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Abstract. HQC is an IND-CCA2 KEM running for standardization
in NIST’s post-quantum cryptography project and has advanced to the
second round. It is a code-based scheme in the class of public key encryp-
tions, with given sets of parameters spanning NIST security strength 1,
3 and 5, corresponding to 128, 192 and 256 bits of classic security.

In this paper we present an attack recovering the secret key of an
HQC instance named hqc-256-1. The attack requires a single precompu-
tation performed once and then never again. The online attack on an
HQC instance then submits about 264 special ciphertexts for decryption
(obtained from the precomputation) and a phase of analysis studies the
subset of ciphertexts that are not correctly decrypted. In this phase, the
secret key of the HQC instance is determined.

The overall complexity is estimated to be 2246 if the attacker bal-
ances the costs of precomputation and post-processing, thereby claiming
a successful attack on hqc-256-1 in the NIST setting. If we allow the
precomputation cost to be 2254, which is below exhaustive key search on
a 256 bit secret key, the computational complexity of the later parts can
be no more than 264. This is a setting relevant to practical security since
the large precomputation needs to be done only once. Also, we note that
the complexity of the precomputation can be lower if the online attack
is allowed to submit more than 264 ciphertexts for decryption.

Keywords: Code-based cryptography · IND-CCA · NIST
post-quantum standardization · Decryption errors · HQC · Reaction
attack

1 Introduction

Integer factorization and the discrete logarithm problem have been corner-
stone problems for asymmetric cryptography, but this is changing due to quan-
tum computers, as their ability to efficiently solve such mathematical problems
through Shor’s algorithm [42] compromises the security of currently used asym-
metric primitives. These developments have created the emergence of the area of
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post-quantum cryptography and it motivated NIST to organize a post-quantum
cryptography standardization project, with the ultimate goal of standardiz-
ing new quantum-resistant public-key crypto primitives. Submissions rely on
problems from various fields within post-quantum cryptography, such as lattice-
based, code-based and multivariate cryptography.

We specifically consider code-based cryptosystems. By this term, we mean
cryptosystems where the algorithmic primitive uses an error correcting code.
The primitive typically add an error to a codeword of the code and the primitive
relies on the difficulty of decoding the received word back to the codeword. The
first of those systems was a public key encryption scheme proposed by McEliece
in 1978 [35]. The private key is a random binary irreducible Goppa code and the
public key is a generator matrix of a randomly permuted and scrambled version
of the original generator matrix for that code. The ciphertext is a codeword with
some errors added, and only the knowledge of the private key (the Goppa code)
can efficiently remove those errors. More formally, it is based on the difficulty of
the syndrome decoding problem1, which was proved to be NP-hard in [12]. After
40 years, some parameters have been adjusted, but no serious attack is known,
even when using a quantum computer.

The birth of post-quantum cryptography made code-based cryptography a
very interesting and the second most research-intense area after lattice-based
crypto. Let us mention some recent code-based public key cryptosystems. The
landmark paper presenting QC-MDPC [37] showed how the size of the public
key could be made small, compared to the original McEliece scheme.

The different code-based proposals in the NIST process like NIST PQC can-
didates BIKE [5], LEDAcrypt [9], HQC [2], and others, showed that fully IND-
CCA2 secure schemes could be built, using Fujisaki-Okamoto transform [22] or
some similar conversion. They could also provide provable security in the sense
that a proof of security related to a difficult decoding problem was given. The
above mentioned schemes rely on decoding problems in the Hamming metric,
whereas the schemes ROLLO [6] and RQC [3] rely on problems using the rank
metric.

There are 17 remaining second-round candidates for public-key encryption
and key-establishment algorithms in the NIST PQC project, among them six
code-based schemes. The HQC submission [2] considered in this paper is such an
IND-CCA2 KEM proposal running for standardization in NIST’s post-quantum
cryptography project and has advanced to the second round2. It is a code-based
scheme in the class of public key encryptions, with given sets of parameters
spanning NIST security strength 1, 3 and 5, corresponding to 128, 192 and 256
bits of classic security.

As for many of the code-based schemes (as well as for lattice-based schemes),
there is no absolute guarantee that the decryption algorithm will succeed to
decrypt to the transmitted message. Rather, there is a small probability of error

1 A stronger hardness assumption in the average case is required.
2 NIST announced the round-3 candidates in July 2020 and HQC is one of the eight

alternate candidates.
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for the decryption process, which for HQC is <2−128 or even smaller. This work
studies an attack that uses the possibility of having decryption errors as a part
of the cryptanalysis process to finally determine the secret key.

1.1 Related Works

On code-based schemes without CCA2 conversion we have a few attacks in lit-
erature that require more than the CPA assumption. Using a partially known
plaintext attack [16], one can reduce the code dimension in the decoding and
thus achieve a lower complexity. In a resend attack, Alice resends the same mes-
sage twice, or possible two related messages. The message can then be efficiently
found [14]. A reaction attack [29] is a weaker version of a chosen ciphertext attack.
The attacker sends a ciphertext or modifies an intercepted one and observes the
reaction of the recipient (correct decryption or failure, but not the result of
decryption). Again, one can in certain cases efficiently find the message corre-
sponding to an intercepted ciphertext. Note that all these attacks are message
recovery attacks.

In [26], an attack in the form of a reaction attack was given on the QC-
MDPC scheme. The interesting fact for this attack was that it could be applied
on the CCA version of the QC-MDPC scheme and still be successful; and it
was a key-recovery attack. The journal version [27] expanded some details of the
attack, e.g. the secret key recovery.

Following this work, many attacks on similar schemes were reported, for
example on QC-LDPC [20], and attacks on LRPC [7,41]. All these attacks require
that the decryption failure rate is fairly large, and subsequently the new schemes
were designed with a much lower failure probability.

A similar development can be found for lattice-based schemes. For the lattice-
based scheme NTRU (NTRUEncrypt) some problems due to decryption failures
were identified already in [32,33]. More recently, several CCA type attacks using
decryption failures on lattice-based schemes without CCA transforms has been
reported, Fluhrer [21], Bernstein [13], on New-hope in CT-RSA 2019 [10], and
mis-use attacks found in [8].

Attacking CCA secure lattice-based schemes through decryption failures in
the spirit of [26] has been less successful. However, recently, CCA attacks based
on failures were modeled and some initial attack attempts on an NTRU version
were presented [17,25]. The most recent work in this direction is the attack on
the LAC proposal [34] given in [28].

The proposed attack in this paper shares some similarities with these attacks
in the sense that it uses a first precomputation phase to generate a set of
encrypted messages for which the corresponding error vectors are causing the
decryption failure probability to be much larger that the average case. The online
attack then makes a statistical analysis of the information obtained from the
ciphertexts that failed to decrypt and extracts enough information to recover
the secret key.

There are also major differences, one being that HQC is a code-based scheme.
Another major difference is that the LAC attack can only target weak secret keys



356 Q. Guo and T. Johansson

(e.g. one out of 264 key pairs), whereas this attack on HQC targets any public
key.

A relevant research direction is to investigate failure amplification tricks,
including [38] in the code-based regime and [18] in the lattice-based regime.
These techniques seem not directly to apply to attacking HQC.

1.2 Contributions

In this paper we present a CCA attack recovering the secret key of an HQC
instance named hqc-256-1. The attack requires a single precomputation per-
formed once and then never again. The online attack then submits about 264

special ciphertexts for decryption (obtained from the precomputation) and a sta-
tistical analysis step processes information from the subset of ciphertexts that
are not correctly decrypted. In this phase, the secret key of the HQC instance
is determined. The overall complexity is estimated to be 2246 when the online
decryption calls are limited to 264. With the given attack, this parameter choice
hqc-256-1 can be attacked faster than exhaustive key search for a single key.
One could also allow a large precomputation to reduce the post-processing cost
since the single precomputation is performed only once. One example is to per-
form a precomputation of about 2254, which is still below exhaustive key search
on a 256 bit secret key. The computational complexity of the online and the
post-processing steps is no more than the cost of submitting 264 ciphertexts for
decryption. Also, the complexity of the precomputation can be lower if the online
attack is allowed to submit more than 264 ciphertexts for decryption.

Last, we should note that once the precomputation is completed, the attack
can be mounted on any HQC public keys when this cryptosystem is deployed. In
this case, the precomputation complexity of the attack can be amortized. There-
fore, several other parameter choices of HQC can be successfully targeted as well,
in the sense that all the attacked keys can be recovered with complexity below
the claimed security level. The amortized complexity is similar to Hellman’s
“cost per solution” [30], and the vulnerability comes from that the attacked
HQC parameter sets cannot provide sufficient security compared with that of
time-memory trade-off attacks on their block cipher counterpart such as AES.
This attack model is not considered in the attacking framework in the NIST PQC
standardization project. However, it could have high practical relevance since a
scheme will be widely deployed if it becomes a standard. Time-memory trade-off
attacks are relevant in practice and this attack model should be discussed also
in the PKC area.

1.3 Organizations

The remaining of the paper is organized as follows. We briefly describe the HQC
scheme in Sect. 2. Then we give a high-level description of the attack, explaining
the basic underlying ideas in Sect. 3. In Sect. 4 we then give a more formal and
detailed description of the attack and provide a theoretical basis for estimating
the required complexity. Section 5 specifically considers the security of several
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other HQC parameter sets. Section 6 discusses some aspects of the HQC scheme
that are to the advantage of the attacker and related countermeasures. Section 7
concludes the paper.

2 Description of HQC

We briefly describe the HQC proposal [2] as submitted to the second round of
the NIST post-quantum cryptography standardization process. HQC stands for
Hamming Quasi-Cyclic and the underlying scheme was published in [36]. For
more details we refer to the original design document [2] as we give only a brief
description of the scheme. In particular, no description of the underlying difficult
problems or the proofs of security are given in this section.

2.1 Notation

The scheme processes binary vectors of some length n, so such a vector y =
(y0, y1, . . . yn−1) ∈ F

n
2 , where yi ∈ F2, for i = 0, 1, . . . , n − 1. By ω(y) we mean

the Hamming weight of the vector y, i.e., the number of nonzero coordinates.
Since the field is F2, one can replace the operation of − by +. Given a set S,
we use #S to denote its cardinality.

Let R = F2[X]/(Xn − 1). An element y(x) ∈ R is a polynomial of degree at
most n − 1 expressed through the coefficients y(x) = y0 + y1x + · · · + yn−1x

n−1.
We will interchange between the expression of a vector y as a row vector and
the corresponding polynomial y(x). We may also write y $← R, meaning that we
randomly select a binary vector y also considered as a polynomial.

For two vectors u,v ∈ F
n
2 we define their product u·v as the coefficients of the

polynomial u(x)v(x) ∈ R. This product can also be expressed using circulant
matrices. For a vector y ∈ F

n
2 , the circulant matrix induced by y is denoted

rot(y) and defined as

rot(y) =

⎛
⎜⎜⎜⎝

y0 yn−1 . . . y1
y1 y0 . . . y2
...

...
. . .

...
yn−1 yn−2 . . . y0

⎞
⎟⎟⎟⎠ .

The multiplication uv can now alternatively be written as

uv = u · rot(v)T = v · rot(u)T
,

where (·)T denotes transpose.
We give some basic definitions and properties from coding theory and refer

to [2] or any textbook on the subject. A linear code C of length n and dimension
k (an [n, k] code) is a subspace of Fn

2 of dimension k. A matrix G ∈ F
k×n
2 is a

generator matrix of the code if

C = {mG,m ∈ F
k
2}.
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A matrix H ∈ F
(n−k)×n
2 is a parity check matrix of the code if

C = {v ∈ F
n
2 , such that vHT = 0}.

Fix a parity check matrix and let v ∈ F
n
2 . Then the syndrome of v is the value

vHT. If v ∈ C then the syndrome is 0. The minimum distance d of the code
is the minimum weight taken over all nonzero codewords in the code. Such a
code is capable of correcting δ = �d−1

2 � errors. This means that if a codeword is
disturbed by adding a binary vector known to be of weight at most δ, then there
is an algorithm that can find and remove this noise and return the codeword.

A repetition code, denoted 1n, is an [n, 1] code that has a generator matrix
of the form G = [1]. It means transmitting a single bit and repeating it n times.
Such a code can then correct up to δr = �n−1

2 � errors. BCH codes are a very
common class of codes as they achieve a good error correction capability. We do
not need to define them, but rather just note that there is an efficient algorithm
for correcting errors. By BCH(n1, k1, δ) we denote a BCH code that is capable
of correcting up to δ errors.

Finally, a tensor product code C, denoted C1 ⊗ C2, is a code built from two
codes C1 and C2. If C1 is an [n1, k1, d1] code and C2 is an [n2, k2, d2] code then
the tensor product code C is an [n1n2, k1k2, d1d2] code. You can view the length
n1n2 codewords in C1 ⊗ C2 as a n1 × n2 array, where every row is a codeword
in C1 and every column is a codeword in C1. We will only be concerned with
the construction BCH(n1, k, δ) ⊗ 1n2 . It means that every position in the BCH
codeword is repeated n2 times. The decoding procedure first decodes every rep-
etition code by simply counting the number of zeros (or ones). Then the output
is used as the value for each position in the BCH code, which is then decoded.
In particular, if we want to find an error that will not decode correctly, we need
to have at least δr = �n2 +1

2 � errors in each of at least δ + 1 different columns
(repetition codes).

2.2 The HQC Scheme

The public key encryption (PKE) version of HQC is shown in Fig. 1. HQC makes
use of the tensor product code of two different codes, one being a BCH code and
the other being a simple repetition code. The code is denoted by C and has a
corresponding generator matrix G ∈ F

k×n
2 . We return to the details of the tensor

product code later.
The scheme follows the steps of many lattice-based schemes, but here errors

are considered in the Hamming metric. The key generation randomly selects a
public h ∈ R and two private vectors x,y ∈ R with very low Hamming weight.
It computes s = x+h ·y as the second part of the public key, which presumably
looks like a randomly chosen vector.

In the encryption one generates noise e, r1, r2 ∈ R with very low Hamming
weight and computes u = r1 +h · r2 and v = mG+ s · r2 + e, which is returned
as the ciphertext.
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In decryption, one has access to the secret key y and computes v − u · y.
The decoder for the code then finally removes all the noise. An expansion of the
expression shows

v − u · y = mG + (x + h · y) · r2 + e − (r1 + h · r2) · y = mG + e′,

where
e′ = x · r2 − y · r1 + e. (1)

Throughout the paper, we denote the i-th entry of e (e′) by ei (e′
i). If the

Hamming weight of e′ is not too large, the decoder will be able to decode and
return the correct message m. As all parts of the expression for e′ are of very
low weight, also e′ will be of somewhat low weight.

Fig. 1. Description of the proposal HQC.PKE [2].

A transform [31] is then applied to HQC.PKE to achieve IND-CCA2 for the
KEM/DEM version of HQC (see HQC.KEM in Fig. 2). The KEM version can
be converted to an IND-CCA2 PKE using generic transforms.

In the description, G,H and K are different hash functions, e.g. SHA512.
Also, E denotes the IND-CPA secure HQC.PKE primitive including randomness
input.

The noise term written as e′ = x · r2 − y · r1 + e is a sparse vector, but not
extremely sparse. The decryption is guaranteed to succeed if ω(e′) is an error
that is within the decoding capability of the employed error-correcting code. So
the code must be very powerful and be able to correct many errors. In the HQC
scheme, the error correcting code with generator matrix G is the tensor product
code C = BCH(n1, k, δ) ⊗ 1n2 . This is a powerful code employed to reduce the
decryption failure probability. It guarantees to correct any error of weight up to
δ · (n2 +1)/2, but will most likely also correct errors of somewhat higher weight.

2.3 Parameter Settings

The proposed parameters of different instances of HQC are shown in Table 1.
The parameter n is a prime number slightly larger than n1 ×n2, ω is the weight
of the secret and ωr, ωe is the weight of the noise vectors.
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Fig. 2. Description of the proposal HQC.KEM [2].

Table 1. Proposed parameters for HQC.

n1 n2 n k δ ω ωr = ωe Security pfail

hqc-128-1 796 31 24,677 256 60 67 77 128 <2−128

hqc-192-1 766 57 43,669 256 57 101 117 192 <2−128

hqc-192-2 766 61 46,747 256 57 101 117 192 <2−192

hqc-256-1 766 83 63,587 256 57 133 153 256 <2−128

hqc-256-2 796 85 67,699 256 60 133 153 256 <2−192

hqc-256-3 796 89 70,853 256 60 133 153 256 <2−256

3 Basic Ideas for the Attack

In this section we try to describe the underlying ideas behind the attack and
the detailed analysis is done in the following sections. The first step is to find
out how we can produce decryption failures and to do that we need to study
the details of the decoding procedure. The scheme uses the tensor product code
C = BCH(n1, k, δ) ⊗ 1n2 which means that the received vector can be split
in n1 parts each of length n2. The decoding is done in two steps. First, each
subvector of length n2 corresponding to a repetition code is decoded to a single
bit {0, 1}. This leaves a length n1 vector which is decoded through a decoder
for the BCH code to correct up to δ errors. This means that in order to have an
overall decoding error, one has to get at least δ + 1 of the repetition codes to
make an individual decoding error. Such an individual error appears if the noise
e′ has more ones than zeros in the n2 positions corresponding to that particular
repetition code.

Let us now look at a typical error pattern e′ to be decoded. Since the noise
term can be written as e′ = x · r2 − y · r1 + e, almost all nonzero contribution
comes from the two product terms. If we for example use the parameters for
hqc-256-1 then x has weight 133, r2 has weight 153, and the product between
them will have weight close to 133 ·153, say about weight 20000. Adding another
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Fig. 3. How decoding is split in two parts.

such error contribution from y · r1 of the similar weight results in a typical error
vector of weight around 27000 and length 63587. The ones in e′ are distributed
roughly with the same probability for all positions thus also roughly with the
same probability in each repetition code (Fig. 3).

So how can we increase the overall probability of a decoding error? The
idea is that we use a lot of precomputation to test many different messages and
look at what error vectors they create (through the hash functions that gives
the error vectors in the CCA version). The problem is to figure out what kind
of error vectors will increase the overall probability of a decoding error. One
answer to this problem is to consider the set of vectors where we have a lot
of ones close together in the vector. More specifically, we keep and store only
messages for which the generated r2 vector contains an interval (chunk) of length
l1 containing many ones, say at least l0 ones. An example of a parameter choice
might be l1 = 55 and l0 = 38. Now, let us look at the contribution of x · r2 to
the error e′. So x has weight 133, meaning that the result of x · r2 is the sum of
133 different rotated versions of r2. The average distance between ones in x is
almost 500. This means that length l1 intervals of many ones in the 133 rotated
versions of r2 almost never coincide in positions, but leave (almost) 133 intervals
of many ones in the result of x ·r2. In more detail, a single interval of many ones
may either end up completely inside a single repetition code or it will contribute
in two adjacent repetition codes. This depends on the exact starting position of
the interval of many ones as well as the positions of the ones in the secret x.
This is all depicted in Fig. 4, where we can see the top interval of many ones
(illustrated as a box) affecting two adjacent repetition codes whereas the second
top interval in the figure affects only a single repetition code.

In any case, the result is that the ones in e′ are no longer uniformly dis-
tributed, but some repetition codes will have many errors and others very few.
Concentrating the errors to a subset of the repetition codes drastically changes
the overall probability of a decoding error. Whereas an average error vector has
probability much smaller than 2−128 of not being correctly decoded, errors of the
above form with l1 = 55 and l0 = 38 show an overall decoding error probability
of 2−14!

We now assume that we have observed a number of decryption errors by
feeding the decryption oracle these special messages and recording their cor-
responding error vectors generated in the encryption. The second task in the
attack is to recover some part of the secret key x,y. We do that by the follow-
ing observation. We consider a position i and look at whether it is likely that
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Fig. 4. The appearance of ones in x · r2 when r2 contains an interval of many ones.

xi = 1. If this is the case and an interval of many ones starts at position j for a
particular r2, then we will have a contribution of many ones starting at position
i + j. Since we got a decryption error it is much more likely that the repetition
codes corresponding to position i + j and l1 positions onwards, will decode in
error, compared to the general case.

Now, since the overall error is e′ = x·r2−y ·r1+e another observation is that
if a repetition code is not decoding correctly, it is likely that the independent
noise part e is “helping out to make a decoding error”. If the contribution from
the x · r2 term for xi = 1 gives a chunk of many ones in a repetition code that
is assumed not to decoding correctly, then the corresponding e values will be
more likely to be zero if there is already a one contributed from the interval of
many ones. Similarly, the corresponding e values will be more likely to be one if
there is a zero contribution from the interval of many ones, or if the position is
outside the interval.

These two observations put together gives us a strategy of examining the
Hamming weight of the given e vector in the repetition codes corresponding to
position i + j. Basically, if the Hamming weight of these parts taken over many
different such e vectors is following the above observation, then we can come to
the conclusion that xi = 1, otherwise we set xi = 0. We come back to the details
of this procedure in the next section.

There is some dependence for positions that are closely located, so it is actu-
ally a good approach to only establish many positions for which we have xi = 0.
Then we can use an information set decoding algorithm to solve for x,y using
the knowledge from the public key. The complexity of this procedure has very
limited complexity.
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4 Attack Model and Detailed Steps

We follow the newly-proposed attack using decryption failures adopting the
weak-ciphertext attack model from [17], although no assumption on weak keys is
used. The attack consists of three main steps. Firstly, we prepare ‘weak’ cipher-
texts with the noise tuple (r1, r2, e) of a specific form. We then submit these
ciphertexts to the decryption oracle and collect the decryption errors that occur.
The last step is to perform a statistical analysis (e.g., hypothesis testing) to
extract the key information. We will also include classical solving algorithms in
code-based cryptography like Information Set Decoding (ISD) to improve the
key-recovery efficiency.

4.1 Weak-Ciphertext Preparation

We select a set (denoted A) of ‘weak’ ciphertexts and the corresponding noise
tuples (r1, r2, e) with r2 having a consecutive l1 positions with at least l0 ones
in this chunk. Let Ai denote the event that this consecutive chunk exists and
starts from the i-th position. We estimate the probability of this event as

Pr[Ai] =

(
wr

l0

) · (
n−wr

l1−l0

)
(

n
l1

) .

The overall probability of finding such a chunk in a length n vector, denoted
as p, can then be estimated as

p = Pr[∪iAi] ≈
∑

i

Pr[Ai] −
∑
i,j

Pr[Ai ∩ Aj ]. (2)

Thus, we expect that we need p−1 computations (hash calls to G) to generate one
‘weak’ ciphertext with the chosen form. For hqc-256-1, as shown in the second
column of Table 2, the precomputation costs differ for different choices of l1
and l0. This cost is bounded by 2191 if we set l1 = 53 and l0 = 29. Note that
even though the precomputation is searching a larger space than allowed in the
scheme, if we set l1 = 55 and l0 ≥ 36, we include and discuss these parameter
choices for the purpose of simulation of parts of the attack.

4.2 Collecting Errors

We send the selected ciphertexts in set A to the decryption oracle for decryption
and store the tuple (r1, r2, e) for ciphertexts leading to a decryption error. An
important task is to estimate the decryption error rate for the chosen parameters.

The Convolution of Probability Distributions. Let Xi = 1 be the event
that decoding output of the i-th repetition code is erroneous, for i ∈ {0, . . . , n1−
1}. We denote this event by pi, i.e., pi = Pr[Xi = 1], and thus, the probability
Pr[Xi = 0] is (1 − pi). Let D denote the event that the tuple (r1, r2, e) leads to



364 Q. Guo and T. Johansson

Table 2. The estimated decryption error rate (DER) for hqc-256-1. The starting posi-
tion is 0.

l1 l0 log2(p
−1) The DER (in log2(·))

in estimation

55 38 276 −14.72

55 37 266 −17.65

55 36 256 −20.84

53 29 191 −48.61

63 30 191 −48.03

66 30 188 −49.17

55 26 163 −63.91

45 16 86 −112.6

a decryption error. If we assume that all the Xi’s are independent3, then we can
recursively estimate the probability of D as

Pr[
n1−1∑
i=0

Xi > δ] = pn1−1 · Pr[
n1−2∑
i=0

Xi ≥ δ] + (1 − pn1−1) · Pr[
n1−2∑
i=0

Xi > δ]. (3)

This method is referred to as the convolution of probability distributions.
The computed decryption error probabilities (DER) for different choices of l1

and l0 are shown in the third column of Table 2. We see that for the simulation
purpose, the decryption error probability can be as low as 2−14 if l1 = 55 and
l0 = 38; for a theoretical attack, the decryption error probability is estimated
to be 2−48.61 if l1 = 53 and l0 = 29. The pi’s can be computed and also tested
in simulation. The exact calculation of the pi’s for a given error pattern in A
is considered later in the section. In practice, we run a large number of trials
to empirically test the values of pi and then use the convolution of probability
distributions to compute the decryption error probabilities (DER). In a later part
(see Table 5) we report on testing the accuracy of this estimation approach and
obtained simulation results are close to the estimation. This estimation approach
is actually a bit conservative from the attacker’s viewpoint.

4.3 Statistical Analysis

After collecting all the tuples (r1, r2, e) that lead to a decryption error, we
attempt to recover partial secret key information on x. In this part, we first
present the empirical statistical dependence observed for a key recovery attack

3 The independence assumption will lead to a conservative estimation from the
attacker’s viewpoint. The reason is this assumption can cause a DER estimation
smaller than the true value, which fits the results [19,28] on LAC and has been
verified by simulation in Table 5.
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and develop theoretical estimations on this dependence. The developed theory
nicely explains the observed distinguishing property and shows that the property
is even stronger when the DER drops. We also discuss techniques and tricks
employed in this statistical test step.

Observation. Assume for simplicity that all chunks of many ones in r2 start
in position 0. Our approach to recover partial secret key information is to inves-
tigate and compute the frequency of {ei = 1|D}, where 0 ≤ i ≤ n1n2 − 1 and D
means that the tuple (r1, r2, e) leads to a decryption error.

The basic observation is that if xi0 = 1, then with high probability (due to
the sparsity of x), only one nonzero entry is in the interval [n2 · t, n2 · (t + 1)),
for t = �i0/n2�. Then #{ei = 1|D} for i ∈ [i0, i0 + l1] is smaller than for the
values corresponding to the other positions in the interval [n2 · t, n2 · (t + 1)).
We can observe no difference (i.e., behave like the random) for an interval I
corresponding to a repetition code without an i0 such that i0 ∈ I and xi0 = 1.
We refer to the prior as CASE I and the latter as CASE II.

The controlled window of length l1 can be divided into two halves and con-
tributes to two consecutive but different repetition decoding intervals. In this
case we can still observe these (possibly weaker) frequency differences.

Visual Illustration from Experiments. This phenomenon is visually illus-
trated in Fig. 5, where the simulation results for targeting the hqc-256-1 param-
eters by setting l1 = 55 and l0 = 38 are provided. The DER is simulated to be
2−14.3. We select at random two CASE I repetition code intervals and two CASE
II repetition code intervals, which are plotted in the top two sub-figures and the
bottom two sub-figures in Fig. 5, respectively. In the first two plots we re-order
the positions by putting the length l1 controlled window at the beginning. We
then derive four length n2 − l1 vectors with entry i being the summation of l1
consecutive positions starting from i in the re-ordered repetition code intervals.
One can in this way visually observe the differences of CASE I and CASE II in
the repetition code intervals.

This figure shows that one can recover key information if a sufficient number
of decryption failures are provided. The above presented distinguisher, however,
is far from optimal. We will now present a better maximum likelihood distin-
guisher that will also give an estimate of the required number of decryption
failures.
Theoretical Estimation on Pr[ej = 1|D]. Let us examine Pr[ej = 1|D] for

0 ≤ j ≤ n1n2 − 1 through

Pr[ej = 1|D] = Pr[Xi = 1|D]Pr[ej = 1|Xi = 1,D]
+ Pr[Xi = 0|D]Pr[ej = 1|Xi = 0,D],

where Xi = 1 represents the event that the i-th repetition decoding is erroneous,
and vice versa, for i = �j/n2�. We denote the i-th repetition code interval as Ii,
where Ii = [i · n2, (i + 1) · n2).
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Fig. 5. The sum of l1 consecutive #{ei = 1|D} in a repetition decoding interval with
re-ordering. The top two sub-figures plot CASE I intervals and the last two figures
plot the opposite case. 735, 000 decryption errors are collected with DER 2−14.3. The
CASE I and CASE II intervals could be distinguished.

We assume that the events (ej = 1|Xi = 1) and (D|Xi = 1) are independent,
as ej roughly only depends on Xi and not any other Xj for j �= i. Then we
derive that

Pr[ej = 1|Xi = 1,D] =
Pr[ej = 1,D|Xi = 1]

Pr[D|Xi = 1]
≈ Pr[ej = 1|Xi = 1],

Also, Pr[ej = 1|Xi = 0,D] ≈ Pr[ej = 1|Xi = 0]. Then we can rewrite as

Pr[ej = 1|D] ≈Pr[Xi = 1|D]Pr[ej = 1|Xi = 1]
+ Pr[Xi = 0|D]Pr[ej = 1|Xi = 0]

= Pr[Xi = 1|D](Pr[ej = 1|Xi = 1] − Pr[ej = 1|Xi = 0])
+ Pr[ej = 1|Xi = 0].

We note that

Pr[Xi = 1|D] =
Pr[Xi = 1,D]

Pr[D]
=

pi · Pr[
∑

j �=i Xj ≥ δ]
Pr[D]

.
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l1

Fig. 6. The matrix representation of r1 in case that the controlled interval starts from
Position 0.

We also know that

Pr[ej = 1,Xi = 1] = Pr[ej = 1,
∑
k∈Ii

e′
k > δr]

= Pr[ej = 1, e′
j = 1] · Pr[

∑
k �=j,k∈Ii

e′
k > δr − 1]

+ Pr[ej = 1, e′
j = 0] · Pr[

∑
k �=j,k∈Ii

e′
k > δr]

and

Pr[ej = 1|Xi = 1] =
Pr[ej = 1,Xi = 1]

Pr[ej = 1,Xi = 1] + Pr[ej = 0,Xi = 1]
. (4)

We can analogously compute Pr[ej = 1|Xi = 0] as

Pr[ej = 1|Xi = 0] =
Pr[ej = 1] − Pr[ej = 1,Xi = 1]

1 − Pr[Xi = 1]
, (5)

where Pr[ej = 1] = ωe/n.
Thus, all the intermediate probability values can be obtained via recursively

computing the convolution of probability distributions if pi, Pr[ej = 1, e′
j = 1],

Pr[ej = 1, e′
j = 0], and Pr[e′

k = 1] are known. We next show how to estimate pi,
Pr[ej = 1, e′

j = 1], Pr[ej = 1, e′
j = 0], and Pr[e′

k = 1].

Computation of Probabilities pi: Firstly, the probability pi can also be
computed using the convolution of probability distributions of Pr[ej = 1] : j ∈ Ii,
but a simpler strategy is to test the values experimentally, since these probability
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Table 3. The computed Pr[Xi = 1|D] from the simulation results on hqc-256-1 with
l1 = 53 and l0 = 29.

l′ Index Pr[Xi = 1|D]

0 25 0.00506

71 0.00504

166 0.00504

250 0.00502

365 0.00500

590 0.00506

53 68 0.3089

127 0.3087

186 0.3089

356 0.3089

482 0.3089

695 0.3089

values are relatively significant. An important observation shown in Table 3 is
that the computed Pr[Xi = 1|D] is a function of the length l′ of the controlled
window in the repetition code interval. Here l′ = 0 corresponds to the random
case and l′ = l1 corresponds to having a full length l1 chunk. Intermediate
values appear when a chunk of many ones is split in two different repetition
code intervals. In this table, the computed Pr[Xi = 1|D] from the simulation
results regarding the hqc-256-1 parameters, where l1 = 53 and l0 = 29 and the
controlled interval starting form position 0. We choose at random 6 repetition
code intervals with controlled length 0 and repetition code intervals with the
full controlled length 53. The second column shows the index of the selected
repetition code interval and the last column shows the computed probability
Pr[Xi = 1|D]. We see the computed probabilities are close in the same group
and have a huge gap between the two groups with different l′.

Computation of Remaining Probabilities: Secondly, with assumptions of
certain independence, if the contribution from the marked strip in Fig. 6 is cor-
rectly guessed, then one can apply similar arguments as Proposition 1.4.1 in [2] to
derive closed formulas to estimate the probabilities Pr[e′

k = 1], Pr[ej = 1, e′
j = 1],

and Pr[ej = 1, e′
j = 0].

Proposition 1 (Proposition 1.4.1 in [2]). Let x = (X0, . . . , Xn−1) (resp.
r = (R0, . . . , Rn−1)) be a random vector where Xi (resp. Ri) are independent
Bernoulli variables of parameters p (resp. pr), Pr[Xi = 1] = p and Pr[Ri = 1] =
pr. Assuming x and r are independent, and denoting z = x · r = (Z0, . . . , Zn−1)
as defined as the multiplication of x and r in R, we have

p̂ = Pr[Zk = 1] =
1
2

− 1
2
(1 − 2ppr)n. (6)
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Table 4. The simulated probabilities v.s. the estimated probabilities on hqc-256-1.
The starting position is 0. The distinguishing property is stronger when the DER level
drops.

l1 l0 In estimation In simulation The DER level

prandom phigh plow prandom phigh plow (in log2(·))
55 38 0.002406 0.002412 0.002401 0.002404 0.002460 0.002347 −14

55 36 0.002406 0.002419 0.002393 0.002404 0.002468 0.002340 −20

53 29 0.002408 0.002446 0.002369 – – – −48

Thus, the contribution of y·r2 can be modeled as a Bernoulli random variable
with probability p̂. For a position j, if we guess the sub-vector xpart of x corre-
sponding to the controlled interval of length l1 shown in the marked strip, its
contribution denoted Υpart to e′

j is then known. Let ωpart be the weight of xpart, we
then model the position in the remaining sub-vector of x as a Bernoulli random
variable with probability ω − ωpart

n−l1
. We model the position in the unmarked part

of r1 as a Bernoulli random variable with probability ωr − l0
n−l1 . The contribution

of x · r1 − Υpart is modeled as a Bernoulli random variable with probability p̃,
where

p̃ =
1
2

− 1
2
(1 − 2 · ω − ωpart

n − l1
· ωr − l0

n − l1
)n−l1 .

We derive the following proposition.

Proposition 2. We have that,

Pr[e′
k − Υpart = 0, ek = 1] =

ωe

n
· (p̂ · (1 − p̃) + (1 − p̂) · p̃) , (7)

Pr[e′
k − Υpart = 1, ek = 1] =

ωe

n
· (p̂ · p̃ + (1 − p̂) · (1 − p̃)) , (8)

Pr[e′
k − Υpart = 1, ek = 0] =

(
1 − ωe

n

)
· (p̂ · (1 − p̃) + (1 − p̂) · p̃) , (9)

and

Pr[e′
k − Υpart = 0, ek = 0] =

(
1 − ωe

n

)
· (p̂ · p̃ + (1 − p̂) · (1 − p̃)) . (10)

Putting all the formulas together, we can compute the probability
Pr[ej = 1|D] in the different cases. The distinguishing property can then be
depicted as in Fig. 7. We plotted two repetition decoding intervals, a CASE II
interval at the right with a probability of Pr[ej = 1|D] denoted by prandom and
a CASE I interval at the left. For the latter, for the position outside a window
of length l1 corresponding to the controlled section, we know that the contribu-
tion of Υpart is always 0, thus showing a higher probability of Pr[ej = 1|D] than
prandom denoted by phigh; otherwise, the contribution Υpart can be either 0 or 1,
showing a higher or lower probability of Pr[ej = 1|D], respectively. We denote
the lower probability of Pr[ej = 1|D] by plow.
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Fig. 7. Graphic illustration of the distinguishing property.

Example 1: We apply the theoretical analysis on hqc-256-1 with results as shown
in Table 4. When the starting position is 0, l1 = 55 and l0 = 38, for a CASE II
repetition decoding window, we estimate that Pr[ej = 1|D] is 0.002406 (prandom);
for a CASE I repetition decoding window, we estimate that Pr[ej = 1|D] is
0.002401 (plow) for the case Υpart = 1, and Pr[ej = 1|D] is 0.002412 (phigh) for
the case Υpart = 0. The difference (or called bias) between phigh and plow becomes
larger for parameters with lower estimated decryption error rates (say l0 = 29).

The remaining problem is to correctly guess the contribution Υpart from the
marked strip, which is a hypothesis testing problem revealing partial information
on the secret key x.

Maximum Likelihood Ratio Test. We describe the maximum likelihood
ratio test to correctly guess the contribution Υpart. We guess a small chunk of x
and then obtain the corresponding Υpart. We then group the positions according
to its guessed contribution Υpart and to decide if the resulted distribution is more
close to the theoretically derived one, i.e., with a high Pr[ej = 1|D] for Υpart = 0
and withe a low Pr[ej = 1|D] for Υpart = 1, or more close to the random case (i.e.
CASE II).

In the implementation, we test bit-by-bit, i.e., running through all the posi-
tions of x and for each position, using maximum likelihood test to decide if that
position should be zero, under the assumption that the rest positions are all
zero. This approach is definitely the simplest strategy, and is demonstrated to
be efficient in simulation. There exist many other possible approaches for this
statistical test step.

Double Distinguishing. In the previous discussion, we prepare the weak
ciphertext set A whose r2 part has a consecutive l1 positions with l0 ones, to
recover partial information of x. Also, we can prepare another set (denoted A’)
of weak ciphertexts whose r1 part has a consecutive l1 positions with l0 ones,
to recover partial information of y. Due to the 264 constraint on the number of
the submitted ciphertexts, we let A’ and A be both of size 263. One call to the
encryption function will return both the r1 and r2 parts. Thus, if 2γ encryptions
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are required to detect a ciphertext in A (or A′) with the desired pattern, we only
need 2γ+63 encryption calls in total to prepare the two sets.

4.4 Information Set Decoding

This step will be applied if no full key-recovery is achieved after the statistical
analysis. The basic idea is that, with the partial information obtained from the
statistical analysis step, recovering the secret key sk = (x,y) from the public
key pk = (h, s = x + h · y) is a simple task.

To be more specific, if one knows from the previous step the l positions in x
and also l positions in y that are zero with the highest probability, then a new
decoding problem with code length 2l and dimension n can be derived. This
problem can be much easier to solve as the chosen positions are rarely non-zero.

The plain ISD [40] algorithm works very well if the guessed positions are
reliable. This process could possibly be accelerated by applying advanced infor-
mation set decoding algorithms like Stern’s algorithm [43] and BJMM [11]. In
addition, the previous hypothesis testing step provides soft information of the
secret key, so the ISD variant with bit reliability [39] and the soft-Stern algo-
rithm [23,24] could be employed to accelerate this post-processing step.

4.5 Simulation Results on hqc-256-1

We in this part present implementation results on hqc-256-1. In the later analysis
we will stick with the empirical distributions from the largest simulation we
conducted. This analysis is conservative from an attacker’s viewpoint, since the
distinguishing property is stronger when the DER drops.

The Tested Bias. We have tested the different probabilities of phigh, plow, and
prandom, computed in the previous parts. The comparison between the theoretical
results and the simulated results is shown in Table 4. We could see that for a fixed
l1 (here l1 = 55), when the value of l0 drops (meaning that the precomputation
cost drops and also the decryption error probability), the differences (also named
bias) between two of the probabilities increase. Most importantly, the simulated
bias is much larger than then estimated bias. For instance, we observed a gap
of 0.000055 between phigh and prandom, while only of 0.000006 in the theoretical
estimation, when setting l1 = 55 and l0 = 38.

This table (Table 4) verifies our theoretical analysis, i.e., explaining the rea-
son of observing the different probabilities in CASE I and CASE II, though the
real bias is much larger than the one computed. Due to the crypt-analytic nature
of this work, we want to upper-bound the complexity of the newly proposed
attack. In the later analysis, thus, we make a conservative choice by employing
the empirical distributions obtained from the largest simulation we conducted.
Note that these chosen probabilities (prandom, phigh, plow) correspond to the case
that the decryption error probability is about 2−22. Though the true bias when
launching the attack for parameters (of l1 = 53 and l0 = 29) with decryption
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Table 5. The simulated DER v.s. the estimated DER (with starting position 0).

l1 l0 The DER (in log2(·))
in estimation

The DER (in log2(·))
in simulation

55 38 −14.72 −14.3

55 37 −17.65 −17.2

55 36 −20.84 −20.3

error probability of about 2−48 is beyond our capability to simulate, it will be
larger than the one in our simulation.

The Accuracy of the Convolution Method. We have tested the accuracy
of the estimation using the convolution of probability distributions as shown in
Table 5. The estimation is always slightly lower than the simulated decryption
error rate, caused by the weak dependence between different positions. We see
that the ratio between the simulated DER and the estimated DER becomes
larger when the error rate is smaller, and it is already 20.54 when the DER is
about 2−20. We expect to have the ratio to be 2 when considering the case that
the DER is smaller than 2−48.

Estimation from Different Starting Positions. We have observed that the
estimated decryption error rates fluctuate slightly if the starting position differs.
The mean over all starting positions is 2−48.98 for l1 = 53 and l0 = 29. Since
the estimation is slightly conservative, we could expect to collect 264−49+1 = 216

decryption errors in practice.

A Full Test. We run simulation to demonstrate that 216 decryption errors, i.e.,
215 decryption errors for each test when employing the double distinguishing
procedure, are enough for a full-key recovery with complexity bounded by the
264 online decryption oracle queries. As discussed before, if one launches the
attack with decryption error probability of about 2−48, the bias will be larger
and lead to a reduced attack complexity.

In the simulation, we pick l1 = 40 and l0 = 34 leading to a simulated decryp-
tion error probability of 2−21.8. As it is slightly smaller than 2−20.3, the sim-
ulated decryption error probability when setting l1 = 55 and l0 = 36, it is
reasonable to have the bias of the simulated probabilities (prandom, phigh, plow) =
(0.2404, 0.2467, 0.2333) also slightly larger. We then roughly compute the diver-
gence, which is 2−13.17, between the probability distributions over an interval
of length 83 in CASE I and CASE II. Since we only need to detect positions
that are highly probable to be 0 and the noise vector is very sparse, the sample
number 215 is theoretically large enough.

We test the bits of the secret vector x and assume that it works for y as
well since the double distinguishing procedure just repeats the same test. To
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be specific, we run 236.8 encryptions using randomly generated ciphertexts with
the r2 part having the desired pattern. We then obtain the likelihood that one
position of x is zero by the bit-by-bit test. It is interesting to see that in the
46875 most reliable positions that are decided to be zero, only 22 positions are
actually one, and these positions all have a non-zero neighbor which falsifies the
assumption of our test, i.e., only one bit is one and the rest are all zero. A test
can be more efficient if it can handle in a smarter manner the close-by non-zero
pairs in the secret.

Since only one position error occurs in the 16056 most reliable positions, we
could have 14500 error-free positions effortlessly. Assuming that we have the
same test result for the y vector, we then need to solve a new decoding problem
with code-length 64750, dimension 35587, and the error weight 44. This new
problem can be solved with complexity 250 Gaussian Eliminations, by using
the plain ISD algorithm. The overall complexity of the post-processing can be
bounded by 257 Gaussian Eliminations, which is negligible compared with the
cost of the online decryption oracle calls.

We also test that the post-processing complexity increases to 2165 Gaussian
Eliminations if the number of decryption errors is reduced by a factor of 6.

4.6 Summarizing the Complexity of Attacking hqc-256-1

We summarize the attack on hqc-256-1. Firstly, if the attacker chooses the attach-
ing parameters l1 = 53 and l0 = 29, then he will obtain 216 decryption errors
after sending out 264 decryption oracles calls, i.e., 215 errors for each test when
the double distinguishing procedure are applied. We then in simulation test that
this amount of decryption errors are sufficient for a full key recovery.

Note that in the above analysis, we employ the bias tested empirically from
simulations with decryption error rate of only 2−22, which is stronger in the
attacking scenario with decryption error rate of 2−48. Unlike the precomputation
phase and the online decryption phase, the statistical analysis phase and the
post-processing phase using the ISD algorithms require computational costs that
are sensitive to the bias. Though the current complexity number claimed is
already below the cost of the online phase, the true cost should be even smaller
since it drops drastically if the bias increases. This trend has been well verified
in the simulation.

We conclude that 216 decryption errors are enough to correct a number of
entries in x and y so that the full key can be recovered in a later ISD step with
complexity negligible to the 264 online decryption requests. Thus, the complexity
of this CCA attack on hqc-256-1 can be estimated as 264 online decryption
requests, after one large precomputation of 2254.

If we remove the constraint that an attack can only submit 264 ciphertexts
for decryption, the precomputation cost can be lower. The precomputation cost
for one ciphertext and its corresponding decryption error rate are shown in
Table 2. Since the bias will be even stronger when the DER becomes smaller,
216 decryption errors are more than sufficient in these parameter settings. If an
attacker is allowed to submit 280 decryption requests, then the precomputation
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Table 6. The trade-off between the precomputation cost and the number of online
decryption oracle queries for hqc-256-1. We assume that 216 decryption failures are
sufficient for a full-key recovery.

l1 l0 Online DOQs
(in log2(·))

Precomputation cost
(in log2(·))

53 29 64 254

55 26 80 242

45 16 128 213

cost can drop to 2242 when setting l1 = 55 and l0 = 26. The cost even drops to
2213 if 2128 ciphertexts are allowed to be decrypted online. We summarize the
trade-off between the precomputation cost and the number of online decryption
oracle queries (DOQs) in Table 6, when assuming that 216 decryption failures
are sufficient for a full-key recovery.

When the Overall Complexity Includes the Precomputation Cost. In
the previous analysis, we ensure the complexity of the online querying and the
post-processing to be bounded by the 264 decryption oracle calls. This cost also
bounds the whole attacking complexity since the large precomputation only
needs to be done once and therefore should not be included in the attacking
complexity of one particular attack. We now consider a different optimization
goal to optimize the complexity including the precomputation cost. Thus, the
attacker could employ a heavier post-processing to reduce the precomputation
cost.

As stated in Sect. 4.5, we tested that one could reduce the required number of
decryption errors by a factor of 6 and still kept the post-processing complexity far
below 2220. We then select (l1, l0) = (61, 29) and estimate the DER to be 2−51.5

by the convolution method. We obtain enough decryption errors if allowing 264

decryption oracle calls, and the corresponding precomputation cost is 2248 due
to the double distinguishing procedure.

In Table 4, we see that the simulated bias is larger than the estimated bias.
We can extrapolate the distribution when the DER is close to 2−50 if a simple
model where prandom is almost unchanged and psimT ≈ pestiT + δ are adopted. Here
T ∈ {high, low}, psimT means the simulated pT and pestiT means the estimated pT. By
this simple model, we could select (l1, l0) = (63, 29) and give a sharper estimation
that the precomputation cost of 2246 could be enough for a full key-recovery.

Comparing with AES256 in the TMTO Model. We emphasize the prac-
tical relevance of ensuring the complexity in the real attacking phase to be
bounded by the 264 online decryption oracle queries. In this case, a large pre-
computation is done and the real-time complexity T and the memory constraint
M can be set to be 264. Therefore, by splitting the cost into the precomputation
and the online parts, a natural model to compare with is the famous Hellman’s
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Table 7. The estimated decryption failure probability.

l1 l0 log2(p
−1) The DER (in log2(·))

in estimation

hqc-128-1 20 16 110 −46.25

hqc-192-1 41 24 157 −47.56

hqc-192-2 50 28 187 −48.36

time-memory trade-off (TMTO) attack on block ciphers [30]. It is well-known
that the trade-off relationship for Hellman’s TMTO attack is

TM2 = 22λ,

where T is the time complexity, M is the memory complexity, and λ is the
claimed security level. It can be easily checked that, for our attack on hqc-256-1,
the value of TM2 is much smaller than 2512.

NIST classified the range of the security strengths from symmetric crypto-
graphic primitives like AES (see [1]). We conclude, also from the perspective
of time-memory trade-off attacks, that hqc-256-1 cannot provide sufficient secu-
rity compared with block ciphers such as AES256. Similar discussions on several
other HQC parameter sets will be presented in the next section.

5 On Other HQC Parameters

Comparing with AES in the TMTO Model. We adopt the assumption
that 216 decryption errors – for the case that the decryption error probability
is close to 2−48 – are sufficient for recovering the key with complexity negligible
to the 264 online decryption oracle calls, as we discussed in the previous section.
This assumption for hqc-192-1 was verified in simulation. Table 7 shows the
estimated DER from the convolution of probability distributions for three HQC
parameter sets, hqc-128-1, hqc-192-1, and hqc-192-2. For all the three parameter
sets, it is possible to attack with complexity bounded by 264 online decryption
oracle calls. We can set the time and memory constraints to be 264 and the new
attacks are much better than Hellman’s TMTO relationship for a block cipher.

Thus, we similarly claim that all the three parameter sets cannot provide
sufficient security regarding the TMTO attacks.

When the Precomputation Can Be Amortized. The precomputation is
excluded from the time complexity constraint T in the TMTO model. We could
consider a different model of attacking more keys and amortizing the precom-
putation complexity. In other words, the precomputation is still done once and
never again; the attacker then use the precomputed weak ciphertexts to attack
all the public keys once the HQC cryptosystem is deployed. If HQC is used for
a very long period, we could assume that the attacker can have 264 public keys
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to target. His goal is to recover all the keys with complexity below 264+λ, where
λ is the claimed security level. If so, the amortized complexity is below 2λ for
recovering one key. Moreover, the memory cost for storing the precomputed noise
seeds is also amortized.

The idea of attacking many keys for a lower RAM and precomputation cost
than attacking each key separately was originally discussed by Hellman, also
in his seminal work [30]. Note that this model is different from the usual multi-
target model where only one key among the 264 keys needs to be recovered, whose
counterpart for block ciphers (e.g., AES) is discussed as time/memory/data
trade-off attacks in [15] for recovering one out of many possible keys.

The previous section shows that hqc-256-1 can be solved with 2254 precom-
putation, which can be amortized to 2190 for recovering 264 keys in the new
model. Due to the double distinguishing procedure, we see from Table 7 that the
precomputation costs for hqc-128-1, hqc-192-1 and hqc-192-2 are 2110+63=173,
2220, and 2250, respectively. If 264 keys are attacked in this model, the amortized
precomputation complexity can be estimated as 2109, 2156, and 2186, respec-
tively, each of which is below its claimed security level. If one makes an extreme
assumption that there is an infinite number of HQC keys to attack, then the
complexity per key is only 264, dominated by that of the online attacking phase.

Experiments. We tested our assumption for hqc-192-1 in simulation that 216

decryption errors are sufficient in our attack scenario. For the ease of simula-
tion, we also select parameters leading to a DER close to 2−20. Firstly, we have
detected a stronger bias for hqc-192-1, e.g., the absolution value of (phigh−prandom)
is almost twice as large as the simulated value for hqc-256-1. We then collected
215 decryption errors and performed a full test similar to the version described
in Sect. 4.5. As expected, the experimental results are even better, and the post-
processing complexity is estimated to be less than 249 Gaussian Eliminations
using the plain ISD.

We also tested the accuracy of the convolution method by running 237.3

encryptions. The simulated DER is 2−19.29, larger than the estimated DER of
2−20.55 by a factor of about 21.3. In this sense, our attack complexity estimation
is conservative and the actual complexity could be slightly lower.

6 Discussion and Countermeasures

In [4], NIST commented on HQC that “HQC presents a strong argument that
its decryption failure rate is low enough to obtain chosen ciphertext security.
This is the strongest argument, at present, of CCA security among the second-
round candidate code-based cryptosystems, where information set decoding is
the limiting attack for both private key recovery and message recovery (BIKE,
HQC, and LEDAcrypt).” The newly proposed attack partly proves and disproves
these comments at least for certain parameter sets.

From one perspective, we do not falsify the designers’ claim on the DER anal-
ysis (for instance, we do not break their claim that the averaged decryption error
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probability (DER) is below 2−128 for hqc-256-1)4. Our experiments to test the
accuracy of the convolution method can be treated as a partial verification that
the error-correcting implementation in HQC matches its theoretical estimation,
i.e., the correlation among positions is much weaker (than that in LAC [19,28]).

On the other hand, our attack shows that the (CCA) security claim of HQC
is problematic. In the NIST setting – with only 264 online chosen ciphertext
submission and only one public key is assumed – the proposed parameters of hqc-
256-1 with DER below 2−128 is insufficient to ensure the claimed CCA security
level. One should consider parameter settings with even lower DER. The problem
becomes even more severe in the model where more keys are assumed and the
precomputation cost can be amortized.

Secure Parameters. The current attack version does not affect the security
claim of hqc-256-2 and hqc-256-3.

Protection. The attacks on hqc-128-1, hqc-192-1 and hqc-192-2 with amortized
precomputation cost can be thwarted by employing the multi-target protection
technique, i.e., using G(pk,m) rather than only G(m) where G is a hash function,
in the random noise generation process. We suggest the designers to include this
technique in a later version. For the highest security level, we suggest to use the
other parameter settings, hqc-256-2 and hqc-256-3, that are invulnerable to the
new attacks.

Not a Weak-Key Attack. Note that the current attack version includes no
weak-key analysis, which has been proven a big threat [28] to the LAC [34]
scheme. We leave this problem for further research.

More Discussions on the Attack Models. In this paper, we have discussed
the attack with three different models, i.e., the NIST setting, the model that the
precomputation cost can be amortized, and the TMTO model that the precom-
putation cost is excluded from the trade-off formula. The last two models are of
practical relevance.

To be specific, the precomputation cost is done only once and is done before
the adversary gets a target to attack. It can be used for all targets in the future.
Later the adversary may get one or many targets to attack and the online com-
plexity to find the key is only 264. Also, the targeted keys can be in different
HQC systems. We see that the second model and the TMTO model are not the
same as a multitarget attack model in general.
4 Actually, by computing the convolution of distributions, we estimate the decryption

error rates for the selected keys in simulation to be 2−163 for hqc-192-1 and 2−151

for hqc-256-1, which supports their official claim of DER smaller than 2−128. Since
the gap between the two estimation method (2−151 v.s. 2−128) is large, it may be
too conservative to only multiply a factor of 2 to adjust DER estimation value in
Sect. 4.5.
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The TMTO attacks are not considered in the current NIST PQC framework
but could be considered relevant because if precomputation is for free, a TMTO
attack is the best known attack on all versions of HQC (and other NIST can-
didates), by attacking the random seed to public key setup. In such a case the
NIST security definition would relate to a generic TMTO attack instead of a
simple exhaustive key search.

It is stated in the NIST submission requirements that “Any attack that
breaks the relevant security definition must require computational resources com-
parable to or greater than those required for key search on a block cipher with
a 128-bit key (e.g. AES128)”, and NIST goes on “any attack must require com-
putational resources comparable to or greater than the stated threshold, with
respect to ALL metrics that NIST deems to be potentially relevant to practi-
cal security”. Similar requirements are explicitly stated for other security levels.
Thus, if NIST considers the TMTO attack model to be a relevant metric, then
hqc-128-1, hqc-192-1, and hqc-192-2 are all affected.

7 Concluding Remarks

We have presented a new CCA attack on the HQC proposal that has advanced
to the second round in the NIST post-quantum cryptography standardization
project. For hqc-256-1, the secret key can be recovered with complexity 2248

estimated by using simulation data (or 2246 using an extrapolation model), if
only 264 online decryption oracle calls are submitted. This analysis questions the
security claim of hqc-256-1 in the NIST setting. Moreover, we could bound the
online and post-processing complexity to 264 online decryption oracle calls, if a
large precomputation of 2254 is included. The precomputation cost needs to be
done only once and can be smaller if more decryption oracle calls are allowed.
We also presented attacks on hqc-128-1, hqc-192-1, and hqc-192-2 with amortized
precomputation complexity below the claimed security levels, respectively, if
multiple keys are assumed. Compared with AES in the TMTO attack model,
all the four parameter sets, hqc-128-1, hqc-192-1, hqc-192-2, and hqc-256-1 are
insufficient for providing security w.r.t. the claimed security levels. There are
safe parameter choices like hqc-256-2 and hqc-256-3.

We present this attack version to demonstrate the vulnerability of the broken
HQC parameter settings; the attack, however, can be further optimized. Firstly,
employing better ISD algorithms with bit reliability like the Soft-Stern [23,24]
will allow reduced post-processing complexity. Secondly, performing larger imple-
mentation will lead to a more accurate complexity estimation with a smaller
complexity number, as the bias will be stronger if the error rate becomes even
lower. Thirdly, a more sophisticated distinguisher better dealing with the close-
by ones would reduce the required number of errors, thereby reducing the attack
complexity further. Last, one could design a more powerful weak-key version
similar to the attack [28] on LAC, which only works for a small fraction of keys.

It is interesting to apply similar ideas to other proposals in the NIST PQC
project, e.g., the rank-based proposal Rollo [6]. This attacking approach can be
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generally applied to code-based primitives using the tensor product codes built
from BCH codes and the repetition codes. This error-correcting scheme is also
employed in Lepton [44], a round-1 candidate in the NIST PQC project. The
attack may need to be adjusted when considering other coding implementations,
which would be interesting for future research.
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23. Guo, Q., Johansson, T., Mårtensson, E., Stankovski, P.: Information set decoding
with soft information and some cryptographic applications. In: 2017 IEEE Inter-
national Symposium on Information Theory, ISIT 2017, Aachen, Germany, 25–30
June 2017, pp. 1793–1797 (2017). https://doi.org/10.1109/ISIT.2017.8006838
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