, the ciphertext will encode the original
message x0, but also the message x1, where the pair (x0,x1) is chosen by the
adversary during the indistinguishability game. Normal keys will decrypt with
respect to the message x0, whereas the semi-functional keys will decrypt with
respect to the message x1, thereby successfully proving security.

Identity-Based inner-product FE from lattices. Our second main result
is the construction of two identity-based inner-product FE (IB-IPFE) from the
LWE assumption1. Both schemes combine existing LWE-based IBE with the
LWE-based inner-product FE from [11]. The first one uses the IBE from [38],
where the public key described a trapdoor function for which it is hard to sample
short preimage. Given the trapdoor—the master key of the IBE—it is possible to
efficiently compute a short preimage of any target image. Each identity id yield-
ing a different image, the corresponding preimage, a matrix of short coefficients
Mid, defines the user secret key for id. As it turns out, to produce functional
decryption keys associated with identity id and vector y, we can simply give a
projection Midy. We prove this remarkably simple scheme adaptively-secure in
1 We stress that both schemes support exponentially large input domains, as for exist-

ing LWE-based inner-product FE schemes.

Inner-Product Functional Encryption with Fine-Grained Access Control 473

the random oracle model using the security argument of [38] to handle all func-
tional decryption keys that do not decrypt the challenge ciphertext, whereas we
use the proof techniques of [11] to take care of all keys that decrypt the challenge
ciphertexts.

Our second constructions relies on the IBE from [10], where the public key
can be used to derive an identity-based public key pkid for any identity id. The
public key pkid describes a trapdoor function, for which, as in [38], it is hard to
compute short preimages. A fixed target image, which belongs to the range of
all the trapdoor functions pkid is made public. The user secret key for id is a
short preimage of the fixed target image, for the function pkid. Once again, user
secret keys happen to be matrices, which can be projected to obtain functional
decryption keys skid,y and get an IB-IPFE.

As a bonus, our schemes inherit the anonymity property of the underlying
IBE, that is, the identity associated with a ciphertext remains hidden as long as
no functional decryption key that decrypts is issued.

Richer access control from lattices. The puncturing technique that is
used in the security proof of [10] has been generalized to obtain ABE for all
circuits in [24]. However, there are intrinsic technical limitations in our proof
strategy which prevent from extending our scheme to the ABE case. In particu-
lar, to use the security argument of the IPFE from [11] as part of our own security
proof, we rely on a lazy sampling argument: to obtain a functional decryption
key skid�,y where id� is the identity of the challenge ciphertext, we first sam-
ple a matrix with short coefficients Mid� and set the fixed public target image
such that this short matrix is a preimage of the target image by the function
described by the public key pkid� . Concretely, the target image is a matrix T ,
the public key pkid = Aid� is also a matrix, and we want Aid�Mid� = T , where
the matrices have matching dimensions. We can first sample T , then use the
trapdoor to compute Mid� satisfying the previous equation, but we can also first
sample a short Mid� , and then set T = Aid�Mid� . This produces identically dis-
tributed matrices, and in the latter case, we can produce Mid� without knowing
the trapdoor, which is necessary in the security proof. The matrix Mid� will
actually correspond to the master secret key of the IPFE of [11]. The key skid�,y

is Mid�y, as described above, which corresponds to a functional decryption key
for y in the scheme from [11]. However, this lazy sampling argument is inher-
ently limited to the case where only one attribute (here, identity) satisfies the
predicate (here, identity) of the challenge ciphertext. In the case of ABE, there
can be multiple such attributes for a given predicate. We leave combining ABE
for circuits with inner-product FE as a challenging open problem.

Multi-input extensions. As a final contribution, we show how to generalize
our pairing-based IP-FE scheme to the multi input setting. Our realization is
rather generic in the sense that it converts any single input construction of the
primitive, satisfying few additional properties, into a multi input scheme sup-
porting the same class of functionalities. Specifically, the required properties are
that (1) the underlying IP-FE is pairings-based (2) its encryption and key gen-
eration algorithms can take as input large norm vectors and (3) its encryption

474 M. Abdalla et al.

algorithm enjoys linearly homomorphic properties. Recall that, to guarantee effi-
cient decryption, our parings based constructions require that both the plaintext
vectors x and the function vector y have small norm. What we require now is
that, if one is willing to give up efficient decryption, the small norm condition
can be relaxed (i.e. decryption returns an encoding of the output rather than
the output itself).

On a technical level the transformation follows very closely the generic single-
input to multi-input IP-FE transform by Abdalla et al. [5,7]. In this sense, we
believe that the interesting contribution is the primitive itself. Indeed, informa-
tion leakage is even more problematic in the multi input setting, as here users
can combine their inputs with many different ciphertexts coming from other
users. In the case of n users this easily leads to an information leakage that
completely destroys security. While countermeasures could be put in place to
limit the encryption and key queries that the adversary is allowed to ask, by
resorting for instance, to the notion of multi-client IPFE, where ciphertexts are
associated with time-stamps, and only ciphertext with matching time-stamps
can be combined (e.g. [30]) we believe that our proposed primitive provides a
more general and versatile solution to the problem.

Our construction allows users to compute weighted sums on encrypted vec-
tors each associated with a possibly different access structure. In our medical
example above, this might be used to add even more granularity to the access
control of data. That is, some users may obtain keys that can compute statistics
on some, but not all, the encrypted data. For instance, doctors in a hospital
may be able to compute on a different set of encrypted data then employees of a
health insurance company. Moreover, multi-input allows users to aggregate data
coming from different sources.

Related Works. We emphasize that the primitive considered in this paper
is natural, and as such, it has also been considered in previous works, either
implicitly or explicitly.

In [34], Dufour-Sans and Pointcheval describe an identity-based functional
encryption scheme for inner products as a byproduct of their realization of
unbounded IPFE with succinct keys. Their construction is proven selectively
secure in the random-oracle model based on the standard decisional bilinear
Diffie-Hellman assumption. Compared to their construction, our pairing-based
schemes provide support for significantly richer functionalities and are proven
secure in the standard model.

In prior works [13,43], the authors define a so-called partially-hiding FE
allowing for the computation on two inputs (x, y), where the input x is seen as a
public attribute and the other one, y, remains hidden. The construction of [13]
supports degree-2 computation on the private input y, and degree-1 computation
on the public input x. Its security rely on the generic bilinear group model. In
[43], functional secret keys support the computation of degree-2 polynomials on
the private input, as in [13], but it supports NC0 computation on the public input.
As an additional benefit, the security of their construction rely on a standard
assumption on pairing groups (namely, SXDH). In an early version of their eprint

Inner-Product Functional Encryption with Fine-Grained Access Control 475

[36] dating back to 2019, Jain, Lin and Sahai provided a partially-hiding FE
allowing for degree-2 computation on the private input, and NC1 computation
on the public inputs; relying on the SXDH assumption. All of these schemes
are in the secret-key setting. Our scheme has the advantage to be public-key,
although our techniques inherently rely on the linearity of the inner-product
functionality. All of those works focus on simulation, selective security, and use
partially-hiding FE in the context of providing indistinguishability obfuscation.

In [29], Chen, Zang and Yiu propose a construction of attribute-based func-
tional encryption for inner products. Like ours, their construction is pairing-
based, but it is less generic, and relies on three decisional assumptions on bilin-
ear groups of composite order N = p1p2p3 (p1, p2, p3 distinct primes), which are
less efficient than prime-order groups. Our realizations, on the other hand, build
generically from any dual system encryption-based ABE. In terms of security,
their construction guarantees indistinguishability against adaptive adversaries
in the standard model, but only in the weaker setting discussed above, where
keys that decrypt cannot be leaked to the adversary, which does not capture
the essence of the notion that we achieve, since it does not offer any additional
security guarantees with respect to standard ABE schemes. We recall that all
our schemes explicitly allow the adversary to get functional keys to decrypt the
challenge ciphertext. Also, while our first scheme is only selectively secure, it
achieves this in the stronger simulation setting. Finally, no extensions to the
multi-input case are considered in [29].

In [58], Wee builds partially hiding predicate encryption schemes which
simultaneously generalize existing attribute-based and inner-product predicate
encryption schemes. Although his constructions support a larger class of policies
than our constructions, the decryptor still has access to the payload message
(a KEM key in this case) once the access policy is satisfied or to a uniformly
random value otherwise. We see it as an interesting open problem to extend his
work to also permit selective computations over the payload message when the
access policy is satisfied.

Organization. Section 2 recalls some standard notation together with the syn-
tax and security definitions for functional encryption schemes. Section 3 presents
our constructions of inner-product FE with fine-grained access control from pair-
ings. Section 4 describes our first lattice-based construction of identity-based
functional encryption in the random-oracle model. In the full version [6], we also
describe a lattice-based standard-model construction of identity-based functional
encryption and present a multi-input extension of our schemes.

2 Preliminaries

Notation. We denote with λ ∈ N a security parameter. A probabilistic polyno-
mial time (PPT) algorithm A is a randomized algorithm for which there exists a
polynomial p(·) such that for every input x the running time of A(x) is bounded
by p(|x|). We say that a function ε : N → R

+ is negligible if for every positive
polynomial p(λ) there exists λ0 ∈ N such that for all λ > λ0: ε(λ) < 1/p(λ).

476 M. Abdalla et al.

If S is a set, x ←r S denotes the process of selecting x uniformly at random
in S. If A is a probabilistic algorithm, y ←r A(·) denotes the process of run-
ning A on some appropriate input and assigning its output to y. For a positive
integer n, we denote by [n] the set {1, . . . , n}. We denote vectors x = (xi) and
matrices A = (ai,j) in bold. For a set S (resp. vector x) |S| (resp. |x|) denotes
its cardinality (resp. number of entries). Also, given two vectors x and x′ we
denote by x‖x′ their concatenation. By ≡, we denote the equality of statistical
distributions, and for any ε > 0, we denote by ≈ε the ε-statistical difference of
two distributions. For any x ∈ R, we denote by �x� the largest integer less than
or equal to x, while for any z ∈ [0, 1], we denote by �z the closest integer to

z. For all ai ∈ Z
ni
p for i ∈ [n], we denote by (a1, . . . ,an) ∈ Z

∑
i∈[n] ni

p a column

vector, and by (a�
1 | · · · |a�

n) ∈ Z
1×∑

i∈[n] ni

p a row vector.

2.1 Pairing Groups

Let PGGen be a PPT algorithm that on input the security parameter 1λ, returns
a description PG = (G1, G2, GT , p, P1, P2, e) where for all s ∈ {1, 2, T}, Gs is an
additive cyclic group of order p for a 2λ-bit prime p. G1 and G2 are generated by
P1 and P2 respectively, and e : G1 ×G2 → GT is an efficiently computable (non-
degenerate) bilinear map. Define PT := e(P1, P2), which is a generator of GT ,
of order p. We use implicit representation of group elements. For s ∈ {1, 2, T}
and a ∈ Zp, define [a]s = a · Ps ∈ Gs as the implicit representation of a in Gs.
More generally, for a matrix A = (aij) ∈ Z

n×m
p we define [A]s as the implicit

representation of A in Gs:

[A]s :=

⎛
⎝

a11 · Ps ... a1m · Ps

an1 · Ps ... anm · Ps

⎞
⎠ ∈ G

n×m
s .

Given [a]1 and [b]2, one can efficiently compute [a · b]T using the pairing e. For
matrices A and B of matching dimensions, define e([A]1, [B]2) := [AB]T . For
any matrix A,B ∈ Z

n×m
p , any group s ∈ {1, 2, T}, we denote by [A]s + [B]s =

[A + B]s.
For any prime p, we define the following distributions. The DDH distribution

over Z
2
p: a ←r Zp, outputs a :=

(
1
a

)
. The DLIN distribution over Z

3×2
p : a, b ←r

Zp, outputs A :=

⎛
⎝

a 0
0 b
1 1

⎞
⎠.

Definition 2.1 (DDH assumption). For any adversary A, any group s ∈
{1, 2, T} and any security parameter λ, let

AdvDDH
Gs,A(λ) := |Pr[1 ← A(PG, [a]s, [ar]s)] − Pr[1 ← A(PG, [a]s, [u]s)]|,

where the probabilities are taken over PG ←r GGen(1λ, d), a ←r DDH, r ←r Zp,
u ←r Z

2
p, and the random coins of A. We say DDH holds in Gs if for all PPT

adversaries A, AdvDDH
Gs,A(λ) is a negligible function of λ.

Inner-Product Functional Encryption with Fine-Grained Access Control 477

Definition 2.2 (SXDH assumption). For any security parameter λ and any
pairing group PG = (G1, G2, GT , p, P1, P2, e) ←r PGGen(1λ), we say SXDH
holds in PG if DDH holds in G1 and G2.

2.2 Functional Encryption

Definition 2.3 (Functional Encryption [25,50]). Let F be a family of func-
tions, with f ∈ F defined as f : X → Y. A functional encryption scheme for F
consists of the following algorithms:

– Setup(1λ,F): takes as input the security parameter λ and a description of the
function family F , and outputs a master public key mpk and a master secret
key msk. The master public key mpk is assumed to be part of the input of all
the remaining algorithms.

– Enc(x ∈ X): takes as input the master public key mpk and a message x ∈ X ,
and it outputs a ciphertext ct.

– KeyGen(msk, f ∈ F): takes as input the master secret key msk, a function
f ∈ F , and it outputs a decryption key skf .

– Dec(skf , ct): takes as input a decryption key skf along with a ciphertext ct,
and it outputs a value y ∈ Y or the special symbol ⊥ if it fails.

A scheme as defined above is correct if for all security parameter λ, x ∈ X , and
f ∈ F , we have: Pr[Dec(skf , ctx) = f(x)] = 1] where the probability is taken over
(mpk,msk) ← Setup(1λ,F), skf ← KeyGen(msk, f), ctx ← Enc(x).

Partial Information. For the rest of this paper, it is convenient to split the
output of the function in two parts: (f(x), part(x)), where part(x) is some partial
information on x that is independent from f . For instance, we will consider the
case of x := (P,x), where P is a predicate, and x ∈ Z

d is a vector of dimension d;
each function is described by a pair (att,y) where att is an attribute, and y ∈ Z

d.
The output f(x) reveals x�y and P if P(att) = 1; only P otherwise. Note that
the information P is always revealed, no matter the function. Considering this
part of the input separately will be helpful later.

Security Notions. We first recall the selective indistinguishability variant for
the security of functional encryption here.

Definition 2.4 (SEL-IND security). For every functional encryption FE,
every security parameter λ, every stateful adversary A, we define the following
experiments for β ∈ {0, 1}:

Experiment SEL-INDFE
β (1λ,A):

(x0, x1) ← A(1λ,F)
(mpk,msk) ← Setup(1λ,F)
ct� ← Enc(xβ)
β′ ← AOKeyGen(·) (mpk, ct�)
Output: β′

478 M. Abdalla et al.

where OKeyGen(·) is an oracle that on input f ∈ F , outputs KeyGen(msk, f).
Additionally, if A ever calls the oracle KeyGen on an input f ∈ F , the challenge
queries x0, x1 must satisfy: f(x0) = f(x1) and part(x0) = part(x1).

A functional encryption scheme FE is SEL-IND-secure if for every PPT
adversary A, the following advantage is a negligible function of λ:

AdvSEL-IND
FE,A (λ) =

∣∣ Pr
[
SEL-INDFE

0 (1λ,A) = 1
]−Pr

[
SEL-INDFE

1 (1λ,A) = 1
]∣∣

Now we give the adaptive, indistinguishability based variant of security for
FE. It is the same as the previous definition, except the challenge (x0, x1) can be
chosen adaptively, after seeing the public key and querying functional decryption
keys.

Definition 2.5 (AD-IND security). For every functional encryption FE,
every security parameter λ, every stateful adversary A, we define the following
experiments for β ∈ {0, 1}:

Experiment AD-INDFE
β (1λ,A):

(mpk,msk) ← Setup(1λ,F)
(x0, x1) ← AOKeyGen(·)(1λ,F)
ct� ← Enc(xβ)
β′ ← AOKeyGen(·) (mpk, ct�)
Output: β′

where OKeyGen(·) is an oracle that on input f ∈ F , outputs KeyGen(msk, f).
Additionally, if A ever calls the oracle KeyGen on an input f ∈ F , the challenge
queries x0, x1 must satisfy: f(x0) = f(x1) and part(x0) = part(x1).

A functional encryption scheme FE is AD-IND-secure if for every PPT
adversary A, the following advantage is a negligible function of λ:

AdvAD-IND
FE,A (λ) =

∣∣ Pr
[
AD-INDFE

0 (1λ,A) = 1
] − Pr

[
AD-INDFE

1 (1λ,A) = 1
]∣∣

We now give the simulation-based, selective security. Note that simulation
security straightforwardly implies indistinguishable security.

Definition 2.6 (SEL-SIM security). For any FE scheme FE for functional-
ity F , any security parameter λ, any PPT stateful adversary A, and any PPT
simulator S := (S̃etup, Ẽnc, K̃eyGen), we define the following two experiments.

RealFE
A (1λ):

x� ← A(1λ)
(mpk,msk) ← Setup(1λ,F)
ct� ← Enc(x�)
α ← AOKeyGen(·)(mpk, ct�)

IdealFE
A,S(1λ):

x� ← A(1λ)
(m̃pk, m̃sk) ← S̃etup(1λ,F)
ct� ← Ẽnc(m̃sk, part(x�))
α ← AOKeyGen(·)(m̃pk, ct�)

Inner-Product Functional Encryption with Fine-Grained Access Control 479

In the real experiment, the key generation oracle OKeyGen, when given as input
f ∈ F , returns KeyGen(msk, f). In the ideal experiment, the key generation
oracle OKeyGen, when given as input f ∈ F , computes f(x�), and returns
K̃eyGen(m̃sk, part(x�), f, f(x�)), where part(x�) denotes the partial information
on x�.

We say an FE scheme is SEL-SIM secure if for all PPT adversaries A, there
exists a PPT simulator S := (S̃etup, Ẽnc, K̃eyGen) such that

AdvSEL-SIMFE,A (λ) := |Pr[1 ← RealFE
A (1λ)] − Pr[1 ← IdealFE

A,S(1λ)]| = negl(λ).

3 Inner-Product FE with Fine-Grained Access Control

In this section, we present functional encryption schemes for the family of func-
tions that allows users to embed access policies in the encrypted data, and gener-
ate functional decryption keys that compute weighted sum on the latter. Namely,
each ciphertext is associated with a predicate P, and encrypts a vector x ∈ [0, B]d

for some dimension d and some bound B. Each functional decryption key is asso-
ciated with an attribute att and a vector y ∈ [0, B]d. Decryption recovers the
inner product x�y ∈ [0, dB2] together with P if the attribute att satisfies the
predicate P. Otherwise, it only recovers the predicate P, but no information
about the encrypted vector x is revealed.

We show it is possible to combine existing pairing-based ABE together with
the inner-product FE from [11]. Our generic construction works on any ABE
that relies on the dual system encryption methodology, originally put forth by
[56]. Namely, any such ABE that supports the class of predicates P, can be
turned into an FE scheme for the family Fipfe(d,B),P := U × [0, B]d of functions
described by an attribute att ∈ U and a vector y ∈ [0, B]d, that given as input
a predicate P ∈ P where P : U → {0, 1} and a vector x ∈ [0, B]d, returns x�y ∈
[0, dB2] if P(att) = 1, 0 otherwise. Note that this can be compactly written as
P(att)·x�y. We will consider the case where the partial information that is leaked
about (P,x) is P, which corresponds to the case of ABE with public indices, but
also the case where the predicate itself is hidden, which corresponding to the
case of predicate encryption, also referred to as ABE with private indices. For
correctness, we require the bound B and the dimension d to be polynomially
bounded.

We first give a scheme that builds upon any predicate encoding, a one-time
secure, private-key, statistical variant of ABE, introduced in [16,57], later refined
in [8,9,12,17] for prime-order pairing groups. Building a predicate encoding is
much easier than directly building an attribute based encryption, since the heavy
machinery that is being used to prove security of the resulting ABE is taken care
of by these modular frameworks. We follow this line of work by giving a definition
of predicate encoding which is essentially that of [27]. For simplicity, we leave
the question of using more general predicate encodings, such as those from [9],
which capture a larger class of ABE, as future work. Our modular construction
is general enough to capture identity-based encryption, inner-product predicate

480 M. Abdalla et al.

encryption, and monotone span programs. A description of the corresponding
concrete predicate encodings can be found in the full version of this paper [6].

3.1 FE with Simulation, Selective Security

First, we recall the definition of predicate encodings.

Definition 3.1 (predicate encoding). Let P be a family of predicates and p
be a prime. A predicate encoding for (P, Zp) is given by the following polynomial-
time deterministic algorithms:

– Param(P): takes as input the family of predicates P, and returns the param-
eters (n, |ct|, |sk|) ∈ N

3.
– EncCt(P): takes as input a predicate P ∈ P, and returns a matrix C ∈ Z

n×|ct|
p .

– EncKey(att): takes as input an attribute att ∈ U , and returns a matrix K ∈
Z
(n+1)×|sk|
p .

– Decode(P, att): takes as input a predicate P ∈ P, an attribute att ∈ U , and
returns a vector d ∈ Z

|ct|+|sk|
p .

We require the following properties.

Correctness. If P ∈ P and att ∈ U such that P(att) = 1, C :=
EncCt(P) ∈ Z

n×|ct|
p , K := EncKey(att) ∈ Z

(n+1)×|sk|
p , d := Decode(P, att),

then
(

0
C

K
)
d = (1, 0, . . . , 0) ∈ Z

n+1
p , where 0 ∈ Z

1×|ct|
p .

Security. If P ∈ P and att ∈ U such that P(att) = 0, then the following are
identically distributed:

(α|v1| · · · |vn)
(

0
C

K
)

and (0|v1| · · · |vn)
(

0
C

K
)

,

where α, v1, . . . , vn ←r Zp.

Example: Identity-Based Encryption.

– Param(IBE): takes as input the family of predicates I, where each predicate
is described by an identity id ∈ I, and returns 1 when given as an input an
identity id′ such that id′ = id, returns 0 otherwise. It returns the parameters
(n = 2, |ct| = 1, |sk| = 1) ∈ N

3.
– EncCt(id): given id ∈ I, returns a matrix C = (1, id) ∈ Z

2×1
p such that

(v1|v2)C = v1 + idv2 ∈ Zp.
– EncKey(id): given id ∈ I, returns a matrix K = (1, 1, id) ∈ Z

3×1
p such that

(α|v1|v2)K = α + v1 + idv2 ∈ Zp.
– Decode(id, id′): if id = id′, it returns the vector d :=

(−1
1

) ∈ Z
2
p.

Our simulation, selectively secure FE is described in Fig. 1.

Inner-Product Functional Encryption with Fine-Grained Access Control 481

Correctness. Observe that for all predicates P ∈ P, the vector
[(W�

1 c1| . . . |W�
n c1)]1 ∈ G

2×n
1 can be computed from mpk and the random-

ness s ←r Zp used by the encryption algorithm to compute [c1]1 := [as]1.
Then, the encryption algorithm multiplies the resulting vector by the matrix
C := EncCt(P) ∈ Z

n×|ct|
p to obtain [C2]1 ∈ G

2×|ct|
1 . Similarly, for all attributes

att ∈ U , the vector [(Uy|W1k1| . . . |Wnk1)]2 ∈ G
2×(n+1)
2 can be computed

from mpk, msk, and the randomness r ←r Zp used by the key generation algo-
rithm to compute [k1]2 := [br]2. Then, the key generation algorithm multiplies
the resulting vector by the matrix K := EncKey(att) ∈ Z

(n+1)×|sk|
p to obtain

[K2]1 ∈ G
2×|sk|
2 .

Let P ∈ P and att ∈ U such that P(att) = 1, x,y ∈
[0, B]d, (P, [c1]1, [C2]1, [c3]1) ←r Enc(mpk,P,x), and (att,y, [k1]2, [K2]2) ←r

KeyGen(msk, att,y). The values computed by the decryption algorithm are
such that [d�

1]T := [(c�
1 W1k1| . . . |c�

1 Wnk1)C]T ∈ G
1×|ct|
T , where C :=

EncCt(P) ∈ Z
n×|ct|
p , and [d�

2]T := [(c�
1 Uy|c�

1 W1k1| . . . |c�
1 Wnk1)K]T ∈

G
1×|sk|
T , where K := EncKey(att) ∈ Z

(n+1)×|sk|
p . Thus, by correctness of the

predicate encoding (Param,EncCt,EncKey,Decode), we have [γ]T := [c�
1 Uy]T ∈

GT . To see why, please note that, since d�
1 = (c�

1 W1k1| . . . |c�
1 Wnk1)C =

(c�
1 Uy|c�

1 W1k1| . . . |c�
1 Wnk1)

(
0
C

)
, γ = (d�

1 |d�
2)d = (c�

1 Uy|c�
1 W1k1| . . . |

c�
1 Wnk1)

(
0
C

K
)
d = (c�

1 Uy|c�
1 W1k1| . . . |c�

1 Wnk1) · (1|0| . . . |0])� = c�
1 Uy.

Therefore, [out]T = [x�y]T . Finally, assuming the value B2d is polynomial in the
security parameter, the decryption can efficiently recover the discrete logarithm
out from [out]T .

Theorem 3.2 (SEL-SIM security). If the underlying predicate encoding is
secure, then the FE scheme from Fig. 1 is SEL-SIM secure. Namely, for any
PPT adversary A, there exist PPT adversaries B1 and B2 such that:

AdvSEL-IND
FE,A (λ) ≤ AdvDDH

G1,B1
(λ) + 2Q · AdvDDH

G2,B2
(λ) + 1

p ,

where Q denotes the number of queries to OKeyGen.

Proof. The proof goes over a series of hybrid games, defined in Fig. 4. Let A be
a PPT adversary. For any such game G, we denote by AdvG(A) the probability
Pr[1 ←r G(A)], that is, the probability that the game outputs 1 when interacting
with A. The probability is taken over the random coins of A and the game G
itself. For an overview of the ciphertext and key distributions in the proof, see
Figs. 2 and 3.

Game G0: is the same as RealFE
A (1λ) from Definition 2.6.

Game G1: in this game, the challenge ciphertext is switched to the semi-
functional distribution (see Fig. 2). Namely, the vector [c1]1 contained in the
challenge ciphertext is switched to uniformly random over G

2
1, using the DDH

482 M. Abdalla et al.

Setup(1λ, Fipfe(d,B),P):
PG = (G1, G2, GT , p, P1, P2, e) ← PGGen(1λ), a, b ←R DDH, U ←R

Z
2×d
p , (n, |ct|, |sk|) ← Param(P), for all i ∈ [n], Wi ←R Z

2×2
p , mpk :=

[a]1, [b]2, [U�a]1, {[W�
i a]1, [Wib]2}i∈[n]

)
, msk := U. Return (mpk,msk).

Enc(mpk,P,x):

s ←R Zp, [c1]1 := [as]1, C := EncCt(P) ∈ Z
n×|ct|
p , [C2]1 := [(W�

1 c1| . . . |W�
n c1)C]1,

[c3]1 := [x+U�c1]1. Return (P, [c1]1, [C2]1, [c3]1) ∈ P × G
2
1 × G

2×|ct|
1 × G

d
1

KeyGen(msk, att,y):

r ←R Zp, [k1]2 := [br]2, K := EncKey(att) ∈ Z
(n+1)×|sk|
p , [K2]2 :=

[(Uy|W1k1| . . . |Wnk1)K]2, Return (att,y, [k1]2, [K2]2) ∈ U × [0, B]d × G2 × G
2×|sk|
2

Dec
(
(P, [c1]1, [C2]1, [c3]1), (att,y, [k1]2, [K2]2)

)
:

[d1]T := e([C2]�1 , [k1]2) ∈ G
|ct|
T , [d�

2]T := e([c1]�1 , [K2]2) ∈ G
1×|sk|
T , d := Decode(P, att),

[γ]T := [(d�
1 |d�

2)d]T ∈ GT , [out]T := e([c3]�1 , [y]2) − [γ]T . Return out.

Fig. 1. A selectively-secure FE from pairings, for the function family Fipfe(d,B),P .

Ciphertext [c1]1 [C2]1 [c3]1 Hybrid
Normal [as]1, s ←R Zp [(W�

1 c1| . . . |W�
n c1)C]1 [x� +U�c1]1 G0

SF [c1]1 ←R G
2
1 [(W�

1 c1| . . . |W�
n c1)C]1 [x� +U�c1]1 G1

Simulated c1 ←R Z
2
p \ span(a) [(W�

1 c1| · · · |W�
n c1)C]1 [U�c1]1 IdealFE

A,S(1
λ)

Fig. 2. Overview of ciphertext distributions appearing in the proof of Theorem 3.2,
with changes between hybrids highlighted with a gray background. SF stands for semi-
functional. Here, C := EncCt(P�).

assumption. The game is described fully in Fig. 4 and is indistinguishable from
G0 by Lemma 3.3.

Lemma 3.3. There exists a PPT adversary B1, such that:

|AdvG1(A) − AdvG0(A)| ≤ AdvDDH
G1,B1

(λ).

Proof. The PPT adversary B1 receives the DDH challenge ([a]1, [z]1) where
a ←r DDH, [z]1 := [as]1 with s ←r Zp or [z]1 ←r G

2
1, then samples

Wi ←r Z
2×2
p , U ←r Z

2×d
p , b ←r DDH and simulates the experiment for A

in the following way:

Simulation of the Master Public Key: Since B1 samples U and
Wi himself, he can use the encoding [a]1 to compute [U�a]1 and
{[W�

i a]1}i∈[n]). Then B1, computes
(
[Wib]2}i∈[n]

)
and outputs mpk :=(

[a]1, [b]2, [U�a]1, {[W�
i a]1, [Wib]2}i∈[n]

)
.

Inner-Product Functional Encryption with Fine-Grained Access Control 483

Type of j th Key Remark [k1]2 [K2]2 Hybrid
Normal r ←R Zp [br]2 [(Uy|W1k1| · · · |Wnk1)K]2 G0

Pseudo if P�(att) = 0 [k1]2 ←R G
2
1 [(Uy|W1k1| · · · |Wnk1)K]2 Hj−1.2

Pseudo SF if P�(att) = 0 [k1]2 ←R G
2
1 [(Ũy|W1k1| · · · |Wnk1)K]2 Hj−1.7

SF if P�(att) = 0 [br]2 [(Ũy|W1k1| · · · |Wnk1)K]2 Hj+1

Simulated if P�(att)=0 [br]2 [(Ũy|W1k1| · · · |Wnk1)K]2 IdealFE
A,S(1

λ)

Simulated if P�(att)=1 [br]2 [(−y�x� · a⊥ +Uy|W1k1| · · · |Wnk1)K]2 IdealFE
A,S(1

λ)

Fig. 3. Overview of key distributions appearing in the proof of Theorem 3.2, with
changes between hybrids highlighted with a gray background. SF stands for semi-
functional. Throughout the figure, K = EncKey(att).

Simulation of the Encryption Challenge: Adversary B1 sets [c1]1 := [z]1,
C := EncCt(P), [C2]1 := [(W�

1 z| . . . |W�
n z)C]1, [c3]1 := [x� + U�z]1, and

returns (P, [c1]1, [C2]1, [c3]1). When B1 gets a DDH challenge of the form
[z]1 := [as]1 with s ←r Zp, it simulates G1, whereas it simulates G2 when
[z]1 is uniformly random over G1.

Simulation of the Functional Keys: B1 generates the keys straightforwardly
as described in G0, using the matrix U, {Wi}i∈[n], and b. ��

Game G2: in this game, all the functional decryption keys associated with an
attribute att such that P�(att) = 0 are switched to semi-functional (see Fig. 3).
That is, for these keys, the matrix Ũ (defined in Fig. 4) is used in place of
the master secret key U. Note that the matrix Ũ, as opposed to the master
secret key U, can be computed (information theoretically) from mpk only.
These semi-functional keys decrypt successfully normal ciphertexts (which
can be produced from mpk), but fail to decrypt semi-functional ciphertexts.
To switch keys from normal to semi-functional, we use a hybrid argument
across keys, where each key is first switched to a high entropy distribution,
typically referred to as pseudo mode in the dual system methodology [56],
where the vector [k1]2 contained in the key is switched to uniformly random
over G

2
2, using the DDH assumption. At this point, the proof relies on the

security of the predicate encoding to switch the key a semi-functional distri-
bution. After this statistical transition, the vector [k1]2 is switched back to
its original distribution, and the proof proceeds to the next key. Details of
the transition from game G1 to game G2 are given in the full version of this
paper [6].
Even though the hybrid argument used here is standard in the context of dual
system encryption, the crucial difference is that only the keys associated with
att such that P�(att) = 0 can be switched to semi-functional. The other keys
should actually decrypt the challenge ciphertext properly. This is the reason
the experiment needs to know in advance the value P�, so as to determine
which key can be switched. For the keys that cannot be switched, we use a
security argument similar to that used in [11] instead.

484 M. Abdalla et al.

G0, G1, G2 :

(P�,x�) ← A(1λ)
PG ← PGGen(1λ), a, b ←R DDH, U ←R Z

2×d
p , (n, |ct|, |sk|) ← Param(P), for all i ∈ [n],

Wi ←R Z
2×2
p , mpk := [a]1, [b]2, [U�a]1, {[W�

i a]1, [Wib]2}i∈[n]

)
u0 := U�a

‖a‖2
2

∈ Z
d
p, Ũ := au�

0 ∈ Z
2×d
p

ct� ← OEnc(P�,x�)
b ← AOKeyGen(·)(mpk, ct�)

OEnc(P�,x�):

s ←R Zp, [c1]1 := [as]1, [c1]1 ←R G
2
1 , C := EncCt(P�), [C2]1 :=

[(W�
1 c1| . . . |W�

n c1)C]1, [c3]1 := [x� +U�c1]1. Return (P�, [c1]1, [C2]1, [c3]1)

OKeyGen(att,y):
r ←R Zp, [k1]2 := [br]2, K := EncKey(att), [K2]2 := [(Uy|W1k1| · · · |Wnk1)K]2,

If P�(att) = 0, then [K2]2 := [(Ũy|W1k1| · · · |Wnk1)K]2 . Return (att,y, [k1]2, [K2]2)

Fig. 4. Hybrid games for the proof of Theorem 3.2.

Game IdealFE
A,S(1λ): we show this game is statistically close to G2. The simulator

S := (S̃etup, Ẽnc, K̃eyGen) is described in Fig. 5. First, we use the fact that
for all a ∈ Z

2
p, the following distributions are within 1/p statistical distance:

c1 ←r Z
2
p and c1 ←r Z

2
p \ span(a).

The leftmost distribution corresponds to G2, whereas the rightmost distribu-
tion corresponds to IdealFE

A,S(1λ).
Then, we use the fact that for all x� ∈ Z

d, the following distributions are
identical:

(a, c1, Ũ,U) and (a, c1, Ũ,U − a⊥(x�)�),

where a ←r DDH, c1 ←r Z
2
p \ span(a), U ←r Z

2×d
p , u0 := U�a

‖a‖2
2
, Ũ := au�

0 ,

and a⊥ ∈ Z
2
p such that a�a⊥ = 0 and c�

1 a
⊥ = 1. This is because U is a

uniformly random matrix, so adding an offset −a⊥(x�)� does not change
its distribution. This extra offset doesn’t appear in Ũ since a�a⊥ = 0. The
leftmost distribution corresponds to G2, whereas the rightmost distribution
corresponds to IdealFE

A,S(1λ).
Putting everything together, we obtain:

|AdvG2(A) − Pr[1 ←r IdealFE
A,S(1λ)]| ≤ 1

p .

��

Inner-Product Functional Encryption with Fine-Grained Access Control 485

S̃etup(1λ, Fipfe(d,B),P):
PG ← GGen(1λ), a, b ←R DDH, c1 ←R Z

2
p \ span(a), a⊥ ←R Z

2
p such

that c�
1 a

⊥ = 1 and a�a⊥ = 0, U ←R Z
2×d
p , u0 := U�a

‖a‖2
2
, Ũ := au�

0 ,
(n, |ct|, |sk|) ← Param(P), for all i ∈ [n], Wi ←R Z

2×2
p

Return p̃k := [a]1, [b]2, [U�a]1, {[W�
i a]1, [Wib]2}i∈[n]

)
, m̃sk :=(

Ũ,U,a⊥
)

Ẽnc(m̃sk,P�):
C := EncCt(P), [C2]1 := [(W�

1 c1| · · · |W�
n c1)C]1, [c3]1 := [U�c1]1. Return

(P�, [c1]1, [C2]1, [c3]1)

K̃eyGen(m̃sk,P�,y, att,P�(att) · y�x�):
r ←R Zp, [k1]2 := [br]2, K := EncKey(att).
If P�(att) = 0, then [K2]2 := [(Ũy|W1k1| · · · |Wnk1)K]2.
If P�(att) = 1, then [K2]2 := [(−y�x� · a⊥ +Uy|W1k1| · · · |Wnk1)K]2.
Return (att,y, [k1]2, [K2]2)

Fig. 5. PPT simulator for the security proof of the FE scheme from Fig. 4.

3.2 FE with Adaptive, Indistinguishability Based Security

In this section, we build FE schemes for the family of functions Fipfe(d,B),P , where
P corresponds to identity-based encryption, inner-product predicate encryp-
tion, or even monotone span programs. Similarly to the selective construction in
Sect. 3.1, we give a modular construction that builds upon a simple, information-
theoretic, one-time secure object, that generalizes the notion of predicate encod-
ing to functions, hence called function encoding. Namely, a function encoding
is a private-key version of functional encryption that only satisfies a one-time
security notion.

Recall that our construction from Sect. 3.1 fails to achieve adaptive security,
even if the underlying building blocks are adaptively secure. The reason is that,
throughout the security proof, only the functional decryption keys associated
with a pair (att,y) such that P�(att) = 0 can be turned to semi-functional,
where P� is the predicate chosen by the adversary for the challenge cipher-
text. In fact, the other keys cannot be turned semi-functional, since they must
decrypt correctly the challenge ciphertext, and not just ciphertexts that can be
generated from the public key. This challenge does not arise in the typical dual
system encryption methodology used for ABE, since none of the queried keys
can decrypt.

A similar situation arose in the context of fully-hiding predicate encryption
for inner products, where ciphertexts are associated with a vector x̃ ∈ Z

n
p , func-

tional decryption keys are associated with ỹ ∈ Z
n
p , and decryption successfully

recovers the plaintext if x̃�ỹ = 0, whereas no information about that plaintext

486 M. Abdalla et al.

is revealed otherwise. As opposed to regular inner-product encryption, the vec-
tor x̃ is also hidden, the only bit of information that leaks is whether x̃�ỹ = 0
or not. In this context, the adversary can query functional decryption keys that
decrypt the challenge ciphertext. This is still a meaningful security notion since
x̃ remains hidden even when such keys are queried.

We show that the techniques introduced by [49], later improved in [28] for
adaptively secure fully-hiding predicate encryption for inner products are also
relevant to obtain adaptively secure inner-product FE with fine-grained access
control (even when the predicate is not hidden). In fact, using function encodings,
a new notion we introduce that subsumes the notion of predicate encoding intro-
duced in [16,57] in the context of adaptively-secure ABE, we generalize the app-
roach of [28,49] to a large class of functional encryption schemes, whereas their
scheme corresponds to the special case of inner-product encryption. Namely,
we compile any function encoding for the function family F into an adaptively
secure FE for the same class of functions from the SXDH assumption in asym-
metric pairings. In the full version of this paper [6], we give concrete function
encodings that correspond to identity-based encryption, inner-product predicate
encryption, fully-hiding inner-product predicate encryption and monotone span
programs.

Definition 3.4 (function encoding). Let F be a family of functions where
each function f ∈ F is of the form f : X → Zp, and p be a prime. A func-
tion encoding for (F , Zp) is given by the following polynomial-time deterministic
algorithms:

– Param(F): takes as input the family of functions F , and returns the parame-
ters (n, |ct|, |sk|) ∈ N

3.
– EncCt(x): takes as input x ∈ X , and returns a matrix C ∈ Z

(n+1)×|ct|
p .

– EncKey(f): takes as input a function f ∈ F , and returns a matrix K ∈
Z
(n+1)×|sk|
p .

– Decode(f, part(x)): takes as input the partial information part(x) of x ∈ X
and f ∈ F . It returns a vector d ∈ Z

|ct|+|sk|
p . (See Sect. 2.2 for a discussion

on the partial information).

We require the following properties.

Correctness. For all x ∈ X and f ∈ F , C := EncCt(x) ∈ Z
(n+1)×|ct|
p ,

K := EncKey(f) ∈ Z
(n+1)×|sk|
p , d := Decode(f, part(x)), we have: (C|K)d =

(f(x), 0, . . . , 0) ∈ Z
n+1
p .

Security. For any x0, x1 ∈ X and f ∈ F such that f(x0) = f(x1) and part(x0) =
part(x1), the following are identically distributed:

v�(C|K) with C := EncCt(x0),K := EncKey(f)
and

v�(C|K) with C := EncCt(x1),K := EncKey(f),

where v ←r Z
n+1
p .

Inner-Product Functional Encryption with Fine-Grained Access Control 487

Setup(1λ, Fipfe(d,B),P):
PG = (G1, G2, GT , p, P1, P2, e) ← PGGen(1λ), a ←R DDH, b ←R Z

3
p, (n, |ct|, |sk|) ←

Param(Fipfe(d,B),P), for all i ∈ [0, n], Wi ←R Z
2×3
p , mpk := [a]1, {[W�

i a]1}i∈[n]

)
,

msk := [b]2, {[Wib]2}i∈[n]

)
. Return (mpk,msk)

Enc(mpk,P,x):

s ←R Zp, [c1]1 := [as]1 ∈ G
2
1, C := EncCt(P,x) ∈ Z

(n+1)×|ct|
p , [C2]1 :=

[(W�
0 c1| . . . |W�

n c1)C]1 ∈ G
3×|ct|
1 . Return (part(P,x), [c1]1, [C2]1).

KeyGen(msk, att,y):

r ←R Zp, [k1]2 := [br]2 ∈ G
3
2, K := EncKey(att,y) ∈ Z

(n+1)×|sk|
p ,

[K2]2 := [(W0k1| . . . |Wnk1)K]2 ∈ G
2×|sk|
2 , [k3]2 := [W0k1]2 ∈ G

2
2. Return

(att,y, [k1]2, [K2]2, [k3]2).

Dec part(P,x), [c1]1, [C2]1,y, [k1]2, [K2]2, [k3]2):

[d1]T := e([C2]�1 , [k1]2) ∈ G
|ct|
T , [d�

2]T := e([c1]�1 , [K2]2) ∈ G
1×|sk|
T , d :=

Decode(part(P,x), att), [γ]T := [(d1,d2)�d]T ∈ GT , Return out ∈ [0, dB2] such that
[γ]T = [c�

1 k3 · out]T . If there isn’t such out, return ⊥.

Fig. 6. An adaptively-secure FE from pairings, for the function family Fipfe(d,B),P .

Example: Identity-Based Encryption. Each function is described by an
identity id ∈ Zp and a vector y ∈ [0, B]d, takes as input another identity id′ ∈ Zp

and a vector x ∈ [0, B]d, and outputs x�y if id = id′, 0 otherwise. The partial
information part(x, id) = id.

– Param: returns the parameters (2d, |ct| = d, |sk| = n + 1).
– EncCt(x, id): given x ∈ Z

n
p and id ∈ Zp, returns a matrix C ∈ Z

(2d+1)×d
p such

that C�(w0,w1,w2) = (w0x + w1 + idw2) ∈ Z
d
p.

– EncKey(y, id′): given y ∈ Z
n
p and id′ ∈ Zp, returns a matrix K ∈ Z

(2d+1)×1
p

such that K�(w0,w1,w2) = y�(w1 + id′w2) ∈ Zp.
– Decode(id, id′,y): if x�y = 0, it returns the vector d := (y,−1) ∈ Z

d+1
p .

Our modular construction is presented in Fig. 6. Proofs of correctness and
security are given below.

Correctness. Observe that for all predicates P ∈ P and vectors x ∈ [0, B]d,
the vector [(W�

0 c1|W�
1 c1| . . . |W�

n c1)]1 ∈ G
3×n
1 can be computed from mpk

and the randomness s ←r Zp used by the encryption algorithm to compute
[c1]1 := [as]1. Then, the encryption algorithm multiplies by the matrix C :=
EncCt(P,x) ∈ Z

(n+1)×|ct|
p to obtain [C2]1 ∈ G

3×|ct|
1 . Similarly, for all attributes

att ∈ U , the vector [(W0k1|W1k1| . . . |Wnk1)]2 ∈ G
2×n
2 can be computed from

mpk, msk, and the randomness r ←r Zp used by the key generation algorithm

488 M. Abdalla et al.

G0, G1, G2 :

β ←R {0, 1}, PG ← PGGen(1λ), a ←R DDH, b ←R Z
3
p, (n, |ct|, |sk|) ←

Param(Fipfe(d,B), P), for all i ∈ [0, n], Wi ←R Z
2×3
p , mpk := [a]1, {[W�

i a]1, }i∈[n]

)
(
(P0,x0), (P1,x1)

)
← AOKeyGen(·)(1λ,mpk)

ct� ←R OEnc
(
(P0,x0), (P1,x1)

)
β′ ← AOKeyGen(·)(mpk, ct�)
Return 1 if β′ = β, 0 otherwise.

OEnc
(
(P0,x0), (P1,x1)

)
:

s ←R Zp, [c1]1 := [as]1, [c1]1 ←R G
2
1 C := EncCt(Pβ ,xβ), C := EncCt(P0,x0) ,

[C2]1 := [(W�
0 c1|W�

1 c1| . . . |W�
n c1)C]T , Return ct� := (part(Pβ ,xβ), [c1]1, [C2]1)

OKeyGen(att,y):
r ←R Zp, [k1]2 := [br]1, K := EncKey(att,y), [K2]2 := [(W0k1|W1k1| · · · |Wk1)K]2,
[k3]2 := [W0k1]2. Return (att,y, [k1]2, [K2]2, [k3]2)

Fig. 7. Hybrid games for the proof of Theorem 3.5.

to compute [k1]2 := [br]2. Then, the key generation algorithm multiplies by the
matrix K := EncKey(att,y) ∈ Z

(n+1)×|sk|
p to obtain [K2]1 ∈ G

2×|sk|
2 .

Let P ∈ P and att ∈ U such that P(att) = 1, x,y ∈ [0, B]d,
(part(P,x), [c1]1, [C2]1) ←r Enc(mpk,P,x), and (att,y, [k1]2, [K2]2, [k3]2) ←r

KeyGen(msk, att,y). The values computed by the decryption algorithm are

such that [d1]T :=

⎡
⎢⎣C�

⎛
⎜⎝
c�
1W0k1

...
c�
1Wnk1

⎞
⎟⎠

⎤
⎥⎦

T

, which implies that [d�
1]T =

[(c�
1 W0k1|c�

1 W1k1| . . . |c�
1 Wnk1)C]T ∈ G

1×|ct|
T , where C := EncCt(P,x) ∈

Z
(n+1)×|ct|
p , and the second equality holds because c�

1Wik1 ∈ Zp, for every
i ∈ {0 . . . n}. Also, [d�

2]T := [(c�
1 W0k1|c�

1 W1k1| . . . |c�
1 Wnk1)K]T ∈ G

1×|sk|
T ,

where K := EncKey(att,y) ∈ Z
(n+1)×|sk|
p . Thus, by correctness of the function

encoding (Param,EncCt,EncKey,Decode), we have [γ]T := [c�
1 W0k1 · x�y]T =

[c�
1 k3 · x�y] ∈ GT . Therefore, assuming the value B2d is polynomial in the

security parameter, the decryption can efficiently recover out = x�y ∈ [0, B2d].

Theorem 3.5 (AD-IND security). If the underlying function encoding is
secure, then the FE scheme from Fig. 6 is AD-IND secure. Namely, for any
PPT adversary A, there exist PPT adversaries B1 and B2 such that:

AdvAD-IND
FE,A (λ) ≤ AdvDDH

G1,B1
(λ) + 4QAdvDDH

G2,B2
(λ),

where Q denotes the number of queries to OKeyGen.

Inner-Product Functional Encryption with Fine-Grained Access Control 489

Proof. The proof uses a series of hybrid games, described in Fig. 7. For each
game G, we define by AdvG(A) the advantage of A in G, that is: 2 · |Pr[1 ←r

G(A)] − 1/2|.
Game G0: is defined such that AdvG0(A) = AdvAD-IND

FE,A (λ).
Game G1: here we change the distribution of the vector [c1]1 that is part of the

challenge ciphertext to uniformly random over G
2
1, using the DDH assumption

in G1. Namely, we build a PPT adversary B1 such that:

|AdvG0(A) − AdvG1(A)| ≤ AdvDDH
G1,B1

(λ).

Upon receiving a challenge (PG, [a]1, [z]1), where [z]1 := [as]1 for s ←r Zp,
or [z]1 ←r G

2
1, the adversary B1 samples (n, |ct|, |sk|) ← Param(Fipfe(d,B),P),

for all i ∈ [0, n], Wi ←r Z
2×3
p , and simulate A’s view in a straightforward

way, setting [c1]1 := [z]1 in the challenge ciphertext.
Game G2: here we change the distribution of the challenge ciphertext so that it

doesn’t depend on the random bit β ←r {0, 1} anymore. Clearly,

AdvG2(A) = 0.

We show that G1 and G2 are computationally indistinguishable using the
security of a private-key variant of our scheme. Namely, we exhibit a PPT
adversary B2 such that:

|AdvG1(A) − AdvG2(A)| ≤ AdvH0(B2),

where AdvH0(B2) denotes the advantage of B2 in game H0, which is the
private-key analogue of game G0 (see Fig. 8). We use the fact that for any
i ∈ [0, n]: (W�

i a,W�
i c1) with Wi ←r Z

2×3
p , a ←r DDH, c1 ←r Z

3
p, is within

negligible statistical distance from (W�
i a,wi) with wi ←r Z

3
p. Roughly

speaking, the vectors wi can be used as a fresh private-key, independent
of the public key {[W�

i a]1}. Note that when a ←r DDH and a⊥ ←r Z
2
p \{0}

such that a�a⊥ = 0, we have that the vectors (a|a⊥) form a basis of Z
2
p. Thus

we can write W�
i := w̃ia

� +wi(a⊥)�, where w̃i,wi ←r Z
3
p, and a⊥ ∈ Z

2
p is

such that a�a⊥ = 0 and c�
1 a

⊥ = 1. This way, the public key can be written
as:

mpk :=
(
[a]1, {[w̃ia

�a]1}i∈[n]

)
,

the challenge ciphertext can be written as:

(part(Pβ ,xβ), [c1]1, [C2]1), with [c1]1 ←r G
2
1,

C := EncCt(Pβ ,xβ),

[C2]1 := [(w�
0 |w�

1 | . . . |w�
n)C]1,

which corresponds exactly to game H0. The functional decryption keys can
be written as:

r ←r Zp, [k1]2 := [br]1,K := EncKey(att,y),

[K2]2 := [(aw̃0
� + a⊥w�

0)k1| · · · |(aw̃n
� + a⊥w�

n)k1)K]2,

[k3]2 := [(aw̃0
� + a⊥w�

0)k1]2.

490 M. Abdalla et al.

H0, H1 :

β ←R {0, 1}, PG ← PGGen(1λ), (n, |ct|, |sk|) ← Param(Fipfe(d,B), P), let (b|b2|b3)
and (b∗|b∗

2|b∗
3) be two random dual basis of Z

3
p. For all i ∈ [0, n], wi ←R Z

3
p. We write

wi := w1
i b

∗ + w2
i b

∗
1 + w3

i b
∗
3, with w1

i , w2
i , w3

i ←R Zp(
(P0,x0), (P1,x1)

)
← A(1λ)

ct� ←R OEnc
(
(P0,x0), (P1,x1)

)
β′ ← AOKeyGen(·)(ct�)
Return 1 if β′ = β, 0 otherwise.

OEnc
(
(P0,x0), (P1,x1)

)
:

Cβ := EncCt(Pβ ,xβ), C0 := EncCt(P0,x0),

cβ�
2 := (w�

0 | . . . |w�
n)Cβ , cβ�

2 := (b∗�w1
0 + b∗�

2 w2
0| . . . |b∗�w1

n + b∗�
2 w2

n)Cβ ,

c0�
2 := 0�, c0�

2 := (b∗�
3 w3

0| . . . |b∗�
3 w3

n)C0 ,

c2 := cβ
2 + c02.

Return ct� := (part(Pβ ,xβ), c2)

OKeyGen(att,y):
k1 ←R span(b), K := EncKey(att,y), [k�

2]2 := [(w�
0 k1|w�

1 k1| · · · |w�
n k1)K]2, [k3]2 :=

[w�
0 k1]2. Return (att,y, [k1]2, [k2]2, [k3]2)

Fig. 8. Hybrid games for the proofs of adaptive security.

The adversary B2 samples w̃i ←r Z
3
p for all i ∈ [0, n] and a ←r DDH,

a⊥ ←r Z
2
p such that a�a⊥ = 0, thanks to which it can simulate the pub-

lic key to A. To generate the challenge ciphertext, B2 forwards the query(
(P0,x0), (P1,x1)

)
to its own encryption oracle, and forwards its challenge

ciphertext to A. When A queries OKeyGen(att,y), B2 queries its own oracle to
get skatt,y := (att,y, [k1]2, [k2]2, [k3]2), where [k�

2]2 := [(w�
0 k1| . . . |w�

n k1)K]2
for K := EncKey(att,y), and [k3]2 := [w�

0 k1]2. B2 computes [K′
2]2 :=

[a⊥k�
2]2 + [a(w̃0

�| . . . |w̃n
�)K]2, and [k′

3]2 := [a⊥k3]2 + [aw̃0
�
k1]2, and

returns ([k1]2, [K′
2]2, [k

′
3]2) to A. In the full version [6], we show that

AdvH0(B2) is negligible.

��

4 A Lattice-Based Identity-Based Functional Encryption
in the Random-Oracle Model

In this section, we give an overview of an identity-based functional encryption
(IFE) for the inner-product functionality from LWE in the random-oracle model.
In the full version [6], we provide a lattice-based scheme that is proven secure in
the standard model, as well as more background on lattices.

Inner-Product Functional Encryption with Fine-Grained Access Control 491

Setup(1λ, X , Y):
(A,T) ←R TrapGen(1n, 1m)
mpk ← A,msk ← T

Enc(mpk, id,x):
Uid ← H(id)
s ←R Z

n
q

f1 ←R DZm,σ

f2 ←R D
Z�,σ

ct1 ← As+ f1

ct2 = Uids+ f2 +
⌊

q
K

⌋
· x

Return (ct1, ct2)

KeyGen(id,y):
Uid ← H(id)
Zid ←R SamplePre(A,T, ρ,Uid)
Return (y, skid,y := (y� · Zid))

Dec ct1, ct2, skid,y,y):
μ = y� · ct2 − skid,y · ct1
μ′ = argminμ′∈{0...K+1}

∣∣∣⌊ q
K

⌋
· μ − μ′

∣∣∣
Return μ′

Fig. 9. An identity-based inner-product functional encryption scheme IFE in the
random-oracle model, where H denotes the random oracle. For descriptions of the
algorithms TrapGen and SamplePre, please consult the full version of this paper [6].
Distribution DZm,σ denotes the discrete Gaussian distribution on Z

m, of standard devi-
ation σ, for more details see the full version [6].

4.1 Our Construction

In this section, we describe how to obtain an identity-based inner-product func-
tional encryption scheme based on the hardness of LWE in the random-oracle
model. Our idea is to start with a modification of the ALS functional encryp-
tion scheme for inner-products [11], proposed by [55] and which we recall in
the full version of this paper [6]. We modify the identity-based encryption
scheme of [38] in such a way as to support functional key generation queries,
as in ALS. Our construction is described in Fig. 9. Ciphertexts encode vectors
x ∈ X := {0, . . . , P − 1}� under an identity id. Secret keys correspond to an
identity id and a vector y ∈ Y := {0, . . . , V − 1}�. When the identities match,
our scheme decrypts the bounded inner-product 〈x,y〉 ∈ {0, . . . , K − 1} where
K = �PV .

Since our construction achieves anonymity and the size of input vectors x are
fixed, no partial information about the input is leaked. That is, part(x, id) =⊥.

Lemma 4.1 (Correctness). For q ≥ 2K�
√

�V ω(log2 n), σ = 2Cαq(
√

m +√
n +

√
�), ρ ≥ ω(

√
log n), m = 2n log q, the scheme from Fig. 9 is correct.

Proof. When identities match, observe that decryption yields y�Us + y�f2 +
y�ZAs + y�Zf1 +

⌊
q
K

⌋
〈x,y〉, which is equal to:

y�f2 + y�Zf1︸ ︷︷ ︸
error terms

+
⌊

q
K

⌋
〈x,y〉

This decrypts correctly as long as the error terms are small. As explained in
the full version, we know that every entry of Z is with overwhelming probability

492 M. Abdalla et al.

bounded by ω(log n), so ‖Z‖ ≤ √
� · ω(log n), as long as ρ ≥ ω(

√
log n). We

can bound ‖y�Ze1‖ ≤ �
√

�V ω(log2 n) and ‖ye2‖ ≤ �V ω(
√

log n), as long as
σ ≥ ω(

√
log n). For decryption to succeed, we want that the error terms are

smaller than q
2K , which implies: q ≥ 2K�

√
�V ω(log2 n), which is the case for our

choice of parameters. ��
Remark 4.2 (No smudging noise). We remark that in our setup, we rely on effi-
cient lattice parameters and require no smudging or superpolynomial modulus.

Theorem 4.3 (Security). Let n be the security parameter, q ≥ 2K�√
�V ω(log2 n), σ = 2Cαq(

√
m +

√
n +

√
�), ρ ≥ ω(

√
log n), m = 2n log q,

α ≤ σ
2Cαq(

√
m+

√
n+

√
�)

, then the scheme from Fig. 9 is AD-IND-secure in the
random-oracle model, assuming that LWEq,α,n is hard.

The full proof of security can be found in the full version [6]. In the following,
we give an overview of the security proof. We achieve adaptive security in the
random-oracle model, where the proof closely follows that of [38], while making
several changes to adapt the proof techniques to functional encryption.

In the security game, the adversary will be able to ask for functional keys
skid,y , associated to any identity id and vector y. Then, it will have to decide
on two pairs (identity, plaintext) for the challenges (id∗

0,x
∗
0) and (id∗

1,x
∗
1). In the

proof, we leverage the ROM to guess what identities id∗
0 and id∗

1 will be used for
the challenge messages. Then we make the following observation: if the adversary
obtained secret keys for either id∗

0‖y or id∗
1‖y, for any y, then it could trivially

distinguish between encryptions of x0 under id∗
0 and encryptions of x1 under id∗

1.
However, this type of trivial attack should be excluded by the AD-IND defi-

nition, therefore the adversary cannot obtain decryption key queries for neither
id∗

0 or id∗
1.

Then, the proof distinguishes the two cases:

1. When id∗
0 �= id∗

1, security will be inherited from the security of the underlying
IBE scheme of [38] through a direct reduction to LWE.

2. When id∗
0 = id∗

1, functional decryption keys are allowed to be issued to the
adversary and the proof will make use of the security of ALS [11]. This is
only possible due to the compatibility of ALS with the IBE of [38].

Please consult the full version of this paper for the full proof of security [6]. In
the latter, we also show how to construct an identity-based functional encryption
scheme for inner-products in the standard model, by building upon [10].

Acknowledgment. The first author was supported in part by the European Union’s
Horizon 2020 Research and Innovation Programme under grant agreement 780108
(FENTEC), by the ERC Project aSCEND (H2020 639554), and by the French FUI
project ANBLIC. The third author was partially supported by a Google PhD Fellow-
ship in Privacy and Security. The fourth author was partially supported by the ERC
Project PREP-CRYPTO (H2020 724307). Part of this work was done while the third
author was at École normale supérieure, Paris, France, at UC Berkeley, California,
USA, and at Cornell Tech, NY, USA.

Inner-Product Functional Encryption with Fine-Grained Access Control 493

References

1. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-
product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019, Part III. LNCS, vol. 11923, pp. 552–582. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8 19

2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II.
LNCS, vol. 11443, pp. 128–157. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 5

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

4. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for func-
tional encryption for inner product evaluations. Cryptology ePrint Archive, Report
2016/011 (2016). http://eprint.iacr.org/2016/011

5. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS,
vol. 10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 20

6. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryp-
tion with fine-grained access control. Cryptology ePrint Archive, Report 2020/577
(2020). https://eprint.iacr.org/2020/577

7. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56620-7 21

8. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS,
vol. 9563, pp. 259–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49099-0 10

9. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
I. LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

10. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

11. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

12. Ambrona, M., Barthe, G., Schmidt, B.: Generic transformations of predicate encod-
ings: constructions and applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 36–66. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 2

13. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear
maps: iO from LWE, bilinear maps, and weak pseudorandomness. Technical report,
Cryptology ePrint Archive, Report 2018/615 (2018). https://eprint.iacr.org/2018/
615

https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-662-46447-2_33
http://eprint.iacr.org/2016/011
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://eprint.iacr.org/2020/577
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-319-63688-7_2
https://doi.org/10.1007/978-3-319-63688-7_2
https://eprint.iacr.org/2018/615
https://eprint.iacr.org/2018/615

494 M. Abdalla et al.

14. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 6

15. Applebaum, B., Arkis, B., Raykov, P., Vasudevan, P.N.: Conditional disclosure
of secrets: amplification, closure, amortization, lower-bounds, and separations. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 727–
757. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 24

16. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

17. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 20

18. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 3

19. Barbosa, M., Catalano, D., Soleimanian, A., Warinschi, B.: Efficient function-
hiding functional encryption: from inner-products to orthogonality. In: Matsui,
M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 127–148. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-12612-4 7

20. Benhamouda, F., Bourse, F., Lipmaa, H.: CCA-secure inner-product functional
encryption from projective hash functions. In: Fehr, S. (ed.) PKC 2017, Part II.
LNCS, vol. 10175, pp. 36–66. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54388-7 2

21. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Com-
puter Society Press, May 2007. https://doi.org/10.1109/SP.2007.11

22. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp.
470–491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 20

23. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

24. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

25. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

26. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted inner
product functional encryption modulo p. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part II. LNCS, vol. 11273, pp. 733–764. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 25

https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-319-63688-7_24
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-030-12612-4_7
https://doi.org/10.1007/978-3-662-54388-7_2
https://doi.org/10.1007/978-3-662-54388-7_2
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-030-03329-3_25

Inner-Product Functional Encryption with Fine-Grained Access Control 495

27. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via
predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

28. Chen, J., Gong, J., Wee, H.: Improved inner-product encryption with adaptive
security and full attribute-hiding. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018, Part II. LNCS, vol. 11273, pp. 673–702. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03329-3 23

29. Chen, Y., Zhang, L., Yiu, S.M.: Practical attribute based inner product functional
encryption from simple assumptions. Cryptology ePrint Archive, Report 2019/846
(2019). https://eprint.iacr.org/2019/846

30. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 703–732. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03329-3 24

31. Connor, R.J., Schuchard, M.: Blind Bernoulli trials: a noninteractive protocol for
hidden-weight coin flips. In: Heninger, N., Traynor, P. (eds.) USENIX Security
2019, pp. 1483–1500. USENIX Association, Berkeley (2019)

32. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49384-7 7

33. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner
product functional encryption from the k -linear assumption. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 245–277. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 9

34. Dufour-Sans, E., Pointcheval, D.: Unbounded inner-product functional encryption
with succinct keys. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M.
(eds.) ACNS 2019. LNCS, vol. 11464, pp. 426–441. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21568-2 21

35. Gay, R.: A new paradigm for public-key functional encryption for degree-2 poly-
nomials. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020,
Part I. LNCS, vol. 12110, pp. 95–120. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45374-9 4

36. Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions for iO.
Technical report, Cryptology ePrint Archive, Report 2019/1252 (2019). https://
eprint.iacr.org/2019/1252

37. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional dis-
closure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7 24

38. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008. https://doi.org/10.1145/1374376.1374407

39. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

40. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488677

https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-030-03329-3_23
https://doi.org/10.1007/978-3-030-03329-3_23
https://eprint.iacr.org/2019/846
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-030-21568-2_21
https://doi.org/10.1007/978-3-030-21568-2_21
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1007/978-3-030-45374-9_4
https://eprint.iacr.org/2019/1252
https://eprint.iacr.org/2019/1252
https://doi.org/10.1007/978-3-662-48000-7_24
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/2488608.2488677

496 M. Abdalla et al.

41. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol.
9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 25

42. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November
2006. https://doi.org/10.1145/1180405.1180418. Available as Cryptology ePrint
Archive Report 2006/309

43. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 9

44. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

45. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98113-0 29

46. Libert, B., Ţiţiu, R.: Multi-client functional encryption for linear functions in the
standard model from LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019, Part III. LNCS, vol. 11923, pp. 520–551. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8 18

47. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

48. Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-
linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 25

49. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 35

50. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/2010/556

51. Ryffel, T., Pointcheval, D., Bach, F., Dufour-Sans, E., Gay, R.: Partially
encrypted deep learning using functional encryption. In: Wallach, H., Larochelle,
H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 32, pp. 4519–4530. Curran Associates,
Inc. (2019). http://papers.nips.cc/paper/8701-partially-encrypted-deep-learning-
using-functional-encryption.pdf

52. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

53. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
http://eprint.iacr.org/2010/556
http://papers.nips.cc/paper/8701-partially-encrypted-deep-learning-using-functional-encryption.pdf
http://papers.nips.cc/paper/8701-partially-encrypted-deep-learning-using-functional-encryption.pdf
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-39568-7_5

Inner-Product Functional Encryption with Fine-Grained Access Control 497

54. Tomida, J., Takashima, K.: Unbounded inner product functional encryption from
bilinear maps. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II.
LNCS, vol. 11273, pp. 609–639. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03329-3 21

55. Wang, Z., Fan, X., Liu, F.-H.: FE for inner products and its application to decen-
tralized ABE. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443,
pp. 97–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 4

56. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

57. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

58. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 206–233.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 8

https://doi.org/10.1007/978-3-030-03329-3_21
https://doi.org/10.1007/978-3-030-03329-3_21
https://doi.org/10.1007/978-3-030-17259-6_4
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-319-70500-2_8

MoniPoly—An Expressive q-SDH-Based
Anonymous Attribute-Based

Credential System

Syh-Yuan Tan(B) and Thomas Groß

School of Computing, Newcastle University, Newcastle upon Tyne, UK
{syh-yuan.tan,thomas.gross}@newcastle.ac.uk

Abstract. Modern attribute-based anonymous credential (ABC) sys-
tems benefit from special encodings that yield expressive and highly effi-
cient show proofs on logical statements. The technique was first proposed
by Camenisch and Groß, who constructed an SRSA-based ABC system
with prime-encoded attributes that offers efficient AND, OR and NOT
proofs. While other ABC frameworks have adopted constructions in the
same vein, the Camenisch-Groß ABC has been the most expressive and
asymptotically most efficient proof system to date, even if it was con-
strained by the requirement of a trusted message-space setup and an
inherent restriction to finite-set attributes encoded as primes. In this
paper, combining a new set commitment scheme and an SDH-based sig-
nature scheme, we present a provably secure ABC system that supports
show proofs for complex statements. This construction is not only more
expressive than existing approaches, but it is also highly efficient under
unrestricted attribute space due to its ECC protocols only requiring a
constant number of bilinear pairings by the verifier; none by the prover.
Furthermore, we introduce strong security models for impersonation and
unlinkability under adaptive active and concurrent attacks to allow for
the expressiveness of our ABC as well as for a systematic comparison
to existing schemes. Given this foundation, we are the first to compre-
hensively formally prove the security of an ABC with expressive show
proofs. Specifically, building upon the q-(co-)SDH assumption, we prove
the security against impersonation with a tight reduction. Besides the set
commitment scheme, which may be of independent interest, our security
models can serve as a foundation for the design of future ABC systems.

1 Introduction

An anonymous attribute-based credential (ABC) system allows a user to obtain
credentials, that is, certified attribute set A from issuers and to anonymously

This work was supported in part by the European Research Council Starting
Grant “Confidentiality-Preserving Security Assurance (CASCAde)” under Grant GA
n◦716980.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 498–526, 2020.
https://doi.org/10.1007/978-3-030-64840-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_17

MoniPoly—An Expressive q-SDH-Based Anonymous 499

prove the possession of these credentials as well as properties of A. Anonymous
credentials were first proposed by Chaum [25] but it does not draw much atten-
tion until Brands [12] constructed a pragmatic single-show ABC system and
Camenisch and Lysyanskaya (CL) [21] presented a practical multi-show ABC
system. CL-ABC system uses the signer’s signature on a committed, and there-
fore blinded, attribute as the user credential. The proof of possession of a valid
credential is a zero-knowledge proof of knowledge on the validity of the signa-
ture and the wellformedness of the commitment. This commit-and-sign technique
has been employed by ABC systems from RSA-based signature scheme [22] and
pairing-based signature schemes [4,5,7,9,15,19,20,23,24,42] on blocks of mes-
sages in which the i-th attribute is fixed as the exponent to the i-th base. There-
fore, the show proofs have a computational complexity linear to the number of
attributes in the credential, in terms of the modular exponentiations and scalar
multiplications, respectively.

In contrast to the technique above which is termed as traditional encoding by
Camenisch and Groß [17,18], they suggested a prime encoding for the SRSA-CL
signature scheme [22] to offer show proofs on AND, OR and NOT statements
with constant complexity for the prime-encoded attributes. Specifically, the
Camenisch-Groß (CG) construction separates the unrestricted attribute space S
into string attributes space and finite-set attributes space such that S = SS ∪SF .
The CG encoding uses a product of prime numbers to represent a finite-set
attribute set AF ∈ SF in a single exponent, a technique subsequently applied
to graphs as complex data structures [32,33]. Prime encoding results in highly
efficient show proofs: each execution only requires a constant number of modular
exponentiations. However, the construction constrains SF to a set of pre-certified
prime numbers and increases the public key size1. Furthermore, the security of
the CG ABC system was only established on the properties of its show proofs
and not formally on the overall properties of the ABC system. Despite these
drawbacks, to the best of our knowledge, CG ABC system [18,32] is the only
ABC system in the standard model that has show proof for AND, OR, and NOT
statements with constant complexity.

Related Works. The SDH-CL signature scheme [19,23,44] is a popular candi-
date for the ABC system based on the traditional encoding. It is also referred
as the BBS+ signature scheme [1,4,5,11,45,48] or the Okamoto signature
scheme [2,39]. Au et al. [4] and Akagi et al. [2] constructed provably secure ABC
systems on this foundation while Camenisch et al. [19] integrated a pairing-based
accumulator to yield an ABC system that supports revocation. Later, Sudarsono
et al. [45] applied the accumulator on SF as in prime encoding and showed that
the resulting ABC system can support show proofs for AND and OR statements
with constant complexity. Yet, the accumulator requires a large public key size:
|SF | finite-set attributes plus the corresponding |SF | signatures. Inspired by
the concept of attribute-based signature, Zhang and Feng [48] solved the large

1 If the prime numbers are not pre-certified by a signature each, the show proofs have
to include expensive interval proofs.

500 S.-Y. Tan and T. Groß

public key problem, while additionally supporting threshold statements (ANY)
in show proofs, at the cost of having the credential size linear to |AF |. Compar-
ing the traditional encoding-based ABC systems to the accumulator-based ABC
systems, the latter require more bilinear pairing operations in the show proofs,
and having either large public key or credential sizes.

There were some attempts to apply Camenisch et al.’s accumulator [19] and
its variants on P-signatures [35], LRSW-CL signature [34] and structure pre-
serving signatures [6,40,43] to support complex non-interactive zero-knowledge
(NIZK) show proofs. Among all, Sadiah et al.’s ABC system [43] offers the most
expressive show proofs. Considering only S = SF , their ABC system allows
constant-size and constant-complexity NIZK show proofs for monotone formu-
las at the cost of issuing |P(AF)| credentials to every user where P(AF) is
the power set of the user attribute set AF . Instead of performing this expen-
sive process during the issuing protocol, Okishima and Nakanishi’s ABC sys-
tem [40] generates P(SF) during key generation and inflates the public key
size with |P(SF)| signatures to enable constant-size non-interactive witness-
indistinguishable (NIWI) show proofs for conjunctive composite formulas. There
are also ABC systems [7,9] that were built on Pointcheval and Sanders’ signa-
ture [41]. The ABC system proposed by Bemmann et al. [7] combines both
traditional encoding and accumulator [38] to support monotone formulas under
the non-interactive proof of partial knowledge protocol [3]. Although it has sig-
nificantly shorter credential and supports unrestricted attribute space compared
to that of Sadiah et al.’s [43], its show proofs complexity is linear to the number
of literals in the monotone formula.

The findings on the use of accumulator in constructing ABC system cor-
respond to the observations in the ABC transformation framework proposed
by Camenisch et al. [16]. They discovered that the CL signatures are not able
to achieve constant-size NIZK show proofs without random oracle. The frame-
work takes in a structure-preserving signature scheme and a vector commit-
ment scheme to produce an UC-secure ABC system. Their instantiation sup-
ports constant-size NIZK show proofs on subset statements and provably secure
under the common reference string model. Using the similar ingredients, Fuchs-
bauer et al. [31] constructed an ABC system that offers constant-size NIZK show
proofs on subset statement. The security models in the two works, however, are
not designed to cover expressive show proofs. Other frameworks [9,20] that for-
malized the commit-and-sign technique and even those [7,40,43] support show
proofs on complex statements also fall short in this aspect.

Research Gap. Existing constructions yield considerable restrictions when
expressive show proofs are concerned: The SRSA-based CG scheme [17] as
well as accumulator-based schemes [6,34,35,40,43,45] constrain the attribute
space to finite-set attributes (AF ∈ SF) and require a trusted setup that
inflates either the public-key size or the credential size. Their expressiveness and
the computational complexity are no better than the pairing-based construc-
tions [2,4,7,31,48] and the general ABC frameworks [9,16,20] alike, when only
string attributes (AS ∈ SS) are considered. Expressive proofs for large attribute

MoniPoly—An Expressive q-SDH-Based Anonymous 501

set are desirable in privacy-preserving applications such as direct anonymous
attestation [13,14,26–29]. Also, we observe a need for a systematic canonicaliza-
tion of security models for all mentioned schemes. In short, an ideal ABC system
should have:

1. strong security assurance, and
2. appropriate public key size, and
3. expressive show proofs with low complexity regardless of the attribute space.

Our Contribution. We present a perfectly hiding and computationally binding
set commitment scheme, called MoniPoly, which supports set membership proofs
and disjointness proofs on the committed messages. Following the commit-and-
sign methodology, we combine the MoniPoly commitment scheme tracing back
to Kate et al.’s work [36] with SDH-based Camenisch-Lysyanskaya signature
scheme [23,44] to present an efficient ABC system that support expressive show
proofs for AND, OR and k-out-of-n threshold (ANY) clauses as well as their
respective complements (NAND, NOR and NANY). Our ABC system is the most
efficient construction for the unrestricted attribute space to-date. And it is at
least as expressive as the existing constructions specially crafted for the restricted
attribute space.

To the best of our knowledge, neither the constructions nor security mod-
els of existing ABC systems allow for complex interactive show proofs. As an
immediate contribution, we rigorously define the necessary and stronger security
notions for ABC systems. Our notions for security of impersonation resilience
and unlinkability under adaptive active and concurrent attacks are stronger than
those of the state-of-the-art ABC systems [16,20,31,40]. We prove the security of
our construction with respect to the security against impersonation and linkabil-
ity in the standard model, especially offering a tight reduction for impersonation
resilience under the q-(co-)SDH assumption.

Organization. We organize the paper as follows. In Sect. 2, we briefly intro-
duce the underlying SDH-based CL signature scheme. In Sect. 3, we present the
MoniPoly commitment scheme. We present our ABC system which is a combina-
tion of the MoniPoly commitment scheme with SDH-based CL signatures [23,44]
in Sect. 4. Section 5 offers an evaluation of the MoniPoly ABC in terms of secu-
rity properties, expressivity as well as computational complexity in comparison
to other schemes in the field.

2 Preliminaries

The MoniPoly commitment and ABC schemes are based on standard mathe-
matical foundations in elliptic curves and bilinear maps as well as notions on
signature schemes and proof systems. Readers may refer to the full version [46]
for this information.

502 S.-Y. Tan and T. Groß

2.1 The SDH-Based CL Signature Scheme

Camenisch and Lysyanskaya [23] introduced a technique to construct secure
pairing-based signature schemes which support signing on committed messages.
They also showed that their technique can extract an efficient SDH-based sig-
nature scheme from Boneh et al.’s group signature [11] scheme but no security
proof was provided. This scheme was later proven to be seuf-cma-secure with a
tight reduction [44] to the SDH assumption in the standard model. We describe
the SDH-CL signature scheme [19,23,44] as follows:

KeyGen(1k): Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gen-
erators a, b, c ∈ G1, g2 ∈ G2 and a secret value x ∈ Z

∗
p. Output the public key

pk = (e,G1,G2,GT , p, a, b, c, g2,X = gx
2) and the secret key sk = x.

Sign(m, pk, sk): On input m, choose the random values s, t ∈ Z
∗
p to compute

v = (ambsc)
1

x+t . In the unlikely case in which x + t = 0 mod p occurs, reselect
a random t. Output the signature as sig = (t, s, v).

Verify(m, sig, pk): Given sig = (t, s, v), output 1 if the equation:

e(v,Xgt
2) = e((ambsc)

1
x+t , gx+t

2)
= e(ambsc, g2).

holds and output 0 otherwise.

Theorem 1. [44] SDH-based CL signature scheme is seuf-cma-secure in the
standard model if the Strong Diffie-Hellman problem is (tsdh, εsdh)-hard.

3 MoniPoly Set Commitment Scheme

The key idea of set commitment scheme traces back to the polynomial commit-
ment scheme [36] which can commit to a polynomial and support opening at
indexes of the polynomial. Inheriting this nature, our MoniPoly set commitment
scheme and similar ones [16,31] transform a message m ∈ Zp into (x′ +m) where
x′ ∈ Zp is not known to the user and multiple messages form a monic polyno-
mial f(x′) =

∏n
i=1(x

′ + mi). This monic polynomial, in turn, can be rewritten
as f(x′) =

∑n
i=0 mix

′i. Its coefficients mi ∈ Z
∗
p can be efficiently computed, for

instance, using the encoding algorithm MPEncode() : Zn
p → Z

n+1
p described in

the full version [46].
Our commitment scheme’s unique property is that it treats the opening value

as one of the roots in the monic polynomial. Hence, the name MoniPoly. Fold-
ing the opening value into the monic polynomial yields compelling advantages,
especially, enabling a greater design space for presentation proofs.

While related schemes [16,31,36] realize subset opening, our scheme supports
the opening of intersection sets and difference sets, in addition. Thus, MoniPoly

MoniPoly—An Expressive q-SDH-Based Anonymous 503

is more expressive. Furthermore, the presentation proofs created on MoniPoly are
more efficient than other commitment-based frameworks. Finally, treating the
opening value as a root of the monic polynomial yields a scheme that is closely
aligned with well-established commitment scheme paradigms, which, in turn,
fits into a range of popular signature schemes and enables signing committed
messages.

3.1 Interface

We define the MoniPoly set commitment scheme as the following algorithms:

MoniPoly = (Setup,Commit,Open,OpenIntersection,

VerifyIntersection,OpenDifference,VerifyDifference)

1. Setup(1k, n) → (pk, sk). A pair of public and secret keys (pk, sk) are generated
by a trusted authority based on the security parameter input 1k. The message
domain D is defined and n−1 is the maximum messages allowed. If n is fixed,
sk is not required in the rest of the scheme.

2. Commit(pk,A, o) → (C). On the input of pk, a message set A ∈ Dn−1 and a
random opening value o ∈ D, output the commitment C.

3. Open(pk,C,A, o) → b. Return b = 1 if C is a valid commitment to A with
the opening value o under pk, and return b = 0 otherwise.

4. OpenIntersection(pk,C,A, o, (A′, l)) → (I,W) or ⊥. If |A′ ∩ A| ≥ l holds,
return an intersection set I = A′ ∩ A of length l with the corresponding
witness W , and return an error ⊥ otherwise.

5. VerifyIntersection(pk,C, (I,W), (A′, l)) → b. Return b = 1 if W is a witness
for S being the intersection set of length l for A′ and the set committed to in
C, and return b = 0 otherwise.

6. OpenDifference(pk,C,A, o, (A′, l̄)) → (D,W). If |A′ −A| ≥ l̄ holds, return the
difference set D = A′ − A of length l̄ with the corresponding witness W , and
return ⊥ otherwise.

7. VerifyDifference(pk,C, (D,W), (A′, l̄)) → b. Return b = 1 if W is the witness
for D being the difference set of length l̄ for A′ and the set committed to in
C, and return b = 0 otherwise.

3.2 Security Requirements

Definition 1. A set commitment scheme is perfectly hiding if every commit-
ment C = Commit(pk,A, o) is uniformly distributed such that there exists an
o′ �= o for all A′ �= A where Open(pk,C,A′, o′) = 1.

Definition 2. An adversary A is said to (tbind, εbind)-break the binding security
of a set commitment scheme if A runs in time at most tbind and furthermore:

Pr[Open(pk,C,A1, o1) = Open(pk,C,A2, o2) = 1] ≥ εbind.

for a negligible probability εbind and any two pairs (A1, o1), (A2, o2) output by A.
We say that a set commitment scheme is (tbind, εbind)-secure wrt. binding if no
adversary (tbind, εbind)-breaks the binding security of the set commitment scheme.

504 S.-Y. Tan and T. Groß

3.3 Construction

We describe the MoniPoly commitment scheme as follows:

Setup(1k). Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gen-
erators a ∈ G1, g2 ∈ G2 and a secret values x′ ∈ Z

∗
p. Compute the values

a0 = a, a1 = ax′
, . . . , an = ax′n

,X0 = g2,X1 = gx′
2 , . . . , Xn = gx′n

2 to output the
public key pk = (e,G1,G2,GT , p, {ai,Xi}0≤i≤n) and the secret key sk = (x′).
Note that sk can be discarded by the authority if the parameter n is fixed.

Commit(pk,A, o). Taking as input a message set A = {m1, . . . ,mn−1} ∈ Z
∗
p and

the random opening value o ∈ Z
∗
p, output the commitment as

C = a
(x′+o)

∏n−1
j=1 (x′+mj)

0 =
n∏

j=0

a
mj

j

where {mj} = MPEncode(A ∪ {o}).

Open(pk,C,A, o). Return 1 if C =
∏n

j=0 a
mj

j holds where {mj} = MPEncode(A∪
{o}) and return 0 otherwise.

OpenIntersection(pk,C,A, o, (A′, l)). If |A′ ∩ A| ≥ l holds, return an intersection
set I = A′ ∩ A of length l and a witness such that:

W = a
(x′+o)

∏
mj∈(A−I)(x

′+mj)

0

=
n−l∏

j=0

a
wj

j

where {wj} = MPEncode((A ∪ {o}) − I). Otherwise, return a null value ⊥. The
correctness can be verified as follows:

C = W
∏

mj∈I(x
′+mj)

=
(

a
(x′+o)

∏
mj∈(A−I)(x

′+mj)

0

)∏
mj∈I(x

′+mj)

= a
(x′+o)

∏
mj∈A(x′+mj)

0 .

VerifyIntersection(pk,C, I,W, (A′, l)). Return 1 if

e

⎛

⎝C

|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠ = e

⎛

⎝W

|A′|−l∏

j=0

a
m2,j
j ,

l∏

j=0

X
ij
j

⎞

⎠

MoniPoly—An Expressive q-SDH-Based Anonymous 505

holds and return 0 otherwise, where {ij} = MPEncode(I), {m1,j} =
MPEncode(A′) and {m2,j} = MPEncode(A′ − I). The correctness is as follows:

e

⎛

⎝C

|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠

= e (C,X0) e

⎛

⎝
|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠

= e

(

a
(x′+o)

∏
mj∈A(x′+mj)

0 ,X0

)

e

(

a

∏
mj∈A′ (x′+mj)

0 ,X0

)

= e

(

a
(x′+o)

∏
mj∈(A−I)(x

′+mj)

0 ,X

∏
mj∈I(x

′+mj)

0

)

e

(

a

∏
mj∈(A′−I)(x

′+mj)

0 ,X

∏
mj∈I(x

′+mj)

0

)

= e

⎛

⎝W,

l∏

j=0

X
ij
j

⎞

⎠ e

⎛

⎝
|A′|−l∏

j=0

a
m2,j
j ,

l∏

j=0

X
ij
j

⎞

⎠

= e

⎛

⎝W

|A′|−l∏

j=0

a
m2,j
j ,

l∏

j=0

X
ij
j

⎞

⎠

OpenDifference(pk,C,A, o, (A′, l̄)). If |A′ ∩ A| ≥ l̄ holds, return a difference set
D = A′ − A of length l̄ and the witness (W =

∏n−l̄
j=0 a

wj

j , {rj}l̄−1
j=0). The val-

ues ({wj}, {rj}) = MPEncode(A)/MPEncode(D) are computed using expanded
synthetic division such that {wj} are the coefficients of quotient q(x′) and {rj}
are the coefficients of remainder r(x′). Specifically, let the polynomial divisor be
d(x′) =

∑l̄
j djx

′j where {dj} = MPEncode(D), the monic polynomial f(x′) in

the commitment C = a
f(x′)
0 can be rewritten as f(x′) = d(x′)q(x′) + r(x′). Note

that
∏l̄−1

j=0 a
rj
j �= 1G1 whenever d(x′) cannot divide f(x′), i.e., the sets A and D

are disjoint. The correctness can be verified from the following:

C = a
(x′+o)

∏
mj∈A(x′+mj)

0

= a
q(x′)

∏
mj∈D(x′+mj)

0 a
r(x′)
0

=

⎛

⎝
n−l̄∏

j=0

a
wj

j

⎞

⎠

d(x′)

a
r(x′)
0

= W d(x′)
l̄−1∏

j=0

a
rj
j .

506 S.-Y. Tan and T. Groß

VerifyDifference(pk,C,D, (W, {rj}l̄−1
j=0), (A

′, l̄)). Return 1, if the following holds:

e

⎛

⎝C

l̄−1∏

j=0

a
−rj
j

|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠ = e

⎛

⎝W

|A′|−l̄∏

j=0

a
m2,j
j ,

l̄∏

j=0

X
dj
j

⎞

⎠ ,

l̄−1∏

j=0

a
rj
j �= 1G1

and return 0 otherwise, where {dj} = MPEncode(D), {m1,j} = MPEncode(A′)
and {m2,j} = MPEncode(A′ − D). The correctness is as follows:

e

⎛

⎝C

l̄−1∏

j=0

a
−rj
j

|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠

= e

⎛

⎝C
l̄−1∏

j=0

a
−rj
j ,X0

⎞

⎠ e

⎛

⎝
|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠

= e
(
a

d(x′)q(x′)+r(x′)
0 a

−r(x′)
0 ,X0

)
e

(

a

∏
mj∈A′ (x′+mj)

0 ,X0

)

= e
(
a

d(x′)q(x′)
0 ,X0

)
e

(

a

∏
mj∈(A′−D)(x

′+mj)

0 ,X

∏
mj∈D(x′+mj)

0

)

= e

(

a
∑n−l̄

j=0 w1,jx′j

0 ,X
d(x′)
0

)

e

⎛

⎝
|A′|−l̄∏

j=0

a
m2,j
j ,X

d(x′)
0

⎞

⎠

= e

⎛

⎝W

|A′|−l̄∏

j=0

a
m2,j
j ,

l̄∏

j=0

X
dj
j

⎞

⎠ .

Remark 1. In the security analysis of MoniPoly, we will take a different app-
roach compared to the previous constructions [16,31,36]. We consider the per-
fectly hiding property and the conventional computational binding property [30]
that only requires an adversary cannot present two pairs (A1, o1) and (A2, o2)
such that Commit(pk,A1, o1) = Commit(pk,A2, o2). We will show in Section 3.4
that this conventional binding property is a superset of formers’ subset binding
properties.

3.4 Security Analysis

Theorem 2. The MoniPoly commitment scheme is perfectly hiding.

Proof. Given a commitment C = a
(x′+o)

∏n−1
j=1 (x′+mj)

0 , there are |Z∗
p| − 1 possible

pairs of ((m′
1, . . . ,m

′
n−1), o

′) �= ((m1, . . . ,mn−1), o) which can result in the same
C. Furthermore, for every committed message set {m1, . . . ,mn−1}, there is a
unique o such that:

dloga0
(C) = (x′ + o)

n−1∏

j=1

(x′ + mj) mod p

MoniPoly—An Expressive q-SDH-Based Anonymous 507

o =
dloga0

(C)
∏n−1

j=1 (x′ + mj)
− x′ mod p

Since o is chosen independently of the committed messages {m1, . . . ,mn−1}, the
latter are perfectly hidden. 	

The following theorem considers an adversary which breaks the binding prop-
erty by finding two different message sets A and A∗ which can be of different
lengths such that |A| ≥ |A∗|. The proof is in the full version [46].

Theorem 3. The MoniPoly commitment scheme is (tbind, εbind)-secure wrt. the
binding security if the co-SDH problem is (tcosdh, εcosdh)-hard such that:

εbind = εcosdh, tbind = tcosdh + T (n)

where T (n) is the time for dominant group operations in G1 to extract a co-SDH
solution where n is the total of committed messages plus the opening value.

4 Attribute-Based Anonymous Credential System

Table 1. Syntax and semantics for an access policy φ.

(a) BNF grammar.

BNF

attr ::= <attribute>=<value>

set ::= attr,set | attr
con ::= AND | NAND | OR | NOR

cont ::= ANY | NANY
clause ::= con(set) | cont(l,set)
stmt ::= clause ∧ stmt | clause
policy ::= stmt(set) | ⊥

(b)Truth table with respect to input A

Clause Truth Condition

OR(A′) |A′ ∩ A| > 0

ANY(1 < l < |A′|, A′) |A′ ∩ A| ≥ l

AND(A′) |A′ ∩ A| = |A′|
NOR(A′) |A′ ∩ Ā| > 0

NANY(1 < l < |A′|, A′)|A′ ∩ Ā| ≥ l

NAND(A′) |A′ ∩ Ā| = |A′|

Note: con = connective, cont = connective with threshold

Before presenting the formal definition of ABC system, we briefly define the
attribute set A and the access policy φ in our proposed ABC system which are
closely related to MoniPoly’s opening algorithms. Informally, we view a relation
between two attribute sets as a clause. Clauses can be accumulated using the
logical ∧ operator in building the composite statement for an access policy.

Attribute. We view a descriptive attribute set A = {m1, . . . ,mn} as a user’s
identity. To be precise, an attribute m is an attribute-value pair in the format
attribute=value and A is a set of attributes. For instance, the identity of a user can
be described as: A = {“gender = male′′, “name = bob”, “ID = 123456”, “role =
manager”, “branch = Y”}.

508 S.-Y. Tan and T. Groß

Access Policy. An access policy φ as defined by the BNF grammar in Table 1
expresses the relationship between two attribute sets A and A′. An access pol-
icy φ is formed by an attribute set A as well as a statement stmt that spec-
ifies the relation between A and A′. We have some additional rules for the φ
where we require |A| = n > 1 and |A′| ≤ n. Besides, in the special case of
|A′| = 1, the connective must be either AND or NAND. An access policy φ
outputs 1 if the underlying statement is evaluated to true and outputs 0 oth-
erwise. Taking the attribute set A above as an example, we have φstmt(A) =
φAND(A′

1)∧OR(A′
2)

(A) = 1 for the attribute sets A′
1 = {“role = manager”} and

A′
2 = {“branch = X”, “branch = Y”, “branch = Z”}. Note that the attribute set

A′ has been implicitly defined by stmt and we simply write φstmt in the subse-
quent sections when the reference to the attribute set A′ is clear.

4.1 Interface

We define an attribute-based anonymous credential system by five algorithms
ABC = {KeyGen,Obtain, Issue,Prove,Verify} as follows:

1. KeyGen(1k, 1n) → (pk, sk): This algorithm is executed by the issuer. On the
input of the security parameter k and the attributes upper bound n, it gen-
erates a key pair (pk, sk).

2. (Obtain(pk,A), Issue(pk, sk)) → (cred or ⊥): These two algorithms form the
credential issuing protocol. The first algorithm is executed by the user with
the input of the issuer’s public key pk and an attribute set A. The second
algorithm is executed by the issuer and takes as input the issuer’s public
key pk and secret key sk. At the end of the protocol, Obtain outputs a valid
credential cred produced by Issue or a null value ⊥ otherwise.

3. (Prove(pk, cred, φstmt),Verify(pk, φstmt)) → b: These two algorithms form the
credential presentation protocol. The second algorithm is executed by the
credential verifier which takes as input the issuer’s public key pk and has
the right to decide the access policy φstmt. The first algorithm is executed
by the credential prover which takes as input the issuer’s public key pk,
user’s credential cred and an access policy φstmt such that φstmt(A) = 1. If
φstmt(A) = 0, the credential holder aborts and Verify outputs b = 0. If φ = ⊥,
prover and verifier complete a proof of possession which proves the validity of
credential only instead of a show proof which additionally proves the relation
between A and A′. At the end of the protocol, Verify outputs b = 1 if it
accepts prover and outputs b = 0 otherwise.

In the following, we define the key security requirements for an anonymous
credential system in the form of impersonation resilience and unlinkability.

4.2 Security Requirements

4.2.1 Impersonation Resilience
The security goal of an ABC system requires that it is infeasible for an adver-
sary to get accepted by the verifier in the show proof. The security against

MoniPoly—An Expressive q-SDH-Based Anonymous 509

impersonation under active and concurrent attacks is described in the following
game between an adversary A and a challenger C.

Game 1 (imp − aca(A, C))

1. Setup: C runs KeyGen(1k, 1n) and sends pk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Prove and Verify

oracles where he plays the role of user, prover and verifier, respectively, on
any attribute set Ai of his choice in the i-th query. A can also issue queries
to the IssueTranscript oracle which takes in Ai and returns the corresponding
transcripts of issuing protocol.

3. Challenge: A outputs the challenge attribute set A∗ and its corresponding
access policy φ∗

stmt such that φ∗
stmt(Ai) = 0 and φ∗

stmt(A
∗) = 1 for every Ai

queried to the Obtain oracle during Phase 1.
4. Phase 2: A can continue to query the oracles as in Phase 1 with the restric-

tion that it cannot query an attribute set Ai to Obtain such that φ∗
stmt(Ai) = 1.

5. Impersonate: A completes a show proof as the prover with C as the verifier
for the access policy φ∗

stmt(A
∗) = 1. A wins the game if C outputs 1.

Definition 3. An adversary A is said to (timp, εimp)-break the imp-aca security
of an ABC system if A runs in time at most timp and wins in Game 1 such that:

Pr[(A,Verify(pk, φ∗
stmt)) = 1] ≥ εimp

for a negligible probability εimp. We say that an ABC system is imp-aca-secure if
no adversary (timp, εimp)-wins Game 1.

Note that we reserve the term unforgeability of the signature scheme in con-
trast to some contributions in the literature [2,9,16,20,31,42]. One can view our
impersonation resilience notion as the stronger version of the misauthentication
resistance from the ABC systems with expressive show proofs [6,40,43] which
does not cover the active and concurrent adversary besides disallowing adaptive
queries. We also introduce a new oracle, namely, IssueTranscript that covers the
passive adversary for the issuing protocol. This makes our security definition
more comprehensive than that by related works [9,16,20,31].

4.2.2 Unlinkability
Unlinkability requires that an adversary cannot link the attributes or instances
among the issuing protocols and the presentation protocols. We consider two
types of unlinkability notions, namely, full attribute unlinkability and full protocol
unlinkability. We require that an adversary, after being involved in the generation
of a list of credentials, cannot differentiate the sequence of two attribute sets in
the full attribute unlinkability. The security model for full attribute unlinkability
under active and concurrent attacks (aunl-aca) is defined as a game between an
adversary A and a challenger C.

510 S.-Y. Tan and T. Groß

Game 2 (aunl − aca(A, C))

1. Setup: C runs KeyGen and sends pk, sk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove

and Verify oracles where he plays the role of user, issuer, prover and verifier,
respectively, on any attribute set Ai of his choice in the i-th query. A can
also issue queries to an additional oracle, namely, Corrupt which takes in a
transcript of issuing protocol or show proofs whose user or prover, respectively,
is C and returns the entire internal state, including the random seed used by
C in the transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗
stmt which he wishes to challenge such that φ∗

stmt(A0) =
φ∗
stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to Obtain

in Phase 1. C responds by randomly choosing a challenge bit b ∈ {0, 1} and
interacts as the user with A as the issuer to complete the protocols:

(Obtain(pk,Ab), Issue(pk, sk)) → credb,

(Obtain(pk,A1−b), Issue(pk, sk)) → cred1−b.

Subsequently, C interacts as the prover with A as the verifier for polynomially
many times as requested by A to complete the protocols in the same order:

(Prove(pk, credb, φ
∗
stmt),Verify(pk, φ∗

stmt)) → 1,

(Prove(pk, cred1−b, φ
∗
stmt),Verify(pk, φ∗

stmt)) → 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.

5. Guess: A outputs a guess b′ and wins the game if b′ = b.

Definition 4. An adversary A is said to (taunl, εaunl)-break the aunl-aca-security
of an ABC system if A runs in time at most taunl and wins in Game 2 such that:

|Pr[b = b′] − 1
2
| ≥ εaunl

for a negligible probability εaunl. We say that an ABC system is aunl-aca-secure
if no adversary (taunl, εaunl)-wins Game 2.

Our full attribute unlinkability is more generic than that in Camenisch et al.’s
ABC transformation frameworks [16] where we assume the challenged attribute
sets A0, A1 are not equivalent such that A0 �= A1. Besides, unlike Ringers et
al.’s unlinkability notion [42], ours covers both issuing and show proofs as in
Camenisch et al.’s privacy notions [20], though the latter does not have a Corrupt
oracle while the former does.

On the other hand, as far as we know, the full protocol unlinkability has
not been considered before. This notion requires that an adversary, after being

MoniPoly—An Expressive q-SDH-Based Anonymous 511

involved in the generation of a list of credentials, cannot link an instance of issu-
ing protocol and an instance of a show proof that are under the same credential.
The full protocol unlinkability under active and concurrent attacks (punl-aca) is
defined as a game between an adversary A and a challenger C:

Game 3 (punl − aca(A, C)).

1. Setup: Same to that of Game 2.
2. Phase 1: Same to that of Game 2.
3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗
stmt which he wishes to challenge such that φ∗

stmt(A0) =
φ∗
stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to Obtain

in Phase 1. C responds by randomly choosing two challenge bits b1, b2 ∈ {0, 1}
and interacts as the user with A as the issuer to complete the protocols in the
order

(Obtain(pk,Ab1), Issue(pk, sk)) → credb1 ,

(Obtain(pk,A1−b1), Issue(pk, sk)) → cred1−b1 .

Subsequently, C interacts as the prover with A as the verifier for polynomially
many times as requested by A to complete the protocols in the order

(Prove(pk, credb2 , φ
∗
stmt),Verify(pk, φ∗

stmt)) → 1,

(Prove(pk, cred1−b2 , φ
∗
stmt),Verify(pk, φ∗

stmt)) → 1.

4. Phase 2: Same to that of full attribute unlinkability game.
5. Guess: A outputs a guessed pair of issuing protocol transcript π(O,I) and

show proof transcript π(P,V) and wins the game if the pair is under the same
credential such that credπ(O,I) = credπ(P,V) .

Definition 5. An adversary A is said to (tpunl, εpunl)-break the punl-aca-security
of an ABC system if A runs in time at most tpunl and wins in Game 3 such that:

|Pr[credπ(O,I) = credπ(P,V)] − 1
2
| ≥ εpunl

for a negligible probability εpunl. We say that an ABC system is punl-aca-secure
if no adversary (tpunl, εpunl)-wins Game 3.

For the completeness of the security notion, we define a security notion weaker
than unlinkability, namely, full anonymity in the full version [46] and show that
Fuchsbauer et al.’s ABC system [31] cannot achieve this weaker security notion.
Furthermore, we prove that the full attribute unlinkability implies full anonymity
in an ABC system but the opposite does not hold. We also show that there is
no reduction between full attribute unlinkability and full protocol unlinkability.
Therefore, we only prove the security against the full attribute unlinkability and
the full protocol unlinkability for our proposed ABC system.

512 S.-Y. Tan and T. Groß

4.3 Construction

Concisely, a user credential cred is an SDH-CL signature sig on the MoniPoly
commitment C of his attribute set A. Next, the show proofs of our ABC system
is proving the validity of sig and C such that:

PK{(· · ·) :1 = SDH-CL.Verify(C, sig, pk) ∧
1 = MoniPoly.VerifyPred(pk,C,A,W, (A′, l))}

where Pred = {Intersection,Difference}. The commitment verification algorithms
are the main ingredient that form the access policy for our ABC system. We
describe the proposed ABC system as follows:

KeyGen(1k): Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gener-
ators a, b, c ∈ G1, g2 ∈ G2 and two secret values x, x′ ∈ Z

∗
p. Compute the values

a0 = a, a1 = ax′
, . . . , an = ax′n

,X = gx
2 ,X0 = g2,X1 = gx′

2 , . . . , Xn = gx′n
2

to output the public key pk = (e,G1,G2,GT , p, b, c, {ai,Xi}0≤i≤n,X) and the
secret key sk = (x, x′).

(Obtain(pk,A), Issue(pk, sk)): User interacts with verifier as follows to generate
a user credential cred on an attribute set A = {m1, . . . ,mn−1}.

1. User chooses a random opening value o ∈ Z
∗
p to compute C =

∏n
j=0 a

mj

j =
Commit(pk,A, o). Subsequently, user selects random s1 ∈ Z

∗
p to initialize the

issuing protocol by completing the protocol with the issuer:

PK

{

(α0, . . . , αn, σ) : M =
n∏

j=0

a
αj

j bσ

}

where σ = s1 and {α0, . . . , αn} = {m0, . . . ,mn}.
2. Issuer proceeds to the next step if the protocol is verified. Else, issuer outputs

⊥ and stops.
3. Issuer generates the SDH-CL signature for M as sig = (t, s2, v =

(Mbs2c)1/(x+t)).
4. If sig is not a valid signature on A∪{o}, user outputs ⊥ and stops. Else, user

outputs the credential as cred = (t, s, v, A = A ∪ {o}) where:

s = s1 + s2, v =
(
a

∏n
j=1(x

′+mj)

0 bsc
)1/(x+t)

.

4.3.1 Proof of Possession
This protocol proves the ownership of a valid credential cred and the wellformed-
ness of the committed attribute set A = {m1, . . . ,mn} without disclosing any
attribute. The Prove and Verify algorithms interact as follows.
(Prove(pk, cred,⊥),Verify(pk,⊥)):

MoniPoly—An Expressive q-SDH-Based Anonymous 513

1. Verifier requests for a proof of possessions protocol by sending an empty access
policy φ = ⊥.

2. Prover chooses random r, y ∈ Z
∗
p to randomize the credential as cred′ = (t′ =

ty, s′ = sr2, v′ = vr2y−1
).

3. Setting v′,W =
∏n−1

j=0 a
w′

j

j as the public input where {w′
j}0≤j≤n−1 = r ×

MPEncode(A−{o}), prover runs the zero-knowledge protocol below with the
verifier:

PK

{

(ρ, τ, γ, α0, α1, σ) :e(Cρbσcρv′−τ ,X0) = e(v′γ ,X) ∧

e(Cρ,X0) = e(W,Xα1
1 Xα0

0)
}

where ρ = r2, τ = t′, γ = y, {αj} = r × MPEncode({o}), σ = s′. The protocol
above can be compressed as:

PK

{

(ρ, τ, γ, α0, α1, σ) : e(W,Xα1
1 Xα0

0)e
(
bσcρv′−τ ,X0

)
= e(v′γ ,X)

}

to realize a more efficient proof.
4. Verifier outputs 1 if the protocol is verified and 0 otherwise.

4.3.2 Show Proofs
A show proof proves the relation between the attribute set A in cred and the
queried set A′ chosen by the verifier. Using the same compression technique from
the proof of possession, we describe the single clause show proofs by the follow-
ing presentation protocols.

AND Proof . This protocol allows prover to disclose an attribute set A′ =
{m1, . . . ,mk} ⊆ A upon the request from verifier and proves that his credential
cred contains A′. The showing protocol for AND proof is as follows.

(Prove(pk, cred, φAND(A′)),Verify(pk, φAND(A′))):

1. Verifier requests an AND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If A′ �⊆ A, prover aborts and the verifier outputs 0.
3. Else, prover chooses random r, y ∈ Z

∗
p to randomize the credential as cred′ =

(t′ = ty, s′ = sr, v′ = vry−1
, {w′

j}0≤j≤n−k = r × MPEncode(A − A′)).

4. Setting v′,W =
∏n−k

j=0 a
w′

j

j as the public input, prover runs the zero-knowledge
protocol below with the verifier:

PK

{

(ρ, τ, γ, σ) : e

⎛

⎝W,

k∏

j=0

X
mj

j

⎞

⎠ e(bσcρv′−τ ,X0) = e(v′γ ,X)
}

514 S.-Y. Tan and T. Groß

where
∏k

j=0 X
mj

j and {mj} = MPEncode(A′) are computed by the verifier
and ρ = r, τ = t′, γ = y, σ = s′.

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

ANY and OR Proofs. This is the show proof for the threshold statement, and it
is an OR proof when the threshold is equal to one. Consider the scenario where the
prover is given an attribute set A′ = {m1, . . . ,mk} and he needs to prove that he
has l attributes {mj}1≤j≤l ∈ (A′ ∩ A) without the verifier knowing which attrib-
utes he is proving. The showing protocol for the ANY statement is as follows.

(Prove(pk, cred, φANY(l,A′)),Verify(pk, φANY(l,A′))):

1. Verifier requests an ANY(l, A′) proof for the attribute set A′ = {m1, . . . ,mk}.
2. Prover randomly selects l-attribute intersection set I ⊆ (A′ ∩ A). If no such

I can be formed, the prover aborts and the verifier outputs 0.
3. Else, prover chooses random r, y ∈ Z

∗
p to randomize the credential as cred′ =

(t′ = ty, s′ = sr2, v′ = vr2y−1
, {w′

j}0≤j≤n−l = r × MPEncode(A − I)).

4. Setting v′,W =
∏n−l

j=0 a
w′

j

j ,W ′ =
(∏k−l

j=0 a
m2,j
j

)r−1

as the public input where
{m2,j}0≤j≤k−l = MPEncode(A′ −I), prover runs the zero-knowledge protocol
below with the verifier:

PK

{

(ρ, τ, γ, ι0, . . . , ιl, σ) :

e

⎛

⎝W ′W,
l∏

j=0

X
ιj
j

⎞

⎠ e

⎛

⎝
k∏

j=0

a
−m1,j
j bσcρv′−τ ,X0

⎞

⎠ = e(v′γ ,X)
}

where
∏k

j=0 a
−m1,j
j and {m1,j}0≤j≤k = MPEncode(A′) are computed by the

verifier and ρ = r2, τ = t′, γ = y, {ιj}0≤j≤l = r × MPEncode(I), σ = s′.
5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

NAND and NOT Proofs. This is the showing protocol for the NAND statement
which allows a prover to show that an attribute set A′ = {m1, . . . ,mk} is disjoint
with the set A in his credential. Note that it is a NOT proof when |A′| = 1. The
showing protocol on the NAND statement is as below.

(Prove(pk, cred, φNAND(A′)),Verify(pk, φNAND(A′))):

1. Verifier requests a NAND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If |A′ − A| < k, prover aborts and the verifier outputs 0.
3. Else, prover chooses random r, y ∈ Z

∗
p to randomize the credential as cred′ =

(t′ = ty, s′ = sr, v′ = vry−1
, {w′

j = rwj}0≤j≤n−k, {r′j = rrj}0≤j≤k−1) where
({wj}0≤j≤n−k, {rj}0≤j≤k−1) = MPEncode(A)/MPEncode(A′).

4. Setting v′,W =
∏n−k

j=0 a
w′

j

j as the public input, prover runs the zero-knowledge
protocol with the verifier:

PK

{

(ρ, τ, γ, μ0, . . . , μk−1, σ) :
k−1∏

j=0

a
μj

j �= G1∧

MoniPoly—An Expressive q-SDH-Based Anonymous 515

e

⎛

⎝W,

k∏

j=0

X
mj

j

⎞

⎠ e

⎛

⎝
k−1∏

j=0

a
μj

j bσcρv′−τ ,X0

⎞

⎠ = e(v′γ ,X)
}

where
∏k

j=0 X
mj

j and {mj} = MPEncode(A′) are computed by the verifier
and {μj} = {r′j}, ρ = r, τ = t′, γ = y, σ = s′.

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

NANY Proof . This is the showing protocol for the negated threshold state-
ment. Consider the scenario where the prover is given an attribute set A′ =
{m1, . . . ,mk} and he needs to prove that an l-attribute set D ⊆ (A′ − A) are
not in the credential without the verifier knowing which attributes he is proving.
The showing protocol on the NANY statement is as below.

(Prove(pk, cred, φNANY(l̄,A′)),Verify(pk, φNANY(l̄,A′))):

1. Verifier requests a NANY proof for the attributes A′ = {m1, . . . ,mk}.
2. Prover randomly selects an l̄-attribute difference set D ∈ (A′ −A). If no such

D can be formed, prover aborts and the verifier outputs 0.
3. Else, prover chooses random r, y ∈ Z

∗
p to randomize the credential as cred′ =

(t′ = ty, s′ = sr2, v′ = vr2y−1
, {w′

j = rwj}0≤j≤n−l̄, {r′j = r2wj}0≤j≤l̄−1)
where ({wj}0≤j≤n−l̄, {rj}0≤j≤l̄−1) = MPEncode(A)/MPEncode(D).

4. Setting v′,W =
∏n−l̄

j=0 a
w′

j

j ,W ′ =
(∏k−l̄

j=0 a
m2,j
j

)r−1

as the public input where
{m2,j}0≤j≤k−l̄ = MPEncode(A′−D), prover runs the zero-knowledge protocol
with the verifier:

PK

{

(ρ, τ, γ, δ0, . . . , δl̄, μ0, . . . , μl̄−1, σ) :
l̄−1∏

j=0

a
μj

j �= G1∧

e

⎛

⎝W ′W,
l̄∏

j=0

X
δj
j

⎞

⎠ e

⎛

⎝
k∏

j=0

a
−m1,j
j

l̄−1∏

j=0

a
μj

j bσcρv′−τ ,X0

⎞

⎠ = e(v′γ ,X)
}

where
∏k

j=0 a
−m1,j
j and {m1,j}0≤j≤k = MPEncode(A′) are computed by

the verifier and {μj} = {r′j}, ρ = r2, τ = t′, γ = y, {δj}0≤j≤l̄ = r ×
MPEncode(D), σ = s′.

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

4.4 Efficiently Enabling Composite Statements

Composite statements, such as, composed of multiple high-level conjunctions,
can be realized with MoniPoly efficiently. For that, we propose an efficient strat-
egy instead of naively repeating the show proofs multiple times for an access
policy with a composite statement.

The prover runs a proof of possession protocol followed by a proof
to show that the committed attributes from every clause in the compos-
ite statement is part of the committed attributes in the credential. For

516 S.-Y. Tan and T. Groß

instance, given the composite statement stmt = AND(A′
1) ∧ ANY(l, A′

2) where
k1 = |A′

1|, k2 = |A′
2|, a prover can run the showing protocol as fol-

lows. Let WA′
1

=
∏n−k1

j=0 a
w′

A′
1,j

j ,WA′
2

=
∏n−l

j=0 a
w′

A′
2,j

j ,W ′
A′

2
=

∏k2−l
j=0 a

m′
A′

2,2,j

j

where {w′
A′

1,j}0≤j≤n−k1 = r2 × MPEncode(A − A′
1), {w′

A′
2,j}0≤j≤n−l = r ×

MPEncode(A − I), {m′
A′

2,2,j}0≤j≤k2−l
= r−1 × MPEncode(A′

2 − I) for a ran-
domly selected r ∈ Z

∗
p. Setting v′,WA′

1
,WA′

2
,W ′

A′
1

as public inputs, the prover
runs the showing protocol on φstmt as follows:

PK

{

(ρ, τ, γ, ι0, . . . , ιl, σ) :

e

⎛

⎝WA′
1
,
k−1∏

j=0

X
mA′

1,j

j

⎞

⎠ e

⎛

⎝W ′
A′

2
WA′

2
,

l∏

j=0

X
ιj
j

⎞

⎠ e

⎛

⎝
k2∏

j=0

a
−mA′

2,1,j

j (bσcρv′−τ)2,X0

⎞

⎠

= e(v′2γ ,X)
}

where
∏k1

j=0 X
mA′

1,j

j ,
∏k2

j=0 a
mA′

2,2,j

j , {mA′
1,1,j}0≤j≤k1 = MPEncode(A′

1),
{mA′

2,1,j}0≤j≤k2 = MPEncode(A′
2) are computed by the verifier and ρ = r2, τ =

t′, γ = y, {ιj}0≤j≤l = r × MPEncode(I), σ = s′. It is thus obvious that for any
composite statement of k clauses, we can run the protocol above in a similar way
using k +2 pairings. In precise, the k +1 pairings on the left-hand side correspond
to the k clauses and a credential. Lastly, the corresponding credential elements in
the pairings at the left-hand side and right-hand side are brought up to the power
of k, respectively. Note that the complexity of k + 2 parings does not change even
when negation clauses are involved.

4.5 Security Analysis

4.5.1 Impersonation Resilience
We establish the security of the MoniPoly ABC system by constructing a reduc-
tion to the (co-)SDH problem. To achieve tight security reduction, we make use of
Multi-Instance Reset Lemma [37] as the knowledge extractor which requires the
adversary A to run N parallel instances of impersonation under active and con-
current attacks. The challenger C can fulfill this requirement by simulating the
N −1 instances from its given SDH instance which is random self-reducible [10].
Since this is obvious, we describe only the simulation for a single instance of
impersonation under active and concurrent attacks in the security proofs.

Theorem 4. If an adversary A (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tcosdh, εcosdh)-breaks the co-SDH problem such that:

εcosdh
tcosdh

=
εimp

timp
,

MoniPoly—An Expressive q-SDH-Based Anonymous 517

or an algorithm C which (tsdh, εsdh)-breaks the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total adversary instance, q = Q(O,I) + Q(P,V) is the total query
made to the Obtain and Verify oracles, while T (q2) is the time parameterized by q
to setup the simulation environment and to extract the SDH solution. Consider
the dominant time elements timp and tsdh only, we have:

(

1 −
(

1 − εimp +
1 + (q − 1)!/pq−2

p

)N
)2

≤ εsdh, 2Ntimp ≈ tsdh.

Let N = (εimp − 1+(q−1)!/pq−2

p)−1, we get εsdh ≥ (1−e−1)2 ≥ 1/3 and the success
ratio is:

εsdh
tsdh

≥ 1
3 · 2Ntimp

6εsdh
tsdh

≥ εimp

timp
− 1 + (q − 1)!/pq−2

timpp

which gives a tight reduction.

To modularize the proof for Theorem 4, we categorize the way an adver-
sary impersonates in Table 2. This is like the approach in the tight reduction
proof for the SDH-CL signature scheme proposed by Schäge [44]. Subsequently,
we differentiate A into A = {Abind,A1,A2,A3} corresponding to four differ-
ent simulation strategies by C. We omit the proof for the binding property of
MoniPoly commitment scheme Abind which has been described in Theorem 3
and can be trivially applied here.

In each of the simulation strategy, we consider only the success probability
of breaking the SDH problem which is weaker than the DLOG problem such
that εsdh ≥ εdlog. Let M∗ =

∏n
j=1(x

′ + m∗
j) and Mi =

∏n
j=1(x

′ + mi,j) where
A∗ = {m∗

j} and Ai = {mj}, respectively, the DLOG problem can be solved
whenever the forgery v∗ produced by A equals to a vi which has been generated
by C such that:

∵ v∗ ≡ vi

(aM∗
0 bs∗

c)
1

x+t∗ ≡ (aMi
0 bsic)

1
x+ti

(aM∗+s∗β+γ
0)

1
x+t∗ ≡ (aMi+siβ+γ

0)
1

x+ti

∴ M∗ + s∗β + γ

x + t∗
≡ Mi + siβ + γ

x + ti
mod p

518 S.-Y. Tan and T. Groß

Table 2. Types of impersonation and the corresponding assumptions.

Type A MPEncode(A) s t v Adversary Assumption Lemmas

0 0 1 * * * Abind co-SDH Theorem 3

1 0 0 0 0 0 A1 SDH 1

2 0 0 0 0 1 A1 DLOG 1

3 0 0 0 1 0 A2 SDH 2

4 0 0 0 1 1 A2 DLOG 2

5 0 0 1 0 0 A1 SDH 1

6 0 0 1 0 1 A1 DLOG 1

7 0 0 1 1 0 A3 SDH 3

8 0 0 1 1 1 A3 DLOG 3

9 1 1 0 0 0 A1 SDH 1

10 1 1 0 0 1 A1 DLOG 1

11 1 1 0 1 0 A2 SDH 2

12 1 1 0 1 1 A2 DLOG 2

13 1 1 1 0 0 A1 SDH 1

14 1 1 1 0 1 A1 N/A 1

15 1 1 1 1 0 A3 SDH 3

16 1 1 1 1 1 A3 N/A 3

Note: * = 1 or 0, 1 = equal, 0 = unequal, N/A = not available

which leads to:

x ≡ t∗Mi − tiM
∗ + β(t∗si − tis

∗) + γ(t∗ − ti)
M∗ − Mi + β(s∗ − si)

mod p

where C can solve the SDH problem using x. Following the equation, the Type 14
impersonation (A∗, v∗, s∗) = (Ai, vi, si) will not happen as it causes a division
by zero. On the other hand, Type 16 represents the impersonation using the
uncorrupted cred generated by C when it answers A’s IssueTranscript queries
or Verify queries. If A’s view is independent of C’s choice of (ti, si), we have
(t∗, s∗) �= (ti, si) with probability 1−1/p. This causes Type 16 impersonation to
happen with a negligible probability of 1/p at which point our simulation fails.

We present Lemmas 1, 2 and 3 corresponding to the adversaries A1, A2 and
A3 as follows. The proofs for the lemmas are in the full version [46].

Lemma 1. If an adversary A1 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

MoniPoly—An Expressive q-SDH-Based Anonymous 519

where N is the total of adversary instances, q = Q(O,I) + Q(P,V) is the num-
ber of queries made to the Obtain and Verify oracles, while T (q2) is the time
parameterized by q to setup the simulation environment and to extract the SDH
solution.

Lemma 2. If an adversary A2 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V) is the num-
ber of queries made to the Obtain and Verify oracles, while T (q2) is the time
parameterized by q to setup the simulation environment and to extract the SDH
solution.

Lemma 3. If an adversary A3 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

(q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V) is the num-
ber of queries made to the Obtain and Verify oracles, while T (q2) is the time
parameterized by q to setup the simulation environment and to extract the SDH
solution.

Combining Theorem 3, Lemmas 1, 2, and 3 gives Theorem 4 as required.

4.5.2 Unlinkability
Next, we prove the unlinkability of the proposed ABC system. It is sufficient to
show that the witnesses, the committed attributes and the randomized creden-
tial in the issuing protocol and presentation protocol, respectively, are perfectly
hiding. Then, we demonstrate that every instance of the protocols is uniformly
distributed due to the random self-reducibility property. This implies that even
when A is given access to the Obtain, Issue, Prove, Verify and Corrupt oracles, it
does not has advantage in guessing the challenged attribute sets. The proofs for
Lemma 5 and 7 are in the full version [46].

Lemma 4. The committed attributes and the corresponding witness in the issu-
ing protocol of the ABC system are perfectly hiding.

520 S.-Y. Tan and T. Groß

Proof. By Theorem 2, the MoniPoly commitment C =
∏n

j=0 a
mj

j in the issuing
protocol is perfectly hiding. Subsequently, the value M = Cbs1 is a Pedersen
commitment which is also perfectly hiding. The same reasoning is applicable on
the commitment value in the zero-knowledge protocol R =

∏n
j=0 a

m̃j

j bs̃1 which
has the same structure as that of M . 	

Lemma 5. The initialization of the issuing protocol in the ABC system has
random self-reducibility.

Lemma 6. The randomized credential in the presentation protocol of the ABC
system are perfectly hiding.

Proof. Given a user’s randomized credential v′ = vry−1
in the show proof, there

are |Z∗
p| − 1 possible pairs of (r′, y′) �= (r, y) which can result in the same v′.

Besides, for each r, there is a unique y such that:

dloga0
(v′) = dloga0

(v)ry−1

y =
dloga0

(v)
dloga0

(v′)
· r

Since r, y are chosen independently from each other, and of the credential element
v, the latter is perfectly hidden. The same reasoning applies on the randomized
credential v′ = vr2y−1

. 	

Lemma 7. The presentation protocol of the ABC system offers random self-
reducibility.

Theorem 5. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as the randomized credential are perfectly hiding, the ABC system is
aunl-aca-secure.

Using the similar approach, we show that the security of full protocol unlink-
ability also holds for the proposed ABC system.

Theorem 6. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as randomized credential are perfectly hiding, the ABC system is punl-
aca-secure.

5 Evaluation

5.1 Security

We offer a general overview of security properties in comparison with other
schemes here and offer the tightness analysis of our own scheme in the full
version [46].

We summarize the security properties of ABC systems in either SDH or
alternative paradigms in Table 3. The table shows that the relevant schemes
vary significantly in their fulfilled security requirements. MoniPoly is the only
ABC system that achieves the full range of security requirements. At the same
time, it is proven secure in the standard model with a tight security reduction.

MoniPoly—An Expressive q-SDH-Based Anonymous 521

Table 3. Security properties of related ABC systems.

ABC System
Impersonation

Resilience

Anonymity Unlinkability Security
Model

Hard
Problem

Tight
ReductionI P I P I↔P

ASM [4] � � � � � � RO SDH, DDHI �
TAKS [47] � � � � � � RO SDH, DDH �
AMO [2] � � � � � � Standard SDH, DLIN �
CKS [19] � � � � � � Standard DHE, HSDHE �
SNF [45] � � � � � � Standard SDH, DHE, HSDH, TDH �
ZF [48] � � � � � � Standard SDH, HPDH, HSDH, TDH �
BNF [6] �� � �� � � � Standard DLIN, SFP, DHE �
CKLMNP [20] � � � � � � Standard SRSA, DLOG �
BBDT [5] � � � � � � Standard SDH �
RVH [42] � � � � � � Standard whLRSW �
SNBF [43] � � � � � � Standard DLIN, SFP, DHE �
ON [40] �� � �� � � � Standard DLIN, SFP, DHE �
CDDH [15] � � � � � � Standard SCDHI �
BB [8] � � � � � � Generic SDH, MSDH-1 �
BBBB+ [7] � �� �� � � � RO SDH, MSDH-1 �
BBDE [9] � � � � � � Standard SDH, MSDH-1 �
CG [17,18] � � � � � � Standard SRSA �
CDHK [16] � � � � � � CRS SXDH, RootDH, BSDH, SDH, XDLIN, co-CDH, DBP �
FHS [31] � � � � �� � Generic DDH, co-DLOG, co-SDH �
This Work � � � � � � Standard SDH, co-SDH �

Note: �: proof provided, ��: claim provided, �: no claim, I: Issuing, P: Presentation� in Issuing: only weak anonymity or unlinkability/trusted issuer/no blind issuing

5.2 Expressivity and Computational Complexity

In Table 4, we compare the MoniPoly ABC system to relevant popular ABC
systems with respect to their realized show proofs and asymptotic computational
complexities. Table 4 is normalized in that it considers only the asymptotic
complexity for the most expensive operations (e.g., the scalar multiplication,
modular exponentiation, or pairing).

5.2.1 Expressivity over Unrestricted Attribute Space
The MoniPoly ABC system is the first scheme that can efficiently support all
logical statements in the show proofs regardless of the types of attribute space
(cf. Table 4). That is, MoniPoly operates on arbitrary attributes while offering
a wide range of statements in its expressiveness.

We note that the traditional encoding can achieve the same expressiveness,
in principle, in an unrestricted attribute space S as well as string attribute space
SS . However, traditional encoding will yield inefficient proofs.

5.2.2 Expressivity over Finite-Set Attribute Space
Let us now consider the comparison with schemes with only finite-set attribute
space SF . Most of the accumulator-based ABC systems [43,45] are restricted to
finite-set attributes only. While MoniPoly supports negation statements in terms
of expressivity, their show proofs do not. The restriction to finite-set attributes
and monotone (non-negative) formula affords them a low asymptotic complexity
in show proofs. However, their setup and issuing protocols are prohibitively
expensive with exponential computational and space complexity (O(2nF) [40]

522 S.-Y. Tan and T. Groß

Table 4. Asymptotic complexity for show proofs in related ABC systems.

Property ABC System

Attribute Space SF SS + SF S
Technique Accumulator Trad. Encd. Accumulator Prime Encd. Trad. Encd.Comm. MoniPoly

Setup O(nF) O(2nF)O(n) O(n) O(n) O(n) O(n) O(n)

Issuing Protocol
Prover O(1) O(1) O(1) O(nS) O(n) O(n) O(n) O(n)

Verifier O(2
√

nF)O(nF) O(n) O(nS) O(n) O(n) O(n) O(n)

S
h
ow

P
ro

o
fs

Possession
Prover O(nF) O(L) O(nS) + O(N) O(nS) + O(1) O(n) + O(1) O(n) O(n) O(n)

Verifier O(nF) O(L) O(nS) + O(N) O(nS) + O(1) O(n) + O(1) O(n) O(n) O(1)

AND(A′)
Prover O(kF) O(L) O(nS − kS) + O(N)O(nS − kS) + O(1)O(nS − kS) + O(1)O(n − k) O(n − k)O(n − k)

Verifier O(kF) O(L) O(nS) + O(N) O(nS) + O(1) O(nS) + O(1) O(n) O(k) O(k)

OR(A′)
Prover O(kF) O(L) O(nSkS) + O(N) O(nSkS) + O(1) O(nSkS) + O(1) ✗ ✗ O(n + k)

Verifier O(kF) O(L) O(nSkS) + O(N) O(nSkS) + O(1) O(nSkS) + O(1) ✗ ✗ O(k)

ANY(l, A′)
Prover O(kF) O(L) O(nS !) + O(N) ✗ ✗ ✗ ✗ O(n − l + k)

Verifier O(kF) O(L) O(nS !) + O(N) ✗ ✗ ✗ ✗ O(k + l)

NAND(A′)
Prover ✗ O(L) ✗ ✗ O(nS − kS) + O(1)✗ ✗ O(n)

Verifier ✗ O(L) ✗ ✗ O(nS) + O(1) ✗ ✗ O(2k)

NOR(A′)
Prover ✗ O(L) ✗ ✗ ✗ ✗ ✗ O(n + k)

Verifier ✗ O(L) ✗ ✗ ✗ ✗ ✗ O(k)

NANY(l̄, A′)
Prover ✗ O(L) ✗ ✗ ✗ ✗ ✗ O(n + k)

Verifier ✗ O(L) ✗ ✗ ✗ ✗ ✗ O(k + 2l̄)

Constant Size Proofs ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Flexible Attribute Indexing✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Schemes [43] [40] [48] [45] [18] [4,7–9,19] [16,31] This Work

Note: S: attribute space, k = |A′| ≤ n = |A| = nS + nF , S: string attributes, F :
finite-attributes, L: maximum allowed ∧ in CNF,
N : maximum attributes allowed in a statement, ✓: realized, ✗: not realized

and O(2
√

nF) [43]), in turn, restricting the number of attributes that can be
feasibly encoded.

The latest ABC system in this line of work [40] proposes a workaround on
the negated forms of attributes separately. In this scheme, each of its show proof
has O(L) complexity where L is the maximum number of ∧ operators permitted
in a composite conjunctive formulae. Moreover, the additional negated finite-set
attributes double the credential size and the already massive public key size.

5.2.3 Comparison to Commitment-Based Schemes
MoniPoly bears similarities in terms of computational and communication com-
plexity to other commitment-based ABC systems [16,31]. Although MoniPoly
does not have constant asymptotic complexity, the verifier is required to compute
only three pairings for a single-clause show proof. This makes our scheme the
most efficient construction of its kind in this comparison. At the same time, apart
from having constant-size AND proof similarly to the relevant commitment-based
schemes [16,31], MoniPoly has constant-size possession proof.

5.2.4 Parametric Complexity Analysis
We estimate the computational complexity of the schemes listed in Table 4 and
present in Fig. 1 the complexity for each ABC system at 128-bit security level.
While schemes especially crafted for a restricted finite-set attribute space are the
fastest schemes in the field, Monipoly is the most efficient ABC system based

MoniPoly—An Expressive q-SDH-Based Anonymous 523

0

2500

5000

7500

10000

0 250 500 750 1000
#Attributes n

0

1000

2000

3000

0 250 500 750 1000
#Attributes n

ASM

SNF

ZF

SNBF

ON

CG

CDHK

FHS

BBBB

This Work

Fig. 1. Asymptotic complexity of ABC systems (scalar multiplications in G1)

on commitment schemes and outperforms most schemes in the field, overall.
If strength in terms of security properties is a prerequisite, our ABC system
outperforms all listed in Table 4 while having efficient constant size show proofs.

This estimation is based on the following relative computation costs in equiv-
alents of scalar multiplications in G1:

BLS-12 curve at 128-bit security: for a scalar multiplication in G2, an expo-
nentiation in GT and a pairing, respectively, is about the same as computing
2, 6 and 9 scalar multiplications (M1) in G1. The modular exponentiation of
RSA-3072 on the other hand is equivalent to 5M1.

We also assume the computational cost in Type-1 pairing friendly curve is equiv-
alent to that of Type-3 as well as L = 1 and N = 1. The details of the estimation
can be found in the full version [46].

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

2. Akagi, N., Manabe, Y., Okamoto, T.: An efficient anonymous credential system.
In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 272–286. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85230-8 25

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-540-85230-8_25

524 S.-Y. Tan and T. Groß

3. Anada, H., Arita, S., Sakurai, K.: Attribute-based two-tier signatures: definition
and construction. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp.
36–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30840-1 3

4. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

5. Barki, A., Brunet, S., Desmoulins, N., Traoré, J.: Improved algebraic MACs and
practical keyed-verification anonymous credentials. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 360–380. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69453-5 20

6. Begum, N., Nakanishi, T., Funabiki, N.: Efficient proofs for CNF formulas on
attributes in pairing-based anonymous credential system. In: Kwon, T., Lee, M.-K.,
Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 495–509. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37682-5 35

7. Bemmann, K., Blömer, J., Bobolz, J., Bröcher, H., et al.: Fully-featured anony-
mous credentials with reputation system. In: Proceedings of the 13th International
Conference on Availability, Reliability and Security, ARES 2018, pp. 42:1–42:10.
ACM (2018)

8. Blömer, J., Bobolz, J.: Delegatable attribute-based anonymous credentials from
dynamically malleable signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS
2018. LNCS, vol. 10892, pp. 221–239. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93387-0 12

9. Blömer, J., Bobolz, J., Diemert, D., Eidens, F.: Updatable anonymous credentials
and applications to incentive systems. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, pp. 1671–1685.
Association for Computing Machinery (2019)

10. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

11. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

12. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge (2000)

13. Brickell, E., Li, J.: Enhanced privacy id from bilinear pairing for hardware authen-
tication and attestation. In: 2010 IEEE Second International Conference on Social
Computing, pp. 768–775, August 2010

14. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol.
6101, pp. 181–195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13869-0 12

15. Camenisch, J., Drijvers, M., Dzurenda, P., Hajny, J.: Fast keyed-verification anony-
mous credentials on standard smart cards. In: Dhillon, G., Karlsson, F., Hedström,
K., Zúquete, A. (eds.) SEC 2019. IAICT, vol. 562, pp. 286–298. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22312-0 20

16. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: definitions and practical constructions. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 262–288.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 11

17. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Pro-
ceedings of the 15th ACM Conference on Computer and Communications Security,
pp. 345–356. ACM (2008)

https://doi.org/10.1007/978-3-319-30840-1_3
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-642-37682-5_35
https://doi.org/10.1007/978-3-319-93387-0_12
https://doi.org/10.1007/978-3-319-93387-0_12
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-642-13869-0_12
https://doi.org/10.1007/978-3-642-13869-0_12
https://doi.org/10.1007/978-3-030-22312-0_20
https://doi.org/10.1007/978-3-662-48800-3_11

MoniPoly—An Expressive q-SDH-Based Anonymous 525

18. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. ACM
Trans. Inf. Syst. Secur. 15(1), 4:1–4:30 (2012)

19. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00468-1 27

20. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.Ø.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman,
O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6 1

21. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

22. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

23. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

24. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic macs and keyed-verification
anonymous credentials. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2014, pp. 1205–1216. ACM (2014)

25. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

26. Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M.,
Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5 26

27. Chen, L., Li, J.: Flexible and scalable digital signatures in TPM 2.0. In: Proceedings
of the Conference on Computer & Communications Security (CCS), CCS 2013, pp.
37–48. ACM (2013)

28. Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM (2008)
29. Chu, X., Yu, Q.: A new efficient property-based attestation protocol based on

elliptic curves. In: 2012 IEEE 11th International Conference on Trust, Security
and Privacy in Computing and Communications, pp. 730–736, June 2012

30. Damg̊ard, I.: Commitment schemes and zero-knowledge protocols. In: Damg̊ard,
I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48969-X 3

31. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptology 32(2),
498–546 (2019)

32. Groß, T.: Signatures and efficient proofs on committed graphs and NP-statements.
In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 293–314.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 18

33. Groß, T.R.: Efficient certification and zero-knowledge proofs of knowledge on infra-
structure topology graphs. In: Proceedings of the 6th Edition of the ACM Work-
shop on Cloud Computing Security, CCSW 2014, pp. 69–80. Association for Com-
puting Machinery, New York (2014)

34. Guo, N., Gao, T., Wang, J.: Privacy-preserving and efficient attributes proof based
on selective aggregate CL-signature scheme. Int. J. Comput. Math. 93(2), 273–288
(2016)

https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-642-16342-5_26
https://doi.org/10.1007/3-540-48969-X_3
https://doi.org/10.1007/978-3-662-47854-7_18

526 S.-Y. Tan and T. Groß

35. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-
interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.)
IMACC 2011. LNCS, vol. 7089, pp. 431–450. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25516-8 26

36. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

37. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

38. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

39. Okamoto, T.: Efficient blind and partially blind signatures without random Ora-
cles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 5

40. Okishima, R., Nakanishi, T.: An anonymous credential system with constant-size
attribute proofs for CNF formulas with negations. In: Attrapadung, N., Yagi, T.
(eds.) IWSEC 2019. LNCS, vol. 11689, pp. 89–106. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26834-3 6

41. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

42. Ringers, S., Verheul, E., Hoepman, J.-H.: An efficient self-blindable attribute-based
credential scheme. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 3–20.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7 1

43. Sadiah, S., Nakanishi, T., Begum, N., Funabiki, N.: Accumulator for monotone
formulas and its application to anonymous credential system. J. Inf. Process. 25,
949–961 (2017)

44. Schäge, S.: Tight proofs for signature schemes without random Oracles. In: Pater-
son, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-20465-4 12

45. Sudarsono, A., Nakanishi, T., Funabiki, N.: Efficient proofs of attributes in pairing-
based anonymous credential system. In: Fischer-Hübner, S., Hopper, N. (eds.)
PETS 2011. LNCS, vol. 6794, pp. 246–263. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22263-4 14

46. Tan, S.-Y., Groß, T.: Monipoly–an expressive q-SDH-based anonymous attribute-
based credential system [extended version]. Cryptology ePrint Archive Report
2020/587 (ia.cr/2020/587), IACR, May 2020

47. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: Blacklistable anonymous cre-
dentials: blocking misbehaving users without TTPS. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security, CCS 207, pp. 72–81.
ACM (2007)

48. Zhang, Y., Feng, D.: Efficient attribute proofs in anonymous credential using
attribute-based cryptography. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012.
LNCS, vol. 7618, pp. 408–415. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34129-8 39

https://doi.org/10.1007/978-3-642-25516-8_26
https://doi.org/10.1007/978-3-642-25516-8_26
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/11681878_5
https://doi.org/10.1007/978-3-030-26834-3_6
https://doi.org/10.1007/978-3-030-26834-3_6
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-70972-7_1
https://doi.org/10.1007/978-3-642-20465-4_12
https://doi.org/10.1007/978-3-642-22263-4_14
https://doi.org/10.1007/978-3-642-22263-4_14
http://www.ia.cr/2020/587
https://doi.org/10.1007/978-3-642-34129-8_39
https://doi.org/10.1007/978-3-642-34129-8_39

Updatable Encryption

The Direction of Updatable Encryption
Does Not Matter Much

Yao Jiang(B)

Norwegian University of Science and Technology, NTNU, Trondheim, Norway
yao.jiang@ntnu.no

Abstract. Updatable encryption schemes allow for key rotation on
ciphertexts. A client outsourcing storage of encrypted data to a cloud
server can change its encryption key. The cloud server can update the
stored ciphertexts to the new key using only a token provided by the
client.

This paper solves two open problems in updatable encryption, that of
uni-directional vs. bi-directional updates, and post-quantum security.

The main result in this paper is to analyze the security notions based
on uni- and bi-directional updates. Surprisingly, we prove that uni- and
bi-directional variants of each security notion are equivalent.

The second result in this paper is to provide a new and efficient
updatable encryption scheme based on the Decisional Learning with
Error assumption. This gives us post-quantum security. Our scheme is
bi-directional, but because of our main result, this is sufficient.

Keywords: Updatable encryption · Cloud storage · Key rotation ·
Lattice-based cryptography · Post-quantum cryptography

1 Introduction

Consider the following scenario: a client wishes to outsource data to a cloud
storage provider with a cryptoperiod (client key lifetime). The cryptoperiod is
decided by the client or the cloud storage provider or both. If the key lifetime is
expired, the old key is no longer available for either encryption or decryption, a
new key must be used in the new cryptoperiod. However, the client might still
want to keep the data in the cloud storage in the new cryptoperiod and needs
to update the data. The above requirement implies a need to update ciphertexts
from the old key to the new key. During this process, it is also reasonable to
expect that no information of plaintexts are leaked while updating. Another
benefit to consider in such a scenario is that it can be used to protect the data
and reduce the risk of key compromise over time.

Key rotation is the process of generating a new key and altering ciphertexts
from the old key to the new key without changing the underlying massage.

Key rotation can be done by downloading the old ciphertext, decrypting with
the old key, re-encrypting with a new key and reuploading the new ciphertext.
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 529–558, 2020.
https://doi.org/10.1007/978-3-030-64840-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_18

530 Y. Jiang

However, this is expensive. Updatable encryption (UE) [5,6,8,11,14,15] provides
a better solution for key rotation. A client generates an update token and sends
it to the cloud server, the cloud server can use this update token to update the
ciphertexts from the old key to the new key. In recent years there has been con-
siderable interest in understanding UE, including defining the security notions
for UE and constructing UE schemes (we make a detailed comparison of related
work in Sect. 1.1).

Consider the following two variants of UE schemes: ciphertext-dependent
schemes and ciphertext-independent schemes. If the generation of update token
depends on the ciphertext to be updated then the UE scheme is ciphertext-
dependent. In ciphertext-dependent schemes, the updating process of a cipher-
text requires a specific token which forces the client to download the old cipher-
text before this token can be generated. Therefore, ciphertext-dependent schemes
are less practical. If the token is independent of the old ciphertext then the UE
scheme is ciphertext-independent. Hence, a single token can be used to update
all ciphertexts a client owns. As ciphertext-independent schemes are consider-
ably more efficient than ciphertext-dependent schemes, in terms of bandwidth,
most recent works [7,8,14,15] focus on ciphertext-independent schemes. In this
paper, we will focus on such schemes.

Consider the following four variants of updates for ciphertext-independent
UE schemes: uni-directional ciphertext updates, bi-directional ciphertext
updates, uni-directional key updates and bi-directional key updates. If the
update token can only move ciphertexts from the old key to the new key then
ciphertext updates in such UE schemes are uni-directional. If the update token
can additionally downgrade ciphertexts from the new key to the old key then
ciphertext updates in such UE schemes are bi-directional. On the other hand,
the update token can potentially be used to derive keys from other keys. In
the uni-directional key update setting, the update token can only infer the new
key from the old key. While in the bi-directional key update setting, the update
token can both upgrade and downgrade keys. Prior works [7,8,14,15] focus on
UE schemes with bi-directional updates, and no security notion was introduced
in uni-directional update setting. We close this gap. Intuitively, UE schemes with
uni-directional updates are desirable, such schemes leak less ciphertext/key infor-
mation to an adversary compared to schemes with bi-directional updates. In this
paper, we analyze the relationship between security notions with uni- and bi-
directional updates. We show that the (confidentiality and integrity) security of
UE schemes are not influenced by uni- or bi-directional updates.

No-directional key updates is another key update setting to consider, where
the update token cannot be used to derive keys. A UE scheme with optimal
leakage, discussed in [15], is a scheme where no token inference (no token can be
inferred via keys), keys cannot be updated via a token, and ciphertext updates
are only uni-directional. We do not consider no token inference, instead in this
work an update token can be computed via two consecutive epoch keys. We
show that the no-directional key update variant of a security notion is strictly
stronger than the uni- and bi-directional update variant of the same security
notion.

The Direction of Updatable Encryption Does Not Matter Much 531

While the study of security notions appears promising, existing ciphertext-
independent UE schemes are either vulnerable to quantum computers or only
achieve weak security. The schemes of Lehmann and Tackmann [15], Klooß
et al. [14] and Boyd et al. [8] base their security on the DDH problem, and
thus are only secure in the classical setting. Boneh et al. [6] constructed key
homomorphic PRFs, based on the learning with errors (LWE) problem, and it
can be used to construct UE schemes. However, all of these schemes of Boneh
et al. [6] cannot achieve IND-UPD security (introduced in [15]).

In this work, we construct a post-quantum secure UE scheme and the security
of our construction is based on hard lattice problems. In particular, our scheme
provides the randIND-UE-CPA security (introduced in [8], stronger than IND-UPD
and IND-ENC security).

Efficiency. All of the previous known ciphertext-independent UE schemes with
security proofs (RISE, E&M, NYUE (NYUAE), SHINE) have computation cost
that are comparable to PKE schemes that rely on the DDH problem, while our
scheme has a computation cost that is comparable to PKE schemes that rely on
lattice problems.

1.1 Related Work

Security Notions. Boneh et al. [6] introduced a security definition for UE, how-
ever, this notion is less adaptive than the later works [8,14,15] which allows the
adversary to adaptively corrupt epoch keys and update tokens at any point in
the game.

In the ciphertext-dependent setting, Everspaugh et al. [11] provided two
security notions, a weak form of ciphertext integrity and re-encryption indistin-
guishability, that strengthen the security notion in [6]. Recently, Boneh et al. [5]
introduced new definitions for updatable encryption in the ciphertext-dependent
setting to further strengthen the confidentiality property and the integrity defi-
nition in [11]. Boneh et al. [5] stated that for authenticated updatable encryption
schemes it is necessary to expect that ciphertexts will not reveal how many times
they have been updated, which was a desired property independently presented
in [8].

Lehmann and Tackmann [15] introduced two notions to achieve CPA security
for ciphertext-independent UE schemes. Their IND-ENC notion requires that
ciphertexts output by the encryption algorithm are indistinguishable from each
other. Their IND-UPD notion ensures ciphertexts output by the update algorithm
are indistinguishable from each other.

Klooß et al. [14] attempted to provide stronger security notions for ciphertext-
independent UE than LT18, specifically, CCA security and integrity protection.

Boyd et al. [8] provided a new notion IND-UE which states that a ciphertext
output by the encryption algorithm is indistinguishable from a ciphertext output
by the update algorithm. They showed that the new notion is strictly stronger
than any combinations of prior notions, both under CPA and CCA. They also

532 Y. Jiang

tweaked the CTXT and CCA notions in [14] and showed the following generic
composition result: CPA + CTXT =⇒ CCA.

Constructing Ciphertext-Independent Updatable Encryption Schemes. The UE
scheme BLMR in [6] is an application of key homomorphic PRFs, however, the
encrypted nonce in the ciphertext can be decrypted by an update token which
makes it impossible for BLMR to achieve IND-UPD security.

In the classical setting, RISE in [15] is built from (public-key) ElGamal
encryption, which only uses the public key in the update token. The security
of RISE is based on the DDH assumption. Klooß et al. [14] provided two generic
constructions, based on encrypt-and-MAC (E&M) and the Naor-Yung paradigm
(NYUE and NYUAE). The security of E&M is based on the DDH assumption,
and the security of NYUE and NYUAE are based on the SXDH assumption.
Boyd et al. [8] constructed three permutation-based UE schemes, SHINE, which
achieves strong security notions based on DDH.

Post-Quantum Secure Schemes. In the past decade, much work has been
done on constructing lattice-based post-quantum secure PKE schemes, specif-
ically the NIST Post-Quantum Standardization Project, round 2, submissions:
CRYSTALS-KYBER [3], FrodoKEM [1], LAC [16], NewHope [2], NTRU [4,9],
Round5 [18], SABER [10] and Three Bears [12]. A natural question is if we can
turn a PKE scheme into a UE scheme, where the security of the UE follows
from the PKE. We provide a specific UE scheme that is built form an LWE-
based PKE scheme, and prove the security. The LWE-based scheme we use is
in some sense very similar to RISE (which is based on ElGamal), however, as
with most lattice-based constructions, there are significant technical problems
in turning it into a UE scheme (see Sect. 5.2). Our LWE-based UE construction
suggests that there is a limit to how generic any efficient construction can be, a
generic construction that abstracts both our construction and RISE remains to
be done.

1.2 Our Contributions

Our first contribution is defining six variants of security notions (a combination
of three versions of key updates and two versions of ciphertext updates) for
updatable encryption and analyzing the relations among these six variants of
the same notion.

Our main result is that we demonstrate that our security notions with uni-
and bi-directional updates are equivalent. When we analyze the security, we can
treat UE schemes with uni-directional updates as with bi-directional updates,
the security will not be influenced by the update direction. This means that
UE schemes with uni-directional updates will not provide more security than

The Direction of Updatable Encryption Does Not Matter Much 533

UE schemes with bi-directional updates. This is a surprising result.1 This result
implies that the search for uni-directional updatable encryption scheme seems
less important.

Furthermore, we show that security notions with no-directional key updates
are strictly stronger than uni- and bi- directional update variants of the corre-
sponding notions. Finding UE schemes with no-directional key updates would be
good, but it is much more challenge than finding UE schemes with uni-directional
key updates (which is already believed to be difficult). We leave this as an open
problem.

Our second major contribution is constructing an efficient post-quantum
secure UE scheme. We analyze how to construct LWE-based updatable encryp-
tion schemes and provide one construction. Our construction follows the re-
randomization idea of RISE, using public key in the update token to update
ciphertexts. We build a suitable post-quantum secure PKE scheme to construct
our UE scheme so that the encryption and update algorithms can use a public
key as input instead of the secret key. We also show the difficulties of turning a
PKE scheme into a UE scheme.

We show that our LWE-based UE scheme is randIND-UE-CPA secure under
the DLWE assumption. In the randomized update setting, we show the difference
between previous work (RISE, NYUE,NYUAE) and our scheme, and state that
the method used in proving the security of LWE-based updatable encryption
scheme is different from the previous approach.

1.3 Open Problems

Ideally we want UE schemes with no-directional key updates, no such UE
schemes have been constructed so far. Whether such UE schemes exist and how
to construct such UE schemes are still open problems.

Furthermore, not that many efficient UE schemes with strong security exist
so far. It remains an open challenge to construct UE schemes with chosen cipher-
text2 post-quantum security.

1 It is possible to construct a scenario where this result will not be true. Let’s assume
there exists a UE scheme with a leakage function that helps the adversary win
the security game. This leakage function could, for example, give the adversary
information about plaintexts when it knows enough keys. In this scenario, a UE
scheme with uni-directional updates has better security than a UE scheme with
bi-directional updates. Because the scheme with uni-directional updates has less
key leakage and the leakage function provides less data to the adversary. However,
this and similar constructions cannot capture the security we wish to have for UE
schemes. In terms of the security expectation of key rotation, the keys used in the
past should not reveal any data.

For constructions that do follow the security model and update mechanism for
UE schemes, we have this surprising result.

2 It is ideal to achieve detIND-UE-CCA security for UE schemes with deterministic
updates and to achieve INT-PTXT and randIND-UE-CCA security for UE schemes
with randomized updates.

534 Y. Jiang

2 Preliminaries

In this section we describe the notation used in this paper and present the nec-
essary background material of updatable encryption. In the full version [13], we
provide the real or random variant of indistinguishability under chosen-plaintext
attack (IND$-CPA) for encryption schemes and the background of hard lattice
problems.

2.1 Notations

Let λ be the security parameter throughout the paper. Let negl denote as a
negligible function. Let U(S) denote the uniform distribution over set S.

2.2 Updatable Encryption

Updatable encryption (UE) scheme is parameterized by a tuple of algorithms
{UE.KG,UE.TG,UE.Enc, UE.Dec,UE.Upd} that operate in epochs, the epoch
starts at 0. The key generation algorithm UE.KG outputs an epoch key ke. The
token generation algorithm UE.TG takes as input two epoch keys ke and ke+1

and outputs an update token Δe+1, the update token can be used to move cipher-
texts from epoch e to e + 1. The encryption algorithm UE.Enc takes as input
an epoch key ke and a message m and outputs a ciphertext ce. The decryption
algorithm UE.Dec takes as input an epoch key ke and a ciphertext ce and outputs
a message m′. The update algorithm UE.Upd takes as input an update token
Δe+1 and a ciphertext ce from epoch e and outputs an updated ciphertext ce+1.

We stress that an update token can be computed via two consecutive epoch
keys by token generation algorithm in this paper.

2.3 Existing Security Notions for Updatable Encryption

Klooß et al. [14] and Boyd et al. [8] defined the confidentiality and the integrity
notions for updatable encryption schemes using experiments that are running
between an adversary and a challenger. In each experiment, the adversary may
send a number of oracle queries. The main differences between an experiment
running the confidentiality game and one running the integrity game are the
challenge and win condition. In the confidentiality game, the adversary tries
to distinguish a fresh encryption from an updated ciphertext. In the integrity
game, the adversary attempts to provide a valid forgery. At the end of an exper-
iment the challenger evaluates whether or not the adversary wins, if a trivial win
condition was triggered the adversary will always lose.

We follow the notation of security notions from Boyd et al. [8]. An overview of
the oracles the adversary has access to in each security game is given in Fig. 1.
A generic description of all confidentiality experiments and integrity experi-
ments described in this paper is detailed in Fig. 2 and Fig. 3, resp.. Our oracle
algorithms, see Fig. 4, are stated differently than in [8] and [14], however, con-
ceptually they are the same. The oracles we use in our security games are as

The Direction of Updatable Encryption Does Not Matter Much 535

Notions O.Enc O.Dec O.Next O.Upd O.Corr O.Chall O.UpdC̃ O.Try

detIND-UE-CPA � × � � � � � ×
randIND-UE-CPA � × � � � � � ×
detIND-UE-CCA � � � � � � � ×
randIND-UE-CCA � � � � � � � ×
INT-CTXT � × � � � × × �
INT-PTXT � × � � � × × �

Fig. 1. Oracles given to the adversary in different security games for updatable encryp-
tion schemes. × indicates the adversary does not have access to the corresponding
oracle, � indicates the adversary has access to the corresponding oracle.

follows, encrypt O.Enc, decrypt O.Dec, move to the next epoch O.Next, update
ciphertext O.Upd, corrupt key or token O.Corr, ask for the challenge cipher-
text O.Chall, get an updated version of the challenge ciphertext O.UpdC̃, or test
if a ciphertext is a valid forgery O.Try. The detailed discussion of trivial win
conditions are discussed in Sect. 2.6.

For the confidentiality game we have the following additional definitions that
we will frequently use. While the security game is running, the adversary may
query O.Enc or O.Upd oracles or corrupt tokens to know some (updated) versions
of ciphertexts, we call them non-challenge ciphertexts. In addition, the adversary
may query O.Chall or O.UpdC̃ oracles or corrupt tokens to infer some (updated)
versions of the challenge ciphertext, we call them challenge-equal ciphertexts.

Definition 1. Let UE = {UE.KG,UE.TG,UE.Enc, UE.Dec,UE.Upd} be an
updatable encryption scheme. Then the notion advantage, for notion ∈
{detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}, of an
adversary A against UE is defined as

Advnotion
UE, A(1λ) =

∣
∣
∣Pr[Expnotion-1

UE, A = 1] − Pr[Expnotion-0
UE, A = 1]

∣
∣
∣,

where the experiment Expnotion-b
UE, A is given in Fig. 2 and Fig. 4.

Definition 2. Let UE={UE.KG,UE.TG,UE.Enc, UE.Dec,UE.Upd} be an updat-
able encryption scheme. Then the notion advantage, for notion ∈ {INT-CTXT,
INT-PTXT}, of an adversary A against UE is defined as

Advnotion
UE, A(1λ) = Pr[Expnotion

UE, A = 1],

where the experiment Expnotion
UE, A is given in Fig. 3 and Fig. 4.

2.4 Notations of the Leakage Sets

In this section, we describe the definition of leakage sets given by [15] and [14],
these sets will later be used to check whether the leaked information will allow
the adversary trivially win the security game. We analyze some properties of
leakage sets and trivial win conditions in Sect. 3.1.

536 Y. Jiang

ExpxxIND-UE-atk-b
UE, A :

do Setup; phase ← 0
b′ ← Aoracles(1λ)
if

(
(K∗ ∩ C∗ �= ∅) or xx=det and

(ẽ∈T ∗ or O.Upd(c̄) is queried)
))

then
twf ← 1

if twf = 1 then
b′ $←− {0, 1}

return b′

Fig. 2. Generic description of the confi-
dentiality experiment ExpxxIND-UE-atk-b

UE, A for
updatable encryption scheme UE and
adversary A, for xx ∈ {det, rand} and atk ∈
{CPA,CCA}. The flag phase tracks whether
or not A has queried the O.Chall oracle,
ẽ denotes the epoch in which the O.Chall
oracle happens, and twf tracks if the trivial
win conditions are triggered. Figure 1 shows
the oracles the adversary have access to in
a specific security game. How to compute
the leakage sets K∗, T ∗, C∗ are discussed in
Sect. 2.5.

ExpINT-atk
UE, A

do Setup; win ← 0
Aoracles(1λ)
if twf = 1 then
win ← 0

return win

Fig. 3. Generic description
of the integrity experiment
ExpINT-atk

UE, A for updatable encryp-
tion scheme UE and adversary A,
for atk ∈ {CTXT,PTXT}. The
flag win tracks whether or not the
adversary provided a valid forgery
and twf tracks if the trivial win
conditions are triggered. Figure 1
shows the oracles the adversary
have access to in a specific security
game.

Epoch Leakage Sets. We use the following sets that track epochs in which the
adversary corrupted a key or a token, or learned a version of challenge-ciphertext.

– K: Set of epochs in which the adversary corrupted the epoch key (from
O.Corr).

– T : Set of epochs in which the adversary corrupted the update token (from
O.Corr).

– C: Set of epochs in which the adversary learned a challenge-equal ciphertext
(from O.Chall or O.UpdC̃).

We use K∗, T ∗ and C∗ as the extended sets of K, T and C in which the
adversary has learned or inferred information via its known tokens. We show
how to compute K∗, T ∗ and C∗ in Sect. 2.5.

Information Leakage Sets. We use the following sets to track ciphertexts and
their updates that can be known to the adversary.

– L: Set of non-challenge ciphertexts (c, c, e;m), where query identifier c is a
counter incremented with each new O.Enc query. The adversary learned these
ciphertexts from O.Enc or O.Upd.

– L̃: Set of challenge-equal ciphertexts (c̃e, e). The adversary learned these
ciphertexts from O.Chall or O.UpdC̃.

The Direction of Updatable Encryption Does Not Matter Much 537

Setup(1λ)

k0
$←− UE.KG(1λ)

Δ0 ←⊥; e, c, twf ← 0
L, L̃, C, K, ← ∅

O.Enc(m) :
c ← c + 1
c $←− UE.Enc(ke,m)
L←L∪{(c, c, e;m)}
return c

O.Dec(c) :
m′ or ⊥ ← UE.Dec(ke, c)
if

(
(xx = det and (c, e) ∈ L̃∗) or

(xx = rand and (m′, e) ∈ Q̃∗)
)
then

twf ← 1
return m′ or ⊥

O.Next() :
e ← e+ 1
ke

$←− UE.KG(1n)
Δe ←UE.TG(ke-1,ke)
if phase = 1 then
c̃e ← UE.Upd(Δe, c̃e-1)

O.Upd(ce−1) :
if (j, ce−1, e − 1;m) /∈ L then
return ⊥

ce ← UE.Upd(Δe, ce−1)
L ← L ∪ {(j, ce, e;m)}
return ce

O.Corr(inp, ê) :
if ê > e then
return ⊥

if inp = key then
K ← K ∪ {ê}
return kê

if inp = token then
← ∪ {ê}

return Δê

O.Chall(m̄, c̄) :
if phase = 1 then
return ⊥

phase ← 1; ẽ ← e
if (·, c̄, ẽ − 1; m̄1) /∈ L then
return ⊥

if b = 0 then
c̃ẽ ← UE.Enc(kẽ, m̄)

else
c̃ẽ ← UE.Upd(Δẽ, c̄)

C ← C ∪ {ẽ}
L̃ ← L̃ ∪ {(c̃ẽ, ẽ)}
return c̃ẽ

O.UpdC̃ :
if phase �= 1 then
return ⊥

C ← C ∪ {e}
L̃ ← L̃ ∪ {(c̃e, e)}
return c̃e

O.Try(c̃) :
m′ or ⊥ ← UE.Dec(ke, c̃)
if

(
(atk = CTXT and (c̃, e) ∈ L∗) or

(atk = PTXT and (m′, e) ∈ Q∗) or
e ∈ K∗

)
then

twf ← 1
if m′ �= ⊥ then
win ← 1

Fig. 4. Oracles in security games for updatable encryption. How to compute the leakage
sets K∗, T ∗, C∗, L̃∗, Q̃∗,L∗,Q∗ are discussed in Sect. 2.5 and Sect. 2.6.

In the deterministic update setting, we use L∗ and L̃∗ as the extended (cipher-
text) sets of L and L̃ in which the adversary has learned or inferred ciphertexts
via its known tokens. In particular, we only use partial information of L∗: the
ciphertext and the epoch. Hence, we only track the set L∗ = {(c, e)}.

538 Y. Jiang

In the randomized update setting, we use Q∗ and Q̃∗ as the extended (plain-
text) sets of L and L̃, that contain messages that the adversary can provide a
ciphertext of - i.e. a forgery. Similarly, only partial information is needed: the
plaintext and the epoch. Hence, we track sets Q∗ and Q̃∗ as follows.

– Q∗: Set of plaintexts (m, e). The adversary learned or was able to create a
ciphertext in epoch e with the underlying message m.

– Q̃∗: Set of challenge plaintexts {(m̄, e), (m̄1, e)}, where (m̄, c̄) is the input of
challenge query O.Chall and m̄1 is the underlying message of c̄. The adversary
learned or was able to create a challenge-equal ciphertext in epoch e with the
underlying message m̄ or m̄1.

Remark 1. Based on the definition of these sets, we observe that

a. (c̃e, e) ∈ L̃ ⇐⇒ e ∈ C,
b. (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈ C∗ ⇐⇒ (m̄, e), (m̄1, e) ∈ Q̃∗.

We will use this remark to discuss how to compute L∗, L̃∗, Q∗ and Q̃∗ in
Sect. 2.6.

2.5 Epoch Leakage Sets of Keys, Tokens and Ciphertexts

We follow the bookkeeping techniques and base our notations of the work of
Lehmann and Tackmann [15], where we further analyze the epoch leakage sets.
Specifically, we add a no-directional key update setting. Suppose a security game
ends at epoch l, then, for any sets K, T , C ⊆ {0, ..., l}, the following algorithms
show how to compute the extended sets K∗, T ∗ and C∗ in different update set-
tings.

Key Leakage. The adversary learned all keys in epochs in K. In the no-directional
key update setting, the adversary does not have more information about keys
except for this set. In the uni-directional key update setting, if the adversary
knows a key ke and an update token Δe+1 then it can infer the next key ke+1. In
the bi-directional key update setting, the adversary can additionally downgrade
a key by a known token. In the kk-directional key update setting, for kk ∈
{no, uni, bi}, we denote the set K∗

kk as the extended set of corrupted key epochs.
We compute these sets as follows.

No-directional key updates: K∗
no = K.

Uni-directional key updates:

K∗
uni ← {e ∈ {0, ..., l}|CorrK(e) = true}
true ← CorrK(e) ⇐⇒ (e ∈ K) ∨ (CorrK(e-1) ∧ e ∈ T). (1)

Bi-directional key updates:

K∗
bi ← {e ∈ {0, ..., l}|CorrK(e) = true}
true ← CorrK(e) ⇐⇒

(e ∈ K) ∨ (CorrK(e-1) ∧ e ∈ T) ∨ (CorrK(e+1) ∧ e+1 ∈ T). (2)

The Direction of Updatable Encryption Does Not Matter Much 539

Token Leakage. A token is known to the adversary is either a corrupted token or a
token inferred from two consecutive epoch keys, so the extended set of corrupted
token epochs is computed by information in set T and set K∗

kk. The set K∗
kk is

computed as above depending on the key updates is no- or uni- or bi-directional.
Hence, we denote T ∗

kk as the extended set of corrupted token epochs.

T ∗
kk ← {e ∈ {0, ..., l}|(e ∈ T) ∨ (e ∈ K∗

kk ∧ e-1 ∈ K∗
kk)}. (3)

Challenge-Equal Ciphertext Leakage. The adversary learned all challenge-equal
ciphertexts in epochs in C. Additionally, the adversary can infer challenge-
equal ciphertexts via tokens. In the uni-directional ciphertext update setting,
the adversary can upgrade ciphertexts. In the bi-directional ciphertext update
setting, the adversary can additionally downgrade ciphertexts.

We compute the extended set of challenge-equal epochs using the information
contained in C and T ∗

kk. The set T ∗
kk is computed as above depending on the key

updates is no- or uni- or bi-directional. In the cc-directional ciphertext update
setting, for cc ∈ {uni, bi}, denote the set C∗

kk,cc as the extended set of challenge-
equal epochs. We compute these sets as follows.

Uni-directional ciphertext updates:

C∗
kk,uni ← {e ∈ {0, ..., l}|ChallEq(e) = true}
true ← ChallEq(e) ⇐⇒ (e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗

kk). (4)

Bi-directional ciphertext updates:

C∗
kk,bi ← {e ∈ {0, ..., l}|ChallEq(e) = true}
true ← ChallEq(e) ⇐⇒

(e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗
kk) ∨ (ChallEq(e+1) ∧ e+1 ∈ T ∗

kk). (5)

2.6 Trivial Win Conditions

The main benefit of using ciphertext-independent updatable encryption scheme
is that it offers an efficient way for key rotation, where a single token can be used
to update all ciphertexts. However, this property provides the adversary more
power, the tokens can be used to gain more information, and gives the adversary
more chances to win the security games. We again follow the trivial win analysis
in [8,14,15] and exclude these trivial win conditions in the security games for
UE. An overview of the trivial win conditions the challenger will check in each
security game is given in Fig. 5.

Checking Trivial Win Conditions at the End of a Game

Trivial Wins via Keys and Ciphertexts. The following is used for analyzing all
confidentiality games. If there exists an epoch e ∈ K∗∩C∗ in which the adversary
knows the epoch key ke and a valid update of the challenge ciphertext c̃e, then
the adversary can use this epoch key to decrypt the challenge-equal ciphertext
and know the underlying plaintext to win the confidentiality game. The trivial
win condition “K∗ ∩ C∗
= ∅” is checked in the end of a confidentiality game.

540 Y. Jiang

Notions “K
∗ ∩ C

∗ �=
∅”

“ẽ
∈T

∗ or
O.
U
pd
(c̄
)
is
qu
er
ie
d”

“(
c,
e)

∈ L̃
∗ ”

“(
m

′ , e
) ∈

Q̃
∗ ”

“e
∈ K

∗ ”
“(
c̃,
e)

∈ L
∗ ”

“(
m

′ , e
) ∈

Q
∗ ”

detIND-UE-CPA � � × × × × ×
randIND-UE-CPA � × × × × × ×
detIND-UE-CCA � � � × × × ×
randIND-UE-CCA � × × � × × ×
INT-CTXT × × × × � � ×
INT-PTXT × × × × � × �

Fig. 5. Trivial win conditions considered in different security games for updatable
encryption schemes. × indicates the security notion does not consider the corresponding
trivial win condition, � indicates the security notion considers the corresponding trivial
win condition.

Trivial Wins via Direct Updates. The following is used for analyzing all confi-
dentiality games with deterministic updates. If the adversary knows the update
token Δẽ in the challenge epoch ẽ or the adversary queried an update oracle on
the challenge input ciphertext O.Upd(c̄) in epoch ẽ, then it knows the updated
ciphertext of c̄ in epoch ẽ and it can compare the updated ciphertext with the
challenge ciphertext to win the confidentiality game. The trivial win condition
“ẽ∈T ∗ or O.Upd(c̄) is queried” is checked in the end of a confidentiality game.

Checking Trivial Win Conditions While Running a Game. The fol-
lowing overview of trivial win conditions are checked by an oracle. The sets
L̃∗, Q̃∗,K∗,L∗ and Q∗ are defined in Sect. 2.4.

– “(c, e) ∈ L̃∗” are checked by O.Dec oracles in the detIND-UE-CCA game,
– “(m′, e) ∈ Q̃∗” are checked by O.Dec oracles in the randIND-UE-CCA game,
– “e ∈ K∗” are checked by O.Try oracles in the INT-CTXT game or the
INT-PTXT game,

– “(c, e) ∈ L∗” are checked by O.Try oracles in the INT-CTXT game
– “(m′, e) ∈ Q∗” are checked by O.Try oracles in the INT-PTXT game.

General Idea. At the moment when the adversary queries a decryption query
O.Dec or a try query O.Try, the challenger computes the knowledge the adversary
currently has, which is used to check if the adversary can trivially win a security
game. More precisely, the challenger uses information in the sets L, L̃, C,K, T to
compute the leakage sets L̃∗, Q̃∗,K∗,L∗ and Q∗. Note that the sets L, L̃, C,K, T
contains information the adversary learns at such a moment.

Trivial Wins via Decryptions in the Deterministic Update Setting. The following
is used for analyzing the detIND-UE-CCA security notion. In the deterministic

The Direction of Updatable Encryption Does Not Matter Much 541

for i ∈ {0, ..., e} do
if i ∈ C∗

kk,cc then
L̃∗

kk,cc ← L̃∗
kk,cc ∪ {(c̃i, i)}

Fig. 6. Algorithm for comput-
ing the set L̃∗

kk,cc, where kk ∈
{no, uni, bi} and cc ∈ {uni, bi}.

for i ∈ {0, ..., e} do
if i ∈ C∗

kk,cc then
Q̃∗

kk,cc ← Q̃∗
kk,cc ∪ {(m̄, i)} ∪ {(m̄1, i)}

Fig. 7. Algorithm for computing the set Q̃∗
kk,cc,

where kk ∈ {no, uni, bi} and cc ∈ {uni, bi}.

update setting, if the adversary knows a challenge-equal ciphertext (c̃e0 , e0) ∈ L̃
and tokens from epoch e0 + 1 to epoch e, then the adversary can compute the
updated challenge-equal ciphertext c̃e and send it to the decryption oracle to
get the underlying message. Eventually, the adversary compares the received
message with the challenge plaintexts to trivially win the security game.

We use the set L̃∗ to check this trivial win condition, recall that L̃∗ includes
all challenge-equal ciphertexts the adversary has learned or inferred. Suppose the
adversary queries a decryption oracle O.Dec(c) in epoch e, if (c, e) ∈ L̃∗ then the
response of the decryption oracle leads to a trivial win to the adversary, hence,
the challenger will set the trivial win flag to be 1.

By Remark 1, we have (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈ C∗, using this method we can
easily compute the set L̃∗. In Fig. 6 we show how the set L̃∗ is computed, where
the set C∗ is computed by the algorithms discussed in Sect. 2.5.

Trivial Wins via Decryptions in the Randomized Update Setting. The following
is used for analyzing the randIND-UE-CCA security notion. In the randomized
update setting, if the adversary knows a challenge-equal ciphertext (c̃e0 , e0) ∈ L̃
and tokens from epoch e0+1 to epoch e, then the adversary can create arbitrary
number of ciphertexts by updating c̃e0 from epoch e0 to epoch e. Let ce denote
a ciphertext generated in such a way. Notice that the ciphertext ce has the same
underlying message as the challenge-equal ciphertext c̃e0 . The adversary can
send the computed ciphertext ce to the decryption oracle to get the underlying
message and trivially win the security game.

We use the set Q̃∗ to check this trivial win condition, recall that Q̃∗ includes
information about challenge plaintexts that the adversary has learned or can
create challenge-equal ciphertexts of. Suppose the adversary queries a decryption
oracle O.Dec(c) in epoch e, if UE.Dec(ke, c) = m′ and (m′, e) ∈ Q̃∗ then the
response of the decryption oracle leads to a trivial win to the adversary, hence,
the challenger will set the trivial win flag to be 1.

By Remark 1, we have (m′, e) ∈ Q̃∗ ⇐⇒ e ∈ C∗, using this method we
can easily compute the set Q̃∗. Suppose the challenge input is (m̄, c̄) and the
underlying message of c̄ is m̄1. In Fig. 7 we show how the set Q̃∗ is computed.

Remark 2. Our definition of this trivial win restriction is more generous than
that of [14], they disallow the decryption of any ciphertext that decrypts to
either of the two challenge plaintexts. We allow the decryption of a ciphertext

542 Y. Jiang

for i ∈ {0, ..., e} do
for (·, c, i; ·) ∈ L do

L∗
kk,cc ← L∗

kk,cc ∪ {(c, i)}
if i ∈ ∗

kk then
for (ci−1, i − 1) ∈ L∗

kk,cc do
ci ← UE.Upd(Δi, ci−1)
L∗

kk,cc ← L∗
kk,cc ∪ {(ci, i)}

if cc = bi then
for (ci, i) ∈ L∗

kk,cc do
ci−1 ← UE.Upd−1(Δi, ci)
L∗

kk,cc ← L∗
kk,cc ∪ {(ci−1, i − 1)}

Fig. 8. Algorithm for computing the
set L∗

kk,cc, where kk ∈ {no, uni, bi} and
cc ∈ {uni, bi}.

for i ∈ {0, ..., e} do
for (·, ·, i;m) ∈ L do

Q∗
kk,cc ← Q∗

kk,cc ∪ {(m, i)}
if i ∈ ∗

kk then
for (m, i − 1) ∈ Q∗

kk,cc do
Q∗

kk,cc ← Q∗
kk,cc ∪ {(m, i)}

if cc = bi then
for (m, i) ∈ Q∗

kk,cc do
Q∗

kk,cc ← Q∗
kk,cc ∪ {(m, i − 1)}

Fig. 9. Algorithm for computing the
set Q∗

kk,cc, where kk ∈ {no, uni, bi} and
cc ∈ {uni, bi}.

that decrypts to a challenge plaintext as long as the adversary cannot learn
(from O.Chall or O.UpdC̃) or infer (from tokens) a valid ciphertext of challenge
plaintext in that epoch.

Trivial Forgeries by Keys. The following is used for analyzing all integrity games.
If the adversary knows an epoch key ke, then the adversary can create arbitrary
number of valid forgeries of arbitrary messages under this epoch key ke.

We use the set K∗ to check this trivial win condition, recall that K∗ includes
all epochs the adversary learned or inferred an epoch key. Suppose the adversary
queries a try oracle O.Try(c) in epoch e, if e ∈ K∗ then the challenger will set
the trivial win flag to be 1. We use algorithms discussed in Sect. 2.5 to compute
the set K∗.

Trivial Ciphertext Forgeries by Tokens. The following is used for analyzing the
INT-CTXT security notion. From [14] we know that only UE schemes with deter-
ministic updates can possibly achieve INT-CTXT security. In the deterministic
update setting, if the adversary knows a ciphertext (c, c, e0;m) ∈ L and tokens
from epoch e0 + 1 to epoch e, then the adversary can create a valid updated
ciphertext by updating c from epoch e0 to epoch e.

We use the set L∗ to check this trivial win condition, recall that L∗ includes
all ciphertexts that can be known or inferred to the adversary. Suppose the
adversary queries a try oracle O.Try(c) in epoch e, if (c, e) ∈ L∗ then the chal-
lenger will set the trivial win flag to be 1. In Fig. 8 we show how the set L∗ is
computed.

Trivial Plaintext Forgeries by Tokens. The following is used for analyzing the
INT-PTXT security notion. In the randomized update setting, if the adversary
knows a ciphertext (c, c, e0;m) ∈ L and tokens from epoch e0 + 1 to epoch e,
then the adversary can create arbitrary number of valid forgeries of message m
by updating c from epoch e0 to epoch e.

The Direction of Updatable Encryption Does Not Matter Much 543

We use the set Q∗ to check this trivial win condition, recall that Q∗ includes
information about plaintexts that the adversary has learned or can create cipher-
texts of. Suppose the adversary queries a try oracle O.Try(c) in epoch e, if
UE.Dec(ke, c) = m′ and (m′, e) ∈ Q∗ then the challenger will set the trivial win
flag to be 1. In Fig. 9 we show how the set Q∗ is computed.

3 Six Variants of Security Notions

In this section we first define six variants of security notions for updatable encryp-
tion schemes. In the end of this section, we compare the relationship among all
these variants of each security notion.

For kk ∈ {no, uni, bi} and cc ∈ {uni, bi}, we define (kk, cc)- variants of security
notions, where kk refers to UE schemes with kk-directional key updates and cc
to cc-directional ciphertext updates.

Definition 3 (The (kk, cc)- variant of confidentiality notions). Let
UE = {UE.KG, UE.TG,UE.Enc, UE.Dec,UE.Upd} be an updatable encryp-
tion scheme. Then the (kk, cc)-notion advantage, for kk ∈ {no, uni, bi}, cc ∈
{uni, bi} and notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA}, of an adversary A against UE is defined as

Adv(kk,cc)-notion
UE, A (1λ) =

∣
∣
∣Pr[Exp(kk,cc)-notion-1

UE, A = 1] − Pr[Exp(kk,cc)-notion-0
UE, A = 1]

∣
∣
∣,

where the experiment Exp(kk,cc)-notion-b
UE, A is the same as the experiment Expnotion-b

UE, A
(see Fig. 2 and Fig. 4) except for all leakage sets are both in the kk-directional
key update setting and cc-directional ciphertext update setting.

Remark 3. Recall that we compute all leakage sets with kk-directional key
updates and cc-directional ciphertext updates in Sect. 2.5 and Sect. 2.6.

Remark 4. The security notion RCCA, which we denote as randIND-UE-CCA, is
from [14]. In our definition of this notion is stronger - the adversary has fewer
trivial win restrictions - we discuss this difference in Remark 2.

Definition 4 (The (kk, cc)- variant of integrity notions). Let UE =
{UE.KG, UE.TG, UE.Enc, UE.Dec,UE.Upd} be an updatable encryption scheme.
Then the (kk, cc)-notion advantage, for kk ∈ {no, uni, bi}, cc ∈ {uni, bi} and
notion ∈ {INT-CTXT, INT-PTXT}, of an adversary A against UE is defined as

Adv(kk,cc)-notion
UE, A (1λ) = Pr[Exp(kk,cc)-notion

UE, A = 1],

where the experiment Exp(kk,cc)-notion
UE, A is the same as the experiment Expnotion

UE, A
(see Fig. 3 and Fig. 4) except for all leakage sets are both in the kk-directional
key update setting and cc-directional ciphertext update setting.

544 Y. Jiang

3.1 Properties of Leakage Sets and Trivial Win Conditions

In this section, we prove some essential properties of key leakage, which will be
used to analyze the trivial win conditions. We will use these trivial win properties
to prove the relations among six variants of the same security notion in Sect. 3.2.

Properties of Key Updates. Here we look at some properties of sets K, T ,K∗

and T ∗ in terms of uni- and bi-directional key updates.

Firewall and Insulated Region. We first describe the definition of firewall and
insulated region, which will be widely used in this paper. Firewall technique
(see [8,14,15]) is used for doing cryptographic seperation. We follow the firewall
definition in [8] and use firewall set FW (defined in [8]) to track each insulated
region and its firewalls.

Definition 5. An insulated region with firewalls fwl and fwr is a consecutive
sequence of epochs (fwl, . . . , fwr) for which:

– {fwl, . . . , fwr} ∩ K = ∅;
– fwl, fwr + 1 /∈ T ;
– {fwl + 1, . . . , fwr} ⊆ T .

Remark 5. Based on Definition 5, we notice that all firewalls or all insulated
regions (in other words, set FW) are uniquely determined by K and T . In
particular, we denote the union of all insulated regions as set IR, i.e. IR =
∪(fwl,fwr)∈FW{fwl, ..., fwr}.

Then we look at the structure of the set IR. Lemma 1 states that IR is
the complementary set of K∗

bi. Furthermore, Lemma 3 shows that the comple-
mentary set of IR is the union of two types of epoch sets (see Definition 6 and
Definition 7).

Lemma 1. For any sets K, T ⊆ {0, ..., l}, we have K∗
bi = {0, ..., l} \ IR.

Proof. Note that Δ0 and Δl+1 do not exist, however, 0 and l can possibly be
firewalls. For convenience, we just assume Δ0 and Δl+1 exist and the adversary
is not allowed to corrupt these two tokens. Thus the set of epochs in which
the adversary never corrupted the update token is: {0, ..., l + 1} \ T = {ē0 :=
0, ē1, ..., ēt, ēt+1 := l + 1}, where t ≥ 0.

In the bi-directional key update setting, if the adversary has corrupted a key
in an epoch e, where e ∈ {ēi−1, ..., ēi − 1}, then the adversary can infer all keys
from epoch ēi−1 to epoch ēi −1, that is {ēi−1, ..., ēi −1} ⊆ K∗

bi, because all tokens
from epoch ēi−1 + 1 to epoch ēi − 1 are corrupted. Otherwise, when no key in
the sequence of epochs {ēi−1, ..., ēi − 1} is corrupted, then {ēi−1, ..., ēi − 1} is
an insulated region . Therefore, for any i, {ēi−1, ..., ēi − 1} is either an insulated
region or a subset of K∗

bi.

The Direction of Updatable Encryption Does Not Matter Much 545

Epoch estart estart+1... eend−1 eend
K × × ... × �

� � ... � �

Epoch estart estart+1... eend
K∗

uni � � ... �
∗
uni � � ... �

Fig. 10. Type 1 set of epochs (left), type 2 set of epochs (right). × indicates the
keys/tokens are not revealed to the adversary, � indicates the keys/tokens are revealed
to the adversary.

We define two types of epoch sets in Definition 6 and Definition 7, which will
later be used to analyze the structure of IR. An overview of the corruption
model of these two epoch sets are shown in Fig. 10.

Definition 6. A set of type1 epochs is a consecutive sequence of epochs (estart,
. . . , eend) for which:

– {estart, . . . , eend − 1} ∩ K = ∅;
– eend ∈ K;
– {estart + 1, . . . , eend} ⊆ T .

Definition 7. A set of type2 epochs is a consecutive sequence of epochs (estart,
. . . , eend) for which:

– {estart, . . . , eend} ⊆ K∗
uni;

– {estart + 1, . . . , eend} ⊆ T ∗
uni.

The following Lemma explains that if a key is revealed in the bi-directional
key update setting but not in the uni-directional key update setting then the
revealed key epoch can stretch to a type 1 epoch set. We use this property to
prove Lemma 3.

Lemma 2. If e ∈ K∗
bi \ K∗

uni, then there exists an epoch (say eu) after e such
that eu ∈ K, {e, . . . , eu − 1} ∩ K = ∅ and {e + 1, ..., eu} ⊆ T .

Proof. As the assumption and Eqs. (1, 2), we have e ∈ K∗
bi is inferred from the

next epoch key ke+1 via token Δe+1. That is e + 1 ∈ K∗
bi and e + 1 ∈ T . If

e + 1
∈ K∗
uni, then e + 2 ∈ K∗

bi and e + 2 ∈ T . Iteratively, we know that there
exists an epoch after e, say eu, such that {e, . . . , eu − 1} ∩ K∗

uni = ∅, eu ∈ K∗
uni

and e + 1, ..., eu ∈ T . Hence, {e, . . . , eu − 1} ∩ K ⊆ {e, . . . , eu − 1} ∩ K∗
uni = ∅. In

particular, we know that eu ∈ K since eu − 1
∈ K∗
uni.

Lemma 3. For any sets K, T ⊆ {0, ..., l}, we have {0, ..., l}\IR = (∪type 1{estart,
..., eend}) ∪ (∪type 2{estart, ..., eend}), where the two types of epoch sets are defined
in Definition 6 and Definition 7.

Proof. Suppose e ∈ {0, ..., l} \ IR, by Lemma 1, we have e ∈ K∗
bi. If e
∈ K∗

uni, we
can apply Lemma 2 and have a set of type 1 epochs, assume {e, ..., eu}. For all
e ∈ K∗

bi \ K∗
uni, we can find a set of type 1 epochs. Hence, the rest epochs are in

the type 2 epoch sets.

546 Y. Jiang

Remark 6. As a conclusion of Lemma 1 and Lemma 3, we have the sequence of
all epochs are a union of three types of epoch sets, that are insulated regions,
type 1 epochs and type 2 epochs. {0, ..., l} = (∪(fwl,fwr)∈FW{fwl, ..., fwr}) ∪
(∪type 1{estart, ..., eend}) ∪ (∪type 2{estart, ..., eend}).

Trivial Win Equivalences in the Uni- and Bi-Directional Update Set-
ting. We now prove seven equivalences of the trivial win conditions. As a
result, we have that in any security game if the trivial win conditions in the
uni-directional update setting are triggered then the same trivial win conditions
in the bi-directional update setting would be triggered as well. We will use these
trivial win equivalences to prove the relation between uni- and bi-directional
variants of security notions in Theorem 2.

The following two lemmas show that UE schemes with uni-directional
updates has less leakage than UE schemes with bi-directional updates.

Lemma 4. For any sets K, T , C and any kk ∈ {uni, bi}, we have C∗
kk,uni ⊆ C∗

kk,bi,
L̃∗
kk,uni ⊆ L̃∗

kk,bi, Q̃∗
kk,uni ⊆ Q̃∗

kk,bi, L∗
kk,uni ⊆ L∗

kk,bi, and Q∗
kk,uni ⊆ Q∗

kk,bi.

Proof. For any fixed kk-directional key updates, uni-directional ciphertext
updates has less leakage than bi-directional ciphertext updates. More precisely,
for any K, T , C and a fixed kk, we compute K∗

kk, T ∗
kk, C∗

kk,uni and C∗
kk,bi using Eqs. (1,

2, 3, 4, 5). Then we have C∗
kk,uni ⊆ C∗

kk,bi. Furthermore, we use algorithms discussed
in Sect. 2.6 to compute ciphertext/message leakage sets L̃∗, Q̃∗,L∗,Q∗. Similarly
we get L̃∗

kk,uni ⊆ L̃∗
kk,bi, Q̃∗

kk,uni ⊆ Q̃∗
kk,bi, L∗

kk,uni ⊆ L∗
kk,bi, and Q∗

kk,uni ⊆ Q∗
kk,bi.

Lemma 5. For any sets K, T , C and any cc ∈ {uni, bi}, we have K∗
uni ⊆ K∗

bi,
T ∗
uni ⊆ T ∗

bi , C∗
uni,cc ⊆ C∗

bi,cc, L̃∗
uni,cc ⊆ L̃∗

bi,cc, Q̃∗
uni,cc ⊆ Q̃∗

bi,cc, L∗
uni,cc ⊆ L∗

bi,cc and
Q∗

uni,cc ⊆ Q∗
bi,cc.

Proof. The proof is similar to the proof of Lemma4. For any fixed cc-
directional ciphertext updates, uni-directional key updates has less leakage than
bi-directional key updates. More precisely, for any K, T , C and a fixed cc, we
compute K∗

uni, K∗
bi, T ∗

uni, T ∗
bi , C∗

uni,cc and C∗
bi,cc using Eqs. (1, 2, 3, 4, 5). Then we

have K∗
uni ⊆ K∗

bi, T ∗
uni ⊆ T ∗

bi , and therefore C∗
uni,cc ⊆ C∗

bi,cc. Furthermore, we use
algorithms discussed in Sect. 2.6 to compute ciphertext/message leakage sets
L̃∗, Q̃∗,L∗,Q∗. Similarly we get L̃∗

uni,cc ⊆ L̃∗
bi,cc, Q̃∗

uni,cc ⊆ Q̃∗
bi,cc, L∗

uni,cc ⊆ L∗
bi,cc

and Q∗
uni,cc ⊆ Q∗

bi,cc.

Equivalence for Trivial Win Condition “ K∗ ∩ C∗
= ∅” .

Lemma 6. For any sets K, T , C ⊆ {0, ..., l}, we have K∗
uni ∩ C∗

uni,uni
= ∅ ⇐⇒
K∗

bi ∩ C∗
bi,bi
= ∅.

Proof. For any K, T , C, we compute K∗
uni, C∗

uni,uni,K∗
bi and C∗

bi,bi using Eqs. (1, 2,
4, 5).

The Direction of Updatable Encryption Does Not Matter Much 547

Note that K∗
uni ⊆ K∗

bi and C∗
uni,uni ⊆ C∗

bi,bi, so K∗
uni ∩ C∗

uni,uni ⊆ K∗
bi ∩ C∗

bi,bi. It
suffices to prove

K∗
bi ∩ C∗

bi,bi
= ∅ =⇒ K∗
uni ∩ C∗

uni,uni
= ∅.

Suppose K∗
bi∩C∗

bi,bi
= ∅. We know that firewalls provide cryptographic separa-
tion, which make sure insulated regions are isolated from other insulated regions
and the complementary set of all insulated regions. If the adversary never asks
for any challenge-equal ciphertext in an epoch in the set {0, ..., l} \ IR, then
the adversary cannot infer any challenge-equal ciphertext in this set even in
the bi-directional update setting. That is, C∗

bi,bi ∩ ({0, ..., l} \ IR) = ∅. However,

{0, ..., l} \ IR Lemma 1= K∗
bi, then K∗

bi ∩ C∗
bi,bi = ∅, which contradicts with the

assumption. Therefore, there exists an epoch e′ ∈ {0, ..., l} \ IR such that the
adversary has asked for a challenge-equal ciphertext in this epoch, that is e′ ∈ C.

By Lemma 3, we know that e′ is located in an epoch set which is either
type 1 or type 2. Suppose e′ ∈ {estart, ..., eend}, we know that the epoch key keend

is known to the adversary even in the uni-directional key update setting, i.e.
eend ∈ K∗

uni. Furthermore, all tokens Δe′+1, ...,Δeend are known to the adversary
even in the uni-directional key update setting. Hence, the adversary can update
the challenge-equal ciphertext c̃e′ from epoch e′ to epoch eend to know c̃eend .
Which means eend ∈ K∗

uni ∩ C∗
uni,uni, we have K∗

uni ∩ C∗
uni,uni
= ∅.

As a corollary of Lemma 4 to 6, we have the following equivalence. We only
provide Corollary 1 with a fully detailed proof, since we will use similar proof
techniques for Corollary 2 to 5.

Corollary 1. For any sets K, T , C ⊆ {0, ..., l}, we have K∗
uni ∩ C∗

uni,uni
= ∅ ⇐⇒
K∗

uni ∩ C∗
uni,bi
= ∅ ⇐⇒ K∗

bi ∩ C∗
bi,uni
= ∅ ⇐⇒ K∗

bi ∩ C∗
bi,bi
= ∅.

Proof. By Lemma 4, we have C∗
uni,uni ⊆ C∗

uni,bi. By Lemma 5, we have C∗
uni,bi ⊆

C∗
bi,bi. Hence, K∗

uni ∩ C∗
uni,uni ⊆ K∗

uni ∩ C∗
uni,bi ⊆ K∗

bi ∩ C∗
bi,bi. By Lemma 6, we have

K∗
uni ∩ C∗

uni,uni
= ∅ ⇐⇒ K∗
bi ∩ C∗

bi,bi
= ∅ ⇐⇒ K∗
uni ∩ C∗

uni,bi
= ∅.

Similarly, we have K∗
uni ∩ C∗

uni,uni

Lemma 5
⊆ K∗

bi ∩ C∗
bi,uni

Lemma 4
⊆ K∗

bi ∩ C∗
bi,bi and

therefore K∗
uni ∩ C∗

uni,uni
= ∅ ⇐⇒ K∗
bi ∩ C∗

bi,bi
= ∅ ⇐⇒ K∗
bi ∩ C∗

bi,uni
= ∅.

Remark 7. If the trivial win condition “K∗ ∩ C∗
= ∅” is never triggered in the
uni- or bi-directional update setting, then by Corollary 1 we have K∗

bi∩C∗
bi,bi = ∅.

By Lemma 1, we have {0, ..., l}\K∗
bi = IR. Therefore, C∗

uni,uni ⊆ C∗
bi,bi ⊆ {0, ..., l}\

K∗
bi = IR. The relationship among the sets C∗

uni,uni, C∗
bi,bi, IR,K∗

uni,K∗
bi is shown

in Fig. 11.

K∗
bi IRK∗

uni C∗
bi,biC∗

uni,uni

Fig. 11. The relationship among the sets C∗
uni,uni, C∗

bi,bi, IR,K∗
uni,K∗

bi if the trivial win
condition “K∗

kk ∩ C∗
kk,cc �= ∅” is never triggered for any kk, cc ∈ {uni, bi}.

548 Y. Jiang

Equivalence for Trivial Win Condition “ ẽ∈T ∗ or O.Upd(c̄) is queried”. The
event “O.Upd(c̄) is queried” is independent of the key and ciphertext updates,
so this trivial win condition is either triggered or not triggered in all variants
of a security notion. The following Lemma shows that if the challenge token is
known to the adversary in the bi-directional key update setting, then it is also
known to the adversary in the uni-directional key update setting.

Lemma 7. For any K, T , C. Suppose K∗
kk ∩ C∗

kk,cc = ∅, where kk, cc ∈ {uni, bi},
then ẽ∈T ∗

no ⇐⇒ ẽ∈T ∗
uni ⇐⇒ ẽ∈T ∗

bi

Proof. We know that the challenge epoch ẽ ∈ C, so ẽ
∈ K∗
kk for any kk-key

updates, where kk ∈ {uni, bi}. Since the adversary does not know the key kẽ,
which is needed to infer the update token Δẽ, so token Δẽ cannot be inferred
by the adversary. Therefore, ẽ ∈ T ∗

kk if and only if ẽ ∈ T . Hence ẽ ∈ T ⇐⇒ ẽ∈
T ∗
no ⇐⇒ ẽ∈T ∗

uni ⇐⇒ ẽ∈T ∗
bi .

From now on until the end of this section, we assume the adversary queries
a decryption oracle O.Dec(c) or a try oracle O.Try(c) in epoch e. We consider
trivial win conditions which are checked in these oracles.

Equivalence for Trivial Win Condition “ (c, e) ∈ L̃∗” .

Lemma 8. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗
bi ∩ C∗

bi,bi = ∅, then
(c, e) ∈ L̃∗

uni,uni ⇐⇒ (c, e) ∈ L̃∗
bi,bi.

Proof. By Remark 7 we have C∗
uni,uni ⊆ C∗

bi,bi ⊆ IR. By Remark 1 we have (c̃e, e) ∈
L̃∗ ⇐⇒ e ∈ C∗. Therefore, if (c, e) ∈ L̃∗

uni,uni we have e ∈ C∗
uni,uni ⊆ C∗

bi,bi and
(c, e) ∈ L̃∗

bi,bi.
If (c, e) ∈ L̃∗

bi,bi, then e ∈ C∗
bi,bi ⊆ IR. Suppose {fwl, ..., e} is the last insulated

region. If the adversary never asks for any challenge-equal ciphertext in this
region, then {fwl, ..., e}∩C∗

bi,bi = ∅, which contradicts with e ∈ C∗
bi,bi ∩{fwl, ..., e}.

Hence, {fwl, ..., e} ∩ C
= ∅, and we can assume e′ ∈ {fwl, ..., e} ∩ C. By the
definition of insulated region we have {fwl+1, ..., e} ⊆ T , and the adversary can
update the challenge-equal ciphertext c̃e′ from epoch e′ to epoch e to know c̃e,
i.e. e ∈ C∗

uni,uni. Therefore, (c, e) ∈ L̃∗
uni,uni as well.

As a corollary of Lemma 4, Lemma 5 and Lemma 8, we have the following
result. The proof is similar to the proof of Corollary 1.

Corollary 2. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗
bi ∩ C∗

bi,bi = ∅, then
(c, e) ∈ L̃∗

uni,uni ⇐⇒ (c, e) ∈ L̃∗
uni,bi ⇐⇒ (c, e) ∈ L̃∗

bi,uni ⇐⇒ (c, e) ∈ L̃∗
bi,bi.

Equivalence for Trivial Win Condition “ (m′, e) ∈ Q̃∗” .

Lemma 9. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗
bi ∩ C∗

bi,bi = ∅, then
(m′, e) ∈ Q̃∗

uni,uni ⇐⇒ (m′, e) ∈ Q̃∗
bi,bi.

The Direction of Updatable Encryption Does Not Matter Much 549

Proof. The proof is similar to the proof of Lemma 8. We use the property that
(m′, e) ∈ Q̃∗ ⇐⇒ e ∈ C∗.

As a corollary of Lemma 4, Lemma 5 and Lemma 9, we have the following
result. The proof is similar to the proof of Corollary 1.

Corollary 3. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗
bi ∩ C∗

bi,bi = ∅, then
(m′, e)∈Q̃∗

uni,uni ⇐⇒ (m′, e)∈Q̃∗
uni,bi ⇐⇒ (m′, e)∈Q̃∗

bi,uni ⇐⇒ (m′, e)∈Q̃∗
bi,bi.

Equivalence for Trivial Win Condition“ e ∈ K∗” .

Lemma 10. For any sets K, T , C ⊆ {0, ..., e}, we have e ∈ K∗
uni ⇐⇒ e ∈ K∗

bi.

Proof. The adversary never knows any information in the future, that is, the
adversary does not know a key in an epoch ê > e. If the adversary knows the
current epoch key ke, then it is either a corrupted key or a key inferred from
prior epoch key, thus e ∈ K∗

uni ⇐⇒ e ∈ K∗
bi.

Equivalence for Trivial Win Condition“ (c, e) ∈ L∗” .

Lemma 11. For any sets K, T , C ⊆ {0, ..., e}. Suppose e
∈ K∗
bi, then (c, e) ∈

L∗
uni,uni ⇐⇒ (c, e) ∈ L∗

bi,bi.

Proof. By assumption and Lemma 10 the current epoch e
∈ K∗
kk for any kk ∈

{uni, bi}. We know that, by Remark 6, e is located in an insulated region, assume
it is in {fwl, ..., e}. Thus tokens Δfwl+1, ...,Δe are known to the adversary in any
update setting, that is, {fwl + 1, ..., e} ⊆ T ⊆ T ∗

uni ⊆ T ∗
bi . If the adversary never

asks for any ciphertext in this region, then there is no ciphertext in epoch e
located in the set L∗

kk,cc for any (kk, cc). For all ciphertexts the adversary learns
in an epoch i with i ∈ {fwl, ..., e}, the adversary can update them to epoch e
using tokens. Hence, we have (c, e) ∈ L∗

uni,uni ⇐⇒ (c, e) ∈ L∗
bi,bi.

As a corollary of Lemma 4, Lemma 5 and Lemma 11, we have the following
result. The proof is similar to the proof of Corollary 1.

Corollary 4. For any sets K, T , C ⊆ {0, ..., e}. Suppose e
∈ K∗
bi, then (c, e) ∈

L∗
uni,uni ⇐⇒ (c, e) ∈ L∗

uni,bi ⇐⇒ (c, e) ∈ L∗
bi,uni ⇐⇒ (c, e) ∈ L∗

bi,bi.

Equivalence for Trivial Win Condition“ (m′, e) ∈ Q∗” .

Lemma 12. For any sets K, T , C ⊆ {0, ..., e}. Suppose e
∈ K∗
bi, then (m′, e) ∈

Q∗
uni,uni ⇐⇒ (m′, e) ∈ Q∗

bi,bi.

Proof. The proof is similar to the proof of Lemma 11. As e
∈ K∗
kk for any

kk ∈ {uni, bi}, we know that e is located in an insulated region. Assume it is
in {fwl, ..., e}, then the adversary has corrupted the tokens Δfwl+1, ...,Δe. If the
adversary never asks for any ciphertext with the underlying message m′ in this
region, then (m′, e)
∈ Q∗

kk,cc for any (kk, cc). Otherwise, suppose (·, ci, i;m′) ∈ L
with i ∈ {fwl, ..., e}, then the adversary can update ci, via tokens Δi+1, ...,Δe,
to a ciphertext in epoch e with the underlying message m′ and we have (m′, e) ∈
Q∗

kk,cc for any (kk, cc).

550 Y. Jiang

As a corollary of Lemma 4, Lemma 5 and Lemma 12, we have the following
result. The proof is similar to the proof of Corollary 1.

Corollary 5. For any sets K, T , C ⊆ {0, ..., e}. Suppose e
∈ K∗
bi, then (m′, e) ∈

Q∗
uni,uni ⇐⇒ (m′, e) ∈ Q∗

uni,bi ⇐⇒ (m′, e) ∈ Q∗
bi,uni ⇐⇒ (m′, e) ∈ Q∗

bi,bi.

3.2 Relations Among Security Notions

In Fig. 12, Fig. 13 and Fig. 14, we show the relationship among six variants of
the same security notion for UE schemes.

Figure 12 demonstrates that the uni- and bi-directional update variants of the
same security notion are equivalent, which means that the security notions (con-
fidentiality and integrity) in the uni-directional update setting are not strictly
stronger than the corresponding security notions in the bi-directional update
setting. Hence, the security of a UE scheme is not influenced if the update set-
ting is uni- or bi-directional. In terms of confidentiality and integrity, when we
analyze the security of a UE scheme we can analyze the security based on the
UE scheme with bi-directional updates.

The six variants of confidentiality notions have the relationship shown in
Fig. 13, where we present that the (no, uni)- variant of any confidentiality notion
is strictly stronger than the other five variants of the corresponding confidential-
ity notion.

The six variants of integrity notions have the relationship shown in Fig. 14.
No-directional key update variants of the same integrity notion is strictly
stronger than the uni- or bi-directional key update variants. However, the
two variants of no-directional key update notions are equivalent, that is, for
the integrity notions uni- or bi-directional ciphertext update setting (with no-
directional key updates) does not matter much.

It is ideal to construct an efficient UE scheme with no-directional key updates
and uni-directional ciphertext updates. However, whether such a scheme exists
is an open problem.

Theorem 1 (Informal Theorem). The relations among the six variants of the
same security notion are as in Fig. 12, Fig. 13 and Fig. 14. The precise results
are stated and proven in the full version [13] and due to space constraints we
only show Theorem2.

(bi, bi)-notion (bi, uni)-notion (uni, bi)-notion (uni, uni)-notion
Thm. 2 Thm. 2Thm. 2

Fig. 12. Relations among the uni- and bi-directional update variants of the same secu-
rity notion, where notion ∈ {INT-CTXT, INT-PTXT, detIND-UE-CPA, randIND-UE-CPA,
detIND-UE-CCA, randIND-UE-CCA}.

The Direction of Updatable Encryption Does Not Matter Much 551

(no, uni)-notion (no, bi)-notion (kk, cc)-notion
*

*

*

\

*

Fig. 13. Relations among the six variants of the same confidentiality notion, where
kk, cc ∈ {uni, bi} and notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA}. Results that are given only in the full version [13] are marked with
∗.

(no, uni)-notion (no, bi)-notion (kk, cc)-notion
*

*

*

\

*

Fig. 14. Relations among the six variants of the same integrity notion, where kk, cc ∈
{uni, bi} and notion ∈ {INT-CTXT, INT-PTXT}. Results that are given only in the full
version [13] are marked with ∗.

Remark 8 (Informal intuition of these relations). Consider the following confi-
dentiality game, where we have an adversary against some variant of the con-
fidentiality game for a UE scheme. The adversary corrupts a key k1 and a
token Δ2, and asks for a challenge ciphertext in epoch 2. For both uni- and
bi-directional key update settings, the adversary can move the key k1 to epoch
2 and decrypt the challenge ciphertext to trivially win the confidentiality game.
If the UE scheme has no-directional key updates and bi-directional ciphertext
updates, the adversary can move the challenge ciphertext back to epoch 1 and
decrypt it to trivially win the confidentiality game. However, if the UE scheme
has no-directional key updates and uni-directional ciphertext updates, the adver-
sary cannot trivially win the confidentiality game in this action.

Similarly, we consider the following integrity game, where we have an adver-
sary against some variant of the integrity game for a UE scheme. The adversary
corrupts a key k1 and a token Δ2, and queries a try oracle in epoch 2. For both
uni- and bi-directional key update settings, the adversary can move the key k1

to epoch 2 and provide forgeries in epoch 2 to trivially win the integrity game.
However, if the UE scheme has no-directional key updates the adversary does
not know k2, and cannot trivially win the integrity game.

The following Theorem shows that for any kk, cc, kk′, cc′ ∈ {uni, bi}, (kk′, cc′)-
notion implies (kk, cc)-notion. Consequently, all four uni- and bi-directional
update variants of the same notion are equivalent.

Theorem 2. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updat-
able encryption scheme and notion ∈ {INT-CTXT, INT-PTXT, detIND-UE-CPA,
randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}. For any kk, cc, kk′, cc′ ∈
{uni, bi} and any (kk, cc)-notion adversary A against UE, there exists a (kk′, cc′)-
notion adversary B2 against UE such that

Adv(kk,cc)-notion
UE, A (1λ) = Adv(kk′,cc′)-notion

UE, B2
(1λ).

552 Y. Jiang

Proof. We construct a reduction B2 running the (kk′, cc′)-notion experiment
which will simulate the responses of queries made by the (kk, cc)-notion adver-
sary A. The reduction will send all queries received from A to its (kk′, cc′)-notion
challenger, and forwarding the responses to A. Eventually, the reduction receives
a guess from A and forwards it to its own challenger. In the end, the
(kk′, cc′)-notion challenger evaluates whether or not the reduction wins, if a triv-
ial win condition was triggered the reduction is considered as losing the game.
This final win evaluation will be passed to the adversary A.

By the analysis of trivial win equivalences in Sect. 3.1 (Corollary 1 to 5,
Lemma 7 and Lemma 10), we have that if A does not trigger the trivial win
conditions in the (kk, cc)-notion game, then the reduction will not trigger the
trivial win conditions in the (kk′, cc′)-notion game either. Similarly, if A does
trigger the trivial win conditions in the (kk, cc)-notion game, then the reduction
will also trigger the trivial win conditions in the (kk′, cc′)-notion game. Hence,
the reduction perfectly simulates the (kk, cc)-notion game to adversary A. And
we have Adv(kk′,cc′)-notion

UE, B2
(1λ) = Adv(kk,cc)-notion

UE, A (1λ).

Remark 9. For any
notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA, INT-CTXT, INT-PTXT}, all four uni- and bi-directional
update variants of the same notion are equivalent. We will use the (bi, bi)-notion
variant to prove notion security for a specific UE schemes. For simplicity, we will
denote the notion (bi, bi)-notion as notion.

4 LWE-based PKE Scheme

In this section, we look at an LWE-based PKE scheme LWEPKE, which is detailed
in Fig. 15. We prove that LWEPKE is IND$-CPA-secure, if the underlying LWE
problem is hard. We will later use this PKE scheme to construct an updatable
encryption scheme in Sect. 5.

4.1 PKE Construction

In the setup phase, the scheme LWEPKE randomly chooses a matrix A $←− Z
m×n
q .

The key generation algorithm samples a secret s from the uniform distribution
U(Zn

q) and computes p = A · s+e, where the error e is chosen from the discrete
Gaussian distribution Dm

Z,α. The matrix A and the vector p form the public key.
Encryption takes a bit string m ∈ {0, 1}1×t as input, and outputs a ciphertext
(Aᵀ · R,pᵀ · R + e′ + q

2m mod q). Decryption is performed by computing d =
c2 − sᵀ · C1. For each entry di of d, the decryption algorithm outputs 0 if di is
close to 0 mod q, and outputs 1 if di is close to q

2 mod q.

Parameter Setting. The parameter setting of the scheme LWEPKE is as follows:

– n = λ is the security parameter,

The Direction of Updatable Encryption Does Not Matter Much 553

LWEPKE.Setup(1λ) :

A $←− Z
m×n
q

LWEPKE.KG(1λ) :
s ← U(Zn

q)
e ← Dm

Z,α

p ← A · s+ e mod q
return (s,p)

LWEPKE.Enc(p,m) :
R ← Dt

r

e′ ← D1×t
Z,β

C1 ← Aᵀ · R
c2 ← pᵀ · R+ e′ + q

2
m mod q

return (C1, c2)

LWEPKE.Dec(s, c) :
parse c = (C1, c2)
d ← c2 − sᵀ · C1

parse d = (d1, ..., dt)
for i ∈ {1, 2, ..., t} do
if di ∈ (3q

8
, 5q

8
) then

m′
i ← 1

else if di ∈ (− q
8
, q
8
) then

m′
i ← 0

else
return ⊥

m′ ← (m′
1, ..., m′

t)
return m′

Fig. 15. The algorithms of the LWE-based LWEPKE scheme. The randomness distribu-
tion Dr is defined over Zm

q . DZ,α, DZ,β are discrete Gaussian distributions. The message
m lies in {0, 1}1×t.

– q = q(n) ≥ 2 be a prime,
– m = poly(n) and t = poly(n) be two integers,
– Dr be a distribution over Z

m
q with min-entropy k such that n ≤ (k −

2 log(1/ε) − O(1))/ log(q) for negligible ε > 0, the infinite norm of the vector
outputted by this distribution is at most B = poly(n) with overwhelming
probability,

– α, β > 0 be two numbers such that β ≤ q
8 and αB/β = negl(n).

– DZ,α and DZ,β be two discrete Gaussian distributions.

Remark 10. We specify that all operations in this paper are done in field Zq,
and stop writing mod q for the rest of this paper.

4.2 Correctness and Security

Correctness. We claim that LWEPKE.Dec decrypts correctly with overwhelming
probability. The decryption algorithm computes d = c2 − sᵀ ·C1 = eᵀ ·R+ e′ +
q
2m, and outputs m if eᵀ · R + e′ has distance at most q

8 from 0 mod q. The
detailed analysis of the correctness is provided in the full version [13].

Security. We now show that LWEPKE is IND$-CPA-secure under the assumption
that the DLWEn,q,α problem is hard.

Theorem 3. Let LWEPKE be the public key encryption described in Fig. 15,
using the parameter setting described in Sect. 4.1. Then for any adversary
IND$-CPA A against LWEPKE, there exists an adversary B against DLWEn,q,α

such that
AdvIND$-CPA

LWEPKE, A(1λ) ≤ tε + AdvDLWE
n,q,α (B) + negl(n).

554 Y. Jiang

Proof sketch. We sketch the main idea of the proof and provide the full details
in the full version [13]. We claim that the real challenge ciphertext (C1, c2) is
statistically close to the ciphertext generated as (C1, sᵀ · C1 + e′). Then first
entry C1 is statistically close to a random element because of the leftover hash
lemma, and therefore the whole ciphertext (C1, sᵀ ·C1 + e′) is computationally
indistinguishable from a random ciphertext based on the hardness of the learning
with error.

5 LWE-based Updatable Encryption Scheme

We construct an LWE-based updatable encryption scheme LWEUE and prove
that it is randIND-UE-CPA secure if the underlying LWE problem is hard.

5.1 UE Construction

We now introduce our updatable encryption scheme LWEUE, which is param-
eterized by an LWE-based PKE scheme LWEPKE (see Fig. 15). LWEUE uses
algorithms from LWEPKE to do key generation, encryption and decryption. To
generate a new key from an old key in the next algorithm, our UE scheme uses
the homomorphic property of the LWE pairs. In particular, suppose the old key
is (se,pe), LWEUE.KG samples a new pair of LWE pairs (Δs

e+1,Δ
p
e+1) and sets

(se+Δs
e+1,pe+Δp

e+1) as the new epoch key, where (Δs
e+1,pe+Δp

e+1) is the update
token. To update ciphertexts, LWEUE uses the re-randomization idea that was
similar to the idea from RISE in the work by Lehmann and Tackmann [15]. As
the ciphertext can be re-randomized by the update token, the update algorithm
uses the update token to update ciphertext from an old one to a new one. More
precisely, the scheme LWEUE is described in Fig. 16.

Parameter Setting We use the parameter setting of the scheme LWEPKE,
described in Sect. 4.1. Additionally, we require β ≤ q

8
√

l
, where l = poly(n) is

an upper bound on the last epoch.

5.2 Construction Challenges in LWE-based UE Schemes

In this section, we discuss leakage from tokens due to bad UE construction and
show how to solve this leakage problems.

Secret Key Distribution. We first state that a binary secret does not work in the
UE scheme, as an update token might reveal the secret information. Suppose
an entry of the update token Δs

e+1(= se+1 − se) is -1 (1, resp.), then we can
conclude the corresponding entry of the previous secret se is 1 (0, resp.) and the
corresponding entry of the new secret se+1 is 0 (1, resp.).

We choose that secret keys and update tokens are sampled from the uniform
distribution over Zn

q , which ensures that any corrupted token will not reveal any
information about the relevant secret keys.

The Direction of Updatable Encryption Does Not Matter Much 555

Setup(1λ) :
A ← LWEPKE.Setup(1λ)

LWEUE.KG(1λ) :
if e = 0 then
(s0,p0) ← LWEPKE.KG(1λ)

else
parse ke−1 = (se−1,pe−1)
(Δs

e , Δ
p
e) ← LWEPKE.KG(1λ)

se ← se−1 + Δs
e

pe ← pe−1 + Δp
e

ke ← (se,pe)
return ke

LWEUE.TG(ke,ke+1) :
parse ke = (se,pe)
parse ke+1 = (se+1,pe+1)
Δs

e+1 ← se+1 − se
Δe+1 ← (Δs

e+1,pe+1)
return Δe+1

LWEUE.Enc(ke,m) :
parse ke = (se,pe)
ce ← LWEPKE.Enc(pe,m)
return ce

LWEUE.Dec(ke, ce) :
parse ke = (se,pe)
m′ ← LWEPKE.Dec(se, ce)
return m′

LWEUE.Upd(Δe+1, ce) :
parse Δe+1 = (Δs

e+1,pe+1)
parse ce = (C1

e , c
2
e)

(C1, c2) $←− LWEPKE.Enc(pe+1,0)
C1

e+1 ← C1
e +C1

c2e+1 ← c2e + (Δs
e+1)ᵀ · C1

e + c2

ce+1 ← (C1
e+1, c

2
e+1)

return ce+1

Fig. 16. The algorithms of LWE-based updatable encryption scheme LWEUE, which is
parameterized by an LWE-based PKE scheme LWEPKE.

Epoch Key Generation. Intuitively, it is natural to consider generating the epoch
keys by sampling a secret si ← U(Zn

q) and setting the public key to be pi =
A ·si +ei, where ei ← Dm

Z,α. Then the update token is set as Δi = (si −si−1,pi).
In a confidentiality game for such UE schemes, suppose the adversary knows

two consecutive tokens Δi−1 and Δi. Using these tokens the adversary can com-
pute pi − pi−1 − A · Δs

i = ei − ei−1, and knows ei − ei−1. Which means if
the adversary knows a set of consecutive tokens Δi,Δi+1, ...,Δi+j then it will
also know {ei+1 − ei, ei+2 − ei, ..., ei+j − ei}, the values in this set are sampled
from a discrete Gaussian distribution centered at ei. Through evaluating these
errors the adversary can possibly find the error value ei and therefore knows
the secret value si. Furthermore, the adversary is allowed to ask for a challenge-
equal ciphertext in epoch i, which will not trigger the trivial win condition, and
can therefore break this confidentiality game. The above attack shows that this
epoch key generation approach is not safe, it might leak the secret epoch key
information.

We choose to generate a fresh pair (Δs
e+1,Δ

p
e+1) to compute the new

epoch key and the update token, which makes sure the update token Δe+1 =
(Δs

e+1,pe+1) is independent from the previous epoch key. Additionally, this pair
is computationally indistinguishable from a uniformly random pair as long as
the underlying LWE problem is hard.

556 Y. Jiang

5.3 Correctness

Errors in updated ciphertexts increase when they are updated. Since the total
number of epochs is bounded with a comparatively small integer l, the UE
scheme supports a limited number of ciphertext updates. As a result, errors in
updated ciphertexts will not grow too big and the decryption will be correct with
overwhelming probability for some parameter setting. The correctness analysis
is discussed in the full version [13].

5.4 Challenges of the Security Proof in LWE-based UE Schemes

In this section we highlight the difficulties when proving that LWEUE is a secure
UE scheme, specifically, our UE scheme has a randomized update algorithm.
Lehmann and Tackmann [15] and Klooß et al. [14] both described a method,
similar to each other, to prove that updatable encryption schemes with random-
ized update algorithms are secure. Their technique can be seen when they prove
that RISE and NYUE (NYUAE) are secure, resp. However, this method can not
be directly used to prove that LWEUE is secure. The method introduced requires
that UE schemes have perfect re-encryption, which means the distribution of
updated ciphertexts has the same distribution as fresh encryptions. In their
proof, they replace updated ciphertexts by fresh encryptions of the underlying
messages. However, in the LWEUE scheme, we cannot simply replace updated
ciphertexts by a fresh encryption because the randomness terms and the error
terms grow while updating and an updated ciphertext does not have the same
distribution as a fresh encryption.

5.5 Security

If LWEPKE is IND$-CPA-secure then the output of the encryption algorithm is
computationally indistinguishable from a pair of uniformly random elements.
Hence, the fresh encryption in the LWEUE scheme is computationally indistin-
guishable from a pair of uniformly random elements as well. Furthermore, the
update algorithm LWEUE.Upd runs the encryption algorithm of LWEPKE to re-
randomize the old ciphertext to a new ciphertext, therefore, the updated cipher-
text is also computationally indistinguishable from a pair of uniformly random
elements. So, a fresh encryption is computationally indistinguishable from an
updated ciphertext and LWEUE is randIND-UE-CPA secure (see Definition 1).
This provides the underlying intuition for the security proof.

The full proof of Theorem 4 is given in the full version [13].

Theorem 4 (LWEUE is randIND-UE-CPA). Let LWEUE be the updatable
encryption scheme described in Fig. 16, using parameter setting described in
Sect. 5.1. For any randIND-UE-CPA adversary A against LWEUE, there exists
an adversary B4 against DLWEn,q,α such that

AdvrandIND-UE-CPA
LWEUE, A (1λ) ≤ 2(l + 1)3 ·

(

tε + 3AdvDLWE
n,q,α (B4) + negl(n)

)

.

The Direction of Updatable Encryption Does Not Matter Much 557

Remark 11. Klooß et al. [14] introduced a generic construction of transform-
ing CPA-secure UE schemes to UE schemes with PTXT and RCCA security.
The main idea is to use the extended Naor-Yung (NY) CCA-transform [17]
(for public-key schemes). The NY approach is to encrypt a message under two
(public) keys of a CPA-secure encryption scheme. The extended NY approach
additionally includes a proof that shows the owner knows a valid signature that
contains the NY ciphertext pair and the underlying message. A potential future
work would be to incorporate LWEUE to their construction to create a UE scheme
that achieves PTXT and RCCA security.

Acknowledgements. We would like to thank Gareth T. Davies, Herman Galteland
and Kristian Gjøsteen for fruitful discussions, and the anonymous reviewers for a num-
ber of valuable suggestions.

References

1. Alkim, E., et al.: FrodoKEM: learning with errors key encapsulation.
https://frodokem.org/files/FrodoKEM-specification-20190330.pdf. Submission to
the NIST Post-Quantum Standardization project, round 2

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum Key exchange -
a new hope. In: USENIX Security Symposium, pp. 327–343. USENIX Association
(2016)

3. Avanzi, R., et al.: CRYSTALS-Kyber (version 2.0). https://pq-crystals.org/kyber/
data/kyber-specification-round2.pdf. Submission to the NIST Post-Quantum
Standardization project, round 2

4. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72565-9 12

5. Boneh, D., Eskandarian, S., Kim, S., Shih, M.: Improving speed and security in
updatable encryption schemes. IACR Cryptol. ePrint Arch. 2020, 222 (2020).
https://eprint.iacr.org/2020/222

6. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

7. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. IACR Cryptol. ePrint Arch. 2015, 220 (2015). http://
eprint.iacr.org/2015/220

8. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable encryp-
tion. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp.
464–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 16

9. Chen, C., et al.: NTRU. https://ntru.org/f/ntru-20190330.pdf. Submission to the
NIST Post-Quantum Standardization project, round 2

10. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

https://frodokem.org/files/FrodoKEM-specification-20190330.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://eprint.iacr.org/2020/222
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
http://eprint.iacr.org/2015/220
http://eprint.iacr.org/2015/220
https://doi.org/10.1007/978-3-030-56784-2_16
https://ntru.org/f/ntru-20190330.pdf
https://doi.org/10.1007/978-3-319-89339-6_16

558 Y. Jiang

11. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenti-
cated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10403, pp. 98–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 4

12. Hamburg, M.: Three Bears. https://sourceforge.net/projects/threebears/. Submis-
sion to the NIST Post-Quantum Standardization project, round 2

13. Jiang, Y.: The direction of updatable encryption does not matter much. Cryptology
ePrint Archive, Report 2020/622 (2020). https://eprint.iacr.org/2020/622

14. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11476, pp. 68–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2 3

15. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
685–716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 22

16. Lu, X., et al.: LAC Lattice-based Cryptosystems. Submission to the NIST Post-
Quantum Standardization project, round 2 (2018)

17. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM Sym-
posium on Theory of Computing, 13–17 May 1990, Baltimore, Maryland, USA,
pp. 427–437. ACM (1990). https://doi.org/10.1145/100216.100273

18. Oscar, G.M., et al.: Round5. https://round5.org. Submission to the NIST Post-
Quantum Standardization project, round 2

https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://sourceforge.net/projects/threebears/
https://eprint.iacr.org/2020/622
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1145/100216.100273
https://round5.org

Improving Speed and Security in
Updatable Encryption Schemes

Dan Boneh1, Saba Eskandarian1(B), Sam Kim1,2, and Maurice Shih3

1 Stanford University, Stanford, CA, USA
saba@cs.stanford.edu

2 Simons Institute for the Theory of Computing, Berkeley, CA, USA
3 Cisco Systems, San Jose, CA, USA

Abstract. Periodic key rotation is a common practice designed to limit
the long-term power of cryptographic keys. Key rotation refers to the
process of re-encrypting encrypted content under a fresh key, and over-
writing the old ciphertext with the new one. When encrypted data is
stored in the cloud, key rotation can be very costly: it may require down-
loading the entire encrypted content from the cloud, re-encrypting it on
the client’s machine, and uploading the new ciphertext back to the cloud.

An updatable encryption scheme is a symmetric-key encryption
scheme designed to support efficient key rotation in the cloud. The
data owner sends a short update token to the cloud. This update token
lets the cloud rotate the ciphertext from the old key to the new key,
without learning any information about the plaintext. Recent work on
updatable encryption has led to several security definitions and pro-
posed constructions. However, existing constructions are not yet efficient
enough for practical adoption, and the existing security definitions can be
strengthened.

In this work we make three contributions. First, we introduce stronger
security definitions for updatable encryption (in the ciphertext-dependent
setting) that capture desirable security properties not covered in prior
work. Second, we construct two new updatable encryption schemes. The
first construction relies only on symmetric cryptographic primitives, but
only supports a bounded number of key rotations. The second construc-
tion supports a (nearly) unbounded number of updates, and is built from
the Ring Learning with Errors (RLWE) assumption. Due to complexities
of using RLWE, this scheme achieves a slightly weaker notion of integrity
compared to the first. Finally, we implement both constructions and com-
pare their performance to prior work. Our RLWE-based construction is
200× faster than a prior proposal for an updatable encryption scheme
based on the hardness of elliptic curve DDH. Our first construction, based
entirely on symmetric primitives, has the highest encryption through-
put, approaching the performance of AES, and the highest decryption
throughput on ciphertexts that were re-encrypted fewer than fifty times.
For ciphertexts re-encrypted over fifty times, the RLWE construction
dominates it in decryption speed.

The full version of this paper is available at https://eprint.iacr.org/2020/222.pdf.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 559–589, 2020.
https://doi.org/10.1007/978-3-030-64840-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_19&domain=pdf
https://eprint.iacr.org/2020/222.pdf
https://doi.org/10.1007/978-3-030-64840-4_19

560 D. Boneh et al.

1 Introduction

Consider a ciphertext ct that is a symmetric encryption of some data using key k.
Key rotation is the process of decrypting ct using k, and re-encrypting the result
using a fresh key k′ to obtain a new ciphertext ct′. One then stores ct′ and
discards ct. Periodic key rotation is recommended, and even required, in several
security standards and documents, including NIST publication 800-57 [7], the
Payment Card Industry Data Security Standard (PCI DSS) [25], and Google’s
cloud security recommendations [17].

Key rotation can be expensive when the ciphertext is stored in the cloud, and
the cloud does not have access to the keys. Key rotation requires the client to
retrieve all the encrypted data from the cloud, re-encrypt it by decrypting with
the old key and re-encrypting with the new key, and then upload the resulting
ciphertext back to the cloud. The traffic to and from the cloud can incur signif-
icant networking costs when large amounts of data are involved. Alternatively,
the client can send the old and the new key to the cloud, and have the cloud
re-encrypt in place, but this gives the cloud full access to the data in the clear.
We note that either way, the cloud must be trusted to discard the old ciphertext.

Updatable encryption [11,12,15,20,21] is a much better approach to key rota-
tion for encrypted data stored in the cloud. Updatable encryption is a symmetric
encryption scheme that supports the standard key-generation, encryption, and
decryption algorithms, along with two additional algorithms called ReKeyGen
and ReEncrypt used for key rotation. The re-key generation algorithm is invoked
as ReKeyGen(k, k′) → Δ, taking as input a pair of keys, k and k′, and outputting
a short “update token” Δ, also called a re-encryption key. The re-encryption
algorithm is invoked as ReEncrypt(Δ, ct) → ct′, taking as input a short Δ and a
ciphertext ct encrypted under k, and outputting an updated ciphertext ct′ that
is the encryption of the same data as in ct, but encrypted under k′.

If the client’s data is encrypted using an updatable encryption scheme, then
the client can use the re-key generation algorithm ReKeyGen to generate a short
update token Δ to send the cloud. The cloud then runs the re-encryption algo-
rithm ReEncrypt to update all the client’s ciphertexts. As before, the cloud must
be trusted to discard the old ciphertexts.

Defining Security. Intuitively, the update token Δ must not reveal any “useful”
information to the cloud. This was formalized by Boneh et al. [11] against passive
adversaries, and was improved and extended to provide security against active
adversaries by Everspaugh et al. [15].

However, we show in Sect. 3 that these existing elegant definitions can be
insufficient, and may not prevent some undesirable information leakage. In par-
ticular, we give a simple construction that satisfies the existing definitions, and
yet an observer can easily learn the age of a ciphertext, namely the number of
times that the ciphertext was re-encrypted since it was initially created. Ideally,
this information should not leak to an observer who only sees the ciphertext.
This issue was recently independently pointed out in [12].

Improving Speed and Security in Updatable Encryption Schemes 561

The age of a ciphertext (i.e., the number of times that the ciphertext was
re-encrypted) can leak sensitive private information about the plaintext in many
real-world situations. We give two illustrative examples assuming an annual key
rotation policy is in use:

– Consider a national database managed in the cloud where information about
each individual is stored in a single fixed-size encrypted record. Suppose a
newborn is recorded in the database at birth. If an annual key rotation policy
is used, and records are encrypted using a scheme that leaks the number of
key rotations, then an adversary (or a cloud administrator), who examines the
stored ciphertexts will learn every person’s age, even though age is regarded
as personal identifiable information (PII) and must be protected.

– Consider a dating app, like Tinder or Match.com, that maintains customer
information in an encrypted cloud storage. The number of key-updates on a
person’s file can indicate how long the person has been a customer, which is
sensitive information that should be protected.

To address this definitional shortcoming, we define a stronger confidentiality
property that requires that a re-encrypted ciphertext is always computationally
indistinguishable from a freshly generated ciphertext, no matter how many times
it was re-encrypted (Sects. 3.2 and 3.3). This ensures that an observer who sees
the encrypted content at a particular point in time, cannot tell the ciphertext age.
We also strengthen the integrity definition of [15] to cover additional tampering
attacks, as discussed in Sect. 3.4.

Constructing Updatable Encryption. Next, we look for efficient construc-
tions that satisfy our definitions. We give two new constructions: one based on
nested authenticated encryption and another based on the Ring Learning With
Errors (RLWE) problem [23,26].

Our first construction, presented in Sect. 4, makes use of carefully designed
nested encryption, and can be built from any authenticated encryption cipher. It
satisfies our strong confidentiality and integrity requirements, so that an adver-
sary cannot learn the age of a ciphertext. However, the scheme only supports
a bounded number of re-encryptions, where the bound is set when the initial
ciphertext is created. Another limitation of this scheme is that decryption time
grows linearly with the age of the ciphertext. Hence, the scheme is practical as
long as the maximum number of re-encryptions is not too large. Our implemen-
tation and experiments, discussed below, make this precise.

Our second construction, presented in Sect. 5, makes use of an almost key-
homomorphic PRF (KH-PRF) built from the RLWE problem. Recall that a
key-homomorphic PRF (KH-PRF) [11,24] is a secure PRF F : K × X → Y,
where (K,+) and (Y,+) are finite groups, and the PRF is homomorphic with
respect to its key, namely F (k1, x)+F (k2, x) = F (k1+k2, x) for all k1, k2 ∈ K and
x ∈ X . We say that the PRF is an almost KH-PRF if the equality above holds up
to a small additive error (see Definition 2.1). To see why a KH-PRF is useful for
updatable encryption, consider a single message block mi ∈ Y that is encrypted
using counter mode as cti ← mi + F (k, i), for some i ∈ X and k ∈ K. To rotate

562 D. Boneh et al.

the key, the client chooses a new key k′ ← K and sends Δ = k′ − k ∈ K to the
cloud. The cloud computes ct′i = cti + F (Δ, i), which by the key-homomorphic
property satisfies ct′i = mi + F (k′, i), as required.

It remains an open challenge to construct a secure KH-PRF whose perfor-
mance is comparable to AES. However, there are several known algebraic con-
structions. In the random oracle model [8,16], there is a simple KH-PRF based
on the Decision Diffie-Hellman (DDH) assumption [24], and a simple almost
KH-PRF based on the Learning With Rounding (LWR) problem [11]. There are
also several KH-PRFs whose security does not depend on random oracles, as
discussed in the related work section.

Everspaugh et al. [15] construct an updatable encryption scheme that sup-
ports unbounded key updates by combining a key-homomorphic PRF with
authenticated encryption and a collision-resistant hash function. They evaluate
their construction using the KH-PRF derived from DDH, in the random oracle
model, instantiated in the 256-bit elliptic curve Curve25519 [9]. We show that
the Everspaugh et al. [15] construction satisfies our new confidentiality secu-
rity definitions for updatable encryption. However, compared to our first nested
encryption construction that relies only on generic authenticated encryption, the
implementation of the Everspaugh et al. construction is much slower as it uses
expensive group operations.

In our second updatable encryption scheme, we significantly improve on
the performance of the Everspaugh et al. [15] construction by extending it to
work with an almost key-homomorphic PRF. Our construction supports nearly
unbounded key-updates, and outperforms the Everspaugh et al. construction by
200× in speed. The high performance of the scheme is, in part, due to a new
almost KH-PRF construction from the RLWE assumption. Almost KH-PRFs
can already be constructed from the (Ring-) Learning with Rounding (RLWR)
assumption [6,11]. However, we observe that for the specific setting of updatable
encryption, the parameters of the PRF can be further optimized by modifying
the existing PRF constructions to base security directly on the standard RLWE
assumption. We provide the details of our construction in Sect. 6.

The use of an almost key-homomorphic PRF leads to some complications.
First, there is a small ciphertext expansion to handle the noise that arises from
the imperfection of the KH-PRF key-homomorphism. More importantly, due to
the noisy nature of the ciphertext, we show that an adversary may gain infor-
mation about the age of the corresponding plaintext using a chosen ciphertext
attack, which violates our new security definition. Therefore, while this construc-
tion is attractive due to its performance, it can only be used in settings where
revealing the age of a ciphertext is acceptable. In Sect. 5.3 we capture this secu-
rity property using a relaxed notion of ciphertext integrity, and show that the
scheme is secure in this model.

Implementation and Experiments. In Sect. 7, we experiment with our two
updatable encryption schemes and measure their performance. For our first con-
struction based on authenticated encryption, we measure the trade-off between
its efficiency and the number of key rotations it can support. Based on our

Improving Speed and Security in Updatable Encryption Schemes 563

evaluation, our first construction performs better than the other schemes in
both speed and ciphertext size, as long as any given ciphertext is to be re-
encrypted at most twenty times over the course of its lifetime. It outperforms
the other schemes in speed (but not in ciphertext size) as long as ciphertexts are
re-encrypted at most fifty times.

For our second construction, which uses an almost key-homomorphic PRF
based on RLWE, we compare its performance with that of Everspaugh et al. [15],
which uses a key-homomorphic PRF over Curve25519. Since we use an almost
key-homomorphic PRF that is inherently noisy, any message to be encrypted
must be padded on the right to counteract the noise. Therefore, compared to the
elliptic-curve based construction of Everspaugh et al., our construction produces
larger ciphertexts (32% larger than those of Everspaugh et al.). However, in terms
of speed, our implementation shows that our construction outperforms that of
Everspaugh et al. by over 200×. We provide a more detailed analysis in Sect. 7.
Implementations of both our constructions are open source and available at [1].

Summary of Our Contributions. Our contributions are threefold. First,
we strengthen the definition of updatable encryption to provide stronger confi-
dentiality and integrity guarantees. Second, we propose two new constructions.
Finally, we experiment with both constructions and report on their real world
performance and ciphertext expansion. Encryption throughput of our first con-
struction, while allowing only a bounded number of key rotations, is close to the
performance of AES. Our second construction, based on a key-homomorphic
PRF from RLWE, is considerably faster than the previous construction of
Everspaugh et al. [15], which is based on elliptic curves.

1.1 Related Work

Two Flavors of Updatable Encryption. There are two flavors of updatable
encryption: ciphertext-dependent schemes [11,15] and ciphertext-independent
schemes [12,20,21]. In a ciphertext-dependent updatable encryption scheme, the
client can re-download a tiny fraction of the ciphertext that is stored by the
server before generating the update tokens. In a ciphertext-independent updat-
able encryption scheme, the client generates its update token without needing
to download any components of its ciphertext. In this work, we focus on the
ciphertext-dependent setting, where constructions are considerably more effi-
cient. We provide a detailed comparison of the two settings in the full version [10].
Additional discussion of the two models can be found in [21].

Key-Homomorphic PRFs. The concept of key-homomorphic PRFs was intro-
duced by Naor, Pinkas, and Reingold [24], and was first formalized as a cryp-
tographic primitive by Boneh et al. [11], who construct two KH-PRFs secure
without random oracles: one from LWE, and another from multilinear maps.
They also observe that any seed homomorphic PRG G : S → S2 gives a key-
homomorphic PRF. More constructions for key-homomorphic PRFs from LWE
include [5,13,19].

564 D. Boneh et al.

2 Preliminaries

Basic Notation. For an integer n ≥ 1, we write [n] to denote the set of integers
{1, . . . , n}. For a distribution D, we write x ← D to denote that x is sampled
from D; for a finite set S, we write x ←R S to denote that x is sampled uniformly
from S. We say that a family of distributions D = {Dλ}λ∈N

is B-bounded if the
support of D is {−B, . . . , B − 1, B} with probability 1.

Unless specified otherwise, we use λ to denote the security parameter. We
say a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc) for
all c ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial
time in the length of its input. We use poly(λ) to denote a quantity whose value
is bounded by a fixed polynomial in λ.

To analyze the exact security of our constructions in Sects. 4 and 5, we
parameterize the security of these notions with respect to advantage functions
ε : N → R that bound the probability of an efficient adversary breaking the
security of the primitive.

Basic Cryptographic Primitives. We use a number of standard crypto-
graphic tools throughout the paper, including collision-resistant hash functions,
PRGs, PRFs, and authenticated encryption, definitions of which we provide in
the full version of this work [10].

Key-Homomorphic PRFs. In this work, we use a special family of pseudoran-
dom functions called key-homomorphic PRFs (KH-PRFs) that satisfy additional
algebraic properties. Specifically, the key space K and the range Y of the PRF
exhibit certain group structures such that evaluation of the PRF on any fixed
input x ∈ X is homomorphic with respect to these group structures. We formally
define a key-homomorphic PRF in the full version [10].

We also work with a slight relaxation of the notion of key-homomorphic
PRFs. Namely, instead of requiring that the PRF outputs are perfectly homo-
morphic with respect to the PRF keys, we require that they are “almost” homo-
morphic in that F (k1, x) ⊗ F (k2, x) ≈ F (k1 ⊕ k2, x). Formally, we define an
almost key-homomorphic PRF as follows.

Definition 2.1 (Almost Key-Homomorphic PRFs [11]). Let (K,⊕) be
a group and let m and q be positive integers. Then, an efficiently computable
deterministic function F : K × X → Z

m
q is a γ-almost key-homomorphic PRF if

– F is a secure PRF [10].
– For every key k1, k2 ∈ K and every x ∈ X , there exists a vector e ∈ [0, γ]m

such that

F (k1, x) + F (k2, x) = F (k1 ⊕ k2, x) + e (mod q).

Authenticated Encryption. For our updatable encryption scheme in Sect. 4,
we make use of authenticated encryption schemes that satisfy a stronger confi-
dentiality requirement than the standard security requirement. Namely, we rely

Improving Speed and Security in Updatable Encryption Schemes 565

on authenticated encryption schemes that satisfy ciphertext pseudorandomness,
which requires that an encryption of any message is computationally indistin-
guishable from a random string of suitable length. We provide the formal def-
initions in the full version [10]. Authenticated encryption schemes that satisfy
ciphertext pseudorandomness can be constructed from pseudorandom functions
or blockciphers in a standard way. Widely-used modes for authenticated encryp-
tion such as AES-GCM also satisfy ciphertext pseudorandomness.

3 New Definitions for Updatable Encryption

In this section, we present new security definitions for updatable encryption in
the ciphertext dependent setting. Our definitions build upon and strengthen the
confidentiality and integrity definitions for an updatable authenticated encryp-
tion scheme from Everspaugh et al. [15]. We start by defining the syntax for an
updatable encryption scheme and its compactness and correctness conditions in
Sect. 3.1. We then present security definitions for confidentiality and integrity,
comparing each to prior definitions as we present them.

3.1 Updatable Encryption Syntax

For ciphertext-dependent updatable encryption schemes, it is useful to denote
ciphertexts as consisting of two parts: a short ciphertext header ĉt, which the
client can download to generate its update token, and a ciphertext body ct that
encrypts the actual plaintext.

Formally, we define the syntax for an updatable encryption scheme as fol-
lows. To emphasize the ciphertext integrity properties of our constructions in
Sect. 4 and Sect. 5, we refer to an updatable encryption scheme as an updatable
authenticated encryption scheme in our definitions.

Definition 3.1 (Updatable Authenticated Encryption). An updatable
authenticated encryption (UAE) scheme for a message space M = (Mλ)λ∈N is
a tuple of efficient algorithms ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,
Decrypt) that have the following syntax:

– KeyGen(1λ) → k: On input a security parameter λ, the key generation algo-
rithm returns a secret key k.

– Encrypt(k,m) → (ĉt, ct): On input a key k and a message m ∈ Mλ, the
encryption algorithm returns a ciphertext header ĉt and a ciphertext body ct.

– ReKeyGen(k1, k2, ĉt) → Δ1,2,ĉt/⊥: On input two keys k1, k2, and a ciphertext
header ĉt, the re-encryption key generation algorithm returns an update token
Δ1,2,ĉt or ⊥.

– ReEncrypt(Δ, (ĉt, ct)) → (ĉt′, ct′)/⊥: On input an update token Δ, and
a ciphertext (ĉt, ct), the re-encryption algorithm returns a new ciphertext
(ĉt′, ct′) or ⊥.

– Decrypt(k, (ĉt, ct)) → m/⊥: On input a key k, and a ciphertext (ĉt, ct), the
decryption algorithm returns a message m or ⊥.

566 D. Boneh et al.

A trivial way of achieving an updatable authenticated encryption scheme is to
allow a client to re-download the entire ciphertext, re-encrypt it, and send it
back to the server. Therefore, for a UAE scheme to be useful and meaningful,
we require that communication between the client and server be bounded and
independent of the size of the message encrypted in the ciphertext to be updated.
This is captured by the compactness property, which requires that any cipher-
text header and update token have lengths that depend only on the security
parameter.

Definition 3.2 (Compactness). We say that an updatable authenticated
encryption scheme ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt) for
a message space M = (Mλ)λ∈N is compact if there exist polynomials f1(·), f2(·)
such that for any λ ∈ N and message m ∈ Mλ, we have (with probability 1)

|ĉt| ≤ f1(λ), |Δ1,2,ĉt| ≤ f2(λ),

where k1, k2 ← KeyGen(1λ), (ĉt, ct) ← Encrypt(k1,m), and Δ1,2,ĉt ←
ReKeyGen(k1, k2, ĉt). That is, the lengths of the ciphertext header and update
token are independent of the message length.

The correctness condition for an updatable encryption scheme is defined in a
natural way.

Definition 3.3 (Correctness). We say that an updatable authenticated
encryption scheme ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt) for
a message space M = (Mλ)λ∈N is correct if for any λ ∈ N, N ∈ N and m ∈ Mλ,
we have

Pr
[
Decrypt(kN , (ĉtN , ctN)) = m

]
= 1,

where k1, . . . , kN ← KeyGen(1λ), (ĉt1, ct1) ← Encrypt(k1,m), and

(ĉti+1, cti+1) ← ReEncrypt
(
ReKeyGen(ki, ki+1, ĉti), (ĉti, cti)

)
,

for i = 1, . . . , N − 1.

We note that the definition above requires that the correctness of decryption to
hold even after unbounded number of key updates. In Definition 4.1, we define a
relaxation of this definition that requires correctness of decryption for a bounded
number of updates.

3.2 Prior Notions of Confidentiality

Standard semantic security for a symmetric encryption scheme requires that an
encryption of a message does not reveal any information about the message. In
a regular symmetric encryption scheme, there exists only one way to produce a
ciphertext: via the encryption algorithm. In an updatable authenticated encryp-
tion scheme, there exist two ways of producing a ciphertext: the encryption

Improving Speed and Security in Updatable Encryption Schemes 567

algorithm Encrypt that generates fresh ciphertexts and the re-encryption algo-
rithm ReEncrypt that generates re-encrypted ciphertexts. Previous formulations
of updatable encryption security capture the security of these algorithms in two
separate security experiments. The security of the regular encryption algorithm
Encrypt is captured by the notion of message confidentiality [11,15] while the
security of the re-encryption algorithm ReEncrypt is captured by the notion of
re-encryption indistinguishability [15].

Both security experiments are divided into three phases, and are parame-
terized by h, the number of honest keys, and d, the number of dishonest keys.
During the setup phase of the security experiment, the challenger generates h
keys k1, . . . , kh ← KeyGen(1λ) that are the game kept private from the adver-
sary, and d keys kh+1, . . . , kh+d that are provided to the adversary. During the
query phase of the experiment, the adversary is given access to a set of oracles
that evaluate the algorithms Encrypt, ReKeyGen, and ReEncrypt, allowing the
adversary to obtain ciphertexts under honest keys and rekey them.

The only distinction between the message-confidentiality and re-encryption
indistinguishability experiments is in the way we define the final challenge oracle.
In the message confidentiality experiment, the adversary is given access to a chal-
lenge oracle where it can submit a pair of messages (m0,m1). As in a standard
semantic security definition, the challenge oracle provides the adversary with
an encryption of either m0 or m1 under a specified honest key, and the adver-
sary’s goal is to guess which of the messages was encrypted. In the re-encryption
indistinguishability experiment, on the other hand, the adversary submits a pair
of ciphertexts

(
(ĉt0, ct0), (ĉt1, ct1)

)
of the same length to the challenge oracle

and receives a re-encryption of one of the ciphertexts. The adversary’s goal in
the re-encryption indistinguishability experiment is to guess which of the two
ciphertexts was re-encrypted.

During the query phase of the experiment, the adversary can make queries to
all four oracles as long as their evaluations do not allow the adversary to “triv-
ially” learn which messages are encrypted by the challenge oracle. In particular,
this means that no oracle will be allowed to rekey a challenge ciphertext from
an honest key to a dishonest key. To this end, the challenger in each experiment
keeps a table of challenge ciphertexts generated under each honest key and their
re-encryptions. Much of the apparent complexity of formalizing the definition
arises from enforcing this straightforward check. We provide the full definitions
of Everspaugh et al. [15] in the full version [10].

3.3 Improving Confidentiality

One property that is not captured by the combination of message confiden-
tiality and re-encryption indistinguishability is the indistinguishability of fresh
ciphertexts from re-encrypted ciphertexts. In particular, an encryption scheme
in which fresh ciphertexts have a completely different structure than those of re-
encrypted ciphertexts can still separately satisfy message confidentiality for fresh
encryptions and re-encryption indistinguishability for re-encryptions. In many
situations, an adversary that learns whether a ciphertext is a fresh encryption

568 D. Boneh et al.

or a re-encryption can deduce information about the underlying plaintext of a
message.

Furthermore, in the re-encryption indistinguishability experiment, an adver-
sary is required to submit two ciphertexts ct0, ct1 that have the same size
|ct0| = |ct1|. If we consider the re-encryption algorithm ReEncrypt to be another
form of fresh encryption, this admissibility condition on the adversary is quite
intuitive. However, equal length plaintexts do not necessarily result in equal-
length ciphertexts after different numbers of re-encryptions. This means exist-
ing definitions permit schemes that have a different structure for every possible
number of re-encryptions.

Thus, the existing confidentiality definitions for an authenticated updatable
encryption scheme fail to enforce the following properties:

– Property 1: Freshly generated ciphertexts are indistinguishable from cipher-
texts that are generated via re-encryption.

– Property 2: Ciphertexts do not reveal how many times a re-encryption algo-
rithm was performed on a given ciphertext.

We state the two properties separately because ciphertexts in our experiment
comparing freshly-generated and re-encrypted ciphertexts must be of the same
length to prevent trivial wins, which does not rule out the possibility of ciphertext
length leaking information about age.

We now augment the confidentiality security definitions of Everspaugh et al.
[15] to enforce these two properties.

Enforcing Property 1. A natural way to enforce that fresh ciphertexts are
indistinguishable from re-encrypted ciphertexts is to define a security experi-
ment analogous to the definitions of message confidentiality and re-encryption
indistinguishability, but with respect to a challenge oracle that takes in either a
message m or a ciphertext (ĉt, ct) and either encrypts m or re-encrypts (ĉt, ct).

We present the full definition of confidentiality below. The various checks
included in the description of the oracles only serve to ensure that an adver-
sary cannot take a challenge ciphertext under an honest key and obtain its
re-encryption under a dishonest key, as this would result in a trivial win.

Definition 3.4 (Confidentiality). Let ΠUAE = (KeyGen,Encrypt,ReKeyGen,
ReEncrypt,Decrypt) be an updatable authenticated encryption scheme for a mes-
sage space M = (Mλ)λ∈N. Then, for a security parameter λ, positive integers
h, d ∈ N, an adversary A, and a binary bit b ∈ {0, 1}, we define the confidentiality
experiment ExptconfΠUAE

(λ, h, d,A, b) and oracles O = (OEncrypt,OReKeyGen,OReEncrypt,
OChallenge) in Fig. 1. The experiment maintains a look-up table T, accessible by
all the oracles, that maps key index and ciphertext header pairs to ciphertext
bodies.

Improving Speed and Security in Updatable Encryption Schemes 569

ExptconfΠUAE
(λ, h, d, A, b):

k1, . . . , kh+d ← KeyGen(1λ)

b′ ← AO(kh+1, ..., kh+d)

Output b′ = b

OEncrypt(i,m):

Output Encrypt(ki,m)

OChallenge i, j,m, (ĉt, ct)
)
:

if j > h:

Output ⊥
(ĉt′0, ct′0) ← Encrypt(kj ,m)

Δi,j,ĉt ← ReKeyGen(ki, kj , ĉt)

(ĉt′1, ct′1) ← ReEncrypt(Δi,j,ĉt, (ĉt, ct))

if (ĉt′0, ct′0) = ⊥ or (ĉt′1, ct′1) = ⊥:

Output ⊥
if |ĉt′0| �= |ĉt′1| or |ct′0| �= |ct′1|:

Output ⊥
T[j, ĉt′b] ← ct′b

Output (ĉt′b, ct′b)

OReKeyGen(i, j, ĉt):

if j > h and T [i, ĉt] �= ⊥:

Output ⊥
Δi,j,ĉt ← ReKeyGen(ki, kj , ĉt)

if T [i, ĉt] �= ⊥:

(ĉt′, ct′) ← ReEncrypt Δi,j,ĉt, (ĉt,T[i, ĉt])
)

T[j, ĉt′] ← ct′

Output Δi,j,ĉt

OReEncrypt i, j, (ĉt, ct)
)
:

Δi,j,ĉt ← ReKeyGen(ki, kj , ĉt)

(ĉt′, ct′) ← ReEncrypt Δi,j,ĉt, (ĉt, ct)
)

if j > h and T[i, ĉt] �= ⊥:

Output ⊥
if j ≤ h and T[i, ĉt] �= ⊥:

T[j, ĉt′] ← ct′

Output (ĉt′, ct′)

Fig. 1. Security experiment for confidentiality (Definition 3.4) and update indepen-
dence (Definition 3.6)

We say that an updatable authenticated encryption scheme ΠUAE satisfies
confidentiality if there exists a negligible function negl(·) such that for all h, d ≤
poly(λ) and efficient adversaries A, we have

∣
∣
∣ Pr

[
ExptconfΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
ExptconfΠUAE

(λ, h, d,A, 1) = 1
]∣∣
∣ ≤ negl(λ).

Although our original goal in defining the confidentiality experiment above is
to enforce the condition that fresh ciphertexts are indistinguishable from re-
encrypted ciphertexts, the experiment captures a much wider class of confiden-
tiality properties for an updatable authenticated encryption scheme. In fact, it
is straightforward to show that a UAE scheme that satisfies the single confi-
dentiality definition above automatically satisfies both message confidentiality
and re-encryption indistinguishability. Specifically, since the confidentiality defi-
nition above implies that an encryption of a message is indistinguishable from a
re-encryption of a ciphertext (given that the resulting ciphertexts are of the same
length), this implies that for any two messages m0,m1 such that |m0| = |m1|, we
have

Encrypt(k,m0) ≈c (ĉt′, ct′) ≈c Encrypt(k,m1),

570 D. Boneh et al.

for any key k that is hidden from an adversary and any re-encrypted cipher-
text (ĉt′, ct′) of appropriate length. Similarly, the confidentiality definition above
implies that for two ciphertexts (ĉt0, ct0) and (ĉt1, ct1) of the same length,

ReEncrypt
(
ReKeyGen(k, k′, ĉt0),(ĉt0, ct0)

)

≈c (ĉt′, ct′) ≈c

ReEncrypt
(
ReKeyGen(k, k′, ĉt1), (ĉt1, ct1)

)
,

for an appropriate key k′ that is hidden from an adversary and any fresh cipher-
text (ĉt′, ct′) of appropriate length.

In combination with our new strong compactness requirement (which we
introduce in Definition 3.5), the security experiment in Definition 3.4 captures all
the confidentiality properties we expect from an updatable encryption scheme.
This is why we refer to the experiment in Definition 3.4 simply as the “confiden-
tiality” experiment.

Enforcing Property 2. Enforcing that an updatable encryption ciphertext
hides the number of key updates is less straightforward. Perhaps the most natural
and general way to enforce this property is to modify the challenge oracle in
Definition 3.4 as follows:

– OChallenge

(
I, (ĉt0,0, ct0,0),J , (ĉt1,0, ct1,0)

)
: A query consists of two sequences

of indices I = (i1, . . . , iτ), J = (j1, . . . , jτ ′) for τ, τ ′ ∈ N such that iτ = jτ ′

are honest keys, and |ct0,0| = |ct1,0|. The challenger computes two sequences
of ciphertexts

Δiγ−1,iγ
← ReKeyGen(kiγ−1 , kiγ

, ĉt0,iγ
)

(ĉt0,iγ
, ct0,iγ

) ← ReEncrypt(Δiγ−1,iγ
, ĉt0,iγ−1 , ct0,iγ−1) ∀γ ∈ [τ],

and

Δ′
jγ−1,jγ

← ReKeyGen(kjγ−1 , kjγ
, ĉt1,jγ

)

(ĉt1,jγ
, ct1,jγ

) ← ReEncrypt(Δ′
jγ−1,jγ

, ĉt1,jγ−1 , ct1,jγ−1) ∀γ ∈ [τ ′].

It returns either (ĉt0,jτ
, ct0,jτ

) or (ĉt1,jτ′ , ct1,jτ′).

The challenge oracle above takes in two sequences of indices I, J , and re-
encrypts either the ciphertext (ĉt0,0, ct0,0) according to the sequence of keys spec-
ified by I or the ciphertext (ĉt1,0, ct1,0) according to J . Since the two sequences
I and J can have differing lengths, an updatable encryption scheme that satis-
fies a security experiment with respect to such a challenge oracle must hide the
number of times the re-encryption algorithm was applied to a ciphertext.

However, a security experiment that is defined with respect to the challenge
oracle above is generally difficult to work with and requires notationally compli-
cated proofs. Hence, instead of using the challenge oracle as defined above, we
define a stronger compactness requirement on the ciphertexts of an updatable
encryption scheme. Specifically, in addition to the compactness requirement as

Improving Speed and Security in Updatable Encryption Schemes 571

specified in Definition 3.2, we require that the size of a ciphertext always remains
fixed no matter how many times the re-encryption algorithm is performed on a
ciphertext.

Definition 3.5 (Strong Compactness). We say that an updatable authen-
ticated encryption scheme ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,
Decrypt) for a message space M = (Mλ)λ∈N is strongly compact if for any
λ ∈ N and any message m ∈ Mλ, it satisfies the header compactness and body
compactness (with probability 1) after the following operations.

– k0, k1, . . . , kN ← KeyGen(1λ)
– (ĉt0, ct0) ← Encrypt(k0,m)
– for i ∈ [N]:
– Δi,i−1,ĉti−1

← ReKeyGen(ki−1, ki, ĉti−1)
– (ĉti, cti) ← ReEncrypt

(
Δi,i−1,ĉti−1

, (ĉti−1, cti−1)
)

– Header compactness: There exist polynomials f1(·), f2(·) such that |ĉti| ≤
f1(λ) and |Δi,i−1,ĉti−1

| ≤ f2(λ) for all i ∈ [N], i.e., header and update token
lengths do not depend on the message length or the number of re-encryptions.

– Body compactness: We have |cti| = |ctj | for all 0 ≤ i, j ≤ N .

In combination with Definition 3.4, the strong compactness property implies
that ciphertexts do not reveal how many times a re-encryption algorithm was
performed on a given ciphertext. The confidentiality property of Definition 3.4
implies that the re-encryption of any two ciphertexts of the same size must
be indistinguishable to an adversary. The strong compactness property requires
that no matter how many re-encryption operations are performed on a given
ciphertext, its length always remains the same size, thereby complementing Def-
inition 3.4.

Update independence. In Construction 4.2, we present a UAE scheme that
satisfies the strong compactness property of Definition 3.5 as well as message
confidentiality and re-encryption indistinguishability, but does not fully satisfy
the stronger notion of confidentiality as defined in Definition 3.4. Therefore, we
define a slight relaxation of the confidentiality requirement as formulated in
Definition 3.4 that we call update independence and show that Construction 4.2
satisfies this security definition. An update independence security experiment is
defined identically to the confidentiality security experiment but without the re-
encryption key generation oracle OReKeyGen. Since this oracle is removed, update
independence does not suffice to imply message confidentiality and re-encryption
indistinguishability. However, it still suffices to guarantee that fresh ciphertexts
are indistinguishable from re-encrypted ciphertexts as long as update tokens are
hidden from an adversary.

Definition 3.6 (Update Independence). Let ΠUAE = (KeyGen,Encrypt,
ReKeyGen,ReEncrypt,Decrypt) be an updatable authenticated encryption scheme
for a message space M = (Mλ)λ∈N. Then, for a security parameter λ, pos-
itive integers h, d ∈ N, an adversary A, and a binary bit b ∈ {0, 1}, we

572 D. Boneh et al.

define the update independence experiment Exptupd-indΠUAE
(λ, h, d,A, b) and oracles

O = (OEncrypt,OReEncrypt,OChallenge) as in Fig. 1 with the OReKeyGen oracle omit-
ted. The experiment maintains a look-up table T, accessible by all the oracles,
that maps key index and ciphertext header pairs to ciphertext bodies.

We say that an updatable authenticated encryption scheme ΠUAE satisfies
update independence if there exists a negligible function negl(·) such that for all
h, d ≤ poly(λ) and efficient adversaries A, we have
∣
∣
∣ Pr

[
Exptupd-indΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
Exptupd-indΠUAE

(λ, h, d,A, 1) = 1
]∣∣
∣ ≤ negl(λ).

In combination with the message confidentiality and re-encryption indistin-
guishability properties, this relaxed requirement of update independence suffices
for many practical scenarios. Since update tokens are generally sent over secure
channels (e.g. TLS connection) from a client to a server, no malicious eavesdrop-
per can gain access to them. For malicious servers that have access to update
tokens, on the other hand, hiding how many times a re-encryption operation was
previously applied on a ciphertext is less useful since the storage metadata of
the ciphertexts already reveal this information to the server. In essence, update
independence, when combined with message confidentiality and re-encryption
indistinguishability, seems to satisfy the two properties we wanted from our new
confidentiality definition without the convenient benefit of a single unified defi-
nition.

3.4 Integrity

The final security property that an updatable authenticated encryption scheme
must provide is ciphertext integrity. The ciphertext integrity experiment for UAE
is analogous to the standard ciphertext integrity experiment of an authenticated
encryption scheme. As in the confidentiality experiment, the challenger starts
the experiment by generating a set of honest keys, which are kept private from
the adversary, and dishonest keys, which are provided to the adversary. Then,
given oracle access to OEncrypt, OReEncrypt, and OReKeyGen, the adversary’s goal is
to generate a new valid ciphertext that was not (1) previously output by OEncrypt

or OReEncrypt, and (2) cannot be trivially derived via update tokens output by
OReKeyGen.

Our integrity definition is similar to that of Everspaugh et al. [15], except the
previous definition does not include the re-encryption oracle OReEncrypt, which we
add. Giving the adversary access to a re-encryption oracle captures scenarios that
are not covered by the previous definition. For instance, security with respect to
our stronger integrity experiment guarantees that an adversary who compromises
the key for a ciphertext cannot tamper with the data after the key has been
rotated and the data re-encrypted.

Definition 3.7 (Integrity). Let ΠUAE = (KeyGen,Encrypt,ReKeyGen,
ReEncrypt,Decrypt) be an updatable authenticated encryption scheme for a mes-
sage space M = (Mλ)λ∈N. Then, for a security parameter λ, positive integers

Improving Speed and Security in Updatable Encryption Schemes 573

ExptintΠUAE
(λ, h, d, A):

k1, . . . , kh+d ← KeyGen(1λ)

(i, (ĉt, ct)) ← AO(kh+1, ..., kh+d)

if i > h:

Output 0

m ← Decrypt ki, (ĉt, ct)
)

if m = ⊥ or T[i, ĉt] = ct:

Output 0

else:

Output 1

OEncrypt(i,m):

(ĉt, ct) ← Encrypt(ki,m)

T[i, ĉt] ← ct

Output (ĉt, ct)

OReEncrypt i, j, (ĉt, ct)
)
:

Δi,j,ĉt ← ReKeyGen(ki, kj , ĉt)

(ĉt′, ct′) ← ReEncrypt Δi,j,ĉt, (ĉt, ct)
)

if j ≤ h:

T[j, ĉt′] ← ct′

Output (ĉt′, ct′)

OReKeyGen(i, j, ĉt):

if i > h and j ≤ h:

Output ⊥
Δi,j,ĉt ← ReKeyGen(ki, kj , ĉt)

if T[i, ĉt] �= ⊥:

(ĉt′, ct′) ← ReEncrypt Δi,j,ĉt, (ĉt,T[i, ĉt])
)

T[j, ĉt′] ← ct′

Output Δi,j,ĉt

Fig. 2. Security experient for integrity (Definition 3.7)

h, d ∈ N, and an adversary A, we define the re-encryption integrity experiment
ExptintΠUAE

(λ, h, d,A) and oracles O = (OEncrypt,OReKeyGen,OReEncrypt) in Fig. 2.
The experiment maintains a look-up table T, accessible by all the oracles, that
maps key index and ciphertext header pairs to ciphertext bodies.

We say that an updatable authenticated encryption scheme ΠUAE satisfies re-
encryption integrity if there exists a negligible function negl(·) such that for all
h, d ≤ poly(λ) and any efficient adversary A, we have

Pr
[
ExptintΠUAE

(λ, h, d,A) = 1
]

≤ negl(λ).

Although our UAE construction in Sect. 4 can be shown to satisfy the strong
notion of integrity formulated above, the construction in Sect. 5 that relies on
almost key-homomorphic PRFs is not sufficient to satisfy the stronger notion. In
Sect. 5, we formulate a relaxation of the notion of integrity that we call relaxed
integrity and show that Construction 5.2 satisfies this weaker variant.

4 UAE with Bounded Updates

We begin this section by presenting an insecure UAE scheme that demonstrates
the importance of the new definitions presented in Sect. 3. This scheme leaks the
age of ciphertexts but nonetheless satisfies all security definitions for ciphertext-
dependent UAE from prior work.

Next, we extend the insecure scheme to hide the age of ciphertexts, thereby
satisfying the definition of update independence (Sect. 3.3, Definition 3.6). This

574 D. Boneh et al.

upgrade comes at the cost of relaxing the correctness requirement of an updatable
encryption scheme: the correctness of decryption is guaranteed only for an a
priori bounded number of key updates.

4.1 A Simple Nested Construction

In this section, we provide a simple updatable authenticated encryption scheme
using any authenticated encryption scheme. Our simple construction inher-
ently leaks information about the message; namely, the construction leaks how
many re-encryption operations were previously performed on a given ciphertext,
thereby leaking information about the age of the encrypted message. Despite
this information leakage, the construction satisfies all the UAE security defini-
tions of Everspaugh et al. [15]. Hence, this construction demonstrates that prior
security definitions did not yet capture all the necessary security properties that
an updatable encryption scheme must provide.

The construction uses an authenticated encryption (AE) scheme. A key for
this UAE scheme is a standard AE key k̂, which we call the header key. The
UAE encryption algorithm implements standard chained encryption. To encrypt
m using k̂, first generate a fresh body key kae and then encrypt the plaintext
ct ← AE.Encrypt(kae,m). Next, the body key kae is encrypted under the header
key ĉt ← AE.Encrypt(k̂, kae) to form the ciphertext header. Finally, output the
UAE ciphertext (ĉt, ct).

To update a ciphertext, the client and server proceed as follows:

– Client : The client downloads the ciphertext header ĉt to recover the body
key kae. It then generates fresh header and body keys k̂′ and k′

ae, and sends
a new ciphertext header ĉt

′ ← AE.Encrypt
(
k̂′, (k′

ae, kae)
)

along with k′
ae to the

server.
– Server : The server replaces the old ciphertext header ĉt with the new header
ĉt

′. It also generates a new ciphertext body by encrypting the original cipher-
text as ct′ ← AE.Encrypt

(
k′
ae, (ĉt, ct)

)
.

Now, even with many such key updates, the client can still recover the original
ciphertext. Specifically, the client can first use its current header key k̂ to decrypt
the ciphertext header and recover a body key kae and the old header key k̂′. It
uses kae to remove the outer layer of encryption and recover the old ciphertext
(ĉt′, ct′). The client repeats the same procedure with the old header key k̂′ and
the old ciphertext (ĉt′, ct′). Note that decryption time grows linearly in the
number of re-encryption operations.

To prove security, we must introduce an additional step during a ciphertext
update. Namely, instead of setting the new ciphertext body as the encryption
of the old ciphertext header and body ct′ ← AE.Encrypt

(
k′
ae, (ĉt, ct)

)
, the server

replaces ĉt with a new ciphertext header ĉthistory that the client provides to the
server encrypted under a new key k̂history. The main intuition of the construction,
however, remains unchanged from the description above. Since the construction
is a simpler form of the one formalized in Construction 4.2, we defer the formal

Improving Speed and Security in Updatable Encryption Schemes 575

statement of the construction and its associated security theorems for compact-
ness, correctness, update independence, message confidentiality, re-encryption
indistinguishability, and ciphertext integrity to the full version [10].

4.2 Bounded Correctness

We now define a variation of correctness that we call bounded correctness. The
bounded correctness condition is defined in a natural way and analogously to
Definition 3.3 (correctness). However, we do modify the syntax of the key gener-
ation algorithm KeyGen to additionally take in a parameter t ∈ N that specifies
an upper bound on the number of key updates that a scheme can support. This
allows the key generator to flexibly set this parameter according to its needs.

Definition 4.1 (Bounded Correctness). We say that an updatable authen-
ticated encryption scheme ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,
Decrypt) for a message space M = (Mλ)λ∈N satisfies bounded correctness if
for any λ, t ∈ N, and m ∈ Mλ, we have (with probability 1)

Pr
[
Decrypt(kt, (ĉtt, ctt)) = m

]
≥ 1 − negl(λ),

where k1, . . . , kt ← KeyGen(1λ, 1t), (ĉt1, ct1) ← Encrypt(k1,m), and

(ĉti+1, cti+1) ← ReEncrypt
(
ReKeyGen(ki, ki+1, ĉti), (ĉti, cti)

)
,

for i = 1, . . . , t − 1.

4.3 Nested Construction with Padding

Our modification of the nested construction is straightforward: we pad the
ciphertexts such that as long as the number of key updates is bounded, their
lengths are independent of the number of key updates that are performed on
the ciphertexts. However, executing this simple idea requires some care. First,
padding the (original) ciphertexts with structured strings reveals information
about how many updates were previously performed on the ciphertexts. There-
fore, we modify the encryption algorithm such that it pads the ciphertexts
with random strings. If the underlying authenticated encryption scheme satisfies
ciphertext pseudorandomness [10], an adversary cannot determine which compo-
nent of a ciphertext corresponds to the original ciphertext and which component
corresponds to a pad.1

However, simply padding the (original) ciphertexts with random strings also
makes them highly malleable and easy to forge. To achieve integrity, we modify
the encryption and re-encryption algorithms to additionally sample a pseudoran-
dom generator (PRG) seed and include it as part of the UAE ciphertext header.
1 As discussed in Sect. 2, authenticated encryption schemes that satisfy pseudoran-

domness can be constructed from pseudorandom functions or blockciphers in a stan-
dard way. Widely-used modes for authenticated encryption such as AES-GCM also
satisfy pseudorandomness.

576 D. Boneh et al.

The encryption and re-encryption algorithms then generate the ciphertext pads
from an evaluation of the PRG. By PRG security, the original ciphertext compo-
nents and the pads are still computationally indistinguishable to an adversary,
but now the adversary cannot easily forge ciphertexts as the decryption algo-
rithm can verify the validity of a pad using the PRG seed.

The only remaining issue is correctness. Since the ciphertexts of our UAE
scheme are pseudorandom, the re-encryption algorithm also does not have infor-
mation about where the original ciphertext ends and padding begins. Therefore,
we include this information as part of the re-encryption key (update token). This
is the reason why this scheme satisfies update independence instead of our full
confidentiality definition – even though ciphertexts fully hide their age, update
tokens reveal information about the age of the ciphertext they are updating.
The re-encryptor can now apply the re-encryption on the original ciphertext and
adjust the padding length accordingly. We formalize the construction below.

Construction 4.2 (Nested Authenticated Encryption). Our construc-
tion uses the following building blocks:

– An authenticated encryption scheme ΠAE = (KeyGen,Encrypt,Decrypt) with
message space M = (Mλ)λ∈N. We additionally assume that AE.Encrypt sat-
isfies εrandae -ciphertext pseudorandomness, i.e., that encryptions under AE are
indistinguishable from random strings.
For the construction description below, we let ρ = ρλ denote the maxi-
mum size of an authenticated encryption key and we let ν = poly(λ) be
an additive overhead incurred by the encryption algorithm. For any key
kae ← AE.KeyGen(1λ) and any message m ∈ Mλ, we have |kae| = ρ and
|ct| ≤ |m| + ν, where ct ← AE.Encrypt(kae,m).

– A pseudorandom generator G : {0, 1}λ → {0, 1}∗. To simplify the presentation
of the construction, we assume that G has unbounded output that is truncated
to the required length on each invocation.

We construct an updatable authenticated encryption scheme ΠUAE = (KeyGen,
Encrypt,ReKeyGen,ReEncrypt,Decrypt) for message space M = (Mλ)λ∈N in
Fig. 3.

We formally state the compactness, correctness, and security properties of Con-
struction 4.2 in the following theorem. We provide the formal proof in the full
version [10].

Theorem 4.3. Suppose the authenticated encryption scheme ΠAE satisfies cor-
rectness, εconfae -confidentiality, εintae -integrity, and εrandae -ciphertext pseudorandom-
ness, and G satisfies εprg PRG security. Then the updatable authenticated encryp-
tion scheme ΠUAE in Construction 4.2 satisfies strong compactness, correctness,
update independence, message confidentiality, and re-encryption indistinguisha-
bility.

Improving Speed and Security in Updatable Encryption Schemes 577

KeyGen(1λ, 1t):

k̂ ← AE.KeyGen(1λ)

k ← (k̂, t)

Output k

Encrypt(k,m)

(k̂, t) ← k

kae ← AE.KeyGen(1λ)

s ←R {0, 1}λ

ctpayload ← AE.Encrypt kae,m)

ctpad ← G(s) such that ctpad ∈ {0, 1}t·(2ρ+ν)

ĉt ← AE.Encrypt k̂, (s, |ctpayload|, kae, ⊥))

ct ← (ctpayload, ctpad)

Output (ĉt, ct)

ReKeyGen(k1, k2, ĉt):

(k̂1, t) ← k1

(k̂2, t) ← k2

(s, �, kae, k̂history) ← AE.Decrypt(k̂1, ĉt)

if (s, �, kae, k̂history) = ⊥, output ⊥
k̂′
history ← AE.KeyGen(1λ)

ĉthistory ← AE.Encrypt(k̂′
history, (kae, k̂history))

k′
ae ← AE.KeyGen(1λ)

s′ ←R {0, 1}λ

�′ ← � + |ĉthistory|
ĉt

′ ← AE.Encrypt k̂2, (s′, �′, k′
ae, k̂

′
history)

)
Δ1,2,ĉt ← (ĉt′, ĉthistory, �, k′

ae, s
′)

Output Δ1,2,ĉt

ReEncrypt Δ1,2,ĉt, (ĉt, ct)
)
:

(ĉt′, ĉthistory, �, k′
ae, s

′) ← Δ1,2,ĉt

(ctpayload, ctpad) ← ct ∈ {0, 1}� × {0, 1}|ct|−�

if |ct| < �, output ⊥
ct′payload ← AE.Encrypt k′

ae, (ctpayload, ĉthistory)
)

if |ct′payload| > |ct|, output ⊥
ct′pad ← G(s′)[1, ..., |ct| − |ct′payload|]
ct′ ← (ct′payload, ct

′
pad) ∈ {0, 1}|ct|

Output (ĉt′, ct′)

Decrypt k, (ĉt, ct)
)
:

(k̂, t) ← k

(s, �, k′
ae, k̂

′
history) ← AE.Decrypt(k̂, ĉt)

if (s, �, k′
ae, k̂

′
history) = ⊥, output ⊥

if |ct| < �, output ⊥
(ctpayload, ctpad) ← ct ∈ {0, 1}� × {0, 1}|ct|−�

ct′pad ← G(s) such that |ct′pad| = |ctpad|
if ct′pad �= ctpad, output ⊥
(ct′, ĉt′history) ← AE.Decrypt(k′

ae, ctpayload)

if (ct′, ĉt′history) = ⊥, output ⊥
while k̂′

history �= ⊥:

kae ← k′
ae

k̂history ← k̂′
history

ct ← ct′

ĉthistory ← ĉt
′
history

(k′
ae, k̂

′
history) ← AE.Decrypt(k̂history, ĉthistory)

if (k′
ae, k̂

′
history) = ⊥, output ⊥

(ct′, ĉt′history) ← AE.Decrypt(kae, ct)

if (ct′, ĉt′history) = ⊥, output ⊥
m ← AE.Decrypt(k′

ae, ct
′)

Output m

Fig. 3. Our nested scheme.

For confidentiality, we have the following concrete security bounds for all
h, d = poly(λ) and efficient adversaries A that make at most Q oracle queries:

∣
∣
∣ Pr

[
Exptupd-indΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
Exptupd-indΠUAE

(λ, h, d,A, 1) = 1
]∣∣
∣

≤ 2h · εconfae (λ) + 2h · εintae (λ) + 2Q · εprg(λ) + 4Q · εrandae (λ)

578 D. Boneh et al.

∣
∣
∣ Pr

[
Exptmsg-conf

ΠUAE
(λ, h, d,A, 0) = 1

]
− Pr

[
Exptmsg-conf

ΠUAE
(λ, h, d,A, 1) = 1

]∣∣
∣

≤ (2h + 4Q) · εconfae (λ) + 2h · εintae (λ)

∣
∣
∣ Pr

[
Exptre-enc-indΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
Exptre-enc-indΠUAE

(λ, h, d,A, 1) = 1
]∣∣
∣

≤ (2h + 4Q) · εconfae (λ) + 2h · εintae (λ)

For integrity, we have the following bound for all h, d = poly(λ) and efficient
adversaries A that make at most Q challenge, ReKeyGen, or ReEncrypt queries:

Pr
[
ExptintΠUAE

(λ, h, d,A) = 1
]

≤ (h + Q) · εintae (λ) + (h + Q) · εconfae (λ) + Q/2λ

5 UAE from Key-Homomorphic PRFs

In this section, we generalize the updatable authenticated encryption construc-
tion of Everspaugh et al. [15] that is built from a perfectly key-homomorphic
PRF, to also work using an almost key-homomorphic PRF. We do this by incor-
porating a plaintext encoding scheme into the construction such that encrypted
messages can still be decrypted correctly after noisy key rotations. We show that
this generalized UAE construction satisfies our notion of confidentiality (Defi-
nition 3.4), but only satisfies a relaxed integrity property. We first describe the
construction in Sect. 5.2, and then analyze and prove its security in Sect. 5.3.

5.1 Encoding Scheme

Our construction of an updatable authenticated encryption scheme relies on an
almost key-homomorphic PRF for which key-homomorphism holds under small
noise. To cope with the noise in our updatable encryption scheme in Sect. 5.2,
we must encode messages prior to encrypting them such that they can be fully
recovered during decryption. A simple way of encoding the messages is to pad
them with additional least-significant bits. However, more sophisticated ways of
encoding the messages are possible with general error-correcting codes. In our
construction description in Sect. 5.2, we use the syntax of a general encoding
scheme that is described in Fact 5.1 below. In Sect. 7, we test the performance
of our construction in Sect. 5.2 with simple padding.

Fact 5.1. Let n, q, γ be positive integers such that γ < q/4, μ = μ(λ) be a
polynomial in λ, and M =

(
{0, 1}μ(λ)

)
λ∈N

be a message space. Then there exists
a set of algorithms (Encode,Decode) with the following syntax:

– Encode(m) → (m1, . . . ,m�): On input a message m ∈ Mλ, the encoding algo-
rithm returns a set of vectors m1, . . . ,m� ∈ Z

n
q for some
 ∈ N.

– Decode(m1, . . . ,m�) → m: On input a set of vectors m1, . . . ,m� ∈ Z
n
q , the

decoding algorithm returns a message m ∈ Mλ.

Improving Speed and Security in Updatable Encryption Schemes 579

The algorithms (Encode,Decode) satisfy the following property: for all strings
m ∈ Mλ and any error vectors e = e1, . . . , e� ∈ [γ]n, if we set (m1, . . . ,m�) ←
Encode(m), we have

Decode(m1 + e1, . . . ,m� + e�) = m.

Due to the use of an encoding scheme, our construction can be viewed as
supporting only a bounded number of updates – the encoding can only support so
much noise before decoding fails. However, for our almost key-homomorphic PRF
construction in Sect. 5.2, a simple padding scheme can be used as the encoding
scheme. In this case, the bound on the number of updates grows exponentially
in the size of the parameters of the scheme and therefore, the construction can
be interpreted as permitting unbounded updates.

5.2 Construction

We next present our UAE scheme from an almost key-homomorphic PRF. We
analyze its security in the next two subsections.

KeyGen(1λ, 1t):

k ← AE.KeyGen(1λ)

Output k

ReKeyGen(k1, k2, ĉt):

μ ← AE.Decrypt(k1, ĉt)

if μ = ⊥, output ⊥
(kprf , h) ← μ

k′
prf ←R KPRF

kupprf ← k′
prf − kprf

ĉt
′ ← AE.Encrypt k2, (k′

prf , h)
)

Δ1,2,ĉt ← (ĉt′, kupprf)

ReEncrypt Δ1,2,ĉt, (ĉt, ct)
)
:

(ĉt′, kupprf) ← Δ1,2,ĉt

(ct1, . . . , ct�) ← ct

for i ∈ [�]:

ct′i ← cti + F (kupprf , i)

ct′ ← (ct′1, . . . , ct′�)

Output (ĉt′, ct′)

Encrypt(k,m)

(m1, . . . ,m�) ← Encode(m)

kprf ←R KPRF

h ← H(m)

ĉt ← AE.Encrypt kae, (kprf , h)
)

for i ∈ [�]:

cti ← mi + F (kprf , i)

ct = (ct1, . . . , ct�)

Output (ĉt, ct)

Decrypt k, (ĉt, ct)
)
:

μ ← AE.Decrypt(k, ĉt)

if μ = ⊥, output ⊥
(kprf , h) ← μ

(ct1, . . . , ct�) ← ct

for i ∈ [�]:

mi ← cti − F (kprf , i)

m′ ← Decode(m1, . . . ,m�)

if H(m′) = h, output m′

else, output ⊥

Fig. 4. Our UAE from almost Key-Homomorphic PRFs.

580 D. Boneh et al.

Construction 5.2 (UAE from almost Key-Homomorphic PRFs). Let
n, q, γ, and β be positive integers. Our construction uses the following:

– A standard authenticated encryption scheme ΠAE = (AE.KeyGen,AE.Encrypt,
AE.Decrypt) with message space M = (Mλ)λ∈N.

– A β-almost key-homomorphic PRF F : KPRF ×{0, 1}∗ → Z
n
q where (KPRF,+)

and (Zn
q ,+) form groups.

– A collision resistant hash family H =
{
H : Mλ → {0, 1}λ

}
. To simplify the

construction, we assume that a description of a concrete hash function H ←R

H is included in each algorithm as part of a global set of parameters.
– An encoding scheme (Encode,Decode) that encodes messages in (M, λ)λ∈N

as elements in Z
n
q . The Decode algorithm decodes any error vectors e ∈ [γ]n

as in Fact 5.1 for any fixed γ = β · λω(1).

We construct an updatable authenticated encryption scheme ΠUAE = (KeyGen,
Encrypt,ReKeyGen,ReEncrypt,Decrypt) for message space (Mλ)λ∈N in Fig. 4.

5.3 Security Under Relaxed Integrity

We will show in the next subsection that neither Construction 5.2 nor the con-
struction of Everspaugh et al. [15] satisfy our integrity definition. To prove secu-
rity of either scheme we must relax the notion of integrity in Definition 3.7 to
obtain what we call relaxed integrity. In this section we define relaxed integrity
and then prove security of Construction 5.2. In the next subsection we discuss
the implications of relaxed integrity to the security of the scheme in practice.

The relaxed integrity experiment modifies Definition 3.7 (integrity) in two
ways. First, we require that an adversary’s queries to the re-encryption oracle
are well-formed ciphertexts that do not decrypt to “⊥”. Without this restriction,
there is an attack on both Construction 5.2 and the Everspaugh et al. [15] scheme,
as we will discuss below.

Second, we modify the adversary’s winning condition in the integrity game.
When we use an almost key-homomorphic PRFs to instantiate Construction 5.2,
any re-encryption incurs a small error that affects the low-order bits of the cipher-
text. Therefore, to achieve correctness, we encrypt an encoding of a message
(Fact 5.1) such that the decryption algorithm can still recover the full message
even if the low-ordered bits are corrupted. This forces the construction to vio-
late traditional ciphertext integrity as an adversary can forge new ciphertexts by
adding noise to the low-order bits of a ciphertext. Our construction still guaran-
tees that an adversary cannot generate new ciphertexts by modifying plaintexts
or the high-order bits of ciphertexts. To capture this formally, we require that the
ciphertext space CT associated with the UAE has a corresponding metric func-
tion d : CT × CT → Z (e.g., Euclidean distance) that gives a distance between
any two ciphertexts. Then, in our relaxed integrity definition that is parameter-
ized with a positive integer γ ∈ N, an adversary wins the security experiment
only if it produces a valid ciphertext that differs from any of the ciphertexts that
it is given by more than γ.

Improving Speed and Security in Updatable Encryption Schemes 581

The rest of the definition of relaxed integrity exactly matches Definition 3.7.
We present the formal definition of relaxed integrity in the full version [10].

Security. The following theorem states the compactness, correctness, and secu-
rity properties of Construction 5.2. The proof is presented in the full version [10].

Theorem 5.3. Let ΠUAE be the updatable authenticated encryption scheme in
Construction 5.2. If the authenticated encryption scheme ΠAE satisfies correct-
ness, εconfae -confidentiality and εintae -integrity, F : KPRF × {0, 1}∗ → Y satisfies
εprf-security, and H : Mλ → {0, 1}λ is a εcr-secure collision resistant hash func-
tion, then ΠUAE satisfies strong compactness, correctness, confidentiality, and
γ-relaxed integrity.

For confidentiality, we have the following concrete security bounds for all
h, d = poly(λ) and efficient adversaries A that make at most Q challenge
queries:

∣
∣
∣ Pr

[
ExptconfΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
ExptconfΠUAE

(λ, h, d,A, 1) = 1
]∣∣
∣

≤ 2h · εconfae (λ) + 2h · εintae (λ) + 2Q · εprf(λ)

For integrity, we have the following bound for all h, d = poly(λ) and efficient
adversaries A:

Pr
[
Exptrelaxed-intΠUAE

(λ, h, d, γ,A) = 1
]

≤ h · εintae (λ) + εcr(λ)

We note that when we instantiate Construction 5.2 with a perfect key-
homomorphic PRF, we can use the trivial encoding scheme for γ = 0. In this
case, the relaxed integrity experiment Exptrelaxed-intΠUAE

(λ, h, d, 0,A) is comparable to
the ciphertext integrity notion in [15].

5.4 Consequences of Relaxed Integrity

The relaxed integrity definition from Sect. 5.3 places two restrictions on the
adversary relative to our full integrity definition (Definition 3.7). We discuss
these two restrictions and their implications below.

Weakened Re-encryption Oracle. The first restriction of relaxed integrity is
the weakened re-encryption oracle, which only re-encrypts well-formed cipher-
texts. This relaxation of the definition is necessary to prove security of Construc-
tion 5.2 as there exists a simple adversary that breaks the integrity experiment
when it is provided arbitrary access to the re-encryption oracle OReEncrypt. This
attack applies equally well to the construction of Everspaugh et al. [15].

To carry out the attack, the adversary does the following:

1. Uses encryption oracle OEncrypt to receive a ciphertext (ĉt, ct) ← OEncrypt(i,m)
for a message m ∈ Mλ and an honest key index i. For simplicity, suppose
that the message m is encoded as a single vector in Z

n
q : Encode(m) ∈ Z

n
q and

therefore, ct ∈ Z
n
q .

582 D. Boneh et al.

2. Subtracts an arbitrary vector m′ from the ciphertext body c̃t ← ct − m′.
3. Submits the ciphertext (ĉt, c̃t) to the re-encryption oracle OReEncrypt to receive

a new ciphertext (ĉt′, c̃t′) ← OReEncrypt

(
i, j, (ĉt, c̃t)

)
for an honest key index j.

4. Returns (ĉt′, c̃t′ + m′) as the ciphertext forgery.

Since the re-encryption algorithm is homomorphic, we have

OReEncrypt(i, j, ĉt, c̃t − m′) + m′ = OReEncrypt(i, j, ĉt, c̃t).

Therefore, the ciphertext (ĉt′, c̃t′ +m) is a valid forgery. This attack is ruled out
in the relaxed integrity experiment, where the re-encryption oracle OReEncrypt

outputs a re-encrypted ciphertext only when the input ciphertexts are well-
formed.

To carry out the attack above, an adversary must have arbitrary access to a
re-encryption oracle. Therefore, Construction 5.2 still provides security against
any active adversary that has arbitrary access to the decryption oracle, but only
observes key rotations on well-formed ciphertexts. For applications where an
adversary (e.g. a corrupted server) gains arbitrary access to the re-encryption
oracle, Construction 5.2 provides passive security as opposed to active security.
This also applies to [15].

Handling Noise. The second restriction imposed on the adversary is needed
due to the noise allowed in Construction 5.2. In particular, the encoding scheme
used in the construction allows an adversary to create new ciphertexts by adding
small amounts of noise to an existing ciphertext. In combination with the decryp-
tion oracle, an adversary can take advantage of this property to gain information
about the age of a ciphertext using a chosen ciphertext attack. Namely, an adver-
sary can take a ciphertext and incrementally add noise to it before submitting
the ciphertext to the decryption oracle. Based on how much noise an adversary
can add to the ciphertext before the decryption oracle returns ⊥, the adversary
can approximate the relative size of the noise in the ciphertext. Since each key
rotation in increases the noise associated with a ciphertext by a fixed amount,
an adversary can gain information about the age of the ciphertext by learning
the size of the noise in the ciphertext. Hence, the age of a ciphertext can be
exposed using a chosen ciphertext attack.

For applications where the age of a ciphertext is not sensitive information,
Construction 5.2 can be used as an efficient alternative to existing UAE schemes.
When combined with confidentiality (Definition 3.4), the relaxed integrity defi-
nition provides an “approximate” analogue of the traditional chosen-ciphertext
security. To see this, take any CCA-secure encryption scheme ΠEnc and modify
it into a scheme Π ′

Enc that is identical to ΠEnc, but the encryption algorithm
appends a bit 0 to every resulting ciphertext, and the decryption algorithm dis-
cards the last bit of the ciphertext before decrypting. The scheme Π ′

Enc is no
longer CCA-secure as an adversary can take any ciphertext and flip its last bit
to produce different valid ciphertext. However, the introduction of the last bit
does not cause the scheme Π ′

Enc to be susceptible to any concrete attack that vio-
lates security. Similarly, Construction 5.2 does not satisfy full ciphertext integrity

Improving Speed and Security in Updatable Encryption Schemes 583

due to its noisy nature; however, it still suffices to guarantee CCA security in
practice.

These variants of CCA security were previously explored under the name of
Replayable CCA and Detectable CCA [14,18], where it was argued that they are
sufficient to provide security against an active attacker in practice.

6 Almost Key-Homomorphic PRFs from Lattices

In this section, we construct an almost key-homomorphic PRF from the Learn-
ing with Errors (LWE) assumption [26]. There are a number of standard variants
of the LWE assumption in the literature that give rise to efficient PRF construc-
tions. For instance, using the Learning with Rounding (LWR) [6,11] assumption,
one can construct an almost key-homomorphic PRF in both the random-oracle
and standard models. However, any LWR-based PRF involves a modular round-
ing step [6] that forces the output space of the PRF to be quite small compared
to the key space. Hence, these PRFs are less optimal for the application of updat-
able encryption as the noise that is incurred by each key updates grows faster
in the smaller output space. In this work, we modify the existing LWR-based
KH-PRF constructions to work over the ring variant of the LWE problem called
the Ring Learning with Errors (RLWE) problem [22]. We provide the precise
definition in the full version [10]. The use of RLWE as opposed to LWR (or
Ring-LWR) allows us to construct almost KH-PRFs that can support more key
updates when applied to Construction 5.2.

We construct an almost key-homomorphic PRF from the hardness of the
Ring Learning with Errors problem as follows.

Construction 6.1. Let n, q,B, r,
 be positive integers, R = Z[X]/(φ) a poly-
nomial ring for φ ∈ Z[X], Rq = Zq[X]/(φ), and χ an error distribution over
EB ⊆ R. We let Sampχ : {0, 1}r → EB be a sampler for the error distribution χ
that takes in a uniformly random string in {0, 1}r and produces a ring element
in EB according to the distribution χ. For our construction, we set X = {0, 1}�

to be the domain of the PRF and use two hash functions that are modeled as
random oracles:

– H0 : {0, 1}� → Rq,
– H1 : Rq × {0, 1}� → {0, 1}r.

We define our pseudorandom function F : Rq × {0, 1}� → Rq as follows:

F (s, x):

1. Evaluate a ← H0(x), ρ ← H1(s, x).
2. Sample e ← Sampχ(ρ).
3. Output y ← a · s + e.

We summarize the security and homomorphic properties of the PRF construction
above in the following theorem. We provide its proof in the full version [10].

584 D. Boneh et al.

Theorem 6.2. Let n, q,B, r,
 be positive integers, R = Z[X]/(φ) a polynomial
ring for φ ∈ Z[X], Rq = Zq[X]/(φ), and χ an error distribution over EB ⊆ Rq.
Then, assuming that RLWEn,q,χ [10] is εRLWE-secure, the pseudorandom function
in Construction 6.1 is a εprf-secure 2B-almost key-homomorphic PRF (Defini-
tion 2.1) with key space and range (Rq,+) such that εprf(λ) = εRLWE(λ).

7 Evaluation

In this section we evaluate the performance of our nested and KH-PRF based
UAE constructions (Constructions 4.2 and 5.2), comparing their performance to
that of the ReCrypt scheme of Everspaugh et al. [15] both in terms of running
time and ciphertext size. We find that our constructions dramatically improve
on the running time of the Everspaugh et al. [15] UAE at the cost of an increase
in ciphertext size (albeit our ciphertext sizes are still considerably smaller than
those of ciphertext-independent schemes [12,20,21]).

RLWE Parameters

|q| = 28 |q| = 60 |q| = 120 |q| = 128

n 1024 2048 4096 4096
B 352 498 704 704

Fig. 5. RLWE parameters for each value of |q| used in our evaluation.

We implemented our constructions in C and evaluated their performance on
an 8-core Ubuntu virtual machine with 4 GB of RAM running on a Windows
10 computer with 64 GB and a 12-core AMD 1920x processor @3.8 GHz. We
use AES-NI instructions to accelerate AES and AVX instructions for applicable
choices of lattice parameters. Our implementation is single-threaded and does
not take advantage of opportunities for parallelism beyond a single core. We
rely on OpenSSL for standard cryptographic primitives and rely on prior imple-
mentations of NTT and the SHAKE hash function [4,27]. All numbers reported
are averages taken over at least 1,000 trials. Our choice of lattice parameters
for each modulus size |q| (the length of q in bits) is based on the best known
attacks on RLWE [3], as shown in Fig. 5. We discuss some aspects of our KH-
PRF implementation in the full version [10]. Our implementation is open source
and available at [1].

Encryption and Re-encryption Costs. Figure 6 shows encryption and re-
encryption times for our KH-PRF based UAE construction for various block sizes
of the underlying KH-PRF as well as the ReCrypt scheme [15] and our nested
construction with padding configured to support up to 128 re-encryptions. Our
lattice-based KH-PRF scheme, when run with the best parameters, has from
250× to over 500× higher encryption throughput than ReCrypt as the mes-
sage size increases from 4 kB to 100 kB. We note that, since KH-PRFs imply

Improving Speed and Security in Updatable Encryption Schemes 585

Encrypt and ReEncrypt Throughput (MB/sec)

KH-PRF UAE ReCrypt Nested
|q| = 28 |q| = 28 (AVX) |q| = 60 |q| = 120 |q| = 128 [15] t = 128

4KB Messages
Encrypt 24.85 31.97 20.32 0.76 0.70 0.12 406.69
ReEncrypt 29.80 41.03 32.13 0.82 0.74 0.14 706.37

32KB Messages
Encrypt 29.85 39.89 61.90 5.94 5.50 0.12 1836.9
ReEncrypt 32.33 44.51 83.06 6.43 5.85 0.15 2606.8

100KB Messages
Encrypt 31.03 41.63 65.11 9.42 9.12 0.12 3029.5
ReEncrypt 33.30 45.77 79.63 9.92 8.70 0.14 3766.2

Fig. 6. Comparing the throughput of our KH-PRF, ReCrypt, and our nested con-
struction configured to allow 128 re-encryptions, for messages of length 4 kB, 32 kB,
and 100 kB. Higher numbers are better. Our KH-PRF is evaluated with four choices of
q. The AVX column refers to an implementation that takes advantage of Intel’s AVX
vector instructions.

key exchange [2], we should not expect to be able to instantiate the KH-PRF
approach with performance any better than that of public key primitives. The
nested AES construction, on the other hand, has 13–47× the encryption through-
put of our KHPRF-based construction. The nested AES scheme approaches the
machine’s peak AES throughput of 4.45 GB/s as the message size increases.

We find that for small messages (4 kB), our KH-PRF with 28 bit output space
(and accelerated with AVX instructions) performs the best, but as messages grow
larger the KH-PRF with 60 bit output space outperforms other categories. Larger
block sizes tend to perform worse because the output of the PRF no longer
fits into compiler provided primitive types, causing arithmetic operations to
become less efficient. Increasing the message size improves performance because
the proportion of total time occupied by fixed-cost operations decreases, e.g.,

KeyGen and ReKeyGen Time (μsecs)

KH-PRF UAE ReCrypt Nested
|q| = 60 [15] t = 128

32KB Messages
KeyGen 3.0 1.0 2.6
ReKeyGen 72.7 308.8 10.1

Fig. 7. KeyGen and ReKeyGen costs. The main differences in performance are caused
by whether the ReKeyGen algorithm needs to sample only AES keys or also KH-PRF
keys, the type of KH-PRF used, and the number of ciphertexts contained in the update
token.

586 D. Boneh et al.

due to the large blocks in which the KH-PRF output is generated. We run our
remaining experiments with |q| = 60 because it has the overall best performance.

Key Generation. Key generation is a faster and less time-sensitive operation
than encryption, re-encryption, and decryption because it only occurs once for a
small ciphertext header before an entire ciphertext is encrypted or re-encrypted.
We show the performance of our KH-PRF based UAE as well as ReCrypt and
nested encryption on KeyGen and ReKeyGen operations in Fig. 7. Generating a
key in all three schemes is very fast because it only requires generating a random
128-bit symmetric key. The cost of rekeying depends on the underlying tool used
to re-encrypt. ReKeyGen runs very quickly in the nested construction because it
only consists of a couple AES-GCM encryptions of a fixed-size ciphertext header.
The other two constructions rely on different types of KH-PRFs and incur most
of their costs in generating the update keys for those PRFs.

25 50 75 100 125
0

500

1,000

Number of Re-encryptions

T
im

e
[μ
s]

Decryption Time
32KB Messages

KH-PRF
Nested

Fig. 8. KH-PRF based UAE (|q| = 60)
and nested UAE (t = 128) decryp-
tion times. The KH-PRF construction
decrypts faster than nested AES when
there are more than 50 re-encryptions.
ReCrypt is not depicted as it takes 500×
longer than our KH-PRF based UAE to
decrypt.

Ciphertext Expansion
32KB Messages

KH-PRF UAE
|q| = 28 133%
|q| = 60 36%
|q| = 120 20%
|q| = 128 19%

Nested UAE
t = 20 3%
t = 128 19%

ReCrypt [15] 3%

Fig. 9. Ciphertext body expansion for
the KH-PRF based UAE, Nested UAE,
and ReCrypt. Our constructions gen-
erally have larger ciphertext expansion
than ReCrypt, although the Nested UAE
matches ReCrypt for some settings, e.g.,
annually re-keying data for 20 years.

Decryption Costs. Figure 8 shows decryption costs for our two main construc-
tions and the tradeoffs between them. We omit the decryption performance of
ReCrypt from this graph because it is 500× slower than our KH-PRF based con-
struction and is strictly dominated by both schemes for the range of parameters
we measured. Decryption time for the nested AES construction depends linearly
on the number of re-encryptions that have occurred because decryption needs to
remove each layer of encryption to reach the plaintext. As such, it begins much
faster than the KH-PRF construction, as it only requires standard symmetric

Improving Speed and Security in Updatable Encryption Schemes 587

primitives for which hardware acceleration is available, but becomes slower after
about 50 re-encryptions. The KH-PRF construction could also vary its perfor-
mance slightly based on the number of expected re-encryptions by varying the
amount of padding applied in the message encoding process. However, we chose
to evaluate the scheme with a fixed amount of padding that is enough to support
about 128 re-encryptions.

Ciphertext Size. The ciphertext size of a ciphertext-dependent UAE scheme
consists of two parts: a fixed-size header and the body, whose size depends on
the plaintext. Figure 9 compares ciphertext body expansion between our con-
structions and ReCrypt. Our KH-PRF based scheme and ReCrypt have 80-Byte
headers, while our nested construction has a 116-Byte header. Our KH-PRF
based construction is implemented with padding on each block depending on
the size |q|. For example, a 60-bit block contains 44 bits of plaintext and 16 bits
of padding. This corresponds to a 36% ciphertext size expansion. The lowest
ciphertext expansion for our evaluation of the KH-PRF based scheme occure
when |q| = 128, with 19% expansion. ReCrypt has lower ciphertext expansion,
at 3%. The ciphertext size of our nested construction depends on the expected
number of encryptions. It has a constant 32-Byte overhead on top of the plain-
text, followed by another 48 Bytes for each re-encryption. For a 32 kB message,
a ReCrypt ciphertext takes 33 kB and a ciphertext under our KH-PRF scheme
takes 43.6 kB. A ciphertext under our nested construction will match the size
of a ReCrypt ciphertext after 19 re-encryptions. This fits well with a cipher-
text that is re-encrypted once a year over a 20-year lifetime. Supporting 128
re-encryptions still only requires a 38.3 kB ciphertext, matching the expansion
of the KH-PRF based PRF when |q| = 128.

Conclusions. Based on the performance of the schemes we evaluated, we can
make the following recommendations:

– If the ciphertext is to be re-encrypted only 10 or 20 times over the course of its
lifetime, say once a year for twenty years to satisfy NIST recommendations [7]
and PCI DSS [25] requirements, then one should use the nested construction,
as it will provide the best performance and ciphertext size. This is especially
true of ciphertexts that are decrypted infrequently.

– If the ciphertext is to be re-encrypted more frequently and its age is sensitive
information, then Recrypt [15] should be used.

– If the ciphertext is to be re-encrypted frequently, but its age is less sensitive,
then our almost KH-PRF based scheme can be used for high performance.

Future Work. We have constructed a performant updatable encryption scheme
based on RLWE, but it remains an open problem to construct a UAE scheme
from RLWE that satisfies our strongest integrity definition with decryption time
independent of ciphertext age. We hope that future work will result in such a
construction.

588 D. Boneh et al.

Acknowledgments. This work was funded by NSF, DARPA, a grant from ONR,
and the Simons Foundation. Opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of DARPA. Part of this work was done while the third author was visiting the
Simons Institute for the Theory of Computing as a Ripple Research Fellow.

References

1. Source code repository. https://github.com/moshih/UpdateableEncryption Code
2. Alamati, N., Montgomery, H., Patranabis, S.: Symmetric primitives with struc-

tured secrets. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11692, pp. 650–679. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 23

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: USENIX Security (2016)

5. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2 20

6. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

7. Barker, E.: NIST special publication 800–57 part 1 revision 4: recommendation for
key management (2016)

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS (1993)

9. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

10. Boneh, D., Eskandarian, S., Kim, S., Shih, M.: Improving speed and security
in updatable encryption schemes. Cryptology ePrint Archive, Report 2020/222
(2020). https://eprint.iacr.org/2020/222

11. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

12. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable encryp-
tion. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp.
464–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 16

13. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7 1

14. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

https://github.com/moshih/UpdateableEncryption_Code
https://doi.org/10.1007/978-3-030-26948-7_23
https://doi.org/10.1007/978-3-030-26948-7_23
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/11745853_14
https://eprint.iacr.org/2020/222
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-56784-2_16
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-540-45146-4_33

Improving Speed and Security in Updatable Encryption Schemes 589

15. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenti-
cated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10403, pp. 98–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 4

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

17. Google. Key rotation. https://cloud.google.com/kms/docs/key-rotation
18. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new app-

roach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 39

19. Kim, S.: Key-homomorphic pseudorandom functions from LWE with small modu-
lus. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp.
576–607. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 20

20. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11476, pp. 68–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2 3

21. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
685–716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 22

22. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

23. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

24. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 23

25. PCI Security Standards Council. Payment card industry data security standard
(2018)

26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC (2005)

27. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography. IACR Cryptology ePrint Archive 2018:39 (2018)

https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/3-540-47721-7_12
https://cloud.google.com/kms/docs/key-rotation
https://doi.org/10.1007/978-3-642-29011-4_39
https://doi.org/10.1007/978-3-030-45724-2_20
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/3-540-48910-X_23

CCA Updatable Encryption Against
Malicious Re-encryption Attacks

Long Chen(B), Yanan Li, and Qiang Tang

New Jersey Institute of Technology, Newark, NJ 07102, USA
{longchen,ly252,qiang}@njit.edu

Abstract. Updatable encryption (UE) is an attractive primitive, which
allows the secret key of the outsourced encrypted data to be updated
to a fresh one periodically. Several elegant works exist studying various
security properties. We notice several major issues in existing security
models of (ciphertext dependent) updatable encryption, in particular,
integrity and CCA security. The adversary in the models is only allowed
to request the server to re-encrypt honestly generated ciphertext, while
in practice, an attacker could try to inject arbitrary ciphertexts into the
server as she wishes. Those malformed ciphertext could be updated and
leveraged by the adversary and cause serious security issues.

In this paper, we fill the gap and strengthen the security definitions in
multiple aspects: most importantly our integrity and CCA security models
remove the restriction in previous models and achieve standard notions of
integrity and CCA security in the setting of updatable encryption. Along
the way, we refine the security model to capture post-compromise secu-
rity and enhance the re-encryption indistinguishability to the CCA style.
Guided by the new models, we provide a novel construction ReCrypt+,
which satisfies our strengthened security definitions. The technical build-
ing block of homomorphic hash from a group may be of independent inter-
ests. We also study the relations among security notions; and a bit surpris-
ingly, the folklore result in authenticated encryption that IND-CPA plus
ciphertext integrity imply IND-CCA security does not hold for ciphertext
dependent updatable encryption.

1 Introduction

Increasingly number of companies, government bodies and personal users choose
to store their data on the cloud instead of their local devices. As a public infras-
tructure, frequent data breaches from the cloud were reported. One potential
mitigation is to let the user to upload encrypted data and keep the decryption
key locally. However, even if these data are protected by encryption mechanisms,
there are still risks that the users’ decryption keys get compromised, especially
after the key has been in use for a while. It is widely acknowledged (and imple-
mented in industry) that a wiser strategy is to let the user periodically refresh
the secret key which is used to protect the data (and update the corresponding
ciphertext in the cloud). For instance, the Payment Card Industry Data Secu-
rity Standard (PCI DSS) [6,13] requires that the credit card data must be stored
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 590–620, 2020.
https://doi.org/10.1007/978-3-030-64840-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_20

CCA Updatable Encryption Against Malicious Re-encryption Attacks 591

in encrypted form and mandates key rotation, i.e., encrypted data is regularly
refreshed from an old to a newly generated key. The similar strategy has also
been adopted by many cloud storage providers, such as Google and Amazon [10].

Though we have many standardized encryption tools to use, facilitating key
rotation requires care. A naive solution is to let the client download all encrypted
data, decrypt, choose a new key, encrypt the data, and upload the new ciphertext
to the cloud server. This is obviously too inefficient (e.g.., large communication
for big data) to be useful. To efficiently and securely execute the key rotation,
Boneh et al. [4] proposed a new primitive called updatable encryption (UE) for
efficiently updating ciphertexts with a new key. In such a scheme, a client only
needs to retrieve a very short piece (called header) of information, and generates
a short update token that allows the server to re-encrypt the data himself from
existing ciphertext, while preserving the security of the encryption. Everspaugh
et al. [10] gave a systematic study of UE, especially on the key rotation on authen-
ticated encryption, which is the standard practice for encryption. The seemingly
paradoxical feature of modifying ciphertext while maintaining integrity is both
necessary and conceptually intriguing; more importantly, integrity is as indis-
pensable as confidentiality in secure storage. Very recently, Boneh et al. [3] pro-
posed strengthening on confidentiality and improved the efficiency of [10].

Security of Updatable Encryption in a Nutshell. The security models of
updatable encryption mimic those of authenticated encryption (AE) to capture
both the confidentiality and integrity of the massage. But a critical difference
is that UE wishes to capture the survivability of the system after the server
is briefly breached or the client is temporarily hacked. To characterize these
attack scenarios, the adversary in the UE model is allowed to view the secret
keys in the previous epochs and the current version of the continuously updating
ciphertext. And also, other related information generated during the key rota-
tions, such as the update tokens, headers, will also be leaked to the adversary.
The only restriction is to rule out the trivial impossibility that the secret key and
the ciphertext are both obtained by the attacker simultaneously. Since adver-
sary’s strategy could be very diverse, clearly defining the boundary so that the
strategies leading to trivial break of the system are disallowed is complex.

In the pioneer work [10], Everspaugh et al. defined an IND-CPA analogous
security called UP-IND and a ciphertext integrity (CTXT) analogous security
called UP-INT-CTXT. CCA security was not considered at all in [3,10], as in
a standard AE scheme, it is well-known that IND-CPA and CTXT imply IND-
CCA security. However, given that those security models are fairly complex, we
first ask a question whether such implication still holds in the general ciphertext
dependent updatable encryption.1

1 A very recent work [5] demonstrates this relationship still holds for UE in the cipher-
text independent setting, which is a special case for updatable encryption that head-
ers are not needed for update, Both settings have pros and cons [3], which we will
discuss in detail in the section of related works. In this paper, we focus on the general
ciphertext dependent UE, as [3,4,10].

592 L. Chen et al.

The Security After the Server Being Compromised. A more serious
issue is related to those existing definitions themselves. Compared to the mod-
els for AE schemes, the UE models should fully consider the content security
when the server is occasionally compromised. As noticed by [14], the previous
integrity model UP-INT-CTXT is only against restricted attackers: the attacker
is not allowed to ask the server to re-encrypt a maliciously formed ciphertexts
that is of her choice. Instead, she can only query the re-encryption oracle with
honestly generated ciphertext that was received from the challenger via related
oracles (e.g.., (re)encryption oracle). Clearly, an adversary could try to inject all
kinds of ciphertext into the server and eventually got updated and mixed into
the user-supplied ciphertext. Indeed, as Klooß, et al. concluded, both the confi-
dentiality and integrity protections in [10] “are only guaranteed against passive
adversaries”.

Indeed, existing constructions of updatable encryption will become insecure if
we allow the malicious re-encryption queries. In the full version [9], we provide
a concrete example to show an active “attack” on the integrity of the KSS
scheme proposed by Everspauph et al. [10]. It follows that the constructions are
vulnerable against active adversaries who try to inject malformed ciphertext,
which immediately violates the integrity; and what’s worse, such capability could
be leveraged to break confidentiality. The situation is the same in [3].

Having noticed the problem, some partial progresses have been made in the
ciphertext independent setting [14].2 In their first construction, they also have
the same restriction in both ciphertext integrity and CCA security. In their sec-
ond construction, they remove the restriction partially, that achieved plaintext
integrity and RCCA security (Replayable CCA [7]). It is widely believed that
PTXT does not provide a strong enough integrity guarantee for secure storage
[20], as the adversary may still be able to generate a ciphertext that was mauled
from a target ciphertext. While RCCA has another restriction that a cipher-
text generated by re-randomizing a challenge ciphertext is not allowed to query
decryption oracle, thus clearly not CCA.

The Security After the Key Being Compromised. Besides characterizing
the server breach scenario, how to precisely define the security when the breach
occurs on the client side also needs to be crystal clear. The main motivation of
updatable encryption is to enable the outsourced storage to “regain” security
even the client got temporarily hacked, so long as the system later executes the
update process (updating both secret key and ciphertext). However, it has been
pointed out in [18] that the security model of [10] is ambiguous regarding whether
the adversary is allowed to see a certain version of the challenge ciphertext, which
is updated from a ciphertext that was encrypted under a leaked key.

If we look at the example for the model of UP-IND [10] in more detail: the
keys are all generated once and there are no clearly defined epochs. Suppose the

2 As mentioned above and we will discuss further in related work, the security of
ciphertext dependent UE are even more involved due to the extra headers and flexible
generation of update tokens.

CCA Updatable Encryption Against Malicious Re-encryption Attacks 593

challenge ciphertext c∗
1 is first encrypted under k1. When the adversary queries

c∗
1’s update under k3 after the adversary queries k2, the challenger will directly

re-encrypt the challenge ciphertext c∗
1 under k1 to a ciphertext c∗

3 under k3.
During this procedure, the challenge ciphertext has never been updated to some
version under the key k2. More generally, in the model of [10], for all the versions
of exposed challenge ciphertext, their previous version were always encrypted
under a safe key which has never been exposed. (This is the same in [3]).

But in reality, the server updates sequentially, all ciphertext have been
updated from a previous version whose key may be leaked (that’s why it is
related to post-compromise security). It is possible that the updated ciphertext
contains some private information accessible to the key of the prior ciphertext
version. Also, the adversary likely pretends as the client to query the header
she wants, even including that of challenge ciphertext encrypted under breached
keys.

For those reasons, a model that aims to precisely capture post-compromise
security was proposed in [18] for the ciphertext independent setting, in which
the client generates one update token for all ciphertext. However, it is unclear
whether we can adapt straightforwardly the security from ciphertext indepen-
dent setting to the more general ciphertext dependent setting. In the former,
there was no headers involved, and one update token will be used to update all
ciphertext; while in the latter, a more careful treatment is needed to deal with
those headers and ciphertext specific update tokens.

1.1 Our Contributions

In this paper, we give a systematic study of standard ciphertext integrity and
security notions against CCA attacks, in the general setting of ciphertext depen-
dent updatable encryption (CDUE). We summarize our results with comparison
with previous work in Table 1.

Table 1. Comparison of properties of existing UE schemes. CD/CI means ciphertext
dependent/independent respectively; CCA− and CTXT− means the models that dis-
allow malicious re-encryption queries.

Scheme Update Manner Conf. Integrity ReEnc IND

BLMR [4] CD CPA No CPA

KSS [10] CD CPA CTXT− ⊥
ReCrypt [10] CD CPA CTXT− CPA

Nested UAE[3] CD CPA CTXT− CPA

KH-PRF UAE [3] CD CPA CTXT− CPA

RISE [18] CI CPA No CPA

E& M [14] CI CCA− CTXT− CPA

NYUE [14] CI RCCA PTXT CPA

SHINE [5] CI CCA− CTXT− CCA−

ReCrypt+ CD CCA CTXT CCA

594 L. Chen et al.

Security Models and Relations. We provide a new model combination
strengthened UP-IND-CCA (sUP-IND-CCA) and strengthened UP-INT-CTXT
(sUP-INT-CTXT) to characterize both the confidentiality and the integrity of
CDUE. Comparing the combination of UP-IND and UP-INT suggested in [3,10],
our model strengthens the security in following aspects.

– We capture the active adversary who can query the re-encryption oracle with
maliciously generated ciphertexts in confidentiality and ciphertext integrity
models (CPA, CCA and CTXT). To demonstrate the practical security
improvement in our models, we also show an “attack” on the KSS scheme
[10] when facing malicious re-encryption in the full version [9].

– We use the notion of epoch from [18] in both the confidentiality and integrity
models, to capture the post-compromise security. As noted before, we need
to carefully deal with the headers, and flexibly generated update tokens in
ciphertext dependent setting. We added two more oracles to give a more fine-
grained characterization. ONext(·) is used to force the challenger to update,
and OHeader (i) is used to respond with the header of challenge ciphertext in
epoch i (updated from previous epoches). In the full version [9], we provide
a variation of KSS scheme from [10] which fails to achieve post-compromise
security, but was proven secure in the existing model.

– Interestingly, after clearly defining the CPA, CCA and CTXT securities, we
show that in contrast with the conventional wisdom in AE, IND-CPA security
+ CTXT security do not imply IND-CCA security in the setting of ciphertext
dependent UE. Note that the CCA attack on our counter example holds with
or without malicious re-encryption. That means we have to study both IND-
CCA security and CTXT security in ciphertext dependent UE.

– As a byproduct, we also consider CCA style of re-encryption indistinguisha-
bility, which is to capture update unlinkability. We defer details regarding
this part to the full version [9].

Construction. With the strengthened security models at hand, we set force
to construct a (ciphertext dependent) updatable encryption named ReCrypt+,
which can be proven secure under our sUP-IND-CCA, sUP-INT-CTXT and
sUP-REENC-CCA models. Our starting point is the Recrypt scheme in [10],
which already has the basic confidentiality and integrity. The existing attacks
reminded us several main challenges: first we need to ensure that the update
procedure is as “independent” as possible so that post-compromise security can
be achieved; next major challenge is how to mute the malicious re-encryption
attacks. Intuitively, the validity of ciphertexts must be checked before updating.
Here is the dilemma: the server does not have the secret key, thus have to rely
on the assistance of the client to do the checking. But the client only sees the
short header during the key rotation.

Let us walk through the subtleties and our ideas. ReCrypt follows the
standard Key Encapsulation Mechanism (KEM) + Data Encapsulation Mech-
anism (DEM) with secret sharing. Specifically, its header is a KEM Kem(k, x)
for the DEM key share x under the master key k, and the body is with the

CCA Updatable Encryption Against Malicious Re-encryption Attacks 595

form (y,Dem(x ⊕ y,m)) for the DEM key share y and the DEM of the message
m. During the key rotation, the header (i.e. Kem(k, x)) will be sent back to
the client. We can instantiate the KEM via an authenticated encryption. Hence
the validity of the header part can be directly verified by the client who holds
the master key. However, the main challenge remains as validity check of the
ciphertext body still has to be carried out on the server side.

A Naive Attempt. A naive suggestion is to hash all the ciphertext body can
include the digest into the header plaintext. The client will use the AE to check
whether the header is intact, and include the digest in the update token, so that
the server can check the body. This has two major problems: first, it immediately
kills the possibility for efficient update; moreover, such a method may not be
sure: when the server notices the invalidity of the ciphertext after receiving the
decrypted digest from the client, the update token has already been sent out.
The server may stop re-encryption, but the adversary who obtains the update
token may already be able to infer useful information.

Enable Validity Checking. To facilitate efficient update and checking, we would
need a “hash” that satisfies the following: (1) it compresses the ciphertext body,
otherwise the header would be too long; (2) it is “binding”, so that the server can
check the digest and ciphertext body; (3) it is partially hiding: as the secret key of
previous epoch might be leaked, combining with part of the ciphertext may lead
to the exposure of some master key; (4) it satisfies certain key homomorphism
so that efficient update could be facilitated. Using a commitment scheme will
not be compressing; while using a collision resistant hash may not be hiding.
We proceeds in two steps: the key share y needs to be protected, thus it will be
committed to cy using a homomorphic commitment scheme; while the payload
carrying the actual encrypted data will be compressed into a short digest h with
a homomorphic collision resistant hash. cy||h will be the derived digest.

Avoid Dangerous Update Token. Regarding the second problem, either the server
or the client should be able to detect the invalidity of ciphertext before the update
token has been generated! To facilitate such verifiability, we put cy||h as the
associated data to encrypt them together with the key share in the header using
authenticated encryption with associated data. We emphasize that encrypting
the digest using AE directly (without putting them in plain as well) will be
problematic, as now the server cannot check first, adversary may inject a header
which is not bound to the ciphertext body, e.g., taking from a previous cipher-
text. Now the client cannot detect and will generate the update token.

Homomorphically Hash from a Group. One more subtlety remains, as the
above verification ideas have not considered how to be compatible with the
re-encryption. Specifically, ReCrypt updates the DEM part via the key homo-
morphic pseudorandom functions (KH-PHF) [4]. When the DEM part is updated
by adding new KH-PRF values, we wish that the hash value of the DEM part,

596 L. Chen et al.

which is included in the header, can be updated by the client conveniently accord-
ing to those KH-PRF values. Therefore, we design a new homomorphic collision
resistant hash function, whose domain needs to match the range of the KH-
PRF which is some particular groups instead of binary strings. Specifically, we
construct such homomorphic hash functions from the asymmetric bilinear maps
e : G1 ×G2 → GT . The KH-PRF could be constructed over G1, where the DDH
problem is hard.

1.2 Related Works

Two Flavors of Updatable Encryption. As we briefly mentioned above, in
many of the updatable encryption schemes, during the key rotation, the client
would first retrieve a small piece of the ciphertext (called header), and then
generates a update token. Such kind of UE is called ciphertext dependent UE [3,
4,10], (CDUE in short). On the other hand, one may insist that the client directly
generates the update token. Such a UE scheme is called ciphertext independent
UE [5,14,18] (CIUE in short).

Though ciphertext independent UE saves one round of communication, the
header is normally extremely short in ciphertext dependent UE. More impor-
tantly, since in a ciphertext dependent UE, the client can generate update token
based on each ciphertext header, this gives a fine-grained control over updat-
ing procedure and security: the client could choose to update only part of the
ciphertext, and leakage of some token does not influence other ciphertext.

As discussed in detail in previous work [3], there are both pros and cons for
these two flavors of UE, and the different updating paradigms yield different
security definitions, applications and construction strategies. In this article, we
focus on ciphertext dependent schemes, and fill the gap exists in integrity and
CCA security. We also refer to the full version [9] for more detailed comparisons.

Other Related Works. The first updatable encryption scheme (BLMR) is
proposed by Boneh et al. [4]. However, only the confidentiality is considered
in this work, and the other security notions have not been formalized. Later,
Everspauph et al.[10] provided a systematic study of updatable encryption in
the ciphertext dependent setting, as we discussed, they did not allow malicious
re-encryption in integrity and CPA notions, which are the main objective of this
paper. Very recently, Boneh et al. [3] revisit the results of Everspauph et al.
about CDUE. Their security notion is similar to [10], and they did not consider
the post-compromise security and the malicious update resistance. Moreover,
Nested UAE can only proceed the key rotation with bounded number of times.

Lehmann and Tackmann [18] point out the models UP-IND and UP-REENC
in [10] are hard to capture the post compromise security. So they provide the
models (IND-ENC and IND-UPD) and the construction (RISE) with the post-
compromise security. Recently, Klooß et al. [14] add the integrity considerations
to [18], and provide two constructions (E&M without malicious update resis-
tance and NYUE with only plaintext integrity and the weaker RCCA security).

CCA Updatable Encryption Against Malicious Re-encryption Attacks 597

Boy et al. [5] first formally prove that for CIUE without malicious update, the
folklore relationship in authenticated encryption that the combination of CPA
and CTXT security yields CCA security still holds. However, the relationship
for CDUE remains open.

2 Preliminary

Here we describe several primitives that will be used in our construction.

Authenticated-Encryption with Associated-Data Authenticated encryp-
tion with associated-data (AEAD) is a variant of authenticated encryption (AE)
that allows a recipient to check the integrity of both the encrypted and unen-
crypted information in a message. AEAD binds associated data (AD) to the
ciphertext and to the context where it is supposed to appear so that attempts
to “cut-and-paste” a valid ciphertext into a different context are detected and
rejected. Specifically, an AEAD scheme consists of following three algorithms:

– KeyGen(1λ) takes the security parameter λ as input, and outputs the secret
key k.

– Enc(k,m, ad) takes the secret key k, a message m and the associated data ad
as inputs, and outputs the ciphertext c.

– Dec(k, c, ad): take the secret key k, a ciphertext c and the associate data ad
as inputs, and outputs the decrypted message m or the symbol ⊥ to denote
the decryption failure.

For the detailed security definition, we refer to the full version [9].

Commitment. A commitment scheme Com = {Init,Com,Open} consists of
three following algorithms: Init is used to generate the public parameter; Com
outputs a commitment value com from a message m, while Open will check
whether the commitment com is bound to the message m. A commitment
scheme should satisfy both the hiding and binding properties. The hiding prop-
erty requires the distributions of the commitment values for different messages
can not be distinguished by the adversary, while the binding property requires
the commitment value can not be opened to two different messages.

Some commitment schemes, such as the Pederson commitment [22], also
satisfy the homomorphic property, which are called the homomorphic com-
mitment. Specifically, the message space, the randomness opening space and
the commitment values are all defined over additives group G1, G2 and G3

respect to the operations ⊕, � and ⊗. The commitment scheme satisfies
Com(m1, open1) ⊗ Com(m2, open2) = Com(m1 ⊕ m2, open1 � open2).

598 L. Chen et al.

Key-Homomorphic Pusedorandom Function. The notion of key-
homomorphic PRFs was proposed by Boneh et al. [4], and used in the UE
constructions [10,18]. Specifically, a key-homomorphic PRF F : K × X → Y
is a secure psedorandom function which satisfy the following property: for every
k1, k2 ∈ K, and every x ∈ X : F(k1, x) ⊗ F(k2, x) = F((k1 ⊕ k2), x) where ⊗
and ⊕ are group operations respect to K and Y. One example construction is to
define as y = H(x)x where H(·) is a random oracle from a bit string to a group
element.

3 Formalization

In this section, we formalize the syntax of the ciphertext dependent updatable
encryption scheme following [10].

Intuitively, the data flow of the outsource storage from CDUE can be seen in
Fig. 1. With loss of generality, we divide the whole storage period into multiple
time epochs. At the beginning of the storage, the client generates a secret key
k0 for the epoch 0, encrypts his file m with the key k0, and outsources the initial
ciphertext C0 =

(
C̃0, C̄0

)
to the server. Here C̃0 is the header and C̄0 is the

body. After a specific epoch e, the serve will send back the header C̃e. The client
will generate a new key ke+1, compute a token Δe,C̃e

and send it back to the
server. The server will update the old ciphertext Ce to the new one Ce+1 with
the token Δe,C̃e

. Formally, we have the following definition.

Definition 1 (Updatable Encryption). The ciphertext dependent updatable
encryption (CDUE) consists of the following six algorithms

CDUE = (Setup,KeyGen,Encrypt,Decrypt,ReKeyGen,Recrypt).

– Setup(1λ) is a randomized algorithm run by the client. It takes the security
parameter λ as input and outputs the public parameter pp which will be shared
with the server. Later all algorithms take pp as input implicitly.

– KeyGen(e) is a randomized algorithm run by the client. It takes the epoch
index e as input and outputs a secret key ke for the epoch e.

– Encrypt(ke,m) is a randomized algorithm run by the client. It takes the secret
key ke and the message m as inputs, and outputs the ciphertext Ce = (C̃e, C̄e)
which consists of two parts, i.e., the header C̃e and the body C̄e.

– Decrypt(ke, Ce) is a deterministic algorithm run by the client. It takes the
secret key ke and the ciphertext Ce as inputs, and outputs the message m or
the symbol ⊥.

– ReKeyGen (ke, ke+1, C̃e) is a randomized algorithm run by the client. It takes
the header C̃e, the old secret key ke of the last epoch and the new secret key
ke+1 of the current epoch as inputs, and generates a re-encrypt token Δe,C̃

or outputs the symbol ⊥.
– Recrypt(Δe,C̃e

, Ce) is a deterministic algorithm run by the server. It takes
the re-encrypt token Δe,C̃e

and the ciphertext Ce = (C̃e, C̄e) as inputs, and

CCA Updatable Encryption Against Malicious Re-encryption Attacks 599

outputs a new ciphertext Ce+1 =
(
C̃e+1, C̄e+1

)
under the secret key ke+1 or

the symbol ⊥.

Note that the above formalization is tailored to our ciphertext integrity def-
inition. Particularly, here we require the algorithm Recrypt to be deterministic.
It is because, if the server is allowed to randomly re-encrypt the ciphertext given
the token and the header, a malicious server may run this procedure more than
one time, and get multiple (maybe exponentially large number of) versions of
the updated ciphertext. Consequently, this makes the challenger to track the
trivially obtained ciphertext in the CTXT game extremely difficult. Moreover,
such a restriction of the syntax has little impact on the construction, since the
algorithm Recrypt is deterministic for almost all existing CDUE schemes [3,10].

Besides, the syntax of the CIUE scheme can be viewed as a special case of the
ciphertext dependent scheme in Definition 1 when choosing a dummy header,
although its security definition may be different. In this case, the server has no
need to send the header back, and the update token is generated from the old
and new keys directly.

Fig. 1. The data flow between client and cloud during the key update of the ciphertext

Ce =
(
C̃e, C̄e

)
for the epoch e. The client receives a small ciphertext header C̃e, and

runs ReKeyGen to produce a compact update token Δe,C̃e
. The server uses this token

to re-encrypt the ciphertext Ce to Ce+1.

Correctness. We define the correctness of CDUE if the ciphertext can still be
correctly decrypted after arbitrary times of key update. Specifically, we have the
following formal defintion.

Definition 2 (Correctness). For an updatable encryption scheme CDUE,
each epoch key ki is generated by CDUE.KeyGen(i) for epoches from 0 to e. For a
message m and any integer i such that 0 ≤ i ≤ e, let ci ← CDUE.Encrypt(ki,m)
and recursively define for i < j ≤ e,

Δj−1,C̃j−1
← ReKeyGen

(
kj−1, kj , C̃j−1

)
,

Cj ← Recrypt
(
Δj−1,C̃j−1

, Cj−1

)
.

600 L. Chen et al.

Then CDUE is correct if Pr[CDUE.Decrypt(ke, Ce) = m] = 1 for any message
m, any integer e and any integer i such that 0 ≤ i ≤ e.

Compactness. We say that a CDUE scheme is compact if the size of total commu-
nications between client and server during update is independent of the length of
the plaintext. In practice, the compactness guarantees that the communication
cost for the key update procedure is efficient.

4 Strengthened Security Models

In this section, we systematically study the security definitions of the CDUE.
As we explained in the introduction, the previous model combination UP-IND
+ UP-INT [3,10] needs to be strengthened in multiple aspects.

Malicious Re-encryption Attack. All previous CDUE definitions [3,10] did not
consider malicious re-encryption threats, particularly for integrity, i.e. the adver-
sary may query maliciously generated ciphertexts to the re-encryption oracle.
However, a real-world adversary who can temporarily compromise the server
may inject arbitrary ciphertexts in data storage. These injected ciphertexts may
be automatically updated by the server, even if they may not be decrypted
successfully. Such possibilities can be leveraged by the adversary to attack the
integrity or the confidentiality. In the full version [9], we show that an adversary
of the KSS scheme [10] can fabricate a valid ciphertext by querying re-encryption
oracle with an ill-formed ciphertext. The intuition of the attack is that the adver-
sary may generate a valid ciphertext C1 for epoch 1 by corrupting key k1. But
instead of querying the re-encryption oracle with C1 directly, the adversary may
query with a invalid ciphertext C ′

1 = f(C1) which is a modification of C ′
1 via cer-

tain operation f . After getting an updated ciphertext C ′
2 (which is still invalid),

the adversary can recover a valid ciphertext C2 from C ′
2 though an inverse oper-

ation f−1. More importantly, since C2 is not directly generated via querying the
re-encryption oracle or the encryption oracle, and the epoch key k2 has not been
corrupted, C2 will be considered as a legitimate forgery in the CTXT game!

Post-compromise Security. The security model in [3,10], as discussed in [18], is
hard to capture the post compromise security. More precisely, the UP-IND model
is ambiguous that whether the adversary is allowed to view certain version of
the challenge ciphertext updated from a key corrupt epoch. We gave exemplary
explanations in the introduction. and we will give a concrete example in [9] to
show a scheme proved secure under UP-IND model, but can be attacked by a real
world adversary. As pointed by Lehmann and Tackmann in [18], this ambiguity
is caused by the missing of the epoch notion in UP-IND. The integrity model
UP-INT has a similar problem. Of course, the definition is more involved as we
also need to consider the leaked headers, and flexible generation of tokens.

CCA Updatable Encryption Against Malicious Re-encryption Attacks 601

Chosen Ciphertext Attack. The chosen ciphertext attack is a real threat to a UE
system. One the one hand, a malicious server may choose an arbitrary ciphertext
to answer the retrieve query of the client, and learn the information about the
decryption result later on from side channels (e.g.. the server may easily learn
whether the decryption is successful according the response of the client.); on the
other hand, temporary breaches of the client’s device may happen occasionally.
Although the secret key may not be easy to steal due to the limit of time, the
adversary may use the compromised device as an decryption oracle. Neverthe-
less, the previous models for CDUE in [3,10] have not considered the chosen
ciphertext attack. One may hope that UP-IND plus UP-INT can imply a CCA
style security analogous to the AE setting, but such a relation have never been
proved for UE. We will show soon that it turns out to be false!

In the following, we formally define our strengthened security models for
CDUE: for confidentiality, we provide the sUP-IND-CCA model; for integrity,
we provide the sUP-INT-CTXT model; for re-encryption indistinguishability, we
provide the sUP-REENC-CCA model in the full version [9]. Moreover, we also
provide the sUP-IND-CPA model without the decryption oracle for complete-
ness, and show a counter example where a CDUE scheme is sUP-IND-CPA and
sUP-INT-CTXT but not sUP-IND-CCA secure. That inspires us that the corre-
sponding model relation is different with the case for authenticated encryption.

4.1 Confidentiality

Now we start from the confidentiality, and describe models strengthened UP-
IND-CPA and strengthened UP-IND-CCA (sUP-IND-CPA and sUP-IND-CCA
for short) which mimic the standard CPA and CCA model of AE. In these
models, the key is evolving with the epochs. Beside the challenge ciphertext
and the encryption/decryption oracle, the adversary is additionally allowed to
obtain keys of some epochs. This captures that the client’s keys are leaked.
Also the adversary has the ability to get some previous versions of the challenge
ciphertexts and update tokens. This captures that previous storage in the server
may not be securely erased in time. To exclude the trivial impossibility, we
disallow the adversary to learn a version of the challenge ciphertext and corrupt
the key within the same epoch. However, the adversary is always allowed to
see the header of any updated version of the original challenge ciphertext, even
getting its body is forbidden. This is because the adversary may pretend the
client in front of the server and ask the header3.

Note that our models sUP-IND-CPA and sUP-IND-CCA have fully consid-
ered that the cases that the adversary may compromise the server during some
epoch and read its memory or tamper some ciphertexts. So we allow the adver-
sary to query the re-encryption oracle with maliciously generated ciphertexts.
However, the key update procedure should follow the instructions of the UE

3 In the real world, the communication between a client and a server is typically
via TLS without the user authentication [16], since the client does not have a PKI
certificate. Therefore pretending the client in front of the server is not difficult.

602 L. Chen et al.

scheme, i.e., the server will recover at the end of the epoch and honestly execute
the key rotation instructions. The assumption is inevitable for UE, since no UE
scheme can achieve the basic security if a fully malicious server refuses to exe-
cute the update operation. In practice, a benign server can quickly detect the
invasion by the intrusion detection systems (IDSs), recover from the breach in
time before the next key rotation with a high probability.

Experiment Structure. We first describe the structure of the confidentiality
game in Fig. 2, and explain in detail how the oracles are defined right after Defi-
nition 3. As mentioned above, we also introduce the epoch notion to denote the
time sequence following [18]. We index every epoch in the experiments accord-
ing to its order from 0, and record the index of the current epoch with variable
e. Note that in our game the challenge ciphertexts are automatically updated
when moving to the next epoch. This enables us to provide to the adversary some
updated versions of the challenge ciphertext which are indeed updated from an
epoch in which the key is corrupted, as well as the header of the version of the
challenge ciphertext in the key corrupted epoch, thus our model easily captures
the post-compromise security (which was ambiguous in existing models).

sUP-IND-ATK ExpA
sUP-IND-ATK(λ)

1 : pp ←$Setup(λ), Initialize e,K, IC,KC,TO,CE

2 : k0 ← KeyGen(pp), K(0) ← k0

3 : (m0, m1, state) ←$ AO1

4 : Procced only if |m0| = |m1|
5 : b ←$ {0, 1}, C∗ ← Encrypt(ke, mb), Set CE(e) ← C∗

6 : b′ ←$ AO2(state)

7 : for i = 1 to e

8 : if KC(i) = true ∧ IC(i) = true then return ⊥
9 : return (b′ == b)

Fig. 2. The sUP-IND-ATK experiment, where ATK could be CPA or CCA. When ATK
is CPA, O1:=(OEnc, ONext, OKeyCorrupt, OReEnc, OToken) and O2:= (OEnc, ONext, OKeyCorrupt,
OReEnc, OToken, OHeader, OChallengeCT). When ATK is CCA, O1 additionally includes ODec

and O2 additionally includes ODec.

Definition 3 (sUP-IND-CPA(CCA)). Define the sUP-IND-CPA(CCA)
experiment as Fig. 2 where ATK is CPA(CCA). An updatable encryption scheme
is called sUP-IND-CPA(CCA) secure if for any P.P.T adversary A the advan-
tage

Adv
sUP-IND-CPA(CCA)
A :=

∣∣∣∣Pr[ExpA
Adaptive UE-CPA(λ) ⇒ 1] − 1

2

∣∣∣∣
is negligible for the security parameter λ.

CCA Updatable Encryption Against Malicious Re-encryption Attacks 603

As explained before, our sUP-IND-CPA(CCA) strengthen previous confi-
dentiality model in aspects of the malicious update resistance and the post-
compromise security. Also. the sUP-IND-CCA strengthens the security against
chosen ciphertext attack. To more clearly elaborate this claim, next we will
describe the behaviour of the challenger during the game in detail. Especially,
we will show how the challenge to maintain his internal states and answer each
queries of the adversary.

The Internal State of the Challenger. During the games, with respect to
the adversary’s behaviour and the key evolution, the challenger will maintain
and update the following tables to keep track of the overall state, which will be
used to rule out the trivial impossibility. The rows of each table are indexed by
the epoch indices.

Special cares are needed for those tables related to challenge ciphertexts. To
explain, we call the ciphertexts that are updated from the challenge ciphertext
challenge-equal ciphertexts. There is at least one challenge-equal ciphertext for
every epoch since the challenge epoch. And the adversary can choose to view
the challenge-equal ciphertext in any key-uncorrupted epoch and the header of
the challenge-equal ciphertext in any key-corrupted epoch (via concrete oracles
defined below). Note that our model does not limit to repeat querying the OReEnc

oracle with the challenge ciphertext and the challenge-equal ciphertext. Since the
ReKeyGen algorithm (hence the ciphertext update procedure) could be random-
ize, the adversary can acquire multiple the challenge-equal ciphertexts of the
same epoch.

As previous models [3,10], we also consider static key corruption, which
means that the adversary is required to commit whether he will corrupt the
key of the current epoch in advance before the challenger generating this epoch
key, computing the tokens and updating all the ciphertexts to this epoch.

– Table K is used to record the secret key of every epoch, each entry is the
secret key ki of epoch i. All entries of K are initialized as ⊥.

– Table KC is used to keep track of the adversary’s commitments about the
key corruption. Each entry is one Boolean value b ∈ {true, false}. When an
epoch i begins, the static adversary needs to set KC(i) as true or false, which
denotes her commitment about whether the secret key of that epoch i can be
corrupted in the game.

– Table CE is used to record all the challenge-equal ciphertexts during the
experiment. Specifically, each entry CE(i) contains all the challenge-equal
ciphertexts of the corresponding epoch. All the ciphertexts are updated to
the current epoch automatically with key update. All entries will be initially
set as ⊥ during the experiment.

– Table TO is used to keep track of the event that a token related to challenge-
equal ciphertext is corrupted. Specifically, the i-th entry is one Boolean value
b ∈ {true, false}. Here TO(i + 1) = true denotes that the following event has
happened during the game: a valid token updating any one challenge-equal

604 L. Chen et al.

ciphertext from epoch i to epoch i+1 has been queried by the adversary. All
entries will be initially set as false during the experiment.

– Table IC is used to keep track of the event of the adversary’s corruption of
the challenge-equal ciphertexts. Specifically, each entry i contains one Boolean
value b ∈ {true, false}. Here IC(i) = true means the following event has hap-
pened during the game: there are certain challenge-equal ciphertext in the
epoch i has been learned by adversary via different oracles (to be defined
below) directly or indirectly. Note that there may be multiple challenge-equal
ciphertexts for one epoch due the randomized key update procedure. Here we
make IC(i) = true if anyone of the challenge-equal ciphertexts for epoch i is
leaked to the adversary. All entries will be set false when the game starts.

Oracles of the Adversary. We now formally define the queries that adversary
is allowed to ask. Note that the epoch variable e will automatically increase dur-
ing the game, and the key and the challenge-equal ciphertexts are automatically
updated accordingly. This procedure is triggered by the oracle ONext. Hence the
challenge-equal ciphertexts will be updated to the key-corrupted epochs, and
the adversary can see their headers but not bodies. This feature helps us to
go beyond the restriction of the models in [10], and capture post compromise
security. Also note that we allow the adversary to query OReEnc with maliciously
generated ciphertexts, and OReEnc may return ⊥ if the ReKeyGen and Recrypt
algorithms include a invalid ciphertext detection mechanism. Similarly, OToken

may reply ⊥ when queried with an invalid header.

– Turn to next epoch oracle ONext(b): This oracle is to used to inform the chal-
lenger to evolve to the next epoch e + 1, and update all challenge-equal
ciphertexts in table CE(e) to the epoch e + 1. Specifically, the input of the
oracle ONext is a bit b which denotes whether the epoch key ke+1 will be
corrupted later on, the challenger will record KC(e + 1) = b in the key
corruption table. Moreover, the challenger runs KeyGen(pp) to produce a
new key ke+1 for the new epoch e + 1 and sets K(e + 1) = k in the key
record table. For each challenge-equal ciphertext Ce = (c̃e, c̄e) ∈ CE(e) (if the
challenge-equal ciphertext table CE(e) is not empty), run the token genera-
tion algorithm Δe,e+1,c̃ ←$ReKeyGen(ke, ke+1, c̃e) and the update algorithm
C ′ ← Recrypt(Δe,e+1,c̃e , Ce) for each ciphertext and import all the updated
ciphertexts to the row CE(e). Finally, the challenger updates the current
epoch variable e by adding one as e ← e + 1.

– Encrypt oracle OEnc(m): This oracle is used to ask the challenger to encrypt
a message m under the current epoch key. The challenger will run C ←
Encrypt(ke,m) and return the ciphertext C to the adversary.

– Decrypt oracle ODec(C): This oracle is to ask the challenger to decrypt cipher-
text C under the current epoch key. When queried with a ciphertext C, the
challenger will check the table CE to identify whether C could be a challenge-
equal ciphertext. If C /∈ CE(i) for i from 0 to e, the challenger will run the
algorithm m ← Decrypt(ke, C) to decrypt C with current key ke and return

CCA Updatable Encryption Against Malicious Re-encryption Attacks 605

m to the adversary; otherwise, return ⊥. This is to avoid the trivial attack
that the adversary may query ODec on a challenge-equal ciphertext.

– Key corrupt oracle OKeyCorrupt(i): This oracle is used to corrupt the keys for
previous epochs. Note that in our static model the adversary is only allowed
to corrupt the key that he has committed before. When queried the epoch
index i, the challenger checks the key corruption commit table KC(i) at first.
If KC(i) = true, the challenger returns the secret key ki of the epoch i.
Otherwise, he returns ⊥.

– Token corrupt oracle OToken(i, c̃): The adversary is allowed to query this oracle
to obtain update tokens. When queried with an epoch index i and the cor-
responding ciphertext header c̃, the challenger will run the token generation
algorithm Δi,i+1,c̃ ←$ReKeyGen(ki, ki+1, c̃), and return the token Δi,i+1,c̃ to
the adversary. If Δi,i+1,c̃ �= ⊥ and the header c̃ has even appeared in CE(i),
the challenger will update the token corruption table TO, the challenge-equal
ciphertext table CE and the challenge-equal ciphertext corruption table IC

accordingly.
• The challenger sets TO(i+1) as true to mark the event that some update

token of certain challenge-equal ciphertexts for epoch i has been leaked
to the adversary.

• The challenger automatically updates all the challenge-equal ciphertexts
with header same to c̃ in CE(i) from epoch i to the current epoch e.
Particularly, the challenger iteratively runs ReKeyGen and Recrypt algo-
rithm to update these ciphertexts by epoch, while archiving all generated
challenge-equal ciphertexts along the way to the corresponding rows of
CE.

• Update the table IC to mark the epochs in which the adversary may see
challenge-equal ciphertexts as follows: for each � from i to e, if IC(�) ∧
TO(�+1) = true, then set IC(�+1) set as true. Moreover, for most existing
CDUE schemes [3,10], given the updated ciphertext in the second epoch,
the corresponding token from the first epoch to the second epoch, and
the header of ciphertext in the first epoch, it is not difficult to recover the
complete ciphertext in the second epoch. This property is called the bi-
directional update by Everspauph et al., which also should be taken into
consideration for the game winning condition. Hence for any � decreasing
from i+1 to 0, if IC(�)∧TO(�) = true, we let the challenger set IC(�−1)
as true.

– Challenge-equal ciphertexts’ header oracle OHeader (i): This oracle is used to
acquire the header of the challenge-equal ciphertext in the key corrupted
epoch i. When queried with the epoch index i, the challenger will return all
the headers of the challenge-equal ciphertexts in CE.

– Challenge-equal ciphertexts oracle OChallengeCT(i): This oracle is used to
acquire the existing challenge-equal ciphertexts in the epoch i. When queried
with the epoch index i, the challenger will return all the challenge-equal
ciphertexts in the row CE(i) and update the challenge-equal ciphertext cor-
ruption table IC to mark the leakage of challenge-equal ciphertexts as follow-
ing:

606 L. Chen et al.

• Set IC(i) as true to mark the leakage of challenge-equal ciphertexts in
epoch i.

• For any � from i + 1 to e, if IC(� − 1) = true ∧ TO(�) = true, then set
IC(�) as true to mark the leakage of the challenge-equal ciphertexts that
may be updated by the adversary herself via leaked tokens.

• For any � from i to 1, if IC(�) ∧ TO(�) = true, then set IC(� − 1) as true
to mark the leakage of former challenge-equal ciphertexts that may be
recovered by the adversary herself via leaked tokens and the bi-directional
update property.4

– Re-encryption oracle OReEnc(i, C): This oracle is used to update any cipher-
texts of the epoch i to the current epoch. As considering the adversary may
query the oracle OReEnc with maliciously generated ciphertexts, the oracle
OReEnc is allowed to return ⊥ according to the scheme specification, which
is different with the previous works [10,14,18]. Specifically, when OReEnc is
queried with a ciphertext C and an epoch index i, the challenger defines
Ci = (c̃i, c̄i) as C = (c̃, c̄), and iteratively runs token generation algo-
rithm Δki,ki+1,c̃l ←$ReKeyGen(kl, kl+1, c̃l) and the re-encryption algorithm
Cl+1 ← Recrypt(Δki,ki+1,c̃l , Cl) for all integers l ∈ [i, e). If all Recrypt pro-
cedures are carried out successfully, the challenger will return the generated
Ce to the adversary. Moreover, if the queried ciphertext C ∈ CE (i.e., it is
the challenge-equal ciphertext), the challenger will update the tables IC and
CE accordingly:

• For all l ∈ [i, e), the challenger archives the newly generated challenge-
equal ciphertext Cl in CE(l).

• The challenger sets IC(e) as true to mark the leakage of the challenge-
equal ciphertext in epoch e.

• Additionally, the challenger may have to go backward and update the
entry IC(l) for the epochs before e. This is because given the challenge-
equal ciphertext of the epoch e, the adversary may recover the former
challenge-equal ciphertext via the leaked tokens and the bi-directional
update property. Specifically, for l start decreasing from e, the challenger
sets IC(l − 1) = true until he finds IC(l) ∧ TO(l) = false.

sUP-IND-CPA v.s. UP-IND. Note that even our sUP-IND-CPA security is
stronger than UP-IND [10] in following aspects. Firstly, sUP-IND-CPA can char-
acterize the post-compromise security which is ignored in UP-IND. Although the
constructions in [3,10] is post-compromise secure, there do exist constructions
(see in the full version [9]) which are UP-IND secure but without the post-
compromise security. Secondly, unlike sUP-IND-CPA, UP-IND does not allow
the adversary to query the re-encryption oracle with malformed ciphertexts with
the same header as the challenge ciphertext. Therefore, the KSS scheme in [10] is
proved secure under UP-IND, but can be attacked by maliciously re-encrypting

4 For simplicity, we assume that if the adversary can acquire one of the challenge-
equal ciphertext in the epoch e, she can automatically get all other challenge-equal
ciphertexts in the same epoch.

CCA Updatable Encryption Against Malicious Re-encryption Attacks 607

a forged ciphertext with the same header of the challenge ciphertext to a key
corrupted epoch. In this way, the adversary can somehow compute the challenge-
equal ciphertext that he is not supposed to see in a key corrupted epoch. The
detailed attack is shown in the full version [9].

Bi-Directional Update. Given the previous update token and the former cipher-
text header, we assume that one can reversely downgrade a ciphertext to a
previous epoch. This property is naturally satisfied by the two constructions
KSS and ReCrypt in [10]. Therefore, for fully capturing the challenge-equal
ciphertext corruption to avoid trivial win, the challenger needs to update the
challenge-equal ciphertext corruption table IC forward and backward when-
ever a challenge-equal ciphertext or token is corrupted. This backward inference
should have appeared in the model of [10], but due to the inherent limitation of
their model, the challenge-equal ciphertext that the adversary can see is always
directly updated from a key-uncorrupted epoch. So this negligence has not been
fully reflected in their paper.

4.2 Integrity

Then we describe our model sUP-INT-CTXT for CDUE. Like our sUP-IND-
CCA model, our integrity model strengthens the UP-INT model in [10] in the
sense that allowing the adversary to query the ReEnc oracle with maliciously
generated ciphertexts and introducing the epoch notion to capture the post-
compromise security. Similar to our confidential models, the challenger needs to
maintain table K to record generated secret keys, and table KC to keep track of
the adversary’s key corruption commitment. Besides, the challenger also needs
to maintain the following trivially obtained ciphertexts table T especially for the
sUP-INT-CTXT model.

– Table T is used to keep track of ciphertexts that the adversary can trivially
obtain. These ciphertexts are acquired by adversary from three sources: 1)
directly response from the OEnc oracle, 2) response from the OReEnc oracle,
and 3) derived by the adversary herself from querying ciphertexts and update
tokens. Specifically, its rows are indexed by the epoch index and ciphertext
header pairs (i, c̃), and entries are the header’associated ciphertext body c̄.
To make the definition more general, we allow T(i, c̃) to include multiple
ciphertext bodies c̄ associated to the same header. All entries will be set ⊥
when the game start.

Specifically, we define the sUP-INT-CTXT experiment as Fig. 3. Similar to
[14], we only accept forgeries that the adversary makes in the current and final
epoch eend, but not in the past. This matches the concept of UE where the secret
keys and update tokens of old epochs will (ideally) be deleted, and thus a forgery
for an old key is meaningless anyway. The experiment requests the adversary,
after engaging with the oracles OEnc’, ODec, OToken’, ONext, OKeyCorrupt and OReEnc’,
to generate a new legal ciphertext C∗ for the current epoch. The adversary wins

608 L. Chen et al.

if the two requirements hold simultaneously. One is the new ciphertext C∗ can
be successfully decrypted by the current epoch key ke. The other is that C∗

is not a trivial win, i.e. the ciphertext C∗ is not in the trivially obtained table
ciphertext table T and the current epoch key ke has not been corrupted.

During the sUP-INT-CTXT experiment, the challenger’s behaviours to
response the oracles ODec, ONext and OKeyCorrupt are similar to the sUP-IND-
CCA experiment. However, there are three different oracles OEnc’, OToken’ and
OReEnc’ in sUP-INT-CTXT that require the challenger to update the table T

accordingly.

– Encryption oracle OEnc’(m): This oracle is used to query the encryption of
the message m under the current epoch key ke. Specifically, the challenger
will return Enc(ke,m) to the adversary. Also he will parse the ciphertext
Enc(ke,m) = (c̃, c̄) and update the table T as T(e, c̃) ← c̄.

– Re-encryption oracle OReEnc’(i, C): This oracle is used to update any cipher-
texts of the epoch i to the current epoch like OReEnc in sUP-IND-CCA. When
the oracle OReEnc’ is queried with an epoch index i and a ciphertext C, if the
challenger can successfully update C to C ′ = (ĉ′, c̄′) of the current epoch e,
he will return C ′ to the adversary. Additionally, c̄′ will be added to T(e, ĉ′).

– Token corrupt oracle OToken’(i, c̄): When the oracle OToken’ is queried with an
epoch index i and a ciphertext header c̃ during the sUP-INT-CTXT experi-
ment, the challenger will return ⊥ if KC(i) = true, otherwise the challenger
will run the token generation algorithm Δi,i+1,c̃ ←$ReKeyGen(ki, ki+1, c̃) and
return the token Δi,i+1,c̃ to adversary A. If Δi,i+1,c̃ is not ⊥, the challenger
will updates the trivially obtained ciphertext T accordingly: for all cipher-
text bodies c̄ ∈ T(i, c̃), the challenger will automatically generate the cor-
responding ciphertext C ′ ← Recrypt(Δki,ki+1,c̃, (c̃, c̄)) for next epoch, parse
C ′ = (c̃′, c̄′) and record them in the row T(i, c̃′).

Definition 4 (sUP-INT-CTXT). Define the sUP-INT-CTXT experiment as
Fig. 3. An updatable encryption scheme is called sUP-INT-CTXT secure if for
any P.P.T. adversary A the following advantage

AdvsUP-INT-CTXT
A := Pr[ExpA

sUP-INT-CTXT(λ) ⇒ 1]

is negligible in the security parameter λ.

Note that any token corruption is disallowed from a key corrupted epoch
to a key uncorrupted epoch in the sUP-INT-CTXT model, as well as in the
existing models [3,10] for ciphertext integrity. Since in a key corrupted epoch,
the adversary can generate any ciphertext, and the challenger does not know
which ciphertexts the header used to query the OToken oracle is corresponding
to. Thus, such attack should be restricted in the ciphertext integrity game. We
also know that in the message confidentiality models, sUP-IND-CPA and sUP-
IND-CCA, the adversary is allowed to query any token except for the challenge-
equal ciphertext from the key corrupted epoch to the key uncorrupted epoch in
which the challenge-equal ciphertext is corrupted. Such a difference also cause

CCA Updatable Encryption Against Malicious Re-encryption Attacks 609

ExpA
sUP-INT-CTXT(λ)

1 : pp ←$Setup(λ)

2 : Initialize e,K,T,KC

3 : k0 ← KeyGen(pp); K(0) ← k0

4 : C∗ = (c̃∗, c̄∗) ←$ AOEnc’,ONext,OKeyCorrupt,OReEnc’,OToken’

5 : if (Decrypt(ke, C
∗) �= ⊥) ∧ (c̄∗ /∈ T(e, c̃∗)) ∧ (KC(e) �= true)

6 : return 1

7 : else return 0

Fig. 3. The sUP-INT-CTXT experiment.

that the combination of sUP-IND-CPA security and sUP-INT-CTXT security is
not sufficient to imply the sUP-IND-CCA security, which we will discuss in the
next subsection.

4.3 sUP-IND-CPA + sUP-INT-CTXT � sUP-IND-CCA

It is widely known that for the authenticated encryption, the IND-CPA security
plus the INT-CTXT security imply the IND-CCA security [1]. This implication
still holds for CIUE [5]. However, the case for CDUE is different. More interest-
ingly, we find this particularity is inherent for general CDUE, since even under
weaker security models, this implication does not work either, including under
a weaken version of our models without malicious update and under existing
models in [3,10] which do not capture post-compromise security or malicious
update security. In the following, we will show a special CDUE scheme which is
sUP-IND-CPA and sUP-INT-CTXT secure but not sUP-IND-CCA secure. Our
counter example is inspired by our own construction ReCrypt+, but we believe
it can be generalized to a large class of CDUE schemes.

This counterintuitive gap comes from the fact that querying OToken from a
key-corrupted epoch to a key-uncorrupted epoch is forbidden during the sUP-
INT-CTXT game, but the adversary in the sUP-IND-CCA game has the ability
to acquire that kind of tokens for non-challenge-equal ciphertexts. Such token
queries in sUP-INT-CTXT are forbidden, since in a key corrupted epoch the
header used to query the OToken oracle is unknown to the challenger. Thus an
sUP-IND-CCA adversary can leverage such tokens and the decryption oracle to
launch attacks.

Intuitively, if an updating token contains secret information which can be
leveraged by the adversary who knows the previous epoch key, the adversary
may be able to modify the challenge-equal ciphertext and use the result to query
the decryption oracle to get more information about the challenge ciphertext.
More precisely, we add the ciphertext header of the new scheme with a redundant
MAC, and make the encryption of the MAC key contained in the token. If the

610 L. Chen et al.

adversary corrupt the key of the former epoch and query a token for a non-
challenge-equal ciphertext from that epoch, she can learn the MAC key and
modify the MAC in the next epoch challenge-equal ciphertext. After that, she
may query the modified challenge-equal ciphertext to the decryption oracle. Note
that this attack even does not leverage the malicious re-encryption ability!

Suppose the CDUE is the CDUE scheme which is both sUP-IND-CPA and
sUP-INT-CTXT secure. Moreover, CDUE has a special property: the update
token Δi,c̃i must explicitly contain the header c̃i+1 of the new ciphertext in
epoch i + 1. Such a property is satisfied by most CDUE schemes, say KSS and
ReCrypt in [10] and our ReCrypt+in Sect. 5.

Let SKE = (KeyGen,Enc,Dec) be an IND-CPA secure symmetric key
encryption. Let MAC = (KeyGen,Tag,Verify) be a deterministic MAC scheme
which is unforgerable under chosen message attack (e.g.. hash-based MACs).
Note that the deterministic property guarantees that there is only one valid
MAC for each message under one secret key. Then we construct the scheme
CDUE′ as follows:

– CDUE′.Setup(1λ): Generate the public parameter pp via CDUE.Setup.
– CDUE′.KeyGen(pp): Use CDUE.KeyGen to generate an epoch key ke of

CDUE and use MAC.KeyGen to generate a MAC key mke. The new epoch
key k′

e of CDUE′ is (ke,mke).
– CDUE′.Encrypt(k′

e,m): Parse the secret key k′
e = (ke,mke). Given the plain-

text m, firstly use CDUE.Enc to encrypt m under the secret key ke and gen-
erate the ciphertext Ce = (c̃e, c̄e). Secondly, concatenate the header c̃e with
one bit 1 and compute a MAC τe = MAC.Tag(mke, c̃e‖1). Finally, output
the ciphertext C ′

e = (c̃′
e, c̄e) where the new header c̃′

e = (c̃e, τe).
– CDUE′.Decrypt(k′

e, C
′
e): Parse C ′

e = (c̃′
e, c̄e) where c̃′

e = (c̃e, τe). Verify
whether MAC.Verify(mke, τe, c̃e‖1) = 1 or MAC.Verify(mke, τe, c̃e‖0) = 1.
If one of above two cases is true, use the CDUE.Decrypt to decrypt the
ciphertext Ce = (c̃e, c̄e) and return the decryption result.

– CDUE′.ReKeyGen(k′
e, k

′
e+1, c̃

′
e): Parse c̃′

e = (c̃e, τe), k′
e = (ke,mke) and

k′
e+1 = (ke+1,mke+1). Firstly, verify whether MAC.Verify(τe, c̃e‖1) = 1. If

it is true, invoke CDUE.ReKeyGen(ke, ke+1, c̃e) to generate the token Δe,c̃e .
Note that according to our assumption about CDUE, Δe,c̃e has the form
(c̃e+1, δe,c̃e) where c̃e+1 is the new header and δe,c̃e denotes the other infor-
mation. Secondly, compute the new MAC τe+1 = MAC.Tag(mke+1, c̃e+1‖1)
and the new header c̃′

e+1 = (c̃e+1, τe+1). Finally, encrypt mke+1 under
the key ke as SKE.Encke

(mke+1), and output the update token Δ′
e,c̃′

e
=(

c̃′
e+1, δe,c̃e ,SKE.Encke

(mke+1)
)

for CDUE′.
– CDUE′.ReEncrypt(Δ′

e,c̃′
e
, C ′

e): First parse the token Δ′
e,c̃′

e
= (c̃′

e+1, δe,c̃e ,

SKE.Encke
(mke+1)) and the ciphertext C ′

e = (c̃′
e, c̄e) = ((c̃e, τe), c̄e). Then

derive the CDUE token Δe,c̃e = (c̃e+1, δe,c̃e) from Δ′
e,c̃′

e
, and Ce = (c̃e, c̄e)

from C ′
e. Invoke CDUE.ReEncrypt(Δe,c̃e , Ce) to get Ce+1 = (c̃e+1, c̄e+1).

Finally output C ′
e+1 = (c̃′

e+1, c̄e+1) by replacing c̃e+1 with the new header
c̃′
e+1 in the token Δ′

e,c̃′
e
.

CCA Updatable Encryption Against Malicious Re-encryption Attacks 611

In the following two lemmas, we show that the above CDUE′ is sUP-IND-
CPA and sUP-INT-CTXT secure when MAC is deterministic (like HMAC [15]).
The sUP-IND-CPA is obvious since the augmented MAC will not leak any infor-
mation about the plaintext. Since the CTXT model disallows the adversary to
see the token from a key-corrupted epoch to a key-uncorrupted epoch, the MAC
key will never be leaked. The sUP-INT-CTXT comes from the MAC’s unforger-
ability. We put the formal proof in the full version [9].

Lemma 1. If CDUE is sUP-IND-CPA secure and MAC is deterministic (i.e.
there is only one valid MAC for each message under one secret key), CDUE′ is
sUP-IND-CPA secure.

Lemma 2. If CDUE is sUP-INT-CTXT secure, SKE is IND-CPA secure and
MAC is multi-user CMA unforgerable, then CDUE′ is sUP-INT-CTXT secure.

The CCA Attack. We provide a CCA attack as follows. The adversary com-
mits to corrupt the key of the epoch e, but will not corrupt the key of the epoch
e+1. Then the adversary queries a token of non-challenge ciphertext header c̃e,0,
and she will get a token Δ′

e,c̃′
e,0

=
(
c̃′
e+1,0, δe,c̃e,0 ,SKE.Encke

(mke+1)
)
. Since

the key k′
e = (ke,mke) has been corrupted by the adversary, she can recover

mke+1 for SKE.Encke
(mke+1) easily. Then the adversary acquires the challenge-

equal ciphertext C ′
e+1,1 = ((c̃e+1,1, τe+1,1), c̄e+1,1) in the epoch e + 1, where

τe+1,1 = MACmke+1(c̃e+1,1‖1). Since the adversary knows mke+1, she can mod-
ify C ′

e+1,1 into a new ciphertext C ′
e+1,2 = ((c̃e+1,1, τ

′
e+1), c̄e+1,,1) by shifting the

attached bit in the MAC message and acquiring τ ′
e+1 = MACmke+1(c̃e+1,1‖0).

According to the design of our decryption algorithm, τ ′
e+1 still can pass the ver-

ification even the attached bit is 0 but not 1. So C ′
e+1,2 is still a valid ciphertext

of the epoch e + 1, and it will not be recognized as a challenge-equal ciphertext
by the sUP-IND-CCA challenger. The adversary can query ODec with C ′

e+1,2 in
the epoch e + 1, and learn the challenge bit. Therefore, we have the following
theorem.

Theorem 1. For CDUE, the security combination of sUP-IND-CPA and sUP-
INT-CTXT cannot imply sUP-IND-CCA security.

The Gap is Inherent. One may be curious about whether the counter-intuitive
gap is caused by the malicious update resistance or the post-compromise secu-
rity. However, we find that the gap between the CPA+CTXT and CCA is inher-
ent for general CDUE. To note that, firstly we show the implication does not
hold for a weaker collection of our models (we define UP-IND-CPA, UP-INT-
CTXT and UP-IND-CCA in the full version [9] following the former paradigm
but adding a restriction to the re-encryption oracle), which only capture the
post-compromise security but not malicious update security. Then we have the
following Theorem 2. The intuition comes from that the CCA attack on our
artificially designed CDUE′ scheme does not need to query malicious cipher-
texts on the re-encryption oracle. Moreover, the security gap holds even for the

612 L. Chen et al.

weakest models5 in [3,10] without the post-compromise security or the malicious
update resistance. Indeed, it is not hard to see that the above CDUE′ is also
UP-IND and UP-INT secure, while the CCA attack can still apply.

Theorem 2. For a ciphertext dependent UE, the security combination of UP-
IND-CPA and UP-INT-CTXT do not imply UP-IND-CCA security.

5 UE Construction with Strengthened Integrity

Next we describe our new CDUAE construction ReCrypt+. Comparing with
previous CDUAE constructions [3,10], our scheme not only naturally inher-
its their advantage that the plaintext space could be a bit string with arbi-
trary length, but also has the strengthened security to resist the malicious re-
encryption attack. During the security analysis, we prove our scheme secure
under sUP-IND-CCA and sUP-INT-CTXT as above mentioned. So our scheme
has a strengthened security in aspects of the post-compromise security, the mali-
cious re-encryption resistance and the chosen ciphertexts attack resistance.

5.1 Construction Framework

Our construction ReCrypt+ follows the paradigm of the ReCrypt scheme
proposed by Everspauph et al. The original ReCrypt in [10] not only follows
the KEM + DEM with the secret sharing structure, but also involves the key-
homomophic PRF to achieve the re-encryption indistinguishability. However,
as pointed by in the introduction, ReCrypt in [10] suffers the malicious re-
encryption attack.

The key to resist the malicious re-encryption attack is to verify the validity of
the ciphertext before re-encryption. Therefore our scheme not only involves the
AEAD to enable the client to verify the header of the ciphertext, but also uses the
collision-resistant homomorphic hash function and homomorphic commitment
to help the server to check the consistency of the body with the header. These
measures guarantee that the adversary always learns nothing when querying
the ReEnc oracle with a forged ciphertexts. In the meantime, the homomorphic
properties of the hash function and the commitment scheme make that the
update operations to apply smoothly. The detailed construction is as follows,
and also shown in Fig. 4.

Let HomHash.Setup and HomHash.Eval be the algorithms of a homomor-
phic collision-resistant hash function with the following syntax.

Definition 5. A homomorphic hash function Hhom is a linear function that
maps vectors of starting group elements v = (v1, . . . , vn) ∈ G

n
HS into one target

group element u ∈ GHT which is defined by the following two algorithms:

5 The similar CCA model can be trivially obtained by adding an additional decryption
oracle for ciphertexts decryption except for the challenge-equal ciphertexts.

CCA Updatable Encryption Against Malicious Re-encryption Attacks 613

Setup(λ)

1 : hk ←$HomHash.Setup(λ), hcom.pp ←$HCOM.Init(λ)

2 : return (hk, hcom.pp)

KeyGen(λ)

1 : k ←$AEAD.KeyGen(1λ), return k

Encrypt(k, m)

1 : Map m → (m1, m2, . . . , mn) ∈ G
n
PRF , z ←$KPRF

2 : di ← mi + F(z, i), d = (d1, d2, . . . , dn) ∈ G
n
PRF , h ← HomHash.Eval(hk, d)

3 : y ←$KPRF , hcom ← HCOM.com(y;hopen), x = z − y

4 : ct ←$AEAD.Enc(k, x, (h, hcom))

5 : c̃ = (ct, h, hcom)// Ciphertext header

6 : c̄ = (y, hopen, d)// Ciphertext body

7 : return C = (c̃, c̄)

Decrypt(k, C)

1 : Parse C = ((ct, h, hcom), (y, hopen, d))

2 : if h == HomHash.Eval(hk, d) ∧ HCom.Open(hcom, y, hopen) == 1 then

// Check the body is consistent with the header.

3 : x� ← AEAD.Dec(k, c̃1, (h, hcom))

4 : for 1 ≤ i ≤ n do m�
i ← di − F(x� − y, di) return m� = m�

1, . . . , m
�
n

5 : return ⊥

ReKeygen(k, k′, c̃)

1 : Parse c̃ = (ct, h, hcom), m′ ← AEAD.Dec(k, ct, (h, hcom))

2 : if m′ �= ⊥ then// Check the returned header is valid.

3 : Δz ←$KPRF , Δdi ← F(Δz, i), Δd = Δd1, Δd2, . . . , Δdn

4 : h′ ← h +HomHash.Eval(hk, Δd), Δy ←$ {0, 1}∗

5 : hcom′ ← hcom +HCom.Com(Δy, hopenΔ), x′ = x + Δz − Δy,

6 : ct′ ←$AEAD.Enc(k′, x′, (h′, hcom′)), c̃′ = (ct′, h′, hcom′)

7 : return Δ = (c̃′, Δy, hopenΔ, Δz)

8 : else return ⊥

ReEncrypt(C, Δ)

1 : Parse C = ((ct, h, hcom), (y, hopen, d)) , Δ = c̃′, (Δy, hopenΔ, Δz)
)

2 : if HCOM.Open(hcom, y, r) == 1 ∧ h == HomHash.Eval(hk, d) then

// Check the body is consistent with the header.

3 : y′ = y + Δy, r′ = r + Δr, Parse d = (d1, d2, . . . , dn)

4 : d′
i ← di + F(Δz, i), d′ = (d′

1, d
′
2, . . . , d

′
n)

5 : hopen′ = hopen + hopenΔ, y′ = y + Δy, c̄′ = (y′, hopen′, d′)

6 : return C′ = (c̃′, c̄′)

7 : return ⊥

Fig. 4. Construction for ReCrypt+

614 L. Chen et al.

– HomHash.Setup(1λ) : On input the security parameter λ, output an evalu-
ation key hk;

– HomHash.Eval(hk, v): On input the evaluation key hk and a vector of start-
ing group elements v = (v1, . . . , vn) ∈ G

n
HS, output one target group element

u ∈ GHT .

Fixed the evaluation key hk, we can write as Hhom(v) = HomHash.Eval
(hk, v) = u. Specifically, it should satisfies the following properties:

– Collision resistance: The probability for any P.P.T adversary to generate the
two vectors v and v′ in G

n
HS which satisfy Hhom(v) = Hhom(v′) is negligible.

– Homomorphism: We have Hhom(v) + Hhom(v′) = Hhom(v + v′).

Let F : KPRF × MPRF → GPRF be the key homomorphic PRF as
described in Subsect. 2, whose codomain is a cyclic group GPRF ⊆ GHS and
key space KPRF is also an additive group. Let HCOM.Init, HCOM.Com and
HCOM.Open be the algorithms for the homomorphic commitment scheme
described in Subsect. 2, whose message space, opening randomness space and
commitment value are MCOM , OCOM and CCOM , respectively. Specifically, we
require that the message space MCOM contains the PRF key space KPRF . Let
the AEAD.KeyGen, AEAD.Enc and AEAD.Dec be the algorithms for AEAD
as described in Subsect. 2, whose key space, message space and ciphertext space
are KAEAD, MAEAD and CAEAD.

– ReCrypt+.Setup(λ): Run the HomHash.Setup algorithm to generate the
parameter hk for the homomorphic collision-resistant hash function. Also
run the HCOM.Init to generate the parameter hcom.pp for the homomor-
phic commitment. The public parameter ReCrypt+.pp=(hk, hcom.pp) will
be taken as the implicit input of the following algorithm.

– ReCrypt+.KeyGen(λ): Run the AEAD.KeyGen(λ) to generate the key of
AEAD k ∈ KAEAD.

– ReCrypt+.Encrypt(k,m): The algorithm proceeds as follows.
1. Map the message m into n group elements m1,m2, . . . ,mn ∈ G

n
PRF .

2. Use the key-homomorphic PRF to encrypt each block mi. Specifically,
sample a PRF key z ∈ KPRF and then mask each message mi as di =
mi + F(z, i) ∈ GPRF .

3. Let d = (d1, d2, . . . , dn) ∈ G
n
PRF . Since d ∈ G

n
PRF ⊆ G

n
HS ,

one can compute the homomorphic hash function on d and derive
HomHash.Eval(hk, d) = h ∈ G.

4. Randomly choose two shares x, y ∈ KPRF of z such that x + y = z.
5. Use the homomorphic commitment scheme to commit the share y, and

generate the commitment HCom.Com(y, hopen) = hcom ∈ CCOM ,
where hopen ∈ OCOM is the corresponding opening randomness.

6. Use the AEAD to encrypt the key share x ∈ KPRF ⊆ {0, 1}λ with the
auxiliary data the HCRH value h ∈ GHT ⊆ {0, 1}λ and the homomorphic
commitment hcom ∈ CCOM ⊆ {0, 1}λ. Get the ciphertext ct ∈ CAEAD.

CCA Updatable Encryption Against Malicious Re-encryption Attacks 615

7. The header of the UE ciphertext is c̃ = (ct, h, hcom) ∈ CAEAD × GHT ×
CCOM , and the body of the UE ciphertext c̄ = (y, hopen, d) ∈ KPRF ×
OCOM × G

n
PRF .

– ReCrypt+.Decrypt(k,C): Given k ∈ KPRF and the ciphertext C = (c̃, c̄),
the UE decryption algorithm first parses the ciphertext C as the header c̃ =
(ct, h, hcom) ∈ CAEAD × GHT × CCOM and the body c̄ = (y, hopen, d) ∈
KPRF × OCOM × G

n
PRF , and proceeds as follows:

1. Verify HomHash.Eval(hk, d) ?= h ∈ GHT for d ∈ G
n
PRF ⊆ G

n
HS ,

2. Verify whether hcom ∈ CCOM is a valid commitment of y ∈ KPRF ⊆
MCOM , so one invokes the homomorphic commitment opening algorithm
HCom.Open(hcom, y, hopen) and check the results whether equals to 1.

3. Decrypt the AEAD ciphertext ct with the current epoch key k and the
auxiliary data h and hcom.

4. If above verification passes and the AEAD decryption algorithm success-
fully outputs x ∈ KPRF , the UE decryption algorithm will recover all
mi ∈ GPRF by computing mi = di − F(x − y, i), otherwise it returns ⊥.

– ReCrypt+.ReKeyGen (k, c̃): The algorithm parses the header c̃ =
(ct, h, hcom) ∈ CAEAD × GHT × CCOM , and proceeds as follows:
1. Use the currency secret key k ∈ KAEAD to decrypt ct with the auxiliary

data (h, hcom). If the AEAD decryption successfully return x ∈ KPRF ,
execute following steps, otherwise return ⊥.

2. Choose a random Δz ∈ KPRF , and compute Δdi = F(Δz, i) ∈ GPRF .
3. Let Δd = (Δd1, . . . ,Δdn) ∈ G

n
PRF ⊆ G

n
HS . Compute the new hash value

h′ = h + HomHash.Eval(hk,Δd) ∈ GHT .
4. Generate a new group element Δy ∈ KPRF and its homomorphic com-

mitment HCom.com(Δy, hopenΔ) = hcomΔ ∈ GCOM . So the new com-
mitment is hcom′ = hcom + hcomΔ.

5. Compute x′ = x + Δz − Δy ∈ KPRF . Encrypt x′ with the new master
key k′ and auxiliary data (h′, hcom′), and get the AEAD ciphertext ct′ =
AEAD.Enc(k′, x′, (h′, hcom′)).

6. Let the new header c̃′ = (ct′, h′, hcom′) ∈ CAEAD ×GHT ×CCOM . Return
the update token Δ = (c̃′,Δy, hopenΔ,Δz).

– ReCrypt+.ReEncrypt(C,Δ): The algorithm will first parse the ciphertext
header c̃ = (ct, (h, hcom)), the ciphertext body c̄ = (y, hopen, d) and the
update token Δ = (c̃′,Δy, hopenΔ,Δz), then proceeds as follows.
1. Verify whether HomHash.Eval(hk, d) = h ∈ GHT for d ∈ G

n
HS ,

2. Verify whether hcom ∈ GCOM is a valid commitment of y ∈ KPRF , i.e.,
invoke the opening algorithm HCom.Open(hcom, y, hopen) and check the
result whether equals to 1.

3. If above verification can be passed, compute d′ = (d′
1, d

′
2, . . . , d

′
n) ∈

GPRF ⊆ Rn where d′
i = di + F(Δz, i) ∈ GPRF .

4. Compute the new commitment opening hopen′ = hopen + hopenΔ.
5. Compute y′ = y + Δy.
6. Generate new ciphertext C ′ = (c̃′, c̄)′ by taking c̃′ from the token Δ as the

new header and setting c̄′ = (y′, hopen′, d′) ∈ KPRF × OCOM × G
n
PRF .

616 L. Chen et al.

5.2 Homomorphic Hash Functions from DDH Groups

To make the following ReCrypt+framework works, we should construct a homo-
morphic embedding from the range of the key homomorphic PRF into the
domain of the collision-resistant hash function (i.e, GPRF → GHS). Note that
trivial dictionary maps do not work here, since we should make those homomor-
phic properties still hold. To handle this issue, we will involve a critical primitive
named the homomorphic hash function from DDH groups. Previous homomor-
phic hash function schemes only allow the messages to be exponents [8,11,17] or
short ring elements [19]. In contrast, we hope the message can be chosen from
a group where the decisional Diffie-Hellman (DDH) problem is hard, since the
domain of the hash function will be the range of the key-homomorphic PRF.

If there is not requirement for the message group G, a homomorphic hash
scheme is not hard to obtain. Chaum et al. have shown a homomorphic collision-
resistant hash function can be constructed from an exponential homomorphic
hash scheme [8,17]. In their construction, G

′ is a finite cyclic group of order p.
The public key hk contain h1, . . . , hn as generators of G

′. Let G = Zp be a group
of exponents for G

′. For any positive integer n, HHom : G
n → G

′ is defined as
Hhom(v1, . . . , vn) =

∏n
j=1 h

vj

j . The homomorphic property is easily verified, and
collision resistance is implied by the discrete logarithm assumption in G

′.
However, in our construction ReCrypt+, the DDH problem is required to

be hard over G, since G will be the range of the key-homomorphic pseudoran-
dom function. The above exponential homomorphic hash construction does not
trivially satisfy this requirement, since the operation over G = Zp is the addition
but not the multiplication. To find the relation between a random element and
a generator is easy in G.

Our homomorphic hash function from DDH groups is based on a bilin-
ear map over elliptic curves where the external Diffie-Hellman (XDH) assump-
tion is hard. Specifically, the homomorphic function works on a bilinear group
(p, G1, G2, GT , e) where p is a k-bit prime, G1, G2, GT are cyclic groups of order
p and e : G1×G2 ← GT is a non-degenerate bilinear map. The XDH assumption
states that the Decisional Diffie Hellman (DDH) assumption is hard in the group
G1 (not necessarily hard in G2). The XDH is believed to be true in asymmetric
pairings generated using special MNT curves [2,21].

So the message are chosen from the group G
n
1 , the algorithms of the homo-

morphic hash function are defined as follows.

– HomHash.Setup(G, n): Randomly pick g ←$ G2\{1} and elements x1,
. . . , xn ←$ Zp. Define h1 = gx1 , . . . , hn = gxn . Output hk = (h1, . . . , hn) ∈
G

n
2 .

– HomHash.Eval (hk,v): Given a key hk = (h1, . . . , hn) ∈ G
n
2 and a vector

v = (v1, . . . , vn) ∈ G
n
1 , output

∏n
j=1 e(vj , hj) ∈ GT .

For a fixed hk, Hhom : G
n
1 → GT is defined as Hhom(v) = HomHash.Eval(hk,v).

CCA Updatable Encryption Against Malicious Re-encryption Attacks 617

The homomorphism can be easily verified. Suppose Hhom(v) =
∏n

j=1 e(vj , hj)
and Hhom(v′) =

∏n
j=1 e(v′

j , hj), and we have

Hhom(v) · Hhom(v′) =
n∏

j=1

e(vj , hj) ·
n∏

j=1

e(v′
j , hj) =

n∏
j=1

e(vjv
′
j , hj).

The collision resistance is based on the double pairing assumption whose hard-
ness is shown by Groth in [12]. The double pairing problem is given ran-
dom elements gr, gt ∈ G2 to find a non-trivial couple (r, t) ∈ G

2
1 such that

e(r, gr)e(t, gt) = 1. The proof could be found in the full version [9].

Lemma 3 (Collision resistance). The double pairing assumption holds for
the bilinear group (p, G1, G2, GT , e). The homomorphic hash function Hhom

defined as above is collision resistant.

5.3 Instantiation

To make the above framework works, we should construct a homomorphic
embedding from the range of the key homomorphic PRF into the domain of
the collision-resistant hash function (i.e, GPRF → GHS), as well as a homomor-
phism from the key space of KPRF to the commitment message space MCOM .

ReCrypt+can be instantiated over a bilinear group (p, G1, G2, GT , e) over
elliptic curves where the external Diffie-Hellman (XDH) assumption and the
double pairing assumption are hard. To handle the homomorphic embedding
from GPRF to GHS , we adopt the DDH based key-homomorphic PRF described
in Subsect. 2 over GPRF = G1 and KPRF = Zp, and the homomorphic hash
function described in Subsect. 5.2 over (p, G1, G2, GT , e).

To handle the homomorphism from KPRF to MCOM , we adopt the Pedersen
commitment over the group G1. The commitment scheme is specified with two
random public group generators g and h in G1. The opening randomness hopen
is randomly chosen from Zp and the commitment message m is also from Zp.
The commitment is Com(m,hopen) = hhopengm ∈ G1. Since the PRF key space
KPRF and the commitment message MCOM are both Z

∗
p, the homomorphism is

naturally inherent.

5.4 Security Analysis

Now we show that our construction ReCrypt+ is secure under the models sUP-
IND-CCA, sUP-INT-CTXT and sUP-REENC-CCA. Due to page limitation, we
will provide detailed proofs in the full version [9].

sUP-IND-CCA. We are now ready to state the sUP-IND-CCA security of
our ReCrypt+ scheme. Our security proof is similar to the ReCrypt except
that 1) sUP-IND-CCA has ODec, 2) and allow to query malicious generated
ciphertext to OReEnc and malicious header to OToken. Besides, 3) we put the

618 L. Chen et al.

commitment of the secret share of DEM key in the head. So the intuition of the
security proof comes from: First of all, the authenticity of AEAD, the binding
property of the commitment and the collision-resistance of the hash function
guarantee that all ciphertexts that could be successful decrypted or reencrypted
is honestly generated. Secondly, the authenticity of AEAD guarantee that all
token is generated from honest generated ciphertext headers. Thirdly, the hiding
property of the commitment can hide the secret share of DEM key y. Formally,
we have the following theorem and give the formal proof in [9].

Theorem 3 (sUP-IND-CCA Security of ReCrypt+). Let ReCrypt+ be
an updatable encryption scheme as defined in Sect. 5.1. ReCrypt+is sUP-IND-
CCA secure if AEAD is MU-RoR-AE secure (Sect. 2), the homomorphic com-
mitment HCOM is statistic hiding and computation binding, and the key homo-
morphic PRF is pseudorandom.

sUP-INT-CTXT. We first provide the analysis result for sUP-INT-CTXT.
Intuitively, we first assume that ReCrypt+ is not sUP-INT-CTXT secure, and
then construct contradictions with the existing conditions to prove the lemma.
As a ciphertext contains a ciphertext header and a ciphertext body, a success-
ful forgery can forge the ciphertext header or the ciphertext body. we make a
reduction from the ciphertext header forgery to the break of ciphertext integrity
of AEAD scheme, and make reductions from the ciphertext body forgery to the
break of binding of commitment scheme HCom or the break of collision resis-
tance of homomorphic hash function HomHash. Formally, we have the following
theorem and give the formal proof in [9].

Theorem 4 (sUP-INT-CTXT Security of ReCrypt+). Let ReCrypt+ be
an updatable encryption scheme as defined in Sect. 5.1. ReCrypt+is sUP-INT-
CTXT secure, if AEAD scheme is CTXT scheme, HCom scheme has compu-
tational binding property, and HomHash scheme is collision resistant.

sUP-REENC-CCA. To demonstrate that our ReCrypt+ scheme is sUP-
REENC-CCA secure, we introduce a property called perfect re-encryption pro-
posed in [14]. Perfect re-encryption assures that for any ciphertext of updatable
encryption, decrypt-then-encrypt has the same distribution with re-encryption.
We give a formal definition of perfect re-encryption for UE setting defined in
the full version [9]. We notice that ReCrypt+naturally satisfy the perfect re-
encryption property. As pointed by [14], the perfect re-encryption property plus
the sUP-IND-CCA security imply the sUP-REENC-CCA security. So we have
the following theorem whose formal proof is in [9].

Theorem 5 (sUP-REENC-CCA Security). Since ReCrypt+ as defined in
Sect. 5.1 has the perfect re-encryption property and satisfy the sUP-IND-CCA
security, ReCrypt+is sUP-REENC-CCA secure.

CCA Updatable Encryption Against Malicious Re-encryption Attacks 619

Acknowledgement. We thank anonymous reviewers from ASIACRYPT 20 for valu-
able comments. Qiang and Ya-Nan are supported in part by NSF grant CNS #1801492.
Qiang is also supported in part by a Google Faculty Award.

References

1. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008). https://doi.org/10.1007/s00145-008-9026-x

2. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

3. Boneh, D., Eskandarian, S., Kim, S., Shih, M.: Improving speed and security
in updatable encryption schemes. Cryptology ePrint Archive, Report 2020/222
(2020). https://eprint.iacr.org/2020/222

4. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

5. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable encryp-
tion. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp.
464–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 16

6. Morse, E.A., Raval, V.: PCI DSS: payment card industry data security standards
in context. Comput. Law Secur. Rev. 24(6), 540–554 (2008)

7. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

8. Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable
signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992). https://doi.org/
10.1007/3-540-46766-1 38

9. Chen, L., Li, Y.-N., Tang, Q.: CCA updatable encryption against malicious re-
encryption attacks (full version). Cryptology ePrint Archive, Report 2020/XXX
(2020)

10. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenti-
cated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10403, pp. 98–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 4

11. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
142–160. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7 9

12. Groth, J.: Homomorphic trapdoor commitments to group elements. IACR Cryptol.
ePrint Archive 2009, 7 (2009)

13. Payment Card Industry. Data Security Standard. Requirements and Security
Assessment Procedures. Version 3.2 PCI Security Standards Council (2016)

14. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11476, pp. 68–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2 3

https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://eprint.iacr.org/2020/222
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-56784-2_16
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/3-540-46766-1_38
https://doi.org/10.1007/3-540-46766-1_38
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3

620 L. Chen et al.

15. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message authen-
tication (1997)

16. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 24

17. Krohn, M.N., Freedman, M.J., Mazieres, D.: On-the-fly verification of rateless era-
sure codes for efficient content distribution. In: Proceedings of IEEE Symposium
on Security and Privacy, pp. 226–240. IEEE (2004)

18. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
685–716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 22

19. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4 4

20. Maurer, U., Rüedlinger, A., Tackmann, B.: Confidentiality and integrity: a con-
structive perspective. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 209–
229. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 12

21. Miyaji, A., Nakabayashi, M., Takano, S.: Characterization of elliptic curve traces
under FR-reduction. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 90–108.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45247-8 8

22. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-540-71039-4_4
https://doi.org/10.1007/978-3-642-28914-9_12
https://doi.org/10.1007/3-540-45247-8_8
https://doi.org/10.1007/3-540-46766-1_9

Determining the Core Primitive
for Optimally Secure Ratcheting

Fatih Balli1, Paul Rösler2(B), and Serge Vaudenay1

1 LASEC, École polytechnique fédérale de Lausanne, Ecublens, Switzerland
{fatih.balli,serge.vaudenay}@epfl.ch

2 Chair for Network and Data Security, Ruhr University Bochum, Bochum, Germany
paul.roesler@rub.de

Abstract. After ratcheting attracted attention mostly due to practi-
cal real-world protocols, recently a line of work studied ratcheting as
a primitive from a theoretic point of view. Literature in this line, pur-
suing the strongest security of ratcheting one can hope for, utilized for
constructions strong, yet inefficient key-updatable primitives – based on
hierarchical identity based encryption (HIBE). As none of these works
formally justified utilizing these building blocks, we answer the yet open
question under which conditions their use is actually necessary.

We revisit these strong notions of ratcheted key exchange (RKE),
and propose a more realistic (slightly stronger) security definition. In
this security definition, both exposure of participants’ local secrets and
attacks against executions’ randomness are considered. While these two
attacks were partially considered in previous work, we are the first to
unify them cleanly in a natural game based notion.

Our definitions are based on the systematic RKE notion by Poettering
and Rösler (CRYPTO 2018). Due to slight (but meaningful) changes to
regard attacks against randomness, we are ultimately able to show that,
in order to fulfill strong security for RKE, public key cryptography with
(independently) updatable key pairs is a necessary building block. Sur-
prisingly, this implication already holds for the simplest RKE variant.

Hence, (1) we model optimally secure RKE under randomness manip-
ulation to cover realistic attacks, (2) we (provably) extract the core prim-
itive that is necessary to realize strongly secure RKE, and (3) our results
indicate which relaxations in security allow for constructions that only
rely on standard public key cryptography.

1 Introduction

The term “ratcheting” as well as the underlying concept of continuously updating
session secrets for secure long-term communication settings originates from real-
world messaging protocols [13–15]. In these protocols, first forward-secrecy [15]

The full version [2] of this article is available as entry 2020/148 in the IACR eprint
archive.
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 621–650, 2020.
https://doi.org/10.1007/978-3-030-64840-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_21&domain=pdf
https://eprint.iacr.org/2020/148
https://eprint.iacr.org
https://doi.org/10.1007/978-3-030-64840-4_21

622 F. Balli et al.

and later security after state exposures [14] (also known as future secrecy, back-
ward secrecy, or post-compromise security) were aimed to be achieved as the
exposure of the devices’ local states was considered a practical threat. The main
motivation behind this consideration is the typical lifetime of sessions in mes-
saging apps. As messaging apps are nowadays usually run on smartphones, the
lifetime of messaging sessions is proportional to the ownership duration of a
smartphone (typically several years). Due to the long lifetime of sessions and
the mobile use of smartphones, scenarios, in which the local storage – containing
the messaging apps’ secret state – can be exposed to an attacker, are extended
in comparison to use cases of other cryptographic protocols.
Practical Relevance of Randomness Manipulation

In addition to exposures of locally stored state secrets, randomness for generat-
ing (new) secrets is often considered vulnerable. This is motivated by numerous
attacks in practice against randomness sources (e.g., [9]), randomness gener-
ators (e.g., [5,19]), or exposures of random coins (e.g., [18]). Most theoretic
approaches try to model this threat by allowing an adversary to reveal attacked
random coins of a protocol execution (as it was also conducted in related work
on ratcheting). This, however, assumes that the attacked protocol honestly and
uniformly samples its random coins (either from a high-entropy source or using
a random oracle) and that these coins are only afterwards leaked to the attacker.
In contrast, practically relevant attacks against bad randomness generators or
low-entropy sources (e.g., [5,9,19]) change the distribution from which random
coins are sampled. Consequently, this threat is only covered by a security model if
considered adversaries are also allowed to influence the execution’s (distribution
of) random coins. Thus, it is important to consider randomness manipulation
(instead of reveal), if attacks against randomness are regarded practically rele-
vant.

The overall goal of ratcheting protocols is to reduce the effect of any such
non-permanent and/or non-fatal attack to a minimum. For example, an ongoing
communication under a non-fatal attack should become secure as soon as the
adversary ends this attack or countermeasures become effective. Examples for
countermeasures are replacing bad randomness generators via software updates,
eliminating state exposing viruses, etc. Motivated by this, most widely used
messaging apps are equipped with mechanisms to regularly update the local
secrets such that only a short time frame of communication is compromised
if an adversary was successful due to obtaining local secrets and/or attacking
random coins.
Real-World Protocols

The most prominent and most widely deployed real-world ratcheting protocol
is the Signal protocol (used by WhatsApp, Skype, and others). The analysis of
this protocol in a multi-stage key agreement model [6] was the first theoretic
treatment of ratcheting in the literature. Cohn-Gordon et al. [6], however, focus
on grasping the precise security that Signal offers rather than generically defining
ratcheting as an independent primitive. While the security provided by Signal

Determining the Core Primitive for Optimally Secure Ratcheting 623

is sufficient in most real-world scenarios, we focus in this work on the theoretic
analysis of the (optimally secure) primitive ratcheting.
Generic Treatment of Ratcheting as a Primitive

In the following we shortly introduce and review previous modeling approaches
for strongly secure ratcheting. We thereby abstractly highlight modeling choices
that crucially affect the constructions, secure according to these models respec-
tively. Specifically, we indicate why some models can be instantiated with only
public key cryptography (PKC) – bypassing our implication result – and others
cannot. In Table 1 we summarize this overview.

Fig. 1. Conceptual depiction of kuKEM∗ (on the left) and unidirectional RKE (on the
right). ‘$’ in the upper index of an algorithm name denotes that the algorithm runs
probabilistically and ad is associated data.

The initial generic work that considers ratcheted key exchange (RKE) as a
primitive and defines its syntax, correctness, and security (in a yet impracti-
cal variant) is by Bellare et al. [3]. Abstractly, their concept of ratcheted key
exchange, depicted in the right part of Fig. 1, consist of an initialization that
provides two session participants A and B with a state that can then be used by
them to repeatedly compute new keys in this session (e.g., for use in higher level
protocols). In their restricted communication model, A is allowed to compute
new keys with her state and accordingly send ciphertexts to B who can then
compute (the same) keys with his state. During these key computations, A’s and
B’s states are updated respectively (to minimize the effect of state exposures).
As B can only comprehend key computations from A (on receipt of a cipher-
text) but cannot actively initiate the computation of new keys, this variant was
later called unidirectional RKE [17]. Beyond this restriction of the communica-
tion model, the security definition by Bellare et al. only allows the adversary
to expose A’s temporary local state secrets, while B’s state cannot be exposed
(which in turn requires no forward-secrecy with respect to state updates by B).
Following Bellare et al., Poettering and Rösler [16,17]propose a revised security

624 F. Balli et al.

definition of unidirectional RKE (URKE: allowing also the exposure of B’s state)
and extend the communication model to define syntax, correctness, and secu-
rity of sesquidirectional RKE (SRKE: additionally allows B to only send special
update ciphertexts to A that do not trigger a new key computation but help
him to recover from state exposures) and bidirectional RKE (BRKE: defines A
and B to participate equivalently in the communication). With a similar instan-
tiation as Poettering and Rösler, Jaeger and Stepanovs [10] define security for
bidirectional channels under state exposures and randomness reveal.

All of the above mentioned works define security optimally with respect to
their syntax definition and the adversary’s access to the primitive execution
(modeled via oracles in the security game). This is reached by declaring secrets
insecure iff the adversary conducted an unpreventable/trivial attack against
them (i.e., a successful attack that no instantiation can prevent). Consequently,
fixing syntax and oracle definitions, no stronger security definitions exist.
Relaxed Security Notions

Subsequent to these strongly secure ratcheting notions, multiple weaker formal
definitions for ratcheting were proposed that consider special properties such
as strong explicit authentication [8], out of order receipt of ciphertexts [1], or
primarily target on allowing efficient instantiations [4,12].

Table 1. Differences in security notions of ratcheting regarding (a) uni- (→), sesqui-
(�→), and bidirectional (↔) interaction between A and B, (b) when the adversary is
allowed to expose A’s and B’s state (or when this is unnecessarily restricted), (c) the
adversary’s ability to reveal or manipulate algorithm invocations’ random coins, and
(d) how soon and how complete recovery from these two attacks into a secure state
is required of secure constructions (or if unnecessary delays or exceptions for recovery
are permitted). (‘Unnecessary’ refers to restrictions beyond those that are immediately
implied by optimal security definitions (that only restrict the adversary with respect
to unpreventable/trivial attacks).) Recovery from attacks required by Jost et al. [12] is
immediate in so far as their restrictions of state exposures introduce delays implicitly.
Gray marked cells indicate the reason (i.e., relaxations in security) why respective
instantiations can rely on standard PKC only (circumventing our implication result).
Rows without gray marked cells have no construction based on pure PKC.

Determining the Core Primitive for Optimally Secure Ratcheting 625

While these works are syntactically similar, we shortly sketch their differ-
ent relaxations regarding security – making their security notions sub-optimal.
Durak and Vaudenay [8] and Caforio et al. [4] forbid the adversary to perform
impersonation attacks against the communication between A and B during the
establishment of a secure key. Thus, they do not require recovery from state
exposures – which are a part of impersonation attacks – in all possible cases,
which we denote as “partial recovery” (see Table 1). Furthermore, both works
neglect bad randomness as an attack vector. In the security experiments by Jost
et al. [12] and Alwen et al. [1] constructions can delay the recovery from attacks
longer than necessary (Jost et al. therefore temporarily forbid the exposure of the
local state). Additionally, they do not require the participants’ states to become
incompatible (immediately) on active attacks against the communication.
Instantiations of Ratcheting

Interestingly, both mentioned unidirectional RKE instantiations that were
defined to depict optimal security [3,17] as well as bidirectional real-world exam-
ples such as the Signal protocol (analyzed in [6]), and instantiations of the above
named relaxed security notions [1,4,8,12] only rely on standard PKC (cf. rows
in Table 1 with gray cells).

In contrast, both mentioned optimally secure bidirectional ratcheting vari-
ants (i.e., sesquidirectional and bidirectional RKE [17], and bidirectional strongly
secure channel [10]) are based on a strong cryptographic building block, called
key-updatable public key encryption, which can be built from hierarchical iden-
tity based encryption (HIBE). Intuitively, key-updatable public key encryption
is standard public key encryption that additionally allows to update public key
and secret key independently with respect to some associated data (a conceptual
depiction of this is on the left side of Fig. 1). Thereby an updated secret key can-
not be used to decrypt ciphertexts that were encrypted to previous (or different)
versions of this secret key (where versions are defined over the associated data
used for updates).

We emphasize a significant difference between key-updatable public key
encryption and HkuPke (introduced in [12]): in HkuPke key updates rely on
interactive communication between holders of public key and secret key, and
associated data for key updates is not fully adversary-controlled. These differ-
ences make it strictly weaker, insufficient for optimal security of RKE (on which
we further elaborate in Sect. 3).
Necessity for Strong Building Blocks

Natural questions that arise from this line of work are, whether and under
which conditions such strong (HIBE-like) building blocks are not only sufficient
but also necessary to instantiate the strong security of (bidirectional) RKE.
In order to answer these questions, we build key-updatable public key cryp-
tography from ratcheted key exchange. Consequently we affirm the necessity
and provide (sufficient) conditions for relying on these strong building blocks.
We therefore minimally adjust the syntax of key-updatable key encapsulation

626 F. Balli et al.

mechanism (kuKEM) [17] and consider the manipulation of algorithm invoca-
tions’ random coins in our security definitions of kuKEM and RKE.

Fig. 2. The contributions of this paper (bold arrows) and their connection to previous
work (thin arrows) involving RKE (uni-, sesqui-, and bidirectional) and KEM (stan-
dard, hierarchical-identity-based, and key-updatable) primitives. ROM indicates that
the proof holds in the random oracle model. kuKEM∗

KUOWR ⇒ROM SRKEKIND is not
formally proven in this paper, but we point out that the proof of kuKEMKUOW ⇒ROM
SRKEKIND from [17] can be rewound. Gray dashed connections indicate trivial impli-
cations (due to strictly weaker syntax or security definitions).

As a result we show that (see Fig. 2):

– kuKEM∗ (with one-way security under manipulation of randomness)1 ⇒ROM
Unidirectional RKE (with key indistinguishability under manipulation of ran-
domness),

– Unidirectional RKE (with key indistinguishability under manipulation of ran-
domness) ⇒ kuKEM∗ (with one-way security under manipulation of random-
ness).

Given the security notions established in honest randomness setting and their
connections to each other, one would also expect Group RKE ⇒ Bidirectional
RKE ⇒ Sesquidirectional RKE ⇒ Unidirectional RKE to follow. Hence, our
results indicate that stronger RKE variants also likely require building blocks as
hard as kuKEM∗. Furthermore, our results show that: One-way security under
manipulation of randomness of kuKEM∗ ⇒ROM Key indistinguishability of ses-
quidirectional RKE. Interestingly, these results induce that (when considering
strong security) ratcheted key exchange requires these strong (HIBE-like) build-
ing blocks not only for bidirectional communication settings, but already for
the unidirectional case. Both mentioned previous unidirectional RKE schemes
can bypass our implication because they forbid exposures of B’s state [3] or
assume secure randomness [17] (see Table 1). We describe attacks against each
of both constructions in our security definition in the full version [2]. Similarly,

1 The asterisk at kuKEM∗ indicates the minimal adjustment to the kuKEM syntax
definition from [17]. For the kuKEM∗ we consider one-way security as it suffices to
achieve strong security for RKE.

Determining the Core Primitive for Optimally Secure Ratcheting 627

the discussed relaxed security definitions of ratcheting [1,4,6,8,12] allow for effi-
cient constructions because they restrict the adversary more than necessary (see
Table 1). Although our analysis was partially motivated by the use of kuKEM
in [10,17], we do not ultimately answer whether these particular constructions
necessarily relied on it. Rather we provide a clean set of conditions under which
RKE and kuKEM clearly imply each other as we do not consider the justification
of previous constructions but a clear relation for future work important.

Thus, we show that sufficient conditions for necessarily relying on kuKEM
as a building block of RKE are: (a) unrestricted exposure of both parties’ local
states, (b) consideration of attacks against algorithm invocations’ random coins,
and (c) required immediate recovery from these two attacks into a secure state
by the security definition (i.e., the adversary is only restricted with respect to
unpreventable/trivial attacks).2

Contributions

The contributions of our work can be summarized as follows:

– We are the first who systematically define optimal security of key-updatable
KEM and unidirectional RKE under randomness manipulation (in Sects. 3
and 4) and thereby consider this practical threat in addition to state exposures
in an instantiation-independent notion of RKE. Thereby we substantially
enhance the respective models by Poettering and Rösler [17].

– In Sect. 5, we construct unidirectional RKE generically from a kuKEM∗ to
show that the latter suffices as a building block for the former under manip-
ulation of randomness.

– To show that kuKEM∗ is not only sufficient but also necessary to build unidi-
rectional RKE (under randomness manipulation), we provide a construction
of kuKEM∗ from a generic unidirectional RKE scheme in Sect. 6.

With our results we distill the core building block of strongly secure ratcheted
key exchange down to its syntax and security definition. This allows further
research to be directed towards instantiating kuKEM∗ schemes that are more
familiar and easier in terms of security requirements, rather than attempting to
construct seemingly more complex RKE primitives.3 Simultaneously, our results
2 Note that there may exist further sets of sufficient conditions for relying on

kuKEMs since, for example, sesqui- and bidirectional RKE by Poettering and
Rösler [16,17] violate condition (b) but base on kuKEMs as well. We refer the reader
to Appendix B.2 in [16] for a detailed explanation of why their scheme presumably
also must rely on a kuKEM. We leave the identification of further sets of conditions
as future work.

3 For example, the bidirectional channel construction in the proceedings version of [10]
is not secure according to the security definition (but a corrected version is published
as [11]), in the acknowledgments of [16] it is mentioned that an early submitted
version of their construction was also flawed, and for an earlier version of [8] we
detected during our work (and informed the authors) that the construction was
insecure under bad randomness such that the updated proceedings version (also
available as [7]) disregards attacks against randomness entirely. Finally, we detected
and reported that the construction of HkuPke in [12] is not even correct.

628 F. Balli et al.

indicate the cryptographic hardness of ratcheted key exchange and thereby help
to systematize and comprehend the security definitions and different dimen-
sions of ratcheting in the literature. As a consequence, our results contribute
to a fact-based trade-off between security and efficiency for RKE by providing
requirements for relying on heavy building blocks and thereby revealing respec-
tive bypasses.

2 Preliminaries

2.1 Notation

By x ← y we define the assignment of the value of variable y to variable x and
thus for a function X, x ← X(y) means that x is assigned with the evaluation
output of X on input y. We define T, F as Boolean values for true and false. The
shortcut notion w ← x ? y : z means that ‘if x = T, then w ← y, otherwise
w ← z’. For a probabilistic algorithm Y, x ←$ Y(y) denotes the probabilistic
evaluation of Y on input y with output x and x ← Y(y; r) denotes the deter-
ministic evaluation of Y on y with output x where the evaluation’s randomness
is fixed to r. For a set X , x ←$ X is the uniform random sampling of value x
from X . We use the shortcut notion X ∪← Y to denote the union X ← X ∪ Y of
sets X and Y.

Symbol ‘ε’ denotes an empty string and symbol ‘⊥’ denotes an undefined
element or an output that indicates rejections (thus it is not an element of
explicitly defined sets).

By X ∗, we denote the set of all lists of arbitrary size whose elements belong
to X . We abuse the notation of empty string ‘ε’ by writing L = ε for an empty
list L. If an element x ∈ X is appended to list L then we denote this by L ← L‖x

(or simply L
�← x). Thus, ‘‖’ denotes a special concatenation symbol that is

not an element of any of the explicitly defined sets. We define relations prefix-
or-equal � and strictly-prefix ≺ over two lists. For instance, for lists L, L0 =
L‖x, L1 = L‖y where x, y ∈ X , x
= y we have that L � L, L
≺ L, L ≺ L0, L ≺
L1, L0
� L1, L1
� L0 meaning that L is a prefix of L0 and L1 but neither of
L0, L1 is a prefix of the other. By X[·] we denote an associative array.

In our security experiments, that we denote with Game, we invoke adver-
saries via instruction ‘Invoke’. These adversaries are denoted by A, B. Adversaries
have access to the security experiment’s interface, which is defined by oracles
that are denoted by the term Oracle. Games are terminated via instructions
‘Stop with x’ (meaning that x is returned by the game) or ‘Reward b’ (meaning
that the game terminates and returns 1 if b = T). In procedures that we denote
by Proc and in oracles, we use the shortcut notion ‘Require x’. Depending on
the procedure’s or oracle’s number of return values n, that means ‘If x = F, then
return ⊥n’.

Determining the Core Primitive for Optimally Secure Ratcheting 629

2.2 Message Authentication Code

We define a message authentication code to be a set of algorithms M =
(tag, vfyM) over a set of symmetric keys K, a message space M, and a tag
space T . The syntax is defined as:

K × M → tag → T
K × M × T → vfyM → {T, ⊥}

Please note that we define the tag algorithm explicitly deterministic.
For correctness of a MAC we define that for all k ∈ K and all m ∈ M it is

required that vfyM(k, m, tag(k, m)) = T.
We define a one-time multi-instance strong unforgeability notion SUF for

MAC security – that is equivalent with standard strong unforgeability – for
which the formal security game is depicted in the full version [2]. That is, for a
game in which an adversary can generate instances i (with independent uniformly
random keys ki ←$ K) via an oracle Gen, the adversary can query a Tag oracle
on a message m from message space M for each instance at most once to obtain
the respective MAC tag. Additionally, the adversary can verify MAC tags for
specified messages and instances via oracle Vfy and obtain an instance’s key by
querying an Expose oracle for this instance. The adversary wins by providing
a forgery (m, τ) for an instance i to the Vfy oracle if there was no Tag(i, m)
query before with output τ and if i’s key was not exposed via oracle Expose.
We define the advantage of winning the SUF game against a MAC scheme M as
Advsuf

M (A) = Pr[SUFM(A) → 1].

3 Sufficient Security for Key-Updatable KEM

A key-updatable key encapsulation mechanism (kuKEM) is a key encapsulation
mechanism that provides update algorithms for public key and secret key with
respect to some associated data respectively. Prior to our work, this primitive
was used to instantiate sesquidirectional RKE. In order to allow for our equiva-
lence result, we minimally adjust the original kuKEM notion by Poettering and
Rösler [17] and call it kuKEM∗. The small, yet crucial changes comprise allowed
updates of public and secret key during encapsulation and decapsulation (in our
syntax definition) as well as the adversary’s ability to manipulate utilized ran-
domness of encapsulations (in our security definition). In Sect. 6 the rationales
behind these changes are clarified. In order to provide a coherent definition, we
not only describe alterations towards previous work but define kuKEM∗ entirely
(as we consider our changes to be a significant contribution and believe that this
strengthens comprehensibility).

Syntax. A kuKEM∗ is a set of algorithms K = (genK, up, enc, dec) with sets of
public keys PK and secret keys SK, a set of associated data AD for updating
the keys, a set of ciphertexts C (with AD ∩ C = ∅), and a set of encapsulated
keys K. Furthermore we define R as the set of random coins used during the
encapsulation:

630 F. Balli et al.

genK →$ PK × SK
PK × AD → up → PK
SK × AD → up → SK
PK × R → enc → PK × K × C or PK → enc →$ PK × K × C
SK × C → dec → (SK × K) ∪ {(⊥, ⊥)}

Please note that the encapsulation and decapsulation may modify the public key
and the secret key respectively – as a result, the kuKEM∗ is stateful (where the
public key is a public state).4

Correctness. The correctness for kuKEM∗ is (for simplicity) defined through
game CORRK (see Fig. 3), in which an adversary A can query encapsulation,
decapsulation, and update oracles. The adversary (against correctness) wins if
different keys are computed during decapsulation and the corresponding encap-
sulation even though compatible key updates were conducted and ciphertexts
from encapsulations were directly forwarded to the decapsulation oracle.

Definition 1 (kuKEM∗ correctness). A kuKEM∗ scheme K is correct if for
every A, the probability of winning game CORRK from Fig. 3 is Pr[CORRK(A)
→ 1] = 0.

Fig. 3. The correctness notion of kuKEM∗ captured through game CORR.

Security. Here we describe KUOWR security of kuKEM∗ as formally depicted in
Fig. 4. KUOWR defines one-way security of kuKEM∗ under randomness manip-
ulation in a multi-instance/multi-challenge setting.

Intuitively, the KUOWR game requires that a secret key can only be used
for decapsulation of a ciphertext if prior to this decapsulation all updates of this
4 As kuKEM∗ naturally provides no security for encapsulated keys if the adversary

can manipulate the randomness for genK already, we only consider the manipulation
of random coins for enc.

Determining the Core Primitive for Optimally Secure Ratcheting 631

Fig. 4. Security experiment KUOWR, modeling one-way security of key-updatable
KEM in a multi-instance/multi-challenge setting under randomness manipulation.
Lines of code tagged with ‘·’ are (substantially) modified with respect to KUOW secu-
rity in [16]. Line 41 is a shortcut notion that can be implemented efficiently. CK: chal-
lenge keys, XP: exposed secret keys, trs, trr : transcripts.

secret key and all decapsulations with this secret key were consistent with the
updates of and encapsulations with the respective public key. This is reflected
by using the transcript (of public key updates and encapsulations or secret key
updates and decapsulations) as a reference to encapsulated “challenge keys” and
secret keys.

In order to let the adversary play with the kuKEM∗’s algorithms, the game
provides oracles Gen, UpS , UpR, Enc, and Dec. Thereby instances (i.e., key pairs)
can be generated via oracle Gen and are referenced in the remaining oracles by
a counter that refers to when the respective instance was generated.

For encapsulation via oracle Enc, the adversary can either choose the invoca-
tion’s random coins by setting rc to some value that is not the empty string ε or
let the encapsulation be called on fresh randomness by setting rc = ε (line 16).

632 F. Balli et al.

In the former case, the adversary trivially knows the encapsulated key. Thus,
only when called with fresh randomness, the encapsulated key is marked as a
challenge key in array CK (line 20).

The variables CK, SK , and XP (the latter two are explained below) are
indexed via the transcript of operations on the respective key pair part. As
public keys and secret keys can uniquely be referenced via the associated data
under which they are updated and via ciphertexts that have been encapsulated
or decapsulated by them, the concatenation of these values (i.e., sent or received
transcripts trs, trr) are used as references to them in the KUOWR game.

On decapsulation of a key that is not marked as a challenge, the respective
key is output to the adversary. Challenge keys are of course not provided to the
adversary as thereby the challenge would be trivially solved (line 36).

Via oracle Expose, the adversary can obtain a secret key of specified instance i
that results from an operation referenced by transcript tr . As described above,
the transcript, to which a secret key refers, is built from the associated data of
updates to this secret key (via oracle UpR) and the ciphertexts of decapsulations
with this secret key (via oracle Dec) as these two operations may modify the
secret key. As all operations, performed with an exposed secret key, can be
traced by the adversary (i.e., updates and decapsulations; note that both are
deterministic), all secret keys that can be derived from an exposed secret key
are also marked exposed via array XP (line 41).

Finally, an adversary can solve a challenge via oracle Solve by providing a
guess for the challenge key that was encapsulated for an instance i with the
encapsulation that is referenced by transcript tr . Recall that the transcript,
to which an encapsulation refers, is built from the associated data of updates
to the respective instance’s public key (via oracle UpS) and the ciphertexts
of encapsulations with this instance’s public key (via oracle Enc) as these two
operations may modify the public key for encapsulation. If the secret key for
decapsulating the referenced challenge key is not marked exposed (line 23) and
the guess for the challenge key is correct (line 24), then game KUOWR stops
with ‘1’ (via ‘Reward’) meaning that the adversary wins.

Definition 2 (KUOWR Advantage). The advantage of an adversary A
against a kuKEM∗ scheme K in game KUOWR from Fig. 4 is defined as
Advkuowr

K (A) = Pr[KUOWRK(A) → 1].

We chose to consider one-way security as opposed to key indistinguishability
for the kuKEM∗ as it suffices to show equivalence with key indistinguishability
of RKE (in the ROM).

Differences Compared to Previous Security Definition. In Fig. 4 we denote
changes from KUOW security (cf., Figure 1 [16]) by adding ‘·’ at the begin-
ning of lines. Below we elaborate on these differences.

The main difference in our definition of KUOWR security compared to
KUOW security is that we allow the adversary to manipulate the execution’s
random coins. As we define encapsulation and decapsulation to (potentially)
update the used public key or secret key, another conceptual difference is that

Determining the Core Primitive for Optimally Secure Ratcheting 633

we only allow the adversary to encapsulate and decapsulate once under each pub-
lic and secret key. Thus, we assume that public and secret keys are overwritten
on encapsulation and decapsulation respectively. In contrast to our security def-
inition, in the KUOW security game only the current secret key of an instance
can be exposed. Even though we assume the secret key to be replaced by its
newer versions on updates or decapsulations, there might be, for example, back-
ups that store older secret key versions. As a result we view the restriction of
only allowing exposures of the current secret key artificial.5 An important nota-
tional choice is that we index the variables with transcripts trs, trr instead of
integer counters. This notation reflects the idea that public key and secret key
only stay compatible as long as they are used correspondingly and immediately
diverge on different associated data or tampered ciphertexts.

We further highlight the fundamental difference towards HkuPke by Jost et
al. [12]. Their notion of HkuPke does not allow (fully adversary-controlled) asso-
ciated data on public and secret key updates and additionally requires (authen-
ticated) interaction between the holders of the key parts thereby. Looking ahead,
this makes this primitive insufficient for diverging the public key from the secret
key (in the states) of users A and B during an impersonation of A towards B in
(U)RKE (especially under randomness manipulation). This is, however, required
in an optimal security definition but explicitly excluded in the sub-optimal RKE
notion by Jost et al. [12]. Since the syntax of HkuPke is already inadequate to
reflect this security property, we cannot provide a separating attack. Neverthe-
less, we further expound this weakness in the full version [2].

Instantiation. A kuKEM∗ scheme, secure in the KUOWR game, can be generi-
cally constructed from an OW-CCA adaptively secure hierarchical identity based
key encapsulation mechanism (HIB-KEM). The construction – the same as
in [16] – is provided for completeness in Fig. 5. The update of public keys is
the concatenation of associated data (interpreted as identities in the HIB-KEM)
and the update of secret keys is the delegation to lower level secret keys in the
identity hierarchy. The reduction is immediate: After guessing for which public
key and after how many updates the challenge encapsulation that is solved by
the adversary is queried, the challenge from the OW-CCA game is embedded
into the respective KUOWR challenge.

Sufficiency of KUOWR for SRKE. Before proving equivalence between secu-
rity of key-updatable KEM and ratcheted key exchange, we shed a light on
implications due to the differences between our notion of kuKEM∗ and its
KUOWR security and the notion of kuKEM and its KUOW security in [16].

5 It is important to note that the equivalence between KUOWR security of kuKEM∗

and KINDR security of URKE is independent of this definitional choice – if either
both definitions allow or both definitions forbid the exposure of also past secret keys
or states respectively, equivalence can be shown.

634 F. Balli et al.

Fig. 5. Generic construction of a kuKEM∗ from a hierarchical identity based KEM
HK = (genID, delID, encID, decID) (slightly differing from construction in [16] Fig. 2 by
adding an internal key update in encapsulation and decapsulation respectively).

Remark 1. Even though the KUOWR game provides more power to the adver-
sary in comparison to the KUOW game by allowing manipulation of random
coins, exposures of past secret keys, and providing an explicit decapsulation ora-
cle (instead of an oracle that only allows for checks of ciphertext-key pairs; cf.,
Figure 1 [16]), the game also restricts the adversary’s power by only allowing
decapsulations under the current secret key of an instance (as opposed to also
checking ciphertext-key pairs for past secret keys of an instance as in the KUOW
game). One can exploit this and define protocols that are secure with respect
to one game definition but allow for attacks in the other game. Consequently,
neither of both security definitions implies the other one.

Despite the above described distinction between both security definitions,
KUOWR security suffices to build sesquidirectional RKE according to the KIND
definition in [17] – which was yet the weakest notion of security of RKE for which
a construction was built from a key-updatable public key primitive. The ability
to check ciphertext-key pairs under past versions of secret keys of an instance
is actually never used in the proof of Poettering and Rösler [16]. The only case
in which this Check oracle is used in their proof is B’s receipt of a manipulated
ciphertext from the adversary. Checking whether a ciphertext-key pair for the
current version of a secret key of an instance is valid, can of course be conducted
by using the Dec oracle of our KUOWR notion. For full details on their proof
we refer the reader to Appendix C in [16].

Consequently, for the construction of KIND secure sesquidirectional RKE
(according to [17] Figure 18) from Poettering and Rösler [17], the used kuKEM
must either be KUOW secure (see [17] Figure 1) or KUOWR secure (see Fig. 4),
which is formally depicted in the following observation. Thus, even though
these notions are not equivalent, they both suffice for constructing KIND secure
sesquidirectional RKE.

Determining the Core Primitive for Optimally Secure Ratcheting 635

Observation 1. The sesquidirectional RKE protocol R from [17] Fig. 6 offers
key indistinguishability according to [17] Fig. 8 if function H is modeled as a
random oracle, the kuKEM∗ provides KUOWR security according to Fig. 4, the
one-time signature scheme provides SUF security according to [16] Fig. 22, the
MAC scheme M provides SUF security according to Sect. 2.2, and the symmetric-
key space of the kuKEM∗ is sufficiently large.

4 Unidirectional RKE Under Randomness Manipulation

Unidirectional RKE (URKE) is the simplest variant of ratcheted key exchange.
After a common initialization of a session between two parties A and B, it
enables the continuous establishment of keys within this session. In this unidi-
rectional setting, A can initiate the computation of keys repeatedly. With each
computation, a ciphertext is generated that is sent to B, who can then com-
prehend the computation and output (the same) key. Restricting A and B to
this unidirectional communication setting, in which B cannot respond, allows to
understand the basic principles of ratcheted key exchange. For the same reasons
we provided the whole definition of kuKEM∗ before (i.e., we see our changes as a
significant contribution and aim for a coherent depiction), we fully define URKE
under randomness manipulation below.

Syntax. We recall that URKE is a set of algorithms UR = (init, snd, rcv) defined
over sets of A’s and B’s states SA and SB respectively, a set of associated
data AD, a set of ciphertexts C, and a set of keys K established between A
and B. We extend the syntax of URKE by explicitly regarding the utilized ran-
domness of the snd algorithm. Consequently we define R as the set of random
coins rc ∈ R used in snd. To highlight that A only sends and B only receives
in URKE, we may add ‘A’ and ‘B’ as handles to the index of snd, and rcv
respectively.

init →$ SA × SB

SA × AD × R → snd → SA × K × C or SA × AD → snd →$ SA × K × C
SB × AD × C → rcv → SB × K ∪ {(⊥, ⊥)}

Please note that de-randomizing (or explicitly considering the randomness of)
the initialization of URKE is of little value since an adversary, when controlling
the random coins of init, obtains all information necessary to compute all keys
between A and B.

Correctness. Below we define correctness for URKE. Intuitively a URKE scheme
is correct, if all keys produced with send operations of A can also be obtained
with the resulting ciphertext by the respective receive operations of B.

Definition 3 (URKE Correctness). Let {adi ∈ AD}i≥1 be a sequence of asso-
ciated data. Let {sA,i}i≥0, {sB,i}i≥0 denote the sequences of A’s and B’s states
generated by applying snd(·, adi) and rcv(·, adi, ·) operations iteratively for i ≥ 1,

636 F. Balli et al.

that is, (sA,i, ki, ci) ←$ snd(sA,i−1, adi) and (sB,i, k′
i) ← rcv(sB,i−1, adi, ci). We

say URKE scheme UR = (init, snd, rcv) is correct if for all sA,0, sB,0 ←$ init,
for all associated data sequences {adi}i≥1, and for all random coins used for snd
calls, the key sequences {ki}i≥1 and {k′

i}i≥1 generated as above are equal.

Security. For security, we provide the KINDR game for defining key
indistinguishability under randomness manipulation of URKE in Fig. 6. In this
game, the adversary can let the session participants A and B send and receive
ciphertexts via SndA and RcvB oracle queries respectively to establish keys
between them. By querying the Reveal or Challenge oracles, the adversary can
obtain these established keys or receive a challenge key (that is either the real
established key or a randomly sampled element from the key space) respectively.
Finally, the adversary can expose A’s and B’s state as the output of a specified
send or receive operation respectively via oracles ExposeA or ExposeB.

When querying the SndA oracle, the adversary can specify the random coins
for the invocation of the snd algorithm from the set R or indicate that it wants
the random coins to be sampled uniformly at random by letting rc = ε. By
allowing the adversary to set the randomness for the invocations of the snd
algorithm and exposing past states (which was not permitted in the definition
of Poettering and Rösler [17]), new trivial attacks arise.

Below we review and explain the trivial attacks of the original URKE KIND
game, map them to our version, and then introduce new trivial attacks that arise
due to randomness manipulation.

A conceptual difference between our game definition and the games by Poet-
tering and Rösler [17] is the way variables (especially arrays) are indexed. While
the KIND games of [17] make use of counters (of send and receive operations)
to index computed keys and adversarial events, we use the communicated tran-
scripts, sent and received by A and B respectively, as indices. We thereby heav-
ily exploit the fact that synchronicity (and divergence) of the communication
between A and B are defined over these transcripts, which results in a more
comprehensible (but equivalent) game notation. Please note that, due to our
indexing scheme, it suffices for our game definition to maintain a common key
array key[·] and common sets of known keys KN and challenged keys CH for A
and B (as opposed to arrays and sets for each party).6

The lines marked with ‘·’ in Fig. 6 denote the handling of trivial attacks
without randomness manipulation (as in [17]). Lines marked with ‘ ◦ ’ intro-
duce modifications that become necessary due the new trivial attacks based on
manipulation of randomness.

Trivial attacks without randomness manipulations are:

(a) If the adversary reveals a key via oracle Reveal, then challenging this key
via oracle Challenge is trivial. In order to prevent reveal and challenge of
the same key, sets KN and CH trace which keys have been revealed (line 23)

6 This is because a key, computed during the sending of A and the corresponding
receiving of B, only differs between A and B if the received transcript of B diverged
from the sent transcript of A.

Determining the Core Primitive for Optimally Secure Ratcheting 637

Fig. 6. Games KINDRb, b ∈ {0, 1}, for URKE scheme UR. Lines of code tagged with
a ‘·’ denote mechanisms to prevent or detect trivial attacks without randomness manip-
ulation; trivial attacks caused by randomness manipulation are detected and prevented
by lines tagged with ‘◦ ’. We define LCP(X, Y) to return the longest common prefix
between X and Y , which are lists of atomic elements zi ∈ (AD × C). By longest com-
mon prefix we mean the longest list Z = z0‖ . . . ‖zn for which Z 	 X ∧ Z 	 Y . We
further define T R = AD×C. Line 39 is a shortcut notion that can be implemented effi-
ciently. XP: exposed states, MR: states and keys affected by manipulated randomness,
KN: known keys, CH: challenge keys, trs, trr : transcripts.

and challenged (line 44). The adversary only wins, if the intersection of both
sets is empty (line 08). Additionally, a key must only be challenged once as
otherwise bit b can be obtained trivially (line 42).
Example: c ← SndA(ε, ε); k ← Reveal((ε, c)); Return k = Challenge((ε, c))

(b) As keys, that are computed by both parties (because ciphertexts between
them have not been manipulated yet), are stored only once in array key
(due to the indexing of arrays with transcripts instead of pure counters), the

638 F. Balli et al.

adversary cannot reveal these keys on one side of the communication (e.g., at
A) and then challenge them on the other side (e.g., at B). Consequently, this
trivial attack (which was explicitly considered in [17]) is implicitly handled
by our game definition.

(c) After exposing B’s state via oracle ExposeB, the adversary can comprehend
all future computations of B. Consequently, all keys that can be received by
B in the future are marked known (line 39).
Example: sB ← ExposeB(ε); c ← SndA(ε, ε); RcvB(ε, c); (sB , k) ← rcv(sB , ε, c);
Return k = Challenge((ε, c))

(d) Exposing B’s state, as long as the communication between A and B has
not yet been manipulated by the adversary, allows the adversary also to
compute all future keys established by A (which is also implicitly handled
by our indexing of arrays via transcripts).

(e) Exposing A’s state via oracle ExposeA allows the adversary to impersonate
A towards B by using the exposed state to create and send own valid cipher-
texts to B. As creating a forged ciphertext reveals the key that is computed
by B on receipt, such keys are marked known (lines 26–27). The detection of
this trivial attack works as follows: As soon as B receives a ciphertext that
was not sent by A (i.e., B’s transcript together with the received ciphertext
is not a prefix of A’s transcript) and A was exposed after A sent the last
ciphertext that was also received by B (i.e., after the last common prefix
LCP), the adversary is able to create this ciphertext validly on its own.7
Example: sA ← ExposeA; (sA, k, c) ← snd(sA, ε); RcvB(ε, c); Return k =
Challenge((ε, c))

Due to randomness manipulations, the adversary can additionally conduct
the following attacks trivially:

(f) If the randomness for sending is set by the adversary (via SndA(ad, rc), rc
= ε)
and the state, used for this sending, is exposed (via ExposeA), then also the
next state of A, output by this send operation, will be known (and marked as
exposed) as sending is thereby deterministically computed on inputs that are
known by the adversary (lines 16, 18). Since the adversary can also retrospec-
tively expose A’s state, all computations that can be traced, due to contin-
uous manipulated randomness of subsequent SndA oracle queries (unified in
set MR) after such an exposure, are also marked as exposed (lines 35–36).
Example: rc ←$ R; c′ ← SndA(ε, rc); RcvB(ε, c′); sA ← ExposeA(ε);
(sA, k′, c′) ← snd(sA, ε; rc); (sA, k, c) ←$ snd(sA, ε); RcvB(ε, c); Return k =
Challenge((ε, c′)‖(ε, c))

(g) Similarly, if the randomness for sending is set by the adversary and the state
that A uses during this send operation is exposed, then the key, computed

7 Please note that we need to detect this trivial attack this way (in contrast to the
game in [17]) because the adversary can forge ciphertexts to B without letting
the communication between A and B actually diverge. It can do so by creating
an own valid ciphertext which it sends to B (via sA ← ExposeA(ε); rc ←$ R;
(sA, k, c) ← snd(sA, ε; rc); RcvB(ε, c)) but then it lets A compute the same cipher-
text (via SndA(ε, rc)). As a result, A and B are still in sync.

Determining the Core Primitive for Optimally Secure Ratcheting 639

during sending, is known by the adversary since its computation is thereby
deterministic (lines 16–17, 35–36).
Example: rc ←$ R; c ← SndA(ε, rc); sA ← ExposeA(ε); (sA, k, c) ← snd(sA, ε; rc);
Return k = Challenge((ε, c))

Based on this game, we define the advantage of an adversary in breaking the
security of an URKE scheme as follows.

Definition 4 (KINDR Advantage). The advantage of an adversary A against
a URKE scheme UR in game KINDR from Fig. 6 is defined as Advkindr

UR (A) =
∣
∣Pr[KINDR0

UR(A) = 1] − Pr[KINDR1
UR(A) = 1]

∣
∣.

We say that an URKE scheme UR is secure if the advantage is negligible for
all probabilistic polynomial time adversaries A.

Please note that KINDR security of URKE is strictly stronger than both
KIND security notions of URKE, defined by Bellare et al. [3] and Poettering
and Rösler [17] (which themselves are incomparable among each other).

5 KuKEM* to URKE

Since our ultimate goal is to show that existence of a kuKEM∗ primitive is a
necessary and sufficient condition to construct a URKE primitive – albeit requir-
ing the help of other common cryptographic primitives such as hash functions
(modeled as random oracle) and message authentication codes –, we dedicate
this section to proving the latter of these implications.

Construction of URKE from kuKEM∗. We give a generic way to construct a
URKE scheme UR from a kuKEM∗ scheme K with the help of random oracle
H and MAC scheme M. This transformation K → UR is fully depicted in Fig. 7.
Below we briefly describe the algorithms of URKE scheme UR = (init, snd, rcv).

During the state initiation algorithm init, a kuKEM∗ key pair (sk, pk) is gen-
erated such that the encapsulation key pk is embedded into the sender state sA,
and the decapsulation key sk into the receiver state sB . The remaining state
variables are exactly same for A and B. More specifically, two further keys are
generated during initialization: the symmetric state key K and a MAC key k.m.
Furthermore the sent or received transcript (initialized with an empty string ε)
is stored in each state. For brevity, we assume that K, k.m, and the update
key k.u (used during sending and receiving; see below) all belong to the same
key domain K that is sufficiently large.

On sending, public key pk in A’s state is used by the encapsulation algo-
rithm to generate key k and ciphertext c. Then, MAC key k.m, contained in the
current state of A, is used to issue a tag τ over the tuple of associated data ad
and encapsulation ciphertext c. The finally sent ciphertext, denoted by C, is a
concatenation of c and τ . The output key k.o, as well as the symmetric keys
of the next state of A are obtained from the random oracle, on input of the
symmetric state key K, the freshly encapsulated key k, and the history of sent

640 F. Balli et al.

Fig. 7. Construction of a URKE scheme from a kuKEM∗ scheme K =
(genK, up, enc, dec), a message authentication code M = (tag, vfyM), and a random
oracle H. For simplicity we denote the key space of the MAC and the space of the
symmetric key K in sA with the same symbol K.

transcript t. Finally, a kuKEM∗ update is applied on pk under associated data
that is derived from the random oracle output (denoted by k.u). Please note
that the encapsulation algorithm is the only randomized operation inside snd.
Hence the random coins of the latter are only used by the encapsulation.

On receiving, the operations are on par with the sending algorithm. Namely,
the received ciphertext C is parsed as the encapsulation ciphertext c and the
MAC tag τ . The latter is verified with regards to the MAC key k.m, stored in
the state of B. After the key k is decapsulated, the same input to the random
oracle H is composed. The symmetric components of the next state and k.o are
derived from the random oracle’s output. Finally, the secret key sk is updated
with k.u, so that it is in-sync with the update of pk.

We remark that our construction in Fig. 7 differs from the unidirectional
RKE scheme by Poettering and Rösler [17] only in the output of the random
oracle and in the subsequent use of the kuKEM∗’s update algorithm (instead
they freshly generated a new KEM key pair from the random oracle output).
These changes are, nevertheless, significant as their scheme is insecure when the
adversary is able to (reveal or) manipulate the random coins for invocations of
the snd algorithm. We give a detailed attack description against their scheme in
our model in the full version [2].

Theorem 1. If kuKEM∗ scheme K is KUOWR secure according to Fig. 4, MAC
scheme M is SUF secure according to Sect. 2.2, and H is a hash function modeled
as random oracle, then URKE scheme UR from Fig. 7 is KINDR secure according
to Fig. 6 with

Advkindr
UR (A) ≤ Advkuowr

K (BK) + Advsuf
M (BM) + qH · (qSndA + qRcvB)

|K|

Determining the Core Primitive for Optimally Secure Ratcheting 641

where A is an adversary against KINDR security, BK is an adversary against
KUOWR security, BM is an adversary against SUF security, K is the key domain
in the construction UR, qSndA, qRcvB, and qH are the number of SndA, RcvB
and H queries respectively by A, and the running time of A is approximately the
running time of BK and BM.
Proof (Sketch, Theorem 1). We here give the sketch of the full proof that is in
the full version [2]. Our idea is to design a series of games Game 0-5, in which
differences between subsequent games are only syntactical and the advantage of
the adversary A remains same. From this fifth game we are then ultimately able
to reduce either of the following cases, that are explained below, to one of the
hardness assumptions.

Consider the following scenarios which lead to a win for the adversary A.
Since the challenged keys are derived from the random oracle, we argue that, if A
does not make a random oracle query H(K, k, t) for any of the challenged keys,
then its advantage in guessing the challenge bit correctly remains negligible. We
do not consider random oracle queries to keys that are trivially revealed to the
adversary, as they do not lead to a win in the KINDR game (e.g., if the exposed
state of B helps the adversary to trivially query H). Therefore, we regard the
following three events in which A makes such special random oracle queries:
– The random oracle query H(K, k, t) belongs to one of the keys derived by the

sender, in which fresh random coins, unknown to the adversary, are used for
sending (and hence for encapsulation). In this case, we can give a reduction to
the KUOWR game with respect to kuKEM∗ scheme K, in which the reduction
wins the KUOWR game by using the encapsulated key k as the solution.

– The random oracle query H(K, k, t) belongs to one of the keys, derived from
the sender where the used random coins are chosen by the adversary. We
know that A did not expose the respectively used states of A or B as this
leads to a trivial win. Therefore, we can show that the symmetric state keys K
in these cases are independent from the view of A. This implies that making
such special H(K, k, t) query requires a collision in the key domain K, whose
probability is bounded by qH · (qSndA + qRcvB)/|K|.

– The random oracle query H(K, k, t) belongs to one of the keys, derived by the
receiver B, who reaches to an out-of-sync status (if B is still in-sync with A,
then one of the two cases above are relevant). Since each received ciphertext
contains a MAC tag, we can show that the first received ciphertext by B
that is different from the sent ciphertext by A either corresponds to a trivial
impersonation or can be used to reduce this event to a forgery in the SUF
game with respect to MAC scheme M.

Therefore, by bounding the probability of these three cases, we can deduce the
adversary’s advantage (which is negligible under the named assumptions). ��

6 URKE to kuKEM*

In order to show that public key encryption with independently updatable key
pairs (in our case kuKEM∗) is a necessary building block for ratcheted key

642 F. Balli et al.

exchange, we build the former from the latter. The major obstacle is that the
updates of public key and secret key of a kuKEM∗ are conducted independently
– consequently no communication between holder of the public key and holder of
the secret key can be assumed for updates. In contrast, all actions in ratcheted
key exchange are based on communication (i.e., sent or received ciphertexts).
Another property that public key updates for kuKEM∗ must fulfill – in contrast
to state updates in KIND secure unidirectional RKE as in [17] – is that they
must not leak any information on the according secret key during the update
computation. In the following we describe how we solve these two issues and
present a reduction of KUOWR security to KINDR security of a generic URKE
scheme.

Construction of kuKEM∗ from URKE. The weaker KIND security of URKE (as
in [17]) already allows that the sender’s state sA can always be exposed without
affecting the security of any established keys (as long as this exposed state is
not used to impersonate A towards B). Consequently, A’s pure state reveals no
information on encapsulated keys nor on B’s secret key(s). KIND security of
URKE further implies that B’s state only reveals information on keys that have
not yet been computed by B (while earlier computed keys stay secure). One can
imagine A’s state consequently as the public part of a (stateful) key pair and
B’s state as the secret counterpart.

The two above mentioned crucial properties of KUOW(R) security are, how-
ever, not implied by KIND security when using sA as the public key and sB as
the secret key of a kuKEM. Firstly, updating sB (as part of receiving a cipher-
text) requires that the ciphertext, generated during sending of A (and updating
of sA), is known by B but the syntax of kuKEM does not allow an interac-
tion between public key holder and secret key holder. This issue can be solved
by de-randomizing the snd algorithm. If A’s state as part of the public key is
updated via a de-randomized invocation of snd, the secret key holder can also
obtain the ciphertext that A would produce for the same update (by invoking
the de-randomized/deterministic snd) and then update sB with this ciphertext
via rcv. A conceptional depiction of this is in Fig. 8. Thereby the secret key is
defined to contain sA in addition to sB.

Secondly, in the URKE construction of Poettering and Rösler [17] A tem-
porarily computes secrets of B that match A’s updated values during sending.
As a result, normal KIND security allows that a de-randomized snd invocation
reveals the secrets of B to an adversary if sA is known (see the full version [2]
for a detailed description of this attack). In order to solve this issue, the security
definition of URKE must ensure that future encapsulated keys’ security is not
compromised if snd is invoked under a known state sA and with random coins
that are chosen by an adversary (i.e., KINDR security).

Our generic construction of a KUOWR secure kuKEM∗ from a generic
KINDR secure URKE scheme is depicted in Fig. 9. As described before, the
public key contains state sA and the secret key contains both states (sA, sB)
that are derived from the init algorithm. In order to update the public key, the
snd algorithm is invoked on state sA, with the update associated data, and fixed

Determining the Core Primitive for Optimally Secure Ratcheting 643

Fig. 8. Conceptual depiction of kuKEM∗ construction from generic URKE scheme.
The symbol in the upper index of an algorithm name denotes the source of random
coins (‘$’ indicates uniformly sampled). R is a fixed value. For clarity we omit ad inputs
and k outputs (cf. Fig. 1).

randomness. The output key and ciphertext are thereby ignored. Accordingly,
the secret key is updated by first invoking the snd algorithm on state sA with the
same fixed randomness and the update associated data. This time the respective
ciphertext from A to B is not omitted but used as input to rcv algorithm with
the same associated data under sB .

Encapsulation and decapsulation are conducted by invoking snd probabilisti-
cally and rcv respectively. In order to separate updates from en-/decapsulation,
a ‘0’ or ‘1’ is prepended to the associated data input of snd and rcv respectively.
For bounding the probability of a ciphertext collision in the proof, a randomly
sampled ‘collision key’ ck is attached to the associated data of the snd invo-
cation in encapsulation. In order to accordingly add ck to the associated data
of rcv as part of the decapsulation, ck is appended to the ciphertext. Since
state sA, output by the snd algorithm during the encapsulation, is computed
probabilistically, it is also attached to the encapsulation ciphertext, so that (the
other) sA, embedded in the secret key, can be kept compatible with the public
key holder’s. To bind ck and sA to the ciphertext, both are integrity protected
by a message authentication code (MAC) that takes one part of the key from
the snd invocation as MAC key (only the remaining key bytes are output as
the encapsulated kuKEM∗ key). Additionally the whole ciphertext (i.e., URKE
ciphertext, collision key, state sA, and MAC tag) is used as associated data for
an additional ‘internal update’ of the public key and the secret key in encap-
sulation and decapsulation respectively. This is done to escalate manipulations
of collision key, state sA, or MAC tag (as part of the ciphertext) back into the
URKE states sA and sB (as part of public key and secret key). For full details
on the rationales behind these two binding steps we refer the reader to the proof.

644 F. Balli et al.

Fig. 9. Construction of a key-updatable KEM from a generic URKE scheme UR =
(init, snd, rcv) and one-time message authentication code M = (tag, vfyM).

Interestingly, the public key holder can postpone the de-randomized snd invo-
cation for public key updates until encapsulation and instead only remember the
updates’ associated data without compromising security. However, the updates
of the secret key must be performed immediately as otherwise an exposure of
the current secret key reveals also information on its past versions. Thereby the
computation of snd in the up algorithm must be conducted during the secret key
update without interaction between public key holder and secret key holder.

Theorem 2. If URKE scheme UR is KINDR secure according to Fig. 6, one-
time MAC M is SUF secure according to Sect. 2.2, and for all (k, k.m) ∈ KUR
it holds that k ∈ KK and k.m ∈ KM, then kuKEM∗ scheme K from Fig. 9 is
KUOWR secure according to Fig. 4 with

Advkuowr
K (A) ≤ qGenqEnc ·

(

Advkindr
UR (BUR) + Advsuf

M (BM) + 1
|K|

)

,

with Advsuf
M (BM) ≤ Advkindr

UR (BUR)

where A is an adversary against KUOWR security, BUR is an adversary against
KINDR security of UR, BM is an adversary against SUF security of M, qGen
and qEnc are the number of Gen and Enc queries by A respectively, K is the
space from which ck is sampled, and the running time of A is approximately the
running time of BUR and BM.

In the full version [2] we show how to construct an SUF secure one-time MAC
from a generic KINDR secure URKE scheme, which implies the second term in
Theorem 2. We prove Theorem 2 below and provide a formal pseudo-code version
of the simulation’s game hops in the full version [2].

Determining the Core Primitive for Optimally Secure Ratcheting 645

Proof (Theorem 2). We conduct the proof in four game hops: In the first game
hop we guess for which instance the first valid Solve oracle query is provided
by the adversary; in the second game hop, we guess for which Enc oracle query
of the previously guessed instance the first valid Solve oracle query is provided;
additionally the simulation aborts in this game hop if the adversary crafts this
first valid ciphertext and provides it to the Dec oracle before it is output by the
Enc oracle; in the third game hop, we replace the key, output by the first snd
invocation in this guessed Enc oracle query by a randomly sampled key (which
is reduced to KINDR security of UR); in the final game hop, we abort on a MAC
forgery, provided to the Dec oracle, that belongs to the ciphertext that is output
by the guessed Enc oracle query (which is reduced to the SUF security of M).

Game 0. This game is equivalent to the original KUOWR game.

Game 1. The simulation guesses for which instance nGen the first key k∗ is
provided to the Solve oracle such that the secret key for decapsulation is not
marked exposed (i.e., tr∗ /∈ XPnGen) and the provided key equals the indicated
challenge key (i.e., k∗ = CKnGen [tr∗]). Therefore nGen is randomly sampled from
[qGen], where qGen is the number of Gen oracle queries by the adversary. The
reduction aborts if nGen is not the instance for which the first valid Solve oracle
query is provided.

Consequently we have AdvG0 = qGen · AdvG1 .

Game 2. The simulation guesses in which of nGen’s Enc queries the challenge
is created, that is the first valid query to the Solve oracle by the adversary.
Therefore nEnc is randomly sampled from [qEnc] and the simulation aborts if
either the randomness for the nEnc’s Enc query is manipulated as thereby no
challenge would be created, or the first valid query to the Solve oracle is for
another challenge than the one created by nGen’s nEncth Enc query, or a secret
key that helps to trivially solve the challenge from nGen’s nEncth Enc query is
exposed.

In addition, the simulation aborts if, before the nGen’s nEncth Enc query was
made, Dec was queried on a ciphertext (with the same preceding transcript) that
contains the same URKE ciphertext and ‘collision key’ ck as nGen’s nEncth Enc
query. As the probability of a collision in the URKE transcript (i.e., associated
data and ciphertext of the first snd invocation of nGen’s nEncth Enc query were
previously already provided to nGen’s nEncth Dec query under the same preced-
ing transcript) is bounded by a collision in the the key space K (as thereby ck
as associated data must collide), we have AdvG1 = qEnc ·

(

AdvG2 + 1
|K|

)

.

Game 3. The simulation replaces the output (k, k.m) from the first snd invo-
cation of nGen’s nEncth Enc query by values randomly sampled.

An adversary that can distinguish between Game 2 and Game 3 can be
turned into an adversary that breaks KINDR security of URKE scheme UR. We
describe the reduction below: The reduction obtains nGen’s public key in oracle
Gen via oracle ExposeA from the KINDR game. Invocations of snd in UpS to
nGen are replaced by SndA and ExposeA queries. Invocations of snd in UpR to

646 F. Balli et al.

nGen are processed by the reduction itself and the subsequent rcv invocations
are replaced by RcvB queries. The state sB in queries to Expose for nGen is
obtained via ExposeB queries to the KINDR game. For all queries to Enc of
nGen the snd invocations are replaced by SndA and ExposeA queries. kuKEM∗

key and MAC key (k, k.m) for nGen’s Enc oracle queries are obtained via Reveal
– except for nGen’s nEncth Enc query, in which these two keys are obtained from
the Challenge oracle in the KINDR game. Invocations of rcv in the Dec oracle
for nGen are replaced by RcvB queries and Reveal queries (in case the respective
key was not already computed in the Enc oracle). The snd invocation in oracle
Dec is directly computed by the reduction.

In order to show that manipulations of transcripts in the KUOWR game
manipulate equivalently the transcripts in the KINDR game (such that the state
sA in the public key diverges from state sB in the secret key iff the transcripts
trsnGen and trrnGen diverge), we define the translation array TR[·] that maps
the transcript of nGen in the KUOWR game to the according transcripts in the
KINDR game.

As Game 2 aborts if nGen’s nEncth Enc query entails no valid KINDR
challenge, or if the respective ciphertext was already crafted by the adversary
(and provided to the Dec oracle), an adversary, distinguishing the real key pair
(k, k.m) from the randomly sampled one, breaks KINDR security. Formally,
the solution for nGen’s nEncth Enc query to the Solve oracle is compared with
the challenge key k from the KINDR Challenge oracle (which is obtained during
nGen’s nEncth Enc query): If the keys equal, the reduction terminates with b′ = 0
(as thereby the KINDR game’s challenge entailed the real key), otherwise it
terminates with b′ = 1.

Consequently we have AdvG2 ≤ AdvG3 + Advkindr
UR (BUR).

Game 4. The only way, the adversary can win in Game 3, is to keep secret
key and public key of nGen compatible (by updating them equivalently and
forwarding all Enc queries to the Dec oracle) and then forwarding only the URKE
ciphertext c′ of nGen’s nEncth Enc query to the Dec oracle while manipulating
parts of the remaining challenge ciphertext. Thereby the Dec oracle outputs the
correct challenge key such that the adversary trivially wins.8

We therefore define Game 4 to let the simulation abort if a forgery of the
MAC tag for the challenge ciphertext is provided to the Dec oracle. Distinguish-
ing between Game 3 and Game 4 can hence be reduced to the SUF security
of the one-time MAC M. We describe the reduction below: Instead of sampling
k.m randomly, the MAC tag for nGen’s nEncth Enc query is derived from the
Tag oracle of the SUF game. Since an abort requires that the URKE challenge
ciphertext c′ is indeed received in oracle Dec (and also the transcripts prior to
this ciphertext equal for trsnGen and trrnGen), the URKE key (containing k.m)

8 Please note that after this manipulation, the states sA and sB in the public key and
secret key respectively diverge, but the key, output by the Dec oracle, still equals
the challenge key. In case, the URKE ciphertext c′ from the challenge ciphertext
is already provided manipulately to the Dec oracle, the challenge key is already
independent from the key, computed in the Dec oracle.

Determining the Core Primitive for Optimally Secure Ratcheting 647

equals. As a consequence, a crafted ciphertext (pk, c′, τ), provided to the Dec
oracle, is a forgery τ for message (pk, c′) in the SUF game.

Consequently we have AdvG3 ≤ AdvG4 + Advsuf
M (BM).

As the challenge key from nGen’s nEncth Enc query is randomly sampled and
cannot be derived from any other oracle, the advantage of winning in Game 4
is AdvG4 = 0.

Summing up the advantages above, we have:

Advkuowr
K (A) ≤ qGenqEnc ·

(

Advkindr
UR (BUR) + Advsuf

M (BM) + 1
|K|

)

where Advsuf
M (BM) ≤ Advkindr

UR (BUR) follows from an SUF secure one-time MAC
construction from a generic KINDR secure URKE scheme UR (which is described
in the full version [2]). ��

7 Discussion

Our results clearly show that key-updatable key encapsulation is a necessary
building block for optimally secure ratcheted key exchange, if the security def-
inition of the latter regards manipulation of the algorithm invocations’ ran-
dom coins. As unidirectional RKE can naturally be built from sesquidirectional
RKE, which in turn can be built from bidirectional RKE (which can be derived
from optimally secure group RKE), our results are expected to hold also for the
according security definitions under these extended communication settings. In
contrast, security definitions of ratcheting that restrict the adversary more than
necessary in exposing the local state or in solving embedded game challenges
(i.e., by excluding more than unpreventable attacks) allow for instantiations
that can dispense with these inefficient building blocks.

However, the two previous security definitions fulfilled by constructions that
use kuKEM as a building block (cf. Table 1) consider only randomness reveal [10]
or even secure randomness [17]. This raises the question whether using kuKEM in
these cases was indeed necessary (or not). The resulting gap between the notions
of ratcheting that can be built from only standard PKC and our optimally
secure URKE definition with randomness manipulation, implying kuKEM, will
be discussed in the following.

Implications under Randomness Reveal. The core of our proof (showing that
URKE implies kuKEM under randomness manipulation) is to utilize URKE’s
state update in algorithms snd and rcv for realizing public key and secret key
updates in kuKEM’s up algorithm. In order to remove the otherwise necessary
communication between snd and rcv algorithms of RKE, snd is de-randomized
by fixing its random coins to a static value. While this de-randomization trick
is not immediately possible if the reduction to URKE KIND security cannot
manipulate the randomness of snd invocations, one can utilize a programmable
random oracle to emulate it: instead of fixing the (input) random coins of snd
invocations to a static value, one could derive these coins from the output of a

648 F. Balli et al.

random oracle on input of the respective update’s associated data (i.e., ad input
of algorithm up). Additionally, instead of directly forwarding the update’s asso-
ciated data to the associated data input of snd, another random oracle could be
interposed between them. The reduction then simply pre-computes all kuKEM
up invocations independent of associated data inputs by querying the SndA ora-
cle in the URKE KIND game on random associated data strings. Then the reduc-
tion reveals all used random coins in the URKE KIND game and programs them
as output into the random oracle lazily (i.e., as soon as the adversary queries
the random oracle on update associated data strings). By correctly guessing,
which of the adversary’s random oracle queries fit its queried kuKEM update
invocations, the reduction can perform the same de-randomization trick as in
our proof. The probability of guessing correctly is, however, exponential in the
number of queried kuKEM updates such that a useful implication may only be
derivable for a constant number of queried updates.

In conclusion, we conjecture that URKE under randomness reveal already
requires the use of a kuKEM-like building block with a constantly bounded
number of public key and secret key updates. Thereby we argue that our proof
approach partially carries over to the case of randomness reveal. This would
indicate that the use of a kuKEM-like building block in the construction of Jaeger
and Stepanovs [10] is indeed necessary. The formal analysis of this conjecture is
left as an open question for future work.

Implications Under Secure Randomness. For optimal security under secure ran-
domness, Poettering and Rösler [17] show that URKE can be instantiated from
standard PKC only (cf. Table 1). In contrast, their construction for sesquidi-
rectional RKE (SRKE: a restricted interactive RKE variant) uses kuKEM for
satisfying optimal security under secure randomness. Since a reduction towards
SRKE (under KIND security with secure randomness) has no access to ran-
dom coins respectively used in the RKE algorithms, our de-randomization trick
seems inapplicable. Furthermore, while the RKE algorithms snd and rcv can
use exchanged ciphertexts for their state updates, generically transforming this
state update to realize a ‘silent’, non-interactive key update needed for kuKEM
without our trick appears (at least) problematic.

Nevertheless, it is likely that SRKE KIND security under secure random-
ness requires kuKEM-like building blocks. This intuition is based on an example
attack by Poettering and Rösler [16, Appendix B.2]. It illustrates that a key k∗,
computed by any secure SRKE construction under the following attack, needs
to be indistinguishable from a random key according to this security notion.
The attack proceeds as follows: 1. Alice’s and Bob’s states are exposed (sA ←
ExposeA(ε); sB ← ExposeB(ε)), 2. Bob sends update information to Alice (which is
possible in SRKE) to recover from his exposure (c ← SndB(ε, ε); RcvA(ε, c)). Keys
established by Alice after receiving the update information are required to be
secure again. Translated to the kuKEM setting, this step corresponds to Bob gen-
erating a new key pair and publishing the respective public key. 3. Simultaneously
Alice is impersonated towards Bob ((s′

A, k′, c′) ←$ sndA(sA, ε); RcvB(ε, c′)). This
requires Bob’s state to become incompatible with Alice’s state. In the kuKEM

Determining the Core Primitive for Optimally Secure Ratcheting 649

setting, this corresponds to the secret key being updated with c′ as associated
data. Note that c′ can be independent of Bob’s state update from step 2 via c,
and the computation of c′ is controlled by the adversary. 4. Afterwards Bob’s
state is again exposed (s′

B ← ExposeB((ε, c)‖(ε, c′))). 5. Finally, Alice sends and
establishes key k∗ which is required to be secure (c′′ ← SndA(ε, ε)). 6. Exposing
Alice’s state thereafter should not harm security of k∗ (s′′

A ← ExposeA((ε, c′′))).
We observe that, as with a kuKEM public key, Alice’s state is publicly known

during the entire attack. Only Alice’s random coins when establishing k∗ and
updating her state, and Bob’s random coins when sending, as well as his resulting
state until he receives c′ are hidden towards the adversary. We furthermore note
that, by computing ciphertext c′, the adversary controls Bob’s state update. As
a consequence, Bob’s state update must reach forward-secrecy for key k∗ with
respect to adversarially chosen associated update data c′ and Bob’s resulting
(diverged) state s′

B .
All in all, the security requirements highlighted by this attack emphasize the

similarity of kuKEM’s and SRKE’s security. Nevertheless, we note that all our
attempts to apply our proof technique for this case failed due to the above men-
tioned problems. Therefore, formally substantiating or disproving the intuition
conveyed by this attack remains an open question for future work.

Open Questions and Impact. With our work we aim to motivate research on
another remaining open problem: can key-updatable KEM be instantiated more
efficiently than generically from HIBE? It is, in contrast, evident that equivalence
between HIBE and RKE is unlikely as constructions of the latter only utilize
“one identity path” of the whole “identity tree” of the former.

Conclusively, we note that defining security for, and constructing schemes of
interactive ratcheted key exchange variants (i.e., under bidirectional communi-
cation) is highly complicated and consequently error-prone.(See footnote 3) By
providing generic constructions (instead of ad-hoc designs) and grasping core
components and concepts of ratcheted key exchange, complexity is reduced and
sources of errors are eliminated. Additionally, our equivalence result serves as
a benchmark for current and future designs of ratcheted key exchange – espe-
cially group RKE. For future constructions that only rely on standard public
key cryptography either of the following questions may arise: how far is the
adversary restricted such that our implication is circumvented, or how far is the
construction secure under the respective security definition?

References

1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2_5

2. Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for optimally
secure ratcheting. Cryptology ePrint Archive, Report 2020/148 (2020). full version
of this article. Available at https://eprint.iacr.org/2020/148

https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5
https://eprint.iacr.org/2020/148

650 F. Balli et al.

3. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9_21

4. Caforio, A., Durak, F.B., Vaudenay, S.: On-demand ratcheting with security aware-
ness. Cryptology ePrint Archive, Report 2019/965 (2019). https://eprint.iacr.org/
2019/965

5. Checkoway, S., et al.: On the practical exploitability of dual EC in TLS implemen-
tations. In: Fu, K., Jung, J. (eds.) USENIX Security 2014, pp. 319–335. USENIX
Association (2014)

6. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2017, Paris, France, 26–28 April 2017,
pp. 451–466 (2017)

7. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. Cryptology ePrint Archive, Report 2018/889 (2018).
https://eprint.iacr.org/2018/889

8. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS,
vol. 11689, pp. 343–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26834-3_20

9. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your PS and
QS: detection of widespread weak keys in network devices. In: Kohno, T. (ed.)
USENIX Security 2012, pp. 205–220. USENIX Association (2012)

10. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1_2

11. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: The safety of messaging. Cryptology ePrint Archive, Report 2018/553
(2018). https://eprint.iacr.org/2018/553

12. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2_6

13. Langley, A.: Source code of Pond (2016). https://github.com/agl/pond
14. Marlinspike, M., Perrin, T.: The double ratchet algorithm (2016). https://

whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
15. Off-the-Record Messaging (2016). http://otr.cypherpunks.ca
16. Poettering, B., Rösler, P.: Asynchronous ratcheted key exchange. Cryptology

ePrint Archive, Report 2018/296 (2018). https://eprint.iacr.org/2018/296
17. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:

Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_1

18. Rescorla, E., Salter, M.: Extended random values for TLS (2009). https://tools.
ietf.org/html/draft-rescorla-tls-extended-random-02

19. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: results from the 2008 Debian OpenSSL vulnerability. In: Proceedings of
the 9th ACM SIGCOMM Internet Measurement Conference, IMC 2009, Chicago,
Illinois, USA, 4–6 November 2009, pp. 15–27 (2009)

https://doi.org/10.1007/978-3-319-63697-9_21
https://eprint.iacr.org/2019/965
https://eprint.iacr.org/2019/965
https://eprint.iacr.org/2018/889
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://eprint.iacr.org/2018/553
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://github.com/agl/pond
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
http://otr.cypherpunks.ca
https://eprint.iacr.org/2018/296
https://doi.org/10.1007/978-3-319-96884-1_1
https://tools.ietf.org/html/draft-rescorla-tls-extended-random-02
https://tools.ietf.org/html/draft-rescorla-tls-extended-random-02

Zero Knowledge

Cryptography from One-Way
Communication: On Completeness

of Finite Channels

Shweta Agrawal1, Yuval Ishai2, Eyal Kushilevitz2, Varun Narayanan3(B),
Manoj Prabhakaran4, Vinod Prabhakaran3, and Alon Rosen5

1 Indian Institute of Technology Madras, Chennai, India
shweta@iitm.ac.in

2 Technion, Haifa, Israel
{yuvali,eyalk}@cs.technion.ac.il

3 Tata Institute of Fundamental Research, Mumbai, India
varunnkv@gmail.com, vinodmp@tifr.res.in

4 Indian Institute of Technology Bombay, Mumbai, India
mp@cse.iitb.ac.in

5 IDC Herzliya, Herzliya, Israel
alon.rosen@idc.ac.il

Abstract. Garg et al. (Crypto 2015) initiated the study of crypto-
graphic protocols over noisy channels in the non-interactive setting,
namely when only one party speaks. A major question left open by
this work is the completeness of finite channels, whose input and output
alphabets do not grow with the desired level of security. In this work, we
address this question by obtaining the following results:
1. Completeness of Bit-ROT with Inverse Polynomial Error.

We show that bit-ROT (i.e., Randomized Oblivious Transfer chan-
nel, where each of the two messages is a single bit) can be used to
realize general randomized functionalities with inverse polynomial
error. Towards this, we provide a construction of string-ROT from
bit-ROT with inverse polynomial error.

2. No Finite Channel is Complete with Negligible Error. To
complement the above, we show that no finite channel can be used
to realize string-ROT with negligible error, implying that the inverse
polynomial error in the completeness of bit-ROT is inherent. This
holds even with semi-honest parties and for computational security,
and is contrasted with the (negligible-error) completeness of string-
ROT shown by Garg et al.

3. Characterization of Finite Channels Enabling Zero-
Knowledge Proofs. An important instance of secure computation
is zero-knowledge proofs. Noisy channels can potentially be used to
realize truly non-interactive zero-knowledge proofs, without trusted
common randomness, and with non-transferability and deniability
features that cannot be realized in the plain model. Garg et al. obtain
such zero-knowledge proofs from the binary erasure channel (BEC)

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 653–685, 2020.
https://doi.org/10.1007/978-3-030-64840-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_22

654 S. Agrawal et al.

and the binary symmetric channel (BSC). We complete the picture
by showing that in fact any non-trivial channel suffices.

1 Introduction

A noisy communication channel is a probabilistic function C : X → Y, map-
ping a sent symbol x to a received symbol y. Standard examples include the
binary symmetric channel (BSC), which flips a bit x ∈ {0, 1} with probabil-
ity 0 < p < 1/2, and the binary erasure channel (BEC), which erases x with
probability p. A fundamental question in information-theoretic cryptography is
– what cryptographic protocols can be constructed from noisy communication
channels? This question has been studied extensively, with respect to various
cryptographic tasks and a variety of channels, and has uncovered a rich landscape
of structural relationships. Starting with the pioneering work of Wyner [30] who
showed that the wiretap channel can be used for secure communication, many
works studied the usefulness of noisy channels for additional cryptographic tasks
(e.g., [5,6,14,23,25,28,29]). This culminated in a complete characterization of
the channels on which oblivious transfer, and hence general secure two-party
computation, can be based [12,13].

Most cryptographic constructions from noisy channels crucially require inter-
action. While this is not a barrier for some applications, there are several use-
ful settings which are inherently non-interactive. A natural question that arises
is what cryptographic tasks can be realized using only one-way noisy chan-
nels, namely by protocols over noisy channels in which only one party speaks.
The question of realizing secure communication in this setting was the topic of
Wyner’s work, and is a central theme in the big body of work on “physical layer
security” [8,24].

A clean way to capture tasks that can potentially be realized using one-way
noisy communication is via a sender-receiver functionality, which takes an input
from a sender S and delivers a (possibly) randomized output to a receiver R. In
more detail, such a sender-receiver functionality is a deterministic or randomized
mapping f : A → B that takes an input a ∈ A from a sender S and delivers
an output b = f(a) to a receiver R. In the randomized case, the randomness is
internal to the functionality; neither S nor R learn it or can influence its choice.

Useful Instances. Several important cryptographic tasks can be captured as
sender-receiver functionalities. For instance, a foundational primitive in cryptog-
raphy is non-interactive zero-knowledge (NIZK) [9,15], which is typically con-
structed in the common random string (CRS) model. NIZK proofs can be cap-
tured in the sender-receiver framework by a deterministic function that takes an
NP-statement and a witness from the sender and outputs the statement along
with the output of the verification predicate to the receiver. As noted by Garg
et al. [17], secure implementation of this function over a one-way channel pro-
vides the first truly non-interactive solution to zero knowledge proofs, where no
trusted common randomness is available to the parties. Moreover, this solution

Cryptography from One-Way Communication 655

can achieve useful properties of interactive zero-knowledge protocols such as non-
transferability and deniability, which are impossible to achieve in the standard
non-interactive setting. Another example from [17] is that of randomly generat-
ing “puzzles” without giving any of the parties an advantage in solving them.
For instance, the sender can transmit to a receiver a random Sudoku challenge,
or a random image of a one-way function, while the receiver is guaranteed that
the sender has no advantage in solving the puzzle and can only general a puzzle
of the level of difficulty prescribed by the randomized algorithm that gener-
ates it. A third example of a useful sender-receiver functionality is randomized
blind signatures, which can be used for applications such as e-cash [3,10,11].
Blind signatures are captured by a randomized function that takes a message
and a signing key from the sender and delivers a signature on some randomized
function of the message to the receiver (for instance by adding a random serial
number to a given dollar amount).1 Another use-case for such randomized blind
signatures is a non-interactive certified PKI generation, where an authority can
issue to a user signed public keys, while only the users learn the correspond-
ing secret keys. Applications notwithstanding, understanding the cryptographic
power of noisy channels with one-way communication is a fundamental question
from the theoretical standpoint.

Prior Work. A large body of theoretical and applied work studied how to
leverage one-way communication to construct secure message transmission (see,
e.g., [4,24] and references therein). More recently, Garg et al. [17] broadened
the scope of this study to include more general cryptographic functionalities.
Notably, they showed that one-way communication over the standard BEC
or BSC channels suffices for realizing NIZK, or equivalently any determinis-
tic sender-receiver functionality. Moreover, for general (possibly randomized)
functionalities, a randomized string-OT channel or (string-ROT for short) is
complete. A string-ROT channel takes a pair of random �-bit strings from the
sender and delivers only one of them, chosen at random by the channel, to the
receiver. This completeness result was extended in [17] to other channels. How-
ever, in all of these general completeness results, the input and alphabet size of
the channel grow (super-polynomially) with both the desired level of security
and the complexity of the functionality being realized. On the negative side, it
was shown in [17] that standard BEC/BSC channels are not complete. A major
question that was left open is the existence of a complete finite channel, whose
input and output alphabets do not grow with the security parameter or the
complexity of the functionality. Furthermore, for the special case of determinis-
tic functionalities (equivalently, NIZK), it was not known whether completeness
holds for all non-trivial finite channels.

1 In more detail, the sender can generate an anonymous $100 bill by letting the input
be m = (Sender-name, 100) and the transmitted message be (m, id) for a random
identifier id picked by the functionality. Consider the scenario where multiple $100
bills are sent to different receivers. The id is needed to prevent double spending.
Anonymity comes from the fact that the sender doesn’t learn id, so it cannot asso-
ciate a particular $100 bill with the receiver to whom it was sent.

656 S. Agrawal et al.

Next, we describe our framework in a bit more detail, followed by a summary
of our results, which essentially settle the above mentioned questions.

Our Framework. Let C be a finite channel. We define a one-way secure com-
putation protocol (OWSC) for a functionality f over channel C as a randomized
encoder that maps the sender’s input a into a sequence x of channel inputs,
and a decoder that maps the sequence of receiver’s channel outputs y into an
output b. Given an error parameter ε, the protocol should satisfy the following
security requirements: (i) given the sender’s view, which consists of its input
a and the message x that it fed into the channel, the receiver’s output should
be distributed as f(a), and (ii) the view of the receiver, namely the message
y it received from the channel, can be simulated from f(a). Note that (i) cap-
tures receiver security against a corrupt sender as well as correctness, while (ii)
captures sender security against a corrupt receiver.

We will construct OWSC protocols for various functionalities over various
finite channels. Of particular interest to us is the randomized �-bit string-ROT
channel discussed above, which we denote by C�

ROT, and its finite instance C1
ROT

that we refer to as the bit-ROT channel.

1.1 Our Results

We are ready to state our results:

1. Completeness of Bit-ROT with Inverse Polynomial Error. We show
that bit-ROT is complete for randomized functionalities with inverse polyno-
mial simulation error. Towards this, we provide a construction of string-ROT
from bit-ROT with inverse polynomial error, and appeal to the complete-
ness of string-ROT. This is captured by the following (formal statement in
Theorem 7):

Theorem 1. (Informal) The bit-ROT channel (C1
ROT) is complete for one-way

secure computation, with inverse-polynomial error. This holds for both semi-
honest and malicious parties. The protocol establishing completeness can either
be efficient in the circuit size, in which case it is computationally secure using
any pseudorandom generator, or efficient in the branching program size, in which
case is it information-theoretically secure.

2. No Finite Channel is Complete with Negligible Error. To complement
the above positive result, we show that no finite channel is complete for
randomized functionalities with negligible error. This is contrasted with the
completeness of string-ROT discussed above. In more detail, we prove the
following theorem (formal statement in Theorem 9):

Theorem 2. (Informal): No finite channel is complete for one-way secure com-
putation, with negligible error, even with semi-honest parties and for compu-
tational security. More concretely, string-ROT cannot be implemented in this
setting.

Cryptography from One-Way Communication 657

3. Every Non-trivial Finite Channel is Complete for Zero-Knowledge.
As discussed above, a particularly compelling use case for one-way commu-
nication over noisy channels is truly non-interactive zero-knowledge proofs,
without a trusted common randomness setup and with desirable features such
as non-transferability and deniability. The results of Garg et al. [17] obtain
such NIZK proofs from the binary erasure channel (BEC) and the binary
symmetric channel (BSC). This raises the question whether all non-trivial
channels enable NIZK.
We show that this is indeed the case if we define a “trivial” channel to be one
that either does not enable communication at all, or is essentially equivalent
to a noiseless channel, when used by malicious senders. In more detail, we
prove the following theorem (see Sect. 5 for a formal statement):

Theorem 3. (Informal): Given a language L ∈ NP \ BPP, a one-way secure
computation protocol over channel C for zero-knowledge for L exists if and only
if C is non-trivial.

1.2 Our Techniques

In this section we provide an overview of our techniques.

Completeness of Bit-ROT with Inverse Polynomial Error. We show
that bit-ROT is complete for randomized functionalities with inverse polynomial
error. Towards this, we show, in Theorem 6, that (�-bit) string-ROT can be
realized with polynomially many invocations of bit-ROT channel with inverse-
polynomial error. The OWSC protocol is efficient in � and is secure even against
malicious adversaries.

In more detail, we use average case secret sharing, which is a weak version of
ramp secret sharing, where both the reconstruction and privacy conditions are
to be satisfied for a random set of r players and t players respectively, where
r and t are the reconstruction and privacy thresholds, respectively. Theorem 4
provides a construction of OWSC protocol for string-ROT using bit-ROT given
an average case secret sharing schemes (Avg-SSS) with sufficiently small gap
parameter. The analysis of this theorem crucially uses the anti-concentration
bound for Bernoulli sums for a small window around the mean. In Theorem 5,
we construct efficient Avg-SSS for N players in which the gap between r and t is
inverse polynomial in N and which have inverse polynomial privacy guarantee.
The scheme we construct and its analysis build on techniques for secret sharing
with binary shares that were recently introduced by Lin et al. [22] (for a different
goal). Our result on efficient realization of string-ROT from bit-ROT directly
follows from combining the above two results.

Impossibility of String-ROT from Finite Channel with Negligible
Error. Next, we show that string-ROT cannot be constructed from bit-ROT
with negligible error. We establish our result in two steps. Our first negative
result in Theorem 8 shows that string-ROT cannot be realized with polynomi-
ally many invocations of bit-ROT channel while guaranteeing negligible error.

658 S. Agrawal et al.

Our proof is inspired by [17]. In more detail, we use an isoperimetric inequality
for Boolean hypercubes (Harper’s theorem), to show the existence of strategies
that can efficiently guess both input strings in any implementation of string-
ROT with polynomially bounded number of bit-ROT invocations, which is a
violation of the ROT security. The machine we describe for guessing the two
input strings is computationally efficient, hence our impossibility result applies
to computationally bounded semi-honest adversaries.

We then extend this result in Theorem 9 to show that no finite channel
can be used to realize string-ROT using polynomially many invocations of the
channel while guaranteeing negligible error. To show this, we model a channel
as a function from the input of the channel and its internal randomness to the
output of the channel. We then proceed to prove the impossibility in a manner
similar to the impossibility for the bit-ROT channel.

Impossibility of Completeness of Finite Channels with Negligible
Error. Theorem 9 shows that string-ROT cannot be realized over any finite
channel efficiently (in terms of the number of channel invocations) and with
negligible error, even in the computational setting. Since string-ROT is a simple
functionality which has a small description in many functional representation
classes, we obtain an impossibility result that strikes off the possibility of a com-
plete channel with negligible error for most function representation classes of
interest.

Characterization of Finite Channels Enabling Zero-Knowledge Proofs.
It is a fundamental question to understand which channels enable ZK proofs.
We give a complete characterization of all finite channels over which a OWSC
protocol for zero-knowledge (proof of knowledge) functionality is possible. In
fact, we show that the only channels which do not enable zero-knowledge proofs
are “trivial” channels (a proof over a trivial channel translates to a proof over
a plain one-way communication channel which is possible only for languages in
BPP). Over any other finite channel, we build a statistical zero-knowledge proof
of knowledge, which is unconditionally secure. Our result generalizes a result
of [17], which gave OWSC zero-knowledge proof protocols over Binary Erasure
Channels (BEC) and Binary Symmetric Channels (BSC) only. Extending this
result to all non-trivial channels requires new ideas, exploiting a geometric view
of channels.

2 Preliminaries

To begin, we define some notation that we will use throughout the paper.

Notation 1. A member of a finite set X is represented by x and sampling an
independent uniform sample from X is denoted by x

$← X . A vector in X n is
represented by x ∈ X n, whose coordinate i ∈ [n] is represented by either xi or
x(i).

Cryptography from One-Way Communication 659

For a vector x ∈ X n and a set A ⊆ [n], the restriction of x to the set A,
represented by x|A is the vector with all the coordinates outside of A replaced
by an erasure symbol ⊥ which is not a member of X . That is, x|A (i) = x(i) if
i ∈ A and x|A (i) = ⊥ otherwise. Finally, Δ (μ0, μ1) denotes the total variation
distance between distributions μ0 and μ1.

2.1 Sender-Receiver Functionalities and Channels

This work addresses secure computation tasks that are made possible by one-
way communication over a noisy channel. Such tasks can be captured by sender-
receiver functionalities, that take an input from a sender S and deliver a (possi-
bly) randomized output to a receiver R. More precisely, a sender-receiver func-
tionality is a randomized mapping f : A → B that takes an input a ∈ A from
a sender S and delivers an output b = f(a) to a receiver R. We will sometimes
refer to f simply as a function and write f(a; ρ) when we want to make the
internal randomness of f explicit.

In order to realize f , we assume that S and R are given parallel access to
a channel C : X → Y, which is a sender-receiver functionality that is typically
much simpler than the target function f . We will typically view C as being finite
whereas f will come from an infinite class of functions. We will be interested in
the number of invocations of C required for realizing f with a given error ε (if
possible at all).

We will be particularly interested in the following channel.

Definition 1 (ROT channel). The �-bit randomized string oblivious transfer
channel (or �-bit string-ROT for short), denoted by C�

ROT, takes from S a pair
of strings a0,a1 ∈ {0, 1}�, and delivers to R

C�
ROT(a0,a1) =

{
(a0,⊥) w.p. 1

2 ,

(⊥,a1) w.p. 1
2 .

Finally, it is sometimes convenient to assume that a sender-receiver func-
tionality f can additionally take a public input that is known to both parties.
For instance, in a zero-knowledge proof such a public input can include the NP-
statement, or in blind signatures it can include the receiver’s public verification
key (allowing f to check the validity of the secret key). All of our definitions and
results can be easily extended to this more general setting.

2.2 Secure Computation with One-Way Communication

A secure protocol for f : A → B over a channel C is formalized via the standard
definitional framework of reductions in secure computation. Our default setting
shall be that of information-theoretic security against semi-honest parties, with
extensions to the setting of computational security and malicious parties. All our
negative results in fact hold for the weakest setting of computational security

660 S. Agrawal et al.

against semi-honest parties. All our positive results hold for (either information-
theoretic or computational) security against malicious parties.

OWSC Protocols. A one-way secure computation protocol for f over C spec-
ifies a randomized encoder that maps the sender’s input a into a sequence of
channel inputs x, and a decoder that maps the receiver’s channel outputs y
into an output b. Given an error parameter ε, the protocol should satisfy the
following security requirements: (i) given the sender’s view, which consists of an
input a and the message x that it fed into the channel, the receiver’s output
should be distributed as f(a), and (ii) the view of the receiver, namely the mes-
sage y it received from the channel, can be simulated from f(a). Note that (i)
captures receiver security against a corrupt sender as well as correctness, while
(ii) captures sender security against a corrupt receiver. We formalize this below.

Definition 2 (One-way secure computation). Given a randomized func-
tion f : A → B and a channel C : X → Y, a pair of randomized functions 〈S,R〉,
where S : A → X N and R : YN → B is said to be an (N, ε) OWSC protocol for
f over C if there exists a simulator SimR : B → YN , such that for all a ∈ A,

Δ ((S(a), f(a)) , (S(a),R(C(S(a)))) ≤ ε

Δ (SimR(f(a)), C(S(a))) ≤ ε

OWSC for Malicious Parties. In this case, our security requirement coincides
with UC security, but with simplifications implied by the communication model.
Specifically, since a corrupt receiver has no input to the functionality nor any
message in the protocol, UC security against a malicious receiver is the same as
in the semi-honest setting. UC security against a malicious sender, on the other
hand, requires that from any arbitrary strategy of the sender, a simulator is able
to extract a valid input.

Formally, an OWSC protocol for f over C is secure against malicious parties
if, in addition to the requirements in Definition 2, there exists a randomized
simulator SimS : X N → A such that for every x ∈ X N ,

Δ (f(SimS(x)),R(C(x))) ≤ ε.

In our (positive) results in this setting, we shall require the simulator to be
computationally efficient as well.

OWSC with Computational Security. We can naturally relax the above
definition of (statistical) (N, ε) OWSC to computational (N,T, ε) OWSC, for
a distinguisher size bound T , by replacing each statistical distance bound
Δ (A,B) ≤ ε by the condition that for all circuits C of size T , |Pr(C(A) =
1) − Pr(C(B) = 1)| ≤ ε.

Complete Channels for OWSC. So far, we considered OWSC protocols for
a concrete function f and with a concrete level of security ε. However, in a
cryptographic context, one is typically interested in a single “universal” protocol

Cryptography from One-Way Communication 661

that takes a description f̂ of a function f and a security parameter λ as inputs
and runs in polynomial time in its input length.

To meaningfully specify the goal of such a universal OWSC protocol, we need
to fix a representation class F that defines an association between a bit-string
f̂ and the (deterministic or randomized) function f it represents. The repre-
sentation classes F we will be interested in include circuits (capturing general
polynomial-time computations) and branching programs (capturing logarithmic-
space computations and logarithmic-depth circuits). The string-ROT channel
C�
ROT can also be viewed as a degenerate function class F in which f̂ = 1�

specifies the string length.
If a channel C enables a universal protocol for F , we say that C is

OWSC-complete for F . We will distinguish between completeness with inverse-
polynomial error and completeness with negligible error, depending on how fast
the error vanishes with λ. We will also distinguish between completeness with
statistical and computational security. We formalize this notion of completeness
below.

Definition 3 (OWSC-complete channel). Let F be a function representa-
tion class and C be a channel. We say that C is OWSC-complete for evaluating
F with (statistical) inverse-polynomial error if for every positive integer c there
is a polynomial-time protocol Π = 〈S,R〉 that, on common input (1λ, f̂), realizes
(N, ε) OWSC of f over C, where ε = O(1

λc) and N = poly(λ, |f̂ |). We say that
C is complete with negligible error if there is a single Π as above such that ε is
negligible in λ. We similarly define the computational notions of completeness
by requiring the above to hold with (N,T, ε) instead of (N, ε), for an arbitrary
polynomial T = T (λ).

As discussed above, useful instances of F include circuits, branching programs,
and string-ROT. We will assume statistical security against semi-honest parties
by default, and will explicitly indicate when security is computational or against
malicious parties.

2.3 OWSC Zero-Knowledge Proof of Knowledge

For a language L in NP, let RL denote a polynomial time computable relation
such that x ∈ L if and only if for some w of length polynomial in the length of
x, we have RL(x,w) = 1. In the classic problem of zero-knowledge proof, given a
common input x ∈ L, a polynomial time prover who has access to a w such that
RL(x,w) = 1 wants to convince a polynomial time verifier that x ∈ L, without
revealing any additional information about w. On the other hand, if x
∈ L, even
a computationally unbounded prover should not be able to make the verifier
accept the proof, except with negligible probability.

While classically, the prover and the verifier are allowed to interact with each
other, or in the case of Non-Interactive Zero-Knowledge (NIZK), are given a com-
mon random string generated by a trusted third party, in a ZK protocol in the
OWSC model, a single string is transmitted from the prover to the receiver, over

662 S. Agrawal et al.

a channel C, with no other trusted set up. We shall require information-theoretic
security, with both soundness and zero-knowledge properties defined via simula-
tion. As simulation-based soundness corresponds to a proof of knowledge (PoK),
we shall refer to this primitive as OWSC/C ZK-PoK.2

Definition 4 (OWSC Zero-knowledge Proof of Knowledge). Given a
channel C, a pair of PPT algorithms (PZK ,VZK) is a OWSC/C zero-knowledge
proof of knowledge (ZK-PoK) for an NP language L with an associated relation
RL if the following hold:
Completeness. There is a negligible function negl, such that ∀x ∈ L and w
such that RL(x,w) = 1,

Pr
[
VZK(1λ, x, C(PZK(1λ, x, w)))
= 1

]
= negl(λ)

(where the probability is over the randomness of PZK and VZK and that of the
channel).
Soundness. There exists a probabilistic polynomial time (PPT) extractor E
such that, for all x and all collection of strings zλ (collection indexed by λ)

RL

(
x,E(1λ, x, zλ)

)
= 0 ⇒ Pr

[
VZK(1λ, x, C(zλ)) = 1

]
= negl(λ).

Zero-Knowledge. There exists a PPT simulator S such that, for all x ∈ L,
and w such that RL(x,w) = 1,

C(PZK(1λ, x, w)) ≈negl(λ) S(1λ, x),

where ≈ represents computational indistinguishability.

In our construction we use the notion of oblivious zero-knowledge PCP, which
was explicitly defined in [17]. In the problem of oblivious zero-knowledge PCP, a
prover with access to x ∈ L and w such that RL(x,w) = 1 would like to publish a
proof. The verifier’s algorithm probes a constant number of random locations in
the published proof and decides to accept or reject while guaranteeing correctness
and soundness. The notion of oblivious zero-knowledge requires that the PCP is
zero-knowledge when each bit in the proof is erased with finite probability.

Definition 5 (Oblivious ZK-PCP). [17, Definition 1] (PoZK ,VoZK) is a
(c, ν)-oblivious ZK-PCP with knowledge soundness κ for an NP language L if,
when λ is the security parameter, PoZK ,VoZK are probabilistic algorithms that
run in polynomial time in λ and the length of the input x and satisfy the following
conditions.
Completeness. ∀(x,w) ∈ RL when π

$← PoZK(x,w, λ), Pr(VoZK(x, π∗)) = 1
for all choices of π∗ obtained by erasing arbitrary locations of π.
2 Indeed, an OWSC/C ZK-PoK protocol is equivalent to an information-theoretic UC-

secure protocol for the ZK functionality in the C-hybrid model, with an additional
requirement that the protocol involves a single invocation of C and no other com-
munication.

Cryptography from One-Way Communication 663

c-Soundness. There exists a PPT extractor E such that, for all x and purported
proofs π′, if (x,E(x, π′)) /∈ RL then

Pr(VoZK(x, g(π′)) = 0) ≥ κ,

where the probability is taken over the random choices of g, where g is any
function that replaces all but c locations of π′ with ⊥ (and leaves the other
locations untouched).

ν-Zero-Knowledge. There exists a PPT simulator S such that, for all x ∈ L,
the following distributions are statistically indistinguishable:

– Sample π
$← PoZK(λ, x,w), replace each bit in π with ⊥ with probability 1−ν

and output the resultant value.
– S(x, λ).

As described in [17], the following result is implied by a construction in [2]:

Proposition 1 [17, Proposition 1]. For any constant ν ∈ (0, 1), there exists a
(3, ν)-oblivious ZK-PCP with a knowledge soundness κ = 1 − 1

p(λ) , where p(λ)
is some polynomial in λ.

3 String-ROT from Bit-ROT with Inverse Polynomial
Error

In this section, we construct string-ROT from bit-ROT with inverse polynomial
error, and apply this to show that bit-ROT is complete for general sender-receiver
functionalities with inverse-polynomial error. Since the intuition was discussed
in Sect. 1, we proceed directly with the construction.

3.1 Average Case Secret Sharing

An N player average case secret sharing scheme, for �-bit secrets with reconstruc-
tion threshold r and privacy threshold t, consists of a sharing algorithm Share
and a reconstruction algorithm Recst which guarantees that a random subset
of t players learns nothing about the secret and that a random set of r players
can reconstruct the secret with high probability. This is formalized by the next
definition, where the following notation will be useful.

Notation 2. For integers 1 ≤ s ≤ N , we use the following families of subsets
of [N]: As = {A ⊆ [N] : |A| = s}, A≥s = {A ⊆ [N] : |A| ≥ s}, and A≤s = {A ⊆
[N] : |A| ≤ s}.
Definition 6. A (�,N, t, r, ε) average-case secret-sharing scheme (Avg-SSS, for
short) is a pair of randomized algorithms 〈Share,Recst〉 such that,

Share : {0, 1}� × R → {0, 1}N and Recst : {0, 1,⊥}N → {0, 1}�,

664 S. Agrawal et al.

where R is the private randomness, that satisfy the following properties.

Reconstruction Property: Recst must be able to reconstruct any secret from a
uniformly random set of r shares produced by Share, with at least 1−ε probability.
Formally, for all s ∈ {0, 1}�,

Pr(Recst(Share(s)|A) = s) ≥ 1 − ε,

where the probability is over the randomness used by Share and the choice of
A

$← Ar.

Privacy Property: t random shares of every pair of secrets are ε-close to each
other in statistical distance. Formally, for all s, s′ ∈ {0, 1}�, and A

$← At,

Δ ((Share(s)|A) , (Share(s′)|A)) ≤ ε.

We will typically be interested in (�,N, t, r, ε)-Avg-SSS where �, t, r, ε are func-
tions of N and require Share,Recst to be probabilistic algorithms with poly(N)
complexity.

3.2 String-ROT from Bit-ROT and Average Case Secret Sharing

In this section, we show that an average case secret sharing scheme can be used
to reduce string ROT to bit ROT. The following theorem demonstrates such a
reduction.

Theorem 4. For δ ∈ (0, 1
2) and for sufficiently large N , given a (�,N, t, r, ε)-

Avg-SSS, with t =
⌊

N
2

⌋ − N δ, r =
⌈

N
2

⌉
+ N δ and ε = N δ− 1

2 , there exists a
secure (even against malicious parties) (N, 4N δ− 1

2) OWSC protocol for C�
ROT

over C1
ROT. If the Avg-SSS scheme is efficient in N , then so is our protocol.

Proof: Let 〈Share,Recst〉 be an (�,N, t, r, ε)-Avg-SSS. The protocol that realizes
C�
ROT in the OWSC/C1

ROT model proceeds as follows.
Let (a0,a1) ∈ {0, 1}� × {0, 1}� be the input to the C�

ROT. Sender computes
x0 = Share(a0) and x1 = Share(a1). For i = 1, . . . , N , sender sends (x0(i),x1(i))
in the i-th invocation of the C1

ROT channel.
The receiver gets x0|A , x1|[N]\A, where A is a uniformly random subset of

[N]. If |A| ≥ r, it uniformly samples A0 ⊆ A such that |A0| = r and outputs
(Recst(x0|A0

),⊥), and if |[N] \ A| ≥ r, it uniformly samples A1 ⊆ [N] \ A
such that |A1| = r and outputs (⊥,Recst(x1|A1

)). If |A| ∈ (t, r), R samples

a0,a1
$← {0, 1}� and i

$← {0, 1} and outputs (a0,⊥) if i = 0 and (⊥,a1) if i = 1.

Complexity. The complexity of this reduction is N . If Avg-SSS is efficient, the
protocol is efficient as well.

Security. We first show that the receiver’s output is consistent with probability
at least 1−3N δ− 1

2 . That is, if the input to the sender is (a0,a1), with probability
1−3N δ− 1

2 , the receiver outputs either (⊥,a1) or (a0,⊥). To show this, we bound
the probability of the event |A| ∈ (t, r) using an anti-concentration bound on
Bernoulli sums and then argue that conditioned on |A| /∈ (t, r), the receiver’s
output is consistent with probability ≥ 1 − ε.

Cryptography from One-Way Communication 665

Claim 1. Let Xi be i.i.d Bernoulli(12) random variables for i ∈ [N]. Then, for
all δ ∈ (0, 1/2),

Pr

⎛
⎝

∣∣∣∣∣∣
∑

i∈[N]

Xi −
⌈

N

2

⌉∣∣∣∣∣∣ < N δ

⎞
⎠ ≤ 2N δ− 1

2 .

Proof: This follows from the fact that,

∀k ∈ [N], Pr

⎛
⎝ ∑

i∈[N]

Xi = k

⎞
⎠ ≤ Pr

⎛
⎝ ∑

i∈[N]

Xi = �N/2�
⎞
⎠ ≤ N−1/2.

��
Denote the event |A| /∈ (t, r) by E. Since r − t = 2N δ, Pr(E) ≥ 1 − 2N δ− 1

2

by the above claim. Conditioned on |A| ≥ r, A is uniformly distributed in
A≥r. Hence, A0 is uniformly distributed in Ar. The receiver is correct if
Recst(Share(a0)|A0

) = a0. By the reconstruction property of 〈Share,Recst〉, for
all a0 ∈ {0, 1}�, we have

Pr(Recst(Share(a0)|A0
) = a0) ≥ 1 − ε = 1 − N δ− 1

2 ,

where the probability is over the randomness used by Share and A0
$← Ar. Similar

bound applies for Pr(Recst(Share(a1)|A1
) conditioned on the event |A| ≤ t. From

these observations, the probability that the receiver outputs (a0,⊥) or (⊥,a1)
when the sender’s input is (a0,a1) can be lower bounded as,

Pr(E) · Pr(Receiver outputs (a0, ⊥) or (⊥,a1)|E) ≥ (1 − 2Nδ− 1
2)(1 − Nδ− 1

2) ≥ 1 − 3Nδ− 1
2 .

Furthermore, when |A| /∈ (t, r), the events |A| ≥ r and N −|A| ≥ r are equiprob-
able. That is, the index on which the receiver outputs ⊥ is decided entirely by
the randomness in the channel. Hence, for all a0,a1 ∈ {0, 1}�,

Δ
((

a0,a1,S(a0,a1),R(C1
ROT(S(a0,a1)))

)
,
(
a0,a1,S(a0,a1), C�

ROT(a0,a1)
))

≤ 3Nδ− 1
2 .

We now analyze security against the receiver. We claim that conditioned on the
event |A| ≤ t, for any a0,a

′
0,a1 ∈ {0, 1}�, the view of the receiver when the

input to the sender is (a0,a1) is sufficiently close to its view when the sender’s
input is (a′

0,a1). Note that conditioned on |A| ≤ t, |A| is a uniformly random
set of size at most t. Our claim is that for all a0,a

′
0 ∈ {0, 1}� and A

$← A≤t,

Δ (Share(a0)|A , Share(a′
0)|A) ≤ ε = N δ− 1

2 .

To show this, note that the output distributions of the following two experiments
are the same for every a ∈ {0, 1}�:

666 S. Agrawal et al.

(1) Choose 0 ≤ k ≤ t with probability Pr
S

$←A≤t

(|S| = k). When A
$← At, let B

be a uniformly random subset of A of size k. Output Share(a)|B .
(2) A

$← A≤t, output Share(a)|A.
Hence, the distribution Share(a0)|A where A

$← A≤t can be generated by
post-processing the distribution Share(a0)|A where A

$← At. The claim now
follows from the privacy guarantee of Avg-SSS and the fact that statistical
distance only decreases on post-processing.

On input (⊥,a1) the simulator SimR proceeds as follows: Sample a
$← {0, 1}�

and run the algorithm of the sender with input (a,a1), to generate (x0,x1). Sam-
ple A

$← A≤t and output (x0|A , x1|[N]\A). The case for (a0,⊥) is symmetric.
That SimR satisfies sender’s privacy follows from the following observations:

(a) The event |A| /∈ (t, r) happens with probability at least 1 − 2N δ− 1
2 . (b) a0

(resp. a1) is decoded correctly with probability 1 − N δ− 1
2 when |A| ≥ r (resp.

|A| ≤ t). Furthermore, conditioned on both these events, the receiver’s view for
input (a0,a1) and for input (a′

0,a1) are at most N δ− 1
2 far in statistical distance,

for all a0,a
′
0 ∈ {0, 1}�. Hence,

Δ
(
SimR(C�

ROT(a0,a1)), C1
ROT(S(a0,a1))

) ≤ 4N δ− 1
2

UC-Security Against Malicious Adversaries. For any x ∈ {0, 1}N , sim-
ulator SimS works as follows. Sample A≥r

$← A≥r and A≤t
$← A≤t (this

can be done efficiently by rejection sampling). Let (b0,⊥) = R(x|A≥r
) and

(⊥, b1) = R(x|A≤t
). Sample A

$← [N], if |A| ∈ (t, r), output (s0, s1), where

s0, s1
$← {0, 1}�, else output (b0, b1).

We claim that distribution C1
ROT(SimS(x)) is identical to the output distribu-

tion of the receiver when a malicious sender sends x. In the event that |A| ∈ (t, r),
the output of the receiver is distributed as if the input to the string-ROT were
a pair of random strings. In the events A ∈ A≤t and A ∈ A≥r, R outputs
according to a random erasure from A≤t and A≥r respectively. This is indeed
the distribution generated by the simulator and so this proves the theorem. ��
Remark 1. The OWSC protocol is said to be Las-Vegas if it either aborts after
returning ⊥ or is correct conditioned on not aborting, i.e., outputs (a0,⊥) or
(⊥,a1) with equal probability. Suppose the Avg-SSS is Las-Vegas in the following
sense. For every A ∈ Ar, Recst either reconstructs the secret correctly or aborts
after returning ⊥. We can tweak the above OWSC protocol to output ⊥ whenever
|A| ∈ (t, r) and to return whatever the Recst outputs when |A| ≥ r makes the
OWSC protocol also Las-Vegas. This guarantees that in Theorem 4, if Avg-SSS
is Las-Vegas, then OWSC protocol is also Las-Vegas. In the next section, we will
construct an Avg-SSS scheme which is Las-Vegas.

3.3 Construction of Average Case Secret Sharing

In this section, we construct an average case secret sharing scheme. Our con-
struction is similar to the construction of constant rate secret sharing schemes

Cryptography from One-Way Communication 667

in [22]. The only difference is that the reconstruction and privacy properties
are with respect to random corruptions, hence we are able to use randomized
erasure correcting codes with better error parameters. Before we describe the
construction, we provide the following definitions.

Definition 7. A function Ext : {0, 1}d × {0, 1}n → {0, 1}� is a (k, ε) strong
seeded extractor if for every random variable X, with alphabet {0, 1}n and min-
entropy k, when z

$← {0, 1}d and r
$← {0, 1}�,

Δ ((Ext(z,X),z), (r,z)) ≤ ε.

A randomized map Ext−1 is an inverter map of Ext if it maps z ∈ {0, 1}d, s ∈
{0, 1}� to a sample from the uniform distribution over {0, 1}n, i.e. Un, subject
to (Ext(z, Un) = s).

The following lemma describes an improvement of Trevisan’s extractor [27]
due to Raz et al. [26]. The statement itself is from [22].

Lemma 1 [22, Lemma 4]. There is an explicit linear (k, ε) strong seeded extrac-
tor Ext : {0, 1}d × {0, 1}n → {0, 1}� with d = O(log3 n/ε) and � = k − O(d).

The other component in our construction is an erasure correcting code. Since
Avg-SSS allows for shared randomness between the sharing algorithm Share and
the reconstruction algorithm Recst, we could use randomized erasure correcting
codes.

Definition 8. An (n, k, r, ε)-linear erasure correcting scheme (Enc,Dec) consists
of a linear encoder Enc : {0, 1}k → {0, 1}n and a decoder Dec : {0, 1}n → {0, 1}k

such that, for all x ∈ {0, 1}k,

Pr
A

$←Ar

(Dec(Enc(x)|A)
= x) ≤ ε.

Lemma 2. For all k ≤ r ≤ n, there exist efficient (n, k, r, ε)-linear erasure
correcting schemes with ε = 2k−r.

A proof of the lemma is provided in the full version [1], where we will also argue
that the erasure correcting code we construct is Las-Vegas i.e., the decoder either
aborts or correctly decodes the message. It can be verified that the Avg-SSS
scheme we construct is Las-Vegas whenever the erasure correcting scheme is
Las-Vegas.

Theorem 5. For parameters t < n < n+ d < r < N and �, ε, let Ext : {0, 1}d ×
{0, 1}n → {0, 1}� be a linear (n − t, ε) strong seeded extractor with inverter map
Ext−1. Let (Enc,Dec) be a (N,n + d, r, ε)-randomized linear erasure correcting
code. Then, 〈Share,Recst〉, described below, is a (�,N, t, r, 8ε)-Avg-SSS:

Share(s) = Enc(z||Ext−1(z, s)),where z
$← {0, 1}d,

Recst(v|A) = Ext(z||x),where z||x = Dec(v|A)

where s ∈ {0, 1}� and A ⊂ [N], when (·||·) is the concatenation operator.

668 S. Agrawal et al.

Proof: We show that the scheme satisfies the reconstruction and privacy prop-
erties.
Reconstruction. By the performance guarantee of the error correcting code,
for any v ∈ {0, 1}n+d,

Pr
A

$←Ar

(Dec(Enc(v)|A) = v) ≥ 1 − ε.

Hence, Recst(v|A) = s, for a random A, with probability 1 − ε.

Privacy. We use the following result from [22]:

Lemma 3 [22, Lemma 13]. Let Ext : {0, 1}d × {0, 1}n → {0, 1}� be a linear
(k, ε) strong extractor. Let fA : {0, 1}n+d → {0, 1}t be an affine function with
t ≤ n − k. For any s, s′ ∈ {0, 1}�, when (Z,X) = (Ud, Un)|(Ext(Ud, Un) = s)
and (Z ′,X ′) = (Ud, Un)|(Ext(Ud, Un) = s′), we have

Δ (fA(Z,X), fA(Z ′,X ′)) ≤ 8ε.

Enc is a linear function and for any A ⊆ [N] the restriction operator (·)|A is a
projection. Hence, for any s ∈ {0, 1}� and A ⊆ [N] such that |A| = t, Share(s)|A
is an affine map with range {0, 1}t applied to (Ud, Un)|(Ext(Ud, Un) = s). Ext
used in the theorem is a (n − t, ε) extractor, hence the privacy follows directly
from the above lemma. ��

For any N and δ ∈ (0, 1/2), Lemma 1 guarantees an explicit linear (N δ, 1
8N)

strong seeded extractor Ext : {0, 1}d × {0, 1}N
2 → {0, 1}� with d = O(log3 N)

and � = N δ − O(log3 N). Furthermore, Lemma 2 guarantees a (N, k, r, ε)-linear
erasure correcting code for k = N

2 + d, r = N
2 + N δ and ε = 1

8N (in fact,
the lemma gives much better maximum error probability guarantees, but we
would not need this). Note that both Ext−1 and (Enc,Dec) are efficient. Using
this extractor and the erasure correcting scheme in Theorem 5, we obtain the
following corollary.

Corollary 1. For large enough N and δ ∈ (0, 1
2), when � = Nδ

2 , t = N
2 −N δ, r =

N
2 + N δ and ε = 1

N , there exists an efficient (�,N, t, r, ε)-Avg-SSS.

Given such a Avg-SSS, we appeal to the Theorem 4 to get the following
theorem.

Theorem 6. For δ ∈ (0, 1
2), there exists an efficient protocol that realizes (N, ε)

secure OWSC for C�
ROT over C1

ROT, with ε = O(N δ− 1
2), and � = Nδ

2 . In particular,
bit-ROT is complete for string-ROT with inverse-polynomial error.

3.4 General Completeness of Bit-ROT with Inverse Polynomial
Error

In the previous section, we showed that bit-ROT is complete for string-ROT
with inverse-polynomial error. Garg et al. [17] (Theorem 11) showed that string-
ROT is complete for arbitrary finite functionalities even for the case of malicious

Cryptography from One-Way Communication 669

parties, where the (statistical) error is negligible in the ROT string length �.
Combined with our reduction from string-ROT to bit-ROT, this gives a sim-
ilar completeness result for bit-ROT with inverse-polynomial error. Below we
extend this to functions represented by branching programs and circuits, where
in the latter case we need to settle for computational security using any (black-
box) pseudorandom generator. Thus, assuming the existence of a one-way func-
tion, bit-ROT is complete with inverse-polynomial computational error for any
polynomial-time computable functionality.

Theorem 7 (Bit-ROT is complete with inverse-polynomial error).
The bit-ROT channel C1

ROT is OWSC-complete, with inverse-polynomial error,
for evaluating circuits with computational security against malicious parties,
assuming a (black-box) pseudorandom generator. Moreover, replacing circuits
by branching programs, the same holds unconditionally with inverse-polynomial
statistical error.

Proof: We start by addressing the simpler case of semi-honest parties. In this
case, the computational variant follows by combining the reduction from string-
ROT to bit-ROT with Yao’s garbled circuit construction [31] in the following
way. Given a randomized sender-receiver functionality f(a; r), define a determin-
istic (two-way) functionality f ′ that takes (a, r1) from the sender and r2 from
the receiver, and outputs f(a; r1 ⊕ r2) to the receiver. Using Yao’s protocol to
securely evaluate f ′ with uniformly random choices of r1, r2, we get a computa-
tionally secure reduction of f to (chosen-input) string-OT where the receiver’s
inputs are random. Replacing the random choices of the receiver by the use
of a string-ROT channel, we get a computational OWSC protocol for f over
string-ROT using any (black-box) PRG. Finally, applying the reduction from
string-ROT to bit-ROT with a suitable choice of parameters, we get the inverse-
polynomial completeness result for circuits with semi-honest parties. A similar
result for branching programs with statistical (and unconditional) security can
be obtained using information-theoretic analogues of garbled circuits [16,18,20].

To obtain similar protocols for malicious parties, we appeal to a result of [19],
which obtains an analogue of Yao’s protocol with security against malicious
parties by only making a black-box use of a pseudorandom generator along with
parallel calls to a string-OT oracle.3 (This result too has an unconditional version
for the case of branching programs.) Unlike Yao’s protocol, the protocol from [19]
encodes the receiver’s input before feeding it into the parallel OTs. However, this
encoding has the property that a random receiver input is mapped to random
OT choice bits. Thus, the same reduction as before applies. ��

The unconditional part of Theorem 7 implies polynomial-time statistically-
secure protocols (with inverse-polynomial error) for the complexity classes NC1

and Logspace. This is a vast generalization of the positive result for C�
ROT. In

the result for general circuits, the use of a pseudorandom generator is inherent
given the current state of the art on constant-round secure computation.
3 Note that the conceptually simpler approach of applying NIZK proofs is not appli-

cable here, since in the setting of secure computation over noisy channels there is no
public transcript to which such a proof can apply.

670 S. Agrawal et al.

〈S,R〉(a0,a1)

1. (x0,x1) = S(a0,a1).
2. Sample s $← {0, 1}N and let (y0,y1) = fN

C1
ROT

((x0,x1), s).

3. (b0, b1) = R(y0,y1).
4. Output ((a0,a1), (x0,x1), (y0,y1), (b0, b1)).

Fig. 1. Execution of a protocol 〈S,R〉 for OWSC of C�
ROT over C1

ROT channel. Here a0,a1

are the �-bit input strings for C�
ROT, the N -bit strings x0,x1 are the inputs for the N

invocations of the C1
ROT channel, y0,y1 are the outputs of these N invocations, and

b0, b1 are the outputs of C�
ROT.

4 Impossibility of String-ROT from Bit-ROT with
Negligible Error

In this section we show that string-ROT with negligible error is impossible
to achieve from bit-ROT. Moreover, this holds even against a computationally
bounded semi-honest adversary.

Theorem 8. For sufficiently large N and � ≥ 2 log N , an (N, 1
N2) OWSC pro-

tocol for C�
ROT over C1

ROT is impossible even against semi-honest parties. In fact,
the same holds even if one settles for OWSC with computational security. That
is, there exists a polynomial T = T (N) such that there is no computational
(N,T, 1

N2) OWSC protocol for C�
ROT over C1

ROT.

Proof: C1
ROT may be equivalently described as a randomized function fC1

ROT
from

the input of the channel and the internal randomness of the channel to the
output of the channel. Formally, For (x0, x1) ∈ {0, 1} × {0, 1}, and s ∈ {0, 1},

fC1
ROT

((x0, x1), s) =

{
(x0,⊥) if s = 0,

(⊥, x1) if s = 1.

Observe that for all (x0, x1) ∈ {0, 1}×{0, 1}, the following distributions are iden-
tical: (1) C1

ROT(x0, x1) and (2) Sample s
$← {0, 1} and output fC1

ROT
((x0, x1), s).

Similarly, N invocations of C1
ROT are equivalent to the randomized function fN

C1
ROT

which on input (x0,x1) ∈ {0, 1}N × {0, 1}N , samples s
$← {0, 1}N and outputs

(y0,y1), where (y0(i),y1(i)) = fC1
ROT

((x0(i),x1(i)), s(i)).
Suppose 〈S,R〉 is a (N, 1

N2) OWSC protocol for C�
ROT over C1

ROT channel.
The joint distribution generated by this protocol for an input (pair of strings)
(a0,a1) ∈ {0, 1}� × {0, 1}� is described in Fig. 1. The receiver’s algorithm R
can be assumed to be deterministic w.l.o.g. since we may fix the randomness
in the decoder incurring only a constant hit to the ε = 1

N2 parameter. This is
because, for most values of (y0,y1), R should decode one of the indices with
low probability of error and should be almost entirely unsure of the other index.
Refer to the full version [1] for a formal proof.

Cryptography from One-Way Communication 671

M(y0,y1)
1. Compute (b0, b1) = R(y0,y1) (suppose (b0, b1) = (â0, ⊥) w.l.o.g).
2. Compute (ŷ0, ŷ1) as follows: Sample j

$← [N]. For i ∈ {0, 1} and k ∈ [N] \ {j},
set ŷi(k) = yi(k). If yi(j) = ⊥, sample ŷi(j)

$← {0, 1}, and if yi(j) �= ⊥ then
ŷi(j) = ⊥.

3. Compute (b̂0, b̂1) = R(ŷ0, ŷ1).
4. If (b̂0, b̂1) = (⊥, â1), then output (â0, â1); else, abort.

Fig. 2. Execution of the machine M

In the sequel, for brevity, we would represent the tuples (a0,a1), (x0,x1),
(y0,y1) and (b0, b1) also by a,x,y and b, respectively, whenever this does not
cause confusion. For (a0,a1) ∈ {0, 1}� × {0, 1}�, consider the joint distribution
〈S, R〉(a0,a1) described in Fig. 1. We now make some claims about this distri-
bution.

Lemma 4. There exists a set X ⊆ {0, 1}N × {0, 1}N such that Pr(x ∈ X) ≥
1 − 2

N and for all x ∈ X,

Pr(b0 = ⊥|x) ≥ 1
2

− 1
N

and Pr(b1 = ⊥|x) ≥ 1
2

− 1
N

.

The lemma is a consequence of computational 1
N2 -security against sender. Intu-

itively, the sender can guess the index of the message output by the receiver with
substantial probability if Pr(x ∈ X) < 1 − 2

N . Refer to the full version [1] for a
formal proof.

We now design a machine M that guesses both a0 and a1 from (y0,y1) with
substantial probability, contradicting sender’s privacy. On receiving y, machine
M uses the receiver’s strategy R(y) to decode one of the messages, say ai, where
i is either 1 or 0. It then computes a1−i by ‘guessing’ a random neighbor of y,
say ŷ and computing R(ŷ). We would show that with substantial probability,
R(ŷ) yields a1−i, breaking sender’s privacy property. M is formally described in
Fig. 2.

Analysis of M: We show that M outputs (a0,a1) with substantial probability.
We would analyze the output of the machine M for a fixed x ∈ X, where X
is as guaranteed by Lemma 4. Define function fx : {0, 1}N → {0, 1} such that
when y = fN

C1
ROT

(x, s), fx(s) = 1 if R(y) = (b0, b1) such that b0 = ⊥ and
0 otherwise. We next observe a property of fx which is a consequence of an
isoperimetric inequality on Boolean hypercubes (Harper’s Lemma). For binary
strings u,v ∈ {0, 1}n, denote the Hamming distance between them by |u − v|.
Lemma 5. For any function f : {0, 1}n → {0, 1}, if Pr

v
$←{0,1}n

(f(v) = i) ≥ 1
2 (1−

1√
n
) for each i ∈ {0, 1}, then Pr

v
$←{0,1}n

(∃ṽ : |v− ṽ| = 1 and f(ṽ) = 1−f(v)) ≥ Ω

(1√
n
).

672 S. Agrawal et al.

In words, the lemma says that if f is a 2-coloring of the Boolean hypercube,
where the colors are (almost) balanced, then a significant fraction of the nodes
of the hypercube, have a neighbor of a different color.

By Harper’s Lemma, Hamming balls have the smallest vertex boundary
amongst all sets of the same probability. W.l.o.g, the probability of f(v) = 1 is
at most 1

2 and at least 1
2 (1 − 1√

n
) and Pr

v
$←{0,1}n

(|v − 0| =
⌊

n
2

⌋
) ≥ 1

2
√

n
, where

0 is the all zero string. Hence the Hamming ball centered at 0 with probability
at most 1

2 and at least 1
2 (1 − 1√

n
) has strings with

⌊
n
2

⌋
or

⌊
n
2

⌋ − 1 number of 1’s
in its boundary. Consequently, the size of this boundary is Ω(1√

n
).

For any x ∈ {0, 1}N × {0, 1}N , the input to M is y = fN
C1
ROT

(x, s), where

s
$← {0, 1}N . The process of generating ŷ in M(y) is equivalent to the following

process. Compute (x̂0, x̂1) and ŝ as follows: Sample j ← [N], set ŝ(j) = 1−s(j)
and (x̂0(j), x̂1(j))

$← {0, 1} × {0, 1}. For all k
= j, set ŝ(k) = s(k) and
(x̂0(k), x̂1(k)) = (x0(k),x1(k)). Compute ŷ = fN

C1
ROT

(x̂, ŝ). We make the fol-
lowing observations about the above process.

(i.) ŝ is uniformly distributed over {0, 1}N and |s − ŝ| = 1.
(ii.) ŷ = fN

C1
ROT

(x, ŝ) with probability 1
2 .

(iii.) For any x ∈ X, Pr(fx(s) = 1 − fx(ŝ)) ≥ Ω(1
N

√
N

).

(i) follows from s being uniform in {0, 1}N and ŝ being obtained by flipping
the value of a random coordinate of s. (ii) can be verified easily from the process
description. When x ∈ X and s

$← {0, 1}N , Pr(fx(s) = i) ≥ 1
2 (1 − 1√

N
) for

i ∈ {0, 1}, by Lemma 4. Hence, by Harper’s Lemma,

Pr (∃s̃ : |s − s̃| = 1 and fx(s̃) = 1 − fx(s)) ≥ Ω(
1√
N

).

Conditioned on the event that such a s̃ exists, ŝ = s̃ with probability at least
1
N . This proves (iii).

(b0, b1) is said to be correct if it is either (a0,⊥) or (⊥,a1). Let E1 be the
event ‘b = R

(
fN

C1
ROT

(x, s)
)

is correct’. Since s is uniform in {0, 1}N , by the

correctness property, E1 happens with probability 1 − 1
N2 . Let E2 be the event

‘b = R(fN
C1
ROT

(x, ŝ) is correct’. By (i), ŝ is also uniform in {0, 1}N , hence E2

happens with probability 1− 1
N2 . From (ii) and (iii) we conclude that, when x ∈

X, M(y) outputs (â0, â1) (instead of aborting) with probability Ω(1
N

√
N

). Since
x ∈ X happens with probability (1− 2

N), we may conclude that with probability
at least (1 − 2

N)Ω(1
N

√
N

), the following event E3 occurs: ŷ = fN
C1
ROT

(x, ŝ) and M

outputs (â0, â1). In the event E1 ∩ E2 ∩ E3, the machine M guesses the input
correctly and outputs (a0,a1). By a union bound, E1 ∩ E2 ∩ E3 happens with
probability (1 − 2

N)Ω(1
N

√
N

) − 2
N2 . Hence, M predicts (a0,a1) with probability

Ω(1
N

√
N

). This is a contradiction since, when � = 2 log N and the protocol is 1
N2 -

secure, the adversary can succeed in guessing both inputs with at most 2−2 log N +
1

N2 = 2
N2 probability. This proves the theorem. ��

Cryptography from One-Way Communication 673

4.1 Extending Impossibility to All Finite Channels

In this section we show that the negative result from the previous section applies
not only to bit-ROT but, in fact, to all finite channels. W.l.o.g we consider
channels with rational conditional probability matrices. We begin by modeling
an arbitrary finite channel as a randomized function.

Definition 9. Consider a channel C : X → Y with rational conditional distri-
bution matrix. We define the states of C as a finite set C.states and the channel
function fC : X × C.states → Y, such that for all x ∈ X and y ∈ Y,

Pr(C(x) = y) = Pr
s

$←C.states

(f(x, s) = y).

We emphasize that our channels are all memoryless, and that “states” in this
context should be interpreted as the internal randomness of the channel used in
each invocation (uniform distribution over the set C.states).

The existence of C.states and fC is proved in the full version [1]. For the
convenience of modeling we have defined fC in such a way that the state is
chosen uniformly at random from C.states. Given the above definition, for a
fixed input x ∈ X , the channel C essentially samples a state uniformly from
C.states and deterministically maps x to the output y. This model motivates our
next observation about multiple uses of the channel.

For a finite N , let x = (x1, . . . , xN) ∈ X N and let y = (y1, . . . , yN) ∈ YN

be the output of N independent uses of C with input x. Then the distribution
(x,y) can be thought to be generated by the following equivalent process: Sample
s = (s1, . . . , sN) ← (C.states)N and for i = 1, . . . , N , compute yi = fC(xi, si).

Before we state the next lemma, we set up some notation for generalizing
distance between strings over finite alphabets. For x, x̃ ∈ X n, |x − x̃| = 1 if
they differ in exactly one of the n coordinates, i.e., there exists i ∈ [n] such
that xi
= x̃i and xj = x̃j for all j
= i. The following lemma is an extension of
the isoperimetric bound in Lemma 5 that we used for proving Theorem 8. The
lemma is formally proved in the full version [1].

Lemma 6. Let X be a finite set such that |X | = 2k for some k. For any function
f : X n → {0, 1}, if Pr

x
$←X n

(f(x) = i) ≥ 1
2 − 1√

k·n , for each i ∈ {0, 1}, then

Pr
x

$←X n

(∃x̃ : |x − x̃| = 1 and f(x̃) = 1 − f(x)) ≥ Ω

(
1√
k · n

)
.

We are now ready to state the generalization of Theorem 8.

Theorem 9. Let C be a finite channel. For sufficiently large N and � ≥ 2 log N ,
an (N, 1

N2) OWSC protocol for C�
ROT over C is impossible even against semi-

honest parties. In fact, the same holds even if one settles for computational
security.

Proof: We proceed in the same way we showed the impossibility in Theorem 8.
To prove a contradiction, suppose 〈S,R〉 is a (N, 1

N2) OWSC protocol for C�
ROT

674 S. Agrawal et al.

〈S,R〉(a0,a1)

1. x
$← S(a0,a1).

2. Sample r $← (C.states)N .
3. Compute y where yi = fC(xi, ri).
4. (b0, b1) = R(y).
5. Output ((a0,a1),x,y, (b0, b1)).

Fig. 3. Execution of a protocol 〈S,R〉 for OWSC of C�
ROT over channel C : X → Y. Here

a0,a1 are the �-bit input strings for C�
ROT, the N -bit strings x0,x1 are the inputs for

the N invocations of C, y0,y1 are the outputs of these N invocations, and b0, b1 are
the outputs of C�

ROT.

M(y)
1. Compute (b0, b1) = R(y).
2. Sample i

$← [N], x $← X , r
$← C.states.

3. Compute ỹ, where ỹi = fC(x, r) and ỹj = yj for all j �= i.
4. Compute (b̃0, b̃1) = R(ỹ).
5. If (b1, b̃0) = (⊥, ⊥), output (b0, b̃1) and if (b0, b̃1) = (⊥, ⊥), output (b̃0, b1); else,

abort.

Fig. 4. Execution of the machine M

over C. The joint distribution, generated by the protocol for input (a0,a1) ∈
{0, 1}� ×{0, 1}�, is described in Fig. 3. We would use a machine M similar to the
one used in the proof of Theorem 8 to guess both a0 and a1 from the received
y with substantial probability, contradicting sender’s privacy. The machine is
described in Fig. 4. Intuitively, M tries to obtain one string from y (due to
correctness of the ROT protocol) and the other string, by changing one item of
y, and hoping to get into a case where the receiver outputs the other string.

Analysis of M. We show that M outputs (a0,a1) with substantial probability.
As observed in Lemma 4, since the protocol is 1

N2 -secure, due to the receiver’s
privacy property, there exists a set X ⊆ X N such that Pr(x ∈ X) ≥ 1 − 2

N and
for all x ∈ X,

P (b0 = ⊥|x) ≥ 1
2

− 1
N

and P (b1 = ⊥|x) ≥ 1
2

− 1
N

.

Fix an x ∈ X. Recall that for a fixed x ∈ X N , the output y of the channel is
a deterministic function of the state of the channel r, i.e., y = fN

C (x, r). Here
fN

C (x, r) outputs y such that yi = fC(xi, ri). Define function fx : (C.states)N →
{0, 1} as follows: for r ∈ (C.states)N , when fN

C (x, r) = y and (b0, b1) = R(y),
then fx(r) = 0 if b0 = ⊥ and fx(r) = 1 otherwise. Hence, for all x ∈ X, function
fx is such that Pr

r
$←(C.states)N

(f(x) = i) ≥ 1
2 − 1

N for i = 0, 1. When 1
N2 ≤ 1

k·N ,
invoking Lemma 6,

Cryptography from One-Way Communication 675

Pr
r

$←(C.states)N

(∃r̃ : |r − r̃| = 1 and fx(r) = 1 − fx(r̃)) ≥ Ω

(
1√
k · n

)
.

Note that y is generated by x and a random state r ← (C.states)N (see Fig. 3).
On input y, machine M can be equivalently thought to be computing ỹ as
fN

C (x̃, r̃), where x̃ and r̃ can be described as follows: Choose a random coordinate
i

$← [N] (see Fig. 4) and x̃ is computed as x̃i
$← X and x̃j = xj for j
= i and

r̃ is computed as r̃i
$← C.states and r̃j = rj for j
= i. We make the following

simple observations.

(i). r̃ is distributed uniformly in (C.states)N and |r − r̃| = 1.
(ii). Pr(x̃ = x) = 1

|X | .
(iii). With probability Ω(1

N
√

N
), we have fx(r̃) = 1 − fx(r).

Here, (i) and (ii) are clear from the process. For any s ∈ {0, 1}N such that
|r − s| = 1, r̃ = s with probability 1

N ·|C.states| = 1
2k·N . Hence, when x ∈ X

and r
$← {0, 1}N , the probability of the event ‘fx(r) = 1 − fx(r̃))’ is at least

1
2k·N · Ω(1√

k·N) = Ω(1
N

√
N

).
We are now ready to show that M outputs a0,a1 with substantial probability.

Let E1 be the event ‘x̃ = x and fx(r̃) = 1−fx(r)’. We have already established
that conditioned on any x ∈ X, the event E1 occurs with probability Ω(1

N
√

N
).

Since Pr(x ∈ X) ≥ 1 − 2
N , the probability of E1 is at least (1 − 2

N) · Ω(1
N

√
N

).
Let E2 be the event ‘R(fN

C (x, r)) is correct’ and E3 be the event ‘R(fN
C (x, r̃)) is

correct’. Since r and r̃ are uniformly distributed in {0, 1}N , by the correctness
of the protocol, E2 and E3 occur with probability at least 1 − 1

N2 . In the event
E1 ∩ E2 ∩ E3, the machine M guesses the input correctly and outputs (a0,a1).
By a union bound, E1 ∩ E2 ∩ E3 happens with probability (1 − 2

N)Ω(1
N

√
N

) −
2 1

N2 . Hence, M predicts (a0,a1) with probability Ω(1
N

√
N

). Note that this is a
contradiction since, when � = 2 log N , such a machine should not exist when the
protocol is 1

N2 -secure. This proves the theorem. ��

5 Zero-Knowledge Proofs from Any Non-trivial Channel

In this section, we characterize finite channels that allow OWSC of zero-
knowledge proofs of knowledge. Our result states that zero-knowledge proofs
of knowledge (ZK PoK) can be realized with OWSC over a channel if and only
if the channel is non-trivial. A trivial channel is one which is essentially equiva-
lent (as formalized below) to a noiseless channel, when used by actively corrupt
senders.

Theorem 10 (Informal). Given a language L ∈ NP\BPP, an OWSC/C zero-
knowledge protocol for L exists if and only if C is non-trivial.

Previously, this result was known only for two special channels, namely, BEC
and BSC [17]. To extend it to all non-trivial channels, we need to take a closer

676 S. Agrawal et al.

look at the properties of abstract channels. To understand what a non-trivial
channel is, it is helpful to geometrically model a channel as we do below.

Redundant Inputs, Core and Trivial Channels. Given a channel C : X →
Y, for each input α ∈ X , define a |Y|-dimensional vector µα with coordinates
indexed by elements of Y, such that µα(β) = Pr(C(α) = β) for each β ∈ Y.
We define the convex polytope RC associated with C as the convex hull of the
vectors {µα|α ∈ X}.

Any α ∈ X such that µα is a convex combination of {µα′ |α′ ∈ X \ {α}} is a
redundant input, because a sender could perfectly simulate the use of α with a
linear combination of other inputs, without being detected (and possibly obtain-
ing more information about the output at the receiver’s end). Geometrically, a
redundant input corresponds to a point in the interior of (possibly a face of) RC
(or multiple inputs that share the same vertex of the polytope). Consider a new
channel Ĉ without any redundant inputs, obtained by restricting C to a subset
of inputs, one for each vertex of the convex hull. Ĉ is called the core of C.4

We note that C : X → Y can be securely realized over Ĉ : X̂ → Y, with
security (in fact, UC security) against active adversaries. In this protocol, when
the sender is given an input α ∈ X \X̂ , it samples an input α′ from X̂ according
to a distribution that results in the same channel output distribution as produced
by α (this is always possible since RC is the same as R

̂C). Correctness (when
both parties are honest) and security against a corrupt receiver are immediate
from the fact that the output distribution is correct; security against a corrupt
sender follows from the fact that its only action in the protocol – sending an
input to Ĉ– can be carried out as it is in the ideal world involving C, with the
same effect. This means that there is a secure OWSC protocol over C only if such
a protocol exists over Ĉ. In turn, since Ĉ has no redundant inputs, it suffices to
characterize which channels among those without redundant inputs, admit ZK
proofs.

A channel without any redundant inputs is trivial if the output distributions
for each of its input symbols are disjoint from each other. Such a channel corre-
sponds to a noiseless channel, as the receiver always learns exactly the symbol
that was input to the channel. Over a noiseless channel, zero-knowledge proofs
exist only for languages in BPP.

Our main goal then, is to show that if a channel C without redundant inputs is
non-trivial, then every language in NP has an OWSC/C zero-knowledge protocol.
We start by providing some intuition about how we achieve this.

5.1 Intuition Behind the Construction

The ZK protocol involves sending many independently generated copies of an
Oblivious ZK-PCP over the channel, after encoding it appropriately; the verifier

4 The notions of redundancy and core were defined more generally in [21], in the
context of 2-party functionalities where both parties have inputs and outputs. Here
we present simpler definitions that suffice for the case of channels.

Cryptography from One-Way Communication 677

tests the proof using a carefully designed scheme before accepting it. The encod-
ing and testing are designed to ensure, on one hand, erasure of a large fraction
of the bits in the proofs (to guarantee zero-knowledge) and, on the other hand,
delivery of sufficiently many bits so that the verifier can detect if the transmitted
proof is incorrect (for soundness). At a high-level, the transmission and testing
of the proof takes place over three “layers”: (i) an inner-most binary channel
layer at the bottom, (ii) an erasure layer over it, and (iii) an outer PCP layer.

The inner-most and outer-most layers are used to ensure soundness while
the middle and outer-most layers work in tandem to obtain the zero-knowledge
property.

Binary-Input Channel Layer. A given channel C (without redundant inputs)
may have an arbitrary number of inputs, which may provide the prover with
room for cheating in the protocol. The binary-input channel layer involves a
mechanism to enforce that the prover (mostly) uses only a prescribed pair of
distinct input symbols α0 and α1. We require that over several uses of the chan-
nel, if the sender uses a different symbol significantly often, then the receiver can
detect this from the empirical distribution of the output symbols it received. This
requires that the sender cannot simulate the effect of sending a combination of
these two symbols by using a combination of some other symbols. Using the geo-
metric interpretation of the channel, this corresponds to the requirement that
the line segment connecting the two vertices µα0 and µα1 of the polytope RC
actually form an edge of the polytope. However, for the erasure layer (described
below) to work we require that the output distributions of α0 and α1 have
intersecting supports. In Lemma 7, we show that in any non-trivial channel C
(without redundant inputs), there indeed exist α0, α1 which satisfy both these
requirements simultaneously. Then, in Lemma 8, we show that there is a statis-
tical test—whose parameters are determined by the geometry of the polytope
RC—that can distinguish between a sender who sends a long sequence of these
two symbols from a sender who uses other symbols in a significant fraction of
positions.

Erasure Layer. We can obtain a non-zero probability of perfect erasure by
encoding 0 as the pair (α0, α1) and 1 as the pair (α1, α0), to be transmitted over
two independent uses of the channel C. Since there is some symbol β such that
both q0 := Pr(C(α0) = β) > 0 and q1 := Pr(C(α1) = β) > 0, the probability of
the receiver obtaining (β, β) is the same positive value q0q1, whether 0 or 1 is
sent as above.5 Hence, one can interpret the view of the receiver as obtained by
post-processing the output of a BEC with erasure probability q0q1, so that the
erasure symbol is mapped to the outcome (β, β).

At the receiver’s end, we use a maximum likelihood decoding, that always
outputs a bit (rather than allowing an erasure symbol as well); if the likelihood
of a received pair of symbols is the same for 0 and 1, it is decoded as a uniformly
random bit. Note that if the sender sends a pair (α0, α0) or (α1, α1), then the
decoding strategy will have the same effect as when the sender sends the encoding

5 This is essentially identical to the Von Neumann extractor trick.

678 S. Agrawal et al.

of a random bit – namely, it will be decoded to a uniformly random bit. Thus, the
net effect of these two layers is that the prover communicates with the verifier
using bits sent via a BSC, except for a few positions where the sender may
arbitrarily control the channel characteristics. While the receiver’s view includes
more information than the output of the BSC, it can be entirely simulated from
the output of a BEC.

PCP Layer. At the outer-most layer, our proof resembles the OWSC/BSC
ZK protocol of [17], but is in fact somewhat simpler.6 Here, the prover simply
sends several independently generated copies of an Oblivious ZK-PCP (routed
through the inner layers discussed above). As we noted above, the view of the
receiver is obtained by post-processing the output of a BEC; hence, by choosing
the parameters of the ZK-PCP appropriately, we can ensure that the receiver’s
view can be statistically simulated.

Ensuring soundness requires more work. The receiver, after obtaining the
bits decoded from the inner layers (provided that no deviation was detected at
the inner-most layer), can try to execute the PCP verification on each proof.
However, it cannot reject the proof on encountering a single proof that fails
the verification, because, even if the prover is honest, the channel can introduce
errors in the received bits. As such, the verifier should be prepared to tolerate
a certain probability of error. One may expect that if the proof was originally
incorrect, then the probability of error would increase. However, this intuition
is imprecise: it is plausible that a wrong proof can match or even surpass some
honest proofs in the probability of passing the PCP verification.

To deal with this, we note that it is not necessary to carry out the original
PCP verification test on the received bits, but rather one should design a sta-
tistical test that separates all correct proofs from incorrect proofs, as received
through the inner layers. We show that for any predicate used by the original
PCP verifier, there is an error-score one can assign to the bits decoded from
the BSC, so that the expected error-score of the decoded bits is lower when they
originally satisfy the PCP verifier’s predicate. The verifier accepts or rejects the
proof by computing the empirical average of the score across all repetitions of
the proof, and thresholding it appropriately.

We remark that our scoring scheme and its analysis are more direct, and
perhaps simpler, compared to the one in [17]. An additional subtlety that arises
in our case is that there can be a few positions where the inner layers do not
constitute the BSC that we try to enforce. Nevertheless, the above approach
remains robust to such deviations, by ensuring that the scores come from a
suitably bounded range.

6 In [17], an encoding scheme was used to argue that with some probability, the bits
sent through the BSC are “erased.” But this encoding turns out to be redundant,
as a BSC implicitly guarantees erasure: Concretely, a BSC with error probability p
can be simulated by post-processing a BEC with erasure probability 2p. The post-
processing corresponds to decoding the erasure symbol as a uniformly random bit.

Cryptography from One-Way Communication 679

5.2 Properties of Non-trivial Channels

The following lemma shows that if C is non-trivial and without redundant inputs,
there is a pair of input symbols α0, α1 with properties that we can use to enforce
binary-input channel layer in Lemma 8 and to realize erasure channel layer in
Lemma 9. Proofs of these lemmas are provided in the full version [1] (Fig. 5).

Fig. 5. Illustration of condition (ii) in Lemma 7. The polytope RC is illustrated here.
Since C has no redundant symbols, there is a bijection between vertices of RC and
the input symbols of the channel. The edge between µα0 and µα1 is highlighted. The
solid part is the convex hull of the vertices other than µα0 and µα1 . By the separating
hyperplane theorem [7], there exists a vector v ∈ [−1, 1]Y and ε > 0 as illustrated.
In Lemma 8, the existence of v, ε is used to devise the statistical test that enforces
the binary input channel layer. That µα0 and µα1 have intersecting support is used in
realizing the erasure layer.

Lemma 7. If C : X → Y without redundant inputs is non-trivial, then there
exist distinct symbols α0, α1 ∈ X , v ∈ [−1, 1]Y and ε > 0 with the following
properties:

(i) ∃y ∈ Y such that µα0(y),µα1(y) > 0.
(ii) 〈µα0 ,v〉 = 〈µα1 ,v〉, and for all α ∈ X \ {α0, α1}, 〈µα,v〉 − 〈µα0 ,v〉 ≥ ε.

In the next lemma, we show that, over several uses of C, a sender who uses
only α0, α1 described in the previous lemma, can be distinguished from one that
uses other symbols (different than α0, α1) significantly often, using the empirical
distribution of the output symbols. Let histogram of a vector y ∈ Ym be defined
as histy (β) = 1

m |{i ∈ [m] : yi = β}| for all β ∈ Y. The following function is a
statistical test that achieves this: fm(y) = 〈histy ,v〉 − 〈µα0 ,v〉.
Lemma 8. If a channel C without redundant inputs is non-trivial, then there
exist α0, α1 ∈ X , ε > 0 and functions fm : Ym → R, for m ∈ N, such that, for
all λ > 0, when x ∈ X m, t = |{i ∈ [m] : xi /∈ {α0, α1}}| and y = C(x),

680 S. Agrawal et al.

〈Enc,Dec〉(a)
For channel C : X → Y , choose α0, α1 ∈ X that satisfy the conditions in Lemma 7. When
a ∈ {0, 1},

1. Enc(a) = (x0, x1) where x0 = αa and x1 = α1−a.
2. (y0, y1) = C(x0, x1).

3. Dec(y0, y1) =

{
b if Pr [C(αb, α1−b) = (y0, y1)] > Pr [C(α1−b, αb) = (y0, y1)] ,
0 (resp. 1) w. p. 1

2
if Pr [C(α0, α1) = (y0, y1)] = Pr [C(α1, α0) = (y0, y1)] .

Fig. 6. Realizing BSC using a channel C : X → Y. Here, a is the input bit to BSC
channel and b is its output. The messages are encoded using symbols α0, α1 ∈ X that
satisfy the conditions in Lemma 7.

Pr

(
fm(y) ≥

√
λ

m
· ε

∣∣∣∣∣t = 0

)
≤ 2e− λ·ε2

2 and

Pr

(
fm(y) ≤

√
λ

m
· ε

∣∣∣∣∣t ≥ 2
√

m · λ

)
≤ 2e− λ·ε2

2 .

The following lemma analyzes the coding scheme in Fig. 6 that realizes era-
sure layer using α0, α1 described in Lemma 7. The fidelity of the scheme is a
consequence of µα0 and µα1 being distinct. As we already observed, receiving
(β, β) in this scheme is effectively the same as receiving an erasure. The lemma
shows that since µα0 ,µα1 having intersecting supports, erasure happens with
non-zero probability. The lemma also formalizes the observation that sending
invalid encodings (αi, αi) for i ∈ {0, 1} is effectively the same as sending the
valid encoding of a random bit.

Lemma 9. The scheme 〈Enc,Dec〉 in Fig. 6 satisfies the following properties:

(i). Pr [Dec (Enc(a)) = a] = p > 1
2 for a ∈ {0, 1};

(ii). Pr [Dec (C(αi, αi)) = 0] = 1
2 for i = 0, 1;

(iii). Let ⊥ be the event that the receiver gets (β, β) as output, where β is in the
support of µα0 and µα1 . Then Pr(⊥|Enc(a)) = ρ > 0, for all a ∈ {0, 1}.

The Binary Symmetric Channel (BSC), with parameter p, is defined as BSCp :
{0, 1} → {0, 1} such that for b ∈ {0, 1}, Pr(BSCp(b) = b) = p. Consider the
scenario where a configuration x ∈ {0, 1}k is sent through BSCp amongst which
S ⊂ {0, 1}k is the set of acceptable configurations. The following lemma assigns
scores {γS

y }y∈{0,1}k to the received configurations in such a way that the expected
score is 0 when an acceptable configuration x ∈ S is sent and the expected score
is a strictly positive constant φS when an unacceptable configuration x /∈ S in
sent.

Cryptography from One-Way Communication 681

Lemma 10. For k ∈ N, let U = {0, 1}k and S ⊆ U . For x,y ∈ U , define
pxy = Pr(BSCp(x) = y). There exists φS > 0 and {γS

y }y∈U ∈ [−1, 1] such that∑
y∈U

pxyγS
y = 0,∀x ∈ S and

∑
y∈U

pxyγS
y = φS ,∀x /∈ S.

Proof: Consider the matrix M ∈ R
U×U such that Mxy = pxy . By the defini-

tion of BSCp, when |x − y| denotes the Hamming distance between x,y ∈ U ,
pxy = (1 − p)|x−y | · pk−|x−y |. It can be verified that, when ⊗ denotes the tensor
operation,

M = H⊗k, where H =
[

p 1 − p
1 − p p

]
.

Since H is invertible and tensor operation preserves non-singularity, M is an
invertible matrix. The existence of φS > 0 and {γS

y }y∈U ∈ [−1, 1] follows directly
from the invertibility of M . ��

5.3 Construction and Analysis

The scheme 〈PZK ,VZK〉 is given in Fig. 7. We now formally prove that this is a
zero-knowledge proof of knowledge with negligible completeness and soundness
error.

We first comment on the strategy of a malicious prover who encodes bits
as (αi, αi) for i = 0, 1. Notice that the statistical test of thresholding f2n·�(y)
is insensitive to such a malicious strategy. But, by statement (ii) in Lemma 9,
a bit that is encoded as (αi, αi) is decoded as 0 (resp. 1) with probability 1

2 .
Hence, with respect to decoding, such a malicious strategy is effectively the
same as encoding a random bit honestly using Enc. Consequently, every malicious
prover strategy (including ones that encode bits incorrectly using (αi, αi)) can
be thought of as a randomized strategy over a sub-class of strategies in which
each bit is encoded as (α, α′), where α
= α′. Hence, in the sequel, we analyze
soundness only with respect to this class of strategies.

The proof proceeds by bounding the number of bad proofs a malicious sender
can send without getting rejected by the tests performed by the verifier. We
define Bencoding as the set of bad proofs in which at least one bit is encoded
using symbols outside the set {α0, α1}. Also, define Bincorrect as the set of proofs
in which each bit is correctly encoded using Enc, but the proof itself is invalid.
This is formalized as the proofs from which the extractor E for 〈PoZK ,VoZK〉
cannot extract a valid witness. We would argue soundness by showing that if the
sizes of Bencoding and Bincorrect are substantial, then VZK rejects with all but
negligible probability. Furthermore, completeness follows from the tests accept-
ing an honest prover with all but negligible probability. These are established in
the following claims; see the full version [1] for formal proofs. Formally, Bencoding

and Bincorrect are defined as follows.

Bencoding = {i ∈ [n] : ∃(j, k) ∈ [�] × {0, 1} s.t. xi,j
k /∈ {α0, α1}},

Bincorrect = {i ∈ [n] : i /∈ Bencoding and RL(x,E(πi, x)) = 0}.

682 S. Agrawal et al.

〈PZK ,VZK〉
Common input to prover and verifier x ∈ L.
Auxiliary input to prover w such that RL(x, w) = 1.
For a non-trivial channel C, without redundant symbols, consider symbols α0, α1 ∈ X ,
functions fm, for m ∈ N, and ε > 0 as described in Lemma 8. Let 〈Enc,Dec〉 be the
encoding scheme described in Figure 6 w.r.t. α0, α1. Let p and ρ be as described in
Lemma 9 for this encoding scheme. For S ⊂ {0, 1}3, consider γS

y , for each y ∈ {0, 1}3,
and φS , from Lemma 10 with respect to BSCp. Define φ = minS⊂{0,1}3 φS . For security
parameter λ, let (PoZK ,VoZK) be a (3, 1 − ρ)-ZK-PCP with knowledge soundness κ.
Finally, when 	 = poly(λ, |x|) is the length of proof output by PoZK , let n = �λ

κ

)2.
1. PZK samples π1, . . . , πn

$← PoZK(x, w, λ). For all i ∈ [n], j ∈ [], let the jth bit in
the proof πi be bi,j , then encode bi,j using Enc to obtain (xi,j

0 , xi,j
1).

2. For all i ∈ [n], j ∈ [], let yi,j
0 , yi,j

1

)
= C xi,j

0 , xi,j
1

)
. Let y be the vector

yi,j
k

)
i∈[n],j∈[�],k∈{0,1}.

3. If f2n·�(y) ≥
√

λ
2n�

, then VZK aborts and rejects the proof. Otherwise, VZK decodes
π1, . . . , πn as π̂1, . . . , π̂n such that, for i ∈ [n] and j ∈ [], the bit bi,j is decoded
as b̂i,j = Dec yi,j

0 , yi,j
1

)
. For each k ∈ [n], choose 3 random indices a1, a2, a3 ∈

[] of π̂k. If S is the set of accepting configurations for the indices (a1, a2, a3) w.r.t.
VoZK(x, ·), set sk = γS

b̂k
, where b̂k = (b̂k,a1 , b̂k,a2 , b̂k,a3). If 1

n

∑
k∈n sk < κ·φ

12
, then

VZK accepts, else it rejects.

Fig. 7. Description of OWSC/C ZKPoK scheme for a non-trivial channel C without
redundant input symbols.

Claim 2. If Bencoding is empty, then the probability with which f2n·�(y) ≥
√

λ
2n�

is negligible in λ. If |Bencoding| ≥ nκφ
6 , then the probability with which f2n·�(y) <√

λ
2n� is negligible in λ.

Claim 3. If Bencoding = Bincorrect = ∅, then 1
n

∑n
k=1 sk ≥ κ·φ

12 with probability

at most 2e− 1
2 (�λ·φ

12)2 . If |Bencoding| ≤ nκφ and |Bincorrect| ≥ n
3 , then 1

n

∑n
k=1 sk <

κ·φ
12 with probability at most 2e− 1

2 (�λ·φ
12)2 .

Below, we argue that 〈PZK ,VZK〉 is a zero-knowledge proof using these claims.

Completeness. The above claims directly imply that if π1, . . . , πn are valid
proofs which are correctly encoded, then VZK accepts with all but negligible
probability.

Soundness. We build an extractor E′ from E (the extractor for 〈PoZK ,VoZK〉)
as follows. For each i ∈ [n], extractor E′ tries to extract a proof π∗

i from
the encoding of the purported proof πi. Rejecting each purported proof πi

that is incorrectly encoded, i.e., i ∈ Bencoding. If for some i, we have

Cryptography from One-Way Communication 683

RL(x,E(π∗
i , x)) = 1, output E(π∗

i , x); else, output ⊥. Clearly, E′ aborts only
if Bencoding ∪ Bincorrect = [n]. But the above claims imply that VZK rejects with
all but negligible probability, whenever |Bencoding ∪ Bincorrect| ≥ 2n

3 .

Zero-Knowledge. By Lemma 9, Enc induces an erasure (⊥ in the lemma) with
probability ρ > 0. Recall that the proof uses a (3, 1−ρ)-ZK-PCP 〈PoZK ,VoZK〉.
Let S be a simulator for this ZK-PCP. The construction of simulator S′ for
〈PZK ,VZK〉, using the simulator S is quite straightforward: S′ runs n indepen-
dent executions of S(x, λ) to get π∗

1 , . . . , π
∗
n. It is easy to see that if S produced

a perfect simulation of the ZK-PCP, then S′ would also produce a perfect simu-
lation of the verifier’s view in the ZK proof. Since the simulation by S incurs a
negligible error, so does the simulation by S′.

Acknowledgements. We thank the anonymous Asiacrypt reviewers for their careful
reading and many helpful comments. This Research was supported by Ministry of Sci-
ence and Technology, Israel and Department of Science and Technology, Government of
India, and in part by the International Centre for Theoretical Sciences (ICTS) during a
visit for participating in the program-Foundational Aspects of Blockchain Technology
(ICTS/Prog-fabt2020/01). In addition, S. Agrawal was supported by the DST “Swar-
najayanti” fellowship, and Indo-French CEFIPRA project; Y. Ishai was supported by
ERC Project NTSC (742754), NSF-BSF grant 2015782, ISF grant 2774/20, and BSF
grant 2018393; E. Kushilevitz was supported by ISF grant 2774/20, BSF grant 2018393,
and NSF-BSF grant 2015782; V. Narayanan and V. Prabhakaran were supported by
the Department of Atomic Energy, Government of India, under project no. RTI4001,
DAE OM No. 1303/4/2019/R&D-II/DAE/1969 dated 7.2.2020; M. Prabhakaran was
supported by the Dept. of Science and Technology, India via the Ramanujan Fellowship;
A. Rosen was supported in part by ISF grant No. 1399/17 and Project PROMETHEUS
(Grant 780701).

References

1. Agrawal, S., Ishai, Y., Kushilevitz, E., Narayanan, V., Prabhakaran, M., Prab-
hakaran, V., Rosen, A.: Cryptography from one-way communication: on complete-
ness of finite channels. In: Cryptology ePrint Archive (2020)

2. Ajtai, M.: Oblivious rams without cryptogrpahic assumptions. In: STOC 2010, pp.
181–190 (2010)

3. Bellare, M., et al.: iKP - a family of secure electronic payment protocols. In:
USENIX Workshop on Electronic Commerce (1995)

4. Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 294–311.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 18

5. Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy
amplification. IEEE Trans. Inf. Theor. 41(6), 1915–1923 (1995)

6. Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public dis-
cussion. SIAM J. Comput. 17(2), 210–229 (1988)

7. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Sci-
entific, Nashua (1997)

8. Bloch, M., Barros, J.: Physical-Layer Security: from Information Theory to Secu-
rity Engineering. Cambridge University Press, Cambridge (2011)

https://doi.org/10.1007/978-3-642-32009-5_18

684 S. Agrawal et al.

9. Blum, M., Feldman, P., Micali, S.: Proving security against chosen ciphertext
attacks. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 256–268.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 20

10. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston,
MA (1983). https://doi.org/10.1007/978-1-4757-0602-4 18

11. Chaum, D.: Online cash checks. In: Quisquater, J.-J., Vandewalle, J. (eds.) EURO-
CRYPT 1989. LNCS, vol. 434, pp. 288–293. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-46885-4 30

12. Crepeau, C., Kilian, J.: Achieving oblivious transfer using weakened security
assumptions. In: FOCS, pp. 42–52 (1988)

13. Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from
almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol.
3352, pp. 47–59. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30598-9 4

14. Damg̊ard, I., Kilian, J., Salvail, L.: On the (Im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X 5

15. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string. In: FOCS, vol. 1, pp. 308–317, October 1990

16. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: STOC, pp. 554–563 (1994)

17. Garg, S., Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with
one-way communication. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 191–208. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 10

18. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: ISTCS 1997, pp. 174–184. IEEE Computer Society (1997)

19. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

20. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31
(1988)

21. Kraschewski, D., Maji, H.K., Prabhakaran, M., Sahai, A.: A full characterization
of completeness for two-party randomized function evaluation. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 659–676. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 36

22. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Secret sharing
with binary shares. In: ITCS, pp. 53:1–53:20 (2019)

23. Maurer, U.M.: Perfect cryptographic security from partially independent channels.
In: STOC 1991, pp. 561–571 (1991)

24. Poor, H.V., Schaefer, R.F.: Wireless physical layer security. Proc. Natl. Acad. Sci.
114(1), 19–26 (2017)

25. Ranellucci, S., Tapp, A., Winkler, S., Wullschleger, J.: On the efficiency of bit
commitment reductions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 520–537. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25385-0 28

26. Raz, R., Reingold, O., Vadhan, S.: Extracting all the randomness and reducing the
error in trevisan’s extractors. J. Comput. Syst. Sci. 65, 97–128 (2002)

https://doi.org/10.1007/0-387-34799-2_20
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-46885-4_30
https://doi.org/10.1007/3-540-46885-4_30
https://doi.org/10.1007/978-3-540-30598-9_4
https://doi.org/10.1007/978-3-540-30598-9_4
https://doi.org/10.1007/3-540-48910-X_5
https://doi.org/10.1007/978-3-662-48000-7_10
https://doi.org/10.1007/978-3-662-48000-7_10
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-55220-5_36
https://doi.org/10.1007/978-3-642-25385-0_28
https://doi.org/10.1007/978-3-642-25385-0_28

Cryptography from One-Way Communication 685

27. Trevisan, L.: Extractors and pseudorandom generators. J. ACM 48(4), 860–879
(2001)

28. Winter, A., Nascimento, A.C.A., Imai, H.: Commitment capacity of discrete mem-
oryless channels. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS,
vol. 2898, pp. 35–51. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-40974-8 4

29. Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 20

30. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)
31. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS

1986, pp. 162–167 (1986)

https://doi.org/10.1007/978-3-540-40974-8_4
https://doi.org/10.1007/978-3-540-40974-8_4
https://doi.org/10.1007/978-3-642-00457-5_20
https://doi.org/10.1007/978-3-642-00457-5_20

Succinct Functional Commitment
for a Large Class of Arithmetic Circuits

Helger Lipmaa(B) and Kateryna Pavlyk

Simula UiB, Bergen, Norway
{helger,kateryna}@simula.no

Abstract. A succinct functional commitment (SFC) scheme for a circuit
class CC enables, for any circuit C ∈ CC, the committer to first suc-
cinctly commit to a vector α, and later succinctly open the commitment
to C(α, β), where the verifier chooses β at the time of opening. Unfor-
tunately, SFC commitment schemes are known only for severely limited
function classes like the class of inner products. By making non-black-
box use of SNARK-construction techniques, we propose a SFC scheme
for the large class of semi-sparse polynomials. The new SFC scheme can
be used to, say, efficiently (1) implement sparse polynomials, and (2)
aggregate various interesting SFC (e.g., vector commitment and polyno-
mial commitment) schemes. The new scheme is evaluation-binding under
a new instantiation of the computational uber-assumption. We provide
a thorough analysis of the new assumption.

Keywords: Aggregated functional commitment · Dejà Q · Functional
commitment · SNARK · Uber-assumption · Vector commitment

1 Introduction

A succinct functional commitment (SFC) scheme [29] for a circuit class CC
enables the committer, for any C ∈ CC, to first commit to a vector α, and later
open the commitment to C(α,β), where the verifier chooses β at the time of
opening. An SFC scheme must be evaluation-binding (given a commitment, it
is intractable to open it to ξ = C(α,β) and ξ′ = C(α,β) for ξ �= ξ′) and hiding
(a commitment and possibly many openings should not reveal any additional
information about α). Succinctness means that both the commitment and the
opening have length polylog(|α|, |β|).

In particular, an SFC scheme for inner products (SIPFC) assumes that, C
computes the inner product (α,β) → 〈α,β〉 [25,29,30]. As explained in [29], one
can use an SIPFC scheme to construct succinct vector commitment schemes [12],
polynomial commitment schemes [27], and accumulators [5]. Each of these prim-
itives has a large number of independent applications. Succinct polynomial com-
mitment schemes have recently become very popular since they can be used to
construct (updatable) SNARKs [15,35,40,41] (a direction somewhat opposite to
the one we will pursue in the current paper). Since, in several applications (e.g.,
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 686–716, 2020.
https://doi.org/10.1007/978-3-030-64840-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_23

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 687

in cryptocurrencies, [38]), one has to run many instances of SFC in parallel,
there is a recent surge of interest in aggregatable SFC schemes, [8,9,22,28,38].
All mentioned papers propose succinct FC schemes for limited functionalities.

Since there are no prior SFC schemes for broader classes of functions, there
is a large gap between function classes for which an SFC scheme is known and
the class of all efficiently (e.g., poly-size arithmetic circuits) verifiable functions.
Filling a similar gap is notoriously hard in the case of related primitives like
functional encryption, homomorphic encryption, and NIZK. A natural question
to ask is whether something similar holds in the case of functional commitment.

It is easy to construct an SFC for all poly-size circuits under non-falsifiable
assumptions: given a commitment to α, the opening consists of a SNARK argu-
ment [20,23,31] that C(α,β) = ξ. However, while non-falsifiable assumptions
are required to construct SNARKs [21], they are not needed in the case of SFC
schemes. Thus, just using SNARK as a black-box is not a satisfactory solution.

Moreover, since one can construct non-succinct NIZK from falsifiable assump-
tions for NP, one can construct a non-succinct FC (nSFC) from a non-succinct
NIZK. Bitansky [6] pursued this approach, proposing an nSFC, for all circuits,
that uses NIZK as a black-box. By using NIWIs in a non-black-box manner,
Bitansky proposed another, non-trivial, nSFC scheme that does not achieve zero-
knowledge but does not require the CRS model. Alternatively, consider the FC
scheme where the commitment consists of fully-homomorphic encryptions Ci of
individual coefficients αi, and the opening is the randomizer R of the evalua-
tion of the circuit C on them. The verifier can re-evaluate the circuit on Ci and
her input, and then check that the result is equal to Enc(ξ;R). However, the
resulting FC is not succinct since one has to encrypt all αi individually.

Thus, the main question is to construct succinct FC schemes, under falsifiable
assumptions, for a wide variety of functionalities.

Our Contributions. We propose a falsifiable SFC scheme FCsn for the class
of semi-sparse polynomials CC = CCΣΠ∀ whose correct computation can be
verified by using an arbitrary polynomial-size arithmetic circuit that is “compil-
able” according to the definition, given in a few paragraphs. Notably, FCsn allows
efficiently aggregate various SFC schemes, e.g., vector commitments with inner-
product commitments and polynomial commitments. We analyze the power of
CCΣΠ∀ by using techniques from algebraic complexity theory; the name of the
class will be explain in Sect. 4.

We prove that FCsn is secure under a new falsifiable assumption (computa-
tional span-uber-assumption in a group G1) that is reminiscent of the well-known
computational uber-assumption in G1. We then thoroughly analyze the security
of the new assumption.

Our Techniques. Next, we provide a high-level overview of our technical con-
tributions. The construction of FCsn consists of the following steps.

1. Compilation of the original circuit C computing the fixed function F ∈ CC
to a circuit C∗ consisting of four public subcircuits.

688 H. Lipmaa and K. Pavlyk

2. Representation of C∗ in the QAP language which SNARKs usually use.
3. Construction of SFC for the QAP representation, by using SNARK techniques

in a non-black-box way.

Next we describe these steps in detail.

Circuit Compilation. Let C : Z
μα
p × Z

μβ
p → Z

κ
p be a polynomial-size arithmetic

circuit that, on input (α,β), outputs ξ = F(α,β) = (Fi(α,β))κ
i=1. Here, the

committer’s input α is secret, and the verifier’s input is public. We modify the
circuit C to a compiled circuit C∗, see Fig. 1, that consists of the subcircuits Cφ,
Cψ, Cχ, and Cξ. In the commitment phase, the committer uses the circuit Cφ to
compute several polynomials φi(α) depending on only 1 (this allows the output
polynomials to have a non-zero constant term) and α. In the opening phase, the
verifier sends β to the committer, who uses the circuit Cψ to compute several
polynomials ψi(β) depending on 1 and β. The verifier can redo this part of the
computation. After that, the committer uses the circuit Cχ to compute several
polynomials χi(α,β) from the inputs and outputs of Cφ and Cψ. Finally, the
committer uses Cξ to compute the outputs Fi(α,β) of C∗. We will explain more
thoroughly this compilation in Sect. 3.

ξ

C ξ

C χ

C φ C ψ

αj 1 βj

1 1

φi(α
) ψi(β)

α
j

β
j1

χi
(α, β)

1

Fi(α, β)

Fig. 1. The compiled circuit C∗.

Intuitively, the compilation restricts the
class of circuits in two ways. First, we add
a small circuit Cξ at the top of the compiled
circuit to guarantee that the R1CS represen-
tation of C∗ has several all-zero columns and
rows, which helps us in the security reduction.
This does, however, not restrict the circuit
class for which the SFC is defined and it only
increases the number of gates by κ. Second,
Cχ is restricted to have multiplicative depth 1,
i.e., it sums up products of polynomials in α
with polynomials in β. This guarantees that in
a collision, the two accepted openings have a
linear relation that does not depend on secret
data α. The latter makes it possible for the reduction to break the underlying
falsifiable assumption. Thus, we are restricted to the class CCΣΠ∀ of circuits
where each output can be written as

∑
i,j φi(α)ψj(β), for efficiently computable

polynomials φi and ψj , and the sum is taken over number poly(λ) products.
By employing tools from the algebraic complexity theory, in Sect. 4, we study

the class CCΣΠ∀ of “compilable” (according to the given definition) arithmetic
circuits. We say that a polynomial f ∈ CCΣΠ∀ if f has a circuit that belongs to
CCΣΠ∀. The new SFC scheme can implement f iff f ∈ CCΣΠ∀. First, we show
that any sparse polynomial (over indeterminates, chosen by both the committer
and the verifier) f belongs to CCΣΠ∀. Second, we construct a non-sparse polyno-
mial f ∈ CCΣΠ∀. This relies on a result of Ben-Or who constructed an O(n2)-size
arithmetic circuit that simultaneously computes the dth symmetric polynomial
σd(X1, . . . , Xn), for d ∈ [1 .. n]. Third, we construct a polynomial f ∈ VP such

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 689

that f �∈ CCΣΠ∀, where VP is the class of poly-degree polynomials that have
poly-size circuits, [39].

R1CS/QAP Representation. Let C be an arithmetic circuit, and C∗ be its com-
pilation. A circuit evaluation can be verified by verifying a matrix equation,
where matrices define the circuit uniquely and reflect all the circuit constraints.
SNARKs usually use QAP (Quadratic Arithmetic Program, [20]), a polynomial
version of R1CS, which allows for better efficiency.

Constructing the Underlying SNARK. Intuitively, we start constructing a
SNARK for C∗ by following the approach of Groth [24] who proposed the most
efficient known zk-SNARK, or more precisely, its recent modification by Lip-
maa [33]. However, we modify this approach whenever it suits our goals. The
new SFC inherits the efficiency of Groth’s SNARK; this is the main reason why
we chose Groth’s SNARK; it may be the case that SFCs constructed from less
efficient SNARKs have other desirable properties, but this is out of the scope
of the current paper. We chose the modified version of [33] due to its versatil-
ity: [33] explains sufficiently well how to construct a SNARK for QAP so that it
is feasible to modify its approach to suit the current paper.

The New SFC Scheme. In the SNARKs of [24,33], the argument consists of three
group elements, π = ([A]1, [B]2, [C]1). (We use the bracket additive notation, see
Sect. 2.) Due to our restrictions on C∗, both [A]1 and [B]2 can be written as
sums of a non-functional commitment that depends on the secret data only and
a non-functional commitment that depends on public data only. By the public
data we mean (β,F(α,β)); any other function of α is a part of the secret data.
E.g., [A]1 = [As]1 + [Ap]1, where [As]1 is computed by the committer before
β becomes available, and [Ap]1 can be recomputed by the verifier since it only
depends on the public data. However, [C]1 = [Csp]1 + [Cp]1, where [Cp]1 depends
only on public data but [Csp]1 depends both on public and private data.

In the new SFC commitment scheme, the functional commitment is C =
([As]1, [Bs]2) and the opening is [Csp]1. After receiving the opening, the verifier
recomputes [Ap]1, [Bp]2, and [Cp]1, and then runs the SNARK verifier on the
argument π = ([As]1 +[Ap]1, [Bs]2 +[Bp]2, [Csp]1 +[Cp]1). However, as we will see
later, the commitment also includes auxiliary elements [Baux

i]1 needed to obtain
an efficient security reduction.

We will denote the new SFC commitment scheme by FCsn. We denote by
FCC

sn its specialization to the circuit C.

Applications. To demonstrate the usefulness of FCsn, we will give several appli-
cations: some of them are well-known, and some are new. In all cases, the func-
tion of interest can be rewritten as a semi-sparse polynomial in (α,β). Some of
these examples are closely related to but still sufficiently different from IPFC. In
particular, [29] showed how to use an efficient IPFC to construct SFC for poly-
nomial commitments [27], accumulators [5], and vector commitments [12] (See

690 H. Lipmaa and K. Pavlyk

the full version [34].). We use FCsn to construct subvector commitments [28],
aggregated polynomial commitment [9,15] (one can commit to multiple polyno-
mials at once, each of which can be opened at a different point), and multivariate
polynomial commitments [10]. Also, we outline a few seemingly new applications
like the aggregated inner product (that, in particular, can be used to implement
subvector commitment) and evaluation-point commitment schemes. (See the full
version [34].) All described commitment schemes are succinct.

Importantly, FCsn achieves easy aggregation in a more general sense. Let Ci

be some circuits for which efficient SFC schemes exist. We can then construct
an efficient SFC for the circuit that consists of the sequential composition of Ci-
s. In particular, we can aggregate multiple polynomial commitment schemes,
some vector commitment schemes, and say an evaluation-point commitment
scheme. Some of the referred papers [8,9,22,28,38] construct aggregated commit-
ment schemes for a concrete circuit (e.g., an aggregated polynomial commitment
scheme). Importantly, FCsn allows one to aggregate different SFC schemes.

Security. The correctness and perfect hiding proofs are straightforward. The
main thing worthy of note here is that we have three definitions of hiding (com-
hiding, open-hiding, and zero-knowledge, see Sect. 2). For the sake of complete-
ness, we also give three different hiding proofs. The SFC schemes must work
in the CRS model to obtain zero-knowledge. However, since zero-knowledge is
stronger than the other two definitions, the proof of zero-knowledge, that fol-
lows roughly from the zero-knowledge of the related SNARK, suffices. Note that
say [29] only considered the weakest hiding notion (com-hiding).

The evaluation-binding proof differs significantly from the knowledge-
soundness proofs of SNARKs. The knowledge-soundness of SNARKs can only
be proven under non-falsifiable assumptions [21]. In particular, Groth proved
the knowledge-soundness of the SNARK from [24] in the generic group model
while Lipmaa [33] proved it under HAK (hash-algebraic knowledge assumption,
a tautological knowledge assumption) and a known computational assumption
(namely, q-PDL [31]). Such assumptions have very little in common with assump-
tions we use. As expected, a knowledge-soundness proof that uses non-falsifiable
assumptions has a very different flavor compared to an evaluation-binding proof
that only uses falsifiable assumptions. We emphasize it is not clear a priori that
an SFC constructed from SNARKs could rely on falsifiable assumptions.

We prove the evaluation-binding of FCsn under the new (R,S, {fi})-
computational span-uber-assumption in source group G1, where R,S ⊂ Zp[X,Y]
and fi ∈ Zp[X,Y] with fi �∈ span(R). This assumption states that given a com-
mitment key ck = ([
(χ, y) :
 ∈ R]1, [σ(χ, y) : σ ∈ S]2), where χ, y are random
trapdoors, it is difficult to compute (Δ �= 0,

∑κ
i=1 Δi[fi(χ, y)]1), where Δ is

adversarially chosen. (See Definition 6 for a formal definition.) Importantly, if
κ = 1 then we just have an uber-assumption in G1. We show that (see Theorem
2), for concrete R and fi, fi(X,Y) �∈ span(R).

The full evaluation-binding proof is quite tricky and relies significantly on the
structure of matrices U , V , W , and of the commitment key. Given a collision, we
“almost” compute (Δ,

∑
Δi[fi(χ, y)]1), where Δ is the componentwise difference

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 691

between two claimed values of F(α,β). To eliminate “almost” in the previous
sentence, the committer outputs κ additional “helper” elements [Baux

i]1, where
extra care has to be used to guarantee that the helper elements can be com-
puted given the commitment key. In both cases, to succeed, we need to assume
that the matrices (U, V,W) satisfy some natural restrictions stated in individual
theorems. These restrictions are collected together in Theorem 1.

Analysis of the Span-Uber-Assumption. The span-uber-assumption is fal-
sifiable and, thus, significantly more realistic than non-falsifiable (knowledge)
assumptions needed to prove the adaptive soundness of SNARKs. Still, it is a
new assumption and thus we have written down three different proofs that it
follows from already known assumptions. (See Lemma 2 and Theorem 4, and
another theorem in the full version).

In the full version [34], we prove that the span-uber-assumption in G1 holds
under the known (R,S, f ′

i)-computational uber-assumption in the target group
GT [7]. Here, f ′

i are different from but related to fi. We also prove that f ′
i �∈

span(RS). Since fi(X,Y) �∈ span(R) and f ′
i(X,Y) �∈ span(RS) (in the case

of the uber-assumption in GT), we have an instantiation of the computational
uber-assumption, known to be secure [7] in the generic group model.

Since the generic group model is very restrictive and has known weak-
nesses [16,17] not shared by well-chosen knowledge assumptions, we will use the
newer methodology of [33]. In the full version [34], we prove that if fi �∈ span(R)
then the (R,S, {fi})-computational span-uber-assumption in G1 holds under a
HAK and a PDL assumption. Since uber-assumption in GT is not secure under
a HAK assumption (the latter only handles the case the adversary outputs ele-
ments in source groups since the target group is non-generic), this result is
orthogonal to the previous result. As a corollary of independent interest, we get
that if fi(X,Y) �∈ span(R) then uber-assumption in G1 holds under a HAK and
a PDL assumption.

In composite-order bilinear groups, the computational uber-assumption in
GT holds under a subgroup hiding assumption [13]. Thus, due to Lemma 2, a
composite-order group span-uber-assumption (and also the new SFC) is secure
under a subgroup hiding assumption. In Theorem 4, we use the Déjà Q approach
of [14] to prove that the span-uber-assumption in Gι, ι ∈ {1, 2}, is secure under
a subgroup hiding assumption. This proof is more direct than the reduction
through an uber-assumption in GT . Moreover, the Déjà Q approach is more
applicable if one is working in the source group. Whether a similar reduction
holds in the case of prime-order groups is an interesting open question.

Efficiency. It is difficult to provide a detailed efficiency comparison of our newly
constructed scheme to all the abundant existing work in all applications. FCsn is
generic, works for a large class of circuits, and can tackle scenarios, not possible
with previous work, but at the same time, it can also be used to solve the much
simpler case of, e.g., inner product. We stress that FCsn, when straightforwardly
specialized to the IPFC case, is nearly as efficient as the most efficient known
prior IPFC, losing ground only in the CRS length. On the other hand, we are
not aware of any previous aggregated IPFC schemes (See the full version [34].).

This paper uses heavily a yet unpublished paper [33] of the first author.

692 H. Lipmaa and K. Pavlyk

2 Preliminaries

If R = (
1(X), . . . ,
n(X)) is a tuple of polynomials over Zp[X] and x is a
vector of integers then R(x) := (
1(x), . . . ,
n(x)). Let Z

(≤d)
p [X] be the set of

degree-≤ d polynomials over Zp. For a matrix U , let U i be its ith row, U (j) be
its jth column. Let a◦b denote the component-wise product of two vectors a and
b, (a◦b)i = aibi. Let a1// . . . //an =

(
a1
...
an

)
denote the vertical concatenation of

vectors ai. λ is the security parameter, and 1λ denotes its unary representation.
PPT denotes probabilistic polynomial-time. For an algorithm A, range(A) is the
range of A, i.e., the set of valid outputs of A, RNDλ(A) denotes the random tape
of A (assuming the given value of λ), and r ←$ S denotes the uniformly random
choice of a randomizer r from the set/distribution S.

Interpolation. Assume ν is a power of two, and let ω be the νth primitive root
of unity modulo p. Such ω exists, given that ν | (p − 1). Then,

– �(X) :=
∏ν

i=1(X − ωi−1) = Xν − 1 is the unique degree ν monic polynomial
such that �(ωi−1) = 0 for all i ∈ [1 .. ν].

– For i ∈ [1 .. ν], �i(X) is the ith Lagrange basis polynomial, i.e., the unique
degree ν − 1 polynomial s.t. �i(ωi−1) = 1 and �i(ωj−1) = 0 for i �= j. Clearly,
�i(X) := �(X)/(�′(ωi−1)(X − ωi−1)) = (Xν − 1)ωi−1/(ν(X − ωi−1)).

Moreover, (�j(ωi−1))ν
i=1 = ej (the jth unit vector) and (�(ωi−1))ν

i=1 = 0ν .

Bilinear Pairings. Let ν be an integer parameter (the circuit size in our appli-
cation). A bilinear group generator Pgen(1λ, ν) returns (p, G1, G2, GT , ê,P1,P2),
where G1, G2, GT are three additive cyclic groups of prime order p, ê : G1×G2 →
GT is a non-degenerate efficiently computable bilinear pairing, and Pι is a fixed
generator of Gι. We assume PT = ê(P1,P2). We require the bilinear pairing to be
Type-3, i.e., there is no efficient isomorphism between G1 and G2. For efficient
interpolation, we assume that p is such that ν | (p − 1). When emphasizing effi-
ciency is not important, we drop the parameter ν and just write p ← Pgen(1λ).
We use additive notation together with the standard elliptic-curve “bracket”
notation. Namely, we write [a]ι to denote aPι, and [a]1•[b]2 to denote ê([a]1, [b]2).
We use freely the bracket notation together with matrix notation, e.g., if AB = C
as matrices then [A]1 • [B]2 = [C]T .

Uber-Assumption. The following assumption is a special case of the more general
uber-assumption of [7,11].

Definition 1 ([7,11]). Let p ← Pgen(1λ). Let R, S, and T be three
tuples of bivariate polynomials from Zp[X,Y]. Let f be a bivariate polyno-
mial from Zp[X,Y]. The (R,S, T , f)-computational uber-assumption for Pgen
in group Gι, where ι ∈ {1, 2, T}, states that for any PPT adversary A,
Advuber

Pgen,R,S,T ,f,A(λ) = negl(λ), where Advuber
Pgen,R,S,T ,f,A(λ) :=

Pr
[
p ← Pgen(1λ);χ, y ←$ Z

∗
p; ck ← ([R(χ, y)]1, [S(χ, y)]2, [T (χ, y)]T) :

A(ck) = [f(χ, y)]ι

]

.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 693

[7,11] considered the general case of c-variate polynomials for any c. In our case,
T = ∅; then, we have an (R,S, f)-computational uber-assumption in Gι.

Importantly [7,11], (i) if f(X,Y) is not in the span of {
(X,Y)} then the
(R,S, T , f)-computational uber-assumption for G1 holds in the generic group
model, and (ii) if f(X,Y) is not in the span of {
(X,Y)σ(X,Y)+τ(X,Y)} then
the (R,S, T , f)-computational uber-assumption for GT is difficult in the generic
group model. We will only invoke the uber-assumption in the case f(X,Y) is
not in the span of {
(X,Y)}.

QAP. Let R = {(z,wit)} be a relation between statements and witnesses.
Quadratic Arithmetic Program (QAP) was introduced in [20] as a language
where for an input z and witness wit, (z,wit) ∈ R can be verified by using a par-
allel quadratic check. QAP has an efficient reduction from the (either Boolean
or Arithmetic) Circuit-SAT. Thus, an efficient zk-SNARK for QAP results in
an efficient zk-SNARK for Circuit-SAT.

We consider arithmetic circuits that consist only of fan-in-2 multiplication
gates, but either input of each multiplication gate can be any weighted sum of
wire values, [20]. Let μ0 < μ be a non-negative integer. In the case of arithmetic
circuits, ν is the number of multiplication gates, μ is the number of wires, and
μ0 is the number of public inputs.

Let F = Zp, such that ω is the ν-th primitive root of unity modulo p. This
requirement is needed for the sake of efficiency, and we will make it implicitly
throughout the paper. However, it is not needed for the new SFC to work. Let U ,
V , and W be instance-dependent matrices and let a be a witness. A QAP is char-
acterized by the constraint Ua ◦ V a = Wa. Let La(X) :=

∑ν
i=1 ai�i(X) be the

interpolating polynomial of a = (a1, . . . , aν)� at points ωi−1, with La(ωi−1) =
ai. For j ∈ [1 .. μ], define uj(X) := LU (j)(X), vj(X) := LV (j)(X), and
wj(X) := LW (j)(X) to be interpolating polynomials of the jth column of the cor-
responding matrix. Thus, uj , vj , wj ∈ Z

(≤ν−1)
p [X]. Let u(X) =

∑μ
j=1 ajuj(X),

v(X) =
∑μ

j=1 ajvj(X), and w(X) =
∑μ

j=1 ajwj(X). Then Ua ◦ V a = Wa iff
�(X) | u(X)v(X) − w(X) iff u(X)v(X) ≡ w(X) (mod �(X)) iff there exists a
polynomial H(X) such that u(X)v(X) − w(X) = H(X)�(X).

A QAP instance Iqap is equal to (Zp, μ0, {uj , vj , wj}μ
j=1). Iqap defines the

following relation:

RIqap =

{
(z,wit) : z = (a1, . . . , aμ0)

� ∧ wit = (aμ0+1, . . . , aμ)�∧
u(X)v(X) ≡ w(X) (mod �(X))

}

, (1)

where u(X), v(X), and w(X) are as above. Alternatively, (z,wit) ∈ R if there
exists a (degree ≤ ν −2) polynomial H(X), s.t. the following key equation holds:

χ(X) := u(X)v(X) − w(X) − H(X)�(X) = 0 . (2)

On top of checking Eq. (2), the verifier also needs to check that u(X), v(X),
and w(X) are correctly computed: that is, (i) the first μ0 coefficients aj in u(X)

694 H. Lipmaa and K. Pavlyk

are equal to the public inputs, and (ii) u(X), v(X), and w(X) are all computed
by using the same coefficients aj for j ≤ μ.

Since both the committer and the verifier have inputs, we will use a variation
of QAP that handles public inputs differently (see Sect. 3). In particular, we will
use different parameters instead of μ0.

SNARKs. Let R be a relation generator, such that R(1λ) returns a polynomial-
time decidable binary relation R = {(z,wit)}. Here, z is a statement, and wit is a
witness. R also outputs the system parameters p that will be given to the honest
parties and the adversary. A non-interactive zero-knowledge (NIZK) argument
system Ψ = (Kcrs,P,V,Sim) for R consists of four PPT algorithms:

CRS generator: Kcrs is a probabilistic algorithm that, given (R, p) ∈
range(R(1λ)), outputs (crs, td) where crs is a CRS and td is a simulation
trapdoor. Otherwise, it outputs a special symbol ⊥.

Prover: P is a probabilistic algorithm that, given (R, p, crs, z,wit) for (z,wit) ∈
R, outputs an argument π. Otherwise, it outputs ⊥.

Verifier: V is a probabilistic algorithm that, given (R, p, crs, z, π), returns either
0 (reject) or 1 (accept).

Simulator: Sim is a probabilistic algorithm that, given (R, p, crs, td, z), outputs
an argument π.

A NIZK argument system must satisfy completeness (an honest verifier accepts
an honest prover), knowledge-soundness (if a prover makes an honest verifier
accept, then one can extract from the prover a witness wit), and zero-knowledge
(there exists a simulator that, knowing CRS trapdoor but not the witness, can
produce accepting statements with the verifier’s view being indistinguishable
from the view when interacting with an honest prover). See the full version [34]
for formal definitions. A SNARK (succinct non-interactive argument of knowl-
edge, [20,23,24,31–33]) is a NIZK argument system where the argument is sub-
linear in the input size.

Functional Commitment Schemes. Let D be some domain. In a functional com-
mitment scheme for a circuit C : Dμα ×Dμβ → Dκ, one first commits to a vector
α ∈ Dμα , obtaining a functional commitment C. The goal is to allow the com-
mitter to later open C to ξ = C(α,β) ∈ Dκ, where β ∈ Dμβ is a public input
that is chosen by the verifier before the opening. We generalize the notion of
functional commitment, given in [29], from inner products to arbitrary circuits.
Compared to [29], we also provide a stronger hiding definition.

Let CC be a class of circuits C : Dμα ×Dμβ → Dκ. A functional commitment
scheme FC for CC is a tuple of four (possibly probabilistic) polynomial time
algorithms (KC, com, open,V), where

Commitment-key generator: KC(1λ, C) is a probabilistic algorithm that,
given a security parameter λ ∈ N and a circuit C ∈ CC, outputs a com-
mitment key ck and a trapdoor key tk. We implicitly assume 1λ and C are
described by ck.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 695

Commitment: com(ck,α; r) is a probabilistic algorithm that takes as input
the commitment key ck, a message vector α ∈ Dμα and some randomizer r.
It outputs (C,D), where C is a commitment to α and D is a decommitment
information. We denote the first output C of com(ck;α; r) by com1(ck;α; r).

Opening: open(ck, C,D,β) is a deterministic algorithm that takes as input the
commitment key ck, a commitment C (to α), a decommitment information
D, and a vector β ∈ Dμβ . Assume that the ith output value of the circuit
C is Fi(α,β), where Fi is a public function. It computes an opening opξ to
ξ = F(α,β) := (Fi(α,β))κ

i=1.
Verification: V(ck, C, opξ ,β, ξ) is a deterministic algorithm that takes as input

the commitment key ck, a commitment C, an opening opξ , a vector β ∈ Dμβ ,
and ξ ∈ Dκ. It outputs 1 if opξ is a valid opening for C being a commitment
to some α ∈ Dμα such that Fi(α,β) = ξ and outputs 0 otherwise.

Security of FC. Next, we give three definitions of the hiding property for FC
schemes of increasing strength. The first definition corresponds to the definition
of hiding given in [29] and essentially states that commitments do not reveal
any information about α. The other two definitions seem to be novel at least in
the context of general FC. We provide all three definitions, since in some appli-
cations, a weaker definition might be sufficient. Moreover, the third definition
(zero-knowledge) makes only sense in the CRS model; in a CRS-less model, one
can rely on the open-hiding property.

Definition 2 (Perfect com-hiding). A functional commitment scheme FC =
(KC, com, open,V) for circuit class CC is perfectly hiding if for any λ, C ∈ CC,
(ck, tk) ← KC(1λ, C), for all α1,α2 ∈ Dμα with α1 �= α2, the two distributions
δ1 and δ2 are identical, where

δb := {(ck, Cb) : r ←$RNDλ(com); (Cb,Db) ← com(ck,αb; r)} .

The open-hiding property is considerably stronger, stating that the commitment
and the openings together do not reveal more information on α than the values
C(α,βi) on queried values βi. Trivial non-succinct FC schemes, where one uses
a perfectly-hiding commitment scheme to commit to β, and then in the opening
phase, opens the whole database, are com-hiding but not open-hiding.

Definition 3 (Perfect open-hiding). A functional commitment scheme FC =
(KC, com, open,V) for circuit class CC is perfectly open-hiding if for any λ, C ∈
CC, (ck, tk) ← KC(1λ, C), for all α1,α2 ∈ Dμα with α1 �= α2, and Q = poly(λ)
of βi such that C(α1,βi) = C(α2,βi) for all i ≤ Q, the two distributions δ1 and
δ2 are identical, where δb :=

{(ck, Cb, {open(ck, Cb,Db,βi)}) : r ←$RNDλ(com); (Cb,Db) ← com(ck,αb; r)} .

Finally, zero-knowledge FC schemes have simulation-based hiding. While
simulation-based security is a gold standard in cryptography, it is usually more
complicated to achieve than game-based security. In particular, one needs to
have a trusted ck (and its trapdoor) to achieve zero-knowledge. We will leave it

696 H. Lipmaa and K. Pavlyk

as an open problem whether one can use instead the much weaker bare public
key (BPK) model, by using the techniques of [1,2,4,18]. Note that [33] showed
that their SNARKs are all secure in the BPK model.

Definition 4 (Perfect zero-knowledge). An FC scheme FC = (KC, com,
open,V) for CC is perfectly zero-knowledge if there exists a PPT simulator
Sim, such that for all λ, all C ∈ CC, (ck, tk) ← KC(1λ, C), for all α ∈ Dμα , for
any poly-size set of βi, δ0 and δ1 are identical, where

δ0 :={(ck, C, {open(ck, C,D,βi)}) : r ←$RNDλ(com); (C,D) ← com(ck,α; r)} ,

δ1 :={(ck,Sim(ck, td, {βi}, {C(α,βi)}))} .

Next, we will define evaluation-binding. Evaluation-binding can be weaker than
binding, but sometimes the two notions are equivalent. (Consider the case of the
inner product when the adversary asks the committer to open a commitment
for β = ei for each i). In the context of FC schemes, evaluation-binding is the
distinguishing security notion.

Definition 5 (Computational evaluation-binding). A functional commit-
ment scheme FC = (KC, com, open,V) for circuit class CC is computationally
evaluation-binding if for any λ, C ∈ CC, and a non-uniform PPT adversary A,
Advbind

FC,λ,C,A(λ) = negl(λ), where Advbind
FC,λ,C,A(λ) :=

Pr

[
(ck, tk) ← KC(1λ, C); (C,β, ξ, opξ , ξ̃, õpξ) ← A(ck) : β ∈ Dμβ ∧
ξ �= ξ̃ ∈ Dκ ∧ V(ck, C, opξ ,β, ξ) = V(ck, C, õpξ ,β, ξ̃) = 1

]

.

An FC scheme is succinct (SFC), if both the commitments and openings have
length that is polylogarithmic in |α| and |β|.

3 The New SFC Scheme

In this section, we will construct a succinct functional commitment (SFC) scheme
for (almost) all polynomial-size arithmetic circuits by mixing techniques from
SNARKs with original ideas, needed to construct a SFC scheme. Let F be a
fixed vector function that takes inputs from two parties, the committer and the
verifier. Let αj be private inputs of the committer, used when committing. Let
βj be public inputs of the verifier, used when opening the commitment.

Let C be an arithmetic circuit that inputs αj and βj and computes F(α,β) =
(Fi(α,β))κ

i=1, where α is the private input of the committer and β is chosen
by the verifier, possibly only later. We compile C to a circuit C∗ that consists of
four subcircuits Cφ, Cψ, Cχ and Cξ. We need the division to four subcircuits to
prove evaluation-binding; we will give more details later.

After that, we use the QAP-representation [20] (more precisely, the app-
roach of [33]) of arithmetic circuits, obtaining polynomials A(X,Y), B(X,Y)
(the “commitment polynomials” to all left/right inputs of all gates of C∗, corre-
spondingly), and C(X,Y) (the “opening polynomial”), such that C(X,Y) is in

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 697

the linear span of the “polynomial commitment key” ck1 = (
(X,Y) :
 ∈ R)
if and only if the committer was honest. The circuit compilation allows us to
divide the polynomials to “private” parts (transmitted during the commitment)
and “public” parts (trasmitted during the opening), such that one can, given two
different openings for the same commitment, break a computational assumption.
We then use SNARK-based techniques to construct the SFC for C∗ with succinct
commitment and opening. We postpone security proofs to Sect. 5; we currently
emphasize that the evaluation-binding proof is novel (in particular, not related
to the knowledge-soundness proofs of SNARKs at all).

Circuit Compilation. Let C be a polynomial-size arithmetic circuit that, on
input (α,β), outputs ξ = F(α,β) = (Fi(α,β))κ

i=1. We compile C to a compiled
circuit C∗, see Fig. 1, that consists of the public subcircuits Cφ, Cψ, Cχ, and Cξ

that are combined as follows. In the commitment phase, the committer uses the
circuit Cφ to compute a number of polynomials φi(α) depending on only 1 and
α. More precisely, φ(α) = (φ1(α), . . . , φμφ

(α)) denotes the set of the outputs
of all (including intermediate) gates in Cφ (the same is the case of other circuits
and corresponding polynomials). The commitment depends only on 1, α, and
φ(α). In the opening phase, the verifier sends β to the committer, who uses the
circuit Cψ to compute some polynomials ψi(β) depending on 1 and β. This part
of the computation is public and can be redone by the verifier.

After that, the committer uses the circuit Cχ to compute a number of
polynomials χi(α,β) from the inputs and outputs of Cφ and Cψ, i.e., from
(1,α,β,φ(α),ψ(β)). Cχ has multiplicative depth 1, and thus, w.l.o.g., each
χi(α,β) is a product of some φj(α) with some ψk(β). Finally, the committer
uses Cξ to compute the outputs Fi(α,β) of C∗. We will explain the need for such
compilation after Eqs. (7) and (8). We will summarize all actual restrictions on
the circuits in Theorem 1. In the introduction, we gave an intuitive explanation
of how this compilation reduces the circuit class that we can handle. See Sect. 4
for an additional discussion on the power of this circuit class.

Next, let a ∈ Z
μ
p be the value of all wires of C∗. We write

a = 1//α//φ(α)//β//ψ(β)//χ(α,β)//F(α,β) . (3)

Here, α ∈ Z
μα
p , φ(α) ∈ Z

μφ
p , β ∈ Z

μβ
p , ψ(β) ∈ Z

μψ
p , χ(α,β) ∈ Z

μχ
p , and

F(α,β) ∈ Z
κ
p . Thus, μ = 1+μα+μβ+μφ+μψ+μχ+κ. To use the RC1S approach,

we construct matrices U , V , and W , such that Ua ◦ V a = Wa iff C∗ is correctly
computed. Let α∗ = (1//α//φ(α)) ∈ Z

1+μα+μφ
p and β∗ = (1//β//ψ(β)) ∈

Z
1+μβ+μψ
p . First, we define R1CS-matrices Uφ, Uψ, Uχ, Uξ, Vφ, Vψ, Vχ such that

(various subcircuits of) C∗ are correctly computed iff

Uφα∗ ◦ Vφα∗ = φ(α) , Uψβ∗ ◦ Vψβ∗ = ψ(β) ,

Uχ

(
α∗
β

ψ (β)

)

◦ Vχ

(
α∗
β

ψ (β)

)

= χ(α,β) , Uξχ(α,β) ◦ 1 = F(α,β) .
(4)

698 H. Lipmaa and K. Pavlyk

Here, Uφ, Vφ ∈ Z
μφ×(1+μα+μφ)
p , Uψ, Vψ ∈ Z

μψ×(1+μβ+μψ)
p , Uχ, Vχ ∈

Z
μχ×(1+μα+μβ+μφ+μψ)
p , and Uξ ∈ Z

κ×μχ
p . In particular,

Fi(α,β) =
∑μχ

j=1 Uξijχj(α,β) , i ∈ [1 .. κ] . (5)

Next, we define U, V,W ∈ Z
ν×μ
p , as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 α φ
(α

)

β ψ
(β

)

χ
(α

,β
)

F
(α

,β
)

Uφ

Uψ Uψ

Uχ

Uξ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 α φ
(α

)

β ψ
(β

)

χ
(α

,β
)

F
(α

,β
)

Vφ

Vψ Vψ

Vχ

1κ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 α φ
(α

)

β ψ
(β

)

χ
(α

,β
)

F
(α

,β
)

Iμφ

Iμψ

Iμχ

Iκ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6)
correspondingly. Clearly, ν := μφ + μψ + μχ + κ. Here, we labeled vertically
each column of each matrix by the supposed value of the corresponding coeffi-
cients of a = 1//α// . . . //F(α,β). Some submatrices (Uψ and Vψ) are divided
between non-continuous areas. The empty submatrices are all-zero in the com-
piled instance. Clearly, Ua ◦ V a = Wa iff Eq. (4) holds.

QAP Representation. Recall that �i(X) ∈ Z
(≤ν−1)
p [X], i ∈ [1 .. ν], interpo-

lates the ν-dimensional unit vector ei. To obtain a QAP representation of the
equation Ua ◦ V a = Wa, we use interpolating polynomials; e.g., uj(X) inter-
polates the jth column of U . (See Sect. 2.) To simplify notation, we introduce
polynomials like uφj(X) and uχj(X), where say uχj(X) interpolates (all ν rows
of the) the jth column of the ν × (1 + μα + μβ + μφ + μψ) submatrix of U
that contains Uχ. E.g., uχj(X) interpolates the jth column of Uχ (preceded and
followed by 0 rows), uχj(X) =

∑μχ

i=1 Uχij�μφ+μψ+i(X).
We divide the polynomials u(X) and v(X) into two addends: one polynomial

(us, vs, resp.) that depends on α but not on β, and another polynomial (up, vp,
resp.) that depends on public values (β and {Fi(α,β)}) but not on α otherwise.
Such a division is possible due to the way C∗ is composed from the subcircuits.
Thus, u(X) =

∑μ
j=1 ajuj(X) = us(X) + up(X) and v(X) =

∑μ
j=1 ajvj(X) =

vs(X) + vp(X), where

us(X) =
∑μα+μφ+1

j=2 ajuj(X)

=
∑μα

j=1 αj(uφ,1+j(X) + uχ,1+j(X))+
∑μφ

j=1 φj(α)(uφ,1+μα+j(X) + uχ,1+μα+j(X)) ,

up(X) =u1(X) +
∑μ

j=μα+μφ+2 ajuj(X)

=u1(X) +
∑μβ

j=1 βj(uψ,1+j(X) + uχ,1+μα+μφ+j(X))+
∑μψ

j=1 ψj(β)(uψ,1+μβ+j(X) + uχ,1+μα+μφ+μβ+j(X))+
∑μχ

j=1 χj(α, β)uξ,1+j(X)
︸ ︷︷ ︸
=

∑κ
i=1 Fi(α ,β)�ν−κ+i(X)

,

(7)

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 699

and
vs(X) =

∑μα+μφ+1

j=2 ajvj(X)

=
∑μα

j=1 αj(vφ,1+j(X) + vχ,1+j(X))+
∑μφ

j=1 φj(α)(vφ,1+μα+j(X) + vχ,1+μα+j(X)) ,

vp(X) = a1v1(X) +
∑μ

j=μα+μφ+2 ajvj(X)

= v1(X) +
∑μβ

j=1 βj

(
vψ,1+j(X) + vχ,1+μα+μφ+j(X)

)
+

∑μψ

j=1 ψj(β)(vψ,1+μβ+j(X) + vχ,1+μα+μφ+μβ+j(X)) .

(8)

(In particular, recall that a1 = 1.) Here, u1(X) = uφ1(X) + uψ1(X) + uχ1(X)
and v1(X) = vφ1(X)+ vψ1(X)+ vχ1(X)+

∑κ
i=1 �ν−κ+i(X). The concrete shape

of all these polynomials follows from Eqs. (3) and (6).
In Theorems 2 and 3 (see their claims and proofs), we will need several

conditions to hold. Next, we will state and prove that these conditions hold for
C∗. One can observe directly that most of the guarantees, given by C∗ about
the shape of U, V,W , are actually required by the following conditions. Since
the addition of the circuit Cξ is essentially for free (it only means the addition
of κ gates), many of the following conditions are very easy to satisfy; we will
denote such conditions by a superscript + as in (a)+. We emphasize that the
only restrictive conditions are Items i and j that basically state that Cχ can only
have multiplicative depth 1. (See Remark 1 for discussion.) That is, the new SFC
scheme will work for all circuits C that have a polynomial-size compiled circuit
C∗, such that Cχ has multiplicative depth 1.

Theorem 1. Let C be an arithmetic circuit and let C∗ be its compiled version,
so that U, V,W are defined as in Eq. (6). Then the following holds.

(a)+ For j ∈ [1 .. μ − κ]: if W (j) = 0 then Uν−κ+i,j = 0 for i ∈ [1 .. κ].
(b)+ For I ∈ [1 .. κ] and j ∈ [1 .. μ − κ], Wν−κ+I,j = 0.
(c)+ For j ∈ [2 .. 1 + μα + μφ], vφj(X), vχj(X) are in the span of (�i(X))ν−κ

i=1 .
(d)+ For j ∈ [2 + μα + μφ .. μ], v1(X) −

∑κ
i=1 �ν−κ+i(X) and vj(X) are in the

span of (�i(X))ν−κ
i=1 .

(e)+ For j ∈ [μ − κ .. μ], U (j) = 0.
(f)+ For j ∈ [μ − κ .. μ], V (j) = 0.
(g)+ For i ∈ [1 .. κ], wμ−κ+i(X) = �ν−κ+i(X).
(h) The set of non-zero W (j), j ∈ [1 .. μ − κ], is linearly independent.
(i) For j ∈ [μ − μχ − κ + 1 .. μ − κ], Uij = 0 if i ≤ ν − κ, while the last κ rows

of this column range define a matrix Uξ that satisfies Eq. (4).
(j) For j ∈ [μ − μχ − κ + 1 .. μ − κ], V (j) = 0.

Proof. First, we summarize the requirements, denoting each submatrix of U , V ,
and W by the number of condition that ascertains that this submatrix is 0 (or
has a well-defined non-zero form); moreover, Item h states that the columns of
W , that contain identity matrices, are linearly independent. That is, U, V,W =

700 H. Lipmaa and K. Pavlyk

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 α φ
(α

)

β ψ
(β

)

χ
(α

,β
)

F
(α

,β
)

Uφ i e
Uψ Uψ i e

Uχ i e
a a a Uξi e

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 α φ
(α

)

β ψ
(β

)

χ
(α

,β
)

F
(α

,β
)

Vφ j f
Vψ Vψ j f

Vχ j f
1κd c c d d dj df

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 α φ
(α

)

β ψ
(β

)

χ
(α

,β
)

F
(α

,β
)

Iμφ
g

Iμψ
g

Iμχ
g

b b b b b b Iκg

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Item a: follows since W (j) = 0 in the columns labeled by 1, α and β, and
the last rows of U in all these columns are equal to 0, according to Eq. (6).

Item b: obvious from W in Eq. (6).
Item c: follows since the last rows of V , corresponding to columns labeled

by α and β, are equal to 0.
Item d: follows since the last rows of V , corresponding to columns labeled

by β, ψ(β), χ(α,β), and F(α,β), are equal to 0, and the last rows of V (1) are
equal to 1κ.

Items e to g, i and j: follows from direct observation.
Item h: follows from the fact that W (j) = 0 for some columns j, and the

submatrix of W that consists of the rest of the columns is an identity matrix. ��

Remark 1. The compiled circuit C∗ satisfies some conditions, not required by
Theorem 1. First, by Item h, the set of non-zero W (j) has to be linearly inde-
pendent (not necessarily an identity matrix), while in Eq. (6), the corresponding
columns constitute an identity matrix. Second, by Item a, last rows of U (j) need
to be zero only if W (j) is 0; one can insert dummy gates to C∗ such that W has no
zero columns. This essentially just corresponds to the fact that we start with an
arithmetic circuit and each constraint is about a concrete gate being correctly
evaluated. Third, several submatrices of U, V,W are all-zero in our template
while there is no actual need for that. For example, Uξ can be generalized, and
Uφ and Uψ can also both depend on α and β. For the sake of simplicity, we stick
to the presented compilation process, and leave the possible generalizations to
future work.

SNARK-Related Techniques. Next, we follow [33] to derive polynomials
related to the SNARK, underlying the new SFC. We simplify the derivation a
bit, and refer to [33] for full generality. Let A(X,Y) = ra+u(X)Y and B(X,Y) =
rb + v(X)Y for ra, rb ←$ Zp. ([33] considered the general case where A(X,Y) =
raY α+u(X)Y β and B(X,Y) = rbY

α+v(X)Y β for some small integers α, β to be
fixed later). The addends ra and rb are needed to protect the secret information
hidden by A(X,Y) and B(X,Y), and we use the indeterminate Y to simplify
the security proofs. As with u and w, we divide the polynomials A,B,C into two
addends: (i) a polynomial (As,Bs, Csp), where As and Bs depend on α but not
on β while Csp depends on both α and β, and (ii) a polynomial (Ap,Bp,Cp,
resp.) that depends on public values (β and {Fi(α,β)}) but not on α otherwise.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 701

(Such a division was not possible in [33] since there one did not work with a
compiled circuit C∗.) Then,

As(X,Y) = ra + us(X)Y , Ap(X,Y) = up(X)Y ,

Bs(X,Y) = rb + vs(X)Y , Bp(X,Y) = vp(X)Y .
(9)

For integer constants δ and η that we will fix later, define

C(X,Y) = (A(X,Y) + Y δ)(B(X,Y) + Y η) − Y δ+η

= (ra + u(X)Y + Y δ)(rb + v(X)Y + Y η) − Y δ+η

= ra(v(X)Y + Y η) + rb(A(X,Y) + Y δ) + (u(X)v(X) − w(X))Y 2+

u(X)Y η+1 + v(X)Y δ+1 + w(X)Y 2

= ra(v(X)Y + Y η) + rb(A(X,Y) + Y δ) + H(X)�(X)Y 2+

u(X)Y η+1 + v(X)Y δ+1 + w(X)Y 2 ,

where the last equation holds iff the committer is honest (see Eq. (2)). Intuitively,
we want that a committer must be able to compute C(X,Y) iff he was honest.

Following [33], the inclusion of Y δ and Y η in the definition of C(X,Y) serves
two goals. First, it introduces the addend u(X)Y η+1 + v(X)Y δ+1 + w(X)Y 2 =∑μ

j=1 aj(uj(X)Y η+1+vj(X)Y δ+1+wj(X)Y 2) that makes it easier to verify that
P uses the same coefficients αj when computing [A]1, [B]2, and [C]1. Second, the
coefficient of Y 2 is u(X)v(X) − w(X) that divides by �(X) iff the committer is
honest. That is, the coefficient of Y 2 is H(X)�(X) for some polynomial H(X)
iff the prover is honest and thus ξ = F(α,β).

Let γ be another small integer, fixed later. Let C(X,Y) = Csp(X,Y) +
Cp(X,Y)Y γ , where Cp(X,Y) depends only on ξ. (In [33], Csp(X,Y) was multi-
plied with Y α but here α = 0.) The factor Y γ is used to “separate” the public
and the secret parts. In the honest case,

Csp(X, Y) = ra(v(X)Y + Y η) + rb(A(X, Y)Y + Y δ)+

H(X)�(X)Y 2 +
∑μ−κ

j=1 aj(uj(X)Y η+1 + vj(X)Y δ+1 + wj(X)Y 2) ,

Cp(X, Y) =
∑μ

j=μ−κ+1 aj(uj(X)Y η+1−γ + vj(X)Y δ+1−γ + wj(X)Y 2−γ)

=
∑κ

i=1 Fi(α , β)(uμ−κ+i(X)Y η+1−γ + vμ−κ+i(X)Y δ+1−γ + wμ−κ+i(X)Y 2−γ) .

Intuitively, the verifier checks that Csp(X,Y) is correctly computed by checking
that V(X,Y) = 0, where

V(X,Y) := (As(X,Y) + Ap(X,Y) + Y δ)(Bs(X,Y) + Bp(X,Y) + Y η)

− (Csp(X,Y) + Cp(X,Y)Y γ) − Y δ+η .

Here, (As,Bs) (the part of (A,B) that only depends on private information)
is the functional commitment, Csp is the opening, and Ap, Bp, and Cp can be
recomputed by the verifier given public information.

702 H. Lipmaa and K. Pavlyk

Fig. 2. SNARK-based SFC scheme FCC
sn for arithmetic circuit C

The New SFC Scheme FCsn: Details. We are now ready to describe the new
succinct functional commitment scheme FCsn, see Fig. 2. Here, instead of operat-
ing with bivariate polynomials like A(X,Y), one operates with their encodings
like [As(χ, y)]ι in the source groups, where χ and y are secret trapdoors. The
commitment key of the SFC scheme contains the minimal amount of information

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 703

needed to perform commitment, opening, and verification by honest parties. The
expression of ck in KC has a generic form; one can replace the polynomials uj(X),
vj(X), wj(X) with their values evident from Eq. (6). Finally, �j(X) (and thus
also uj(X), vj(X), and wj(X)) has degree ν − 1 and can thus be computed
from (Xi)ν−1

i=0 , while �(X) has degree ν. We explain in the correctness proof of
Theorem 3 how to compute [Baux

i (χ, y)]1.
Note that FCsn can also be seen as a SNARK proving that F(α,β) = ξ, if

we let the prover to compute [Ap]1, [Bp]2, and [Cp]1.

Instantiation. Let C be a fixed circuit. Let R and S be two sets of bivari-
ate polynomials, such that the commitment key of FCC

sn is equal to ck =
([R(χ, y)]1, [S(χ, y)]2). Similarly to [33], let

Mon1 = {0, 1, 2, 2 − γ, δ, δ + 1, δ + 1 − γ, η, η + 1, η + 1 − γ} (10)

be the set of exponents of Y in all polynomials from R. Let Crit = {2, η + 1}
and Crit = Mon1 \ Crit. For the evaluation-binding proof to hold, we need to fix
values of γ, δ, η ∈ Zp, such that the coefficients from Crit are unique, i.e.,

2, η + 1 �∈ {0, 1, 2 − γ, δ, δ + 1, δ + 1 − γ, η, η + 1 − γ} and η + 1 �= 2 .
(11)

That is, Crit ∩ Crit = ∅ and |Crit| = 2. It follows from Theorem 1 that the
polynomial fi(X,Y) := �ν−κ+i(X)Y η+1, i ∈ [1 .. κ], does not belong to span(R).

We will later consider two different evaluations for γ, δ, and η. Replacing γ,
δ, and η with 1, 0, and 3 guarantees that Eq. (11) holds (see Theorem 2, Item
1, for more). Then,

ck =

⎛

⎜
⎜
⎝

[1, (χiy)ν−1
i=0 , y3, (χi�(χ)y2)ν−2

i=0 , (uj(χ)y
4 + vj(χ)y

1 + wj(χ)y
2)μ−κ

j=1]1,

[(uμ−κ+i(χ)y
3 + vμ−κ+i(χ)y

0 + wμ−κ+i(χ)y
1)κi=1, y

0]1,

[1, (χiy)ν−1
i=0 , y1, y3]2, [y

3]T

⎞

⎟
⎟
⎠ .

In this case, the ck has one element (namely, [1]1) twice, and thus ck can be
shortened by one element.

Alternatively, replacing γ, δ, and η with 4, 0, and 7 (this choice is sufficient
for the evaluation-binding reduction to uber-assumption in GT to work and will
be explained in Theorem 2, Item 2), we get

ck =

⎛

⎜
⎜
⎝

[1, (χiy)ν−1
i=0 , y7, (χi�(χ)y2)ν−2

i=0 , (uj(χ)y
8 + vj(χ)y

1 + wj(χ)y
2)μ−κ

j=1]1,

[(uμ−κ+i(χ)y
4 + vμ−κ+i(χ)y

−3 + wμ−κ+i(χ)y
−2)κi=1, y

0]1,

[1, (χiy)ν−1
i=0 , y4, y7]2, [y

7]T

⎞

⎟
⎟
⎠ .

Then, ck has one element ([1]1) twice, and thus it can be shortened.

Efficiency. The CRS length is 1+ ν +1+(ν − 1)+ (μ−κ)+κ+1 = 2ν +μ+2
elements from G1, ν + 3 elements from G2, and 1 element from GT . In the case
of fixed γ, δ and η in the previous two paragraphs, the CRS length will shorten
by 1 element of G1.

704 H. Lipmaa and K. Pavlyk

The functional commitment takes (ν + 1) + κ(ν + 1) = (κ + 1)(ν + 1) expo-
nentiations in G1 and ν + 1 exponentiations in G2. The length of the functional
commitment is κ + 1 elements of G1 and 1 element of G2.

The opening takes μβ +μψ +κ (to compute [Ap]1; note that u1(X) and other
simular polynomials are precomputed), μα +μβ +μφ +μψ (to compute [v(χ)y]1)
and 2 + (ν − 1) + (μ − κ) = ν + μ − κ + 1 (to compute [Csp]1) exponentiations
in G1, in total, ν + μ + μα + 2μβ + μφ + 2μψ + 1 exponentiations. The length of
the opening is 1 element of G1.

The verification takes (μβ + μψ + κ) + κ = μβ + μψ + 2κ (to compute
[Ap,Cp]1) exponentiations in G1, μβ + μψ (to compute [Bp]2) exponentiations
in G2, and 2κ + 3 pairings. Here, we do not count computations (e.g., computa-
tion of [�ν−κ+i(χ)y]1 from [(χiy)ν−1

i=0]1) that are only done once per the CRS.
The real efficiency depends of course significantly on the concrete application.

We will give some detailed examples in the full version [34].

4 On the Circuit Class and Example Applications

Next, we study the power of the implementable circuit class CCΣΠ∀, and we
show that many known functional commitment scheme are for functionalities
that belong to this class, and thus can be implemented by FCsn.

In this section, we assume basic knowledge of the algebraic complexity theory.
See [37] for necessary background. VP is the class of polynomial families {fn},
where fn is an univariate polynomial of poly(n) variables of poly(n) degree that
has an arithmetic circuit of poly(n) size [39]. ΣΠΣ (resp., ΣΠΣΠ) is the class
of depth-3 (resp., depth-4) circuits composed of alternating levels of sum and
product gates with a sum gate at the top [37, Sect. 3.5]. Sparse polynomials are
n-variate polynomials that have poly(n) monomials.

Recall that a compiled circuit C∗ can evaluate a vector polynomial f(α,β) =
(fi(α,β))κ

i=1 iff κ ∈ poly(λ) and each fi can be written as

fi(α,β) =
∑

φj(α)ψk(β) , (12)

where all polynomials φj and ψk are in the complexity class VP, and there
are a polynomial number of additions in the representation Eq. (12) (thus, also
a polynomial number of polynomials φj and ψk). We call such representation
an efficient ΣΠ∀-representation (here, ∀ denotes “any”) of f , and we denote
by CCΣΠ∀ the class of circuits (or vector polynomials) that have an efficient
ΣΠ∀-presentation. Clearly, FCsn can implement f iff f ∈ CCΣΠ∀.

It is clear that all sparse polynomials in VP have an efficient ΣΠ∀-
representation, and thus FCsn can implement all sparse polynomials. However, we
can do more. For example, consider the polynomial f ′(α,β) =

∏n
i=1(α + βi) for

n = poly(λ). Since f ′ has 2n monomials, it is not sparse. However, we can rewrite
f ′ as f ′(α,β) =

∑n
d=0 αdσn−d(β), where σn−d(β) =

∑
T⊆[1 .. n],|T |=d

∏
i∈T βi is

the (n − d)th symmetric polynomial. There exists a ΣΠΣ circuit of size O(n2),

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 705

Table 1. Rewriting the functionalites of various SFC as sparse polynomials

Type μα μβ fi

Inner-product commitment [25,29] n n
∑n

j=1 αjβj

Polynomial commitment [27] n n
∑n−1

j=0 αjβ
j

Vector commitment [12] n 1 αI =
∑n

j=1 αjeIj

Accumulator [3,5] 1 n
∑μα−1

j=0 χα jβ
j

Evaluation-point commitment 1 n
∑n−1

j=0 αjβj

c-variate polynomial commitment [10,36]
(

n+c
c

)
c

∑
αj

∏c
k=1 β

jk
k

due to Ben-Or (see [37, Sect. 3.5]), that computes all n symmetric polynomi-
als in parallel. Thus, f has an efficient ΣΠ∀ -representation, and thus FCsn can
implement at least one non-sparse polynomial.

On the other hand, CCΣΠ∀ ⊆ VP. To see that CCΣΠ∀ � VP, consider
the polynomial f ′′(α,β) =

∏n
i=1(αi + βi) for n = poly (λ). Since f ′′ has 2n

monomials, it is not sparse. Considering βi as coefficients, it also has 2n mono-
mials in α (the case of considering αi as coefficients is dual), and thus any
ΣΠ∀-representation of f ′′ requires at least 2n addition gates. Since f ′′ can be
implemented by a ΠΣ circuit [37], it means ΠΣ �⊂ CCΣΠ∀; however, clearly,
ΠΣ �⊂ CCΣΠ∀ so CCΣΠ∀ is incomparable to ΠΣ. Thus

the class of sparse polynomials � CCΣΠ∀ � VP .

It is an interesting open problem to characterize CCΣΠ∀. Motivated by our
analysis of α′′, it seems we can implement all polynomials f(α,β), where either
the dimension μα of α or the dimension μβ of β is logarithmic in λ. Really, if
μα = O(log λ) then there are at most 2μ

α = poly(λ) possible monomials φi(α) in
α, and thus there exists an efficient ΣΠ∀-representation of f .

Known Types of SFCs as (Semi-)Sparse Polynomials. In Table 1, we
write down the functionalities of several previous known types of SFCs. This
shows that in all such cases, one has a sparse polynomial and thus can use FCsn

to implement them. In none of these cases, one needs the power of non-sparse
semi-sparse polynomials, and we leave it as another open question to find an
application where such power is needed. In the case of the vector commitment
scheme (resp., accumulator), one implements the inner-product scheme with β =
eI (resp., χα (X) =

∏
(X − αi)). In the case of say the polynomial commitment

scheme, β = (1, β, . . . , βn−1) and thus μβ = n.

Aggregation. The next lemma is straightforward.

Lemma 1. Assume that Ci ∈ CCΣΠ∀, where i ∈ [1 .. Q], and Q = poly (λ).
Then their parallel composition C‖ = (C1‖ . . . ‖CQ) ∈ CCΣΠ∀.

706 H. Lipmaa and K. Pavlyk

Proof. Obvious since we can just “parallelize” the representation in Eq. (12). ��

In practice, Lemma 1 is very important since it means that FCsn allows to aggre-
gate a polynomial number of SFCs for which FCsn is efficient. It just results in a
larger circuit C‖(and thus larger parameters like μ and κ. However, as the length
of the commitment in FCsn depends on κ, it means that the commitment stays
succinct when Q < |wit|. On the other hand, the length of the opening will be
one group element, independently of Q.

As a corollary of Lemma 1, we can construct succinct aggregated inner-
product SFCs, accumulators, (multi-point / multi-polynomial) polynomial com-
mitment schemes, vector commitment schemes (including subvector commitment
schmes), but also aggregate all these SFC variants with each other. Due to the
lack of space, we will give more details and examples in the full version [34].

Example: Succinct Aggregated Inner-Product Functional Commit-
ment. In an aggregated SIPFC, the committer commits to α and then opens
it simultaneously to 〈α,βi〉 =

∑n
j=1 αjβij for κ different verifier-provided vec-

tors βi, where i ∈ [1 .. κ]. Assume α and each βi are n-dimensional vectors.
There is no circuit Cφ or Cψ. Given α and βi, Cχ computes κn products
χij(α,β) = αjβij , i ∈ [1 .. κ] and j ∈ [1 .. n], and Cξ sums them together to
obtain κ outputs Fi(α,β) =

∑n
j=1 αjβij . Thus, Uχ = 1κ⊗In ∈ Z

κn×n
p , Vχ = Iκn,

Uξ = In ⊗ 1�
κ ∈ Z

n×κn
p (note that Cχ does not take 1 as an input), and

U =

⎛

⎜
⎜
⎜
⎜
⎝

1 α β χ
(α

,β
)

F
(α

,β
)

Uχ

Uξ

⎞

⎟
⎟
⎟
⎟
⎠

, V =

⎛

⎜
⎜
⎜
⎜
⎝

1 α β χ
(α

,β
)

F
(α

,β
)

Vχ

1

⎞

⎟
⎟
⎟
⎟
⎠

, W =

⎛

⎜
⎜
⎜
⎜
⎝

1 α β χ
(α

,β
)

F
(α

,β
)

Iκn

Iκ

⎞

⎟
⎟
⎟
⎟
⎠

.

Here, ν = κ(n + 1), μ = 1 + n + κn + κn + κ = (κ + 1)n + κ + 1,
As(X,Y) = ra +

∑n
j=1 αjuχj(X)Y , Ap(X,Y) =

∑κ
i=1 〈α,βi〉 �ν−κ+i(X)Y .

Importantly, Bs(X,Y) = 0 (since there is nothing to hide, one can set rb ← 0;
hence, also Baux

i (X,Y) = 0; thus the commitment is only one group element,
[As]1), and Bp(X,Y) =

∑κ
i=1 �ν−κ+i(X)Y +

∑κ
i=1

∑n
j=1 βijvχ,n(i−1)+j(X)Y .

The verifier has to execute 2κ exponentiations in G1 to compute [Ap]1 and [Cp]1,
κn exponentiations in G2 to compute [Bp]2, and 3 pairings. We emphasize that
here, both the functional commitment and the opening will consist of a single
group element. One obtains IPFC by setting κ ← 1; in this case, the verification
executes 2 exponentiations in G1, n exponentiations in G2, and 3 pairings.

Let us briefly compare the resulting non-aggregated IPFC with the IPFC
of [25]. Interestingly, while the presented IPFC is a simple specialization of the
general SFC scheme, it is only slightly less efficient than [25]. Let gι denote the
bitlength of an element of the group Gι. The CRS length is 2ng1 + (n + 1)g2

in [25], and (3(κ + 1) + (4κ + 1)n)g1 + (κ + κn + 3)g2 + 1gT (this shortens to
(5n + 6)g1 + (n + 4)g2 + 1gT when κ = 1) in our case. The commitment
takes n + 1 exponentiations in [25], and n + 2 in our case. Interestingly, a

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 707

straightforward [25] opening takes Θ(n2) multiplications (this can be probably
optimized), while in our case it takes Θ(n log n) multiplications. The verifier
takes n exponentiations in [25], and n + 3 here. The commitment and opening
are both 1 group elements in both schemes. Thus, our generic, unoptimized
scheme is essentially as efficient as the most efficient known prior IPFC, losing
ground only in the CRS length. On the other hand, we are not aware of any
previous aggregated IPFC schemes.

5 Security of FCsn

Next, we prove the security of FCsn. While its correctness and hiding proofs are
straightforward, evaluation-binding is far from it. As before, for a fixed C, let R
and S be two sets of bivariate polynomials, s.t. ck = ([R(χ, y)]1, [S(χ, y)]2). For a
fixed C, in Theorem 3, we will reduce evaluation-binding of FCC

sn to a (R,S, {fi})-
span-uber-assumption in G1, a new assumption that states that it is difficult to
output an element

∑
Δi[fi(χ, y)]1 together with the coefficient vector Δ �= 0,

where fi �∈ span(R). Thus, it is a generalization of the (R,S, ·)-computational
uber-assumption in G1. Importantly, if κ = 1 then it is equivalent to the latter.
To motivate the span-uber-assumption, we will show that it follows from the
more conventional (R,S, f ′

I)-computational uber-assumption (for a related set
of polynomials f ′

i) in GT [7]; see Lemma 2. Thus, for the concrete parameters
R,S, {fi}, and {f ′

i},

uber-assumption in GT ⇒ span-uber-assumption in G1 ⇒ uber-assumption in G1

For the reduction to the PDL and HAK assumptions in the full version [34]
to work, we also prove that fi �∈ span(R) and f ′

i �∈ span(RS); see Theorem 2.
(Intuitively, this is needed for the span-uber-assumptions to be secure in the
generic model.) Each concrete proof (e.g., the proof of correctness, the proof of
evaluation-binding, and the proofs that fi �∈ span(R) and f ′

i �∈ span(RS)) puts
some simple restrictions on the matrices U , V , W . They can usually be satisfied
by slightly modifying the underlying arithmetic circuit.

Definition 6. Let R, S, and T be three tuples of bivariate polynomials over
Zp[X,Y]. Let fi be bivariate polynomial over Zp[X,Y]. The (R,S, T , {fi}κ

i=1)
computational span-uber-assumption for Pgen in group Gι, where ι ∈ {1, 2, T},
states that for any PPT adversary A, Advsetuber

Pgen,R,S,T ,{fi},A(λ) = negl(λ), where
Advsetuber

Pgen,R,S,T ,{fi},A(λ) :=

Pr

⎡

⎢
⎣

p ← Pgen(1λ);χ, y ←$ Z
∗
p;

ck ← ([R(χ, y)]1, [S(χ, y)]2, [T (χ, y)]T);
(Δ ∈ Z

κ
p , [z]ι) ← A(ck) : Δ �= 0 ∧ [z]ι =

∑κ
i=1 Δi[fi(χ, y)]ι

⎤

⎥
⎦ .

If κ = 1 then the (R,S, T , {f}) span-uber-assumption is the same as the
(R,S, T , f1) uber-assumption: in this case the adversary is tasked to output
Zp � Δ �= 0 and Δ[f1(χ, y)]ι which is equivalent to outputting [f1(χ, y)]ι.

We will now show that the used polynomials are linearly independent.

708 H. Lipmaa and K. Pavlyk

Theorem 2. Write ck = ([
(X,Y) :
 ∈ R]1, [σ(X,Y) : σ ∈ S]2) as
in Fig. 2. For i ∈ [1 .. κ], let fi(X,Y) := �ν−κ+i(X)Y η+1 and f ′

i(X,Y) :=
(�ν−κ+i(X))2Y η+2.

1. Assume γ = 1, δ = 0, and η = 3. Assume Items a and h of Theorem 1 hold.
Then fi(X,Y) �∈ span(R) for i ∈ [1 .. κ].

2. Assume γ = 4, δ = 0, η = 7, and that Items a, b and h of Theorem 1 hold.
Then f ′

i(X,Y) �∈ span(RS) for i ∈ [1 .. κ].

Proof. (1: fI �∈ span(R)). Let Mon1 be as in Eq. (10) and Crit = {2, η + 1}.
For the rest of the proof to make sense, as we will see in a few paragraphs, we
need to fix γ, δ, and η so that the coefficients in Mon1 and in Mon1 \ Crit are
different (in particular, the coefficients in Crit are different from each other).
A small exhaustive search shows that one can define γ = 1, δ = 0, η = 3,
as in the claim. This setting can be easily manually verified, by noticing that
Mon1 = {0, 1, 2, 3, 4}, Crit = {2, 4}, and thus Mon1 \ Crit = {0, 1, 3}.

Assume that, for some I, fI(X,Y) = �ν−κ+I(X)Y η+1 belongs to the span
of R. We consider the coefficients of Y i, for i ∈ Crit, in the resulting equality
(for some unknown coefficients in front of the polynomials from R), and derive a
contradiction from this. Thus, we write down an arbitrary linear combination of
polynomials in R as a linear combination of uj(X)Y η+1+vj(X)Y δ+1+wj(X)Y 2,
Xi�(X)Y 2, and T (X,Y), where T (X,Y) is some polynomial with monomials
that do not have Y i for i ∈ Crit. That is,

�ν−κ+I(X)Y η+1 =
∑μ−κ

j=1 t′j(uj(X)Y η+1 + vj(X)Y δ+1 + wj(X)Y 2)+

t(X)�(X)Y 2 + T (X,Y)
(13)

for some t(X) ∈ Zp[X] (thus t(X)�(X)Y 2 encompasses all Xi�(X)Y 2) and inte-
gers t′j .

First, considering only the coefficient of Y 2 in both the left-hand side and
the right hand side of Eq. (13),

∑μ−κ
j=1 t′jwj(X) + t(X)�(X) = 0 .

Due to Item h of Theorem 1, either wj(X) = 0 or t′j = 0 for j ∈ [1 .. μ − κ]. Let
J ⊂ [1 .. μ − κ] be the set of indices j ∈ [1 .. μ − κ] so that wj(X) = 0.

Second, considering only the coefficient of Y η+1 in Eq. (13),

�ν−κ+I(X) =
∑μ−κ

j=1 t′juj(X) =
∑

j∈J t′juj(X) .

Due to Item a of Theorem 1, �ν−κ+I(X) is linearly independent of (the non-zero
elements of) {uj(X)}j∈J , a contradiction. Hence, fI(X,Y) �∈ span(R).

(Item 2: f ′
I �∈ span(RS)). For the proof to make sense, as we will see in a

few paragraphs, we need that the set of critical coefficients Crit′ := {3, η + 2}
(that is different from Crit above) is different from the set Mon′ \ Crit′ all other
coefficients in RS, where Mon′ :=
⎧
⎪⎨

⎪⎩

0, 1, 2, 3, 2 − γ, 3 − γ, γ, γ + 1, γ + 2, δ, 1 + δ, 2 + δ, 1 − γ + δ, 2 − γ + δ,

γ + δ, 1 + γ + δ, η, 2η, η + 1, η + 2,−γ + η + 1,−γ + η + 2, γ + η,

γ + η + 1, δ + η, 1 + δ + η, 1 − γ + δ + η, 1 + 2η, 1 − γ + 2η

⎫
⎪⎬

⎪⎭
.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 709

is defined by Mon′ = Mon1 + Mon2, where Mon1 is as in Eq. (10) and Mon2 =
{0, 1, γ, η} is the set of exponents of Y in all polynomials from S. A small exhaus-
tive search, performed by using computer algebra, shows that one can define
γ = 4, δ = 0, η = 7, as in the claim. This setting can be easily manually verified,
by noticing that Mon′ \ Crit′ = {−3,−2,−1, 0, 1, 2, 4, 5, 6, 7, 8, 11, 12, 14, 15} and
Crit′ = {3, 9}.

Assume now in contrary that f ′
I ∈ span(RS). Then, as in Item 1,

(�ν−κ+I(X))2Y η+2 is in the span of some polynomials containing Y i for i ∈ Crit′

(and we need to quantify the coefficients of these polynomials) and of all other
polynomials. Clearly, the first type of polynomials are in the span of Xi�(X)Y 2

times Y η, Xi�(X)Y 2 times XkY , uj(X)Y η+1 + vj(X)Y δ+1 + wj(X)Y 2 times
Y η, and uj(X)Y η+1 + vj(X)Y δ+1 + wj(X)Y 2 times XkY , for properly chosen
i, j, and k. Thus,

(�ν−κ+I(X))2Y η+2 = t(X)�(X)Y η+2 + t′′(X)�(X)Y 3+
∑μ−κ

j=1 t′
j(X)(uj(X)Y 2η+1 + vj(X)Y δ+η+1 + wj(X)Y η+2)+

∑μ−κ
j=1 t∗

j (X)(uj(X)Y η+2 + vj(X)Y δ+2 + wj(X)Y 3) + T (X, Y)

where t′j(X), t∗j (X), t(X) and t′′(X) are univariate polynomials, and T (X,Y)
is a polynomial that does not contain monomials with Y i, i ∈ Crit′. We now
consider separately the coefficients of Y i in this equation for each i ∈ Crit′ and
derive a contradiction.

First, considering the coefficients of Y 3, we get
∑μ−κ

j=1 t∗j (X)wj(X) +
t′′(X)�(X) = 0. Due to Item h of Theorem 1, either t∗j (X) = 0 or wj(X) = 0 for
1 ≤ j ≤ μ − κ. Let J ⊂ [1 .. μ − κ] be the set of indices j so that wj(X) = 0.

Second, the coefficients of Y η+2 give us

(�ν−κ+I(X))2 =
∑μ−κ

j=1 t∗j (X)uj(X) +
∑μ−κ

j=μα+2 t′j(X)wj(X) + t(X)�(X)

=
∑

j∈J t∗j (X)uj(X) +
∑

j �∈J t′j(X)wj(X) + t(X)�(X) .

Due to Items a, b and h of Theorem 1 (and of the fact that (�ν−κ+i(X))2

has degree 2ν), {(�ν−κ+I(X))2} ∪ {uj(X)}j∈J ∪ {wj(X)}j �∈J ∪ {Xi�(X)}ν−2
i=0 is

linearly independent. Contradiction, and thus f ′
I(X,Y) �∈ span(RS). ��

Next, we show that for the concrete choice of the parameters R, S, fi, and
f ′

i , the span-uber-assumption in G1 is at least as strong as the uber-assumption
in GT . The new assumption may be weaker since the latter assumption argues
about elements in GT , which may not always be possible [26]. However, the proof
of Lemma 2 depends crucially on the concrete parameters.

Lemma 2. (Uber-assumption in GT ⇒ span-uber-assumption). Assume
γ = 4, δ = 0, and η = 7. Let FCC

sn be the SFC scheme for arithmetic circuits
in Fig. 2. Write ck = ([
(X,Y) :
 ∈ R]1, [σ(X,Y) : σ ∈ S]2) as in Fig. 2. For
i ∈ [1 .. κ], let fi(X,Y) := �ν−κ+i(X)Y η+1 and f ′

i(X,Y) := (�ν−κ+i(X))2Y η+2.
If the (R,S, f ′

I) computational uber-assumption holds in GT for each I ∈ [1 .. κ]
then the (R,S, {fi}κ

i=1) computational span-uber-assumption holds in G1.

710 H. Lipmaa and K. Pavlyk

Proof (Sketch). Assume A is an adversary against the (R,S, {fi}κ
i=1) com-

putational span-uber-assumption that has successfully output Δ �= 0 and
[z]1 =

∑κ
i=1 Δi[fi(χ, y)]1 =

∑κ
i=1 Δi[�ν−κ+i(X)Y η+1]1.

Since Δ �= 0, then there exists at least one coordinate I such that ΔI �= 0.
Let B be the following adversary against the (R,S, fI) computational uber-
assumption in GT . Given ck and [z]1, B computes

1/ΔI · [z]1 • [�ν−κ+I(χ)y]2 =
∑κ

i=1 Δi/ΔI · [�ν−κ+i(χ)yη+1]1 • [�ν−κ+I(χ)y]2 .

Let di(X) be the rational function satisfying di(X)�(X) = �ν−κ+i(X)�ν−κ+I(X).
Clearly, di(X) is a polynomial for i �= I. Thus, d(X) :=

∑
i�=I Δi/ΔI · di(X)

is a polynomial of degree ≤ ν − 2. Since [yη]2 is a part of the commitment
key, B can efficiently compute

∑
i�=I Δi/ΔI · [�ν−κ+i(χ)yη+1]1 • [�ν−κ+I(χ)y]2 =

∑
i�=I Δi/ΔI · [di(χ)�(χ)y2]1 • [yη]2 = [d(χ)�(χ)y2]1 • [yη]2. Thus, B can compute

[z∗]T = [fI(χ, y)]T ← [�ν−κ+I(χ)yη+1]1 • [�ν−κ+I(χ)y]2
= 1/ΔI · [z]1 • [�ν−κ+I(χ)y]2 − [d(χ)�(χ)y2]1 • [yη]2

and break the (R,S, f ′
I)-computational uber-assumption in GT . ��

Theorem 3 (Security of FCsn). Let C be a fixed circuit and let FCC
sn be the

SFC scheme in Fig. 2. Let ck = ([
(X,Y) :
 ∈ R]1, [σ(X,Y) : σ ∈ S]2) as in
Fig. 2. For i ∈ [1 .. κ], let fi(X,Y) := �ν−κ+i(X)Y η+1.

1. Assume Item c of Theorem 1 holds. Then FCC
sn is correct.

2. FCC
sn is perfectly com-hiding.

3. FCC
sn is perfectly open-hiding.

4. FCC
sn is perfectly zero-knowledge.

5. Assume that either γ = 1, δ = 0, and η = 3 or γ = 4, δ = 0, and η = 7.
Assume that Items d to g, i and j of Theorem 1 hold. If the (R,S, {fi})-
computational span-uber-assumption holds in G1 then the SFC scheme FCC

sn

is computationally evaluation-binding.

Proof (1: correctness). We first show that the prover can compute Baux
i (X,Y),

and then that the verification equation holds. Recall that for i ∈ [1 .. κ],
Baux

i (X,Y) = �ν−κ+i(X)Bs(X,Y)Y = �ν−κ+i(X)(rb + vs(X,Y)Y)Y , where
vs(X) is as in Eq. (8). First, the addend rb�ν−κ+i(X)Y belongs to the span of
(XiY)ν−1

i=0 ⊂ R. Second, due to Item c of Theorem 1, for all j ∈ [2 .. 1+μα +μφ],

�(X) | �ν−κ+i(X)vφj(X) and �(X) | �ν−κ+i(X)vχj(X) ,

and thus Baux
i (X,Y) − rb�ν−κ+i(X)Y is equal to b′

i(X)�(X)Y 2 for some poly-
nomial b′

i(X) ∈ Z
≤(ν−2)
p [X]. Thus, Baux

i (X) ∈ span(R) and the committer can
compute [�ν−κ+i(χ)Bsy]2 = [Baux

i (χ, y)]2.
Assume that ck ← KC(1λ, C), ([As, {Baux

i }κ
i=1]1, [Bs]2) ← com(ck;α; ra, rb)

and [Csp]1 ← open(ck; ([As, {Baux
i }κ

i=1]1, [Bs]2), (α, ra, rb),β). It is clear that then
the verifier accepts.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 711

(2: perfect com-hiding). Follows from the fact that ([As]1, [Bs]2) is per-
fectly masked by uniformly random ra, rb ←$ Zp. Moreover, [Baux

i]1 are publicly
verifiable functions of [Bs]2.

(3: perfect open-hiding). Due to com-hiding and the fact that [Ap]1, [Bp]2,
and [Cp]1 only depend on (β, {Fi(α,β)}) (and not on α otherwise), it means
that the distribution of all elements in the opening (except possibly [Csp]1) is
the same for any two vectors α1 and α2 that satisfy Fi(α1,β) = Fi(α2,β) for
all i, Since [Csp]1 is the unique element that makes the verifier to accept, this
means that the same claim holds for the whole opening, and FCC

sn is open-hiding.
(4: perfect zero-knowledge). We construct Sim as follows. It has (χ, y)

as the trapdoor. It samples random As,Bs ←$ Zp, and then sets [Baux
i]1 ←

[�ν−κ+i(χ)yBs]1 for all i. It computes Bp (by using the trapdoors), [Ap]1, and
[Cp]1. It then computes the unique [Csp]1 that makes the verifier to accept,

[Csp]1 ← ((As + yδ)(Bs + Bp) + Asy
η)[1]1 + (Bs + Bp + yη)[Ap]1 − yγ [Cp]1 .

(5: evaluation-binding). Assume that A is an evaluation-binding
adversary that, with probability εA and in time τA, returns a collision
(([As, {Baux

i }κ
i=1]1, [Bs]2);β; {ξi}, [Csp]1, {ξ̃i}, [C̃sp]1) with ξ �= ξ̃, such that (here,

[Ap,Cp]1 / [Ãp, C̃p]1 is the opening in the collision),

[As + Ap + yδ]1 • [Bs + Bp + yη]2 = [Csp]1 • [1]2 + [Cp]1 • [yγ]2 + [yδ+η]T ,

[As + Ãp + yδ]1 • [Bs + Bp + yη]2 = [C̃sp]1 • [1]2 + [C̃p]1 • [yγ]2 + [yδ+η]T ,

and [�ν−κ+i(χ)y]1 • [Bs]2 = [Baux
i]1 • [1]2 for i ∈ [1 .. κ]. Here we used the fact

that by Items f and j of Theorem 1 (see also the definition of up(X) and vp(X)
in Eqs. (7) and (8)), the value of [Bp]2 stays the same in both openings.

We now construct an adversary B against the computational uber-assumption
in G1. From the collision, by subtracting the second equation from the first
equation and then moving everything from GT (the result of pairings) to G1,

[(Ap − Ãp)(Bs + Bp + yη)]1 = [Csp]1 − [C̃sp]1 + [(Cp − C̃p)yγ]1 . (14)

Denote Δi := ξi − ξ̃i. Let a and ã be witnesses, used by A when creat-
ing the collision. Without any further assumptions (see Eqs. (7) and (9)),
Ap(X)−Ãp(X) =

∑μ
j=μα+μφ+2(aj−ãj)uj(X)Y =

∑μ−κ
j=μ−μχ−κ(aj−ãj)uj(X)Y +

∑μ
j=μ−κ+1 Δj−(μ−κ)uj(X)Y . (This is since for j ≤ μα +μφ +1, aj = ãj is either

fixed by the commitment or can be recomputed by the verifier from β alone.)
Thus, Eq. (14) is equivalent to

(∑μχ
j=1(aμ−μχ−κ+j − ãμ−μχ−κ+j)uξj(χ)y +

∑κ
i=1 Δiuμ−κ+i(χ)y

)
(Bs + Bp + yη)

= (Csp − C̃sp) +
∑κ

i=1 Δi

(
uμ−κ+i(χ)yη+1 + vμ−κ+i(χ)yδ+1 + wμ−κ+i(χ)y2

)
.

Assuming Items e to g of Theorem 1,
∑μχ

i=1(aμ−μχ−κ+i − ãμ−μχ−κ+i)uξj(χ)y(Bs + Bp + yη) = (Csp − C̃sp) +
∑κ

i=1 Δi�ν−κ+i(χ)y2.

712 H. Lipmaa and K. Pavlyk

Assuming additionally Item i of Theorem 1,
∑κ

i=1 Δi [�ν−κ+i(χ)y(Bs + Bp + yη)]1 = [Csp]1 − [C̃sp]1 +
∑κ

i=1 Δi[�ν−κ+i(χ)y2]1 .

Let [z]1 :=
∑κ

i=1 Δi[�ν−κ+i(χ)yη+1]1(=
∑

Δi[fi(χ, y)]1). In what follows, we
show that B can compute [z]1 and thus break the span-uber-assumption. From
the last displayed equation, we get

[z]1 +
∑κ

i=1 Δi[�ν−κ+i(χ)(Bp − y)y]1 = [Csp]1 − [C̃sp]1 −
∑κ

i=1 Δi[�ν−κ+i(χ)Bsy]1

= [Csp]1 − [C̃sp]1 −
∑κ

i=1 Δi[B
aux
i]1 .

(The last equation is guaranteed by [�ν−κ+i(χ)y]1 • [Bs]2 = [Baux
i]1 • [1]2.)

We now show how to efficiently compute [�ν−κ+i(χ)(Bp − y)y]1. Let t(X) =
vp(X) −

∑κ
i=1 �ν−κ+i(X). Let h′

i(X) be the rational function that satisfies

h′
i(X)�(X) = �ν−κ+i(X) (Bp(X,Y)/Y − 1)

= �ν−κ+i(X) (t(X) +
∑κ

i=1 �ν−κ+i(X) − 1)
= �ν−κ+i(X)(t(X) +

∑
j �=i �ν−κ+j(X)) + �ν−κ+i(X)(�ν−κ+i(X) − 1) .

(15)
Due to Item d of Theorem 1 and the definition of t(X) (see also Eqs. (7) and
(8)),

�(X) | �ν−κ+i(X)t(X) .

Moreover, �(X) | �ν−κ+i(X)�ν−κ+j(X), for i �= j, and �(X) |
�ν−κ+i(X)(�ν−κ+i(X) − 1). Thus, the polynomial on the right-hand side of Eq.
(15) divides by �(X). Thus, h′

i(X) is a polynomial of degree ≤ ν − 2 and thus B
can compute efficiently

[�ν−κ+i(χ)(Bp − y)y]1 = [�ν−κ+i(χ)(Bp/y − 1)y2]1 = [h′
i(χ)�(χ)y2]1 ,

and then

[z]1 =
∑κ

i=1 Δi[�ν−κ+i(χ)yη+1]1

←([Csp]1 − [C̃sp]1) −
∑κ

i=1 Δi

(
[Baux

i]1 + [h′
i(χ)�(χ)y2]1

)
.

Thus, given the collision, B outputs (Δ, [z]1 =
∑

Δi[fi(χ, y)]1) for fi(X,Y) �∈
span(R). Thus, B breaks (w.p. εA and time close to tA) the (R,S, {fi})-
computational span-uber-assumption in G1 in the case fi �∈ span(R). ��

The following Corollary follows from Item 5 in Theorem 3 and Lemma 2.

Corollary 1. Let C be a fixed circuit. Let γ = 4, δ = 0, and η = 7. Let
f ′

i(X,Y) := (�ν−κ+i(X))2Y η+2. If the (R,S, f ′
I)-computational uber-assumption

holds in GT for all I ∈ [1 .. κ] then FCC
sn is computationally evaluation-binding.

Remark 2. Importantly, the indeterminate Y is crucial in establishing the inde-
pendence of fi from R. Let R∗ := {(Xi)ν−1

i=0 , (Xi�(X))ν−2
i=0 }, S∗ := {(Xi)ν−1

i=0 },
and f∗

i := �ν−κ+i(X). One can establish that FCC
sn is evaluation-binding under

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 713

the (R∗,S∗, {f∗
i })-computational span-uber-assumption in G1. Really, consider

the following (R∗,S∗, {f∗
i })-span-uber-assumption adversary B∗ that will create

y herself, generate a new ck based on her input and y, and then use B in Theo-
rem 3 to break the (R∗,S∗, {f∗

i })-computational span-uber-assumption. B∗ will
have similar success as B. However, f∗

i ∈ span(R∗) and thus the (R∗,S∗, {f∗
i })-

computational span-uber-assumption itself is not secure.

On the Security of the Span-Uber-Assumption. It is known that in
composite-order bilinear groups, the computational uber-assumption in GT holds
under appropriate subgroup hiding assumptions [13]. Hence, a composite-order
group version of the span-uber-assumption (and also of the new SFC) is secure
under a subgroup hiding assumption. In the full version [34], we will use the
Déjà Q approach of [14] directly to prove that the span-uber-assumption in Gι,
ι ∈ {1, 2}, is secure under a subgroup hiding assumption. More precisely, we
establish the following corollary. (See the full version [34] for the definition of
subgroup hiding and extended adaptive parameter hiding.)

Theorem 4. The (R,S, {fi}κ
i=1)-computational span-uber-assumption holds in

the source group G1 with all but negligible probability if

1. subgroup hiding holds in G1 with respect to μ = {P2
1,P

1
2},

2. subgroup hiding holds in G2 with respect to μ = {P1
1},

3. extended adaptive parameter hiding holds with respect to R ∪ {fi}κ
i=1 and

aux = {P1
2
σ(·)}σ∈S for any P1

2 ∈ G2.
4. the polynomials in R have maximum degree poly(λ).

Here, G1, G2, GT are additive groups of composite order N = p1p2 (p1 �= p2)
and P1

ι ∈ Gι,p1 , P2
ι ∈ Gι,p2 are randomly sampled subgroup generators, where

Gι,pj
is the subgroup of Gι of order pj and Pι ∈ Gι = Gι,p1 ⊕ Gι,p2 .

The direct proof in the full version [34] is simpler than the mentioned two-
step proof since it does not rely on the intermediate step of reducing the span-
uber-assumption to a uber-assumption in GT . Moreover, the Déjà Q approach is
more straightforward in case one works in the source group. We will leave it up to
future work to reduce prime-order span-uber-assumption to a simpler assump-
tion; there has been almost no prior work on reducing prime-order assumptions.

Finally, in the full version [34], by following [33], we will prove that the span-
uber-assumption is secure under a hash algebraic knowledge (HAK) assumption
and the well-known PDL assumption [31], from which it follows that is secure
in the algebraic group model (with hashing) [19] under the PDL assumption.1
Following the semi-generic-group model of [26], the HAK assumptions of [33] are
defined only in the case when the adversary outputs elements in the source groups
(but not in GT), and thus one cannot prove the security of the computational
uber-assumption in GT using the approach of [33]. Thus, in a well-defined sense,
the span-uber-assumption is weaker than the uber-assumption in GT .
1 As a corollary of independent interest, we also show in the full version [34] that if

f �∈ span(R) then the (R, S, T)-uber-assumption follows from HAK and PDL.

714 H. Lipmaa and K. Pavlyk

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zając, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6_1

2. Abdolmaleki, B., Lipmaa, H., Siim, J., Zając, M.: On QA-NIZK in the BPK model.
In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I.
LNCS, vol. 12110, pp. 590–620. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45374-9_20

3. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0_33

4. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6_26

5. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24

6. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS,
vol. 10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70503-3_19

7. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26

8. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7_20

9. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Efficient polynomial commitment
schemes for multiple points and polynomials. Technical report 2020/081, IACR
(2020)

10. Bowe, S., Grigg, J., Hopwood, D.: Halo: recursive proof composition with-
out a trusted setup. Technical report (2019). https://electriccoin.co/wp-content/
uploads/2019/09/Halo.pdf

11. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5_3

12. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7_5

13. Chase, M., Maller, M., Meiklejohn, S.: Déjà Q all over again: tighter and broader
reductions of q-type assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 655–681. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6_22

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-030-45374-9_20
https://doi.org/10.1007/978-3-030-45374-9_20
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-030-26948-7_20
https://electriccoin.co/wp-content/uploads/2019/09/Halo.pdf
https://electriccoin.co/wp-content/uploads/2019/09/Halo.pdf
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-662-53890-6_22
https://doi.org/10.1007/978-3-662-53890-6_22

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 715

14. Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assump-
tions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 622–639. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5_34

15. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45721-1_26

16. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic
group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_6

17. Fischlin, M.: A note on security proofs in the generic model. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 458–469. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3_35

18. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5_11

19. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

20. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

21. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: 43rd ACM STOC, pp. 99–108 (2011)

22. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: PointProofs: aggregating proofs for
multiple vector commitments. Technical report 2020/419, IACR (2020)

23. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_19

24. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

25. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-
interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.)
IMACC 2011. LNCS, vol. 7089, pp. 431–450. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25516-8_26

26. Jager, T., Rupp, A.: The semi-generic group model and applications to pairing-
based cryptography. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
539–556. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8_31

27. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8_11

28. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS,
vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26948-7_19

https://doi.org/10.1007/978-3-642-55220-5_34
https://doi.org/10.1007/978-3-642-55220-5_34
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/3-540-36178-2_6
https://doi.org/10.1007/3-540-44448-3_35
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-25516-8_26
https://doi.org/10.1007/978-3-642-25516-8_26
https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19

716 H. Lipmaa and K. Pavlyk

29. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
ICALP 2016. LIPIcs, vol. 55, pp. 30:1–30:14 (2016)

30. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2_30

31. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

32. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42033-7_3

33. Lipmaa, H.: Simulation-extractable ZK-SNARKs revisited. Technical report
2019/612, IACR (2019) https://eprint.iacr.org/2019/612. Accessed 8 Feb 2020

34. Lipmaa, H., Pavlyk, K.: Succinct functional commitment for a large class of arith-
metic circuits. Technical Report 2020/?, IACR (2020)

35. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In: ACM CCS 2019, pp. 2111–2128 (2019)

36. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2_13

37. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and
open questions. In: Foundations and Trends in Theoretical Computer Science, vol.
5. Now Publishers Inc. (2010)

38. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.:
Aggregatable subvector commitments for stateless cryptocurrencies. Technical
report 2020/527, IACR (2020)

39. Valiant, L.G.: Completeness classes in algebra. In: STOC 1979, pp. 249–261 (1979)
40. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient

zkSNARKs without trusted setup. In: IEEE SP 2018, pp. 926–943 (2018)
41. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: veri-

fying arbitrary SQL queries over dynamic outsourced databases. In: IEEE SP 2017,
pp. 863–880 (2017)

https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-42033-7_3
https://eprint.iacr.org/2019/612
https://doi.org/10.1007/978-3-642-36594-2_13

Crowd Verifiable Zero-Knowledge
and End-to-End Verifiable Multiparty

Computation

Foteini Baldimtsi1, Aggelos Kiayias2,3, Thomas Zacharias2(B),
and Bingsheng Zhang4,5

1 George Mason University, Fairfax, USA
foteini@gmu.edu

2 The University of Edinburgh, Edinburgh, UK
{akiayias,tzachari}@inf.ed.ac.uk

3 IOHK, Hong Kong, China
4 Zhejiang University, Hangzhou, China

bingsheng@zju.edu.cn
5 Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies,

Hangzhou, China

Abstract. Auditing a secure multiparty computation (MPC) protocol
entails the validation of the protocol transcript by a third party that is
otherwise untrusted. In this work, we introduce the concept of end-to-end
verifiable MPC (VMPC), that requires the validation to provide a cor-
rectness guarantee even in the setting that all servers, trusted setup prim-
itives and all the client systems utilized by the input-providing users of
the MPC protocol are subverted by an adversary. To instantiate VMPC,
we introduce a new concept in the setting of zero-knowlegde protocols
that we term crowd verifiable zero-knowledge (CVZK). A CVZK proto-
col enables a prover to convince a set of verifiers about a certain state-
ment, even though each one individually contributes a small amount of
entropy for verification and some of them are adversarially controlled.
Given CVZK, we present a VMPC protocol that is based on discrete-
logarithm related assumptions. At the high level of adversity that VMPC
is meant to withstand, it is infeasible to ensure perfect correctness, thus
we investigate the classes of functions and verifiability relations that are
feasible in our framework, and present a number of possible applications
the underlying functions of which can be implemented via VMPC.

Keywords: Multi-party computation · Zero-knowledge · Privacy ·
Verifiability

F. Baldimtsi—Supported by NSF grant 1717067.
A. Kiayias and T. Zacharias—Supported by Horizon 2020 project #780477 (PRIV-
iLEDGE).
B. Zhang—Supported by the Leading Innovative and Entrepreneur Team Introduction
Program of Zhejiang (Grant No. 2018R01005) and Zhejiang Key R&D Plan (Grant
No. 2019C03133).

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 717–748, 2020.
https://doi.org/10.1007/978-3-030-64840-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_24

718 F. Baldimtsi et al.

1 Introduction

Over the last 30 years, secure multiparty computation (MPC) has transi-
tioned from theoretical feasibility results [32,57,58] to real-world implementa-
tions [12,24,26,27,43,55] that can be used for a number of different security
critical operations including auctions [12], e-voting [1,23,41], and privacy pre-
serving statistics [13,48]. An important paradigm for MPC that captures a large
number of applications is the client-server model [6,25,30,33,38,49] where par-
ticipants of the system are distinguished between clients and servers, with the
clients contributing input for the computation and receiving the output, while
the servers, operating in an oblivious fashion, are processing the data given by
the clients.

The servers performing the MPC protocol collectively ensure the privacy
preservation of the execution, up to the information that is leaked by the output
itself. There do exist protocols that achieve this level of privacy provided that
there exists at least one server that is not subverted by the adversary. The typical
execution of such protocols involves the clients encoding their input suitably for
processing by the servers (e.g., by performing secret-sharing [35]) and receiving
the encoded output which they reconstruct to produce the final result. While the
level of privacy achieved by such protocols is adequate for their intended appli-
cations and their performance has improved over time (e.g., protocols such as
SPDZ [27] and [26,39] achieve very good performance for real world applications
by utilizing an offline/online approach [5]), there are still crucial considerations
for their deployment in the real-world especially if the outcome of the MPC
protocol has important committing and actionable consequences (such as e.g.,
in e-voting, auctions and other protocols).

To address this consideration, Baum, Damg̊ard and Orlandi [4] asked whether
it is feasible to construct efficient auditable MPC protocols. In auditable MPC,
an external observer who is given access to the protocol transcript, can verify
that the protocol was executed correctly even if all the servers (but not client
devices) were subverted by the adversary. The authors of [4] observe that this
is theoretically feasible if a common reference string (CRS) is available to the
participants and provide an efficient instantiation of such protocol by suitably
amending the SPDZ protocol [27]. While the above constitutes a good step
towards addressing real world considerations of deploying MPC protocols, there
are serious issues that remain from the perspective of auditability. Specifically,
the work of [4] does not provide any guarantees about the validity of the output
in case, (i) the CRS is subverted, or (ii) the users’ client devices get corrupted.

Verification of the correctness of the result by any party, even if all servers
are corrupt (but not client devices), has also been studied by Schoenmakers and
Veeningen [56] in the context of universally verifiable MPC. The security anal-
ysis in [56] is in the random oracle model and still, the case of corrupted client
devices is not considered. Moreover, achieving universally verifiable (or publicly
auditable) MPC in the standard model is stated as an open problem.

Unfortunately, the threat of malicious CRS and client byzantine behavior
cannot be dismissed: in fact, it has been extensively studied in the context of

CVZK and End-to-End Verifiable Multiparty Computation 719

e-voting systems, which are a very compelling use-case for MPC, and frequently
invoked as one of the important considerations for real-world deployment. Specif-
ically, the issue of malicious clients has been studied in the end-to-end verifiabil-
ity model for e-voting, e.g., [44] while the issue of removing setup assumptions
such as the CRS or random oracles has been also recently considered [40,41].

The fact that the concept of end-to-end verifiability has been so far thor-
oughly examined in the e-voting area comes not as surprise, since elections is
a prominent example where auditing the correctness of the execution is a top
integrity requirement. Nonetheless, transparency in terms of end-to-end verifica-
tion can be a highly desirable feature in several other scenarios, such as auctions,
demographic statistics, financial analysis, or profile matching where the (human)
users contributing their inputs may have a keen interest in auditing the correct-
ness of the computation (e.g., highest bid, unemployment rate, average salary,
order book matching in trading). From a mathematical aspect, it appears that
several other use-cases of MPC evaluation functions besides tallying that fall
into the scope of end-to-end verification have not been examined.

To capture these considerations and instead of pursuing tailored-made stud-
ies for each use-case, in this work, we take a step forward and propose a unified
treatment of the problem of end-to-end verifiability in MPC under a “human-
client-server” setting. In particular, we separate human users from their client
devices (e.g., smartphones) in the spirit of the “ceremony” concept [29,42] of
voting protocols. While client devices can be thought of as stateful, probabilis-
tic, interactive Turing machines, we model human users to be limited in two
ways: (a) humans are bad sources of randomness; formally, the randomness of
a user can be adversarially guessed with non-negligible probability, i.e. its min-
entropy is up to logarithmic to the security parameter, and (b) humans cannot
perform complicated calculations; i.e. humans’ computational complexity is lin-
ear in the security parameter (i.e., the minimum for reading the input). Given
this modeling we ask:

Is it possible to construct auditable MPC protocols, in the sense that every-
one who has access to the transcript can verify that the output is correct,
even if all servers, client devices and setup assumptions (e.g. a common
reference string) are subverted by an adversary?

We answer this question by introducing the concept of end-to-end verifiable
multiparty computation (VMPC) and presenting both feasibility and infeasibility
results for different classes of functions. Some of the most promising applications
of VMPC include e-voting, privacy preserving statistics and supervised learning
of classifiers over private data.

1.1 Technical Overview and Contributions

VMPC Model. The security property of VMPC is modeled in the universal
composability (UC) framework [15], aiming to unifying two lines of research
on secure computing: end-to-end verifiable e-voting (which typically separates

720 F. Baldimtsi et al.

humans from their devices in security analysis) and client-server (auditable)
MPC. More specifically, we define the VMPC ideal functionality as Ff,R

vmpc(P),
where P is a set of players, including users, client devices, servers and a veri-
fier; f is the MPC function to be evaluated, and R is a relation that is used
to measure the distance between the returned VMPC output and the correct
(true) computation result. As will be explained later, when the VMPC output
is verified, it is guaranteed that the output is not “far” from the truth.

The Distinction Between Users and Clients. In order to capture “end-to-end
verifiability”, we have to make a distinction between users and clients: the users
are the humans with limited computation and entropy that interact with their
client devices (e.g., smartphones or laptops) to provide input to the MPC. To
accommodate this, our ideal functionality acknowledges these two roles and for
this reason it departs from the previous formulation of auditable MPC [4]. A
critical challenge in VMPC is the fact that the result should be verifiable even
if all clients and servers are corrupted!

The Role of the Verifier. VMPC departs from the conventional UC definition
of MPC since there should be a special entity, the verifier, that verifies the
correctness of the output. The concept of the verifier in our modeling is an
abstraction only. The verifier is invoked only for auditing and trusted only for
verifiability, not privacy. It can be any device, organization, or computer system
that the user trusts to do the audit. Moreover, it is straightforward to extend
the model to involve multiple verifiers as discussed in Sect. 5 and hence only for
simplicity we choose to model just a single entity. We note that the human user
cannot perform auditing herself due to the fact that it requires cryptographic
computations. As in e-voting, verification is delegatable, i.e., the verifier obtains
users’ individual audit data in an out-of-band manner.

EUC with a Super-Polynomial Helper. The astute readers may notice that a UC
realization of the VMPC primitive in a setting where there is no trusted setup
such as a CRS is infeasible. Indeed, it is well known [15] that non-trivial MPC
functionalities cannot be UC-realized without a trusted setup. To go around
these impossibility results and still provide a composable construction, we uti-
lize the extended UC model with a helper H, (H-EUC security) [17]. This model,
which can been seen as an adaptation of the super-polynomial simulation con-
cept [54] in the UC setting, enables one to provide standard model constructions
that are composable and at the same time real world secure, using a “complexity
leveraging” argument that requires subexponential security for the underlying
cryptographic primitives. In particular, in the setting of H-EUC security, trans-
lating a real world attack to an ideal world attack requires a super-polynomial
computation. More precisely, a polynomial-time operation that invokes a super-
polynomial helper program H. It follows that if the distance of the real world
from the ideal is bounded by the distinguishing advantage of some underlying
cryptographic distributions, assuming subexponential indistinguishability is suf-
ficient to infer the security for the primitive.

CVZK and End-to-End Verifiable Multiparty Computation 721

System Architecture. We assume there exists a consistent and public bulletin
board(BB) (modeled as the global functionality GBB) that can be accessed by all
the VMPC players except human users, i.e., by the client devices, the servers
and the verifier. In addition, we assume there exists an authenticated channel
(modeled as the functionality Fauth) between the human users and the verifier.
Besides, we assume there exists a secure channel (modeled as the functionality
Fsc) between the human users and their local client devices. A VMPC scheme
consists of four sub-protocols: Initialize (setup phase among servers), Input (run
by servers, users-clients), Compute (executed by the servers) and Verify (exe-
cuted by the verifier and users). According to the e-voting and pre-processing
MPC approach [11,26,27,52], we consider minimal user interaction - the users
independently interact with the system once in order to submit their inputs.
This limitation is challenging from a protocol design perspective.

The Breadth of VMPC Feasibility. We explore the class of functions that
can be realized by VMPC, since in our setting, contrary to general MPC results,
it is infeasible to compute any function with perfect correctness. To see this
with a simple example, consider some function f that outputs the XOR of the
input bits. It is easy to see that each user has too little entropy to challenge
the set of malicious clients and servers about the proper encoding of her private
input. However, even if a single input bit is incorrectly encoded by the user’s
client (which can be undetected with non-negligible probability) the output XOR
value can be flipped. To accommodate for this natural deficiency, our VMPC
functionality enforces a relation R between the reported output and the correct
output. It is clear that depending on the function f , a different relation R may
be achievable. We capture this interplay between correctness and the function to
be computed by introducing the notion of a spreading relation R for a function
f : X → Y . Informally, given a certain metric over the input space, a spreading
relation over the range of f , satisfies that whenever x, x′ are close w.r.t. the
metric, the images of x, x′ are related. A typical case of a spreading relation can
emerge when f is a Lipschitz function for a given metric. Based on the above,
we show that one cannot hope to compute a function f with a relation over the
range of f that is more “refined” than a spreading relation.

Building Blocks. VMPC is a complex primitive and we introduce novel building
blocks to facilitate it. ZK proofs cannot be directly used for VMPC since we
require a 3-round public-coin protocol to comply with our minimal interaction
setting and this is infeasible, cf. [31,37], while we cannot utilize a subversion-
sound NIZK either, cf. [7], since in this case, we can at best obtain witness
indistinguishability which is insufficient for proving the simulation-based privacy
needed for VMPC.

Crowd Verifiable Zero-Knowledge (CVZK). To overcome these issues we intro-
duce a new cryptographic primitive that we call crowd verifiable zero-knowledge
which may also be of independent interest. In CVZK, a single prover tries
to convince a set of n verifiers (a “crowd”) of the validity of a certain state-
ment. Although the notion of multi-verifier zero-knowledge already exists in the

722 F. Baldimtsi et al.

literature, e.g. [14,47], the focus of CVZK is different. Namely, the challenge for
CVZK is that each human verifier is restricted to contribute up to a logarithmic
number of random bits and hence, if, say all but one verifiers are corrupted,
there would be insufficient entropy available in order to achieve a low soundness
error. Thus, the only way to go forward for the verifiers is to assume the relative
honesty of the crowd, i.e., there is a sufficient number of them acting honestly
and introduce enough randomness in the system so that the soundness error can
be small. The notion of CVZK is critical towards realizing VMPC, since in the
absence of reliable client systems, the users have no obvious way of challenging
the system’s operation; users, being humans, are assumed to be bad sources of
entropy that cannot contribute individually a sufficient number of random bits
to provide a sufficiently low soundness error.

Coalescence Functions and CVZK Instantiation. We introduce coalescence func-
tions (Sect. 3.2) to typify the randomness extraction primitive that is at the core
of our CVZK construction. In CVZK, it is not straightforward how to use the
random bits that honest verifiers contribute. The reason is that the adversary,
who is in control of the prover and a number of verifiers, may attempt to use
the malicious verifiers’ coins to “cancel” the entropy of the honest verifiers and
assist the malicious prover to convince them of a wrong statement. Coalescence
relates to collective coin flipping [8] and randomness condensers [28]. In partic-
ular, a coalescence function is a deterministic function that tries to make good
use of the entropy of its input. Specifically, a coalescence function takes as an
input a non-oblivious symbol fixing source and produces a series of blocks, one
of which is guaranteed to be of high entropy; these blocks will be subsequently
used in conjunction to form the challenge implementing CVZK. We construct
coalescence functions using a one-round collective coin flipping protocol and the
(strongly) resilient function defined in [50]. Then, we present a compiler that
takes a fully input delayed Σ-protocol and leads to a CVZK construction that
performs a parallel proof w.r.t. each block produced by the coalescence func-
tion. Our CVZK construction is secure for any number of corrupted users up to
O(nc/ log3 n), for some constant c < 1 and a set of n users.

VMPC Construction. Our VMPC construction is based on CVZK. It uses an
offline / online approach (a.k.a. pre-processing mode) for computing the output
(proposed by Beaver [5] and utilized numerous times [4,27]). In a nutshell, our
construction follows the paradigm of SPDZ [27] and BDO [4]. Namely, the data
are shared and committed on the BB. The underlying secret sharing scheme
and the commitment scheme have compatible linearly homomorphic properties;
therefore, the auditor can check the correctness of the protocol execution by
performing the same operations over the committed data. In addition, to achieve
crowd verifiability, all the ZK proofs need to be transformed to CVZK – (i) in
the pre-processing phase, the servers post the first move of the CVZK on the BB;
(ii) in the input phase, the (human) users collaboratively generate the challenge
coins of the CVZK; (iii) in the output phase, the servers post the protocol output
together with the third move of the CVZK, which completes the CVZK proofs.

CVZK and End-to-End Verifiable Multiparty Computation 723

We prove indistinguishability between real and ideal world for our construc-
tion under adaptive onewayness [53] of the discrete-logarithm function and the
decisional Diffie-Hellman assumption. We infer that, by utilizing sub-exponential
versions of those assumptions, our protocol realizes the ideal description of
VMPC, in the H-EUC model, for any (symmetric) function f with correctness
up to a spreading relation R for f .

We note that an alternative but sub-optimal approach to VMPC would be
to add the Benaloh challenge mechanism [9,10], that has been proposed in the
context of e-voting to mitigate corrupted client devices, to the BDO protocol [4].
However, the resulting VMPC protocol would still require a trusted setup, e.g.,
CRS or Random Oracle (RO), and therefore it would fall short of our objective to
realize VMPC in the plain model. Moreover, the Benaloh challenge mechanism
requires the client to have a second trusted device that is capable of performing
a cryptographic computation prior to submitting her input to the VMPC proto-
col and being able to communicate with it in an authenticated manner. Instead,
the only requirement in our VMPC protocol is to have authenticated access to
a verifier in the final step of the protocol.

Applications. As already mentioned, a main motivation for this work is the
apparent connection of end-to-end verifiability to several practical MPC instan-
tiations for real-world scenarios. Thus, we conclude by discussing possible appli-
cations of VMPC and examine how their underlying function can be combined
with suitable spreading relations and implemented. We provide some interesting
examples: (i) E-voting functions: where the final election tally aggregates the
votes provided by the voters, (ii) privacy-preserving statistics: where the final
outcome is a statistic that is calculated over uni-dimensional data, (iii) privacy-
preserving processing of multi-dimensional data: where functions that correlate
across different dimensions are calculated, (iv) supervised learning of classifiers:
where the outcome is a model that results from training on private data.

2 Preliminaries

Notation. By λ we denote the security parameter and by negl(·) the property
that a function is negligible in some parameter. We write poly(x) to denote that
a value is polynomial in x, PPT to denote probabilistic polynomial time, and [n]
as the abbreviation of the set { 1, . . . , n }. Hmin(D) denotes the min entropy of a

distribution D and Un denotes the uniform distribution over {0, 1}n. By x
$← S,

we denote that x is sampled uniformly at random from set S, and by X ∼ D

that the random variable X follows the distribution D.

Σ-Protocols. Let RL be polynomial-time-decidable witness relation for an NP-
language L. A Σ-protocol is a 3-move public coin protocol between a prover,
Σ.Prv, and a verifier, Σ.V , where the goal of the prover, having a witness w,
is to convince the verifier that some statement x is in language L. We split the
prover Σ.Prv into two algorithms (Σ.Prv1, Σ.Prv2). A Σ-protocol for (x,w) ∈ RL
consists of the following PPT algorithms:

724 F. Baldimtsi et al.

• Σ.Prv1(x,w): on input x ∈ L and w s.t. (x,w) ∈ RL, it outputs the first
message of the protocol, a, and a state stP ∈ { 0, 1 }∗.

• Σ.Prv2(stP , e): after receiving the challenge e ∈ { 0, 1 }λ from Σ.V and on
input the state stP , it outputs the prover’s response z.

• Σ.Verify(x, a, e, z): on input a transcript (x, a, e, z), it outputs b ∈ { 0, 1 }. A
transcript is called accepting if Σ.Verify(x, a, e, z) = 1.

We care about the following properties: (i) completeness, (ii) special soundness,
and (iii) special honest verifier zero-knowledge (sHVZK), i.e., if the challenge e
is known in advance, then there is a PPT simulator Σ.Sim that simulates the
transcript on input (x, e). In addition, we allow completeness of a Σ-protocol to
be non-perfect, i.e. have a negligible error, and sHVZK to be computational.

One-Round Collective Coin Flipping and Resilient Functions. The core
of our CVZK construction is similar to a one-round collective coin flipping
(1RCCF) process: (1) each player generates and broadcasts a coin c within the
same round, (2) a uniformly random string is produced (with high probability).
The adversary can see the honest players’ coins first and then decide the cor-
rupted players’ coins. The 1RCCF notion was introduced in [8] and is closely
related to the notion of resilient functions which we recall below.

Definition 1 (Resilient function). Let f : {0, 1}m −→ {0, 1} be a Boolean
function on variables x1, . . . , xm. The influence of a set S ⊆ {x1, . . . , xm}
on f , denoted by IS(f), is defined as the probability that f is undeter-
mined after fixing the variables outside S uniformly at random. Let Iq(f) =
minS⊆{x1,...,xm},|S|≤q IS(f). We say that f is (q, ε)-resilient if Iq(f) ≤ ε. In
addition, for 0 < τ < 1, we say f is τ -strongly resilient if for all 1 ≤ q ≤ n,
Iq(f) ≤ τ · q.

We use the (Θ(log2 m/m))-strongly resilient function defined in [50] (i.e., any
coalition of q bits has influence at most Θ(q · log2 m/m)) which has a bias
1/2 ± 1/10. We note that it has been shown that for any Boolean function
on mO(1) bits, even one bit can have influence Ω(log m/mO(1)) [36]. Hence, it is
not possible to get a single bit string with ε = m−Ω(1).

Publicly Samplable Adaptive One-Way Functions. Adaptive one-way
functions (adaptive OWFs, or AOWFs for short) were formally introduced by
Pandey et al. [53]. In a nutshell, a family of AOWFs is indexed by a tag,
tag ∈ { 0, 1 }λ, such that for any tag, it is hard for any PPT adversary to invert
ftag(·) for randomly sampled images, even when given access to the inversion
oracle of ftag′(·) for any other tag′ �= tag. Here, we define a variant of AOWFs
where the adversary is provided a publicly sampled image as inversion challenge.

Definition 2. Let F =
{{ftag : Xtag −→ Ytag}tag∈{0,1}λ

}
λ∈N

be an AOWF fam-
ily. We say that F is publicly samplable adaptive one-way (PS-AOWF) if:

(1) There is an efficient deterministic image-mapping algorithm IM(·, ·) such
that for every tag ∈ {0, 1}λ, it holds that

Pr
[
ω ← Uλ : IM(tag, ω) ∈ Ytag

]
= 1 − negl(λ) .

CVZK and End-to-End Verifiable Multiparty Computation 725

(2) Let O(tag, ·, ·) denote the inversion oracle (as in [53]) that, on input tag′

and y outputs f−1
tag′(y) if tag′ �= tag, |tag′| = |tag|, and ⊥ otherwise. Then, for

every PPT adversary A and every tag ∈ {0, 1}λ, it holds that

Pr
[
ω ← Uλ : AO(tag,·,·)(tag, ω

)
= f−1

tag

(
IM(tag, ω)

)]
= negl(λ) .

For notation simplicity, in the rest of the paper we omit indexing by λ ∈ N

and simply write F = {ftag : Xtag −→ Ytag}tag∈{0,1}λ .
The main difference between PS-AOWFs and AOWFs, as used in [53], is

public samplability : even if A is given the random coins, ω, used for the image
mapping algorithm IM(·, ·), it can only invert the OWF with negligible prob-
ability. In the full version of this paper [2], we provide an instantiation of a
PS-AOWF based on the hardness of discrete logarithm problem (DLP) in the
generic group model.

Externalized UC with Global Helper. Universal Composability (UC) is a
widely accepted simulation-based model to analyze protocol security. In the UC
framework, all the ideal functionalities are “subroutine respectful” in the sense
that each protocol execution session has its own copy of the functionalities,
which only interact with the single protocol session. This subroutine respecting
feature does not always naturally reflect the real world scenarios; for instance,
we typically want the trusted setup (e.g., CRS or PKI) to be deployed once
and then used in multiple protocols. To handle global setups the generalized UC
(GUC) framework was introduced [16]. However, as noted in the introduction,
given that in this work we want to avoid the use of a trusted setup (beyond a
consistent bulletin board), while still providing a composable construction, we
revert to the extended UC model with super-polynomial time helpers, denoted
by H-EUC [17]. In this model both the simulator and the adversary can access
a (externalized super-polynomial time) global helper functionality H.

3 CVZK and Coalescence Functions

A crowd verifiable zero-knowledge (CVZK) argument for a language L ∈ NP
with a witness relation RL is an interactive proof between a PPT prover, that
consists of a pair of algorithms CVZK.P = (CVZK.Prv1,CVZK.Prv2), and a col-
lection of PPT verifiers (CVZK.V1, . . . ,CVZK.Vn). The private input of the
prover is some witness w s.t. (x,w) ∈ RL, where x is a public statement. In
a CVZK argument execution, the interaction is in three moves as follows:

(1) The prover CVZK.Prv1(x,w) outputs the statement x and a string a to
all n verifiers and outputs a state stP .
(2) For 	 ∈ [n], each verifier CVZK.V�(x, a) sends a challenge c� to the prover
and keeps a private state st� (e.g., the coins of V�). Note that CVZK.V� gets as
input only (x, a), and computes her challenge independently from the other
verifiers.
(3) After receiving c� for all 	 = {1, . . . , n}, CVZK.Prv2(x,w, a, 〈c1, . . . ,
cn〉, stP) outputs its response, z.

726 F. Baldimtsi et al.

Additionally, there is a verification algorithm CVZK.Verify that takes as input
the execution transcript 〈x, a, 〈c�〉�∈[n], z〉 and optionally, a state st�, 	 ∈ [n] (if
run by CVZK.V�), and outputs 0/1.

As discussed in the introduction, CVZK is particularly interesting when each
verifier contributes limited (human-level) randomness individually, yet the ran-
domness of all verifiers (seen as a crowd) provides enough entropy to support
the protocol’s soundness. This unique feature of CVZK will be in the core of the
security analysis of our VMPC construction (Sect. 7). Nonetheless, from a mere
definitional aspect, the verifiers need not to be limited, so for generality, we pose
no restrictions on the entropy of their individual challenges in our definition.

3.1 CVZK Definition

We consider an adversary that statically corrupts up to a ratio of the verifier
crowd. Let Icorr be the set of indices of corrupted verifiers.

Definition 3. Let n be a positive integer, 0 ≤ t1, t2, t3 ≤ n be pos-
itive values and ε1(·), ε2(·) be real functions. A tuple of PPT algo-
rithms 〈(CVZK.Prv1,CVZK.Prv2), (CVZK.V1, . . . ,CVZK.Vn), CVZK.Verify〉 is
a (t1, t2, t3, ε1, ε2)-crowd-verifiable zero-knowledge argument of membership
(CVZK-AoM) for a language L ∈ NP, if the following properties are satisfied:

(i). (t1, ε1)-Crowd-Verifiable Completeness: For every x ∈ L ∩
{0, 1}poly(λ), w ∈ RL(x), every PPT adversary A and every Icorr ⊆ [n] such
that |Icorr| ≤ t1, the probability that the following experiment returns 1 is less
or equal to ε1(λ).

ExptCVCompl
(t1,A,Icorr)

(1λ, x, w)

1. CVZK.Prv1(x, w) outputs the message a and state stP ;
2. For � ∈ [n] \ Icorr, run CVZK.V�(x, a) → (c�, st�);
3. A(

x, a, 〈c�〉�∈[n]\Icorr

)
outputs 〈c′

1, . . . , c
′
n〉;

4. CVZK.Prv2(x, w, a, 〈c′
1, . . . , c

′
n〉, stP) outputs response z;

5. If (∀� ∈ [n] \ Icorr : c′
� = c�) AND

(
(CVZK.Verify(x, a, 〈c′

1, . . . , c
′
n〉, z) = 0) OR

(∃� ∈ [n] \ Icorr : CVZK.Verify(x, a, 〈c′
1, . . . , c

′
n〉, z, st�) = 0)

)

then return 1; else return 0;

(ii). (t2, ε2)-Crowd-Verifiable Soundness: For every x ∈ {0, 1}poly(λ) \L,
every PPT adversary A and every Icorr ⊆ [n] such that |Icorr| ≤ t2, the
probability that the following experiment returns 1 is less or equal to ε2(λ).

ExptCVSound
(t2,A,Icorr)

(1λ, x)

1. A(x, Icorr) outputs a message a;
2. For � ∈ [n] \ Icorr, run CVZK.V�(x, a) → (c�, st�);
3. A(

x, a, 〈c�〉�∈[n]\Icorr

)
outputs 〈c′

1, . . . , c
′
n〉 and response z;

4. If (∀� ∈ [n] \ Icorr : c′
� = c�) AND (CVZK.Verify(x, a, 〈c′

1, . . . , c
′
n〉, z) = 1) AND

(∀� ∈ [n] \ Icorr : CVZK.Verify(x, a, 〈c′
1, . . . , c

′
n〉, z, st�) = 1)

then return 1 else return 0;

CVZK and End-to-End Verifiable Multiparty Computation 727

(iii). t3-Crowd-Verifiable Zero-Knowledge: For every x ∈ L ∩
{0, 1}poly(λ), w ∈ RL(x), every PPT adversary A and every Icorr ⊆
[n] such that |Icorr| ≤ t3, there is a PPT simulator CVZK.Sim =
(CVZK.Sim1,CVZK.Sim2) such that the outputs of the following two exper-
iments are computationally indistinguishable.

ExptCVZK
(Ideal,t3,A,Icorr)

(1λ, x)

1. CVZK.Sim1(x, Icorr) outputs a, stSim,

and 〈c�〉�∈[n]\Icorr
;

2. A(
x, a, 〈c�〉�∈[n]\Icorr

)
outputs 〈c′

1, . . . , c′
n〉;

3. CVZK.Sim2(x, a, 〈c′
1, . . . , c′

n〉, stSim)

outputs z;

4. b ← A(x, z);

5. If (∀� ∈ [n] \ Icorr : c′
� = c�),

then return b; else return ⊥ ;

ExptCVZK
(Real,t3,A,Icorr)

(1λ, x, w)

1. CVZK.Prv1(x, w) outputs a and state stP ;

2. For � ∈ [n] \ Icorr, run

CVZK.V�(x, a) → (c�, st�);

3. A(
x, a, 〈c�〉�∈[n]\Icorr

)
outputs 〈c′

1, . . . , c′
n〉;

4. CVZK.Prv2(x, w, a, 〈c′
1, . . . , c′

n〉, stP) outputs z;

5. b ← A(x, z);

6. If (∀� ∈ [n] \ Icorr : c′
� = c�),

then return b; else return ⊥ ;

Analogously, we can also define a CVZK argument of knowledge as follows.
We say that 〈(CVZK.Prv1, CVZK.Prv2), (CVZK.V1, . . . , CVZK.Vn), CVZK.Verify〉
is a (t1, t2, t3, ε1)-crowd-verifiable zero-knowledge argument of knowledge
(CVZK-AoK), if it satisfies (t1, ε1)-Completeness and t3-Crowd-Verifiable Zero-
Knowledge as previously, and the following property:

t2-Crowd-Verifiable Validity: There exists a PPT extractor CVZK.Ext such
that for every x ∈ {0, 1}poly(λ), every PPT adversary A and every Icorr ⊆ [n]
such that |Icorr| ≤ t2, the following holds: if there is a non-negligible function
α(·) such that

Pr
[
ExptCVSound

(t2,A,Icorr)(1
λ, x) = 1

] ≥ α(λ) ,

then there is a non-negligible function β(·) such that

Pr[w∗ ← CVZK.ExtA(x, Icorr) : (x,w∗) ∈ RL] ≥ β(λ) .

Remark 1 (Relativized CVZK security). Definition 3 specifies CVZK security
against a PPT adversary A and a PPT simulator CVZK.Sim. Note that the
notions of crowd-verifiable completeness, soundness, validity, and zero-knowledge
can be extended so that they hold even when A, and maybe CVZK.Sim, has also
access to a (potentially super-polynomial) oracle H.

3.2 Coalescence Functions

We introduce the notion of a coalescence function, which will be a core compo-
nent of our CVZK construction (cf. Sect. 4). In particular, coalescence functions
will be the key for exploiting the CVZK verifiers’ randomness in the presence
of an adversary (a malicious prover) that aims to “cancel” the entropy of the
honest verifiers. Given the verifiers’ coins, a coalescence function will produce a
collection of (challenge) strings such that at least one of the strings has sufficient
entropy to support CVZK soundness. At a high level, a function F achieves coa-
lescence, if when provided as input an n-dimensional vector that is (i) sampled
from a distribution Dλ, and (ii) adversarially tampered at up to t-out-of-n vector
components, it outputs a sequence of m k-bit strings so that with overwhelming

728 F. Baldimtsi et al.

probability, at least one of the m strings is statistically close to uniformly ran-
dom. Our definition of F postulates the existence of “good” events G1, . . .Gm,
defined over the input distribution, where conditional to Gi being true, the corre-
sponding output string is statistically close to uniform. Coalescence is achieved
if the probability that such a “good” event occurs is overwhelming.

Definition 4. Let n, k,m be polynomial in λ and In = (in(1), . . . , in(n))
be an n-dimensional vector sampled according to the distribution ensem-
ble {Dλ}λ so that the support of Dλ is Ωλ. Let F : Ωλ −→
({0, 1}k)m be a function. For any adversary A, any t ≤ n, and any
Icorr ⊆ [n] such that |Icorr| ≤ t, we define the following experiment:
ExptCoal

(t,A,Icorr)
(1λ)

1. Set In = (in(1), . . . , in(n)) ← Dλ;

2. A(〈in(�)〉�∈Icorr

)
outputs In′ = (in′(1), . . . , in′(n)) s.t. ∀� ∈ [n] \ Icorr : in′(�) = in(�);

3. Return (d1, . . . , dm) ← F (In′);

We say that the function F : Ωλ → ({0, 1}k)m is a (k,m, t)-coalescence
function w.r.t. Dλ, if there exist events G1, . . .Gm over Ωλ such that the following
two conditions hold:

(1) Pr[∧m
i=1¬Gi] = negl(λ), and

(2) for every adversary A and every Icorr ⊆ [n] such that |Icorr| ≤ t, it holds
that for all i ∈ [m], the random variable (di|Gi) is statistically negl(λ)-close
to Uk, where (d1, . . . , dm) ← ExptCoal

(t,A,Icorr)(1
λ). Note that (X|A) denotes the

random variable X conditional on the event A.

Furthermore, we require that a (k,m, t)-coalescence function F w.r.t. Dλ sat-
isfies the following two additional properties:

Completeness: the output of F on inputs sampled from Dλ, denoted by F (Dλ),
is statistically negl(λ)-close to the uniform distribution (Uk)m over ({0, 1}k)m.

Efficient Samplability: there exists a PPT algorithm Sample(·) such that the
following two conditions hold:
(a) Pr

[
In ← Sample

(d1,...,dm)←(Uk)m

(d1, . . . , dm) : F (In) = (d1, . . . , dm)
]

= 1 − negl(λ).

(b) The distribution Sample
(
(Uk)m

)
is statistically negl(λ)-close to Dλ.

In Sect. 4.1, we present an implementation of a coalescence function w.r.t. Un

based on 1RCCF.

4 CVZK Construction

In this section, we show how to compile any Σ-protocol into a 3-move CVZK
protocol. Our CVZK construction is a compiler that utilizes an explicit instan-
tiation of a coalescence function from 1RCCF and a special class of protocols
where both the prover and the simulator operate in an “input-delayed” manner,

CVZK and End-to-End Verifiable Multiparty Computation 729

i.e., they do not need to know the statement in the first move. Our CVZK proto-
col will be a basic tool for the construction of our VMPC scheme (cf. Sect. 7). As
noted in the introduction, the security of the VMPC scheme is in the extended
UC model (EUC), where both the simulator and the adversary have access to
a (externalized super-polynomial time) global helper functionality H, denoted
as H-EUC security. Therefore, the CVZK protocol must also be secure against
PPT adversaries with oracle access to some helper.

4.1 Coalescence Functions from 1RCCF

As mentioned in Sect. 2, it is not possible to produce a single random string via
collective coin flipping and hope it has exponentially small statistical distance
from a uniformly random string. Nevertheless, we show that it is possible to
produce several random strings such that with overwhelming probability one of
them is close to uniformly random, as dictated by the coalescence property.

Description. Let n = λγ for a constant γ > 1 and assume λ log λ divides n. Let
fres denote the (Θ(log2 m/m))-strongly resilient function over m bits proposed
in [50]. We define the instantiation of the coalescence function F : {0, 1}n −→
({0, 1} λ

log2 λ
)log λ as follows:

Step 1. On input C := (c1, . . . , cn), F partitions the n-bit input C
into λ log λ blocks B1, . . . , Bλ log λ, with n

λ log λ bits each. Namely Bj :=
(
c (j−1)n

λ log λ +1
, . . . , c jn

λ log λ

)
, where j ∈ [λ log λ].

Step 2. Then, F groups every λ blocks together, resulting to log λ
groups, denoted as G1, . . . , Glog λ. Namely, Gi :=

(
B(i−1)λ+1, . . . , Biλ

)
, where

i ∈ [log λ]. Within each group Gi, we apply the resilient function fres on
each block B(i−1)λ+k, k ∈ [λ], to output 1 bit; hence, for each group
Gi, by sequentially running fres we obtain a λ-bit string (bi,1, . . . , bi,λ) ←(
fres(B(i−1)λ+1), . . . , fres(Biλ)

)
, and log λ strings in total for all the groups Gi,

i ∈ [log λ].
Step 3. The resilient function fres in [50] has a bias 1

10 . Therefore, even if the
input Gi is random, the output bits (bi,1, . . . , bi,λ) are not a random sequence
of λ log λ bits due to this bias. In order to make the output of F balanced (i.e.,
unbiased), for each group Gi, i ∈ [log λ], we execute the following process: on
input (bi,1, . . . , bi,λ), we perform a sequential (von Neumann) rejection sampling
over pairs of bits until an unbiased string di := (di,1, . . . , di, λ

log2 λ
) is produced,

with λ
log2 λ

bits length as described below:

1. Set two indices j ← 1 and k ← 1;
2. While

(
(j < λ) ∧ (k < λ

log2λ
)
)
:

– If bi,j �= bi,j+1, then set di,k ← bi,j and k ← k + 1;
– Set j ← j + 2;

3. If k = λ
log2λ

, then return di := (di,1, . . . , di, λ
log2 λ

);

4. else return di := (bi,1, . . . , bi, λ
log2 λ

);

730 F. Baldimtsi et al.

Finally, we define the output of F (C) as the sequence (d1, . . . , dlog λ).
Security. The security of F (·) is stated below and is proved in the full version
of this paper [2].

Theorem 1. Let γ > 1 be a constant and n = λγ . Then, the function F :

{0, 1}n −→ ({0, 1} λ
log2 λ

)log λ described in Sect. 4.1 is a
(

λ
log2 λ

, log λ, n
1− 1

γ

log3 n

)
-

coalescence function w.r.t. uniform distribution Un that satisfies completeness
and efficient samplability.

By Theorem 1, for n = λγ , if the adversary can corrupt up to n
1− 1

γ

log3 n
verifiers,

then on input the n verifiers’ coins, F outputs log λ strings of λ
log2 λ

bits, such
that with probability 1 − negl(λ), at least one of the log λ strings is statistically
close to uniformly random.

4.2 A Helper Family for AOWF Inversion

Let F = {ftag : Xtag −→ Ytag}tag∈{0,1}λ be a (publicly samplable) AOWF family.
In Fig. 1, we define the associated helper family H = {HS}S⊂{0,1}λ (we omit
indexing by λ ∈ N for simplicity). Here, S refers to the subset of tags of entities
controlled by an adversary. Namely, the adversary can only ask for preimages
that are consistent with its corruption extent.

Fig. 1. The helper family H = {HS}S⊂{0,1}λ w.r.t. F = {ftag}tag∈{0,1}λ .

4.3 Fully Input-Delayed Σ-Protocols

In our CVZK construction, we utilize a special class of Σ-protocols where both
the prover and the simulator do not need to know the proof statement in the
first move. Such “input-delayed” protocols (at least for the prover side) have
been studied in the literature (e.g., [19,20,34,46]). To stress the input-delayed
property for both prover and simulator, we name these protocols fully input-
delayed and provide their definition below.

Definition 5. Let Σ.Π := (Σ.Prv1, Σ.Prv2, Σ.Verify) be a Σ-protocol for a lan-
guage L ∈ NP. We say that Σ.Π is fully input-delayed if for every x ∈ L, it
satisfies the following two properties:

(1) Input-delayed proving: Σ.Prv1 takes as input only the length of x, |x|.
(2) Input-delayed simulation: there exists an sHVZK simulator Σ.Sim :=
(Σ.Sim1, Σ.Sim2) s.t. Σ.Sim1 takes as input only |x| and the challenge c.

CVZK and End-to-End Verifiable Multiparty Computation 731

As we will see in Sect. 4.4, CVZK can be built upon any fully input-delayed pro-
tocol (in a black-box manner) for a suitable “one-way” language that is secure
against helper-aided PPT adversaries. Here, for generality, we propose an instan-
tiation of such a protocol from the fully input-delayed proof for the Hamiltonian
Cycle problem of Lapidot and Shamir (LS) [46]. By the LS protocol, we know
that there exists a fully input-delayed Σ-protocol for every NP language. In the
full version of this paper [2], we recall the LS protocol and show that it is secure
against helper-aided PPT adversaries, when built upon a commitment scheme
that is also secure against PPT adversaries with access to the same helper. In
addition, we propose an instantiation of such a commitment scheme based on
ElGamal, assuming an “adaptive” variant of the DDH problem in the spirit of
AOWFs [53].

4.4 Generic CVZK Compiler

We present a generic CVZK compiler for any Σ-protocol Σ.Π =
(Σ.Prv1, Σ.Prv2, Σ.Verify) for an NP language L and (x,w) ∈ RL. Let F =
{ftag : Xtag −→ Ytag}tag∈{0,1}λ/log2 λ be a PS-AOWF family (cf. Definition 2),
and tag� be the identity of the verifier CVZK.V� for 	 ∈ [n]. Let |tag1| = · · · =
|tagn|. For each 	 ∈ [n], our compiler utilizes a fully input-delayed Σ-protocol
InD.Π := (InD.Prv1, InD.Prv2, InD.Verify) for the language L∗

tag�
defined as:

L∗
tag�

=
{
β ∈ Ytag�

∣
∣ ∃α ∈ Xtag�

: ftag�
(α) = β

}
. (1)

For simplicity, we say that InD.Π is for the family
{L∗

tag�

}
�∈[n]

, without referring
specifically to the family member.
Description. In terms of architecture, our CVZK compiler is in the spirit of
disjunctive proofs [20,22]: the prover must show that either (i) knows a witness
w for x ∈ L or (ii) can invert a hard instance of the PS-AOWF ftag. However,
several adaptations are required so that validity and ZK are preserved in the
CVZK setting where multiple (individually weak) verifiers are present. First,
the challenge C provided by the n verifiers is given as input to the coalescence
function F (·) defined in Sect. 4.1 which outputs log λ strings (d1, . . . , dlogλ), each

λ
log2 λ

bits long. In addition, the compiler maintains a fixed disjunctive mode so
that the prover always (i) proves the knowledge of w for x ∈ L and (ii) simulates
the knowledge of a collection of inversions to hard instances.

To prove the knowledge of w for x ∈ L, the prover executes log λ parallel
runs of the compiled Σ-protocol Σ.Π for (x,w) ∈ RL, where the challenge in
the i-th run is the XOR operation of the i-th block of n

log λ verifiers’ bits from
C and some randomness provided by the prover in the first move. To simulate
the inversions to hard instances, our compiler exploits the fully input-delayed
property of InD.Π. In particular, it runs n · log λ parallel simulations of InD.Π
where the (, j)-th run, (, j) ∈ [n]×[log λ], is for a hard instance (statement) x∗

�,j

associated with the identity tag� of CVZK.V�. The statement x∗
�,j is created later

on in the third move of the protocol by running the image-mapping algorithm

732 F. Baldimtsi et al.

of F on input tag� and the j-th string output by F (C), dj . The latter is feasible
because the first move of the input-delayed simulator InD.Sim is executed obliv-
iously to the statement.

By the coalescence property of F (·), the output F (C) preserves enough

entropy, so that any malicious CVZK prover corrupting less than n
1− 1

γ

log3 n
veri-

fiers is forced to be challenged on the knowledge of (i) w for x ∈ L or (ii) an
inversion of a hard instance, in at least one of the corresponding parallel execu-
tions. Thus, by the adaptive one-way property of F, the (potentially malicious)
prover must simulate the knowledge of all inversions and indeed prove the knowl-
edge of w for x ∈ L, so CVZK validity is guaranteed.

The ZK property of our compiler relies on the sHVZK properties of Σ.Π
and InD.Π, yet we remark that the CVZK simulation must be straight-line (no
rewindings) so that our construction can be deployed in the H-EUC setting of
our VMPC scheme. For this reason, we do “complexity leveraging” along the
lines of super-polynomial simulation introduced in [54], by allowing our simu-
lator to have access to members of the helper family H defined in Fig. 1. Our
CVZK compiler is presented in detail in Fig. 2.

Security. To prove the security of our CVZK generic compiler we use a simula-
tor pair (CVZK.Sim1,CVZK.Sim2), where CVZK.Sim2 is given oracle access to a
member of the super-polynomial helper family H = {HS}S⊂{0,1}λ/ log2 λ defined
in Fig. 1. We state our CVZK security theorem below and prove it in the full
version of this paper [2].

Theorem 2. Let Σ.Π = (Σ.Prv1, Σ.Prv2, Σ.Verify) be a Σ-protocol for some
language L ∈ NP where the challenge is chosen uniformly at random. Let F =
{ftag : Xtag −→ Ytag}tag∈{0,1}λ/ log2 λ be a PS-AOWF family (cf. Definition 2),
and let H = {HS}S⊂{0,1}λ/ log2 λ be the associated helper family defined in Fig. 1.
Let InD.Π := (InD.Prv1, InD.Prv2, InD.Verify) be a fully input-delayed Σ-protocol
for the language family

{L∗
tag�

}
�∈[n]

defined in Eq.(1).
Let γ > 1 be a constant and n = λγ . Let CVZK.Π be the CVZK compiler for the
language L with n verifiers described in Fig. 2 over Σ.Π, InD.Π and F. Then,
against any adversary A, it holds that:

(1) If the image-mapping algorithm IM(·, ·) of F has error ε(·)1, Σ.Π has
completeness error δ(·) and InD.Π has perfect completeness, then for every

t1 ≤ n
1− 1

γ

log2 n
, CVZK.Π satisfies (t1, ε1)-crowd verifiable completeness, where

ε1(λ) := δ(λ) log λ + n log λε(λ)2Θ(log2 n) + negl(λ).

(2) If Σ.Π and InD.Π are special sound, then for every t2 ≤ n
1− 1

γ

log3 n
, there

is a negligible function ε2(·) s.t. CVZK.Π satisfies (t2, ε2)-crowd verifiable
soundness and t2-crowd verifiable validity.
(3). Let t3 ≤ n and consider any subset of indices of corrupted verifiers
Icorr ⊆ [n] s.t. |Icorr| ≤ t3. Let A be PPT with access to a helper HS from H,

1 The PS-AOWF family instantiated in [2] has perfect samplability, i.e. ε(λ) = 0.

CVZK and End-to-End Verifiable Multiparty Computation 733

Fig. 2. The generic CVZK compiler CVZK.Π.

where (i) {tag�}�∈Icorr ⊆ S and (ii) {tag�}�∈[n]\Icorr
∩S = ∅. If Σ.Π and InD.Π

are sHVZK against PPT distinguishers with access to HS, then there is a PPT
simulator pair

(
CVZK.Sim1, CVZK.SimHS

2

)
s.t. CVZK.Π is t3-crowd-verifiable

zero-knowledge against PPT distinguishers with access to HS.

5 End-to-End Verifiable MPC

We introduce end-to-end verifiable multiparty computation (VMPC), which as
we show in Sect. 7, can be realized with the use of CVZK. A VMPC scheme
encompasses the interaction among sets of users, clients and servers, so that the

734 F. Baldimtsi et al.

correct computation of some fixed function f of the users’ private inputs can be
verified, while their privacy is preserved. End-to-end verifiability suggests that
even when all servers and all users’ clients are corrupted, verification is still
possible (although, obviously, in an all-malicious setting, privacy is violated).
Furthermore, a user’s audit data do not leak information about her private input
so the verification mechanism may be delegated to an external verifier.

5.1 VMPC Syntax

Let U = {U1, . . . , Un } be a set of n users where every user has an associated
client C = {C1, . . . , Cn }. Let S = {S1, . . . , Sk } be a set of k servers. All clients
and servers run in polynomial time. Every server has write permission to a con-
sistent bulletin board (BB) to which all parties have read access. Each user U�

receives her private input x� from some set X (which includes a special sym-
bol “abstain”) and is associated with a client C� for engaging in the VMPC
execution. In addition, there exists an efficient verifier V responsible for audit-
ing procedures. The evaluation function associated with the VMPC scheme is
denoted by f : Xn −→ Y , where Xn is the set of vectors of length n, the coor-
dinates of which are elements in X, and Y is the range set. All parameters and
set sizes n, k are polynomial in the security parameter λ.

Note that we consider the concept of a single verifier that audits the VMPC
execution on behalf of the users, in the spirit of delegatable receipt-free verifi-
cation that is established in e-voting literature (e.g. [18,41,51]). Alternatively,
we could involve multiple verifiers, e.g. one for each user, and require that all
or a threshold of them verify successfully. This approach does not essentially
affect the design and security analysis of a VMPC scheme, as (i) individual ver-
ifiability is captured in our description via the delegatable verification carried
out by the single verifier and (ii) a threshold of collective user randomness is
anyway needed. Which of the two directions is preferable, is mostly a matter of
deployment and depends on the real world scenario where the VMPC is used.

Separating Users from Their Client Devices. The distinction between the
user and her associated client is crucial for the analysis of VMPC security where
end-to-end verifiability is preserved in an all-malicious setting, i.e., where the
honest users are against a severe adversarial environment that controls the entire
VMPC execution by corrupting all servers and all clients. In this setting, each
user is an entity with limited “human level” power, unable of performing complex
cryptographic operations which are outsourced to her associated client. A secure
VMPC scheme should be designed in a way that withstands such attacks, based
on the engagement of the honest users in the execution.

VMPC security relies on the internal randomness that each user generates
during her interaction with the system. By r� we denote the randomness gener-
ated by the user U� and κ� is the min-entropy of r�. Let κ := min{κ� | 	 ∈ [n]}
be the min-entropy of all users’ randomness, that we call the user min-entropy
of a VMPC scheme. Given that we view U� as a “human entity”, the values of κ
are small and insufficient for secure implementation of cryptographic primitives.
Namely, each individual user contributes randomness that can be guessed by an

CVZK and End-to-End Verifiable Multiparty Computation 735

adversary with non-negligible probability. Formally, it should hold κ = O(logλ),
i.e. 2−κ is a non-negligible value and hence insufficient for any cryptographic
operation. From a computational point of view, users cannot perform compli-
cated calculations and their computational complexity is linear in λ (i.e., the
minimum for reading the input).

Protocols. A VMPC scheme consists of the following protocols:

– Initialize (executed among the servers). At the end of the protocol each
server Si posts a public value Paramsi in the BB and maintains private state
sti. By Params = {Paramsi, i ∈ [k]} we denote the execution’s public param-
eters.

– Input (executed among the servers and the users along with their associated
clients). We restrict the interaction in the simple setting where the users
engage in the Input protocol without interacting with each other. Specifically,
each user U�, provides her input x� to her client C� (e.g., smartphone or
desktop PC) which in turn interacts with the servers. By her interaction with
C�, the user U� obtains some string α� that will be used as individual audit
data.

– Compute (executed among the servers). At the end of the protocol, the
servers post an output value y and the public audit data τ on the BB. Then,
everyone may obtain the output y from the BB.

– Verify (executed by the verifier V and the users). In particular, V requests
the individual audit data α� from each user U� and reads y, τ from the BB.
Subsequently it provides each user U� with a pair (y, v), where v ∈ {0, 1}
denotes the verification success or failure.

Remark 2. The Initialize protocol can operate as a setup service that is run
ahead of time and is used for multiple executions, while the Input protocol
represents the online interaction between a user, her client and the servers.

5.2 Security Framework

We define a functionality that captures the two fundamental properties that
every VMPC should achieve: (i) standard MPC security and (ii) end-to-end ver-
ifiability. Our model for VMPC is in the spirit of H-EUC security [17], which
allows for the preservation of the said properties under arbitrary protocol com-
positions. Thus, VMPC security refers to indistinguishability between an ideal
and a real world setting by any environment that schedules the execution. In our
definition we assume the functionality of a Bulletin Board GBB (with consistent
write/read operations) and a functionality Fsc that models a Secure Channel
between each user and her client (we recall GBB and Fsc in the full version [2]).

Ideal World Setting. We formally describe the ideal VMPC functionality
Ff,R

vmpc(P) that is defined w.r.t. to an evaluation function f : Xn −→ Y and
a binary relation R ⊆ Img[f] × Img[f] over the image of f . The functionality
Ff,R

vmpc(P) operates with the parties in P = U ∪ C ∪ S ∪ {V }, which include the
users U = {U1, . . . , Un } along with their associated clients C = {C1, . . . , Cn },
the servers S = {S1, . . . , Sk }, and the verifier V .

736 F. Baldimtsi et al.

The relation R determines the level of security offered by Ff,R
vmpc(P) in terms of

adversarial manipulation of the output computed value. E.g., if R is the equality
relation { (y, y) | y ∈ Y }, then no deviation from the actual intended evaluation
will be permitted by the Ff,R

vmpc(P). Finally, the environment Z provides the par-
ties with their inputs and determines a subset Lcorr ⊂ P of statically corrupted
parties. Along the lines of the H-EUC model, we consider an externalized global
helper functionality H in both the ideal and real world. The helper H can inter-
act with parties in P and the environment Z. Namely, Z sends Lcorr to H at the
beginning or the execution. In this work, we allow H to run in super-polynomial
time w.r.t. the security parameter λ. At a high level, Ff,R

vmpc(P) interacts with
the ideal adversary Sim as follows:

– At the Initialize phase, it waits for the servers and clients to be ready for
the VMPC execution.

– At the Input phase, it receives the user’s inputs. It leaks the input of U� to
the adversary only if (i) all servers are corrupted or (ii) the client C� of U�

is corrupted. If neither (i) nor (ii) holds, then Ff,R
vmpc(P) only reveals whether

U� abstained from the execution.
– At the Compute phase, upon receiving all user’s inputs denoted as vector

x ∈ Xn, it computes the output value y = f(x).
– At the Verify phase, upon receiving a verification request from V (which is a

dummy party here), the functionality is responsible for playing the role of an
“ideal verifier” for every user U�. On the other hand, Sim sends to Ff,R

vmpc(P) an
adversarial (hence, not necessarily meaningful) output value ỹ for the VMPC
execution for U�. Then, Ff,R

vmpc(P)’s verification verdict w.r.t. U� will depend
on the interaction with Sim and potentially the relation of y, ỹ w.r.t. R. We
stress that Ff,R

vmpc(P) will consider ỹ only if (a) all servers are corrupted, or (b)
an honest user’s client is corrupted2. If this is not the case, then it will always
send the actual computed value y to U� and its verification verdict will not
depend on R, which is in line with the standard notion of MPC correctness.
The functionality Ff,R

vmpc(P) is presented in Fig. 3.

Real World Setting. In the real world setting, all the entities specified in
the set P are involved in an execution of a VMPC scheme Π = (Initialize,
Input,Compute,Verify) in the presence of functionalities GBB and Fsc. As
in the ideal world, the environment Z provides the inputs and determines the
corruption subset Lcorr ⊂ P. Z will also send Lcorr to H at the beginning of the
execution. During Initialize, the servers interact with the users’ clients. During
the Input protocol, every honest user U� engages by providing her private input
x� via C� and obtaining her individual audit data α�. The execution is run in the
presence of a PPT adversary A that observes the network traffic and corrupts
the parties specified in Lcorr.

2 In case an honest user’s client is corrupted, an “input replacement” attack can take
place which makes it impossible to deliver (the true output) y to the user.

CVZK and End-to-End Verifiable Multiparty Computation 737

VMPC Definition. As in the H-EUC framework [17], we consider an environ-
ment Z that provides inputs to all parties, interacts with helper H and schedules

the execution. In the ideal world setting, Z outputs the bit EXEC
Ff,R

vmpc(P)

Sim,Z,H (λ), and

in the real world the bit EXECP,ΠGBB,Fsc

A,Z,H (λ). Security is defined as follows:

Definition 6. Let f : Xn −→ Y be an evaluation function and R ⊆ Img[f] ×
Img[f] be a binary relation. Let H be a helper functionality. We say that a VMPC
scheme ΠGBB,Fsc operating with the parties in P, H-EUC realizes Ff,R

vmpc(P) with
error ε, if for every PPT adversary A there is an ideal PPT simulator Sim such
that for every PPT environment Z, it holds that

∣
∣
∣ Pr

[
EXEC

Ff,R
vmpc(P)

Sim,Z,H (λ) = 1
] − Pr

[
EXECP,ΠGBB,Fsc

A,Z,H (λ) = 1
]∣∣
∣ < ε .

Strength of Our VMPC Security Model. Based on the description of Ff,R
vmpc,

the private input x� of an honest user U� is leaked if her client C� is corrupted, or
if all servers are malicious, so in our VMPC model, the honest users’ clients and
at least one server must be non-corrupted for privacy. For integrity, we require
that the verifier remains honest, while GBB captures the notion of a consistent and
public bulletin board. We informally argue that these requirements are essential
for VMPC feasibility, at least for meaningful cases of functions and relations.
Clearly, since the users communicate with the servers only via their clients, the
user has to provide her input to the client which has to be trusted for privacy.
Besides, if the adversary can corrupt all the servers, then it can completely run
the Compute protocol and along with the environment, schedule the evaluation
of f that, in general, may leak information on individual inputs that Sim cannot
infer just by receiving the evaluation of f on the entire input vector.

Furthermore, if the real world verifier is malicious, then it can provide arbi-
trary verdicts regardless of the “verification rules” imposed by R, which rules
are respected by Ff,R

vmpc(P) in the ideal world (the same would hold even we con-
sidered multiple verifiers per user). Finally, in case of no consistent BB, since the
communication between parties is not assumed authenticated, an adversary can
disconnect the parties separating them into disjoint groups, and provide partial
and mutually inconsistent views of the VMPC execution per group. For more
details, we refer to Barak et al. [3] and the full version of this paper [2], where we
discuss the strength of our model w.r.t. the server, client, and verifier corruption.

6 Spreading Relations

In this section, we study the characteristics that a function f : Xn −→ Y must
have w.r.t. some relation R ⊆ Img[f]× Img[f] to be realized by a VMPC scheme.
Recall that in our setting, all entities capable of performing cryptographic oper-
ations might be corrupted and only a subset of users is honest. This requirement
poses limitations not present in other security models (e.g. [4]), where auditable/
verifiable MPC is feasible for a large class of functions (arithmetic circuits) given

738 F. Baldimtsi et al.

Fig. 3. The ideal VMPC functionality Ff,R
vmpc(P).

(i) the existence of a trusted randomness source or a random oracle or (ii) the
fact that both the honest user and her client are considered as one non-corrupted
entity. As a consequence, for some evaluation function f and binary relation R,
if VMPC realization is feasible, then this is due to the nature of the users’

CVZK and End-to-End Verifiable Multiparty Computation 739

engagement in the VMPC execution. Namely, we consider that the users inter-
act using some randomness that implies a level of unpredictability in the eyes of
the attacker that prevents end-to-end verifiability (as determined by relation R)
or secrecy from being breached. Naturally, this engagement results in a security
error that strongly depends on (i) the number of honest users whose inputs are
attacked by the adversary and (ii) the user min entropy κ. On the contrary, it
is plausible that if an adversary controlling the entire execution can guess all
the users’ coins, then this execution is left defenseless against the adversary’s
attacks. As mentioned in Sect. 5, the possible values for κ remain at a “human
level”, in the sense that the randomness r� of U� can be guessed with good prob-
ability. Typically, we assume that 2−κ is non-negligible in the security parameter
λ by setting κ = O(logλ).

We view the sets Xn and Y as metric spaces equipped with metrics dXn

and dY respectively. For the domain Xn, we select the metric that provides an
estimation of the number of honest users that have been attacked, i.e. their inputs
are modified by the real world adversary. So, we fix dXn as the metric Dcrn that
counts the number of vector elements that two inputs x = (x1, . . . , xn),x′ =
(x′

1, . . . , x
′
n) differ. Formally, Dcrn(x,x′) =

∣
∣ { 	 ∈ [n] | x� �= x′

� } ∣
∣ .

We examine feasibility of realizing Ff,R
vmpc w.r.t. f,R according to the following

reasoning: assuming that cryptographic security holds, then an adversarial input
that has some distance δ w.r.t. Dcrn from the honest inputs cannot cause a
significant divergence y′ from the actual evaluation y = f(x). Here, divergence is
interpreted as the case where y, y′ are not in some fixed relation R. For instance,
if divergence means that the deviation from the actual evaluation is no more
than δ, this can be expressed as y, y′ not being in the bounded distance relation
Rδ defined as follows:

Rδ := {(z, z′) ∈ Y × Y | dY (z, z′) ≤ δ} . (2)

An interesting class of evaluation functions that can be realized in an VMPC
manner w.r.t. Rδ are the ones that satisfy some relaxed isometric property, thus
inherently preventing evaluation from “large” deviation blow ups when the dis-
tance between honest and adversarial inputs is bounded, as specified by Eq. (2)
for some positive value δ. One noticeable example are the Lipschitz functions;
namely, for some L > 0, if the evaluation function f : Xn −→ Y is L-Lipschitz,
then for every x,x′ ∈ Xn it holds that dY

(
f(x), f(x′)

) ≤ L · Dcrn
(
x,x′).

Thus, in the case of an L-Liptshitz function f and bounded distance relation
Rδ, the following condition holds:

∀x,x′ ∈ Xn : Dcrn(x,x′) ≤ δ/L ⇒ Rδ

(
f(x), f(x′)

)
.

In general, the above condition implies that the ideal functionality Ff,R
vmpc(P)

will accept a simulation when the adversarial value y′ can be derived by an input
vector that is no more than δ-far from the actual users’ inputs. This interesting
property fits perfectly with our intuition of VMPC realization and captures
Lipschitz functions and bounded distance relations as special case. Based on the
above, we introduce the notion of spreading relations as follows.

740 F. Baldimtsi et al.

Definition 7 (Spreading relation). Let (Xn,Dcrn) and (Y,dY) be metric
spaces, f : Xn −→ Y be a function and δ be a non-negative real value. We
say that R ⊆ Img[f] × Img[f] is a δ-spreading relation over Img[f], if for every
x,x′ ∈ Xn it holds that

Dcrn(x,x′) ≤ δ ⇒ R
(
f(x), f(x′)

)
.

The Breadth of VMPC Feasibility. Given Definition 7, we formally explore
the boundaries of VMPC feasibility given some fixed values κ, δ. Intuitively, we
show that if f is symmetric3, then VMPC realization with a small (typically
negl(δ)) error is infeasible when R is not a δ-spreading relation over Img[f], or if
the users engage in the VMPC execution in a “deterministic way” (i.e., κ = 0).
A detailed discussion and a proof sketch can be found in the full version of this
paper [2].

Theorem 3. Let f : Xn −→ Y be a symmetric function, R ⊆ Img[f] × Img[f]
be a binary relation and κ, δ be non-negative values, where δ ≤ n

2 . Then, one of
the following two conditions holds:

(1) R is a δ-spreading relation over Img[f].
(2) For every VMPC scheme ΠGBB,Fsc with parties in P = {U1, . . . , Un} ∪

{C1, . . . , Cn} ∪ {S1, . . . , Sk} ∪ {V } and user min entropy κ, and every helper H,
there is a negligible function ε and a non-negligible function γ such that ΠGBB,Fsc

does not H-EUC realize Ff,R
vmpc(P) with error less than min{2−κδ − ε(λ), γ(λ)}.

7 Constructing VMPC from CVZK

A number of efficient practical MPC protocols [11,26,27,52] have been proposed
in the pre-processing model. Such protocols consist of two phases: offline and
online. During the offline phase, the MPC parties jointly compute authenticated
correlated randomness, which typically is independent of the parties’ inputs.
During the online phase, the correlated randomness is consumed to securely
evaluate the MPC function over the parties’ inputs. Our VMPC construction
follows the same paradigm as [4]. Our main challenge is to transform a publicly
audible MPC to a VMPC without a trusted setup.

Our construction utilizes a number of tools that are presented in the full ver-
sion of this paper [2]: (i) a perfectly binding homomorphic commitment that is
secure against helper-aided PPT adversaries, (ii) a dual-mode homomorphic com-
mitment DC, which allows for two ways to choose the commitment key s.t. the
commitment is either perfectly binding or equivocal, (iii) a Σ-protocol for Beaver
triples, and (iv) CVZK proofs that derive from compiling straight-line simulat-
able ZK proofs for NP languages via our CVZK construction from Sect. 4. Note
that plain ZK does not comply with the VMPC corruption model, as all servers
and clients can be corrupted and each user has limited entropy. Additionally, our

3 f(x1, . . . , xn) is symmetric iff it is unchanged by any permutation of its variables.

CVZK and End-to-End Verifiable Multiparty Computation 741

protocol utilizes a secure channel functionality Fsc between human users U� and
their local clients C�; and an authenticated channel functionality Fauth between
human users U� and verifier V . Both channels can be instantiated from physical
world, such as isolated rooms and trusted mailing service. To provide intuition,
we first present a construction for the single-server setting.

Single-Server VMPC. As a warm-up, we present the simpler case of a single
MPC server S. In this setting, no privacy can be guaranteed when S is corrupted,
yet end-to-end verifiability should remain, since the property should hold even if
all servers are corrupted. For simplicity, by using CVZK to prove a statement,
we mean that the prover (server) runs CVZK.Prv1 to generate the first move
of the CVZK proof and posts it on BB (formalized as GBB in [2]) during the
Initialize phase. Each user then acts as a CVZK verifier to generate and post
a coin on the BB at Input phase. The prover uses CVZK.Prv2 to complete the
proof by posting the third move of the CVZK proof to the BB at the Compute
phase. At Verify, anyone can check the CVZK transcripts posted on the BB.

– At the Initialize phase, S first generates a perfectly binding commitment
key of the dual-mode homomorphic commitment as ck ← DC.Gen(1λ) which
posts on the BB and shows that ck is a binding key using CVZK. Then, S

generates and commits to two random numbers r
(0)
� , r

(1)
� ∈ Zp to the BB

for each user U�, 	 ∈ [n]. Denote the corresponding commitments as c
(0)
�

and c
(1)
� . Furthermore, S generates sufficiently many random Beaver triples

(depending on the multiplication gates of the circuit to be evaluated), i.e.,
triples (a, b, c) ∈ (Zp)3 such that c = a · b, and then commits the triples to
the BB by showing their correctness using the CVZK compiled from the Σ-
protocol for Beaver triples. For each user U�, 	 ∈ [n], S sends r

(0)
� and r

(1)
� to

her client C�.
– At the Input phase, C� sends (displays) r

(0)
� and r

(1)
� to U�. Assume U�’s

input is x�. U� randomly picks b�← { 0, 1 } and computes δ� = x� − r
(b�)
�

4.
Then, U� sends (b�, δ�) to C�, which in turn posts (U�, δ�, b�) to the BB, where
U� is the user ID. Finally, U� obtains (b�, δ�, r

(1−b�)
�) as her individual audit

data α�.
– At the Compute phase, S fetches posted messages from the BB. For 	 ∈ [n],

S sets c� ← c
(b�)
� · DC.Comck(δ�;0) and opens c

(1−b�)
� to the BB (note that

c� commits to x�). S follows the arithmetic circuit to evaluate f(x1, . . . , xn)
using (c1, . . . , cn) as the input commitments. Specifically, (i) for addition gate
z = x + y, S uses homomorphic property to set the commitment of z as
DC.Comck(x) · DC.Comck(y); (ii) for multiplication gate z = x · y, S needs to
consume a pre-committed random Beaver triple. Denote the commitments of
x and y as X and Y , respectively and the triple commitments as (A,B,C)

4 Note that this step requires the “human” user to perform some linear operation
in Zp. If we want to avoid any type of computation in the user side (apart from
coin-flipping), then the client can also send a pre-computed lookup table for all δ�

(assuming that the user input space is polynomial).

742 F. Baldimtsi et al.

which commit to a, b, c s.t. a · b = c. Then, S opens the commitment X/A as
α and Y/B as β to the BB. It then sets the commitment of z as C · Bα · Aβ ·
DC.Comck(α · β). By homomorphic property, it is easy to see that z = x · y.
Finally, S opens the commitments corresponding to the output gate(s) of the
arithmetic circuit as the final result.

– At the Verify phase, V requests and receives the individual audit data
{α�}�∈[n] from each user U�, 	 ∈ [n], via Fauth. First, V parses α� =
(b�, δ�, r

(1−b�)
�), for 	 ∈ [n]. Next, V fetches all the transcript from the BB,

and it executes the following steps: (1) it checks that the posted b� on the BB
match the ones in α�; (2) it verifies that the openings of all the commitments
are valid; (3) it verifies that all the CVZK proofs are valid; (4) it re-computes
the arithmetic circuit using the commitments and openings posted on the BB
to verify the computation correctness. If all checks are successful, V sets the
verification bit v := 1, else it sets v := 0. Finally, it sends the opening of the
result commitment (i.e., f(x1, . . . , xn)) along with v to every user U�, 	 ∈ [n].

Security Analysis. We provide an informal discussion on the security of the
single-server construction in terms of privacy and end-to-end verifiability.

Privacy. The single-server VMPC construction preserves user U�’s privacy when
the server S and C� are honest. In particular, since the underlying commitment
scheme is computationally hiding under the adaptively secure DDH assumption
(cf. [2] for a definition), all the posted commitments to values X/A and Y/B leak
no information (up to a negl(λ) error) about the users’ inputs to a PPT adversary
with access to the helper. Furthermore, while computing the multiplication gates,
the openings have uniform distribution, as the plaintext is masked by a random
group element.

End-to-End Verifiability. Let f be an evaluation function and R be a δ-spreading
relation over Img[f] (cf. Definition 7), where δ ≥ 0 is an integer. We informally
discuss how the single-server VMPC protocol achieves end-to-end verifiability
w.r.t. R, with error that is negligible in λ and δ. Assume that the adversary A
corrupts the MPC server, all users’ clients and no more than n1− 1

γ /log3 n users.
First, we note that if A additionally corrupts the verifier V , we can construct
a simple simulator that engages with A by playing the role of honest users
and simply forwards the malicious response of V to Ff,R

vmpc(P) along with the
adversarial tally y′.

For the more interesting case where V is honest, we list the types of attacks
that A may launch below:

– Commitment attack: A attempts to open some commitment c of a message m,
to a value m′ �= m. By the perfect binding property of ElGamal commitment,
this attack has zero success probability.

– Soundness attack: A attempts to convince the verifier of an invalid CVZK
proof. By the

(
n1− 1

γ /log3 n, negl(λ)
)
-crowd-verifiable soundness of our

CVZK compiler (cf. Theorem 2), A has negl(λ) probability of success in such
an attack.

CVZK and End-to-End Verifiable Multiparty Computation 743

– Client attack: by corrupting the client C� of U�, A provides U� with a pair of
random values (r̂(0)� , r̂

(1)
�), where one component r̂

(b∗)
� is different than r

(b∗)
�

in the pair (r(0)� , r
(1)
�) committed to BB. Hence, if A∗ guesses the coin of U�

correctly (i.e. b∗ = b�), then it can perform the VMPC execution by replacing
U�’s input x� with input x∗

� = x� +
(
r̂
(b∗)
� − r

(b∗)
�

)
without being detected.

Given that U� flips a fair coin, this attack has 1/2 success probability.

This list of attacks is complete; if none of the above attacks happen, then
by the properties of the secret sharing scheme, A can not tamper the VMPC
computation on the consistent BB without being detected.

Leaving aside the negl(λ) cryptographic error inserted by combinations of
commitment and soundness attacks, the adversary’s effectiveness relies on the
scale of client attacks that it can execute. If it performs more than δ client
attacks, then by the description of client attacks, V will detect and reject with
at least 1 − 2−δ probability. So, with at least 1 − 2−δ probability, a simulator
playing the role of the (honest) verifier will also send a reject message (ṽ = 0)
for every honest user to Ff,R

vmpc(P) and indistinguishability is preserved.
On the other hand, if A performs less than δ client attacks, then the actual

input x and the adversarial one x′ are δ-close w.r.t. Dcrn(·, ·). Since the relation
R is δ-spreading, we have that

(
f(x), f(x′)

) ∈ R holds. So, when the simulator
plays the role of the (honest) verifier that accepts, it sends an accept message
(ṽ = 1) for every honest user to Ff,R

vmpc(P) which in turn will also accept (since(
f(x), f(x′)

) ∈ R holds). Besides, Ff,R
vmpc(P) will reject whenever the simulator

sends a reject message, hence, indistinguishability is again preserved.
We conclude that the single-server VMPC scheme achieves end-to-end veri-

fiability with overall error 2−δ + negl(λ).

Extension to Multi-server VMPC. The single-server VMPC can be natu-
rally extended to a multi-server version by secret-sharing the server’s state. The
protocol is similar to BDO [4] and SPDZ [26,27]. However, all the underlying ZK
proofs need to be compiled in CVZK. More specifically, we define an offline func-
tionality FV.Offline to generate shared random Beaver triples and shared random
values. The main differences between our FV.Offline and the ones used in SPDZ and
its variants are (i) The MAC is removed from all the shares, and (ii) FV.Offline has
to be crowd verifiable. Due to space limitations, we provide the formal descrip-
tion of FV.Offline and its realization in the H-EUC model in the full version of this
paper [2]. Moreover, in [2], we formally present the multi-server VMPC scheme
ΠGBB,Fsc,Fauth,FV.Offline

online in the {GBB,Fsc,Fauth,FV.Offline}-hybrid model along with a
proof sketch of the following theorem.

Theorem 4. Let ΠGBB,Fsc,Fauth,FV.Offline

online be our VMPC scheme with n users. Let
γ > 1 be a constant such that n = λγ . Let f : Xn −→ Y be a symmet-
ric function and R ⊆ Img[f] × Img[f] be a δ-spreading relation over Img[f].
The scheme ΠGBB,Fsc,Fauth,FV.Offline

online H-EUC realizes Ff,R
vmpc(P) in the {GBB,Fsc,Fauth,

FV.Offline}-hybrid model with error 2−δ+negl(λ) under the adaptive DDH assump-

tion, against any PPT environment Z that statically corrupts at most n
1− 1

γ

log3 n

744 F. Baldimtsi et al.

users, assuming the underlying CVZK is (n, negl(λ))-crowd verifiable complete,(
n
1− 1

γ

log3 n
, negl(λ)

)
-crowd verifiable sound, and n-crowd verifiable zero-knowledge.

Remark 3. When δ = ω(log λ), then ΠGBB,Fsc,Fauth,FV.Offline

online H-EUC realizes
Ff,R

vmpc(P).

8 Applications of VMPC

Examples of interesting VMPC application scenarios may refer to e-voting, as
well as any type of privacy-preserving data processing where for transparency
reasons, it is important to provide evidence of the integrity of the outcome, e.g.,
demographic statistics or financial analysis. In our modeling, the most appealing
cases - in terms of usability by a user with “human level” limitations - are the
ones where the error is small for the lowest possible entropy, e.g. users contribute
only 1 bit. Hence, for simplicity we set κ = 1. Following the reasoning in Sect. 6
and by Theorem 3, when κ = 1, a VMPC application can be feasible when it is
w.r.t. to δ-spreading relations and with an error expected to be negl(δ) (ignoring
the negl(λ) cryptographic error). In general, we can calibrate the security error
by designing VMPC schemes that support sufficiently large values of κ. We
present a selection of interesting VMPC applications below.

e-Voting. The security analysis of several e-voting systems (e.g. [21,41,45]) is
based on the claim that “assuming cryptographic security, by attacking one voter
you change one vote, thus you add at most one to the total tally deviation”. This
claim can be seen as a special case of VMPC security for an evaluation (tally)
function which is 1-Lipschitz and tally deviation is naturally captured by Rδ

defined in Eq. (2). Thus, if the voters contribute min entropy of 1 bit, then we
expect that e-voting security holds with error negl(δ).

Privacy-Preserving Statistics. Let X = [a, b] be a range of integer values,
Y = [a, b] and f :=

∑n
�=1 x�

n be the average of all users’ inputs. E.g., [a, b] could be
the number of unemployed adults or dependent members in a family, the range
of the employees’ salary in a company, or the household power consumption in
a city measured by smart meters. If we set dY to the absolute value | · |, then f
is a b−a

n -Lipschitz function for Dcrn and | · |, so for user min entropy of 1 bit, we
expect that (f,Rδ) can be realized with error negl(δn

b−a). This also generalizes to
other aggregate statistics such as calculating higher moments over the data set.

Privacy-Preserving Processing of Multidimensional Data (Profile
Matching). A useful generalization of the privacy-preserving statistics case is
when performing processing on multidimensional data collected from multiple
sources. A simple two-dimensional example illustrating this follows. Let X1,X2

be two domains of attributes and X := X1×X2, i.e. each input x� is an attribute
pair (x�,1, x�,2). Let Y = [n], P1, P2 be predicates over X1,X2 respectively and
let f :=

∑n
�=1 P1(x�,1)·P2(x�,2) be the function that counts the number of inputs

CVZK and End-to-End Verifiable Multiparty Computation 745

that satisfy both P1, P2. E.g., X1 could be the set of dates and X2 be the loca-
tions, fragmented in area units. Then, f could count the number of people that
are in a specific place and have their birthday. If we set dY to | · |, then f is a
1-Lipschitz function for Dcrn and | · |. (f,Rδ) can be realized with error negl(δ).

Supervised Learning of (binary) Classifiers. In many use cases, func-
tions that operate as classifiers are being “trained” via a machine learning
algorithm (e.g. Perceptron) on input a vector of training data. Here, we view
the users’ inputs as training data that are vectors of dimension m, i.e. x� =
(x�,1, . . . , x�,m) ∈ [a1, b1] × · · · × [am, bm], where [ai, bi], i ∈ [m] are intervals.
The evaluation function f outputs a hyperplane HP (x) := {w · z | z ∈ R

m}
that defines the decision’s 0/1 output. If the adversary changes x with some
x′ s.t. Dcrn(x,x′) ≤ δ, then the adversarially computed hyperplane HP (x′) :=
{w′ ·z | z ∈ R

m} must be close to HP (x), otherwise the attack is detected. This
could be expressed by having w,w′ be δ close w.r.t. the Euclidean distance.
Assume now that for a set of new data points z1, . . . , zt we set the relation as
“R

(
HP (x),HP (x′)

) ⇔ ∀j ∈ [t] the classifier makes the same decision for zj”.
Then, clearly R is a spreading relation w.r.t. to f , suggesting that the func-
tionality of calculating classifier is resilient against attacks on less than δ of the
training data.

References

1. Alwen, J., Ostrovsky, R., Zhou, H.-S., Zikas, V.: Incoercible multi-party computa-
tion and universally composable receipt-free voting. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 763–780. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 37

2. Baldimtsi, F., Kiayias, A., Zacharias, T., Zhang, B.: Crowd verifiable zero-
knowledge and end-to-end verifiable multiparty computation. IACR Cryptology
ePrint Archive 2020:711 (2020)

3. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 22

4. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party com-
putation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 11

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

6. Beaver, D.: Commodity-based cryptography (extended abstract). In: STOC (1997)
7. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in

the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 26

8. Ben-Or, M., Linial, N.: Collective coin flipping, robust voting schemes and minima
of Banzhaf values. In: FOCS (1985)

9. Benaloh, J.: Simple verifiable elections. In: USENIX EVT. USENIX Association
(2006)

https://doi.org/10.1007/978-3-662-48000-7_37
https://doi.org/10.1007/11535218_22
https://doi.org/10.1007/978-3-319-10879-7_11
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26

746 F. Baldimtsi et al.

10. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In:
EVT (2007)

11. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

12. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

13. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

14. Burmester, M., Desmedt, Y.: Broadcast interactive proofs. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 81–95. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 7

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

16. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

17. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS (2010)

18. Chaum, D.: Secret-ballot receipts: true voter-verifiable elections. In: IEEE S&P
(2004)

19. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR-
Composition of sigma-protocols. In: TCC (2016)

20. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/Offline
OR composition of sigma protocols. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 63–92. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 3

21. Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: SoK: verifiability
notions for e-voting protocols. IEEE Security & Privacy (2016)

22. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

23. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 9

24. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential
benchmarking based on multiparty computation. In: Grossklags, J., Preneel, B.
(eds.) FC 2016. LNCS, vol. 9603, pp. 169–187. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54970-4 10

25. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

26. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – Or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-662-49896-5_3
https://doi.org/10.1007/978-3-662-49896-5_3
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-642-40203-6_1

CVZK and End-to-End Verifiable Multiparty Computation 747

27. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

28. Dodis, Y., Ristenpart, T., Vadhan, S.P.: Randomness condensers for efficiently
samplable, seed-dependent sources. In: TCC (2012)

29. Ellison, C.: Ceremony design and analysis. IACR ePrint, Report 2007/399 (2007)
30. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended

abstract). In: STOC (1994)
31. Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round zero-

knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78372-7 1

32. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC (1987)

33. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

34. Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party compu-
tation. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
397–429. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 14

35. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

36. Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions
(extended abstract). In: FOCS (1988)

37. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 8

38. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function
evaluation. In: CCS (2012)

39. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: CCS (2016)

40. Kiayias, A., Zacharias, T., Zhang, B.: DEMOS-2: scalable E2E verifiable elections
without random oracles. In: CCS (2015)

41. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 468–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 16

42. Kiayias, A., Zacharias, T., Zhang, B.: Ceremonies for end-to-end verifiable elec-
tions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 305–334. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-662-54388-7 11

43. Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: USENIX (2012)

44. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: CCS (2010)

45. Küsters, R., Truderung, T., Vogt, A.: Clash attacks on the verifiability of e-voting
systems. IEEE Security & Privacy (2012)

https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-54388-7_11

748 F. Baldimtsi et al.

46. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 26

47. Lepinski, M., Micali, S., Shelat, A.: Fair-zero knowledge. In: Kilian, J. (ed.) TCC
2005. LNCS, vol. 3378, pp. 245–263. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30576-7 14

48. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. IACR ePrint 2008/197 (2008)

49. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC (2012)

50. Meka, R.: Explicit resilient functions matching Ajtai-Linial. In: SODA (2017)
51. Neff, C.A.: Practical high certainty intent verification for encrypted votes. Inc.

whitepaper, Votehere (2004)
52. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-

cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

53. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 4

54. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 10

55. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 15

56. Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computation
from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 3–22. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 1

57. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS (1982)
58. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS

(1986)

https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-540-85174-5_4
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-319-28166-7_1

Non-interactive Composition
of Sigma-Protocols via Share-then-Hash

MasayukiAbe1(B), Miguel Ambrona1, Andrej Bogdanov2, Miyako Ohkubo3,
and Alon Rosen4

1 NTT Secure Platform Laboratories, Musashino, Japan
{masayuki.abe.cp,miguel.ambrona.fu}@hco.ntt.co.jp
2 Chinese University of Hong Kong, Shatin, Hong Kong

andrejb@cse.cuhk.edu.hk
3 Security Fundamentals Laboratory, CSR, NICT, Tokyo, Japan

m.ohkubo@nict.go.jp
4 Herzliya Interdisciplinary Center, Herzliya, Israel

alon.rosen@idc.ac.il

Abstract. Proofs of partial knowledge demonstrate the possession
of certain subsets of witnesses for a given collection of statements
x1, . . . , xn. Cramer, Damg̊ard, and Schoenmakers (CDS), built proofs
of partial knowledge, given “atomic” protocols for individual statements
xi, by having the prover randomly secret share the verifier’s challenge
and using the shares as challenges for the atomic protocols. This simple
and highly-influential transformation has been used in numerous appli-
cations, ranging from anonymous credentials to ring signatures.

We consider what happens if, instead of using the shares directly as
challenges, the prover first hashes them. We show that this elementary
enhancement can result in significant benefits:

• the proof contains a single atomic transcript per statement xi,
• it suffices that the atomic protocols are κ-special sound for κ ≥ 2,
• when compiled to a signature scheme using the Fiat-Shamir heuris-

tic, its unforgeability can be proved in the non-programmable random
oracle model.

None of the above features is satisfied by the CDS transformation.

Keywords: Sigma-protocols · Random oracles · Proof of partial
knowledge

1 Introduction

The focus of this paper is three-move public-coin proof systems. In such proto-
cols, a prover sends an initial message, a, to the verifier who answers back with a
random challenge, e. The prover finally replies with z, based on which the verifier
accepts or rejects the proof. Σ-protocols [19] are a special class of 3PC protocols
that have been used as building blocks in a wide variety of applications, and
have been the subject of intensive study.
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 749–773, 2020.
https://doi.org/10.1007/978-3-030-64840-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_25

750 M. Abe et al.

One property that makes a Σ-protocol easy to work with is the so-called 2-
special soundness: given any pair of “colliding” transcripts, (a, e, z) and (a, e′, z′)
for e �= e′, one can efficiently extract a witness w for the instance x being proved.
The zero-knowledge property is exhibited using a specific type of simulator,
which takes x and e as input, and outputs a and z that form an accepting tran-
script. Being public-coin, with a uniformly chosen challenge sent by the verifier,
the protocol can be made non-interactive using the Fiat-Shamir heuristic [26],
where the prover generates the challenge e on its own by applying a hash function
modeled as a random oracle to the initial message a.

Several techniques for efficient composition of Σ-protocols can be found in the
literature. Among them, the technique by Cramer, Damg̊ard, and Schoenmakers
(CDS for short) is the most popular and well-studied [21]. In its simplest form,
the CDS technique is used for proving the disjunction of n statements x1, . . . , xn,
convincing the verifier that the prover knows a witness w for at least one of the
statements xi. To this end, the prover shares a given challenge e into challenges
e1, . . . , en under the constraint that e = e1⊕· · ·⊕en and uses ei as the challenge
in an individual run of the Σ-protocol for statement xi.

Since the prover can choose in advance all but one shared challenge ei∗ for
which wi∗ is known, it may run the simulator on (xi, ei) for all i �= i∗ and the
prescribed prover algorithm on (xi∗ , wi∗). This enables the prover to complete
the protocol given a witness for at least one out of n instances. If the atomic
protocols are 2-special sound, the compound protocol is 2-special sound as well.

The way in which the verifier challenge is secret-shared can be generalized to
implement any composition predicate that is efficiently computable by a mono-
tone span program [20]. Since the compound protocol remains a Σ-protocol, it
can also be made non-interactive via the Fiat-Shamir heuristic. While security is
proved in the random oracle model, it does not necessitate trusted setup which
is often required by efficient non-interactive proofs.

1.1 Our Contribution

We propose a simple enhancement to the CDS composition method and show
that it results in several desirable features. In simple terms, the modification can
be described as follows:

“Hash each share before using it as a challenge”.

As simple as it appears to be, this modification enjoys significant benefits over the
original CDS transformation: (1) in computation and communication efficiency,
(2) in allowing a wider variety of choices for the underlying atomic protocols,
and (3) in the tightness of the analysis in the random oracle model. We now
elaborate on each of these benefits separately.

Recycling of Transcripts for Repeated Statements. In the CDS transformation,
the transcript of the compound protocol contains one instance of the atomic
protocol for each occurrence of a statement xi in the formula or monotone span

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 751

program. In contrast, our proposed transformation allows to “recycle” tran-
scripts of atomic protocols and let them have a single appearance per xi. This
may result in savings in prover computation and communication, whenever base
statements xi occur repeatedly, especially in cases where the monotone span
program describing the compound statement cannot be simplified to have few
occurrences of xi.

Consider for example the following compound statement, described in dis-
junctive normal form: (x1∧x2)∨(x1∧x3)∨(x3∧x4). Notice that in this case the
instance x1 appears in two clauses (and so does x3). When applying the CDS
transformation, a prover (wishing to protect w1 from leaking) must run inde-
pendent executions of the atomic Σ-protocol for each appearance of x1 in the
formula. Otherwise, in case that the initial message a for proving x1 is shared by
two transcripts (a1, e1, z1) and (a1, e

′
1, z

′
1), it may be the case that e1 �= e′

1 which
would yield a colliding pair of transcripts, enabling, even an honest verifier, to
extract the witness w1 for x1. In some cases one may be able to find an equiv-
alent formula with fewer occurrences of specific variables. However, performing
such simplifications in general is a non-trivial and potentially error-prone pro-
cess. Furthermore, in some cases it may simply be not possible. Indeed, a recent
implementation of compound statements [44] is aware of such issues and takes
explicit care to refrain from merging the initial messages for the same statements
in the formula. Their compiler halts when a repeated statement is detected and
let the programmer decide what to do. Such issues were also explicitly considered
in the original CDS protocol. When a share of a challenge exceeds the challenge
space size, CDS explicitly require to repeat the atomic protocol for the same
instance so that the joint challenge space covers the maximum length of the
shared challenges.

By applying a hash function to the secret-shared challenges in all occur-
rences of xi we compress and fit the challenge to the original challenge space
size. Assuming that the hash function is modeled as a random oracle, soundness
is guaranteed by the fact that hashed challenges are randomly and uniformly
distributed. This allows us to run the atomic proof for a given instance xi only
once, independently of how many times it appears in the compound formula,
hence simplifies the protocol. Furthermore, it improves both the running time of
the prover and verifier, and reduces the size of the proof. Consider, for instance,
the compound statement (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x3 ∧ x4) again. The CDS+FS
combination would require six transcripts: one per literal. Ours leads to a proof
with simply four transcripts: one per variable, regardless of the number of occur-
rences in the formula. More concretely, our proof consists of four transcripts
(a1, e1, z1), ..., (a4, e4, z4) together with secret shares (s1, s2, s3, s4) where each
(ai, ei, zi) is accepting with respect to the i-th Σ-protocol and ei = H(si). Fur-
thermore, the shares are such that all qualified sets of shares (according to the
dual access structure induced by formula) recover the secret s := H(a1, . . . , a4).
In our example this could be enforced by setting s1 := {d1, d2}, s2 := {d1},
s3 = {d2, d3}, and s4 = {d3} where d1 + d2 + d3 = s. See Sect. 3.2 for a more
detailed comparison between our scheme with previous work in terms of perfor-
mance and proof size.

752 M. Abe et al.

Wider Choice for Special Soundness of Atomic Protocols. Special soundness is, by
definition, restricted to the case where two colliding transcripts are necessary and
sufficient for extracting a witness. However, some protocols in the literature are
only known to satisfy a more relaxed κ-special soundness requirement, in which
κ > 2 colliding transcripts are necessary and sufficient for witness extraction.

The original CDS transformation was designed to only handle 2-special
soundness, and indeed may totally lose soundness if applied to general κ-sound
protocols for κ > 2 [25]. As an example of 3-special soundness, consider Stern’s
protocol [54], often used in the context of lattices and codes [25,39,40,47]. In
its basic version, a challenge is chosen from {0, 1, 2} and a cheating prover, or
zero-knowledge simulator, having no witness can answer to two preliminary cho-
sen challenge values out of the three. The original CDS technique for composing
two runs of the protocol suggests to share challenge e as e = e1 + e2 mod 3
and use e1 and e2 as a challenge in each run. This is however totally insecure
since a cheating prover may simulate on e1 ∈ {0, 1} and e2 ∈ {1, 2} and pick
a proper combination of challenge values for e1 and e2 to fulfill the constraint
e = e1+e2 mod 3 for any challenge e ∈ {0, 1, 2}. Such an attack works even with
parallel repetition of the protocol, with challenge space {0, 1, 2}� for polynomial
�, and even after applying the Fiat-Shamir transformation, as the adversary can
similarly attack each coordinate individually and win with probability 1.

Applying an ideal hash function to e1 and e2 individually makes them uni-
formly distributed over the challenge space. With large enough challenge space,
which can be obtained by parallel repetition of Stern’s basic protocol, this virtu-
ally prevents a cheating prover from controlling the distribution of the challenges.

We prove that this intuition is valid in the random oracle model. As a result,
our scheme is sound even for κ-special sound protocols with κ > 2. Other well-
known examples of κ-special sound protocols ranges from the widely known
GMW protocol for graph 3-colorability [31], and a useful protocol for a binary
opening of Pedersen-like commitments (with 3-special soundness) [10], to a fun
protocol for Sudoku puzzles [32].

Various Flavors of Soundness. We prove soundness in different flavors in the
programmable and/or non-programmable random oracle models (NPROM) [48].
As shown in [18], when viewed as a non-interactive membership argument sys-
tem, CDS composition with Fiat-Shamir (henceforth CDS+FS) is sound in
NPROM provided that underlying protocols are optimally sound. Ours covers
more relaxed statistically sound protocols.

If one of the two hash functions, one used for FS and the other used for
hashing shares, is programmable random oracle, our construction provides sim-
ulation extractability [8], which is a strong form of knowledge soundness. If both
are programmable, and the underlying protocol is unique response where z is
unique for x, a, and e, it is strongly simulation extractable.

Unforgeability in Non-programmable Random Oracle Model. In a recent paper,
Fischlin, Harasser, and Janson [28] show that when the CDS protocol is compiled
into a signature scheme via the Fiat-Shamir transform, its unforgeability against

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 753

adaptive chosen message attacks cannot be (black-box) proved in NPROM. They
aregue that it contrasts to a sequential composition considered in [3].

The share-hashing in our construction circumvents this impossibility result.
A key observation in the (im)possibility argument of [28] is that the sequential
composition in [3] makes hash queries for each underlying protocol execution in
some order, and the order of the queries reveals which instance the adversary is
attacking. In contrast, CDS+FS makes a combined hash query for all underlying
protocol executions at once, thus revealing no information which execution the
adversary is attacking. This difference is precisely what renders the signature
scheme via the sequential composition provably unforgeable in the NPROM,
and CDS+FS not.

Since in our transformation hashing is applied for each execution of the under-
lying protocol, observing the order of the queries reveals which ones the adversary
is attacking, just as in the example above. We are thus able to prove unforge-
ability in the NPROM, using the same proof strategy as developed in [28].

1.2 Applications

Our minor modification to the CDS+FS transformation means that it can serve
as a plug-in replacement for most applications of the CDS protocol, with the
only exceptions being the ones in which using a random oracle is not allowed.

In some cases the applicability of our transformation goes beyond what could
have been achieved by CDS+FS. As a demonstration, consider a generic con-
struction of a ring signature scheme [51] with the following added features: (1)
it supports any monotone formula access structure, (2) it can be built from
κ-special-sound Σ-protocols for hard languages, (3) it is unforgeable against
chosen message and chosen ring attacks in the NPROM, and (4) it is setup-free
in the sense that players do not need to interact to each other or to access public
parameters (except for security parameter) to set up their public-keys.

The CDS+FS transformation is equipped with all the features mentioned
above, and can be used to construct a secure signature scheme in a standard man-
ner. However, we do not know how to prove its unforgeability in the NPROM,
the main difficulty being that, unlike the case of a standard signature scheme, a
ring-signature adversary is allowed to specify the access structure. Let us elab-
orate on this point further below.

In [28], it is shown that a non-interactive argument system for a simple
cyclic graph representing a sequence of disjunctions can be turned into a secure
signature scheme in the NPROM where the public key is a set of instances of a
hard language. In the security argument, the reduction simulates signatures using
a non-tight qualified set of instances, and, by observing queries to the random
oracle, identifies which instance the adversary is attacking. It is then shown that
replacing the target instance with an incorrect one that has no corresponding
witness does not make much difference to the computationally limited adversary
since those instances are supposed to be indistinguishable and signatures can
still be simulated as the remaining correct instances form a qualified set.

In the attack scenario for ring signatures, however, it is the adversary who
chooses the access structure. The adversary can ask a signature on a full set of

754 M. Abe et al.

instances so that the only qualified set is tight. Accordingly, signatures cannot
be simulated if an instance is turned into an incorrect one.

Our solution is to form each key by a disjunctive relation over two instances,
and combine them into a single monotone formula. This allows to simulate signa-
tures even if one of the pairs is turned into incorrect, and just as in [28] enables
us to argue that attacking the incorrect instance is unsuccessful in the NPROM.
The resulting scheme yields signatures whose size is linear in the number of
involved public keys.

While there exist more compact ring signature schemes, e.g., [7], with
logarithmic-size signatures and without using random oracles, our construction
is more flexible in the choice of underlying building blocks and in the number of
instantiations. This is on top of being the first scheme provable in the NPROM.

1.3 Related Work

Composition of Proof Systems. The task of proving compound statements in a
zero-knowledge manner can be in principle realized generically by reducing to
some NP-complete language, and in some cases even a flexible and convenient one
such as satisfiability of Quadratic Arithmetic Programs. This approach is flexible,
as it allows to dynamically adjust the statement to be proved depending on the
application at hand. A popular application that has seen prominence recently
is that of proving possession of a preimage of a value under a specified hash
function. Recent implementations demonstrate reasonable performance, though
we are still in early stage of deployment, and further progress is required.

Composition is an active topic also in the context of NIZKs in the common
reference string model. There are number of existing techniques in the literature,
e.g., [2,13,29,33,35,45,50], to implement disjunctive relations for the Groth-
Sahai proofs [36] and Quasi-Adaptive NIZKs [38]. One of the common ideas is
to use arithmetic relations of the form x(x − 1) = 0 that naturally translate
to logical disjunctions: (x = 1) ∨ (x = 0). Another popular approach is to
split a common reference string in two parts so that one of them can be used
for simulation, whereas using a witness for the other part is unavoidable. In
[5], Agrawal, Ganesh, and Mohassel studied efficient monotone composition of
algebraic and non-algebraic statements combining both Σ-protocols and generic
NIZKs for NP.

The composition technique most relevant to our work is that of ring-like
sequential composition, introduced in [3] and revisited recently in [28], all of
which admit soundness proofs in the NPROM. Recently, [1] consider a general-
ization of sequential composition to so-called acyclicity programming (a model
that is closely related to branching programs), which in some cases goes beyond
CDS composition, the latter being limited to monotone span programs in terms
of expressibility. Still, generally speaking the two transformations are incompa-
rable, and it should be mentioned that both CDS and our current transformation
are able to easily handle the important case of threshold access structures. Pre-
cise proof sizes and computational costs are also incomparable as they depend
on the structure of the compound relation.

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 755

Fiat-Shamir Transform in NPROM and the Standard Model. The issue of pro-
grammability of random oracles in the case the Fiat-Shamir transform is dis-
cussed in [18,42]. They present an efficient FS transformation for constructing
NIZK in the common reference and random oracle models whose zero-knowledge
property does not rely on random oracles and only the proof of soundness
requires a NPROM. The proof for soundness in the NPROM in [18] demands
optimal soundness from the underlying protocol: for every false statement and
every first message, there exists at most one challenge that has a valid response
satisfying the verification predicate.

Not relying on programmable random oracles in the soundness argument of
Fiat-Shamir transform may allow to instantiate the hash function under milder
assumptions such as key dependent message secure encryption [15] or lattice-
based assumptions [14,49] through the notion of correlation intractability [16].
They require the underlying protocol optimally sound [18] and design the hash
function used in the FS transform so that it hardly outputs the bad challenge
for which a valid response exists. Unfortunately, the additional hashing for gen-
erating challenges in our construction makes it hard to follow their approach as
the bad challenge function will depend on the hash function.

Ring Signatures. A fair number of papers devote themselves to improve and
generalize the seminal work of ring signatures scheme in [51]. In [12], a general
monotone access structure is supported for composition of signatures based on
trapdoor permutations. A construction based on Σ-protocols is presented in [3]
and extended in [43] with a simple mechanism for anonymity revocation, and
in [4] with a support for threshold structures. These early works, followed by,
e.g., [37], achieve the setup-free property in the programmable random oracle
model. We note that the scheme in [4] hashes shared challenges to adjust the
challenge size to incorporate RSA keys in a ring. When the ring consists only of
the discrete-log type ones, it can be seen as a special case of our construction,
a composition of Schnorr proofs with hashed shares, but none of the benefits
claimed in this paper were considered.

There are number of schemes, e.g., [6,11,17,22,23,30,34,41,52,53], that
require trusted setup but provide more flexible access structures and/or achieves
high performance when instantiated with mathematically rich primitives such as
pairings, lattices, and codes. A scheme in [7] is favorable in that the security is
proven in the standard model, no trusted setup is needed, and the proof size is
logarithmic in the number of involved public-keys limiting the access structure
only to a ring.

2 Preliminaries

For a finite set S, we write a← S to denote that a is uniformly sampled from S.
We denote the security parameter by λ ∈ N. Given two functions f, g : N → [0, 1],
we write f ≈ g if the difference |f(λ) − g(λ)| is asymptotically smaller than the
inverse of any polynomial. A function f is said to be negligible if f ≈ 0, whereas

756 M. Abe et al.

it is said to be overwhelming when f ≈ 1. For integers m,n, such that n ≥ m, we
denote by [m,n] the range {m,m+1, . . . , n}. We denote by [n] the range [1, n].
By N

∗ we denote the space of arbitrarily-long sequences of numbers in N. When
A is a probabilistic algorithm, we denote by A(x; r) an execution of A on input
x and random coin r taken from an appropriate domain defined for A. If the
random coin is not important in the context, we simply write as A(x).

Let R : X × W → {0, 1} be a binary relation defined over a set of instances
X and a set of witnesses W. We write (x,w) ∈ R as a shorthand for (x,w)
satisfying R(x,w) = 1. For convenience, we separate instances according to the
security parameter. By Rλ, we mean relation R on instances of length λ. Let
LR be the language defined as LR := {x ∈ X | ∃w ∈ W : R(x,w) = 1}. A
statement is a relation on an instance, which is true if and only if the instance
is in the language defined by the relation. We say that LR is a hard language
if (x,w) ∈ R is efficiently and uniformly sampleable, and there exists L̃ that
is efficiently sampleable, has no intersection with LR, and is computationally
indistinguishable from LR. We abuse notation and write (x,w)← R to represent
uniform sampling of (x,w) satisfying R. For a monotone access structure Γ over
[n] and a set of n relations R := (R1, . . . , Rn), we denote by ΓR a relation
obtained by composing relation Ri ∈ R following structure Γ .

2.1 Σ-protocols

A Σ-protocol for relation R is a three-round public-coin proof system that is
special honest verifier zero-knowledge and 2-special sound as defined in the fol-
lowing. It is witness indistinguishable and statistically sound. We also introduce
additional security notions on which we rely when proving stronger properties
about our construction.

Definition 1 (Three-round public-coin proof system). A three-round
public-coin proof system for relation R consists of algorithms (C,Z,V) where:

• a ← C(x,w ; r) computes an initial message, a, for the given instance x and
witness w with a random coin r uniformly taken from an appropriate domain.

• z ← Z(x,w, r, e) computes an answer, z, for the given challenge e ∈ {0, 1}μ,
and coin r used to generate a on x and w.

• 1/0 ← V(x, a, e, z) outputs 1 or 0 for acceptance or rejection, respectively.

We say a three-round public-coin proof system is complete if for every λ ≥ 1,
every pair (x,w) ∈ R, where |x| = λ, for all e ∈ {0, 1}μ, for all a ← C(x,w ; r),
and for all z ← Z(x,w, r, e), V(x, a, e, z) = 1 holds.

Definition 2 (Special Honest Verifier Zero-Knowledge). A three-round
public-coin proof system (C,Z,V) is special honest verifier zero knowledge if
there exists a probabilistic polynomial-time algorithm S such that, for every state-
ful PPTadversary A,

Pr
[
(x, e) ← A(1λ); a ← C(x,w; r); z ← Z(x,w, r, e) : A(a, z) = 1

]

≈ Pr
[
(x, e) ← A(1λ); (a, z) ← S(x, e) : A(a, z) = 1

]

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 757

where r is sampled form the corresponding distribution and A must output values
such that (x,w) ∈ R and e is in {0, 1}μ.

Definition 3 (Witness Inidistinguishability). A three-round public-coin
proof system (C,Z,V) is witness indistinguishable if for all x ∈ LR, and all
w1, w2 satisfying R(x,w1) = R(x,w2) = 1, transcripts (a1, e, z1) and (a2, e, z2)
distribute identically, where ai ← C(x,wi; ri), e ← {0, 1}μ, z ← Z(x,wi, ri, e)
for i = 1, 2.

Special soundness [19] is a special form of knowledge soundness which guar-
antees that, given two colliding transcripts (x, a, {e1, z1}, {e2, z2}), a witness w
(for x) can be extracted efficiently if e1 �= e2. A generalized form of this notion
appears in the literature, e.g., [9,10,34,55]. Intuitively, κ-special soundness states
that given κ-colliding transcripts (x, a, {e1, z1}, . . . , {eκ, zκ}), a witness w can
be extracted if all values e1, . . . , eκ are distinct. A question is from which dis-
tribution the challenges should be sampled and with how much probability the
extraction should succeed. In some literature it is asked to hold for any ei and
to succeed perfectly. This is however too strong for our purpose as we would like
to capture a wide variety of protocols, including the parallel version of Stern’s
protocol where an exponential number (but still negligible compared to the size
of the challenge space) of colliding transcripts can be prepared without know-
ing the witness; on the other hand, a small number of collision over uniformly
chosen challenges is sufficient for successful extraction with high probability.
Consequently, we adopt the following definition.

Definition 4 (κ-Special Soundness). A three-round public-coin proof sys-
tem is κ-special sound with knowledge error ε if, there exists a deterministic
polynomial-time algorithm E such that, for any stateful probabilistic polynomial-
time adversary A, and for all t polynomial in λ, it holds:

Pr

⎡

⎢
⎢
⎣

(x, a) ← A(1λ)
e1, . . . , et ← {0, 1}μ

(z1, . . . , zt) ← A(e1, . . . , et)
w ← E(x, a, {e1, z1}, . . . , {et, zt})

:

∑t
i=1 V(x, a, ei, zi) ≥ κ

∧
R(x,w) = 0

⎤

⎥
⎥
⎦ ≤ ε

where every ei is distinct. It is special sound if ε is a negligible function and κ
is polynomial in the security parameter. In particular, we say that it is perfectly
special sound if ε = 0.

There are different flavors of soundness as a proof of membership. An example
is optimal soundness, which asserts that for any false instance x and any a, there
exists at most one challenge e for which the transcript will pass the verification.
In other words, for any x �∈ LR and any a, and for all values e ∈ {0, 1}μ (except
at most one), V(x, a, e, ·) is the zero function. We use more general statistical
soundness allowing negligible error probability.

758 M. Abe et al.

Definition 5 (Statistical Soundness). A three-round public-coin proof sys-
tem (C,Z,V) is statistically sound with soundness error εst if for any (possibly
unbounded) adversary A, for all x /∈ LR and all a ∈ {0, 1}∗,

Pr[e ← {0, 1}μ; z ← A(x, a, e) : V(x, a, e, z) = 1] < εst .

We say it is statistically sound if εst is negligible in λ.

In other words, a three-round public-coin proof system is statistical sound
with bound εst if and only if for every x /∈ LR and any a ∈ {0, 1}∗, at most a εst
fraction of challenges has an answer that passes the verification.

In order to achieve stronger variant of simulation soundness, we require the
uniqueness of z for (x, a, e). This is the so-called unique response property [24,27]
and was stated in [34] in a general form as follows.

Definition 6 (Quasi-unique response). A Σ-protocol has quasi-unique
responses if for any security parameter λ ∈ N, any polynomial-size ν ∈ {0, 1}∗,
and for any PPTalgorithm, the probability that, given 1λ and ν as input, the
adversary outputs (x, a, e, z, z′) satisfying V(x, a, e, z) = V(x, a, e, z′) = 1 and
z �= z′ is negligible in λ.

2.2 Non-interactive Arguments

We define non-interactive argument systems in a way that captures Σ-protocols
transformed by the Fiat-Shamir heuristics in the random oracle model. Let R
be a random oracle that returns an independently and uniformly chosen value
in an appropriate domain for every distinct input.

Definition 7 (Non-Interactive Argument System). A non-interactive
argument system for relation R in the random oracle model is a pair of
polynomial-time oracle algorithms (Prove,Verify) that, for random oracle R:

• π ← ProveR(x,w) is a probabilistic algorithm that takes an instance x and a
witness w and outputs a proof π.

• 0/1 ← VerifyR(x, π) is a deterministic algorithm that takes x and π, and
outputs either 1 or 0 representing acceptance or rejection, respectively.

It is complete if, for every sufficiently large λ ∈N, and every (x,w) ∈ R,
VerifyR(x,ProveR(x,w)) outputs 1 except with negligible probability in λ. The
probability is taken over coins of Prove and R.

Definition 8 (Zero-Knowledge). A non-interactive argument system (Prove,
Verify) for relation R is zero-knowledge in the random oracle model if there exists
a PPT stateful algorithm Sim that for all probabilistic polynomial-time distin-
guisher D, Pr[1 ← DR,O1(1λ)] − Pr[1 ← DO2(1λ)] is negligible in λ. O1 is an
oracle that, given (x,w) as input, returns ⊥ if (x,w) /∈ R, else returns the output
of ProveR(x,w). O2 and Sim have two input interfaces. O2 forwards any string

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 759

given through the first interface to the first interface of Sim and returns its out-
put. Given (x,w) as input to the second interface, O2 returns ⊥ if (x,w) /∈ R,
else forwards x to the second interface of Sim and returns the output. The prob-
ability is taken over coins of D, R, Prove, and Sim.

Definition 9 (Soundness). A non-interactive argument system (Prove,Verify)
for LR is sound if for any PPToracle algorithm A, any x /∈ LR, Pr[π ← AR(x) :
1 = VerifyR(x, π)] is negligible in λ. The probability is taken over coins of A and
R.

Simulation extractability is a stronger notion of simulation soundness. Intu-
itively, it guarantees that even after having seen simulated proofs on arbitrary
instances, the adversary cannot create a valid proof on a fresh instance for which
the knowledge extraction fails. This notion was defined in the common reference
string model in [33] and in the random oracle model in [8].

Definition 10 (Simulation Extractability). A non-interactive zero-
knowledge argument system (Prove,Verify) for relation R with zero-knowledge
simulator Sim is simulation extractable in the random oracle model if, for any
PPToracle algorithm A, there exists an expected polynomial-time algorithm E
for which the following experiment returns 1.

ExprseA(λ) :
1. Run (x, π) ← ASim(1λ).
2. Output 1 if 0 ← VerifySim(x, π) or x has been queried to the second inter-

face of Sim.
3. Run w ← EA(x, π, σ).
4. Output b := R(x,w).

Parameter σ is the view of Sim. It is strongly simulation extractable if the fresh-
ness condition in Step 2 is on (x, π) as a pair instead of just on x.

The above definitions are for the programmable random oracle model. To cast
non-programmable random oracles in the definitions, allow every entity direct
access to the oracle [48].

3 The Share-then-Hash Technique

3.1 Construction

Let n be a polynomial in λ. Let SS be a perfect secret sharing scheme over
{0, 1}μ for an access structure over [n] of size polynomial in n. Let Share be the
sharing algorithm of SS, and D(s) be distribution of outputs from Share(s). For
qualified set A and secret s ∈ {0, 1}μ, we denote by DA(s) the joint distribution
of shares in A. We denote by Ac the set [n]\A and by DAc the distribution of
shares for the non-qualified set Ac of A, which is independent of the secret (due
to SS being a perfect secret sharing scheme). For a set of shares S := (s1, . . . , sn)

760 M. Abe et al.

and a set A ⊆ [n], we denote by SA the set of shares indexed by A, i.e., SA :=
{si ∈ S | i ∈ A}. For the sake of readability, we assume that SA identifies A from
its data structure. A perfect secret sharing scheme over secret space {0, 1}μ for
polynomial μ in λ is semi-smooth [21] if on top of standard polynomial-time and
space requirements it satisfies the following properties:

• There exists a polynomial-time algorithm, CheckShares that, given a full set of
shares and a secret, returns 1 if all qualified sets of shares recover the secret.
It returns 0, otherwise.

• There exists a polynomial-time algorithm, Complete that, for any secret s,
any non-qualified set Ac, and any set of shares SAc ∈ DAc , outputs a set of
shares in D(s) that includes SAc as shares for Ac.

Note that the presence of CheckShares does not imply that SS is a verifiable
secret sharing scheme where, given a share si and public parameters, one can
assure consistency of the share. Semi-smooth secret sharing schemes exist for
threshold and general monotone access structures represented by monotone span
programs [20].

Let Γ be a monotone access structure over [n], and Γ ∗ be the dual of Γ
defined as A ∈ Γ ∗ ⇔ Ac /∈ Γ [46]. (Note that the dual operation is an involu-
tion, i.e., (Γ ∗)∗ = Γ .) Let SS = (Share,CheckShares,Complete) be a semi-smooth
perfect secret sharing scheme over {0, 1}μ for Γ ∗. Let x := (x1, . . . , xn) be a
set of instances and w := (w1, . . . , wn) be a witness set where for a qualified
set A ∈ Γ , let relation Ri(xi, wi) = 1 hold for all i ∈ A. Let Σi = (Ci,Zi,Vi)
be a sigma-protocol for relation Ri. We assume all Σ-protocols have a common
challenge space {0, 1}μ for certain polynomial μ in security parameter λ. Let
He : {0, 1}∗ → {0, 1}μ and Hc : {0, 1}∗ → {0, 1}μ be hash functions.

Theorem 1. Figure 1 describes a non-interactive argument system for ΓR :

• It is complete and witness indistinguishable.
• It is zero-knowledge if Hc or He are modeled as programmable random oracles.
• It is a sound membership proof for language LΓR

if Hc and He are modeled
as non-programmable random oracles and all Σi are statistically sound.

• It is simulation extractable if Hc and He are random oracles and at least one
is programmable and if and all Σi are κ-special sound.

• It is strongly simulation extractable if both Hc and He are programmable
random oracles, and all Σi are κ-special sound and unique response.

Completeness and witness indistinguishability can be shown as in the original
CDS+FS scheme. Zero-knowledge in the programmable random oracle model is
assured by inspecting the simulators from Fig. 2. The first simulator is for the
case where Hc is programmable and the second one is for the case where He is
programmable. In the following, we focus on soundness in different flavors and
present a proof sketch for them, without stating concrete bounds, but our argu-
ments are detailed enough to derive full proofs. We use the following proposition
taken from [21].

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 761

Fig. 1. Share-then-Hash CDS+FS for relation ΓR .

Proposition 1. Let Γ be monotone. A set is qualified in Γ if and only if it has
a non-empty intersection with every qualified set in Γ ∗.

Proof (Of soundness as a membership proof system). Suppose that an adversary
A outputs a valid proof π̂ = {(âi, ẑi), ŝi}i∈[n] on instance x̂ = (x̂1, . . . , x̂n) and
access structure Γ after making at most q queries to the random oracles. For the
forged proof to be considered a valid forgery (in the soundness game), x̂ must be a
false instance (with respect to Γ), i.e., for every qualified set A∈ Γ , there must
exist some i∈ A such that xi /∈ LRi

. Furthermore, CheckSharesΓ ∗(ŝ, ŝ1, . . . , ŝn)
must be 1, for ŝ := Hc(Γ, x̂, â1, . . . , ân); and Vi(x̂i, âi, êi, ẑi) must be accepting
for êi := He(Γ, x̂, i, ŝi) and all i∈ [n].

If for some i∗ ∈ [n] such that xi∗ /∈ LRi∗ the adversary did not make query
He(Γ, x̂, i∗, ŝi), since value êi∗ is assigned uniformly at random by He, the prob-
ability that 1 = Vi∗(xi∗ , ai∗ , ei∗ , zi∗) for already fixed xi∗ , ai∗ , and zi∗ is at most
εst := maxi∈[n](εsti) where εsti is the statistical soundness error of Σi. Similarly, if
Hc(x̂, â1, . . . , ân) was not queried by the adversary, after the random assignemt
of ŝ, by Hc, the probability that CheckSharesΓ ∗(ŝ, ŝ1, . . . , ŝn) is successful is at
most 2−μ (ŝ must be equal to the value determined by ŝ1, . . . , ŝn).

Now, let Ω be the set of indices i ∈ [n] where xi /∈LRi
holds and êi :=

He(Γ, x̂, i, ŝi) appears before ŝ := Hc(Γ, x̂, â1, . . . , ân) in the view of A. First,
assume that for all qualified sets A∈ Γ , A∩ Ω is not empty. In virtue of Propo-
sition 1, Ω must be a qualified set in Γ ∗ and thus, {ŝi}i∈Ω uniquely determines
a secret, s∗. Therefore, CheckSharesΓ ∗(ŝ, ŝ1, . . . , ŝn) = 1 will be satisfied only if
ŝ equals s∗, which happens with probability at most 2−μ since ŝ is randomly
assigned by Hc independently of {ŝi}i∈Ω .

762 M. Abe et al.

Fig. 2. Zero-knowledge simulators.

Finally, suppose that there exists A∈ Γ with A∩ Ω = ∅. In this case, there
must exist i∗ ∈A with xi∗ /∈ LRi∗ (remember that x̂ is a false instance) and such
that query êi∗ := He(Γ, x̂, i∗, ŝi∗) appears after query ŝ := Hc(Γ, x̂, â1, . . . , ân)
in the view of A. Then, the probability that there exists a ẑi∗ that can satisfy
Vi∗(x̂i∗ , âi∗ , êi∗ , ẑi∗) = 1 for fixed (x̂i∗ , âi∗) is upper-bound by the statistical
soundness error of Σi∗ , which is upper-bounded by εst.

Accordingly, a valid proof on a false statement can be produced with proba-
bility at most 2εst + 2−μ. ��

Proof (Of simulation extractability). We first prove the case where Hc is pro-
grammable and He is non-programmable. Suppose that adversary A playing in
the simulation extractability game, running in time t and performing at most q
queries to the random oracle, outputs an instance x̂ = (x̂1, . . . , x̂n) and a valid
proof π̂ = {(âi, ẑi), ŝi}i∈[n] on x̂ with probability δ. For the output to be valid,
it must hold that CheckSharesΓ ∗(ŝ, ŝ1, . . . , ŝn) = 1 for ŝ := Hc(Γ, x̂, â1, . . . , ân)
and, additionally, for all i ∈ [n], Vi(x̂i, âi, êi, ẑi) = 1, where êi := He(Γ, x̂, i, ŝi).
Furthermore, x̂ must be different from any instance x observed by the simulation
oracle.

The extractor runs the code of A, simulating the proving oracle using Sim1 in
Fig. 2 until a valid proof π̂ = {(âi, ẑi), ŝi}i∈[n] on an instance x is produced. The
extractor then identifies the query Hc(Γ, x̂, â1, . . . , ân) in the adversaries exe-
cution and forks the execution at this point by providing a different uniformly
chosen value as an answer to this query. By repeating the above forking 2τ/δ
times for τ := κn, the extractor obtains τ valid proofs with a constant probabil-
ity. We now argue that, if τ random secrets ŝ(i) for i = 1, . . . , τ are shared to n
players in a way that they pass CheckShares consistency check, then, for every
qualified set of players, there is a player who receives at least κ distinct shares.
The following lemma states it formally.

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 763

Lemma 1. For sufficiently large polynomial μ in λ, for any semi-smooth secret
sharing scheme over {0, 1}μ, for any small constant κ, for any constant τ ≥
κn − 2n + 2, for any stateless unbound algorithm B, the following experiment
returns 1 with negligible probability in λ.

1. For i = 1 to τ , do s(i) ← {0, 1}μ, and (s(i)
1 , . . . , s(i)

n) ← B(s(i)).
2. Return 1 if 1 = CheckSharesΓ ∗(s(i), s(i)

1 , . . . , s(i)
n) for all i = 1, . . . , τ and there

exists a qualified set, A, such that, for each j ∈ A, number of distinct shares
among s(1)

j , . . . , s(τ)
j is less than κ. Return 0, otherwise.

We first prove the following claim.

Claim 1. Let A be a qualified set and assume τ ≥ κ|A|−2|A|+2. The probability
that for all j ∈ A, the set S(τ)

j = {s(1)
j , . . . , s(τ)

j } has size less than κ is at most
(τ − 1)(κ − 1)|A|2−μ.

Proof (Of Lemma 1). Set τ = κn − 2n + 2. By Claim 1 and a union bound, the
probability that there exists a qualified set A such that |S(τ)

j | < κ for all j ∈ A
is at most 2n · (τ − 1)(κ − 1)n2−μ. If this is not the case, then the set A of all j
such that |S(τ)

j | < κ is not qualified. ��
Proof (Of Claim 1). We will show that as long as all sets S(i)

j , j ∈ A have size less
than κ, the probability that

∑
j∈A |S(i+1)

j | =
∑

j∈A |S(i)
j | is at most (κ−1)|A|2−μ.

Initially,
∑

j∈A |S(1)
j | = |A|. By a union bound over 1 ≤ i < τ ,

∑
j∈A |S(τ)

j | ≥
|A|+ τ − 1 with probability at least 1− (τ − 1)(κ− 1)|A|2−μ. By our choice of τ ,
this condition implies |S(τ)

j | ≥ κ for some j ∈ A. By the reconstruction property,
there is an injective function RA that maps valid sequences (sj : j ∈ A) of shares
to secrets s ∈ {0, 1}μ. Assuming |S(i)

j | < κ for all j ∈ A, the image of RA

evaluated on the product set
∏

j∈A S(i)
j can have size at most (κ − 1)|A|. So if

s(i+1) is chosen at random from {0, 1}μ, then the probability it belongs to the
image of RA(

∏
j∈A S(i)

j) is at most (κ − 1)|A|2−μ. By the injectivity of RA, for
any sequence (s(i+1)

j : j ∈ A) that reconstructs to s(i+1), s(i+1)
j must reside outside

S(i)
j for at least one party j ∈ A, so the sum

∑
j∈A |S(i)

j | grows as desired. ��
According to Lemma 1, with non-negligible probability, it holds that, for

every qualified set A ∈ Γ ∗, there exists i ∈ A that yields (âi, (ŝ
(1)
i , ẑ(1)

i), . . . ,
(ŝ(κ)

i , ẑ(κ)
i)) that satisfies 1 = Vi(x̂i, âi, ê

(j)
i , ẑ(j)

i) for ê(j)
i := He(Γ, x̂, i, ŝ(j)

i). Since
all ê(j)

i are distinct except for negligible probability due to the uniform output
from He, we have κ-colliding transcript (âi, (ê

(1)
i , ẑ(1)

i), . . . , (ê(κ)
i , ẑ(κ)

i)) over uni-
formly chosen challenges, which allows to extract ŵi with overwhelming proba-
bility. What remains is the same as the knowledge soundness proof of the original
CDS scheme; according to Proposition 1, there exists a qualified set A in Γ for
which ŵi for all i ∈ A are extracted.

We next sketch a proof for the case where Hc is non-programmable and He

is programmable. This time we do not require Lemma 1. The extractor first runs
the adversary until it obtains a valid forgery. Proof queries from the adversary is

764 M. Abe et al.

answered by executing Sim2 in Fig. 2, which programs at most n random points
on He in each invocation. Then the extractor rewinds the adversary to the point
where it first receives ŝ for query Hc(Γ, x̂, â1, . . . , ân). The extractor then con-
tinues the simulation as well as the first run except that it answers every fresh
query to He with an independently chosen random value. These queries to He

made after receiving ŝ from Hc are for a qualified set, A ∈ Γ , as we observed in
the proof of soundness since otherwise CheckSharesΓ ∗(ŝ, ŝ1, . . . , ŝn) in the verifi-
cation returns 1 with probability at most 2−μ. By repeating the above rewinding
2κ/δ times, the extractor obtains κ valid forged proofs on (x, â1, . . . , ân) with
a constant probability. The forged proofs constitute κ colliding transcripts for
each xi∈A unless random assignments to He collide by chance. Thus, by running
the κ-special soundness extractor with the colliding transcripts as an input, a
valid witness is obtained except for a negligible probability. We finally note that
Hc must still be modeled as (non-programmable) random oracle to assure that
âi is fixed before ŝi is queried to Hc. ��
Proof (Of strong simulation extractability). This time, we relax the condition
on (x̂, π̂) so that it must be different from any pair (x, π) observed by the sim-
ulation oracle. As we have already proved the case of x̂ �= x in the above,
we consider x̂ = x and π̂ �= π happens for some (x, π) observed by the
simulation oracle. Let π = {(ai, zi), si}i∈[n]. If (â1, . . . , ân) �= (a1, . . . , an),
then we fork at query Hc(Γ, x̂, â1, . . . , ân) and do the same as done in the
proof of simulation extractability. Otherwise, if (â1, . . . , ân) = (a1, . . . , an) and
(ŝ1, . . . , ŝn) �= (s1, . . . , sn), we again fork at query Hc(Γ, x̂, â1, . . . , ân). Observe
that the query is made by zero-knowledge simulator. So we cannot answer
to the newly assigned value with the same âi. We instead simulate by using
the same (ai, ei, zi) for every i ∈ [n]. It can be done by programming He

with the same output êi on a new input si in each fork. More precisely, for
every new assignment of s(j) to Hc(Γ, x̂, â1, . . . , ân) in the j-th fork, compute
(s(j)

1 , . . . , s(j)
n) ← ShareΓ ∗(s(j)). Then define He(Γ,x, i, s(j)

i) by ei used in the orig-
inal run and answer with the same zi. Accordingly, though shares si appear in
the respective challenge round differ in every fork, simulated transcript (ai, ei, zi)
remains the same. Now, τ successful forks leads to extracting witness in a qual-
ified set in Γ as before. Due to the quasi-unique response property, we are
already done since (x̂i, âi, ŝi) = (x(k)

i , a(k)
i , s(k)

i) cannot accommodate with restric-
tion (x̂i, âi, ŝi, ẑi) �= (x(k)

i , a(k)
i , s(k)

i , z(k)
i) except for negligible probability. ��

3.2 Comparison with CDS

In order to illustrate the efficiency gain and the recycling technique of our new
construction, consider the following general DNF formula on n-variables:

f(x1, . . . , xn) = (xj{1,1} ∧ . . . ∧ xj{1,m1})∨ . . . ∨ (xj{�,1} ∧ . . . ∧xj{�,m�}) , (1)

and let N :=
∑�

i=1 mi be the total number of literals in f . Let Γ be the access
structure over [n] induced by f , and consider the following well-known and widely

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 765

used perfect secret sharing of s ∈ Zp (for some μ-bits prime p) under policy Γ ∗:

ShareΓ ∗(s) :

sample d1, . . . , d� ←Zp uniformly restricted to d1 + . . . + d� = s;
set si :=

{
dk | i ∈ {j{k,1}, . . . , j{k,mk}} ∀k ∈ [�]

} ∀i ∈ [n];
return (s1, . . . , sn).

Table 1. Comparison between previous work ([20,21]) and the Share-then-Hash CDS
(this work). Values N , n and � represent the number of literals, number of variables
and number of clauses in the DNF formula (1) respectively. Value α (respectively ζ)
represents the size in bits of the first message (respectively last message) of sigma
protocols Σi. (Challenges are assumed to belong in {0, 1}μ).

Proof system

Property CDS+FS Share-then-Hash CDS+FS

Proof size N(α + ζ) + μ� n(α + ζ) + μ�

Optimized proof size† Nζ + μ� nζ + μ�
Support for (κ > 2)-special soundness

Unforgeability in NPROM‡

† When every a is uniquely identified and efficiently recoverable given (e, z).
‡ When considered as a signature scheme. See Section 4.

The CDS+FS technique would yield a proof for ΓR consisting of N tran-
scripts where for all k ∈ [�] and k′ ∈ [mk], transcript (a{k,k′}, ek, z{k,k′})
is accepting with respect to the j{k,k′}-th Σ-protocol. Also, for s :=
H(Γ,x, a{1,1}, . . . , a{�,m�}), it must hold e1 + · · · + e� = s. This results in a total
proof size in bits of:

μ�+
∑

k∈[�]

(∑
k′∈[mk]

|a{k,k′}|+ |z{k,k′}|
)

.

Instead, with our scheme from Fig. 1, the resulting proof consists of n
transcripts {(ai, zi)}i∈[n] together with a set of shares {si}i∈[n] produced by
the above Share algorithm. Transcript (ai, ei, zi) is accepting with respect the
i-th Σ-protocol, where ei := H(Γ,x, i, si) for every i ∈ [n] and for s :=
H(Γ,x, a1, . . . , an), CheckShares(s, s1, . . . , sn) = 1. In this case, the total proof
size in bits results in1:

|(s1, . . . , sn)| +
∑

i∈[n] |ai|+ |zi| = μ�+
∑

i∈[n] |ai|+ |zi|
We refer to Table 1 for a more detailed comparison between the two proof

systems. For simplicity, we assume that all Σ-protocols require first messages
1 Although the total length of secrets (s1, . . . , sn) is μN , as above it is enough to store

the � disjunction values (d1, . . . , d�) sampled by Share.

766 M. Abe et al.

of similar length say |a| = α, and also last messages of similar length |z| = ζ.
Some Σ-protocols are such that, given (e, z), there exists a unique value of a
that makes the transcript accepting and that can be efficiently computed. In
those cases, it is possible to optimize the proof size by not including the a value
of any transcript. During verification, the omitted values are computed from
the corresponding (e, z). Notice that this optimization can be applied to both
schemes and it does not compromise soundness, since the prover has committed
to the final share s (dependent of the a values) through the random oracle H.
Further optimizations may be possible, e.g. reducing the number of shares that
appear in the proof, depending on the access structure.

Observe that the size of proofs produced with the share-then-hash technique
can be dramatically smaller than the size of proofs with standard CDS+FS since,
in general, N can be much larger than n. This improvement comes from the fact
that share-then-hash proofs include exactly 1 transcript per atomic statement,
which is a notable improvement since many practical scenarios involve complex
and heavy sigma protocols. Having to produce (and then verify) independent
transcripts for the same statement would be undesirable. Finally, notice that
this optimization also brings computational savings since fewer transcripts need
to be produced.

4 Application

This section presents a general ring signature scheme that supports monotone
structures and is unforgeable against chosen message and chosen ring attacks
in the NPROM. Note that when n = 1 the syntax and unforgeability of ring
signature schemes reduce to those for ordinary signature schemes.

Definition 11 (General Ring Signature Scheme). A ring signature scheme
RS is triple of polynomial-time algorithm, described by (KeyGen,Sign,Verify) such
that

• KeyGen(1λ) : It takes an input the security parameter 1λ and outputs a pair
(vk , sk) of verification and signing key. This execution is proceeded individu-
ally by each player.

• Sign(vk, sk,msg , Γ) : It takes a set of verification keys vk := (vk1, . . . , vkn),
a monotone access structure Γ over [n], a set of secret keys sk, and a message
msg ∈ {0, 1}∗ and outputs a signature σ.

• Verify(vk,msg , σ, Γ) : It takes vk,msg , σ, and Γ , and outputs either 1 for
acceptance, or 0 for rejection.

It is correct, if, for every λ ∈ N, n ≥ 1, any monotone access structure Γ over
[n], any vk := (vk1, . . . , vkn) and sk := (sk1, . . . , skn) that there exists A ∈ Γ
such that (vk i, sk i) ∈ KeyGen(1λ) holds for all i ∈ A, for all msg ∈ {0, 1}∗,
RS.Verify(vk,msg ,Sign(vk, sk,msg , Γ), Γ) = 1 holds except for negligible prob-
ability.

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 767

Definition 12 (Signer Anonymity). A ring signature scheme is anonymous
if, for any λ ∈ N, any n ≥ 1, any monotone structure Γ over [n], any
vk = (vk1, · · · , vkn), and any sk(b) := (sk (b)

1 , . . . , sk (b)
n) for b = 0, 1 that there

exists A ∈ Γ such that (vk i, sk
(b)
i) ∈ KeyGen(1λ) holds for all i ∈ A, and for

any msg ∈ {0, 1}∗, two distributions (vk,msg ,Sign(vk, sk(0),msg , Γ), Γ) and
(vk,msg ,Sign(vk, sk(1),msg , Γ), Γ) are statistically indistinguishable.

Definition 13 (Unforgeability). A ring signature scheme is unforgeable
against adaptive chosen message and chosen ring attacks if for any sufficiently
large λ, any n ≥ 1, any polynomial-time adversary A, the following experiment
returns 1 only with negligible probability in λ.

ExpreufRS,A(λ) :

1. Run (vk i, sk i) ← RS.KeyGen(1λ) for i ∈ [n]. Initialize U with ∅.
2. Run (v̂k, m̂sg , π̂, Γ̂) ← AS,C(vk) where S and C are oracles that:

S: Given (vk′,msg , Γ,A) as input, if vk′ ⊆ vk, Γ is a monotone structure
over [n′] := [|vk′|], and A ∈ Γ , it returns σ ← RS.Sign(vk′, sk′,msg , Γ)
where sk′ = (sk1, . . . , skn′) that (vk i, sk i) ∈ RS.KeyGen(1λ) for all i ∈ A
and sk i = ⊥ for all i ∈ [n′] \ A. It returns ⊥, otherwise.

C: Given i ∈ [n], it adds vk i to U , and returns sk i.
3. Output 1 if all the following conditions are met.

• 1 = RS.Verify(v̂k, m̂sg , π̂, Γ̂)
• v̂k ⊆ vk
• ∀A ∈ Γ̂ , {v̂ki ∈ v̂k | i ∈ A} �⊆ U

• (v̂k, m̂sg , Γ̂) has never been submitted to S
Otherwise output 0.

For binary relation R, let R∨ be disjunctive relation R∨((x1, x2), (w1, w2)) :=
R(x1, w1) ∨ R(x2, w2). Let DecompOR be an algorithm that, given a monotone
access structure Γ over [n] as input, outputs a monotone access structure Λ over
[2n] that ΓR∨ = ΛR holds for R∨ := (R(1)

∨ , . . . , R
(n)
∨) and R := (R(1), . . . , R(2n)).

Let Σ = (C,Z,V) be a Σ-protocol for R. Let (Prove,Verify) be a scheme in Fig. 1
using Σ. We present our construction of ring signature scheme for monotone
access structure in Fig. 3.

Theorem 2. The scheme in Fig. 3 is a ring signature scheme for monotone
access structure. It is signer anonymous if Σ is witness indistinguishable. It is
unforgeable against chosen message and ring attacks if LR is a hard language, Σ
is witness indistinguishable and statistically sound, and hash functions Hc and
He are non-programmable random oracles for output space 2μ for sufficiently
large μ.

768 M. Abe et al.

Fig. 3. Proposed ring signature scheme for access structure Γ .

Proof. Correctness and signer anonymity is almost directly from the complete-
ness and witness indistinguishability of the underlying Σ respectively. Thus we
focus on proving unforgeability. Outline of our proof follows that of [28].

Game 1: This is the same as the experiment for the chosen message and
chosen ring attack. Let Gi be the event that the experiment in Game i outputs
1. We have Pr[G1] = Pr[ExpreufRS,A(λ) = 1] by definition.

Let C ⊆ [n] be the index of the corrupted verification keys in the game.
Let v̂k, m̂sg , π̂, and Γ̂ be the final output from the adversary. Without
loss of generality, we assume that v̂k = vk and Γ̂ is over [n]. (The adver-
sary can choose Γ̂ over a subset of [n]. We can turn such an adversary to
one that outputs Γ̂ as we want.) Let π̂ be parsed to π̂ = {(âi, ẑi), ŝi}i∈[2n].
As a valid forgery, it satisfies C /∈ Γ̂ . Furthermore, every (âi, ẑi), ŝi verifies
as 1 = CheckSharesΛ̂∗(ŝ, ŝ1, . . . , ŝ2n) for ŝ := Hc(Λ̂,x,msg , â1, . . . , â2n), and
1 = Vi(x̂i, âi, êi, ẑi) for êi := He(Λ̂,x,msg , i, ŝi) for i ∈ [2n].

Game 2: We clean up the game by halting at win-by-chance events. As we
argued in the proof of soundness, the adversary must make relevant hash queries
to the corresponding oracles by itself. As also shown in the same place, there
must exist a qualified set A∗ in Λ̂ that, for all i ∈ A∗, êi := He(Λ̂,x,msg , i, ŝi)
appears after ŝ := Hc(Λ̂,x,msg , â1, . . . , â2n) in the view of the adversary. If any
of these are not the case at the end, we let the experiment output 0.

Since these events happen only by chance over the choices of Hc and He for
large enough domain {0, 1}μ, we have |Pr[G2] − Pr[G1]| < O(q/2μ) for at most
q times of queries to the random oracles throughout the game.

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 769

Game 3: Uniformly choose i∗ ← [2n] and select xi∗ as a no-instance, i.e.,
xi∗ ← L̃(λ) where L̃ is a language that is indistinguishable from LR and has no
intersection with it.

Let i∗c denote �i∗/2�, which is the index of the verification key containing
xi∗ . For now, suppose that i∗c /∈ C happens. Answering to the signing queries
from the adversary can be done by using the remaining witnesses since they are
in a qualified set of Λ. It is perfect due to the WI property of the underlying
proofs. If the output distribution of the experiment changes noticeably from that
in the previous game, we can construct a successful distinguisher for LR and L̃.
Let εhd denote the bound for indistinguishability of LR. We have |Pr[G3 | i∗c /∈
C] − Pr[G2]| ≤ εhd.

We now evaluate Pr[G3 | i∗c /∈ C]. Since C /∈ Γ̂ , there exists i† ∈ A∗ that
i†c /∈ C. We have i† = i∗ with probability 1/2n for uniform i∗. (Note that, for
this case, i∗c /∈ C holds as well.) For xi∗ /∈ LR and fixed âi∗ , probability that
challenge êi∗ uniformly chosen by He(Λ̂,x,msg , i∗, ŝi∗) can have ẑi∗ that satisfies
1 = V(xi∗ , âi∗ , êi∗ , ẑi∗) is bound by the statistical soundness error, denoted by
εst, of Σ. We thus have Pr[G3 | i∗c /∈ C ∧ i† = i∗] = 1

2n · Pr[G3 | i∗c /∈ C] < εst.
By accumulating the all above bounds, we have Pr[ExpreufRS,A(λ) = 1] <

O(q/2μ) + εhd + 2nεst which is negligible if q, n, and μ are polynomials in λ,
and εhd and εst are negligible in λ as stated. ��

5 Concluding Remarks

In this work, we have revisited the CDS composition technique and proposed a
modification, that we coin the share-then-hash methodology. Our simple tech-
nique enhances the previous composition in several flavors, including more com-
pact proofs (one single transcript per atomic statement), better generality (it is
not limited to 2-special sound atomic protocols) and security proofs under weaker
assumptions (soundness can be proven in the non-programmable random oracle
model). Consequently, our results can lead to more efficient, general and secure
cryptographic primitives that rely on proofs of partial knowledge.

Proving lower bounds on the proof size and communication complexity of
partial proofs of knowledge is an appealing target for future work. In particular,
it would be interesting to know if our construction is optimal under some measure
or criteria. Another interesting direction for future work would be explore the
application of our share-then-hash technique to other scenarios.

References

1. Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rosen, A.: Acyclicity pro-
gramming for sigma protocols. Unpublished manuscript, April 2020

2. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. J. Cryptol. 29(4), 833–878 (2016)

770 M. Abe et al.

3. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

4. Abe, M., Ohkubo, M., Suzuki, K.: Efficient threshold signer-ambiguous signatures
from variety of keys. IEICE Trans. Fund. E87–A(2), 471–479 (2004)

5. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for
composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
III. LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 22

6. Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring sig-
nature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88403-3 1

7. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
logarithmic-size, no setup—from standard assumptions. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 281–311. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 10

8. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-Shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 38

9. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107,
pp. 183–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 7

10. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015, Part I. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24174-6 13

11. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol.
4515, pp. 210–227. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72540-4 12

12. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to
ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 30

13. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 20

14. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, 23–26 June 2019, pp. 1082–1090.
ACM (2019)

15. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78381-9 4

16. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/3-540-45708-9_30
https://doi.org/10.1007/978-3-642-01001-9_20
https://doi.org/10.1007/978-3-319-78381-9_4

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 771

17. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73420-8 38

18. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost
as efficient and general as the Fiat-Shamir transform without programmable ran-
dom oracles. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol.
9563, pp. 83–111. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49099-0 4

19. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D.
thesis, University of Amsterdam, January 1997

20. Cramer, R., Damg̊ard, I., MacKenzie, P.: Efficient zero-knowledge proofs of knowl-
edge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000.
LNCS, vol. 1751, pp. 354–372. Springer, Heidelberg (2000). https://doi.org/10.
1007/978-3-540-46588-1 24

21. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

22. Dallot, L., Vergnaud, D.: Provably secure code-based threshold ring signatures.
In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 222–235. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6 13

23. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad
hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 36

24. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7 5

25. Feng, H., Liu, J., Wu, Q., Li, Y.-N.: Traceable ring signatures with post-quantum
security. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 442–468.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3 19

26. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

27. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 10

28. Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-OR proofs. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp.
212–244. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 8

29. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 36

30. Ghadafi, E.M.: Sub-linear blind ring signatures without random oracles. In: Stam,
M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 304–323. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45239-0 18

https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/978-3-662-49099-0_4
https://doi.org/10.1007/978-3-662-49099-0_4
https://doi.org/10.1007/978-3-540-46588-1_24
https://doi.org/10.1007/978-3-540-46588-1_24
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-642-10868-6_13
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-030-40186-3_19
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-030-45727-3_8
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-45239-0_18

772 M. Abe et al.

31. Goldreich, O., Micali, S., Wigderson, A.: How to prove All NP statements in
zero-knowledge and a methodology of cryptographic protocol design (extended
abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 11

32. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of sudoku puzzles. TCS 44(2), 245–268
(2009)

33. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

34. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 9

35. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

36. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

37. Herranz, J., Sáez, G.: Ring signature schemes for general ad-hoc access structures.
In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004.
LNCS, vol. 3313, pp. 54–65. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-30496-8 6

38. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. J.
Cryptol. 30(4), 1116–1156 (2017)

39. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 1

40. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based PRFs and applications to E-cash. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part III. LNCS, vol. 10626, pp. 304–335. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70700-6 11

41. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security
from the DDH assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS
2018, Part II. LNCS, vol. 11099, pp. 288–308. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98989-1 15

42. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and
non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part I. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46494-6 5

43. Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme.
In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6 2

44. Lueks, W., Kulynych, B., Fasquelle, J., Bail-Collet, S.L., Troncoso, C.: zksk:
a library for composable zero-knowledge proofs. In: Cavallaro, L., Kinder, J.,
Domingo-Ferrer, J. (eds.) Proceedings of the 18th ACM Workshop on Privacy
in the Electronic Society, WPES@CCS 2019, London, UK, 11 November 2019, pp.
50–54. ACM (2019)

https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-30496-8_6
https://doi.org/10.1007/978-3-540-30496-8_6
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-70700-6_11
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-540-24691-6_2

Non-interactive Composition of Sigma-Protocols via Share-then-Hash 773

45. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual
leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 89–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19571-6 7

46. Martin, K.M., Simmons, G.J., Jackson, W.-A.: The geometry of shared secret
schemes. Bull. ICA 1, 71–88 (1991)

47. Nguyen, K., Tang, H., Wang, H., Zeng, N.: New code-based privacy-preserving
cryptographic constructions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019, Part II. LNCS, vol. 11922, pp. 25–55. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-34621-8 2

48. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 8

49. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for np from (plain) learning
with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

50. Ràfols, C.: Stretching groth-sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 10

51. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

52. Schäge, S., Schwenk, J.: A CDH-based ring signature scheme with short signatures
and public keys. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 129–142. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 12

53. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 12

54. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996)

55. Wikström, D.: Special soundness revisited. IACR Cryptology ePrint Archive,
2018:1157 (2018)

https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/978-3-030-34621-8_2
https://doi.org/10.1007/978-3-030-34621-8_2
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-662-46497-7_10
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-642-14577-3_12
https://doi.org/10.1007/978-3-540-71677-8_12

Succinct Diophantine-Satisfiability
Arguments

Patrick Towa1,2,4(B) and Damien Vergnaud3,4

1 IBM Research, Zurich, Switzerland
patrick.towa@gmail.com

2 DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France
3 Sorbonne Université, CNRS, LIP6, 75005 Paris, France

4 Institut Universitaire de France, Paris, France

Abstract. A Diophantine equation is a multi-variate polynomial equa-
tion with integer coefficients, and it is satisfiable if it has a solution
with all unknowns taking integer values. Davis, Putnam, Robinson and
Matiyasevich showed that the general Diophantine satisfiability problem
is undecidable (giving a negative answer to Hilbert’s tenth problem) but
it is nevertheless possible to argue in zero-knowledge the knowledge of a
solution, if a solution is known to a prover.

We provide the first succinct honest-verifier zero-knowledge argument
for the satisfiability of Diophantine equations with a communication com-
plexity and a round complexity that grows logarithmically in the size of
the polynomial equation. The security of our argument relies on stan-
dard assumptions on hidden-order groups. As the argument requires to
commit to integers, we introduce a new integer-commitment scheme that
has much smaller parameters than Damgård and Fujisaki’s scheme. We
finally show how to succinctly argue knowledge of solutions to several
NP-complete problems and cryptographic problems by encoding them
as Diophantine equations.

1 Introduction

A Diophantine equation is a multi-variate polynomial equation with integer coef-
ficients, and it is satisfiable if it has a solution with all unknowns taking integer
values. Davis, Putnam, Robinson and Matiyasevich [20] showed that any compu-
tational problem can be modeled as finding a solution to such equations, thereby
proving that the general Diophantine-satisfiability problem is undecidable and
giving a negative answer to Hilbert’s tenth problem. For instance, several classi-
cal NP-problems such as 3-SAT, Graph 3-colorability or Integer Linear Program-
ming can be readily encoded as Diophantine equations. Several cryptographic
problems such as proving knowledge of an RSA signature, that a committed
value is non-negative or that encrypted votes are honestly shuffled by a mix-net,
can also be encoded as Diophantine equations.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 774–804, 2020.
https://doi.org/10.1007/978-3-030-64840-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_26&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_26

Succinct Diophantine-Satisfiability Arguments 775

Efficient zero-knowledge arguments of knowledge of solutions to Diophantine
equations, if a solution is known to a party, can thus be useful for many prac-
tical cryptographic tasks; and doing so requires to do zero-knowledge proofs on
committed integers.

1.1 Prior Work

Integer Commitments. Fujisaki and Okamoto [15] presented the first efficient
integer commitment scheme and also suggested a zero-knowledge protocol for
verifying multiplicative relations over committed values. Such a commitment
scheme allows to commit to any x ∈ Z in a group of unknown order, with a
Pedersen-like commitment scheme. This makes the security analysis more intri-
cate since division modulo the unknown group order cannot be performed in
general. As an evidence that this setting is error-prone, Michels showed that
the Fujisaki–Okamoto proof system was flawed. Damgård and Fujisaki [11] later
proposed a statistically hiding and computationally binding integer commitment
scheme under standard assumptions in a hidden-order group G with an efficient
argument of knowledge of openings to commitments, and arguments of multi-
plicative relations over committed values. This primitive gives rise to a (honest-
verifier) zero-knowledge proof of satisfiability of a Diophantine equation with M
multiplications over Z that requires Ω(M) integer commitments and Ω(M) proofs
of multiplicative relations [11,19]. These complexities have not been improved
since then.

Circuit Satisfiability over Zp. Similarly, it is possible to design a zero-knowledge
proof of satisfiability of an arithmetic circuit over Zp using Pedersen’s commit-
ment scheme [21] in a group G of public prime order p. An immediate solution
is to use the additive homomorphic properties of Pedersen’s commitment and
zero-knowledge protocols for proving knowledge of the contents of commitments
and for verifying multiplicative relations over committed values [8,22].

For an arithmetic circuit with M multiplication gates, this protocol requires
Ω(M) commitments and Ω(M) arguments of multiplication consistency and has
a communication complexity of Ω(M) group elements. In 2009, Groth [17] pro-
posed a sub-linear size zero-knowledge arguments for statements involving linear
algebra and used it to reduce this communication complexity to O

(
√

M
)

group
elements. This breakthrough initiated a decade of progress for zero-knowledge
proofs for various statements (see e.g., [3,5,6,18] and references therein). It cul-
minated with the argument system “Bulletproofs” proposed by Bünz, Bootle,
Boneh, Poelstra, Wuille and Maxwell [6] which permits to prove the satisfiabil-
ity of such an arithmetic circuit with communication complexity O(log(M)) and
round complexity O(log(M)). The corner stone of their protocol is an argument
that two committed vectors satisfy an inner-product relation. It has logarithmic
communication and round complexity in the vector length, and its security only
relies on the discrete-logarithm assumption and does not require a trusted setup.

776 P. Towa and D. Vergnaud

Circuit satisfiability over any finite field is an NP-complete problem so the
“Bulletproofs” argument system has widespread applications. However, as men-
tioned above, in many cryptographic settings, it is desirable to prove statements
such as “the committed value x is a valid RSA signature on a message m for
an RSA public key (N, e)”. In this case, the prover has to convince the verifier
that xe = H(m) mod N, or in other words that there exists an integer k such
that xe + kN = H(m) where this equality holds over the integers for |k | ≤ Ne−1

and H some cryptographic hash function. In order to use directly an argument
of satisfiability of an arithmetic circuit to prove the knowledge of a pair (x, k)
which satisfies this equation, one needs to use a group G a prime order p with
p > Ne (and to additionally prove that x < N and k < Ne). For a large e, this
approach results in a proof with prohibitive communication complexity.

Moreover, in various settings, such as the Integer-Linear-Programming prob-
lem, there is no a priori upper-bound on the sizes of the integer solutions during
setup when p is defined. Being able to argue on integers instead of residue classes
modulo a fixed prime integer then becomes necessary. Besides, generic reductions
to circuit satisfiability over prime-order fields for some simple problems natu-
rally defined over the integers may return circuits with a very large number of
multiplication gates and even the “Bulletproofs” argument system could produce
large proofs. Modeling computational problems using Diophantine equations is
more versatile, and a succinct argument system for Diophantine satisfiability
thus has many potential applications.

1.2 Contributions

We provide the first succinct argument for the satisfiability of Diophantine equa-
tions with a communication complexity and a round complexity that grows loga-
rithmically in the size of the polynomial equation1. It is statistical honest-verifier
zero-knowledge and is extractable under standard computational assumptions
over hidden-order groups such as RSA groups or ideal-class groups.

Integer Commitments. Section 3 introduces a new computationally hiding and
binding commitment scheme that allows to commit to vectors of integers. It is
close to Damgård and Fujisaki’s seminal proposal, but has much smaller parame-
ters. Denoting by λ the security parameter and letting 2bG be an upper bound on
the group order, the version of our scheme which allows to commit to n integers at
once has parameters consisting of O(bG+log n) bits instead of Ω (nbG · polylog(λ))
as with the generalized version of Damgård and Fujisaki’s scheme.

Damgård and Fujisaki’s commitment scheme, for n = 1, is a variant of Peder-
sen’s commitment in a hidden-order group G: given two group elements g, h ∈ G,

1 Our goals and techniques differ completely from those proposed by Bünz, Fisch and
Szepieniec [7] where they used what they called Diophantine Arguments of Knowl-
edge (DARK) to construct a commitment scheme for polynomials over prime finite
fields (using the so-called Kronecker substitution for determining the coefficients of
a polynomial by evaluating it at a single value, see e.g., [16, p. 245]).

Succinct Diophantine-Satisfiability Arguments 777

the commitment to an integer value x ∈ Z is C = gxhr , where r is an integer of
appropriate size. The hiding property of their scheme crucially relies on the fact
that g ∈ 〈h〉, which is not always guaranteed as the group may not be cyclic.
Damgård and Fujisaki’s proposed a Schnorr-type [22] protocol to prove such
statements, but their challenge set is restricted to {0, 1} to guarantee sound-
ness under the assumptions on the group. Their protocol must then be repeated
logarithmically many times to achieve negligible soundness, and the resulting
parameters are large. The situation is worse when n is large as commitments are
computed as gx11 · · · gxnn hr and a proof for each gi must be computed.

Our scheme is based on the observation that proving that g2 ∈

〈
h2

〉
can

be done more efficiently in a single protocol run under the assumptions on the
group. Our commitments are thus computed as (gxhr)2 ∈ G. We further such
how to aggregate the proofs of several such statements to reduce the size of our
parameters when n is large.

Succinct Inner-Product Arguments on Integers. Section 4 presents a succinct
argument that two integer vectors committed with our scheme satisfy an inner-
product relation. That is, an argument of knowledge of vectors a and b ∈ Z

n (and
of a randomness r ∈ Z) that open a commitment C and such that 〈a, b〉 = z given
a public integer z. Succinct here means that the communication complexity of
the prover is of order O(� + log(n)bG), where � is the bit length of the largest
witness. The complexity is measured in bits as during the protocol, the prover
sends logarithmically many group elements and three integers, but these latter
could be arbitrarily large.

The argument of Bünz et al. [6] for inner-product relations over Zp is not
applicable to integers as their proof of extractability relies on the generalized
discrete-logarithm assumption for which there is no equivalent in hidden-order
groups that may not even be cyclic, and on the invertibility of elements in Z∗p
since it requires to solve linear systems over Zp. Besides, their argument is not
zero-knowledge and is on vectors committed with the non-hiding version of Ped-
ersen’s scheme (i.e., with nil randomness). Therefore, whenever it is used as
a sub-protocol of another one, techniques specific to the larger protocol must
always be used to guarantee that it is zero-knowledge. del Pino, Seiler and
Lyubashevsky [12] later solved this issue by adapting the argument of Bünz
et al. in prime-order groups to make it perfectly honest-verifier zero-knowledge
with the full-fledged Pedersen’s scheme.

Our protocol uses halve-then-recurse techniques similar to those of Bünz et
al. for the Sect. 3.2 commitment scheme in hidden-order groups and thus allows
to succinctly argue on integers, but only uses the integrality of Z as a ring since
one cannot invert modulo the unknown order. (Note that these techniques are
themselves inspired by the recursive inner-product argument of Bootle et al. [5].)
In particular, we prove that even though one cannot a priori solve in Z the linear
system of Bünz et al. required to prove the extractability of their protocol, one
can instead solve a “relaxed” system in Z. Then, under the assumptions on the
hidden-order group, we show that the solution to the relaxed system is enough to
extract a representation of the commitment in the public bases. In groups with

778 P. Towa and D. Vergnaud

public prime orders, the assumption that discrete-logarithm relations are hard to
compute allows to conclude that this representation of the commitment actually
leads to a valid witness, but this assumption is not a priori translatable to
hidden-order groups. Instead, we prove that a similar assumption in the subgroup
generated by a randomly sampled element is weaker than the assumptions on the
group, and that suffices to prove the extractability of the protocol. The details
of these technical challenges are outlined in Sect. 4.1.

Furthermore, as the group order is unknown to all parties, the argument
is only statistically honest-verifier zero-knowledge. To ensure this property, the
randomness range of the prover is carefully2 adapted to allow for simulatability
without knowledge of a witness.

Succinct Arguments for Diophantine Equations. Section 5 presents our suc-
cinct protocol to argue satisfiability of Diophantine equations. Our approach
is inspired by Skolem’s method [23] which consists in reducing the degree
of the polynomial by introducing new variables to obtain a new polynomial
of degree at most 4, in such a way that the satisfiability of one polynomial
implies that of the other. Tailoring Skolem’s method to the problem of argu-
ing satisfiability, we show how to reduce the satisfiability of any polynomial
in Z[x1, . . . , xν] of total degree δ with μ monomials to the existence of vectors
aL =

[
aL,1 · · · aL,n

]
, aR =

[
aR,1 · · · aR,n

]
and aO =

[
aO,1 · · · aO,n

]
in Zn, for

n ≤ ν�log δ	 + (δ − 1)μ, such that aO,i = aL,iaR,i for all i ∈ {1, . . . , n}, and that
satisfy 1 ≤ Q ≤ 1 + 2ν(�log δ	 − 1) + (δ − 2)μ linear constraints of the form

〈wL,q, aL〉 + 〈wR,q, aR〉 + 〈wO,q, aO〉 = cq,

where wL,q,wR,q,wO,q ∈ Z
n and cq ∈ Z for all q ∈ {1, . . . ,Q}. Our reduction is

constructive as it allows to infer the vectors and the constraints directly from
the original polynomial.

Bootle et al. [5] then Bünz et al. [6] gave an argument system for proving
knowledge of vectors in Zp (instead of Z) that satisfy such constraints. They
use this protocol to argue for the satisfiability of arithmetic circuits over Zp.
Our argument shares similarities with theirs, but again there are key technical
differences that arise from the fact that Z is not a field. Indeed, as one cannot
invert nor reduce integers modulo the unknown orders of the bases, we use
different techniques notably to prevent the integers involved in the argument
from increasing too much, and to ensure consistency between the variables in
the entry-wise product and those in the linear constraints. Guaranteeing this
latter consistency requires to construct new polynomials for the argument that
do not involve inverting integers. Besides, one cannot use their commitment-key
switching technique which consists in interpreting ga as a commitment to xa to
the base gx

−1 in groups of public prime order. Finally, extra precaution must
be taken to guarantee the zero-knowledge property as integers are not reduced
2 As another evidence that cryptography in hidden-order groups is error prone, Fouque

and Poupard [14] broke the RDSA signature from [4] for which this randomness range
was not wisely selected.

Succinct Diophantine-Satisfiability Arguments 779

modulo p and may carry information about the witness. These challenges and
the ways we overcome them are described in details in the full version [24,
Section 6.2].

As a result, the communication complexity of our Diophantine-satisfiability
argument has a communication complexity of O (δ� +min(ν, δ) log (ν + δ) bG + H)

bits, if the absolute value of all the polynomial coefficients is upper-bounded
by 2H for some integer H. In contrast, the overall communication complex-
ity using Damgård and Fujisaki’s multiplication argument is upper-bounded by
O

((ν+δ
δ

) (
δ� + log

((ν+δ
δ

))
H + bG

))
and lower-bounded by Ω

((ν+δ
δ

)
(� + bG)

)
.

Applications. The full version [24] presents several applications of our
Diophantine-satisfiability argument. We provide explicit reductions to Diophan-
tine satisfiability for the following problems:

– argument of knowledge of a (possibly committed) RSA e-th root in ZN of some
public value with O (log(log(e))bG) bits. This has application to credential
systems when combined with proofs of non-algebraic statements [9];

– argument of knowledge of O (log(log p)bG) bits for ECDSA signatures with
a prime p, and of O (log(log q)bG + log(log p)) bits for DSA signatures with
primes p and q. The signed message is public, but can be committed if the
argument is combined with proofs of non-algebraic statements [9];

– argument that two committed lists of integers of length n are permutations
of each other with O (� + log(n)bG) bits

– argument of satisfiability of a 3-SAT Boolean formula with m clauses and n
variables with O (log(n + m)bG) bits;

– argument of satisfiability of an Integer-Linear-Programming problem of the
form x ∈ N

n and AxT ≥ bT, for A ∈ Z
m×n and b ∈ Z

m, with O (� + log(4n + 3m)
bG + log ‖A‖

∞
+ log ‖b‖

∞
) bits.

2 Preliminaries

This section introduces the notation used throughout the paper, recalls stan-
dard assumptions on generators of hidden-order groups, and defines commitment
schemes and argument systems.

2.1 Notation

For x ∈ Z, |x | denotes its absolute value. All logarithms are in base 2. For any
two integers a ≤ b ∈ Z, �a; b� denotes the set {a} if a = b and {a, a + 1, . . . , b} if
a < b. For an integer n ≥ 1, �n� stands for the set �1; n�. Given a vector a ∈ Z

n,
aX denotes the vector

[
a1X a2X · · · anX

]
∈ Z

n
[X].

For a given group (G, ·), TG denotes the binary complexity of computing group
operations. For h ∈ G,

√
〈h2〉 denotes the subgroup

{
g ∈ G : ∃α ∈ Z, g2 = h2α

}
.

780 P. Towa and D. Vergnaud

For g ∈ G
n, if n is even, set g1 �

[
g1 · · · gn/2

]
and g2 �

[
gn/2+1 · · · gn

]
, and

if n is odd, set g1 �
[
g1 · · · g�n/2	 1G

]
and g2 �

[
gn/2� · · · gn

]
. For a ∈ Z

n, if
n is even, set a1 �

[
a1 · · · an/2

]
and a2 �

[
an/2+1 · · · an

]
, and if n is odd, set

a1 �
[
a1 · · · a �n/2	 0

]
and a2 �

[
a n/2� · · · an

]
.

For n ∈ N
∗, z ∈ Z and g =

[
g1 . . . gn

]
∈ G

n, let gz �
[
gz1 · · · gzn

]
∈ G

n. For
a =

[
a1 . . . an

]
∈ Z

n, define ga �
∏n

i=1 g
ai

i . For g and h in Gn, g ◦ h ∈ G
n denotes

their Hadamard product, i.e., their component-wise product.

2.2 Hidden-Order-Group Generators and Hardness Assumptions

A hidden-order-group generator G is an algorithm which takes as input a security
parameter 1λ and returns the description of a finite Abelian group (G, ·) and an
integer P ≥ 2. Integer P is assumed to be smaller than the order of G, but to
still be a super-polynomial function of the security parameter. The role of P is
mainly to adjust the soundness of the protocols herein, as their challenge spaces
will typically be

�
0; PΩ(1) − 1

�
.

It is also assumed that given the description of G, the group law and the
inversion of group elements can be efficiently computed, that group elements can
be sampled uniformly at random and that an upper bound 2bG on ord(G) can
be efficiently computed, with bG � bG(λ) polynomial in λ (it is further assumed
that bG = Ω(λ)). Recall that the bit complexity of an elementary operation in a
group G is denoted TG.

The following assumptions are classical for hidden-order-group generators
and were introduced by Damgård and Fujisaki [11]. They are best illustrated for
P such that natural integers less than P are factorizable in polynomial time in λ
(e.g., λlog

Ω(1)
(λ) given current knowledge in computational number theory), and

for G as the group Z∗N for an RSA modulus N with prime factors p and q such
that p = q = 3 mod 4, gcd(p − 1, q − 1) = 2 and the number of divisors of p − 1
and q − 1 with prime factors less than P is of magnitude O(λ). However, these
assumptions are believed to also hold over generators of ideal-class groups.

Definition 2.1 (Strong-Root Assumption). A group generator G satisfies
the (T, ε)-strong-root assumption if for all λ ∈ N, for every adversary A that
runs in time at most T(λ),

Pr
⎡⎢⎢⎢⎢⎣
gn = h ∧ n > 1:

(G, P) ← G
(
1λ

)
h ←$ G

(g, n) ← A(G, P, h)

⎤⎥⎥⎥⎥⎦
≤ ε(λ).

This assumption is simply a generalization of the strong RSA assumption [2,15]
to hidden-order groups.

Definition 2.2 (Small-Order Assumption). A group generator G satisfies
the (T, ε)-small-order assumption if for all λ ∈ N, for every adversary A that
runs in time at most T(λ),

Pr
[
gn = 1G ∧ g2 � 1G

0 < n < P
:
(G, P) ← G

(
1λ

)
(g, n) ← A(G, P)

]
≤ ε(λ).

Succinct Diophantine-Satisfiability Arguments 781

The small-order assumption simply states that it should be hard to find
low-order elements in the group (different from 1G), except for square roots of
unity which may be easy to compute (e.g., −1 in RSA groups). In the group
Z
∗

N for N = pq with p and q prime such that gcd(p − 1, q − 1) = 2, Damgård
and Fujisaki [11] showed that factoring N can be reduced to this problem in
polynomial time if integers less than P are factorizable in polynomial time in λ.

Definition 2.3 (Orders with Low Dyadic Valuation). A group generator
G satisfies the low-dyadic-valuation assumption on orders if for all λ ∈ N, for
every (G, P) ← G

(
1λ

)
, for every g ∈ G, ord(g) is divisible by 2 at most once.

Notice that in the group Z∗N for N = pq with p and q prime such that p = q = 3
mod 4, the order of any element is divisible by 2 at most once since 2 divides
p − 1 and q − 1 exactly once.

Definition 2.4 (Many Rough-Order Elements or μ-Assumption). An
integer is said to be P-rough if all its prime factors are greater than or equal
to P. A group generator G satisfies the μ-assumption that there are many rough-
order elements in the groups generated by G (or simply the μ-assumption) if for
all every parameter λ ∈ N,

Pr
[
ord(h) is P -rough :

(G, P) ← G
(
1λ

)
h ←$ G

]
≥ μ(λ).

2.3 Non-interactive Commitments

A (non-interactive) commitment scheme consists of an algorithm Setup
(
1λ

)
→

pp which generates public parameters (implicit inputs to the other algorithms); a
key-generation algorithm KG (pp) → ck ; a probabilistic algorithm Com (ck, x) →
(C, d) that computes a commitment C to a value x and an opening or decom-
mitment information d on the input of ck ; and a deterministic algorithm
ComVf(ck,C, x, d) → b ∈ {0, 1} which returns a bit indicating whether the decom-
mitment d is valid (bit 1) for C and x w.r.t. key ck , or not (bit 0). Formal defini-
tions of the correctness, hiding and binding properties of commitment schemes
are given in the full version [24].

Discussion. The syntax above separates the commitment-key generation algo-
rithm from the setup algorithm although these are often tacitly combined, espe-
cially for commitments in public-order groups. The main reason is that doing so
allows to define the hiding property for schemes even when the keys are possibly
invalid. This question does not arise for schemes with keys that are elements of
a prime-order group G = 〈g〉 (e.g., Pedersen’s scheme [21]) since any element
h ∈ G

∗ is a valid commitment key. However, when the scheme is defined over an
unknown-order group G which may not be cyclic, and that keys are elements of
the subgroup generated by an element (as it is the case for Damgård–Fujisaki
commitments recalled in Sect. 3.1), say h, there may not be an efficient way to
test whether another element g ∈ G is in 〈h〉. Computing a commitment with

782 P. Towa and D. Vergnaud

an invalid key may then not guarantee that the commitment is hiding. That is
why the scheme will be required to be hiding even if commitments are computed
with a potentially invalid key.

2.4 Argument Systems

This section defines argument systems for families of languages. The languages
are parametrized by public parameters and Common-Reference Strings (CRSs).
As a simple example, given an Abelian group G (which could be non-cyclic) and
an element h ∈ G (the parameters) and another element g ∈ 〈h〉 (the CRS),
consider the language of group elements C ∈ G such that there exists x, y ∈ Z for
which C = gxhy . This language is clearly parametrized by the parameters and
the CRS, and one can give an argument system for this parametrized language in
the same vein as what is subsequently done in the paper. However, to lighten the
notation, arguments will be (abusively) referred to as arguments for languages
rather than arguments for families of languages.

Formally, an argument system (or protocol) for a language L = Lpp,crs (or
equivalently, for the corresponding relation R = Rpp,crs) consists of a quadruple
Π = (Setup,CRSGen, Prove,Vf) such that Setup

(
1λ

)
→ pp returns public param-

eters on the input of a security parameter, CRSGen(pp) → crs returns a CRS,
and 〈Prove(crs, x,w) � Vf(crs, x)〉 → (τ, b) ∈ {0, 1}∗ × {0, 1} are interactive algo-
rithms (τ denotes the transcript of the interaction and b the decision bit of Vf).
The public parameters are assumed to be tacit inputs to algorithms Prove and
Vf, even though they may at times be made explicit for instantiated protocols,
especially when the CRS is the empty string (in which case the CRS is omitted
from the syntax). The definitions of the (culpable) soundness, extractability and
honest-verifier zero-knowledge properties of argument systems are given in the
full version [24].

The non-interactive argument system derived from an interactive one Π via
the Fiat–Shamir heuristic [13] with a random oracle H is denoted FS .ΠH .

3 Integer Commitments

This section recalls a scheme due to Damgård and Fujisaki which allows to com-
mit to integers3. Then comes a new integer-commitment scheme with parameters
smaller than those of Damgård and Fujisaki’s scheme, and which are also more
efficient to compute. For the version of our scheme which allows to commit to n
integers, the parameters are of O(bG + log n) bits instead of Ω(nbG log P) as with
the generalized version of Damgård and Fujisaki’s scheme, where 2bG is an upper
bound on the group order.
3 Couteau, Peters and Pointcheval [10] proved that in the case of RSA groups (with

Blum integers), the security of Damgård and Fujisaki’s scheme is provable under (a
variant of) the RSA assumption instead of the strong RSA assumption. This also
holds for our scheme. However, this result does not concern generic hidden-order
groups.

Succinct Diophantine-Satisfiability Arguments 783

3.1 Damgård–Fujisaki Commitments

The Damgård–Fujisaki commitment scheme [11,15], parameterized by a group
generator G, consists of the following algorithms.

Setup
(
1λ

)
→ pp : run (G, P) ← G

(
1λ

)
, generate h ←$ G and return (G, P, h).

Recall that these parameters are implicit inputs to all the other algorithms.
KG(pp) → ck : generate α ←$

�
0; 2bG+λ

�
(2bG is an upper bound on ord(G)),

compute and return g ← hα.
Com(g, x ∈ Z) → (C, d) : generate r ←$

�
0; 2bG+λ

�
, compute C ← gxhr , set

d ← (r, 1G) and return (C, d).
ComVf (g,C, x, d) → b ∈ {0, 1} : parse d as (r, g̃). If C = gxhr g̃ and g̃2 = 1G, return

1, else return 0.

Equivalently, the commitment-algorithm could simply set the decommitment
information d to r, and the commitment-verification would return 1 if the equal-
ity C2 =

(
gxhd

)2 holds and 0 otherwise. The squaring in the verification is due
to the fact that the small-order assumption does not exclude the possibility to
efficiently compute square roots of unity, and they thus relaxed the verification
equation to allow for sound argument of knowledge of openings to commitments.
In other words, the scheme would still be binding without the squaring in the
verification equation, and the relaxation is simply an artifact to allow for sound
arguments.

More precisely, suppose that the verification were not relaxed, i.e., that it
would only check that C = gxhd. Two accepting transcripts (D, e1, z1, t1) and
(D, e2, z2, t2) of a standard Schnorr-type argument of knowledge of an opening
would imply that Ce1−e2 = gz2−z1ht2−t1 . Assuming e1, e2 ∈ �0; P − 1�, e1 � e2,
and that e1 − e2 divides z2 − z1 and t2 − t1 (Damgård and Fujisaki showed
that this latter event occurs with probability negligibly close to 1/2 under
the assumptions on the group generator), the previous equality would imply
that

(
g(z2−z1)/(e1−e2)h(t2−t1)/(e1−e2)C−1

)e1−e2
= 1G, and the small-order assumption

would only allow to conclude that C2 =
(
g(z2−z1)/(e1−e2)h(t2−t1)/(e1−e2)

)2
. The triv-

ial attack in which an adversary computes C as gxhd g̃ with g̃ ∈ G such that
g̃2 = 1G would then not be excluded by the protocol.

Properties. Damgård and Fujisaki’s scheme is correct, is computationally bind-
ing under the strong-root assumption and the μ-assumption, and is statistically
hiding. Its hiding property crucially relies on the fact that g ∈ 〈h〉. To guaran-
tee the statistical hiding property of the scheme without trusted key generation,
the party which computes g is then also required to compute a non-interactive
proof that g ∈ 〈h〉. The commitment algorithm would then verify the proof and
proceed as above if it is valid, and otherwise return ⊥. Damgård and Fujisaki
proposed to compute such a proof with a Schnorr-type protocol with {0, 1} as
challenge set. To attain a soundness error of at most 1/P, the proof must then
be repeated at least log P� times. With the Fiat–Shamir heuristic, each proof
consists of (c, z), and the total proof in the public parameters then consists of
log P� (bG + 2λ + 2) = Ω (bG log P) bits (recall that P is super-polynomial in λ,
e.g., λlog λ).

784 P. Towa and D. Vergnaud

3.2 A New Integer-Commitment Scheme

This section introduces a novel integer-commitment scheme that is close to
Damgård and Fujisaki’s scheme, but with an argument (rather than a proof)
of only O(bG) (with b such that ord(G) ≤ 2bG) bits in non-trusted keys, and
the argument only requires a single protocol run to reach the same soundness
error. As the soundness of the protocol relies on computational assumptions
on the group generator, the scheme is only computationally hiding, whereas
Damgård and Fujisaki’s cut-and-choose protocol is perfectly sound (the prover
is not assumed to be computationally bounded) but inefficient.

Formally, let G be a group generator and let FS .ΠH be a Fiat–Shamir
non-interactive argument system with random oracle H for the language
{g ∈ G, � ∈ N∗ : ∃α ∈

�
0; 2�

�
, g = hα

}
, given parameters (G, P, h, 1) (integer 1 is

just to indicate that there is only one group element g in the word for which the
proof is computed) and the empty string as CRS. The proof of the hiding prop-
erty will require the protocol to satisfy culpable soundness w.r.t. the language√
〈h2〉. The scheme, parameterized by G and further denoted C , consists of the

following algorithms:

Setup
(
1λ

)
→ pp : run (G, P) ← G

(
1λ

)
, generate h ←$ G and return (G, P, h).

Recall that these parameters are implicit inputs to all the other algorithms.
KG(pp) → ck : generate α ←$

�
0; 2bG+λ

�
, compute g ← hα and a proof π ←

FS .ΠH .Prove((G, P, h, 1), (g, bG + λ), α), and return (g, π).
Com ((g, π) , x ∈ Z) → (C, d) : if FS .ΠH .Vf((G, P, h, 1), (g, bG+λ), π) = 0, then return

⊥; else generate r ←$

�
0; 2bG+λ

�
, compute C ← (gxhr)2, set d ← r and return

(C, d).
ComVf ((g, π) ,C, x, d) → b ∈ {0, 1} : if C2 =

(
gxhd

)4 return 1, else return 0.

See the full version [24] for the proofs of correctness and security of the scheme.

Comparison with Damgård–Fujisaki Commitments. As for Damgård and
Fujisaki’s commitments, the squaring in the verification equation (compared to
the computation of commitments) is again to later allow for sound arguments of
knowledge of openings. The main difference compared to Damgård and Fujisaki’s
commitments is that commitments are computed as (gxhr)2 instead of gxhr . It
is simply due to the fact that π only guarantees that g2 ∈

〈
h2

〉
, not that g ∈ 〈h〉,

hence the power 2 in the computation of commitments to ascertain that they
are hiding. However, only requiring that g2 ∈

〈
h2

〉
instead of g ∈ 〈h〉 is precisely

what allows to have much smaller arguments that can be computed in a single
protocol run.

Argument System FS.ΠH. It only remains to provide a protocol FS .ΠH to
argue knowledge of an integer α ∈ Z such that g2 = h2α, which is sufficient for the
commitment scheme to be computationally hiding. We first give an interactive
protocol Π for the language

{
g ∈ G, � ∈ N∗ : ∃α ∈

�
0; 2�

�
, g = hα

}
given parame-

ters (G, P) ← G
(
1λ

)
and that satisfies culpable soundness w.r.t.

√
〈h2〉, and then

apply the Fiat–Shamir heuristic to obtain FS .ΠH .

Succinct Diophantine-Satisfiability Arguments 785

In more detail, the (interactive) protocol Π is as follows: the prover generates
k ←$

�
0; 2�+λP

�
, computes t ← hk and sends t to the verifier; the verifier chooses

c ←$ �0; P − 1� and sends it to the prover; the prover then replies with r ← k−cα,
and the verifier accepts if and only if hrgc = t. With the Fiat–Shamir heuristic,
the proof consists of (c, r), i.e., 2 �log P	 + � + λ + 3 bits. For � = bG + λ, that is
2 �log P	 + bG + 2λ + 3 = O(bG) bits (recall that P ≤ 2bG and bG = Ω(λ)).

The completeness, statistical honest-verifier zero-knowledge and extractabil-
ity properties of this protocol are proved in the full version [24].

Arguing Knowledge of Openings. As for Damgård and Fujisaki’s commit-
ments, one can efficiently argue knowledge of openings, i.e., of integers x and r
such that a given commitment C satisfies C2 = (gxhr)4.

The protocol imposes an upper bound of � on the bit length of the witness,
with � being part of the (public) word. It is simply to adapt the randomness range
of the prover (and of the honest-verifier zero-knowledge simulator) to ensure that
the protocol remains statistically honest-verifier zero-knowledge; and � can be
arbitrarily large. The protocol does not guarantee that the largest absolute value
in the extracted witness is at most � bits long4. In technical terms, the protocol is
for the relation

{(
C ∈ G, � ∈ N∗; x, r ∈

�
0; 2�

�)
: C2 = (gxhr)4

}
that satisfies culpa-

ble extractability for the relation Σ �
{
(C ∈ G, � ∈ N∗; x, r ∈ Z) : C2 = (gxhr)4

}
.

More precisely, consider the problem of arguing in zero-knowledge knowledge
of integers x and r such that C2 = (gxhr)4 and |x |, |r | ≤ 2� , for a group element
C chosen by the prover and public bases h and g, and a public proof π that
g ∈

√
〈h2〉. The prover first verifies π and aborts if it is invalid. The prover

generates y, s ←$

�
0; P2�+λ

�
, computes and sends D ← (gyhs)2 to the verifier.

The verifier then chooses e ←$ �0; P − 1�, sends it to the prover, and this latter
replies with z ← y− ex and t ← s− er (computed in Z). The verifier then accepts
if and only if

(
gzht

)2 Ce = D.
The properties of this protocol are proved in the full version [24].

Multi-integer Commitments. The above commitments can be generalized to
vectors of integers just like Damgård–Fujisaki commitments (as Couteau, Peters
and Pointcheval did [10]). That is to say, the scheme can be extended to commit
to several integers at once.

Formally, let G be a group generator and suppose that there exists a non-
interactive argument system FS .ΠH with random oracle H for the language{
g1, . . . , gn ∈ G, � ∈ N∗ : ∃α1, . . . , αn ∈

�
0; 2�

�
, ∀i ∈ �n� gi = hαi

} given parameters
(G, P, h, n) and the empty string as CRS.

Setup
(
1λ, n

)
→ pp : run (G, P) ← G

(
1λ

)
, generate h ←$ G and return (G, P, h, n).

KG(pp) → ck : generate αi ←$

�
0; 2bG+λ

�
for i ∈ �n�, compute gi ← hαi and

π ← FS .ΠH .Prove
(
(G, P, h, n) , (g, bG + λ), (αi)

n
i=1

)
, and return (g, π).

4 To prove such statements using hidden-order groups, Lipmaa’s range argument [19],
corrected by Couteau, Peters and Pointcheval [10], is suitable.

786 P. Towa and D. Vergnaud

Com ((g, π) , x1, . . . , xn ∈ Z) → (C, d) : if FS .ΠH .Vf((G, P, h, n) , (g, bG + λ), π) = 0
return ⊥; generate r ←$

�
0; 2bG+λ

�
, compute C ←

(∏n
i=1 gxii hr

)2, set d ← r
and return (C, d).

ComVf ((g, π) ,C, x1, . . . , xn, d) → b ∈ {0, 1} : if C2 =
(∏

i g
xi
i hd

)4 return 1, else
return 0.

The only missing component is an interactive protocol Π that satisfies culpable
soundness w.r.t.

{
g1, . . . , gn ∈ G : ∃α1, . . . , αn ∈ Z, ∀i ∈ �n� g2i = h2αi

}
. A possible

solution is to run n times in parallel the protocol from the case n = 1 for each
of the αi values. However, they achieve an overall 2−λ statistical distance from n
simulated arguments, the range of the prover’s randomness in the protocol must
be multiplied by n so that each argument is 2−λn−1-zero-knowledge. A better
solution is to use the protocol presented in the full version [24, Section 5.3],
which results in arguments of O(bG + log n) bits. This should be compared to the
Ω(nbG log P)-bit parameters of the generalized Damgård–Fujisaki commitments.

4 Succinct Inner-Product Arguments on Integers

This section gives a statistically honest-verifier zero-knowledge, logarithmic-size
inner-product argument on integers committed in hidden-order groups with the
scheme from Sect. 3.2. That is, an argument of knowledge of vectors a and b ∈ Z

n,
and of a randomness r ∈ Z such that C2 =

(
gahb f r

)4 and 〈a, b〉 = z given public
bases g and h, a public commitment C and a public integer z; and the bit-
communication complexity of the protocol is logarithmic in of order O(�+log nbG)
where � is an upper-bound on the bit length of the largest integer witness and
2bG an upper-bound on the order of the group.

4.1 Formal Description

This section formalizes the protocol and states the properties it satisfies.

Relations. The protocol is an honest-verifier zero-knowledge argument for

R �
{
(C ∈ G, z ∈ Z, � ∈ N∗; a, b ∈ Z

n, r ∈ Z) : C2 =
(
gahb f r

)4
∧ 〈a, b〉 = z

∧

��[a b r
]��

∞
< 2�

}

given parameters (G, P, f , n) with f ∈ G and n ∈ N
∗, and (g, h, πcrs) ∈ G

2n
×{0, 1}∗

as CRS.
The relation imposes the largest value (in absolute value) in the witness[

a b r
]

to be at most � bits long, with � being part of the (public) word. As
for the argument of knowledge of openings in Sect. 3.2, it is again to adapt
the randomness range of the prover and of the honest-verifier zero-knowledge
simulator to make sure that the protocol remains statistically honest-verifier
zero-knowledge; and � can be arbitrarily large. However, the protocol does not

Succinct Diophantine-Satisfiability Arguments 787

necessarily return a witness with integers of at most � bits in absolute value. In
other words, the protocol satisfies culpable extractability w.r.t. the relation

Σ �
{
(C ∈ G, z ∈ Z, � ∈ N∗; a, b ∈ Z

n, r ∈ Z) : C2 =
(
gahb f r

)4
∧ 〈a, b〉 = z

}
.

The argument for R is actually reduced to a logarithm-size argument (given on
Fig. 2) for the following relation in which the inner product is also committed:

R
′ �

{
(C ∈ G, � ∈ N∗; a, b ∈ Z

n, r ∈ Z) : C2 =
(
gahbe 〈a,b〉 f r

)4
∧

��[a b r
]��

∞
< 2�

}

given parameters (G, P, f , n) with f ∈ G and n ∈ N
∗, and (g, h, e, πcrs) ∈ G2n+1

×

{0, 1}∗ as CRS. Again, the protocol does not guarantee that the extracted witness
satisfies the bounds on its bit length – denote by Σ′ the relation defined as R

′

without the restriction on the size of the witness.
During the reduction, the verifier chooses a base e ∈ 〈 f 〉 and proves to the

prover that e is in
√
〈 f 2〉, which guarantees to the prover that the commitment

Ce2z remains hiding. (As explained in Sect. 3, this precaution is not needed in
groups of public prime orders.) However, since the protocol in Sect. 3.2 is only
honest-verifier, and the extractability of the argument system partly relies on the
fact that the prover does not know a discrete-logarithm relation between e and
f , the verifier must compute a non-interactive argument with a random oracle.
In other words, the extractability of the argument relies on the zero-knowledge
property of the protocol in Sect. 3.2. Moreover, the CRS of the protocol includes
a proof that g and h are in

√
〈 f 2〉

n
, and the argument is only guaranteed to be

honest-verifier zero-knowledge if it is indeed the case; that is, the zero-knowledge
property of the argument relies on the soundness of the protocol. This mirroring
in the properties of two protocols is simply due to the fact that at the beginning
of the inner-product argument, the prover becomes the verifier of the protocol
for g, h ∈

√
〈 f 2〉

n
.

Main Insights. The goal is to have a protocol for R
′ in which the prover

sends only 2log n� + 2 group elements and three integers of at most O(� + bG +
log(n) log(P)) bits. The main idea is to have the prover first send a constant
number of commitments that depend on the witness vectors (which are in Zn), so
that the verifier can thereafter choose integer linear combinations (defined by an
integer x) of the witness vectors that are of length n/2 (to ease the explanation,
further assume n to be a power of 2 in this section). These new vectors then
serve as witness for a new commitment derived from the original commitment
on which the proof is computed, the commitments sent by the prover and x; in
bases of length n/2 and determined by the original bases and x. The prover and
the verifier can thus recursively run the protocol with vectors of length n/2. After
log n recursive calls, the vectors are of length 1, and the parties run a protocol
that two committed integers a and b satisfy ab = z for a public z.

788 P. Towa and D. Vergnaud

In more detail, given a, b ∈ Z
n and r ∈ Z such that C2 =

(
gahbe 〈a,b〉 f r

)4, the

prover first sends commitments U ←

(
g1

a2h2
b1e 〈a2,b1 〉 f su

)2
and V ←

(
g2

a1h1
b2

e 〈a1,b2 〉 f sv
)2, for su and sv with uniform distribution over an integer set large

enough for the commitments to be hiding. The verifier chooses x ←$ �0; P − 1�,
sends it to the prover, and this latter computes a′ ← a1 + xa2, b′

← xb1 + b2
and t ← sv + r x + su x2. Note that all these operations are performed in Z and
do not require to invert any integer. Now note that

((
gx1 ◦ g2

)a′ (
h1 ◦ h

x
2

)b′ e 〈a′,b′ 〉 f t
)4

=
(
Ux2

CxV
)2
,

which means that the prover and verifier can run the protocol again with gx1 ◦ g2
and h1 ◦ hx

2 as bases and a′ and b′ (all of size n/2 instead of n) as witness for
Ux2

CxV .
To understand how a witness consisting of integer vectors can be extracted,

suppose that one can obtain three transcripts
(
U,V, xj, a′j, b

′

j, t
′

j

)3
i=1

such that

(
(g1

x j
◦ g2)

a′j (h1 ◦ h2
x j
)
b′j e

〈
a′j,b

′

j

〉
f tj

)4
=

(
Ux2

j Cx jV
)2

for all j ∈ �3�. The goal is to find a representation of C in the bases g, h, e and
f . To do so, consider the linear system:

X

⎡⎢⎢⎢⎢⎣

ν1
ν2
ν3

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎦
for X �

⎡⎢⎢⎢⎢⎣

1 1 1
x1 x2 x3
x21 x22 x23

⎤⎥⎥⎥⎥⎦
and indeterminate

⎡⎢⎢⎢⎢⎣

ν1
ν2
ν3

⎤⎥⎥⎥⎥⎦
.

It does not necessarily have a solution in Z3 (and this is the first major difference
with Bulletproofs in groups with public prime orders). However, denoting by
adj(X) the adjugate matrix of X (which is in Z3×3), the column vector

νC � adj(X)

⎡⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎦
satisfies XνC = X adj(X)

⎡⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

0
det(X)

0

⎤⎥⎥⎥⎥⎦
since X adj(X) = det(X)I3. Therefore, via linear combinations with coefficient
determined by νC , one can obtain aC, bC ∈ Z

n and zC, rC ∈ Z such that U2detX =(
gaChbC ezC f rC

)4. If the challenges x1, x2, x3 are pairwise distinct, then detX �
0, and Lemma 4.2 shows that under the assumptions on the group generator,
2 detX must divide (with overwhelming probability) 4zC , 4rC and each of the
components of 4aC , 4bC . Therefore, up to a relabeling of 2aC/detX and so on,
one can extract aC, bC ∈ Z

n and zC, rC ∈ Z such that U =
(
gaChbC ezC f rC

)2
g̃C

for g̃C ∈ G that satisfies g̃2C = 1G.

Succinct Diophantine-Satisfiability Arguments 789

Nonetheless, it is not yet certain that zC = 〈aC, bC〉. To guarantee it, it suf-
fices to extract similar representations for U and V , and replacing U, C and

V by those representations in the equality
((
gx1 ◦ g2

)a′ (
h1 ◦ h

x
2

)b′ e 〈a′,b′ 〉 f t
)4

=
(
Ux2

CxV
)2

for any x ∈ {x1, x2, x3}. This leads to a discrete-logarithm relation

1G = g1
pg1 (x)g2

pg2 (x)h1
ph1 (x)h2

ph2 (x)epe (x) f p f (x) with pg1, pg2, ph1, ph2, pe, p f polyno-
mials in Z[x] of degree at most 2. Lemma 4.3 essentially states that it is hard to
find discrete-logarithm relations in the subgroup generated by a group element
f ←$ G (this is the second main difference with Bulletproofs in groups with pub-
lic prime orders). It thus implies that if the bases are all in 〈 f 〉 with exponents
chosen uniformly at random over a large integer set, these polynomials must all
be zero (with overwhelming probability) when evaluated at x; and pg1, ph2 and
pe together lead to an integer polynomial of degree 4, with leading coefficient
zC − 〈ac, bC〉, which must then be nil when evaluated at x. Therefore, starting
with five accepting transcripts instead of three entails that this polynomial of
degree 4 must be nil and thus zC = 〈ac, bC〉, i.e., aC, bC ∈ Z

n, rC ∈ Z is a valid
witness for C.

As for the zero-knowledge property of the scheme, the ranges of su and sv
at each of the log n recursion step are chosen so that the statistical distance of
(U,V) to a pair of uniform values in

〈
f 2

〉
is at most

(
log(n)2λ

)
−1. It then remains

to compute an upper-bound on the bit length of the witness at the last step of
the protocol so that the randomness of the prover can be chosen from a set of
which the bit length is λ times larger. The calculation is detailed in the proof of
the zero-knowledge property presented in the full version [24].

Protocol Algorithms. The argument system for relation R is further denoted
Π. It uses as building blocks a group generator G and the Fiat–Shamir non-
interactive variant FS .Π̃H with a random oracle H of a protocol Π̃ for the lan-
guage

{
(g, h) ∈ G2n : ∃α, β ∈ Z2n, ∀i ∈ �n� gi = f αi

∧ hi = f βi
}

given parameters
(G, P, f , 2n) and the empty string as CRS. Protocol Π̃H is later assumed to satisfy
culpable soundness w.r.t. the language

{
(g, h) ∈ G2n : ∃α, β ∈ Z2n, ∀i ∈ �n� g2i =

f 2αi
∧ h2i = f 2βi

}
. The protocol algorithms are then as follows:

– Π.Setup
(
1λ, n ∈ N

∗
)

runs (G, P′
) ← G

(
1λ

)
, computes P �

⌊
P′1/3

⌋
(the power

1/3 is to ensure extractability under the assumptions on the group generator),
generates f ←$ G and returns pp ← (G, P, n, f) as public parameters.

– Π.CRSGen(pp) generates αi, βi ←$

�
0; 2bG+2λ

�
for i ∈ �n�, computes gi ←

f αi , hi ← f βi and πcrs ← FS .Π̃H .Prove ((G, P, f , 2n), (g, h) , α, β), and returns
(g, h, πcrs).

– Π.Prove and Π.Vf are as on Fig. 1. They run as sub-routines the proving and
verification algorithms of a protocol Π′ for relation R

′. Algorithms Π′.Prove
and Π′.Vf additionally take as input a variable i which keeps track of the
recursion depth during the protocol execution to adjust the randomness of
the prover.

790 P. Towa and D. Vergnaud

Fig. 1. Inner-Product Argument on Integers.

Prover-Communication Complexity. Throughout the protocol, the prover
sends 2n′ + 2 group elements (with n′ = log n�), two integers (a′ and b′)
less than 2�Pn′ in absolute value and an integer (u) less than

(
2n′2bG+λPn′+3+

2�(P − 1)n
′+2

) (
1 + 2λ

)
in absolute value. The bit communication complexity of

the prover is then of order O (� + log(n)(bG + log P) + λ +max (log log n + bG+
λ, �)). Since log P ≤ bG = Ω(λ), that is O (� + log(n)bG +max (log log n + bG, �)),
or even O (� + log(n)bG) bits (n is here assumed to be greater than 1).

Verification via a Single Multi-exponentiation. As described on Fig. 2,
the verifier computes a new commitment U

x2
i

i Cxi
i Vi, and new vectors gxi1 ◦ g2

and h1 ◦ h
xi
2 at each recursion step i. In total, the verifier then has to compute

n′ � log n� 3-exponentiations with exponents less than P2 and two
⌈
n2−i

⌉
-

exponentiations with exponents less than P for i = 0, . . . , n′ − 1. At the last stage
of the protocol, the verifier also has to check that

(
gxn′+1a

′

hxn′+1b
′

ea
′b′ f u

)4
=(

C
x2
n′+1

n′+1 Γ
xn′+1Δ

)2
, i.e., a 7-exponentiation with exponents (in absolute value) less

than the bit length of the largest exponent.
Alternatively, the verifier could simply generate the challenges after receiving

the Ui and Vi values, delay its verification to the last stage of the protocol and
then do a single multi-exponentiation. As shown below, this multi-exponentiation
is a (2n + 2n′ + 5)-exponentiation, which results in computational savings in prac-
tice since computing a k-exponentiation with �-bit exponents requires � group
operations with a pre-computed table of 2k group elements following classical
sliding-window methods [1], which is much faster than computing k separate
single exponentiations with �-bit exponents (which requires k� group operations
with a single group element in memory) and multiplying the result5.
5 If n is large, then the pre-computation might be prohibitively long with the stan-

dard multi-exponentiation method, in which case one would rather split the multi-
exponentiation in small batches. In any case, delaying the verification until the last
step already has the benefit of eliminating latency in the verification.

Succinct Diophantine-Satisfiability Arguments 791

Fig. 2. Argument for Relation R
′.

792 P. Towa and D. Vergnaud

In the full version [24], we show that in case n is a power of 2, the verifier
then only has to check that

(
n∏
i=1

g

∏
j∈Si

x j

i

)4xn′+1a′ (n∏
i=1

h
∏

j∈�n�\Si x j

i

)4xn′+1b′
e4a

′b′ f 4u

=

(
Uxn′
n′

n′−1∏
i=1

Uxi xi+1 · · ·xn′
i Cx1 · · ·xn′

n′−1∏
i=1

V xi+1 · · ·xn′
i Vn′

)2x2
n′+1

Γ2xn′+1Δ2,

with Si � { j ∈ �n′� : n′ + 1 − jth bit of i − 1 is 0}, i.e., do a (2n + 2n′ + 5)-expo-
nentiation with exponents (in absolute value) less than

4max
$%%%%
&

2�P2n′+1,

|a′b′ |<︷��︸︸��︷
22�P2n′,

|u |<︷��︸︸��︷(
2n′2bG+λPn′+1 + 2�(P − 1)n

′+2
) (

1 + 2λ
)+,,,,
-

.

Verification thus requires O(� + bG + log(n) log(P)) group operations (n ≥ 2). We
also show how to handle verification with a single multi-exponentiation in case
n is not a power of 2 unlike previous work.

4.2 Completeness and Security

In the full version [24], we prove that the protocol is complete, honest-verifier
zero-knowledge if Π̃ is sound, and that it is extractable under the assumptions
on the group generator presented in Sect. 2.2. The proof of extractability is based
on Lemma 4.3 and Lemma 4.2, and Lemma 4.2 relies on Lemma 4.1. The proof
of Lemmas 4.2 and 4.3 are given in this section as they are the main ingredients
of the proof of extractability which differ from those in the case of groups with
public prime orders. The proof of Lemma 4.1 relies on elementary arithmetic and
is given in full version.

Lemma 4.1. Let n be a natural integer and let a0, . . . , an, b and N be integers,
with N ≥ 1. Assuming that the ai integers are not all nil modulo N, the number
of tuples (x0, . . . , xn) ∈ Zn+1N such that a0x0 + · · · + anxn + b = 0 mod N is either 0
or Nn gcd(a0, . . . , an, N).

Lemma 4.2. Consider the problem (depending on λ) of computing, on input
(G, P) ← G

(
1λ

)
and f ←$ G and (f xi)ni=0 (for integers xi ←$

�
0; 22bG+λ(n + 1)

�
)

an element C ∈ G and integers a0, . . . , an, b, δ such that 1 < |δ | < P, δ does not
divide b or at least one of the ai integers, and Cδ = f a0

0 · · · f an
n f b.

Under the
(
T strg, εstrg

)
-strong-root assumption, the

(
Tord, εord

)
-small-order

assumption, the low-dyadic-valuation assumption and the μ-assumption over G,
the probability that any probabilistic algorithm running in time T solves this
problem is at most

(
1/2 − 2−λ − (1 − μ)

)
−1 (
εord + εstrg + 1 − μ

)
, if T is such that

(n + 1)max(log(n + 1), 1) log(P)bGTTG ≤ Ω
(
min

(
T strg,Tord

))
.

Succinct Diophantine-Satisfiability Arguments 793

Proof. Let A be an algorithm as in the statement of the lemma and assume
without loss of generality that δ > 0 (if δ < 0, raise the equality to the power
−1). The equality Cδ = f a0

0 · · · f an
n f b implies that Cδ = f

∑
i ai xi+b. The goal is

to show that in case δ does not divide
∑

i ai xi + b, algorithm A can be used to
violate the assumptions on generator G; and to show that conditioned on the
event in which A solves the problem, the probability that δ divides

∑
i ai xi + b

is at most 1/2 + 2−λ + (1 − μ).
More precisely, if δ does not divide

∑
i ai xi + b, let d � gcd (δ,

∑
i ai xi + b)

and u, v ∈ Z such that d = uδ + v (
∑

i ai xi + b). Then, f d = (f uCv
)
δ , i.e.,(

(f uCv
)
δ/d f −1

)d
= 1G. Since 1 ≤ d < δ < P by assumption, the small-order

assumption over G implies that the element g̃ � (f uCv
)
δ/d f −1 is such that

g̃2 = 1G with probability at least εord. If g̃ = 1G and d > 1, then
(
(f uCv

)
δ/d , d

)

is a solution to the strong-root problem. Otherwise,

∗ if δ/d is odd, then g̃δ/d = g̃ and therefore, (f uCv g̃, δ/d) is a solution to the
strong-root problem

∗ if δ/d is even, then the low-dyadic-valuation assumption on orders implies
that ord

(
(f uCv

)
δ/d

)
is odd, which is impossible if ord(f) is P-rough (and

thus odd) since ord(f g̃) = 2 ord(f) in this case.

Consequently, δ does not divide
∑

i ai xi +b with probability at most εord+εstrg+
1 − μ.

Since |ai |, |b| ≤ 2O(T),
∑

i ai xi + b can be computed in time O ((n + 1)T(bG+
log(n + 1))). Then, u and v can be computed in time O((T + bG + log(n+ 1)) log P)
with the extended Euclidean algorithm as |

∑
i ai xi + b| ≤ n(n + 1)2O(T)22bG+λ +

2O(T) and |δ | ≤ P; and u and v are such that |u|, |v | ≤ max (|δ |, |
∑

i ai xi + b|) /d.
Besides, computing δ/d can be done in time O

(
log2 P

)
and then f uCv g̃ in

O (max (T + bG + log(n + 1), log P)) = O (T + bG + log(n + 1)) group operations
since P ≤ 2bG . The solution to the strong-root problem can thus be computed in
time O ((n + 1)(bG + log(n + 1))T + (T + bG + log(n + 1)) log(P)TG) , after the bases
f0, . . . , fn have been computed in O((n+1)max(log(n+1), 1)bG) group operations.

It remains to show that δ divides
∑

i ai xi + b with probability at most 1/2 +
2−λ + 1 − μ conditioned on the event in which A solves the problem. To do so,
consider the event in which it occurs. Let p and j respectively be a prime and a
positive integer such that pj divides δ and pj does not divide b or at least one of
the ai integers. Such p and j necessarily exist for an assumption of the lemma is
that δ does not divide b or at least one of the ai integers. Note that pj cannot
divide all the ai integers as it would otherwise divide b as well, since it divides∑

i ai xi + b. Moreover, if μ-assumption that there are many rough-order elements
in the groups generated by G holds, p does not divide ord(f). Therefore, if the
μ-assumption holds, pj does not divide ai ord(f) for some i ∈ �0; n�.

794 P. Towa and D. Vergnaud

For i ∈ �0; n�, let 0 ≤ ρi < ord(f) be the unique integer such that xi =

ord(f) �xi/ord(f)	 + ρi, and note that f xi = f ρi . Then,
∑

i ai xi + b =
∑

i ai ord(f)
�xi/ord(f)	 +

∑
i aiρi + b = 0 mod pj and ai ord(f) � 0 mod pj for some i ∈ �0; n�.

Lemma 4.1 shows that the equation
∑

i AiXi + B = 0 mod pj with Ai � ai ord(f)
and B �

∑
i aiρi + b has at most pjn gcd

(
a0 ord(f), . . . , an ord(f), pj

)
solutions,

and gcd
(
a0 ord(f), . . . , an ord(f), pj

)
is at most pj−1 since ai ord(f) � 0 mod pj

for some i ∈ �0; n�. However, the variables Xi � �xi/ord(f)	 are identically dis-
tributed and independent of the values returned by A (G, P, f , f ρ0, . . . , f ρn); and
their distribution is at a statistical distance of at most ord(f)2−2bG−λ(n + 1)−1 ≤

2−bG−λ(n + 1)−1 from the uniform distribution over
�
0;

⌊
(n + 1)22bG+λ/ord(f)

⌋�
⊇�

0; (n + 1)2bG+λ
�
. Besides, if a variable X is uniformly distributed over the set�

0; (n + 1)2bG+λ
�
, then the distribution of X mod pj is at a statistical distance of

at most pj2−bG−λ(n + 1)−1 ≤ (P − 1)2−bG−λ(n + 1)−1 from the uniform distribution
over Zp j . The distribution of the random vector

[
X0 mod pj · · · Xn mod pj

]
is

then at a statistical distance of at most P2−bG−λ ≤ 2−λ from the uniform distri-
bution over Zn+1

p j . Consequently, the equation
∑

i ai xi + b = 0 mod pj can then be

satisfied with probability at most 2−λ + pj(n+1)−1/
(
pj

)n+1
≤ 1/2+ 2−λ and thus, δ

divides
∑

i ai xi + b with probability at most 1/2 + 2−λ + 1 − μ.
In summary, denoting by ε the probability that A solves the problem of the

statement of the lemma, ε ≤ εord + εstrg + 1 − μ +
(
1/2 + 2−λ + 1 − μ

)
ε, which is

equivalent to ε ≤
(
1/2 − 2−λ − (1 − μ)

)
−1 (
εord + εstrg + 1 − μ

)
. ��

Lemma 4.3. (Discrete-Logarithm Relations). Let n be a non-negative
integer. Consider the problem (depending on λ) of computing, on the input of
(G, P) ← G

(
1λ

)
and of group elements f ←$ G and (f xi)ni=0 (for xi ←$

�
0; 22bG+λ

(n + 1)�), integers a0, . . . , an, b such that f a0
0 · · · f an

n f b = 1G although at least one
of a0, . . . , an, b is non-zero. Under the

(
T strg, εstrg

)
-strong-root assumption, the(

Tord, εord
)
-small-order assumption, the low-dyadic-valuation assumption and

the μ-assumption over G, the probability that any probabilistic algorithm run-
ning in time at most T solves this problem is at most

εstrg +max
(
2−bG−λ+1,

(
1/2 − 2−λ − (1 − μ)

)
−1 (
εord + εstrg +1 − μ)

)

if T is such that (n + 1)max(log(n + 1), 1) log(P)bGTTG ≤ Ω
(
min

(
T strg,Tord

))
.

Proof. Let A be an algorithm as in the statement of the lemma and denote the
probability that it solves the problem by ε. If a0 = · · · = an = 0, then b � 0 by
assumption and a lemma in the full version [24, Lemma 3.4] shows that since
f b = 1G, there exists an algorithm that solves the strong-root problem in time at
most T +O(log b) with probability at least ε, and since b = 2O(T), ε ≤ εstrg. Now
turn to the case in which ai � 0 for some i ∈ �0; n�. If n = 0, then f a0x0+b = 1G
by assumption. Writing x0 as x0 = ord(f) �x0/ord(f)	 + ρ0 for 0 ≤ ρ0 < ord(f),
the random variable X0 � �x0/ord(f)	 is independent of the values returned by
A (G, P, f , f ρ0

), and is at a statistical distance of at most ord(f)2−2bG−λ ≤ 2−bG−λ

from the uniform distribution over
�
0;

⌊
22bG+λ/ord(f)

⌋�
⊇

�
0; 2bG+λ

�
. However,

Succinct Diophantine-Satisfiability Arguments 795

for A0 � a0 ord(f) and B � a0ρ0 + b, the equation A0X0 + B = 0 in Z has
no solution if A0 � B and exactly one otherwise. Therefore, the probability that
a0x0+b = 0 in Z is at most 2−bG−λ+1, and there exists an algorithm that solves the
strong-root problem in time at most O(T) with probability at least ε−2−b−G−λ+1,
so ε ≤ εstrg + 2−bG−λ+1.

If n > 0, it suffices to prove that the probability that f a0
0 · · · f an

n f b = 1G and∑
i ai xi + b = 0 is at most

(
1/2 − 2−λ − (1 − μ)

)
−1 (
εord + εstrg + 1 − μ

)
. Then, in

case f
∑

i ai xi+b = 1G and
∑

i ai xi + b � 0, a lemma in the full version [24, Lemma
3.4] shows that this probability is at most εstrg . This then would imply that

ε ≤ εstrg +
(
1/2 − 2−λ − (1 − μ)

)
−1 (
εord + εstrg + 1 − μ

)
.

Suppose that
∑

i ai xi + b = 0 (and f a0
0 · · · f an

n f b = 1G). Let d � gcd(a0, . . . , an)
and note that d necessarily divides b. Besides,

∑
i ai xi + b = 0 if and only if∑

i(ai/d)xi + (b/d) = 0 and therefore, we have f a0/d
0 · · · f an/d

n f b/d = 1G with
gcd(a0/d, . . . , an/d) = 1. However, 12

G
= 1G = f a0/d

0 · · · f an/d
n f b/d although the

integers ai/d cannot all be even as they are coprime. Lemma 4.2 then implies
that

∑
i ai xi + b = 0 with probability at most

(
1/2 − 2−λ − (1 − μ)

)
−1 (
εord + εstrg

+1 − μ) . ��

5 Succinct Argument for Diophantine Equations

This section gives a succinct argument to argue satisfiability of Diophantine
equations. Although Davis, Putnam, Robinson and Matiyasevich [20] showed
that there does not exist an algorithm that can decide whether any Diophantine
equation has a solution (thereby giving a negative answer to Hilbert’s tenth
problem), one can argue in zero-knowledge knowledge of a solution, if a solution is
known to the prover, which convinces the verifier that the equation is satisfiable.

Damgård and Fujisaki gave [11, Section 4.2] a protocol to argue, given three
commitments C1,C2,C3 computed with their scheme, knowledge of openings
x1, x2, x3 such that x3 = x1x2. Therefore, to show the satisfiability of an ν-variate
polynomial

∑
i∈Nν aix

i1
1 · · · xiνν of total degree δ using their scheme, if the polyno-

mial can be computed in M(ν, δ) multiplications, then one would have to compute
2M(ν, δ)+1 integer commitments and compute M(ν, δ) multiplication-consistency
arguments. As Damgård and Fujisaki’s scheme is additively homomorphic, the
verifier can verify addition itself.

Computing a monomial xi11 · · · xiνν can be done in at most δ−1 multiplications
since the polynomial is of total degree δ. Without any further restriction on the
polynomial than its number of variables ν and its total degree δ, the best bound
on the number of multiplications (between variables) one can give is δ − 1 as δ
could be less than ν, and all ik at most 1. Evaluating an ν-variate polynomial
of total degree δ thus a priori requires (δ − 1)

(ν+δ
δ

)
multiplications as such a

polynomial has at most
(ν+δ

δ

)
monomials. This can be improved to

(ν+δ
δ

)
− ν−1 ≤(ν+δ

δ

)
multiplications by evaluating all possible monomials (even those which

796 P. Towa and D. Vergnaud

may have coefficient 0) recursively by increasing degree and storing the previous
evaluations. There exist more efficient methods for specific polynomials (e.g.,
recursive Horner’s method for polynomials with a small numbers of monomials
of large degree) but no better upper-bound on the number of multiplications is
known for generic polynomials.

Consider a prover that wants to argue the satisfiability of a (generic) ν-
variate polynomial of total degree δ with integer coefficients of absolute value
upper-bounded by 2H for some integer H. The communication complexity of the
arguments of the first multiplication gates are of order Ω(log P+�+bG) if � denotes
the maximum bit length of any coordinate in the solution. Since the total degree
of the polynomial is δ, the bit length of the witness at the maximum-depth mul-
tiplication gates can be as large as δ�+log

((ν+δ
δ

))
H and the communication com-

plexity of the argument of the satisfiability of the Diophantine equation (i.e., the
proof that the polynomial actually evaluates to 0) is Ω

(
δ� + log

((ν+δ
δ

))
H + bG

)
.

The overall communication complexity with Damgård and Fujisaki’s scheme
is therefore upper-bounded by O

((ν+δ
δ

) (
δ� + log

((ν+δ
δ

))
H + bG

))
and lower-

bounded by Ω
((ν+δ

δ

)
(� + bG)

)
for generic polynomials.

This section shows how to argue the satisfiability of Diophantine equations
with a communication complexity of order O (δ� +min(ν, δ) log (ν + δ) bG + H) .

5.1 Arguments via Polynomial-Degree Reductions

Our approach to argue for Diophantine satisfiability is different and is inspired
by Skolem’s method [23]. The idea is to give a systematic method to turn any
polynomial equation to another of degree at most 4 by increasing the number of
variables so that the satisfiability of one polynomial implies that of the other. The
resulting polynomial is such that its satisfiability is equivalent to the satisfiability
(over the integers) of a Hadamard product of the form aL ◦aR = aO and of linear
equations with the entries of aL , aR and aO as indeterminate. The length of
these latter vectors is the number of variables in the resulting polynomial, and
if the original polynomial is ν-variate and of total degree at most δ, then the
new polynomial has at most ν�log δ	 + (δ − 1)μ variables, where μ ≤

(ν+δ
δ

)
is the

number of monomials in the original polynomial.
On this account, if one can argue for the satisfiability of such Hadamard

products and linear constraints, then one can argue for the satisfiability of the
original polynomial. In the protocol given in Sect. 5.2, the prover only sends log-
arithmically many group elements in the length of the vectors in the Hadamard
product, and a constant number of integers. The bit length of those integers is
upper-bounded by O (δ� + bG +min(ν, δ) log (ν + δ) log P + H) if the bit length of
the witness is upper-bounded by � and the bit length of each coefficient of the
polynomial is at most H.

Succinct Diophantine-Satisfiability Arguments 797

Reducing Arbitrary Polynomials to Polynomials of Degree at Most 4.
We now give a systematic procedure to reduce any Diophantine equation into
an equation of degree at most 4 of which the satisfiability can be reduced to the
satisfiability of a Hadamard product and linear constraints; and the Hadamard
product and the constraints can be read immediately from the resulting poly-
nomial. The presentation is gradual as it starts with ν-variate affine equations,
proceeds with ν-variate Diophantine equations in which the degree in each vari-
able is at most 1, further tackles univariate polynomials of arbitrary degree and
then considers arbitrary Diophantine equations. The method applies to every
multivariate integer polynomial, but for specific polynomials, more astute tech-
niques could lead to a smaller number of new variables and/or constraints.

Step 1–Affine Equations. Given an integer polynomial a1x1 + · · · + aν xν +

b ∈ Z[x1, . . . , xν], set aO ←

[
x1 · · · xν

]
and for all i ∈ �ν�, set aL,i = 1 and

aR,i = xi. The equation a1x1 + · · · + aν xν + b = 0 is satisfied if and only if〈[
a1 · · · aν

]
, aO

〉
= −b and aL ◦ aR = aO. Note that no variable or linear

constraint was added to the system of equations.
Step 2–Restricted Diophantine Equations. Consider an integer polynomial∑

i∈Nν aix
i1
1 · · · xiνν ∈ Z[x1, . . . , xν] of total degree δ s.t. ai � 0Z =⇒ i ∈ {0, 1}ν,

i.e., the polynomial is of degree at most 1 in each variable. For all i ∈ Nν\{0Nν }
such that ai � 0Z, let { j1, . . . , jw(i)} be the subset of �ν� such that j1 < · · · <
jw(i) and ij1 = · · · = iw(i) = 1, with w(i) denoting the Hamming weight of i
(which is necessarily less than δ). If w(i) > 1, introduce new variables

ui,1 ← xj1 xj2, ui,2 ← ui,1xj3, . . . , ui,w(i)−1 ← ui,w(i)−2xjw(i)
,

with the convention that ui,0 � xj1 . Note that
∑

i∈Nν aix
i1
1 · · · xiνν = 0 if and

only if

∑
i∈Nν : ai�0Z
w(i)>1

w(i)−1∑
k=1

(
ui,k − ui,k−1xjk+1

)2
+

(∑
i∈Nν

aiui,w(i)−1

)2
= 0,

with the convention that u0Nν ,−1 = 1. This latter polynomial is of degree 4, and
the equation is satisfied if and only if the linear equation

∑
i∈Nν aiui,w(i)−1 = 0

is as well as the constraints ui,k − ui,k−1xjk+1 = 0. Set then

aL ←

[
xj1 ui,1 · · · ui,w(i)−2

]
aR ←

[
xj2 xj3 · · · xjw(i)

]
aO ←

[
ui,1 ui,2 · · · ui,w(i)−1

]
,

and introduce the linear constraints aL,i+1 − aO,i = 0 for i ∈ {1, . . . ,w(i) − 2}.
The procedure introduces at most δ − 1 new variables and δ − 2 new linear
constraints per monomial, and since there are at most

(ν+δ
δ

)
monomials in an

ν-variate polynomial of total degree δ, that is at most (δ − 1)
(ν+δ

δ

)
variables

and (δ − 2)
(ν+δ

δ

)
constraints.

798 P. Towa and D. Vergnaud

Step 3–Univariate Polynomials. Given a polynomial Z = a0+a1x+· · ·+aδ xδ ∈

Z[x] of degree δ ≥ 2, introduce variables

u1 ← x2, u2 ← u21, . . . , u �log δ	 ← u2
�log δ	−1.

Now notice that a0 + a1x + · · · + aδ xδ = 0 if and only if

(
u1 − x2

)2
+

�log δ	∑
i=2

(
ui − u2i−1

)2
+

(
Z ′
(x, u1, . . . , u �log δ)

)2
= 0,

where Z ′
(x, u1, . . . , u �log δ) is �log δ	+1-variate integer polynomial in which the

degree of each variable is at most 1, i.e., if and only if Z ′
(x, u1, . . . , u �log δ) = 0

and the constraints u1 − x2 = 0 and ui+1 − u2i = 0 are satisfied.
Since

δ∑
i=0

ai x
i = a0 +

�log δ	∑
k=0

2k+1−1∑

i=2k

ai x
i = a0 +

�log δ	∑
k=0

2k+1−1∑

i=2k

ai x
i0ui11 · · · uik−1

k−1
uk,

where i0, . . . , ik−1 is the binary decomposition of i and ai � 0 for i > δ, this
give an explicit expression for Z ′.

Set then aL ← aR ←

[
x u1 · · · u �log δ	−1

]
and aO ←

[
u1 u2 · · · u �log δ	

]
, and

introduce constraints

aL,i+1 − aO,i = aR,i+1 − aO,i = 0

for all i ∈ ��log δ	 − 1�.
As the second step shows that the satisfiability of Z ′ can be reduced to
a Hadamard product and linear constraints, the satisfiability of Z can be
reduced to a Hadamard product and linear constraints. This procedure intro-
duces �log δ	 new variables and 2 (�log δ	 − 1) new linear constraints. It is
important for Step 4 to remark that the number of monomial of Z ′ is at most
the same as the number of monomials in Z.

Step 4–Arbitrary Diophantine Equations. For any integer polynomial Z =∑
i∈Nν aix

i1
1 · · · xiνν ∈ Z[x1, . . . , xν] (for ν ≥ 2) of total degree δ, apply Step 3

to Z considering it as a polynomial in Z[x2, . . . , xν][x1], i.e., a polynomial in
x1 with coefficients in Z[x2, . . . , xν]. Let Z ′ be the resulting polynomial with
coefficients in Z[x2, . . . , xν] and of degree at most 1 in each variable as in Step
3. Repeat Step 3 with Z ′ and variable x2. After Step 3 has been repeated for
each x1, . . . , xν, at most ν�log δ	 new variables and 2ν(�log δ	 − 1) new linear
constraints have been introduced, the resulting polynomial is of degree at
most 1 in all variables and has coefficients in Z. Concerning its total degree,
note that during the process, for each monomial xi11 · · · xiνν , the term xik

k
is

replaced by at most one variable if ik ≤ 2 and by the product of log ik + 1 ≤ ik
variables if ßk > 2 for all k ∈ �ν�, so the total degree remains at most δ. Now
apply then Step 2 to the resulting polynomial.

Succinct Diophantine-Satisfiability Arguments 799

In summary, the procedure reduces the satisfiability of any polynomial in
Z[x1, . . . , xν] of total degree δ with μ monomials (μ ≤

(ν+δ
δ

)
necessarily) to the

satisfiability of a Hadamard product aL ◦ aR = aO, with aL, aR and aO integer
vectors of length at most ν�log δ	 + (δ−1)μ, and Q linear constraints of the form

〈wL,q, aL〉 + 〈wR,q, aR〉 + 〈wO,q, aO〉 = cq

for all q ∈ �Q� with Q ≤ 1 + 2ν(�log δ	 − 1) + (δ − 2)μ and with wL,q,wR,q,wO,q

integer vectors and cq ∈ Z. The coefficients of the linear constraints introduced
by the procedure are in {−1, 0, 1}, except for one of which the coefficients are the
coefficients of the original polynomial.

Example. As a simple illustration of the procedure, consider the polynomial
2x3+xy−1. The procedure introduces new variables u ← x2, v ← xy and w ← ux,
and the equation 2x3+ xy−1 = 0 is satisfiable if and only if

(
u − x2

)2
+ (v − xy)2+

(w − ux)2 + (2w + v − 1)2 = 0 also is, which allows to write a Hadamard product
and linear constraints which are satisfiable if and only if this latter equation is.

Diophantine Equations as Circuits. It is worth noting that any polynomial in
Z[x1, . . . , xν] can naturally be viewed as an arithmetic circuit with integer inputs,
and addition gates correspond to addition between two integers and similarly for
multiplication gates. One could then think of applying the procedure of Bootle et
al. [5, Appendix A] to turn the polynomial in a system of linear constraints and
a Hadamard product. However, their procedure a priori requires to put matrices
in reduced Row-Echelon form, which is not always possible with integer matrices
as one cannot divide in Z. We explain how to overcome this obstacle in the full
version [24].

In any case, the issue with using this procedure to argue for Diophantine
satisfiability is that one cannot readily infer the constraints from the initial
polynomial and one must always determine them on a case-by-case basis. Besides,
if one uses the circuit directly inferred by the monomials of the polynomial
without introducing new variables to decrease its degree (which would amount
to modifying the circuit), computing xδ1 for instance requires δ−1 multiplications
instead of �log δ	 as with our method.

5.2 Protocol

Section 5.1 shows how to reduce the satisfiability of any polynomial in
Z[x1, . . . , xν] of total degree δ with μ monomials (μ ≤

(ν+δ
δ

)
necessarily) to the

satisfiability of a Hadamard product aL ◦ aR = aO, with aL, aR and aO integer
vectors of length at most ν�log δ	 + (δ − 1)μ, and 1 + 2ν(�log δ	 − 1) + (δ − 2)μ
linear constraints of the form

〈wL,q, aL〉 + 〈wR,q, aR〉 + 〈wO,q, aO〉 = cq

for all q ∈ �Q�, with wL,q,wR,q,wO,q integer vectors and cq ∈ Z.

800 P. Towa and D. Vergnaud

To argue for Diophantine satisfiability, it thus suffices to give a protocol
protocol such relations. The following protocol is actually for more general rela-
tions in which variables of the polynomial can be committed (with the scheme
in Sect. 3), which allows to argue on committed values while saving the cost of
encoding the commitment scheme as an integer polynomial. More precisely, the
protocol is for the relation

{(
WL,WR,WO ∈ Z

Q×n,WV ∈ Z
Q×m,V ∈ G

m, c ∈ ZQ, � ∈ N∗; aL, aR, aO ∈ Z
n, v, ρ ∈ Zm

)
:

aL ◦ aR = aO ∧WLa
T
L +WRa

T
R +WOaTO = WVv

T + cT ∧ ∀i ∈ �m�V2
i =

(
evi f ρi

)4}

given parameters (G, P, n,Q,m, f) such that f ∈ G and n,Q,m ∈ N
∗, and (g, h, πcrs)

∈ G
2n

× {0, 1}∗. For fixed parameters n, Q and m, Sect. 5.1 shows that the protocol
allows to prove the satisfiability of any polynomial in Z[X1, . . . , Xν] of total degree δ
and with μ monomials if ν�log δ	 + (δ−1)μ ≤ n and 1+2ν (�log δ	 − 1)+ (δ−2)μ+m ≤ Q.
The additional term m in the number of constraints compared to the previous section
is to ensure the consistency between the committed variables v and the ones in the
inner product.

Bünz et al. [6] gave a protocol for a similar relation in Zp instead of Z to argue for
the satisfiability of arithmetic circuits over Zp (without the bounds related to integer
polynomials as it was not their target) that is inspired by the one of Bootle et al. [5].
The general idea of our protocol for this relation is similar to the two previous ones, but
there are key differences that arise from the fact that Z is not a field. The full version
[24] gives details about the construction of the protocol. The main differences with that
of Bünz et al. is that (1) one cannot send integers in the protocol as they may contain
information about the witness (2) the polynomials l(X) and r(X) are different and
of higher degree again because Z is not a field and (3) the commitment-key switching
techniques used in their protocol is not applicable because the group order is unknown.

Building Blocks. The protocol builds mainly on the protocol on Fig. 2, and on
three auxiliary protocols: a protocol Πcrs to prove that the CRS is well-formed [24,
Section 5.3], a protocol Π′ to aggregate arguments of opening to integer commitments
[24, Section 5.2] and a protocol Π̃ to argue knowledge of an integer vector that opens to
commitments in different bases [24, Section 5.4], i.e., a base-switching argument. These
arguments may be in the random-oracle model with an oracle H .

Protocol Algorithms. The protocol is denoted Π. The parameter-generation algo-
rithm and the CRS generator are as in Sect. 4.1. The algorithms of the prover and the
verifier are given on Fig. 3. On that figure, W denotes the matrix

[
WL WR WO WV

]
.

The values �′, �̃ and �2 are given in Sect. 5.2.

Prover-Communication Complexity. In the full version [24], we show that the
prover sends O (� + log(n)bG + logQ + logm + log ‖W ‖

∞
) bits during the protocol (the

term logm disappears in case m = 0). Therefore, for a polynomial in Z[X1, . . . , Xν] of
total degree δ, with μ monomials and with coefficients less than 2H in absolute value,
assuming that ν�log δ	 + (δ − 1)μ ≤ n and that 1+ 2ν (�log δ	 − 1)+ (δ − 2)μ+m ≤ Q, the

Succinct Diophantine-Satisfiability Arguments 801

Fig. 3. Succinct Argument of Diophantine-Equation Satisfiability.

802 P. Towa and D. Vergnaud

communication complexity of the protocol is of order O
(
δ�′′ + log

(
δ
(ν+δ
δ

))
bG + H

)
=

O (δ�′′ +min(ν, δ) log (ν + δ) bG + H) , where �′′ is the maximum bit length of the integers
in the solution. Here H = �log ‖W ‖

∞
	 + 1 as the procedure gives linear constraints

determined by the coefficients of the polynomial.

Verification Efficiency. Similarly to Sect. 4.1, the verifications of Π′, Π̃ and the
protocol on Fig. 2 can each be done via single multi-exponentiations, with exponents
of at most O (� + bG + log(n) log(P) + logQ+ logm + log ‖W ‖

∞
) bits. For a polynomial in

Z[X1, . . . , Xν] of total degree δ, with μ monomials and with coefficients less than 2H in
absolute value, that is O (δ�′′ + bG +min(ν, δ) log (ν + δ) log P + H) bits, where �′′ is the
maximum bit length of the integers in the solution.

Completeness and Security. In the full version [24], we show that the protocol
Π is complete, honest-verifier zero-knowledge, and extractable under the assumptions
on the group generator.

Acknowledgements. This work was supported by the French ANR ALAMBIC
Project (ANR-16-CE39-0006) and the EU H2020 Research and Innovation Program
under Grant Agreement No. 786725 (OLYMPUS).

References

1. Avanzi, R.M.: The complexity of certain multi-exponentiation techniques in cryp-
tography. J. Cryptol. 18(4), 357–373 (2005). https://doi.org/10.1007/s00145-004-
0229-5

2. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0_33

3. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with
application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9_38

4. Biehl, I., Buchmann, J.A., Hamdy, S., Meyer, A.: A signature scheme based on the
intractability of computing roots. Des. Codes Cryptogr. 25(3), 223–236 (2002).
https://doi.org/10.1023/A:1014927327846

5. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

6. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press (2018)

7. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp.
677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24

https://doi.org/10.1007/s00145-004-0229-5
https://doi.org/10.1007/s00145-004-0229-5
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1023/A:1014927327846
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-45721-1_24

Succinct Diophantine-Satisfiability Arguments 803

8. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

9. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp.
499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-
3_18

10. Couteau, G., Peters, T., Pointcheval, D.: Removing the strong RSA assumption
from arguments over the integers. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part II. LNCS, vol. 10211, pp. 321–350. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6_11

11. Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36178-2_8

12. del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for FHE and
Ring-LWE ciphertexts. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol.
11442, pp. 344–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17253-4_12

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

14. Fouque, P.-A., Poupard, G.: On the security of RDSA. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 462–476. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-39200-9_29

15. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

16. Gathen, J., von zur Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge
University Press, Cambridge (2013)

17. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_12

18. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6_9

19. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_26

20. Matiyasevich, Y.V.: Enumerable sets are diophantine. Sov. Math. Dokl. 11, 354–
358 (1970)

21. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

22. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-319-56614-6_11
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-39200-9_29
https://doi.org/10.1007/3-540-39200-9_29
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/BF00196725

804 P. Towa and D. Vergnaud

23. Skolem, T.: Diophantische Gleichungen. Ergebnisse der Mathematik und ihrer
Grenzgebiete. Chelsea Pub. Co., New York (1950)

24. Towa, P., Vergnaud, D.: Succinct diophantine-satisfiability arguments. Cryptology
ePrint Archive, Report 2020/682 (2020). https://eprint.iacr.org/2020/682

https://eprint.iacr.org/2020/682

Individual Simulations

Yi Deng1,2,3(B)

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

deng@iie.ac.cn
2 State Key Laboratory of Cryptology, Beijing, China

3 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. We develop an individual simulation technique that explic-
itly makes use of particular properties/structures of a given adversary’s
functionality. Using this simulation technique, we obtain the following
results.

1. We construct the first protocols that break previous black-box bar-
riers under the standard hardness of factoring, both of which are
polynomial time simulatable against all a-priori bounded polynomial
size distinguishers:
• Two-round selective opening secure commitment scheme.
• Three-round concurrent zero knowledge and concurrent witness

hiding argument for NP in the bare public-key model.
2. We present a simpler two-round weak zero knowledge and witness

hiding argument for NP in the plain model under the sub-exponential
hardness of factoring. Our technique also yields a significantly sim-
pler proof that existing distinguisher-dependent simulatable zero
knowledge protocols are also polynomial time simulatable against
all distinguishers of a-priori bounded polynomial size.

The core conceptual idea underlying our individual simulation technique
is an observation of the existence of nearly optimal extractors for all
hard distributions: For any NP-instance(s) sampling algorithm, there
exists a polynomial-size witness extractor (depending on the sampler’s
functionality) that almost outperforms any circuit of a-priori bounded
polynomial size in terms of the success probability.

1 Introduction

1.1 Background

The simulation paradigm [GMR89] plays a pivotal role in complexity-based cryp-
tography, which takes the reductionist approach to prove the security of a given
cryptosystem. In a typical security proof, we devise a reduction algorithm, which
invokes as a subroutine the adversary that claims to break the target cryptosys-
tem, to crack the underlying hard problem. In this process, the reduction algo-
rithm needs to simulate the honest parties for the adversary in order to exploit its
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 805–836, 2020.
https://doi.org/10.1007/978-3-030-64840-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_27

806 Y. Deng

power. For most interactive cryptographic protocols, simulating the adversary’s
view is actually the essential part of the reduction.

The most commonly used simulation strategy is black-box simulation,
which appears very restrictive since the black-box simulator ignores the inter-
nal workings of the adversary completely. Indeed, starting from the seminal
work of Impagliazzo and Rudich [IR89], a lot of impossibility results regard-
ing black-box simulation were proved in a variety of settings. In the last
two decades, several new simulation techniques, notably the PCP-based non-
black-box simulation [Bar01] and the recently distinguisher-dependent simula-
tion [JKKR17,BKP19] techniques, were developed to get around certain black-
box barriers on the round-complexity of cryptographic protocols. However, for
many basic protocols, it still remains unclear whether the known black-box
impossibility results on their round-complexity might be overcome using new
(non-black-box) reduction/simulation techniques. In this paper, we consider the
round-complexity of several related fundamental protocols: selective opening
secure commitments and zero knowledge protocols.

Commitment Scheme Secure Under the Selective Opening Attacks. In
a selective opening attack against a commitment scheme, the receiver observes
many commitments and is allowed to ask the committer to open some of them.
Dwork et al. [DNRS03] put foward the notion of selective opening security and
asked if we can construct such a commitment that the unopened commitments
in the selective opening attack still stay hiding. As showed in [DNRS03], this
problem has a deep connection with the existence of 3-round zero knowledge and
the soundness of the Fiat-Shamir heuristics.

Bellare et al. [BHY09] constructed the first selective opening secure commit-
ment. The high-level idea of their construction (and the follow-up from [ORSV13]
by Ostrovsky et al.) is as follows. The receiver generates a trapdoor for an equiv-
ocal trapdoor commitment scheme, and proves of knowledge of the trapdoor via
a cut-and-choose type protocol; the committer then uses this trapdoor commit-
ment scheme to commit to a value. In simulation, the simulator first extracts
the trapdoor by rewinding the receiver, and then can open a commitment to any
value it wishes. So far, the best known construction of (simulation-based notion
of) selective opening secure commitment requires three rounds [ORSV13].

There is an obstacle to further reduce the round-complexity of selective
opening secure commitment. Note that in a two-round scheme1 the receiver
sends only one message and the standard black-box simulator/extractor that
treats the (possibly malicious) receiver as a black-box would fail. Indeed,
Xiao [Xia11,Xia13] proved that it is impossible to achieve selective opening secu-
rity in 2 rounds with a black-box simulator.

1 The round-complexity of a commitment scheme refers to the one of its committing
phase. In this paper we focus on commitment schemes with a non-interactive opening
phase.

Individual Simulations 807

Zero Knowledge Protocols in Two and Three Rounds. Early construc-
tions of zero knowledge proofs (with statistical soundness) [GMR89] and argu-
ments (with computational soundness) [BCC88] are quite simple and round-
efficient: only three messages are exchanged in a session. However, this round
efficiency is achieved at the cost of huge soundness error. The work [FLS99]
provides a very popular method–the so-called FLS-paradigm– to construct four
round zero knowledge argument with negligible soundness error. In the FLS-
paradigm, a zero knowledge protocol for proving some NP statement x ∈ L
proceeds in two phases. In the first phase, the verifier generates two puzzles and
proves to the prover that he knows a solution to one of these puzzles; In the
second phase, the prover proves to the verifier that either the statement being
proven is true or he knows a solution to one of puzzles. Both proofs are car-
ried out using a witness indistinguishable proof of knowledge. In simulation, an
efficient simulator is able to extract a solution to one of these puzzles from a
malicious verifier and then carry out the second phase using the solution just
extracted as a witness.

Whether there are 3-round zero knowledge protocols with negligible sound-
ness error based on standard assumptions for non-trivial languages is still a
widely open problem. On the negative side, the work [GK96] showed that it is
impossible to achieve 3-round zero knowledge argument or proof via black-box
simulation. Similar impossibility result [Pas11] hold even for a relaxed notion
of zero knowledge–witness hiding protocol [FS90]. Recently, Fleischhacker et
al. [FGJ18] and Canetti et al. [CCH+19] extended this impossibility result to
non-black-box simulation technique, and gave very strong negative evidence
against the existence of 3-round zero knowledge proofs for non-trivial languages.

In their recently work [JKKR17], Jain et al. observed that a good dis-
tinguisher may leak some useful secrets of the verifier in certain settings,
which will enable a successful simulation of the verifier’s view. They developed
a distinguisher-dependent simulation technique and constructed three-round
delayed-input weak ε-distributional zero knowledge [DNRS03] from standard
assumptions in a model where the simulator is allowed to depend on the distin-
guisher. Very recently, Bitansky et al. [BKP19] introduced a homomorphic trap-
door paradigm and presented a three-round weak ε-zero knowledge argument in
the same model, but their simulator works for any individual statement (rather
than in the distributional setting). Both constructions of [JKKR17,BKP19] can
be made into two rounds assuming certain sub-exponential hardness.

Concurrent Zero Knowledge Protocols and the Bare Public Key
(BPK) Model. Dwork et al. [DNS98] formalized the notion of concurrent
zero knowledge in a setting where multiple sessions of the same protocol take
place, and a malicious verifier is allowed to fully control the message scheduling.
A protocol is called concurrent zero knowledge if it preserves zero knowledge
even in this concurrent setting. Prabhakaran et al. [PRS02] refined the analysis
of the simulators of [KP01,RK99] and proved (almost) logarithmic (˜O(log n))
round-complexity is sufficient for concurrent zero knowledge protocol, which
almost matches the black-box lower bound of [CKPR01]. In his breakthrough

808 Y. Deng

work [Bar01], Barak introduced a non-black-box simulation technique that makes
use of the malicious verifier’s code in simulation, and generated a long-line follow-
up works (e.g., [DGS09,CLP13,BP15], just to name a few) to reduce the round-
complexity of concurrent zero knowledge. However, despite decades of intensive
research, the known constant-round constructions [CLP15a,FKP19] of concur-
rent zero knowledge still require non-standard assumptions.

Canetti et al. [CGGM00] introduced a very attracting model–the BPK
model–to further reduce the round-complexity of stronger notions of zero knowl-
edge, such as concurrent zero knowledge and resettable zero knowledge (which
allows a verifier to reset the prover). In this model, each verifier deposits a public
key in a public file and stores the associated secret key before any interaction with
the prover begins. A huge advantage of this model is that, the trapdoors/secret
keys useful for the simulator are fixed in advance, and if a simulator obtained
all these trapdoors, it can simulate any session in a straight-line manner. Many
constructions [YZ07,DFG+11,SV12] of concurrent/resettable zero knowledge in
this model follows the FLS paradigm in which the verifier proves knowledge of
his secret key in the first phase, and thus they require at least four rounds.

The question of whether we can achieve concurrent zero knowledge in fewer
rounds in the BPK model is also subject to black-box limitations: As showed
in [MR01,APV05], it is impossible to achieve concurrent black-box zero knowl-
edge with concurrent (even sequential) soundness in three rounds in this model.

1.2 Motivation

In black-box simulations mentioned above, a simulator is usually to extract a
piece of secret information from the adversary and then use it to mimic the
honest parties (without knowing their private inputs). For such an extraction
to go through, we usually design protocols so that the adversary is required to
provide a proof of knowledge of such a piece of secret information. This incurs
several additional rounds of interaction given the state-of-the-art constructions
of proof of knowledge.

Indeed, Barak showed the adversary’s code and internal workings allow us
to break black-box barriers in certain settings. His non-black-box simulation
technique relies on the PCP mechanism and often gives rise to complicated and
(relatively) round-inefficient constructions. So far, for almost all known simula-
tion techniques (including Barak’s non-black-box simulation), the simulator is
universal and is able to work for any adversary. This is in sharp contrast to the
individual simulators, as required in most of security definitions, which switches
the order of qualifiers ∃ Sim ∀ Adv:

– Universal Simulation: ∃ Sim ∀ Adv, Sim fools all efficient distinguishers.
– Individual Simulation: ∀ Adv ∃ Sim, Sim fools all efficient distinguishers.

Literally, an individual simulator is only required to work for a given individ-
ual adversary, thus we can assume that the simulator “knows/hardwires” any
useful properties/structures (if exists) of this adversary’s functionality, not just

Individual Simulations 809

its code. This makes individual simulators more powerful than universal/black-
box ones. Under the widely believed hardness of reverse engineering2, we can-
not expect an efficient universal simulator to be able to figure out some useful
property/structure about the adversary’s functionality from its code. A natural
question arises:

Can we develop individual simulations to break the known black-box barriers?

A motivating example is the black-box lower bound on round-complexity of
concurrent zero knowledge [CKPR01], in which Canetti et al. constructed an
explicit concurrent verifier strategy (for an arbitrary almost logarithmic round
proof system) whose view cannot be simulated by any efficient black-box simu-
lator (unless the statement being proven is trivial). However, as already showed
in [Den17], an individual simulator can simulate this adversary’s view in a
straightforward way when given as input a certain crucial subfunctionality of
the adversary. This demonstrates the potential power of individual simulations,
but does not give a proof of the concurrent zero knowledge of the underlying pro-
tocol, which requires us to show for any efficient verifier we can build a successful
individual simulator.

1.3 Summary of Our Results

In this paper we develop an individual simulation technique that explicitly
makes use of particular properties/structures of the adversary’s functionality,
and achieve several constructions for selective opening secure commitment and
zero knowledge arguments that break the known black-box lower bounds on their
round-complexity.

As our main conceptual contribution, we show that for any NP-instance(s)
sampling algorithm, there exists a nearly optimal individual witness extractor
(depending on the sampler’s functionality) that almost outperforms any circuit
of a-priori bounded size. Combining this extraction strategy with an algebraic
technique for Blum’s encryption scheme, we obtain the following results.

The First Protocols That Break Previous Black-Box Barriers. We con-
struct the first protocols that break black-box barriers mentioned above under the
standard hardness of factoring, both of which are polynomial time simulatable
against all a-priori bounded polynomial size distinguishers:

– Two-round selective opening secure commitment scheme.
– Three-round concurrent zero knowledge and concurrent witness hiding argu-

ment for NP in the bare public-key model.

All these protocols are quasi-polynomial time simulatable against all polynomial-
size distinguishers with a negligible distinguishing gap.

Simpler Construction and Analysis of Zero Knowledge Protocols. We
present a construction of two-round weak zero knowledge and witness hiding
2 Under this assumption, the work [DGL+16] showed a limitation of universal simu-

lation in a particular setting.

810 Y. Deng

argument for NP in the plain model under the sub-exponential hardness of fac-
toring, which is much simpler than the constructions in [JKKR17,BKP19,DK18,
BGI+17]. Our technique also yields a significantly simpler proof of the equiv-
alence theorem of [CLP15b]) for existing distinguisher-dependent simulatable
zero knowledge protocols in [JKKR17,BKP19], showing that these protocols are
also polynomial time simulatable against all distinguishers of a-priori bounded
polynomial size.

1.4 Individual Extractions and Simulations: An Overview

Recall that the standard simulation-based security definitions only require that
for every adversary, there exists a simulator that can fool all efficient distinguish-
ers. This means such an existential simulator, like distinguishers, can depend on
any properties/structures of the functionality of a given specific verifier.

Imagine that we have a two-round FLS-type protocol (A,B) in which B sends
an NP instance y in the first round, with these properties:

1. A solution to the instance y generated by a adversary B enables the simu-
lator to efficiently generate B’s view that is indistinguishable from the real
interaction;

2. Distinguishing the honest A’s message from even a dummy message is equiv-
alent to extracting a solution to y from B.

In this scenario, for a given adversary B, there are only two cases in which
an efficient simulator will win3: a) the simulator succeeds to extract a solution
to y from B, or, b) no efficient algorithm can extract a solution to y except
for negligible probability. In the former case, by the first property of (A,B),
regardless of whether the distinguisher knows the solution, the simulator can
reconstruct B’s view successfully; in the latter case, the distinguisher does not
know the solution either, and thus by the second property of (A,B), a simulator
can easily fool the distinguisher.

Nearly Optimal Extractors for Single-instance Samplers. Note that the
above solution extraction algorithm– the key subroutine of the simulator–can
also be individual : It can depend on any property/structure of the individual
adversary B, besides being given the same input as B.

To simulate B’s view, one naive approach is to apply the best possible extrac-
tor (in terms of success probability) to extract a solution then simulate. An
issue with this approach is that the success probability of an extractor may
increase with its size. This makes it hard to control the size of the extractor
(and the simulator). In this paper, we consider a weak simulation security–(T, ε)-
simulatability: The simulation is required only against distinguishers of size T
with distinguishing gap less than ε. Note that this notion is stronger than the

3 Here we are aiming to construct a normal simulator, not a distinguisher-dependent
simulator like the ones in [JKKR17,BKP19].

Individual Simulations 811

distinguisher-dependent simulatability defined in [CLP15b,JKKR17], where the
simulator depends on the specific distinguishing algorithm, not just its size.

We view B as a single-instance sampler, and show that for any B there exists
of a good extractor that outperforms all circuits of size T (given the same input
as the extractor) with at most gap ε. The basic proof strategy is to keep iterating
to include new powerful circuits into the extractor until we have a desired one.

Subtleties. One should be careful when carrying out this proof strategy. First,
the number of iterations in this process may depend on the security parameter
n, and this may cause some difficulties in controlling the size of the final circuit
family Ext; second, in the asymptotic setting, when we add a new circuit family
to the extractor, this family may work only when the security parameter n is
greater than a specific n0. Thus, it is possible that the iterative procedure keeps
increasing the number n0, and therefore we are not able to specify any n′

0 so
that the final circuit family Ext works for all n > n′

0.
To get around these difficulties, we use the a-priori fixed T and ε as a global

guideline, and do local iterations at each parameter n4: In each iteration of this
process, we have an extractor Ext at the beginning and ask: Does there exist
another instance solver C of size T , given the same input as Ext, such that

Pr [y ← B : C extractsasolutionto y but Ext fails] > ε?

If so, then we have a new extractor: On input y, it runs the Ext first, and if Ext
fails then runs C to extract a solution to y. This will increase the success prob-
ability of the extractor by at least ε; otherwise, we return the current extractor
Ext.

It is not hard to verify that, after at most 1
ε steps, we will have an extractor

Ext of size at most O(T 1
ε) such that, the event that Ext fails to extract a solution

to y but some other circuit of size T succeeds happens with probability at most
ε.

The Dependence on the Functionality of the Sampler. We give two examples to
illustrate how the nearly optimal extractor Ext intrinsically depends on the func-
tionality of the sampler. Consider the following two image-sampling algorithms
for some one-way permutation g: (a) use randomness y and then generate an
image x = g(y), and (b) sample a random string x from the co-domain of g.
Then, for the former sampler, there is a nearly optimal extractor (taking the
sampler’s randomness y) that can simply output the pre-image y of the given
sampled image x with probability 1; for the latter, a dummy algorithm (with
success probability 0) is also an optimal extractor (this is almost best possible
since g is one-way).

With this nearly optimal extractor, we now have an individual simulator for
B: it first applies this nearly optimal individual extractor Ext to extract a solution
to y generated by B and then simulates in a somewhat straightforward manner
(see below). Note that this simulator inherently depends on the functionality of

4 We would like to stress that one cannot expect this process to be constructive.

812 Y. Deng

the adversary (instance sampler) since the nearly optimal extractor does, and
that it will fool all distinguishers5 of size T except for probability at most ε.

Now, if the protocol (A,B) satisfies the above two properties, we have a good
individual simulator against all distinguishers of size T . Our remaining task is
to construct protocols with such properties.

A suitable building block for such protocols is the well-known encryption
scheme based on the hardness of factoring. The public key of the encryption
scheme is a Blum integer N , and the secret key is a prime factor of N . A cipher-
text of a bit b is given by c = (fN (s), h(s) ⊕ b), where fN : QRN → QRN

defined by fN (s) = s2 mod N and h is the hardcore of fN . A key property
(implied by [TW87]) of this encryption scheme we will make use of is the equiv-
alence between distinguishing ciphertexts and extracting a secret key, even if the
public key N is not a Blum integer6.

Constructions. With these extraction and construction ideas in mind, we con-
struct selective opening secure commitment and zero knowledge arguments as
follows.

Two-Round Selective Opening Secure Commitment: In the committing phase, we
have the receiver generate a Blum integer N for the committer; upon receiving N ,
the committer uses the trapdoor commitment scheme (a prime factor of N serves
as a trapdoor) [FS89] to compute a commitment c, encrypts it bit-wise under the
public-key N and sends these encryptions to the receiver; In the opening phase,
the committer sends the opening of c to the receiver, and the latter decrypts the
encryptions received in the first phase and accepts if the plaintext is c and the
opening received is a valid opening of c. This construction relies on polynomial
hardness of factoring.

Three-Round Weak Concurrent Zero Knowledge in the BPK Model: In the key
registration phase, each verifier generates two Blum integers (N0, N1) as its
public-key, and stores two prime factors (q0, q1), qi|Ni for i ∈ {0, 1}. In the
proof phase, the prover and the verifier execute the three round parallel version
of Blum’s protocol (Let a session be of the form (a, e, z)) in which the prover
proves “the statement to be proven is true or I know a prime factor of one of the
two integers”, and in addition, the prover encrypts the last message z bit-wise
under each of verifier’s public key. The verifier decrypts all these ciphertexts and
obtains ẑ and z̃, and accepts if ẑ = z̃ and the underlying transcript is accepting.
This construction relies on polynomial hardness of factoring.

Two-Round Weak Zero Knowledge in the Plain Model: The verifier sends a Blum
integer N (and stores one prime factor) to the prover, and the prover computes
a commitment c to n zeros, sends back c together with ciphertexts (encrypted
bit-wise under N) of a NIWI proof for “the statement to be proven is true or I
know a prime factor of N”. The verifier decrypts the ciphertexts, and accepts

5 One can think of a distinguisher as a solution extractor since they are essentially
equivalent because of the property 2. of (A,B).

6 In this case, we view any prime factor of N as a secret key.

Individual Simulations 813

if the plaintexts forms an accepting NIWI proof. This construction relies on
sub-exponential hardness of factoring.

A Difficulty in the Individual Simulations for Composable Protocols.
At a high level, our simulation strategy for these protocols are quite simple: The
simulator first applies the nearly optimal extractor to obtain the corresponding
witness for each session, and if the extractor succeeds, then it can simulate this
session in a straightforward manner; otherwise, it sends a dummy message in
the last round of the protocol.

The Simulator for the Commitment Scheme. Suppose that a malicious receiver
R∗ initiates k sessions in parallel. In the committing phase, for each i ∈ [k],
the simulator first runs the nearly optimal extractor and tries to obtain a prime
factor of Ni sent by R∗, and commits to 0 via the trapdoor commitment scheme
and obtains a commitment ci, then sends encryptions of ci; In the opening phase,
upon receiving {bi}i∈I and the index set I, then the simulator opens ci in the
following way: If bi = 0, open it in an honest way; if bi = 1 and the extractor
succeeds to extract a prime factor of Ni, then use it as trapdoor and open ci

to value 1; else send (bi = 1, dec′) to R∗, where the decommiment (bi = 1, dec′)
is a valid opening of some commitment c′

i. (In other words, in the third case,
the simulator pretends that the ciphertexts it sent in the committing phase is
bit-wise encryptions of c′

i).

The Simulators for zero knowledge protocols are much simpler. For concurrent
zero knowledge protocol in the BPK model, after the key registration phase,
for each pair (N0, N1) registered by a malicious V ∗, the simulator first tries to
extract a prime factor of one of (N0, N1) using the nearly optimal extractor; if
this extraction is successful, then the simulator can simulate any session under
(N0, N1) successfully; otherwise, the simulator simply computes encryptions of
all zeros under both public keys in the last round. The same simulation strategy
works also for the protocol in the plain model.

One must be careful in proving that these simulations are indistinguishable
from the real interaction against any distinguisher of a-priori bounded size T
except for small probability ε. A technical difficulty arises in such proofs due to
the composition of the first two protocols. Let us take the example of the simu-
lator for the commitment scheme. As usual, the proof of (T, ε)-simulatability is
done by a hybrid argument. We construct a sequence of hybrid non-uniform sim-
ulators, gradually switching from the simulation to the real interaction, so that a
consecutive pair of simulators, say the i-th and the (i+1)-th simulators, behave
differently only in the i-th session in the case that the extractor fails to factor
Ni, and then prove that any two consecutive simulations are indistinguishable
except for a very small probability by contradiction: For any Dn of size T that
distinguishes the i-th and the (i + 1)-th simulations with a large distinguishing
gap, we use Dn to construct a circuit An that contradicts the optimality of the
nearly optimal extractor. However, to exploit the power of Dn, An needs also to
simulate other sessions for Dn, which in turn requires An to know prime factors
for some other Nj ’s (j �= i) obtained by the extractor. (otherwise An needs to

814 Y. Deng

run the extractor on its own, which results in the circuit An of size larger than
the extractor and thus makes no sense).

Nearly Optimal Extractors for Multi-instance Samplers. We prove a
stronger result of the existence of nearly optimal extractors for all multiple-
instance sampling algorithms to address the above issue. Specifically, for any
polynomial t and any t-instance sampler, we show there exists a nearly optimal
extractor such that, for every i ∈ [t], for any circuit C of a-prior bound size that
is given the output of the extractor, the probability that C solves the i-th instance
but the extractor fails is small. This result is proved by a similar argument as
above, but a more delicate iterative procedure is requried.

Binding/Soundness: Trust the Adversary. At first glance, the binding and
soundness properties of the first two protocols seem to be problematic. For the
binding of our commitment scheme, a usual proof-by-contradiction approach is
to construct a reduction with oracle access to the cheating committer to fac-
tor the public key N . A problem with this approach is that the reduction itself
does not know the corresponding secret key (i.e., a prime factor of N), and as
a consequence, it cannot decrypt the message from the committer to obtain the
commitment c and determine whether the opening sent by the cheating com-
mitter is a valid decommitment of c. Here we use a “trust the adversary” trick
to save the proof: Since the cheating committer can make the honest receiver
(who knows the secret key) accept two different decommitments, these decom-
mitments should be valid for the same commitment c. Hence, in reduction, the
reduction algorithm can trust the committer and simply assume that the two
decommitments are both valid for some unknown c.

A similar but more subtle problem occurs in the proof of soundness of the zero
knowledge protocol in the BPK model. In this case, a usual reduction algorithm
keeps one secret key of Ni (for a random i ∈ {0, 1}) in the public key pair
(N0, N1), and wants to use the power of the cheating prover to factor N1−i.
However, such a reduction seems to fail for the following cheating P ∗: At the
begining P ∗ somehow magically factors both N0 and N1 and obtains q0 and q1;
in its last step, it compute z0 and z1 using witnesses q0 and q1 respectively,
and sends to the verifier encryptions of z0 and z1 under the public keys N0

and N1 respectively. Note that the reduction can decrypt only the encryptions
under public key Ni, and hence it can only obtain a prime factor of Ni by
rewinding P ∗ (using the special soundness of Blum’s protocol). However, this
issue is taken care by the verification step in which the honest verifier decrypts
all encryptions and check if the two last round messages z0 and z1 are equal
and both acceptable. Thus, such a cheating P ∗ cannot make an honest verifier
accept at all, and therefore is not a successful cheating prover. In other words,
for a successful cheating prover, the reduction algorithm can trust that the two
last round messages of Blum’s protocol encrypted under both public keys are
equal. This is the key to the proof of soundness.

Individual Simulations 815

1.5 Related Work and Discussion

On Upgrading the Distinguisher-Dependent Simulatable Zero Knowl-
edge. As mentioned earlier, it is proved in [CLP15b] that, in the plain
model, distinguisher-dependent simulatable zero knowledge protocols (such
as [JKKR17,BKP19]) satisfy the stronger notion of (T, ε)-simulatabibility. How-
ever, this “distinguisher-dependent simulation then upgrade” approach to (T, ε)-
simulatability seems to work only for standalone zero knowledge protocols in the
plain model. Note that the equivalence theorem of [CLP15b] says nothing about
zero knowledge in other models/settings, or other cryptographic primitives, like
the commitment schemes under parallel composition and concurrent zero knowl-
edge in the BPK model considered in this paper.

The equivalence theorem of [CLP15b] was proved via the minimax theorem,
which leads to a complicated proof7. Our proof of existence of a nearly optimal
extractor is quite simple and easy to understand, and it can also be used to
upgrade existing constructions of [JKKR17,BKP19]. However, it is unclear if
our technique could be used to prove the full version of the equivalence theorem
of [CLP15b].

Other Notions of Selective Opening Security for Commitments. The
work of [BHY09] also introduced the notion of selective opening security under
concurrent composition, where a malicious receiver is allowed to interact with
the committers concurrently. This notion is stronger than the selective opening
security under parallel composition considered in this paper. However, as proved
in [ORSV13], we cannot achieve such a security in the full-fledged concurrent
setting if the simulator does not know the distribution of the message committed
to by the honest committer. Another related notion is the indistinguishability-
based selective opening security, which can be achieved by any statistical hiding
(standalone) commitment scheme [BHY09].

Conditional Disclosure Schemes. A conditional disclosure scheme can be
thought of as interactive version of witness encryption [AIR01,BP12,PA17]. It
is a useful tool for constructing protocols of low round-complexity, such as the
three round zero knowledge protocol of [BKP19], but the usage of such a scheme
often requires an additional sub-protocol to make sure a (malicious) party indeed
knows a relevant witness. The protocols in this paper do not need such an extra
sub-protocol, and therefore is significantly simpler than previous constructions.

(T, ε)-Security in Practice. A silent feature of the notion of (T, ε)-
simulatability is that the we need not embed the parameters T and ε into the
protocol instructions. That is, we can have a single construction that achieves
(T, ε)-simulatability for any polynomial T and any inverse polynomial ε, which
stands in sharp contrast to Barak’s n-bounded concurrent zero knowledge argu-
ment, whose construction depends on the a-priori upper-bound n on the number
of total sessions allowed. From a practical point of view, we think the weak notion

7 See https://eprint.iacr.org/2013/260.pdf for the detailed proof.

https://eprint.iacr.org/2013/260.pdf

816 Y. Deng

of (T, ε)-simulatability is good enough in practice: For any fixed security param-
eter λ, any constants κ and ε, it already achieves a concrete (κ, ε)-simulatability,
since there always exist T and ε satisfying T (λ) > κ and ε(λ) < ε.

1.6 Organization

We present relevant definitions in Sect. 2. In Sect. 3, we prove the existence of
nearly optimal extractors for all hard distributions. In Sect. 4, we give a for-
mal proof of the equivalence between distinguishing ciphertexts and extracting
a secret key for the factoring-based encryption scheme. In the last three sections,
we give our main results on selective opening secure commitment, weak concur-
rent zero knowledge in the BPK model and the two-round weak zero knowledge
respectively.

2 Preliminaries

Throughout the paper, we let n be the security parameter. We write the
set {1, 2, ...,m} as [m], and the set {i, i + 1, ..., j} as [i, j]. We denote by
x̄ = {xi}i∈[k] ← D̄k the process of sampling k times x from D independently. A
function negl(n) is called negligible if it vanishes faster than any inverse poly-
nomial. We write {Xn}n∈N

c≈ {Yn}n∈N to indicate that the two distribution
ensembles {Xn}n∈N and {Yn}n∈N are computationally indistinguishable. A Blum
integer N is a product of two primes p, q satisfying p, q ≡ 3 mod 4. We denote
by Blum(1n) the algorithm that on input a security parameter n outputs a Blum
integer N and one of its prime factors q, where the corresponding two prime
factors are of length n. Due to space limitations, we refer readers to [Gol01] for
definitions of witness indistinguishability, witness hiding.

Commitment and Trapdoor Commitment Schemes. Commitment
schemes are “digital” safes. Formally, a commitment scheme (C,R) is a two-
phase protocol between a committer C and a receiver R. To commit to a bit
b ∈ {0, 1}, C(b) and R execute the committing phase of (C,R) (denoted by
(C,R)Com) and generate a commitment transcript Com(b); To decommit Com(b),
C and R execute the opening phase of (C,R) (denoted by (C,R)Open) and reveal
a decommitment (b, dec), and R accepts if the decommitment is valid.

Definition 1 (Commitment Scheme). A two-phase protocol (C,R) is called
a commitment scheme if it satisfies the following two properties:

– Binding: For every committer C∗ of polynomial-size, the probability of the
following event is negligible: C∗ interacts with R and generates a commit-
ment Com(b) in the committing phase, and then produces two decommitments
(b, dec) and (b′, dec′) with b �= b′ in two executions of the opening phase.

– Hiding: For every receiver R∗ of polynomial size, the commitments Com(0)
and Com(1) are computational indistinguishable.

Individual Simulations 817

A trapdoor commitment scheme is a commitment scheme with an additional
property: Given a trapdoor, C can later open a commitment to different values.
In [FS89], Feige and Shamir showed how to transform Blum’s 3-round interac-
tive proof into a trapdoor commitment scheme. In our construction of selective
opening secure commitment, we need a version of Feige-Shamir trapdoor com-
mitment based on factoring. Using a standard commitment (built from the fac-
toring assumption) Com as a building block, our trapdoor commitment scheme
(TDGen,TDCom,Open, Fakeopen) proceeds as follows.

– TDGen: On input the security parameter n, TDGen generates (N, q) ←
Blum(1n). Define an NP relation {(N, q) : q|N}, and transform (N, q) into
a graph G and an associated Hamiltonian cycle H ⊆ G. Output ((N,G), q).

– TDCom: On input G, a bit b and randomness r, if b = 0, pick a random
permutation π and commit to the adjacency matrix of π(G); if b = 1, pick a
random cycle H ′ and commit to the adjacency matrix of H ′. In both cases,
we use commitment scheme Com when committing to the adjacency matrix.

– Open: On input (G,TDCom(G, b, r), b, r), if b = 0, send π and open the entire
adjacency matrix of π(G); if b = 1, open the non-zero entries in the adjacency
matrix of H ′ (i.e., open the cycle H ′). We denote by (b, dec) the decommit-
ment of the commiment TDCom(G, b, r).

– Fakeopen: On input (G,H,TDCom(G, 0, r), b, r), open to b in the same way
as Open by setting H ′ = π(H). Note that only when TDCom commits to 0,
the commitment can be opened to both 0 and 1.

A Crucial Property. Our construction of a selective opening secure commit-
ment scheme relies on the following property of the above trapdoor commitment
scheme, which can be easily proved by applying standard hybrid argument to
the underlying commitment scheme Com:
{(c, (1, dec)) :c←TDCom(G, 1, r);(1, dec) ← Open(G,TDCom(G, 1, r), 1, r)} and
{(c, (1, dec)) :c ← TDCom(G, 0, r);(1, dec)←Fakeopen(G,H,TDCom(G,0,r),1,r)}
are indistinguishable.

(T, ε)-Secure Under Selective Opening Attacks. Consider a k-parallel com-
position of a commitment scheme (C,R). A committer Ck and a receiver R∗

execute the committing phase k times in parallel and generate k commitments
{ζi}i∈[k] to b̄ = b1||b2||···||bk, each ζi is a commitment to bi. In a selective opening
attack, R∗ chooses a set I ∈ I (possibly depending the commitments received)
and asks the committer Ck to open the commitments {ζi}i∈I , where I is the
family of subset of [k]. Informally, the commitment scheme (C,R) is said to be
secure under selective opening attacks if the remaining unopened commitments
still stay secret.

Definition 2 ((T, ε)-secure under selective opening attacks). Let k be an
arbitrary polynomial in n, and B be a distribution on {0, 1}k, and I be the fam-
ily of subset of [k]. A commitment scheme (C,R) is (T, ε)-secure under selective
opening attacks if for any polynomial T , any inverse polynomial ε, any polyno-
mial size B, and any polynomial size R∗, there exists a polynomial size Sim such

818 Y. Deng

that for any distinguisher Dn of size T , Dn cannot tell apart the following two
distributions

– (Ck(b̄), R∗): b̄ ← B; {ζi}i∈[k] ← (Ck(b̄), R∗)Com; I ← R∗({ζi}i∈[k]);
{(bi, deci)}i∈I ← (Ck(b̄), R∗)Open; OutR∗ ← R∗({(bi, deci)}i∈I). Output
(b̄, I, OutR∗);

– SIM: b̄ ← B; I ← Sim; OutSim ← Sim({bi}i∈I)). Output (b̄, I, OutSim),

with probability greater than ε, i.e.,

|Pr[Dn((Ck(b̄), R∗)) = 1] − Pr[Dn(SIM) = 1]| < ε.

Delayed Input Argument and (T, ε)-ZK. Let L be an NP language and RL

be its associated relation. An interactive argument system (P, V) for L is a pair
of parties of polynomial size, in which the prover P wants to convince the verifier
V of some statement x ∈ L. We denote by (P, V)(x) the output of V at the end
of interaction on common input x, and by ViewP

V (x) the view of the verifier in
the real interaction. Without loss of generality, we have the verifier V outputs 1
(resp. 0) if V accepts (resp. rejects).

In this paper we consider delayed-input interactive arguments, in which the
common input to both parties is the size of the statement x, and the verifier
receives x only in the last round. Note that in a delayed-input interactive argu-
ment, a malicious prover may choose statement depending on the history, and
thus such an argument needs to satisfy a stronger notion of adaptive soundness
(cf. [JKKR17]).

A delayed-input argument system is zero knowledge if the view of the (even
malicious) verifier in an interaction can be efficiently reconstructed. In this paper,
we consider a weak version of zero knowledge–(T, ε)-zero knowledge [CLP15b],
in which the indistinguishability gap between the real interaction and the simu-
lation is at most ε against any T -size distinguisher.

Definition 3 (Delayed-input (T, ε)-zero knowledge). We say that a
delayed-input interactive argument (P, V) for language L is (T, ε)-zero-knowledge
if for any polynomial T , any inverse polynomial ε, any polynomial-size V ∗, there
exists a circuit Sim of polynomial size such that for any x ∈ L and any proba-
bilistic T -size circuit {Dn}n∈N and sufficiently large n, it holds that

∣

∣

∣Pr[Dn(ViewP
V ∗(x)) = 1] − Pr[Dn(Sim(x)) = 1]

∣

∣

∣ < ε.

Concurrent Zero Knowledge with Concurrent Soundness in the BPK
Model. The bare public-key model (BPK model) simply works in two phases:
the key-registration phase and the proof phase. In the key-registration phase,
each verifier registers a public-key pk (the honest verifier is supposed to store
the corresponding secret key sk) on a public-file F before the proof phase. In the
proof phase, on a common input x, the prover and the verifier interact under the
verifier’s public key. The completeness of an interactive argument is normally
defined.

Individual Simulations 819

Concurrent Soundness in the BPK Model. A malicious concurrent prover P ∗ is
allowed to launch the following attack: In the proof phase, on input a pubic
key pk, P ∗ initiates polynomially many sessions, in each of which it chooses
a statement x adpatively (based on the history so far), and fully controls the
message scheduling in the entire interaction with V .

Definition 4 (Concurrent Soundness in the BPK model). An interactive
argument (P, V) for a language L in the BPK model is called concurrent sound
if for all malicious concurrent prover P ∗, the probability that it makes V accept
a false statement x /∈ L is negligible.

Concurrent (T, ε)-Zero Knowledge in the BPK Model. A malicious concurrent
verifier V ∗ is allowed to generate an arbitrary file F of polynomially many public
keys in the key-registration phase. In the proof phase, it receives s (for some
polynomial s) statements x̄ = {xi}i∈[s], and initiates at most s sessions under
public keys on F . During the entire interaction, V ∗ fully controls the message
scheduling.

Definition 5 (Concurrent (T, ε)-zero knowledge In the BPK model).
An interactive argument (P, V) for language L is called concurrent (T, ε)-zero-
knowledge if for any polynomial T , any inverse polynomial ε, any polynomial-size
concurrent V ∗, any polynomial s, there exists a circuit Sim of polynomial size
such that for any Yes instances x̄ = {xi}i∈[s], for any probabilistic T -size circuit
{Dn}n∈N and sufficiently large n it holds that

∣

∣

∣Pr[Dn(ViewP (F)
V ∗ (x̄)) = 1] − Pr[Dn(Sim(x̄)) = 1]

∣

∣

∣ < ε.

3 The Existence of Nearly Optimal Extractors for All
Hard Distribution

In this section we prove the existence of nearly optimal extractors for all
NP-instance(s) sampling algorithms. Essentially, we show that, for any NP-
instance(s) sampler, any polynomial T , any inverse polynomial ε, and any circuit
family Cn of size T , there exists an efficient extractor such that the probability
that Cn extracts a witness for an instance generated by the sampler but the
extractor fails is at most ε. Furthermore, if the extractor is allowed to be of
quasi-polynomial size, then the same result holds with respect to negligible ε.

Let Samp be an arbitrarily sampling algorithm over an NP language L and
{Yn}n∈N be its input distribution ensemble. Throughout this paper, we assume
that the input y ← Yn to Samp includes its randomness. (Thus one can view
Samp as a deterministic algorithm.)

Lemma 1 [nearly optimal (T, ε)-Extractor]. Let Samp be as above. Let f :
{0, 1}∗ → {0, 1}∗ be an arbitrary (not necessarily efficient-computable) function.

820 Y. Deng

1. For every polynomial T , every inverse polynomial ε, there exists a probabilis-
tic circuit family Ext := {Extn}n∈N of polynomial size such that for every
probabilistic circuit family {Cn}n∈N of size T ,

Pr

[

y ← Yn;x ← Samp(y);
w ← Extn(x, y, f(y));

w′ ← Cn(x, y, f(y))
:

(x,w) /∈ RL ∧
(x,w′) ∈ RL

]

< ε(n) (1)

We call Ext a (T, ε)-extractor.
2. There exists a probabilistic circuit family Ext := {Extn}n∈N of quasi-

polynomial size such that for every probabilistic circuit family {Cn}n∈N of
polynomial size, the above probability is negligible.

Remark 1. Jumping ahead, in our protocols the receiver/verifier will play the
role of the hard instance sampler. For all our constructions, we need not take
the function f into account since they just compute a hard instance based solely
on their random tape. However, when our protocols are used as a sub-protocol in
some big protocols or in the settings of [JKKR17,BKP19], the receiver/verifier
may compute a hard instance based on some history y, and the simulator may
need certain secret information f(y) (e.g., an opening of a commitment in history
y) to go through. In such cases, it is more flexible to allow the extractor to take
as additional input f(y).

As mentioned in the introduction, the basic idea underlying the proof is to
keep iterating to include new powerful circuits into the extractor until we have a
desired one. For applications, we need a stronger and robust version of Lemma 1
for samplers that output multiple instances, which we prove below.

Fix a polynomial t and consider a t-instance sampler Samp that is given y as
input and outputs t instances of NP language L, (x1, x2, ·, ·, ·, xt) ← Samp(y),
where y is drawn from distribution Yn.

Lemma 2 [nearly optimal (T, ε)-Extractor for t-Instance Sampler]. Let L be an
NP language and poly be the size of the circuits for deciding the NP-relation
RL. Let Samp be an arbitrarily t-instance sampling algorithm over L with input
distribution ensemble {Yn}n∈N. Let f : {0, 1}∗ → {0, 1}∗ be an arbitrary (not
necessarily efficient-computable) function.

1. For every polynomial T , every inverse polynomial ε, there exists a probabilistic
circuit family Ext := {Extn}n∈N of size O(t

ε (T + poly)), such that for every
j ∈ [t], every probabilistic circuit family {Cn}n∈N of size T ,

Pr

[y ← Yn; {xk}k∈[t] ← Samp(y);
{wk}k∈[t] ← Extn({xk}k∈[t], y, f(y));

w′
j ← Cn({xk}k∈[t], {wk}k∈[t], y, f(y))

:
(xj , wj) /∈ RL ∧
(xj , w

′
j) ∈ RL

]

< ε(n), (2)

where the probability takes over the randomness choice of y, and the random
tapes for that for Extn and Cn.

Individual Simulations 821

2. There exists a probabilistic circuit family Ext := {Extn}n∈N of quasi-
polynomial size such that for every j ∈ [t] and every probabilistic circuit
family {Cn}n∈N of polynomial size, the above probability is negligible.

Remark 2. Notice that in the above lemma we allow the circuit Cn to take the
output of Extn as input. This does not matter for a single-instance sampler.
However, as we shall see in Sect. 5 and 6, this property is critical for hybrid
arguments to go through in the composable settings.

Lemma 2 says there is an extractor for the multi-instance sampler that is
nearly optimal for solving instances in every coordinate j ∈ [t]. We argue the
existence of such a nearly optimal extractor via the following delicate iterative
procedure. In each outer iteration i ∈ [t

ε], for every j ∈ [t] we ask if there is
circuit C

(i)
n,j that, taking as input the output of the current Extn, can be used to

increase the success probability of solving the j-th instance xj by (at least) ε,
and if so, then we add Cn,j to Extn.

Proof (of Lemma 2). For every j ∈ [t], we define j composition of two circuits
Extn and Cn,j in the following way:
Extnj Cn,j({xk}k∈[t], y, f(y)):
1. Sampling a random tape for Extn, obtain {wk}k∈[t] ←
Extn({xk}k∈[t], y, f(y));
2. If (xj , wj) ∈ RL, return {wk}k∈[t];
3. Sampling a random tape for Cn,j , obtain
w′

j ←Cn,j({xk}k∈[t],{wk}k∈[t],y,f(y));
4. If (xj , w

′
j) ∈ RL, then wj ← w′

j and return {wk}k∈[t]; otherwise, return
{wk}k∈[t].
Note that the order of executions of these two circuits matters here since we

have the second circuit take as input the output of the first circuit. This applies
to each iteration of the following construction, and the final circuit Extn will
execute all these Ci

n,j in the order of their appearance. Let Ext(0)n be a dummy
circuit that outputs t zeros. For an arbitrary t-instance Samp, we construct a
nearly optimal extractor Extn as follows8.

Constructing circuit Extn for the t-instance Samp:
1. Extn ← Ext(0)n ;
2. For i = 1 to t

ε , do:
2.1 For j = 1 to t, do:

8 We would like to stress that in this construction the number of outer iterations may
reach t

ε
. Notice that in each iteration, the quality of the current extractor may have

impact on the answer to the question of whether or not there exists a new satisfactory
circuit C

(i)
n,j since the new target circuit is given the output of the current extractor.

Thus, even if there does not exists a satisfactory C
(i)
n,j in the i-th outer iteration, we

cannot rule out the possibility that we will find a satisfactory C
(i+1)
n,j in the (i + 1)-

th outer iteration, because the extractor would become more powerful as iterations
proceed.

822 Y. Deng

If ∃ a circuit C
(i)
n,j of size T s.t.

Pr

⎡

⎣

y ← Yn; {xk}k∈[t] ← Samp(y);
{wk}k∈[t] ← Extn({xk}k∈[t], y, f(y));

w′
j ← C

(i)
n,j({xk}k∈[t], {wk}k∈[t], y, f(y))

:
(xj , wj) /∈ RL ∧
(xj , w

′
j) ∈ RL

⎤

⎦ ≥ ε(n),

(3)

then Extn ← Extnj C
(i)
n,j ;

2.2 If for any j ∈ [t], � C
(i)
n,j satisfying (3), then break and return Extn.

3. Return Extn
We now show that the Extn constructed above satisfies Lemma 2. We first

make the following two observations:

1. For any j′ �= j, the circuit Extnj′C
(i)
n,j′ solves the j-th instance xj with exactly

the same probability of Extn. This is because in the above composition Cn,j

is only invoked to correct the witness wj obtained by Extn.
2. For each new C

(i)
n,j , the circuit Extn j C

(i)
n,j increases the success probability

of solving the j-th instance xj by (at least) ε.

Note that if in some outer iteration i ≤ t
ε , no new circuit is added to Extn

in any inner iteration j ∈ [t], then the iterative process will return a desirable
circuit Extn as required in Lemma 2; otherwise, the following two events must
happen during the entire iterative process: (a) There are (at least) t

ε circuits C
(i)
n,j

of size T that are added to Extn, and (b) For each j ∈ [t] the number of circuits
C

(im)
n,j (im ∈ [t

ε]) added to Extn is at most 1
ε . The latter event (b) holds because

of the two observations mentioned above, which imply that adding more than
1
ε circuits C

(im)
n,j would yield an extractor with success probability of solving the

j-th instance greater than 1.
Putting (a) and (b) together, we have that, for every j, exactly 1

ε circuits
C

(im)
n,j are added to Extn, and the final circuit Extn returned solves the j-th

instance with probability 1. It is easy to verify that the size of the final Extn is
of at most O(t

ε (T + poly)). This concludes Lemma 2.
For the second part of this lemma, one can set T and ε to be nω(1) and

1
nω(1) respectively, construct the circuit family Ext = {Extn}n∈N of size nω(1) in
a similar way. ��

4 Extracting the Secret Key of a Variant of Rabin’s
Encryption Scheme

We are now going to apply Lemma 2 to a variant of a factoring-based encryption
scheme, and show the existence of a nearly optimal secret-key extractor, such
that the probability that an arbitrary bounded-size circuit family succeeds in
distinguishing ciphertexts but the extractor fails to extract a secret key is very
small.

Individual Simulations 823

We consider an encryption scheme based on Rabin’s trapdoor one-way per-
mutations. Let N be a Blum integer of length n, and QRN be the set of quadratic
residues (mod N). Rabin’s trapdoor one way permutation fN : QRN → QRN

(with a prime factor of N as its trapdoor) is defined as fN (s) = s2 mod N . The
one-wayness of fN is based on the fact that different square roots lead to factor
N . Specifically, given a circuit A of size T that inverts fN (s) with probability
ε, by Lemma 10 in [TW87], we have a circuit of size O(T 1

ε) that can factor N
with probability negligibly close to 1.

Let h(·) be an arbitrary hard-core function of fN (·)9. We follow the classic
approach and obtain the following semantically secure bit encryption scheme
(Gen = Blum,Enc,Dec). The public key is a randomly generated Blum integer
N , and the secret key is a prime factor of N :

– EncN : To encrypt a bit b, the encryption algorithm Enc selects a random
s ∈ QRN (which can be done by selecting a random t ∈ ZN and then set s to
be t2 mod N), and computes fN (s) and h(s) ⊕ b. Enc outputs the ciphertext
c = (fN (s), h(s) ⊕ b);

– DecN : To decrypt a ciphertext c, the decryption algorithm Dec uses the secret
key to invert the first part of c, and then computes h(s) and outputs b.

The semantic security follows from the hardness of factoring assumption: A
good ciphertext distinguisher will give rise to an efficient algorithm that finds
square roots modulo N , which can be used to factor N .

In our constructions of commitment and zero knowledge protocols, we will
have one party generate one (or two) public key(s) of the above encryption
scheme and use one secret key to decrypt the messages from the other party. We
would like to stress that, in case that a malicious party generates a non-Blum
integer as its public key, the function fN in the encryption may no longer be
a permutation. Fortunately, such a malicious behavior only causes difficulty for
the malicious party to decrypt the ciphertext computed by the honest party, and
does not affect the property –the equivalence between distinguishing ciphertexts
and factoring– that is required to establish simulatability of our protocols.

We now give a formal statement of this property with respect to the
encryption scheme above. Here we slightly abuse these notations, and define
fN : QRN → QRN and the “encryption” function EncN (b) := (fN (s), h(s) ⊕ b)
over an arbitrary (positive) integer N .

Lemma 3 [Implied by [GL89,ACGS88,TW87]]. For any positive integer N of
length n and any inverse polynomial δ(n), if there exists a probabilistic circuit
family {An}n∈N of size T such that for any auxiliary input α ∈ {0, 1}∗,

9 The constructions of the hardcore of fN (·) appeared in [ACGS88,GL89]. Note that,
when using the Goldreich-Levin hardcore function [GL89], we need to change the
description of our encryption scheme a little bit, since the Goldreich-Levin hardcore
function is actually constructed for the permutation f ′

N (s, r) = (fN (s), r) (where
|r| = |s|). We ignore such changes in the description of our encryption scheme for
the sake of simplifying the presentation.

824 Y. Deng

Pr[b ← {0, 1}; c ← EncN (b);An(c,N, α) = b′ : b = b′] ≥ 1
2

+ δ(n)

then there exists a probabilistic circuit family {Bn}n∈N of size O(1
δ5 n3T) that

can factor N with probability

Pr[q ← Bn(N,α) : q|N] ≥ 1 − negl(n).

Proof Sketch. The hardcore theorems [GL89,ACGS88] state that, given a success-
ful distinguisher An of size T for the “encryption” function EncN with advantage
δ, we can construct a new circuit of size O(1

δ4 n3T) that computes the square
roots modulo N with roughly the same successful probability. If δ is an inverse
polynomial, then by [TW87] such a square root circuit can be used to factor the
integer N in size O(1

δ5 n3T) with probability negligibly close to 1. ��
Applying Lemma 2 to a t-integer sampler {Ni}i∈[t] ← Samp, we can show

that there exists a nearly optimal extractor Ext for Samp such that for every j if
Ext fails to extract a prime factor of Nj , then no circuit of a-prior bounded size
can distinguish a ciphertext (except for small advantage). Formally, we obtain
the following result (and defer the proof of this lemma to the full version).

Lemma 4. Let t be a polynomial, and Samp be an arbitrarily t-integer sampling
algorithm with input distribution ensemble {Yn}n∈N. Let f : {0, 1}∗ → {0, 1}∗ be
an arbitrary (not necessarily efficiently computable) function.

1. For any polynomial T , any inverse polynomial ε, there exists a probabilistic
circuit family Ext := {Extn}n∈N of polynomial-size such that for every proba-
bilistic circuit family {An}n∈N of size T , for every j ∈ [t], we have

Pr

⎡

⎢

⎢

⎣

y ← Yn; {Ni}i∈[t] ← Samp(y);
{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));

b ← {0, 1}; c ← EncNj
(b);

b′ ← An(c, {qi}i∈[t], {Ni}i∈[t], j, y, f(y))

:
b = b′ ∧
qj � Nj

⎤

⎥

⎥

⎦

<
1
2

Pr
[

y ← Yn; {Ni}i∈[t] ← Samp(y);
{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y)) : qj � Nj

]

+ ε(n)

2. There exists a probabilistic circuit family Ext of quasi-polynomial size such
that for every probabilistic circuit family {Cn}n∈N of polynomial size, the
above holds with respect to a negligible function ε.

5 Selective Opening (T, ε)-Secure Commitment Scheme

We use the following ingredients in our construction of a selective opening secure
commitment scheme:

– The trapdoor commitment (TDGen,TDCom,Open,Fakeopen) described in
Sect. 2;

Individual Simulations 825

– The variant of Rabin’s encryption scheme presented in Sect. 4.

With these two building blocks, we construct a selective opening secure com-
mitment scheme as follows. In the committing phase, we have the receiver run the
trapdoor generator and produce (N, q) (q|N) and transform (N, q) into (G,H),
then send N and the graph G to the committer; upon receiving N , the commit-
ter invokes TDCom and generates a commitment c, encrypts c bit-by-bit under
the public key N , and sends all these encryptions to the receiver. In the opend-
ing phase, the committer simply sends the opening of c to the receiver, who
decrypts the ciphertexts received in the committing phase using secret keys q
and obtains c, and checks whether the opening received from the committer is
a valid decommitment of c.

Formally, our selective opening secure commitment scheme proceeds as fol-
lows.

Protocolsoa:

Committing phase:
R −→ C: ((N,G), q) ← TDGen(1n). Send (N,G).
C −→ R: c = c1||c2|| · · · ||c� ← TDCom(G, b, r), {ζi ← EncN (ci)}i∈[�].

Send {ζi}i∈[�].
Opening Phase:
C −→ R: Send (b, dec) ← Open(G,TDCom(G, b, r), b, r).

R: c ← {DecN (ζi, q)}i∈[�]. Accept iff (b, dec) is a valid opening of c.

Theorem 1. Assuming the standard hardness of factoring, Protocolsoa is a
commitment scheme that satisfies the following properties:

1. (T, ε)-security under selective opening attacks.
2. Full security under selective opening attacks with a quasi-polynomial simula-

tor.

Proof. Note that the second property follows directly from the first property and
the second part of Lemma 4. Here we just prove the first property.

Computational Binding Property. Suppose that there is a malicious adver-
sary C∗ that can open a random commitment to two different values with notice-
able probability δ. We construct an efficient algorithm Factor, which uses C∗ as
a subroutine, to break the factoring assumption.

Factor plays the role of the honest receiver R, except that it doesn’t check if
a decommitment is consistent with the plaintext c encrypted in the ciphertexts
received in the committing phase. More specifically, given a Blum integer N
as input, Factor transforms it into a graph G, and sends (N,G) to C∗ as its
first message; upon receiving C∗’s committing phase message and two different
decommitments (b, dec) and (b′, dec′) (with b �= b′), Factor applies the standard
extractor to these decommitments, and if it extracts a prime factor q of N ,
outputs it.

826 Y. Deng

Note that a successful opening in a real interaction implies at least that the
decommitment received by R is a valid opening of the plaintext c encrypted by
C∗ in the committing phase. That means, in case C∗ successfully opens a com-
mitment to two different decommitments (b, dec) and (b′, dec′) in the real world,
one can alway extract a prime factor of N from only the two decommitments
(without the need for knowledge of the plaintext c). Thus, the above algorithm
Factor will output a prime factor of N with probability δ, breaking the factoring
assumption.

(T, ε)-Security Under Selective Opening. Our simulation strategy for a k-
parallel selective opening attacker R∗ is quite simple in spirit. When receiving the
first k integers N1, N2, ..., Nk, the simulator applies the nearly optimal extrac-
tor against T -size circuits and tries to extract a prime factor for each Ni, if it
succeeds for some Ni, then the i-th commitment becomes equivocal and can be
opened to different values; if it fails for Ni, then, in the eye of a T -size distin-
guisher, the i-th commitment is also “equivocal”, since it is unable to extract a
secret key of Ni either, and hence unable to tell whether the commitment c deter-
mined by the decommitment (b′, dec′) received is the very plaintext encrypted
in the ciphertexts.

To give a formal description of the simulator, we introduce the following
notations. (In what follows, we ignore the function f considered in Sect. 3 and 4.)

– {Yn}n∈N : the distribution ensemble of the randomnesses for the k-parallel
selective opening receiver R∗.

– Algorithm Samp is defined to be the committing phase of R∗: y ← Yn,
{Ni, Gi}i∈[k] ← R∗(y), output {Ni}i∈[k].

– (T ′, δ) := ((kTc + T), ε
k�). Here Tc and T denote the size of the committer C

and the distinguisher Dn respectively. ε is the advantage of the distinguisher
that we tolerate. Note that our goal is to show that an arbitrary circuit of size
T cannot distinguish a simulation from the real interaction with advantage
greater than ε.

For the above sampling algorithm Samp, Lemma 4 guarantees that there
exists a nearly optimal (T ′, δ = ε

k�)-extractor Ext := {Extn}n∈N against any
plaintext-extractor of size T ′. Let B be a k-bit message distribution.

Consider the following distribution SIM generated by Sim.
SIM:
1. y ← Yn; {Ni, Gi}i∈[k] ← R∗; b̄ = b1||b2|| · · · ||bk ← B;
2. Sim runs Extn({Ni}i∈[k], y) and obtains {qi}i∈[k].
3. Sim computes k commitments to 0 independently, ci ← TDcom(Gi, 0, ri),

1 ≤ i ≤ k, ζi ← {EncNi
(ci

j)}j∈[�], and sends {ζi}i∈[k] to R∗.

Individual Simulations 827

4. Upon receiving I ← R∗({ζi}i∈[k]) and {bi}i∈I , Sim opens {ζi}i∈I in the
following way:

(a) If bi = 0, open ζi to (bi = 0, deci) in an honest way;
(b) If qi|Ni and bi = 1, run Fakeopen(Gi,Hi, c

i, 0, ri) to open ζi to (bi =
1, deci), where Hi is a simple cycle of Gi, transformed from (Ni, qi);

(c) If qi � Ni and bi = 1, compute a commitment c̃i ← TDcom(Gi, 1, r̃i)
to 1, and set the opening of ζi to be the decommitment (1, deci) of
c̃i.

5. Run OutSim ← R∗({(bi, deci))}i∈I), and output (b̄, I, OutSim).

We use hybrid argument to prove that SIM is indistinguishable from the
real interaction between R∗ and Ck. Consider the following sequence of hybrid
experiments, in each of which we allow Sim to take the message b̄ as an auxiliary
input.

Define SIM0 be identical to SIM. For 1 ≤ m ≤ k, SIMm acts in the same way
as SIMm−1 except that Sim in SIMm computes the m-th commitment cm to bm

in step 3 and opens it honestly in step 4 when m ∈ I.
Note that SIMk is identical to the real interaction. To conclude the proof of

Theorem 1, it remains to show that, for every distinguisher Dn of size T , for all
1 ≤ m ≤ k,

|Pr[Dn(SIMm−1) = 1] − Pr[Dn(SIMm) = 1]| <
ε

k
. (4)

We now construct a sequence of sub-hybrids to establish the inequality (4).
Fix an m ∈ [k]. For 0 ≤ t ≤
, consider the hybrid SIMm

t :
SIMm

t :
1. Run step 1 and 2 of SIM and obtain b̄, {Ni, Gi}i∈[k] and {qi}i∈[k].
2. On input b̄, Sim runs TDcom and generates the first m − 1 commit-

ments to b1, b2, ..., bm−1, and the last k − m − 1 commitments to 0, and
then encrypts these commitments bit-wise and obtains {ζi}i∈[k]\m. Sim
computes the m-th commitment in the following way:

(a) If qm|Nm or bm = 0, Sim computes a commitment cm to 0 and gen-
erates ζm correspondingly.

(b) If qm � Nm and bm = 1, it computes a commitment cm to 0 and
a commitment c̃m to 1, and the bit-wise encryptions ζm of ĉm =
cm
1 || · · · ||cm

t ||c̃m
t+1|| · · · ||c̃m

� , where cm
j and c̃m

j are the j-th bit of cm

and c̃m respectively.

Sim sends {ζi}i∈[k] to R∗.
3. Upon receiving I ← R∗({ζi}i∈[k]), Sim does the following: for i ∈ [m −

1] ∩ I, open ζi in an honest way; for i ∈ [m + 1, k] ∩ I, open ζi according
to the step 4 of SIM; for i = m ∈ I, Sim opens ζi according to the step
4 of SIM except that, in the case of qm � Nm and bm = 1, it sets the
opening of ζm to be the decommitment of c̃m (already computed in the
previous step).

828 Y. Deng

4. Run OutSim ← R∗({(bi, deci))}i∈I), and output (b̄, I, OutSim).
Observe that when t = 0, SIMm

0 computes the commitment cm to 0 in case
qm � Nm and bm = 1, and sets its opening to be the decommitment of an
independent commitment c̃m to 1. That is, SIMm

0 acts exactly in the same way
as SIMm−1. We conclude the inequality (4) (and the Theorem 1) by the following
two lemmas.

Lemma 5. SIMm
�

c≈ SIMm.

Lemma 6. For all 1 ≤ t ≤
, and for all distingshuier Dn of size T ,

|Pr[Dn(SIMm
t−1) = 1] − Pr[Dn(SIMm

t) = 1]| <
ε

k

.

Due to space limitations, the proof of these two lemmas are provided in the
full verison of this paper. ��

6 Concurrent (T,ε)-Zero Knowledge and Witness Hiding
in the BPK Model

In this section we present a very simple three-round concurrent (T, ε)-zero knowl-
edge and witness hiding argument for NP in the BPK model. The construction
relies on the polynomial hardness of factoring, and makes use of only two sim-
ple building blocks: the factoring-based encryption and the three round parallel
version of Blum’s protocol (PB, VB). Let a transcript of (PB, VB) be of the form
(a, e, z), and P 1

B and P 2
B be the first and the second prover steps respectively.

In the key registration phase, an honest verifier generates two Blum inte-
gers N0 and N1 of length n, and stores two prime factors q0 and q1, qi|Ni for
each i ∈ {0, 1}. It registers (N0, N1) as his public-key. In the proof phase, on
input the verifier’s public key (N0, N1) and the statement x ∈ L, the prover
and the verifier execute (PB, VB) in which PB proves the statement “x ∈ L OR
∃q s.t. q|N0 or q|N1”. Denote such a prover by PB(x∨N0∨N1)).

The formal description of our protocol follows.
Protocolczk:

Common input: x ∈ RL, (N0, N1).
Private input to P : w s.t. (x,w) ∈ RL.
P −→ V : Send a ← P 1

B (x ∨ N0 ∨ N1)).
V −→ P : Send e ← VB.
P −→ V : z = z1||z2||···||z� ← P 2

B (x∨N0∨N1), {ζi,j ← EncNi
(zj)}i∈{0,1}j∈[�].

Send {ζ0,j}j∈[�] and {ζ1,j}j∈[�].
V : ẑ ← {DecN (ζ0,j , q0)}j∈[�], z̃ ← {DecN (ζ1,j , q1)}j∈[�]. Accept iff

ẑ = z̃ and (a, e, ẑ) is accepting.

Theorem 2. Under the standard hardness assumption of factoring, Protocolczk

is an argument that satisfies the following properties:

Individual Simulations 829

1. Concurrent (T, ε)-zero knowledge with concurrent soundness.
2. Concurrent witness hiding.
3. Concurrent zero knowledge with quasi-polynomial time simulator.

Proof. Completeness is obvious.

Concurrent Soundness. Suppose, towards a contradiction, that a cheating
concurrent prover P ∗ initiates k sessions and makes the verifier accept a false
statement x /∈ L with noticeable probability δ in one session. We can then
construct an efficient algorithm Factor using P ∗ as a subroutine to factor a
randomly chosen Blum integer with noticeable probability. Factor takes a Blum
integer N as input, chooses two primes p, q (≡ 3 mod 4) and a random i ∈ {0, 1},
sets Ni to be pq, N1−i to be N . In the key registration phase, Factor registers
(N0, N1) as his public key and keeps q as its secret key. In the proof phase, Factor
chooses a random session, and try to obtain two accepting accpeting transcripts
(a, e, z) and (a, e′, z′) and compute a witness q′(i.e., a prime factor of N0 or N1)
from them.

It is not hard to show that q′ is a prime factor of N1−i with high probabiity,
and this contradicts the hardness of factoring. The actual proof can be done
by combining the standard analysis with a crucial observation, as mentioned in
the introduction, that a successful cheating on session s means it will pass an
honest verifier’s check, which in turn implies that at least the both collections
of ciphertexts in the last message can be decrypted to the same accepting z.

Concurrent (T, ε)-Zero Knowledge. Consider an arbitrary concurrent adver-
sary V ∗ of polynomial size. We show there exists a simulator of polynomial size
to establish the weak zero knowledge property.

Suppose that V ∗ registers k public keys {(N i
0, N

i
1)}i∈[k] and initiates at most

s sessions. As before, the simulator applies the nearly optimal extractor to factor
all integers registered by V ∗ in the key registration phase. Once the simulator
extracts a prime factor of one of (N i

0, N
i
1), it can complete any session under

the public key (N i
0, N

i
1) successfully; if it fails for a public key (N i

0, N
i
1), the

simulator computes encryptions of zeros as its last message in the sessions under
the public key (N i

0, N
i
1).

Let Yn be the distribution of V ∗’s randomness, and the sampling algorithm
Samp to be the V ∗’s registration step. Set (T ′, δ) to be ((s(2
Tenc+Tp)+T), ε

4s�),
where Tenc, Tp and T are the size of Enc, the honest prover of the Blum protocol
(PB, VB) and the distinguisher respectively, and ε is the advantage of the distin-
guisher that we tolerate. By Lemma 4 we have a polynomial-size (T ′, δ = ε

4�)-
extractor Ext := {Extn}n∈N against any circuit family of size T ′.

On input s Yes instances x̄ = {xi}i∈[s], the simulator proceeds as follows.
Sim(x̄):
1. y ← Yn, {(N i

0, N
i
1)}i∈[k] ← V ∗(y).

2. {(qi
0, q

i
1)}i∈[k] ← Extn({(N i

0, N
i
1)}i∈[k], y).

830 Y. Deng

3. For a session under the public key (N i
0, N

i
1), do the following:

(a) If qi
0|N i

0 or qi
1|N i

1, complete this session using the extracted prime
factor as witness.

(b) Otherwise, produce an honest message a in its first step. Upon receiv-
ing a challenge e, set z = 0�, and compute {EncNi

0
(zj)}i∈[�] and

{EncNi
1
(zj)}i∈[�] as the last message of this session.

4. Output the entire history when V ∗ terminates.
We are ready to prove the first part of Theorem 2. Suppose, towards a con-

tradiction, that there exists a distinguisher Dn of size T such that

|Pr[Dn(ViewP
V ∗)(x̄)) = 1] − Pr[Dn(Sim(x̄)) = 1]| > ε. (5)

We order all s sessions according to its appearance, and construct the fol-
lowing hybrid simulators with all witnesses hardwired: Define Sim0(x̄, w̄) be the
Sim(x̄, w̄), and Simk(x̄, w̄) as in the same way except that in each of the first
k sessions it uses the real witness to complete a proof. Clearly, Sims(x̄, w̄) is
identical to the real interaction. From (5), there must exist a m ∈ [s] such that

|Pr[Dn(Simm−1(x̄, w̄)) = 1] − Pr[Dn(Simm(x̄, w̄)) = 1]| >
ε

s
. (6)

Fix such a m, and for t ∈ [2
], consider the sub-hybrid simulator Simm
t (x̄, w̄):

Simm
t (x̄, w̄):

1. Run step 1,2 of Simm(x̄, w̄) and obtain {(N i
0, N

i
1)}i∈[k] and {(qi

0, q
i
1)}i∈[k].

2. For the session m under the public key (Nm
0 , Nm

1), do the following:

(a) If qi
0|N i

0 or qi
1|N i

1, act in the same way as Simm(x̄).
(b) Otherwise, produce an honest message a in its first step. Upon receiv-

ing a challenge e, produce an accepting z using the real witness, set
z′ = 0t||z2�−t, where z2�−t is the suffix of z||z, and encrypt the first
half bits of z′ under N i

0, their second half bits under N i
1.

For any other session, act in the same way as Simm−1(x̄, w̄).
3. Output the entire history when V ∗ terminates.
Observe that Simm

2�(x̄, w̄) = Simm(x̄, w̄). It follows from the witness indis-
tinguishability of the Blum protocol that Simm

0 (x̄, w̄)
c≈ Simm−1(x̄, w̄) (with a

negligible distinguishing gap). By (6), there must exist a t ∈ [2
] such that

|Pr[Dn(Simm
t−1(x̄)) = 1] − Pr[Dn(Simm

t (x̄)) = 1]| >
ε

4s

. (7)

Note that the only difference between Simm
t−1(x̄) and Simm

t (x̄) lies in the t-th
ciphertext in case that the extractor fails to find any prime factors of the public
key. Hence, if the inequality (7) holds, we can construct a size-T ′ circuit An with
(barx, w̄) hardwired, and show that it constradicts the (nearly) optimality of
the extractor Extn. (The detailed proof can be found in the full version of this
work.) This concludes the first part of Theorem 2.

Individual Simulations 831

The second part of Theorem 2 follows from the fact that (concurrent)
(T, ε)-zero knowledge implies (concurrent) witness hiding (see [JKKR17] for the
detailed proof). Here we just describe the underlying idea. For a given malicious
verifier V ∗ of size T that can output a witness of a statement drawn from Xn at
the end of a session with probability greater than some inverse polynomial ε, as
we showed above, there exists a simulator of polynomial size such that V ∗ cannot
distinguish the real interaction from simulation with probability greater than ε

2 .
Combining the simulator and V ∗, we will have a circuit family of polynomial size
that breaks the hardness of Xn. Quasi-polynomial simulatability follows again
from the second part of Lemma 4 directly. ��

7 Simpler (T,ε)-Zero Knowledge and Analysis
in the Plain Model

In this section we present a very simple delayed-input 2-round (T, ε)-zero knowl-
edge argument for NP, and then sketch how to use our individual simulation tech-
nique to give a significantly simpler proof that the distinguisher-dependent sim-
ulatable zero knowledge protocols of [JKKR17,BKP19] also satisfy the stronger
notion of (T, ε)-zero knowledge.

We build such an argument on a quasi-polynomial extractable perfectly bind-
ing commitment scheme Com [Pas03] (which can be based on sub-exponential
hardness of factoring) and a NIWI proof system (PWI, VWI)10.

As usual, we denote by PWI(x ∨ (N, c)) the prover of the NIWI proof that
proves to the verifier the statement “x ∈ L OR ∃ q such that c is a commitment
to q and q|N”

Protocolzk:

Private input to P : w s.t. (x,w) ∈ RL.

V −→ P : (N, q) ← Blum(1n). Send N to P .
P −→ V : c←Com(0n), z=z1||z2||· · ·||z� ←PWI(x∨(N,c)),{ζj ←EncN (zj)}j∈[�].

Send x, c and {ζj}j∈[�] to V .
V : z ← {DecN (ζj , q)}j∈[�]. Accept iff (x, z) is accepting.

Theorem 3. Under the sub-exponential hardness assumption of factoring,
Protocolzk is a delayed-input interactive argument that satisfies all the following
properties:

1. Delayed-input (T, ε)-zero knowledge.
2. Delayed-input witness hiding.
3. Delayed-input zero knowledge with quasi-polynomial time simulator.

10 One can also use two-round WI (such as [DN00]) here. We use NIWI (such
as [GOS06]) to simplify our construction.

832 Y. Deng

The soundness of this protocol is also straightforward. Note that a cheating
prover P ∗ on a false statement x /∈ L with noticeable success probability δ implies
that the message c sent by P ∗ is a commitment to a prime factor of N . This leads
to a simple quasi-polynomial factoring algorithm Factor with success probability
at least δ that contradicts the sub-exponential hardness of factoring: On input
an integer N , it plays the role of the verifier and sends it to P ∗; upon receiving
the message c, it extracts a prime factor of N from c in quasi-polynomial time.

The proof of (T, ε)-zero knowledge, witness hiding and quasi-polynomial sim-
ulatability are essentially the same as in the previous section, we omit it here.

Upgrade the Distinguisher-Dependent Simulations. The work of
[CLP15b] implies that existing distinguisher-dependent simulatable weak zero
knowledge protocols of [JKKR17,BKP19] are also (T, ε)-zero knowledge. We
note that both constructions of [JKKR17,BKP19] enjoy the two properties of
(A,B) listed in Sect. 1.4, hence our individual simulation technique can also be
applied to prove that they satisfy the stronger notion of (T, ε)-zero knowledge.
For their 3-round protocols, one can view the verifier step as an NP instance (to
which a solution will enable a successful simulation) sampler that takes as input
its randomness and the first prover message a and outputs an instance (verifier
message). To show the (T, ε)-zero knowledge property, we can construct an indi-
vidual simulator in a similar way. The simulator applies a nearly optimal extrac-
tor (which is also given certain secret information f(a) about the message a as an
additional input11) to the sampler/verifier and tries to extract the corresponding
witness, and then follows the residual strategy of the distinguisher-dependent
simulator in [JKKR17,BKP19] after their extraction from the distinguisher
oracle.

Acknowledgments. We would like to thank Takahiro Matsuda, Xinxuan Zhang and
anonymous reviewers from Asiacrypt’20 and Crypto’19 for pointing out two errors in
earlier versions of this paper, and for their valuable suggestions. We are supported by
PlatON, the National Natural Science Foundation of China (Grant No. 61932019, No.
61772521 and No. 61772522), Key Research Program of Frontier Sciences, CAS (Grant
No. QYZDB-SSW-SYS035).

References

[ACGS88] Alexi, W., Chor, B., Goldreich, O., Schnorr, C.-P.: RSA and rabin func-
tions: certain parts are as hard as the whole. SIAM J. Comput. 17(2),
194–209 (1988)

11 This is in contrast to our settings, where the hard instances generated by the adver-
sary depend only on its randomness. When these instances depend also on the first
prover message a, the nearly optimal extractor usually needs to take as input some
secret information about a, since in a proof by contradiction like ours, those algo-
rithms Dn and An need these information to go through.

Individual Simulations 833

[AIR01] Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell
digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44987-6 8

[APV05] Alwen, J., Persiano, G., Visconti, I.: Impossibility and feasibility results
for zero knowledge with public keys. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 135–151. Springer, Heidelberg (2005). https://doi.
org/10.1007/11535218 9

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: Proceed-
ings of the 42th Annual IEEE Symposium on Foundations of Computer
Science - FOCS 2001, pp. 106–115. IEEE Computer Society (2001)

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

[BGI+17] Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message
witness indistinguishability and secure computation in the plain model
from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70700-6 10

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A.
(ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 1

[BKP19] Bitansky, N., Khurana, D., Paneth, O.: Weak zero-knowledge beyond the
black-box barrier. In: Annual ACM Symposium on the Theory of Comput-
ing - STOC 2019, pp. 1091–1102. ACM Press (2019)

[BP15] Bitansky, N., Paneth, O.: On non-black-box simulation and the impos-
sibility of approximate obfuscation. SIAM J. Comput. 44(5), 1325–1383
(2015)

[BP12] Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 11

[CCH+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Annual ACM
Symposium on the Theory of Computing - STOC 2019, pp. 1082–1090.
ACM Press (2019)

[CGGM00] Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero
knowledge. In: Proceedings of the 32rd Annual ACM Symposium Theory
of Computing- STOC 2000, pp. 235–244. ACM press (2000)

[CKPR01] Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires omega(log n) rounds. In: Proceedings of the 33rd
Annual ACM Symposium Theory of Computing- STOC 2001, pp. 570–
579. ACM press (2001)

[CLP13] Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero knowl-
edge from p-certificates. In: Proceedings of the 54th Annual Symposium
on Foundations of Computer Science - FOCS 2013, pp. 50–59. IEEE Com-
puter Society (2013)

[CLP15a] Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-
knowledge from indistinguishability obfuscation. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 287–307. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 14

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/11535218_9
https://doi.org/10.1007/11535218_9
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-28914-9_11
https://doi.org/10.1007/978-3-662-47989-6_14

834 Y. Deng

[CLP15b] Chung, K.-M., Lui, E., Pass, R.: From weak to strong zero-knowledge and
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9014, pp. 66–92. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46494-6 4

[Den17] Deng, Y.: Magic adversaries versus individual reduction: science wins either
way. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10211, pp. 351–377. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-56614-6 12

[DFG+11] Deng, Y., Feng, D., Goyal, V., Lin, D., Sahai, A., Yung, M.: Reset-
table cryptography in constant rounds – the case of zero knowledge. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
390–406. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
25385-0 21

[DGL+16] Deng, Y., Garay, J., Ling, S., Wang, H., Yung, M.: On the implausibility of
constant-round public-coin zero-knowledge proofs. In: Zikas, V., De Prisco,
R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 237–253. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44618-9 13

[DGS09] Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability
conjecture and a new non-black-box simulation strategy. In: Proceedings
of the 50th Annual Symposium on Foundations of Computer Science -
FOCS 2009, pp. 251–260. IEEE Computer Society (2009)

[DK18] Deshpande, A., Kalai, Y.: Proofs of ignorance and applications to 2-
message witness hiding. Cryptology ePrint Archive, Report 2018/896
(2018)

[DN00] Dwork, C., Naor, M.: Zaps and their applications. In: Proceedings of the
41th Annual IEEE Symposium on Foundations of Computer Science -
FOCS 2000, pp. 283–293. IEEE Computer Society (2000)

[DNRS03] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. J.
ACM 50(6), 852–921 (2003)

[DNS98] Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: Proceed-
ings of the 30rd Annual ACM Symposium Theory of Computing - STOC
1998, pp. 409–418. ACM press (1998)

[FGJ18] Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round
zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10822, pp. 3–33. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78372-7 1

[FKP19] Freitag, C., Komargodski, I., Pass, R.: Non-uniformly sound certificates
with applications to concurrent zero-knowledge. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 98–127. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 4

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM. J. Comput. 29(1), 1–28 (1999)

[FS89] Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds.
In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544.
Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 46

[FS90] Feige, U., Shamir, A.: Witness indistinguishability and witness hiding pro-
tocols. In: Proceedings of the 22rd Annual ACM Symposium Theory of
Computing- STOC 1990, pp. 416–426. ACM press (1990)

[GK96] Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof
systems. SIAM J. Comput. 25(1), 169–192 (1996)

https://doi.org/10.1007/978-3-662-46494-6_4
https://doi.org/10.1007/978-3-662-46494-6_4
https://doi.org/10.1007/978-3-319-56614-6_12
https://doi.org/10.1007/978-3-319-56614-6_12
https://doi.org/10.1007/978-3-642-25385-0_21
https://doi.org/10.1007/978-3-642-25385-0_21
https://doi.org/10.1007/978-3-319-44618-9_13
https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/978-3-030-26954-8_4
https://doi.org/10.1007/0-387-34805-0_46

Individual Simulations 835

[GL89] Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions.
In: Proceedings of the 21th Annual ACM Symposium on the Theory of
Computing - STOC 1989, pp. 25–32. ACM Press (1989)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[Gol01] Goldreich, O.: Foundations of Cryptography, Volume Basic Tools. Cam-
bridge University Press, Cambridge (2001)

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 6

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Proceedings of the 21th Annual ACM Symposium
on the Theory of Computing - STOC 1989, pp. 44–61. ACM Press (1989)

[JKKR17] Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent
simulation in two rounds and its applications. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 158–189. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 6

[KP01] Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: Proceedings of the 33rd Annual ACM Symposium
Theory of Computing- STOC 2001, pp. 560–569. ACM press (2001)

[MR01] Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 32

[ORSV13] Ostrovsky, R., Rao, V., Scafuro, A., Visconti, I.: Revisiting lower and upper
bounds for selective decommitments. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 559–578. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 31

[PA17] Ananth, P., Jain, A.: On secure two-party computation in three rounds.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 612–644.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 21

[Pas03] Pass, R.: Simulation in quasi-polynomial time, and its application to pro-
tocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 160–176. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-39200-9 10

[Pas11] Pass, R.: Limits of provable security from standard assumptions. In: Pro-
ceedings of the 45rd Annual ACM Symposium Theory of Computing-
STOC 2011, pp. 109–118. ACM press (2011)

[PRS02] Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with
logarithmic round-complexity. In: Proceedings of the 43th Annual IEEE
Symposium on Foundations of Computer Science - FOCS 2002, pp. 366–
375. IEEE Computer Society (2002)

[RK99] Richardson, R., Kilian, J.: On the concurrent composition of zero-
knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 415–431. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 29

[SV12] Scafuro, A., Visconti, I.: On round-optimal zero knowledge in the bare
public-key model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 153–171. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 11

https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/3-540-44647-8_32
https://doi.org/10.1007/978-3-642-36594-2_31
https://doi.org/10.1007/978-3-642-36594-2_31
https://doi.org/10.1007/978-3-319-70500-2_21
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/3-540-48910-X_29
https://doi.org/10.1007/3-540-48910-X_29
https://doi.org/10.1007/978-3-642-29011-4_11
https://doi.org/10.1007/978-3-642-29011-4_11

836 Y. Deng

[TW87] Tompa, M., Woll, H.: Random self-reducibility and zero knowledge interac-
tive proofs of possession of information. In: Proceedings of the 28th Annual
Symposium on Foundations of Computer Science - FOCS 1987, pp. 472–
482. IEEE Computer Society (1987)

[Xia11] Xiao, D.: (Nearly) round-optimal black-box constructions of commitments
secure against selective opening attacks. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 541–558. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19571-6 33

[Xia13] Xiao, D.: Errata to (nearly) round-optimal black-box constructions of com-
mitments secure against selective opening attacks. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 721–722. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2 40

[YZ07] Yung, M., Zhao, Y.: Generic and practical resettable zero-knowledge in the
bare public-key model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol.
4515, pp. 129–147. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 8

https://doi.org/10.1007/978-3-642-19571-6_33
https://doi.org/10.1007/978-3-642-19571-6_33
https://doi.org/10.1007/978-3-642-36594-2_40
https://doi.org/10.1007/978-3-642-36594-2_40
https://doi.org/10.1007/978-3-540-72540-4_8
https://doi.org/10.1007/978-3-540-72540-4_8

Blockchains and Contact Tracing

KVaC: Key-Value Commitments
for Blockchains and Beyond

Shashank Agrawal1 and Srinivasan Raghuraman2(B)

1 Western Digital Research, Milpitas, USA
shashank.agrawal@wdc.com

2 Visa Research, Palo Alto, USA
srraghur@visa.com

Abstract. As blockchains grow in size, validating new transactions
becomes more and more resource intensive. To deal with this, there
is a need to discover compact encodings of the (effective) state of a
blockchain—an encoding that allows for efficient proofs of membership
and updates. In the case of account-based cryptocurrencies, the state can
be represented by a key-value map, where keys are the account addresses
and values consist of account balance, nonce, etc.

We propose a new commitment scheme for key-value maps whose size
does not grow with the number of keys, yet proofs of membership are of
constant-size. In fact, both the encoding and the proofs consist of just
two and three group elements respectively (in groups of unknown order
like class groups). Verifying and updating proofs involves just a few group
exponentiations. Additive updates to key values enjoy the same level of
efficiency too.

Key-value commitments can be used to build dynamic accumulators
and vector commitments, which find applications in group signatures,
anonymous credentials, verifiable databases, interactive oracle proofs,
etc. Using our new key-value commitment, we provide the most efficient
constructions of (sub)vector commitments to date.

1 Introduction

Cryptocurrency space has grown quite rapidly since the introduction of Bit-
coin [3] about a decade ago. The state of several leading cryptocurrencies like
Ethereum [15], Ripple [26], EOS [13] and Stellar [24] can be represented by a
key-value map M where keys are the public addresses of users and values are
the attributes associated with them (balance amount, nonce, etc.). When Alice
generates a transaction tx to transfer an amount x from her public key pk to
Bob, the map M is used to check if pk has a balance of at least x. On confirma-
tion of tx, balance of Alice and Bob (along with other bookkeeping information)
is updated in M.

In a cryptocurrency network, every node is expected to verify and store the
state of the system. As the number of users increase and new accounts are cre-
ated, the size of the key-value map grows, and the resource cost of running a
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 839–869, 2020.
https://doi.org/10.1007/978-3-030-64840-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_28&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_28

840 S. Agrawal and S. Raghuraman

node increases. This drives a large proportion of users to rely on third parties to
inform them of the state of the system, severely limiting the amount of decen-
tralization in the network [11,12,27]. To provide some context, Ethereum has
over 70 million accounts now [14] even though its not very widely used (5–10
transactions per second [16]). Upcoming currencies like Libra [23] can have a
much higher throughput and are expected to have billions of accounts.

Key-Value Commitments. In this paper, we initiate a formal study of key-
value commitments (KVC). These commitments allow one to produce succinct
encodings of key-value maps that are amenable to both efficient membership
proofs and additive updates.1 We propose a new KVC KVaC (pronounced
‘quack’) in groups of unknown order, such as an RSA group or a class group
[5], with the following properties:

– Succinct encoding. Commitment value consists of just two group elements
irrespective of the number of items (key-value pairs) committed. If class
groups of quadratic imaginary order targeting 100-bit security are used, then
the commitment size would be 4096 bits or about half a kilobyte [18].

– Succinct proofs & fast verification. A proof to show that a certain item is in
the commitment consists of just three group elements and only five exponen-
tiations are required to verify a proof.

– Fast updates. Inserting new items to the map, updating values of existing
items (additive updates), and updating membership proofs when items are
added/changed can all be done quite efficiently—at most four exponentiations
are required in any case. Furthermore, to update the value of an item, its
existing value is not needed.

– Trustless set-up. If class groups are used as the underlying group here, then
the encoding scheme could be bootstrapped in a trustless manner.

– Aggregation & batching. Multiple proofs can be aggregated to the size of a
single proof and verified in the same amount of time as a single proof.

We prove the security of our construction under the RSA assumption in the
random oracle model or the strong RSA assumption in the standard model.

Vector Commitments & Accumulators. KVCs can be used to construct and
improve upon well-studied cryptographic primitives like accumulators [1,2,7,8,
25] and more recent ones like (sub)vector commitments (VC) [4,10,11,19,20,22].
Accumulators are used in group signatures, anonymous credentials, computation
on authenticated data, decentralized bulletin boards, etc., and VCs have appli-
cations to verifiable databases with updates, interactive oracle proofs, etc.

VCs have been used to build accumulators [10] and vice versa [4]. We show
how to build both of them from KVCs. In particular, we provide the first VC
scheme where both public parameters and proofs consist of a constant number
of group elements, the public parameters do not restrict the number of elements

1 We do not intend key-value commitments to provide any sort of hiding for the keys
or values committed, similar to how vector commitments do not intend to hide the
vector elements [10].

KVaC: Key-Value Commitments for Blockchains and Beyond 841

that could be committed to, and all the VC algorithms require a constant num-
ber of group operations. Furthermore, the proofs can be batched to produce
constant-size subvector openings. We also show how to build a dynamic accu-
mulator from an (insert-only) KVC whose efficiency matches with the state-of-
the-art. Thus, KVCs can be seen as a more general and flexible primitive.

We discuss our work in connection to VCs and accumulators in more depth
in the following section.

1.1 Applications

Stateless Validation of Cryptocurrencies. Todd [27] first proposed the idea
of a “stateless” blockchain where nodes participate in transaction validation
without storing the entire state of the ledger, but rather only a short commit-
ment to the state. Using our new key-value commitment scheme KVaC, one can
build an account-based cryptocurrency where a node needs to store only two
group elements (the commitment) to validate transactions. In the new currency,
an account is represented by a key-value pair where key is a public key for a
signature scheme (or a hash of it) and value consists of the account balance and
a counter. (The counter helps to prevent replay attacks.) Suppose Alice has an
account represented by (pk, (v||ct)) and she wants to transfer an amount b to a
public key pk�. She will generate a transaction tx = (pk, σ, v, ct, b, pk�, π) where
σ is a signature on (v, ct, b, pk�, π) under pk and π is a proof of the membership
of (pk, (v||ct)) in the commitment.

A validator node, holding a commitment C, checks if σ is a valid signature, π
is a valid proof w.r.t. C, and b is at most v. If all the checks pass, it updates the
commitment using the efficient update algorithm Update of KVaC. The validator
first executes Update with (pk,−b||1) and C to produce a new commitment
C ′ that reflects the change to Alice’s account, and then executes Update with
(pk�, b||0) and C ′ to produce the final commitment C ′′ that reflects the changes
to both the accounts. Here, KVaC’s ability to update the value associated with
pk� without the knowledge of the original is very useful, otherwise senders would
have to keep track of receivers’ balances too.

Every time the commitment value changes, users need to update their proofs
so that they remain valid. This puts some additional burden on users as they have
to sync up with the blockchain frequently, which brings up a natural question:
can the information required to update proofs be sublinear in the number of
updates made? Unfortunately, this does not seem to be the case because the
new and old values of commitment can be used to find out what updates have
been made. Specifically, the lower bound of Camacho and Hevia can be extended
to our setting as well [6].

Use of KVCs in blockchain also adds some extra overhead of generating and
transmitting proofs, but they can be batched together and only one proof needs
to be stored with every block.

Vector Commitments. Vector commitments (VC) were introduced by Cata-
lano and Fiore [10]. VCs allow one to commit to an ordered sequence of values in

842 S. Agrawal and S. Raghuraman

such a way that one can later open the commitment at specific positions. They
also allow updates to individual values and corresponding updates to proofs.
The constructions of Catalano and Fiore, and those of Chepurnoy et al. [11]
proposed later, have public parameters that scale linearly with the size of the
vector. Though they suggest a way to cut down the parameters to a constant, it
makes the cost of VC algorithms linear in the size of the vector.

Boneh et al. [4] take a different approach to build VCs. They provide a trans-
formation from their accumulator construction which supports both membership
and non-membership proofs. Though their construction does not put any restric-
tion on the length of the vector, the vector elements are accumulated bit by bit.
So the number of group operations required to insert new elements, generate
membership proofs, etc. is linear in the bit-size of vector elements. Updates to
values are not explicitly discussed but one could infer that it would have a similar
cost. Lastly, their proofs contain seven group elements.

KVCs can be used to build a VC in a straightforward way, with keys playing
the role of indices. Our KVC leads to a VC where the public parameters are of
constant size, there is no restriction on the number of elements that could be
committed, and proofs consist of just three group elements. Further, all the VC
algorithms require a constant number of group operations. This improves upon
all the known constructions.

Subvector Commitments. Lai and Malavolta [20] recently proposed the
notion of subvector commitments (SVC). An SVC allows one to open a com-
mitted vector at a set of positions, where the opening size is independent of
length of the committed vector and the number of positions to be opened. They
show that the proofs (or openings) of Catalano and Fiore [10] can be extended
for multiple elements without losing the succinctness. However, this also means
that they inherit the limitations of Catalano and Fiore’s constructions.

Membership proofs of our KVC can be batched, resulting in an SVC with
succinct subvector openings—but without linear growth in public parameters.

Accumulators. Accumulators are a very well-studied cryptographic primitive
with numerous applications. They can be based on RSA groups [2,8], Merkle
hash trees [7], or bilinear maps [25]. See Baldimtsi et al. [1] for a thorough
discussion of different types of accumulators and modular conversions between
them. We show how to build a dynamic positive accumulator from an (insert-
only) KVC whose efficiency matches with the state-of-the-art. (All accumulator
algorithms need a constant number of group operations.) A dynamic accumulator
supports both additions and deletions, and a positive one supports membership
proofs.

1.2 More on Related Work

Comparison with Boneh et al. While Boneh et al.’s VC construction [4]
is novel and efficient, their technique inherently works bit-by-bit. (They also
discuss how to build KVCs from VCs.) The exponent is always a subset product

KVaC: Key-Value Commitments for Blockchains and Beyond 843

of elements corresponding to the bits set to 1. It is not clear how to get rid of this
restriction. This limitation also translates to updates as one would have to know
which bits would have to be flipped from 0 to 1 and 1 to 0. This cannot be done
simply using the knowledge of update value. Our construction takes a completely
different approach by encoding the values directly as a linear function, which
allows us to get past the bit-by-bit issues as well as handle updates while being
oblivious to prior value (very important for blockchain applications). Our KVC
algorithms involve constant number of group operations as opposed to linear in
bit-length; the constants are small (between three and five); and, our proof size
is three as opposed to seven.

Recent Work. Lately, vector commitments has been a very active area of
research. Several new constructions have been proposed. We discuss a few of
them here.

Campanelli et al. [9] study aggregation for subvector commitments. They
introduce new incremental aggregation and disaggregation properties for SVCs.
Incremental aggregation allows one to merge different subvector openings into
a single concise opening, and to further aggregate merged openings (without
knowing the entire committed vector). Disaggregation allows one to ‘break down’
openings into openings of subvectors. Campanelli et al. point out that though a
form of aggregation is already present in the VC of Boneh et al. [4], it can be
performed only once. They construct new VC schemes where openings can be
aggregated an unbounded number of times.

Campanelli et al. provide two constructions with constant-size public param-
eters, a CRS in their case. However, the CRS needs to be ‘specialized’ for a length
n before it can be used for commitment. The first construction, based on Boneh
et al. [4], has a dependence on the bit-length of elements. Verification in the
second construction, based on Catalano and Fiore [10], requires generation of n
primes (unless they are already stored). Furthermore, Campanelli et al. do not
consider updates to vector elements. Our KVC construction, on the other hand,
can be used to build a VC that does not restrict the number of elements in a
commitment and allows them to be updated. However, like Boneh et al., we can
only support one-hop aggregation (we do not know how to further aggregate
aggregated proofs).

Pointproofs [17] study aggregatable VCs in the cross-commitment setting.
Proofs for subvectors of multiple commitments can be aggregated by any third
party into a single proof for the multiple subvectors. When applied to smart con-
tracts storage, Pointproofs reduces validators’ storage requirements considerably.
While Pointproofs have very short proofs, the public parameters are linear in
the length of the vector. The scheme relies on a q-type assumption in a bilinear
group. Further, in order to prove security of aggregation, they need to work in
the algebraic group model.

Tomescu et al. [28] also study aggregatable subvector commitment and give
an efficient construction in prime-order groups from constant-sized polynomial
commitments. (They also provide a detailed and extensive overview of the liter-
ature.) Their public parameters also depend on the length of the vector though.

844 S. Agrawal and S. Raghuraman

They discuss how to build a stateless cryptocurrency from their VC but the
number of users n that need to be supported must be known in advance.

1.3 Organization

We first provide a technical overview of our construction (Sect. 2). We discuss two
intermediate steps to building a KVC: an insert-only KVC that allows insertion
of new items but no updates to existing ones, and an increment-only KVC that
allows incrementing the values corresponding to keys but no inserts (it is assumed
that all keys are initialized with value 0).

In Sect. 3, we describe the notation used in the paper, define key-value com-
mitments formally, and state the assumptions we need to prove security. In
Sects. 4 and 5, we build an insert-only KVC and a full KVC, respectively. We
show how the former can be used to build accumulators and the latter naturally
lends itself to vector commitments. Finally, in Sect. 6, we show how to batch
membership proofs together.

We provide a formal description of the increment-only KVC in the full version
of the paper.

2 Overview

In this section, we provide a technical overview of our construction of key-value
commitments. Informally, a key-value commitment allows one to commit to a
key-value map in such a way that it is later possible to open the commitment
with respect to any specific key. To motivate our construction, we build up to it
in three steps.

2.1 Insert-Only

We begin by describing an insert-only key-value commitment construction. By
insert-only, we mean that we only insert key-value pairs into the commitment and
do not the update the value corresponding to a key. Our key-value commitment
C to the key-value map M = {(ki, vi)}i∈[q] ⊆ K × V takes the form

CM =
(
g

∑
i∈[q] vi

∏
j∈[q]\{i} zj , g

∏
i∈[q] zi

)
,

where zi are random strings2 corresponding to the keys ki. The crucial observa-
tion here is that the exponent in the first element of the commitment, namely
g

∑
i∈[q] vi

∏
j∈[q]\{i} zj , is a linear function of the values vi. The proof corresponding

to a key km ∈ KM would be

Λkm
=

(
g

∑
i∈[q]\{m} vi

∏
j∈[q]\{i,m} zj , g

∏
i∈[q]\{m} zi

)

2 The precise requirement on {zi} will be described later.

KVaC: Key-Value Commitments for Blockchains and Beyond 845

which is essentially the key-value commitment of all the other key-value pairs in
M. Let us assume that the strings zi can be publicly generated from the keys
ki, say by some hash function3. Then, the verification of the proof Λkm

for a
key-value pair (km, vm) would simply be the following checks:

Λzm

km,1 · Λvm

km,2 =
(
g

∑
i∈[q]\{m} vi

∏
j∈[q]\{i,m} zj

)zm

·
(
g

∏
i∈[q]\{m} zi

)vm

= g
∑

i∈[q]\{m} vi

∏
j∈[q]\{i} zj · gvm

∏
i∈[q]\{m} zi

= g
∑

i∈[q] vi

∏
j∈[q]\{i} zj

= CM,1

and

Λzm

km,2 =
(
g

∏
i∈[q]\{m} zi

)zm

= g
∏

i∈[q] zi

= CM,2

Note that the above design also describes a procedure to insert a key-value
pair into the commitment. To insert a new pair (kq+1, vq+1) into M, we set

CM′ =
(
C

zq+1
M,1 · C

vq+1
M,2 , C

zq+1
M,2

)

where M′ = M ∪ {(km+1, vm+1)}. Furthermore, the proof Λkq+1 corresponding
to the key kq+1 would be CM.

We also have a straightforward way to update proofs for the existing keys
when a new key-value pair is inserted. For instance, on inserting (kq+1, vq+1),
we can update the proof Λkm

corresponding to the key km with the help of the
update information (kq+1, vq+1) as follows:

Λ′
km

=
(
Λ

zq+1
km,1 · Λ

vq+1
km,2, Λ

zq+1
km,2

)
.

One can easily check that the modified proof would be successfully verified.
The final piece of the puzzle is key binding, i.e., it must be computationally

infeasible for an adversary to produce a proof corresponding to a key k that
verifies for a key-value pair (k, v) which is not in the key-value commitment. We
analyze this as follows. Suppose an adversary comes up with a key-value pair
(k, v) and a proof Λk = (Λk,1, Λk,2) corresponding to the key k. Let us assume
that k ∈ KM (the other case is easier to handle). Let m denote the index of the
key k in the map M, i.e., let k = km. Let zm be the string corresponding to km.
We will, for reasons that will be clear shortly, require that zm be an odd string.

3 We will actually not require any private randomness in {zi}, just that there is some
concise representation of them. This will be clear from the fact that we publish the
key for the hash function to enable its public evaluation.

846 S. Agrawal and S. Raghuraman

Let vm be the value corresponding to the key km in the commitment and let
Λkm

= (Λkm,1, Λkm,2) be the corresponding proof. We first check that

Λzm

k,2 = CM,2.

Suppose that the check passes. Then, with overwhelming probability,

Λk,2 = g
∏

i∈[q]\{m} zi = Λkm,2.

This is because, otherwise,

α =
Λk,2

Λkm,2
�= ±1

is a non-trivial zmth root of unity. We know that such elements are hard to find
without knowing the order of the group. In particular, this means that we have
computed the order of the non-trivial element α.

We now proceed to the second and final check. We check that

Λzm

k,1 · Λv
k,2 = CM,1.

Note that

Λzm

km,1 · Λvm

km,2 = CM,1.

and, with overwhelming probability, Λk,2 = Λkm,2. Hence
(

Λk,1

Λkm,1

)zm

= Λvm−v
km,2 .

We only care about the case vm �= v. Note that setting

β =
Λk,1

Λkm,1

and

γ = Λvm−v
km,2

we have found β, a zmth root of a non-trivial element γ, which should be hard
to find in groups of unknown order.

Formally, we can show that if the RSA assumption holds, then computing β
is indeed hard. This can be seen as follows. The exponent of g in Λkm,2 contains
numbers that are coprime to zm. Furthermore, we will choose {zi} to be larger
than the permitted value space, which ensures that vm −v is also coprime to zm.
Thus, if one can compute β, which is a zmth root of γ, we can actually compute
a zmth root of g through an application of Shamir’s trick, which would break
the RSA assumption.

KVaC: Key-Value Commitments for Blockchains and Beyond 847

2.2 Increment-Only

We next describe an increment-only key-value commitment construction. By
increment-only, we mean that values corresponding to all keys are initialized to
0 and we can just update them by some amount δ every time. We propose that
our commitment C to a key-value map M = {(ki, vi)}i∈[q] ⊆ K × V takes the
form

CM = g
∏

i∈[q] z
vi
i ,

where zi are random primes corresponding to the keys ki. Let us assume that the
strings zi can be publicly generated from the keys ki, say by some hash function.

This construction is reminiscent of the RSA-based accumulator construction
of Li et al. [21] and Boneh et al. [4]. The proof corresponding to a key km ∈ KM
would need to consist of two parts, one to show that the exponent of zm is at
least vm and one to show that it is at most vm. The first part of the proof would
be

Λkm,1 = g
∏

i∈[q]\{m} z
vi
i ,

which is essentially the key-value commitment of all the other key-value pairs in
M. It can be used to show that the exponent of zm is at least vm by verifying
that

Λ
zvm
m

km,1 = CM.

The second part of the proof uses the idea from Li et al. [21] and Boneh et
al. [4] that was used to build non-membership proofs. Basically, we would like
to show that zm is coprime to

∏
i∈[q]\{m} zvi

i . This can be done by leveraging
Bezout coefficients a, b ∈ Z such that

a · zm + b ·
∏

i∈[q]\{m}
zvi
i = 1.

2.3 Putting It All Together

We re-examine the insert-only key-value commitment, namely,

CM =
(
g

∑
i∈[q] vi

∏
j∈[q]\{i} zj , g

∏
i∈[q] zi

)

and
Λkm

=
(
g

∑
i∈[q]\{m} vi

∏
j∈[q]\{i,m} zj , g

∏
i∈[q]\{m} zi

)

The exponent of the first component of CM is linear in the values that are being
committed. Thus, in order to change the value corresponding to key km by δ, it
is enough to perform the following operation:

CM′,1 = CM,1 · gδ·∏i∈[q]\{m} zi .

848 S. Agrawal and S. Raghuraman

This means that one only needs to know the index m4 and δ in order to perform
an update on the value corresponding to the key km in the commitment. Let

β = g
∏

i∈[q]\{m} zi .

Firstly, note that β can be generated publicly. However, one would have to
generate all the zi for i ∈ [q] \ {m} (or retrieve it from some persistent storage)
and then perform q − 1 exponentiations, making it a computationally intensive
task. However, notice that

Λkm,2 = β.

Thus, if we assume that the party involved in the update of the mth element
has access to Λkm

, we can assume that we have access to β and we do not
have to recompute it every time an update is issued. However, we would like to
overcome this limitation. For instance, in the case of a blockchain, a sender who
wants to send another user some funds will not be able to update the key-value
commitment to reflect the changes in the recipient’s account efficiently unless
they have access to the proof of the recipient.

Let us turn to the proofs. Note that if we perform an update at index m, the
proof corresponding to the key km does not change. For n �= m, we can update
the proof corresponding to the key kn by performing the following operation:

Λkn,1 = Λkn,1 · gδ·∏j∈[q]\{m,n} zj .

Let
γ = g

∏
j∈[q]\{m,n} zj .

Again, note that γ can be generated publicly but it would be a computationally
intensive task. The situation is even worse here because γ cannot be computed
efficiently from any other information that is available as that would amount to
taking zmth roots of elements.

The construction we propose now circumvents all of these issues. It gets rid of
indices and allows for efficient updates of the key-value commitment and proofs.
Moreover, we can do so without involving the party (their proof) whose value is
being modified. Our commitment C to the key-value map M = {(ki, vi)}i∈[q] ⊆
K × V takes the form

CM =
(
g(∑

i∈[q] vi

∏
j∈[q]\{i} zj)·∏i∈[q] z

ui
i , g

∏
i∈[q] z

ui+1
i

)
,

where ui denotes the number of updates made to the value corresponding to the
key ki. With this form, insertion can be carried out in exactly the same way as
in the case of the insert-only construction.

4 While this is already pretty good, we ideally would like to get rid of the notion of
an index and carry out an update just knowing the key km. We do achieve this in
our construction.

KVaC: Key-Value Commitments for Blockchains and Beyond 849

More interestingly, if CM′ denotes the new commitment value after changing
the value corresponding to key km by δ, then

CM′,1 = Czm

M,1 · gδ·zu′
m

m

∏
i∈[q]\{m} z

ui+1
i

= Czm

M,1 · gδ·zum+1
m

∏
i∈[q]\{m} z

ui+1
i

= Czm

M,1 · gδ·∏i∈[q] z
ui+1
i

= Czm

M,1 · Cδ
M,2,

where u′
m = um + 1 denotes the (new) total number of updates for key km.

Note how using the number of updates {ui} in the exponents of the {zi} lets
us perform an update without having to compute values akin to β (and γ while
updating proofs) which have to miss some {zi} in the exponent, rendering their
computation inefficient.

In fact, it is now easy to see that

CM′ =
(
Czm

M,1 · Cδ
M,2, C

zm

M,2

)
.

Thus, an update works exactly how an insert would and this is an important
property our constructions enjoys that we will come back to later in seeing how
this primitive fits into the blockchain setting. It can also be easily deduced now
that this design has a very similar consequence on enabling update to proofs
efficiently. In particular, recall that updating the values corresponding to keys
and inserting a new key have similar effect. Since we know how to update proofs
following an insert, we can update them in exactly the same way on an update
to some value.

To prove key-binding, it will be crucial for a verifier to know precisely the
number of updates that have been performed on the value corresponding to the
key for which a proof is provided. If verifier is not aware of this, it is possible
for an attacker to generate a “fake” proof and break key-binding. Indeed, the
number of updates made to the values corresponding to each key is public in the
blockchain setting, but we would not want parties to store this information as
it grows linearly with the number of key-value pairs that are inserted into the
commitment.

For this purpose, we can include in the commitment CM an increment-only
key-value commitment that stores the number of updates performed on each key.
During verification, proofs would now have to contain a proof for the right num-
ber of updates that have been performed in addition to the proof for the value
itself. In this way, the verifying party need not store the number of updates that
have been made to the values corresponding to each of the keys. The final step
is to observe that the second component of the key-value commitment, CM,2,
essentially acts as an increment-only key-value commitment for the number of
updates. Thus, we do not need to add anything else to CM.

850 S. Agrawal and S. Raghuraman

3 Preliminaries

3.1 Notation

For n ∈ N, let [n] = {1, 2, . . . , n}. Let λ ∈ N denote the security parameter. Let
|b| denote the bit-length of b ∈ N. Let Primes denote the set of integer primes
and Primes(λ) denote the set of integer primes less than 2λ. Symbols in boldface
such as a denote vectors. By ai we denote the i-th element of the vector a. For
a vector a of length n ∈ N and an index set I ⊆ [n], we denote by a|I the
sub-vector of elements ai for i ∈ I induced by I. By poly(·), we denote any
function which is bounded by a polynomial in its argument. An algorithm T is
said to be PPT if it is modeled as a probabilistic Turing machine that runs in
time polynomial in λ. Informally, we say that a function is negligible, denoted by
negl, if it vanishes faster than the inverse of any polynomial. If S is a set, then
x ←$ S indicates the process of selecting x uniformly at random from S (which
in particular assumes that S can be sampled efficiently). Similarly, x ←$ A(·)
denotes the random variable that is the output of a randomized algorithm A.

3.2 Key-Value Commitments

Informally, a key-value commitment allows one to commit to a key-value map
in such a way that it is later possible to open the commitment with respect
to any specific key. We require a key-value commitment to be concise in the
sense that the size of the commitment string C is independent of the size of the
map. Furthermore, it must be possible to update the map, by either adding new
key-value pairs or updating the value corresponding to an existing key.

We set up the following notation for a key-value map: A key-value map
M ⊆ K×V is a collection of key-value pairs (k, v) ∈ K×V. Let KM ⊆ K denote
the set of keys for which values have been stored in the map M. We define a
key-value commitment KVC as a non-interactive primitive that can be formally
described via the following algorithms:

– (pp, C) ←$ KeyGen(1λ): On input the security parameter λ, the key genera-
tion algorithm outputs some public parameters pp (which implicitly define the
key space K and value space V) and the initial commitment C to the empty
key-value map. All other algorithms have access to the public parameters.

– (C,Λk, upd) ← Insert(C, (k, v)): On input a commitment string C and a key-
value pair (k, v) ∈ K×V, the insertion algorithm outputs a new commitment
string C, a proof Λk (that v is the value corresponding to k), and update
information upd.

– (C, upd) ← Update(C, (k, δ)): On input a commitment string C, a key k ∈ K
and an update value δ5, the update algorithm outputs an updated string C
and update information upd. Note that this algorithm does not need the value
corresponding to the key k.

5 We assume updates are additive, i.e., updating a value v by δ amounts to changing
v to v + δ.

KVaC: Key-Value Commitments for Blockchains and Beyond 851

– Λk ← ProofUpdate(k, Λk, upd): On input a key k ∈ K, a proof Λk for some
value corresponding to the key k and update information upd, the proof
update algorithm outputs an updated proof Λk.

– 1/0 ← Ver(C, (k, v), Λk): On input a commitment string C, a key-value pair
(k, v) ∈ K × V and a proof Λk, the verification algorithm either outputs 1
(denoting accept) or 0 (denoting reject).

For correctness, we require that for all λ ∈ N, for all honestly generated
public parameters pp ←$ KeyGen(1λ), if C is a commitment to a key-value map
M, obtained by running a sequence of calls to Insert and Update, Λk is a proof
corresponding to key k for any k ∈ KM, generated during the call to Insert and
updated by appropriate calls to ProofUpdate, then Ver(C, (k, v), Λk) outputs 1
with probability 1 if (k, v) ∈ M.

To present the requirement formally, we define a correctness game. We have
an adversary in this game to capture the arbitrary order in which inserts and
updates can be applied to a commitment. We do not provide it any capability
to do something beyond that.

Definition 1. For a key-value commitment KVC and an adversary A, we define
a random variable Gcorrect

KVC,λ,A through a game between a challenger CH and A as
follows:

Gcorrect
KVC,λ,A :

1. CH samples (pp, C) ←$ KeyGen(1λ) and sends them to A. CH also main-
tains its own state comprising a key-value map M ⊆ K × V initialized to the
empty map, a key-proof map P initialized to the empty map, and the initial
commitment value C.

2. A issues queries of one of the following forms:
– (Insert, (k, v)): CH checks if M contains a tuple of the form (k, ·). If so,

CH responds with ⊥. If not, CH updates M to M ∪ {(k, v)} and executes
Insert(C, (k, v)) to obtain a new commitment C, along with Λk and upd.
CH then updates P to P ∪ {(k, Λk)}.

– (Update, (k, δ)): CH checks if M contains a tuple of the form (k, v). If not,
CH responds with ⊥. If so, CH updates M to (M∪{(k, v + δ)}) \ {(k, v)}
and executes Update(C, (k, δ)) to obtain a new commitment C, along with
update value upd.

Any time A issues a query, CH deals with the query as above and then per-
forms the following updates and checks:
– Let upd be the update information obtained by CH while processing A’s

most recent query. For each tuple (k, Λk) ∈ P, CH updates Λk by executing
ProofUpdate(k, Λk, upd).

– For each tuple (k, v) ∈ M with the corresponding tuple (k, Λk) ∈ P, CH
obtains bk ← Ver(C, (k, v), Λk). If for any k, bk = 0, then CH outputs
failure and terminates.

3. CH outputs success.

852 S. Agrawal and S. Raghuraman

The value of the random variable Gcorrect
KVC,λ,A is defined to be the output of CH,

namely, failure or success.

Definition 2 (Correctness). A key-value commitment KVC is correct if for
every adversary A, the following probability is identically zero:

AdvcorrectKVC,A(λ) = Pr
[
failure ←$ Gcorrect

KVC,λ,A
]

The security requirement for key-value commitments is that of key binding.
Informally, this says that it should be infeasible for any polynomially bounded
adversary (with knowledge of pp) to come up with an honestly generated com-
mitment and two proofs that certify to different values for the same key, or a
single proof that certifies to a value for a key that has not been inserted. The
adversary is, however, disallowed from executing Insert more than once with
respect to any k. We present the requirement formally below. We first define a
key-binding game.

Definition 3. For a key-value commitment KVC and an adversary A, we define
a random variable Gbind

KVC,λ,A through a game between a challenger CH and A as
follows:

Gbind
KVC,λ,A :

1. CH samples (pp, C) ←$ KeyGen(1λ) and sends them to A. CH also maintains
its own state comprising a key-value map M ⊆ K×V initialized to the empty
map and the initial commitment value C.

2. A issues queries of one of the following forms:
– (Insert, (k, v)): CH checks if M contains a tuple of the form (k, ·). If so,

CH responds with ⊥. If not, CH updates M to M ∪ {(k, v)} and executes
Insert(C, (k, v)) to obtain a new commitment C.

– (Update, (k, δ)): CH checks if M contains a tuple of the form (k, v). If not,
CH responds with ⊥. If so, CH updates M to (M∪{(k, v + δ)}) \ {(k, v)}
and executes Update(C, (k, δ)) to obtain a new commitment C.

3. A sends a final output to CH of one of the following forms:
– Type 1: a key k such that M does not contain a tuple of the form (k, ·),

a value v, and a proof Λk.
– Type 2: a key k such that M contains a tuple of the form (k, ·), a pair of

values (v, v′) where v �= v′, and a pair of proofs (Λk, Λ′
k).

4. CH performs the following checks corresponding to A’s output:
– Type 1: if Ver(C, (k, v), Λk) = 1, then CH outputs failure. Otherwise, CH

outputs success.
– Type 2: if Ver(C, (k, v), Λk) = Ver(C, (k, v′), Λ′

k) = 1, then CH outputs
failure. Otherwise, CH outputs success.

The value of the random variable Gbind
KVC,λ,A is defined to be the output of CH,

namely, failure or success.

KVaC: Key-Value Commitments for Blockchains and Beyond 853

Definition 4 (Key-binding). A key-value commitment KVC is key-binding
if for every PPT adversary A, the following probability is negligible in λ:

AdvbindKVC,A(λ) = Pr
[
failure ←$ Gbind

KVC,λ,A
]
.

Notice that in the definition of Gbind
KVC,λ,A, the commitment C is honestly

generated by the challenger CH based on the queries issued by the adversary
A. Also note that the definition only uses the Insert and Update routines of
the key-value commitment, as these are the only two that impact the value
of the commitment. Indeed, the adversary can perform all operations by itself
given the public parameters. However, the purpose of the game is to define the
honestly generated commitment with respect to which the adversary will attempt
to produce “fake” proofs. Definition 4 states that no PPT adversary will be able
to do so.

We note that key-value commitments are not required to satisfy any sort
of hiding property, although one can also define key-value commitments that
are hiding. Informally, a key-value commitment is hiding if an adversary cannot
distinguish whether a commitment was created to a key-value map M or to
another key-value map M′ even after learning the values corresponding to keys
that have the same value in both maps.

KVC for Account-Based Cryptocurrency. In Sect. 1.1, we briefly discussed
how a key-value commitment can be used to build an account-based cryp-
tocurrency with stateless validation. When a validator receives a transaction
tx = (pk, σ, v, ct, b, pk�, π) to transfer an amount b from Alice’s public key pk to
Bob’s public key pk�, it checks if σ is a valid signature on (v, ct, b, pk�, π), π is a
valid proof of the membership of (pk, (v||ct)) w.r.t. to the commitment state C,
and b is at most v.

The validator can then execute Update with C and (pk,−b||1) to produce
a new commitment C ′ that reflects the change to Alice’s account, but what
should it do for Bob? Perhaps it should insert pk� into C ′ if this is the first
time that pk� is being used in a transaction, or update it otherwise. However,
there is no way for the validator to know this unless it keeps a copy of the
blockchain. Fortunately, in our construction KVaC, insert and update work in
the exact same way (see Fig. 2), so the validator could always just do an update.
(The only difference between these operations is that the former outputs a proof
whereas the latter doesn’t.)

Let us look at the situation from Alice and Bob’s perspective. While Alice
has a proof π for her key pk that she can update, Bob may not have any proof
for pk� if this is the first time someone is sending money to him. We could help
Bob generate a proof by including the latest state of the commitment value in
every block. If the transaction tx is accepted into a block
, Bob could use the
commitment C ′ from block
− 1 to quickly generate a proof for pk� by applying
all the updates in block
 to C ′ except his own.

854 S. Agrawal and S. Raghuraman

3.3 Assumptions

We describe in this section the various hardness assumptions that we will use in
this work.

Groups of Unknown Order. We assume the existence of a randomized polynomial
time algorithm GGen(λ) that takes as input the security parameter λ and outputs
two integers a, b along with the description of a group G of unknown order in the
range [a, b] such that a, b and a − b are all integers exponential in λ (similar to
Boneh et al. [4]). We will suppress a, b when they are understood or not required.

RSA Assumption. Informally, the RSA assumption states that an adversary
cannot compute a random root of a random group element. In the game, the
challenger runs the generation algorithm GGen(λ) to obtain integers a, b such
that a, b and a − b are exponential in λ and the description of a group G of
unknown order in the interval [a, b]. It also samples a random group element w
and a random λ-bit prime
, and outputs w and
 to the adversary. The adversary
is then supposed to return an
th root u of w.

Definition 5 (RSA). The RSA assumption holds for the algorithm GGen if
for any PPT adversary A, the following probability is negligible in λ:

AdvRSA
A (λ) = Pr

⎡
⎢⎢⎣u� = w :

(a, b,G) ←$ GGen(λ)
w ←$ G

 ←$ Primes(λ)
u ←$ A(a, b,G, w,
)

⎤
⎥⎥⎦ .

We would like to generalize the RSA assumption. For the assumption to
make sense, we must maintain that
 is invertible modulo Q with overwhelming
probability, where Q is the order of the group. If
 is a prime larger than Q,

is certainly coprime to Q and hence invertible modulo Q. This also means that
every element has an
th root. In particular, for any w, u = w�−1

is well-defined.
Intuitively, the problem of finding an
th root should still be hard. This leads us
to a generalized form of RSA.

Definition 6 (Generalized RSA). The Generalized RSA assumption holds
for the algorithm GGen if for any PPT adversary A, the following probability is
negligible in λ:

AdvGRSA
A (λ) = Pr

⎡
⎢⎢⎣u� = w :

(a, b,G) ←$ GGen(λ), |b| = ζ
w ←$ G

 ←$ Primes(ζ + 1) \ [b]
u ←$ A(a, b,G, w,
)

⎤
⎥⎥⎦ .

Strong RSA Assumption. Informally, the strong RSA assumption states that an
adversary cannot compute any non-trivial root of a random group element. In
the game, the challenger runs the generation algorithm GGen(λ) to obtain the
description of a group G of unknown order. It also samples a random group

KVaC: Key-Value Commitments for Blockchains and Beyond 855

element w and gives it to the adversary. The adversary is then supposed to
return an
th root u of w for any odd prime
 of its choice. In particular, in the
strong RSA assumption, the adversary gets to pick
, while in the (regular) RSA
assumption, the adversary is given a randomly chosen
.

Definition 7 (Strong RSA). The Strong RSA assumption holds for the algo-
rithm GGen if for any PPT adversary A, the following probability is negligible
in λ:

AdvSRSA
A (λ) = Pr

⎡
⎣ u� = w

 ∈ Primes \ {2} :
(a, b,G) ←$ GGen(λ)

w ←$ G

(u,
) ←$ A(a, b,G, w)

⎤
⎦ .

4 An Insert-Only Key-Value Commitment

We begin by describing an insert-only key-value commitment KVC-Ins. By insert-
only, we mean that we only insert key-value pairs into the commitment but do

Fig. 1. KVC-Ins: Insert-only KVC construction

856 S. Agrawal and S. Raghuraman

not the update the value corresponding to a key. We also note that we are only
concerned with the case of inserting values corresponding to distinct keys, i.e.,
we assume that the insert algorithm is not invoked with the same key more than
once. The construction KVC-Ins is formally described in Fig. 1.

Completeness and Efficiency. The correctness of the scheme follows directly
from inspection. Also note that all operations involve (at most) one hash com-
putation, three exponentiations and one multiplication. The size of the key-value
commitment is constant, namely, two group elements. This is also true of the
proofs corresponding to keys.

4.1 Key Binding

If we model the hash function H in the construction as a random oracle, we
can prove the key binding of KVC-Ins based on the generalized RSA assumption.
We note that while applying the Definitions 3 and 4 for key binding to KVC-Ins,
the adversary will not be allowed to issue any update queries (KVC-Ins is an
insert-only commitment scheme).

Lemma 1. Suppose there exists a PPT adversary A in the random oracle model
that satisfies

AdvbindKVC-Ins,A(λ) = ε,

where KVC-Ins is the key-value commitment scheme defined in Fig. 1. Then, there
exists a PPT adversary B such that

AdvGRSA
B (λ) ≥ ε

T 2
λ

− negl(λ),

where Tλ denotes the running time of A parameterized by λ.

Proof. Assume the existence of an adversary A as stated in the lemma above.
We now design the adversary B. On obtaining (a, b,G) ←$ GGen(λ) with |b| = ζ,
w ←$ G and
 ←$ Primes(ζ + 1) \ [b] from the challenger CH, B first guesses
the number, q, of keys that A would issue hash queries for or insert into the
commitment, and the index, m, of the key km which A would provide the “fake”
proof for at the end of its execution. Note that each of these choices are limited
in number by Tλ and hence B makes the correct guesses with probability greater
than or equal to T−2

λ .
B chooses q−1 unique primes {zi}i∈[q]\{m} at random from the set Primes(ζ+

1) \ [b] that it will assign, under the map H, to the set of keys other than the
one that A would provide the “fake” proof for. It computes

π = w
∏

i∈[q]\{m} zi .

With all but negligible probability in λ,
 �= zi for any i ∈ [q]\{m}. B sets g = w
and zm =
. B sends ((a, b,G, g), (1, g)) to A.

KVaC: Key-Value Commitments for Blockchains and Beyond 857

B maintains a key-value map M ⊆ K × V initialized to the empty map and
the initial commitment value C = (1, g). Any time A issues the ith query, ki, for
the computation of H, B returns zi and assigns H(ki) = zi. Any time A issues
queries as in Definition 3, note that B has all the values it needs to make updates
to C and M as defined in Definition 3 and Fig. 1. If A aborts at any point in
time, B aborts as well. Assuming no aborts, finally, A responds with a tuple of
the form

1. (km, v, Λ) where km wasn’t inserted by A, or
2. (km, v, v′, Λ, Λ′) where km was inserted by A and v �= v′.

Case 1: Let C = (C1, C2) and Λ = (Λ1, Λ2). Since Ver(C, (km, v), Λ) = 1,

Λ�
2 = C2.

Without loss of generality, we can assume that A inserted all keys that it
queried the hash function for into the commitment (other than km).6 Let
M = {(ki, vi)}i∈[q]\{m} be the key-value map committed to in C. We have

C2 = g
∏

i∈[q]\{m} H(ki).

Therefore,
Λ�
2 = w

∏
i∈[q]\{m} zi .

Since
 �= zi for any i ∈ [q]\{m},
 is coprime to
∏

i∈[q]\{m} zi. B then computes
integers θ1, θ2 such that

θ1 ·
 + θ2 ·
∏

i∈[q]\{m}
zi = 1.

Finally, B computes
u = wθ1Λθ2

2 .

Note that

u� = wθ1�Λθ2�
2

= wθ1�(Λ�
2)

θ2

= wθ1�(w
∏

i∈[q]\{m} zi)θ2

= wθ1·�+θ2·∏i∈[q]\{m} zi

= w.

B forwards u to CH.

6 If this is not the case, B can insert (arbitrary) values for the remaining keys after
the fact to complete the reduction.

858 S. Agrawal and S. Raghuraman

Case 2: Let Λ′ = (Λ′
1, Λ

′
2). We claim that

Λ2 = Λ′
2.

Since Ver(C, (km, v), Λ) = Ver(C, (km, v′), Λ′) = 1,

Λ�
2 = C2 = Λ′�

2 .

Let
α =

Λ2

Λ′
2

.

We have that α� = 1. Since
 is prime, if α �= 1,
 must be the order of α in G.
But
 is larger than the order of G, which is not possible. Hence α = 1.

Without loss of generality, we can assume that A inserted all keys that it
queried the hash function for into the commitment. Let M = {(ki, vi)}i∈[q] be
the key-value map committed to in C. Consider the proof Λkm

corresponding to
the key km defined by

Λkm
= (Λkm,1, Λkm,2) ,

where
Λkm,1 = g

∑
i∈[q]\{m} vi

∏
j∈[q]\{i,m} H(kj)

and
Λkm,2 = g

∏
i∈[q]\{m} H(ki).

Clearly, Ver(C, (km, vm), Λkm
) = 1. In particular,

Λ�
km,2 = C2.

Extending our previous argument, we have that

Λ2 = Λ′
2 = Λkm,2 = g

∏
i∈[q]\{m} H(ki).

Since Ver(C, (km, v), Λ) = Ver(C, (km, v′), Λ′) = 1, we have

(Λ1)
� · (Λ2)

v = C1 = (Λ′
1)

� · (Λ′
2)

v′
.

This implies that (
Λ1

Λ′
1

)�

=
(
g

∏
i∈[q]\{m} H(ki)

)v′−v

.

Let
β =

Λ1

Λ′
1

and
v′ − v = δ.

Note that β� = πδ. This implies that

β� = wδ
∏

i∈[q]\{m} zi .

KVaC: Key-Value Commitments for Blockchains and Beyond 859

Since V = [0, a), |δ| < a < b <
, and since
 is prime,
 is coprime to δ. Also,
since
 �= zi for any i ∈ [q] \ {m},
 is coprime to

∏
i∈[q]\{m} zi. Hence,
 is

coprime to δ
∏

i∈[q]\{m} zi. B then computes integers θ1, θ2 such that

θ1 ·
 + θ2 · δ
∏

i∈[q]\{m}
zi = 1.

Finally, B computes
u = wθ1βθ2 .

Note that

u� = wθ1�βθ2�

= wθ1�(β�)θ2

= wθ1�(wδ
∏

i∈[q]\{m} zi)θ2

= wθ1·�+θ2·δ ∏
i∈[q]\{m} zi

= w.

B forwards u to CH. This completes the proof.

Removing the Random Oracle Assumption. Intuitively, we need H to be a ran-
dom oracle only because we are programming the challenge prime
 from the
RSA assumption as one of the z’s output by H. We can however get over this
difficulty by letting H output arbitrary primes and letting the adversary choose

 as in the game for the strong RSA assumption.

Lemma 2. Suppose there exists a PPT adversary A in the standard model that
satisfies

AdvbindKVC-Ins,A(λ) = ε,

where KVC-Ins is the key-value commitment scheme defined in Fig. 1. Then, there
exists a PPT adversary B such that

AdvSRSA
B (λ) ≥ ε − negl(λ).

A proof of this lemma can be found in the full version of the paper.

4.2 Accumulators

Observe that an insert-only key-value commitment directly gives us an accumu-
lator that supports insertions and membership proofs (just use arbitrary keys).
Our construction of an insert-only key-value commitment also provides for dele-
tions because the proof corresponding to a key is the commitment of the remain-
der of the key-value map, which would be the new commitment. Existing proofs
can be updated using the techniques of aggregation in Sect. 6. The idea is that
given key-value commitments to the maps M \ {(k, v)} and M \ {(k′, v′)}, it is
possible to create a commitment to the map M\{(k, v), (k′, v′)}. Thus, KVC-Ins
can be used to build optimal dynamic positive accumulators [1].

860 S. Agrawal and S. Raghuraman

5 A Complete Key-Value Commitment

In this section, we provide our main construction of a key-value commitment.
The construction KVaC is formally described in Fig. 2.

Completeness and Efficiency. The correctness of the scheme follows directly
from inspection. Also note that all operations involve (at most) two hash com-
putations, five exponentiations and two multiplications. The size of the key-value
commitment is constant, namely, two group elements. This is also true of the
proofs corresponding to keys.

5.1 Key Binding

If we model the hash function H in the construction as a random oracle, we can
prove the key binding of KVaC based on the generalized RSA assumption.

Lemma 3. Suppose there exists a PPT adversary A in the random oracle model
that satisfies

AdvbindKVaC,A(λ) = ε,

where KVaC is the key-value commitment scheme defined in Fig. 2. Then, there
exists a PPT adversary B such that

AdvGRSA
B (λ) ≥ ε

T 3
λ

− negl(λ),

where Tλ denotes the running time of A parameterized by λ.

Proof. Assume the existence of an adversary A as stated in the lemma above.
We now design the adversary B. On obtaining (a, b,G) ←$ GGen(λ) with |b| = ζ,
w ←$ G and
 ←$ Primes(ζ + 1) \ [b] from the challenger CH, B first guesses
the number, q, of keys that A would issue hash queries for or insert into the
commitment, the index, m, of the key km which A would provide the “fake”
proof for at the end of its execution, and u, the maximum number of updates
performed on the value corresponding to any of the keys inserted by A. Note
that each of these choices are limited in number by Tλ and hence B makes
the correct guesses with probability greater than or equal to T−3

λ . We assume
without loss of generality that A makes the same number of updates, u, to the
values corresponding to each of the keys inserted into the commitment.

B chooses q−1 unique primes {zi}i∈[q]\{m} at random from the set Primes(ζ+
1) \ [b] that it will assign, under the map H, to the set of keys other than the
one that A would provide the “fake” proof for. It computes

π = w
∏

i∈[q]\{m} zu+1
i .

With all but negligible probability in λ,
 �= zi for any i ∈ [q]\{m}. B sets g = w
and zm =
. B sends ((a, b,G, g), (1, g)) to A.

KVaC: Key-Value Commitments for Blockchains and Beyond 861

Fig. 2. KVaC: Full KVC construction

862 S. Agrawal and S. Raghuraman

B maintains a key-value map M ⊆ K × V initialized to the empty map and
the initial commitment value C = (1, g). Any time A issues the ith query, ki,
for the computation of H, B returns zi and assigns H(ki) = zi. Any time A
issues queries as in Definition 3, note that B has all the values it needs to make
updates to C and M as defined in Definition 3 and Fig. 2. If A made more than
u updates to any key, B aborts. If A aborts at any point in time, B aborts as
well. Assuming no aborts, finally, A responds with a tuple of the form

1. (km, v, Λ) where km wasn’t inserted by A, or
2. (km, v, v′, Λ, Λ′) where km was inserted by A and v �= v′.

Case 1: Let C = (C1, C2) and Λ = ((Λ1, Λ2), (·, ·, ·), uk). Since it is the case that
Ver(C, (km, v), Λ) = 1,

Λ�
2 = C2.

Without loss of generality, we can assume that A inserted all keys that it
queried the hash function for into the commitment (other than km). Let
M = {(ki, vi)}i∈[q]\{m} be the map committed to in C. We have

C2 = g
∏

i∈[q]\{m} H(ki)
u+1

.

Therefore
Λ�
2 = w

∏
i∈[q]\{m} zu+1

i .

Since
 �= zi for any i ∈ [q] \ {m},
 is coprime to
∏

i∈[q]\{m} zu+1
i . B then

computes integers θ1, θ2 such that

θ1 ·
 + θ2 ·
∏

i∈[q]\{m}
zu+1
i = 1.

Finally, B computes
u = wθ1Λθ2

2 .

Note that

u� = wθ1�Λθ2�
2

= wθ1�(Λ�
2)

θ2

= wθ1�(w
∏

i∈[q]\{m} zu+1
i)θ2

= wθ1·�+θ2·∏i∈[q]\{m} zu+1
i

= w.

B forwards u to CH.

KVaC: Key-Value Commitments for Blockchains and Beyond 863

Case 2: Let Λ′ = (Λ′
1, Λ

′
2, (·, ·, ·), u′

k). Following the key-binding proof of the
increment-only construction (see the full version), we have that with overwhelm-
ing probability,

u = uk = u′
k.

As in the proof of Lemma1,

Λ2 = Λ′
2.

Without loss of generality, we can assume that A inserted all keys that it
queried the hash function for into the commitment. Let M = {(ki, vi)}i∈[q] be
the key-value map committed to in C. Consider the proof Λkm

corresponding to
the key km defined by

Λkm
= (Λkm,1, Λkm,2) ,

where

Λkm,1 = g(∑
i∈[q]\{m} vi

∏
j∈[q]\{i,m} H(kj))·∏i∈[q]\{m} H(kj)

u

and
Λkm,2 = g�u·∏i∈[q]\{m} H(ki)

u+1

.

Clearly, Ver(C, (km, vm), Λkm
) = 1. In particular,

Λ�
km,2 = C2.

Extending our previous argument, we have that

Λ2 = Λ′
2 = Λkm,2 = g�u·∏i∈[q]\{m} H(ki)

u+1
.

Since Ver(C, (km, v), Λ) = Ver(C, (km, v′), Λ′) = 1, we have

(Λ1)
�u+1

· (Λ2)
v = C1 = (Λ′

1)
�u+1

· (Λ′
2)

v′
.

This implies that

(
Λ1

Λ′
1

)�u+1

=
(
g�u·∏i∈[q]\{m} H(ki)

u+1
)v′−v

.

Let

ξ =

(
Λ1
Λ′

1

)�

g(v
′−v)·∏i∈[q]\{m} H(ki)u+1 =

(
Λ1
Λ′

1

)�

πv′−v
.

We have that ξ�u = 1. Since
 is prime, the order of ξ in G must be a power of
.
But
 is larger than the order of G, which is not possible. Hence ξ = 1, that is,

(
Λ1

Λ′
1

)�

= πv′−v.

864 S. Agrawal and S. Raghuraman

Let
β =

Λ1

Λ′
1

and
v′ − v = δ.

Note that β� = πδ. This implies that

β� = wδ
∏

i∈[q]\{m} zu+1
i .

Since V = [0, a), |δ| < a < b <
, and since
 is prime,
 is coprime to δ. Also,
since
 �= zi for any i ∈ [q] \ {m},
 is coprime to

∏
i∈[q]\{m} zu+1

i . Hence,
 is
coprime to δ

∏
i∈[q]\{m} zu+1

i . B then computes integers θ1, θ2 such that

θ1 ·
 + θ2 · δ
∏

i∈[q]\{m}
zu+1
i = 1.

Finally, B computes
u = wθ1βθ2 .

Note that

u� = wθ1�βθ2�

= wθ1�(β�)θ2

= wθ1�(wδ
∏

i∈[q]\{m} zu+1
i)θ2

= wθ1·�+θ2·δ ∏
i∈[q]\{m} zu+1

i

= w.

B forwards u to CH. This completes the proof.

Removing the random oracle assumption. As before, we can get rid of the need
for a random oracle by leveraging the stronger form of RSA.

Lemma 4. Suppose there exists a PPT adversary A in the standard model that
satisfies

AdvbindKVaC,A(λ) = ε,

where KVaC is the key-value commitment scheme defined in Fig. 2. Then, there
exists a PPT adversary B such that

AdvSRSA
B (λ) ≥ ε − negl(λ).

A proof of this lemma can be found in the full version of the paper.

KVaC: Key-Value Commitments for Blockchains and Beyond 865

Theorem 1. The construction KVaC in Fig. 2 is a key-value commitment
scheme for arbitrary keys and an exponentially large value space where the
commitment is of constant size, the proof corresponding to any key is of con-
stant size, and each operation requires only a constant number of hash com-
putations, exponentiations or multiplications. The construction is key-binding
(Definition 4) based on (i) the generalized RSA assumption in the random ora-
cle model (Lemma 3), or (ii) the strong RSA assumption in the standard model
(Lemma 4).

5.2 Performing “Double” Exponentiations

In the verification procedure, one must compute zuk+1. While this is only a
polynomial time computation (as uk can only be polynomially large), we might
want to avoid “double” exponentiations such as computing (Λk,1)

zuk+1

. This can
be done by accumulating these values as they are computed per each update
using standard accumulators such as those in the work of Boneh et al. [4] or
the insert-only key-value commitment scheme construction in Fig. 1. This would
only add one more group element to the commitment and a constant number
(at most three) of hash computations, group exponentiations or multiplications
to the operations.

5.3 Vector Commitments

A key-value commitment directly gives us a vector commitment. We can use the
keys as indices. Using our construction for key-value commitments, the newly
constructed vector commitment enjoys several benefits in comparison to prior
constructions. For instance, additive updates on values can be performed by any
party and corresponding updates to proofs can be made extremely efficiently.
The commitment and the proofs are constant-sized and verification only involves
a constant number of operations. An added benefit of constructing a vector
commitment in this way is that the length of the vector being committed need
not be known ahead of time, or, in fact, at any point in time. If one, however, did
wish for a vector commitment with restrictions on the length of the vector that
can be committed, or one which only allowed for appending elements, it can be
trivially achieved through minor (black-box) modifications to our construction.

6 Aggregating Proofs

In this section, we describe how proofs corresponding to multiple keys can be
combined, or “aggregated”, into a single proof and “batch” verified in one shot.
The first observation is that the proofs corresponding to keys in the increment-
only construction described in the full version can be combined in a straightfor-
ward manner using the Shamir Trick described in the work of Boneh et al. [4],
although this would only yield one-hop aggregation. We will discuss here how
to combine proofs corresponding to multiple keys in the insert-only construction

866 S. Agrawal and S. Raghuraman

described in Fig. 1. In fact, the insert-only construction supports unbounded
aggregation and disaggregation in the sense of Campanelli et al. [9]. Putting
these techniques together, one can combine proofs corresponding to multiple
keys for the full construction described in Fig. 2, but combined proofs cannot be
combined further.

Suppose we had two proofs Λ = (Λ1, Λ2) and Λ′ = (Λ′
1, Λ

′
2) corresponding to

two keys k and k′ with values v and v′ (with respect to the insert-only construc-
tion described in Fig. 1), and let the current state of the key-value commitment
be C = (C1, C2). Suppose z = H(k) and z′ = H(k′). Recall that if Λ and Λ′ are
valid proofs, it must be the case that

Λz
2 = Λ′z′

2 = C2

and
Λz
1 · Λv

2 = Λ′z′
1 · Λ′v′

2 = C1.

In order to combine these two proofs, we would have to come up an “aggregated”
proof Λ′′ = (Λ′′

1 , Λ′′
2) whose “batch” verification would look like

Λ′′zz′
2 = C2

and
Λ′′zz′
1 · Λ′′vz′+v′z

2 = C1.

In other words, Λ′′ represents a key-value commitment to the key-value pairs in
C other than (k, v) and (k′, v′) which is realized by the fact that inserting (k, v)
and (k′, v′) into Λ′′ generates C.

We combine Λ and Λ′ as follows. Since z and z′ are distinct primes, compute
α, β ∈ Z such that

α · z + β · z′ = 1.

Set

Λ′′
2 = Λβ

2 · Λ′α
2

and

Λ′′
1 =

Λβ
1 · Λ′α

1

Λ′′vα+v′β
2

.

Observe that

Λ′′zz′
2 = Λβzz′

2 · Λ′αzz′
2 = Cαz+βz′

2 = C2

KVaC: Key-Value Commitments for Blockchains and Beyond 867

and

Λ′′zz′
1 · Λ′′vz′+v′z

2 =
Λβzz′
1 · Λ′αzz′

1

Λ′′vαzz′+v′βzz′
2

· Λ
β(vz′+v′z)
2 · Λ

′α(vz′+v′z)
2

=
(Λz

1 · Λv
2)

βz′
·
(
Λ′z′
1 · Λ′v′

2

)αz

· (Λz
2)

βv′
·
(
Λ′z′
2

)αv

Cvα+v′β
2

= Cαz+βz′
1

= C1.

Notice that the aggregation procedure involves only two hash computations,
five exponentiations and three multiplications. The size of the combined proof
is the same as the sizes of each of the separate proofs and, by construction, the
combined proof can be verified in one shot. Key-binding for the combined proof
can be shown in exactly the same as was done for each of the separate proofs.

We can easily extend this procedure to combine more than two proofs. In
particular, an aggregated proof can be combined with a regular proof or two
aggregated proofs can be combined with each other.

Acknowledgement. We thank Asiacrypt 2020 reviewers for providing valuable feed-
back on the paper. We thank Benedikt Bünz for suggesting several improvements to
the paper.

References

1. Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revo-
cation. In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, Paris, France, 26–28 April 2017, pp. 301–315. IEEE (2017)

2. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993.
LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48285-7 24

3. Bitcoin. https://bitcoin.org/
4. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-

cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 20

5. Buchmann, J., Hamdy, S.: A survey on IQ cryptography. In: Proceedings of Public
Key Cryptography and Computational Number Theory, pp. 1–15 (2001)

6. Camacho, P., Hevia, A.: On the impossibility of batch update for cryptographic
accumulators. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 178–188. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14712-8 11

7. Camacho, P., Hevia, A., Kiwi, M., Opazo, R.: Strong accumulators from collision-
resistant hashing. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC
2008. LNCS, vol. 5222, pp. 471–486. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85886-7 32

https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://bitcoin.org/
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-642-14712-8_11
https://doi.org/10.1007/978-3-642-14712-8_11
https://doi.org/10.1007/978-3-540-85886-7_32
https://doi.org/10.1007/978-3-540-85886-7_32

868 S. Agrawal and S. Raghuraman

8. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

9. Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Vector commit-
ment techniques and applications to verifiable decentralized storage. Cryptology
ePrint Archive, Report 2020/149 (2020). https://eprint.iacr.org/2020/149

10. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

11. Chepurnoy, A., Papamanthou, C., Zhang, Y.: EDRAX: a cryptocurrency with
stateless transaction validation. Cryptology ePrint Archive, Report 2018/968
(2018). https://eprint.iacr.org/2018/968

12. Dryja, T.: Utreexo: a dynamic hash-based accumulator optimized for the bitcoin
UTXO set. Cryptology ePrint Archive, Report 2019/611 (2019). https://eprint.
iacr.org/2019/611

13. EOS.io—Blockchain software architecture. https://www.eos.io
14. Etherchain – Evolution of the total number of Ethereum accounts. https://www.

etherchain.org/charts/totalAccounts
15. Ethereum. https://www.ethereum.org/
16. Etherscan. https://etherscan.io/
17. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: aggregating proofs for

multiple vector commitments. Cryptology ePrint Archive, Report 2020/419 (2020).
https://eprint.iacr.org/2020/419

18. Hamdy, S., Möller, B.: Security of cryptosystems based on class groups of imaginary
quadratic orders. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
234–247. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 18

19. Krupp, J., Schröder, D., Simkin, M., Fiore, D., Ateniese, G., Nuernberger, S.:
Nearly optimal verifiable data streaming. In: Cheng, C.M., Chung, K.M., Persiano,
G., Yang, B.Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 417–445. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7 16

20. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS,
vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26948-7 19

21. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5 17

22. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP
2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (2016). https://doi.org/10.
4230/LIPIcs.ICALP.2016.30

23. Libra. https://libra.org/
24. Mazieres, D.: The stellar consensus protocol: a federated model for internet-level

consensus. Stellar Development Foundation (2015)
25. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.

(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

26. Ripple - One frictionless experience to send money globally. https://www.ripple.
com

https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://eprint.iacr.org/2020/149
https://doi.org/10.1007/978-3-642-36362-7_5
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2019/611
https://eprint.iacr.org/2019/611
https://www.eos.io
https://www.etherchain.org/charts/totalAccounts
https://www.etherchain.org/charts/totalAccounts
https://www.ethereum.org/
https://etherscan.io/
https://eprint.iacr.org/2020/419
https://doi.org/10.1007/3-540-44448-3_18
https://doi.org/10.1007/978-3-662-49384-7_16
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-540-72738-5_17
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://libra.org/
https://doi.org/10.1007/978-3-540-30574-3_19
https://www.ripple.com
https://www.ripple.com

KVaC: Key-Value Commitments for Blockchains and Beyond 869

27. Todd, P.: Making UTXO set growth irrelevant with low-latency delayed TXO com-
mitments. https://petertodd.org/2016/delayed-txo-commitments

28. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.:
Aggregatable subvector commitments for stateless cryptocurrencies. Cryptology
ePrint Archive, Report 2020/527 (2020). https://eprint.iacr.org/2020/527

https://petertodd.org/2016/delayed-txo-commitments
https://eprint.iacr.org/2020/527

Catalic: Delegated PSI Cardinality
with Applications to Contact Tracing

Thai Duong1, Duong Hieu Phan2, and Ni Trieu3(B)

1 Google LLC, Menlo Park, USA
thaidn@google.com

2 LTCI, Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France
hieu.phan@telecom-paris.fr

3 Arizona State University, Tempe, USA
nitrieu@asu.edu

Abstract. Private Set Intersection Cardinality (PSI-CA) allows two par-
ties, each holding a set of items, to learn the size of the intersection of
those sets without revealing any additional information. To the best of
our knowledge, this work presents the first protocol that allows one of
the parties to delegate PSI-CA computation to untrusted servers. At the
heart of our delegated PSI-CA protocol is a new oblivious distributed key
PRF (Odk-PRF) abstraction, which may be of independent interest.

We explore in detail how to use our delegated PSI-CA protocol to
perform privacy-preserving contact tracing. It has been estimated that a
significant percentage of a given population would need to use a contact
tracing app to stop a disease’s spread. Prior privacy-preserving contact
tracing systems, however, impose heavy bandwidth or computational
demands on client devices. These demands present an economic disin-
centive to participate for end users who may be billed per MB by their
mobile data plan or for users who want to save battery life. We propose
Catalic (ContAct TrAcing for LIghtweight Clients), a new contact trac-
ing system that minimizes bandwidth cost and computation workload on
client devices. By applying our new delegated PSI-CA protocol, Catalic
shifts most of the client-side computation of contact tracing to untrusted
servers, and potentially saves each user hundreds of megabytes of mobile
data per day while preserving privacy.

Keywords: Private Set Intersection Cardinality · Contact tracing ·
Linkage attack

1 Introduction

Private Set Intersection (PSI) is a secure multiparty computation (MPC) tech-
nique that allows several parties, each holding a set of items, to learn the inter-
section of their sets without revealing anything else about the items. Over the
past few years, practice has motivated the development of fast implementations

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 870–899, 2020.
https://doi.org/10.1007/978-3-030-64840-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_29&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_29

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 871

that make PSI practical. As of today, Google runs PSI together with third-
party data providers to find target audiences for advertising and marketing cam-
paigns [IKN+19]. Private Set Intersection Cardinality (PSI-CA) is a variant of
PSI in which the parties learn the intersection size and nothing else. Recently,
PSI-CA is used in the context of contact tracing to protect against linkage attacks
[TSS+20]. In this work, we consider delegated PSI-CA in the semi-honest model.
By “delegated,” we refer to cases where the parties outsource their datasets to
an untrusted cloud and let the cloud perform the PSI-CA computation on their
behalf. At the end of the computation, the parties only learn the intersection size,
while the cloud learns nothing. This setting is useful when some of the parties
have limited computing power. For example, when a phone has to intersect its
dataset with a large server-side database, it makes sense to delegate the phone’s
computation to the cloud for efficiency. To the best of our knowledge, this work
is the first to consider delegated PSI-CA in the context of contact tracing to
overcome the computational limitations of mobile devices.

We also explore the use of PSI-CA in privacy-preserving contact
tracing (CT), an emerging technology that can help prevent the fur-
ther spread of COVID-19 without violating individuals’ privacy. Recently,
there has been a significant amount of work on privacy-preserving
CT [TPH+20,CGH+20,vABB+20,RPB20,Goo20a,MMRV20,LAY+20,AIS20,
LTKS20,CDF+20,ABB+20,CKL+20,CBB+20,TZBS20]. Most contact tracing
systems are decentralized and rely on Bluetooth Low Energy (BLE) wireless
radio signals on mobile phones. These systems warn people about others they
have been in contact with who have been diagnosed with the disease.

Most of the current decentralized CT systems impose a significant mobile
data cost on end-users because they require them to download a large, new
dataset every day. At the current peak, the US has nearly 40,000 new cases daily.
With the current Apple-Google design, users have to download approximately
40,000 (cases) * 14 (keys per case) * 16 (bytes per key) = 8.96 MB each day.
The number of cases could be significantly higher after social restrictions are
lifted. Even with this cost, the current Apple-Google design remains susceptible
to various attacks. For example, if Bob is diagnosed with the disease, he would
upload daily diagnosis keys to the server. In this case, Bob’s anonymous identifier
beacons/tokens, as they are broadcast each day, can be linked to each other.
This is called a linkage attack. The beacons can also be linked across days if Bob
frequently appears at the same place and the same time (i.e., because it is on his
commute route). At the time of writing, Apple and Google have not described
how they are going to address this problem. DP3T has proposed a solution
based on Cuckoo filters, but it requires even more data downloaded (Design
2, [TPH+20]). For 40,000 new daily infections, users would need to download
110 MB each day. Mobile service providers such as Google Fi charge $10/GB.
This means, at 40,000 new cases per day, DP3T’s Design 2 would cost each
user $1/day, and the Apple-Google solution would cost $0.10/day (although we
note that the Apple-Google design is more vulnerable to linkage attacks). Since
contact tracing must be run continuously until a vaccine is available, it may last

872 T. Duong et al.

for months if not years. Therefore, the total cost to a single user could approach
hundreds of dollars. In contrast, the network cost of our Catalic is on the order
of a few hundred kilobytes and is independent of the server dataset size. We
present details on comparisons between the systems’ performance in Sect. 6.3.

The efficacy of contact tracing is proportional to the number of users. It is
therefore crucial to the success of contact tracing to minimize the cost to these
users. By applying our new lightweight delegated PSI-CA protocol, our Catalic
system allows end users to delegate their computation to untrusted servers. As
a result, the computation workload is almost free and the bandwidth cost is of a
few hundred kilobytes, which is independent of the size of the server’s database.

1.1 Our Contributions and Techniques

We design a modular approach for delegated PSI-CA that is secure against semi-
honest parties. The main building block of our PSI-CA protocol, which we believe
to be of independent interest, is oblivious distributed key PRF (Odk-PRF). Recall
that, in oblivious PRF (OPRF), the sender learns (or chooses) a PRF key k,
and the receiver learns F (k, r), where F is a PRF and r is the receiver’s input.
The sender learns nothing about r, and the receiver learns nothing else. In Odk-
PRF, the PRF key, input, and output are secret-shared among m parties. More
precisely, an oblivious distributed key pseudorandom function (Odk-PRF) is a
protocol that consists of a sender and m receivers. Each receiver has one XOR
secret-shared of input r and learns the local PRF value F (kj , rj), which is the
result of the PRF on a secret-shared ri with a secret-shared key kj . The sender
learns a combined PRF key k =

⊕m
j=1 kj . If anyone collects all m local PRF

evaluations, they can reconstruct the global PRF as F (k, r). Such an actor is
known as a combiner.

Our delegated PSI-CA protocol consists of two major phases. First, in the
distributed PRF phase, the PSI-CA’s receiver (who we will call Alice) distributes
secret shares of her input X = {x1, . . . , xn} to m cloud servers, which run Odk-
PRF with the PSI-CA’s sender (called Bob) to obtain secret shares of the PRF
output. Bob learns the combined PRF key ki from this execution while each
cloud server learns the local PRF value F (ki,j , ri,j) for each share ri,j of xi,
where i ∈ [n], j ∈ [m]. Among the cloud servers, Alice can choose a leader to
reconstruct the PRF output F (ki, xi) for each xi ∈ X. In the second phase, Bob
generates a set of key-value pairs {(F (ki, yi), vi),∀yi ∈ Y } where the key is the
PRF output over his input Y = {y1, . . . , yN} and the value vi is known to Alice.
If any xi ∈ Y , the cloud leader and Bob hold the same F (ki, xi), so the cloud
leader can obliviously obtain the correct value vi by obliviously searching on
Bob’s key-value pairs. Otherwise, if xi �∈ Y , the corresponding value obtained is
random. This concept can be viewed as Oblivious Programmable PRF, proposed
in [KMP+17]. Now with a set of ‘real” or ‘fake” values vi, the cloud leader
permutes and sends them to Alice, who can compute how many items are in the
intersection (PSI-CA) by counting how many “real” vi there are, but can’t learn
anything about which specific items were in common (e.g., which vi corresponds
to the item xj). Thus, the intersection set is not revealed. This brief overview

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 873

ignores many important concerns—in particular, how Bob can coordinate PRF
keys and items without revealing the identities of the items. A more detailed
overview of the approach is presented in Sect. 4.

We motivate the design of our delegated PSI-CA protocol to build Catalic,
a lightweight contact tracing system. As discussed in the introduction, most
current decentralized systems impose a workload on end-users that has heavy
bandwidth and computational costs. Catalic aims to minimize these costs. We
will compare Catalic with other systems in Sect. 2.2 and Sect. 6.3. In Catalic, every
client plays the role of a dealer by dividing each anonymous identifier beacon they
collect into shares and giving each share to a cloud server of their choice. Finally,
using the results of the cloud servers’ computation, clients perform a simple
calculation to check whether there is a match (e.g., one that indicates they are at
risk). The distinguishing property of our system is that it allows the development
of a collaborative and decentralized system of cloud servers all around the world.
These servers are available to help users who have resource-constrained devices.
Users can select among all available servers in the delegation. This choice is
totally hidden from the view of any adversary and thus, unless a majority of all
the servers around the world are corrupted, the whole system preserves privacy.

In summary, we make the following contributions:

– We propose a novel Delegated Private Set Intersection Cardinality (DPSI-
CA) protocol. To the best of our knowledge, it is the first protocol that allows
clients to delegate their PSI-CA computation to cloud servers. The computa-
tion and communication complexity of our DPSI-CA protocol is linear in the
size of the smaller set O(n), and is independent of the larger set’s size.

– We design Catalic, a lightweight contact tracing system, that delegates client-
side computation to untrusted servers. To the best of our knowledge, Catalic
is the first system that outsources computation for contact tracing. Moreover,
Catalic provides strong privacy guarantees that can prevent critical attacks
(e.g., linkage attacks and false-positive claims).

– Finally, we implement building blocks of our PSI-CA protocol and estimate
the protocol’s performance. We show that the computational and network
costs for the client are negligible. With the server database size N = 226, the
client set size n = 212, and 2 cloud servers, without including the time spent
waiting on the server’s response, the client requires a running time of 2.17
milliseconds and only 190.48 KBs of communication. Our experiments show
that Catalic is highly scalable.

2 Related Work and Comparison

2.1 Private Set Intersection

Private set intersection (PSI) has been motivated by many real-world appli-
cations such as contact discovery [CLR17], botnet detection [NMH+10], human
genomes testing [KRT18]. The earliest PSI protocols are based on Diffie-Hellman
assumptions [Sha80,Mea86,HFH99]. Over the last few years, there has been

874 T. Duong et al.

active work on efficient secure PSI [DCW13,PSSZ15,FHNP16,RR17,KMP+17,
CLR17,PRTY19] with fast implementations that can process millions of items in
seconds. However, these implementations only allow to output the intersection
itself. In many scenarios (e.g., online marketing campaigns) it is preferable to
compute some function of the intersection rather than to reveal the elements in
the intersection. Limited work has focused on this so-called f -PSI problem. In
this section, we focus on f -PSI constructions that support PSI-CA.

All current PSI-CA constructions are built in a setting where the sender
and the receiver directly interact with each other in several interactive rounds
to do the computation. Huang, Katz, and Evans [HEK12] propose an effi-
cient sort-compare-shuffle circuit construction to implement f -PSI. Pinkas et
al. [PSWW18,PSTY19] improve circuit-PSI using several hashing techniques.
The main bottlenecks in the existing circuit-based protocols are the number of
string comparisons and that computing the statistics (e.g., counts) of the asso-
ciated values is done inside a generic MPC protocol, which is communication-
expensive. Therefore, the current Diffie-Hellman Homomorphic encryption app-
roach of [IKN+19] is still preferable in practice [Pos19], due to its more reason-
able communication complexity. However, the protocol of [IKN+19] requires a
certain amount of computation, which is still expensive in the mobile setting.
Very recently, [TSS+20] combines DH-based PSI protocols [HFH99] and Private
Information Retrieval [KO97] to reduce the communication cost of [IKN+19].
Their PSI-CA protocol requires 35 35 s to securely compute the intersection size
for a server database size 5.6 × 106 and client set size 1120.

With the growth of cloud computing, delegating computation to cloud
servers is more practical. There are a few works [Ker12,LNZ+14,ZX15,ATD17,
QLS+18,ATMD19,ATD20] that consider the outsourcing (delegating) setting.
Importantly, their protocols only compute the intersection itself. Most of the
constructions are based on polynomials. Their core idea is that if the set X
(respectively, Y) is represented as a polynomial f (respectively, g) whose roots
are the set’s elements, then the polynomial representation of the intersection
X ∩Y is P = f × r + g × s where r and s are random polynomials, each of them
secretly chosen by each party. An important property is that an item x ∈ X ∩Y
if and only if f(x) = g(x) = 0. Consequently, for each item x that appears in
both sets X and Y , it holds that P (x) = f(x)×r(x)+g(x)×s(x) = 0 no matter
which values r(x) and s(x) have. In the outsourcing setting, the parties encrypt
and outsource the encrypted polynomials f and g to cloud servers that help to
compute the polynomial P under homomorphic encryption. The servers then
return the encrypted polynomial P to a receiver who figures out the intersection
items by finding all roots of P . Because the valid roots of the polynomial are the
items in the set intersection, it is not clear how to extend this idea to output
only the intersection size without revealing the common elements. To the best
of our knowledge, our DPSI-CA is the first protocol that allows the client (i.e.,
the receiver) to delegate their computation to cloud servers. The computation
and communication complexity of our protocol is independent of the larger set
size, and linear in the size of the smaller set O(n).

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 875

2.2 Secure Contact Tracing

Global lockdown measures have been imposed all around the world and will
cause severe social and economic problems. To relax the lockdown measures
while keeping the ability to control the spread of the disease, technical tools for
contact tracing have been introduced. The resulting applications try to log every
instance a person is close to another smartphone-owner for a significant period
of time.

The first method includes keeping logs of users’ Global Positioning System
(GPS) location data and asking them to scan Quick Response (QR) codes. How-
ever, GPS-based methods carry privacy risks because the GPS data may be sent
to a centralized authority. Almost all nations are now focused on using another
technology - wireless Bluetooth signals - to detect contact matches.

The main principle of Bluetooth-based approaches is to determine who has
been in close physical proximity, determined by Bluetooth signals, to an individ-
ual who is diagnosed with the disease (a ‘diagnosed user’). All methods require
users to continually run a phone application that broadcasts pseudo-random
Rolling Proximity Identifiers (RPI) representing the user and to record RPIs
observed from phones in close proximity. Whenever a user is diagnosed posi-
tively with COVID-19, the application alerts all the devices from which it had
received diagnosis RPIs during the infection window (e.g., 14 days for COVID-
19).

There are two main categories of proposals: centralized and decentralized.
In a centralized approach [Tra,Rob,NTK], the server generates RPIs and thus
knows all the RPIs honestly used in the system. The model relies on a trusted
third-party (e.g., a government health authority). It is therefore vulnerable
to many privacy issues. In a decentralized approach like DP3T [TPH+20],
PACT[CGH+20] and Apple/Google [Goo20a], each phone generates its own
RPIs that are exchanged to another phone when a close contact event is detected.
The RPI list never leaves a user’s phone as long as the user is not diagnosed with
the disease. This model removes the need of the trusted server, but is still vulner-
able to several attacks like linkage attacks. For example, an attacker can install
BLE-sniffing devices to different known physical locations and collect RPIs. By
keeping track of when and where they received which tokens, the attacker can
identify who has been diagnosed with the disease as well as the travel route of
the individuals [Sei].

Recent analysis has shown that current centralized and decentralized digital
contact tracing proposals come with their own benefits and risks [Vau20]. Against
a malicious authority, the risk of mass surveillance is very high in centralized
systems. This risk is lower in decentralized systems because the users generate
their tokens themselves. However, the decentralized systems also endanger the
anonymity of diagnosed people over other users, as the tokens of diagnosed people
are broadcasted to everyone. [Vau20]: “centralized systems put the anonymity
of all users in high danger, specially against a malicious authority, while decen-
tralized systems put the anonymity of diagnosed people in high danger against
anyone.”

876 T. Duong et al.

Several solutions have been proposed to prevent against linkage attack as
well as to leverage the best of centralized and decentralized systems. As far as
we know, there are three protocols in this direction.

– The Epione system [TSS+20], in which private set intersection protocols are
used on top of decentralized systems: the diagnosis RPIs are not broadcasted.
Instead, the user’s query is done with the back-end server via an interactive
secure computation protocol (PSI-CA). This system achieves both high pri-
vacy and a low volume of data to be downloaded. However, it requires each
user to realize the high computation (w.r.t resource-constrained devices) of a
two-round interactive protocol with the servers.

– The Pronto-C2, proposed by Avitabile et al. [ABIV20], in which instead of
asking diagnosed people to send RPIs to the back-end server, they construct
a system where smartphones anonymously and confidentially talk to each
other in the presence of the back-end server. Informally, the back-end server
helps users to establish shared Diffie-Hellman keys to check whether they are
in contact with each other. The main shortcoming of this system is that the
client still has to download a large database (as in the DP3T system) and
this is not appropriate for resource-constrained devices.

– Finally, the DESIRE [DES] is presented as an evolution of the ROBERT
protocol used in France [Rob]. In this system, for each contact between two
phones, a Diffie-Hellman key exchange between is established and stored on
each phone, which makes a high barrier for resource-constrained devices.

We observe that none of the above three schemes supports resource-
constrained devices that have limited capacities for computation and storage.
Our work solves this problem by introducing an efficient delegated PSI-CA. Our
solution allows resource-constrained devices to fully perform the functionality of
the contact tracing system while maintaining the user’s privacy.

Catalic can also be considered as a generalization of the Epione system.
Indeed, if the user plays the role of the cloud servers themselves, then Catalic is
equivalent to Epione. This gives us the ability to design a flexible system that
allows users with sufficiently powerful devices who do not trust cloud services to
participate in contact tracing without cloud help.

3 Security Model and Cryptographic Preliminaries

This section introduces the notation, security guarantees, and cryptographic
primitives used in the later sections. In this work, the computational and statis-
tical security parameters are denoted by κ, λ, respectively. For n ∈ N, we write
[n] to denote the set of integers {1, . . . , n}.

3.1 Security Model

We consider a set of parties who have agreed upon a single functionality to
compute and have also consented to give the final result to some particular

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 877

Fig. 1. The OPRF ideal functionality

party. At the end of the computation, nothing is revealed by the computational
process except the final output. In the real-world execution, the parties often
execute the protocol in the presence of an adversary who corrupts a subset of
the parties. In the ideal execution, the parties interact with a trusted party that
evaluates the function in the presence of a simulator that corrupts the same
subset of parties. There are two adversarial models and two models of collusion.

– Adversarial model : A semi-honest adversary follows the protocol but is curi-
ous and attempts to obtain extra information from the execution transcript.
A malicious adversary can apply any arbitrary polynomial-time strategy to
deviate from the protocol.

– Collusion security : A colluding model is considered as a single monolithic
adversary that observes the possibility of collusion between the dishonest
parties. Consequently, the model is secure if the joint distribution of those
views can be simulated. In contrast, a non-colluding model is considered as
independent adversaries, each observing the view of each independent dishon-
est party. The model is secure if the individual distribution of each view can
be simulated.

In this work, we consider the semi-honest setting. The adversary can cor-
rupt parties but as long as there are at least two non-corrupted specific servers
involved in the protocol, the privacy of the users will be guaranteed. We describe
more detail on the security of our DPSI-CA protocol and Catalic system in Sect. 4
and Sect. 6.3.

3.2 Cryptographic Primitives

Oblivious PRF An oblivious pseudorandom function (OPRF) [FIPR05] is a pro-
tocol in which a sender learns (or chooses) a random PRF seed s while the
receiver learns F (s, r), the result of the PRF on a single input r chosen by the
receiver. The OPRF functionality is described in Fig. 1.

Distributed PRF. A distributed pseudorandom function (DPRF) is a protocol
in which a PRF secret key sk is shared among n parties. Each party can locally
compute a partial evaluation of the PRF on the same input x. A combiner who
collects t partial evaluations can then reconstruct the evaluation F (sk, x) of the
PRF under the initial secret key.

878 T. Duong et al.

Private Set Intersection Cardinality. Private set intersection cardinality (PSI-
CA) is a two-party protocol that allows one party to learn the intersection size
of their private sets without revealing any additional information. In this work,
we consider PSI-CA in an untrusted third-party setting where the computation
can be delegated to the third-party (e.g., cloud servers).

4 Cryptographic Protocols

In this section, we present more detail on our DPSI-CA construction which replies
on our new cryptographic tool Odk-PRF. The DPSI-CA is later used as the main
building block of our Catalic system described in Sect. 5.2.

4.1 Oblivious Distributed Key PRF

4.1.1 Definition
We introduce a new cryptographic notion of an oblivious distributed key pseu-
dorandom function (Odk-PRF). Intuitively, the functionality is a hybrid of the
distributed PRF and OPRF, with an additional feature that the PRF input is
secret shared among m parties. Concretely, an oblivious distributed key PRF
(Odk-PRF) is a protocol in which a server learns (or chooses) a random PRF
key k. There are m clients, each has XOR secret share xi of input point x. In
Odk-PRF, each client learns F (ki, xi), the result of the PRF on the secret share
input xi with a secret share key ki of k. A combiner who collects all m PRF
evaluations can then reconstruct the evaluation F (k, x) as the PRF output on

the input x =
m⊕

i=1

xi with the key k =
m⊕

i=1

ki.

We present a formal definition of Odk-PRF functionality by considering the
following algorithms:

– KeyGen takes a security parameter κ, and generates a PRF key as
KeyGen(1λ) → k.

– KeyShare takes a PRF key k as a master key and a number m, and generates

m shared PRF keys as KeyShare(k,m) → {k1, . . . , km} such that k =
m⊕

i=1

ki.

– KeyEval takes a shared PRF key ki and a (shared) input xi, and gives output
F (ki, xi) → yi, where F is a PRF.

The correctness of our Odk-PRF is that if k ← KeyGen(1λ) and

{k1, . . . , km} ← KeyShare(k,m), then F (k,
m⊕

i=1

xi) =
m⊕

i=1

F (ki, xi).

The security of the oblivious distributed key PRF (Odk-PRF) guarantees two
following properties:

(1) Similar to the security guarantees of distributed PRF, any strict subset of

the F (ki, xi) hides F (k, x), where x =
m⊕

i=1

xi. Note that the distributed PRF

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 879

requires all the xi values and x are the same (i.e, x = x1 = . . . = xm) while

in our Odk-PRF, the xi values are XOR secret shares of x (i.e, x =
m⊕

i=1

xi).

(2) Similar to the security guarantees of oblivious PRF, F (k, x) reveals nothing
about both x and k with very high probability (e.g., 2−λ).

4.1.2 OPRF’s Instantiation
In an OPRF functionality for a PRF F , the receiver provides an input x; the
functionality chooses a random key k, gives k to the sender and F (k, x) to
the receiver. In this work, we focus on the OPRF protocol [OOS17,KKRT16]
which is based on inexpensive symmetric-key cryptographic operations (apart
from a constant number of initial public-key operations). The protocol efficiently
generates a large number of OPRF instances, which makes it a particularly
good fit for our eventual contact tracing application. Note that the protocol
of [KKRT16] achieves a slightly weaker variant of OPRF than what we have
defined in Fig. 1, but the construction remains secure for our Odk-PRF protocol.

The work of [KKRT16] introduces BaRK-OPRF where the PRF key is a
related pair (s, k). The first key s is a random secret value chosen by the sender,
and when doing many “OPRF” instances, all instances have the same s (e.g.
related key). The second key has a formula k = t ⊕ [C(x) ∧ s], where x is an
input to OPRF, C is a pseudo-random function that has minimum distance κ,
and ∧ is bit-wise AND operator. In the construction of [OOS17], C is BCH
code. The value t is chosen by the functionality (or the receiver), and has been
considered as a PRF’s output. e.g. the receiver gets F (k, x) = t.

Intuitively, for a BaRK-OPRF instance, the receiver can evaluate it on only
one input (e.g., x) while the sender can evaluate this PRF at any point y by
computing F (k, y) = k ⊕ [C(y) ∧ s]. It is easy to see that F (k, y) = t ⊕ [

(
C(y) ⊕

C(x)
) ∧ s]. If x = y then F (k, y) = t, and thus, (k, y) = F (k, x) as desired.

Briefly, the BaRK-OPRF construction has an additional key (i.e, the related
key s) rather than the OPRF functionality defined in Fig. 1. To adapt the
above OPRF variant for our Odk-PRF definition, we relax our KeyShare and
KeyEval functions as follows. KeyShare only takes the second BaRK-OPRF key
k as a master key, and generates secret shares of k as before KeyShare(k,m) →
{k1, . . . , km}. However, the KeyEval takes the shared PRF key ki and the addi-
tional related PRF key s and gives output yi as F

(
(ki, s), xi

) → yi.

4.1.3 Odk-PRF Construction from OPRF
We assume that there are m clients, each holds a value xi∈[m]. When the clients
act as PRF’s receiver to provide m inputs {x1, . . . , xm} to the BaRK-OPRF
functionality, the related key s and keys {k1, . . . , km} are generated accordingly,
where ki = ti ⊕ [C(xi) ∧ s],∀i ∈ [m]. Each client, in turn, obtains F (ki, xi) = ti,
the result of the PRF on each single input xi.

For Odk-PRF, we would like to produce a combined key by XORing all indi-

vidual keys as k =
m⊕

i=1

ki, a combined input value by XORing all corresponding

880 T. Duong et al.

PRF inputs as x =
m⊕

i=1

xi, and a combined output value by XORing all corre-

sponding PRF outputs as t =
m⊕

i=1

ti. To achieve the correctness of our Odk-PRF,

the combined key k should be the same as the second BaRK-OPRF key gen-
erated by evaluating OPRF on the combined input value x. In other words, k
must be written in a formula as k = t ⊕ [C(x) ∧ s].

We observe that k =
m⊕

i=1

ki =
m⊕

i=1

ti ⊕ [
(m⊕

i=1

C(xi)
) ∧ s], and if we define

F (k, x) := t then it is necessary to have XOR-homomorphic property for the

function C so that k can be represented as k =
m⊕

i=1

ti ⊕ [C
(m⊕

i=1

xi

) ∧ s] = t ⊕
[C(x) ∧ s] as desired. By using a linear code [OOS17,PRTY20] for the function
C , surprisingly Odk-PRF is implemented by evaluating OPRF. The Odk-PRF
protocol is presented in Fig. 2. All functions KeyGen, KeyShare, and KeyEval are
directly implemented from the protocol. Note that our Odk-PRF can support
any type T (e.g., XOR, AND) of the combination of the individual keys ki as
long as the function C has T-homomorphic property. In this work, we use T as
XOR.

Fig. 2. Our Odk-PRF Construction.

The security of Odk-PRF follows in a straightforward way from the security
of its building blocks (e.g. OPRF). In particular, each PRF value ti is indepen-

dent of each other. In addition, F (k, x) is indeed equal to
m⊕

i=1

F (ki, xi). There-

fore, any strict subset of the F (ki, xi) reveals nothing about F (k, x). Moreover,
since OPRF is guaranteed to produce output indistinguishable from real, F (k, x)
reveals nothing about both x and k. Thus, we omit the proof of the following
theorem.

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 881

Theorem 1. The construction of Fig. 2 securely implements the oblivious dis-
tributed key PRF (Odk-PRF) defined in Sect. 4.1.1 in semi-honest setting, given
the OPRF functionality described in Fig. 1.

4.2 Delegated PSI-CA

In this section, we propose an efficient delegated PSI-CA in which the computa-
tion is delegated to the cloud servers.

4.2.1 Problem Definition

Definition 1. In a delegated PSI-CA protocol, three kinds of parties are involved:
a client C, a backend server S, and a set of m cloud servers H. We assume that
at most m−1 cloud servers are colluded, and the backend server does not collude
with any cloud server. The delegated PSI-CA protocol Π computes a PSI-CA as
follows: Π : ⊥ × ({0, 1}�)N × ({0, 1}�)n → ⊥ × ⊥ × f|∩| where, ⊥ denotes the
empty output, {0, 1}� denotes the domain of input item, N and n denote the set
size, and f denotes the PSI-CA function. For every tuple of inputs ⊥, a set X
of size n, and a set Y of size N belonging to H, C,S respectively, the function
outputs nothing ⊥ to H and S, and outputs f|∩| = |X ∩ Y | to C.

4.2.2 Technical Overview
The basic idea for our PSI-CA is to have the backend server S represent a dataset
Y as a polynomial P (y) by interpolating the unique polynomial of degree (N −1)
over the points {(y1, r1), . . . , (yN , rN)}, where R = {r1, . . . , rN} is random and
known by both C and S. The backend server S sends the (plaintext) coefficients
of the polynomial to a cloud server H, who evaluates the received polynomial
on each xi ∈ X (assuming X is known by H) and obtains P (xi) = r′

i. It is
easy to see that if xi ∈ Y , r′

i ∈ R. However, the cloud server cannot infer any
information from r′

i since (s)he does not know R. To allow the client learn only
the intersection size, the cloud server H sends a set {r′

1, . . . , r
′
n} to the client in a

randomly permuted order. Shuffling means the client can count how many items
are in the intersection (PSI-CA) by checking whether r′

i ∈ R but learns nothing
about which specific item was in common (e.g. which r′

i corresponds to the item
xj). Thus, the intersection set is not revealed.

Note that the above brief overview assumes that the cloud server H knows
X in the clear. To allow H to evaluate the polynomial without knowing the
information of X, we propose to use our Odk-PRF primitive. In particular, the
client secret shares its item xi∈[n] to a set of m non-colluding cloud servers, each
Hj∈[m] receives a share xi,j . All cloud servers Hj∈[m] invoke n Odk-PRF instances
with the back-end server S. For each Odk-PRF instance i ∈ [n], the cloud server
Hj∈[m] acts as one of Odk-PRF’s clients with input xi,j and obtains PRF value
ti,j , while the back-end server S acts as a Odk-PRF’s server and obtains Odk-PRF
master key ki and related key s. Let’s Hm be a combiner, who can collect all ti,j

from Hj∈[m−1] and reconstruct PRF value of item xi as F ((ki, s), xi) ←
m⊕

j=1

ti,j .

882 T. Duong et al.

The security of Odk-PRF guarantees that the F ((ki, s), xi) reveals nothing about
xi, ki, and s to the combiner. For the rest of the paper, we omit the related key
s, and use PRF key ki to refer to the pair (ki, s).

Recall that our goal is to have a cloud server (e.g. the combiner) to obtain the
correct ri from the polynomial’s evaluation in a case that xi ∈ Y , and random
otherwise. To do so, the polynomial must be generated based on PRF values.
The back-end server S has PRF key ki from the Odk-PRF execution, thus S can
evaluate PRF value on any input. There are n PRF keys ki∈[n] and N elements
yj∈[N]. The total PRFs needed to be evaluated is nN , and thus, the polynomial
has a degree of (nN −1), which is very expensive for interpolation and evaluation
operations.

In order to address the above issue, similar to [PSSZ15], we use a hashing
scheme to place items into several bins and then perform the polynomial’s oper-
ations per bin. However, the cloud servers do not allow to know X, and thus
cannot place the share xi,j into a corresponding bin. Therefore, in our protocol,
the client C is required to map a set of X into the bins. Each C’s bin contains at
most one item. The backend server also hashes its items into bins, each contains
a small number of inputs. The C secretly shares the item in its bin to the cloud
servers, which later allows the cloud leader and the backend server to interpolate
and evaluate the polynomial bin-by-bin efficiently. A more detailed overview of
the approach and the hashing scheme is presented in the following section, prior
to the presentation of the full protocol.

4.2.3 Cryptographic Gadgets
We review the basics of Cuckoo & Simple hashing scheme [PSSZ15], and Pack
& Unpack Message [DCW13,KMP+17] to improve our DPSI-CA construction.

Cuckoo Hashing. In basic Cuckoo hashing, there are β bins denoted B[1 . . . β],
a stash, and k random hash functions h1, . . . , hk : {0, 1}� → [β]. The client uses
a variant of Cuckoo hashing such that each item x ∈ X is placed in exactly one
of β bins. Using the Cuckoo analysis [DRRT18] based on the set size |X|, the
parameters β, k are chosen so that with high probability (1 − 2−λ) every bin
contains at most one item, and no item has to place in the stash during the
Cuckoo eviction (.i.e. no stash is required).

Simple Hashing. The backend server maps its input set Y into β bins using the
same set of k Cuckoo hash functions (i.e, each item y ∈ Y appears k times in the
hash table). Using a standard ball-and-bin analysis based on k, β, and the input
size of client |X|, one can deduce an upper bound η such that no bin contains
more than η items with high probability (1 − 2−λ).

Pack&Unpack Message. A pack&unpack message consists of two algorithms:

– pack(S) → Π: takes a set S of key-value tuples (ai, bi),∀i ∈ [η], from a
random distribution, then outputs a representation Π.

– unpack(Π, a) → v: takes a Π and a key a, then outputs value v.

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 883

Such a pack&unpack scheme should satisfy the following properties:

– Correctness: if (a, b) ∈ S and Π ← pack(S) then (a, unpack(Π, a)) ∈ S.
– Obliviousness: for pack({(a1, b1), . . . , (aη, bη)}) → Π, the distributions of

unpack(Π, a) and unpack(Π, a′) are indistinguishable when the bi values are
uniformly distributed.

There are several pack&unpack constructions presented in [KMP+17], with
different tradeoffs in communication and computation cost. In this work, we use
the following data structures:

1. Polynomial-based construction: pack(S) is implemented by interpolating
a degree (η − 1) polynomial Π over the points {(a1, b1), . . . , (aη, bη)}.
unpack(Π, a) is implemented by evaluating the polynomial Π on the key a.
It is easy to see that Π satisfies correctness and obliviousness.
The interpolation of the polynomial takes time O(η log(η)2) field opera-
tions [MB72], which can be expensive for large η. The size of Π is O(η).

2. Garbled Bloom filter (GBF) [DCW13]: given a collection of hash functions
H = {h1, . . . , hk | hi : {0, 1}� → [τ]}, a GBF is the array GBF[1 . . . , τ]
of strings. The GBF implements a key-value pair (a, b) in which the value
associated with the key a is b =

∑k
i=1 GBF[hi(a)]. The GBF works as fol-

lows. The GBF is initialized with all entries equal to an empty string ⊥.
For each key-value pair (a, b), let T = {hi(a) | i ∈ [k],GBF[hi(a)] = ⊥} be
the relevant positions of GBF that have not yet been set. Abort if T = ∅.
Otherwise, we choose random values for entries GBF[j], j ∈ [T], subject to
∑k

i=1 GBF[hi(a)] = b. For any remaining GBF[j] = ⊥, we replace GBF[j] with
a randomly chosen value. The computation complexity is O(η). The size of Π
is also O(η), however, its constant coefficient is high. The parameters k and
τ are chosen so that the “Abort” event happens with negligible probability
(e.g. 2−λ). We discuss parameter choice for GBF in Sect. 3.

4.2.4 Delegated PSI-CA Construction
Our semi-honest delegated PSI-CA protocol is presented in Fig. 3, following
closely the description in the previous Sect. 4.2.2. The construction consists of
four phases.

Recall that our construction requires that the client and backend server have
the same set of random items R for computing PSI-CA final output. This can
be done at the setup phase, where the backend server chooses a random seed
s, and sends it to the client. Both parties can generate β random values as
R = {r1, . . . , rβ} ← PRG(s), where β is the number of bins in the Cuckoo’s
table.

In the tokens’ distribution phase, the client hashes items X into β bins using
the Cuckoo hashing scheme. For each bin b ∈ [β], the client secret shares the
item xb in that bin to m cloud servers. To reduce the network costs, the client
can sample m − 1 random seeds si, and sends each of them to one among m − 1

884 T. Duong et al.

Fig. 3. Our delegated PSI-CA construction.

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 885

cloud servers Hj∈[m−1] in the setup phase. For the item xb in the bin bth, the
client computes a share xm

b ← xb ⊕ PRG(s1||b) ⊕ . . . ⊕ PRG(sm−1||b), and gives
xm

b to the cloud server Hm. Having PRG seed si, other cloud server Hj∈[m−1]

can generate the share xj
b of xb by computing xj

b ← PRG(sj ||b). It is easy to

check that all the xj
b,∀j ∈ [m], values are shares of xb as xb =

m⊕

j=1

xj
b.

For each bin b ∈ [β], the cloud servers Hj∈[m] and the back-end server S
invoke a Odk-PRF instance such that S acts as a Odk-PRF’s server and obtains
PRF key kb in Step (1,I) while the cloud leader Hm acts as a Odk-PRF’s com-
biner and learns tb ← F (kb, xb) as described in Step (3,III). Unlike the brief
overview described in section refsect:psicaspsoverview, the combiner Hm divides
PRF values {t1, . . . , tβ} into m groups, each group has α = � β

m items as
Tj = {t(j−1)α, . . . , tjα−1} except possibly the last group which may have less
than α items (without loss of generality, we assume that β is divisible by m).
The combiner Hm sends each set Tj to the cloud server Hj . The main purpose of
this step is to distribute the last computation phase (e.g. polynomial evaluation)
to all cloud servers.

The backend server S hashes its input set Y into β bins using the Simple
hashing. For each b ∈ [β], S computes PRF value ub,i ← F (kb, yi) on every item
yi in that bin with the PRF key kb obtained from the Odk-PRF execution. The
backend server S then generates a set of points Pb = {(

H(ub,i), rb)
)|yi ∈ BS [b])}

for the bin BS [b] where H is a one-way hash function known by every participant,
and rb is in the random set R computed in the setup phase. S packs Pb as
Πb ← pack(Pb). If b ∈ [(j − 1)α, jα − 1], the backend server S sends Πb to
the corresponding cloud server Hj . Each cloud server Hj unpacks the received
message using every element tj ∈ Tj as vj ← unpack(Πb,H(tj)), and forwards
the resulting value to the combiner Hm.

After collecting all vj values as V = {v1, . . . , vβ}, Hm permutes the set V and
sends it back to the client, who computes σ = |R ∩ V | as an output of PSI-CA.

4.2.5 PSI-CA Security and Discussion

Theorem 2. The PSI-CA construction of Fig. 3 securely implements the dele-
gated PSI-CA functionality described in Definition 1 in semi-honest setting, given
the Odk-PRF functionality described in Sect. 4.1.

Proof. We exhibit simulators for simulating corrupt client, a set of corrupt cloud
servers, and corrupt backend server respectively. We argue the indistinguisha-
bility of the produced transcript from the real execution.

Simulating Client. The simulator only sees a set of vπ(i) = unpack(ti) mes-
sages in a randomly permuted order π() : [β] → [β] chosen by the cloud server
combiner Hm. We consider modifying this view as a set of vi = unpack(tπ−1(i)).
Using the abstraction of the unpack obliviousness we can replace term vi with
an independently random element for each xi �∈ X ∩ Y . As long as the client

886 T. Duong et al.

and Hm do not collude, we can replace unpack(tπ−1(i)) with unpack(t) where t
is a PRF value of a common item x ∈ X ∩ Y (i.e, the permutation hides the
common items), and then replace unpack(t) with random element in R. In other
words, the simulator only learns |X ∩ Y | and Y . The simulation is perfect.

Simulating Cloud Servers. Let Adv be a coalition of corrupt cloud servers. In
our protocol, we assume that Adv has at most m−1 among m cloud servers. The
simulator simulates the view of Adv, which consists of received shares from the
client, Odk-PRF’s randomness, pack messages from the backend server, and tran-
scripts from the Odk-PRF ideal functionality. We consider two following cases:

– Security for the client C: In Step (II) of our protocol, the client C secretly
shares its input to m cloud servers. Since Adv contains at most m−1 corrupt
cloud servers, Adv learns nothing from this step, and we can replace the
share with random. Thanks to the cryptographic guarantees of the underlying
Odk-PRF protocol, no information is revealed except the PRF output in Steps
(III,3) and (III,4). We also assume that Adv does not collude with the backend
server, the PRF outputs can be replaced with randoms. In Step (III,7), Adv
evaluates unpack which also produces output indistinguishable from the real
world.

– Security for the back-end server S: In Step (III,7) of our protocol, S packs
a set of key-value pairs P = {(H(u), p

)} via pack functionality, where u =
F (k, y) is a PRF value on the item y ∈ Y with the key k obtained from
Odk-PRF, and p is generated from the secret PRG seed. Because of Odk-PRF
pseudorandomness property, we replace u with random. In our protocol, the
cloud servers do not know the PRG seed, we can also replace p with random.
The pack functionality takes a set of random pairs thus its distribution is
uniform.

In summary, the output of Adv is indistinguishable from the real execution.

Simulating Back-End Server. When using the abstraction of our Odk-PRF
functionality, the simulation is elementary.

Security Discussion. In our DPSI-CA, we require that the backend server does not
collude with any cloud server. This requirement is for the security guarantee in
Step (III,4) where each cloud server jth can see a subset Tj = {t(j−1)α, . . . , tjα−1}
of PRF outputs of the client’s items in the buckets [(j−1)α, . . . , jα]. If the cloud
server jth colludes with the back-end server, they can learn which specific items
of these buckets are common by comparing Tj and the set of PRF outputs on
∀y ∈ Y .

Our protocol can be modified to make the above non-colluding requirement
weaker. In particular, we can assume that there is a specific (instead of any)
cloud server (e.g., the combiner Hm) that does not collude with the backend
server. With the new colluding assumption, Hm needs to play role of other cloud
servers to perform unpack in Step (III,7). In other words, we modify our DPSI-
CA construction in Fig. 3 by removing Step (III,4). The combiner Hm keeps the
whole set T = {t1, . . . , tβ} locally. The backend server S sends all pack(Pb) to

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 887

the combiner Hm (instead of other cloud servers Hj∈[m−1]). The Hm uses T to
evaluate the corresponding pack(Pb) and obtains a set V which is forwarded to
the client as before.

The modified protocol improves the security assumption of our DPSI-CA, but
requires more computation on the cloud server combiner’s side. Depending on
the system specifications, the protocol can be adjusted to the appropriate design.

Fig. 4. The Overview of our Catalic System. (I) Tokens (RPIs) are exchanged when two
users are in close proximity. (II) When a user is diagnosed by a healthcare provider, the
user receives a certificate which indicates that (s)he tested positive with the disease.
(III) the diagnosed user encrypts a pair of their PRG seed and the certificate using the
public key of the backend server, and sends the encrypted values to the cloud server,
who then permutates and transmits them to the backend server. Using its private
key, the backend server decrypts the received ciphertexts and obtains a set of pairs
including the PRG seed and associated certificate. The backend server checks whether
the certificate is valid using the hospital key. If yes, the backend server generates
the diagnosis tokens using the corresponding PRG. (IV) Each user invokes a DPSI-
CA algorithm with the backend server via cloud servers, where the user’s input is its
received tokens and the server’s input is the list of diagnosis tokens. The user learns
only whether (or how many) tokens there are in common between the two sets.

5 Catalic System

5.1 System Overview

The Catalic system consists of five main phases. The first three steps are mostly
the same as the BLE-based approaches such as Apple-Google [Goo20a]. In the

888 T. Duong et al.

third step, we can enhance the privacy w.r.t the prior methods by adding a Mix-
Net system to shuffle the diagnosis tokens/keys. This prevents attackers from
linking which tokens belong to which user, and thus protect the privacy of users
who tested positive (so-called diagnosed users). The fourth step is the heart of
our system where we allow a contract tracing app to delegate the secure matching
computation to a decentralized system of untrusted cloud servers. Then based
on the returned values, the user determines whether (s)he has been exposed to
the disease. The secure matching allows Catalic to prevent against the linkage
attack which remains in other systems including Apple-Google [Goo20a] and
DP3T [TPH+20].

The system is diagrammed in Fig. 4. Our Catalic model involves computation
by all participants/users and by three kinds of untrustworthy servers: those of
healthcare providers, cloud servers, and a backend server. Similar to other decen-
tralized contact tracing systems [Goo20a], at some point, the backend server
holds the transmitted diagnosis RPIs T while the ith user holds the received
RPIs T̃i obtained from the “contact” phase. The last step of contact tracing sys-
tem aims to securely compare T to every T̃i. If there is a match, the ith user was
in close proximity to a user that has since been diagnosed with the disease. To
perform this task, we integrate our DPSI-CA protocol into Catalic. We formulate
this core component in Fig. 5.

Fig. 5. Our DPSI-CA gadget.

Each user delegates the PSI-CA computation to two (or more) non-colluding
cloud servers (e.g., those run by Amazon, Google, or Apple). The backend server
and the cloud servers jointly perform PSI-CA, and return the PSI-CA output to
the user, who determines whether there is a match.

5.2 Catalic Extension

As mentioned in the previous section, each user delegates the PSI-CA computa-
tion to two or many cloud servers. The privacy of the user will be guaranteed
if at least one of these servers is not corrupted. In practice, we can have a large
network of cloud servers that helps the user to do this delegation. In this section,
we briefly describe such a network and leave the concrete design for future work
which goes beyond the scope of automated contact tracing.

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 889

DSUSH: Decentralized System of Untrusted Server-Helpers. We describe a
decentralized system of untrusted servers as in Fig. 6, in which:
– Any server can ask to join DSUSH as a cloud server (so-called server-helper).

Each one can be certified by the Authority, say the backend server. Whenever
there is a proof that a cloud server is dishonest, this server will be removed
from the system and blacklisted.

– Assume that the DSUSH has M server-helpers. Any client C can secretly
choose any m among M server-helpers in DSUSH and run the delegated PSI-
CA protocol described in Fig. 3 with these m server-helpers.

Fig. 6. DSUSH: Decentralised System of Untrusted Server-Helpers.

Client’s Privacy. To break the privacy of the client C, an outsider adversary has
to corrupt all the m cloud servers chosen by C.

5.2.1 Tracing Traitors for the Reliability of DSUSH.
Interestingly, we can employ techniques from traitor tracing to detect malicious
cloud servers in DSUSH. Any cloud server can be traced if it acts as a malicious
server. The tracing procedure can be realized without any notice: no server can
tell if it is run in a normal process or in a tracing process. Traceability is the
main feature that discourages cloud servers to behave maliciously.

Recall that in our delegated PSI-CA protocol described in Fig. 3, the client
can choose m ≥ 2 cloud servers with the following requirements:
– For all j ∈ [m − 1], the server-helper Hj interacts with cloud server-helper

combiner Hm.
– For all j ∈ [m], the server-helper Hj interacts with the backend server S.
– For all j ∈ [m], the server-helper Hj interacts with the client C.

From the above properties, we briefly show that anyone who possesses a
diagnosis RPIs x that belongs to the set of diagnosis RPIs Y = {y1, . . . , yN} at
the back-end server can do the tracing and becomes thus a tracer. Eventually,
the back-end server can generate this special RPI x and add it to the list of the
diagnosis RPIs Y .

890 T. Duong et al.

Testing whether a suspected server-helper is malicious. The trace can test if a
server, say H1, is a malicious as follow:

– Step 1: Tracer plays the role of the client C in the delegated PSI-CA protocol
described in Fig. 3. The tracer can choose n − 1 random dummy RPIs which
are thus probably not in the backend server set Y of diagnosis RPIs. The
tracer then defines X that contains x and these n − 1 dummy RPIs.

– Step 2: The tracer sets m = 2, and chooses a trusted server Hm (the tracer
can play himself/herself as the role of Hm) and runs the protocol.

– Step 3: If the result returns at the end of the protocol is different than the
correct value 1 (because x is the only element in the intersection of X and
Y), then H1 is certainly a malicious server.

– The effectiveness of the above tracing technique comes from the fact that
the server H1 only knows Hm but cannot corrupt Hm. The value that H1

receives from the Hm and the server S are exactly the same as in the normal
protocol and thus H1 cannot distinguish a tracing procedure from a normal
procedure.

– If H1 acts maliciously with a probability p then the tracer can detect this
malicious server with probability p for each run of the protocol. By repeating
the protocol k times, one can detect this malicious with probability 1−(1−p)k

which close to 1 for sufficiently large k.

Testing whether a chosen set T of server-helpers contains a malicious server.

– Step 1: Identical as the above test of a suspected server-helper.
– Step 2: The tracer sets m = |T | + 1, and chooses a trusted server Hm (the

tracer can play himself/herself as the role of Hm) and runs the protocol.
– Step 3: If the result returned at the end of the protocol is different than the

correct value 1, then the T contains at least a malicious server.
– The effectiveness of the above tracing technique comes from the fact that

the server-helpers do not know each other and cannot collude to deter the
computation. The servers in T only know Hm which is trusted and therefore
cannot corrupt Hm. The values that the servers in T receive from the Hm

and the server S are exactly the same as in the normal protocol and thus T
cannot distinguish a tracing procedure from a normal procedure.

– By repeating the protocol many times, the tracer can correctly determine
with overwhelming probability whether T contains a malicious server.

Black-box Tracing. We can eventually generalize the above technique to get the
black-box tracing. The tracer first set T to be the whole set in DSUSH. Then if
T contains a malicious server then the tracer performs a binary search from T
to be able to get the malicious servers.

5.2.2 Practical Implementation of DSUSH
DSUSH in Google-Apple setting. Google and Apple would allow their cloud
servers all around the world to participate in a DSUSH. If these servers are

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 891

trusted then the privacy of the users is preserved. If one of the two firms is
malicious (or half of the servers are corrupted) then the privacy of a user who
runs the delegated PSI-CA protocol described in Fig. 3 with m server-helpers will
be broken with probability 1

2m (m should be set around 40) assuming that the
numbers of servers of Google and of Apple are the same and the choice of m
server-helpers of the user is random. If both Google and Apple are malicious
(all the servers are corrupted) then the privacy of the users will be broken, their
tokens will also be revealed.

DSUSH in a general setting of proximity tracing.

– As far as the user knows an honest server in DSUSH (for example the server
from his friend, his university, etc.) then the privacy is preserved.

– If the user randomly chooses a set of m server-helpers then the privacy will
be broken only when all of these m server-helpers are malicious. Given the
traceability, this case is quite improbable.

DSUSH itself could be an interesting platform and we leave a concrete design
with formal proven properties of such a network to the future works.

6 Implementation and Performance

To demonstrate the practicality of our Catalic system, we evaluate each build-
ing block of our DPSI-CA protocol in C++. We run cloud server and backend
server on a single server which has 2× 36-core Intel Xeon 2.30 GHz CPU and
256 GB of RAM. For evaluating the performance of the client, we do a number
of experiments on a virtual Linux machine which has Intel Xeon 1.99 GHz CPU
and 16 GB of RAM.

As detailed in Sect. 4, our Odk-PRF protocol builds on a specific OPRF vari-
ant [KKRT16,OOS17] from the open-source code [Rin]. Our polynomial pack
and unpack implementation uses the NTL library [Sho] with GMP library and
GF2X [GBZT] library installed for speeding up the running time. The imple-
mentation of the building blocks (pack/unpack, end-user’s side) is available on
Github: https://github.com/nitrieu/delegated-psi-ca.

6.1 Parameter Choices

All evaluations were performed with input item of 128 bits, a statistical security
parameter λ = 40 and computational security parameter κ = 128. We perform
DPSI-CA on the range of set sizes N = {222, 224, 226} and n = {210, 211, 212}.

Cuckoo Hashing: Based on the experiment analysis [DRRT18], we choose cuckoo
hashing parameters such that no stash is required with sufficiently low proba-
bility. Concretely, in our setting the client places its set into a Cuckoo table of
size β = 1.5n using 3 hash functions while the backend server using the same set
of hash functions and maps its item y into three bins {h1(y), h2(y), h3(y)} (i.e.,
item y appears three times in the hash table with the high probability).

https://github.com/nitrieu/delegated-psi-ca

892 T. Duong et al.

Polynomial Interpolation and Evaluation: Given m cloud servers, our DPSI-CA
protocol requires the backend server to generate m polynomials, each of degree
N ′ ← 3N

m . Each cloud server must evaluate such a polynomial on n′ ← 1.5n
m

points. The best algorithms for interpolation incur O(N ′ log2(N ′)) field opera-
tions which is expensive for a high-degree polynomial since N ′ is typically large
(e.g. N ′ = 224). To speed up the computation complexity of our protocol, we
map N ′ items into θ buckets, each has maximum d items. Instead of interpolat-
ing a polynomial of degree N ′ − 1, we interpolate multiple smaller polynomials
of degree d − 1. Based on the analysis of the parameters [PSTY19], we choose
d = 210, and because of d << N ′ (N ′ = 224) there is a high probability
that each bucket contains the same number of items. [PSTY19] shows that only
3% dummy items need to pad to the bucket to hide the actual bucket’s size.
Accordingly, the cloud server also maps its items into θ buckets and evaluates
θ polynomials of small-degree d − 1. For communication and computation effi-
ciency, the polynomial field size can be truncated to length λ + log(N ′n′) bits
and the protocol will still be correct as long as there are no spurious collisions
with probability 1 − 2−λ. In our experiment, we set the polynomial field size to
be 80 bits to achieve a high probability of correctness of approximately 1−2−40.

Garbled Bloom Filter: The false-positive probability for a Garbled Bloom filter is
the same as that of plain Bloom filter which has been well analyzed. Therefore,
we choose 31 hash functions and the Garbled Bloom Filter of size 58N ′ to achieve
the false-positive rate (1 − e

−31
58)31 which is close to 2−λ.

6.2 PSI-CA Performance

We demonstrate the scalability our protocol on the client side by evaluating
it on the range of set sizes n = {210, 211, 212} with the backend server set size
N = 226 and the number of cloud servers m = {2, 8, 32, 64}. As mentioned above,
the client maps n items into 1.5n bins using Cuckoo hashing. The client must
send a seed of κ bits to (m − 1) cloud servers and 1.5nκ bits to the cloud server
combiner Hm. For communication efficiency, the returned values from the cloud
servers can be truncated to λ + log(3nN) bits for the correctness probability of
1 − 2−λ.

Table 1 presents the performance of our protocol on the client side. Note that
the running time does not include the waiting time for the server’s response. For
n = 212 and m = 2, our protocol costs only 2.17 ms and 190 Kilobytes. Since
the client’s running time depends on the number of cloud servers involved in
DPSI-CA, we are also interested in the protocol performance when increasing m.
While the network cost is mostly stable, the computational cost increases 1.5×
if increasing m = 2 to m = 32. However, the client’s running time is still under
a few milliseconds which achieves our ultimate goal.

Table 2 presents the performance of our DPSI-CA protocol the cloud server’s
side on the range of the client set size n = {210, 212} with the back-end server set
size N = {222, 224, 226} and m = 2 cloud servers. We assume that the backend
servers uses m threads, each communicates with a single cloud server. In our

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 893

Table 1. Running time in millisecond and communication cost in kilobyte on the
client’s slide in our semi-honest delegated PSI-CA protocol with the back-end server
set size N = 222; n and m are the client set size and the number of cloud servers,
respectively. The running time does not include the waiting time from server’s response.

Running Time (milisecond) Communication Cost (kilobyte)

n m = 2 m = 8 m = 32 m = 64 m = 2 m = 8 m = 32 m = 64 Asymptotic [bit]

210 0.48 0.48 3.01 5.1 47.63 47.73 48.11 48.62
(m − 1)κ + 1.5nκ

211 0.86 1.21 2.5 7.87 95.25 95.34 95.73 96.24
+1.5n(λ + log(3nN))

212 2.17 2.77 3.01 8.76 190.48 190.58 190.96 191.47

Table 2. Running time in minute and communication cost in megabyte on the cloud
server’s side in our semi-honest delegated PSI-CA protocol with 2 cloud servers; the
client and back-end server set size is n and N , respectively. The running time does not
include the waiting time for server’s response.

Parameters Running time (minute) Communication cost (megabyte)

Set size N 222 224 226 222 224 226

n 210 212 210 212 210 212 210 212 210 212 210 212

OPRF 0.003 0.003 0.008 0.008 0.034 0.035 0.04 0.09 0.04 0.09 0.04 0.09

Pack & Poly. 3.15 3.24 11.97 12.72 50.3 51.23 64.8 64.8 259.21 259.21 1036.83 1036.83

Unpack GBF 0.44 0.44 1.87 1.89 7.91 7.98 3649 3649 14596 14596 60136 60136

Total Poly. 3.2 3.28 12.1 12.86 50.84 51.78 64.8 64.8 259.21 259.21 1036.83 1036.83

GBF 0.49 0.49 2.00 2.03 8.45 8.53 3649 3649 14596 14596 60136 60136

PSI-CA protocol, a cloud server requires to evaluate 1.5n Odk-PRF instances,
and unpack 1.5n

m messages. The main cost of the computation is the waiting
time of packing 3N

m messages by the backend server. We implement different
pack and unpack constructions described in Sect. 4 with the parameter choices
described in Sect. 6.1. We report the total cost of our protocol by aggregating
the cost of building blocks. Table 2 shows the running time and communication
cost of both polynomial-based and GBF-based DPSI-CA protocols. While the
polynomial-based solution achieves the best communication cost, the GBF-based
approach is fastest in the running time.

6.3 Catalic Discussion and Comparison

As discussed in Sect. 1, it is very important to design a contact tracing system
that minimizes the client’s effort. In this section we only focus on the performance
comparison on the client’s side. We note that our Catalic provides a reasonable
computation and communication cost on the server’s side, which presents in
Table 2. The performance on the server side can be speed up since our protocol
is very amenable to parallelization. Specifically, our algorithm can be parallelized
at the level of buckets.

894 T. Duong et al.

Table 3. Comparison of contact tracing systems with respect to privacy guarantees,
required computational infrastructure, and computation and communication cost on
the client’s side. Infection status refers to identify who has been diagnosed with the
disease. Travel route refers to recover travel route of the diagnosed individual. The
system requires “# rounds” of interaction between client and server. Each user has
n = 211 tokens/RPIs over 14 days of infection window. There are 215 new diagnosed
case per days. “neg” indicates the negligible cost of plaintext comparison operations in
PACT.

Protocols Linkage attack System Req. Client

Travel Infection # interactive # Runtime Comm. Cost

Route Status Rounds Servers (ms) (MB)

G& A [Goo20b] Yes Yes 1/2 1 331.96 7.34

DP3T [TPH+20] No Yes 1/2 1 0.02 469.76

PACT [CGH+20] No Yes 1/2 1 neg 1073.74

Epione [TSS+20] No No 2 2 394.01 1.27

Our Catalic No No 1 3 0.86 0.095

We estimate the Catalic performance in which the main computation cost is
dominated by the DPSI-CA algorithm. We compare our Catalic with other sys-
tems include PACT [CGH+20], DP3T [TPH+20], Apple-Google [Goo20b], and
Epione [TSS+20]. Note that PACT and DP3T publicly release tokens/RPIs of
diagnosed users. Therefore, they are vulnerable to linkage attack which allows
attackers to identify who has been diagnosed with the disease by keeping track
of when and where they received which tokens. In the Apple-Google (A&G) app-
roach, the daily diagnosis keys are publicly available which also allows attackers
to learn the travel routes of the individual. Only Epione [TSS+20] keeps diagno-
sis keys/RPIs privately. However, it requires a certain amount of works on the
client’s side which we discuss later.

According to A&G approach, each user has about k = 144 new tokens per
day. For the infection window, each client receives a total of approximately n =
211 over 14 days. If there are about K = 215 = 32, 768 new diagnosed cases
per day, the total of new diagnosis RPIs is approximately N = 226 per day. We
report detailed comparisons in Table 3, and here we describe how to get the
numbers.

In A&G approach, the phone (user) has to download 14K new daily-diagnosis
keys per day. Each key contains 128 bits thus the total communication cost is
14 × 215 × 128 (bits)= 7.34 MB. The phone also requires to compute 14Kk =
66, 060, 288 AES operations. Since each AES requires 10 cycles, a phone with
1.99 99 GHz processor needs 66, 060, 288 × 10

1.99×109 = 0.33 s to complete the
contact tracing query.

In DP3T approach, the phone (user) has to download a Cuckoo filter of new
diagnosis RPIs per day. To achieve the failure events with error probability 2−λ

per contact tracing instance (in line with our protocol), the false-positive rate of

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 895

the Cuckoo filter would be 240+log(n). Therefore, the Cuckoo filter stores for each
item a 56-bit fingerprint. For N = 226 new diagnosis RPIs, the communication
cost is 226 × 56 (bits) = 469.76 MB. In terms of computation cost, the client
requires to compute 2n AES hash functions for table lookup. The total running
time is 0.02 ms.

In a simpler version of PACT approach, the phone (user) has to download
all new diagnosis RPIs per day, each token has 128 bits. Therefore, the network
cost is 226 × 128 (bits) = 1073.74 MB for N = 226 new diagnosis RPIs. The
PACT’s client does not do any cryptographic operation, thus, we consider its
running time to be negligible.

In Epione approach, the diagnosis keys/RPIs have never publicly available.
The system also replies on PSI-CA for private matching which allows users to
figure out whether they may have been exposed to the disease and nothing else.
Epione proposes two PSI-CA protocols with different trade-offs in the communi-
cation and time complexity of the protocol and the security guarantees. Their
fast variant is based on two-server PIR. It requires the servers do not collude
each other, which has the same security guarantees in our Catalic. Therefore, we
use the numbers reported in Epione to estimate the cost of their fast variant
with the cache. The Epione’s client needs to send and receive: 2k group ele-
ments, each of 256 bits; 2n PIR keys, each of κ log(N ′) = 128 × log(218) = 2304
bits where N ′ = 218 is the bucket size after splitting N = 226 into 28 buckets;
2n PIR answers from servers, each of 159 (bits). The total communication cost
is 1.79 MB. In terms of computation cost, the client requires to compute 2k
group elements and 2n PIR queries. Using parameters for database shape, and
implementation optimization of Epione, the running time is 394 milliseconds.
Note that Epione requires two rounds of interaction between client and servers.
Moreover, the running time of Epione’s client is linear in the backend server’s
database.

In Catalic, Table 1 shows that our protocol requires only 0.86 milliseconds
and 96 Kilobytes on the client’s side. Note that the experiment uses 1 back-end
server and 2 cloud servers, each with a single thread. As discussed in Sect. 5.2,
if more cloud servers involve in the computation, it improves the security level
as well as the scalability of our Catalic system.

Acknowledgments. We thank all anonymous reviewers and Ling Ren for insightful
feedback. Ni Trieu was partially supported by NSF award #2031799 and Duong Hieu
Phan was partially supported by the ANR ALAMBIC (ANR16-CE39-0006). Research
conducted in part while Ni Trieu at University of California, Berkeley and Duong Hieu
Phan at University of Limoges.

References

[ABB+20] Alsdurf, H., et al.: Covi white paper (2020)
[ABIV20] Avitabile, G., Botta, V., Iovino, V., Visconti, I.: Towards defeating mass

surveillance and sars-cov-2: the pronto-c2 fully decentralized automatic
contact tracing system. Cryptology ePrint Archive, Report 2020/493
(2020). https://eprint.iacr.org/2020/493

https://eprint.iacr.org/2020/493

896 T. Duong et al.

[AIS20] Fraunhofer AISEC: Pandemic contact tracing apps: Dp-3t, pepp-pt ntk,
and Robert from a privacy perspective. Cryptology ePrint Archive, Report
2020/489 (2020). https://eprint.iacr.org/2020/489

[ATD17] Abadi, A., Terzis, S., Dong, C.: VD-PSI: verifiable delegated private set
intersection on outsourced private datasets. In: Grossklags, J., Preneel,
B. (eds.) FC 2016. LNCS, vol. 9603, pp. 149–168. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54970-4 9

[ATD20] Abadi, A., Terzis, S., Dong, C.: Feather: lightweight multi-party updat-
able delegated private set intersection. Cryptology ePrint Archive, Report
2020/407 (2020). https://eprint.iacr.org/2020/407

[ATMD19] Abadi, A., Terzis, S., Metere, R., Dong, C.: Efficient delegated private
set intersection on outsourced private datasets. IEEE Trans. Dependable
Secure Comput. 16(4), 608–624 (2019)

[CBB+20] Castelluccia, C., et al.: DESIRE: a third way for a European exposure
notification system leveraging the best of centralized and decentralized
systems. Working paper or preprint, May 2020

[CDF+20] Culler, D., et al.: CoVista: a unified view on privacy sensitive mobile
contact tracing effort (2020)

[CGH+20] Chan, J., et al.: Pact: privacy sensitive protocols and mechanisms for
mobile contact tracing (2020)

[CKL+20] Canetti, R., et al.: Privacy-preserving automated exposure notification.
Cryptology ePrint Archive, Report 2020/863 (2020). https://eprint.iacr.
org/2020/863

[CLR17] Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homo-
morphic encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017, pp. 1243–1255. ACM Press, October/November
2017

[DCW13] Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data:
an efficient and scalable protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013, pp. 789–800. ACM Press, November 2013

[DES] Inria 3rd-way proposal for a European exposure notification sys-
tem. https://github.com/3rd-ways-for-EU-exposure-notification/project-
DESIRE

[DRRT18] Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private
contact discovery. Proc. Priv.c Enhanc. Technol. 4, 2018 (2018)

[FHNP16] Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersec-
tion with simulation-based security. J. Cryptol. 29(1), 115–155 (2016).
https://doi.org/10.1007/s00145-014-9190-0

[FIPR05] Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and
oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 303–324. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-30576-7 17

[GBZT] Gaudry, P., Brent, R., Zimmermann, P., Thomé, E.: https://gforge.inria.
fr/projects/gf2x/

[Goo20a] Apple and google privacy-preserving contact tracing. https://www.apple.
com/covid19/contacttracing (2020)

[Goo20b] Privacy-safe contact tracing using bluetooth low energy. https://blog.
google/documents/57/Overview of COVID-19 Contact Tracing Using
BLE.pdf (2020)

[HEK12] Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled cir-
cuits better than custom protocols? (2012)

https://eprint.iacr.org/2020/489
https://doi.org/10.1007/978-3-662-54970-4_9
https://eprint.iacr.org/2020/407
https://eprint.iacr.org/2020/863
https://eprint.iacr.org/2020/863
https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE
https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE
https://doi.org/10.1007/s00145-014-9190-0
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7_17
https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/
https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing
https://blog.google/documents/57/Overview_of_COVID-19_Contact_Tracing_Using_BLE.pdf
https://blog.google/documents/57/Overview_of_COVID-19_Contact_Tracing_Using_BLE.pdf
https://blog.google/documents/57/Overview_of_COVID-19_Contact_Tracing_Using_BLE.pdf

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 897

[HFH99] Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in
electronic communities. In: Proceedings of the 1st ACM Conference on
Electronic Commerce. EC 1999, pp. 78–86. ACM (1999)

[IKN+19] Ion, M., et al.: On deploying secure computing commercially: private
intersection-sum protocols and their business applications. Cryptology
ePrint Archive, Report 2019/723 (2019). https://eprint.iacr.org/2019/723

[Ker12] Kerschbaum, F.: Outsourced private set intersection using homomorphic
encryption. In: Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security. ASIACCS 2012, New York, NY,
USA, pp. 85–86. Association for Computing Machinery (2012)

[KKRT16] Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched
oblivious PRF with applications to private set intersection. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016, pp. 818–829. ACM Press, October 2016

[KMP+17] Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical
multi-party private set intersection from symmetric-key techniques. In:
Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 1257–1272. ACM Press, October/November 2017

[KO97] Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings 38th
Annual Symposium on Foundations of Computer Science, pp. 364–373
(1997)

[KRT18] Kolesnikov, V., Rosulek, M., Trieu, N.: SWiM: secure wildcard pattern
matching from OT extension. In: Meiklejohn, S., Sako, K. (eds.) FC 2018.
LNCS, vol. 10957, pp. 222–240. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-662-58387-6 12

[LAY+20] Liu, J.K., et al.: Privacy-preserving COVID-19 contact tracing app: a zero-
knowledge proof approach. Cryptology ePrint Archive, Report 2020/528
(2020). https://eprint.iacr.org/2020/528

[LNZ+14] Liu, F., Ng, W.K., Zhang, W., Giang, D.H., Han, S.: Encrypted set inter-
section protocol for outsourced datasets. In: 2014 IEEE International Con-
ference on Cloud Engineering, pp. 135–140 (2014)

[LTKS20] Liu, X., Trieu, N., Kornaropoulos, E.M., Song, D.: BeeTrace: a unified
platform for secure contact tracing that breaks data silos. IEEE Data
Eng. Bull. 43(2), 108–120 (2020)

[MB72] Moenck, R., Borodin, A.: Fast modular transforms via division. In: 13th
Annual Symposium on Switching and Automata Theory, College Park,
Maryland, USA, 25–27 October 1972, pp. 90–96. IEEE Computer Society
(1972)

[Mea86] Meadows, C.A.: A more efficient cryptographic matchmaking protocol for
use in the absence of a continuously available third party. In: IEEE Sym-
posium on Security and Privacy, pp. 134–137 (1986)

[MMRV20] Madhusudan, P., Miao, P., Ren, L., Venkatakrishnan, V.N.: Contrail:
privacy-preserving secure contact tracing (2020). https://github.com/
ConTraILProtocols/documents/blob/master/ContrailWhitePaper.pdf

[NMH+10] Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: BotGrep:
finding P2P bots with structured graph analysis. In: Proceedings of the
19th USENIX Conference on Security, USENIX Security 2010, USA, p. 7.
USENIX Association (2010)

[NTK] Pan-European privacy-preserving proximity tracing. https://github.com/
pepp-pt/

https://eprint.iacr.org/2019/723
https://doi.org/10.1007/978-3-662-58387-6_12
https://doi.org/10.1007/978-3-662-58387-6_12
https://eprint.iacr.org/2020/528
https://github.com/ConTraILProtocols/documents/blob/master/ContrailWhitePaper.pdf
https://github.com/ConTraILProtocols/documents/blob/master/ContrailWhitePaper.pdf
https://github.com/pepp-pt/
https://github.com/pepp-pt/

898 T. Duong et al.

[OOS17] Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT exten-
sion with application to private set intersection. In: Handschuh, H. (ed.)
CT-RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52153-4 22

[Pos19] Google Blog Post. Helping organizations do more without col-
lecting more data. Cryptology ePrint Archive, Report 2020/531
(2019). https://security.googleblog.com/2019/06/helping-organizations-
do-more-without-collecting-more-data.html

[PRTY19] Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight pri-
vate set intersection from sparse OT extension. In: Boldyreva, A., Miccian-
cio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 13

[PRTY20] Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Psi from paxos: fast, mali-
cious private set intersection. Cryptology ePrint Archive, Report 2020/193
(2020). https://eprint.iacr.org/2020/193

[PSSZ15] Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set
intersection using permutation-based hashing. In: Jung, J., Holz, T. (eds.)
USENIX Security 2015, pp. 515–530. USENIX Association, August 2015

[PSTY19] Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based
PSI with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 5

[PSWW18] Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based
PSI via cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 5

[QLS+18] Qiu, S., Liu, J., Shi, Y., Li, M., Wang, W.: Identity-based private matching
over outsourced encrypted datasets. IEEE Trans. Cloud Comput. 6(3),
747–759 (2018)

[Rin] Rindal, P.: libOTe: an efficient, portable, and easy to use Oblivious Trans-
fer Library. https://github.com/osu-crypto/libOTe

[Rob] Robert - robust and privacy-preserving proximity tracing protocol.
https://github.com/ROBERT-proximity-tracing/

[RPB20] Raskar, R., Pahwa, D., Beaudry, R.: Contact tracing: Holistic solution
beyond bluetooth. IEEE Data Eng. Bull. 43(2), 67–70 (2020)

[RR17] Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual
execution. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, pp. 1229–1242. ACM Press, October/November 2017

[Sei] Seiskari, O.: BLE contact tracing sniffer PoC. https://github.com/
oseiskar/corona-sniffer

[Sha80] Shamir, A.: On the power of commutativity in cryptography. In: de
Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582–
595. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-
2 100

[Sho] Shoup, V.: NTL: a library for doing number theory. http://www.shoup.
net/ntl/

[TPH+20] Troncoso, C., et al.: Decentralized privacy-preserving proximity tracing
(2020)

[Tra] Tracetogether, safer together, a Singapore government agency website.
https://www.tracetogether.gov.sg/

https://doi.org/10.1007/978-3-319-52153-4_22
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://doi.org/10.1007/978-3-030-26954-8_13
https://eprint.iacr.org/2020/193
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://github.com/osu-crypto/libOTe
https://github.com/ROBERT-proximity-tracing/
https://github.com/oseiskar/corona-sniffer
https://github.com/oseiskar/corona-sniffer
https://doi.org/10.1007/3-540-10003-2_100
https://doi.org/10.1007/3-540-10003-2_100
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://www.tracetogether.gov.sg/

Catalic: Delegated PSI Cardinality with Applications to Contact Tracing 899

[TSS+20] Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione:
lightweight contact tracing with strong privacy. IEEE Data Eng. Bull.
43(2), 95–107 (2020)

[TZBS20] Trivedi, A., Zakaria, C., Balan, R., Shenoy, P.: WiFiTrace: network-based
contact tracing for infectious diseases using passive WiFi sensing (2020)

[vABB+20] von Arx, S., et al.: Slowing the spread of infectious diseases using crowd-
sourced data. IEEE Data Eng. Bull. 43(2), 71–82 (2020)

[Vau20] Vaudenay, S.: Centralized or decentralized? The contact tracing dilemma.
Cryptology ePrint Archive, Report 2020/531 (2020). https://eprint.iacr.
org/2020/531

[ZX15] Zheng, Q., Xu, S.: Verifiable delegated set intersection operations on out-
sourced encrypted data. In: 2015 IEEE International Conference on Cloud
Engineering, pp. 175–184 (2015)

https://eprint.iacr.org/2020/531
https://eprint.iacr.org/2020/531

Author Index

Abdalla, Michel III-467
Abe, Masayuki III-749
Abspoel, Mark III-151
Agrawal, Shashank III-839
Agrawal, Shweta III-653
Alamati, Navid II-411
Albrecht, Martin R. II-583
Alpirez Bock, Estuardo I-221
Ambrona, Miguel III-749
Ananth, Prabhanjan III-181
Aref, Mohammad Reza I-385
Attrapadung, Nuttapong III-405
Au, Man Ho I-191
Azimi, Seyyed Arash I-385

Badertscher, Christian II-667
Badrinarayanan, Saikrishna III-120
Baldimtsi, Foteini III-717
Balli, Fatih III-621
Bardet, Magali I-507
Bernard, Olivier II-349
Beullens, Ward II-464
Beyne, Tim I-817
Bkakria, Anis II-191
Blazy, Olivier I-97
Bogdanov, Andrej III-749
Boneh, Dan II-520, III-559
Bonnetain, Xavier II-633
Boudgoust, Katharina II-289
Boyle, Elette III-244
Bricout, Rémi II-633
Bros, Maxime I-507
Brzuska, Chris I-221

Cabarcas, Daniel I-507
Campanelli, Matteo II-3
Canetti, Ran III-277
Cao, Zhenfu I-662
Cascudo, Ignacio III-311
Cassiers, Gaëtan I-851
Castryck, Wouter II-493
Catalano, Dario III-467
Chase, Melissa III-342
Chen, Hao III-31

Chen, Long III-590
Chen, Rongmao II-98
Cheon, Jung Hee II-221
Choi, Wonseok I-697
Choudhuri, Arka Rai III-181
Chow, Sherman S. M. II-160
Cini, Valerio I-159
Cogliati, Benoît I-754
Cojocaru, Alexandru II-667
Colisson, Léo II-667
Costello, Craig II-440
Cramer, Ronald III-151
Cuppens, Frédéric II-191
Cuppens, Nora II-191

Dalskov, Anders III-213
Damgård, Ivan III-151
David, Bernardo III-311
De Feo, Luca I-64, II-411
Decru, Thomas II-493
Deng, Yi III-805
Deo, Amit II-318
Dhooghe, Siemen I-817
Dong, Xiaolei I-662
Dong, Xiaoyang II-727
Döttling, Nico II-614
Duong, Thai III-870
Dutta, Avijit I-601

Eichlseder, Maria I-477
Erwig, Andreas II-761
Escudero, Daniel III-151
Esgin, Muhammed F. II-259
Eskandarian, Saba III-559

Fech, Katharina II-160
Fiore, Dario II-3
Fischlin, Marc I-221
Flórez Gutiérrez, Antonio I-33

Gaborit, Philippe I-507
Gao, Fei II-727
Gay, Romain III-467

Gheorghiu, Vlad II-583
Ghosh, Esha III-342
Gilboa, Niv III-244
Goel, Aarushi III-181
Grassi, Lorenzo I-477
Greco, Nicola II-3
Groß, Thomas III-498
Gu, Dawu II-785
Guo, Chun I-567, I-851
Guo, Jian I-567
Guo, Qian I-353

Heath, David III-3
Hebborn, Phil I-537
Hesse, Julia II-761
Hosoyamada, Akinori I-3
Hu, Kai I-446
Hu, Lei II-727
Hu, Xichao I-415
Huang, Xinyi II-98
Huang, Zhengan I-191

Ishai, Yuval III-244, III-653

Jain, Aayush III-120
Jain, Abhishek III-181
Janson, Christian I-221
Jeudy, Corentin II-289
Jha, Ashwin I-754
Jiang, Yao III-529
Jiao, Lin I-415
Johansson, Thomas I-353

Kashefi, Elham II-667
Katsumata, Shuichi I-289, II-464, III-375
Kiayias, Aggelos III-717
Kim, Dongwoo II-221
Kim, Duhyeong II-221
Kim, Miran III-31
Kim, Sam II-66, III-559
Kitagawa, Fuyuki I-253, II-36
Knichel, David I-787
Kogan, Dmitry II-520
Kohel, David I-64
Kolesnikov, Vladimir III-3
Kolonelos, Dimitris II-3
Kushilevitz, Eyal III-653
Kwiatkowski, Kris I-289

Lahr, Norman I-881
Lai, Junzuo I-191
Lai, Russell W. F. II-160
Lambin, Baptiste I-537
Langrehr, Roman II-129
Leander, Gregor I-537
Lee, Byeonghak I-697
Lee, Eysa III-213
Lee, Jooyoung I-697
Lee, Yeongmin I-697
Leichtle, Dominik II-667
Leroux, Antonin I-64
Leurent, Gaëtan I-33
Li, Yanan III-590
Li, Yongqiang I-415
Libert, Benoît I-128, II-318
Lin, Huijia III-437
Lipmaa, Helger III-686
List, Eik I-567
Liu, Shengli II-785
Liu, Xiangyu II-785
Liu, Ximeng II-697
Liu-Zhang, Chen-Da III-92
Loss, Julian III-92
Lüftenegger, Reinhard I-477
Luo, Ji III-437

Malavolta, Giulio II-160, II-614
Manohar, Nathan III-120
Mantri, Atul II-667
Matsuda, Takahiro I-253
Maurer, Ueli III-92
Mennink, Bart I-630
Micciancio, Daniele II-381
Michiels, Wil I-221
Mohajeri, Javad I-385
Montgomery, Hart II-411
Moradi, Amir I-787
Moran, Tal III-92
Morgan, Andrew I-724
Moriya, Tomoki II-551

Nandi, Mridul I-754
Narayanan, Varun III-653
Naya-Plasencia, María I-33
Nguyen, Khoa I-128, II-318
Nguyen, Ngoc Khanh II-259
Niederhagen, Ruben I-881
Nishimaki, Ryo III-375

902 Author Index

Nizzardo, Luca II-3
Nof, Ariel III-244

Ohkubo, Miyako III-749
Onuki, Hiroshi II-551
Orlt, Maximilian II-761
Øygarden, Morten I-477

Pan, Jiaxin II-129
Pass, Rafael I-724
Passelègue, Alain I-128
Patra, Arpita III-60
Patranabis, Sikhar II-411
Pavlyk, Kateryna III-686
Peceny, Stanislav III-3
Perlner, Ray I-507
Perrin, Léo I-33
Petit, Christophe I-64
Petri, Richard I-881
Phan, Duong Hieu III-870
Pintore, Federico I-289, II-464
Poburinnaya, Oxana III-342
Postlethwaite, Eamonn W. II-583
Prabhakaran, Manoj III-653
Prabhakaran, Vinod III-653
Prest, Thomas I-289
Pu, Sihang II-614

Raghuraman, Srinivasan III-839
Ramacher, Sebastian I-159
Rambaud, Matthieu III-151
Ranea, Adrián I-385
Ravi, Divya III-60
Razenshteyn, Ilya III-31
Rechberger, Christian I-477
Riahi, Siavash II-761
Rijmen, Vincent I-385
Rosen, Alon III-653, III-749
Rösler, Paul III-621
Rotaru, Dragos III-31
Roux-Langlois, Adeline II-289, II-349

Sahai, Amit III-120
Salmasizadeh, Mahmoud I-385
Samardjiska, Simona I-881
Sanders, Olivier II-318
Sarkar, Pratik III-277
Sasdrich, Pascal I-787
Schanck, John M. II-583

Schofnegger, Markus I-477
Schrottenloher, André I-33, II-633
Seiler, Gregor II-259
Shen, Yixin II-633
Shi, Danping II-727
Shi, Elaine I-724
Shih, Maurice III-559
Sibleyras, Ferdinand I-33
Singla, Swati III-60
Slamanig, Daniel I-159
Smith-Tone, Daniel I-507
Song, Ling I-567
Song, Yongsoo III-31
Soria-Vazquez, Eduardo III-213
Sorrell, Jessica II-381
Standaert, François-Xavier I-851
Striecks, Christoph I-159
Sun, Siwei I-446, II-697, II-727
Susilo, Willy I-191

Takagi, Tsuyoshi II-551
Tan, Syh-Yuan III-498
Tanaka, Keisuke II-36
Tang, Qiang III-590
Tian, Shizhu I-415
Tillich, Jean-Pierre I-507
Titiu, Radu I-128
Todo, Yosuke I-537
Tomida, Junichi III-405
Towa, Patrick I-97, III-774
Trieu, Ni III-870
Tschudi, Daniel III-92

Unruh, Dominique I-321
Ursu, Bogdan III-467

Vaudenay, Serge III-621
Verbel, Javier I-507
Vercauteren, Frederik II-493
Vergnaud, Damien I-97, III-774

Wagh, Sameer III-31
Wallden, Petros II-667
Wang, Meiqin I-446
Wang, Mingsheng I-415
Wang, Qingju I-446, I-477
Wang, Weijia I-851
Wang, Xiao III-277
Wang, Xiaoyun II-727

Author Index 903

Wei, Zihao II-697
Wen, Weiqiang II-289
Weng, Jian II-785
Wesolowski, Benjamin I-64
Woo, Katharine II-520
Wu, David J. II-66
Wu, Wenling II-697
Wu, Yusai I-662

Xagawa, Keita II-36
Xing, Chaoping III-151
Xu, Qiuliang I-191

Yamada, Shota III-375
Yamakawa, Takashi I-3, III-375
Yang, Rupeng I-191
Yoshida, Yusuke II-36
Yu, Liqing I-662
Yu, Yu I-851
Yuan, Chen III-151
Yung, Moti II-98

Zacharias, Thomas III-717
Zhang, Bingsheng III-717
Zhang, Zhenda I-817
Zou, Jian II-697

904 Author Index

	Preface
	Organization
	Contents – Part III
	Multi-party Computation
	MOTIF: (Almost) Free Branching in GMW
	1 Introduction
	1.1 Our Contributions
	1.2 Presentation Outline

	2 Related Work
	3 GMW Protocol Review
	4 Notation
	5 Technical Overview
	5.1 VS Gates
	5.2 MOTIF: (Almost) Free Conditional Branching in GMW

	6 MOTIF: Formalization and Protocol Construction
	6.1 Compiling Conditionals to Straight-Line VS Circuits
	6.2 Circuit Formal Syntax
	6.3 Merging Conditional Branches
	6.4 Circuit Cleartext Semantics
	6.5 Our Protocol

	7 Proofs
	7.1 Proof of Correctness
	7.2 Proof of Security

	8 Implementation
	9 Performance Evaluation
	9.1 2PC Improvement over Standard GMW
	9.2 Scaling to MPC

	References

	Maliciously Secure Matrix Multiplication with Applications to Private Deep Learning
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works
	1.3 Roadmap

	2 Preliminaries
	2.1 Notation
	2.2 Authenticated Shares in SPDZ
	2.3 Bilinear Triples
	2.4 The BFV Scheme
	2.5 Matrix Multiplication Using HE

	3 Protocol Specification
	3.1 Generation of Bilinear Triples
	3.2 Authenticating Triples Without Sacrifice
	3.3 Improved ZKPoPK Based on BFV Scheme

	4 Experimental Results
	4.1 Evaluation Set-Up and Parameter Estimation
	4.2 Private Matrix Multiplication
	4.3 Private Nearest Neighbors
	4.4 Private Inference of ResNet-50

	5 Conclusion
	A Security Proof of Our Zero Knowledge Protocol
	References

	On the Exact Round Complexity of Best-of-Both-Worlds Multi-party Computation
	1 Introduction
	1.1 On the Round Complexity of BoBW MPC
	1.2 Our Results
	1.3 Techniques
	1.4 Related Works on BoBW MPC
	1.5 Our Model

	2 Lower Bounds for (fn| ua)-BoBW
	3 Upper Bounds for (fn| ua)-BoBW
	3.1 The Compiler
	3.2 The Upper Bounds

	4 Lower Bounds for (god| ua)-BoBW
	5 Upper Bounds for (god| ua)-BoBW
	5.1 (god| ua)-BoBW MPC with Public and Private Setup
	5.2 Upper Bound for (god| ua)-BoBW MPC in Plain Model

	References

	MPC with Synchronous Security and Asynchronous Responsiveness
	1 Introduction
	1.1 Technical Overview of Our Results
	1.2 Synchronous Protocols over an Asynchronous Network
	1.3 Related Work

	2 Preliminaries
	3 Model
	3.1 Adversary
	3.2 Communication Network and Clocks
	3.3 Ideal World

	4 Compiler
	4.1 Key-Distribution Setup
	4.2 Zero-Knowledge
	4.3 Synchronous MPC
	4.4 Synchronous Byzantine Broadcast
	4.5 Asynchronous MPC
	4.6 Protocol Compiler

	5 Asynchronous Protocols
	5.1 Asynchronous Byzantine Agreement
	5.2 Two-Threshold Asynchronous MPC

	6 Impossibility Results
	7 Conclusions
	References

	Secure MPC: Laziness Leads to GOD
	1 Introduction
	1.1 A New Primitive: Threshold Multi-key FHE
	1.2 Application to Round-Optimal MPC
	1.3 Multi-string NIZK from LWE
	1.4 Independent and Subsequent Work

	2 Technical Overview
	2.1 Threshold Multi-key FHE (TMFHE)
	2.2 MPC with Guaranteed Output Delivery
	2.3 Multi-string NIZK from LWE

	3 Preliminaries
	3.1 Multi-key FHE

	4 Threshold Multi-key FHE: Definition
	5 Threshold Multi-key FHE: Construction
	5.1 Construction

	6 Round-Optimal MPC with Guaranteed Output Delivery Secure Against Threshold Mixed Adversaries
	6.1 Security Against a Semi-malicious Mixed Adversary
	6.2 Handling a Malicious Mixed Adversary

	7 Multi-string NIZKs
	References

	Asymptotically Good Multiplicative LSSS over Galois Rings and Applications to MPC over Z/pkZ
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Linear Codes over Finite Fields
	2.2 Galois Rings

	3 Codes over Galois Rings
	3.1 Constructing a Self-orthogonal Code over R
	3.2 Code and Dual Code over R

	4 Arithmetic Secret-Sharing over Galois Rings
	4.1 Formalization

	5 Passive Security
	5.1 Offline Phase
	5.2 Online Phase

	6 Active Security with Abort
	7 Active Security with Guaranteed Output Delivery
	7.1 Different Types of Shares
	7.2 Secret Sharing over a Galois Ring Extension
	7.3 Authentication Tags
	7.4 Batched Triple Sacrifice
	7.5 Putting the Pieces Together

	8 Conclusions and Future Work
	References

	Towards Efficiency-Preserving Round Compression in MPC
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work
	1.4 Full Version

	2 Two-Round Efficiency Preserving Compiler in the Client-Server Model
	2.1 Special Two-Round MPC
	2.2 From Special MPC to Efficiency Preserving Compiler in the Client-Server Model

	3 Efficiency Preserving Compiler in the Plain Model
	3.1 Phase One: Felection-hybrid Model
	3.2 Phase Two

	4 Impossibility Result
	References

	Circuit Amortization Friendly Encodingsand Their Application to Statistically Secure Multiparty Computation
	1 Introduction
	1.1 Technical Overview and Contributions

	2 Preliminaries
	2.1 Commutative Algebra
	2.2 Galois Rings
	2.3 Shamir's Secret Sharing over Galois Rings
	2.4 Hyper-Invertible Matrices over Galois Rings

	3 Switching Between Galois Rings and Galois Fields
	3.1 Double Authenticated Bits

	4 Circuit Amortization Friendly Encodings
	4.1 Hyper-Invertible Matrices and Z2k-Modules
	4.2 FLEX Encodings
	4.3 InnerProd Encodings
	4.4 SIMD Encodings

	5 Efficiency Analysis
	5.1 Experiment Setup
	5.2 Experiments
	5.3 Results
	5.4 Micro Benchmarks
	5.5 Extrapolation to Practical Applications

	References

	Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Computation Model
	2.2 Threshold Linear Secret Sharing Schemes
	2.3 mult – Private Multiplication Protocol
	2.4 Other Basic Ideal Functionalities

	3 Prove Correctness of Degree-2 Relations over Shared Data
	3.1 The Functionality FproveDeg2Relabort - Prove Correctness with Abort
	3.2 The Ideal Functionality FproveDeg2RelcheatIdntfy- Prove Correctness with Cheating Identification

	4 Secure Computation of Any Straight-Line Program with Abort
	4.1 Verifying Correctness of Multiplications with Abort
	4.2 The Main Protocol
	4.3 Concrete Efficiency

	5 Achieving Full Security for Constant Number of Parties
	5.1 Joint Verification of Multiplications with Cheating Identification
	5.2 Two Additional Building Blocks
	5.3 The Main Protocol

	References

	Efficient and Round-Optimal Oblivious Transfer and Commitment with Adaptive Security
	1 Introduction
	1.1 Our Contributions
	1.2 Key Insights

	2 Preliminaries
	3 Technical Overview
	3.1 Adaptively Secure OT in the Global Programmable RO Model
	3.2 Receiver Equivocal Oblivious Transfer in the CRS Model
	3.3 Adaptively Secure Oblivious Transfer in the CRS Model
	3.4 Non-interactive Commitment with Adaptive Security

	4 Oblivious Transfer in the Global Random Oracle Model
	4.1 Adaptively Secure OT in the Global Programmable RO Model
	4.2 Statically Secure OT in the Global Observable RO Model

	5 Receiver Adaptively Secure OT in the CRS Model
	5.1 Efficient Static OT

	6 Adaptively Secure Oblivious Transfer in the CRS Model
	6.1 Semi-adaptively Secure OT
	6.2 Obtaining Full Adaptive Security

	7 Adaptively Secure Non-Interactive Commitment in the CRS Model
	7.1 Concrete Instantiation and Efficiency

	8 Results in the Single CRS Model
	8.1 Adaptively Secure OT in the sCRS Model
	8.2 Adaptively Secure Non-interactive Commitment in the sCRS Model
	8.3 Adaptively Secure MPC in the sCRS Model

	References

	Secret Sharing
	ALBATROSS: Publicly AttestabLe BATched Randomness Based On Secret Sharing
	1 Introduction
	2 Preliminaries
	3 Basic Algorithms and Protocols
	3.1 Proof of Discrete Logarithm Equality
	3.2 Proofs and Checks of Low-Degree Exponent Interpolation
	3.3 Applying Resilient Functions ``in the Exponent''

	4 ALBATROSS Protocols
	4.1 A PVSS Based on Packed Shamir Secret Sharing
	4.2 Scheduling of Non-private Computations
	4.3 The ALBATROSS Multiparty Randomness Generation Algorithm

	5 Making ALBATROSS Universally Composable
	5.1 Using UC-Secure Zero Knowledge Proofs
	5.2 Using Designated Verifier Homomorphic Commitments

	References

	Secret-Shared Shuffle
	1 Introduction
	1.1 Applications
	1.2 Technical Overview

	2 Notations
	3 Oblivious Punctured Vector (OPV)
	3.1 Definition and Security Properties
	3.2 OPV Construction for Longer Strings

	4 Share Translation Protocol
	4.1 Definition
	4.2 Construction

	5 (T, d)-Subpermutation Representation Based on Benes Permutation Network
	6 Permute and Share and Secret-Shared Shuffle
	6.1 Definitions
	6.2 Permute+Share from Share Translation
	6.3 Secret Shared Shuffle from Permute+Share

	7 Experimental Evaluation
	7.1 More Detail on Cost of OT and AES
	7.2 Analyzing the Cost of Each Solution
	7.3 Microbenchmarking
	7.4 Performance Comparison
	7.5 Choosing Optimal Subpermutation Size T

	References

	Attribute-Based Encryption
	Adaptively Secure Inner Product Encryption from LWE
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Related Works

	2 Preliminaries
	2.1 Lattices
	2.2 Attribute-Based Encryption
	2.3 Constrained Pseudorandom Functions

	3 Lattice Evaluations
	3.1 Linear Evaluation
	3.2 Non-linear Evaluation

	4 IPE-Conforming CPRF
	4.1 Definition
	4.2 Construction

	5 Adaptively Secure IPE
	6 Extensions to Other Adaptively Secure Predicate Encryptions
	References

	Unbounded Dynamic Predicate Compositions in ABE from Standard Assumptions
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview of Our Framework
	1.3 Technical Comparisons to Previous Unbounded ABE and More

	2 Preliminaries
	2.1 Basic Definitions and Tools
	2.2 Attribute-Based Encryption

	3 Pair Encoding Schemes
	3.1 Pair Encoding Scheme Definition
	3.2 Security Properties of PESs

	4 Predicate Transformations
	4.1 Direct Sum of Predicate Families
	4.2 Dual Predicates
	4.3 Key-Policy Augmentation
	4.4 Conforming PES for ABE

	5 ABE from PES
	6 Extensions, Instantiations, and Applications
	References

	Succinct and Adaptively Secure ABE for ABP from k-Lin
	1 Introduction
	1.1 Technical Overview
	1.2 Related Works

	2 Preliminaries
	2.1 Arithmetic Branching Programs and Arithmetic Key Garbling
	2.2 Attribute-Based Encryption
	2.3 Pairing Groups and Matrix Diffie–Hellman Assumption

	3 IPFE with Gradual Simulation Security
	3.1 Construction of Gradually Simulation-Secure IPFE

	4 Ciphertext-Policy 1-ABE for ABP
	5 Key-Policy ABE for ABP
	References

	Inner-Product Functional Encryption with Fine-Grained Access Control
	1 Introduction
	2 Preliminaries
	2.1 Pairing Groups
	2.2 Functional Encryption

	3 Inner-Product FE with Fine-Grained Access Control
	3.1 FE with Simulation, Selective Security
	3.2 FE with Adaptive, Indistinguishability Based Security

	4 A Lattice-Based Identity-Based Functional Encryption in the Random-Oracle Model
	4.1 Our Construction

	References

	MoniPoly—An Expressive q-SDH-Based Anonymous Attribute-Based Credential System
	1 Introduction
	2 Preliminaries
	2.1 The SDH-Based CL Signature Scheme

	3 MoniPoly Set Commitment Scheme
	3.1 Interface
	3.2 Security Requirements
	3.3 Construction
	3.4 Security Analysis

	4 Attribute-Based Anonymous Credential System
	4.1 Interface
	4.2 Security Requirements
	4.3 Construction
	4.4 Efficiently Enabling Composite Statements
	4.5 Security Analysis

	5 Evaluation
	5.1 Security
	5.2 Expressivity and Computational Complexity

	References

	Updatable Encryption
	The Direction of Updatable Encryption Does Not Matter Much
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Open Problems

	2 Preliminaries
	2.1 Notations
	2.2 Updatable Encryption
	2.3 Existing Security Notions for Updatable Encryption
	2.4 Notations of the Leakage Sets
	2.5 Epoch Leakage Sets of Keys, Tokens and Ciphertexts
	2.6 Trivial Win Conditions

	3 Six Variants of Security Notions
	3.1 Properties of Leakage Sets and Trivial Win Conditions
	3.2 Relations Among Security Notions

	4 LWE-based PKE Scheme
	4.1 PKE Construction
	4.2 Correctness and Security

	5 LWE-based Updatable Encryption Scheme
	5.1 UE Construction
	5.2 Construction Challenges in LWE-based UE Schemes
	5.3 Correctness
	5.4 Challenges of the Security Proof in LWE-based UE Schemes
	5.5 Security

	References

	Improving Speed and Security in Updatable Encryption Schemes
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 New Definitions for Updatable Encryption
	3.1 Updatable Encryption Syntax
	3.2 Prior Notions of Confidentiality
	3.3 Improving Confidentiality
	3.4 Integrity

	4 UAE with Bounded Updates
	4.1 A Simple Nested Construction
	4.2 Bounded Correctness
	4.3 Nested Construction with Padding

	5 UAE from Key-Homomorphic PRFs
	5.1 Encoding Scheme
	5.2 Construction
	5.3 Security Under Relaxed Integrity
	5.4 Consequences of Relaxed Integrity

	6 Almost Key-Homomorphic PRFs from Lattices
	7 Evaluation
	References

	CCA Updatable Encryption Against Malicious Re-encryption Attacks
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Preliminary
	3 Formalization
	4 Strengthened Security Models
	4.1 Confidentiality
	4.2 Integrity
	4.3 sUP-IND-CPA + sUP-INT-CTXT sUP-IND-CCA

	5 UE Construction with Strengthened Integrity
	5.1 Construction Framework
	5.2 Homomorphic Hash Functions from DDH Groups
	5.3 Instantiation
	5.4 Security Analysis

	References

	Determining the Core Primitive for Optimally Secure Ratcheting
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Message Authentication Code

	3 Sufficient Security for Key-Updatable KEM
	4 Unidirectional RKE Under Randomness Manipulation
	5 KuKEM* to URKE
	6 URKE to kuKEM*
	7 Discussion
	References

	Zero Knowledge
	Cryptography from One-Way Communication: On Completeness of Finite Channels
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	2.1 Sender-Receiver Functionalities and Channels
	2.2 Secure Computation with One-Way Communication
	2.3 OWSC Zero-Knowledge Proof of Knowledge

	3 String-ROT from Bit-ROT with Inverse Polynomial Error
	3.1 Average Case Secret Sharing
	3.2 String-ROT from Bit-ROT and Average Case Secret Sharing
	3.3 Construction of Average Case Secret Sharing
	3.4 General Completeness of Bit-ROT with Inverse Polynomial Error

	4 Impossibility of String-ROT from Bit-ROT with Negligible Error
	4.1 Extending Impossibility to All Finite Channels

	5 Zero-Knowledge Proofs from Any Non-trivial Channel
	5.1 Intuition Behind the Construction
	5.2 Properties of Non-trivial Channels
	5.3 Construction and Analysis

	References

	Succinct Functional Commitment for a Large Class of Arithmetic Circuits
	1 Introduction
	2 Preliminaries
	3 The New SFC Scheme
	4 On the Circuit Class and Example Applications
	5 Security of FCsn
	References

	Crowd Verifiable Zero-Knowledge and End-to-End Verifiable Multiparty Computation
	1 Introduction
	1.1 Technical Overview and Contributions

	2 Preliminaries
	3 CVZK and Coalescence Functions
	3.1 CVZK Definition
	3.2 Coalescence Functions

	4 CVZK Construction
	4.1 Coalescence Functions from 1RCCF
	4.2 A Helper Family for AOWF Inversion
	4.3 Fully Input-Delayed -Protocols
	4.4 Generic CVZK Compiler

	5 End-to-End Verifiable MPC
	5.1 VMPC Syntax
	5.2 Security Framework

	6 Spreading Relations
	7 Constructing VMPC from CVZK
	8 Applications of VMPC
	References

	Non-interactive Composition of Sigma-Protocols via Share-then-Hash
	1 Introduction
	1.1 Our Contribution
	1.2 Applications
	1.3 Related Work

	2 Preliminaries
	2.1 -protocols
	2.2 Non-interactive Arguments

	3 The Share-then-Hash Technique
	3.1 Construction
	3.2 Comparison with CDS

	4 Application
	5 Concluding Remarks
	References

	Succinct Diophantine-Satisfiability Arguments
	1 Introduction
	1.1 Prior Work
	1.2 Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Hidden-Order-Group Generators and Hardness Assumptions
	2.3 Non-interactive Commitments
	2.4 Argument Systems

	3 Integer Commitments
	3.1 Damgård–Fujisaki Commitments
	3.2 A New Integer-Commitment Scheme

	4 Succinct Inner-Product Arguments on Integers
	4.1 Formal Description
	4.2 Completeness and Security

	5 Succinct Argument for Diophantine Equations
	5.1 Arguments via Polynomial-Degree Reductions
	5.2 Protocol

	References

	Individual Simulations
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Summary of Our Results
	1.4 Individual Extractions and Simulations: An Overview
	1.5 Related Work and Discussion
	1.6 Organization

	2 Preliminaries
	3 The Existence of Nearly Optimal Extractors for All Hard Distribution
	4 Extracting the Secret Key of a Variant of Rabin's Encryption Scheme
	5 Selective Opening (T,)-Secure Commitment Scheme
	6 Concurrent (T,)-Zero Knowledge and Witness Hiding in the BPK Model
	7 Simpler (T,)-Zero Knowledge and Analysis in the Plain Model
	References

	Blockchains and Contact Tracing
	KVaC: Key-Value Commitments for Blockchains and Beyond
	1 Introduction
	1.1 Applications
	1.2 More on Related Work
	1.3 Organization

	2 Overview
	2.1 Insert-Only
	2.2 Increment-Only
	2.3 Putting It All Together

	3 Preliminaries
	3.1 Notation
	3.2 Key-Value Commitments
	3.3 Assumptions

	4 An Insert-Only Key-Value Commitment
	4.1 Key Binding
	4.2 Accumulators

	5 A Complete Key-Value Commitment
	5.1 Key Binding
	5.2 Performing ``Double'' Exponentiations
	5.3 Vector Commitments

	6 Aggregating Proofs
	References

	Catalic: Delegated PSI Cardinality with Applications to Contact Tracing
	1 Introduction
	1.1 Our Contributions and Techniques

	2 Related Work and Comparison
	2.1 Private Set Intersection
	2.2 Secure Contact Tracing

	3 Security Model and Cryptographic Preliminaries
	3.1 Security Model
	3.2 Cryptographic Primitives

	4 Cryptographic Protocols
	4.1 Oblivious Distributed Key PRF
	4.2 Delegated PSI-CA

	5 Catalic System
	5.1 System Overview
	5.2 Catalic Extension

	6 Implementation and Performance
	6.1 Parameter Choices
	6.2 PSI-CA Performance
	6.3 Catalic Discussion and Comparison

	References

	Author Index

