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Preface

The 26th Annual International Conference on Theory and Application of Cryptology
and Information Security (ASIACRYPT 2020), was originally planned to be held in
Daejeon, South Korea, during December 7–11, 2020. Due to the COVID-19 pandemic,
it was shifted to an online-only virtual conference.

The conference focused on all technical aspects of cryptology, and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a total of 316 submissions from all over the world, the Program
Committee (PC) selected 85 papers for publication in the proceedings of the confer-
ence. The two program chairs were supported by a PC consisting of 66 leading experts
in aspects of cryptology. Each submission was reviewed by at least three PC members
(or their sub-reviewers) and five PC members were assigned to submissions
co-authored by PC members. The strong conflict of interest rules imposed by the IACR
ensure that papers are not handled by PC members with a close working relationship
with authors. The two program chairs were not allowed to submit a paper, and PC
members were limited to two submissions each. There were approximately 390
external reviewers, whose input was critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and
first-round discussions, the PC selected 205 submissions to proceed to the second
round, including 1 submission with early acceptance. The authors of 204 papers were
then invited to provide a short rebuttal in response to the referee reports. The second
round involved extensive discussions by the PC members.

The three volumes of the conference proceedings contain the revised versions of the
85 papers that were selected, together with the abstracts of 2 invited talks. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The program of ASIACRYPT 2020 featured two excellent invited talks by Shweta
Agrawal and Jung Hee Cheon. The conference also featured a rump session which
contained short presentations on the latest research results of the field.

The PC selected three papers to receive the Best Paper Award, via a voting-based
process that took into account conflicts of interest, which were solicited to submit the
full versions to the Journal of Cryptology: “Finding Collisions in a Quantum World:
Quantum Black-Box Separation of Collision-Resistance and One-Wayness” by Akinori
Hosoyamada and Takashi Yamakawa; “New results on Gimli: full-permutation dis-
tinguishers and improved collisions” by Antonio Flórez Gutiérrez, Gaëtan Leurent,
María Naya-Plasencia, Léo Perrin, André Schrottenloher, and Ferdinand Sibleyras; and
“SQISign: Compact Post-Quantum signatures from Quaternions and Isogenies” by
Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski.



Many people contributed to the success of ASIACRYPT 2020. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge
and expertise, and for the tremendous amount of work that was done with reading
papers and contributing to the discussions. We are greatly indebted to Kwangjo Kim,
the general chair, for his efforts and overall organization. We thank Michel Abdalla,
McCurley, Kay McKelly, and members of the IACR’s emergency pandemic team for
their work in designing and running the virtual format. We thank Steve Galbraith, Joo
Young Lee, and Yu Sasaki for expertly organizing and chairing the rump session. We
are extremely grateful to Zhenzhen Bao for checking all the latex files and for
assembling the files for submission to Springer. Finally, we thank Shai Halevi and the
IACR for setting up and maintaining the Web Submission and Review software, used
by IACR conferences for the paper submission and review process. We also thank
Alfred Hofmann, Anna Kramer, and their colleagues at Springer for handling the
publication of these conference proceedings.

December 2020 Shiho Moriai
Huaxiong Wang
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Abstracts of Invited Talks



Unlikely Friendships: The Fruitful Interplay
of Cryptographic Assumptions

Shweta Agrawal1

IIT Madras, India
shweta.a@cse.iitm.ac.in

Abstract. The security of cryptographic protocols is based on the conjectured
intractability of some mathematical problem, typically a single problem. How-
ever, in some cases, novel constructions emerge out of the surprising interplay
of seemingly disparate mathematical structures and conjectured hard problems
on these. Though unusual, this cooperation between assumptions, when it
happens, can lead to progress on important open problems. This sometimes
paves the way for subsequent improvements, which may even eliminate the
multiplicity and reduce security to a single assumption.
In this talk, we will examine some interesting examples of the above phe-

nomenon. An early example can be found in the primitive of fully homomorphic
encryption (FHE), where Gentry and Halevi (FOCS, 2011) provided a beautiful
construction that eliminated the “squashing” step from Gentry’s original FHE
blueprint (STOC, 2009) by designing a hybrid of “somewhat homomorphic
encryption” based on Learning with Errors (LWE), and “multiplicatively
homomorphic encryption”, based on Decision Diffie Hellman (DDH). More
recently, Agrawal and Yamada (EUROCRYPT 2020) provided the first con-
struction of optimal broadcast encryption from standard assumptions, by
leveraging a serendipitous interplay of LWE and assumptions based on bilinear
maps. Lastly, we will examine some very recent constructions of indistin-
guishability obfuscation which rely on such interaction – the construction by
Brakerski et al (EUROCRYPT 2020) and subsequent improvement by Gay and
Pass (Eprint 2020), based on LWE and the Decisional Composite Residues
(DCR) problem, and the construction by Jain, Lin and Sahai (Eprint 2020)
which is based on LWE, Symmetric eXternal Diffie Hellman (SXDH). Learning
Parity with Noise (LPN) and the existence of Boolean PRG with polynomial
stretch in NC0.
We will conclude with a discussion about future directions.

1 Supported by the Swarnajayanti fellowship and an Indo-French Cefipra grant.



Approximate Computation on Encrypted Data

Jung Hee Cheon

Department of Math and RIM, Seoul National University, Korea

Abstract. Homomorphic encryption (HE) has been in the limelight as a perfect
tool for privacy since 1978. Not only the theoretic depth and beauty, but also the
plenty of applications beyond the classical ones make this primitive so attrac-
tive. Privacy preserving machine learning is not a dream anymore with homo-
morphic encryption, not to mention private AIs. In this invited talk, we will
briefly review the 40+ years of homomorphic encryptions and several important
steps toward secure and practical HE. We then proceed to survey on a variety of
applications of HE, especially focusing on the recent development of approxi-
mate HE and approximate computation on encrypted data. Interestingly, it
rekindled our interest in the old mathematical problem of polynomial approxi-
mation of an arbitrary function from different aspects and suggests us a new
research area. We conclude with several real-world applications, ongoing
standardization activities and some possible future directions.
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Abstract. Since the celebrated work of Impagliazzo and Rudich (STOC
1989), a number of black-box impossibility results have been established.
However, these works only ruled out classical black-box reductions among
cryptographic primitives. Therefore it may be possible to overcome these
impossibility results by using quantum reductions. To exclude such a
possibility, we have to extend these impossibility results to the quantum
setting. In this paper, we study black-box impossibility in the quantum
setting.

We first formalize a quantum counterpart of fully-black-box reduc-
tion following the formalization by Reingold, Trevisan and Vadhan (TCC
2004). Then we prove that there is no quantum fully-black-box reduc-
tion from collision-resistant hash functions to one-way permutations (or
even trapdoor permutations). We take both of classical and quantum
implementations of primitives into account. This is an extension to the
quantum setting of the work of Simon (Eurocrypt 1998) who showed a
similar result in the classical setting.

Keywords: Post-quantum cryptography · One-way permutation ·
One-way trapdoor permutation · Collision resistant hash function ·
Fully black-box reduction · Quantum reduction · Impossibility

1 Introduction

1.1 Background

Black-Box Impossibility. Reductions among cryptographic primitives are
fundamental in cryptography. For example, we know reductions from pseudo-
random generators, pseudorandom functions, symmetric key encryptions, and
digital signatures to one-way functions (OWF). On the other hand, there are
some important cryptographic primitives including collision-resistant hash func-
tions (CRH), key-exchanges, public key encryption (PKE), oblivious transfer,
and non-interactive zero-knowledge proofs, for which there are no known reduc-
tions to OWF. Given this situation, we want to ask if it is impossible to reduce
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12491, pp. 3–32, 2020.
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these primitives to OWF. We remark that under the widely believed assumption
that these primitives exist, OWF “imply” these primitives (i.e., these primi-
tives are “reduced” to OWF) in a trivial sense. Therefore to make the question
meaningful, we have to somehow restrict types of reductions.

For this purpose, Impagliazzo and Rudich [IR89] introduced the notion of
black-box reductions. Roughly speaking, a black-box reduction is a reduction
that uses an underlying primitive and an adversary in a black-box manner (i.e.,
use them just as oracles).1 They proved that there does not exist a black-box
reduction from key-exchange protocols (and especially PKE) to one-way permu-
tations (OWP). They also observed that most existing reductions between cryp-
tographic primitives are black-box. Thus their result can be interpreted as an
evidence that we cannot construct key-exchange protocols based on OWP with
commonly used techniques. After their seminal work, there have been numerous
impossibility results of black-box reductions (See Sect. 1.4 for details).

Post-quantum and Quantum Cryptography. In 1994. Shor [Sho94] showed
that we can efficiently compute integer factorization and discrete logarithm,
whose hardness are the basis of widely used cryptographic systems, by using a
quantum computer. After that, post-quantum cryptography, which treats classi-
cally computable cryptographic schemes that resist quantum attacks, has been
intensively studied (e.g., [McE78,Ajt96,Reg05,JF11]). Indeed, NIST has recently
started a standardization of post-quantum cryptography [NIS16]. We refer more
detailed survey of post-quantum cryptography to [BL17].

As another direction to use quantum computer in cryptography, there have
been study of quantum cryptography, in which even honest algorithms also
use quantum computers. They include quantum key distribution [BB84], quan-
tum encryption [ABF+16,AGM18], quantum (fully) homomorphic encryption
[BJ15,Mah18,Bra18], quantum copy-protection [Aar09], quantum digital signa-
tures [GC01], quantum money [Wie83,AC12,Zha19], etc. We refer more detailed
survey of quantum cryptography to [BS16].

Our Motivation: Black-Box Impossibility in a Quantum World. In this
paper, we consider black-box impossibility in a quantum setting where primitives
and adversaries are quantum, and a reduction has quantum access to them.

Quantum reductions are sometimes more powerful than classical reductions.
For example, Regev [Reg05] gave a quantum reduction from the learning with
errors (LWE) problem to the decision version of the shortest vector problem
(GapSVP) or the shortest independent vectors problem (SIVP). We note that
there are some follow-up works that give classical reduction between these prob-
lems in some parameter settings [Pei09,BLP+13], but we still do not know any

1 This is an explanation for fully-black-box reduction using the terminology of Reingold,
Trevisan, and Vadhan [RTV04]. Since we only consider fully-black-box reductions
in this paper, in this introduction, we just say black-box reduction to mean fully-
black-box reduction.
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classical reduction that works in the same parameter setting as the quantum
one by Regev. This example illustrates that quantum reductions are sometimes
more powerful than classical reductions even if all problem instances (e.g., imple-
mentations of primitives, adversaries, and reduction algorithms) are classical.
Therefore it may be possible to overcome black-box impossibility results shown
in the classical setting by using quantum reductions.

Since quantum computers may also be used to implement cryptographic
primitives in the near future, it is of much interest to study how the clas-
sical impossibility results change in the quantum setting. In particular, it is
theoretically very important to study whether the impossibility of black-box
reductions from CRH to OWP shown by Simon [Sim98], which is one of the
most fundamental results on impossibility and revisited in many follow-up
works [HR04,HHRS07,AS15], can be overcome in the quantum setting. Despite
the importance of the problem, the (im)possibility of the quantum reductions
has not been studied.

1.2 Our Results

This paper shows that the impossibility of black-box reductions from CRH to
OWP cannot be overcome in the quantum setting. First, we formally define the
notion of quantum black-box reduction based on the work by Reingold, Trevisan
and Vadhan [RTV04], which gave a formal framework for the notion of black-box
reductions in the classical setting. Then we prove the following theorem.

Theorem 1 (informal). There does not exist a quantum black-box reduction
from CRH to OWP.

We note that though we do not know any candidate of OWP that resists quantum
attacks, the above theorem is still meaningful since it also rules out quantum
black-box reductions from CRH to OWF (since OWP is also OWF) and there
exist many candidates of post-quantum OWF. This theorem is stated with OWP
instead of OWF just because this makes the theorem stronger.

We also extend the result to obtain the following theorem.

Theorem 2 (informal). There does not exist a quantum black-box reduction
from CRH to trapdoor permutations (TDP).

Note that our results do not require any unproven assumptions nor the exis-
tence of any oracles. Some oracles are introduced in our proofs, but they are just
technical tools.

Remark 1. In this paper, by quantum black-box reduction we denote reductions
that have quantum black-box oracle accesses to primitives. We always consider
security of primitives against quantum adversaries, and do not discuss primitives
that are only secure against classical adversaries. In addition, since our main
goal is to show the impossibility of reductions from CRH to OWP and CRH to
TDP, and when we consider primitives with interactions in the quantum setting
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we have some subtle issues that do not matter in the classical setting (e.g.,
rewinding is sometimes hard in the quantum setting [ARU14]), we treat only
primitives such that both of the primitives themselves and security games are
non-interactive.

1.3 Technical Overview

Here, we give a brief technical overview of our results. We focus on the proof
of Theorem 1 since Theorem 2 can be proven by a natural (yet non-trivial)
extension of that of Theorem 1. We remark that we omit many details and often
rely on non-rigorous arguments for intuitive explanations in this subsection.

First, we recall the two-oracle technique, which is a technique to rule out
black-box reductions among cryptographic primitives in the classical setting
introduced by Hsiao and Reyzin [HR04]. Roughly speaking, they showed that a
black-box reduction from a primitive P to another primitive Q does not exist if
there exist oracles Φ and ΨΦ such that Q exists and P does not exist relative to
these oracles. As our first contribution, we show that a similar argument carries
over to the quantum setting if we appropriately define primitives and black-box
reductions in the quantum setting.

For proving the separation between CRH and OWP, we consider oracles
Φ = f , which is a random permutation over {0, 1}n, and ΨΦ = ColFinderf ,
which is an oracle that finds a collision of any function described by an oracle-
aided quantum circuit C that accesses f as an oracle by brute-force similarly to
the previous works in the classical setting [Sim98,HHRS07,AS15]. CRH does not
exist relative to f and ColFinderf since we can compute a collision for any (effi-
ciently computable length-decreasing) function Cf by querying C to ColFinderf .
Thus, what is left is to prove that a random permutation f is hard to invert
even if an adversary is given an additional oracle access to ColFinderf .

We first recall how this was done in the classical setting based on the proof
in [AS15].2 The underlying idea behind the proof is a very simple information
theoretic fact often referred to as the “compression argument,” which dates
back to the work of Gennaro and Trevisan [GT00]: if we can encode a truth
table of a random permutation into an encoding that can be decoded to the
original truth table with high probability, then the size of the encoding should
be almost as large as that of the truth table. Based on this, the strategy of
the proof is to encode a truth table of f into an encoding that consists of a
“partial truth table” of f that specifies values of f(x) for all x ∈ {0, 1}n\G for an
appropriately chosen subset G so that one can decode the encoding to the original
truth table by recovering “forgotten values” of f(x) on x ∈ G by using the power
of an adversary A that inverts the permutation f with oracle accesses to f and
ColFinderf . What is non-trivial in the proof is that the decoding procedure has
to simulate oracles f and ColFinderf for A whereas the encoding only contains

2 Though the basic idea is similar to the proof of Simon [Sim98], we explain the
description in [AS15] since this is more suitable for explaining how we extend the
proof to the quantum setting.
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a partial truth table of f . To overcome this issue, they demonstrated a very
clever way of choosing the subset G such that the simulation of oracles f and
ColFinderf does not require values of f on G. Especially, they showed that the
larger A’s success probability is, the larger the subset G is, i.e., the smaller the
encoding size is. By using the lower bound of the encoding size obtained by the
compression argument, they upper bound A’s success probability by a negligible
function in n.

Unfortunately, their proof cannot be directly extended to the quantum setting
since the choice of the subset G crucially relies on the fact that queries by A are
classical. Indeed, A may query a uniform superposition of all inputs to the oracle
f , in which case it is impossible to perfectly simulate the oracle f with a partial
truth table. Thus, instead of directly generalizing their proof to the quantum
setting, we start from another work by Nayebi et al. [NABT15], which showed
that it is hard to invert a random permutation f with a quantum oracle access
to f .3 The proof strategy of their work is similar to the above, and they also rely
on the compression argument, but a crucial difference is that they choose the
subset G in a randomized way.4 Specifically, they first choose a random subset
R ⊂ {0, 1}n of a certain size, and define G as the set of x such that (1): x ∈ R, (2):
A succeeds in inverting f(x) with high probability, and (3): query magnitudes
of A on any element in R\{x} is sufficiently small. The condition (3) implies
that A is still likely to succeed in inverting f(x) even if the function (oracle) f is
replaced with any function f ′ that agrees with f on {0, 1}n\(R\{x}).5 Especially,
a decoder can use the function hy that agrees with f on {0, 1}n\G and returns
y on G instead of the original oracle f when it runs A on an input y ∈ f(G).
Since the function hy can be implemented by the partial truth table of f on
{0, 1}n\G, the decoder can simulate the oracle for A to correctly invert y in f
for each y ∈ f(G), which implies that the decoder can recover the original truth
table of f from the partial truth table. Finally, they showed that an appropriate
choice of parameters gives a lower bound of the size of G, which in turn gives
an upper bound of A’s success probability based on the compression argument.

For our purpose, we have to prove that a random permutation is hard to
invert for a quantum adversary A even if it is given a quantum access to the
additional oracle ColFinderf . Here, we make a simplifying assumption that the
oracle ColFinderf is only classically accessible since this case conveys our essen-
tial idea and can be readily generalized to the quantumly accessible case. For
generalizing the proof of [NABT15] to our case, we have to find a way to simulate
ColFinderf by using the partial truth table of f on {0, 1}n\G.

Before describing our strategy about how to simulate ColFinderf , here we
give its more detailed definition: At the beginning of each game before A runs

3 Actually, they showed that a random permutation is hard to invert even given a
classical advice string.

4 Such a randomized encoder was also used in some works in the classical setting, e.g.,
[DTT10].

5 Formally, this is proven by using the swapping lemma shown by Vazirani [Vaz98,
Lem. 3.1].
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relative to ColFinderf , two permutations π
(1)
C , π

(2)
C ∈ Perm({0, 1}m) are chosen

uniformly at random for each circuit C ({0, 1}m is the domain of the function
Cf ). On each input C, ColFinderf runs the following procedures:

1. Set w(1) ← π
(1)
C (0m).

2. Compute u = Cf (w(1)) by running the circuit C relative to f on w(1).
3. Find the minimum t such that Cf (π(2)

C (t)) = u by running the circuit C

relative to f on the input π
(2)
C (i) and checking whether Cf (π(2)

C (i)) = u

holds for i = 0, 1, 2 . . . , sequentially. Set w(2) ← π
(2)
C (t).

4. Return (w(1), w(2), u).

Next, we explain our strategy to simulate ColFinderf . Given a query (circuit)
C and an (appropriately produced) partial truth table of f , the simulator works
similarly to ColFinder except that it uses the partial truth table instead of f to
simulate outputs of C. For making sure that this results in a correct simulation
of ColFinderf , we require the following two properties:

P1. Given w(1) and w(2) = π
(2)
C (t), the simulator computes the value Cf (w(1)) =

Cf (w(2)) = u correctly.
P2. For i < t, the simulator does not misjudges that “the value Cf (π(2)

C (i)) is
equal to u”.

The first property P1 is obviously necessary to simulate ColFinderf . The second
property P2 is also indispensable since, if it is not satisfied, there is a possibility
that the simulator responds with a wrong answer (w(1), πC(i), u). We have to
make sure that the properties P1 and P2 will hold as well when we design our
encoder (or, equivalently, how to choose G ⊂ {0, 1}n).

Let us explain how to encode the truth table of each permutation f into its
partial table. We choose another random subset R′ ⊂ {0, 1}n of a certain size
and require two additional conditions for x to be in G: (4): x ∈ R′ and (5):
All oracle-aided quantum circuits C queried by A when it runs on input f(x)
are “good” w.r.t. (R′, x) in the following sense.6 We say that C is good w.r.t.
(R′, x) if query magnitudes of C on any element of R′\{x} is “small” when C
runs on input w(1) or w(2) relative to f , where (w(1), w(2)) is the collision found
by ColFinderf . Finally, we encode f into the partial truth table that specifies the
value of f(x) if and only if x ∈ {0, 1}n\G.

Intuitively, the condition (5) implies that a collision (w(1), w(2)) found by
ColFinderf for any A’s query C is not likely to change even if its oracle f is
replaced with any function f ′ that just agrees with f on {0, 1}n\(R′\{x}), which
implies that the property P1 is satisfied. In our proof, suitable permutations π

(1)
C

and π
(2)
C are fixed and the decoder have the truth table of them. In particular,

the decoder knows the correct w(1) = π
(1)
C (0m) for each C, and can compute

the correct u = Cf (w(1)) since the outputs of Cf ′
(w(1)) is likely to be the same

6 The definition of “good” given here corresponds to the negation of “bad” defined in
the main body.
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value as Cf (w(1)) if f ′ agrees with f on {0, 1}n \ (R′ \ {x}) due to the definition
of goodness of C.

Thus, in this case, the oracle ColFinderf seems to be simulatable with the
partial truth table of f on {0, 1}n \G. However, there is an issue: It is not trivial
how to ensure that the property P2 holds. Note that the property P2 holds and
the issue is resolved if we can ensure that the simulator judges “I cannot compute
the correct value Cf (π(2)

C (i))” (instead of misjudging “the value Cf (π(2)
C (i)) is

u” for some i < t) when the given partial table of f does not contain enough
information to compute the value Cf (π(2)

C (i)). We can easily ensure it in the
classical setting by measuring the queries made by C and judging that “the
information is not enough” if the value f(x) is not defined in the partial table
for a query x made by C. However, it is highly non-trivial how to ensure it
in the quantum setting since measuring queries may disturb C’s computations
significantly, and ColFinderf runs C on π

(2)
C (i) for (possibly exponentially) many

i until it finds the minimum t such that Cf (π(2)
C (t)) = u, in which case its total

query magnitude on R′ \ {x} is not always small.7

We overcome the issue by introducing a new technique. Specifically, whenever
the simulation algorithm picks i, it checks whether the partial truth table con-
tains enough information to compute the correct value of Cf (π(2)

C (i)) by running
C on the input π

(2)
C (i) relative to f ′ for all possible permutations f ′ that are con-

sistent with the given partial truth table of f on {0, 1}n\(R′\{x}), and judges
that “the partial truth table contains enough information to compute the correct
value of Cf (π(2)

C (i))” only if the outputs of Cf ′
(π(2)

C (i)) are the same value for
all possible oracles f ′. (Otherwise, it judges that “The partial truth table does
not contain enough information to compute the correct value of Cf (π(2)

C (i))”
and do the same again for the next index (i + 1).) This procedure prevents the
simulation algorithm from outputting a “wrong” collision (w(1), π

(2)
C (i)) that is

different from (w(1), w(2)) and the property P2 is satisfied since the actual func-
tion f is one of the candidates of f ′ with which the validity of the collision is
checked. On the other hand, the correct collision (w(1), w(2)) cannot be judged
to be a wrong one since the outputs of Cf ′

(w(2)) are likely to be the same value
for all f ′ due to the definition of goodness of C.

In this way, we can simulate both oracles f and ColFinderf by using the partial
truth table of f on {0, 1}n\G. Similarly to the proof in [NABT15], an appropriate
choice of parameters enables us to upper bound A’s success probability by a
negligible function in n. This implies that OWP exists relative to oracles f and
ColFinderf , and thus there does not exist a black-box reduction from CRH to
OWP.

We believe that our new technique can be used in more and more applications
when we want to apply compression arguments with some complex oracles (such
as ColFinder) in the quantum setting.

7 Note that we consider information theoretic encoder and decoder, and we do not
care whether they run efficiently.
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1.4 Related Work

Rotem and Segev [RS18] showed a limitation of black-box impossibility by giving
an example that overcomes the black-box impossibility result by Rudich [Rud88]
by using a non-black-box reduction. Nonetheless, black-box impossibility results
are still meaningful since we know very limited number of non-black-box tech-
niques. Indeed, they left it as an open problem to overcome the black-box sepa-
ration of CRH and OWP shown by Simon [Sim98].

Bitansky and Degwekar [BD19] gave a new proof for the black-box separa-
tion of CRH from OWP in the classical setting, which is conceptually different
from previous ones [Sim98,HHRS07,AS15]. However, it is unclear if their proof
extends to the quantum setting.

Holmgren and Lombardi [HL18] gave a construction of CRH based on a
stronger variant of OWF which they call one-way product functions (OWPF).
However, since they do not give a construction of OWPF from OWF (or OWP)
even with exponential security, their result does not overcome the impossibility
result by Simon [Sim98].

Chia, Hallgren and Song [CHS18] considered the problem of separating OWP
from NP hardness in the quantum setting. They ruled out a special type of
quantum reductions called locally random reductions under a certain complexity
theoretic assumption. We note that in our work, we do not put any restriction
on a type of a reduction as long as it is quantum fully-black-box, and we do not
assume any unproven assumption. Also, they focus on the separation of OWP
from NP hardness, and do not give a general definition of black-box reduction
in the quantum setting. Thus their work is incomparable to ours.

Hhan et al. [HXY19] also used the compression technique in the quantum
setting to analyze the quantum random oracle model in the presence of auxiliary
information. A crucial difference between their work and this work is that they
consider a setting where an adversary is given an auxiliary information which is
fixed at the beginning of a security game whereas we consider a setting where an
adversary can adaptively make a query to the quantum oracle ColFinder during
the game. Thus, our results are incomparable to theirs.

See Sect. 1.4 of this paper’s full version [HY18] for more about related works.

1.5 Paper Organization

Section 2 describes notations, definitions, and fundamental technical lemmas
that are used throughout the paper. Section 3 gives formalizations of quantum
primitives and quantum fully-black-box reductions. Section 4 shows the impossi-
bility of quantum fully-black-box reductions from CRH to OWP. Section 5 shows
the impossibility of quantum fully-black-box reductions from CRH to TDP.

2 Preliminaries

A classical algorithm is a classical Turing machine, and an efficient classical algo-
rithm is a probabilistic efficient Turing machine. We denote the set of positive inte-
gers by N. We write A instead of A⊗ I for short, for any linear operator A. For sets
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X and Y , let Func(X,Y ) denote the set of functions from X to Y , and Perm(X)
denote the set of permutations on X. Let Δ(f, g) denote the set {x ∈ X|f(x) �=
g(x)} for any functions f, g ∈ Func(X,Y ). Let {0, 1}∗ denote the set ∪n≥1{0, 1}n,
and by abuse of notation we let Perm({0, 1}∗) denote the set of permutations
{P : {0, 1}∗ → {0, 1}∗|P ({0, 1}n) = {0, 1}n for each n ≥ 1}. When we say that
f : {0, 1}∗ → {0, 1}∗ is a permutation, we assume that f({0, 1}n) = {0, 1}n holds
for each n, and thus f is in Perm({0, 1}∗) (i.e., in this paper we do not treat permu-
tations such that there exist n �= n′ and x ∈ {0, 1}n such that f(x) ∈ {0, 1}n′

). We
say that a function f : N → R is negligible if, for any positive integer c, f(n) ≤ n−c

holds for all sufficiently large n, and we write f(n) ≤ negl(n).

2.1 Quantum Algorithms

We refer basics of quantum computation to [NC10,KSVV02]. In this paper, we
use the computational model of quantum circuits. Let Q be the standard basis of
quantum circuits [KSVV02]. We assume that quantum circuits (without oracle)
are constructed over the standard basis Q, and define the size of a quantum
circuit as the total number of elements in Q used to construct it. Let |C| denote
the size of each quantum circuit C. An oracle-aided quantum circuit is a quantum
circuit with oracle gates. When an oracle-aided quantum circuit is implemented
relative to an oracle O represented by a unitary operator, the oracle gates are
replaced by the unitary operator. When there are multiple oracles, each oracle
gate should specify an index of an oracle. In this paper, we assume that all
oracles are stateless, that is, the behavior of the oracle is independent from a
previous history and the same for all queries. For a stateless quantum oracle O,
we often identify the oracle and a unitary operator that represents the oracle,
and use the same notation O for both of them. Note that each classical algorithm
can be regarded as a quantum algorithm. We fix an encoding E of (oracle-aided)
quantum circuits to bit strings, and we identify E(C) with C. For a quantum
circuit C, we will denote the event that we measure an output z when we run C
on an input x and measure the final state by C(x) = z.

First, we define quantum algorithms. We note that we only consider classical-
input-output quantum algorithms.

Definition 1 (Quantum algorithms). A quantum algorithm A is a family
of quantum circuits {An}n∈N that acts on a quantum system Hn = Hn,in ⊗
Hn,out ⊗ Hn,work for each n. When we feed A with an input x ∈ {0, 1}n, A runs
the circuit An on the initial state |x〉|0〉|0〉, measures the final state with the
computational basis, and outputs the measurement result of the register which
corresponds to Hn,out. We say that A is an efficient quantum algorithm if it is a
family of polynomial-size quantum circuits, i.e., there is a polynomial λ(n) such
that |An| ≤ λ(n) for all sufficiently large n.

Remark 2. Though we use a Turing machine for a computational model of clas-
sical computation, we use a quantum circuit for a computational model of quan-
tum computation. This is just because quantum circuits are better studied than
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quantum Turing machines [Yao93], and are easier to treat. We remark that we
do not intend to rule out reductions with full non-uniform techniques as was
done in [CLMP13].

Next, we define oracle-aided quantum algorithms, which are quantum algorithms
that can access to oracles.

Definition 2 (Oracle-aided quantum algorithms). An oracle-aided quan-
tum algorithm A is a family of oracle aided quantum circuits {An}n∈N that
acts on a quantum system Hn = Hn,in ⊗ Hn,out ⊗ Hn,work for each n. Let
O1 = {O1,i}i∈N, ..., Ot = {Ot,i}i∈N be families of quantum oracle gates. When
we feed A with an input x ∈ {0, 1}n relative to oracles (O1, ..., Ot), A runs
the circuit AO1,n,...,Ot,n

n on the initial state |x〉|0〉|0〉, measures the final state
with the computational basis, and outputs the measurement result of the regis-
ter which corresponds to Hn,out.8 We note that an oracle-aided quantum circuit
AO1,n,...,Ot,n

n that makes q queries can be described by a unitary operator

AO1,n,...,Ot,n
n =

⎛
⎝

q(n)∏
j=1

(Uj,t,nOt,n . . . Uj,1,nO1,n)

⎞
⎠ U0,n, (1)

where (U0,n, {Uj,1,n,. . . , Uj,t,n}j∈[q]) are some unitary operators.

Remark 3. We also often consider an oracle access to a quantum algorithm. This
is interpreted as an oracle access to a unitary operator that represents A.

Next, we define randomized quantum oracles, which are quantum oracles that
flip classical random coins before algorithms start.

Definition 3 (Randomized quantum oracles). Let Rn be a finite set for
each n, and R :=

∏∞
n=1 Rn (note that each element r ∈ R is an infinite sequence

(r1, r2, · · · )). A randomized quantum oracle O := {Or}r∈R is a family of quan-
tum oracles such that Or,n = Or′,n if rn = r′

n. When we feed A with an input
x ∈ {0, 1}n relative to O, first rn is randomly chosen from the finite set Rn

(according to some distribution), and then A runs the circuit AOr,n
n on the ini-

tial state |x〉|0〉|0〉. We denote Or,n by Orn
and {Orn

}rn∈Rn
by On, respectively,

and identify O with {On}n∈N.9

8 We assume that the queries are always performed in a sequential order (e.g., before
each query to O2, the adversary always makes a query to O1), but there is no reason
for an adversary to fix the order. We assume this only for an ease of notation.
There are multiple ways to fix it, but changes of the order does not essentially affect
(im)possibility of reductions.

9 Note that the meaning of the symbol OX changes depending on the set that the
index X belongs to. Rn is the set of random coins for the security parameter n, and
each coin rn ∈ Rn corresponds to one fixed unitary operator Orn . Or is an infinite
family {Or1 , Or2 , . . . } for each fixed r = (r1, r2, . . . ) ∈ R, and On is the finite family
{Orn}rn∈Rn for each fixed n. Each of Or and On can be regarded as a subset of O.
In addition, Or,n denotes “the n-th element of Or” for each fixed r, which is the
same as Orn .
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Similarly, when A is given oracle access to multiple randomized oracles
(O1, . . . , Ot), we consider that an oracle gate is randomly chosen and fixed for
each of the t oracles before A starts. The distributions of O1, . . . , Ot can be highly
dependent.

Remark 4 Later we consider the situation that a quantum algorithm A has
access to a randomized quantum oracle O, and another quantum algorithm B
has access to AO. This is interpreted as follows: Before B starts, rn ∈ Rn is cho-
sen uniformly at random, and B is given an oracle access to the unitary operator
that represents AOrn

n . In particular we do not change rn while B is running.

Next, we define what “a quantum algorithm computes a function” means.

Definition 4 (Functions computed by quantum algorithms). A quantum
algorithm A computes a function f : {0, 1}∗ → {0, 1}∗ if we have Pr[A(x) =
f(x)] > 2/310 for all n ∈ N and x ∈ {0, 1}n. An oracle-aided quantum algorithm
A computes a function f : {0, 1}∗ → {0, 1}∗ relative to an oracle Γ if we have
Pr[AΓ (x) = f(x)] > 2/3 for all n ∈ N and x ∈ {0, 1}n.

2.2 Technical Lemmas

This section introduces some technical lemmas for later use. First, we use the
following basic lemma as a fact. See textbooks on quantum computation and
quantum information (e.g., [NC10]) for a proof.

Lemma 1. trD(|ψ1〉〈ψ1|, |ψ2〉〈ψ2|) ≤ ‖|ψ1〉 − |ψ2〉‖ holds for any pure states
|ψ1〉 and |ψ2〉, where trD denotes the trace distance function.

By applying the above claim, we can show the following lemma.

Lemma 2. Let Γ = (f1, . . . , ft), Γ ′ = (f ′
1, . . . , f

′
t) be sequences of oracles, and

assume that A is given oracle access to either Γ or Γ ′. Then,
∣∣∣Pr

[AΓ (x) = z
] − Pr

[
AΓ ′

(x) = z
]∣∣∣ ≤

∥∥∥AΓ
n |x, 0, 0〉 − AΓ ′

n |x, 0, 0〉
∥∥∥ (2)

holds for any input x ∈ {0, 1}n and output z.

It is straightforward to show the lemma. See this paper’s full version [HY18] for
a complete proof.

10 Here we are using the value 2/3 for the threshold, but it does not make any essential
difference even if we use another constant c such that instead of 2/3, as long as
1/2 < c < 1.
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Swapping Lemma for Multiple Oracles. Next we introduce a generalized
version of the swapping lemma [Vaz98, Lem. 3.1] for multiple oracles. The orig-
inal swapping lemma formalizes our intuition that the measurement outcome of
oracle-aided algorithm will not be changed so much even if the output values of
the oracles are changed on a small fraction of inputs. Since this paper considers
the situation that multiple oracles are available to adversaries, we extend the
original lemma to a generalized one so that we can treat multiple oracles. To
simplify notation, below we often omit the parameter n when it is clear from
context (e.g., we write just q instead of q(n)). Here we introduce an important
notion called query magnitude.

Query Magnitude. Let Γ = (f1, . . . , ft) be a sequence of quantum oracles, where
each fi is a fixed oracle and not randomized. Let A be a q-query oracle-aided
quantum algorithm relative to the oracle Γ .11

Fix an input x, and let |φfi

j 〉 be the quantum state of AΓ on input x ∈ {0, 1}n

just before the j-th query to fi. Without loss of generality, we consider that the
unitary operatorOfi

acts on thefirst (mi(n)+	i(n))-qubits of the quantumsystem.
(Here we assume that fi is a function from {0, 1}mi(n) to {0, 1}�i(n).) Then |φfi

j 〉 =∑
z∈{0,1}mi(n) αz|z〉⊗|ψz〉 holds for some complex numbers αz and quantum states

|ψz〉. If we measure the first mi(n) qubits of the state |φfi

j 〉 with the computational
basis, we obtain z with probability |αz|2. Intuitively, this probability corresponds
to the “probability” that z is sent to fi as the j-th quantum query by A.

Definition 5 (Query magnitude to fi)

1. The query magnitude of the j-th quantum query of A to fi at z on input
x ∈ {0, 1}n is defined by

μA,fi

z,j (x) := |αz|2. (3)
2. The (total) query magnitude of A to fi at z on input x ∈ {0, 1}n is defined

by
μA,fi

z (x) :=
∑

j

μA,fi

z,j (x). (4)

The following lemma can be proven in the same way as the original swap-
ping lemma [Vaz98, Lem. 3.1], using the hybrid argument introduced by Bennet
et al. [BBBV97].12 See the proof for Lemma 3 of this paper’s full version [HY18]
for a complete proof.

Lemma 3 (Swapping lemma with multiple oracles). Let Γ = (f1, . . . , ft),
Γ ′ = (f ′

1, . . . , f
′
t) be sequences of oracles, where each fi and f ′

i are fixed oracles and
not randomized. Assume that A is given oracle access to either Γ or Γ ′. Then

∥∥∥AΓ
n |x, 0, 0〉 − AΓ ′

n |x, 0, 0〉
∥∥∥ ≤ 2

∑
1≤i≤t

√
q(n)

∑
z∈Δ(fi,f ′

i)

μA,fi
z (x) (5)

holds for all x ∈ {0, 1}n.

11 We sometimes call a sequence of oracles just “oracle”.
12 The original swapping lemma is the special case of Lemma 3 such that t = 1.
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3 Quantum Primitives and Black-Box Quantum
Reductions

Here, we define quantum primitives, which is a quantum counterpart of a prim-
itive, in addition to the notion of fully-black-box reduction in quantum regime
(see Def. 2.1 and Def. 2.3 in [RTV04] for classical definitions). Note that we
consider reductions that have quantum black-box oracle accesses to primitives.
We always consider security of primitives against quantum adversaries, and do
not discuss primitives that are only secure against classical adversaries. When
we consider primitives with interactions in the quantum setting we have some
subtle issues that do not matter in the classical setting (e.g., rewinding is some-
times hard in the quantum setting [ARU14]). Thus we treat only primitives such
that both of the primitives themselves and security games are non-interactive.

Definition 6 (Quantum primitives). A quantum primitive P is a pair
〈FP , RP〉, where FP is a set of quantum algorithms I, and RP is a relation
over pairs 〈I,A〉 of quantum algorithms I ∈ FP and A. A quantum algorithm
I implements P or is an implementation of P if I ∈ FP . If I ∈ FP is efficient,
then I is an efficient implementation of P. A quantum algorithm A P-breaks
I ∈ FP if 〈I,A〉 ∈ RP . A secure implementation of P is an implementation
I of P such that no efficient quantum algorithm P-breaks I. The primitive P
quantumly exists if there exists an efficient and secure implementation of P.

Definition 7 (Quantum primitives relative to oracle). Let P = 〈FP , RP〉
be a quantum primitive, and Γ = (O1, . . . , Ot) be a family of (possibly ran-
domized) quantum oracles. An oracle-aided quantum algorithm I implements P
relative to Γ or is an implementation of P relative to Γ if IΓ ∈ FP . If IΓ ∈ FP
is efficient, then I is an efficient implementation of P relative to Γ . A quantum
algorithm A P-breaks I ∈ FP relative to Γ if 〈IΓ ,AΓ 〉 ∈ RP . A secure imple-
mentation of P is an implementation I of P relative to Γ such that no efficient
quantum algorithm P-breaks I relative to Γ . The primitive P quantumly exists
relative to Γ if there exists an efficient and secure implementation of P relative
to Γ .

Remark 5. In the above definition, IΓ and AΓ are considered to be quantum
algorithms (rather than oracle-aided quantum algorithms) once an oracle Γ is
fixed so that IΓ ∈ FP and 〈IΓ ,AΓ 〉 ∈ RP are well-defined. This is possible
since we assume that an oracle Γ is stateless. (If Γ is randomized, we regard the
randomness of Γ as a part of the randomness of the quantum algorithms IΓ and
AΓ . See also Remark 4.)

Next we define quantum fully-black-box reductions, which is a quantum coun-
terpart of fully-black-box reductions [RTV04, Def. 2.3].
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Definition 8 (Quantum fully-black-box reductions). A pair (G,S) of effi-
cient oracle-aided quantum algorithms is a quantum fully-black-box reduction
from a quantum primitive P = 〈FP , RP〉 to a quantum primitive Q = 〈FQ, RQ〉
if the following two conditions are satisfied:

1. (Correctness.) For every implementation I ∈ FQ, we have GI ∈ FP .
2. (Security.) For every implementation I ∈ FQ and every quantum algorithm

A, if A P-breaks GI , then SA,I Q-breaks I.

Hsiao and Reyzin showed that if there exists an oracle (family) that sepa-
rates primitives P and Q, then there is no fully-black-box reduction from P to
Q [HR04, Prop. 1]. The following lemma guarantees that a similar claim holds
in the quantum setting. Although we need no arguments which is specific to the
quantum setting, we give a proof for completeness.

Lemma 4 (Two oracle technique). There exists no quantum fully-black-box
reduction from P to Q if there exist families of quantum oracles Γ1 and Γ2 =
{ΨΦ

λ }Φ∈Γ 1,λ∈Λ, where Λ is a non-empty set, and the following two conditions
hold.

1. Existence of Q. There exists an efficient oracle-aided quantum algorithm
J0 that satisfies the following conditions:

1. J Φ
0 ∈ FQ holds for any Φ ∈ Γ1.

2. For any efficient oracle-aided algorithm B and any λ ∈ Λ, there exists Φ ∈ Γ1

such that BΦ,ΨΦ
λ does not Q-break J Φ

0 .

2. Non-Existence of P. For any efficient oracle-aided quantum algorithm I
such that IΦ ∈ FP holds for any Φ ∈ Γ1, there exists an efficient oracle-aided
quantum algorithm AI and λ ∈ Λ such that AΨΦ

λ

I P-breaks IΦ for any Φ ∈ Γ1.

Proof. We prove the claim by contradiction. Suppose that there exists a quan-
tum fully-black-box reduction (G,S) from P = 〈FP , RP〉 to Q = 〈FQ, RQ〉. Let
J0 be an algorithm that satisfies the conditions on existence of Q in Lemma 4.
Then J Φ

0 ∈ FQ holds for arbitrary Φ ∈ Γ1. Hence, from the correctness of the
quantum fully-black-box reductions (in Definition 8), it follows that GJ Φ

0 ∈ FP
holds for arbitrary Φ ∈ Γ1. Thus, if we set I0 := GJ0 , from the second condi-
tion of Lemma 4, it follows that there exists an efficient oracle-aided quantum
algorithm AI0 and λ ∈ Λ such that AΨΦ

λ

I0
P-breaks I0

Φ for any Φ ∈ Γ1. There-
fore, from the second property of quantum fully-black-box reduction (“security”

in Definition 8), it follows that SAΨΦ
λ

I0
,J Φ

0 Q-breaks J Φ
0 for any Φ ∈ Γ1. Since

G, AI0 , and J0 are all efficient, there exists an efficient oracle-aided quantum

algorithm B such that BΦ,ΨΦ
λ = SAΨΦ

λ
I0

,J Φ
0 . Now we have that there exists an

efficient oracle-aided algorithm B and λ ∈ Λ such that BΦ,ΨΦ
λ Q-breaks J Φ

0 for
any Φ ∈ Γ1. However, it contradicts the second part of the first condition of
Lemma 4, which completes the proof. ��
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Note that, due to Lemma 4, if we want to show that there does not exist
any quantum fully-black-box reductions from a quantum primitive P to another
quantum primitive Q, it suffices to show that there exists at least one pair of
quantum oracles (Γ1, Γ2) that satisfies the two conditions.

Remark 6. Remember that each fixed (resp., randomized) quantum oracle O is
an infinite family of unitary gates {On}n∈N (resp., O = {On}n∈N and On =
{Orn

}rn∈Rn
, where Rn is the set of random coins), where On is used when an

oracle-aided algorithm runs relative to O on an input in {0, 1}n. For example,
(the quantum oracle of) a permutation f ∈ Perm({0, 1}∗) is represented as a
family {fn}n∈N, where fn = f |{0,1}n . We implicitly assume that ΨΦ

λ,n depends
only on Φn and is independent of Φm for m �= n.

Later, to prove impossibility of quantum fully-black-box reductions from col-
lision resistant hash functions to one-way permutations, we will apply this lemma
with the condition that Λ is the set of all polynomials in n, Γ1 = Perm({0, 1}∗),
and Γ2 = {ColFinderfλ}f∈Γ1,λ∈Λ. Here, ColFinderfλ is a randomized oracle that
takes, as inputs, oracle-aided quantum circuits that computes functions, and
returns collision of the functions. The number λ(n) denotes the maximum size
of circuits that ColFinderfλ,n takes as inputs for each n ∈ N.

3.1 Concrete Primitives

In this section, we define one-way permutations, trapdoor permutations, and
collision-resistant hash functions.

We define two quantum counterparts for each classical primitive. One is the
classical-computable primitive that can be implemented on classical computers,
and the other is the quantum-computable primitive that can be implemented on
quantum computers but may not be implemented on classical computers. Here
we note that, in this paper, all adversaries are quantum algorithms for both of
classical-computable and quantum-computable primitives.

Definition 9 (One-waypermutation).Quantum-computable (resp., classical-
computable) quantum-secure one-way permutation QC-qOWP(resp., CC-qOWP)
is a quantum primitive defined as follows: Implementation of QC-qOWP (resp.,
CC-qOWP) is an efficient quantum (resp., classical) algorithm Eval that computes
a function f : {0, 1}∗ → {0, 1}∗ such that fn := f |{0,1}n is a permutation over
{0, 1}n. For an implementation I ofQC-qOWP (resp., CC-qOWP) that computes f
and a quantum algorithm A, we say that A QC-qOWP-breaks I (resp., CC-qOWP-
breaks I) if and only if

Pr
[
x

$←− {0, 1}n; y ← fn(x);x′ ← A(y) : x′ = x
]

(6)

is non-negligible.

Remark 7. Since there is no function generation algorithm Gen in the above
definition, this captures “public-coin” one-way permutations. This makes the
definition of one-way permutations stronger, and thus makes our negative result
stronger.
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Definition 10 (Trapdoor permutation). Quantum-computable (resp., clas-
sical-computable) quantum-secure trapdoor permutation QC-qTDP(resp., CC-
QTDP) is a quantum primitive defined as follows: Implementation of QC-qTDP
(resp., CC-qTDP) is a triplet of efficient quantum (resp., classical) algorithms
(Gen,Eval, Inv). In addition, we require (Gen,Eval, Inv) to satisfy the following:

1. For any (pk, td) generated by Gen(1n), Eval(pk, ·) computes a permutation
fpk,n{0, 1}n → {0, 1}n.

2. For any (pk, td) generated by Gen(1n) and any x ∈ {0, 1}n, we have that
the inequality Pr[Inv(td, fpk,n(x)) = x] > 2/3 holds (i.e., Inv(td, ·) computes
f−1
pk,n(·)).

For an implementation I = (Gen,Eval, Inv) of QC-qTDP (resp., CC-qTDP) and a
quantum algorithm A, we say that A QC-qTDP-breaks I (resp., CC-qTDP-breaks
I) if and only if

Pr
[
(pk, td) ← Gen(1n);x $←− {0, 1}n; y ← fpk,n(x);x′ ← A(pk, y) : x′ = x

]
(7)

is non-negligible.

Definition 11 (Collision-resistant hash function). Quantum-computable
(resp., classical-computable) quantum-collision-resistant hash function QC-qCRH
(resp., CC-qCRH) is a quantum primitive defined as follows: Implementation of
QC-qCRH (resp., CC-qCRH) is a pair of efficient quantum (resp., classical) algo-
rithms (Gen,Eval).

Gen(1n): This algorithm is given 1n as input, and outputs a function index.
Eval(σ, x): This algorithm is given a function index σ ∈ {0, 1}s(n) and x ∈
{0, 1}m(n) as input, and outputs y ∈ {0, 1}�(n).

In addition, we require (Gen,Eval) to satisfy the following:

1. We have m(n) > 	(n) for all sufficiently large n ∈ N.
2. Eval(·, ·) computes a function H(·, ·) : {0, 1}s(n) × {0, 1}m(n) → {0, 1}�(n).

For an implementation I = (Gen,Eval) of QC-qCRH (resp., CC-qCRH) and a
quantum algorithm A, we say that A QC-qCRH-breaks I (resp., CC-qCRH-breaks
I) if and only if

Pr [σ ← Gen(1n); (x, x′) ← A(σ) : H(σ, x) = H(σ, x′)] (8)

is non-negligible.

Remark 8. If we replace “quantum algorithm” with “probabilistic Turing
machine” verbatim, Definition 11 completely matches the classical defini-
tion [HR04].
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Remark 9. Though trapdoor permutations and collision-resistant hash functions
are defined to be a tuple of algorithms, we can capture them as quantum primi-
tives as defined in Definition 6 by considering a unified quantum algorithm that
runs either of these algorithms depending on prefix of its input. We also remark
that any classical algorithm can be seen as a special case of quantum compu-
tation, and thus classical-computable variants are also captured as quantum
primitives.

4 Impossibility of Reduction from QC-qCRH to CC-qOWP

The goal of this section is to show the following theorem.

Theorem 3. There exists no quantum fully-black-box reduction from
QC-qCRHto CC-qOWP.

To show this theorem, we define two (families of) oracles that separate QC-qCRH
from CC-qOWP. That is, we define an oracle that implements CC-qOWP, in
addition to an oracle that finds collisions of functions, and then apply the two
oracle technique (Lemma 4). Our oracles are quantum analogues of those in
previous works on impossibility results [Sim98,HHRS07,AS15] in the classical
setting. Roughly speaking, we simply use random permutations f to implement
one-way permutations. As for an oracle that finds collisions of functions, we use
a randomized oracle ColFinder.

Remark 10. The statement of Theorem 3 is the strongest result among possible
quantum (fully-black-box) separations of CRH from OWP, since it also excludes
reductions from CC-qCRH to CC-qOWP, reductions from QC-qCRH to QC-qOWP,
and reductions from CC-qCRH to QC-qOWP.13

Oracle ColFinder.

Intuitive Idea. Intuitively, our oracle ColFinderf works as follows for each fixed
permutation f . As an input, ColFinderf takes an oracle-aided quantum circuit C.
We say that C is a valid input if it computes a function F f ′

C : {0, 1}m → {0, 1}�

relative to the oracle f ′, for arbitrary permutation f ′ (here we assume that m and
	 are independent of the permutation f ′). We say that C is invalid if it is not valid.
Given the input C, first ColFinderf checks whether C is invalid, and return ⊥ if
it is. Second, ColFinderf chooses w

(1)

Cf ∈ {0, 1}m uniformly at random, and com-
putes u = F f

C(w(1)

Cf ) by running the circuit C on input w
(1)

Cf relative to f . Third,
ColFinderf chooses w

(2)

Cf from (F f
C)−1(u) uniformly at random. Finally ColFinderf

returns (w(1)

Cf , w
(2)

Cf , u). IfF f
C hasmany collisions (for example, ifm > 	),ColFinderf

13 Note that it also excludes possible quantum (fully-black-box) reductions from col-
lapsing hash functions to one-way permutations, since the notion of collapsing is
stronger than collision-resistance.
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returns a collision of F f
C with a high probability. The idea of the above oracle

ColFinder originally comes from the seminal work by Simon [Sim98]. Below we
give a formal description of ColFinder, following the formalization of Asharov and
Segev [AS15].

Formal Description. Here we give a formal description of ColFinder. Let valid and
invalid denote the set of valid and invalid circuits, respectively. Let λ : N → R≥0

be a function, and Circ(λ(n)) denote the set of oracle-aided quantum circuits
C of which size is less than or equal to λ(n). Note that Circ(λ(n)) is a finite
set for each n. Let Πn = {π

(1)
C , π

(2)
C }C∈Circ(λ(n))∩valid be a set of permutations,

where π
(1)
C , π

(2)
C are permutations over {0, 1}m, which is the domain of FC that

the circuit C computes. Let Rλ,n be the set of all possible such assignments Πn,
and Rλ be the product set

∏∞
n=1 Rλ,n.

For each fixed permutation f and a function λ, we define a randomized quan-
tum oracle ColFinderfλ = {ColFinderfλ,Π}Π←Rλ

. Here, by Π ← Rλ we ambigu-
ously denote the procedure that Π is chosen uniformly at random before adver-
saries make queries to ColFinderfλ, and ColFinderfλ,Π = {ColFinderfλ,Π,n}n∈N is a
fixed quantum oracle for each Π. When we feed an algorithm A with an input
x ∈ {0, 1}n relative to ColFinderfλ, first Πn ∈ Rλ,n is chosen uniformly at ran-
dom (i.e., two permutations π

(1)
C , π

(2)
C are chosen uniformly at random for each

oracle-aided quantum circuit C ∈ Circ(λ(n)) ∩ valid), and then A runs the cir-

cuit AColFinderfλ,Π,n
n on the initial state |x〉|0〉|0〉. For each fixed n and Πn, the

deterministic function ColFinderfλ,Π,n is defined by the following procedures:

1. Take an input C, where C is an oracle-aided quantum circuit of which size
is less than or equal to λ(n).

2. Check if C is a valid input by checking whether the following condition is
satisfied: For arbitrary f ′

n ∈ Perm({0, 1}n) and x ∈ {0, 1}m, there exists
y ∈ {0, 1}� such that Pr[Cf ′

n(x) = y] > 2/3. If C is an invalid input, return
⊥.

3. Compute w
(1)

Cf := π
(1)
C (0m).

4. Compute F f
C(w(1)

C ). That is, compute the output distribution of Cf on input
w

(1)

Cf , find the element y such that Pr[Cf (w(1)

Cf ) = y] > 2/3, and set u ← y.
5. Search for the minimum t ∈ {0, 1}m such that F f

C(π(2)
C (t)) = u by checking

whether
Pr

[
Cf

(
π

(2)
C (i)

)
= u

]
> 2/3

holds for i = 0, 1, 2, . . . in a sequential order, and set w2
Cf := π

(2)
C (t) (note

that such t always exists since F f
C(w(1)

Cf ) = u).
6. Return (w(1)

Cf , w
(2)

Cf , u).

Later we will apply Lemma 4 (the two oracle technique) with Γ1 := Perm({0, 1}∗)
and Γ2 := {ColFinderfλ}f∈Γ1,λ∈Λ, where Λ is the set of polynomials in n.
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4.1 The Technically Hardest Part

The technically hardest part of proving Theorem 3 is to show the following
proposition, which states that the random permutation f is hard to invert even
if the additional oracle ColFinderf is available for adversaries. Note that the
oracle gate ColFinderfλ,Π,n is (and thus the circuit Afn,ColFinderfλ,Π,n

n is) fixed once
fn and Πn are fixed, since the output values of ColFinderfλ,Π,n are independent
of fm and Πm for m �= n.

Proposition 1. Let λ, q, ε be functions such that 1 ≤ λ(n), q(n) and 0 < ε(n) ≤
1. Let A be a q-query oracle-aided quantum algorithm. Suppose that there is a
function η(n) ≤ λ(n) such that, for each circuit C that An queries to ColFinder,
C makes at most η(n) queries. If

Pr
fn,Πn

y←{0,1}n

[
x ← Afn,ColFinderfλ,Π,n

n (y) : fn(x) = y

]
≥ ε(n) (9)

holds for infinitely many n, then there exists a constant const such that

max{q(n), η(n)} ≥ const · ε(n) · 2n/7 (10)

holds for infinitely many n.

Below we prove Proposition 1. See Sect. 1.3 for an intuitive overview of our
proof idea. We begin with describing some technical preparations.

Preparations. We construct another algorithm Â that iteratively runs A to
increase the success probability, and then apply the encoding technique to Â.

Let c be a positive integer. Let Bc be an oracle-aided quantum algorithm
that runs as follows, relative to the oracles f and ColFinderfλ.14

1. Take an input y. Set guess ←⊥.
2. For i = 1, . . . , c�1/ε(n)� do:
3. Run Af,ColFinderfλ on the input y. Let x denote the output.
4. Query x to f . If f(x) = y, then set guess ← x.
5. End For
6. Return guess.

Let Q(n) := c�1/ε(n)�(max{q(n), η(n)} + 1). Then Bc can be regarded as a Q-
query algorithm, and for each quantum circuit C that Bc queries to ColFinderfλ,n,
C makes at most Q(n) queries15.

14 Later, we will set Â := Bc for a constant c.
15 We introduced Q here just for convenience. Q is an upper bound of both of i) The

number of queries made by Bc to f and ColFinder, and ii) The number of queries
to f made by quantum circuits that are queried by Bc to ColFinder. Because the
notations in later proofs become simpler when i) and ii) are the same (i.e., q = η),
we introduced Q here.
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Remark 11. The randomness Πn of ColFinderfλ is chosen before Bc starts, and
unchanged while Bc is running (see Remark 4).

Lemma 5. Let p1, p2 be any positive constant values such that 0 < p1, p2 < 1.
For a sufficiently large integer c, the following condition is satisfied for infinitely
many n:

Condition. There exist X ⊂ Perm({0, 1}n) and Πn such that |X| ≥ p1 ·
|Perm({0, 1}n)| and

Pr
y←{0,1}n

[
Pr

[
x ← Bfn,ColFinderfλ,Π,n

c,n (y) : fn(x) = y

]
≥ 2/3

]
≥ p2 (11)

for all fn ∈ X.

This lemma can be shown by simple averaging arguments. See the proof for
Lemma 5 of this paper’s full version [HY18] for a complete proof.

In what follows, we fix constants p1, p2 such that 0 < p1, p2 < 1 arbitrarily.
Then, from the above lemma, it follows that there exists a constant c that
satisfies the condition in Lemma 5 for infinitely many n. Let us denote Bc by
Â. We use the encoding technique to this Q-query algorithm Â, here Q(n) =
c�1/ε(n)�(max{q(n), η(n)} + 1). Below we fix a sufficiently large n in addition
to Πn and X such that the condition in Lemma 5 is satisfied. For simplicity,
we write Q, q, ε, η, f , and ColFinderf instead of Q(n), q(n), ε(n), η(n), fn, and
ColFinderfλ,Π,n respectively, for simplicity.

Information Theoretic Property of Randomized Compression Scheme.
Here we introduce an information theoretic property of a randomized compres-
sion scheme (Er : X → Y ∪ {⊥},Dr : Y → X ∪ {⊥}), where r is chosen
according to a distribution R. Generally, if encoding and subsequent decoding
succeed with a constant probability p, then |Y | cannot be much smaller than
|X|:
Lemma 6 ([DTT10], Fact 10.1). If there exists a constant 0 ≤ p ≤ 1 such
that Prr∼R[Dr(Er(x)) = x] ≥ p holds for all x ∈ X, then |Y | ≥ p · |X| holds.

Below we formally define an encoder E and a decoder D that compress elements
(truth tables of permutations) in X. In the encoder E, random coin r is chosen
according to a distribution R. On the other hand, we consider that D is deter-
ministic rather than randomized, and regard r as a part of inputs to D. Note
that we do not care whether encoding and decoding can be efficiently done, since
Lemma 6 describes a purely information theoretic property.

Encoder E. Let δ be a sufficiently small constant (δ = (1/8)4 suffices). When
we feed E with f ∈ X as an input, E first chooses subsets R,R′ ⊂ {0, 1}n by
the following sampling: For each x ∈ {0, 1}n, x is added to R with probability
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δ3/2/Q2, and independently added to R′ with probability δ5/2/Q4. (The pair
(R,R′) is the random coin of E.)

According to the choice of R′, “bad” inputs (oracle-aided quantum circuits)
to ColFinderf are defined for each x ∈ {0, 1}n as follows. Note that now π

(1)
C

and π
(2)
C have been fixed for each oracle-aided quantum circuit C ∈ Circ(λ(n)) ∩

valid, and thus the output ColFinderf (C) = (w(1)

Cf , w
(2)

Cf , F f
C(w(1)

Cf )) is uniquely
determined. Since C is an oracle-aided quantum circuit, we can define the query
magnitude of C to f on input w

(1)

Cf and w
(2)

Cf at z ∈ {0, 1}n (see Definition 5).
We say that a quantum circuit C ∈ Circ(λ(n)) ∩ valid is bad relative to x

if
∑

z∈R′\{x} μC,f
z (w(1)

Cf ) > δ/Q or
∑

z∈R′\{x} μC,f
z (w(2)

Cf ) > δ/Q hold, and
otherwise we say that C is good relative to x. Let badC(R′, x) denote the set of
bad circuits relative to x, for each R′ ⊂ {0, 1}n.

Next, E constructs a set G ⊂ {0, 1}n depending on the input f . Let I ⊂
{0, 1}n be the set of elements x such that Â successfully inverts f(x), i.e., I :=
{x | Pr[x′ ← Âf,ColFinderf (f(x)) : x′ = x] ≥ 2/3}. Then |I| ≥ p2 · 2n holds by
definition of X (Remember that X is chosen in such a way as to satisfy the
condition in Lemma 5). Now, a set G is defined to be the set of elements x ∈ I
that satisfies the following conditions:

Conditions for G

(Cond. 1) x ∈ R ∩ R′.
(Cond. 2)

∑
z∈R\{x} μÂ,f

z (f(x)) ≤ δ/Q.

(Cond. 3)
∑

C∈badC(R′,x) μÂ,ColFinderf

C (f(x)) ≤ δ/Q.

Finally, E encodes f into (f |{0,1}n\G, f(G)) if |G| ≥ θ, where θ = (1 −
60

√
δ)δ4p22n/2Q6. Otherwise E encodes f into ⊥.

In addition, here we formally define the set Y (the range of E) as

Y :=
{
(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ

}
. (12)

In fact E((R,R′), f) ∈ Y ∪ {⊥} holds for any choice of (R,R′) and any permu-
tation f ∈ X.

Decoder D. D takes (f̃ , G̃) as an input in addition to (R,R′), where G̃ ⊂
{0, 1}n and f̃ is a bijection from a subset of {0, 1}n onto {0, 1}n\G̃, and R,R′

are subsets of {0, 1}n. If {0, 1}n\(the domain of f̃) �⊂ R ∩ R′ holds, then D
outputs ⊥. Otherwise, D decodes (f̃ , G̃) and reconstructs the truth table of a
permutation f ∈ Perm({0, 1}n) as follows.

For each x in the domain of f̃ , D infers the value f(x) as f(x) := f̃(x). For
other elements x ∈ {0, 1}n which is not contained in the domain of f̃ , what D
now knows is only that f(x) is contained in G̃. To determine the remaining part
of the truth table of f , D tries to recover the value f−1(y) for each y ∈ G̃ by
using Â.

For each fixed y ∈ G̃, D could succeed to recover the value f−1(y) if D were
able to determine the output distribution of Â on input y relative to oracles f
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and ColFinderf . However, D cannot determine the distribution even though D
has no limitation on its running time, since f itself is the permutation of which D
wants to reconstruct the truth table, and the behavior of ColFinderf depends on
f . Thus D instead prepares oracles hy and SimCFhy which approximates f and
ColFinderf , respectively, and computes the output distribution of Âhy,SimCFhy on
input y. SimCFhy uses a subroutine CalCy that takes (C,w) as an input (C is a
valid oracle-aided circuit that may make queries to f and computes a function
F f

C , and w is an element of the domain of F f
C) and simulates the evaluation of

F f
C(w). D finally infers that f−1(y) is the element which Âhy,SimCFhy outputs

with probability greater than 1/2. (If there does not exist such an element, then
D outputs ⊥.) Below we describe hy, CalCy, and SimCFhy .

Oracle hy. The oracle (function) hy : {0, 1}n → {0, 1}n is defined by

hy(z) =

{
f̃(z) ifz �∈ R ∩ R′,
y otherwise.

(13)

Subroutine CalCy. Let Pcandidate := {h′ ∈ Perm({0, 1}n)) | Δ(h′, hy) ⊂ R ∩ R′}.
CalCy is defined as the following procedures.

1. Take an input (C,w), where C is an oracle-aided circuit and w is an element
of the domain of the function FC .

2. Compute the output distribution of the quantum circuit Ch′
on input w for

each h′ ∈ Pcandidate, and find u(C,w, h′) ∈ {0, 1}� such that Pr[Ch′
(w) =

u(C,w, h′)] > 1/2. If there is no such value u(C,w, h′) for a fixed h′, set
u(C,w, h′) :=⊥.

3. If u(C,w, h′) = u(C,w, h′′) �=⊥ for all h′, h′′ ∈ Pcandidate, return the value
u(C,w, h′). Otherwise return ⊥.

Oracle SimCFhy . SimCFhy is defined as the following procedures:

1. Take an input C, where C is an oracle-aided quantum circuit of which size is
less than or equal to λ(n).

2. Check if C is a valid input by checking whether the following condition is satis-
fied: For arbitrary f ′

n ∈ Perm({0, 1}n) and x ∈ {0, 1}m, there exists y ∈ {0, 1}�

such that Pr[Cf ′
n(x) = y] > 2/3. If C is an invalid input, return ⊥.

3. Compute w̃
(1)

Cf := π
(1)
C (0m).

4. If CalCy(C, w̃
(1)

Cf ) =⊥, return ⊥.
5. Otherwise, search the minimum t ∈ {0, 1}m such that CalCy(C, w̃

(1)

Cf ) =
CalCy(C, π

(2)
C (t)) by checking whether CalCy(C, w̃

(1)

Cf ) = CalCy(C, π
(2)
C (i))

holds for i = 0, 1, 2, . . . in a sequential order, and set w̃
(2)

Cf := π
(2)
C (t).

6. Return (w̃(1)

Cf , w̃
(2)

Cf ,CalCy(C, w̃
(1)

Cf )).

Note that D is an information theoretic decoder, and we do not care whether
CalCy and SimCFhy run efficiently.
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Analysis. Here we provide a formal analysis of encoding scheme’s success prob-
ability. See Sect. 1.3 for an intuitive overview. The following lemma shows that
hy, CalCy, and SimCFhy satisfy some suitable properties. Here we consider the
situation that D takes an input (f̃ , G̃) such that (f̃ , G̃) = E((R,R′), f) for
some subsets R,R′ ⊂ {0, 1}n and a permutation f ∈ Perm({0, 1}n), and tries to
recover the value f−1(y) for some y ∈ G̃.

Lemma 7. hy, CalCy, and SimCFhy
satisfy the following properties.

1. Δ(hy, f) = R ∩ R′\{f−1(y)} holds.
2. CalCy(C,w) = F f

C(w) or ⊥ holds for any C ∈ Circ(λ(n)) ∩ valid and w.
3. CalCy(C,w

(1)

Cf ) = F f
C(w(1)

Cf ) and CalCy(C,w
(2)

Cf ) = F f
C(w(2)

Cf ) hold for each cir-
cuit C ∈ Circ(λ(n)) ∩ valid which is good relative to f−1(y).

4. SimCFhy (C) = ColFinderf (C) holds for each circuit C ∈ Circ(λ(n)) ∩ valid
which is good relative to f−1(y). In particular, Δ(ColFinderf ,SimCFhy ) ⊂
badC(R′, f−1(y)) holds.

Proof. The first property is obviously satisfied by definition of hy.
For the second property, since f ∈ Pcandidate, if CalCy(C,w) �=⊥ then we have

CalCy(C,w) = u(C,w, f) �=⊥ by definition of CalCy, and u(C,w, f) = F f
C(w)

always holds. Hence the second property holds.
For the third property, for each h′ ∈ Pcandidate, from Lemma 2 we have

Pr
[
Ch′

(w(1)

Cf ) = F f
C(w(1)

Cf )
]

≥ Pr
[
Cf (w(1)

Cf ) = F f
C(w(1)

Cf )
]

−
∥∥∥Cf |w(1)

Cf , 0, 0〉 − Ch′ |w(1)

Cf , 0, 0〉
∥∥∥ . (14)

From the swapping lemma (Lemma 3) it follows that
∥∥∥Cf |w(1)

Cf , 0, 0〉 − Ch′ |w(1)

Cf , 0, 0〉
∥∥∥ ≤ 2

√
Q

∑
z∈Δ(f,h′)

μC,f
z (w(1)

Cf ). (15)

Since Δ(f, h′) ⊂ R ∩ R′\{f−1(y)} ⊂ R′\{f−1(y)} holds for all h′ ∈ Pcandidate,
and C is a good circuit relative to f−1(y), the right hand side of the above
inequality is upper bounded by 2

√
δ. Thus, for a sufficiently small δ we have

Pr
[
Ch′

(w(1)

Cf ) = F f
C(w(1)

Cf )
]

≥ 2
3

− 2
√

δ >
1
2
, (16)

which implies that u(C,w
(1)

Cf , h′) = F f
C(w(1)

Cf ) holds for every h′ ∈ Pcandidate. Thus
CalCy(C,w

(1)

Cf ) = F f
C(w(1)

Cf ) holds if C is good relative to f−1(y). The equality
CalCy(C,w

(2)

Cf ) = F f
C(w(2)

Cf ) can be shown in the same way.
The fourth property follows from the definition of SimCFhy , the second prop-

erty, and the third property. ��
The following lemma shows that the decoding always succeeds if the encoding

succeeds.
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Lemma 8. If E((R,R′), f) �=⊥, then D((R,R′), E((R,R′), f)) = f holds.

Proof (of Lemma 8). Let f̃ := f |{0,1}n\G and G̃ := f(G). We show that D can
correctly recover x = f−1(y) for each y ∈ G̃.

We apply the swapping lemma (Lemma 3) to the oracle pairs (f,ColFinderf )
and (hy,SimCFhy ). Then we have
∥∥∥Âf,ColFinderf

n |f(x), 0, 0〉 − Âhy,SimCFhy

n |f(x), 0, 0〉
∥∥∥

≤ 2
√

Q
∑

z∈Δ(f,hy)

μÂ,f
z (f(x)) + 2

√
Q

∑

C∈Δ(ColFinderf ,SimCFhy )

μÂ,ColFinderf

C (f(x)).

(17)

Since Δ(f, hy) = R ∩ R′\{f−1(y)} ⊂ R\{f−1(y)} = R\{x} and
Δ(ColFinderf ,SimCFhy ) ⊂ badC(R′, f−1(y)) = badC(R′, x) from Lemma 7, the
right hand side of inequality (17) is upper bounded by

2
√

Q
∑

z∈R\{x}
μÂ,f

z (f(x)) + 2
√

Q
∑

C∈badC(R′,x)

μÂ,ColFinderf

C (f(x)). (18)

Due to the conditions (Cond. 2) and (Cond. 3) (see p. 21), each term of the above
expression is upper bounded by 2

√
δ. Thus, eventually we have

∥∥∥Âf,ColFinderf

n |f(x), 0, 0〉 − Âhy,SimCFhy

n |f(x), 0, 0〉
∥∥∥ ≤ 4

√
δ (19)

Finally, from Lemma 2, for sufficiently small δ it follows that

Pr
[
Âhy,SimCFhy

(f(x)) = x
]

≥ Pr
[
Âf,ColFinderf (f(x)) = x

]

−
∥∥∥Âf,ColFinderf

n |f(x), 0, 0〉 − Ahy,ColFinderh

n |f(x), 0, 0〉
∥∥∥

≥ 2/3 − 4
√

δ > 1/2, (20)

which implies that D correctly recovers x = f−1(y). ��
The following lemma is a generalization of a claim showed by Nayebi

et al. [NABT15, Claim 8], which shows that our E and D work well with a con-
stant probability. See the proof for Lemma 9 of this paper’s full version [HY18]
for a complete proof.

Lemma 9. If Q6 ≤ δ4p22n/32,

Pr
(R,R′)

[D((R,R′), E((R,R′), f) = f ] ≥ 0.7 (21)

holds for each f ∈ X.



Finding Collisions in a Quantum World 27

Finally, we show that Proposition 1 follows from the above lemmas.

Proof (of Proposition 1). First, remember that the set Y is defined as

Y :=
{
(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ

}
. (22)

For each fixed positive integer θ ≤ M ≤ 2n, the cardinality of the set

YM := {(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| = M} (23)

is equal to (2n − M)! · (
2n

M

)
= (2n)!/M !. Thus |Y | is upper bounded as

|Y | =
2n∑

M=�θ

(2n)!
M !

≤ 2n · (2n)!
(�θ�)! (24)

for sufficiently large n. Here we show the following claim.

Claim. If Q6 ≤ δ4p22n/32, there exists a constant const1 such that Q6 ≥ const1 ·
2n/n holds. We can choose const1 independently of n.

Proof (of Claim). By definition of X, |X| ≥ p1(2n)! holds. In addition, from
inequality (24), we have |Y | ≤ 2n · (2n)!

(�θ)! . Moreover, since now we are assuming
that Q6 ≤ δ4p22n/32 holds, it follows that |Y | ≥ 0.7|X| from Lemma 6 and
Lemma 9. Hence we have 2n · (2n)!

(�θ)! ≥ 0.7 ·p1(2n)!, which is equivalent to 2n

0.7p1
≥

�θ�!.
Since p1 is a constant and n! ≥ 2n holds for n ≥ 4, there exists a

constant const2, which can be taken independently of n, such that �const2 ·
n�! ≥ 2n/(0.7p1) holds. Now we have �const2 · n� ≥ �θ�, which implies that
const2 · n + 1 ≥ θ = δ4

(
1 − 60

√
δ
)

p22
n

2Q6 holds. Moreover, since δ and p2 are
also constants, there exists a constant const1 that is independent of n and
Q6 ≥ const1 · 2n/n holds, which completes the proof of the claim. ��
Let const3 := min{δ4p2/32, const1}. Then, from the the above claim, it follows
that Q6 ≥ const3 · 2n/n holds. Since Q = c

⌈
1
ε

⌉
(max{q, η} + 1) by definition

of Q, we have c6
⌈

1
ε

⌉6 (max{q, η} + 1)6 ≥ const3 · 2n/n. Hence there exists a
constant const such that max{q, η} ≥ const · ε · 2n/6/n1/6 ≥ const · ε · 2n/7 holds
for all sufficiently large n, which completes the proof. ��

4.2 Proof of Theorem 3

This section shows that Theorem 3 follows from Proposition 1. First, we can
show that the following lemma follows from Proposition 1.

Lemma 10. For any efficient oracle-aided quantum algorithm B and for any
polynomial λ, there exists a permutation f : {0, 1}∗ → {0, 1}∗ such that

Pr
y←{0,1}n

[
x ← Bf,ColFinderfλ(y) : f(x) = y

]
< 2−n/8 (25)

holds for all sufficiently large n.
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The proof of the lemma is straightforward. See the proof of Lemma 10 in this
paper’s full version [HY18] for a complete proof.

Proof (of Theorem 3). Let Γ1 := Perm({0, 1}∗) and Γ2 := {ColFinderfλ}f∈Γ1,λ∈Λ,
where Λ is the set of all polynomials in n. (If λ(n) ≤ 0 for some n, we assume that
ColFinderfλ,n does not take any inputs.) Below we show that the two conditions
of Lemma 4 are satisfied.

For the first condition of Lemma 4, we define an oracle-aided quantum algo-
rithm J0 as follows: When we feed J0 with an input x relative to a permutation
f , J0 queries x to f and obtains the output f(x). Then J0 returns f(x) as its
output. We show that this algorithm J0 satisfies the first condition of Lemma 4
(existence of CC-qOWP). It is obvious that J f

0 ∈ FCC-qOWP for any permutation
f , by definition of J0. Let B be an efficient oracle-aided quantum algorithm, and
λ be a polynomial in n.

From Lemma 10, it follows that, for any efficient oracle-aided quantum algo-
rithm B and any λ ∈ Λ, there exists a permutation f such that

Pr
y←{0,1}n

[
x ← Bf,ColFinderfλ(y) : f(x) = y

]
< negl(n) (26)

holds, which implies that Bf,ColFinderfλ does not CC-qOWP-break J f
0 relative to

(f,ColFinderfλ). Hence the first condition (existence of CC-qOWP) of Lemma 4
is satisfied.

Next, we show that the second condition (non-existence of QC-qCRH)
of Lemma 4 is satisfied. For any efficient oracle-aided quantum algorithm
I = (Gen,Eval) such that If ∈ FCC-qCRH holds for any permutation f , let
λ be a polynomial such that λ(n) > |In| for all n. We define a family of
oracle-aided quantum algorithms AI as follows: Given an input σ, AI queries
the oracle-aided quantum circuit Evaln(σ, ·) to ColFinderfλ, obtains an answer

(w(1), w(2),Hf (σ,w(1)))16, and finally outputs (w(1), w(2)). When AColFinderfλ
I is

given an input σ, the output will be (w(1), w(2)), where w(1) is uniformly dis-
tributed over the domain of Hf (σ, ·) : {0, 1}m(n) → {0, 1}�(n) and w(2) is uni-
formly distributed over the set (Hf (σ, ·))−1(Hf (σ,w(1))). Since m(n) > 	(n)
holds by definition of implementations of QC-qCRH, the probability that w(1) �=
w(2), which implies that (w(1), w(2)) is a collision of Hf (σ, ·), is at least 1/4. Thus

it follows that there exists AI and λ ∈ Λ such that AColFinderfλ
I CC-qCRH-breaks

If for any permutation f . Hence the second condition of Lemma 4 is satisfied.
��

16 Since If ′ ∈ FCC-qCRH for any permutation f ′, Evalf
′

n (·, ·) computes a function Hf ′
(·, ·)

for any permutation f ′ by definition of QC-qCRH. In particular, even when σ is
generated by Genf (1n) and f ′ �= f , Evalf

′
n (σ, ·) computes the function Hf ′

(σ, ·).
Hence ColFinderfλ does not return ⊥ on the input Evaln(σ, ·).
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5 Impossibility of Reduction from QC-qCRHto CC-qTDP

As well as the impossibility of reduction from QC-qCRH to CC-qOWP, we can
show the following theorem.

Theorem 4. There exists no quantum fully-black-box reduction from
QC-qCRHto CC-qTDP.

Remark 12. The statement of Theorem 4 is the strongest result among possible
quantum (fully-black-box) separations of CRH from TDP, since it also excludes
reductions from CC-qCRH to CC-qTDP, reductions from QC-qCRH to QC-qTDP,
and reductions from CC-qCRH to QC-qTDP.17

Here we give only a proof intuition. See Sect. 5 of this paper’s full ver-
sion [HY18] for a complete proof.

Proof Intuition. To show this theorem, again we define two oracles that
separate QC-qCRH from CC-qTDP. That is, we define an oracle (g, f, f inv)
that implements random trapdoor permutations, in addition to an oracle
ColFinderg,f,f inv

that finds collisions of functions, and then apply Lemma 4
(the two oracle technique). Here, g : {0, 1}n → {0, 1}n is a random permu-
tation and f : {0, 1}n × {0, 1}n → {0, 1}n is a family of random permutations
(f(z, ·) : {0, 1}n → {0, 1}n is a random permutation for each z ∈ {0, 1}n). f inv

is the inverse of f defined by f inv(z, ·) := (f(g(z), ·))−1. At the beginning of
each game, a trapdoor td ∈ {0, 1}n is chosen randomly, and a public key pk is
set as pk := g(td) ∈ {0, 1}n. We consider the situation that each adversary A is
given the public key pk and a randomly chosen target y to invert, in addition
to oracle accesses to (g, f, f inv) and ColFinderg,f,f inv

, and A tries to find x such
that f(pk, x) = y.

Recall that the most technically difficult part of the proof in Sect. 4 was
to show that, if A inverts a random permutation with a high probability, it
has to make exponentially many queries. Similarly the most technically difficult
part to prove Theorem 4 is to show that, if A inverts y in f(pk, ·) (with a high
probability), A has to make exponentially many queries.

We consider three separate cases: The first case is the one that A’s query
magnitude on the trapdoor td to f inv is large (we denote this event by TDHIT1).
The second case is the one that A’s query magnitude on a quantum circuit C

to ColFinderg,f,f inv
that queries the trapdoor td to f inv is large (we denote this

event by TDHIT2). The third case is the one that both of TDHIT1 and TDHIT2

do not occur.
In the first and second cases, by using A we can construct another algorithm

B that makes almost as much queries as A and inverts pk = g(td) in g (with a

17 Note that it also excludes possible quantum (fully-black-box) reductions from col-
lapsing hash functions to trapdoor permutations, since the notion of collapsing is
stronger than collision-resistance.
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high probability). Since g is just a random permutation, from the results shown
in Sect. 4 it follows that B has to make exponentially many queries, which implies
that A has to make exponentially many queries. In the third case, intuitively,
we can construct a randomized compression scheme that compresses the truth
table of the random permutation f(pk, ·) without the inverse oracle f inv(td, ·)
since the query magnitude to f inv(td, ·) is always small if ¬(TDHIT1 ∨ TDHIT2)
occurs.

Acknowledgments. We thank anonymous reviewers for their insightful comments.
Especially, we thank reviewers of STOC 2019 and CRYPTO 2020 who pointed out
technical errors in previous versions of this paper.
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Abstract. Gimli is a family of cryptographic primitives (both a hash
function and an AEAD scheme) that has been selected for the second
round of the NIST competition for standardizing new lightweight designs.
The candidate Gimli is based on the permutation Gimli, which was pre-
sented at CHES 2017. In this paper, we study the security of both the
permutation and the constructions that are based on it. We exploit the
slow diffusion in Gimli and its internal symmetries to build, for the first
time, a distinguisher on the full permutation of complexity 264. We also
provide a practical distinguisher on 23 out of the full 24 rounds of Gimli
that has been implemented.

Next, we give (full state) collision and semi-free-start collision attacks
on Gimli-Hash, reaching respectively up to 12 and 18 rounds. On the prac-
tical side, we compute a collision on 8-round Gimli-Hash. In the quantum
setting, these attacks reach 2 more rounds. Finally, we perform the first
study of linear trails in the permutation, and we propose differential-
linear cryptanalysis that reach up to 17 rounds of Gimli.

Keywords: Gimli · Symmetries · Symmetric cryptanalysis · Full-round
distinguisher · Collision attacks · Linear approximations

1 Introduction

Gimli is a cryptographic permutation that was published at CHES 2017 [5]. It
is also the core primitive of a submission to the NIST lightweight cryptography
project [6] which is part of the 32 candidates that made it to the second round. It
is intended to run well on a vast variety of platforms and contexts, from powerful
processors supporting vector instructions to side-channel protected hardware.

A cryptographic permutation is a versatile primitive which is easily used to
construct a hash function (as originally intended for this type of object [7]). It
was later shown that they can also be used to build authenticated ciphers [10],
pseudo-random number generators [9], etc. In all such structures, the security
of the cryptographic function relies on the properties of the permutation. In
particular, it is assumed in the underlying security proofs that the permutation
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12491, pp. 33–63, 2020.
https://doi.org/10.1007/978-3-030-64837-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64837-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-64837-4_2
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used behaves like a permutation picked uniformly at random—apart of course
from the existence of a compact implementation, a property which should not
be expected from a random object.

By definition, a cryptographic permutation does not have a key. Thus, we
cannot define its security level using a game that relies on distinguishing a ran-
dom permutation from a keyed instance with a random key. Still, since it should
behave like a permutation picked uniformly at random, we can assess its secu-
rity level by trying to identify properties that hold for the permutation studied
but which should not be expected for one picked uniformly at random. In this
context, cryptanalysts can re-use approaches originally intended for block cipher
cryptanalysis (e.g. differential attacks [11]). In fact, given that no key material is
involved, we can also borrow techniques from hash function cryptanalysis such
as rebound attacks [24].

The aim is usually then to obtain inputs of the permutation satisfying a
certain property using an algorithm which is more efficient than the generic one,
i.e. the one that would work on a random permutation.

Our Contributions. In this paper, we complete the original security analysis of
the designers of Gimli by targeting both the permutation on its own, and the NIST
candidate Gimli-Hash. Our results on the permutation are summarized in Fig. 1
(plain lines). In order to account for the different costs of the generic attacks, we
divided the logarithm of the time complexity of our distinguishers by the logarithm
of the time complexity of the corresponding generic distinguisher. In Fig. 1, a dis-
tinguisher is valid if the ratio is under 1.0. Previous attacks from the literature are
represented with dotted lines. The complexities of all our attacks (included those
against the hash function) are given in Table 1, along with all the results from the
literature we are aware of.

Our main result is a distinguisher of the full 24-round permutation with
a cost of 264, while a similar generic distinguisher has a cost of 296. We also
propose a distinguisher on 23 rounds that is practical, with a cost of 232, and has
been successfully implemented. These distinguishers exploit internal symmetries
that are encouraged by the round function. The 23-round distinguisher could be
extended by 1 round for free if the rounds were shifted1.

Using similar guess-and-determine ideas, we increase to 12 the number of
rounds susceptible to collision attacks on Gimli-Hash. A reduced-round version
of this attack has been implemented. In the quantum setting, we obtain colli-
sions up to 14 rounds. We also build semi-free start collisions, i.e. we show how
to find one internal state value and two different messages (thus not affecting the
capacity part) that provide a collision on the capacity after applying the permu-
tation. This attack is more efficient than a generic one for 18 rounds classically,
and up to 20 quantumly. As a side note, these results provide a new example
where quantum attacks reach more rounds than classical ones, much like in [21].

In addition, we provide the first extensive study of the linear properties of the
round function of Gimli, and use them to perform differential-linear distinguishers

1 This behaviour appears because the linear layer of Gimli is round dependent.
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Fig. 1. Comparison of various cryptanalysis techniques. Note that we may consider
“shifted” variants of Gimli that do not start at round 24. Dotted lines correspond to
results from the literature.

up to 17 rounds. While this distinguisher is less efficient than the one based on
internal symmetries, it is the most efficient statistical distinguisher in terms of
rounds covered.

Our implementations (23-round distinguisher, reduced-round collision attack,
search for linear trails) are available at this URL2.

Organization of the Paper. The organization of the paper is as follows. In Sect. 2
we provide the description of the Gimli permutation and primitive, as well as
previous known results. Section 3 provides the new distinguishers exploiting
the internal symmetries that allow to distinguish the full permutation, and to
build practical distinguishers up to 23 rounds. Section 4 presents improved colli-
sion and semi-free start collision attacks, and Sect. 5 their quantum counterpart.
Section 6 presents our new results regarding statistical distinguishers, with opti-
mal linear trails and new differential-linear attacks. We conclude the paper in
Sect. 7 with a summary, a discussion on the impact of our results and a proposal
of tweak that would mitigate their reach.

2 Preliminaries

In this section we describe the Gimli permutation and we provide an overview of
previous cryptanalysis results. The Gimli-Hash function is described directly in
Sect. 4.
2 https://project.inria.fr/quasymodo/files/2020/05/gimli cryptanalysis eprint.tar.gz.

https://project.inria.fr/quasymodo/files/2020/05/gimli_cryptanalysis_eprint.tar.gz
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Table 1. (Quantum) results against algorithms of the Gimli family. Time is counted
in evaluations of Gimli, and memory in 128-bit blocks. Attacks that were actually
implemented are written in bold. ε is a term that we only estimated experimentally
(ε ≈ 10, see Sect. 4). In rounds attacked, r1 → r2 means rounds r1 to r2 included.

Technique Rounds Time Memory Generic Reference

Distinguishers Key-recovery on Gimli-PRF 25 → 2.5 138.5 128 192 [20]

on the 15.5 64 64 192 [20]

permutation Zero-sum 14 351 negl. 384 [14]

(real rounds: ZID 18 2 negl. 4 [29]

24 → 1) ZID 21 65 negl. 192 [29]

ZID 24 129 negl. 192 [29]

Linear 12 198 negl. 384 Sect. 6.1

Linear 16 300 negl. 384 Sect. 6.1

Differential-Linear 15 87.4 negl. 192 Sect. 6.2

Differential-Linear 16 110.8 negl. 192 Sect. 6.2

Differential-Linear 17 154.8 negl. 192 Sect. 6.2

Symmetry 23 → 0 32 negl. 96 Sect. 3

Symmetry 27 → 0 64 negl. 96 Sect. 3

Preimages on

Gimli-Hash

Divide-and- conquer 2 42.4 32 128 [29]

5 96 65.6 128 [29]

Preimages on

Gimli-XOF-128

9 104 70 128 [29]

Collisions on

Gimli-Hash

Divide-and- conquer 5 65 – 128 [27]

3 Practical – 128 [27]

6 64 64 128 [28]

Symmetry 21 → 14 32 + ε negl. 128 Sect. 4

Symmetry 12 96 + ε negl. 128 Sect. 4

Quantum 14 64 + ε negl. 85.3 Sect. 4

Semi-free start Symmetry 8 64 negl. 128 [28]

collisions on Symmetry 12 32 + ε negl. 128 Sect. 4

Gimli-Hash Symmetry 16 96 + ε negl. 128 Sect. 4

Symmetry 18 96 + ε 64 128 Sect. 4

Quantum 20 64 + ε 64 85.3 Sect. 4

We adopt the following notations in this paper: �,�,≪,≫ represent
respectively shift left, shift right, rotate left and rotate right operations. x, y, z
will denote elements of F

32
2 . SP is the 96-bit SP-Box. We denote xi the (i

mod 32)th bit of x (x33 = x1) with x0 least significant (right-most). We
denote the output of the SP box as SP(x, y, z) = (x′, y′, z′) and SP2(x, y, z) =
(x′′, y′′, z′′).
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2.1 The Gimli Permutation

State Structure. We denote by S the 384-bit Gimli state, which is the concatena-
tion of 4 columns of 96-bit, that we denote A,B,C,D, where A is column number
0, and D is column number 3. Each column is cut into three 32-bit words x, y, z
which are denoted e.g. Ax, Ay, Az. Thus, the state is a 4 × 3 × 32 parallelepiped.
We will speak of the x lane to denote the sequence or concatenation of words
Ax, Bx, Cx,Dx.

Algorithm 1. The full Gimli permutation.
Input: State S = A, B, C, D
Output: Gimli(S)

1: for r = 24 downto 1 inclusive do
2: A, B, C, D ← SP (A), SP (B), SP (C), SP (D) � SP-Box layer
3: if r mod 4 = 0 then
4: Swap Ax and Bx, swap Cx and Dx � small swap
5: Ax ← Ax ⊕ rcr � Constant addition
6: else if r mod 2 = 0 then
7: Swap Ax and Cx, swap Bx and Dx � big swap
8: end if
9: end for

Return S

SP-Box. The only non-linear operation in Gimli is the SP-Box, which is applied
columnwise. On input x, y, z, it updates the three words as follows:

1. Rotate x and y: x ← x ≪ 24, y ← y ≪ 9.
2. Perform the following non-linear operations in parallel (shifts are used rather

than rotations):
x ← x ⊕ (z � 1) ⊕ ((y ∧ z) � 2),
y ← y ⊕ x ⊕ ((x ∨ z) � 1),
z ← z ⊕ y ⊕ ((x ∧ y) � 3).

3. Swap x and z: (x, z) ← (z, x).

Rounds. Gimli applies a sequence of 24 rounds numbered from 24 downto 1
inclusively. Each round applies an SP-Box layer, then performs a swap (every
two rounds, either a “big swap” or a small “small swap” as shown in Algorithm 1)
and a constant addition (every four rounds). The constant at round i, if there is
one, will be denoted rci in what follows. In Gimli we have: rci = 0x9e377900 ⊕ i.
Note that all the attacks studied in this paper are independent of the choice of
round constants.

An algorithmic depiction of full Gimli is given in Algorithm 1

Boolean Description of the SP-Box. Now we give a full description of the
SP box using Boolean functions:
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– for x′: ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′
0 = y23 + z0

x′
1 = y24 + z1

x′
2 = y25 + z2

x′
i = yi−9 + zi + xi+5yi−12, 3 ≤ i ≤ 32,

(1)

– for y′:
{

y′
0 = x8 + y23

y′
i = xi+8 + yi−9 + xi+7 + zi−1 + xi+7zi−1, 1 ≤ i ≤ 32,

(2)

– and for z′: ⎧
⎪⎨

⎪⎩

z′
0 = x8

z′
1 = x9 + z0

z′
i = xi+8 + zi−1 + yi−11zi−2, 2 ≤ i ≤ 32.

(3)

Description of the SP2 Box. If x′
0 = y23+z0 as in Eq. (1) then it naturally holds

that x′′
0 = y′

23 + z′
0 and thus we can use Eqs. (2) and (3) to get the full formula.

Here we write some of them:

x′′

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′′
0 = x8 + x30 + x31 + y14 + z22 + x30z22

x′′
1 = x9 + x31 + x0 + y15 + z0 + z23 + x31z23

x′′
2 = x10 + x0 + x1 + y16 + z1 + z24 + y23z0 + x0z24

x′′
i = xi−2 + xi−1 + xi+8 + yi−18 + zi−10 + zi−1 + xi−2zi−10 + yi−11zi−2

+xi−4yi−4 + xi−4zi+5 + yi−4yi+11 + yi+11zi+5 + xi−5zi+5 + xi−5yi−4

+ yi−4zi−13 + zi−13zi+5 + xi−4xi+10yi−7 + xi+10yi−7yi+11

+xi−5yi−4zi−13 + xi−5zi−13zi+5 + xi−5xi+10yi−7 + xi+10yi−7zi−13

+xi−5xi+10yi−7zi−13, i �= 0, 1, 2, 9, 12, 27, 28, 29 mod 32

(4)

y′′
{

y′′
0 = x30 + x31 + y14 + y31 + z8 + z22 + x13y28 + x30z22 (5)

z′′
{

z′′
0 = y31 + z8 + x13y28

z′′
1 = x8 + y0 + z9 + x14y29

(6)

The 2-round probability 1 linear relation x′′
0 + y′′

0 + z′′
0 = x8 follows.

2.2 Previous Work

We provide here a brief overview of the main previous third-party results of
cryptanalysis against either the permutation or the NIST candidate Gimli. Notice
that all the cryptanalysis previously considered were classical attacks, while in
this paper, we will also give quantum attacks on reduced-round Gimli-Hash. Let
us point out that no search of linear trails was done prior to our work.

Zero-Sum Permutation Distinguishers on 14 Rounds. In [14], Cai, Wei, Zhang,
Sun and Hu present a zero-sum distinguisher on 14 rounds of Gimli. This dis-
tinguisher uses the inside-out technique and improves by one round the integral
distinguishers given by the designers.
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Structural Permutation Distinguisher on 22.5 Rounds. In [20], Hamburg pro-
posed the first third-party cryptanalysis of the Gimli permutation, providing
distinguishers on reduced-round versions of the permutation. This analysis does
not depend on the details of the SP-Box, and is based only on the slow diffusion
of Gimli. Thus, it follows a similar path as the distinguishers of Sect. 3. In his
work, Hamburg defines a PRF with 192-bit input x and 192-bit key k that com-
putes F (k, x) = trunc192(Gimli(k‖x)). He gives a distinguishing attack in time
264 for 15.5 rounds (omitting the final swap), and a key-recovery attack on F
when using 22.5 rounds of Gimli, precisely rounds 25 to 2.5 (omitting again the
final swap). This attack runs in time 2138.5 with a memory requirement of 2129,
which is faster than the expected 2192, and thus shows that 22.5-round Gimli
behaves differently than what could be expected from a random permutation.

Hamburg’s attacks are based on a meet-in-the-middle approach, exploiting
the slow diffusion by tabulating some of the values that are passed from an SP-
Box to another. The 15.5-round distinguisher relies on a table of size 264, and
the 22.5-round attack on a table of size 2128. None of these attacks are practical.

ZID Permutation Distinguishers. In an independent and simultaneous work
posted very recently on ePrint [29], Liu, Isobe, and Meier present a “hybrid
zero-internal differential” (ZID) distinguisher on full Gimli, which extends a ZID
distinguisher of previous unpublished work. The basic ZID distinguisher hap-
pens to be what we call an internal symmetry distinguisher, where states with
symmetries are produced in the input and in the output of a reduced-round
variant of Gimli. A “hybrid” one adds a limited birthday-like property (which
is absent from our distinguishers). The steps that they take are however differ-
ent from ours, as this distinguisher only spans 14 rounds. Compared with our
analysis in Sect. 3, they will actually start from a much more constrained middle
state, which limits the number of rounds by which one can extend the distin-
guisher afterwards (or significantly increases the complexity). In contrast, we
complete the middle state in multiple successive steps, each step ensuring that
more rounds will be later covered.

Collisions and Preimages on Gimli-Hash. In [32], Zong, Dong and Wang study
Gimli among other candidates of the competition. They present a 6-round colli-
sion attack on Gimli-Hash of complexity 2113, using a 6-round differential char-
acteristic where the input and output differences are active only in the rate. This
differential characteristic was invalidated in [28].

In [27,29] and [28] Liu, Isobe and Meier give collision and preimage attacks
on reduced-round Gimli-Hash. Their attacks rely on divide-and-conquer methods,
exploiting the lack of diffusion between the columns, as did Hamburg, but they
also rely on SP-Box equations in order to attack the hash function itself. These
equations are different from those that we will solve in Sect. 4, and they mostly
relate the input and outputs of a single SP-Box, whereas we study directly two
SP-Boxes. Their analysis is also much more precise, since they prove running
times of solving these equations.
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After giving a meet-in-the-middle generic preimage attack of time and mem-
ory complexity 2128, which sets a bound against the sponge construction used
in Gimli-Hash, they give practical preimage attacks on 2-round Gimli-Hash and
practical collision attacks on 3-round Gimli-Hash. They give a collision attack on
5-round Gimli-Hash with a time complexity 265 and a second preimage attack
with time complexity 296. They give in [29] a preimage attack on 5-round Gimli-
Hash. In [28], they give a semi-free start collision attack on 8 rounds and a
state-recovery attack on the AE scheme for 9 rounds.

3 Internal Symmetry Distinguishers Against Gimli

In this section we present new distinguishers on the Gimli permutation. Our
distinguishers improve upon the best previously known ones, reaching the full 24-
round permutation. They are practical on 23 rounds and have been implemented.
The results presented in this section do not exploit the specifics of the SP-Box:
they would work equally well if the SP-Box was replaced with a permutation
picked uniformly at random. Like all the other analyses presented in this paper,
they do not depend on the values of the round constants.

Our distinguishers rely on internal symmetries. The general idea consists
in identifying a specific form of symmetry (formally, a vector space) that is
preserved by the round function under some circumstances, and then trying to
craft an input for the permutation such that this symmetry traverses all the
rounds so that the output has the same type of property.

In our case, we formalize the symmetry using the notion of 2-identical states.

Definition 1 (2-identical states). A state S is 2-identical if B = D, if A =
C, or if one of these properties holds up to a swap and a constant addition.

Our internal symmetries distinguisher aims at finding a 2-identical input that is
mapped to a 2-identical output. Since there are 96 bits of constraint, a generic
algorithm returning such an input should run in time 296 by evaluating the
permutation on a set of inputs satisfying the property until the output matches
it by chance. Our aim is to find more efficient algorithms in the case of Gimli.

This definition is similar to the one used in [15]. In fact, an internal symmetry
distinguisher can be seen as a stronger variant of a limited birthday distinguisher
of the type used in [15]. Indeed, we can build a limited birthday pair using our
distinguisher: by producing a pair of inputs S, S′ satisfying the internal symmetry
property, we obtain S ⊕ S′ ∈ Vin and Π(S) ⊕ Π(S′) ∈ Vout. Further, since the
converse is not true, an internal symmetry distinguisher is strictly stronger.

From now on, Si denotes the Gimli state before round i.
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3.1 23-Round Practical Distinguisher

We design an internal symmetry distinguisher on 23 rounds of Gimli, that is
represented in Fig. 2, running in time equivalent to 232 evaluations of Gimli on
average. Algorithm 2 starts from a symmetric state in the middle and completes
the state S11 in three steps. Each step assigns a value to more words of the state,
and ensures that the 2-identical symmetry property traverses more rounds.

Algorithm 2. 23-round internal symmetry distinguisher.
Output: a 2-identical state S such that Gimli(23, 1)(S) is 2-identical
We start from the middle. We will be interested in the state S11.

1. Select A15
x , A15

y , A15
z and C15

x = A15
x ⊕ rc16, C15

y = A15
y , C15

z = A15
z such that

B11
x = D11

x .
Notice that due to the small swap operation, the values B11

x and D11
x actually come

from A and C and depend only on A15 and C15. At this point, we have ensured
that for any values of B15 = D15:

– S23 is 2-identical: indeed, A and C will remain identical from rounds 16 to 19
backwards. Then, the small swap backwards injects the same value in A and
C since B and D are also identical. Thus, A23 = C23.

– S7 is 2-identical: indeed, since B11
x = D11

x , B and D remain equal until the
SP-Box layer of round 8, and the 2-identical property remains after the small
swap of round 8.

Once good values have been found, we can compute part of the state S11: A11
y,z,

C11
y,z, and B11

x = D11
x are fixed. The rest remains free.

2. Select A11
x = C11

x ⊕ rc12 such that B7
x = C7

x. At this point, the two-identicality of
the output state is preserved through 4 more rounds (until round 4 included): S3

is 2-identical.
In the state S11, B11

y,z = D11
y,z remain free.

3. Select B11
y,z = D11

y,z such that B3
x = C3

x. Thus, the output S0 is 2-identical.

Each step of Algorithm 2 requires to evaluate a few SP-Boxes 232 times (we do
not even need to evaluate the inverse SP-Box). The total amount of computations
is smaller than 232 evaluations of 23-round Gimli. Notice also that the algorithm
uses only a small amount of memory. Our implementation of Algorithm 2 ran in
less than one hour on a regular laptop.

The time complexity of the algorithm can be computed as follows: 8 × 232

SP-Box evaluations for the first step, 8 × 232 for the second and 16 × 232 for the
third, meaning a total of 8 × 232 + 8 × 232 + 16 × 232 = 40 × 232 which is less
than 232 evaluations of 23-round Gimli (each of them consisting essentially of 92
SP-Box evaluations). This complexity is to be compared to that of the generic
algorithm for obtaining our internal symmetry property, which costs 296.
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Below, we provide an example of input-output pair that we obtained, with a
2-identical input S that remains 2-identical after Gimli(23, 1):

3.2 Distinguisher on Full Gimli and Extensions

Here we will describe how to extend the 23-round distinguisher to the full Gimli
permutation, and even to more rounds. All these results are summarized in
Fig. 1 from Sect. 1. An extension of our distinguisher to the full Gimli is a trivial
matter. Indeed, after running Algorithm 2, we obtain a 2-identical input state
S23 = A23, B23, C23,D23 with A23 = C23. Then, if B23

x = D23
x , which is a 32-bit

condition, the state remains 2-identical after the inverse round 24. By repeating
the previous procedure 232 times, we should find an input value that verifies
the output property. The generic complexity of finding a 2-identical input that
generates a 2-identical output is still 296. Thus, full Gimli can be distinguished
in time less than 232+32 = 264 full Gimli evaluations, and constant memory.

An interesting question is: how many rounds of a Gimli-like permutation
can we target? The distinguisher works mainly because the diffusion in Gimli is
somewhat slow. Thus, a possible fix would be to increase the number of swaps,
for example by having one in each round instead of every two rounds. An attack
exploiting this behaviour that worked previously for r rounds would now a priori
work for r/2 rounds only. Of course, the details of the SP-box could allow further
improvement of these results given that a single iteration would now separate
the swaps rather than a double.

Extending to 28 Rounds. It is trivial to adapt this distinguisher to an extended
version of Gimli with more rounds. The 2-identicality of S0 is preserved after one
round since the next round would apply only an SP-Box layer and a small swap.
Similarly, the 2-identicality of S24 is preserved after 3 more inverse rounds since
the next swap operation is a big swap which exchanges data between A and
C only. Thus, our practical distinguisher works against Gimli(23, 0) (a 24-round
version of Gimli shifted by one round), and our extended distinguisher works
against Gimli(27, 0) (a 28-round version of Gimli).



New Results on Gimli 43

Fig. 2. Distinguisher on 23 rounds. The same color for symmetric branches or columns
at a given round means that they are equal.
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Table 2. Collision attacks on round-reduced Gimli

Type Nbr of rounds Time complexity Memory complexity

Standard 8 8 × 232 × te (practical) negl.

Standard 12 8 × 296 × te negl.

Quantum 14 � 8 × 264 × te negl.

Semi-free start 12 10 × 232 × te negl.

Semi-free start 16 10 × 296 × te negl.

Semi-free start 18 7 × 296 × te 264

Semi-free start 18 296 296

Semi-free start, quantum 20 � 264 × 10 × te 264

4 Classical Collisions on Reduced-Round Gimli-Hash

In this section, we describe collision attacks on Gimli-Hash when it is instantiated
with a round-reduced variant of Gimli. Table 2 summarizes our results.

4.1 The Gimli-Hash Function

This function is built using the Gimli permutation in a sponge construction [8],
represented in Fig. 3.

P

0

0

r

c

128

m1

P

256

P

mt

0x01

P

h1

P

h2

Fig. 3. Gimli-Hash (P stands for the Gimli permutation). The rate is r =
Ax, Bx, Cx, Dx. The capacity is c = Ay,z, By,z, Cy,z, Dy,z.

Gimli-Hash initializes the Gimli state to the all-zero value. The message is
padded and separated into blocks of size r = 128, which corresponds to the rate
r, introducing message blocks of 128 bits between two permutation applications
by XORing them to the first 128 bits of the state. Once all the padded message
blocks are processed, a 32-byte hash is generated by outputting 16 bytes of the
internal state, applying once more the permutation, and outputting 16 additional
ones. In Gimli-Hash, the rate is r = Ax, Bx, Cx,Dx and the capacity is c =
Ay,z, By,z, Cy,z,Dy,z.

We will consider two kinds of collision attacks:
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– Full-state collision attacks: we will build pairs of two-block messages M0,M1

and M0,M
′
1 such that the state after absorbing these pairs becomes again

equal. Thus, one can append any sequence of message blocks after this and
obtain the same hash.

– Semi-freestart collision attacks: we will build pairs of (384-bit) states S, S′

such that S differs from S′ only in a single x, and after r rounds of Gimli,
π(S) and π(S′) differ only in a single x as well. This does not yield a collision
on the hash function as we would need to choose the value of the same initial
state; however, it represents a vulnerability that may be used in the context
of the Gimli modes of operation. For example, in Gimli-cipher, the initial state
contains a key of 256 bits and a nonce of 128 bits which is put in the x values.
Then each block of plaintext is handled in the same way as Gimli-hash. Thus,
by XORing the right values before and after π, one can create a key, a nonce
and a pair of messages which yield the same tags.

4.2 SP-Box Equations and How to Solve Them

All collision attacks in this section exploit the slow diffusion of Gimli and the
simplicity of the SP-Box (contrary to the distinguishers on the permutation,
which worked regardless of the SP-Box used). In this section, we describe a
series of “double SP-Box equations”; solving them will be the main building
block of our attacks. We define the following equations.

Given y, z, find x �= x′ such that SP 2(x, y, z)x = SP 2(x′, y, z)x. (7)

Given y, z, y′, z′, find x such that SP 2(x, y, z)x = SP 2(x, y′, z′)x. (8)

Given y, z, y′, z′, find x such that SP 2(x, y, z)z = SP 2(x, y′, z′)z. (9)

Given y, z, x′, find x such that SP 2(x, y, z)x = x′. (10)

Number of Solutions. Except Eq. (7), all these equations have on average, when
the inputs are drawn uniformly at random, a single solution. However, the vari-
ance on the number of solutions depends on the equation considered. For exam-
ple, only approx. 6.2% of inputs to Eq. (8) have a solution, and they have on
average 82.4 solutions each. Equation (10) gives a little more than 1.5 solutions.
This variance is not a problem for us, as long as we can produce efficiently all
solutions of the equations, which remains the case. In order to simplify our pre-
sentation, we will do as if Eqs. (8), (9) and (10) always gave exactly a single
solution for each input.

Solving the Equations. We use an off-the-shelf SAT solver [31]. In some cases,
more time seems spent building the SAT instance rather than solving it, and we
believe that our current implementation is highly unoptimized.

The solver allows us to retrieve all solutions of a given equation (we treat
Eq. (7) differently because it has on average 232 of them). Let us consider the
average time to produce a solution when random inputs are given. On a stan-
dard laptop, this time varies between approximately 0.1 ms (Eq. (8)) and 1 ms
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(Eq. (10)). This difference mainly stems from the fact that Eq. (8) often has no
solutions, and that the solver quickly finds a counterexample, while Eq. (10)
practically always has solutions that must be found.

On the same computer, an evaluation of the full Gimli permutation (not
reduced-round) takes about 1 µs, so there is approximately a factor 1000 between
computing Gimli and solving a double SP-Box equation.

We consider that all equations have approximately the same complexity and
introduce a factor te that expresses the time taken to solve them in number of
evaluations of Gimli or a reduced-round version (depending on the studied case).

4.3 Practical 8-Round Collision Attack

We consider 8 rounds of Gimli, e.g. rounds 21 to 14 included, and name Gimli(21,
14) this reduced-round permutation. We omit the last swap, because it has no
incidence (it only swaps x values). The situation is represented on Fig. 4. As
before, we name Si the partial state immediately before round i.

Fig. 4. Collision attack on 8 rounds of Gimli, extended to 12 rounds. The first step
fixes the branches in red, which have equal values for the two inputs A21

x , A′21
x . Then

we find values of B21
x , C21

x , D21
x that will conform to these branches. Then, the whole

states are deduced. The branches A13
x and A11

x remain to match. (Color figure online)
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Algorithm 3. 8-round collision attack.
Input: an input state A21, B21, C21, D21.
Output: values A21

x , A′21
x , B21

x , C21
x , D21

x such that by putting A21
x , B21

x , C21
x , D21

x and
A′21

x , B21
x , C21

x , D21
x respectively in the rate, after Gimli(21, 14) (without the last swap),

the state differs only on Ax.
Complexity: 7 × 232 × te time and 232 memory or 8 × 232 × te and negligible memory.

The attack runs in two main steps, both of which must solve 232 times a sequence of
SP-Box equations.

Step 1: find good A21
x , A′21

x .

1. Find all pairs A21
x , A′21

x such that the branch B19
x collides (there are 232 such

pairs, that can be found in time 232).
2. For each pair, compute A19

y , A19
z , A′19

y , A′19
z and solve the SP-Box Eq. (8): find

A19
x such that the branch C17

x collides (there is on average one solution)
3. Given this value, compute A17

y , A17
z , A′17

y , A′17
z and solve the SP-Box Eq. (8)

again: find A17
x such that the branch B15

x collides (there is on average one
solution)

4. Given these values, compute A15
y , A15

z , A′15
y , A′15

z and solve Eq. (9): find A15
x

such that A13
z and A′13

z collide.

Since we do that 232 times, we expect on average a single solution such that A13
y

and A′13
y also collide.

Now that we have found A21
x , A′21

x , it remains to find B21
x , C21

x , D21
x that give the

wanted A19
x , A17

x , A15
x (in red on Fig. 4). We expect on average a single solution,

and little variation on the number of solutions, as only Eq. (10) is involved.
Step 2: find B21

x , C21
x , D21

x .
1. Find B21

x by solving Eq. (10), given the input y and z, and the output x wanted.
Deduce the values of B17

y , B17
z

2. Given B17
y , B17

z , and A15
x , solve Eq. (10) again to get B17

x .
3. Now find C21

x , D21
x that lead to the wanted A17

x , B17
x . First guess the value of

C21
x , deduce C19

y , C19
z and with C19

y , C19
z , A17

x , solve Eq. (10) to obtain C19
x .

Next, given D21
y , D21

z and C19
x , solve Eq. (10) to obtain D21

x . Deduce a value
for B17

x and check if it matches what we want; we expect to find a match after
trying all 232 guesses for C21

x .

Algorithm 3 finds on average a single solution, with any input state. There
is some variance on the number of solutions, that is induced by the SP-Box
equations, but it is small in practice. Furthermore, we can eliminate the memory
requirement by solving Eq. (7) for many input random states. Starting from a
given state, it suffices to apply one more Gimli permutation with a random
message block, in order to re-randomize the input.

Remark that if we omit the second step then we already have a semi-free-start
collision attack, because we can reconstruct the inputs C21 and D21 immediately
from the middle.
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Practical Application: First Step. In our practical computations, we considered
rounds 21 to 14 included. We solved step 1, starting from 0, 0, 0, 0 and using a
random message m1, 0, 0, 0 to randomize the first block. We also solved at the
same time the two Eqs. (10) that enabled us to go back to A17

x , B17
x .

We had to produce 15582838652 � 233.86 solutions for Eq. (7) until we found
a solution for Step 1 and for both equations. We verified experimentally that
each solution for Eq. (7) yielded on average a solution for the final equation.
We obtained in total 5 solutions (Table 3). There are two different solutions
for A15

x ⊕ rc16, which yield two and three solutions respectively for B17
x . The

total computation ran in less than 5000 core-hours. It was easy to run on many
concurrent processes as this algorithm is trivial to parallelize.

Practical Application: Second Step. We solved step 2, that is, looking for C21
x ,

D21
x that lead to one of the pairs A17

x , B17
x . This step was much faster than the

previous one, although it ought to have the same complexity: this is because
we paid in step 1 the probability to find a solution (twice) in Eq. (10), while
in step 2 we benefited from having 5 different possible solutions. We found two
solutions: C21

x ,D21
x = 819b1392, 9f4d3233 and C21

x ,D21
x = aa9f6f2d, 3a6e613a.

Table 3. Results of the first step

Putting both Steps Together. With these solutions, we built two collisions on 8-
round Gimli(21, 14). We start from m1, 0, 0, 0, then after one round, we inject the
values A21

x , B21
x , C21

x ,D21
x and A′21

x , B21
x , C21

x ,D21
x respectively in the rate; then

we obtain two states that differ only on the x-coordinate of the third column
(not the first, due to a big swap), and we inject two different blocks to cancel
out this difference, obtaining the same state. The full state then collides, and
we can append any message block that we want. The two collisions are given in
Table 4.
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Table 4. Two 8-round collisions on Gimli-Hash

Extending the Attack. Remark that the first step can be extended to span any
number of SP 2-boxes. However, each time we add two more rounds, there is one
more branch coming from the B,C,D states which has to match an expected
value, so we add a factor 232 in complexity. Since te � 232, we can do that twice
before meeting the bound 2128. Thus, a collision on 12-round Gimli-Hash can be
built in time 296 × 4 × te.

4.4 Semi-free Start Collisions on Reduced-Round Gimli

We will now design semi-free start collision attacks based on the same principle.
This time, our goal is to obtain two input states S, S′ that differ only in the rate
(in practice, only in Ax) and such that after applying a reduced-round Gimli,
the output states differ only in the rate (the x values). They can also be seen
as finding one state and two pairs of 2-block messages such that after inserting
both messages we obtain a collision. The previous “first step” remains the same,
with an extension to whichever number of rounds we are targeting. The “second
step” is changed, because we can now choose completely the columns B,C,D,
e.g. by starting from the middle instead of having to choose only the input rate.

Doing this allows us to reach 4 rounds more for the same cost as before, as
outlined on Fig. 5 and Algorithm 4. We can then append new rounds as before,
reaching 16 rounds classically in time 296 × 10 × te.

Another Improvement using Precomputations. We are going to win a factor 232

using 264 × te precomputations and a table of size 264. This way, we can attack
two more rounds. Indeed, once we have computed the first step, the two branches
C17

x and A13
x contain arbitrary fixed values. Then, when we try to find the right

C, we could have a table that for all C15
y , C15

z , gives all input-output values for
C17 and C14, and we could directly use this table to match the values C15

x and
D15

x that come from D (instead of having to make a guess of C15
z .
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Fig. 5. Semi-free start collision attack on 12 rounds of Gimli (see Algorithm 4). (Color
figure online)

Let us fix C17
x = A13

x = 0. Thus, we repeat step 1 in Algorithm 4 a total of
264 times in order to have C17

x = A13
x = 0. Step 1 now costs 296 × te.

The table that we precompute shall contain: for each x′, x′′, all values (on
average 1) of y′, z′ such that SP 2(0, ∗, ∗) = x′, y′, z′ and SP 2(x′′, y′, z′) = 0, ∗, ∗.

Now, in Algorithm 4, for each guess of B19
y,z, and for each guess of D19

y,z, we
can find the value of C that matches all the fixed branches in time 1, using this
table. Thus, we can repeat this 296 times, extending the attack by 6 rounds.

– Step 1 costs 2 × 296 × te (we solve only 2 equations most of the time, before
aborting if the wanted “0” do not appear).

– The table costs 264 × te, which is negligible
– Step 2 costs 296 × 5 × te, since it is the same as before, and we only need

forwards computation of SP-Boxes to check if the full path is correct.



New Results on Gimli 51

Algorithm 4. 12-round semi-free start collision attack (see Fig. 5).
Input: an initial A (can be given)
Output Ax, A′

x, B, C, D such that after Gimli(21, 10), only the rate differs.
As before, we don’t write the last swapping step.

Step 1: Same step as in Algorithm 3, extended to 12 rounds. It gives a total of 10
32-bit branches (input values) that are required, that are represented in red on
Fig. 5.

Step 2: we will start from the middle.
1. We take an arbitrary value for B19

y,z. This guess enables to deduce all values of
the column B, from B21 to B10, either by simply computing the SP-Box, or
by solving Eq. (10) (given two input branches y, z, given the output x, deduce
the input x). From this, we deduce the value in all branches that go from B to
D on the figure, hence 4 branches. They are represented in orange on Fig. 5.

2. We take an arbitrary value for D19
y,z. Again, this enables to deduce the whole

sequence of states from D20 to D10, either by computing the SP-Box when
possible, or by finding the input x value corresponding to a given output. We
also obtain the values of branches that are transmitted from D to C.

3. We now guess C15
z . Given this, and C15

x , and the output A13
x that must be met,

we obtain the whole state by solving another simple SP-Box equation (which
is not Eq. (10), but has a similar form).

4. Having deduced C15, we have only 2−32 chances of obtaining the right C17
x , so

we have to repeat all of this 232 times.

In total, we have to solve 5 SP-Box equations, 232 times, in both steps, so the time
complexity is 232 × 10 × te.

Note that we can get rid of the term te if we use a memory of size 296 to store
the solutions of the SP-Box equations. In that case, the overall time complexity
is slightly below 296 evaluations of Gimli, since fewer SP-Boxes are evaluated in
each step than in the full primitive.

5 Better Quantum Collision Attacks

In this section, we explain how our attacks can be extended in the quantum
setting, where even more rounds can be broken. We want to emphasize that, as
our goal is simply to determine a security margin, we will not go into the details
of the implementation of these attacks as quantum algorithms. We will only show
how to use well-known building blocks of quantum computing in order to build
these new attacks, and show why they perform better than the corresponding
generic quantum attacks. At this point, we assume that the reader is familiar
with the basics of quantum computing that are covered in textbooks such as [30].
We define quantum algorithms in the quantum circuit model. The circuit starts
with a set of qubits (elementary quantum systems) initialized to a basis state
and applies quantum operations. The state of the system lies in a Hilbert space
of dimension 2n if there are n qubits. Quantum operations are linear operators
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of this space, and a quantum circuit is built from such elementary operators
coined quantum gates. The result of a quantum computation is accessed through
measurement of the qubits, which destroys their state.

The cryptanalytic algorithms that we consider in this section do not require
any form of query to a black-box, since we want only to build a collision on the
hash function. Thus, they do not require any more specific model (e.g. the Q2
model used in some works in quantum cryptanalysis).

5.1 Tools, Model and Complexity Estimates

Most of the collision attacks presented in this section rely on an exhaustive
search. For example, consider the 8-round attack of Algorithm 3. Both steps are
exhaustive searches in spaces of size 232 that contain on average a single solution:

– In the first step, we find A21
x such that, after solving a sequence of SP-Box

equations, a 32-bit condition is met: the first equation finds A′21
x such that

there is a collision in x after two SP-Boxes, the second equation finds A19
x

such that there is a collision in x after two SP-Boxes, etc., and the final
32-bit condition is that A′13

z and A13
z must collide.

– In the second step, we find the good C21
x by guessing it and trying to match

with a 32-bit condition.

Quantumly, Grover’s algorithm [19] speeds up exhaustive search quadrati-
cally. Amplitude Amplification [12] is a powerful generalization which applies to
any pair A, χ such that:

– A is a quantum algorithm without measurements (a unitary and reversible
operation), that takes no input and produces an output x ∈ X.

– χ : X → {0, 1} is a function that decides whether x ∈ X is a “good” output
of A (χ(x) = 1) or a “failure” of A, such that χ can also be implemented as
a quantum algorithm.

Theorem 1 (Amplitude Amplification [12], informal). Let A be a quan-
tum algorithm without measurements that succeeds with probability p and Oχ be
a quantum algorithm that tests whether an output of A is a failure or not. Then
there exists a quantum algorithm that finds a good output of A using O(

√
1/p)

calls to A and Oχ.

Quantum Embeddings. Any classical algorithm admits a quantum embedding,
that is, a quantum algorithm that returns the same results. Note that this is not
a trivial fact, because a quantum algorithm without measurement is reversible.

Definition 2. Let A be a randomized algorithm with no input. A quantum
embedding for A is a quantum algorithm A′ that has no input, and the dis-
tribution over the possible outcomes of A′ (after measurement) is the same as
the distribution over possible outcomes of A.
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This quantum embedding admits similar time and space complexities, where
classical elementary operations (logic gates) are replaced by quantum gates and
classical bits by qubits. Generic time-space trade-offs have been studied in [4,
23,26], but precise optimizations are required in practice, where the bulk of the
work comes from making the computation reversible. As we just want to compare
costs with quantum generic attacks, the following fact will be useful.

Remark 1. The ratio in time complexities is approximately preserved when
embedding classical algorithms into quantum algorithms.

For example, if a classical algorithm has a time complexity equivalent to 1000
evaluations of Gimli, we can consider that the corresponding quantum embed-
ding has a time complexity equivalent to 1000 quantum evaluations of Gimli. In
all quantum attacks, we will give quantum time complexities relatively to quan-
tumly evaluating Gimli. In order to use Amplitude Amplification (Theorem 1
above), we simply need to define classical randomized algorithms for A and Oχ.

5.2 Example

We take the example of the classical 8-round collision attack. Both steps run in
classical time 232 × 4 × te by running 232 iterates of a randomized algorithm of
time complexity 4 × te. Using Amplitude Amplification, we obtain a correspond-
ing quantum algorithm with time complexity approximately 216× 4 × tqe, where
tqe is the time to solve quantumly an SP-Box equation, relative to the cost of a
quantum implementation of Gimli. As we remarked above, we can approximate
tqe � te.

This approximation comes from different factors:

– a small constant factor π
2 which is inherent to quantum search.

– the trade-offs between time and space in the detailed implementations of the
primitive and its components. Let us simply notice that Gimli, compared to
other primitives that have been studied in this setting, e.g. AES [22], seems
fairly easy to implement using basic quantum computing operations. In the
example of AES, the most costly component is the S-Box [22], and Gimli does
not have such.

We are mainly interested in the security margin, and these approximations
will be sufficient for us to determine whether a given algorithm runs faster or
slower than the corresponding quantum generic attack. Thus, we will write that
the quantum 8-round attack on Gimli-Hash runs in time � 216 × 4 × te.

5.3 Quantum Collision Bounds and Quantum Attacks

The best quantum generic attack for finding collisions depends on the computa-
tional model, more precisely, on the cost assigned to quantum-accessible memory.
Different choices are possible, which are detailed e.g. in [21]. In short, the overall
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cost of quantum collision search depends on the cost that is assigned to quantum
hardware.

In this paper, we will simply consider the most conservative setting, where
quantum memory is free. Note that this actually makes our attacks overall less
efficient, since the generic algorithm is the most efficient possible (and they’ll also
work in the other settings). In this situation, the best collision search algorithm
is by Brassard, Høyer and Tapp [13]. It will find a collision on Gimli-Hash in
approximately 2256/3 � 285.3 quantum evaluations of Gimli, using a quantum-
accessible memory of size 285.3.

Quantum Collision Attacks Reaching more Rounds than Classical Ones. In [21],
Hosoyamada and Sasaki initiated the study of dedicated quantum attacks on
hash functions. They remarked that quantum collision search does not benefit
from a square-root speedup (it goes from roughly 2n/2 to 2n/3 with the BHT
algorithm, and the gain is even smaller in more constrained models of quantum
hardware), while some collision-finding procedures may have a better speedup,
say, quadratic. Thus:

– there may exist quantum collision attacks such that the corresponding clas-
sical algorithm is not an attack (it gets worse than the generic bound);

– the quantum security margin of hash functions for collision attacks is likely
to be smaller than the classical one.

Hosoyamada and Sasaki studied differential trails in the hash functions AES-
MMO and Whirlpool. Although our attacks are based on a different framework,
we show that similar findings apply for Gimli.

5.4 Quantum Collision Attacks on Gimli

We assume that te < 220, hence solving an equation costs less than evaluating
reduced-round Gimli 220 times, which is suggested by our computations, and
should hold in the quantum setting as well.

Full-State Collisions. By adding another 32-bit condition in the classical 12-
round collision attack, we obtain a procedure which runs classically in time
4 × 2128 × te, which is too high. However, using Amplitude Amplification, we
obtain a procedure that runs in quantum time � 4 × 264 × te and reaches 14
rounds, with less complexity than the quantum collision bound.

Semi-free Start Collisions. We can extend the 18-round semi-free start collision
attack in the same way. Building the table will still cost a time 264. This table
must be stored in a classical memory with quantum random access. The first step
goes from 2 × 296 × te classically to approximately 2 × 248 × te quantumly. The
second step does as well. Thus, adding a 32-bit condition enables us to attack
20 rounds in quantum time 264 × 4 × te.
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6 Statistical Analyses of Gimli

6.1 Linear Cryptanalysis

This section aims to provide the first analysis of the linear properties of the Gimli
permutation and its components. We use a Mixed Integer Linear Programming
(MILP) modelization of the operations constructed according to [1], and then
solve it with the SCIP software [17,18] to search for linear trails with optimal
correlation.

Linear Trails of the (Double) SP-Box. We begin by studying the linear
trails of the SP-Box. Since the Gimli permutation mainly uses the composition
of the SP-Box with itself, we focus on the “double” SP-Box SP2.

Let us consider that we apply the double SP-box to A = (x, y, z) to obtain
A′′ = (x′′, y′′, z′′) = SP 2(x, y, z). We are interested in correlated linear approxi-
mations, that is, masks α = (αx, αy, αz) and β = (βx, βy, βz) for which

c(SP 2, α, β) = 2−96
(∣
∣ {A : α · A ⊕ β · A′′ = 0} ∣

∣ − ∣
∣ {A : α · A ⊕ β · A′′ = 1} ∣

∣
)

is as large (in absolute value) as possible. From Sect. 2.1 we already know that
the relationship x8 + x′′

0 + y′′
0 + z′′

0 = 0 always holds. This is a linear trail of the
double SP-box with correlation 1, and it is unique.

An automated MILP-based search for linear trails of correlation 2−1 and 2−2

shows that there exist at least 41 trails of the former kind and 572 of the latter,
but this is not an exhaustive count. Although these approximations probably
only account for a very small fraction of the possible ones, a more thorough
study of the distribution of the different correlation values among all the trails
would be of interest.

We have found no signs of significant linear-hull effects within the double
SP-box, although since we have not considered every linear trail, they might
still exist.

Some Linear Trails of Round-Reduced Gimli. In order to provide some linear
trails for reduced-round Gimli, we first focus on trails with only one active SP-
Box in each round, or more specifically, with masks which only cover one column
in each round. They do not provide an upper bound on the correlation of more
general trails, but we still think they could be of interest, and this restriction
greatly limits the search space.

More specifically, we consider linear trails on powers of the SP-box such that
the mask for the x word is zero every two rounds. This means that the mask
is unaffected by the big and small swaps, and these trails easily translate into
trails for the reduced-round Gimli construction with the same correlation.

We first look at iterative linear trails for the double SP-box so that both the
input and output masks have the x word set to zero. We find that the optimal
correlation is 2−26, and this is the (maybe not unique) associated trail:
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Γ1 :
00000000

0a064e03

0c08e406

−→
2−14

0c8b0507

01040322

00054302

−→
2−12

00000000

0a064e03

0c08e406

.

Since this trail is iterative, we can construct 2l-round trails with correlation
2−26l. Next, we provide a similar iterative trail for four rounds with correla-
tion 2−47, though other trails with larger correlation might exist with the same
restrictions:

Γ2 :
00000000

02060000

00020541

−→
2−19

06422511

088a8131

08828111

−→
2−11

00000000

15024215

0405003a

−→
2−10

04054102

00010280

000182a0

−→
2−7

00000000

02060000

00020541

.

With this, we can construct trails of 4l rounds with correlation 2−47l. At this
point the search for iterative trails becomes computationally expensive so we
search for non-iterative trails. We find an optimal four-round trail with correla-
tion 2−16:

Γ3 :
00000000

90002000

00400110

−→
2−3

00400100

00000020

00000000

−→
2−1

00000000

00004000

00000001

−→
2−2

00000001

00800001

00800001

−→
2−10

00000000

000002aa

010002aa

.

Next, we attempt to extend this trail at the end. We find the following four-
round trail with correlation 2−48 which has the output mask of the previous one
as its input mask:

Γ4 :
00000000

000002aa

010002aa

−→
2−18

01448312

01094200

0101f260

−→
2−11

00000000

18040003

0a054480

−→
2−12

0a040580

02450200

02050200

−→
2−7

00000000

88040004

080c0401

.

Combining both trails, we obtain an eight-round trail of correlation 2−64. There
are no approximations for the double SP-box for which the output mask is the
input mask of Γ3 and so that the input mask has the x word set to zero. However,
by removing the last condition we can add two rounds with a 2−16 correlation:

Γ5 :
68009800

40202088

403510d4

−→
2−10

40211090

00480010

00200088

−→
2−6

00000000

90002000

00400110

.

In the same way, we can add two additional rounds at the end of Γ4 with corre-
lation 2−19:

Γ6 :
88040004

40202088

080c0401

−→
2−10

080a0281

000c0901

000c0901

−→
2−9

48000800

70100a00

e0180002

.

By combining these four trails, we obtain a twelve-round linear trail for Gimli
with correlation 2−99. Then, by combining several trails in a similar manner we
obtain the following 14-round trail with correlation 2−128:
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Γ7 :
00408000

20e04060

e0c1c000

−→
2−19

e0e9e078

206c202e

206060a0

−→
2−12

00000000

f8606840

80808180

−→
2 −7

80808180

40400060

40400040

−→
2−4

00000000

80008080

00800001

−→
2−6

00000001

01010101

01010101

−→
2 −8

00000000

02020202

03020202

−→
2 −8

00000000

04040404

04040404

−→
2 −8

00000000

08080808

08080808

−→
2−8

00000000

10101010

10101010

−→
2−8

00000000

20202020

20202020

−→
2 −8

00000000

40404040

40404040

−→
2−10

00000000

80c08080

80e08080

−→
2−10

80110000

01800101

01c20101

−→
2−8

01020800

01000802

01801c02

.

Table 5. Linear trails for reduced-round Gimli. Some of them apply to shifted versions
of the algorithm starting with two consecutive SP-box substitutions instead of one.

# Rounds Correlation Construction Shift

1 1 Probability 1 trail from 2.1 No

2 1 Probability 1 trail from 2.1 Yes

3 2−6 First three rounds of Γ3 Yes

4 2−12 Last round of Γ5, first three rounds of Γ3 No

5 2−22 Last round of Γ5, Γ3 No

6 2−32 Γ5, Γ3 Yes

7 2−50 Γ5, Γ3, first round of Γ4 Yes

8 2−61 Γ5, Γ3, first two rounds of Γ4 Yes

9 2−70 Last round of Γ5, Γ3, Γ4 No

10 2−80 Last round of Γ5, Γ3, Γ4, first round of Γ6 No

11 2−89 Last round of Γ5, Γ3, Γ4, Γ6 No

12 2−99 Γ5, Γ3, Γ4, Γ6 Yes

13 2−109 Last thirteen rounds of Γ7 No

14 2−128 Γ7 Yes

15 2−137 Last rounds of Γ8 and Γ9,Γ7 No

16 2−150 Γ8,Γ9,Γ7 Yes

Finally, this trail can be extended at the top by adding the following two-round
trails (they now have two active SP-Boxes in each round because of a swap):

Γ8 :
48f00060

6818cc18

21a404c8

−→
2−9

018060c0

20085810

40408000

−→
2−11

00000000

20e04060

e0c1c000

Γ9 :
40a04000

20000008

00204000

−→
2−4

00000000

00002040

00408000

−→
2 −2

00408000

00000000

00000000

.
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Using these, we obtain a 16-round trail with correlation 2−150. In general, by
combining these trails in different ways, we provide the linear trails for up to 16
round of Gimli shown in Table 5.

These are just some linear trails of Gimli which belong to a very specific sub-
family, and for more than four rounds we have not proven optimality even within
that family, so it is quite possible that better linear trails exist. We have also
searched for any significant linear trails which share the same input and output
masks to see if there is a noticeable linear hull effect for these approximations,
but we have found no additional trails of large correlation.

All these trails can be used to mount distinguishing attacks on the Gimli
permutation with a data complexity proportional to the inverse of the square
of the correlation, which also works for the block cipher built with the Even-
Mansour construction from the Gimli permutation. It is possible to reduce the
complexity slightly by using multiple linear cryptanalysis. By considering the
same trail but in the four columns we can increase the capacity by a factor of
four. By shifting the iterative trail by two rounds we can obtain an additional
factor two in the 16-round attack.

6.2 Differential-Linear Cryptanalysis

We now consider differential-linear cryptanalysis, a technique that combines a
differential trail and a linear trail built independently.

We use the approach of Leurent [25] where we actually split the cipher in
three parts E = E⊥ ◦ E⊥ ◦ E�, with a differential trail in E�, a linear trail in
E⊥, and an experimental evaluation of the bias in EI . This gives a more accurate
evaluation of the complexity. More precisely, we consider

– a differential trail δin → δout for E� with probability p = PrX

(
E�(X) ⊕

E�(X ⊕ δin) = δout

)
.

– an experimental bias b from δout to β for EI :

b = c(α · EI(W ), α · EI(W ⊕ δout))
= 2Pr

W
(α · EI(W ) = α · EI(W ⊕ δout)) − 1

– a linear trail α → β for E⊥ with correlation c = 2PrY (α ·Y = β ·E⊥(Y )) − 1.

If the three parts are independent then we can estimate the bias of the
differential-linear distinguisher as:

c(β · E(X), β · E(X ⊕ δin)) = 2Pr
X

(β · E(X) = β · E(X ⊕ δin)) − 1 ≈ pbc2

Therefore, the complexity of the distinguisher is about 2/p2b2c4.
In Gimli, there are no keys, so the assumption of independence does not hold,

but experiments show that the computed bias is close to the reality. In practice,
the best results are obtained when δout and α have a low hamming weight [25].
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Differential Trail. We start by picking a trail that mainly follows the one
given by the designers [5] with slight changes to optimize it for our number of
rounds. We chose a trail with a difference pattern δout with two active bits. A
differential trail over 5 rounds with probability p = 2−28 is given in Table 6.
We considered trade-offs between the different phases, and it never seems to be
worth it to propagate the trail any further.

Experimental Bias. Starting from the target difference pattern δout at round
19, we experimentally evaluate the bias after a few rounds with all possible masks
α with a single active bit. Concretely, we choose the state at random, build the
second state by adding δout and observe the bias a few rounds later.

The most useful results are on the least significant bit z0 of the last word,
where the probability of having a difference is smaller than 1/2. After computing
8 round, the probability of having an active difference on this bit in round 12 is
1
2 − 2−6.2, a correlation of b = −2−5.2. After 9 rounds, at the end of round 11,
there is a correlation of b = −2−16.9. These probabilities are large enough to be
experimentally significant after the 240 trials we have made.

Table 6. A 5-round differential trail.

Linear Trail. We use assisted tools to find good linear trails, starting from the
mask corresponding to z0. The diffusion is not the same depending whether we
start after round 12 or 11 so we show the best 3 rounds linear approximation
for both case. We find a correlation c of 2−17 and 2−16 respectively, see Tables
7 and 8.
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Table 7. Diffusion of z0 starting at the end of round 12.

Complexity of the Distinguishers. We can combine the trails in different
way to obtain distinguishers on 15, 16 or 17 rounds (starting from round 24).

Table 8. Diffusion of z0 starting at the end of round 11.

15 Rounds. We use 5 rounds for E�, 8 rounds for EI , 2 rounds for E⊥. The
corresponding complexity is 2/pbc2 = 2 × 22×28 × 22×5.2 × 24×5 = 287.4.
16 Rounds. We use 5 rounds for E�, 9 rounds for EI , 2 rounds for E⊥. The
corresponding complexity is 2/pbc2 = 2 × 22×28 × 22×16.9 × 24×5 = 2110.8.
17 Rounds. We use 5 rounds for E�, 9 rounds for EI , 3 rounds for E⊥. The
corresponding complexity is 2/pbc2 = 2 × 22×28 × 22×16.9 × 24×16 = 2154.8.

Those distinguishers can be used when the Gimli permutation is used to build
a block cipher with the Even-Mansour construction. Such a cipher should ensure
a birthday bound security of up to 2192 query, which is less efficient than our
differential-linear distinguisher if the number of rounds Gimli is reduced to 17 (or
fewer). Further improvement should be possible with the partitioning technique
of [25], but we leave this to future work.
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7 Conclusion

A common point of the results presented in this paper is that they exploit the
relatively slow diffusion between the columns of the Gimli state. This issue has
trivial causes: swaps are effectively the identity for 256 out of the 384 bits of
the internal state, and occur only every second round. Thus, the Gimli SP-Box
is always applied twice, except at the first and last rounds. This means that
the permutation can be viewed as an SPN with only 12 rounds, and with very
simple linear layers. Meanwhile, the double SP-Box is a rather simple function,
and some of our attacks rely crucially on solving efficiently equations that relate
its inputs and outputs.

Though our results do not pose a direct threat to the Gimli NIST candidate,
low-complexity full-round distinguishers on the permutation or reduced-round
attacks for a high proportion of the rounds (specially when not predicted by the
designers) have been considered in some cases as an issue worth countering by
proposing a tweak, as can be seen for instance in the modification [3] recently
proposed by the Spook team [2] to protect against the cryptanalysis results
from [15].

In addition, Gimli designers studied other linear layers instead of the swaps,
like using an MDS or the linear transformation from SPARX [16], and they found
some advantages in proving security against various types of attacks. On the
other hand, they also found it unclear whether these advantages would outweight
the costs. We believe our results show some light in this direction: the other
variants that were considered seem a priori to be stronger regarding our analysis,
though an extensive study should be performed.

We believe the distinguishers might still be improved by exploiting the prop-
erties of the SP-Box, which we have not done yet.

In order to mitigate the attacks based on internal symmetries and guess-and-
determine methods (including our distinguishers on the permutation) a simple
fix would be to perform a swap at each round instead of every second round.
This would however imply a renewed cryptanalysis effort.
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Abstract. We introduce a new signature scheme, SQISign, (for Short
Quaternion and Isogeny Signature) from isogeny graphs of supersingular
elliptic curves. The signature scheme is derived from a new one-round,
high soundness, interactive identification protocol. Targeting the post-
quantum NIST-1 level of security, our implementation results in signa-
tures of 204 bytes, secret keys of 16 bytes and public keys of 64 bytes.
In particular, the signature and public key sizes combined are an order
of magnitude smaller than all other post-quantum signature schemes.
On a modern workstation, our implementation in C takes 0.6 s for key
generation, 2.5 s for signing, and 50 ms for verification.

While the soundness of the identification protocol follows from classi-
cal assumptions, the zero-knowledge property relies on the second main
contribution of this paper. We introduce a new algorithm to find an
isogeny path connecting two given supersingular elliptic curves of known
endomorphism rings. A previous algorithm to solve this problem, due
to Kohel, Lauter, Petit and Tignol, systematically reveals paths from
the input curves to a ‘special’ curve. This leakage would break the zero-
knowledge property of the protocol. Our algorithm does not directly
reveal such a path, and subject to a new computational assumption, we
prove that the resulting identification protocol is zero-knowledge.

Keywords: Post-quantum · Signatures · Isogenies

1 Introduction

Isogeny-based cryptography has existed since at least the work of Couveignes
in 1997 [9] and has developed significantly in the last decade due to increasing
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interest in post-quantum cryptography. The CGL hash function of [6] and the
SIDH key exchange proposed in [20] have put isogenies between supersingular
elliptic curves at the center of attention. The security of these schemes relies
on the hardness of finding a path in the �-isogeny supersingular graph between
two given vertices. This problem is believed to be hard for both classical and
quantum computers. This assumption was studied by Kohel, Lauter, Petit and
Tignol, who in [22] introduced a new algorithm (often called KLPT in the lit-
erature) that solves the quaternion analog of the �-isogeny path problem under
the Deuring correspondence. This algorithm revealed its full potential in [17],
leading to several reductions between computational problems related to isoge-
nies between supersingular curves, most notably a heuristic security reduction
between the �-isogeny path problem and the endomorphism ring computation.

In parallel to these cryptanalytic efforts, isogeny-based cryptography has
continued to develop with several new proposals. We can mention CSIDH [5], an
efficient reinterpretation of Couveignes’ idea using supersingular elliptic curves
defined over Fp. Another active area of research has been isogeny-based signature
schemes, see for instance [3,12,14,19,33].

Galbraith, Petit and Silva’s signature scheme [19] (also known as GPS) was
the first constructive cryptographic application of the KLPT algorithm. How-
ever, their work remains mainly theoretical and, to this day, we are not aware
of any implementation of their scheme. We follow in the footsteps of GPS by
introducing a new signature scheme based on the quaternion �-isogeny path prob-
lem. Indeed, GPS relies on the KLPT algorithm for so-called “special” maximal
orders (the main focus of [22]), whereas our protocol requires a new variant of
KLPT working for arbitrary maximal orders, which we introduce here.

The contributions of this paper can be summarized as follows:

– A new interactive identification protocol and the resulting signature scheme
based on a generic algorithm for the quaternion �-isogeny path problem.

– A new generic KLPT algorithm, suited for our signature scheme, which pro-
duces a smaller output than the existing algorithm of [22].

– A proof of the interpretation of Eichler orders and their class sets under the
Deuring correspondence, and its application to the analysis of the output of
our algorithm. This leads us to a natural security assumption from which we
prove zero-knowledge of the identification scheme, and consequently unforge-
ability of the signature scheme.

– New algorithms for the efficient instantiation of the protocol, along with
parameters targeting the NIST-1 level of post-quantum security, and a com-
plete implementation of our signature scheme in C.

The remainder of this paper is organized as follows. Section 2 contains pre-
liminaries on elliptic curves and quaternion algebras. Section 3 sketches our new
protocols along with some proofs. Section 4 lays out the mathematical back-
ground on Eichler orders necessary for the rest of the paper. Section 5 gives a
generic description of our new Generalized KLPT algorithm. Section 6 provides
the generic variant used in our protocols. Section 7 studies the zero knowledge
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property of the identification scheme. Finally, Sect. 8 provides algorithms for
efficient implementation of the schemes.

2 Preliminaries

A negligible function f : Z>0 → R>0 is a function whose growth is bounded
by O(x−n) for all n > 0. In the analysis of a probabilistic algorithm, we say
that an event happens with overwhelming probability if its probability of failure
is a negligible function of the length of the input. We say that a distinguishing
problem is hard when any probabilistic polynomial-time distinguisher has a neg-
ligible advantage with respect to the length of the instance. Two distributions
are computationally indistinguishable if their associated distinguishing problem
is hard.

Throughout this work, p is a prime number and Fq a finite field of char-
acteristic p. We are interested in supersingular elliptic curves over Fq = Fp2 ,
in an isogeny class such that the full endomorphism ring is defined over Fq,
and is isomorphic to a maximal order in a quaternion algebra. The extended
version of this work [13] contains more background on elliptic curves and their
endomorphism rings; other useful references are [10,21,29,31].

2.1 The Deuring Correspondence

In [15], Deuring made the link between the geometric world of elliptic curves and
the arithmetic world of quaternion algebras over Q by showing that the endo-
morphism ring of a supersingular elliptic curve E defined over Fp2 is isomorphic
to a maximal order in the quaternion algebra Bp,∞ ramified at p and infinity.
This correspondence is in fact an equivalence of categories [21] between super-
singular elliptic curves and left ideals for a maximal order O of Bp,∞, inducing
a bijection between conjugacy classes of supersingular j-invariants and maximal
orders (up to equivalence). Given a supersingular curve E0, this lets us asso-
ciate each pair (E1, ϕ), where E1 is another supersingular elliptic curve and
ϕ : E0 → E1 is an isogeny, to a left integral O0-ideal (with End(E0) � O0),
and every such ideal arises in this way. In this case End(E1) is isomorphic to
the right order of this ideal. The explicit correspondence between isogenies and
ideals is given through kernel ideals as defined in [32]. Given I an integral left-
O0-ideal we define the set E0[I] = {P ∈ E0(Fp2) : α(P ) = 0 for all α ∈ I} as
the kernel of I. To I, we associate the isogeny ϕI of kernel E0[I] defined by
ϕI : E0 → E0/E0[I]. Conversely given an isogeny ϕ, the corresponding kernel
ideal is defined as Iϕ = {α ∈ O0 : α(P ) = 0 for all P ∈ ker(ϕ)}.

Remark 1. In the definitions above we identify α ∈ O0 with the related endo-
morphism in End(E0), implicitly assuming a fixed isomorphism between O0 and
End(E0). This is a simplification that we will reiterate throughout this paper to
lighten notations. In fact, we will sometimes go further and also write α for the
principal ideal O0α. It is easily verified that this ideal corresponds to the kernel
ideal Iα, and conversely any principal ideal corresponds to an endomorphism
ϕO0α.
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We summarize the main properties of this correspondence in Table 1.

Table 1. The Deuring correspondence, a summary.

Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, ϕ) with ϕ : E → E1 Iϕ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ

deg(ϕ) n(Iϕ)

ϕ̂ Iϕ

ϕ : E → E1, ψ : E → E1 Equivalent ideals Iϕ ∼ Iψ

Supersingular j-invariants over Fp2 Cl(O)

τ ◦ ρ : E → E1 → E2 Iτ◦ρ = Iρ · Iτ

2.2 Algorithmic Building Blocks

In this section we introduce some sub-algorithms that will be used in the remain-
ing of the paper. These algorithms are either classical or inherited from recent
works [19,22] in the literature.

We will write CRTM,N (x, y) for the Chinese Remainder algorithm, that takes
x ∈ Z/MZ, y ∈ Z/NZ and returns z ∈ Z/MNZ with z = x mod M and
z = y mod N .

KLPT Algorithm. A significant part of the present work is spent on providing
a new generalization of the KLPT algorithm [22] (see Algorithm 3). This algo-
rithm takes an integral ideal I as input and finds an equivalent ideal J ∼ I of
given norm. For instance, the norm can be required to be �e for some e ∈ N. In
general, in the rest of this paper when an output of an algorithm is required to
be a power of �, we write �•.

We start by introducing a few notations taken from [22], before introducing
several sub-algorithms that we will use. Finally we describe a short version of
KLPT in Algorithm 1 built from these sub-algorithms.

An important notion introduced in [22] is that of special extremal orders,
i.e., maximal orders O0 containing a suborder admitting an orthogonal decom-
position R + jR where R = Z[ω] ⊂ Q[i] is a quadratic order of minimal dis-
criminant (or equivalently such that ω has smallest norm in O0). By orthogonal
decomposition we mean that R ⊂ (jR)⊥. The order O0 = Z〈√−1,

√−p〉, cor-
responding to the elliptic curve of j-invariant 1728 when p = 3 mod 4, is one of
the simplest examples of such special extremal orders, as it contains the subor-
der Z[

√−1] + (
√−p)Z[

√−1]. For the rest of this paper, we fix these notations
for j, R, ω. The method of resolution resulting in Algorithm1 is inspired by [22,
Lemma 5]. We introduce here a reformulation of this lemma using notations that
we will keep for the rest of this article.
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Lemma 1. For any integral ideal I, the map χI(α) = Iα/n(I) is a surjection
from I � {0} to the set of ideals J equivalent to I. For α 
= β, we have χI(α) =
χI(β) if and only if α = βδ where δ ∈ OR(I)×.

Proof. This map is well-defined as proved in [22]. We see that it is a surjection
by identifying I · J with a principal ideal OR(I)β. Then, it is clear that β ∈ I
and J = χI(β). Finally, one can verify that OR(I)β1 = OR(I)β2 if and only if
β1 = δβ2 where δ ∈ OR(I)×.

With n(χI(α)) = n(α)/n(I), we see that finding J ∼ I of given norm N is
equivalent to finding some α ∈ I of norm n(I)N . This observation underlies the
solution of [22] for Algorithm 1.

Remark 2. In what follows will often define a projective point (C0 : D0) ∈
P

1(Z/NZ) for some prime N and then, by an abuse of notation, define an element
C0 + ωD0 inside our maximal order.

Below we list sub-algorithms introduced in [22] as part of KLPT; see [13,22,
25] for detailed descriptions of each.

– EquivalentPrimeIdeal(I) Given a left O0-ideal I, find an equivalent left O0-ideal
of prime norm.

– RepresentIntegerO0
(M) Given M ∈ N with M > p, find γ ∈ O0 of norm M .

– IdealModConstraint(I, γ) Given an ideal I of norm N , and γ ∈ O0 of norm
Nn, find (C0 : D0) ∈ P

1(Z/NZ) such that μ0 = j(C0 +ωD0) verifies γμ0 ∈ I.
– StrongApproximationF(N,C0,D0) Given a prime N and C0,D0 ∈ Z, find μ =

λμ0 + Nμ1 ∈ O0 of norm dividing F , with μ0 = j(C0 + ωD0). We write
StrongApproximation�• when the expected norm is a power of �.

Remark 3. For our scheme, we will need to turn KLPT into a deterministic algo-
rithm. The sub-routine EquivalentPrimeIdeal can be made deterministic if we
look for the ideal of smallest norm satisfying the desired condition. Since we are
looking at lattices of dimension at most 4, finding an ordered set of smallest vec-
tors can be done efficiently. StrongApproximation can also be made deterministic,
as the method in [25] involves solving a closest vector problem in some lattice.
The sub-routine IdealModConstraint is deterministic as was shown in [22]. For
RepresentIntegerO0

, this is less natural as there are several solutions for a given
input M . Still, if we want, we can find an ordering for the tuple (x, y, z, t) of
coordinates over Z〈ω, j〉 and search for the smallest solution with respect to that
ordering.

With these sub-routines we are able to give a compact description of the
KLPT algorithm. There are several versions of this algorithm depending on the
norm sought for the output: we will write KLPT�• when the algorithm produces
an output of norm a power of �; KLPTT when the norm is a divisor of T ∈ Z.
The changes between the two variants are minimal; for simplicity, we describe
only KLPT�• in Algorithm 1.
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Remark 4. A result of [19] shows that the outputs of EquivalentPrimeIdeal and
KLPT only depend on the equivalence class of the input (in fact this is only true
with a minor tweak to the original algorithm of [22]). Hence, we will sometimes
abuse notations and use both as if they took inputs in Cl(O0).

Algorithm 1. KLPT�•(I)
Require: I a left O0-ideal.
Ensure: J ∼ I of norm �e.
1: Compute L = EquivalentPrimeIdeal(I), L = χI(δ) for δ ∈ I with N = n(L).
2: Compute γ = RepresentIntegerO0

(N�e0) for e0 ∈ N.
3: Compute (C0 : D0) = IdealModConstraint(L, γ).
4: Compute ν = StrongApproximation�•(N, C0, D0)) and set β = γν and e such that

n(β) = N�e.
5: return J = χL(β).

3 New Identification Protocol and Signature Scheme

3.1 An Identification Protocol

Let λ be a security parameter. We start by describing an interactive identification
protocol based on supersingular isogeny problems.
setup : λ �→ param Pick a prime number p and a supersingular elliptic curve E0

defined over Fp with known special extremal endomorphism ring O0. Select an
odd smooth number Dc of λ bits and D = 2e where e is above the diameter of
the supersingular 2-isogeny graph.
keygen : param �→ (pk = EA, sk = τ) Pick a random isogeny walk τ : E0 → EA,
leading to a random elliptic curve EA. The public key is EA, and the secret key
is the isogeny τ .

To prove knowledge of the secret τ , the prover engages in the following Σ-
protocol with the verifier.
Commitment. The prover generates a random (secret) isogeny walk ψ : E0 →
E1, and sends E1 to the verifier.
Challenge. The verifier sends the description of a cyclic isogeny ϕ : E1 → E2

of degree Dc to the prover.
Response. From the isogeny ϕ ◦ ψ◦τ̂ : EA → E2, the prover constructs a new
isogeny σ : EA → E2 of degree D such that ϕ̂ ◦ σ is cyclic, and sends σ to the
verifier.
Verification. The verifier accepts if σ is an isogeny of degree D from EA to E2

and ϕ̂ ◦ σ is cyclic. They reject otherwise.
We summarize the protocol in Fig. 1. Completeness follows from the cor-

rectness of Algorithm 3, allowing a honest prover to construct σ : EA → E2
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E0 E1

E2EA

τ

ψ

ϕ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Fig. 1. A picture of the identification protocol

such that ϕ̂ ◦ σ is cyclic. Soundness is analysed in Subsect. 3.2, and follows from
the difficulty of the Smooth Endomorphism Problem—a problem heuristically
equivalent to the classic Endomorphism Ring Problem. Zero-knowledge is more
difficult to prove, as we argue in Subsect. 3.3, and we defer its analysis to Sect. 7.

3.2 Soundness

Problem 1 (Supersingular Smooth Endomorphism Problem). Given a prime p
and a supersingular elliptic curve E over Fp2 , find a cyclic endomorphism of E
of smooth degree.

Remark 5. Note that under heuristics similar to those used in [17], the above
problem is equivalent to the Endomorphism Ring Problem (given E/Fp2 , com-
pute endomorphisms forming a Z-basis of End(E)).

Theorem 1 (Soundness). If there is an adversary that breaks the soundness
of the protocol with probability w and expected running time r for the public
key EA, then there is an algorithm for the Supersingular Smooth Endomorphism
Problem on EA with expected running time O(r/(w − 1/c)), where c is the size
of the challenge space.

The theorem is a consequence of the following lemma.

Lemma 2. Given two accepting conversations (E1, ϕ, σ) and (E1, ϕ
′, σ′) where

ϕ 
= ϕ′, the composition σ̂′ ◦ ϕ′ ◦ ϕ̂ ◦ σ is a non-scalar endomorphism of EA of
smooth degree.

Proof. By construction, σ̂′◦ϕ′◦ϕ̂◦σ is an endomorphism of EA of degree (DDc)2.
This shows that the degree is smooth. It remains to prove that it is not a scalar.
Suppose by contradiction that σ̂′ ◦ ϕ′ ◦ ϕ̂ ◦ σ = [DDc]. The compositions ϕ̂ ◦ σ
and ϕ̂′ ◦ σ′ are two cyclic isogenies from EA to E1 of same degree. Therefore
σ̂′ ◦ ϕ′ is the dual of ϕ̂ ◦ σ. We deduce that ϕ̂ ◦ σ = ϕ̂′ ◦ σ′, a contradiction.

Proof of Theorem 1. The endomorphism σ̂′ ◦ϕ′ ◦ϕ̂◦σ in Lemma 2 corresponds to
a (possibly backtracking) sequence of isogenies, and removing the backtracking
subsequences, we obtain a solution to the Supersingular Smooth Endomorphism
Problem of EA. Therefore the protocol has special soundness for the relation R
defined as

(EA, α) ∈ R ⇐⇒ α is a cyclic smooth degree endomorphism ofEA.



SQISign: Compact Post-quantum Signatures 71

It is therefore a proof of knowledge for R with knowledge error 1/c—see for
instance [11, Theorem 1]. In other words, an adversarial prover with success
probability w and running time r can be turned into a knowledge extractor for
R of expected running time O(r/(w − 1/c)). ��

3.3 Zero-Knowledge: Two Insecure Approaches

The sketch given in Subsect. 3.1 is incomplete, as it does not specify a method to
compute the response isogeny σ. Zero-knowledge of the scheme clearly depends
upon this method, and it turns out that the only known solutions so far are
insecure. Indeed the trivial approach of setting σ = ϕ◦ψ ◦ τ̂ immediately reveals
the secret, while using the algorithm from [22] instead (like in [19]) ends up
revealing some path from EA to E0, which is equivalent to revealing τ thanks
to the reductions in [17].

In Sects. 5 and 6 we will introduce a new variant of the KLPT algorithm that
conjecturally does not suffer from the same leakages. Then, we will prove zero-
knowledge in Sect. 7, under a new conjecturally hard computational problem.

3.4 The Signature Scheme

The new signature scheme is simply a Fiat-Shamir transformation of the identi-
fication protocol introduced in Subsect. 3.1. Following the construction of [6]
extended in [28] for smooth degrees, if Dc =

∏n
i=1 �ei

i , we write μ(Dc) =∏n
i=1 �ei−1

i (�i + 1) and we define an arbitrary function ΦDc
(E, s), mapping inte-

gers s ∈ [1, μ(Dc)] to non-backtracking sequences of isogenies of total degree Dc

starting at E. Let H : {0, 1}∗ → [1, μ(Dc)] be a cryptographically secure hash
function.

The signature scheme is as follows.
sign : (sk,m) �→ Σ Pick a random (secret) isogeny ψ : E0 → E1. Let
s = H(j(E1),m), and build the isogeny ΦDc

(E1, s) = ϕ : E1 → E2. From
the knowledge of OA, and of the isogeny ϕ ◦ ψ : E0 → E2, construct an isogeny
σ : EA → E2 of degree D such that ϕ̂ ◦ σ is cyclic. The signature is the pair
(E1, σ).
verify : (pk,m,Σ) �→ true or false Parse Σ as (E1, σ). From s = H(j(E1),m),
recover the isogeny ΦDc

(E1, s) = ϕ : E1 → E2. Check that σ is an isogeny from
EA to E2 and that ϕ̂ ◦ σ is cyclic.

Theorem 2. The signature described above is secure against chosen-message
attacks in the random oracle model assuming the hardness of Problems 1 and 2.

4 Eichler Orders and the Deuring Correspondence

We recall here the notion of Eichler orders and we interpret them under the
Deuring correspondence. As the results of this section are well known, we only
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state the main theorems without proof here; for a detailed treatment see the
extended version of this work [13], or [16,26,31].

An Eichler order is the intersection of two maximal orders inside Bp,∞. In all
this section we will consider the case of the Eichler order O = O0 ∩ O where O0

and O are maximal orders connected through an ideal I of norm n(I) such that
I � nOL(I) for any n > 1. This setting corresponds to curves E0, E connected
by an isogeny ϕI of cyclic kernel and degree n(I) with End(E0) ∼= O0 and
End(E) ∼= O.

Proposition 1. O := O0 ∩ O = OL(I) ∩ OR(I) = Z + I.

One goal of this section is to interpret the elements in O under the Deuring
correspondence.

The decomposition Z+I allows us to interpret the elements of O. In fact, we
can separate elements in O according to whether their norm is coprime to n(I) or
not. Given that n(I)Z ⊂ I, it is easily verified that this partition can be written
as O = (I ∪ I)

⋃
(Z � n(I)Z + I). It is well-known that I = Hom(E,E0)ϕI .

Hence, the elements in I correspond to the endomorphisms ψ◦ϕI for any isogeny
ψ : E → E0. The same analysis proves I = Hom(E0, E)ϕ̂I . The elements of I

correspond to the same endomorphisms as those of I, but decomposed as ψ̂ ◦ ϕ̂I

in End(E).

4.1 Commutative Isogeny Diagrams

We define commutative diagrams of isogenies using the classical notations of
pushforward and pullback maps. Let us take 3 curves E0, E1, E2 and two sep-
arable isogenies ϕ1 : E0 → E1 and ϕ2 : E0 → E2 of coprime degrees, N1 and
N2. Then, there is a fourth curve E3 and two pushforward isogenies [ϕ1]∗ϕ2

and [ϕ2]∗ϕ1 going from E1 and E2 toward E3, verifying deg([ϕ1]∗ϕ2) = N2 and
deg([ϕ2]∗ϕ1) = N1.

The isogenies [ϕ2]∗ϕ1 and [ϕ1]∗ϕ2 are defined as the separable isogenies
of respective kernels ϕ2

(
ker(ϕ1)

)
and ϕ1

(
ker(ϕ2)

)
. We will sometimes refer to

[ϕ2]∗ϕ1 as the image of ϕ1 through ϕ2. The two sides of the diagram can be
seen as two decompositions of the same isogeny ψ = [ϕ2]∗ϕ1 ◦ϕ2 = [ϕ1]∗ϕ2 ◦ϕ1.

There is a dual notion of pullback isogeny : given ϕ1 : E0 → E1 and ρ2 : E1 →
E3, of coprime degrees, we can define the pullback of ρ2 by ϕ1 as [ϕ1]∗ρ2 =
[ϕ̂1]∗ρ2. With this definition it is easy to see that ϕ2 = [ϕ1]∗[ϕ1]∗ϕ2.

For simplicity, when the isogenies have not been defined we will implicitly
write [I]∗J for the ideal I[ϕJ ]∗ϕI

corresponding to the pushforward of ϕJ by ϕI .
The same holds for [I]∗J . With this convention, we extend the terms pushforward
and pullback to ideals.

4.2 The Endomorphism Ring O

The next proposition states that the image through ϕ of the endomorphism
corresponding to any element in O ⊂ O0 (which is neither in I nor in Ī) is an
endomorphism of E.
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Proposition 2. Let β ∈ O0 of norm coprime with N , then [O0β]∗I = I if and
only if β ∈ O� (I ∪I). In particular, [I]∗O0β is a principal O-ideal equal to Oβ.

Said otherwise, the endomorphisms in O�(I∪I) leave ϕI stable. Equivalently,
the endomorphisms of O remain endomorphisms after being pushed forward by
ϕI , and thus belong to both End(E0) and End(E).

From Proposition 2, we deduce the following result which will underlie Algo-
rithm3; it is a reformulation using the map χ of Lemma 1.

Corollary 1. Let J1, J2 be O0-ideals, with J1 ∼ J2 and gcd(n(J1)n(J2), n(I)) =
1. Suppose that J1 = χJ2(β) with β ∈ J2 ∩O. Then [I]∗J1 ∼ [I]∗J2 and [I]∗J1 =
χ[I]∗J2(β).

4.3 Ideal Class Sets of Eichler Orders

In this section, we write again O = O0 ∩ O. We write I for the ideal connecting
O0 and O and we assume in this section that its norm N is prime.

Class sets of ideals play an important role through the Deuring correspon-
dence. When O is a maximal order we can put Cl(O) in bijection with the set of
supersingular curves (see Table 1). This motivates studying Eichler orders, and
indeed isogeny graphs were first constructed through class sets of quaternion
orders by [27], and only later reinterpreted as isogeny graphs in [6]. Eichler [16]
proved a formula for the class number h(O) = |Cl(O)|. When N is prime it gives

h(O) =
(p + 1)(N + 1)

12
+ εN,p

where εN,p is a small value depending on N and p modulo 12. This, combined
with h(O0) = p/12+εp, (εp depends on the value p mod 12) suggests that there
is a (N + 1)-to-1 correspondence between Cl(O) and Cl(O0), which we are now
going to exhibit.

Let us write IN (O) for the set of left integral O-ideals of norm coprime to N
for any order O. We start by showing a connection between IN (O0) and IN (O).

Lemma 3. The map

Ψ : IN (O0) −→ IN (O)
J �−→ J ∩ O

is a well-defined bijection between the set of integral O0-ideals and O-ideals of
norm coprime with N . Its inverse is given by : Ψ−1 : J �→ O0J.

From the fact that any ideal class of Cl(O) or Cl(O0) has a representative of
norm coprime with N , we can easily identify the equivalence classes of IN (O0)
and IN (O) to the ones of O0 and O respectively.

The bijection of Lemma 3 suggests defining the following equivalence relation
∼O on left O0-ideals of norm coprime with N . We say that J ∼O K if and only
if Ψ(J) ∼ Ψ(K) as O-ideals (here ∼ is the classical equivalence relation between
ideals having the same left order). The bijection Ψ transports the structure of
∼ to ∼O and this implies that we have defined an equivalence relation.
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Definition 1. We write ClO(O0) for the set of equivalence classes of IN (O0)
under ∼O.

From the definition, we have that ClO(O0) is in bijection with Cl(O) through Ψ.
In the next proposition we show that we can obtain an explicit correspondence
between ideals of norm N and ClO(O0) using pushforward ideals.

Proposition 3. J ∼O K if and only if there exists β ∈ O such that K = χJ(β)
and β−1[K]∗Iβ = [J ]∗I.

An interesting question is how the new equivalence relation ∼O relates to the
classical one ∼. In fact, ∼O is compatible with ∼ in the sense that J ∼O K
implies J ∼ K, as is easily verified from Corollary 1. This suggests partition-
ing ClO(O0) in subsets indexed by the elements of Cl(O0). Hence, we write
ClO(O0) =

⋃
C∈Cl(O0)

ClO(C) where ClO(C) is the set of classes in ClO(O0)
contained in C. The respective sizes of Cl(O0) and Cl(O) suggest that the parti-
tion above provides an (N +1)-to-1 correspondence between Cl(O0) and Cl(O).
This correspondence only fails for a small number of classes, as the following
proposition shows.

Proposition 4. For C ∈ Cl(O0), let us take L ∈ C and define OC := OR(L).
If O×

C = 〈±1〉, then for any γ ∈ L � NO0 and quadratic order S = Z[ωs] of
discriminant ΔS inside O0 in which N is inert, the map:

Θ : P
1(Z/NZ) −→ ClO(C)

(C : D) �−→ χL((C + ωsD)γ)

is a bijection. In particular, |ClO(C)| = N + 1.

5 New Generalized KLPT Algorithm

We introduce in this section a new algorithm to perform the computation of the
response in our identification protocol. We aim at solving the issues raised in
Subsect. 3.3 with the original KLPT algorithm [22].

The existence of the suborder O = Z〈ω, j〉 = R + Rj introduced in Sub-
sect. 2.2 is what makes special extremal orders good candidates for applying the
KLPT algorithm. Here, R = Z[ω] is a quadratic order of small discriminant gen-
erated by ω, an element of small norm. The norm equation f(x, y) = M over R
has a good probability of being solvable for any M and as a consequence, solving
norm equations over O is easy.

To extend the KLPT algorithm to arbitrary orders, our approach is to find
an appropriate Eichler suborder in which we know how to solve norm equations.
More precisely, let us take O0 a special extremal order and O an arbitrary
maximal order, our goal is to extend the KLPT algorithm to left O-ideals. Then,
the Eichler order O = O ∩ O0 is a suborder of O0, thus we can apply the
techniques developed in [22] for special extremal orders.
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5.1 The Generic Algorithm

We now use our observations of Sect. 4 to design a new GeneralizedKLPT algo-
rithm. As already mentioned, there are several possible variants of this algorithm
depending on the kind of norm we need to obtain. For simplicity, we present the
case �• where we look for an equivalent ideal of norm �e. Any other variant is
easily derived from this.

For the rest of this paper, let O0 and O be two maximal orders, with O0

being special extremal. These maximal orders are respectively isomorphic to the
endomorphism rings of two supersingular curves E0 and E. From now on, we
write Iτ (instead of I in the previous section) for the ideal connecting O0 with
O, and we denote its norm by Nτ . This notation is motivated by the fact that,
in the signature context, Iτ will be the ideal corresponding to the secret isogeny
τ of degree Nτ . Up to replacing O with an isomorphic representative, we can
assume that Nτ is prime and inert in R (we explain in Subsect. 6.2, the reasons
behind this last condition). We consider the Eichler order O = O ∩ O0 of level
Nτ .

Let I be a left integral O-ideal, given as input. Our purpose is to find e ∈ N

and J ∼ I of norm �e upon input I. As a consequence of Lemma 1, this problem
is equivalent to finding β ∈ I of norm n(I)�e and setting J = χI(β). From
Corollary 1, we see that if β ∈ I ∩ O we have [Iτ ]∗J = χ[Iτ ]∗I(β). In particular,
β ∈ O ∩ [Iτ ]∗I and so we can search for β inside ([Iτ ]∗I) ∩ O instead. The
ideal K ′ := [Iτ ]∗I is a left O0-ideal and this is a situation close to KLPT�• .
The fact that we look for a solution inside K ′ ∩O instead of just K ′ will add an
additional constraint. Proposition 1 allows us to write O = Z+Iτ , and intuitively
this decomposition tells us that the algorithm for integral ideals used in [22] will
be applicable to Eichler orders with small changes.

This suggests the method detailed in Algorithm 2, which can be seen as an
adaptation of the KLPT�• algorithm (Algorithm 1), replacing the input I by
I ∩O. In KLPT�• we satisfy the constraint that the desired element is in I using
the sub-algorithm IdealModConstraint. We proceed similarly in Step 4 to ensure
that the solution is in O as well. Combining the two constraints ensures that
the solution is in their intersection. An algorithm to perform Step 4 will be
described in Subsect. 6.2; its description is not needed to convey the principle of
Algorithm 2. We omit the extension of StrongApproximation to the case where N
is not prime; the interested reader will find it in the extended paper [13].

Lemma 4. Algorithm2 is correct and returns J ∼ I of norm �e.

Proof. We assume here that the algorithm terminates without failure and do
not consider its complexity for now. First, Lemma 1 and the conservation of the
norm through pushforward ideals shows that J has norm �e. Then Corollary 1
applied to χL(β) = χK′

(
βδ

n(L)

)
implies that [Iτ ]∗χL(β) ∼ [Iτ ]∗K since βδ ∈ O.

This proves J ∼ I.

Remark 6. As pointed out in Remark 3, KLPT is essentially deterministic when
one looks for the smallest possible solution with this method. Given that the
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only major difference in Algorithm 2 is the additional Step 4 (for which there is
only one solution as we will see in Subsect. 6.2) it is not difficult to argue that
Algorithm 2 can be made deterministic.

Algorithm 2. GeneralizedKLPT�•(I, Iτ )
Require: I, a left O-ideal, and Iτ , a left O0-ideal and right O-ideal of norm Nτ .
Ensure: J ∼ I of norm �e.
1: Compute K′ = [Iτ ]∗I and set L = EquivalentPrimeIdeal(K′), L = χK′(δ) for δ ∈ K′

with N = n(L).
2: Compute γ = RepresentIntegerO0

(N�e0).
3: Compute (C0 : D0) = IdealModConstraint(L, γ).
4: Find (C1 : D1) ∈ P

1(Z/Nτ Z) such that γj(C1 + ωD1)δ ∈ Z + Iτ .
5: Compute C = CRTNτ ,N (C0, C1) and D = CRTNτ ,N (D0, D1).
6: Compute μ = StrongApproximation�•(NNτ , C, D) of norm �e1

7: Set β = γμ and e = e0 + e1 such that n(β) = N�e.
8: return J = [Iτ ]∗χL(β).

5.2 On the Length of the Solution

The length of the output of Algorithm2 can be derived from the one of KLPT�• .
Indeed, in terms of norm, the only real difference is the fact that the Strong-
Approximation is performed on NNτ instead of just N . From the analysis pro-
vided in [22] and [25], we see that this implies e = e0 + e1 ∼ 9

2 log�(p) (instead
of e ∼ 3 log�(p) for KLPT�•). This estimate is obtained by considering the plau-
sible approximation Nτ ∼ √

p. We will argue in Subsect. 7.1 that it might be
acceptable to consider cases where Nτ is significantly smaller than this aver-
age estimate. This allows us to decrease the size of the solution. We give in
Subsect. 6.3 a more proper statement for the approximations introduced above.

In our signature scheme, we will use a variant of Algorithm2, called Signing-
KLPT, suited for our application. The purpose of Sect. 6 is to detail this algorithm
and to fill in the gaps left in the description of Algorithm2.

6 Application to the Signature Scheme: The SigningKLPT
Algorithm

In this section, we describe the SigningKLPT procedure used in our signature
scheme. This procedure, described in Algorithm 3, is a variant of Algorithm2.
Most of its building blocks are common to Algorithm1 and were introduced in
[22]. The rest of this section fills in the remaining gaps as follows. In Subsect. 6.1,
we introduce the EquivalentRandomEichlerIdeal used in Step 1. In Subsect. 6.2,
we describe the EichlerModConstraint algorithm to perform Step 5 of Algorithm 3
(or Step 44 in Algorithm 2). The parameter e is fixed (and it only depends on



SQISign: Compact Post-quantum Signatures 77

p). To ensure this, we will need to adapt the exponent e0 and e1 to the values
N = n(L) and Nτ . That is why we will write e0(N). In Subsect. 6.3 we justify
that this is possible. We establish the termination, correctness and complexity
of our algorithm in Subsect. 6.4.

Algorithm 3. SigningKLPT(I, Iτ )
Require: Iτ a left O0-ideal and right O-ideal of norm Nτ , and I, a left O-ideal.
Ensure: J ∼ I of norm �e, where e is fixed.
1: Compute K = EquivalentRandomEichlerIdeal(I, Nτ )
2: Compute K′ = [Iτ ]∗K and set L = EquivalentPrimeIdeal(K′), L = χK′(δ) for

δ ∈ K′ with N = n(L). Set e0 = e0(N) and e1 = e − e0.
3: Compute γ = RepresentIntegerO0

(N�e0).
4: Compute (C0 : D0) = IdealModConstraint(L, γ).
5: Compute (C1 : D1) = EichlerModConstraint(Z + Iτ , γ, δ).
6: Compute C = CRTNτ ,N (C0, C1) and D = CRTNτ ,N (D0, D1). If �ep(C2 + D2) is

not a quadratic residue, go back to Step 3.
7: Compute μ = StrongApproximation�•(NNτ , C, D) of norm �e1

8: Set β = γμ.
9: return J = [Iτ ]∗χL(β).

6.1 The Randomization Procedure

The purpose of Step 1 is to perform a randomization step which we will use
to argue the security of our signature. This addition has two interesting conse-
quences for us. First, the output of Algorithm3 only depends on the equivalence
class of the input I. Second, it randomizes the execution as otherwise the algo-
rithm would be essentially deterministic as noted in Remark 6.

The EquivalentRandomEichlerIdeal algorithm receives an ideal I as input and
returns an equivalent random ideal. In this context equivalent random ideal
means that if we write C the class of I in Cl(O), we want an output ideal
equivalent to I and lying in a uniformly random class of ClO(C) (see Definition 1).
This condition might seem a bit arbitrary at first; however Proposition 5 will
justify that this is exactly the kind of randomness we need.

To reach this goal, we use the classical technique of finding some well-chosen
β ∈ I and output χI(β). The method to choose the β is inspired by the results of
Subsect. 4.3. The idea is to use the bijection from Proposition 4 in order to sample
a class uniformly. Note that Proposition 4 does not hold for some special cases
of maximal orders O, but we may assume that this is not the case here (in the
worst case there are two such types of maximal orders among O(p) possibilities).

We start by showing that Algorithm 4 terminates and that the output distri-
bution is correct.

Lemma 5. Algorithm4 terminates in polynomial time and outputs an ideal
equivalent to I and uniformly distributed among the Nτ + 1 possible classes of
ClO(O).
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Algorithm 4. EquivalentRandomEichlerIdeal(I,Nτ )
Require: I a left O-ideal.
Ensure: K ∼ I of norm coprime with Nτ .
1: Sample a random element ωS in O until Nτ is inert in Z[ωS ].
2: Sample γ a random element in I such that n(γ)/n(I) is coprime with Nτ .
3: Select a random class (C : D) ∈ P

1(Z/Nτ Z).
4: Set β = (C + ωSD)γ.
5: return K = χI(β)

Proof. We can find in O(log(p)) attempts a quadratic suborder Z[ωS ] ⊂ O in
which Nτ is inert. Then, it is clear that taking a random element in I will verify
that n(γ)/n(I) is coprime with Nτ with overwhelming probability. Thus, the
algorithm terminates in polynomial time.

The algorithm concretely instantiates the map Θ from Proposition 4. This
map is bijective and we choose (C : D) uniformly at random inside P

1(Z/NτZ)
so the output is uniformly distributed.

Consequently, the output of EquivalentRandomEichlerIdeal only depends on the
class (inside Cl(O)) of the ideal in input. The call to EquivalentRandomEichler-
Ideal in Step 1 of Algorithm 3 thus implies the following lemma that will prove
useful in Sect. 7.

Lemma 6. For any Iτ , the output distributions of SigningKLPT(I, Iτ ) and
SigningKLPT(J, Iτ ) are the same for any I ∼ J . Said otherwise, for fixed Iτ ,
the output distribution of Algorithm3 only depends on the equivalence class of
the ideal I in input.

Next, we describe how the distribution of L (as defined in Step 2 of
Algorithm 3) is determined by the output distribution of EquivalentRandom
EichlerIdeal. This is what motivates the current formulation of Algorithm4.

Proposition 5. The set GI = {L,L = EquivalentPrimeIdeal([Iτ ]∗K) for K ∼ I}
has size at most Nτ + 1 and for every L ∈ GI there exists an output K =
EquivalentRandomEichlerIdeal(I) such that L = EquivalentPrimeIdeal([Iτ ]∗K).
When #GI = Nτ + 1, the ideal L is uniformly distributed inside this set.

Proof. As we mentioned already, there are exactly Nτ + 1 classes for K ∼ I in
ClO(O). By Corollary 11, the class of K in ClO(O) uniquely determines the class
of [Iτ ]∗K in Cl(O0). As noted in Subsect. 2.2, the output of EquivalentPrimeIdeal
is well-defined and deterministic on Cl(O0). The result is proved if we combine
the above remark with Lemma 5.

1 Corollary 1 uses pushforwards rather than pullbacks, but we obtain the desired result
by replacing I with I.
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6.2 Eichler Modular Constraint

Step 5 in Algorithm 3 (or Step 4 of Algorithm 2) is essential to find a solution
that lies in O = O ∩ O0. More precisely for given γ, δ of norm coprime with Nτ

we need to find μ1 ∈ jR such that γμ1δ ∈ O. In fact, this can be done for any
γ, δ of norm coprime with Nτ . This is stated and proved in Proposition 6 below,
following a reasoning similar to the one used in [22] for IdealModConstraint.

The method of resolution is also strongly inspired by IdealModConstraint.
Namely, we use an explicit isomorphism O0/NτO0

∼= M2(Z/NτZ) and a cor-
respondence between the set of proper nonzero left ideals in M2(Z/NτZ) and
P

1(Z/NτZ) to translate the condition γμ1δ ∈ Z + Iτ as a system of linear
equations mod Nτ . We write EichlerModConstraint(O, γ, δ) for this. It outputs
(C1 : D1) ∈ P

1(Z/NτZ) such that γj(C1 + ωD1)δ ∈ O.
We remind the reader that we consider Nτ inert in R (where R is defined, like

in Subsect. 2.2, as the quadratic suborder of minimal discriminant inside O0).
If Nτ is split, the method is very likely to work as well but there may be some
cases where it fails. Since the constraint that Nτ is inert in R is quite easy to
satisfy (see Subsect. 8.3) we may assume that it holds.

Proposition 6. The sub-routine EichlerModConstraint on any input O, γ, δ
returns (C1 : D1) ∈ P

1(Z/NτZ) such that γμδ ∈ O with μ = (C1 + ωD1)j.

Proof. In Algorithm 3, we want to find μ such that β = γμ verifies βδ ∈ O to
ensure that [Iτ ]∗χL(β) ∼ I. In Subsect. 4.3, we showed that this was equivalent
to χL(β) lying in the correct equivalence class of Cl(O). To prove that a solution
can always be found it suffices to show that the map Θ′ : P

1(Z/NτZ) → Cl(O)
sending (C : D) to γ(C + ωD) is surjective. In fact, this map is almost the one
from Proposition 4 and is bijective (thus surjective) for the same reasons.

Hence we see that there always exists a solution μ such that χL(γμ) lies in
the correct class in ClO(O0) ≡ Cl(O) and this proves the result.

We deduce a useful corollary, which shows that EichlerModConstraint is indepen-
dent of the choice of δ.

Corollary 2. Taking δ, δ′ as above, for any given γ ∈ O0 of norm coprime with
Nτ , EichlerModConstraint(O, γ, δ) = EichlerModConstraint(O, γ, δ′).

Proof. In the proof of Proposition 6, we showed that the map (C1 : D1) →
γj(C1 +ωD1) is injective for any γ of norm coprime with Nτ . This justifies that
there is only one solution in P

1(Z/NτZ) giving a β lying in the correct class
inside L/ ∼O (and thus with χL(β) in the correct class of ClO(O0)). Hence,
EichlerModConstraint(O, γ, δ) and EichlerModConstraint(O, γ, δ′) are both equal
to this unique solution.

6.3 Suitable Values for e0 and e1

For security (specifically zero-knowledge) it is important that our output has
fixed norm so that the size of the output does not reveal any information on the
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input. In this section, we justify that it is possible to find a parameter e such
that finding an output of exact size �e is possible for almost every input. The
exponent e is the sum of two exponents e0(N) and e1(N,Nτ ) whose individual
values depend on N and Nτ but whose sum can be fixed. In fact, we will pick e
following the approximations of [22] presented in Subsect. 5.2 as they appear to
be quite tight in practice. To simplify notations we write log instead of log� in the
rest of this section. Let us refine the statements of Subsect. 5.2. For KLPT, the
most important parameter is the size of N . We state in Lemma 7 that N cannot
be a lot bigger than

√
p. This result holds under an assumption on the norms

of elements in a Minkowski basis of an integral ideal, and heuristic assumptions
on the distribution of primes represented by some quadratic forms (see [22]).
We stress that this approximation is quite tight in practice as illustrated in the
experimental results of [22] and it seems to hold by taking ε = log log(p).

Lemma 7. There exists ε = O(log log(p)) such that for a random class C ∈
Cl(O0), the norm N of EquivalentPrimeIdeal(C) verifies log(N) < log(p)/2 + ε
with overwhelming probability.

This approximation is valid for both N and Nτ , and we will assume that it holds
for both values for the rest of this section. As we will not be able to provide a tight
lower bound on log(N), log(Nτ ), we need to adjust the exponents e0 and e1 and
that is why we write e0(N) and e1(N,Nτ ) for the lower bounds of Lemmas 8
and 9. We recall our assumption that the failure probability in the quadratic
residuosity condition of Step 6 is 3/4 on average for a given γ and δ.

In Lemmas 8 and 9, we assume that we are in an execution of Algorithm 3
that led to an ideal L of norm N . We keep the notation ε from Lemma 7.

Lemma 8. For any κ ∈ N, there exists η0 = O(log log(p) + log(κ)) such that
for any e0 ≥ e0(N) = log(p) − log(N) + ε + η0, the probability that there exists
a solution γ = RepresentIntegerO0

(N�e0) that will lead to a correct execution of
Algorithm3 is higher than 1 − 2−κ.

Remark 7. We note that taking κ ∼ log(p) ensures that the success probability
in Lemma 8 is overwhelming. In the case of (very unlikely) failure where one of
the assumptions above does not hold, we simply abort and start the computation
again.

We conclude this section by evaluating the size of the exponent e1 in the
output of StrongApproximation. The algorithm for StrongApproximation(N, ·) in
[25] computes close vectors in some lattice of discriminant Õ(N3p).

Lemma 9. There exists η1 = O(log log(p)) such that if e1 ≥ e1(N,Nτ ) log p +
3 log(N) + 3 log(Nτ ) + η1, Step 7 of Algorithm3 succeeds in finding a solution μ
of norm �e1 with overwhelming probability.

6.4 Termination, Correctness and Complexity

We are now ready to state the following proposition. As noted in Remark 7, we
take κ ∼ log(p) for Lemma 8.
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Proposition 7. Algorithm 3 terminates in heuristic probabilistic polynomial
time. It returns an ideal J ∼ I of fixed norm �e for any input I with over-
whelming probability if e ≥ 9/2 log(p) + 6ε + η0 + η1 where ε, η0, η1 are defined
as in Lemma 7 to 9.

Proof. The proof of correctness follows almost directly from Lemma 4, replacing
I by an equivalent K. Since the correctness of Algorithm 2 holds for any input
and K ∼ I, we see that Algorithm 3 is correct. Combining Lemmas 8 and 9
we see that we need to pick e0, e1 above the bounds e0(N), e1(N,Nτ ) for the
computation to succeed with overwhelming probability. We obtain e0 + e1 ≥
2 log(p)+2 log(N)+3 log(Nτ )+η0 +η1 + ε. Taking the upper bound of Lemma7
for both N and Nτ we obtain e ≥ 9/2 log(p) + 6ε + η0 + η1. Given that the
probability of failure is 3/4, the number of different values γ that we need to
choose before finding a fitting choice is logarithmic in p. This proves termination.
The complexity statement follows directly from the heuristic polynomial-time
complexities argued in [22]. From the description in Subsect. 6.2, it is clear that
the complexity of EichlerModConstraint is the same as IdealModConstraint and it
is also polynomial in log(p).

7 Zero-Knowledge

In Sect. 3 we left open the question of proving zero-knowledge of the identification
scheme, and consequently unforgeability of the signature scheme. Unlike other
identification schemes based on isogenies [3,12], SQISign does not achieve perfect
zero-knowledge, but necessitates an ad hoc computational assumption instead.
As usual, we need to prove that there exists a simulator that outputs transcripts
indistinguishable from real interactions between prover and verifier, and it is
easy to see that this boils down to proving that the distribution of the response
isogenies σ for a given secret τ can be simulated without knowledge of τ . Of
course, the distribution of σ depends on the variant of KLPT employed, and
we already argued in Subsect. 3.3 that the variants known prior to this work
provide no security at all. In this section we shall state the security assumption
and sketch the associated security reduction for algorithm SigningKLPT. Due to
space constraints all proofs are omitted here; they can be found in [13].

7.1 On the Distribution of Signatures

We want to understand the distribution of the isogenies σ obtained from J =
SigningKLPT(I, Iτ ) for some secret τ . It turns out any such σ is the image under
τ of some other isogeny ι, whose properties are precisely stated in the following
lemma.

Lemma 10. Let L ⊂ O and β ∈ L be as in Steps 2, 8 respectively of Algorithm
3. The isogeny σ corresponding to the output J of Algorithm 3 is equal to σ =
[τ ]∗ι, where ι is an isogeny of degree �e verifying β = ι̂ ◦ ϕL.
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We will argue that there exists a set PNτ
, depending only on the degree Nτ ,

such that ι ∈ PNτ
if and only if σ = [τ ]∗ι for some output σ of Algorithm

3. L ⊂ O being defined as in Lemma 10, it is clear that the codomain of ι
is determined by the class of L in Cl(O0). Suppose we have chosen a class
for L among the Nτ + 1 candidates, we want to determine how the rest of the
computation follows from this initial choice. During Step 3 we compute a value γ,
and it is clear that N = n(L) uniquely determines the distribution of outputs for
RepresentIntegerO0

(N�e0(N)). Then, the projective pair (C0 : D0) only depends
on L and γ. We have proved in Corollary 2 that the projective pair (C1 : D1)
did not depend on the actual value of δ, so it is also uniquely determined by
the choice of class for K (and thus of L) and γ. The rest of the computation
is deterministic from there (up to failures that imply picking another γ). We
are now ready to characterize the set of all possible outputs of our algorithm
SigningKLPT.

Let us take the value e0(N) and e1(N,Nτ ) as defined in Subsect. 6.3 for Algo-
rithm 3. For a given L of norm N , we consider UL,Nτ

as the set of all isogenies ι
computed as in Lemma 10 from elements β = γμ ∈ L where γ is a random output
of RepresentIntegerO0

(N�e0(N)) and μ = (C + ωD)j where p(C2 + D2)�e1(N,Nτ )

is a quadratic residue modNNτ and is defined as C = CRTN,Nτ
(C0, C1), D =

CRTN,Nτ
(D0,D1) where (C0 : D0) = IdealModConstraint(L, γ) and (C1 : D1) is

a random element of P
1(Z/NτZ). For an equivalence class C in Cl(O0) we write

UC,Nτ
for UL,Nτ

where L = EquivalentPrimeIdeal(C).

Definition 2. PNτ
=

⋃
C∈Cl(O0)

UC,Nτ

Proposition 8. The set PNτ
from Definition 2 can be computed from the sole

knowledge of Nτ . The set {J, J = [Iτ ]∗Iι, ι ∈ PNτ
} is exactly the set of outputs

SigningKLPT(I, Iτ ) for I ranging over all the non-trivial classes in Cl(O).

7.2 Hardness Assumption for Zero-Knowledge

We are now ready to formulate a computational assumption which zero-
knowledge reduces to. For D ∈ N and a supersingular curve E, we define
IsoD,j(E) as the set of cyclic isogenies of degree D, whose domain is a curve inside
the isomorphism class of E. When P is a subset of IsoD,j(E) and τ : E → E′ is
an isogeny with gcd(deg τ,D) = 1, we write [τ ]∗ P for the subset {[τ ]∗ φ | φ ∈ P}
of IsoD,j(E′). Finally, we denote by K a probability distribution on the set of
cyclic isogenies whose domain is E0, representing the distribution of SQISign
private keys.

Problem 2. Let p be a prime, and D a smooth integer. Let τ : E0 → EA be a
random isogeny drawn from K, and let Nτ be its degree. Let PNτ

⊂ IsoD,j0 as
in Definition 2, and let Oτ be an oracle sampling random elements in [τ ]∗PNτ

.
Let σ : EA → � of degree D where either

1. σ is uniformly random in IsoD,j(EA);
2. σ is uniformly random in [τ ]∗ PNτ

.
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The problem is, given p,D,K, EA, σ, to distinguish between the two cases with
a polynomial number of queries to Oτ .

We assume that Problem 2 cannot be solved with non-negligible advantage
by any polynomial time adversary. In [13] we briefly discuss several potential
attack strategies; however, given current knowledge, no strategy seems to be
better than a direct key recovery, computing τ from the knowledge of EA only.

In order to state the security reduction, we also need some additional heuristic
assumptions which are plausibly true.

Assumption 1. Under the heuristic assumptions used in Subsect. 6.3, we can
fix a given degree D = �e with e depending only on p, such that Algorithm
3 succeeds in finding an output of norm D for any input with overwhelming
probability.

Assumption 2. The distribution of classes obtained by taking the classes of the
ideals Iι corresponding to ι ∈ PNτ

is statistically close to the uniform distribution
on ClO(O0).

We can finally state the main result of this section.

Proposition 9. Let EA be a SQISign public key. When SQISign is instantiated
with Algorithm 3, distinguishing between the distribution D(EA) of isogenies σ
output by SQISign, and the uniform distribution of D-isogenies starting from
EA, reduces to Problem 2, under the heuristic assumptions listed above.

8 Efficiency

In this section, we describe a concrete instantiation of our scheme. This includes
a precise description of the protocols outlined in Subsect. 3.1, along with all the
missing sub-algorithms, concrete parameters and various ideas to improve the
overall efficiency. The resulting signature reaches 128-bit of classical security and
the post-quantum NIST level 1 and is very compact as highlighted in Table 2.
We also provide a proof-of-concept implementation of the protocol.

The algorithm SigningKLPT was extensively studied in Sects. 5 and 6, and we
will see in Subsect. 8.6 that it is reasonably efficient. The efficiency bottleneck
of our signature scheme turns out to be the translation of the input and output
ideals of Algorithm 3 from and to isogenies. Specifically, we seek to define two
families of algorithms:

– IdealToIsogeny: Given a left O-ideal I of smooth norm D, compute the corre-
sponding isogeny ϕI as a sequence of prime-degree isogenies.

– IsogenyToIdeal: Given an isogeny from E of smooth degree D, compute the
corresponding left O-ideal.

Algorithms for these tasks in the case where O and E are special extremal were
already introduced in [19]. They are very general, but not really efficient, owing
to their use of D-torsion points defined in algebraic extensions of Fp2 . A classical
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solution would be to choose a special prime p such that the D-torsion is Fp2 -
rational. However in our case D is a power of 2 and, following the estimates
of Subsect. 5.2, we need D ≈ p9/2 (or at best D ≈ p15/4 using the idea of
Subsect. 8.3). With these requirements finding such a prime is not feasible, we
thus devise new solutions to the two problems.

This section is organized as follows. We first present our version of IdealTo-
Isogeny in Subsect. 8.1. We then introduce a set of concrete parameters in Sub-
sect. 8.2, and we analyze two possible key spaces in Subsect. 8.3. Following up,
we give a detailed description of our identification scheme in Subsect. 8.4. Size
and time performances of the resulting signature scheme are presented in Sub-
sect. 8.6.

8.1 Translating Ideals to Isogenies

Let I be a left O0-ideal of smooth norm D where O0 is a special extremal
maximal order, and let E0 be a curve such that O0 is isomorphic to End(E0). In
this section we assume that we know an explicit representation of O0, meaning
that we know an explicit isomorphism between End(E0) and O0, allowing us
to efficiently evaluate endomorphisms of E0. We want to find the isogeny ϕI

of degree D and domain E0 corresponding to I. We will describe ϕI as the
composition of several prime degree isogenies represented by their kernels. Most
of the ideas presented in this section are adaptations of algorithms introduced in
[17,19]; below we first recall these algorithms then describe our improvements.
Algorithm in [17]. As each primary factor of D can be treated separately let
us for simplicity assume that D = �e. The idea is to divide ϕI into g isogenies of
smaller degrees �f where the �f -torsion is defined over a reasonably small field
extension. Following [17], to write ϕI = ϕg ◦ . . . ϕ2 ◦ϕ1 under the ideal filtration
I = I1 · I2 · · · Ig, we need an explicit representation of Oi = OR(Ii) in order
to compute the action of End(Ei) on Ei[�f ], where Ei is the codomain of ϕi.
A formula is introduced in [17] providing such a representation from an ideal
connecting Oi to O0 (equivalently an isogeny connecting Ei with E0). However
this formula involves division by the norm Ni of this ideal. In particular if ei is
the �-adic valuation of Ni, we would need to compute the �f+ei-torsion points.
It thus appears that having Ni coprime to � is essential for efficiency. We will
therefore not be able to use I1 · · · Ii as the connecting ideal, but we will instead
use an equivalent ideal Ji of coprime degree. Fortunately, this can be found with
KLPT. This idea underlies all the algorithms introduced in this section.

The discussion above motivates the introduction of a smooth integer T rep-
resenting the torsion coprime with � that is accessible (i.e., defined over small
extensions of Fp2), we refer to Subsect. 8.2 for concrete parameters illustrating
what we mean by “accessible” and “small”. Ideally, we would like to have Ji

of norm dividing T (obtained by execution of the variant KLPTT ) so that the
translations into the corresponding isogenies are efficient. However, once again
we are hindered by the size of KLPT’s outputs, which have norm around p3. We
now describe two tricks to reduce the torsion requirements.
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Computing Half of the Isogeny from the Image Curve. Let us assume
that our ideal corresponds to ψ : E1 → E2 where ψ has degree D1D2 (with D1

and D2 not necessarily coprime). Instead of trying to express ψ from E1 and
using the E1[D1D2] torsion, we can try and split ψ as ψ̂2◦ψ1 where deg ψi = Di,
i = 1, 2. We compute ψ1 from E1[D1] and ψ2 from E2[D2]. We apply this idea in
Algorithm 5 to translate an ideal of norm dividing T 2 (instead of T previously)
to the corresponding isogeny. This means we now only need T ∼ p

3
2 instead of

T ∼ p3. We will see in Subsect. 8.2 that this is indeed possible.

Meet-in-the-Middle. Let us now assume that D = D1D2D
′, where D′ is a

reasonably small integer (in our application, D, D1, D2, D′ are all �-powers).
We can write an isogeny ψ of degree D as ψ̂2 ◦ θ ◦ ψ1 where deg ψ1 = D1,
deg θ = D′ and deg ψ2 = D2. The two isogenies ψ1, ψ̂2 can be computed using
E1[D1] and E2[D2] as before. Writing E3 and E4 for their codomains we know
that there is θ : E3 → E4 of degree D′. If D′ is small and smooth, a meet-
in-the-middle search allows us to recover θ efficiently. This idea, combined with
that of Subsect. 8.1, underlies Algorithm 6 IdealToIsogeny�2f+Δ , that is illustrated
in Fig. 2. In our implementation, this trick decreases the number of T -isogeny
computations, which currently are the efficiency bottleneck.

E0 E1

E3

E2

E4

E5

E6 θ

ϕ2

ϕ1

ϕK

ϕJ

ψ2

η

ρ2

ψ1

ψ′
1

smooth (coprime with 	) isogenies

	•-isogenies

meet-in-the-middle isogenies

Fig. 2. Graphical representation of the ideal to isogeny translation of Algorithm 6

Ideal to Isogeny: Our Optimized Solution. We are now ready to present the
algorithm IdealToIsogeny�• used in our implementation. The algorithm translates
an O-ideal in the corresponding isogeny for any maximal order O. It requires K a
left O0-ideal and right O-ideal of degree �• along with the corresponding isogeny
ϕK : E0 → E where O ∼= End(E). As before we write �f for the accessible
�•-torsion and T for the accessible smooth torsion coprime to �. We write Δ for
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a meet-in-the-middle parameter �Δ = D′ (see Subsect. 8.1). The algorithm uses
the following subroutines.

– SpecialIdealToIsogeny(J, I, ϕI): described in Algorithm 5, it takes I, J two left
O0-ideals of norm n(I) = �• and n(J) dividing T 2 along with the isogeny
ϕI : E0 → E and outputs ϕJ .

– IdealToIsogeny�2f+Δ(I, J,K, ϕJ , ϕK): described in Algorithm 6, it takes I a left
O0-ideal of norm dividing T 2�2f+Δ, J containing I of norm dividing T 2 and
K ∼ J of norm �• along with ϕJ , ϕK and outputs ϕ of degree �2f+Δ such
that ϕI = ϕ ◦ ϕJ .

The algorithm IdealToIsogeny�•(I,K, ϕK) is described in Algorithm 7. Note that
we do not provide any proof of correctness and termination for Algorithms 55
to 7. This is because these algorithms already existed in essence in [17,19] and
were only improved with the ideas of Subsect. 8.1 and Subsect. 8.1 for efficiency.

Algorithm 5. SpecialIdealToIsogeny(J, I, ϕI)
Require: Two equivalent left ideals I, J of O0, with J of norm dividing T 2 and I of

norm �•, and the corresponding isogeny ϕI : E0 → E.
Ensure: ϕJ .
1: H1 ← J + TO0.
2: Let α ∈ I such that J = χI(α).
3: H2 ← 〈α, (n(J)/n(H1))〉.
4: ϕHi ← IdealToIsogenyT (Hi) : E0 → Ei.
5: Let ψ : E → E/ϕI(ker ϕH2) = E1.
6: return ψ̂ ◦ ϕH1 .

8.2 Choosing the Parameters

We discuss now the choice of the parameters and most importantly the prime
p that we will use. As mentioned above, we need a prime p such that the T�f -
torsion is accessible for T � p3/2 and f is as big as possible. Recall that by
“accessible” we generally mean that the full T�f -torsion subgroup is defined
over a small extension of Fp2 . We can strengthen this by asking that T�f |
(p2 − 1), which implies that the full T�f -torsion is generated by four points with
x-coordinates in Fp2 , or equivalently by two Fp2 -rational points on the curve
with Frobenius trace −2p and two other Fp2 -rational points on its twist. Similar
primes were recently considered for use in B-SIDH [7], an adaptation of SIDH
with smaller (uncompressed) public keys.
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Algorithm 6. IdealToIsogeny�2f+Δ(I, J,K, ϕJ , ϕK)
Require: I a left O0-ideal of norm dividing T 2�2f+Δ, an O0-ideal in J containing I

of norm dividing T 2, and an ideal K ∼ J of norm a power of �, as well as ϕJ and
ϕK .

Ensure: ϕ = ϕ2 ◦ θ ◦ ϕ1 : E1 → E2 of degree �2f+Δ such that ϕI = ϕ ◦ ϕJ , L ∼ I of
norm dividing T 2 and ϕL.

0: Write ϕJ , ϕK : E0 → E1.
1: Let I1 = I + �fO0.
2: Let ϕ′

1 = IdealToIsogeny�f (I1).
3: Let ϕ1 = [ϕJ ]∗ϕ′

1 : E1 → E3.
4: Let L = KLPTT (I).
5: Let α ∈ K such that J = χK(α).
6: Let β ∈ I such that L = χI(β).
7: Let γ = βα/n(J). We have γ ∈ K, γ̄ ∈ L, and n(γ) = T 2�2f+Δn(K).
8: Let H1 = 〈γ, n(K)�fT 〉. We have ϕH1 = ψ1 ◦ ϕ1 ◦ ϕK : E0 → E5, where ψ1 has

degree T .
9: Let H2 = 〈γ, �fT 〉. We have ϕH2 = ρ2 ◦ ψ2 : E0 → E6, where ψ2 has degree T and

ϕ2 has degree �f .
10: Find η : E5 → E6 of degree �Δ with meet-in-the-middle.
11: Let ϕ2 ◦ θ = [ψ̂1]∗ρ̂2 ◦ η : E3 → E2 and ψ′

1 = [ϕ̂2 ◦ η]∗ψ̂1

12: return ϕ = ϕ2θ ◦ ϕ1, L and ψ′
1 ◦ ψ2.

Algorithm 7. IdealToIsogeny�•(I,K, ϕK)
Require: A left O-ideal I of norm a power of �, K a left O0-ideal and right O-ideal

of norm �•, the corresponding ϕK .
Ensure: ϕI .
1: Write I = In ⊂ · · · ⊂ I1 ⊂ I0 = O where n(Ii)/n(Ii−1) ≤ �2f+Δ.
2: J ← KLPTT (K).
3: ϕJ ← SpecialIdealToIsogeny(J, K, ϕK).
4: for i = 1, . . . , n do
5: ϕi, J, ϕJ ← IdealToIsogeny�2f+Δ(J · Ii, J, K, ϕJ , ϕK).
6: K ← K · Ii.
7: ϕK ← ϕi ◦ ϕK .
8: end for
9: return ϕn ◦ · · · ◦ ϕ1.

For λ bits of classical security, we need a prime of 2λ bits. In the implemen-
tation described in Subsect. 8.6, we used the 256-bits prime p such that

p + 1 = 233 · 521 · 72 · 11 · 31 · 83 · 107 · 137 · 751 · 827 · 3691 · 4019 · 6983
· 517434778561 · 26602537156291,

p − 1 = 2 · 353 · 43 · 103 · 109 · 199 · 227 · 419 · 491 · 569 · 631 · 677 · 857 · 859
· 883 · 1019 · 2713 · 4283.

This prime verifies that p2 − 1 is a multiple of 233T where T is a 395-bit 213-
smooth number. We give more details on the search for such primes in [13].
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Algorithm 7 requires numerous evaluations of T -isogenies, and this will prove
to be the bottleneck of our scheme. The recent work of [2] provided a square root
speedup to compute and evaluate an isogeny of degree d. Their method appears
to be faster than the naive method for d ≥ 100 approximately and our scheme’s
implementation also benefits from this improvement.

8.3 Defining the Key Space

For statistical security, the secret isogeny should be of degree sufficiently large,
so to ensure a nearly uniform distribution of the public key EA in the set of
supersingular curves. However, a larger degree results in a bigger output for
Algorithm 3, hence poorer performance. In this section we discuss an alternative
key sampling method which trades off statistical security for efficiency. The key
idea is to sample the degree of the secret isogeny as a secret big prime (instead
of a public smooth number). Choosing the degree not smooth thwarts meet-in-
the-middle attacks, while keeping it secret enlarges the search space. Together,
these two facts allow us to pick a degree Nτ of size log(Nτ ) = λ/2 for λ bits of
security. The key sampling method is described in Subsect. 8.4. A more detailed
security analysis can be found in the longer version [13].

This improvement produces a shorter and more efficient signature for the
same level of security, as it reduces the output size of Algorithm 3 from 9

2 log�(p)
to 15

4 log�(p). We use it for the implementations presented in Subsect. 8.6.

8.4 The Concrete Protocol

Now that we have all the preliminary algorithms, we can provide a concrete
description of our identification scheme. Let us assume that we have found a
prime p as described above in Subsect. 8.2. We recall that T ≈ p3/2 is the smooth
torsion defined over Fp2 for supersingular elliptic curves. For the challenge and
the commitment we divide T as Dc · T ′ where Dc is a λ-bit integer and T ′ a
2λ-bit integer. In the protocol presented below we decided to use D = �•.
Building τ (keygen). We use the efficiency improvement from Subsect. 8.3 hence
fix Bτ = 1

2λ. The degree Nτ is a prime number inert in R and smaller than Bτ ,
chosen uniformly at random among such numbers.

Since Nτ is a large prime number, we never compute concretely the isogeny τ
as this would be too inefficient. Instead we use the corresponding ideal Iτ . This
is enough to apply SigningKLPT but it does not give us the public key EA. For
this, we compute another isogeny τ ′ : E0 → EA of degree �•. This can be done
with KLPT. We briefly summarize the description above for keygen:

1. Select a prime Nτ ≤ Bτ that is inert in R uniformly at random.
2. Select a left O0-ideal Iτ of norm Nτ , uniformly at random among the Nτ + 1

possibilities.
3. Compute Jτ = KLPT�•(Iτ )
4. Compute τ ′ = IdealToIsogeny�•(Jτ ,O0, [1]E0) and set pk = EA the codomain

of τ ′.
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Building ψ (commitment). There are several options for building the com-
mitment (and incidentally the challenge); we present the most efficient option
here. We note that for security reasons, ψ must be as hard to recover as the
secret. This suggests taking a smooth isogeny of degree about p (here we do not
gain anything by using the same idea as in Subsect. 8.3). Given the factorization
T = Dc · T ′, we choose ψ as a random isogeny of degree T ′ from E0. With
this choice, computing the isogeny and converting it to an ideal is efficient. Let
Iψ := IsogenyToIdealT ′(ψ).
Building ϕ (challenge). The previous choice of commitment generation was
motivated by the fact that we want an efficient way to translate the challenge
into its corresponding ideal. For λ-bit soundness security we need a challenge
space of size 2λ = O(

√
p), so the challenge isogeny needs to be of degree O(

√
p).

Let ϕ : E1 → E2 be a random cyclic isogeny of degree Dc. Since the T = T ′Dc-
torsion is accessible, computing the corresponding ideal will be efficient for the
prover.
Building σ (response). The response is computed as follows:

1. Compute Iϕ = [Iψ]∗
(
IsogenyToIdealDc

([ψ]∗ϕ)
)
.

2. Set I = Iτ · Iψ · Iϕ and compute J = SigningKLPT(I, Iτ ).
3. Compute σ = IdealToIsogeny�•(J, Jτ , τ ′).

8.5 Response and Verification

In this section we discuss the verification part of the protocol. We remind the
reader that upon receiving σ, the verifier needs to check that it is an isogeny of
degree D between EA and E2 such that the composition with the challenge ϕ
is cyclic (this last part is trivial when D and Dc are coprime). All this can be
done by computing the chain of isogenies associated with σ. We decompose σ of
degree D = �e as σg ◦ · · · ◦σ1 where each of the σj has degree at most �f (f = 33
in our case). The main problem is to find a compact and efficient representation
of σ that can be sent to the verifier. A wide array of solutions already exist
in the literature for SIDH/SIKE [1,8,23,24,34] most of which can be applied
to our setting. In the longer version [13], we describe two compress, decompress
algorithms well-suited to our application.

8.6 The Concrete Instantiation

We discuss below the performance features of our implementation.

Signature Size and Comparison with Existing Schemes. For λ bit of
classical security, we take a prime p ≈ 22λ. The public key is the j-invariant of
the curve EA and it is of size 2 log2(p) = 4λ. The secret can be seen as a pair
Nτ , Iτ . The integer Nτ is a log(p)/4-bit prime, and we can represent Iτ as a
number in [1, Nτ +1], so another log(p)/4-bit integer. In total the secret key has
size λ. The signature is made of E1 and σ, where σ is compressed as described
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in Subsect. 8.5. As argued there, we can either use a full compression of exactly
e bits, or allow for a few additional bits to accelerate the verification time. With
the second method the size is e + 4(�e/f� − 1). We recall that, using for keys as
in Subsect. 8.3, e = 15/4 log(p)+O(log(λ)). Representing the commitment curve
E1 requires 2 log2(p) = 4λ additional bits. We summarize these values in Table 2
when λ = 128, for our concrete instantiation we have log2(p) = 256, f = 33 and
e = 1000.

Table 2. Size of SQISign keys and signature for the NIST-1 level of security.

Secret key (bytes) Public key (bytes) Signature (bytes)

16 64 204

These sizes make SQISign the most compact post-quantum digital signature
targeting NIST-1 level of security, in terms of combined public key and signature
size. With respect to round 2 candidates, it is more than 5 times more compact
than Falcon [18] in terms of combined size, and only trails GeMSS [4] in terms
of signature size. Signatures are more compact than RSA, and about three times
larger than ECDSA, for a comparable level of classical security.

Performance. We implemented SQISign in C, on top of the libpari library
of PARI/GP 2.11.4 [30], and a port of the isogeny evaluation code published
in [2]. Our code is available at https://github.com/SQISign/sqisign. We ran
experiments on a 3.40GHz Intel Core i7-6700 (Skylake) CPU with Turbo Boost
disabled. The code was compiled using clang-6.0 -O3 -Os -march=native
-mtune=native -Wall -Wextra -std=gnu99 -pedantic.

The results are summarized in Table 3. We empirically chose the parameter
Δ = 14. For key generation we generated 100 random keys. For signature we
generated 10 random keys and signed 10 random messages under each key. For
verification we generated 5 random keys, we signed 5 random messages under
each key, and we ran verification 10 times. We stress that we did not attempt
at producing a constant-time implementation, which appears to be an intensive
task owing to the complexity of the algorithms involved.

Table 3. Performance of SQISign in millions of cycles and in milliseconds. Statistics
over 100 runs for key generation and signature, and over 250 runs for verification.

Keygen Sign Verify

Mcycles 1st quartile 1,922 7,687 140

Median 1,959 7,767 142

3rd quartile 2,000 7,909 148

Ms 1st quartile 564 2,256 41

Median 575 2,279 42

3rd quartile 587 2,321 43

https://github.com/SQISign/sqisign
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9 Conclusion

We introduced a new signature scheme along with a concrete instantiation and
implementation. Our implementation proves that our signature is quite effi-
cient compared to other isogeny-based candidates. The associated identification
scheme is sound under classical isogeny assumptions, while its zero-knowledge
relies on hardness of a new ad hoc problem. We briefly justified that this new
problem bears some resemblance with existing hard problems, lending some cred-
ibility to its conjectured hardness.

More work on understanding the output distribution of our generalized
KLPT algorithm is needed to gain confidence in the security of SQISign. It
would be interesting, for example, to reduce the zero-knowledge property to
more classical assumptions. Such a result would probably come at a cost in
terms of efficiency as this would mean using a different generalization of KLPT.
Indeed, from our analysis in Sect. 7 it appears unlikely to prove security under
classical assumptions with the current algorithm.

The second direction for improvement is efficiency. The scheme is complex
and there is a lot of potential for optimizations. A search for better parameters
could allow one to obtain a more efficient signature, and algorithmic progress in
any aspect of isogeny computations and evaluations would probably impact the
performance. The main bottleneck remains the translation from ideals to isoge-
nies, new techniques for which could greatly benefit our protocol. For instance,
finding a more direct algorithm that does not rely as heavily on rational tor-
sion points could yield a more efficient translation. Finally, any improvement to
KLPT producing ideals of smaller norm in reasonable time would improve every
single step of the translation, thus greatly reducing the signature time.
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3 DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France
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Abstract. We revisit the problem of proving that a user algorithm
selected and correctly used a truly random seed in the generation of her
cryptographic key. A first approach was proposed in 2002 by Juels and
Guajardo for the validation of RSA secret keys. We present a new secu-
rity model and general tools to efficiently prove that a private key was
generated at random according to a prescribed process, without reveal-
ing any further information about the private key.

We give a generic protocol for all key-generation algorithms based on
probabilistic circuits and prove its security. We also propose a new pro-
tocol for factoring-based cryptography that we prove secure in the afore-
mentioned model. This latter relies on a new efficient zero-knowledge
argument for the double discrete logarithm problem that achieves an
exponential improvement in communication complexity compared to the
state of the art, and is of independent interest.

1 Introduction

Cryptographic protocols are commonly designed under the assumption that the
protocol parties have access to perfect (i.e., uniform) randomness. However, ran-
dom sources used in practical implementations rarely meet this assumption and
provide only a stream of bits with a certain “level of randomness”. The quality
of the random numbers directly determines the security strength of the sys-
tems that use them. Following preliminary work by Juels and Guajardo [22] and
Corrigan-Gibbs, Mu, Boneh and Ford [15], we revisit the problem of proving that
a cryptographic user algorithm has selected and correctly used a truly random
seed in the generation of her cryptographic public-secret key pair.

Related Work. A prominent example that the use of randomness in public-key
cryptography (and especially in key-generation protocols) is error-prone is the
recent randomness failure known as the ROCA vulnerability [25]. This weak-
ness allows a private key to be recovered efficiently from the public key only (in
factoring-based cryptography). The flawed key-generation algorithm selects spe-
cific prime numbers as part of the private key instead of generating uniformly
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12491, pp. 97–127, 2020.
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random primes and many certified devices were shown vulnerable. This kind
of weaknesses is not new as in 2012, Lenstra, Hughes, Augier, Bos, Kleinjung
and Wachter [23] did a sanity check of factoring-based public keys collected
on the web. They showed that a significant percentage of public keys (0.5%)
share a common prime factor, and this fact was explained [21] by the generation
of these low entropy keys during booting. Since cryptographic failures due to
weak randomness can be dire [21,23,25], designers should build schemes that
can withstand deviations of the random sources from perfect randomness.

Following seminal works by Simmons on the threat of covert channels (also
called subliminal channels) in cryptography [29], the concept of kleptography
was proposed by Young and Yung [32]. It models the fact that an adversary
may subvert cryptographic algorithms by modifying their implementations in
order to leak secrets using for instance covert channels present in the randomized
algorithms. Several sources have recently revealed that cryptographic algorithms
have effectively been subverted to undermine the security of users. This raises
the concern of guaranteeing a user’s security even when she may be using a
compromised machine or algorithm.

For factoring-based public-key cryptography, in light of the known shortcom-
ings of implemented key generators, a line of research has focused on proving
that RSA moduli satisfy certain properties [1,11,18], or on attesting that RSA
prime factors were generated with a specified prime generator [5]. This line of
work is only concerned with the structure of the keys, not with the fact that
they are generated with enough entropy. Juels and Guajardo [22] suggested as
early as in 2002 an approach for users to prove to another party (which is typ-
ically a trusted certificate authority or CA) that her public-secret key pair was
generated honestly using proper randomness. In their setting, the CA provides
an additional source of randomness in an interactive process, and the user algo-
rithm proves that it has not weakened, whether intentionally or unintentionally,
the key-generation procedure. The security goal of such a primitive is threefold.

1. Maintain User Privacy: if the user uses a randomness source with high
entropy, then an adversary (possibly the CA himself) has no additional
information on the secret-key compared to a key generated by the real key-
generation algorithm on uniform randomness.

2. Improve Randomness Quality: if the user or the CA use a randomness
source with high entropy, then, an adversary (other than the CA) has no
additional information on the secret-key compared to a key generated by
the real key-generation algorithm on uniform randomness.

3. Resist Information Exfiltration: the generated public key leaks no infor-
mation whatsoever to the outer world. In particular, a faulty user algorithm
cannot use it to convey any information. In this sense, the CA certifies to
the end user, that she can securely use to the generated key.

A malicious user can obviously publish her secret key, but the problem we tackle
is different: we want the CA to only certify keys that he knows to have been
generated with high-entropy randomness and without covert channels.
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Juels and Guajardo proposed a formal security model for verifiable random
key generation with the goal to achieve these three security objectives. Their
model is unfortunately not strong enough to capture real-world threats since

– it is restricted to public-key cryptosystems where a given public key corre-
sponds to a unique secret key (and cannot be used for many recent schemes);

– it considers only a stand-alone or independent key-generation instances (and
therefore does not prevent attacks such as the one considered in [21,23] where
several public-keys are generated with correlated randomness sources);

– it only bounds the distance that a dishonest user algorithm can generate a
key to that of an honest algorithm executing the key generation protocol.

As a simple example, consider the problem of generating an ElGamal public
key gx in a group G = 〈g〉 of prime order p. Juels and Guajardo outlined a
protocol for generating such a key with verifiable randomness. The natural idea
to generate a public-key gx in this (illusorily) simple setting is to share the
secret key x as x = xU + xCA mod p where xU denotes the user randomness
and xCA denotes the CA randomness. However, this protocol fails to achieve (3)
as the user algorithm can choose xU to match a specify value after seeing xCA.
To overcome this issue, a simple idea would be to make the user first commit
to xU and then prove its knowledge. However, the hiding and zero-knowledge
properties of commitment schemes and proof systems inherently rely on perfect
randomness, which the user algorithm is assumed not to have at its disposal.

Juels and Guajardo also proposed a protocol for the generation of RSA keys
where the distance in (3) increases by a factor which is polynomial in the security
parameter λ (assuming some number-theoretic conjecture). Therefore, their pro-
tocol does not rule out the existence of covert channels with O(log λ) bit capacity.
Their model was reconsidered by Corrigan-Gibbs, Mu, Boneh and Ford [15] in
a weaker setting that guarantees (1) and (2) but not (3), and does not even
prevent a malicious user algorithm from generating malformed keys.

Contributions. We revisit the verifiable key-generation primitive and provide
the first strong security models and efficient, provably secure constructions.

Game-Based Security Model. We propose a game-based model that covers con-
current protocol executions with different instances of protocol algorithms. It is
inspired by the Bellare-Pointcheval-Rogaway (BPR) model for authenticated key
exchange [4]. The communication between the user and the CA is assumed to
be carried over an insecure channel. Messages can be tapped and modified by an
adversary, and the communication between the user and the CA is asynchronous.
The adversary is split into two algorithms: (1) the sampler which provides the
randomness sources to the user and the CA (for multiple instances of the proto-
col) and (2) the distinguisher which tries to gain information from the generated
public key. The protocol is deemed secure if the distinguisher is unable to do so
assuming that the entropy of either random source is high enough.

The main difficulty to define the security model for this primitive is to for-
malize the third security objective. A dishonest user algorithm can indeed always
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execute several instances of the protocol with the CA until she obtains a public-
key which has some specific property which allows to exfiltrate information. This
is similar to the “halting attack” subliminal channel [16] and cannot be avoided
We manage to take this narrow-band subliminal channel into consideration in
our security model while capturing the fact that in a secure protocol, this should
be the only possible covert channel for a dishonest user algorithm. In practical
applications, this covert channel can be prevented easily if the CA charges an
important fee for a user that performs too many key generation procedures, or
if an increasing time-gating mechanism for repeating queries is introduced.

This model does not suffer from the shortcomings of the model proposed in
[22] as it allows for multiple dependent runs of the protocol and captures the
resistance to exfiltration of information (with only the narrow-band subliminal
channel from the “halting attack”). It guarantees security with concurrent ses-
sions (and is thus much stronger than security considered in the similar notion
of cryptographic reverse firewalls [24]) but not composition.

Providing a universal-composability definition seems natural in this setting,
but the main hurdle in doing so comes from the fact that the sampler cannot
communicate at all with the distinguisher since it would otherwise allow for
covert channels (and break property (3)) as further explained in Sect. 3.2. As
a consequence, a universal-composability definition would need functionalities
with local adversaries, which would change the target of the paper.

Generic Protocol for Probabilistic Circuits. We then present a generic approach
for key generation based on (families of) probabilistic circuits and we prove
its security in our stringent security model. It relies on two-source randomness
extractors, pseudo-random-function families and extractable commitments with
associated zero-knowledge proofs. Since two-party computation (2PC) protocols
rely on perfect randomness, a generic 2PC protocol cannot be used in this setting;
moreover such a protocol guarantees privacy and correctness, but it does not
guarantee that a user cannot influence the result (and thus requirement (3)).

Efficient Protocol for RSA Keys. We also propose a new generic protocol for
factoring-based cryptography and prove it secure in our model. It relies on classi-
cal cryptographic tools (namely commitments, pseudo-random functions (PRFs)
and zero-knowledge proofs). We provide an instantiation based on the Dodis-
Yampolskiy PRF [17] in the group of quadratic residue modulo a safe prime
which outputs group elements. The main technical difficulty is to convert the
outputs of this PRF into integers while proving that the RSA prime factors are
outputs of the PRF. In the process, we propose a new efficient zero-knowledge
proof system for the so-called double discrete logarithm problem (in groups of
public order). A double discrete logarithm of an element y �= 1G in a cyclic group
G of prime order p with respect to bases g ∈ G and h ∈ Z

∗
p (generators of G

and Z
∗
p respectively) is an integer x ∈ {0, . . . , p − 1} such that y = ghx

. Stadler
introduced this computational problem for verifiable secret-sharing [30] and it
was used to design numerous cryptographic protocols (e.g. group signatures [12],
e-cash systems [13] and credential systems [14]). All these constructions rely on a
proof system proposed by Stadler which has Ω(log p) computational and commu-
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nication complexity (in terms of group elements). Our new proof system outputs
proofs with only O(log log p) group elements and permits an efficient instantia-
tion of our generic protocol for factoring-based cryptography. As a by-product,
our new protocol can be used directly in all the aforementioned applications in
a public-order setting to exponentially reduce their communication complexity.

2 Preliminaries

Notation. For n ∈ N, the set of n-bit strings is denoted by {0, 1}n and the set
of integers {1, . . . , n} is denoted [[n]]. The set of prime numbers is denoted P.
The security parameter is denoted λ, and input lengths are always assumed to
be bounded by some polynomial in λ. A Probabilistic algorithm is said to run
in Polynomial-Time (it is said to be a PPT algorithm) if it runs in time that is
polynomial in λ. A function μ is negligible if μ(λ) = λ−ω(1).

The random variable defined by the value returned by a PPT algorithm A
on input x is denoted A(x). The value returned by A on input x and random
string r is denoted A(x; r). Given a probability distribution S, a PPT algorithm
that samples a random element according to S is denoted by x←$S. For a finite
set X, x←$X denotes a PPT algorithm that samples an element uniformly at
random from X. Given a group G with neutral element 1G, G∗ denotes G\{1G}.
For any two sets X and Y, denote by YX the set of functions from X to Y.

Vectors are denoted in bold font. For two vectors a and b in Rn where R is
a ring and n a positive integer, a ◦ b denotes the Hadamard product of a and b,
i.e., a ◦ b :=

[
a1b1 · · · anbn

]
.

Group Families. A group-family generator G is a PPT algorithm which takes
as input a security parameter λ and returns a tuple (G, �, g), with G a cyclic
multiplicative group of prime order �, and g ∈ G a generator of G (i.e. g ∈ G

∗).

Randomness Sources and Min-entropy. Imperfect randomness is modeled
as arbitrary probability distributions with a certain amount of entropy. The min-
entropy notion is used to measure the randomness in such an imperfect random
source. A source is said to have k bits of min-entropy if its distribution has the
property that each outcome occurs with probability at most 2−k.

Pseudo-Random Functions. A Pseudo-Random Function (PRF) [20] is an
efficiently computable function of which the values are computationally indis-
tinguishable from uniformly random values.

Formally, a function PRF : K(λ) × X(λ) → Y(λ) is a (T, q, ε)-secure PRF
with key space K , input space X and range Y (all assumed to be finite) if the
advantage

∣
∣
∣Pr

[
1 ← APRF(K,·) : K←$K

]
− Pr

[
1 ← Af(·) : f←$YX

]∣∣
∣

of every adversary A that runs in time at most T (λ) is at most ε(λ).

Dodis-Yampolskiy Pseudo-Random Function. Let G be a group family
generator. The Dodis-Yampolskiy pseudo-random function [17] in an �-order
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group (G, �, g) ←$G is the map F : (K,x) ∈ K × X 	→ g1/(K+x) ∈ G
∗, with

K = Z
∗
� and X ⊂ Z

∗
� . This PRF is

(
T/

(
qλO(1)

)
, q, εq

)
-secure under the (T, q, ε)-

Decisional Diffie-Hellman Inversion (DDHI) assumption [6,7] for G, where q(λ) =
O(log λ) is an upper-bound on the bit-size of X for all λ [17, § 4.2].

3 Model

This section formalizes key-generation protocols for arbitrary, predetermined
key-generation algorithms. Such a protocol is executed between a user U and a
certification authority CA. At the end of the protocol, U obtains a pair of public-
secret keys that CA certifies to be indistinguishable from keys generated by a
fixed algorithm KeyGen, and to have been generated with proper randomness.
These requirements are formally captured by a model for randomness verifia-
bility given below. The security definition of the model ensures that a protocol
satisfying its conditions fulfills the following properties:

1. CA can infer no more information about the secret key than it would from a
public key generated by KeyGen if U’s randomness source has high entropy

2. no external attacker can distinguish a public key generated via the protocol
from a public key generation with KeyGen if the randomness source of either
U or CA has high entropy

3. U cannot bias the generation of the keys if the randomness source of CA
has high entropy. In particular, U cannot use the public key as a subliminal
channel to convey information.

3.1 Syntax

An interactive asymmetric-key-generation protocol is a triple IKG = (Setup,
U,CA) of algorithms such that Setup

(
1λ

) → pp is a probabilistic algo-
rithm which returns public parameters and 〈U(pp; rU) � CA(pp; rCA)〉 →
〈(pkU, sk), pkCA〉 are interactive algorithms. At the end of the protocol, the
user key-generation algorithm U returns a pair of public-secret keys, and the
certificate-authority key-generation algorithm CA returns a public key.

Algorithm Setup may require some randomness, but the parameters it gen-
erates can be fixed once for all and used across multi sessions and by several
users and authorities. Once parameters are fixed, high-entropy randomness is
still needed to securely generate keys, and this is formalized in Sect. 3.2.

Definition 3.1 (Correctness). In the O-oracle model, a key-generation pro-
tocol IKG is δ-correct w.r.t. a class A of algorithms if for all λ ∈ N, for every
A ∈ A ,

Pr

⎡

⎢
⎢
⎣pkU = pkCA �= ⊥ :

pp←$Setup
(
1λ

)

(DU,DCA) ←$AO(·) (pp)
rU←$DU, rCA←$DCA
〈(pkU, sk), pkCA〉 ← 〈U(pp; rU) � CA(pp; rCA)〉

⎤

⎥
⎥
⎦ ≥ δ.
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Note that the last line of the probability event implicitly implies that U and CA
must terminate.

The above definition is given in model in which A has oracle access to O.
This latter is used to “distinguish” different models: it may be a random ora-
cle, but it could also simply be an oracle which returns a fixed value (i.e., the
common-reference-string model) or no value at all (the standard model). The
reason for this distinction is that if a component of the protocol (e.g. a random-
ized primality-testing algorithm) is not perfectly correct, then its correctness
probability is only defined for perfect randomness although the parties only
have access to imperfect randomness. However, in the random-oracle model for
instance, this imperfect randomness chosen by the algorithm in the definition
may depend on the random-oracle queries made by this latter.

3.2 Security

This section gives a game-based security model for key-generation protocols with
verifiable randomness. It covers concurrent protocol executions with different
instances of protocol algorithms. It is inspired by the BPR model for authenti-
cated key exchange [4] but with key differences.

Protocol Participants. A set of user identities U and a set of certificate-authority
identities CA are assumed to be fixed. The union of the those sets form the
overall identity space ID . For readability, it is implicitly assumed that during
protocol executions, the messages exchanged are always prepended with the
instance identifier of the receiving party. Note that several instances of the same
algorithm may concurrently run during the game.

Adversaries. The game features a two-stage adversary (A1,A2). Adversaries
A1 and A2 may agree on a common strategy before the beginning of the game.
That is to say, the strategy may be part of their code, and it may dictate which
queries to make (possibly depending on the oracle answers), the order of the
queries and so forth. All but the challenge query can only be made by A1. The
role of A2 is essentially only to guess whether a public key was generated with
KeyGen or with the protocol, while A1 can make arbitrary queries according to
the pre-established strategy.

However, A1 and A2 cannot communicate after the beginning of the game. It
reflects the fact that in practice, an implementer may distribute its key generator,
but does not necessarily wiretap the execution of the key-generation protocol
for a particular user. From a technical viewpoint, the reason is that in a key-
generation protocol, a user has to prove to the authority that she correctly
performed her computation. However, the randomness used in these proofs can
be used as a subliminal channel to convey information about the secret key.
For instance, an engineer could in practice implement a bogus key generator
which only terminates the protocol if the first bits of the proof and secret key
match. The proof then serves as subliminal channel to leak information about the
secret key. Later on, when a user wants to generate a certified public key, if the
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Fig. 1. Oracles for the Key-Generation Indistinguishability Experiment.
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engineer could wiretap the protocol execution, he could infer some information
about her secret key through the proof of correct computation. It is the reason
why communication between the adversaries cannot be allowed.

The restriction that A1 and A2 cannot communicate after the beginning of
the game means that the attacks in which the protocol executions are listened
to are excluded, but as explained above, it seems to be a minimal requirement.

Game Overview. At the beginning of the game, the challenger first runs an
initialization algorithm. After that, A1 can make several queries to the algorithm
instances. It can in particular

– specify distributions from which randomness is drawn and given as an input
to the instances,

– ask for the protocol to be executed between different instances of the protocol
algorithms without its intervention, i.e., perform passive attacks,

– perform active attacks by sending messages to algorithm instances,
– later on reveal the keys that were generated by a particular instance,
– corrupt a party (user or certificate authority), and thereby gain access to the

state of all its algorithm instances.

As for A2, it can reveal keys or make a test query that returns either (with
probability 1/2 each) keys freshly generated by the key-generation algorithm or
keys generated by instances of its choice via queries made by A1. Adversary A2

must eventually return a guess for the origin of the keys it was returned, and
(A1,A2) wins the game if the guess of A2 is correct.

Initialization and Game Variables. During the initialization phase, game vari-
ables are declared for every instance of the protocol algorithms. Assume that
there are at most I = I(λ) instances of any participant id . Each instance i ∈ I
of a participant id maintains a state st i

id . A session identity sid i
id and a part-

ner identity pid i
id allow to match instances together in protocol executions. It is

assumed that for each sid i
id there can be at most one partner instance, i.e., one

pair (id ′, j) such that pid i
id = id ′ and sid i

id :=
(
id , i, id ′, j, sid i

id

′)
.

Public/secret-key variables (denoted pk i
id and sk i

id) hold the keys that were
output, if any, by the ith instance of the algorithm of party id at that step of
the computation. For certificate authorities, the secret keys are always set to ⊥.

A variable used i
id indicates whether the adversary has performed an active

attack on the ith algorithm instance of participant id .
Variables acci

id and termi
id respectively indicate whether the algorithm of

the ith instance of participant id has accepted and terminated. As in the BPR
model [4], termination and acceptance are distinguished. When an instance ter-
minates, it does not output any further message. However, it may accept at a
certain point of the computation, and terminate later. In the present context,
it may for instance occur when an instance expects no further random input
from its partner instance, and the rest of its computation is purely determinis-
tic. It may then only terminate after finishing its computation. This distinction
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is crucial for the security definition. It is important to exclude the trivial case in
which, although every computation was honestly performed, a user discards the
public key if it does not follow a certain pattern, thereby influencing the distri-
bution of the output public key (i.e., perform rejection sampling), and possibly
using it as subliminal channel to convey information about the secret key.

Another variable flag i
id (new compared to the BPR model) indicates whether

party id was corrupted before its ith instance had accepted. Recall that accep-
tance intuitively means that an instance expects no further random input from
its partner instance. As long as flag i

id is set to FALSE, the only information the
adversary has about ri

id is its distribution and therefore, if this distribution has
high min-entropy, the adversary cannot bias the generation of the keys.

A variable ri
id holds the random string to be used the ith instance of the

algorithm of id .
The challenger maintains a set (initially empty) QReveal of identity-instance

pairs of which the keys were revealed. It also maintains a set (initially empty)
QCorrupt of corrupt identities.

At the end of the initialization phase, the public parameters, the sets of par-
ticipants and the user public keys are returned in a public input pin, and the
rest is set in a secret input sin. That is, pin ← (pp,U ,CA, I, (pk id)id) and sin ←(
pin, (sk id)id ,

(
st i

id , sid i
id , pid i

id , acci
id , termi

id , used i
id

)
i,id

, QCorrupt, QReveal). The
secret input sin is later made available to all oracles.

Oracles. Throughout the game, adversary A1 is given access to the oracles
summarized below and defined in Fig. 1. It can query them one at a time.

• Oracle : gives access to a function h chosen uniformly at random from a
probability space Ω. The adversary and the protocol may depend on h. The
probability space Ω specifies the model in which the protocol is considered. If
it is empty, then it is the standard model. If it is a space of random functions,
then it is the random oracle model. As for the Common-Reference String
(CRS) model, Ω is a space of constant functions.

• Dist : via this oracle, the adversary specifies the distribution Di
id from which

the randomness of the ith instance of id is drawn. These distributions are
always assumed to be independent of oracle Oracle. However, the distribu-
tions specified by the adversary for different instances can be correlated in
any way. Oracle Dist then generates a bit string ri

id according to the input
distribution and does not return it to the adversary. Whenever oracle Exec or
oracle Send is queried on (id , i), it uses randomness ri

id for its computation.
This new (compared to the BPR model) oracle is essential to express require-
ments on the minimal entropy used by the instances, and also to express
reasonable winning conditions. It allows to properly capture properties like
the fact that (1) the authority cannot infer any information about the secret
key if the randomness of the user algorithm has high entropy, (2) that the out-
put keys are indistinguishable from keys generated with the key-generation
algorithm if the randomness used by the algorithm of either of the parties has
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high entropy, or (3) that a potentially malicious user algorithm cannot bias
the distribution of the output keys if the randomness of the authority algo-
rithm has high entropy. That is first because the test query later made by A2

requires the min-entropy of the randomness of either the challenge instance or
of its partner to be high. It is also due to the fact that the adversary cannot
corrupt the challenge instance (thus learning its randomness) before the part-
ner randomness necessary to generate the challenge key is committed, which
is monitored by the flags. It for instance means that if the CA is the target
of the test and the adversary plays the role of a user algorithm (in which
case the partner randomness is considered to have nil entropy) and possibly
deviates from the protocol, then the test CA must be given high-entropy ran-
domness and the definition ensures that the resulting key is indistinguishable
from keys generated with KeyGen.

• Exec : returns the transcript of an honest (i.e., without the interference of
the adversary) protocol execution between the ith instance of U and the jth
instance of CA. The protocol is executed with the random strings generated
for these instances by oracle Dist on the input of adversarial distributions. The
notations Ui and CAj mean that algorithms U and CA are executed using the
state of the ith instance of U and the jth instance of CA respectively. It is
implicitly assumed that the states acci

U, termi
U, accj

CA and termj
CA are set

to TRUE after an honest protocol execution. Moreover, if the termination
variable of either party is set to TRUE, the protocol is not executed and ⊥
is returned. In essence, by querying oracle Exec, adversary A1 performs a
passive eavesdropping attack.

• Send : adversary A1 can perform active attacks via this oracle. A1 can send
any message to an instance of its choice, e.g., the ith instance of a user
algorithm, which runs the honest protocol algorithm of the corresponding
party on the input of the message chosen by the adversary.
To prompt the ith instance of id to initiate a protocol execution with the jth
instance of id ′, adversary A1 can make a Send query on

(
id , i, (id ′, j)

)
.

IKG(id , ∗) denotes the IKG algorithm of party id , i.e., either U or CA. The
algorithm is executed using the randomness generated by oracle Dist for that
instance. (Note that the input random string may be used only at certain
steps of the computation.) The oracle then returns the output of the instance
to the adversary. It also specifies if this instance accepted and/or terminated,
and returns the session identifier and the identity of its partner in the protocol
execution, as well as the public and secret keys returned by this instance, if
any. Note that if the instance is that of a certificate-authority algorithm, the
secret key is always set to ⊥.

• Reveal : on input (id , i), returns the keys held by the ith instance of the
algorithm of id . The couple (id , i) is added to the set QReveal of revealed keys.

• Corrupt : on input id , returns the states of all the instances of the algorithm of
id . The identity id is added to the set QCorrupt of corrupt identities. Besides,
for any instance i of id , if it has not yet accepted, flag i

id is set to TRUE.
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Remark 3.1. The first main difference with the BPR model is the new oracle Dist.
It allows to capture an adversary running several instances of the protocol with
correlated randomness. In the new model, it is also important to express winning
conditions that exclude the trivial (and unavoidable) rejection-sampling attack.
Another difference is that the variable flag i

id is set to TRUE if A1 corrupts id
before its ith instance has accepted. It is to say that for instance, if an adversary
(e.g., a malicious user algorithm) knows the randomness of the other party (by
corrupting the CA) before it has “committed” to its randomness, then that party
can influence the resulting key and break property (3).

As for adversary A2, it is given access to oracles Oracle, Reveal and to oracle

– Testb : on input (id∗, i∗), it returns the public key pk i∗
id∗ generated via IKG

(with an Exec query or Send queries) if b = 0 or a fresh public key generated
via KeyGen if b = 1.
An important restriction on this query is that the following condition must
be satisfied: for any instance i of the algorithm of a party id0, once it has
accepted, i.e., once acci

id0
is set to TRUE, the partner instance algorithm, say

the jth instance of id1, must eventually terminate, i.e., termj
id1

must have
been set to TRUE as well by the time of query Test. It prevents A1 from
biasing the distribution of the keys by prematurely aborting the protocol
although it was followed, if the resulting key does not follow a certain pat-
tern, and which would allow A2 to guess b with a non-negligible advantage.
The other restrictions are simply that i∗-th instance of id∗ must have termi-
nated, that id∗ was not corrupt before (id∗, i∗) had accepted1, that neither the
key of the i∗th instance of id∗ nor of its partner instance has been revealed,
and that the i∗th instance of id∗ must already hold a key.
Note that A2 can query Test only once. A definition with multiple queries
would be asymptotically equivalent via a standard hybrid argument.

Adversary A2 must eventually return a bit b′ as a guess for the origin (i.e.,
either IKG or KeyGen) of the key returned by oracle Testb.

To achieve any form of indistinguishability from a key-generation algorithm,
it is clear that either the distribution Di∗

id∗ or the distributions Dj
id′ for the

partner instance (j, id ′) of (i∗, id∗) must have high entropy. Indeed, if distribu-
tions with low entropy were allowed, A1 and A2 could agree on these identities,
instances and distributions beforehand. Adversary A2 could then simply return

1 To understand why it is necessary for id∗ not to be corrupt before (id∗, i∗) accepts
even though A1 and A2 do not communicate, suppose that this condition were not
imposed and consider the following strategy which allows (A1,A2) to trivially win:
A1 and A2 agree on (id∗, i∗) and on a distribution Di∗

id∗ . Adversary A1 prompts
(id∗, i∗) to initiate a protocol execution by making a Send query. It then corrupts
id∗ and obtains st i∗

id∗ , from which it can read ri∗
id∗ . Adversary A1 could then play the

role of its partner and adapt the messages it sends to make sure that the resulting
public key follows a certain pattern known to A2. This latter would then be able to
win the game with a non-negligible advantage.
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1 if and only if the challenge key is the most likely key w.r.t. Di∗
id∗ and Dj

id′ ,
and thereby win the game with a non-negligible advantage.

A parameter κ for the maximal min-entropy of Di∗
id∗ and Dj

id′ specified by
A1 is therefore introduced. If the adversary modified any message from the
partner (j, id ′) of (id∗, i∗) before (id∗, i∗) accepts, then Dj

id′ is set to be the
Dirac mass at the zero bit-string by convention (and it thus has no entropy). The
underlying idea is that as long as at least one of the two parties has a randomness
source with high entropy, the key returned at the end of the protocol should be
indistinguishable from a key generated by the KeyGen algorithm. The security of
a key-generation protocol is then defined for adversaries that specify challenge
distributions with min-entropy at least κ.

Definition 3.2 (Indistinguishability). An interactive key-generation proto-
col IKG is (T, qOracle, qDist, qExec, qSend, qReveal, qCorrupt, κ, ε)-indistinguishable from
a key-generation algorithm KeyGen (running on uniform randomness) if for all
λ ∈ N, for every adversary (A1,A2) that runs in time at most T (λ) and makes at
most qO queries to O ∈ {Oracle,Dist,Exec,Send,Reveal,Corrupt}, and such that
max

(
H∞

(Di∗
id∗

)
,H∞

(
Dj

id′

))
≥ κ for query Test, the advantage (function of λ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′ :

(pin, sin) ← Init
(
1λ,U ,CA, I

)

O1 ← {Oracle,Dist,Exec,Send,Reveal,Corrupt}
AO1(sin,·)

1 (pin)
b←${0, 1}
O2 ← {Oracle,Reveal,Testb}
b′ ← AO2(sin,·)

2 (pin)
return (b, b′)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1/2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

of (A1,A2) is at most ε(λ).

From a practical perspective, this definition (which implies requirement 3
as it enforces indistinguishability from keys generated by IKG) means that keys
generated via a protocol satisfying the definition above are not subject to ran-
domness vulnerabilities such as the ROCA vulnerabilities [25] and those [21,23]
in which several public keys are generated with correlated randomness sources.

4 Generic Constructions

This section presents a protocol that covers a wide class of key-generation algo-
rithms, namely those that can be represented as probabilistic circuits, and
another protocol specific to the generation of RSA keys. The first protocol is
of theoretical interest and shows that randomness verifiability can be achieved
for wide class of key-generation algorithms, whereas the second protocol is a
solution that can actually be used in practice.
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4.1 Key-Generation Protocol with Verifiable Randomness
for Probabilistic Circuits

This section gives a key-generation protocol with verifiable randomness for a
large class of key-generation algorithms. The focus is here on the class of key-
generation algorithms that can be modeled as probabilistic circuits.

The advantage of probabilistic circuits compared to general Turing Machines
for this purpose is that the running time of a probabilistic circuit is independent
of the random inputs. In a key-generation protocol with verifiable randomness,
the user has to prove to the authority that she correctly performed her com-
putation. Having a constant running time then ensures that no one can infer
any information about the secret key from the statement proved by the user or
the proof itself. It prevents malicious user algorithms from using the proofs as
subliminal channels to pass information about the secret key.

To understand why it is important for the running time to be constant,
consider the following artificial random number generator. To generate a k-bit
string t = (t0, . . . , tk−1), it consists in flipping a random coin s several times for
each bit ti and to set this bit to the parity of the number of flipped coins to obtain
the first “Head”. It produces a k-bit string uniformly distributed within expected
time complexity O(k) and it could be used as a secret-key generation algorithm
(and the public key would then be a deterministic function of the generated
secret key). See the full version [6] for a formal description of the algorithm.
For a user to prove that she correctly generated the random bit string t, she
would have to commit to the ti values and compute a proof on the successive
s values. However, each ti is simply the parity of the number of trials before
s = 0. Therefore, from the number of s values for which the user has to perform
a proof, the authority can infer ti. For example, if the user generated two s
values for t1, the authority knows that t1 = 0. In other words, the statement of
the proof itself reveals some information about the secret key to the certification
authority; and the issue is here that the running time changes from one random
run of the algorithm to the other. Restricting to probabilistic circuits eliminates
this issue.

The restriction to circuits comes at a cost though. It for instance excludes
the class of algorithms for which there is no known circuit that can represent
them. It is for instance the case of algorithms that must efficiently generate
primes during the process. Indeed, there is no known circuit that can efficiently
generate prime numbers. On this ground, the generic protocol for probabilistic
circuits of Sect. 4.1 does not apply to the RSA-key generation for instance2.
See rather Sect. 4.2 for the specific case of RSA-key generation with verifiable
randomness for arbitrary properties that the keys must satisfy.

Before describing our protocol, we first formally define probabilistic circuits.

2 One can construct families of probabilistic “circuits” which output an RSA key but
only with overwhelming probability (and not probability 1) by relying on the prime
number theorem and Chernoff’s bound. However, such constructions would have
large gate complexity and randomness complexity and applying our generic con-
struction to such circuits family would result in schemes with prohibitive efficiency.
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Probabilistic Circuits. A probabilistic circuit is essentially a deterministic
circuit augmented with uniformly random gates. The random gates produce
independent and uniform random bits that are sent along their output wires.

We equivalently define a probabilistic circuit as a uniform random variable
over a finite collection of deterministic boolean circuits. These boolean circuits
are restricted to have the same amount n of input variables, and r fixed inputs.
The number r of fixed inputs depends on the security parameter 1λ. Denote such
a circuit as Γb1···br

(x1, . . . , xn), with x1, . . . , xn the input variables and b1, . . . , br

the fixed inputs. To each element in {0, 1}r corresponds a circuit in the collection
with the bit string as fixed inputs, so that there are 2r circuits in the collection.
However, these circuits are not required to form a uniform family (i.e., they are
not required to be output by a single Turing machine); the circuit families here
considered can be non-uniform.

A probabilistic circuit Γ is then defined as a uniform random variable over
the set (of circuits) {Γb}b∈{0,1}r . Namely, for input variables x1, . . . , xn, the
evaluation Γ(x1, . . . , xn) is a uniform random variable over the set (of values)
{Γb(x1, . . . , xn)}b∈{0,1}r . If ω ∈ {0, 1}r denotes the random input to the proba-
bilistic circuit Γ, the evaluation Γ(x1, . . . , xn;ω) is then Γω(x1, . . . , xn).

The advantage of this second definition is that randomness is invoked only
once instead of invoking it for each of the r random gates. To generate keys,
PRFs are often used to provide random bit strings from small secret seeds. As
the goal is to build a key-generation protocol which allows the CA to certify
that the keys are generated with high-entropy randomness, the user will have
to prove that she correctly performed the pseudo-random evaluations. Invoking
randomness only once then allows to invoke the PRF only once in the protocol.

Generic Protocol. We now give a two-party protocol in the CRS model to
generate, with verifiable randomness, keys computed by probabilistic circuits.
Requiring that keys are generated with verifiable randomness here means that
the random inputs to the circuits must be uniformly generated in a verifiable
manner. The deterministic inputs can simply be considered as public parameters.

Building Blocks. The protocol involves (see the full version [6] for definitions)

– a function family H = {Hhk}hk∈{0,1}d(λ) which is a universal computational
extractor w.r.t. unpredictable sources

– a two-source extractor Ext with key space {0, 1}δ(λ)

– an extractable commitment scheme C = (Setup,Com,ComVf,TSetup ,
ExtCom) for the user algorithm to commit to its random string before receiv-
ing any input from the CA, thereby preventing it from biasing the distribution
of the keys. The parameters returned by Setup are implicit inputs to the other
algorithms of C

– a non-interactive, extractable, zero-knowledge proof system Π with Π =(
Setup,Prove,Verf,TSetupzk,Sim,TSetupext,Ext

)
for the relation

RΠ := {((xi)i, k,C, rCA, pk ; r ′
U, d, sk) : ComVf (C, r ′

U, d) = 1
∧(pk , sk) = Γ (x1, . . . , xn;Extk (r ′

U, rCA))} ,
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– a pseudo-random function PRF to generate the randomness for Π.Prove.

Parameters. Given a circuit Γ with deterministic inputs x1, . . . , xn, to generate
public parameters for the protocol on the input a security parameter 1λ, run
ppC ← C .Setup

(
1λ

)
(ppC is a tacit input to the algorithms of C ), crs ←

Π.Setup
(
1λ

)
, and generate hk←${0, 1}d(λ) and k←${0, 1}δ(λ). Return pp ←

(crs, ppC , hk , k, x1, . . . , xn).

Formal Description. Consider the interactive protocol IKGΓ on Fig. 2 between a
user U and a certification authority CA. Each algorithm maintains acceptance
and termination variables accid and termid , for id ∈ {U,CA}, initially set to
FALSE. On the input of pp and of their respective random strings rU and rCA,
the party algorithms proceed as follows:

1. U separates the domain of Hhk in two and applies it to its randomness. It
commits to the first output with the second output as randomness, and sends
the resulting commitment C to CA

2. CA, upon receiving the commitment from U, sets accCA ← TRUE and sends
its random string rCA to U

3. U, upon receiving rCA from CA, sets accU ← TRUE. Next, it extracts a seed
s with Ext from the joint randomness. It evaluates Γ on x1, . . . , xn and s, and
obtains a key pair (pk , sk). It generates another seed s ′ with Hhk . Algorithm
U then evaluates PRF mode on s ′ to generate the randomness necessary to
compute Π.Prove since U has no other random string than rU available, i.e.,
it computes rΠ ← PRF(s ′, 0). Algorithm U then proves that it followed the
protocol and correctly evaluated Γ at x1, . . . , xn, i.e., it computes a proof
π ← Π.Prove (crs, ((xi)i, k,C, rCA, pk) , (r ′

U, d, sk) ; rΠ). After that, it erases
all variables but pk , sk , π, sends pk and π to CA, returns (pk , sk) and sets
termU ← TRUE

4. CA, upon receiving (pk , π) from U, verifies the proof. If the proof is valid, it
returns pk , otherwise it returns ⊥. It then sets termCA ← TRUE.

Correctness and Indistinguishability. In the full version [6], we show that IKGΓ is
1-correct w.r.t. all algorithms if C is correct and if Π is complete. Moreover, it is
indistinguishable from Γ in the CRS model for sources with min-entropy at least
κ = max(κH , κExt) if Ext is a (κExt, εExt)-extractor for κExt ≤ min(|r ′

U|, |rCA|), if
H is UCE-secure w.r.t. simply unpredictable sources of min-entropy at least κH ,
if C extractable and hiding, if Π is extractable and composable zero-knowledge,
and if PRF is a secure PRF.

Discrete-Logarithm Keys. The full version of the paper [6] presents a simple
illustration of this generic protocol (but rather in the random-oracle model for
better efficiency) applied to discrete-logarithm keys.
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Fig. 2. Key-generation protocol with verifiable randomness for probabilistic circuits.

4.2 RSA-Key Generation Protocol with Verifiable Randomness

This section gives a two-party protocol for RSA-key generation with verifiable
randomness between a user U and a certification authority CA. The resulting
keys can be used in any RSA cryptosystem. The protocol attests that the result-
ing keys were generated with high-entropy randomness and that they satisfy
(fixed) arbitrary properties. These properties are captured by a relation

RW := {(N, e ∈ Z; p, q ∈ W ⊆ P) : p �= q ∧ N = pq ∧ gcd(e, ϕ(N)) = 1}
to which the keys generated should belong, where W is a set that defines the
predicates p and q must satisfy, e.g., p = q = 3 mod 4 or p and q are safe
primes. Its relative language is denoted RW . Efficient proof systems for such
properties exist [1,11,31], though none of them aims at proving that the keys
were generated with proper randomness.

In comparison, the protocol by Juels and Guajardo [22] only guarantees the
first two properties, and does not ensure that the user algorithm cannot bias
the distribution of the keys. Without the third property, an interactive key-
generation protocol is only beneficial if the user does not have high-entropy
randomness locally whereas the CA does, otherwise it is only a burden for the
user. On the other hand, the third property additionally guarantees the end user
that if the CA has high-entropy randomness, her keys are not faulty.

As for the attestation scheme of Benhamouda et al. [5], it allows to prove that
the RSA primes were generated with an arbitrary generator; and the protocols of
Camenisch and Michels [11], of Auerbach and Poettering [1], and of Goldberg et
al. [19], only allow to prove that RSA primes satisfy certain properties, not that
they were generated with high entropy. In a sense, our goal is complementary to
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that of proving that RSA moduli satisfy certain properties without proving that
the keys were generated with high-entropy randomness.

RSA Key-Generation Algorithm. The NIST standard [26] for the RSA [28] key-
generation algorithm, further denoted KeyGenRSA, is the following:

– choose at random two distinct large primes p and q
– compute N ← pq and ϕ(N) ← (p − 1)(q − 1)
– choose an integer 216 < e < 2256 such that gcd(e, ϕ(N)) = 1 (e may be chosen

deterministically or at random); compute d ← e−1 mod ϕ(N)
– Return pk ← (N, e) and sk ← (N, d).

Equivalently, the secret key sk can be set to (p, q, e) instead of (N, d) as one
can compute (N, d) from (p, q, e) and vice-versa. It is this variant that is here-
after considered. To formally capture the requirement on p and q to be large, a
parameter b = b(λ) that specifies the bit-length of p and q is introduced.

Interpretation. There is some ambiguity as to how p and q are generated. The
interpretation (which follows how the algorithm would implemented in prac-
tice) of KeyGenRSA in the rest of the paper is first that there exists a PPT
primality-test algorithm PrimeTestW (λ, b, e, p) → ζ ∈ {0, 1} (parameter λ is fur-
ther omitted from its syntax) which tests whether an integer p is in W , b-bit
long and such that gcd(e, (p − 1)) = 1. Algorithm KeyGenRSA then generates,
uniformly at random, integers in [[2b−1, 2b−1]] until it finds an integer p such that
PrimeTestW (b, e, p) = 1, and continues until it finds a second one q �= p such
that PrimeTestW (b, e, q) = 1. If no such two integers are found in a specified
number of iterations TRSA(λ), the algorithm aborts and returns an invalid pair,
e.g., (0, 0). The random variable with values in {0, 1, 2} that counts the number
of distinct primes found in at most TRSA(λ) iterations is further denoted ctrRSA.

Protocol. We now describe our protocol, further denoted IKGRSA, to generate
RSA keys with verifiable randomness. The protocol is given in the random-oracle
model to allow for practical efficiency.

Building Blocks. The protocol builds on

– the same primality-test algorithm PrimeTestW as the one run by KeyGenRSA.
It is said to be δ-correct if with probability at most 1−δ, PrimeTestW (b, e, p) =
0 for p ∈ W ∩ [[2b−1, 2b − 1]] such that gcd(e, (p − 1)) = 1, or
PrimeTestW (b, e, p) = 1 for p /∈ W ∩[[2b−1, 2b−1]] or such that gcd(e, (p−1)) >
1 (i.e., it is an upper-bound on the probability that it returns a false negative
or a false positive)

– a random oracle of which the domain is separated to obtain pairwise inde-
pendent random oracles H , HC, HΠ and HΠW

– a commitment scheme C = (Setup,Com,ComVf) for the user algorithm to
commit to its random string before receiving any input from the CA. The
parameters returned by Setup are tacit inputs to C other algorithms.
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– a pseudo-random function PRF with range (non-empty) RPRF ⊆ N for U to
generate the RSA primes from the seed extracted with H

– an extractable non-interactive zero-knowledge (NIZK) argument system
ΠC = (Setup,Prove,Verf,Sim,Ext) for the relation {(C; r ′

U, d) : ComVf(C, r ′
U,

d) = 1} with random oracle HC, i.e., for the user to prove knowledge of an
opening to her committed randomness

– an extractable NIZK argument system Π = (Setup,Prove,Verf,Sim,Ext) with
random oracle HΠ for the relation

{(C, rCA, N, (aγ)γ �=i,j ; r ′
U, d, ai, aj) : ComVf (C, r ′

U, d) = 1, s = r ′
U ⊕ H(rCA),

∀γ ∈ [[j]] aγ = PRF(s, γ), 2b(λ)−1 ≤ ai, aj ≤ 2b(λ) − 1, N = aiaj in N

}
,

i.e., for the user to prove the RSA primes are really the first two primes
generated with the seed derived from the committed randomness and the
randomness of the CA. This relation is further denoted RΠ

– a NIZK argument system ΠW = (Setup,Prove,Verf,Sim) with random oracle
HΠW

for relation RW

– another pseudo-random function PRF′ with variable output length (encod-
ing in unary as last input) for U to generate the randomness necessary to
compute ΠC.Prove, PrimeTestW , Π.Prove and ΠW .Prove, as the only available
randomness to the parties are their input random bit strings.

Throughout the protocol, e is assumed (without loss of generality) to be a
fixed3, hard-coded value in U. For the sake of simplicity, e is further assumed to
be prime, e.g., e = 65537 (it is a value commonly used in practice).

Parameters. Given a security parameter 1λ and a function T : N → N>1 that
gives an upper bound on the number of iterations in Algorithm 1 (and thus the
running time of U), to generate parameters for IKGRSA, run ppC ← C .Setup

(
1λ

)
,

ppΠC ← ΠC.Setup
(
1λ

)
, ppΠ ← Π.Setup

(
1λ

)
and ppΠW

← ΠW .Setup
(
1λ

)
. Set

and return pp ← (
b(λ), T (λ), ppC , ppΠC , ppΠ, ppΠW

)
.

Formal Description. Consider the interactive protocol on Fig. 3 between a user
U and a certification authority CA. Each algorithm maintains acceptance and
termination variables accid and termid for id ∈ {U,CA} initially set to FALSE.
The party algorithms proceed as follows:

1. U applies the random oracle H twice to its randomness rU to compute
r ′
U ← H(0‖rU) and ρU ← H(1‖rU), commits to r ′

U with ρU as random
string. Next, a seed s ′ ← H(2‖rU) from which it derives the randomness
necessary to compute ΠC.Prove, and computes of proof of knowledge of an
opening to the commitment. U sends the commitment and the proof to CA

3 Alternatively, in the protocol on Fig. 3, after N is computed, U could continue to
generate pseudo-random values until it finds one that is coprime with ϕ(N) and
then sets it as e. Algorithm U would then also have to reveal the values that did not
satisfy this property and prove that they did not, and also to prove that the chosen e
and ϕ(N) are coprime. Assuming e to be fixed in advance avoids this complication.



116 O. Blazy et al.

2. CA, upon receiving the commitment and the proof from U, sets accCA ←
TRUE. It verifies the proof and if it holds, sends its randomness to U, and
otherwise returns ⊥ and sets termCA ← TRUE

3. U, upon receiving rCA from CA, sets accU ← TRUE. It extracts a seed s
with H from the joint randomness. It continues by generating by running(
(aγ)j

γ=1, i
)

← Algorithm 1.

Algorithm 1
Require: PrimeTestW , integers T, b, e, pseudo-random function PRF, seed s.
Ensure: Pseudo-random numbers aγ and integer i.
1: ctr , i, j ← 0
2: while ctr < 2 and j < T do
3: j ← j + 1; aj ← PRF(s, j)
4: if PrimeTestW (b, e, aj ;PRF(s, j)) then
5: if ctr = 0 then
6: i ← j
7: end if
8: ctr ← ctr + 1
9: end if

10: end while
11: if ctr < 2 then
12: return

(
(aγ)j

γ=1, ⊥
)

13: else
14: return

(
(aγ)j

γ=1, i
)

15: end if

(a) if i = ⊥ (i.e., Algorithm 1 did not find 2 primes such that
PrimeTestW (b, e, aj ;PRF(s, j)) = 1 in T iterations; this case is not

depicted on Fig. 3), U sends
(
rU, (aγ)j

γ=1

)
to CA, returns (0, 0) and

sets termU ← TRUE
(b) if i �= ⊥, U computes a proof π that it correctly performed its computation

with Π, and a proof πW that the RSA public key is in LW with ΠW .
After computing the proofs, U erases all variables but N , e, p, q, i, π,
πW and (aγ)γ �=i,j . It sends these latter to CA, except p and q, returns
(pkU ← (N, e), sk ← (p, q, e)), and sets termU ← TRUE

4a. CA, upon receiving
(
rU, (aγ)j

γ=1

)
from U, computes r ′

U, ρU and s as
U, computes (C′, d′) ← Com (r ′

U, ρU), and verifies that C′ = C and that
PRF(s, γ) = aγ for all γ ∈ [[j]]. If all verifications succeed, CA returns 0,
otherwise it returns ⊥. It sets termCA ← TRUE

4b. CA, upon receiving (N, e, π, πW , i, (aγ)γ �=i,j) from U, generates a seed s ′′

with H from its randomness, and uses it to generate the randomness neces-
sary to compute PrimeTestW . The resulting random string is denoted r′

W . It
verifies that for all γ ∈ [[j − 1]] \ {i}, PrimeTestW (b, e, aγ ; r′

W ) = 0, and that
π and πW are valid. If one of the verifications did not succeed, CA returns
⊥, otherwise it returns pkCA ← (N, e). It sets termCA ← TRUE.
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Fig. 3. RSA-Key Generation Protocol with Verifiable Randomness for an Arbitrary
Relation RW .

Discussion. U proves among other things that p and q are really the first two
random primes in W such that gcd(e, p − 1) = gcd(e, q − 1) = 1, and therefore
cannot have chosen primes with additional conditions to these. It is a subtle
but crucial aspect of the protocol which ensures that U cannot bias the distri-
bution of the keys; and not doing so is precisely what allowed for the ROCA
vulnerabilities [25] in which specific primes where chosen by the user algorithm.

Correctness and Indistinguishability. Let j be the number of iterations of Algo-
rithm 1. In the full version [6], we show that, if PrimeTestW is δ-correct and
if PRF′ is a secure PRF, IKGRSA is approximately (1 − j(1 − δ))-correct in
the random-oracle model w.r.t. the class of algorithms that make few oracle
queries compared to the min-entropy of the distributions they provide. More-
over, IKGRSA is indistinguishable from KeyGenRSA in the random oracle if C is
hiding and binding, if ΠC and Π are zero-knowledge and extractable, if ΠW is
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zero-knowledge and sound, if PRF and PRF′ are secure PRFs, if the probability
that Algorithm 1 fails although IKGRSA does not is small, and if the adver-
sary makes few random-oracle queries compared to the min-entropy of the test
distributions. Lastly, in [6], we also show that by tuning the running time of
Algorithm 1 depending on the number of primes in the range of PRF that sat-
isfy the conditions on p and q, the probability that Algorithm 1 fails although
IKGRSA does not is small.

5 Instantiation of the RSA-Key Generation Protocol

In this section, we instantiate the protocol of Sect. 4.2 for RSA key-generation
with verifiable randomness. To do so, we provide efficient instantiations for each
of the building blocks.

Recently, several important advancements have been made on the efficiency
of the commit-and-prove paradigm on committed values which combine algebraic
and non-algebraic statements [2,10,14]. These improvements for cross-domains
statements allow to prove efficiently for instance that some committed value
corresponds to a pre-image of some value of a given hash function such as SHA-
256 or that some value is the output of some non-algebraic PRF (i.e. HMAC-
SHA-256 or AES) using some committed key. To generate an RSA modulus of
3072 bits (for 128-bit security) using the generic protocol from Sect. 4.2, the
PRF must return 1536-bit integers and the use of non-algebraic PRF with the
technique from [2,10,14] would result in prohibitive schemes.

On this account, we present an instantiation based on an algebraic PRF,
namely the Dodis-Yampolskiy PRF, and use techniques [10] due to Bünz, Bootle,
Boneh, Poelstra, Wuille and Maxwell for range proofs and arithmetic-circuit
satisfiability to obtain short proofs of correct computation (i.e., Π in Sect. 4.2).

In the process, we give the first logarithmic-size (in the bit-length of the group
order) argument of knowledge of double discrete logarithms, and argument of
equality of a discrete logarithm in a group and a double discrete logarithm in
another related group. In contrast, the protocol of Camenisch and Stadler [12]
for the first relation, and the protocol of Chase et al. [14] for the second are
linear in the security parameter.

Parameters. We consider two related group-family generators GroupGen1 and
GroupGen2. Given a security parameter λ, to generate an RSA modulus which
is the product of two b(λ)-bit prime numbers, let � be the smallest prime of
binary length equal to b(λ) such that 2� + 1 is also a prime number (i.e., �
is a Sophie Germain prime number, or equivalently 2� + 1 is a b(λ) + 1-bit
safe prime). GroupGen2 returns, on input λ, the group G2 of quadratic residues
modulo 2�+1 (which is of prime order �). The group-family generator GroupGen1
returns on input λ some group G1 of prime order Λ such that � divides Λ − 1
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and Λ > (2� + 1)2. In practice4, G1 can be taken as a prime order subgroup Λ
of Z∗

r for some prime number r such that Λ divides r − 1.
The restriction to quadratic residues is necessary for assumptions like the

q-DDHI assumptions to hold over G2. However, it introduces a bias by design
(not from the user algorithm) in the RSA keys generated: p and q are necessarily
quadratic residues modulo 2� + 1. The reason is that the values returned by the
DY PRF are not actually integers but G2 elements. Nonetheless, it is already the
case for 1/4 of all RSA moduli since the factors p and q returned by KeyGenRSA.

Commitment Scheme. Scheme C is the Pedersen commitment scheme [27] in
G2 for the user to commit to her randomness and to the secret p and q.

Pseudo-Random Functions. PRF is the Dodis-Yampolskiy (DY) PRF (see
Sect. 2) in the group G2 = QR2�+1 of quadratic residues modulo 2� + 1. It is
used to generate the secret RSA primes p and q. Since 2� + 1 is b(λ) + 1 bits
long, p and q are b(λ) bits long with probability close to 1/2. The reason 2� + 1
is chosen to be one bit larger than p and q is to ensure that all primes of b(λ)
bits can be returned by the PRF so as not to introduce a bias. As for PRF′, it
can be any efficient pseudo-random function, e.g., HMAC [3].

Argument for RW . The argument system ΠW depends on the properties
that the prime factors of N must satisfy, e.g., they must be congruent to 3
modulo 4 or be safe primes. To prove that p = q = 3 mod 4, one can prove that
N is of the form prqs with p = q = 3 mod 4 using the protocol of van de Graaf
and Peralta [31], and run in parallel the protocol of Boyar et al. [9] to prove
that N is square-free. To prove that p and q are safe primes, there exist proof
systems in the literature such as Camenisch and Michel’s [11].

Besides, Goldberg et al. [19] recently built a protocol to prove that
gcd (e, φ(N)) = 1.

Argument of Correct Computation. The last component is an extractable
zero-knowledge argument system Π in the random-oracle model for the user
algorithm to prove that it correctly performed its computation, i.e., an argument
system for RΠ. Section 5.1 presents a perfectly honest-verifier zero-knowledge
interactive protocol for RΠ that is also extractable in the random-oracle model.

5.1 Zero-Knowledge Argument with the Dodis-Yampolskiy PRF

This section gives a zero-knowledge argument Π in the case of the DY PRF in
G2 = QR2�+1. Formally, let 2�+1 be a b(λ)+1-bit (i.e., b(λ)+1 = �log(2�+1)�+1)
safe prime (i.e., � is a Sophie Germain prime) and let Λ be a prime integer such
that � divides Λ − 1 and Λ > (2� + 1)2. Consider G1 = 〈G1〉 a group of prime
order Λ (in which p and q will be committed) and G2 = 〈G2〉 = QR2�+1 the
group of quadratic residues modulo 2� + 1, which is a cyclic group of order �.
Recall that the DY PRF is defined as the map (K,x) 	→ G

1/(K+x)
2 .

4 To generate RSA moduli which are products of two 1536-bit primes, one possible
instantiation for the Dodis-Yampolskiy PRF is to use � = 21535 + 554415 which is a
Sophie Germain prime, Λ = (4� + 18)� + 1 and r = 1572 · Λ + 1.
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Proof Strategy. To prove knowledge of a witness for the membership of
(C, rCA, N, (aγ)γ �=i,j) to the language relative to RΠ, the user algorithm com-
mits to p = ai and q = aj in G1 with the Pedersen commitment scheme and
respective randomness rp and rq. The commitments are denoted P and Q.

The user algorithm then proves knowledge of a witness for R0 ∩ R1, with

R0 := {(C, rCA, N, P,Q, (aγ)γ �=i,j ; r ′
U, ρu, ai, aj , rp, rq) :

ComVf(C, r ′
U, ρu) = 1, s = r ′

U + H(rCA) mod �

∀γ ∈ [[j]], aγ = PRF(s, γ),ComVf(P, ai, rp) = ComVf(Q, aj , rq) = 1}

and

R1 := {(C, rCA, N, P,Q, (aγ)γ �=i,j ; r ′
U, ρu, ai, aj , rp, rq) : ComVf(P, ai, rp) = 1

ComVf(Q, aj , rq) = 1, 2b(λ)−1 ≤ ai, aj ≤ 2b(λ) − 1, N = aiaj in N

}
.

To prove knowledge of a witness for relation R, it then suffices to prove in
parallel knowledge of a witness for R0 and of a witness for R1 on the same public
inputs. Note that the binding property of the Pedersen commitment scheme in
G1 (relying on the DLOG assumption) guarantees that the ai and aj values used
in both proofs are the same (up to a relabeling).

Relation R0. We start by giving two preliminary protocols:

– a logarithmic-size zero-knowledge argument of knowledge of a double-discrete
logarithm (Sect. 5.2) using Bulletproof techniques [10]. The resulting proofs
are of size logarithmic in the bit-length of the group order. In comparison,
the protocol of Camenisch and Stadler [12] has proofs of size linear in the
security parameter

– a logarithmic-size argument of equality of a discrete logarithm in a group and
a double discrete logarithm in another related group (Sect. 5.2). In contrast,
the protocol of Chase et al. [14, Section 4.3] for this relation uses the tech-
niques of Camenisch and Stadler and therefore has proofs of size linear in the
security parameter.

We then combine the latter proof with the proof in Sect. 5.3 to obtain a proof
for relation R0.

Relation R1. The aggregated logarithmic range proof of Bünz et al. [10,
Section 4.2] is sufficient to prove that the values committed in P and Q modulo
Λ are in [[2b−1, 2b −1]] (which is equivalent to proving that the values committed
in PG−2b−1

1 and QG−2b−1

1 are in
{
0, . . . , 2b−1 − 1

}
). With the hypotheses on the

parameters Λ and �, the verifier is convinced that the equation N = aiaj holds
in N. Indeed, the equation N = aiaj mod Λ implies that there exists m ∈ Z

such that N = aiaj + mΛ. Integer m cannot be strictly positive as otherwise N
would be strictly greater than Λ. Besides, m cannot be strictly negative since
Λ > (2� + 1)2 > aiaj ; it is therefore nil and the equation N = aiaj holds in N.
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5.2 Logarithmic-Size Argument of Double Discrete Logarithm

This section gives a zero-knowledge argument with logarithmic communication
size for proving knowledge of a double discrete logarithm. It uses as a sub-
argument the logarithmic-size inner-product argument for arithmetic-circuit sat-
isfiability of Bünz et al. [10, § 5.2], which is complete, perfectly honest-verifier
zero-knowledge, and satisfies witness-extended emulation.

Following the ideas of Bootle et al. [8], Bünz et al. convert any arithmetic
circuit with n multiplications gates into a Hadamard product aL ◦aR = aO and
Q ≤ 2n linear constraints of the form

〈wL,q,aL〉 + 〈wR,q,aR〉 + 〈wO,q,aO〉 = cq

for q ∈ [[Q]], with wL,q,wR,q,wO,q ∈ Z
n
p and cq ∈ Zp. The vectors aL, aR

respectively denote the vectors of left and right inputs to the multiplications
gates, and aO the vector of outputs. The linear constraints ensure the consistency
between the outputs and the inputs of two consecutive depth levels of the circuit.
Bootle et al. [8, App. A] give a general method to find such linear constraints,
though it may not always result in the most compact ones for a specific circuit.

Bünz et al. actually give an argument for a more general relation which
includes Pedersen commitments of which the openings are included in the linear
consistency constraints. Concretely, given a group G of prime order p and positive
integers n, m and Q, Bünz et al. give a zero-knowledge argument for the relation

{(g, h ∈ G,g,h ∈ G
n,V ∈ G

m,WL,WR,WO ∈ Z
Q×n
p ,WV ∈ Z

Q×m
p ,

c ∈ Z
Q
p ;aL,aR,aO ∈ Z

n
p ,v, γ ∈ Z

m
p

)
: Vj = gvj hγj ∀j ∈ [[m]]

∧aL ◦ aR = aO ∧ WLaL + WRaR + WOaO = WV v + c} .

Its soundness relies on the discrete-logarithm assumption over the generator of
G and the prover sends 2�log2 n� + 8 group elements and 5 Zp elements.

The main difficulty in the case of a proof of a double discrete logarithm
relation is to re-write the problem in a way that is suitable to apply the proof
for arithmetic circuits. The goal is to give a zero-knowledge argument for:

R2DLOG :=
{

(G1,H1, G2, Y ;x ∈ Z�, r ∈ ZΛ) : Y = G
Gx

2
1 Hr

1

}
.

First, let n(λ)+1 := b(λ) be the bit-length of �. Given the bit representation

(xi)n
i=0 of x, Gx

2 = G
∑n

i=0 xi2
i

2 =
∏

i

(
G2i

2

)xi

. An important observation is that

for xi ∈ {0, 1},
(
G2i

2

)xi

= xiG
2i

2 + (1 − xi) = xi

(
G2i

2 − 1
)

+ 1. The addition
here is over ZΛ, although the notation is purely formal since xi ∈ {0, 1}. It thus
follows that an argument for R2DLOG is equivalent to an argument for:

{

(G1,H1, G2, Y ; (xi)n
i=0 ∈ {0, 1}n, r ∈ ZΛ) : Y = G

∏
i

(
xi

(
G2i

2 −1
)
+1

)

1 Hr
1

}

,
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which is also equivalent to an argument for:
{

(G1,H1, G2, Y ; (ai)n
i=0, r ∈ ZΛ) : Y = G

∏
i ai

1 Hr
1 ∧ ai ∈

{
1, G2i

2

}}
.

To this end, consider the following array

a0 a1 a2 · · · an

1 a0 a0a1 · · · a0a1 · · · an−1

a0 a0a1 a0a1a2 · · · a0 · · · an.

Notice that its third row is the product of the first two. In other words, if
a ← (a0, a1, . . . , an) ∈ Z

n+1
Λ and b ← (b0 = a0, b1 = a0a1, . . . , bn−1 =

a0a1 · · · an−1) ∈ Z
n
Λ, then a ◦ (1 b) = (b y) for y := Gx

2 .

Moreover, for aL :=
[
a a − 1n+1

]T , aR :=
[
1 b a − G2n+1

2

]T

and aO :=
[
b y 0n+1

]T ∈ Z
2(n+1)
Λ where G2n+1

2 denotes the vector
(
G2, G

2
2, G

22

2 , . . . , G2n

2

)
,

one has aL ◦ aR = aO. If one can prove knowledge of scalars y, r ∈ ZΛ and
of vectors aL, aR and aO such that Y = Gy

1H
r
1 and aL ◦ aR = aO, and

such that the vectors are of the form above, then one can prove knowledge
of (ai)n

i=0 ∈ ∏
i

{
1, G2i

2

}
and (bi)n−1

i=0 such that y = anbn−1 = anan−1bn−2 =

· · · = anan−1 · · · a1b0 = an · · · a0 and Y = Gy
1H

r
1 . That is to say, one can prove

knowledge of a double discrete logarithm.
To prove such a relation, one can use the argument of Bünz et al. [10]

for arithmetic circuits with the right linear constraints to ensure that the
vectors are of the appropriate form. To express these constraints, consider
matrices WL, WR, WO and WV from Fig. 4 and vectors vT :=

[
1 y

]
,

cT :=
[
01×(n+2) 1n+1 G2n+1

2 01×(n+1)

]
.

Three vectors aL, aR and aO ∈ Z
2(n+1)
Λ satisfy the equation WLaL+WRaR+

WOaO = WV v + c if and only if there exists a ∈ Z
n+1
Λ and b ∈ Z

n
Λ such that

aT
L :=

[
a a − 1n+1

]
, aT

R :=
[
1 b a − G2n+1

2

]
and aT

O :=
[
b y 0n+1

] ∈ Z
2(n+1)
Λ

(see [6]).
The argument of Bünz et al. is therefore sufficient to prove in zero-knowledge

knowledge of a double discrete logarithm. The soundness of the proof relies on
the discrete-logarithm assumption over G1.

Regarding the proof size, the prover sends (2�log2 2(n + 1)� + 8)G1 elements
and 5ZΛ elements. Notice that the argument of Bünz et al. requires 4(n + 1)
elements of G∗

1 in addition to G1 and H1. To guarantee its soundness, no discrete
logarithm relation between these elements, G1 and H1 must be known to the
prover. They can then be choosen uniformly at random during set-up.

Logarithmic-Size Argument of Discrete Logarithm and Double Dis-
crete Logarithm Equality. Building on the argument of double discrete loga-
rithm of Sect. 5.2, we present in [6] a a zero-knowledge argument for the relation
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Fig. 4. Matrices WL, WR, WO and WV for the proof of double discrete logarithm.
Un+1 denotes the square n+1-matrix with 1 on the upper diagonal. En×m(i, j) denotes
the n × m matrix with 1 at position (i, j) and 0 elsewhere.

RDLOG−2 := {(G1,H1, G2,H2, Y,X;x ∈ Z�, r1, r2 ∈ ZΛ) : Y = G
Gx

2
1 Hr1

1 ,X
= Gx

2Hr2
2 } . In total, the prover sends 2 �log2 4(n + 1)� + 8G1 elements and 5ZΛ

elements.

5.3 An Intermediate Protocol in G2

This section gives an perfect honest verifier zero-knowledge protocol for relation

R′
0 := {(G2,H2,Xp,Xq, U,Ku, (Kγ)γ �=i,j , (aγ)γ ;xp, xq, rp, rq, u, ρu) :

∀π ∈ {p, q},Xπ = Gxπ
2 Hrπ

2 , U = Gu
2Hρu

2 ,

∀γ, aγ = G
xγ

2 , xπ(u + Kπ) = xγ(u + Kγ) = 1 mod �
}

.

Note that for π ∈ {p, q},
(
UGKπ

2

)xπ

H−xπρu

2 = G2, and that ∀γ, au
γ = G2a

−Kγ
γ ,

i.e., the discrete logarithms of G2a
−Kγ
γ in base aγ for all γ are the same.

The protocol is given on Fig. 5). As the proof system is public-coin,
it can be made non-interactive in the random-oracle model via the Fiat-
Shamir heuristic by computing c as H(G2,H2, (Xπ), U, (Kπ), (Kγ)γ , (aγ)γ ,
(Yπ), V, (Hπ), (Aγ)) for a random oracle H with Z� as range. The proof then
consists of (c, (zπ, tπ)π∈{p,q}, w, τu, (τπ)π), i.e., 9Z� elements.

The protocol is complete, perfectly honest-verifier zero-knowledge, and sat-
isfies witness-extended emulation under the discrete logarithm assumption over
G2. The protocol completeness and its zero-knowledge property are straightfor-
ward.

See the full version [6] for the proof of the witness-extended-emulation.

5.4 Protocol for R0

To prove knowledge of a witness for R0, the prover starts setting by setting
Kp := H(rCA) + i, Kq := H(rCA) + j, and u := r ′

U. It then

– computes two commitments Xp = G
xp

2 H
rp

2 and Xq = G
xq

2 H
rq

2 , for xp =
(u + Kp)−1 mod � and xq = (u + Kq)−1 mod �

– computes a proof πDLOG−2,p that the double discrete-logarithm of P is the
discrete logarithm of Xp, and similarly a proof πDLOG−2,q for Q and Xq



124 O. Blazy et al.

Fig. 5. Honest-verifier zero-knowledge protocol for relation R1.

– computes a proof π′ for relation R′
0 with Xp and Xq.

The final proof π0 for R0 consists of (Xp,Xq, πDLOG−2,p, πDLOG−2,q, π
′
0).

Security. It is important to note that the security of the generated key is weak-
ened compared to an RSA-key of the same size since the CA can recover seed s
(and thus the prime factors) by solving a discrete logarithm problem in G2. For
3072-bit RSA moduli, this protocol therefore only provides 96 bits of security
(with respect to the CA) instead of the expected 128-bit security level. To avoid
this issue, one can increase the bit size of the prime numbers to 3072 bits (but at
the cost of generating RSA moduli of twice this size). Another possibility is to
use other groups for G2 with (alleged) harder discrete logarithm problem, e.g.,
the group of points of an elliptic curve over Fp or an algebraic torus defined over
Fp2 (with compact representation of group elements in Fp) for a 1536-bit prime
p. This may however introduce a new bias for the generated primes and require
to adapt the zero-knowledge proofs.

Efficiency. The asymptotic complexity of the communication size depends on
the number of trials to obtain two primes in W since the prover has to send
(aγ)γ �=i,j . However, even though the communication is asymptotically linear in
the number of trials, the overhead incurred by the proof of correct computation
should in practice be small.

Fig. 6. Size of the arguments (for a 96-bit security level and 3072-bit RSA moduli).
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Total Proof Size. As discussed in Sect. 5.2, proofs πDLOG−2,p and πDLOG−2,q

both consists of 2 �log2 4(n + 1)� + 8G1 elements and 5ZΛ elements.
Proof π′ consists of 9Z� elements (see Sect. 5.3). Proof π0 for R0 therefore

consists of 2G2 elements, 4 �log2 4(n + 1)� + 16G1 elements, 10ZΛ elements and
9Z� elements. As for the proof for R1, the aggregated proof that 2 values com-
mitted in G1 are in [[0, 2b−1−1]] consists of 2�log2 2(b−1)�+4G1 elements (recall
that n + 1 = b) and 5ZΛ elements.

Running Time. An important question about the protocol is the number of
necessary PRF trials to obtain two primes that satisfy the conditions required for
the factors of N (captured by W ⊆ P). We estimate the number j of necessary
trials in the case W = P ∩ [[2b−1, 2b − 1]], i.e., when U simply has to prove that
p and q are prime of b(λ) bits.

The full version [6] shows (using a number-theoretic heuristic) that the num-
ber of trials exceeds 17b(λ) = O(log λ) (so the DY PRF remains secure), and
that the probability that it is larger than that decreases exponentially fast.

Overall Communication Size. In the last flow of the protocol, the prover
then sends an integer N , two commitments in G1, 17b(λ) − 2 integers in [[0, 2�]]
with high probability, i.e., the (aγ)γ �=i,j values which are integers returned by
the PRF and not in W , and the proof of correct computation of which the size
is summarized in Table 6.
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Abstract. The Naor-Yung paradigm is a well-known technique that
constructs IND-CCA2-secure encryption schemes by means of non-
interactive zero-knowledge proofs satisfying a notion of simulation-
soundness. Until recently, it was an open problem to instantiate it under
the sole Learning-With-Errors (LWE) assumption without relying on ran-
dom oracles. While the recent results of Canetti et al. (STOC’19) and
Peikert-Shiehian (Crypto’19) provide a solution to this problem by apply-
ing the Fiat-Shamir transform in the standard model, the resulting con-
structions are extremely inefficient as they proceed via a reduction to
an NP-complete problem. In this paper, we give a direct, non-generic
method for instantiating Naor-Yung under the LWE assumption outside
the random oracle model. Specifically, we give a direct construction of an
unbounded simulation-sound NIZK argument system which, for carefully
chosen parameters, makes it possible to express the equality of plaintexts
encrypted under different keys in Regev’s cryptosystem. We also give a
variant of our argument that provides tight security. As an application,
we obtain an LWE-based public-key encryption scheme for which we can
prove (tight) key-dependent message security under chosen-ciphertext
attacks in the standard model.

Keywords: LWE · Standard model · Naor-Yung · NIZK arguments ·
Simulation-soundness · KDM-CCA2 security · Tight security.

1 Introduction

The Fiat-Shamir transformation [43] is a well-known technique that turns any 3-
move honest-verifier zero-knowledge proof system (a.k.a. Σ-protocol [36]) into a
non-interactive zero-knowledge proof (NIZK) by replacing the verifier’s challenge
by a hash value of the transcript so far. Bellare and Rogaway [11] showed that
this approach is secure if the underlying hash function is modeled as a random
oracle. Since then, the Fiat-Shamir heuristic has been used in the design of
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countless cryptographic schemes, including digital signatures [78] and chosen-
ciphertext-secure public-key encryption schemes [44]. In the standard model,
however, counter-examples [49] showed that it may fail to guarantee soundness.
Until recently, it was not known to be securely instantiable without random
oracles under any standard assumption. This situation drastically changed with
the works of Canetti et al. [26] and Peikert and Shiehian [76], which imply
the existence of Fiat-Shamir-based NIZK proofs for all NP languages under the
sole Learning-With-Errors (LWE) assumption [79]. Their results followed a line
of research [25,27,82] showing that Fiat-Shamir can provide soundness in the
standard model if the underlying hash function is correlation intractable (CI).
In short, correlation intractability for a relation R captures the infeasibility of
finding an x such that (x,Hk(x)) ∈ R given a random hashing key k. Intuitively,
the reason why this property provides soundness is that a cheating prover’s
first message cannot be hashed into a verifier message admitting an accepting
transcript, except with negligible probability.

While [26,76] resolve the challenging problem of realizing NIZK proofs for all
NP under standard lattice assumptions, they leave open the question of building
more efficient instantiations of Fiat-Shamir for specific languages, such as those
arising in the context of chosen-ciphertext security [44,75,80].

In order to instantiate the Naor-Yung paradigm of CCA2-secure encryp-
tion [75] in the lattice setting, the only known solution is to proceed via a general
NP reduction to graph Hamiltonicity and apply the Σ-protocol of Feige, Lapidot
and Shamir [42] with the modifications suggested by Canetti et al. [26,30]. In
addition, a direct application of [26,30,76] to CCA2 security requires to apply
the generic compiler of [39] that turns any NIZK proof system into simulation-
sound [80] proofs. Here, we consider the problem of more efficiently instantiating
Naor-Yung in the standard model under lattice assumptions. Using correlation
intractable hash functions, our goal is to directly construct simulation-sound
arguments of plaintext equality without using generic techniques.

1.1 Our Contributions

We describe the most efficient post-quantum realization of the Naor-Yung
paradigm so far and its first non-trivial instantiation under lattice assumptions.
As an application, we obtain the most efficient public-key encryption scheme
providing key-dependent message security under chosen-ciphertext attacks (or
KDM-CCA2 security for short) under the standard Learning-With-Errors (LWE)
assumption [79]. Our scheme is not the result of merely combining generic NIZK
techniques [39,80] with the results [26,30,76] on NIZK proofs based on corre-
lation intractable hash functions. In particular, we bypass the use of a Karp
reduction to the graph Hamiltonicity language [26,30,42]. Instead, as a key
building block, we directly build a simulation-sound NIZK proof system show-
ing that two dual Regev ciphertexts [46] are encryptions of the same plaintext.

As a result of independent interest, we also obtain a multi-theorem NIZK
argument system without using the Feige-Lapidot-Shamir (FLS) transforma-
tion [42]. Recall that the FLS compiler constructs a multi-theorem NIZK proof
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system for an NP language from a single-theorem NIZK proof system by using
the latter to prove OR statements of the form “either element x is in the lan-
guage OR some CRS component is in the range of a pseudorandom generator”.
Unlike FLS, our multi-theorem NIZK argument avoids the non-black-box use of
a PRG. Another advantage is that it provides multi-theorem statistical NIZK
in the common random string model while proving soundness under the LWE
assumption. In contrast, achieving statistical multi-theorem NIZK by applying
FLS to [30,76] requires a common reference string sampled from a non-uniform
distribution.

We further show that our argument system provides unbounded (as opposed
to one-time [80]) simulation-soundness (USS) [39], meaning that the adversary
remains unable to prove a false statement, even after having seen simulated
arguments for polynomially many (possibly false) statements. This makes our
argument system suitable to prove KDM-CCA2 security by applying the Naor-
Yung technique to the KDM-CPA system of Applebaum, Cash, Peikert, and
Sahai (ACPS) [6], which is known to provide key-dependent message security
for affine functions. In addition, we provide a variant of our USS argument
that can be proved tightly secure, meaning that the reduction’s advantage is
not affected by the number of simulated proofs obtained by the adversary. The
simulation-soundness property is indeed tightly related to the security of the
underlying pseudorandom function. By exploiting a result of Lai et al. [64], it
can be combined with a tightly secure lattice-based PRF so as to instantiate our
scheme with a polynomial modulus.

Our first simulation-sound NIZK argument implies a public-key encryption
(PKE) scheme providing KDM-CCA2 security under the LWE assumption with
polynomial approximation factors. Our second NIZK argument yields an instan-
tiation that enjoys tight KDM-CCA2 security. Until recently, this was only pos-
sible under an LWE assumption with large approximation factors for lack of a
tightly secure low-depth lattice-based PRF based on an LWE assumption with
polynomial inverse-error rate. Lai et al. [64] recently showed that many tightly
secure LWE-based schemes (e.g., [17,18,67]) can actually be obtained using a
PRF outside NC1 without going through Barrington’s theorem [9]. Their tech-
nique [64] applies to our setting and ensure that any (possibly sequential) PRF
with a tight security reduction from LWE with polynomial modulus and inverse-
error rate allows instantiating the scheme under a similarly standard assumption.

Recall that KDM security is formalized by an experiment where the adver-
sary obtains N public keys. On polynomially many occasions, it sends encryp-
tion queries (i, f), for functions f ∈ F belonging to some family, and expects
to receive an encryption of f(SK1, . . . , SKN ) under PKi. Security requires the
adversary to be unable to distinguish the real encryption oracle from an oracle
that always returns an encryption of 0. Our KDM-CCA2 construction supports
the same function family (namely, affine functions) as the KDM-CPA system it
builds on. However, like previous LWE-based realizations [4,6], it can be boot-
strapped using Applebaum’s technique [5] so as to retain KDM security for
arbitrary functions that are computable in a priori bounded polynomial time.
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We believe our LWE-based instantiation of Naor-Yung to be of interest
beyond KDM security. For example, it makes possible to publicly recognize
ciphertexts that correctly decrypt, which is a rare feature among LWE-based
schemes and comes in handy in the threshold decryption setting (see, e.g., [44]).
It can also be used to obtain chosen-ciphertext security in settings – such as inner
product functional encryption [1,3] or receiver selective-opening security [54] –
for which we do not know how to apply the Canetti-Halevi-Katz technique [29].

1.2 Technical Overview

Our starting point is a trapdoor Σ-protocol [26,30] allowing to prove the
well-formed of ciphertexts in the KDM-CPA system of Applebaum et al. [6].
Namely, it allows proving that a given vector c = (u, u) ∈ Z

n+1
q is of the

form (u,u�s + μ�q/p� + noise), where μ ∈ Zp is the message, s ∈ Z
n is the

secret key and the public key is (A,b = A�s + noise) ∈ Z
n×m
q × Z

m
q for some

m = Ω(n · log q). Recall that a standard Σ-protocol [35,36] is a 3-move protocol
with transcripts of the form (a,Chall, z) where Chall is the verifier’s challenge
and messages a and z are sent by the prover. In the common reference string
model, a trapdoor Σ-protocol [26,30] has the property that, for any statement
x outside the language L and any first message a sent by the prover, a trap-
door makes it possible to determine the unique challenge Chall for which a valid
response z exists. There is an efficiently computable function BadChallenge that
takes as input a trapdoor τ , a false statement x �∈ L, and a first prover message
a, and computes the unique Chall such that there exists an accepting transcript
(a,Chall, z) (that is, there is no accepting transcript of the form (a,Chall′, z) for
any Chall′ �= Chall).

Our first observation is that, in order to preserve the soundness of Fiat-
Shamir, it suffices for a trapdoor Σ-protocol to have a BadChallenge function
that outputs “if there is a bad challenge at all for a, it can only be Chall”.
Indeed, false positives do not hurt soundness as we only need the CI hash func-
tion to sidestep the bad challenge whenever it exists. Based on this observation,
we can build a trapdoor Σ-protocol showing that a Regev ciphertext c ∈ Z

n+1
q

encrypts 0. Letting Ā = [A� | b]� ∈ Z
(n+1)×m
q , this can be done using by show-

ing knowledge of a short r ∈ Z
m such that c = Ā · r. In Σ-protocols like [70,71],

the verifier accepts transcripts (a,Chall, z) such that a+Chall·c = Ā ·z if z ∈ Z
m

is short enough. Since the right-hand side member of the verification equation
is an encryption of 0, the BadChallenge function can use the decryption key s to
infer that no valid response exists for the challenge Chall = b when a+ b · c does
not decrypt to 0.

The next step is to argue that c encrypts an arbitrary μ ∈ Zp. To this
end, we exploit the fact the KDM-CPA scheme of [6] uses a square modulus
q = p2 when we compute part of the response zμ = ru + Chall · μ mod p over Zp,
while using a uniform mask ru ∈ Zp to hide μ ∈ Zp as in standard Schnorr-like
protocols [81]. Now, the BadChallenge function can output Chall = 1 − b if it
detects that a + b · c is not of the form (u,u�s + zμ · p + noise), for some
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zμ ∈ Zp. Indeed, this rules out the existence of a short enough z ∈ Z
m such that

a + b · c = Ā · z + zμ · [0n�|p]� with zμ ∈ Zp. The above technique extends into
a trapdoor Σ-protocol for proving plaintext equalities in the ACPS cryptosys-
tem [6]. Our instantiation of Naor-Yung thus requires to work with LWE over a
composite modulus q and we leave it as an open problem to extend it to prime
moduli.

The main difficulty, however, is to turn the aforementioned trapdoor Σ-
protocol into a non-interactive proof system with unbounded simulation-
soundness. This problem is non-trivial since the Canetti et al. protocol [26,30] is
not known to satisfy this security notion1. The NIZK simulator of [26,30] gen-
erates simulated proofs by “programming” the CI hash function from which
the verifier’s challenge is derived. In the context of unbounded simulation-
soundness [39,80], we cannot proceed in the same way since the simulator would
have to program the hash function for each simulated proof (and thus for each
challenge ciphertext in the proof of KDM-CCA2 security). Since the number of
simulated proofs is not a priori bounded, it is not clear how to do that using a
hashing key of length independent of the number of adversarial queries.

Our solution to this problem is inspired by the modification introduced
by Canetti et al. [26,30] in the Feige-Lapidot-Shamir protocol [42]. In [30,
Section 5.2], the first prover message a is computed using a lossy encryption
scheme [10] instead of an ordinary commitment. Recall that, depending on the
distribution of the public key PK, a lossy encryption scheme behaves either
as an extractable non-interactive commitment or a statistically-hiding commit-
ment. The extractable mode is used to prove the soundness property (by using
the secret key SK corresponding to PK to compute the BadChallenge func-
tion) while the statistically hiding mode allows proving zero-knowledge. Our
unbounded simulation-sound proof system exploits the observation made by Bel-
lare et al. [10] that specific lossy encryption schemes admit an efficient opening
algorithm. Namely, ciphertexts encrypted under a lossy public key can be equiv-
ocated in the same way as a trapdoor commitment using the lossy secret key
SK. This suggests that, if the protocol of Canetti et al. [26,30] is instantiated
using a lossy encryption scheme with efficient opening, we can use a strategy
introduced by Damg̊ard [38] to simulate NIZK proofs without programming the
CI hash function. Namely, the simulator can generate the first prover message
as a lossy encryption of 0. When receiving the verifier’s challenge Chall, it can
run the HVZK simulator to obtain (a, z) before using the lossy secret key SK
to explain the lossy ciphertext as an encryption of the simulated a. By doing
this, we also obtain a multi-theorem NIZK argument without using the FLS
transformation [42] and without using any primitive in a non-black-box way.
The language of the underlying trapdoor Σ-protocol is exactly the same as that
of the multi-theorem NIZK argument, so that, if the former is efficient, so is the
latter.

1 It can be generically achieved using NIZK for general NP relations [39] but our goal
is to obtain a more efficient solution than generic NIZK techniques. In fact, even
one-time simulation-soundness is not proven in [26,30].
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However, standard lossy encryption schemes with efficient opening do not
suffice to prove unbounded simulation-soundness: We do not only need to equiv-
ocate lossy ciphertexts in all simulated proofs, but we should also make sure
that the adversary’s fake proof is generated for a statistically binding (and even
extractable) commitment. For this reason, we rely on a lossy encryption flavor,
called R-lossy encryption by Boyle et al. [19], where a tag determines whether
a ciphertext is lossy or injective. The public key is generated for a computation-
ally hidden initialization value K ∈ K and ciphertexts are encrypted under a tag
t ∈ T . If R ⊂ K×T is a binary relation, the syntax of R-lossy encryption [19] is
that a ciphertext encrypted for a tag t ∈ T is injective if R(K, t) = 1 and lossy
otherwise. For our purposes, we need to enrich the syntax of R-lossy encryption
in two aspects. First, we require lossy ciphertexts to be efficiently equivocable
(i.e., the secret key SK should make it possible to find random coins that explain
a lossy ciphertext as an encryption of any target plaintext). Second, in order to
simplify the description of our NIZK simulator, we need the syntax to support
lossy/injective tags and lossy/injective keys. When the public key PK is lossy,
all ciphertexts are lossy, no matter which tag is used to encrypt. In contrast,
injective public keys lead to injective ciphertexts whenever R(K, t) = 1. Our
NIZK simulator actually uses lossy public keys while injective keys only show
up in the proof of simulation-soundness.

We then construct an R-lossy encryption scheme for the bit-matching rela-
tion (i.e., RBM(K, t) = 1 if and only if K and t agree in all positions where K
does not contain a “don’t care entry”) under the LWE assumption. The scheme
can be viewed as a combination of the primal Regev cryptosystem [79] – which is
known [77] to be a lossy PKE scheme and is easily seen to support efficient open-
ings as defined in [10] – with the lattice trapdoors of Micciancio and Peikert [74].
An injective public key consists of a matrix A ∈ Z

n×m
q with short vectors in its

row space. In order to encrypt μ ∈ {0, 1}n0 under a tag t, we sample a short
Gaussian r ∈ Z

2m and compute c = [A | A · Rt + (1 − R(K, t)) · G] · r + [0 |
μ · �q/2�]�, for some small-norm Rt ∈ Z

m×m, where G ∈ Z
n×m
q is the gadget

matrix of [74]. In each lossy tag, we have R(K, t) = 0, in which case the matrix
Rt can be used as a trapdoor (using the techniques of [2,74]) to sample a Gaus-
sian r ∈ Z

2m that explains c as an encryption of any arbitrary μ ∈ {0, 1}n0 . In
injective tags, we have R(K, t) = 1, so that the gadget matrix vanishes from the
matrix At = [A | A ·Rt +(1−R(K, t)) ·G]. Since A has short vectors in its row
space, so does At and we can thus use these short vectors to recover μ from c
exactly as in the primal Regev cryptosystem. When the public key PK is lossy,
the matrix A is replaced by a statistically uniform matrix over Z

n×m
q . We can

then use a trapdoor for Λ⊥(A) to equivocate lossy ciphertexts for any arbitrary
tag.

Our USS argument system uses our R-lossy encryption scheme – with the
standard trick of using the verification key of a one-time signature as a tag –
to compute the first prover message a by encrypting the first message a′ of a
basic trapdoor Σ-protocol. In the security proof, we have a noticeable probabil-
ity that: (i) For all adversarially-chosen statements, proofs can be simulated by
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equivocating lossy ciphertexts; (ii) When the adversary comes up with a proof
of its own, the underlying commitment is an injective ciphertext. If these con-
ditions are fulfilled, we can annihilate the adversary’s chance of proving a false
statement by using a hash function which is statistically CI for the relation that
evaluates the BadChallenge function on input of the decryption of an R-lossy
ciphertext.

At a high-level, our simulation-sound proof system bears similarities with
interactive proof systems described by MacKenzie and Yang [72]. Our exten-
sion of R-lossy encryption resembles their notion of simulation-sound trapdoor
commitments. The difference is that, while [72] only requires commitments to
be computationally binding for tags that have never been equivocated, we need
adversarially-chosen tags to be extractable.

Our first USS argument system does not provide tight security because it
relies on admissible hash functions [14] to partition the tag space of the R-
lossy PKE scheme into two disjoint subspaces (which contain equivocable and
extractable tags, respectively). In order to obtain tight simulation-soundness,
our second USS argument partitions the tag space of an R-lossy PKE scheme
using a pseudorandom function instead of an admissible hash function. For this
purpose, we build an R-lossy PKE scheme for a relation RPRF induced by a
PRF family. Analogously to [55], we consider tags t = (tc, ta) consisting of an
auxiliary component ta (which can be an arbitrary string) and core component
tc. The PRF-induced relation RPRF is then defined as RPRF(K, (tc, ta)) = 1 if
and only if tc �= PRFK(ta), where K is the PRF secret key. Our RPRF-lossy
PKE then proceeds as in [67] and uses a public key containing Gentry-Sahai-
Waters encryptions [47] Ai = A · Ri + ki · G of the bits of K. To encrypt
μ ∈ {0, 1}n0 under a tag t = (tc, ta), the encryptor first homomorphically com-
putes AF,t = A · Rt + (1 − RPRF(K, t)) · G before sampling a short Gaus-
sian r ∈ Z

2m and computing c = [A | AF,t] · r + [0 | μ · �q/2�]�. In the
proof of simulation-soundness, the reduction simulates all arguments by “adap-
tively programming” all tags t = (PRFK(ta), ta) to ensure equivocability. At the
same time, the adversary can only output an argument on an extractable tag
t� = (t�c , t

�
a), where RPRF(K, t�) = 1, unless it can predict t�c = PRFK(t�a).

1.3 Related Work

Fiat-Shamir in the Standard Model. The Fiat-Shamir methodology was
shown [49] not to be sound in the standard model in general. Known negative
results (see [12,49] and references therein) nevertheless left open the existence
of secure instantiations of the paradigm when specific protocols are transformed
using concrete hash functions. Of particular interest is the notion of correla-
tion intractable hash function [28], which rules out specific relations between an
input and its hash value. It was actually shown [52] that correlation intractabil-
ity for all sparse relations2 suffices to ensure soundness as long as the underlying

2 A relation R ⊂ X × Y is sparse if, for a given x ∈ X , the fraction of y ∈ Y for which
(x, y) ∈ R is negligible.
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protocol is statistically sound. A recent line of work [25,27,58,82] focused on
the design of correlation intractable hash functions leading to sound instanti-
ation of Fiat-Shamir in the standard model. Canetti et al. [26] showed that
it is actually sufficient to obtain correlation intractable hash families for effi-
ciently searchable relations (i.e., where each x has at most one corresponding
y, which is computable within some polynomial time bound). This opened the
way to CI hash candidates based on more established assumptions like the cir-
cular security of fully homomorphic encryption (FHE) schemes [30]. Peikert and
Shiehian [76] recently gave an elegant FHE-based solution relying on the hard-
ness of the LWE problem [79] with polynomial approximation factors. While
specific to the Gentry-Sahai-Waters (GSW) FHE [47], their construction does
not require any non-standard circular security assumption. Together with the
techniques of [26,30], it implies NIZK for all NP languages.

In [26,30], Canetti et al. showed that, besides the language of Hamiltonian
graphs considered in [42], trapdoor Σ-protocols also exist for other languages like
that of quadratic residues modulo a composite integer [48]. Using the CI hash
function of [76], they thus obtained a NIZK proof for the Quadratic Residuosity
language under the LWE assumption. Choudhuri et al. [32] showed that the hash
families of [26] make the transformation sound for the sumcheck protocol.

Multi-theorem NIZK. Several multi-theorem NIZK constructions are avail-
able in the literature (see, e.g., [31,40,42,50]). Under the LWE assumption, all
solutions so far either rely on the FLS transformation [34,76] – thus incurring
proofs of OR statements via non-black-box techniques – or restrict themselves
to the designated verifier setting [34,68]. While the meta-proof approach of De
Santis and Yung [40] provides an alternative to FLS, it makes non-black-box use
of a single-theorem proof system for an NP-complete language. Our construction
uses a single-theorem argument for the same language as the one for which we
need a multi-theorem argument. Hence, if the former is efficient, so is the latter.

KDM Security. This security notion was first formalized by Black, Rogaway
and Shrimpton [13] and motivated by applications in anonymous credentials [23]
or in disk encryption (e.g., in the BitLocker encryption utility [16]), where the
key may be stored on the disk being encrypted. The first examples of KDM-
secure secret-key encryption were given by Black et al. [13] in the random oracle
model.

In the standard model, Boneh et al. [16] designed the first public-key scheme
with provable KDM-CPA security w.r.t. all affine functions under the decisional
Diffie-Hellman (DDH) assumption. Applebaum et al. [6] showed that a variant
of Regev’s system [79] is KDM-secure for all affine functions under the LWE
assumption. They also gave a secret-key construction based on the hardness of
the Learning Parity with Noise (LPN) problem for which Döttling gave a public-
key variant [41]. Under the Quadratic Residuosity (QR) and Decisional Compos-
ite Residuosity (DCR) assumptions, Brakerski and Goldwasser [20] gave alterna-
tive constructions that additionally provide security under key leakage. Alperin-
Sheriff and Peikert [4] showed that a variant of the identity-based encryption
scheme of Agrawal et al. [2] provides KDM security for a bounded number of
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challenge ciphertexts.
Brakerski et al. [21] and Barak et al. [8] came up with different techniques

to prove KDM security for richer function families. Malkin et al. [73] suggested
a much more efficient scheme with ciphertexts of O(d) group elements for func-
tion families containing degree d polynomials. Applebaum [5] put forth a generic
technique that turns any PKE scheme with KDM security for projection func-
tions – where each output bit only depends on a single input bit – into a scheme
providing KDM security for any circuit of a priori bounded polynomial size.

KDM-CCA Security. The first PKE scheme with KDM-CCA2 security in
the standard model appeared in the work of Camenisch, Chandran, and Shoup
[24]. They gave a generic construction based on the Naor-Yung paradigm that
combines a KDM-CPA system, a standard CPA-secure encryption scheme, and
a simulation-sound NIZK proof system. For their purposes, they crucially need
unbounded simulation-soundness since the KDM setting inherently involves many
challenge ciphertexts and single-challenge security is not known to imply multi-
challenge security. They instantiated their construction using the DDH-based
KDM-CPA system of Boneh et al [16] and Groth-Sahai proofs [51]. Our scheme
is an instantiation of the generic construction of [24] in the lattice setting,
where we cannot simply use Groth-Sahai proofs. Hofheinz [56] subsequently
obtained chosen-ciphertext circular security (i.e., for selection functions where
f(SK1, . . . , SKN ) = SKi for some i ∈ [N ]) with shorter ciphertexts.

A first attempt of KDM-CCA security without pairings was made by Lu
et al. [69]. Han et al. [53] identified a bug in [69] and gave a patch using the same
methodology. They obtained KDM-CCA security for bounded-degree polyno-
mial functions under the DDH and DCR assumptions. Kitigawa and Tanaka [63]
described a framework for the design of KDM-CCA systems under a single num-
ber theoretic assumption (i.e., DDH, QR, or DCR). Their results were extended
by Kitigawa et al. [62] so as to prove tight KDM-CCA2 security under the DCR
assumption. Since the framework of [63] relies on hash proof systems [37], it is
not known to provide LWE-based realizations (indeed, hash proof systems do not
readily enable chosen-ciphertext security from LWE), let alone with tight secu-
rity. To our knowledge, our scheme is thus the first explicit solution with tight
KDM-CCA2 security under the LWE assumption. Before [62], the only pathway
to tight KDM-CCA security was to instantiate the construction of Camenisch
et al. [24] using a tightly secure USS proof/argument (e.g., [57]), which tends
to incur very large ciphertexts. Our system also follows this approach with the
difference that ciphertexts are not much longer than in its non-tight variant.

Kitigawa and Matsuda [61] generically obtained KDM-CCA security for
bounded-size circuits from any system providing KDM-CPA security for projec-
tion functions. While their result shows the equivalence between KDM-CPA and
KDM-CCA security, our scheme is conceptually simpler and significantly more
efficient than an LWE-based instantiation of the construction in [61]. In particu-
lar, such an instantiation requires both garbling schemes and Ω(λ) designated-
verifier proofs of plaintext equalities with negligible soundness error. While these
proofs seem realizable by applying the techniques of [68] to specific Σ-protocols,
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each of them would cost Ω(λ2) public-key encryptions. Our scheme is much
simpler and only requires one argument of plaintext equality, thus compressing
ciphertexts by a factor at least Ω(λ).

1.4 Organization

Section 2 first recalls the the building blocks of our constructions. Our first
simulation-sound argument is presented in Sect. 3 together with the underlying
R-lossy PKE scheme. Its tightly secure variant is described in Sect. 4. In Sect. 5,
we give a trapdoor Σ-protocol allowing to apply the Naor-Yung transformation
to the ACPS cryptosystem. The resulting (tightly secure) KDM-CCA2 system
is then detailed in the full version of the paper [65]. As written, our security
proof only shows tightness in the number of challenge ciphertexts, but not in
the number of users. In the full version of the paper, we also explain how to also
obtain tightness w.r.t. the number of users.

2 Background

We recall the main tools involved in our constructions. Additional standard tools,
such as NIZK proofs, are defined in the full version of the paper.

2.1 Lattices

For any q ≥ 2, Zq denotes the ring of integers with addition and multiplication
modulo q. If x ∈ R

n is a vector, ‖x‖ =
√∑n

i=1 x2
i denotes its Euclidean norm

and ‖x‖∞ = maxi |xi| its infinity norm. If M is a matrix over R, then ‖M‖ :=
supx�=0

‖Mx‖
‖x‖ and ‖M‖∞ := supx�=0

‖Mx‖∞
‖x‖∞

denote its induced norms. For a
finite set S, U(S) stands for the uniform distribution over S. If X and Y are
distributions over the same domain, Δ(X,Y ) denotes their statistical distance.

Let Σ ∈ R
n×n be a symmetric positive-definite matrix, and c ∈ R

n. We
define the Gaussian function on R

n by ρΣ,c(x) = exp(−π(x − c)�Σ−1(x − c))
and if Σ = σ2 · In and c = 0 we denote it by ρσ. For an n dimensional lattice
Λ ⊂ R

n and for any lattice vector x ∈ Λ the discrete Gaussian is defined by
ρΛ,Σ,c(x) = ρΣ,c

ρΣ,c(Λ) .
For an n-dimensional lattice Λ, we define ηε(Λ) as the smallest r > 0 such

that ρ1/r(Λ̂ \ 0) ≤ ε with Λ̂ denoting the dual of Λ, for any ε ∈ (0, 1).
For a matrix A ∈ Z

n×m
q , we define Λ⊥(A) = {x ∈ Z

m : A · x = 0 mod q}
and Λ(A) = A� · Zn + qZm. For an arbitrary vector u ∈ Z

n
q , we also define the

shifted lattice Λu(A) = {x ∈ Z
m : A · x = u mod q}.

Definition 2.1 (LWE). Let m ≥ n ≥ 1, q ≥ 2 and α ∈ (0, 1) be functions of
a security parameter λ. The LWE problem consists in distinguishing between the
distributions (A,As+ e) and U(Zm×n

q ×Z
m
q ), where A ∼ U(Zm×n

q ), s ∼ U(Zn
q )

and e ∼ DZm,αq. For an algorithm A : Zm×n
q × Z

m
q → {0, 1}, we define:

AdvLWE
q,m,n,α(λ) = |Pr[A(A,As + e) = 1] − Pr[A(A,u) = 1| ,
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where the probabilities are over A ∼ U(Zm×n
q ), s ∼ U(Zn

q ), u ∼ U(Zm
q ) and

e ∼ DZm,αq and the internal randomness of A. We say that LWEq,m,n,α is hard
if, for any PPT algorithm A, the advantage AdvLWE

q,m,n,α(A) is negligible.

Micciancio and Peikert [74] described a trapdoor mechanism for LWE. Their
technique uses a “gadget” matrix G ∈ Z

n×w
q , with w = n log q, for which anyone

can publicly sample short vectors x ∈ Z
w such that G · x = 0.

Lemma 2.2 ([74, Section 5]). Assume that m̄ ≥ n log q + O(λ) and m = m̄ +
n�log q. There exists a probabilistic polynomial time (PPT) algorithm GenTrap
that takes as inputs matrices Ā ∈ Z

n×m̄
q , H ∈ Z

n×n
q and outputs matrices R ∈

{−1, 1}m̄×n·	log q
 and A =
[
Ā | ĀR + H · G

]
∈ Z

n×m
q such that if H ∈ Z

n×n
q

is invertible, then R is a G-trapdoor for A with tag H; and if H = 0, then R is
a punctured trapdoor.

Further, in case of a G-trapdoor, one can efficiently compute from A,R
and H a basis (ti)i≤m of Λ⊥(A) such that maxi ‖ti‖ ≤ O(m3/2).

Lemma 2.3 ([46, Theorem 4.1]). There is a PPT algorithm that, given a basis
B of an n-dimensional Λ = Λ(B), a parameter s > ‖B̃‖·ω(

√
log n), and a center

c ∈ R
n, outputs a sample from a distribution statistically close to DΛ,s,c.

2.2 Correlation Intractable Hash Functions

We consider unique-output searchable binary relations [26]. These are binary
relations such that, for every x, there is at most one y such that R(x, y) = 1 and
y is efficiently computable from x.

Definition 2.4 A relation R ⊆ X ×Y is searchable in time T if there exists a
function f : X → Y which is computable in time T and such that, if there exists
y such that (x, y) ∈ R, then f(x) = y.

Letting λ ∈ N denote a security parameter, a hash family with input
length n(λ) and output length m(λ) is a collection H = {hλ : {0, 1}s(λ) ×
{0, 1}n(λ) → {0, 1}m(λ)} of keyed hash functions implemented by efficient algo-
rithms (Gen,Hash), where Gen(1λ) outputs a key k ∈ {0, 1}s(λ) and Hash(k, x)
computes a hash value hλ(k, x) ∈ {0, 1}m(λ).

Definition 2.5 For a relation ensemble {Rλ ⊆ {0, 1}n(λ) × {0, 1}m(λ)}, a hash
function family H = {hλ : {0, 1}s(λ)×{0, 1}n(λ) → {0, 1}m(λ)} is R-correlation
intractable if, for any probabilistic polynomial time (PPT) adversary A, we
have Pr

[
k ← Gen(1λ)), x ← A(k) : (x, hλ(k, x)) ∈ R

]
= negl(λ).

Peikert and Shiehian [76] described a correlation-intractable hash family for
any searchable relation (in the sense of Definition 2.4) defined by functions f of
bounded depth. Their construction relies on the standard Short Integer Solution
assumption (which is implied by LWE) with polynomial approximation factors.
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2.3 Admissible Hash Functions

Admissible hash functions were introduced in [14] as a combinatorial tool for
partitioning-based security proofs. A simplified definition was given in [45].

Definition 2.6 ([14,45]). Let �(λ), L(λ) ∈ N be functions of λ ∈ N. Let an effi-
ciently computable function AHF : {0, 1}� → {0, 1}L. For each K ∈ {0, 1,⊥}L,
let the partitioning function FADH(K, ·) : {0, 1}� → {0, 1} such that

FADH(K,X) :=
{

0 if ∀i ∈ [L] (AHF(X)i = Ki) ∨ (Ki =⊥)
1 otherwise

We say that AHF is an admissible hash function if there exists an effi-
cient algorithm AdmSmp(1λ, Q, δ) that takes as input Q ∈ poly(λ) and a non-
negligible δ(λ) ∈ (0, 1] and outputs a key K ∈ {0, 1,⊥}L such that, for all
X(1), . . . , X(Q),X� ∈ {0, 1}� such that X� �∈ {X(1), . . . , X(Q)}, we have

Pr
K

[
FADH(K, X(1)) = · · · = FADH(K, X(Q)) = 1 ∧ FADH(K, X�) = 0

]
≥ δ(Q(λ)) .

It is known that admissible hash functions exist for �, L = Θ(λ).

Theorem 2.7 ([59, Theorem 1]). Let (C�)�∈N
be a family of codes C� :

{0, 1}� → {0, 1}L with minimal distance c · L for some constant c ∈
(0, 1/2). Then, (C�)�∈N

is a family of admissible hash functions. Furthermore,
AdmSmp(1λ, Q, δ) outputs a key K ∈ {0, 1,⊥}L for which η = O(log λ) compo-
nents are not ⊥ and δ(Q(λ)) is a non-negligible function of λ.

Jager proved [59] Theorem 2.7 for balanced admissible hash functions, which pro-
vide both a lower bound and a close upper bound for the probability in Defini-
tion 2.6. Here, we only need the standard definition of admissible hash functions
since we use them in a game where the adversary aims at outputting a hard-to-
compute result (instead of breaking an indistinguishability property). However,
the result of Theorem 2.7 applies to standard admissible hash functions.

2.4 Trapdoor Σ-protocols

Canetti et al. [30] considered a definition of Σ-protocols that slightly differs from
the usual formulation [35,36].

Definition 2.8 (Adapted from [7,30]). Let a language L = (Lzk,Lsound)
associated with two NP relations Rzk, Rsound. A 3-move interactive proof system
Π = (Genpar,GenL,P,V) in the common reference string model is a Gap Σ-
protocol for L if it satisfies the following conditions:

– 3-Move Form: The prover and the verifier both take as input crs =
(par, crsL), with par ← Genpar(1λ) and crsL ← GenL(par,L), and a state-
ment x and proceed as follows: (i) P takes in w ∈ Rzk(x), computes
(a, st) ← P(crs, x, w) and sends a to the verifier; (ii) V sends back a ran-
dom challenge Chall from the challenge space C; (iii) P finally sends a
response z = P(crs, x, w,a,Chall, st) to V; (iv) On input of (a,Chall, z), V
outputs 1 or 0.
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– Completeness: If (x,w) ∈ Rzk and P honestly computes (a, z) for a chal-
lenge Chall, V(crs, x, (a,Chall, z)) outputs 1 with probability 1 − negl(λ).

– Special zero-knowledge: There is a PPT simulator ZKSim that, on input of
crs, x ∈ Lzk and a challenge Chall ∈ C, outputs (a, z) ← ZKSim(crs, x,Chall)
such that (a,Chall, z) is computationally indistinguishable from a real tran-
script with challenge Chall (for w ∈ Rzk(x)).

– Special soundness: For any CRS crs = (par, crsL) obtained as par ←
Genpar(1λ), crsL ← GenL(par,L), any x �∈ Lsound, and any first message a
sent by P, there is at most one challenge Chall = f(crs, x,a) for which an
accepting transcript (crs, x,a,Chall, z) exists for some third message z. The
function f is called the “bad challenge function” of Π. That is, if x �∈ Lsound

and the challenge differs from the bad challenge, the verifier never accepts.

Definition 2.8 is taken from [7,30] and relaxes the standard special soundness
property in that extractability is not required. Instead, it considers a bad chal-
lenge function f , which may not be efficiently computable. Canetti et al. [30]
define trapdoor Σ-protocols as Σ-protocols where the bad challenge function is
efficiently computable using a trapdoor. They also define instance-dependent
trapdoor Σ-protocol where the trapdoor τΣ should be generated as a function of
some instance x �∈ Lsound. Here, we use a definition where x need not be known
in advance (which is not possible in applications to chosen-ciphertext security,
where x is determined by a decryption query) and the trapdoor does not depend
on a specific x. However, the common reference string and the trapdoor may
depend on the language (which is determined by the public key in our applica-
tion).

The common reference string crs = (par, crsL) consists of a fixed part par and
a language-dependent part crsL which is generated as a function of par and a
language parameter L = (Lzk,Lsound).

Definition 2.9 (Adapted from [30]). A Σ-protocol Π = (Genpar,GenL,P,V)
with bad challenge function f for a trapdoor language L = (Lzk,Lsound) is a
trapdoor Σ-protocol if it satisfies the properties of Definition 2.8 and there
exist PPT algorithms (TrapGen,BadChallenge) with the following properties.

• Genpar inputs λ ∈ N and outputs public parameters par ← Genpar(1λ).
• GenL is a randomized algorithm that, on input of public parameters par, out-

puts the language-dependent part crsL ← GenL(par,L) of crs = (par, crsL).
• TrapGen(par,L, τL) takes as input public parameters par and a membership-

testing trapdoor τL for the language Lsound. It outputs a common reference
string crsL and a trapdoor τΣ ∈ {0, 1}�τ , for some �τ (λ).

• BadChallenge(τΣ, crs, x,a) takes in a trapdoor τΣ, a CRS crs = (par, crsL), an
instance x, and a first prover message a. It outputs a challenge Chall.

In addition, the following properties are required.

• CRS indistinguishability: For any par ← Genpar(1λ), and any trapdoor τL
for the language L, an honestly generated crsL is computationally indistin-
guishable from a CRS produced by TrapGen(par,L, τL). Namely, for any aux
and any PPT distinguisher A, we have
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Advindist-Σ
A (λ) := |Pr[crsL ← GenL(par,L) : A(par, crsL) = 1]
− Pr[(crsL, τΣ) ← TrapGen(par,L, τL) : A(par, crsL) = 1]| ≤ negl(λ).

• Correctness: There exists a language-specific trapdoor τL such that, for any
instance x �∈ Lsound and all pairs (crsL, τΣ) ← TrapGen(par,L, τL), we have
BadChallenge(τΣ, crs, x,a) = f(crs, x,a) .

Note that the TrapGen algorithm does not take a specific statement x as input,
but only a trapdoor τL allowing to recognize elements of Lsound.

2.5 R-Lossy Public-Key Encryption With Efficient Opening

We generalize the notion of R-lossy public-key encryption introduced by Boyle
et al. [19]. As defined in [19], it is a tag-based encryption scheme [60] where the
tag space T is partitioned into a set of injective tags and a set of lossy tags.
When ciphertexts are generated for an injective tag, the decryption algorithm
correctly recovers the underlying plaintext. When messages are encrypted under
lossy tags, the ciphertext is statistically independent of the plaintext. In R-
lossy PKE schemes, the tag space is partitioned according to a binary relation
R ⊆ K × T . The key generation algorithm takes as input an initialization value
K ∈ K and partitions T in such a way that injective tags t ∈ T are exactly those
for which (K, t) ∈ R (i.e., all tags t for which (K, t) �∈ R are lossy).

From a security standpoint, the definitions of [19] require the initialization
value K to be computationally hidden by the public key. For our purposes, we
need to introduce additional requirements.

First, we require the existence of a lossy key generation algorithm LKeygen
which outputs public keys with respect to which all tags t are lossy (in contrast
with injective keys where the only lossy tags are those for which (K, t) �∈ R).
Second, we also ask that the secret key makes it possible to equivocate lossy
ciphertexts (a property called efficient opening by Bellare et al. [10]) using an
algorithm called Opener. Finally, we use two distinct opening algorithms Opener
and LOpener. The former operates over (lossy and injective) public keys for lossy
tags while the latter can equivocate ciphertexts encrypted under lossy keys for
any tag.

Definition 2.10. Let R ⊆ Kλ ×Tλ be an efficiently computable binary relation.
An R-lossy PKE scheme with efficient opening is a 7-uple of PPT algorithms
(Par-Gen,Keygen, LKeygen,Encrypt,Decrypt,Opener, LOpener) such that:

Parameter generation: On input a security parameter λ, Par-Gen(1λ) outputs
public parameters Γ.

Key generation: For an initialization value K ∈ Kλ and public parameters Γ,
algorithm Keygen(Γ,K) outputs an injective public key pk ∈ PK, a decryption
key sk ∈ SK and a trapdoor key tk ∈ T K. The public key specifies a ciphertext
space CtSp and a randomness space RLPKE.
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Lossy Key generation: Given an initialization value K ∈ Kλ and public
parameters Γ, the lossy key generation algorithm LKeygen(Γ,K) outputs a lossy
public key pk ∈ PK, a lossy secret key sk ∈ SK and a trapdoor key tk ∈ T K.

Decryption under injective tags: For any initialization value K ∈ K, any
tag t ∈ T such that (K, t) ∈ R, and any message Msg ∈ MsgSp, we have

Pr
[
∃r ∈ RLPKE : Decrypt

(
sk, t,Encrypt(pk, t,Msg; r)

)
�= Msg

]
< ν(λ) ,

for some negligible function ν(λ), where (pk, sk, tk) ← Keygen(Γ,K) and the
probability is taken over the randomness of Keygen.

Indistinguishability: Algorithms LKeygen and Keygen satisfy the following:

(i) For any K ∈ Kλ, the distributions Dinj = {(pk, tk) | (pk, sk, tk) ←
Keygen(Γ,K)} and Dloss = {(pk, tk) | (pk, sk, tk) ← LKeygen(Γ,K)} are
computationally indistinguishable. Namely, for any PPT adversary A, we
have Advindist-LPKE-1

A (λ) ≤ negl(λ), where

Advindist-LPKE-1
A (λ) := |Pr[(pk, tk) ←↩ Dinj : A(pk, tk) = 1]

− Pr[(pk, tk) ←↩ Dloss : A(pk, tk) = 1]| .

(ii) For any distinct initialization values K,K ′ ∈ Kλ, the two distributions {pk |
(pk, sk, tk) ← LKeygen(Γ,K)} and {pk | (pk, sk, tk) ← LKeygen(Γ,K ′)} are
statistically indistinguishable. We require them to be 2−Ω(λ)-close in terms of
statistical distance.

Lossiness: For any initialization value K ∈ Kλ and tag t ∈ Tλ such that (K, t) �∈
R, any (pk, sk, tk) ← Keygen(Γ,K), and any Msg0,Msg1 ∈ MsgSp, the following
distributions are statistically close:

{C | C ← Encrypt(pk, t,Msg0)} ≈s {C | C ← Encrypt(pk, t,Msg1)}.

For any (pk, sk, tk) ← LKeygen(Γ,K), the above holds for any tag t (and not
only those for which (K, t) �∈ R).

Efficient opening under lossy tags: Let DR denote the distribution, defined
over the randomness space RLPKE, from which the random coins used by Encrypt
are sampled. For any message Msg ∈ MsgSp and ciphertext C, let DPK,Msg,C,t

denote the probability distribution on RLPKE with support

SPK,Msg,C,t = {r ∈ RLPKE | Encrypt(pk, t,Msg, r) = C} ,

and such that, for each r ∈ SPK,Msg,C,t, we have

DPK,Msg,C,t(r) = Pr
r′←↩DR

[r′ = r | Encrypt(pk, t,Msg, r′) = C] .

There exists a PPT algorithm Opener such that, for any K ∈ Kλ, any keys
(pk, sk, tk) ← Keygen(Γ,K) and (pk, sk, tk) ← LKeygen(Γ,K), any random
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coins r ←↩ DR, any tag t ∈ Tλ such that (K, t) �∈ R, and any messages
Msg0,Msg1 ∈ MsgSp, takes as inputs pk,C = Encrypt(pk, t,Msg0, r), t, and
tk. It outputs a sample r from a distribution statistically close to DPK,Msg1,C,t.

Efficient opening under lossy keys: There exists a PPT sampling algorithm
LOpener such that, for any K ∈ Kλ, any keys (pk, sk, tk) ← LKeygen(Γ,K), any
random coins r ←↩ DR, any tag t ∈ Tλ, and any distinct messages Msg0,Msg1 ∈
MsgSp, takes as input C = Encrypt(pk, t,Msg0, r), t and sk. It outputs a sample
r from a distribution statistically close to DPK,Msg1,C,t.

In Definition 2.10, some of the first four properties were defined in [19, Def-
inition 4.1]. The last two properties are a natural extension of the definition
of efficient opening introduced by Bellare et al. [10]. We note that property of
decryption under injective tags does not assume that random coins are honestly
sampled, but only that they belong to some pre-defined set RLPKE.

For our applications to simulation-sound proofs, it would be sufficient to have
algorithms (Opener, LOpener) that have access to the initial messages Msg0 and
the random coins r0 of the ciphertext to be equivocated (as was the case in the
opening algorithms of [10]). In our LWE-based construction, however, the initial
messages and random coins are not needed.

3 Direct Construction of Unbounded Simulation-Sound
NIZK Arguments

We provide a method that directly compiles any trapdoor Σ-protocol into
an unbounded simulation-sound NIZK argument using an R-lossy encryption
scheme for the bit-matching relation RBM and a correlation intractable hash
function.

Definition 3.1. Let K = {0, 1,⊥}L and T = {0, 1}�, for some �, L ∈ poly(λ)
such that � < L. Let FADH the partitioning function defined by AHF : {0, 1}� →
{0, 1}L in Definition 2.6. The bit-matching relation RBM : K × T → {0, 1}
for AHF is the relation where RBM(K, t) = 1 if and only if K = K1 . . . KL and
t = t1 . . . t� satisfy FADH(K, t) = 0 (namely,

∧L
i=1(Ki =⊥) ∨ (Ki = AHF(t)i)).

3.1 An RBM-Lossy PKE Scheme from LWE

We describe an RBM-lossy PKE scheme below. Our scheme builds on a variant
of the primal Regev cryptosystem [79] suggested in [46].

Let AHF : {0, 1}� → {0, 1}L an admissible hash function with key space K =
{0, 1,⊥}L and let RBM ⊂ K × {0, 1}� the corresponding bit-matching relation.
We construct an RBM-lossy PKE scheme in the following way.

Par-Gen(1λ): Given a security parameter λ ∈ N, let n0 = poly(λ) the length of
messages. Choose a prime modulus q = poly(λ); dimensions n = n0 + Ω(λ) and
m = 2n�log q + O(λ). Define the tag space as T = {0, 1}� where � = Θ(λ).
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Define the initialization value space K = {0, 1,⊥}L and Gaussian parameters
σ = O(m) ·L and α ∈ (0, 1) such that mαq · (L+1) ·σ

√
2m < q/4. Define public

parameters as Γ = (�, L, n0, q, n,m, α, σ).

Keygen(Γ,K): On input of public parameters Γ and an initialization value K ∈
{0, 1,⊥}L, generate a key pair as follows.

1. Sample random matrices B̄ ←↩ U(Z(n−n0)×m
q ), S ←↩ U(Z(n−n0)×n0

q ) and a
small-norm E ←↩ χm×n0 to compute

A =
[

B̄
S� · B̄ + E�

]
∈ Z

n×m
q .

2. Parse K as K1 . . . KL ∈ {0, 1,⊥}L. Letting G ∈ Z
n×m
q denote the gadget

matrix, for each i ∈ [L] and b ∈ {0, 1}, compute matrices Ai,b ∈ Z
n×m
q as

Ai,b =
{

A · Ri,b + G if (Ki �=⊥) ∧ (b = 1 − Ki)
A · Ri,b if (Ki =⊥) ∨ (b = Ki).

(1)

where Ri,b ←↩ U({−1, 1}m×m) for all i ∈ [L] and b ∈ {0, 1}.

Define RLPKE = {r ∈ Z
2m | ‖r‖ ≤ σ

√
2m} and output sk = (K,S) as well as

pk :=
(
A, {Ai,b}(i,b)∈[L]×{0,1}

)
, tk = (K, {Ri,b}(i,b)∈[L]×{0,1}).

LKeygen(Γ,K): This algorithm proceeds identically to Keygen except that steps
1 and 2 are modified in the following way.

1. Run (A,TA) ← GenTrap(1λ, 1n, 1m, q) so as to obtain a statistically uniform
matrix A ∼ U(Zn×m

q ) with a trapdoor for the lattice Λ⊥(A).
2. Define matrices {Ai,b ∈ Z

n×m
q }(i,b)∈[L]×{0,1} as in (1).

Define RLPKE as in Keygen and output

pk :=
(
A, {Ai,b}(i,b)∈[L]×{0,1}

)
, sk = TA, tk = (K, {Ri,b}(i,b)∈[L]×{0,1}).

Encrypt(pk, t,Msg): To encrypt Msg ∈ {0, 1}n0 for the tag t = t1 . . . t� ∈ {0, 1}�,
conduct the following steps.

1. Encode the tag t as t′ = t′1 . . . t′L = AHF(t) ∈ {0, 1}L and compute AF,t =
∑L

i=1 Ai,t′
i
∈ Z

n×m
q . Note that AF,t = A ·RF,t +dt ·G for some RF,t ∈ Z

m×m

of norm ‖RF,t‖∞ ≤ L and where dt ∈ {0, . . . , L} is the number of non-⊥
entries of K for which Ki �= t′i.

2. Choose r ←↩ DZ2m,σ and output ⊥ if r �∈ RLPKE. Otherwise, output

c = [A | AF,t] · r +
[

0n−n0

Msg · �q/2�

]
∈ Z

n
q . (2)
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Decrypt(sk, t, c): Given sk = (K,S) and the tag t ∈ {0, 1}�, compute t′ =
t′1 . . . t′L = AHF(t) ∈ {0, 1}L and return ⊥ if RBM(K, t′) = 0. Otherwise, compute
w = [−S� | In0 ] · c ∈ Z

n0
q . For each i ∈ [n0], do the following:

1. If neither w[i] nor |w[i] − �q/2�| is close to 0, halt and return ⊥.
2. Otherwise, set Msg[i] ∈ {0, 1} so as to minimize |w[i] − Msg[i] · �q/2�|.

Return Msg = Msg[1] . . . Msg[n0].

Opener(pk, tk, t, c,Msg1): Given tk = (K, {Ri,b}i,b) and t ∈ {0, 1}�, compute
t′ = t′1 . . . t′L = AHF(t) ∈ {0, 1}L and return ⊥ if RBM(K, t′) = 1. Otherwise,

1. Compute the small-norm matrix RF,t =
∑L

i=1 Ri,t′
i

∈ Z
m×m such that

AF,t = A · RF,t + dt · G and ‖RF,t‖∞ ≤ L with dt ∈ [L].
2. Use RF,t ∈ Z

m×m as a trapdoor for the matrix

ĀF,t = [A | AF,t] = [A | A · RF,t + dt · G] ∈ Z
n×2m
q

to sample a Gaussian vector r̄ ∈ Z
2m such that

ĀF,t · r̄ = c −
[

0n−n0

Msg1 · �q/2�

]
. (3)

Namely, defining cMsg1 = c − [(0n−n0)� | Msg�
1 · �q/2�]�, sample and output

fake random coins r̄ ←↩ D
Λ

cMsg1
q (ĀF,t),σ

.

LOpener(sk, t, c,Msg1): Given sk = TA and t ∈ {0, 1}�, use TA to derive a
trapdoor TA,t for the lattice Λ⊥

q (ĀF,t) and use TA,t to sample a Gaussian
vector r̄ ←↩ D

Λ
cMsg1
q (ĀF,t),σ

satisfying (3).
The above construction requires 2L = Θ(λ) matrices in the public key but

allows for a relatively small modulus q = Θ(m5/2n1/2L2). A technique suggested
by Yamada [83] can be used to reduce the number of public matrices to O(log2 λ)
at the expense of a larger (but still polynomial) modulus. Since our application
to Naor-Yung requires a public key containing a large correlation-intractable
hashing key anyway, we chose to minimize the modulus size.

Theorem 3.2 states that the construction has the required properties under
the LWE assumption. The proof is given in the full version of the paper [65].

Theorem 3.2. The above construction is an RBM-lossy public-key encryption
scheme with efficient opening under the LWE assumption.

3.2 A Generic Construction from Trapdoor Σ-Protocols
and RBM-lossy PKE

We construct unbounded simulation-sound NIZK proofs by combining trapdoor
Σ-protocols and R-lossy public-key encryption schemes. Our proof system is
inspired by ideas from [72] and relies on the following ingredients:
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– A trapdoor Σ-protocol Π′ = (Gen′
par,Gen′

L,P′,V′) with challenge space C, for
the same language L = (Lzk,Lsound) and which satisfies the properties of
Definition 2.9. In addition, BadChallenge(τΣ, crs, x,a) should be computable
within time T ∈ poly(λ) for any input (τ, crs, x,a).

– A strongly unforgeable one-time signature scheme OTS = (G,S,V) with ver-
ification keys of length � ∈ poly(λ).

– An admissible hash function AHF : {0, 1}� → {0, 1}L, for some L ∈ poly(λ)
with L > �, which induces the relation RBM : {0, 1,⊥}L × {0, 1}� → {0, 1}.

– An R-lossy PKE scheme R-LPKE = (Par-Gen,Keygen, LKeygen,Encrypt,
Decrypt, Opener, LOpener) for the relation RBM : {0, 1,⊥}L ×{0, 1}� → {0, 1}
with public (resp. secret) key space PK (resp. SK). We assume that Decrypt
is computable within time T . We denote the message (resp. ciphertext) space
by MsgSp (resp. CtSp) and the randomness space by RLPKE. Let also DLPKE

R

denote the distribution from which the random coins of Encrypt are sampled.
– A correlation intractable hash family H = (Gen,Hash) for the class RCI of

relations that are efficiently searchable within time T .

We also assume that these ingredients are compatible in the sense that P′ outputs
a first prover message a that fits in the message space MsgSp of R-LPKE.

Our argument system Πuss = (Genpar,GenL,P,V) allows P and V to input a
label lbl consisting of public data. While this label will be the empty string in
our KDM-CCA scheme of Section, it may be useful when several non-interactive
arguments have to be bound together. The construction goes as follows.

Genpar(1λ): Run par ← Gen′
par(1

λ) and output par.

GenL(par,L): Given public parameters par and a language L ⊂ {0, 1}N , let
K = {0, 1,⊥}L and T = {0, 1}�. The CRS is generated as follows.

1. Generate a CRS crs′
L ← Gen′

L(par,L) for the trapdoor Σ-protocol Π′.
2. Generate public parameters Γ ←↩ Par-Gen(1λ) for the RBM-lossy PKE scheme

where the relation RBM : K × T → {0, 1} is defined by an admissible hash
function AHF : {0, 1}� → {0, 1}L. Choose a random initialization value K ←
K and generate lossy keys (pk, sk, tk) ← LKeygen(Γ,K).

3. Generate a key k ← Gen(1λ) for a correlation intractable hash function with
output length κ = Θ(λ).

Output the language-dependent crsL :=
(
crs′

L, k
)

and the simulation trapdoor
τzk := sk, which is the lossy secret key of R-LPKE. The global common reference
string consists of crs = (par, crsL, pk,AHF,OTS).

P(crs, x, w, lbl): To prove a statement x for a label lbl ∈ {0, 1}∗ using w ∈ Rzk(x),
generate a one-time signature key pair (VK,SK) ← G(1λ). Then,

1. Compute
(
a′ = (a′

1, . . . ,a
′
κ), st′

)
← P′(crs′

L, x, w) via κ invocations of the
prover for Π′. Then, for each i ∈ [κ], compute ai ← Encrypt(pk,VK,a′

i; ri)
using random coins ri ←↩ DLPKE

R . Let a = (a1, . . . ,aκ) and r = (r1, . . . , rκ).
2. Compute Chall = Hash(k, (x,a,VK)) ∈ {0, 1}κ.
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3. Compute z′ = (z′
1, . . . , z

′
κ) = P′(crs′

L, x, w,a′,Chall, st′) via κ executions of
the prover of Π′. Define z = (z′,a′, r).

4. Generate sig ← S(SK, (x,a, z, lbl)) and output π =
(
VK, (a, z), sig

)
.

V(crs, x,π, lbl): Given a statement x, a label lbl as well as a purported proof
π =

(
VK, (a, z), sig

)
, return 0 if V(VK, (x,a, z, lbl), sig) = 0. Otherwise,

1. Write z as z =
(
(z′

1, . . . , z
′
κ), (a′

1, . . . ,a
′
κ), (r1, . . . , rκ)

)
and return 0 if it

does not parse properly. Return 0 if there exists i ∈ [κ] such that ai �=
Encrypt(pk,VK,a′

i; ri) or ri �∈ RLPKE.
2. Let Chall = Hash

(
k, (x, (a1, . . . ,aκ),VK)

)
. If V′(crs′

L, x, (a′
i,Chall[i], z′

i)) = 1
for each i ∈ [κ], return 1. Otherwise, return 0.

Our NIZK simulator uses a technique due to Damg̊ard [38], which uses a
trapdoor commitment scheme to achieve a straight-line simulation of 3-move
zero-knowledge proofs in the common reference string model.

Theorem 3.3. The above argument system is multi-theorem zero-knowledge
assuming that the trapdoor Σ-protocol Π′ is special zero-knowledge.

Proof (Sketch). We describe a simulator (Sim0,Sim1) which uses the lossy secret
key τzk = sk of R-LPKE to simulate transcripts (a,Chall, z) without using the
witnesses. Namely, on input of par ← Genpar(1λ), Sim0 generates crsL by pro-
ceeding identically to GenL while Sim1 is described hereunder.

Sim1(crs, τzk, x, lbl): On input a statement x ∈ {0, 1}N , a label lbl and the simu-
lation trapdoor τzk = sk, algorithm Sim1 proceeds as follows.

1. Generate a one-time signature key pair (VK,SK) ← G(1λ). Let 0|a′| the all-
zeroes string of length |a′|. Sample random coins r0 ←↩ DLPKE

R from the dis-
tribution DLPKE

R and compute a ← Encrypt(pk,VK,0|a′|; r0).
2. Compute Chall = Hash(k, (x,a,VK)).
3. Run the special ZK simulator (a′, z′) ← ZKSim(crs′

L, x,Chall) of Π′ to obtain
a simulated transcript (a′,Chall, z′) of Π′ for the challenge Chall.

4. Using the lossy secret key sk of R-LPKE, compute random coins r ←
LOpener(sk,VK,a,a′) which explain a as an encryption of (x,a′) under the
tag VK. Then, define z = (z′,a′, r)

5. Compute sig ← S(SK, (x,a, z, lbl)) and output π =
(
VK, (a, z), sig

)
.

In the full version of the paper, we show that the simulation is statistically
indistinguishable from proofs generated by the real prover. ��

If we just target multi-theorem NIZK without simulation-soundness, the con-
struction can be simplified as shown in the full version of the paper, where we
explain how it can provide statistical zero-knowledge in the common random
string (instead of the common reference string) model.

Going back to simulation-soundness, our proof builds on techniques used
in [38,72]. The interactive proof systems of [72] rely on commitment schemes
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where the adversary cannot break the computational binding property of the
commitment for some tag after having seen equivocations of commitments for
different tags. Here, in order to use a correlation-intractable hash function, we
need a commitment scheme which is equivocable on some tags but (with notice-
able probability) becomes statistically binding on an adversarially-chosen tag.
For this purpose, we exploit the observation that an R-lossy PKE scheme can
be used as a commitment scheme with these properties. Namely, it can serve
as a trapdoor commitment to equivocate lossy encryptions of the first prover
message in Π′ while forcing the adversary to create a fake proof on a statistically
binding (and even extractable) commitment.

At a high level, the proof also bears similarities with [66] in that they also
use a commitment scheme that is statistically hiding in adversarial queries but
becomes statistically binding in the adversary’s output. The difference is that
we need to equivocate the statistically-hiding commitment in simulated proofs
here.

Theorem 3.4. The above argument system provides unbounded simulation-
soundness if: (i) OTS is a strongly unforgeable one-time signature; (ii) R-LPKE
is an RBM-lossy PKE scheme; (iii) The hash family H is somewhere correlation-
intractable for all relations that are searchable within time T , where T denotes
the maximal running time of algorithms BadChallenge(·, ·, ·, ·) and Decrypt(·, ·, ·).
(The proof is given in the full version of the paper.)

The work of Peikert and Shiehian [76] implies a correlation intractable hash
function for the relation Rbad defined in the proof of Theorem 3.4. Their boot-
strapping theorem actually implies the existence of such a hash family under the
LWE assumption with polynomial approximation factors.

4 Tightly Secure Simulation-Sound Arguments

To achieve tight simulation-soundness, we describe an R-lossy PKE scheme for a
relation induced by a pseudorandom function family. In Definition 4.1, we assume
that the tag space T has a special structure. Namely, each tag t = (tc, ta) ∈ T
consists of a core component tc ∈ {0, 1}λ and an auxiliary component ta ∈
{0, 1}�.

Definition 4.1. Let a pseudorandom function PRF : K × {0, 1}� → {0, 1}λ

with key space K = {0, 1}λ and input space {0, 1}�. Let T = {0, 1}λ × {0, 1}�,
for some � ∈ poly(λ). We define the PRF relation RPRF : K × T → {0, 1} as
RPRF(K, (tc, ta)) = 1 if and only if tc �= PRF(K, ta).

We rely on the idea (previously used in [17,67]) of homomorphically evalu-
ating the circuit of a PRF using the GSW FHE [47]. As observed in [22], when
the circuit is in NC1, it is advantageous to convert it into a branching program
using Barrington’s theorem. This enables the use of a polynomial modulus q.
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Lemma 4.2 (Adapted from [15,47]). Let C : {0, 1}L → {0, 1} be a NAND
Boolean circuit of depth d. Let Ai = A · Ri + ki · G ∈ Z

n×m
q with A ∈ Z

n×m
q ,

Ri ∈ {−1, 1}m×m and ki ∈ {0, 1}, for i ≤ L. There exist deterministic algo-
rithms EvalpubBP and EvalprivBP with running time poly(4d, L,m, n, log q) that sat-
isfy: EvalpubBP (C, (Ai)i) = A · EvalprivBP

(
C, ((Ri, ki))i

)
+ C(k1, . . . , kL) · G, and

‖EvalprivBP (C, (Ri, ki)i)‖ ≤ 4d · O(m3/2).

4.1 An RPRF-Lossy PKE Scheme

We describe an R-lossy PKE scheme for the relation RPRF of Definition 4.1.
Let PRF : K × {0, 1}� → {0, 1}λ with key space K = {0, 1}λ and input

space {0, 1}� and let RPRF ⊂ K×T the corresponding relation. We construct an
RPRF-lossy PKE scheme in the following way.

Par-Gen(1λ): Given a security parameter λ ∈ N, let n0 = poly(λ) the length of
messages. Choose a prime modulus q = poly(λ); dimensions n = n0 + Ω(λ) and
m = 2n�log q + O(λ). Define the tag space as T = {0, 1}λ × {0, 1}� where � =
Θ(λ). Define the initialization value space K = {0, 1}λ and Gaussian parameters
σ = 4d · O

(
m2

)
and α ∈ (0, 1) such that 4dm3.5αq · σ < q. Define public

parameters as Γ = (�, L, n0, q, n,m, u, α, σ).

Keygen(Γ,K) On input of public parameters Γ and an initialization value K ∈
{0, 1}λ, generate a key pair as follows.

1. Sample random matrices B̄ ←↩ U(Z(n−n0)×m
q ), S ←↩ U(Z(n−n0)×n0

q ) and a
small-norm E ←↩ χm×n0 to compute A = [B̄� | B̄�S + E]� ∈ Z

n×m
q .

2. Parse K as k1 . . . kλ ∈ {0, 1}λ. For each i ∈ [L], compute matrices Ai =
A · Ri + ki · G, where Ri ←↩ U({−1, 1}m×m), for all i ∈ [λ].

Define RLPKE = {r ∈ Z
2m | ‖r‖ ≤ σ

√
2m} and output sk = (K,S) as well as

pk :=
(
A, {Ai}i∈[λ]

)
, tk = (K, {Ri}i∈[λ]).

LKeygen(Γ,K): This algorithm proceeds identically to Keygen except that steps
1 and 2 are modified in the following way.

1. Run (A,TA) ← GenTrap(1λ, 1n, 1m, q) to obtain a statistically uniform A ∼
U(Zn×m

q ) with a trapdoor for Λ⊥(A).
2. Define matrices {Ai ∈ Z

n×m
q }i∈[λ] as in Keygen.

Output pk :=
(
A, {Ai}i∈[λ]

)
, sk = TA, and tk = (K, {Ri}i∈[λ]).

Encrypt(pk, t,Msg): To encrypt a message Msg ∈ {0, 1}n0 for the structured tag
t = (tc, ta) ∈ T = {0, 1}λ × {0, 1}�, conduct the following steps.
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1. Let CPRF,t : {0, 1}λ → {0, 1} the circuit, where t = (tc, ta) is hard-wired,
which inputs a λ-bit key K = k1 . . . kλ ∈ {0, 1}λ and outputs CPRF,t(K)
such that CPRF,t(K) = 1 ⇔ tc = PRFK(ta) ⇔ RPRF(K, t) = 0. Compute
AF,t ← EvalpubBP (CPRF, (Ai)i) ∈ Z

n×m
q such that

AF,t = A · Rt + CPRF,t(K) · G,

where Rt = EvalprivBP (CPRF,t, (Ri, ki)i) ∈ Z
m×m s.t. ‖Rt‖ ≤ 4d · O(m3/2).

2. Choose r ←↩ DZ2m,σ and output ⊥ if r �∈ RLPKE. Otherwise, output

c = [A | AF,t] · r + [0n−n0� | Msg · �q/2�]� ∈ Z
n
q .

Decrypt(sk, t, c): Given the secret key sk = (K,S) and the tag t = (tc, ta) ∈ T ,
compute CPRF,t(K) ∈ {0, 1} and return ⊥ if CPRF,t(K) = 1. Otherwise, Compute
and return Msg = Msg[1] . . . Msg[n0] exactly as in Sect. 3.1.

Opener(pk, tk, t, c,Msg1): Given tk = (K, {Ri}i) and t = (tc, ta) ∈ T , compute
CPRF,t(K) ∈ {0, 1} and return ⊥ if CPRF,t(K) = 0. Otherwise,

1. Compute the matrix Rt = EvalprivBP (CPRF,t, (Ri, ki)i) ∈ Z
m×m such that

AF,t = A · Rt + G and ‖Rt‖ ≤ 4d · O(m3/2).
2. Use Rt ∈ Z

m×m as a trapdoor for ĀF,t = [A | AF,t] = [A | A · Rt + G] to
sample r̄ ∈ Z

2m such that ĀF,t · r̄ = c − [0n−n0� | Msg1 · �q/2�]�. Namely,
defining cMsg1 = c − [(0n−n0)� | Msg�

1 · �q/2�]�, sample and output fake
random coins r̄ ←↩ D

Λ
cMsg1
q (ĀF,t),σ

.

LOpener(sk, t, c,Msg1): Given sk = TA and t = (tc, ta) ∈ T , use TA to derive
a trapdoor TA,t for the lattice Λ⊥

q (ĀF,t) and use TA,t to sample a Gaussian
vector r̄ ←↩ D

Λ
cMsg1
q (ĀF,t),σ

in the same coset of Λ⊥
q (ĀF,t) as in Opener.

The proof of Theorem 4.3 is identical to that of Theorem 3.2 and omitted.

Theorem 4.3. The above construction is an RPRF-lossy public-key encryption
scheme with efficient opening under the LWE assumption.

4.2 Unbounded Simulation-Sound Argument

We construct a tightly secure USS argument from the following ingredients:

– A pseudorandom function family PRF : K × {0, 1}� → {0, 1}λ with key space
K = {0, 1}λ and input space {0, 1}� , which induces the relation RPRF :
K × T → {0, 1} of Definition 4.1.

– An RPRF-lossy PKE scheme R-LPKE = (Par-Gen,Keygen, LKeygen,Encrypt,
Decrypt, Opener, LOpener) for the relation RPRF : K×T → {0, 1} with public
(resp. secret) key space PK (resp. SK). We assume that Decrypt is computable
within time T . We denote the message (resp. ciphertext) space by MsgSp
(resp. CtSp) and the randomness space by RLPKE. Let also DLPKE

R denote the
distribution of the random coins of Encrypt.
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– A trapdoor Σ-protocol Π′ = (Gen′
par,Gen′

L,P′,V′), a one-time signature
scheme OTS = (G,S,V) and a correlation intractable hash family H =
(Gen,Hash) that satisfy the same conditions as in Sect. 3.2.

Our construction Πuss = (Genpar,GenL,P,V) goes as follows.

Genpar(1λ): Run par ← Gen′
par(1

λ) and output par.

GenL(par,L): Given public parameters par and a language L ⊂ {0, 1}N , let
K = {0, 1}λ and T = {0, 1}�. The CRS is generated as follows.

1. Generate a CRS crs′
L ← Gen′

L(par,L) for the trapdoor Σ-protocol Π′.
2. Generate public parameters Γ ←↩ Par-Gen(1λ) for the RPRF-lossy PKE scheme

where the relation RPRF : K × T → {0, 1} is defined by a PRF family PRF :
K × {0, 1}� → {0, 1}λ. Generate lossy keys (pk, sk, tk) ← LKeygen(Γ,0λ),
where the initialization value is the all-zeroes string 0λ.

3. Generate a key k ← Gen(1λ) for a correlation intractable hash function with
output length κ = Θ(λ).

Output the language-dependent crsL :=
(
crs′

L, k
)

and the simulation trapdoor
τzk := sk. The global CRS consists of crs = (par, crsL, pk,PRF,OTS).

P(crs, x, w, lbl): To prove x with respect to a label lbl using w ∈ Rzk(x), generate
a one-time signature key pair (VK,SK) ← G(1λ). Then, choose a random core
tag component tc ←↩ U({0, 1}λ) and do the following.

1. Compute
(
a′ = (a′

1, . . . ,a
′
κ), st′

)
← P′(crs′

L, x, w) via κ invocations of the
prover for Π′. For each i ∈ [κ], compute ai ← Encrypt(pk, (tc,VK),a′

i; ri)
using random coins ri ←↩ DLPKE

R . Let a = (a1, . . . ,aκ) and r = (r1, . . . , rκ).
2. Compute Chall = Hash(k, (x,a, tc,VK)) ∈ {0, 1}κ.
3. Compute z′ = (z′

1, . . . , z
′
κ) = P′(crs′

L, x, w,a′,Chall, st′) via κ executions of
the prover of Π′. Define z = (z′,a′, r).

4. Generate a one-time signature sig ← S(SK, (x, tc,a, z, lbl)) and output the
proof π =

(
(tc,VK), (a, z), sig

)
.

V(crs, x,π, lbl): Given a statement x, a label lbl and a candidate proof π =(
(tc,VK), (a, z), sig

)
, return 0 if V(VK, (x, tc,a, z, lbl), sig) = 0. Otherwise,

1. Write z as z =
(
(z′

1, . . . , z
′
κ), (a′

1, . . . ,a
′
κ), (r1, . . . , rκ)

)
. Return 0 if there exists

i ∈ [κ] such that ai �= Encrypt(pk, (tc,VK),a′
i; ri) or ri �∈ RLPKE.

2. Let Chall = Hash
(
k, (x, (a1, . . . ,aκ), tc,VK)

)
. If there exists i ∈ [κ] such that

V′(crs′
L, x, (a′

i,Chall[i], z′
i)) = 0, return 0. Otherwise, return 1.

In the full version of the paper, we show that the unbounded simulation-
soundness of the above argument system is tightly related to the security of
its underlying building blocks, which are all instantiable (with tight security
reductions) from LWE.
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5 Trapdoor Σ-Protocols for ACPS Ciphertexts

The KDM-CPA system of Applebaum et al. [6] uses a modulus q = p2, for
some prime p. Its public key (A,b) ∈ Z

n×m
q × Z

m
q contains a random matrix

A ∼ U(Zn×m
q ) and a vector b = A� · s + e, for some s ∼ DZn,αq, e ∼ DZm,αq.

Its encryption algorithm proceeds analogously to the primal Regev cryptosystem
[79] and computes c = (c̄, c) = (A · r,b�r + μ · p + χ) ∈ Z

n+1
q , where r ∼ DZm,r

is a Gaussian vector and χ ∼ DZ,r′ is sampled from a Gaussian with a slightly
larger standard deviation. Decryption proceeds by rounding c− s� · c̄ mod q to
the nearest multiple of p.

In this section, we describe a trapdoor Σ-protocol allowing to prove that two
ACPS ciphertexts c0 = (c̄0, c0), c1 = (c̄1, c1) are both encryptions of the same
μ ∈ Zp. This protocol is obtained by extending a simpler protocol (described in
the full version of the paper), which argues that a given vector c ∈ Z

n+1
q is an

ACPS encryption of some plaintext μ ∈ Zp.
We note that Ciampi et al. [33] recently gave a construction of trapdoor Σ-

protocol from any Σ-protocol. The Σ-protocol described hereunder is natively
trapdoor without applying the transformation of [33].

Proving Plaintext Equalities in ACPS Ciphertexts. Let q = p2, for
some prime p, and a matrix A which is used to set up two Regev public keys
(A,b0) ∈ Z

n×m
q × Z

m
q and (A,b1) ∈ Z

n×m
q × Z

m
q , where b0 = A� · s0 + e0 and

b1 = A� · s1 +e1 for some s0, s1 ∼ DZn,αq, e0, e1 ∼ DZm,αq. Let also the matrix

Aeq =

⎡

⎢⎢
⎣

A
b�

0 1
A
b�

1 1

⎤

⎥⎥
⎦ ∈ Z

2(n+1)×2(m+1)
q , (4)

We give a trapdoor Σ-protocol for the language Leq = (Leq
zk ,Leq

sound), where

Leq
zk :=

{
(c0, c1) ∈ (Zn+1

q )2 | ∃r0, r1 ∈ Z
m, χ0, χ1 ∈ Z, μ ∈ Zp :

‖rb‖ ≤ Br, |χb| ≤ Bχ ∀b ∈ {0, 1}

∧ cb = Āb · [r�
b | χb]� + μ ·

[
0n� | p

]� mod q
}

,

Leq
sound :=

{
(c0, c1) ∈ (Zn+1

q )2 | ∃ c̄0, c̄1 ∈ Z
n
q , v0, v1 ∈ [−B∗, B∗], μ ∈ Zp

∧ cb =

[
c̄b

s�
b · c̄b + p · μ + vb

]

∀b ∈ {0, 1}
}

,

where

Āb =
[

A
b�

b 1

]
∈ Z

(n+1)×(m+1)
q ∀b ∈ {0, 1}.
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We note that Leq
zk ⊆ Leq

sound when Brαq
√

m + Bχ < B∗ � p. Also, Leq
sound is

equivalently defined as the language of pairs (c0, c1) such that such that
[

− s�
0 1

− s�
1 1

]
·
[
c0

c1

]
mod q =

[
v0

v1

]
+ μ ·

[
p
p

]

for some μ ∈ Zp, v0, v1 ∈ [−B∗, B∗].

Genpar(1λ): On input of a security parameter λ ∈ N, choose moduli q, p with
q = p2, dimensions n,m, and error rate α > 0 and a Gaussian parameter σeq ≥
log(2m + 2) ·

√
B2

r + B2
χ. Define public parameters par = {λ, q, p, n,m, α, σeq}.

GenL(par,Leq): Takes in global parameters par and the description of a language
Leq = (Leq

zk ,Leq
sound) specifying real numbers B∗, Br, Bχ > 0 such that Brαq

√
m+

Bχ < B∗ � p, and a matrix Aeq from the distribution (4). It defines the
language-dependent crsL = {Ā, B∗, Br, Bχ}. The global CRS is

crs =
(
{λ, q, p, n,m, α, σeq}, {Aeq, B

∗, Br, Bχ}
)
.

TrapGen(par,L, τL): Given par and a language description Leq that specifies
B∗, Br, Bχ > 0 satisfying the same constraints as in GenL, a matrix Aeq

sampled from the distribution (4), as well as a membership-testing trapdoor
τL = (s0, s1) ∼ (DZn,αq)2 for Leq

sound, output crsL = {Ā, B∗, Br, Bχ}. The
global CRS is crs =

(
{λ, q, p, n,m, α, σeq}, {Aeq, B

∗, Br, Bχ}
)

and the trapdoor
τΣ = (s0, s1) ∈ Z

n × Z
n.

P
(
crs, (c0, c1), (μ,w)

)
↔ V(crs,x): Given crs and a statement

[
c0

c1

]
= Aeq · [r0

� | χ0 | r1
� | χ1]� + μ · [0n� | p | 0n� | p]� ∈ Z

2(n+1)
q ,

the prover P (who has w = [r�
0 | χ0 | r�

1 | χ1]� ∈ Z
2(m+1) and μ ∈ Zp) and the

verifier V interact as follows.

1. The prover P samples a uniform scalar rμ ←↩ U(Zp) and Gaussian vector
rw ←↩ DZ2(m+1),σeq

. It computes the following which is sent to V :

a = Aeq · rw + rμ · [0n� | p | 0n� | p]� ∈ Z
2(n+1)
q .

2. V sends a random challenge Chall ∈ {0, 1} to P .
3. P computes z = rw + Chall · w ∈ Z

2(m+1), zμ = rμ + Chall · μ mod p. It

sends (z, zμ) to V with probability θ = min
( D

Z
2(m+1),σeq

(z)

M ·D
Z
2(m+1),σeq,Chall·w(z) , 1

)
, where

M = e12/ log(2(m+1))+1/(2 log2(2(m+1))). With probability 1 − θ, P aborts.
4. Given (z, zμ) ∈ Z

2(m+1) × Zp, V checks if ‖z‖ ≤ σeq

√
2(m + 1) and

a + Chall ·
[
c0

c1

]
= Aeq · z + zμ · [0n� | p | 0n� | p]� mod q. (5)

If these conditions do not both hold, V halts and returns ⊥.
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BadChallenge
(
par, τΣ, crs, (c0, c1),a

)
: Given τΣ = (s0, s1) ∈ Z

n × Z
n, parse the

first prover message as a = (a�
0 | a�

1 )� ∈ Z
2(n+1)
q . If there exists d ∈ {0, 1} such

that no pair (μ′
d,vd) ∈ [−(p − 1)/2, (p − 1)/2] × [−B∗/2, B∗/2]2 satisfies

[
− s�

0 1
− s�

1 1

]
· (a + d · c) mod q = vd + μ′

d ·
[
p
p

]
(6)

over Z, then return Chall = 1 − d. Otherwise, return Chall =⊥.
The completeness of the protocol crucially uses the fact that p divides q to

ensure that the response zμ = rμ + Chall · μ mod p satisfies (5).
The intuition of BadChallenge is that, for a false statement (c0, c1) �∈ Leq

sound,
there exists d ∈ {0, 1} such that no pair (μ′

d,vd) satisfies (6) for a small enough
vd ∈ Z

2. Moreover, for this challenge Chall = d, no valid response can exist, as
shown in the proof of Lemma 5.1. We note that BadChallenge may output a bit
even when there is no bad challenge at all for a given a. These “false positives”
are not a problem since, in order to soundly instantiate Fiat-Shamir, we only
need the somewhere CI hash function to avoid the bad challenge when it exists.

Lemma 5.1. The above construction is a trapdoor Σ-protocol for Leq if we set
σeq ≥ log(2m + 2) ·

√
B2

r + B2
χ and

B∗ > max(2σeq

√
2m + 2 · (αq

√
m + 1), Brαq

√
m + Bχ).

(The proof is given in the full version of the paper.)

Parallel Repetitions. To achieve negligible soundness error, the protocol is
repeated κ = Θ(λ) times in parallel by first computing (a1, . . . ,aκ) before obtain-
ing Chall = Chall[1] . . . Chall[κ] and computing the response z̄ = (z1, . . . , zκ),
(zμ,1, . . . , zμ,κ). We then handle z̄ as an integer vector in Z

κ·(m+1) and reject it
with probability θ = min

(
1,DZ2κ·(m+1),σeq

(z)/M · DZ2κ·(m+1),σeq,Chall·(1κ⊗w)(z)
)
,

where M = e12/ log(2κ·(m+1))+1/(2 log2(2κ·(m+1))). Then, we need to slightly
increase σeq and set σeq ≥ log(2κ(m + 1)) ·

√
κ(B2

r + B2
χ).
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Abstract. Public-key encryption (PKE) schemes or key-encapsulation
mechanisms (KEMs) are fundamental cryptographic building blocks to
realize secure communication protocols. There are several known trans-
formations that generically turn weakly secure schemes into strongly (i.e.,
IND-CCA) secure ones. While most of these transformations require
the weakly secure scheme to provide perfect correctness, Hofheinz,
Hövelmanns, and Kiltz (HHK) (TCC 2017) have recently shown that
variants of the Fujisaki-Okamoto (FO) transform can work with schemes
that have negligible correctness error in the (quantum) random oracle
model (QROM). Many recent schemes in the NIST post-quantum com-
petition (PQC) use variants of these transformations. Some of their CPA-
secure versions even have a non-negligible correctness error and so the
techniques of HHK cannot be applied.

In this work, we study the setting of generically transforming PKE
schemes with potentially large, i.e., non-negligible, correctness error to
ones having negligible correctness error. While there have been previ-
ous treatments in an asymptotic setting by Dwork et al. (EUROCRYPT
2004), our goal is to come up with practically efficient compilers in a con-
crete setting and apply them in two different contexts: firstly, we show
how to generically transform weakly secure deterministic or randomized
PKEs into CCA-secure KEMs in the (Q)ROM using variants of HHK.
This applies to essentially all candidates to the NIST PQC based on lat-
tices and codes with non-negligible error, for which we provide an exten-
sive analysis. We thereby show that it improves some of the code-based
candidates. Secondly, we study puncturable KEMs in terms of the Bloom
Filter KEM (BFKEM) proposed by Derler et al. (EUROCRYPT 2018)
which inherently have a non-negligible correctness error. BFKEMs are a
building block to construct fully forward-secret zero round-trip time (0-
RTT) key-exchange protocols. In particular, we show how to achieve the
first post-quantum secure BFKEM generically from lattices and codes
by applying our techniques to identity-based encryption (IBE) schemes
with (non-)negligible correctness error.

Keywords: CPA-to-CCA transformations · Fujisaki-Okamoto
transform · Non-negligible correctness error · Puncturable encryption
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1 Introduction

Public-key encryption (PKE) schemes or key-encapsulation mechanisms (KEM)
are fundamental cryptographic building blocks to realize secure communica-
tion protocols. The security property considered standard nowadays is security
against chosen-ciphertext attacks (IND-CCA security). This is important to avoid
pitfalls and attacks in the practical deployments of such schemes, e.g., padding
oracle attacks as demonstrated by Bleichenbacher [12] and still showing up very
frequently [5,14,46,57]. Also, for key exchange protocols that achieve the desir-
able forward secrecy property, formal analysis shows that security against active
attacks is required (cf. [22,45,50,56]). This equally holds for recent proposals
for fully forward-secret zero round-trip time (0-RTT) key-exchange protocols
from puncturable KEMs [20,21,34] and even for ephemeral KEM keys for a
post-quantum secure TLS handshake without signatures [61].

In the literature, various different ways of obtaining CCA security generically
from weaker encryption schemes providing only chosen-plaintext (IND-CPA) or
one-way (OW-CPA) security are known. These can be in the standard model
using the double-encryption paradigm due to Naor and Yung [54], the com-
piler from selectively secure identity-based encryption (IBE) due to Canetti,
Halevi and Katz [18], or the more recent works due to Koppula and Waters
[49] based on so called hinting pseudo-random generators and Hohenberger,
Koppula, and Waters [42] from injective trapdoor functions. In the random ora-
cle model (ROM), CCA security can be generically obtained via the well-known
and widely-used Fujisaki-Okamoto (FO) transform [27,28] yielding particularly
practical efficiency.

Perfect Correctness and (Non-)Negligible Correctness Error. A prop-
erty common to many compilers is the requirement for the underlying encryption
schemes to provide perfect correctness, i.e., there are no valid ciphertexts where
the decryption algorithm fails when used with honestly generated keys. Recently,
Hofheinz, Hövelmanns and Kiltz (HHK) [40] investigated different variants of
the FO transform also in a setting where the underlying encryption scheme has
non-perfect correctness and in particular decryption errors may occur with a
negligible probability in the security parameter. This is interesting since many
PKE or KEM schemes based on conjectured quantum safe assumptions and
in particular assumptions on lattices and codes do not provide perfect correct-
ness. Even worse, some of the candidates submitted to the NIST post-quantum
competition (PQC) suffer from a non-negligible correctness error and so the
FO transforms of HHK cannot be applied. Ad-hoc approaches to overcome this
problem that are usually chosen by existing constructions in practice—if the
problem is considered at all—is to increase the parameters to obtain a suitably
small decryption error, applying an error correcting code on top or implementing
more complex decoders. In practice, these ad-hoc methods come with drawbacks.
Notably, LAC which is a Learning With Errors (LWE) based IND-CCA secure
KEM in the 2nd round of the NIST PQC that applies an error correcting code is
susceptible to a key recovery attack recently proposed by Guo et al. [37]. Also,
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code-based schemes have a history of attacks [26,36,59] due to decoding errors.
Recently, Bindel and Schanck [10] proposed a failure boosting attack for lattice-
based schemes with a non-zero correctness error. For some code-based schemes,
the analysis of the decoding error is a non-trivial task as it specifically depends
on the decoder. For instance, the analysis of BIKE’s decoder, another 2nd round
NIST PQC candidate, has recently been updated [62].

Consequently, it would be interesting to have rigorous and simple approaches
to remove decryption errors (to a certain degree) from PKE and KEM schemes.

Immunizing Encryption Schemes. The study of “immunizing” encryption
schemes from decryption errors is not new. Goldreich, Goldwasser, and Halevi
[32] studied the reduction or removal of decryption errors in the Ajtai-Dwork
encryption scheme as well as Howgrave-Graham et al. [44] in context of NTRU.
The first comprehensive and formal treatment has been given by Dwork, Naor,
and Reingold [25] who study different amplification techniques in the standard
and random oracle model to achieve non-malleable (IND-CCA secure) schemes.
One very intuitive compiler is the direct product compiler Enc⊗� which encrypts
a message M under a PKE Π = (KGen,Enc,Dec) with a certain decryption
error δ under � independent public-keys from KGen, i.e., pk′ := (pk1, . . . , pk�) as
Enc′(pk′,M) := (Enc(pk1,M), . . . ,Enc(pk�,M)). Dec′, given C ′ = (C1, . . . , C�)
tries to decrypt Ci, 1 ≤ i ≤ �, and returns the result of a majority vote among all
decrypted messages, yielding an encryption scheme with some error δ′ ≤ δ. Their
asymptotic analysis, however, and limitation to PKEs with a binary message
space does not make it immediate what this would mean in a concrete setting
and in particular how to choose � for practically interesting values of δ and
δ′. For turning a so-obtained amplified scheme with negligible correctness error
into a CCA-secure one in the ROM, they provide a transform using similar ideas,
but more involved than the FO transform. Bitansky and Vaikuntanathan [11]
go a step further and turn encryption schemes with a correctness error into
perfectly correct ones, whereas they even consider getting completely rid of bad
keys (if they exist) and, thus, completely immunize encryption schemes. They
build upon the direct product compiler of Dwork et al. and then apply reverse
randomization [53] and Nisan-Wigderson style derandomization [55]. Thereby,
they partition the randomness space into good and bad randomness, and ensure
that only good randomness is used for encryption and key generation.

Our Goals. In this work, we are specifically interested in transformations that
lift weaker schemes with non-negligible correctness error into CCA-secure ones
with negligible error. Thereby, our focus is on modular ways of achieving this
and can be seen as a concrete treatment of ideas that have also be discussed by
Dwork et al. [25], who, however, treat their approaches in an asymptotic setting
only. We show that the direct product compiler can be used with variants of the
standard FO transform considered by HHK [40] (in the ROM) as well as Bindel
et al. [9] and Jiang et al. [48] (in the quantum ROM (QROM) [15]). They are used
by many candidates of the NIST PQC, when starting from PKE schemes having
non-negligible correctness error generically. As we are particularly interested in
practical compilers in a concrete setting to obtain CCA security for KEMs in
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the (Q)ROM, we analyze the concrete overhead of this compiler and its use
with widely used variants of the transforms from HHK. Moreover, we provide a
rigorous treatment of non-black-box applications of these ideas and show that
they yield better concrete results than the direct application of the direct product
compiler. Importantly, it gives a generic way to deal with the error from weaker
schemes (e.g., IND-CPA secure ones with non-negligible error) which are easier
to design. An interesting question that we will study is how does increasing
from one to � ciphertexts compare to increasing the parameters at comparable
resulting decryption errors for existing round-two submissions in the NIST PQC.
As it turns out, our approach performs well in context of code-based schemes
but gives less advantage for lattice-based schemes.

We also study our approach beyond conventional PKEs and KEMs. In par-
ticular, a class of KEMs that have recently found interest especially in context
of full forward-secrecy for zero round-trip time (0-RTT) key-exchange (KE) pro-
tocols are so-called puncturable KEMs [21,33,34,63] and, in particular, Bloom
Filter KEMs (BFKEMs) [20,21]. BFKEMs schemes are CCA-secure KEMs that
inherently have non-negligible correctness error. Interestingly, however, the non-
negligible correctness error comes from the Bloom filter layer and the under-
lying IBE scheme (specifically, the Boneh-Franklin [16] instantiation in [21]) is
required to provide perfect correctness. Thus, as all post-quantum IBEs have at
least negligible correctness error, there are no known post-quantum BFKEMs.

1.1 Contribution

Our contributions on a more technical level can be summarized as follows:

Generic Transform. We revisit the ideas of the direct product compiler of
Dwork et al. [25] (dubbed Cp,r and Cp,d for randomized and deterministic PKEs
respectively) in the context of the modular framework of HHK [40]. In particular,
we present a generic transform dubbed T� that, given any randomized PKE
scheme with non-negligible correctness error, produces a derandomized PKE
scheme with negligible correctness error. We analyze the transform both in the
ROM and QROM and give a tight reduction in the ROM and compare it to
a generic application of the direct product compiler. The transform naturally
fits into the modular framework of HHK [40], and, thus, by applying the U�⊥

transform, gives rise to an IND-CCA-secure KEM. For the analysis in the QROM,
we follow the work of Bindel et al. [9]. We show that the T� transform also fits
into their framework. Hence, given the additional injectivity assumption, we also
obtain a tight proof for U�⊥. But even if this assumption does not hold, the non-
tight proofs of Jiang et al. [48] and Hövelmanns et al. [43] still apply. Compared
to the analysis of the T transform that is used in the modular frameworks, our
reductions lose a factor of �, i.e., the number of parallel ciphertexts required
to reach a negligible correctness error, in the ROM and a factor of �2 in the
QROM. For concrete schemes this number is small (e.g., ≤ 5) and thus does
not impose a significant loss. An overview of the transformations and how our
transform fits into the modular frameworks is given in Fig. 1 (ROM) and Fig. 2
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(QROM). Furthermore, using ideas similar to T�, we discuss a modified version
of the deterministic direct product compiler Cp,d which we denote by C�

p,d, that
compared to the original one allows to reduce the number of parallel repetitions
needed to achieve negligible correctness error.

Fig. 1. Overview of the transformations in the ROM with the results related to T�

highlighted in blue. rPKE denotes a randomized PKE. dPKE denotes a deterministic
PKE. The prefix nn indicates encryption schemes with non-negligible correctness error.
(Color figure online)

Fig. 2. Overview of the transformations in the QROM using the notation from Fig. 1.
A dashed arrow denotes a non-tight reduction. DS denotes disjoint simulatability.
†: Obtained by applying the modifications from Theorems 2 and 3 to [43, Thm 3.2].

Evaluation. We evaluate T� based on its application to code- and lattice-based
second-round candidates in the NIST PQC. In particular, we focus on schemes
that offer IND-CPA secure versions with non-negligible correctness error such as
ROLLO [4], BIKE [3] and Round5 [30]. We compare their IND-CCA variants with
our transform applied to the IND-CPA schemes. In particular, for the code-based
schemes such as ROLLO we can observe improvements in the combined size of
public keys and ciphertexts, a metric important when used in protocols such as
TLS, as well as its runtime efficiency. We also argue the ease of implementing
our so-obtained schemes which can rely on simpler decoders. For lattice-based
constructions, we find that the use of the transform results in an increase in
the sum of ciphertext and public-key size of 30% even in the best case scenario,
i.e., for an IND-CPA version of KEM Round5 [30]. Nevertheless, it offers easier
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constant-time implementations and the opportunity of decreasing the correctness
error without changing the underlying parameter set and, thus, the possibility
to focus on analyzing and implementing one parameter set for both, IND-CPA
and IND-CCA security.

Bloom Filter KEMs. Finally, we revisit puncturable KEMs from Bloom fil-
ter KEMs (BFKEMs) [20,21], a recent primitive to realize 0-RTT key exchange
protocols with full forward-secrecy [34]. Currently, it is unclear how to instan-
tiate BFKEMs generically from IBE and, in particular, from conjectured post-
quantum assumptions due to the correctness error of the respective IBE schemes.
We show that one can construct BFKEMs generically from any IBE and even
base it upon IBEs with a (non-)negligible correctness error. Consequently, our
results allow BFKEMs to be instantiated from lattice- and code-based IBEs and,
thereby, we obtain the first post-quantum CCA-secure BFKEM.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security
parameter. For a finite set S, we denote by s ←$ S the process of sampling
s uniformly from S. For an algorithm A, let y ← A(λ, x) be the process of
running A on input (λ, x) with access to uniformly random coins and assigning
the result to y (we may assume that all algorithms take λ as input). To make the
random coins r explicit, we write A(x; r). We say an algorithm A is probabilistic
polynomial time (PPT) if the running time of A is polynomial in λ. A function
f is negligible if its absolute value is smaller than the inverse of any polynomial,
i.e., if ∀c ∃k0 s.t. ∀λ ≥ k0 : |f(λ)| < 1/λc.

2.1 Public-Key Encryption and Key-Encapsulation Mechanisms

Public-key Encryption. A public-key encryption (PKE) scheme Π with mes-
sage space M consists of the three PPT algorithms (KGen,Enc,Dec): KGen(λ), on
input security parameter λ, outputs public and secret keys (pk, sk). Enc(pk,M),
on input pk and message M ∈ M, outputs a ciphertext C. Dec(sk, C), on input
sk and C, outputs M ∈ M∪{⊥}. We may assume that pk is implicitly available
in Dec.

Correctness. We recall the definition of δ-correctness of [40]. A PKE Π is
δ-correct if

E

[
max
M∈M

Pr [c ← Enc(pk,M) : Dec(sk, C) 
= M ]
]

≤ δ,

where the expected value is taken over all (pk, sk) ← KGen(λ).

PKE-IND-CPA, PKE-OW-CPA, and PKE-OW-PCA Security. We say
a PKE Π is PKE-IND-CPA-secure if and only if any PPT adversary A has
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Fig. 3. PKE-x-y security with x ∈ {OW, IND}, y ∈ {CPA, PCA} for Π.

only negligible advantage in the following security experiment. First, A gets an
honestly generated public key pk. A outputs equal-length messages (M0,M1)
and, in return, gets C∗

b ← Enc(pk,Mb), for b ←$ {0, 1}. Eventually, A outputs a
guess b′. If b = b′, then the experiment outputs 1. For PKE-OW-CPA security, A
does not receive a ciphertext for A-chosen messages, but only a ciphertext C∗ ←
Enc(pk,M) for M ←$ M and outputs M ′; if M = M ′, then the experiment
outputs 1. For PKE-OW-PCA security, A additionally has access to a plaintext
checking oracle Pco(M,C) returning 1 if M = Dec(sk, C) and 0 otherwise.

Definition 1. For any PPT adversary A the advantage function

Advpke-ind-cpa
Π,A (λ) :=

∣∣∣∣Pr
[
Exppke-ind-cpa

Π,A (λ) = 1
]

− 1
2

∣∣∣∣ ,

is negligible in λ, where the experiment Exppke-ind-cpa
Π,A (λ) is given in Fig. 3 and Π

is a PKE as above.

Definition 2. For any PPT adversary A, and y ∈ {CPA,PCA} the advantage
function

Exppke-OW-y
Π,A (λ) := Pr

[
Exppke-OW-y

Π,A (λ) = 1
]
,

is negligible in λ, where the experiments Exppke-ow-cpa
Π,A (λ) and Exppke-ow-pca

Π,A (λ) are
given in Fig. 3 and Π is a PKE as above.

We recall a well known lemma below:

Lemma 1. For any adversary B there exists an adversary A with the same
running time as that of B such that

Advpke-ow-cpa
Π,B (λ) ≤ Advpke-ind-cpa

Π,A (λ) +
1

|M| .

We note that Lemma 1 equivalently holds for the �-IND-CPA notion below.

Multi-challenge Setting. We recall some basic observations from [8] regarding
the multi-challenge security of PKE schemes. In particular, for our construction
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Fig. 4. Finding-failing-ciphertext experiment for Π.

we need the relation between OW-CPA/IND-CPA security in the conventional
single-challenge and single-user setting and n-OW-CPA/n-IND-CPA respectively,
which represents the multi-challenge and multi-user setting. In particular, latter
means that the adversary is allowed to obtain multiple challenges under multiple
different public keys.

Theorem 1. (Th. 4.1 [8]). Let Π = (KGen,Enc,Dec) be a PKE scheme that
provides x-CPA security with x ∈ {OW, IND}. Then, it holds that:

Advpke-x-cpa
Π,A (λ) ≥ 1

q · n
· Advn-pke-x-cpa

Π,A (λ),

where n is the number of public keys and A makes at most q queries to any of
its n challenge oracles.

Although the loss imposed by the reduction in Theorem 1 can be significant
when used in a general multi-challenge and multi-user setting, in our application
we only have cases where n = 1 and small q (q = 5 at most), or vice versa (i.e.,
q = 1 and n = 5 at most) thus tightness in a concrete setting is preserved.

Finding Failing Ciphertexts and Injectivity. For the QROM security proof
we will need the following two definitions from [9].

Definition 3. (ε-injectivity). A PKE Π is called ε-injective if

– Π is deterministic and

Pr [(pk, sk) ← KGen(λ) : M �→ Enc(pk,M) is not injective] ≤ ε.

– Π is non-deterministic with randomness space R and

Pr

[
(pk, sk) ← KGen(λ),
M,M ′ ←$ M, r, r′ ←$ R : Enc(pk,M ; r) = Enc(pk,M ′; r′)

]
≤ ε.

Definition 4 (Finding failing ciphertexts). For a deterministic PKE, the
FFC-advantage of an adversary A is defined as

Advpke-ffc
Π,A (λ) := Pr

[
Exppke-ffc

Π,A (λ) = 1
]
,

where the experiment Exppke-ffc
Π,A is given in Fig. 4.
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Key-Encapsulation Mechanism. A key-encapsulation mechanism (KEM)
scheme KEM with key space K consists of the three PPT algorithms
(KGen,Encaps,Decaps): KGen(λ), on input security parameter λ, outputs public
and secret keys (pk, sk). Encaps(pk), on input pk, outputs a ciphertext C and
key k. Decaps(sk, C), on input sk and C, outputs k or {⊥}.

Correctness of KEM. We call a KEM δ-correct if for all λ ∈ N, for all (pk, sk) ←
KGen(λ), for all (C, k) ← Enc(pk), we have that

Pr [Dec(sk, C) 
= k] ≤ δ.

KEM-IND-CCA Security. We say a KEM KEM is KEM-IND-CCA-secure if
and only if any PPT adversary A has only negligible advantage in the following
security experiment. First, A gets an honestly generated public key pk as well
as a ciphertext-key pair (C∗, kb), for (C∗, k0) ← Encaps(pk), for k1 ←$ K, and
for b ←$ {0, 1}. A has access to a decapsulation oracle Dec(sk, ·) and we require
that A never queries Decaps(sk, C∗). Eventually, A outputs a guess b′. Finally,
if b = b′, then the experiment outputs 1.

Fig. 5. KEM-IND-CCA security experiment for KEM.

Definition 5. For any PPT adversary A, the advantage functions

Advkem-ind-cca
KEM,A (λ) :=

∣∣∣∣Pr
[
Expkem-ind-cca

KEM,A (λ) = 1
]

− 1
2

∣∣∣∣ ,

is negligible in λ, where the experiment Expkem-ind-cca
KEM,A (λ) is given in Fig. 5 and

KEM is a KEM as above.

2.2 Identity-Based Encryption

An identity-based encryption (IBE) scheme IBE with identity space ID and
message space M consists of the five PPT algorithms (KGen,Ext,Enc,Dec):
KGen(λ) on input security parameter λ, outputs master public and secret keys
(mpk,msk). Ext(msk, id) on input identity id ∈ ID, outputs a user secret key
usk id . Enc(mpk, id ,M) on input mpk, id ∈ ID, and message M ∈ M, outputs
a ciphertext C. Dec(usk id , C) on input usk id and C, outputs M ∈ M ∪ {⊥}.
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Correctness of IBE. Analogous to [40] we define δ-correctness of an IBE IBE
for any id ∈ ID as

E

[
max
M∈M

Pr [C ← Enc(mpk, id ,M) : Dec(usk id , C) 
= M ]
]

≤ δ(λ),

where the expected value is taken over all (mpk,msk) ← KGen(λ) and usk id ←
Ext(msk, id).

We recall the formal definitions of IBE-sIND-CPA security in the full version.

3 CCA Security from Non-Negligible Correctness Errors

In this section, we present our approaches to generically achieve CCA secure
KEMs in the (Q)ROM with negligible correctness error when starting from an
OW-CPA or IND-CPA secure PKE with non-negligible correctness error. We start
by discussing the definitions of correctness errors of PKE and KEMs. Then,
we present a generic transform based on the direct product compiler of Dwork
et al. [25] and revisit certain FO transformation variants from [40] (in particular
the T and U transformations), their considerations in the QROM [9] and their
application with the direct product compiler. As a better alternative, we analyze
the non-black-box use of the previous technique yielding transformation T�, that
combines the direct product compiler with the T transformation. Finally, we
provide a comprehensive comparison of the two approaches.

3.1 On the Correctness Error

In this work, we use the δ-correctness for PKEs given by HHK in [40]. With this
definition, particularly bad keys in terms of correctness error only contribute a
fraction to the overall correctness error as it averages the error probability over
all key pairs: if there are negligible many keys with a higher correctness error,
then those keys do not really contribute to the overall correctness error. At the
same time this definition is tailored, via maxing over all possible messages, to the
security proofs of the FO-transforms where an adversary could actively search
for the worst possible message, in order to trigger decryption failure. As also
done by Dwork et al. [25], we explicitly write the correctness error as a function
in the security parameter:

Definition 6. A PKE Π is δ(·)-correct if

E

[
max
M∈M

Pr [C ← Enc(pk,M) : Dec(sk, C) 
= M ]
]

≤ δ(λ),

where the expected value is taken over all (pk, sk) ← KGen(λ).

It will be important for our transform to make explicit that the correctness error
depends on the security level, as this allows us to chose a function �(·) such that
δ(λ)�(λ) ≤ 2−λ. We will often just write δ = δ(λ) and � = �(λ) for simplicity.
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An alternative but equivalent definition, as used in [40], can be given in
the following form: a PKE Π is called δ(·)-correct if we have for all (possibly
unbounded) adversaries A that

Advcor
Π,A(λ) = Pr

[
Expcor

Π,A(λ) = 1
] ≤ δ(λ),

where the experiment is given in Fig. 6. If Π is defined relative to a random oracle
H, then the adversary is given access to the random oracle and δ is additionally
a function in the number of queries qH, i.e., the bound is given by ≤ δ(λ, qH). We
note that in [10] an alternative definition of correctness was proposed, where the
adversary does not get access to sk and the adversary’s runtime is bounded. With
this change, it can be run as part of the IND-CCA experiment which does not
change the power of the IND-CCA adversary and additionaly removes a factor qH

from the correctness error and advantage analysis. In particular, one can obtain
an upper bound for IND-CCA security of a scheme via the correctness error.

Fig. 6. Correctness experiment for PKE.

We recall, for completeness, the definition of correctness error, here denoted
as DNR-δ-correctness (from Dwork-Naor-Reingold), used by Dwork et al.:

Definition 7. (Def. 2, Def. 3 [25]). A PKE Π is

– DNR-δ(·)-correct if we have that

Pr [Dec(sk,Enc(pk,M)) 
= M ] ≤ δ(λ),

where the probability is taken over the choice of key pairs (pk, sk) ← KGen(λ),
M ∈ M and over the random coins of Enc and Dec.

– DNR-(almost-)all-keys δ(·)-correct if for all (but negligible many) keys
(pk, sk) ← KGen(λ), we have that

Pr [Dec(sk,Enc(pk,M)) 
= M ] ≤ δ(λ),

where the probability is taken over the choice of M ∈ M and over the random
coins of Enc and Dec.

Correctness error in this sense still allows bad key pairs that potentially have an
even worse error but it is not suited for our security proofs as the probability is
also taken over M ←$ M. Recently Drucker et al. [23] introduced the notion of
message agnostic PKE and showed that all the versions of BIKE, a 2nd round
candidate in the NIST PQC, are message-agnostic: in such a PKE, the probabil-
ity that, given (sk, pk), the encryption of a message M ∈ M correctly decrypts
is independent of the message M ∈ M itself. For such PKEs the definitions of
δ-correctness and DNR-δ-correctness coincide (Cor. 1 [23]).
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3.2 Compiler for Immunizing Decryption Errors

Now we present two variants of a compiler Cp denoted Cp,d (for deterministic
schemes) and Cp,r (for randomized schemes) which is based on the direct prod-
uct compiler by Dwork et al. [25]. We recall that the idea is to take a PKE
scheme Π = (KGen,Enc,Dec) with non-negligible correctness error δ (and ran-
domness space R in case of randomized schemes) and output a PKE scheme
Π ′ = (KGen′,Enc′,Dec′) with negligible correctness error δ′ (and randomness
space R′ := R�, for some � ∈ N, in case of a randomized schemes). We present
a precise description of the compilers in Fig. 7. Note that in Dec′, the message
that is returned most often by Dec is returned. If two or more messages are tied,
one of them is returned arbitrarily and we denote this operation as maj(M ′).

Fig. 7. Compilers Cp,d and Cp,r.

Analyzing Correctness. Dwork et al. in [25] explicitly discuss the amplifica-
tion of the correctness for encryption schemes with a binary message space M =
{0, 1} and obtain that to achieve DNR-δ′-correctness � > c/(1 − δ)2 · log 1/δ′

when starting from a scheme with DNR-δ-correctness. As c is some constant
that is never made explicit, the formula is more of theoretical interest and for
concrete instances it is hard to estimate the number of required ciphertexts. We
can however analyze the probabilities that the majority vote in Dec′ returns the
correct result. As far as the correctness notion used in this work is concerned, in
order to prove an acceptable good lower bound for the δ-correctness of the direct
product compiler, it suffices to find an event, in which the decryption procedure
fails, that happens with a large enough probability. The following reasoning
applies to both its deterministic and randomized versions, Cp,d and Cp,r respec-
tively. One such case is the following: only 1 ciphertext correctly decrypts and
all other � − 1 ciphertexts decrypt to � − 1 distinct wrong messages. During the
maj operation, one of the “wrong” messages is then returned. The probability of
this event is

� − 1
�

(
�

� − 1

)
δ�−1(1 − δ)

M − 1
M − 1

M − 2
M − 1

· · · M − (� − 1)
M − 1

.
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Looking ahead to our compiler T∗ presented in Sect. 3.4, if the message space is
sufficiently large, this probability is bigger than δ�−1(1 − δ), which gives that at
least one more ciphertext is needed to achieve the same decryption error as with
our compiler T∗. The results are shown in Table 1. One can compute the exact
probability of decryption error by listing all cases in which the decryption fails
and summing up all these probabilities to obtain the overall decryption failure of
the direct product compiler. This computation is not going to give a significantly
different result from the lower bound that we have just computed.

We note that using 2 parallel ciphertexts does not improve the correctness
error, so the direct product compiler only becomes interesting for � ≥ 3: indeed
for � = 2, we have 3 possible outcomes in which the decryption algorithm can
fail: 1) the first ciphertext decrypts and the second does not, 2) vice versa, 3)
both fail to decrypt. In 1), 2), half the time the wrong plaintext is returned.
Summing these probabilities gives exactly δ.

Table 1. Estimation of the correctness error for the direct product compilers. δ′(�)
denotes the correctness error for � ciphertexts.

δ δ′(2) δ′(3) δ′(4)

2−32 ≈ 2−32 ≈ 2−63 ≈ 2−94

2−64 ≈ 2−64 ≈ 2−127 ≈ 2−190

2−96 ≈ 2−96 ≈ 2−191 ≈ 2−284

Remark 1. As far as the deterministic direct product compiler Cp,d is concerned,
the correctness error can be improved by modifying the decryption: instead of
relying on the maj operation, we can re-encrypt the plaintexts obtained during
decryption with the respective keys and compare them to the original cipher-
texts. Only if this check passes, the plaintext is returned. If this is done, then
decryption fails iff no ciphertext decrypts correctly, i.e., with probability δ�,
and thereby the number of parallel repetition necessary to achieve negligible
correctness-error is reduced at the cost of a computational overhead in the
decryption. We denote this version of the deterministic direct product compiler
by C�

p,d.

Their security follows by applying Theorem 1 with q = 1 and n = � in the
deterministic case, for both Cp,d and C�

p,d, or vice versa with q = � and n = 1 in
the randomized case:

Corollary 1. For any x-CPA adversary B against Π ′ obtained via applying Cp,y

to Π, there exists an x-CPA adversary A such that:

Advpke-x-cpa
Π′,B (λ) ≤ � · Advpke-x-cpa

Π,A (λ),

where y = d if x = OW and y = r if x = IND.

As the analysis above suggests, � will be a small constant, so the loss in � does
not pose a problem regarding tightness.
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3.3 Transformations T and U �⊥

Subsequently, we discuss basic transformations from [41] to first transform an
IND-CPA secure PKE into an OW-PCA secure PKE (transformation T in [41])
and then to convert an OW-PCA secure PKE into an IND-CCA secure KEM with
implicit rejection (transformation U�⊥ in [41]) and we discuss alternative trans-
formations later. We stress that these transformations either work for perfectly
correct schemes or schemes with a negligible correctness error.

T : IND-CPA =⇒ OW-PCA(ROM)/OW-CPA(QROM). The transform T is a
simple de-randomization of a PKE by deriving the randomness r used by the
algorithm Enc via evaluating a random oracle (RO) on the message to be
encrypted. More precisely, let Π = (KGen,Enc,Dec) be a PKE with message
space M and randomness space R and G : M → R be a RO. We denote the PKE
Π ′ obtained by applying transformation T depicted in Fig. 8 as Π ′ = T[Π,G],
where Π ′.KGen = Π.KGen and is thus omitted.

Fig. 8. OW -PCA-secure scheme Π ′ = T[Π,G] with deterministic encryption.

For the ROM, we recall the following theorem:

Theorem 2 (Thm. 3.2 [41] (Π IND-CPA =⇒ Π ′ OW-PCA)). Assume Π to
be δ-correct. Then, Π ′ is δ1(qG) = qG · δ correct and for any OW-PCA adversary
B that issues at most qG queries to the RO G and qP queries to a plaintext
checking oracle Pco, there exists an IND-CPA adversary A running in about the
same time as B such that

Advpke-ow-pca
Π′,B (λ) ≤ qG · δ +

2qG + 1
|M| + 3 · Advpke-ind-cpa

Π,A (λ).

And for the QROM, we recall the following theorem:

Theorem 3 (Thm. 1 [9] (Π IND-CPA =⇒ Π ′ OW-CPA)). If A is an
OW-CPA-adversary against Π ′ = T[Π,G] issuing at most qG queries to the
quantum-accessible RO G of at most depth d, then there exists an IND-CPA
adversary B against Π running in about the same time as A such that

Advpke-ow-cpa
Π′,A (λ) ≤ (d + 1)

(
Advpke-ind-cpa

Π,B (λ) +
8(qG + 1)

|M|
)
.
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U�⊥ : OW-PCA =⇒ IND-CCA. The transformation U�⊥ transforms any OW-PCA
secure PKE Π ′ into an IND-CCA secure KEM in the (Q)ROM. The basic idea
is that one encrypts a random message M from the message space M of Π ′

and the encapsulated key is the RO evaluated on the message M and the cor-
responding ciphertext C under Π ′. This transformation uses implicit rejection
and on decryption failure does not return ⊥, but an evaluation of the RO on
the ciphertext and a random message s ∈ M, being part of sk of the resulting
KEM, as a “wrong” encapsulation key. It is depicted in Fig. 9.

Fig. 9. IND-CCA-secure KEM scheme KEM = U�⊥[Π ′,H].

In the ROM, we have the following result:

Theorem 4 (Thm. 3.4 [41] (Π ′ OW-PCA =⇒ KEM IND-CCA)). If Π ′ is δ1-
correct, then KEM is δ1-correct in the random oracle model. For any IND-CCA
adversary B against KEM, issuing at most qH queries to the random oracle H,
there exists an OW-PCA adversary A against Π ′ running in about the same time
as B that makes at most qH queries to the Pco oracle such that

Advkem-ind-cca
KEM,B (λ) ≤ qH

|M| + Advpke-ow-pca
Π′,A (λ).

For the QROM, we have the following non-tight result:

Theorem 5 (Thm. 6 [48] (Π ′ OW-PCA =⇒ KEM IND-CCA)). Let Π ′ be
a deterministic PKE scheme which is independent of H. Let B be an IND-CCA
adversary against the KEM U�⊥[Π ′,H], and suppose that A makes at most qd

(classical) decryption queries and qH queries to quantum-accessible random ora-
cle H of depth at most d, then there exists and adversary B against Π ′ such
that

Advkem-ind-cca
U �⊥[Π′,H],A(λ) ≤ 2 · qH√|M| + 2 ·

√
(qH + 1)(2 · δ + Advpke-ow-cpa

Π′,B (λ)).

If we assume ε-injectivity and FFC, respectively, we have tighter bounds:

Theorem 6 (Thm. 4.6 [51] (Π ′ OW-CPA + FFC =⇒ KEM IND-CCA)).
Let Π ′ be an ε-injective deterministic PKE scheme which is independent of
H. Suppose that A is an IND-CCA adversary against the KEM U�⊥[Π ′,H], and
suppose that A makes at most qd (classical) decryption queries and qH queries
to quantum-accessible random oracle H of depth at most d, then there exist two
adversaries running in about the same time as A:
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– an OW-CPA-adversary B1 against Π ′ and
– a FFC-adversary B2 against Π ′ returning a list of at most qd ciphertexts,

such that

Advkem-ind-cca
U �⊥[Π′,H],A(λ) ≤ 4d · Advpke-ow-cpa

Π′,B1
(λ) + 6Advpke-ffc

Π′,B2
(λ) + (4d + 6) · ε.

FO �⊥[Π,G,H]. By combining transformation T with U�⊥ one consequently obtains
an IND-CCA secure KEM KEM from an IND-CPA secure PKE Π. Note that the
security reduction of the FO �⊥ := U�⊥ ◦T variant of the FO is tight in the random
oracle model and works even if Π has negligible correctness error instead of
perfect correctness.

FO �⊥[Π,G,H] in the QROM. Hofheinz et al. in [41] also provide variants of
the FO transform that are secure in the QROM, but they are (highly) non-
tight. Bindel et al. [9] presented a tighter proof for U�⊥ under an additional
assumption of ε-injectivity. This result was recently improved by Kuchta et al.
[51]. Additionally, Jiang et al. [48] provided tighter proofs for the general case.

U⊥,U⊥
m,U�⊥

m and Other Approaches. Besides the transform with implicit
rejection, U�⊥, one can also consider explicit rejection, U⊥ and versions of both
where the derived session key depends on the ciphertext, U�⊥

m and U⊥
m, respec-

tively. Bindel et al. [9] show that security of implicit rejection implies security
with explicit rejection. The opposite direction also holds if the scheme with
explicit rejection also employs key confirmation. Moreover, they show that the
security is independent of including the ciphertext in the session key derivation.

A different approach was proposed by Saito et al. [58], where they start
from a deterministic disjoint simulatable PKE and apply U�⊥

m with an additional
re-encryption step in the decryption algorithm. While the original construction
relied on a perfectly correct PKE, Jiang et al. gave non-tight reductions for
schemes with negligible correctness error in [47]. Hövelmanns et al. [43] improve
over this approach by giving a different modularization of Saito et al.’s TPunc.

Black-Box Use of the Compiler Cp,d/Cp,d
�/Cp,r. Using Cp,d, Cp,d

� or Cp,r

from Sect. 3.2, we can transform any deterministic or randomized PKE with
non-negligible correctness error into one with negligible correctness error. Con-
sequently, Theorem 1 as a result yields a scheme that is compatible with all
the results on the T and variants of the U transformations in this section. Note
that in particular this gives us a general way to apply these variants of the FO
transform to PKE schemes with non-negligible correctness error.

3.4 Non Black-Box Use: The Transformation T�

Since the direct product compiler is rather complicated to analyze, we alterna-
tively investigate to start from an IND-CPA secure PKE Π with non-negligible
correctness error δ and introduce a variant of the transform T to de-randomize
a PKE, denoted T�. The idea is that we compute � independent encryptions of
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the same message M under the same public key pk using randomness G(M, i),
i ∈ [�], where G is a RO (see Fig. 10 for a compact description). The resulting
de-randomized PKE Π ′ has then correctness error δ′ := δ�, where � is chosen in
a way that δ� is negligible. To the resulting PKE Π ′ we can then directly apply
the transformation U�⊥ to obtain an IND-CCA secure KEM KEM with negligible
correctness error in the (Q)ROM.

Note that as we directly integrate the product compiler into the T transform,
the correctness of the message can be checked via the de-randomization. Hence,
we can get rid of the majority vote in the direct product compiler. With this
change the analysis of the concrete choice of � becomes simpler and, more impor-
tantly, allows us to choose smaller � than in the black-box use of the compiler.

Fig. 10. OW-PCA-secure scheme Π ′ = T�[Π,G] with deterministic encryption and
correctness error δ� from IND-CPA secure scheme Π with correctness error δ.

Remark 2. Note that in Fig. 10 we explicitly consider the case where Dec of
the PKE scheme Π may return something arbitrary on failed decryption. For
the simpler case where we have a PKE scheme Π which always returns ⊥
on failed decryption, we can easily adapt the approach in Fig. 10. Namely,
we would decrypt all � ciphertexts Ci, i ∈ [�]. Let h ∈ [�] be the min-
imum index such that res[h] 
= ⊥. Then for every element j ∈ [�] run
C ′

j := Π.Enc(pk, res[h];G(res[h], j). If for all j ∈ [�] we have C ′
j = Cj we

return res[h]. If this is not the case we return ⊥. Note that all � C ′
j have to

be re-encrypted and checked against Cj , as otherwise IND-CCA-security is not
achieved. The difference is, that only � encryptions instead of �2 are required.

We now show the following theorem.

Theorem 7 (Π IND-CPA =⇒ Π ′ OW-PCA). Assume Π to be δ-correct. Then,
Π ′ is δ1(qG, �) ≤ qG

�
· δ� correct and for any OW-PCA adversary B that issues at

most qG queries to the random oracle G and qP queries to a plaintext checking
oracle Pco, there exists an IND-CPA adversary A running in about the same
time as B such that
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Advpke-ow-pca
Π′,B (λ) ≤ qG

�
· δ� +

2qG + 1
|M| + 3� · Advpke-ind-cpa

Π,A (λ).

We provide the proof which closely follows the proof of [41, Thm 3.2] in the full
version. Note that we lose an additional factor of �. Additionally, when using the
bounded δ-correctness notion from Bindel. et al. [10], the factor of qG disappears.

We now have an OW -PCA secure PKE Π ′ with negligible correctness error
and can thus directly use U�⊥ and by invoking Theorem 4 obtain an IND-CCA
secure KEM KEM. Note that all steps in the reduction are tight. For the secu-
rity in the QROM, we can directly conclude from Theorem 1 that the generic
framework of Bindel et al. [9] can be applied to Cp,d and Cp,r with the additional
constraint of ε-injectivity and FFC, respectively. Without these additional con-
straints, the results of Jiang et al. [48] or Hövelmanns et al. [43]1 apply without
the tighter reductions that the Bindel et al.’s and Kuchta et al.’s results offer.

The security of the T� transform in the QROM follows in a similar vein.
To highlight how � influences the advantages, we follow the proof strategy of
Bindel et al. [9]. Therefore, we first show that a randomized IND-CPA-secure
PKE scheme with a non-negligible correctness error is transformed to OW-CPA-
secure deterministic PKE scheme with negligible correctness error. Second, we
prove that if the T�-transformed version is also ε-injective, then it provides FFC.
With these two results in place, we can apply Theorem 6 to obtain an IND-CCA-
secure KEM.

In the following theorem, we prove OW-CPA security of the T� transform in
the QROM (see the full version). We follow the strategy of the proof of [9, Thm.
1] and adapt it to our transform. Compared to the T transform, we lose a factor
of �2. Once the loss is incurred by Theorem 1 and once by the semi-classical
one-way to hiding Theorem [2].

Theorem 8 (Π IND−CPA =⇒ Π ′OW−CPA). Let Π be a non-deterministic
PKE with randomness space R and decryption error δ. Let � ∈ N such that δ�

is negligible in the security parameter λ. Let G : M × [�] → R be a quantum-
accessible random oracle and let qG the number queries with depth at most d.
If A is an OW-CPA-adversary against T�[Π,G, �], then there exists an IND-CPA
adversary B against Π, running in about same time as A, such that

Advpke-ow-cpa
T�[Π,G,�],A(λ) ≤ (d + � + 1)

(
� · Advpke-ind-cpa

Π,B (λ) +
8(qG + 1)

|M|
)
.

We refer to the full version for the proof. Next, we show that the transform
provides the FFC property (cf. [9, Lemma 6]).

Lemma 2. If Π is a δ-correct non-deterministic PKE with randomness space
R, � ∈ N such that δ� is negligible in the security parameter λ, G : M × [�] → R
is a random oracle so that Π ′ = T�[Π,G, �] is ε-injective, then the advantage for

1 Without restating [43, Thm 3.2], note that we can adopt it the same way we highlight
in Theorems 7 and 8. So, we start with their Punc to obtain disjoint simutability
and then apply T� and U�⊥

m.
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any FFC-adversary A against Π ′ which makes at most qG queries at depth d to
G and which returns a list of at most qL ciphertexts is bounded by

Advpke-ffc
Π′,A (λ) ≤

(
(4d + 1)δ� +

√
3ε

)
(qG + qL) + ε.

For the proof we refer to the full version.

3.5 Comparison of the Two Approaches

The major difference between the generic approach using the direct product com-
pilerCp,y, y ∈ {r, d}, andT� (or the modified deterministic direct product compiler
Cp,d

�) is the number of ciphertexts required to reach a negligible correctness error.
As observed in Sect. 3.2, the analysis of the overall decryption error is rather com-
plicated and Cp,y requires at least � ≥ 3. With T�/Cp,d

� however, the situation is
simpler. As soon as one ciphertext decrypts correctly, the overall correctness of the
decryption can be guaranteed. Also, for the cases analysed in Table 1, Cp,y requires
at least one ciphertext more than T� and Cp,d

�. For the correctness error, we have
a loss in the number of random oracle queries in both cases. For the comparison of
the runtime and bandwidth overheads, we refer to Table 2. Note that if the Dec of
the underlying PKE Π reports decryption failures with ⊥, then the overhead ofT�

for Dec is only a factor � (cf. Remark 2).

Table 2. Comparison of the runtime and bandwidth overheads of Cp,y, y ∈ {r, d}, with
� ciphertexts and T� and C�

p,d with �′ ciphertexts such that � ≥ �′ + 1.

|pk| |C| KGen Enc Dec

Cp,y 1 (r) / � (d) � 1 (r) / � (d) � �

C�
p,d �′ �′ �′ �′ �′

T� 1 �′ 1 �′ �′2 / �′ (⊥)

4 Our Transform in Practice

The most obvious use-case for IND-CCA secure KEMs in practice is when consid-
ering static long-term keys. Systems supporting such a setting are for example
RSA-based key exchange for SSH [39] or similarly in TLS up to version 1.2.
But since the use of long-term keys precludes forward-secrecy guarantees, using
static keys is not desirable. For ephemeral keys such as used in the ephemeral
Diffie-Hellman key exchange, an IND-CPA secure KEM might seem sufficient.
Yet, in the post-quantum setting accidental re-use of an ephemeral key leads to
a wide range of attacks [7]. But also from a theoretical viewpoint it is unclear
whether CPA security actually would be enough. Security analysis of the TLS
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handshake protocol suggests that in the case of version 1.2 an only passively
secure version is insufficient [45,50] (cf. also [56]). Also, security analysis of the
version 1.3 handshake requires IND-CCA security [22]. Thus, even in the case
of ephemeral key exchanges, using a IND-CCA secure KEM is actually desirable
and often even necessary as highlighted by Schwabe et al. [61].

For comparing KEMs in this context, the interesting metric is hence not the
ciphertext size alone, but the combined public key and ciphertext size. Both
parts influence the communication cost of the protocols. Additionally, the com-
bined runtime of the key generation, encapsulation and decapsulation is also an
interesting metric. All three operations are performed in a typical ephemeral key
exchange and hence give a lower bound for the overall runtime of the protocol.

In the following comparison, we assume that the underlying PKE never
returns ⊥ on failure, but an incorrect message instead. Thereby we obtain an
upper bound for the runtime of the Decaps algorithm. For specific cases where
Decaps explicitly returns ⊥ on failure, the runtime figures would get better since
the overhead to check the ciphertexts is reduced to a factor of � (cf. Remark 2).

4.1 Code-Based KEMs

KEMs based on error correcting codes can be parametrized such that the decod-
ing failure rate (DFR) is non-negligible, negligible, or 0. Interestingly, the DFR
rate is also influenced by the actual decoder. Even for the same choice of code and
the exact same instance of the code, a decoder might have a non-negligible DFR,
whereas another (usually more complex) decoder obtains a negligible DFR. For
the submissions in the NIST PQC we can observe all three choices. The candi-
dates providing IND-CPA-secure variants with non-negligible DFR include: BIKE
[3], ROLLO [4], and LEDAcrypt [6]. We discuss the application of our transform
to those schemes below. For the comparison in Table 3, we consider the DFR as
upper bound for correctness error.

In Table 3, we present an overview of the comparison (see the full version
for the full comparison). First we consider ROLLO, and in particular ROLLO-
I, where we obtain the best results: public key and ciphertext size combined
is always smaller than for ROLLO-II and the parallel implementation is faster
even in case of a �2 overhead. For both BIKE (using T�) and LEDAcrypt (using
C�

p,d since it starts from a deterministic PKE), we observe a trade-off between
bandwidth and runtime.

4.2 Lattice-Based KEMs

For lattice-based primitives the decryption error depends both on the modulus q
and the error distribution used. As discussed in [60], an important decision that
designers have to make is whether to allow decryption failures or choose param-
eters that not only have a negligible, but a zero chance of failure. Having a per-
fectly correct encryption makes transforms to obtain IND-CCA security and secu-
rity proofs easier, but with the disadvantage that this means either decreasing
security against attacks targeting the underlying lattice problem or decreasing
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Table 3. Sizes (in bytes) and runtimes (in ms and millions of cycles for BIKE), where
O denotes the transformed scheme. The LEDAcrypt instances with postfix NN refer
to those with non-negligible DFR. Runtimes are taken from the respective submission
documents and are only intra-scheme comparable.

KEM δ pk C
∑

KGen Encaps Decaps

O[ROLLO-I-L1,5] 2−150 465 2325 2790 0.10 0.02/0.10 0.26/1.30

ROLLO-II-L1 2−128 1546 1674 3220 0.69 0.08 0.53

O[ROLLO-I-L3,4] 2−128 590 2360 2950 0.13 0.02/0.08 0.42/1.68

ROLLO-II-L3 2−128 2020 2148 4168 0.83 0.09 0.69

O[ROLLO-I-L5,4] 2−168 947 7576 8523 0.20 0.03/0.12 0.78/3.12

ROLLO-II-L5 2−128 2493 2621 5114 0.79 0.10 0.84

O[BIKE-2-L1,3] 2−147 10163 30489 40652 4.79 0.14/0.42 3.29/9.88

BIKE-2-CCA-L1 2−128 11779 12035 23814 6.32 0.20 4.12

O[LEDAcrypt-L5-NN,2] 2−128 22272 22272 44544 5.04 0.14/0.29 1.55/3.11

LEDAcrypt-L5 2−128 19040 19040 38080 4.25 0.84 2.28

performance. The only NIST PQC submissions based on lattices which provide
parameter sets achieving both negligible and non-negligible decryption failure are
ThreeBears [38] and Round5 [30]. The IND-CCA-secure version of ThreeBears is
obtained by tweaking the error distribution, hence, our approach does not yield
any improvements. For Round5 we achieve a trade-off between bandwidth and
runtime. We also considered FrodoKEM [52], comparing its version [17] prece-
dent to the NIST PQC, which only achieved non-negligible failure probability,
to the ones in the second round of the above competition, but we do not observe
any improvements for this scheme. For the full comparison we refer to the full
version. It would be interesting to understand the reasons why the compiler does
not perform well on lattice-based scheme compared to the code-based ones and
whether this is due to the particular schemes analysed or due to some intrinsic
difference between code- and lattice-based constructions.

4.3 Implementation Aspects

One of the strengths of T� compared to the black-box use of Cp,y, y ∈ {r, d}
(and Cp,d

�), is that besides the initial generation of the encapsulated key, all the
random oracle calls can be evaluated independently. Therefore, the encryptions
of the underlying PKE do not depend on each other. Thus, the encapsulation
algorithms are easily parallelizable – both in software and hardware. The same
applies to the decapsulation algorithm. While in this case only one successful
run of the algorithm is required, doing all of them in parallel helps to obtain a
constant-time implementation. Then, after all ciphertexts have been processed,
the first valid one can be used to re-compute the ciphertexts, which can be done
again in parallel. For software implementations on multi-core CPUs as seen on
today’s desktops, servers, and smartphones with 4 or more cores, the overhead
compared to the IND-CPA secure version is thus insignificant as long as the error
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is below 2−32. If not implemented in a parallel fashion, providing a constant-time
implementation of the decapsulation algorithms is more costly. In that case, all of
the ciphertexts have to be dealt with to not leak the index of invalid ciphertexts.
Note that a constant-time implementation of the transform is important to avoid
key-recovery attacks [35].

The T� transform also avoids new attack vectors such as [37] that are intro-
duced via different techniques to decrease the correctness error, e.g., by applying
an error-correcting code on top. Furthermore, since the same parameter sets are
used for the IND-CPA and IND-CCA secure version when applying our trans-
forms, the implementations of proposals with different parameter sets can be
simplified. Thus, more focus can be put on analysing one of the parameter sets
and also on optimizing the implementation of one of them.

5 Application to Bloom Filter KEMs

A Bloom Filter Key Encapsulation Mechanism (BFKEM) [20,21] is a specific
type of a puncturable encryption scheme [21,33,34,63] where one associates
a Bloom Filter (BF) [13] to its public-secret key pair. The initial (i.e., non-
punctured) secret key is associated to an empty BF where all bits are set to 0.
Encapsulation, depending on an element s in the universe of the BF, takes the
public key and returns a ciphertext and an encapsulation key k corresponding to
the evaluation of BF (s), i.e., k hash evaluations on s yielding indexes in the size
m of the BF. Puncturing, on input a ciphertext C (associated to s) and a secret
key sk′, punctures sk′ on C and returns the resulting secret key. Decapsulation,
on input a ciphertext C (with an associated tag s) and secret key sk′ is able
to decapsulate the ciphertext to k if sk′ was not punctured on C. We want to
mention, as in [20], we solely focus on KEMs since a Bloom Filter Encryption
(BFE) scheme (which encrypts a message from some message space) can be
generically derived from a BFKEM (cf. [27]).

The basic instantiation of a BFKEM in [20,21] is non-black box and based
on the pairing-based Boneh-Franklin IBE (BF-IBE) scheme [16], where sk con-
tains an IBE secret key for every identity i ∈ [m] of the BF bits and puncturing
amounts to inserting s in the BF and deleting the IBE secret keys for the corre-
sponding bits. Although the BFKEM is defined with respect to a non-negligible
correctness error, the underlying BF-IBE has perfect correctness. So the non-
negligible error in the BFKEM is only introduced on an abstraction (at the level
of the BF) above the FO transform applied to the k BF-IBE ciphertexts (so
the application of the FO can be done as usual for perfectly correct encryption
schemes).

However, if one targets instantiations of BFE where the underlying IBE does
not have perfect correctness (e.g., lattice- or code-based IBEs), it is not obvious
whether the security proof using the BF-IBE as presented in [20,21] can easily
be adapted to this setting.2

2 Note that we want the size of the BFKEM public key to be independent of the BF
parameters for practical reasons (besides the descriptions of the hash functions).
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We first recall necessary definitions and then show a generic construction of
BFKEM from any IBE scheme with (non-)negligible correctness error.

Due to space constraints, we present the definition of Bloom filters with its
formal properties in the full version.

Bloom Filter Key Encapsulation Mechanism. We recap the Bloom
Filter Key Encapsulation Mechanism (BFKEM) and its formal properties
from [20] that tolerates a non-negligible correctness error and the key gen-
eration takes parameters m and k as input which specify this correctness
error. A BFKEM BFKEM with key space K consists of the PPT algorithms
(KGen,Encaps,Punc,Decaps).

KGen(λ,m, k) : Key generation, on input security parameter λ and BF param-
eters m, k, outputs public and secret keys (pk, sk0).

Encaps(pk) : Encapsulation, on input pk, outputs a ciphertext C and key k.
Punc(sk, C) : Secret-key puncturing, on input sk and C, outputs an updated

secret key sk′.
Decaps(sk, C) : Decapsulation, on input sk and C, outputs k or {⊥}.

Definition 8 (Correctness). For all λ,m, k, n ∈ N and any (pk, sk0) ←
KGen(λ,m, k), we require the following. For any (arbitrary interleaved) sequence
of invocations of skj+1 ← Punc(skj , Cj), where j ∈ {0, . . . , n}, and (Cj , kj) ←
Encaps(pk), it holds that

Pr [Decaps(skn+1, C
∗) 
= k∗] ≤

(
1 − e− (n+1/2)k

m−1

)k

+ ε(λ),

where (C∗, k∗) ← Encaps(pk) and ε(·) is a negligible function in λ.

Definition 9 (Extended Correctness). For all λ,m, k, n ∈ N and
(pk, sk0) ← KGen(λ,m, k), we require that for any (arbitrary interleaved)
sequence of invocations of ski ← Punc(ski−1, Ci−1), where i ∈ [n] and
(Ci−1, ki−1) ← Encaps(pk), it holds that:

(a) Impossibility of false-negatives: Decaps(skn, Cj−1) = ⊥, for all j ∈ [n].
(b) Correctness of the initial secret key: Pr [Decaps(sk0, C) 
= k] ≤ ε(λ), for all

(C, k) ← Encaps(pk) and ε is a negligible function in λ.
(c) Semi-correctness of punctured secret keys: if Decaps(skj , C) 
= ⊥ then

Pr [Decaps(skj , C) 
= Decaps(sk0, C)] ≤ ε(λ),

for all j ∈ [n], any C, and ε is a negligible function in λ.

All probabilities are taken over the random coins of KGen,Punc, and Encaps.

All probabilities are taken over the random coins of KGen, Punc, and Encaps.
We recall additional properties (i.e., separable randomness, publicly-checkable
puncturing, and γ-spreadness) and formal definitions of BFKEM-IND-CPA and
BFKEM-IND-CCA security in the full version.

Right now, we only can guarantee this with IBE schemes as such schemes allow
for exponentially many secret keys with a short master public key and, hence, we
consider IBE schemes as a main building block of our BFKEM constructions.
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5.1 IBE with Negligible from Non-Negligible Correctness Error

We follow the approach for randomized PKE schemes in Sect. 3.2 adapted for the
IBE case (cf. Fig. 11).3 Let IBE = (KGen,Ext,Enc,Dec) be an IBE scheme with
identity, message spaces, and randomness spaces ID, M, and R, respectively,
with non-negligible correctness error δ(λ), we construct an IBE scheme IBE′ =
(KGen′,Ext′,Enc′,Dec′) with identity and message spaces ID′ := ID and M′ :=
M, respectively, with negligible correctness error δ′(λ). The construction is as
follows. Set KGen′ := KGen and Ext′ := Ext while Enc′ and Dec′ are given in Fig.
11. See that � = �(λ) can be chosen appropriately to accommodate a negligible
correctness error δ′(λ).

Fig. 11. Compiler for Enc′ and Dec′ for constructing IBE with negligible correctness
error from IBE with non-negligible correctness error.

As for randomized PKE schemes, by an analogue of Theorem 1 for IBEs with
q = � and n = 1, the security claim follows.

Corollary 2. For any IBE-sIND-CPA adversary B against IBE′ obtained via
applying the above transformation to IBE, there exists an IBE-sIND-CPA adver-
sary A such that:

Advibe-sind-cpa
IBE′,B (λ) ≤ � · Advibe-sind-cpa

IBE,A (λ).

The correctness error analysis is again equivalent to the one in the PKE scenario.
We refer to Sect. 3.2 for a more in depth discussion.

5.2 BFKEM from IBE with Negligible Correctness Error

The intuition for our generic construction from any IBE with negligible correct-
ness error is as follows. We associate “user-secret keys” of IBE with the indexes
i ∈ [m] of the Bloom filter BF and annotate sk′

0 as a special key for “fixed iden-
tity” 0. We consider the encapsulation key as k0⊕k1 where one share is encrypted
under “identity” 0 (yielding C0) while the other share is encrypted under the

3 We explicitly mention that we are only concerned with randomized IBEs. Adopting
Cp,d for deterministic IBEs will work as well. Though in the latter case, one can
further optimize the compiler depending on whether the IBE has deterministic or
randomized key extraction Ext.
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“identities” (ij)j of indexes of the BF that are determined by C0. Put differ-
ently, C0 acts as a tag of the overall ciphertext while the other IBE-ciphertexts
(Cij

)j are utilized for correct decryption. The secret key is punctured on “tag”
C0. Note that the secret key sk′

0 is not affected by the puncturing mechanism
and one can always at least decrypt C0. However, one additionally needs the
encapsulation-key share from the other ciphertexts (Cij

)j ; those ciphertexts can
only be decrypted if at least one secret key sk′

i∗ is available which can be checked
with BFCheck.

Let IBE = (IBE.KGen, IBE.Ext, IBE.Enc, IBE.Dec) be an IBE-sIND-CPA-
secure IBE scheme with identity and message spaces ID = [m] ∪ {0} and
M = {0, 1}λ, respectively, with negligible correctness error δ = δ(λ), and BF =
(BFGen,BFUpdate,BFCheck) a BF with universe U , we construct a BFKEM-
IND-CPA-secure BFKEM scheme BFKEM = (KGen,Encaps,Punc,Decaps) with
key space K := M = {0, 1}λ as a stepping stone towards a BFKEM-IND-CCA-
secure BFKEM as follows.

KGen(λ,m, k): on input security parameter λ and BF parameters m, k, compute
(mpk,msk) ← IBE.KGen(λ), sk′

id ← IBE.Ext(msk, id), for all id ∈ [m] ∪ {0},
and (H,T0) ← BFGen(m, k). Return pk := (mpk,H) and sk := (T0, (sk′

id)id)
(we assume that pk is available to Punc and Decaps implicitly).

Encaps(pk): on input (mpk,H) := pk, sample k0, k1 ←$ K and compute C0 ←
Enc(mpk, 0, k0). For id j := Hj(C0) with (Hj)j := H and all j ∈ [k], compute
Cidj

← Enc(mpk, id j , k1) and output

((C0, (Cidj
)j), k0 ⊕ k1).

Punc(sk, C): on input (T, sk′
0, (sk

′
id)id∈[m]) := sk and (C0, . . .) := C, compute

T ′ := BFUpdate(H,T,C0) and set

sk′′
id :=

{
sk′

id if T ′[id ] = 0,
⊥ if T ′[id ] = 1,

for T ′[id ] the id -th bit of T ′. Return (T ′, sk′
0, (sk

′′
id)id∈[m]).

Decaps(sk, C): on input (T, (sk′
id)id∈[m]∪{0}) := sk and (C0, (Cidj )j∈[k]) := C,

output ⊥ if BFCheck(H,T,C0) = 1. Otherwise, there exists a smallest
id∗ ∈ [m] such that sk′

id∗ 
= ⊥, compute k0 := Dec(sk′
0, C0) and k1 :=

Dec(sk′
id∗ , Cid∗), and output k0 ⊕ k1.

We prove the correctness (Definition 8), extended correctness (Definition 9),
separable randomness, publicly-checkable puncturing, and γ-spreadness proper-
ties of BFKEM in the full version.

BFKEM-IND-CPA Security of BFKEM. We start by showing the BFKEM-
IND-CPA security of BFKEM = (KGen,Encaps,Punc,Decaps).

Theorem 9. If IBE is IBE-sIND-CPA-secure, then BFKEM is BFKEM-IND-
CPA-secure. Concretely, for any PPT adversary A there is a distinguisher D
for the IBE-sIND-CPA security experiment such that

Advbfkem-ind-cpa
BFKEM,A (λ,m, k) ≤ k · m · Advibe-sind-cpa

IBE,D (λ). (1)
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Proof. We show the BFKEM-IND-CPA-security of BFKEM for any valid PPT
adversary A in series of games where:

Game 0. Game 0 is the BFKEM-IND-CPA-experiment.
Game i. Game i is defined as Game i − 1 except that the i-th challenge-

ciphertext element Cidi
in C∗ is independent of the challenge bit, for i ∈ [k].

Game k + 1. Game k + 1 is defined as Game k except that the encapsulation
key in the challenge ciphertext is independent of b′.

We denote the event of the adversary winning Game i as Si. In Game k + 1,
A has no advantage (i.e., success probability of Pr[Sk+1] = 1/2) in the sense
of BFKEM-IND-CPA. We argue in hybrids that the Games i ∈ [k + 1] are
computationally indistinguishable from Game 0.

Hybrids Between Games 0 and k + 1. Each hybrid between Games i − 1
and i, i ∈ [k], is constructed as follows: on input m and k, D samples (H,T0) ←
BFGen(m, k), for H =: (Hj)j∈[k] and sets T0 = 0m. Next, D samples id∗ ←$ [m]
and sends id∗ to its IBE-sIND-CPA-challenger. D retrieves mpk in return and
sets pk := (mpk,H).

Furthermore, for all id ∈ ([m] ∪ {0}) \ {id∗}, D retrieves sk0 := (usk id)id
from its Ext-oracle. (Note that D does not have a secret key for id∗ and A has
to query the challenge ciphertext to the Punc′-oracle in order to receive secret
keys via the Cor-oracle, which results in “deleting” the secret key for id∗ if there
were any. Particularly, all Cor-queries can be answered correctly.)

Furthermore, D sends k
(0)
1 , k

(1)
1 ←$ M = {0, 1}λ to its IBE-sIND-CPA-

challenger and retrieves C∗
id∗ ← Enc(mpk, id∗, k(b)), for some b ←$ {0, 1}.

D samples b′ ←$ {0, 1}, computes C0 ← Enc(mpk, 0, k0), for k0 ← M, and
sets (id j)j := (Hj(C0))j∈[k]. If id i 
= id∗, abort. (See that this happens with

probability (m− 1)/m.) Otherwise, D computes Cidj
← Enc(mpk, id j , k

(b′)
1 ), for

all (id j)j∈[k]\[i], and Cidj
← Enc(mpk, id j , k

′
1), for all (id j)j∈[i−1], for k′

1 ←$ M.
D sets Cidi

:= C∗
id∗ and sends (pk, C∗ := (C0, (Cidj

)j), k(b
′)) to A, for k(b

′) :=

k
(b′)
1 ⊕ k0.

A has access to a Punc′(C)-oracle which runs ski+1 ← Punc(ski, C) for each
invocation i = 0, 1, . . . , q and sets L := L ∪ {C} for initially empty set L. The
Cor-oracle returns ski+1 iff C∗ ∈ L. Eventually, A outputs a guess b∗ which D
forwards as b∗ ⊕ b′ to its IBE-sIND-CPA-challenger.

In the hybrid between Games k and k + 1: proceed as in Game k, but send
(pk, C∗ := (C0, (Cidj

)j), k′), for uniform k′ ← M to A.

Analysis. In the hybrids between the Games j − 1 and j, for j ∈ [k], we have
that if b′ = b = 0 or b′ = b = 1, then the distribution of the challenge ciphertext
is correct and a successful A should output b∗ = 0 where D forwards b∗⊕b′ = b as
guess to its challenger which yields a successful IBE-sIND-CPA distinguisher D.
If b′ 
= b, then A is used to distinguish the j-th challenge-ciphertext component,
i.e., a successful A should output b∗ = 1 where D forwards b∗ ⊕b′ = b as guess to
its challenger which, again, yields a successful IBE-sIND-CPA distinguisher D.
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In the hybrid between the Games k and k+1, the change is information-theoretic,
i.e., the challenge ciphertext encapsulates uniformly random key-elements (inde-
pendent of b′) and the encapsulation key is sampled uniformly at random which
yields Pr[Sk+1] = 1/2. In each hybrid, we have that Pr[id i = id∗] = 1/m. Putting
things together, for k + 1 hybrids, Eq. (1) holds. ��
BFKEM-IND-CCA Security of BFKEM′. We construct a slight variant of
our BFKEM scheme above, dubbed BFKEM′, via the FO transform [27] along
the lines of [21]. We want to mention that the FO transform does not work
generically for any BFKEM and no generic framework as in the case of KEMs
exists. Hence, we consider the direct product compiler in Sect. 5.1 and, in the
vein of [21], to prove BFKEM-IND-CCA security of our BFKEM, we introduce
further properties (i.e., separable randomness, publicly-checkable puncturing,
and γ-spreadness) . Furthermore, [21] requires perfect correctness for unpunc-
tured keys which our BFKEM definition cannot guarantee. Hence, we have to
reprove the BFKEM-IND-CCA-security for BFKEM′, although the proof tech-
niques are almost the same as presented in [21]. We construct a BFKEM-IND-
CCA-secure BFKEM as follows. Let BFKEM = (KGen,Encaps,Punc,Decaps)
be a randomness-separable BFKEM-IND-CPA-secure BFKEM scheme with key
space K = {0, 1}λ and correctness error δ = δ(λ), we construct a BFKEM-
IND-CCA-secure BFKEM scheme BFKEM′ = (KGen′,Encaps′,Punc′,Decaps′)
with key space K′ = K using a variant of the FO transform as follows. Let
G : K′ → {0, 1}ρ+λ be a hash function modeled as random oracle (RO) in the
security proof.

KGen′(λ,m, k): same as KGen(λ,m, k).
Encaps′(pk): on input pk, sample k′ ←$ K′, compute (r, k) := G(k′) ∈ {0, 1}ρ+λ

and (C, k′) ← Encaps(pk; (r, k′)), and return (C, k). Punc′(sk, C): same as
Punc(sk, C).

Decaps′(sk, C): on input secret key sk and ciphertext C, compute k′ ←
Decaps(sk, C) and return ⊥ if k′ = ⊥. Otherwise, compute (r, k) := G(k′)
and return k if (C, k′) = Encaps(pk; (r, k′)), else output ⊥.

We prove the correctness (Definition 8), extended correctness (Definition 9),
separable randomness, publicly-checkable puncturing, and γ-spreadness proper-
ties of BFKEM′ in the full version.

Theorem 10. If a BFKEM BFKEM is BFKEM-IND-CPA-secure with the sep-
arable randomness, publicly-checkable puncturing, and γ-spreadness properties,
and negligible correctness error probability δ = δ(λ), then BFKEM′ is BFKEM-
IND-CCA-secure. Concretely, for any PPT adversary A making at most qG =
qG(λ) queries to the random oracle G there is a distinguisher D in the BFKEM-
IND-CPA-security experiment such that

Advbfkem-ind-cca
BFKEM′,A (λ,m, k) ≤ Advbfkem-ind-cpa

BFKEM,D (λ,m, k) + 2δ +
qG

2γ
. (2)

Due to space constraints, we show the proof in the full version.
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5.3 Comparison of BFKEM Instantiations

To instantiate BFKEM′ from post-quantum IBE schemes, we investigating
instantiations based on a selectively IND-CPA secure lattice-based or code-based
IBEs. As far as lattices are concerned, the first such construction was [31] after
which numerous others followed [1,19,24,64]. To compute the dimension of
a lattice-based BFKEM, we start from the GVP-IBE instantiation of [24], for
which an implementation and concrete dimensions were given for 80 and 192-bit
quantum security. We set the parameter of the BFKEM as in [21], i.e., targeting
the maximum number of allowed punctures to n = 220, which amounts to adding
212 elements per day to the BF for a year, and allowing for a false-positive prob-
ability of 10−3, we obtain m = 1.5 · 107 and k = 10. A similar procedure can be
applied to the code-based IBE of Gaborit et al. (GHPT) [29] achieving 128-bit
quantum security. We note though that with recent advances in the cryptanal-
ysis, these instances may provide less security. Table 4 provides an overview
including the pairing-based BFKEM from [21]. For the latter, we assume the
use of the pairing-friendly BLS12-381 curve with 120-bit classical security.

Table 4. Sizes of BFKEM when instantiated with GVP or GHPT.

IBE Assumption sk pk C

GVP-80 Lattice-based 19.21 GB 1.62 KB 17.46 KB

GVP-192 Lattice-based 47.15 GB 3.78 KB 40.28 KB

GHPT-128 Code-based 643.73 GB 252 KB 215.79 MB

Boneh-Franklin [21] Pairing-based 717.18 MB 95.5 B 255.5 B
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Abstract. Public key encryption (PKE) schemes are usually deployed
in an open system with numerous users. In practice, it is common that
some users are corrupted. A PKE scheme is said to be receiver selec-
tive opening (RSO) secure if it can still protect messages transmitted
to uncorrupted receivers after the adversary corrupts some receivers and
learns their secret keys. This is usually defined by requiring the existence
of a simulator that can simulate the view of the adversary given only the
opened messages. Existing works construct RSO secure PKE schemes in
a single-challenge setting, where the adversary can only obtain one chal-
lenge ciphertext for each public key. However, in practice, it is preferable
to have a PKE scheme with RSO security in the multi-challenge setting,
where public keys can be used to encrypt multiple messages. In this work,
we explore the possibility of achieving PKE schemes with receiver selec-
tive opening security in the multi-challenge setting. Our contributions
are threefold. First, we demonstrate that PKE schemes with RSO secu-
rity in the single-challenge setting are not necessarily RSO secure in the
multi-challenge setting. Then, we show that it is impossible to achieve
RSO security for PKE schemes if the number of challenge ciphertexts
under each public key is a priori unbounded. In particular, we prove
that no PKE scheme can be RSO secure in the k-challenge setting (i.e.,
the adversary can obtain k challenge ciphertexts for each public key) if its
secret key contains less than k bits. On the positive side, we give a con-
crete construction of PKE scheme with RSO security in the k-challenge
setting, where the ratio of the secret key length to k approaches the lower
bound 1.
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1 Introduction

The standard notion of security for public key encryption (PKE) schemes is
indistinguishability of 1-ciphertext (denoted as IND-CPA security). That is to
say, given one challenge ciphertext to an adversary, which encrypts a message
from a set of two messages chosen by the adversary, it could not distinguish which
message is encrypted. Such a simple security notion in fact implies semantic
security with multiple challenge ciphertexts, which prevents the adversary from
learning any information about the encrypted messages after viewing a priori
unbounded number of ciphertexts.

In many real world scenarios, the adversary may have the capability to learn
internal states of partial users via corrupting their devices. Such attacks are
called selective opening attacks [DNRS99]. A PKE scheme is said to be secure
against selective opening attacks if it can still protect messages transmitted
between uncorrupted users. Surprisingly, standard security does not imply secu-
rity against selective opening attacks immediately [BDWY12,HR14,HRW16].

The formal study of selective opening secure PKE was initialized by Bellare
et al. in [BHY09]. They consider two types of selective opening attacks, namely,
sender selective opening (SSO) attacks, where the attacker corrupts senders
and obtains the randomness used for encrypting messages, and receiver selec-
tive opening (RSO) attacks, where the attacker corrupts receivers and obtains
their secret keys. Also, for each attack, security can be defined by either an
indistinguishability-based definition, which extends the standard IND-CPA secu-
rity to the selective opening setting, or a simulation-based definition, which
defines semantic security against selective opening attackers. In all definitions,
the adversary first gets some challenge ciphertexts, then it “opens” some of them
via corrupting the related users. An indistinguishability-based definition ensures
that the adversary is not able to distinguish encrypted messages in unopened
ciphertexts, while in a simulation-based definition, there should exist a simulator
that can simulate the view of the adversary given only the opened messages.

Since selective opening security can be defined in different manners, it
is important to clarify relations between different definitions. As shown in
[HPW15], indistinguishability-based selective opening security is not sufficient
to imply simulation-based selective opening security in both the SSO setting and
the RSO setting. Thus, for selective opening security, it is desirable to consider
simulation-based definitions.1

It is also interesting to explore whether selective opening security in the
single-challenge setting, i.e., each public key is only used once to produce a single
challenge ciphertext, is enough for achieving selective opening security in the
multi-challenge setting, where each public key can be reused to encrypt multiple

1 In addition, we prefer simulation-based definitions because indistinguishability-based
selective opening security are usually defined for efficiently conditionally re-samplable
message distributions [BHY09] only. A definition without such restriction (called
full IND-SO security [BHK12,ORV14]) needs an inefficient security experiment and
seems not achievable.
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challenge messages. This question is particularly important for the RSO setting,
because all previous works in this area only consider how to construct encryption
schemes secure in the single-challenge setting and it is unknown whether they
are still secure in the more realistic multi-challenge setting.

1.1 Our Results

In this work, we initiate the study of RSO security in the multi-challenge set-
ting. In particular, we consider an adversary that can obtain k challenge cipher-
texts for each public key, and denote security in this setting as RSOk security.2

We focus on simulation-based definitions and define security against both the
chosen-plaintext adversary (SIM-RSOk-CPA) and the chosen-ciphertext adver-
sary (SIM-RSOk-CCA). In summary, our contributions are as follows:

• We show that RSO security in the single-challenge setting is not enough
to guarantee RSO security in the multi-challenge setting. We demonstrate
this by providing a PKE scheme that is SIM-RSOk-CCA secure, but is not
SIM-RSOk+1-CPA secure for any polynomial k (recall that RSO security
in the single-challenge setting can be denoted as RSO1 security). The PKE
schemes build on an IND-CPA secure PKE scheme and a simulation-sound
non-interactive zero-knowledge (NIZK) proof, thus, this also provides the first
positive result for achieving RSO security in the multi-challenge setting.

• We prove that it is impossible to achieve SIM-RSO security in the multi-
challenge setting if we do not bound the number of challenge ciphertexts for
each public key. In particular, we provide a lower bound on the secret key
length for any PKE scheme with RSOk security in the non-programmable
random oracle model, which indicates that the size of the secret key must be
as large as the total number of message bits ever encrypted. For example, for
any PKE with RSOk security, assuming its message space is {0, 1}m and the
secret key space is {0, 1}l, then we have l ≥ mk.

• We construct a concrete SIM-RSOk-CPA secure PKE scheme from the DDH
assumption, where the message space is {0, 1}, the public key is a group
element and the secret key only contains a number in Zq and k bits.3 This is
nearly optimal in an asymptotic sense as the ratio of secret key length to k
is 1 + log q

k , which approaches the lower bound 1 as the messages number k
increases.

• We prove that the well-known Naor-Yung paradigm [NY90,Sah99] still works
for SIM-RSO security and give a generic construction of SIM-RSOk-CCA
secure PKE scheme from a SIM-RSOk-CPA secure PKE scheme, an IND-CPA
secure PKE scheme, and a simulation-sound NIZK proof. The construction
preserves the key length of the underlying SIM-RSOk-CPA secure scheme.
Thus, combining our (nearly) optimal SIM-RSOk-CPA secure scheme with
the generic construction, we obtain a (nearly) optimal SIM-RSOk-CCA secure
PKE scheme.

2 Previous definitions in the single-challenge setting are specific cases of this new
definition and can be denoted as RSO1 security.

3 Here, q is the group order and is fixed by the security parameter.
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1.2 Technical Overview

In this section, we give a brief overview of how to achieve our negative and
positive results. In a high-level, we first observe that a large enough secret key
space (conditioned on some public information) is needed to achieve RSOk secu-
rity, and employ this observation to lower bound the secret key length for any
RSOk secure PKE scheme. Then we apply the observation to some concrete con-
structions and provide counterexamples separating RSOk security and RSOk+1

security. Finally, we construct (nearly) optimal RSOk secure PKE scheme, whose
secret key length approaches the above lower bound in an asymptotic sense.

Next, we describe the ideas in more detail.

On Lower Bounding Key Length of RSOk Secure PKE scheme. We
start by showing that a RSOk secure PKE scheme must have a long enough
secret key. For simplicity of discussion, here we assume that the message space
of the scheme is {0, 1} and explain why it cannot be RSOk secure if its secret
key length contains at most k − 1 bits.

Intuitively, this is because the number of possible secret keys are not enough
to explain k messages. In more detail, to simulate an adversary’s output, a RSOk

simulator4 should generate challenge ciphertexts and send them to the adversary
first. Then in the opening phase, on input the opened messages, the simulator
needs to generate secret keys that can map each ciphertext to corresponding
message. Remember that it needs to map k fixed ciphertexts to a vector of k
1-bit messages using each secret key. Thus, the number of candidate secret keys
should be at least 2k to guarantee that the simulator is able to choose the correct
secret key for every possible messages vector. However, if the secret key length
of the scheme does not exceed k−1, then the number of possible secret keys will
not exceed 2k−1. That is to say, for at least half of the possible messages vectors,
the simulator is not able to create a correct secret key to explain them. So, with
probability 1/2 (assuming messages are sampled uniformly), the simulation will
fail.

To formalize this intuition, we use ideas in previous works [Nie02,BSW11,
BDWY12,BO13] that argue impossibility to achieve simulation-based security
against a key-revealing attacker.5 In a nutshell, given a hash function, which is
modeled as a non-programmable random oracle, we define a RSOk adversary as
follows. In the first phase, on receiving a set of n public keys PK = (pki)i∈[n],
it returns a uniform distribution; then in the second phase, on receiving a set of
challenge ciphertexts CT , it returns a set of indices I ⊆ [n], which is the hash of
(PK,CT ); finally, on receiving the opened secret keys SKI and messages MI6,
it outputs (PK,CT ,SKI). Note that a simulator who would like to simulate

4 We refer the readers to Sect. 2.2 for the formal definition of a RSOk simulator in
either the CPA setting and the CCA setting.

5 We remark that similar lower bounds on key length are achieved in these works, but
these results do not imply lower bound for SIM-RSO secure PKE scheme directly.

6 We use SKI and M I to denote the set of secret keys for (pki)i∈I and messages
encrypted under (pki)i∈I respectively.
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the adversary’s view should generate PK and CT before viewing the opened
messages, since otherwise, it has to invert the random oracle, which is infeasible.
Thus, if we feed the simulator with different messages, it should create secret
keys conditioned on fixed PK and CT . As the number of possible messages is
much larger than the number of possible secret keys7, such simulator does not
exist.

On Separating RSOk+1 Security and RSOk Security. Next, we explain
how to construct a scheme that is SIM-RSOk-CCA secure, but is not even
SIM-RSOk+1-CPA secure. Our starting point is an encryption scheme Π1 from
the well-known Naor-Yung paradigm [NY90,Sah99], which is proved to be
SIM-RSO1-CCA secure for 1-bit message in [HKM+18]. We first recall the
scheme briefly and show that it is not SIM-RSO2-CPA secure. Then we explain
how to upgrade it to a scheme that is SIM-RSOk-CCA secure, but is not
SIM-RSOk+1-CPA secure.

A brief review of Π1. The scheme Π1 relies on a normal PKE scheme E and a
simulation-sound NIZK proof system. Its public key PK = (pk0, pk1) is a pair
of public keys of E and its secret key is SK = (s, sks), where s is a bit and sks

is the secret key corresponding to pks. The encryption of a bit m includes an
encryption of m under pk0, an encryption of m under pk1 and a proof indicating
that the two ciphertexts encrypt the same message. To decrypt a ciphertext, the
decryption algorithm first checks the validity of the proof attached and decrypts
the ciphertext under pks using sks.

The SIM-RSO1-CCA security of Π1 comes from the fact that given a mal-
formed ciphertext, which encrypts a random bit b under pk0 and encrypts 1 − b
under pk1, one can open it to any message m ∈ {0, 1}. In particular, if m = b,
then the returned secret key is (0, sk0) and otherwise, the returned secret key is
(1, sk1). In this way, to simulate the view of a SIM-RSO1-CCA adversary the sim-
ulator can generate such malformed ciphertext in the beginning and answer the
opening query according to the opened messages. Indistinguishability between
malformed ciphertexts and well-formed ciphertexts comes from security of E and
zero-knowledge property of the underlying NIZK. Also, determining the secret
keys until the opening stage will not affect answers to decryption oracle queries
since the adversary is only allowed to submit a well-formed ciphertext, which
are identically decrypted under sk0 and sk1.

Π1 is Not SIM-RSO2-CPA Secure. Next, we show that if for each public key of
E, there exists at most one valid secret key for it and it is easy to check if a
public key/secret key pair is valid8, Π1 will not be SIM-RSO2-CPA secure.

Our key observation is that in this case, while the number of possible secret
keys is very large, the number of possible secret keys for a fixed public key is not
enough to explain 2 messages. Recall that to prove SIM-RSO2-CPA security of
Π1, we need a simulator that is forced to produce challenge ciphertexts before

7 If |I| = 1, then the number of possible messages is 2k while the number of possible
secret keys is no more than 2k−1.

8 Concretely, we may view E as ElGamal encryption scheme.
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seeing the opened messages and is required to create the correct secret keys that
maps the challenge ciphertexts to the opened messages. For a public key PK =
(pk0, pk1), the best possible strategy for the simulator to generate the challenge
ciphertext seems to set the first ciphertext CT1 = (E.Enc(pk0, b1),E.Enc(pk1, 1−
b1)) and set the second ciphertext CT2 = (E.Enc(pk0, b2),E.Enc(pk1, 1 − b2)),
where b1 and b2 are random bits. Then, in the opening phase, the simulator can
return a secret key, which is either (0, sk0) or (1, sk1), to the adversary, where
sk0, sk1 are the unique valid secret keys for pk0 and pk1 respectively. The secret
key (0, sk0) can decrypt the challenger ciphertexts to (b1, b2) and the secret key
(1, sk1) can decrypt the challenger ciphertexts to (1 − b1, 1 − b2). But if the
opened messages are (b1, 1 − b2) or (1 − b1, b2), no secret key can map challenge
ciphertexts to them. So, with probability 1/2 (assuming messages are sampled
uniformly), the simulation will fail. Therefore, we can exploit the techniques for
lower bounding secret key length of RSOk secure PKE schemes to compromise
the RSO2 security of Π1.

Upgrading Π1. Next, we explain how to upgrade Π1 to a RSOk-secure but
RSOk+1-insecure scheme. Our main idea is to use k pairs of public keys of E
to encrypt messages. More precisely, to encrypt a bit m under a public key
PK = (pk1,0, pk1,1, . . . , pkk,0, pkk,1), the encryption algorithm first samples a
k-bit string (p1, . . . , pk) that p1 ⊕ . . . ⊕ pk = m, and then encrypts pi with
(pki,0, pki,1). Then it generates a NIZK proof proving the correctness of all k
pairs of ciphertexts. The final ciphertext includes all 2k ciphertexts of E and the
proof.

Now, to simulate the view of an adversary in a SIM-RSOk experiment, or
alternatively, to generate k ciphertexts and open them to any k-bit string, the
simulator generates the ciphertexts as follows:

(pk1,0, pk1,1) (p1,1, 1− p1,1) (p2,1, p2,1) . . . (pk,1, pk,1)

(pk2,0, pk2,1) (p1,2, p1,2) (p2,2, 1− p2,2) . . . (pk,2, pk,2)

...
...

...
. . .

...
(pkk,0, pkk,1) (p1,k, p1,k) (p2,k, p2,k) . . . (pk,k, 1− pk,k)

CT1 CT2 . . . CTk

where each pi,j
$← {0, 1}, and CTi consists of encryption of (pi,j , pi,j) (or

(pi,i, 1 − pi,i)) under public key (pkj,0, pkj,1) and a fake proof generated by the
NIZK simulator.

Note that, for each public key pair (pki,0, pki,1), the simulator is only required
to cheat on one ciphertext (the ones in a dashed box), thus it can succeed in
finding the correct secret key.

The reason that the new scheme is not SIM-RSOk+1-CPA secure is the same
as that why Π1 is not SIM-RSO2-CPA secure. Note that in the new scheme, the
number of valid secret keys for a public key PK = (pk1,0, pk1,1, . . . , pkk,0, pkk,1)
is 2k, which is much less than the number of possible opening messages (2k+1).
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Thus, we can use a similar strategy to show that no simulator is able to simulate
the adversary’s view in a SIM-RSOk+1-CPA experiment.

On Constructing RSOk Secure PKE Scheme with (Nearly) Optimal
Secret Key Length. Now, we demonstrate how to achieve SIM-RSOk-CCA
secure PKE scheme with (nearly) optimal secret key length. Note that standard
techniques for shortening secret keys of PKE schemes (e.g., deriving secret keys
from a shorter seed via a pseudorandom generator) do not work here since in
the receiver selective opening setting, the simulator needs to generate secret keys
satisfying some conditions and using these techniques may lead to an inefficient
simulator (e.g., the simulator may have to invert a pseudorandom generator).

Our starting point is the celebrated Cramer-Shoup encryption scheme [CS98],
which was shown to be SIM-RSO1-CCA secure in [HKM+18,HLC+19]. Here,
we will use its variant with CPA security (ΠCS-CPA). We first reduce the key
length of the scheme. Then, we upgrade it to be SIM-RSOk-CPA secure via
merely adding k −1 bits to the secret key. Finally, we transform the scheme into
a SIM-RSOk-CCA secure one by employing the well-known Naor-Yung dou-
ble encryption paradigm [NY90,Sah99], where a normal IND-CPA secure PKE
scheme and a simulation-sound NIZK proof is additionally used. In our con-
struction, we fix the secret key of the new scheme to be the secret key of the
underlying SIM-RSOk-CPA secure scheme. Also, we need to tweak the security
proof to fit the definition of SIM-RSO-CPA/CCA security.

Next, we first recall ΠCS-CPA and explain why it is SIM-RSO1-CPA secure.
Then we provide a more detailed description on how to reduce its key length
and how to upgrade the scheme to achieve SIM-RSOk-CPA security.

A brief review of ΠCS-CPA. The scheme ΠCS-CPA works in a cyclic group G of
prime order q with generator g. Let g0 = ga0 , g1 = ga1 , h = gb, then the secret
key of the scheme is (s0, s1) ∈ Z

2
q and the public key is pk = gs0

0 gs1
1 . To encrypt

a bit m ∈ {0, 1}, the encryption algorithm samples w
$← Zq, and computes the

ciphertext CT = (x0, x1, C) = (gw
0 , gw

1 , pkw ·hm). The decryption algorithm tests
if xs0

0 xs1
1 = C and outputs 0 if this is the case.

To simulate the view of a SIM-RSO1-CPA adversary, the simulator can first
sample (s′

0, s
′
1)

$← Z
2
q, compute pk = g

s′
0

0 g
s′
1

1 and generate a malformed ciphertext

CT = (x0, x1, C) = (gw0
0 , gw1

1 , x
s′
0

0 x
s′
1

1 ) for each receiver. Here, w0, w1 are distinct
random elements in Zq and the malformed ciphertext is indistinguishable from
an honestly generated one due to the DDH assumption. Then, for each corrupted
receiver, assuming the opened message is m, the simulator creates the secret key
(s0, s1) compatible with the current view by solving the following equations:{

gs0
0 gs1

1 = g
s′
0

0 g
s′
1

1

xs0
0 xs1

1 · hm = x
s′
0

0 x
s′
1

1

(1)

which can be transformed into{
a0s0 + a1s1 = a0s

′
0 + a1s

′
1

a0w0s0 + a1w1s1 + bm = a0w0s
′
0 + a1w1s

′
1
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The equation has a solution since w0 �= w1. Thus, the simulator can succeed in
simulating the view of a SIM-RSO1-CPA adversary.

Reducing the Key Length. It is worth noting that in the scheme ΠCS-CPA, some
bits of the secret key are wasted. In particular, the simulator is able to simulate
the view of the adversary if Equation (1) has solutions in both the case m = 0
and that m = 1. Thus, it is appealing to see if the equations still always have
solutions in some smaller solution space.

We observe that, if we change the strategy of the simulator, then it is possible
to reduce the secret key space to Zq ×{0, 1}. In more detail, for each receiver, the

simulator samples (s′
0, s

′
1)

$← Zq ×{0, 1}, computes pk = g
s′
0

0 g
s′
1

1 and changes the
format of malformed ciphertext into CT = (x0, x1, C) = (gw

0 , gw
1 · hα, x

s′
0

0 x
s′
1

1 ).
Here α = 1 if s′

1 = 1 and α = −1 if s′
1 = 0, and the malformed ciphertext is still

indistinguishable from an honestly generated one due to the DDH assumption.
Now, the secret key (s0, s1) needs to satisfy the following equation:{

a0s0 + a1s1 = a0s
′
0 + a1s

′
1

a0ws0 + a1ws1 + bαs1 + bm = a0ws′
0 + a1ws′

1 + bαs′
1

It is easy to see that if m = 0, then s1 = s′
1 and thus s1 ∈ {0, 1}; if m = 1,

then 1 = α · (s′
1 − s1), which implies that 1) if s′

1 = 1, then s1 = 0 and 2) if
s′
1 = 0, then s1 = 1. Therefore, the scheme is still secure if we reduce the secret

key length to �log q	 + 1.

Achieving RSOk Security. Next, we show how to upgrade the revised scheme
to achieving SIM-RSOk-CPA security. Our first attempt is to use the idea in
upgrading the counterexample Π1, i.e., secret sharing the message into k bits
and using k independent instances of the scheme to encrypt each bit. However,
this will lead to a scheme with key length k · (�log q	 + 1), which is far from
optimal.

To solve this problem, our key observation is that, when generating the k
public key/secret key pairs, s0 and the public key can be reused. More precisely,
let g0 = ga0 , g1 = ga1 , . . . , gk = gak , h = gb, then we set the secret key to be
(s0, s1, . . . , sk) $← Zq × {0, 1}k and set the public key to be pk = gs0

0 gs1
1 . . . gsk

k .
Note that the secret key only contains �log q	 + k bits. Then, to encrypt a

bit m ∈ {0, 1}, the encryption algorithm samples w
$← Zq, and computes the

ciphertext CT = (x0, x1, . . . , xk, C) = (gw
0 , gw

1 , . . . , gw
k , pkw ·hm). The decryption

algorithm tests if xs0
0 xs1

1 . . . xsk

k = C and outputs 0 if this is the case.
Next, we illustrate why the above scheme is SIM-RSOk-CPA secure. For

each receiver, the simulator samples (s′
0, s

′
1, . . . , s

′
k) $← Zq × {0, 1}k and

computes pk = g
s′
0

0 g
s′
1

1 . . . g
s′
k

k . Also, it generates k malformed ciphertexts,
where for the i-th ciphertext, xi is dishonestly created. That is, CTi =
(xi,0, xi,1, . . . , xi,i, . . . xi,k, C) = (gwi

0 , gwi
1 , . . . , gwi

i · hαi , . . . , gwi

k , x
s′
0

i,0x
s′
1

i,1 . . . x
s′
k

i,k).
Here αi = 1 if s′

i = 1 and αi = −1 if s′
i = 0. Then, for each corrupted receiver,

assuming the k opened messages are m1, . . . ,mk, the simulator creates the secret
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key (s0, s1, . . . , sk) compatible with the current view by solving the following
equations: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∏k
j=0 g

sj

j =
∏k

j=0 g
s′
j

j

(
∏k

j=0 x
sj

1,j) · hm1 =
∏k

j=0 x
s′
j

1,j
...

(
∏k

j=0 x
sj

k,j) · hmk =
∏k

j=0 x
s′
j

k,j

This is equivalent to the following equation:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑k
j=0 ajsj =

∑k
j=0 ajs

′
j

(
∑k

j=0 ajw1sj) + bα1s1 + bm1 = (
∑k

j=0 ajw1s
′
j) + bα1s

′
1

...
(
∑k

j=0 ajwksj) + bαksk + bmk = (
∑k

j=0 ajwks′
j) + bαks′

k

which can be transformed into⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑k
j=0 ajsj =

∑k
j=0 ajs

′
j

m1 = α1(s′
1 − s1)

...
mk = αk(s′

k − sk)

Note that, for i ∈ [1, k], we can set si = s′
i if mi = 0 and set si = 1 − s′

i

if mi = 1. Therefore, the simulator is able to produce a simulated secret
key (s0, s1, . . . , sk) ∈ Zq × {0, 1}k and thus can simulate the view of the
SIM-RSOk-CPA adversary.

1.3 Related Works

Since first proposed in [BHY09], PKE with selective opening security has
been extensively studied. Numerous constructions of SSO secure PKE have
been proposed based on various assumptions in previous works (see [FHKW10,
HLOV11,Hof12,HLQ13,LP15,HJKS15,HP16,LSSS17,BL17,LLHG18] and ref-
erences therein for more details).

In contrast, the setting of RSO security is less studied. It is folklore that
(receiver) non-committing encryption schemes [CFGN96,Nie02,DN00,CHK05,
CDSMW09] imply RSO secure PKE schemes. Then, in [HPW15], Hazay et
al. show that RSO security is achievable from a variety of well-established
cryptographic primitives and construct RSO secure PKE schemes from various
assumptions. In subsequent works [JLL16,JLL17,HKM+18,HLC+19], chosen-
ciphertext attacks (CCA) are also considered in the RSO setting and PKE
schemes with RSO-CCA security are provided. Moreover, in [KT18], RSO-secure
identity-based encryption scheme is constructed. However, in all these works, the
proposed encryption schemes are only proved to have RSO security in the single-
challenge setting.
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1.4 Roadmap

We recall some preliminaries and define RSOk security in Sect. 2. Then in Sect. 3,
we provide the lower bound for RSOk secure PKE scheme. Next, we show
our counterexamples separating RSOk security and RSOk+1 security in Sect. 4.
Then, we construct (nearly) optimal PKE schemes with SIM-RSOk-CPA secu-
rity and SIM-RSOk-CCA security in Sect. 5. Finally, in Sect. 6, we conclude our
work with a few possible future works.

2 Preliminaries

Notations. For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}.
For positive integers n1, n2 s.t. n1 < n2, we use [n1, n2] to denote the set {n1, n1+
1, · · · , n2 − 1, n2}. We use boldface to denote vectors, e.g., x. We use x[i] to
denote the i-th component of x. Also, for a string s ∈ {0, 1}∗, we use s[i] to
denote the i-th bit of s.

For a finite set S, we use |S| to denote the size of S and use s
$← S to denote

the process of sampling s uniformly from S. For a distribution D, we use x ← D
to denote the process of sampling x from D. For a positive integer n, we use Un

to denote the uniform distribution over {0, 1}n.
For a probabilistic algorithm A, we use A(x; r) to denote the process of running

A on input x and inner randomness r. We write PPT for probabilistic polynomial-
time. We use negl(λ) to denote a negligible function.

2.1 Assumptions and Cryptographic Primitives

The DDH Assumption. First, we recall the DDH assumption. Let G be a
cyclic group of prime order q with a generator g. The DDH assumption requires
that it is hard to distinguish (ga, gb, gc) and (ga, gb, gab), where a, b, c

$← Zq.

Unbounded Simulation-Sound NIZK Proofs. The notion of NIZK proof
was proposed by Blum et al. in [BFM88]. As shown in [Sah99], an unbounded
simulation-sound NIZK proof for every language in NP exists assuming the exis-
tence of (doubly-enhanced) trapdoor permutations.

Let R be an efficiently computable binary relation. A NIZK proof for a lan-
guage L = {x : ∃w, (x,w) ∈ R} consists of three PPT algorithms:

• Gen. On input the security parameter λ, the common reference string gener-
ation algorithm outputs a common reference string crs.

• Prove. On input a common reference string crs, a statement x ∈ L and a
witness w for x, the proving algorithm outputs a proof π.

• Verify. On input a common reference string crs, a statement x and a proof π,
the verification algorithm outputs a bit indicating whether the proof is valid.

Also, it satisfies the following conditions:

• Completeness. For any (x,w) ∈ R, let crs ← Gen(1λ) and π ←
Prove(crs, x, w), then we have Verify(crs, x, π) = 1.
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• Unbounded Zero-Knowledge. There exists a PPT simulator (S1, S2) that
for any PPT adversary A, we have∣∣∣∣∣Pr

[
crs ← Gen(1λ);

AP(crs,·,·)(crs) = 0

]
− Pr

[
(crs, td) ← S1(1λ);

AS(crs,td,·,·)(crs) = 0

]∣∣∣∣∣ ≤ negl(λ)

where P(crs, x, w) outputs Prove(crs, x, w) if (x,w) ∈ R and outputs ⊥ other-
wise; S(crs, td, x, w) outputs S2(crs, td, x) if (x,w) ∈ R and outputs ⊥ other-
wise.

• Unbounded Simulation-Soundness. Let (S1, S2) be a PPT simulator for
the zero-knowledge property of the NIZK proof. For any unbounded adversary
A, we have

Pr

⎡
⎢⎢⎢⎣

(crs, td) ← S1(1λ);

(x, π) ← AS(crs,td,·)(crs);
Let Q be list of input/output
pairs for the oracle S

:
(x, π) �∈ Q ∧ x �∈ L
∧ Verify(crs, x, π) = 1

⎤
⎥⎥⎥⎦ ≤ negl(λ)

where S(crs, td, x) outputs S2(crs, td, x).

2.2 PKE with RSOk Security

A public key encryption scheme PKE = (Setup, Gen, Enc, Dec) consists of four
PPT algorithms:

• Setup. On input the security parameter 1λ, the setup algorithm outputs the
public parameter pp.

• Gen. On input the public parameter pp, the key generation algorithm outputs
a public key pk and a secret key sk.

• Enc. On input the public parameter pp, the public key pk and a message m,
the encryption algorithm outputs a ciphertext ct.

• Dec. On input the public parameter pp, the public key pk, the secret key sk
and a ciphertext ct, the decryption algorithm outputs a message m.

Correctness of PKE requires that Pr[Dec(pp, pk, sk, ct) �= m] ≤ negl(λ) for any
message m, where pp ← Setup(1λ), (pk, sk) ← Gen(pp), ct ← Enc(pp, pk,m).

The basic security requirement of PKE schemes is IND-CPA security:

Definition 2.1 (IND-CPA Security). We say that a PKE scheme PKE =
(Setup, Gen, Enc, Dec) is IND-CPA secure if for any PPT adversary A =
(A1,A2),

Pr[pp ← Setup(1λ), (pk, sk) ← Gen(pp), (state,m∗
0,m

∗
1) ← A1(pp, pk),

b
$← {0, 1}, ct∗ ← Enc(pp, pk,m∗

b) : A2(state, ct∗) = b] ≤ 1/2 + negl(λ)
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In this work, we also consider the stronger receiver selective opening secu-
rity for PKE schemes. Next, we provide definitions of RSOk security, which are
adapted from previous works [HPW15,HKM+18,HLC+19]. Our definitions con-
sider chosen-plaintext attackers and chosen-ciphertext attackers respectively and
in both cases, we will define security in a simulation-based sense.

Definition 2.2 (SIM-RSOk-CPA Security). We say that a PKE scheme
PKE = (Setup, Gen, Enc, Dec) is SIM-RSOk-CPA secure, if for any polynomially
bounded function n > 0, any PPT adversary A = (A1,A2,A3), there exists a
PPT simulator S = (S1,S2,S3), such that for any PPT distinguisher D,

|Pr[D(ExpRSOk−CPA−real
PKE,A,n (λ)) = 1] −Pr[D(ExpRSOk−CPA−ideal

PKE,S,n (λ)) = 1]| ≤ negl(λ)

where ExpRSOk−CPA−real
PKE,A,n and ExpRSOk−CPA−ideal

PKE,S,n are defined in Fig. 1.

Definition 2.3 (SIM-RSOk-CCA Security). We say that a PKE scheme
PKE = (Setup, Gen, Enc, Dec) is SIM-RSOk-CCA secure, if for any polynomially
bounded function n > 0, any PPT adversary A = (A1,A2,A3), there exists a
PPT simulator S = (S1,S2,S3), such that for any PPT distinguisher D,

|Pr[D(ExpRSOk−CCA−real
PKE,A,n (λ)) = 1] −Pr[D(ExpRSOk−CCA−ideal

PKE,S,n (λ)) = 1]| ≤ negl(λ)

where ExpRSOk−CCA−real
PKE,A,n and ExpRSOk−CCA−ideal

PKE,S,n are defined in Fig. 1.

3 Lower Bound for PKE with RSOk Security

In this section, we establish a lower bound on the secret key size of a PKE
scheme with RSOk security. Roughly, we show that a PKE scheme cannot be
SIM-RSOk-CPA secure (this also implies that it is not SIM-RSOk-CCA secure)
if the length of its secret key is not k times larger than the length of message.
Formally, we have:

Theorem 3.1. Let Π = (Setup, Gen, Enc, Dec) be a PKE scheme with secret
key space SK and message space M (w.l.o.g, we assume SK = {0, 1}l and
M = {0, 1}m). If l ≤ mk − 1, then Π is not SIM-RSOk-CPA secure in the
non-programmable random oracle model.

Proof. Let H : {0, 1}∗ → {0, 1}h be a hash function, which is modeled as a
non-programmable random oracle. Let PP, PK and C be the public parameters
set, the public key space and the ciphertext space of Π respectively. Also, let
a = �log |PP|	, b = �log |PK|	, c = �log |C|	 and let κ = a + b + ck + 2. Let
n = h + 1, ε = 1/(4κ).

Consider the concrete adversary A = (A1,A2,A3) and distinguisher D
defined in Fig. 2. Next, we show that for any PPT simulator S = (S1,S2,S3):

|Pr[D(ExpRSOk−CPA−real
Π,A,n (λ)) = 1] − Pr[D(ExpRSOk−CPA−ideal

Π,S,n (λ)) = 1]| > ε
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ExpRSOk−CPA−real
PKE,A,n :

pp ← Setup(1λ)

(pk, sk) := (pki, ski)i∈[n] ← (Gen(pp))n

(M, s1) ← A1(pp,pk)

M := (mi,j)i∈[n],j∈[k] ← M
(ci,j ← Enc(pp, pki, mi,j))i∈[n],j∈[k]

(I, s2) ← A2((ci,j)i∈[n],j∈[k], s1)

out ← A3((ski, mi,j)i∈I,j∈[k], s2)

Return (M , M, I, out)

ExpRSOk−CPA−ideal
PKE,S,n :

(M, s1) ← S1(1λ)

M := (mi,j)i∈[n],j∈[k] ← M
(I, s2) ← S2(s1)

out ← S3((mi,j)i∈I,j∈[k], s2)

Return (M , M, I, out)

ExpRSOk−CCA−real
PKE,A,n :

pp ← Setup(1λ)

(pk, sk) := (pki, ski)i∈[n] ← (Gen(pp))n

C = ∅
(M, s1) ← ADec

1 (pp,pk)

M := (mi,j)i∈[n],j∈[k] ← M
(ci,j ← Enc(pp, pki, mi,j))i∈[n],j∈[k]

C := {(i, ci,j) | i ∈ [n], j ∈ [k]}
(I, s2) ← ADec

2 ((ci,j)i∈[n],j∈[k], s1)

out ← ADec
3 ((ski, mi,j)i∈I,j∈[k], s2)

Return (M , M, I, out)

ExpRSOk−CCA−ideal
PKE,S,n :

(M, s1) ← S1(1λ)

M := (mi,j)i∈[n],j∈[k] ← M
(I, s2) ← S2(s1)

out ← S3((mi,j)i∈I,j∈[k], s2)

Return (M , M, I, out)

Dec(i, c) :

If (i, c) ∈ C :

Return ⊥
Return Dec(pp, pki, ski, c)

Fig. 1. Experiments for defining SIM-RSOk-CPA security and SIM-RSOk-CCA secu-
rity. Let M be the message space of PKE, then in all experiments, M is a distribution
over Mn×k and I ⊆ [n].

First, by the correctness of Π, we have

Pr[D(ExpRSOk−CPA−real
Π,A,n (λ)) = 1] ≤ negl(λ)

Next, fixing any PPT simulator S = (S1,S2,S3)9, let

δ = Pr[D(ExpRSOk−CPA−ideal
Π,S,n (λ)) = 1]

Then, it is sufficient to show that δ is notably larger than ε. Concretely, we will
argue that δ ≥ 1/(2κ) in the remaining part of the proof.

To lower bound δ, we consider an auxiliary experiment ExpΠ,S,D,n,k,κ defined
in Fig. 3 and analyze the distribution of its output. Here, we use RD to denote
the distribution of the randomness for the distinguisher D (the randomness is
used in the decryption algorithm of Π) and use D(·, ·, ·, ·;R) to denote running
the distinguisher D with randomness R.

9 Here, w.l.o.g., we assume that S2 and S3 are deterministic. This will not restrict the
power of S since we can feed coins for S2 and S3 to S1 and require S1 (resp. S2) to
put coins for S2 and S3 (resp. S3) in its outputted state s1 (resp. s2).
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A1(PP, (PKi)i∈[n]) :

M = Umnk

s1 = (PP, (PKi)i∈[n])

Output (M, s1)
A2((Ci,j)i∈[n],j∈[k], s1) :

t = H(PP, (PKi, Ci,j)i∈[n],j∈[k])

I = {i | i ∈ [h] ∧ t[i] = 1} ∪ {n}
s2 = (s1, (Ci,j)i∈[n],j∈[k])

Output (I, s2)
A3((SKi, mi,j)i∈I,j∈[k], s2) :

out = (s2, (SKi)i∈I)

Output out

D((mi,j)i∈[n],j∈[k], M, I, out) :

If M �= Umnk : Output 1

(PP, (PKi, Ci,j)i∈[n],j∈[k], (SKi)i∈I) = out

t = H(PP, (PKi, Ci,j)i∈[n],j∈[k])

I′ = {i | i ∈ [h] ∧ t[i] = 1} ∪ {n}
If I �= I′ : Output 1

(m′
i,j ← Dec(PP, PKi, SKi, Ci,j))i∈I,j∈[k]

For i ∈ I, j ∈ [k] :

If mi,j �= m′
i,j : Output 1

Output 0

Fig. 2. The adversary A and D in attacking SIM-RSOk-CPA security of Π. Here, we
abuse the notation of Umnk to denote the description of an algorithm that outputs
uniform mnk-bit string and assume that this description is hardwired in A and D.

ExpΠ,S,D,n,k,κ :

(M, s1) ← S1(1λ) ; (I, s2) = S2(s1) ; R ← RD ;

For ι ∈ [1, κ] :

(mι
i,j)i∈[n],j∈[k] ← M ; outι = S3((mι

i,j)i∈I,j∈[k], s2)

If D((mι
i,j)i∈[n],j∈[k], M, I, outι;R) = 1 : Output 1

For ι ∈ [2, κ] :

Parse outι = (PPι, (PKι
i , C

ι
i,j)i∈[n],j∈[k], (SKι

i )i∈I)

If (PPι−1, (PKι−1
i , Cι−1

i,j )i∈[n],j∈[k]) �= (PPι, (PKι
i , C

ι
i,j)i∈[n],j∈[k]) :

Output 2

Output 0

Fig. 3. The auxiliary experiment ExpΠ,S,D,n,k,κ.

Lemma 3.1. Pr[ExpΠ,S,D,n,k,κ = 0] ≤ 1/4.

Proof. Assume the experiment outputs 0. First, we have M = Umnk, thus,
for each ι ∈ [κ], i ∈ [n], j ∈ [k], mι

i,j is sampled uniformly at random from
{0, 1}m. Also, we know that n ∈ I and for ι ∈ [κ] and j ∈ [k], we set
PKι = PKι

n, Cι
j = Cι

n,j , SKι = SKι
n, and mι

j = mι
n,j . Moreover, we have

(PPι−1, (PKι−1, Cι−1
j )j∈[k]) = (PPι, (PKι, Cι

j)j∈[k]) for all ι ∈ [n] and thus we
can write PPι as PP, PKι as PK and Cι

j as Cj . Finally, for all ι ∈ [κ] and
j ∈ [k], we have mι

j = Dec(PP, PK, SKι, Cj ; rι
j), where rι

j is the randomness for
Dec derived deterministically from R.

Next, for any randomness R (which determines (rι
j)ι∈[κ],j∈[k]), we analyze

the probability that all above requirements are satisfied.
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First, fix any tuple (PP, PK,C = (C1, . . . , Ck),SK = (SK1, . . . , SKκ)) in
{0, 1}a+b+ck+lκ, which is not necessary the output of the simulator, then we have

Pr[∀ι ∈ [κ], j ∈ [k],mι
j = Dec(PP, PK, SKι, Cj ; rι

j)] =
1

2mkκ

where the probability is taken over the random choice of each mι
j .

As the total possible ways to choose PP, PK, C = (C1, . . . , Ck), and SK =
(SK1, . . . , SKκ) does not exceed 2a+b+ck+lκ = 2(l+1)κ−2, we have

Pr[∃PP, PK,C,SK : ∀ι ∈ [κ], j ∈ [k],

mι
j = Dec(PP, PK, SKι, Cj ; rι

j)] ≤ 2(l+1)κ−2

2mkκ
≤ 2mkκ−2

2mkκ
=

1
4

Therefore, the probability that the auxiliary experiment ExpΠ,S,D,n,k,κ out-
puts 0 does not exceed 1/4. ��
Lemma 3.2. Pr[ExpΠ,S,D,n,k,κ = 1] ≤ κ · δ.

Proof. First, note that randomness of the experiment ExpΠ,S,D,n,k,κ comes from
three parts, namely, R, randomness of the simulator S (denoted as ρ here) and
randomness used in sampling mι

i,j . Let RS be the distribution of the randomness
for the simulator S. Let

f(R, ρ) = Pr

⎡
⎢⎢⎢⎣

(M, s1) = S1(1λ; ρ);
(I, s2) = S2(s1);
M := (mi,j)i∈[n],j∈[k] ← M;
out = S3((mi,j)i∈I,j∈[k], s2);

: D(M ,M, I, out;R) = 1

⎤
⎥⎥⎥⎦

where the probability is taken over the random choice of each M . Then, we have

Pr[ExpΠ,S,D,n,k,κ = 1]

=ER←RD,ρ←RS
(1 − (1 − f(R, ρ))κ)

≤ER←RD,ρ←RS
(κ · f(R, ρ))

=κ · ER←RD,ρ←RS
f(R, ρ)

=κ · δ

where the second inequality comes from the Bernoulli’s inequality. ��
Lemma 3.3. Pr[ExpΠ,S,D,n,k,κ = 2] ≤ 1/4.

Proof. This comes from the collision resistant property of the non-programmable
random oracle, which is a random function whose output is not controlled by
the simulator.

Assuming that H has been queried (either by the adversary, the distinguisher
or the simulator) Q times, where Q is a polynomial. Then the probability that
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there exists two distinct queries x1, x2 s.t. H(x1) = H(x2) does not exceed Q2

2h
,

which is negligible.
However, if the experiment outputs 2 with a non-negligible probability (e.g.,

1/4), then, via running the experiment, one can find ι ∈ [κ] that

1) (PPι−1, (PKι−1
i , Cι−1

i,j )i∈[n],j∈[k]) �= (PPι, (PKι
i , C

ι
i,j)i∈[n],j∈[k])

2) H(PPι−1, (PKι−1
i , Cι−1

i,j )i∈[n],j∈[k]) = H(PPι, (PKι
i , C

ι
i,j)i∈[n],j∈[k]) =

(t[1], . . . , t[h]), where t[i] = 1 iff i ∈ I (otherwise, the experiment will out-
put 1)

with a non-negligible probability, which makes a contradiction. ��
Finally, combining Lemma3.1 to Lemma 3.3, we have

1 ≤ 1/4 + κ · δ + 1/4

which implies δ ≥ 1
2κ and this completes the proof. ��

Remark 3.1. Theorem 3.1 claims that if the key length of a PKE scheme is not
large enough, then it is impossible to prove its SIM-RSOk-CPA security even in
the non-programmable random oracle model. At first glance, this also rules out
standard model achievability of RSOk security for PKE schemes with short keys.
However, as stated in [BO13], impossibility result in non-programmable random
oracle model does not extend to that in standard model naturally, since the
adversary in the non-programmable random oracle model is also able to access
the random oracle and thus is stronger than a standard model adversary.

Nonetheless, We can adapt the proof for Theorem3.1 to achieve the same
lower bound (i.e. l > mk − 1) in the standard model. More precisely, the revised
proof is identical to proof of Theorem3.1, except that we use a collision resistant
hash function to replace the use of non-programmable random oracle. But the
proof only works in the auxiliary input model, where all participants, including
the adversary, the distinguisher, and the simulator, are given some common
auxiliary input in the beginning. Here, the auxiliary input is a random key for
the underlying collision resistant hash function.

4 RSOk Security �⇒ RSOk+1 Security

We present counterexamples that separate the RSOk security and the RSOk+1

security in this section. More precisely, for any polynomial k, we construct a
PKE scheme Π that is SIM-RSOk-CCA secure in the standard model but is not
SIM-RSOk+1-CPA secure in the non-programmable random oracle model.

Let λ be the security parameter and let k be a positive integer that is poly-
nomial in λ.
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Let E = (E.Setup,E.Gen,E.Enc,E.Dec) be a CPA Secure PKE scheme with a
deterministic decryption algorithm and an additional verification algorithm Ver.
The algorithm Ver takes as input a public parameter pp and a public key/secret
key pair (pk, sk), and outputs a bit indicating if (pk, sk) is a valid key pair. Also,
we require that E has the following two properties:

• Verification Correctness. Let pp ← E.Setup(1λ), (pk, sk) ← E.Gen(pp),
then Pr[E.Ver(pp, pk, sk) = 1] = 1.

• Key Uniqueness. For any pp and for any pk, |{sk | E.Ver(pp, pk, sk) =
1}| ≤ 1.

It is easy to see that the well-known ElGamal encryption scheme satisfies this
property.

Let NIZK = (NIZK.Gen,NIZK.Prove,NIZK.Verify) be an unbounded simula-
tion-sound NIZK proof system for NP. In particular, we will use it to prove the
following language:

{(pp, (pkı,j, cı,j)ı∈[k],j∈{0,1}) :∃((pı, rı,j)ı∈[k],j∈{0,1}),
(cı,j = E.Enc(pp, pkı,j, pı; rı,j))ı∈[k],j∈{0,1}}

The PKE scheme Π = (Setup, Gen, Enc, Dec) works as follows:

• Setup. On input a security parameter λ, the setup algorithm computes pp ←
E.Setup(1λ) and crs ← NIZK.Gen(1λ). The public parameter for Π is PP =
(pp, crs).

• Gen. On input a public parameter PP = (pp, crs), the key generation algorithm
first computes (pkı,j, skı,j) ← E.Gen(pp) for ı ∈ [k] and j ∈ {0, 1}. Then it

samples s1, . . . , sk
$← {0, 1}. The public key PK = (pkı,j)ı∈[k],j∈{0,1} and the

secret key SK = (sı, skı,sı
)ı∈[k].

• Enc. On input a public parameter PP = (pp, crs), a public key PK =
(pkı,j)ı∈[k],j∈{0,1} and a message m ∈ {0, 1}, the encryption algorithm first
samples p1, . . . , pk uniformly at random from {0, 1} s.t. m = p1⊕p2⊕ . . .⊕pk.
Then for ı ∈ [k], j ∈ {0, 1}, it samples rı,j randomly from the randomness
space of E and computes cı,j = E.Enc(pp, pkı,j, pı; rı,j). Finally, it computes
π ← NIZK.Prove(crs, (pp, (pkı,j, cı,j)ı∈[k],j∈{0,1}), ((pı, rı,j)ı∈[k],j∈{0,1})). The
ciphertext is C = ((cı,j)ı∈[k],j∈{0,1}, π).

• Dec. On input a public parameter PP = (pp, crs), a public key PK =
(pkı,j)ı∈[k],j∈{0,1}, a secret key SK = (sı, skı,sı

)ı∈[k] and a ciphertext C =
((cı,j)ı∈[k],j∈{0,1}, π), the decryption algorithm first checks if π is valid and
aborts with a decryption failure symbol ⊥ if it is not the case. Otherwise, it
computes pı = E.Dec(pp, pkı,sı

, skı,sı
, cı,sı

) and outputs m = p1 ⊕ . . . ⊕ pk.

Theorem 4.1. If E is an CPA secure PKE scheme and NIZK is a simulation-
sound NIZK proof system, then Π is SIM-RSOk-CCA secure in the standard
model.

Theorem 4.2. If E is a PKE scheme with deterministic decryption algorithm,
verification correctness and key uniqueness, then Π is not SIM-RSOk+1-CPA
secure in the non-programmable random oracle model.
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Proofs of Theorem 4.1 and Theorem 4.2 are provided in the full version.
Note that we can also prove that Π is not SIM-RSOk+1-CPA secure in the

standard model, but similar to the setting discussed in Remark 3.1, we need to
assume that all participants, including the adversary, the distinguisher, and the
simulator, are given some common auxiliary input in the beginning.

5 RSOk Secure PKE with (Nearly) Optimal Secret Key
Length

In this section, we construct RSOk secure PKE schemes with secret key length
l = k + O(λ). Here the ratio of secret key length to the messages number k is
l
k = 1 + o(1). As shown in Sect. 3, no PKE scheme can achieve RSOk security if
l ≤ k − 1 (i.e., l

k < 1). Thus, our schemes are optimal in an asymptotic sense.
Next, in Sect. 5.1, we first construct an optimal SIM-RSOk-CPA secure

scheme from the DDH assumption. Then in Sect. 5.2, we upgrade the scheme
to achieve SIM-RSOk-CCA security by using a NIZK proof system.

5.1 SIM-RSOk-CPA Secure PKE with (Nearly) Optimal Secret
Key Length

Let λ be the security parameter and let k be a positive integer that is polyno-
mial in λ. Let G be a group generator algorithm that takes as input a security
parameter λ and outputs a multiplicative cyclic group G of prime order q and a
generator g of G.

The PKE scheme Π = (Setup, Gen, Enc, Dec) works as follows:

• Setup. On input a security parameter λ, the setup algorithm first gener-
ates (G, q, g) ← G(1λ) and samples a0, a1, . . . ak, b

$← Zq. Then it com-
putes gı = gaı for ı ∈ [0, k] and h = gb. The public parameter for Π is
PP = (G, q, g, g0, g1, . . . , gk, h).

• Gen. On input a public parameter PP = (G, q, g, g0, g1, . . . , gk, h), the key

generation algorithm first samples s0
$← Zq and s1, . . . sk

$← {0, 1} and sets
the secret key sk = (s0, s1, . . . , sk). Then it computes the public key pk =∏

ı∈[0,k] g
sı
ı .

• Enc. On input a public parameter PP = (G, q, g, g0, g1, . . . , gk, h), a public
key pk and a message m ∈ {0, 1}, the encryption algorithm first samples

w
$← Zq. Then it computes x = (x0, x1, . . . , xk) = (gw

0 , gw
1 , . . . , gw

k ), K = pkw

and C = K · hm. The ciphertext CT = (x, C).
• Dec. On input a public parameter PP = (G, q, g, g0, g1, . . . , gk, h), a secret key
sk = (s0, s1, . . . , sk) and a ciphertext CT = (x0, x1, . . . , xk, C), the decryption
algorithm first computes K ′ =

∏
ı∈[0,k] x

sı
ı . Then it outputs 0 if C = K ′ and

outputs 1 if C = K ′ · h. Otherwise, it outputs a decryption failure symbol ⊥.

Security. Security of Π is guaranteed by the following theorem. We put the
proof of Theorem 5.1 in Sect. 5.3.
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Theorem 5.1. Assuming the DDH assumption holds in group G, Π is a PKE
scheme with SIM-RSOk-CPA security.

Key Length. The secret key length of Π is k + log q, where log q is determined
by the security parameter λ and is independent of the parameter k. For example,
if we instantiate the scheme with an elliptic curve group and hope to achieve a
80-bit security, then we can fix log q = 160. In this case, the ratio of key length
to messages number k is k+log q

k = 1 + 160
k = 1 + o(1).

5.2 SIM-RSOk-CCA Secure PKE with (Nearly) Optimal Secret
Key Length

Let λ be the security parameter and let k be a positive integer that is polynomial
in λ. Let Π′ = (Π′.Setup,Π′.Gen,Π′.Enc,Π′.Dec) be a SIM-RSOk-CPA secure
PKE scheme. Let E = (E.Setup,E.Gen,E.Enc,E.Dec) be a CPA-secure PKE
scheme. Let NIZK = (NIZK.Gen,NIZK.Prove,NIZK.Verify) be a an unbounded
simulation-sound NIZK proof for NP. In particular, we will use it to prove the
following language:

{(pp1, pk1, c1, pp2, pk2, c2) : ∃(m, r1, r2),
c1 = Π′.Enc(pp1, pk1,m; r1) ∧ c2 = E.Enc(pp2, pk2,m; r2)}

The PKE scheme Π = (Setup, Gen, Enc, Dec) works as follows:

• Setup. On input a security parameter λ, the setup algorithm computes pp ←
Π′.Setup(1λ), p̃p ← E.Setup(1λ) and crs ← NIZK.Gen(1λ). Also, it generates
(p̃k , s̃k) ← E.Gen(p̃p). The public parameter for Π is PP = (pp, crs, p̃p, p̃k).

• Gen. On input a public parameter PP = (pp, crs, p̃p, p̃k), the key generation
algorithm computes (pk , sk) ← Π′.Gen(pp). The public key PK = pk and the
secret key SK = sk .

• Enc. On input a public parameter PP = (pp, crs, p̃p, p̃k), a public key
PK = pk and a message m, the encryption algorithm first samples r, r̃
randomly from the encryption randomness space of Π′ and E respectively.
Then it computes c = Π′.Enc(pp, pk ,m; r), c̃ = E.Enc(p̃p, p̃k ,m; r̃) and π ←
NIZK.Prove(crs, (pp, pk , c, p̃p, p̃k , c̃), (m, r, r̃)). The ciphertext is C = (c, c̃, π).

• Dec. On input a public parameter PP = (pp, crs, p̃p, p̃k), a public key PK =
pk , a secret key SK = sk and a ciphertext C = (c, c̃, π), the decryption
algorithm first checks if π is valid and aborts with a decryption failure symbol
⊥ if it is not the case. Otherwise, it outputs m ← Π′.Dec(pp, pk , sk , c).

Security. Security of Π is guaranteed by the following theorem. We put the
proof of Theorem5.2 in Sect. 5.4.

Theorem 5.2. If Π′ is a SIM-RSOk-CPA secure PKE scheme, E is a CPA-
secure PKE scheme and NIZK is an unbounded simulation-sound NIZK proof,
then Π is a PKE scheme with SIM-RSOk-CCA security.
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Key Length. If we instantiate the underlying SIM-RSOk-CPA secure PKE
scheme Π′ with the one we constructed in Sect. 5.1, then we can obtain a
SIM-RSOk-CCA secure PKE scheme Π, where the ratio of key length to mes-
sages number k is also k+log q

k = 1 + o(1).

5.3 Proof of Theorem5.1

Proof. We provide the proof of Theorem5.1 in this section.
Let K and K ′ be the random variables used in generating and decrypting

the same ciphertext (x0, x1, . . . , xk, C) respectively. It is easy to see that the
decryption algorithm can recover the correct message iff K = K ′. As we have

K = pkw = (
∏

ı∈[0,k]

gsı
ı )w =

∏
ı∈[0,k]

gw·sı
ı =

∏
ı∈[0,k]

(gw
ı )sı =

∏
ı∈[0,k]

xsı
ı = K ′

the correctness holds.
Next, we focus on the SIM-RSOk-CPA security of Π. First, for any polynomial

n, any adversary A = (A1,A2,A3), and any distinguisher D, we design the
simulator S for A, which works as in Fig. 4.

Next, we prove that output of the simulator S is indistinguishable from out-
put of the adversary A in a real game. We argue this via defining the following
games:

• Game 0. This is the real experiment ExpRSOk−CPA−real
Π,A,n . In particular, the

challenger interacts with the adversary as follows:
1. On input a security parameter, the challenger first generates (G, q, g) ←

G(1λ) and samples a0, a1, . . . ak, b
$← Zq. Then it computes gı = gaı for

ı ∈ [0, k], h = gb, and sets PP = (G, q, g, g0, g1, . . . , gk, h).

2. Then, for i ∈ [n], it samples si,0
$← Zq, si,1, . . . si,k

$← {0, 1} and computes
the public key pk i =

∏
ı∈[0,k] g

si,ı
ı .

3. Next, the challenger sends PP, (pk i)i∈[n] to A and receives a distribution
M from the adversary.

4. Then, the challenger samples a matrix of messages M :=
(mi,j)i∈[n],j∈[k] ← M and for each (i, j) ∈ [n]×[k], it generates a challenge
ciphertext for mi,j as follows:

(a) Samples wi,j
$← Zq.

(b) Computes xi,j = (xi,j,0, xi,j,1, . . . , xi,j,k) = (gwi,j

0 , g
wi,j

1 , . . . , g
wi,j

k ).
(c) Computes Ci,j = pkwi,j

i · hmi,j .
(d) Sets CTi,j = (xi,j , Ci,j).

5. Next, the challenger sends all challenge ciphertexts to A and receives a
set I ⊆ [n] from the adversary.

6. Then, the challenger sets sk i = (si,0, si,1, . . . , si,k) for i ∈ I and sends
(sk i,mi,j)i∈I,j∈[k] to A.

7. Finally, on receiving A’s output out, the challenger outputs
(M ,M, I, out).
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S1(1λ) :

(G, q, g) ← G(1λ)

For ı ∈ [0, k] :

aı
$← Zq

gı = gaı

b
$← Zq

h = gb

PP = (G, q, g, g0, g1, . . . , gk, h)

For i ∈ [n] :

s′
i,0

$← Zq

For ı ∈ [k] :

s′
i,ı

$← {0, 1}
pk i =

∏
ı∈[0,k] g

s′
i,ı

ı

(M, s′
1) ← A1(PP, (pk i)i∈[n])

s = ((aı)ı∈[0,k], b, (s′
i,ı)i∈[n],ı∈[0,k])

s1 = (s′
1,PP, (pk i)i∈[n], s)

Output (M, s1)

S2(s1) :

For i ∈ [n], j ∈ [k] :

wi,j
$← Zq

If s′
i,j = 1 : αi,j = 1

Otherwise : αi,j = −1

For ı ∈ [0, k] ∧ ı �= j : xi,j,ı = g
wi,j
ı

xi,j,j = g
wi,j

j · hαi,j

xi,j = (xi,j,0, . . . , xi,j,k)

Ci,j =
∏

ı∈[0,k] x
s′
i,ı

i,j,ı

CTi,j = (xi,j , Ci,j)

(I, s′
2) ← A2((CTi,j)i∈[n],j∈[k], s

′
1)

s2 = (s1, s′
2)

Output (I, s2)
S3((mi,j)i∈I,j∈[k], s2) :

For i ∈ I :

For j ∈ [k] :

If mi,j = 0 : si,j = s′
i,j

Otherwise: si,j = 1 − s′
i,j

si,0 = s′
i,0 + a−1

0

∑
ı∈[k](aı · (s′

i,ı − si,ı))

sk i = (si,ı)ı∈[0,k]

out ← A3((sk i, mi,j)i∈I,j∈[k], s
′
2)

Output out

Fig. 4. The simulator S for A in proving SIM-RSOk-CPA security of Π.

• Game 1. This is identical to Game 0 except that in step 4, the challenger
computes new variables (s′

i,j , αi,j)i∈[n],j∈[k]. More precisely, for i ∈ [n], j ∈ [k],
it sets s′

i,j = si,j if mi,j = 0 and sets s′
i,j = 1 − si,j otherwise. Besides, it sets

αi,j = 1 if s′
i,j = 1 and sets αi,j = −1 otherwise.

• Game 2. This is identical to Game 1 except that the challenger changes the
way to generate Ci,j . More precisely, for each i ∈ [n], j ∈ [k], the challenger
computes Ci,j = (

∏
ı∈[0,k] x

si,ı

i,j,ı) · hmi,j .
• Game 3. This is identical to Game 2 except that the j-th element in xi,j

(i.e., xi,j,j) is generated dishonestly. More precisely, for each i ∈ [n], j ∈ [k],

it samples xi,j,j
$← G.

• Game 4. This is identical to Game 3 except that the challenger changes the
way to generate xi,j,j . More precisely, for each i ∈ [n], j ∈ [k], it samples

x′
i,j,j

$← G and computes xi,j,j = x′
i,j,j · hαi,j .

• Game 5. This is identical to Game 4 except that the challenger changes the
way to generate xi,j,j . More precisely, for each i ∈ [n], j ∈ [k], it computes
x′

i,j,j = g
wi,j

j and xi,j,j = x′
i,j,j · hαi,j .
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• Game 6. This is identical to Game 5 except that the challenger changes
the way to generate Ci,j . More precisely, in step 4, the challenger sets s′

i,0 =
si,0 + a−1

0

∑
ı∈[k](aı · (si,ı − s′

i,ı)) and for each i ∈ [n], j ∈ [k], it computes

Ci,j =
∏

ı∈[0,k] x
s′
i,ı

i,j,ı.
• Game 7. This is identical to Game 6 except that the challenger changes the

order in generating s′
i,j and si,j :

– In step 2, it samples s′
i,0

$← Zq and s′
i,ı

$← {0, 1} for i ∈ [n], ı ∈ [k] and

computes pk i =
∏

ı∈[0,k] g
s′
i,ı

ı for i ∈ [n].
– In step 4, for i ∈ [n], j ∈ [k], it sets si,j = s′

i,j if mi,j = 0 and sets
si,j = 1−s′

i,j otherwise. Also, it sets si,0 = s′
i,0+a−1

0

∑
ı∈[k](aı ·(s′

i,ı−si,ı))
for i ∈ [n].

Let pι be the probability that D outputs 1 when taking the output of Game
ι as input, then we have p0 = Pr[D(ExpRSOk−CPA−real

Π,A,n (λ)) = 1]. Also, it is easy
to see that output of Game 7 is exactly the output of the ideal experiment, so,
we have p7 = Pr[D(ExpRSOk−CPA−ideal

Π,S,n (λ)) = 1]. Next, we prove that p0 − p7 is
negligible via showing that pι − pι+1 is negligible for all ι ∈ [0, 6].

Lemma 5.1. |p0 − p1| = 0.

Proof. Game 0 and Game 1 are identical except that in Game 1, the challenger
generates some variables that are not used in this game. This will not affect the
output of the game. ��
Lemma 5.2. |p1 − p2| = 0.

Proof. In Game 1 and Game 2, each Ci,j is computed in different ways. But as

pkwi,j

i = (
∏

ı∈[0,k]

gsi,ı
ı )wi,j =

∏
ı∈[0,k]

gsi,ı·wi,j
ı =

∏
ı∈[0,k]

(gwi,j
ı )si,ı =

∏
ı∈[0,k]

x
si,ı

i,j,ı

the computation results are identical and thus outputs of these two games are
identically distributed. ��
Lemma 5.3. |p2 − p3| ≤ negl(λ).

Proof. Indistinguishability between Game 2 and Game 3 comes from the DDH
assumption by a standard hybrid argument.

In particular, for some fixed i, j ∈ [n]×[k], to show that xi,j,j is sampled from
two computationally indistinguishable distributions in Game 2 and Game 3, we
consider a DDH challenge (g, g1, g2, g3) = (g, gx, gy, gz), where z = xy or z

$← Zq.
The reduction sets gj = g1, gwi,j = g2, xi,j,j = g3 Then, it simulates the view
for A (as in Game 2 and Game 3) with them. Note that the exact value of x and
y is not needed in the simulation since 1) the challenger does not use aj in both
Game 2 and Game 3 and 2) without wi,j ,the challenger can compute xi,j,ı = gaı

2

for ı ∈ [0, k]\{j}. It is easy to see that if z = xy, then xi,j,j = g
wi,j

j as in Game
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2, and if z
$← Zq, then xi,j,j

$← Zq as in Game 3. Therefore, indistinguishability
between Game 2 and Game 3 is guaranteed assuming the hardness of the DDH
assumption. ��
Lemma 5.4. |p3 − p4| = 0.

Proof. Since in Game 3, xi,j,j
$← G, it will not change its distribution if we

additionally multiply it with hαi,j . Therefore, outputs of these two games are
identically distributed. ��
Lemma 5.5. |p4 − p5| ≤ negl(λ).

Proof. Similar to the proof of Lemma5.3, indistinguishability between Game 4
and Game 5 comes from the DDH assumption by a standard hybrid argument. ��
Lemma 5.6. |p5 − p6| = 0.

Proof. In Game 5 and Game 6, each Ci,j is computed in different ways. But as

(
∏

ı∈[0,k]

x
si,ı

i,j,ı) · hmi,j

=(
∏

ı∈[0,k]

gwi,j ·si,ı
ı ) · hαi,j ·si,j · hmi,j

=(gwi,j ·(∑ı∈[0,k] aı·si,ı)) · hαi,j ·si,j+mi,j

=(gwi,j ·(∑ı∈[0,k] aı·s′
i,ı)) · hαi,j ·si,j+mi,j

=(gwi,j ·(∑ı∈[0,k] aı·s′
i,ı)) · hαi,j ·s′

i,j

=(
∏

ı∈[0,k]

g
wi,j ·s′

i,ı
ı ) · hαi,j ·s′

i,j

=
∏

ı∈[0,k]

x
s′
i,ı

i,j,ı

the computation results are identical and thus outputs of these two games are
identically distributed.

Here, the first and the last equalities come from the fact that xi,j,ı = g
wi,j
ı

for ı �= j and that xi,j,j = g
wi,j

j · hαi,j . Also, the third equality comes from the
fact that s′

i,0 = si,0 +a−1
0

∑
ı∈[k](aı · (si,ı − s′

i,ı)), which implies that
∑

ı∈[0,k](aı ·
s′

i,ı) =
∑

ı∈[0,k](aı · si,ı). For the fourth equality, if mi,j = 0, then si,j = s′
i,j

and thus αi,j · si,j + 0 = αi,j · s′
i,j ; if mi,j = 1, then either si,j = 1, s′

i,j = 0 or
si,j = 0, s′

i,j = 1, and in both cases, αi,j · (s′
i,j − si,j) = 1, which implies that

αi,j · si,j + 1 = αi,j · s′
i,j . ��

Lemma 5.7. |p6 − p7| = 0.
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Proof. First, in both Game 6 and Game 7, each pk i is a random element in
G, thus the adversary’s views are identical in both games until step 4, where
(si,ı, s

′
i,ı)i∈[n],ı∈[0,k] are sampled in different ways.

In step 4, fixing the challenge messages mi,j , then in both games the random
variables (si,ı, s

′
i,ı)i∈[n],ı∈[0,k] are randomly distributed in Zq ×Zq ×{0, 1}2k with

the restriction that for any i ∈ [n]:{∑
ı∈[0,k](aı · s′

i,ı) =
∑

ı∈[0,k](aı · si,ı) = logg pk i

∀ı ∈ [k], si,ı + s′
i,ı = mi,j

Therefore, they are identically distributed and that completes the proof of
Lemma 5.7.

Combining Lemma 5.1 to Lemma 5.7, we have p0 − p7 negligible and this
completes the proof. ��

5.4 Proof of Theorem5.2

Proof. We provide the proof of Theorem5.2 in this section.
Correctness of Π comes from correctness of Π′ and completeness of NIZK

directly.
Next, we focus on the SIM-RSOk-CCA security of Π. First, for any polyno-

mial n, any adversary A = (A1,A2,A3), we define an auxiliary adversary B for
Π′ as in Fig. 5. Since Π′ is a SIM-RSOk-CPA secure PKE scheme, there exists a
simulator S ′ = (S ′

1,S ′
2,S ′

3) for B such that the output of S ′ is indistinguishable
from the output of B in a real RSOk-CPA game. Then we define the simulator
S for A as S = S ′ = (S ′

1,S ′
2,S ′

3).

Next, we prove that output of the simulator S is indistinguishable from out-
put of the adversary A in a real RSOk-CCA game. We argue this via defining
the following games:

• Game 0. This is the real experiment ExpRSOk−CCA−real
Π,A,n . In particular, the

challenger interacts with the adversary as follows:
1. On input a security parameter, the challenger first computes pp ←

Π′.Setup(1λ), p̃p ← E.Setup(1λ) and crs ← NIZK.Gen(1λ). Also, it
generates (p̃k , s̃k) ← E.Gen(p̃p). Then, it sets the public parameter
PP = (pp, crs, p̃p, p̃k).

2. Then, for i ∈ [n], it computes (pk i, sk i) ← Π′.Gen(pp).
3. Next, the challenger sends PP, (pk i)i∈[n] to A and answers A’s decryption

oracle queries as follows:
(a) On input a pair (i, C), where C = (c, c̃, π), the challenger first checks

if π is valid and returns an error symbol ⊥ if π is not valid.
(b) Otherwise, it computes m ← Π′.Dec(pp, pk i, sk i, c).
(c) Finally, it returns m to A.

4. The adversary will send a distribution M to the challenger after querying
the decryption oracle a few times. Then, the challenger samples a matrix
of messages M := (mi,j)i∈[n],j∈[k] ← M and for each (i, j) ∈ [n] × [k], it
generates a challenge ciphertext for mi,j as follows:
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B1(pp, (pk i)i∈[n]) :

p̃p ← E.Setup(1λ)

(crs, td) ← NIZK.S1(1λ)

(p̃k , s̃k) ← E.Gen(p̃p)

PP = (pp, crs, p̃p, p̃k)

C = ∅
(M, s′

1) ← ADecB
1 (PP, (pk i)i∈[n])

s1 = (s′
1,PP, (pk i)i∈[n], td, s̃k)

Output (M, s1)
DecB(i, C) :

If (i, C) ∈ C: Return ⊥
Parse C = (c, c̃, π)

x = (pp, pk i, c, p̃p, p̃k , c̃)

If NIZK.Verify(crs, x, π) = 0 : Return ⊥
Return E.Dec(p̃p, p̃k , s̃k , c̃)

B2((ci,j)i∈[n],j∈[k], s1) :

For i ∈ [n], j ∈ [k] :

c̃i,j ← E.Enc(p̃p, p̃k , 0)

xi,j = (pp, pk i, ci,j , p̃p, p̃k , c̃i,j)

πi,j ← NIZK.S2(crs, td, xi,j)

Ci,j = (ci,j , c̃i,j , πi,j)

C = {(i, Ci,j) | i ∈ [n], j ∈ [k]}
(I, s′

2) ← ADecB
2 ((Ci,j)i∈[n],j∈[k], s

′
1)

s2 = (s1, s′
2)

Output (I, s2)
B3((sk i, mi,j)i∈I,j∈[k], s2) :

out ← ADecB
3 ((sk i, mi,j)i∈I,j∈[k], s

′
2)

Output out

Fig. 5. The adversary B for Π′.

(a) Samples ri,j , r̃i,j randomly from the encryption randomness space of
Π′ and E respectively.

(b) Computes ci,j = Π′.Enc(pp, pk i,mi,j ; ri,j).
(c) Computes c̃i,j = E.Enc(p̃p, p̃k ,mi,j ; r̃i,j).
(d) Computes

πi,j ← NIZK.Prove(crs, (pp, pk i, ci,j , p̃p, p̃k , c̃i,j), (mi,j , ri,j , r̃i,j)).
(e) Sets Ci,j = (ci,j , c̃i,j , πi,j).

5. Next, the challenger sends all challenge ciphertexts to A and answers A’s
decryption oracle queries as follows:
(a) On input a pair (i, C), the challenger first checks if C = Ci,j for some

j ∈ [k]. It returns ⊥ if this is the case.
(b) Otherwise, the challenger parses C = (c, c̃, π) and checks if π is valid.

It returns an error symbol ⊥ if π is not valid.
(c) Otherwise, it computes m ← Π′.Dec(pp, pk i, sk i, c).
(d) Finally, it returns m to A.

6. The adversary will send a set I ⊆ [n] to the challenger after query-
ing the decryption oracle a few times. Then, the challenger sends
(ski,mi,j)i∈I,j∈[k] to A. The challenger will answer A’s decryption queries
exactly as in step 5.

7. Finally, on receiving A’s output out, the challenger outputs
(M ,M, I, out).

• Game 1. This is identical to Game 0 except that when generating the com-
mon reference string and proofs, the challenger uses the simulator of NIZK
instead of generating them honestly. More precisely, in the first step, the
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challenger computes (crs, td) ← NIZK.S1(1λ) and in step 4, the challenger
computes πi,j ← NIZK.S2(crs, td, (pp, pk i, ci,j , p̃p, p̃k , c̃i,j)).

• Game 2. This is identical to Game 1 except that the challenger changes the
way to generate challenge ciphertexts. More precisely, for each i ∈ [n], j ∈ [k],
the challenger computes c̃i,j ← E.Enc(p̃p, p̃k , 0).

• Game 3. This is identical to Game 2 except that the challenger changes the
way to answer decryption queries. More precisely, for a ciphertext (c, c̃, π), it
returns E.Dec(p̃p, p̃k , s̃k , c̃) in the last step of the decryption oracle.

• Game 4. In Game 4, the challenger proceeds as follows:
1. (M, s1) ← S ′

1(1
λ)

2. M := (mi,j)i∈[n],j∈[k] ← M
3. (I, s2) ← S ′

2(s1)
4. out ← S ′

3((mi,j)i∈I,j∈[k], s2)
5. Return (M ,M, I, out)

Let pα be the probability that D outputs 1 when taking the output of Game
α as input, then we have

p0 = Pr[D(ExpRSOk−CCA−real
Π,A,n (λ)) = 1]

Besides, we can view Game 4 as the ideal experiment ExpRSOk−CCA−ideal
Π,S,n (recall

that S = S ′ = (S ′
1,S ′

2,S ′
3)), so we have

p4 = Pr[D(ExpRSOk−CCA−ideal
Π,S,n (λ)) = 1]

Next, we prove that p0−p4 is negligible via showing that pα−pα+1 is negligible
for all α ∈ [0, 3].

Lemma 5.8. |p0 − p1| ≤ negl(λ).

Proof. This comes from the unbounded zero-knowledge property of NIZK
directly. ��
Lemma 5.9. |p1 − p2| ≤ negl(λ).

Proof. This comes from the CPA-security of E directly. ��
Lemma 5.10. |p2 − p3| ≤ negl(λ).

Proof. This comes from the fact that for any ciphertext (c, c̃, π) with a valid
π, E.Dec(p̃p, p̃k , s̃k , c̃) = Π′.Dec(pp, pk i, sk i, c) with all but negligible probabil-
ity, which is guaranteed by the unbounded simulation-soundness of NIZK and
correctness of Π′ and E. ��
Lemma 5.11. |p3 − p4| ≤ negl(λ).
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Proof. It is easy to see that output of Game 3 is exactly the output of experi-
ment ExpRSOk−CPA−real

Π′,B,n (since A’s view in Game 3 is identical to its view in the
experiment ExpRSOk−CPA−real

Π′,B,n when invoked by B), thus we have

p3 = Pr[D(ExpRSOk−CPA−real
Π′,B,n (λ)) = 1]

Also, we can view Game 4 as the ideal experiment ExpRSOk−CPA−ideal
Π′,S′,n , so we have

p4 = Pr[D(ExpRSOk−CPA−ideal
Π′,S′,n (λ)) = 1]

Therefore, Lemma 5.11 comes from the SIM-RSOk-CPA security of Π′ directly.
Combining Lemma 5.8 to Lemma 5.11, we have p0 − p4 negligible and this

completes the proof. ��

6 Conclusion

In this work, we initiate the study of receiver selective opening security for PKE
schemes in the multi-challenge setting. Several interesting open questions remain.

First, our impossibility results only work in either the non-programmable ran-
dom oracle model or the auxiliary input model. It is interesting to see if we can
achieve the impossibility results in the standard model without auxiliary input.
Another interesting direction is to explore the relation between PKE scheme
with RSOk security and some related notions, e.g., (receiver) non-committing
encryption, hash proof system, etc. Besides, one may note that in our construc-
tions of RSOk secure PKE schemes, the ciphertexts sizes grow linearly with k.
It will be an interesting future work to construct a RSOk secure PKE scheme
with constant-size ciphertexts. Finally, in this work, we mainly focus on the fea-
sibility of achieving RSOk secure PKE schemes and it will also be interesting to
construct practical PKE schemes with RSOk security.
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Abstract. The goal of white-box cryptography is to provide security
even when the cryptographic implementation is executed in adversarially
controlled environments. White-box implementations nowadays appear
in commercial products such as mobile payment applications, e.g., those
certified by Mastercard. Interestingly, there, white-box cryptography is
championed as a tool for secure storage of payment tokens, and impor-
tantly, the white-boxed storage functionality is bound to a hardware
functionality to prevent code-lifting attacks.

In this paper, we show that the approach of using hardware-binding
and obfuscation for secure storage is conceptually sound. Following secu-
rity specifications by Mastercard and also EMVCo, we first define secu-
rity for a white-box key derivation functions (WKDF) that is bound to a
hardware functionality. WKDFs with hardware-binding model a secure
storage functionality, as the WKDFs in turn can be used to derive encryp-
tion keys for secure storage. We then provide a proof-of-concept construc-
tion of WKDFs based on pseudorandom functions (PRF) and obfusca-
tion. To show that our use of cryptographic primitives is sound, we per-
form a cryptographic analysis and reduce the security of our WKDF
to the cryptographic assumptions of indistinguishability obfuscation and
PRF-security. The hardware-functionality that our WKDF is bound to
is a PRF-like functionality. Obfuscation helps us to hide the secret key
used for the verification, essentially emulating a signature functionality
as is provided by the Android key store.

We rigorously define the required security properties of a hardware-
bound white-box payment application (WPAY) for generating and
encrypting valid payment requests. We construct a WPAY, which uses a
WKDF as a secure building block. We thereby show that a WKDF can
be securely combined with any secure symmetric encryption scheme,
including those based on standard ciphers such as AES.
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1 Introduction

Near-field communication (NFC) protocols have opened up new possibilities
for mobile payment applications, such as those offered by Mastercard, Visa, or
Google wallet [37]. Traditionally, the NFC traffic was processed by a secure hard-
ware component in mobile devices, that performed cryptographic operations. In
2015, Android 4.4 introduced Host Card Emulation (HCE), which allows the
application processor of a mobile device to use the NFC communication, too.
In this case, the cryptographic functions of mobile applications are implemented
software-only, increasing flexibility and device coverage of the applications since
no secure hardware element is required. However, implementing cryptographic
functions in software leads to new attack vectors.

White-Box Cryptography. One of the core cryptographic protection tech-
nologies for HCE (as listed by the Smart Card Alliance Mobile & NFC Coun-
cil [37]) is the use of white-box cryptography. Cryptography in the white-box
attack model was introduced by Chow, Eisen, Johnson, and van Oorschot in
2002 (CEJO [18,19]). In the white-box attack scenario, an adversary has access
to the program code and the complete execution environment of a cryptographic
implementation, and the goal of white-box cryptography is to remain secure
despite such strong attack capabilities. Unlike in the Digital Rights Manage-
ment scenario considered by CEJO where the user is considered as an adversary,
in an HCE context, the goal of white-box cryptography is protect an honest user
against attacks performed on their device, e.g., by malware that can observe
program code and executions.

Commercial Payment Applications. Payment applications need to store
secret information such as transaction tokens that are decrypted when a trans-
action is performed. In the absence of a secure element, the tokens are stored in
insecure memory and likewise, the decryption operations are performed by an
insecure CPU. Thus, to protect against adversaries that use their access to the
storage/CPU to extract secret information and perform payment transactions
on their own, over the past years, white-box cryptography has been broadly
adopted by those offering commercial payment applications. The Mastercard
security guidelines for payment applications, e.g., make the use of white-box
cryptography mandatory for implementing storage protection in order to achieve
an advanced security level (see Local Database Encryption, Chap. 5 in [31]). Sim-
ilarly, EMVCo suggests the use of white-box cryptography in their requirements
documentation [24] for EMV mobile payment.

For a successful payment, the user’s device needs to be close to an NFC
reader. An attacker on a user’s device can thus only alter a payment a user aims
to make, but cannot make payments independently at readers of their choice,1
unless the attacker gains independence from the user’s device. The attacker could
gain independence by (a) extracting the key, or (b) performing a code-lifting
attack [38]. Thus, white-box cryptography in commercial payment applications

1 We discuss relay attacks later.
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needs to achieve hardware-binding (also see [8,20,36] for discussions of useful-
ness). As a consequence, commercial applications implement white-box cryptog-
raphy with a hardware anchor, essentially reaching a middle-ground between
software-only and hardware-only security for cryptographic implementations.

In [14] Alpirez Bock, Amadori, Brzuska and Michiels (AABM) discuss exten-
sively the usefulness of hardware-binding for white-box programs. They explain
that hardware-binding seems to be the right mitigation technique against code-
lifting attacks for white-box programs deployed on real-life applications. The
authors propose to focus on hardware-binding as opposed to other techniques
which are popular in the white-box literature, but seem rather theoretical or
unrelated to the security of payment applications. In particular, they define a
security notion for white-box encryption programs with hardware-binding.

Hardware-Binding on Android. The Mastercard guidelines (see Chap. 5 in
[31]) recommend, to the very least, to use a unique device fingerprint for device
identification. The EMVCo documentation [24] recommends to use hardware
features to bind the operation of software on a particular device. For instance,
Android allows to perform checks on identifiers such as the hardware serial num-
ber, the ESN (electronic serial number) or IMEI (international mobile equipment
identity) of the device via its Build and TelephonyManager classes [3,5]. This
technique helps to mitigate code-lifting attacks as long as the value remains
secret and/or interception of this value between hardware and software can actu-
ally be prevented. For an advanced security level, however, the guidelines suggest
the use of the functionalities of the Android Key Store. The Android Key Store,
e.g., implements RSA signatures, and relies on whatever secure hardware features
the Android device provides. Signatures are a more useful binding functionality
than single identifier values, since for each new input, they provide a different
output.

Conceptual Validation. In this paper, we show that the wide-spread practical
approach for building secure payment applications based on white-box cryptog-
raphy is conceptually sound. We split our study into two parts:

• a hardware-bound white-box key derivation function (WKDF) which provides
(1) hardware-binding and (2) secure storage;

• a secure payment application that performs (3) symmetric encryption of data
on top of the WKDF.

Note that the Mastercard guidelines merely specify best practices but omit a
design blueprint. Our goal is to explicate how exactly a sound design shall pro-
ceed, and what security properties the underlying primitives should obey.
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Hardware-Bound White-Box Key Derivation Function (WKDF). Our
WKDF notion builds on top of a standard (black-box) key derivation function
(KDF). We here consider a lightweight notion for the KDF that takes uniformly
random keys and a second, non-random value as input, and returns pseudoran-
dom keys of fixed length. We therefore use the terms KDF and pseudorandom
function (PRF) interchangeably, abstracting away additional KDF features such
as varying output lengths (cf. Krawczyk [29]). We introduce the IND-WKDF secu-
rity notion for WKDFs that models the previously discussed white-box attack
scenario. I.e., the adversary is given full access to the white-box implementa-
tion of the WKDF as well as limited access to the hardware. If the adversary
uses its hardware access, the adversary is able to evaluate the WKDF, but if
the adversary has no access to the relevant hardware values, e.g., carrying out a
code-lifting attack, then the adversary learns nothing about the WKDF values,
which is modeled by a real-or-random oracle for derived keys.

Existing Security Notions for White-Box Cryptography. Outside of pay-
ment applications, Delerablée, Lepoint, Paillier, and Rivain (DLPR [22]) defined
the meanwhile popular notion of incompressibility (for constructions and defini-
tional refinements see [11,13,15,16,22,25,30]). Here, an adversary shall not be
able to compress a cryptographic program without losing part of its function-
ality. Incompressibility seems unrelated to achieving the goal of real-or-random
key indistinguishability for derived keys, as we aim for the WKDF in our applica-
tion. Additionally, DLPR define traceability which is a security notion intended
to trace malicious users (typically in a DRM setting) if they illegally share their
white-box program with others. Traceability is a helpful to mitigate code-lifting
and re-distribution attacks in the case of malicious users, but not helpful to
protect honest users from adversaries copying and misusing their software.

Finally, DPLR also discuss one-wayness and security against key extraction,
a baseline security property for white-box cryptography, which are both implied
by our IND-WKDF notion for WKDF. Namely, if an adversary can extract the
key, then the adversary can evaluate the KDF on all points itself and thereby
distinguish derived keys from random keys. Similarly, an adversary can use an
inversion algorithm to distinguish real derived keys from random values. Thus,
a IND-WKDF-secure WKDF also resists key extraction and inversion attacks.

Secure Payment Application. We introduce a secure hardware-bound pay-
ment application scheme (WPAY). Its basic functionality is to encrypt and to
authenticate valid payment requests to a server. We model validity by a predi-
cate that acts as filter function. E.g., the filter could only allow for certain date
ranges or limits the upper bound on the payment, while the server generically
accepts payments of arbitrary amounts and ranges.
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Our security notion IND-WPAY gives the adversary the white-box payment
application WPAY. The adversary can query a hardware oracle that provides
them with the necessary hardware values to generate a request using WPAY.
This models that the adversary can observe (and interfere with) honest user eval-
uations. As soon as the adversary loses access to the hardware, confidentiality
and integrity of the user requests should hold. IND-WPAY models both proper-
ties via an indistinguishability game. Note that IND-WPAY captures code-lifting
attacks. Namely, the adversary has access to WPAY throughout the experiment,
but only limited access to the hardware. IND-WPAY models that in the absence
of the hardware, no valid requests can be generated, even given WPAY.

Constructions. To instantiate our approach for building a WKDF, we first
need to specify a hardware functionality. One idea could be to rely on a signature
functionality as provided for example by the Android Key Store. I.e., WKDF
would send a request to the hardware, the hardware signs it, and WKDF then
verifies the signature with the public verification key. But we need to (1) hide
the software-related key of our WKDF and (2) make it inseparable from the
verification algorithm that checks hardware values, which are both achieved by
applying indistinguishability obfuscation techniques. This, in turn, forces us to
use puncturable primitives for the security reduction to work. One option could
thus be to use the puncturable signature scheme by Bellare, Stepanovs and
Waters [10] which, notably, itself is based on indistinguishability obfuscation.
To avoid this double form of obfuscation for the construction, one layer for the
puncturable signature scheme and one for the hiding and binding of our KDF
key, we instead use a faster symmetric-key primitive in form of a (puncturable)
PRF (essentially as a message authentication code). This puncturable PRF is
obfuscated once within the hardware-linked KDF construction to ensure the
required security.

Hence, we build a WKDF and prove its IND-WKDF security, following tech-
niques by Sahai and Waters [35]. This construction assumes puncturable PRFs
(which are equivalent to one-way functions) and indistinguishability obfusca-
tion. Given and IND-WKDF-secure WKDF we then prove that another layer
of indistinguishability obfuscation can be used to bind the WKDF to an arbi-
trary secure symmetric encryption scheme and a filter function to obtain an
IND-WPAY-secure white-box payment application WPAY.

Discussion and Limitations. Note that our constructions are conceptual val-
idations and not practically efficient due to the tremendous inefficiency of indis-
tinguishability obfuscation (see [6]). In practice, the obfuscation needs to be
implemented by a mix of efficient obfuscation techniques, combined with prac-
tical white-box techniques, e.g. [27]. Thus, our work does not allow to immedi-
ately bypass the difficulty of building white-box implementations—as apparent
in the past white-box competitions [21,23], where only three design candidates
submitted towards the end of the second competition remained unbroken—in
practice. However, our theoretical feasibility result allows us to conclude that
secure white-box implementations based on strong cryptographic assumptions—
indistinguishability obfuscation is not yet a mature cryptographic primitive—are
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indeed possible. Our results not only affirm that building secure white-box cryp-
tography is possible, but they also explain how such a secure white-box imple-
mentation can be designed.

As efficiency of indistinguishability obfuscation has not yet reached reason-
able levels, let us now discuss security and efficiency of current practical white-
box implementations. E.g., the winner of the first white-box competition [23] had
a binary size of 17 MB and needed 0.37 s for an encryption which is reasonably
close to practical needs. It was broken eventually, but resisted key extraction
attacks for up to 28 days [32]. This temporary robustness turns out to be useful.
Namely, in practice, the goal is to maintain a complexity gap between the effort
of the attacker and the effort of the designer. As software can be updated in a
regular interval, one can achieve a reasonable practical security level by replace
a white-box implementation, in each update, by a newer generation.

Two considerations are important to be taken into account: (1) The white-
box implementation should not be susceptible to (variants of) automated attacks,
since these can be implemented with little effort, see [1]. (2) Reverse-engineering
efforts against previous generations of white-box implementations shall not help
the attacker against the new generation of the white-box implementation. I.e.,
the designer needs to come up with a paradigm that allows to systematically
inject a certain amount of creativity into the system that needs to be reverse-
engineered anew each time. For example, if security requires bootstrapping secu-
rity from white-boxing another cryptographic primitive such as a PRF, then one
can use a different PRF each time, harvesting the large cryptographic research
of PRF constructions. In our model, we bind each payment application to a fresh
hardware sub key, derived from a main hardware key, and we allow the adver-
sary to see other derived hardware keys. This models that potentially, earlier
construction might have been broken and might have revealed the derived hard-
ware key in use. An alternative is to directly bind to a signature functionality so
that revealing the verification algorithm does not constitute an attack vector.

Note that our models do not consider plain relay attacks [26,28] where
the adversary forwards the intended communication without altering it. These
attacks need to be prevented by other means, e.g., via distance-bounding proto-
cols [7], or at least mitigated via heuristics such as location correlation between
phone and NFC reader [12]. Note however that we of course capture attacks
where, say, the adversary modifies user requests or tries to create new requests
by himself.

Finally, we remark that in our models we consider an adversary who attacks
the application of an honest user. The adversary either tries to break security
by extracting secret information from the application, or by code-lifting it and
running it on a separate device. Our security notions model an adversary who
obtains the white-box program but, if the program is securely implemented, the
adversary can only run the program when using an oracle simulating part of the
hardware of the user. We recall that when considering DRM applications on the
other hand, the white-box definitions model an adversary who gets full access
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to a cryptographic program and to the device running that program (this being
the adversary’s own device) [18,19].

2 Preliminaries and Notation

By a ← A(x), we denote the execution of a deterministic algorithm A on input
x and the assignment of the output to a, while a ←$ A(x) denotes the execution
of a randomized algorithm and the assignment of the output to a. We denote
by := the process of initializing a set, e.g. X := ∅. By x ←$ X we denote
the process of randomly and uniformly sampling an element x from a given set
X. Slightly abusing notation, we also use x ←$ X to denote the sampling of x
according to probability distribution X. We then denote the probability that the
event E(x) happens by Prx←$XE(x) or sometimes simply Pr[E(x)]. We write
oracles as superscript to the adversary AO. In cases when an adversary is granted
access to a larger number of oracles, we write oracles also as subscript to the
adversary AO1,O2

O3,O4
. PPT denotes probabilistic polynomial-time and poly(n) is

an unspecified polynomial in the security parameter. Note that all algorithms
receive the security parameter 1n in unary notation as input implicitly. We write
it explicitly only occasionally for clarity.

We now review useful definitions, starting with nonce-based encryption, see
Rogaway [34].

Definition 1 (Symmetric Encryption). A nonce-based symmetric encryp-
tion scheme SE consists of a pair of deterministic polynomial-time algorithms
(Enc, Dec) with the syntax c ← Enc(k,m, nc) and m/⊥ ← Dec(k, c, nc). The
algorithm Enc takes as input a randomly generated key k of length n, a nonce
nc, a message m, and outputs a ciphertext c. Dec takes as input a randomly
generated key k of length n, a nonce nc, a ciphertext c, and outputs either a
message m or an error symbol ⊥. Moreover, the encryption scheme SE satisfies
correctness, if for all nonces nc ∈ {0, 1}n and for all messages m ∈ {0, 1}∗,

Pr[Dec(kSE, Enc(kSE,m, nc), nc) = m] = 1

where the probability is over sampling k.

ExpAESE,A(1n)

b ←$ {0, 1}
kSE ←$ {0, 1}n

b′ ←$ AOENC,ODEC(1n)

return (b′ = b)

OENC(m0, m1)

assert |m0| = |m1|
nc ←$ {0, 1}n

c ← Enc(kSE, mb, nc)

C := C ∪ {c}
return (nc, c)

ODEC(nc, c)

assert c /∈ C

if b = 1 then

return ⊥
else

return m ← Dec(kSE, c, nc)

Fig. 1. The ExpAESE,A(1n) security game.
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Definition 2 and Fig. 1 specify the security of an authenticated encryption
scheme [9,33]. Here, the adversary is provided with a left-or-right encryption
oracle and a decryption oracle where it can submit arbitrary ciphertexts except
for challenge ciphertexts obtained from the encryption oracle. If b = 0, the
decryption oracle is functional. If b = 1, the decryption oracle always returns
⊥ which models ciphertext integrity. In the security game, we use assert as a
shorthand to say that if the assert condition is violated, then the oracle returns
an error symbol ⊥.

Definition 2 (Authenticated Encryption). A nonce-based symmetric
encryption scheme SE = (Enc, Dec) is called an authenticated encryption scheme
or AE-secure if all PPT adversaries A have negligible distinguishing advantage
in the game ExpAESE,A(1n), specified in Fig. 1.

Note that we demand the authenticated encryption scheme to be determinis-
tic because we will later execute the algorithm in an untrusted environment and
cannot count on strong randomness. This, in turn, implies that we cannot allow
the adversary to re-use any of the previous queries (m,nc), or else it would be
easy to determine b from two queries (m0,m1, nc) and (m0,m

′
1, nc).

We provide a formal definition of a key derivation function that produces
pseudorandom keys. Note that our definition corresponds to a PRF, i.e., it is
highly simplified compared to the framework of Krawczyk [29]. In our definition
a key derivation function takes as input a key kkdf, a context string e as well as
the security parameter 1n. In comparison to Krawczyk’s definition, we simplify
the presentation and omit the details of the smoothing step turning raw key
material into random strings, the salting, and the length parameter, assuming
that the key kkdf is already appropriate and the length of the returned key is
equal to |kkdf|.

Definition 3 (Key Derivation Function). A KDFscheme consists of a ran-
domized key generation algorithm Kgen and a key derivation function KDF that
is a deterministic algorithm that takes as input a key kkdf ←$ Kgen(1n) and a
context string e. The KDF returns a key k̂ of length |kkdf|.
Definition 4 (IND-KDF-security). A key derivation function KDF is said
to be IND-KDF-secure if all PPT adversaries A have negligible distinguishing
advantage in game ExpIND-KDF

KDF,A (1n), specified in Fig. 2.

Next we present the definition of a length-doubling pseudorandom generator.

Definition 5 (Pseudorandom Generator). A deterministic, polynomial-
time computable function PRG : {0, 1}∗ → {0, 1}∗ is a pseudorandom generator
if:

– Length-expansion: For all x ∈ {0, 1}∗, |PRG(x)| = 2|x|.



Security Reductions for White-Box Key-Storage in Mobile Payments 229

– Pseudorandomness: For all PPT A, AdvPRG,A(n) :=

|Prx←${0,1}n [A(PRG(x)) = 1] − Prz←${0,1}2n [A(z) = 1]|

is negligible in n.

We define pseudorandom functions with identical input, output and key length.

Definition 6 (Pseudorandom Function). A deterministic, polynomial-time
computable function PRF, such that PRF : {0, 1}n × {0, 1}n → {0, 1}n for all
n ∈ N, is a pseudorandom function if for all PPT A, AdvA,PRF(n) :=

|Prk←${0,1}n [APRF(k,·)(1n) = 1] − PrF←${G:{0,1}n→{0,1}n}[AF (·)(1n) = 1]|

is negligible in n.

Puncturable PRFs (PPRF) were introduced by Boneh and Waters [17].
PPRFs have a punctured key which allows to evaluate the PPRF on all inputs,
except for one where the function still looks random.

Definition 7 (PPRF). A puncturable pseudorandom function scheme PPRF
consists of a triple (PPRF, Punct, Eval), which are defined as follows:

• PPRF(k, x) : This is a standard PRF evaluation algorithm. As before, this
deterministic polynomial-time algorithm takes as input a key k and input x,
both of length n and returns a value y of length n.

• Punct(k, z) : This PPT algorithm takes as input a key k ∈ {0, 1}n and an
input value z ∈ {0, 1}n. It outputs a punctured key kz ←$ Punct(k, z).

• Eval(kz, x) : This deterministic polynomial-time algorithm takes as input a
punctured key kz and some input x ∈ {0, 1}n and returns ⊥ if x = z, and a
value y ∈ {0, 1}n otherwise.

A puncturable PRF is said to be correct, if for all security parameter n, all k ∈
{0, 1}n, every value z ∈ {0, 1}n and all x ∈ {0, 1}n, x �= z, it holds that

Pr[Eval(Punct(k, z), x) = PPRF(k, x)] = 1.



230 E. Alpirez Bock et al.

ExpIND-KDF
KDF,A (1n)

b ←$ {0, 1}
Q := ∅
kkdf ←$ Kgen(1n)

b′ ←$ AOKDF(1n)

if b′ = b

return 1

else

return 0

OKDF(e)

if e /∈ Q
Q := Q ∪ {e}
if b = 1

k̂ ← KDF(kkdf, e)

else

k̂ ←$ {0, 1}n

return k̂

else

return ⊥

Fig. 2. ExpIND-KDF
KDF,A (1n) security game

ExpIND-PPRF
PPRF,A (1n)

b ←$ {0, 1}
k ←$ {0, 1}n

(z, state) ←$ A(1n)

kz ←$ Punct(k, z)

if b = 1 then

y ← PPRF(k, z)

else y ←$ {0, 1}n

b′ ←$ A(kz, y, state)

return (b′ = b)

Fig. 3. IND-PPRF security game

PPRF security requires that the PPRF value on k and z is indistinguishable
from random, even when given the punctured key kz. Note that for our purposes,
we only rely on security for random inputs rather than adversarially chosen ones,
i.e., we use a less powerful assumption which makes our result stronger.

Definition 8 (IND-PPRF-security). A PPRF scheme is said to be IND-PPRF-
secure if all probabilistic polynomial-time adversariesA have negligible distinguish-
ing advantage in the IND-PPRF game defined in Fig. 3.

An indistinguishability obfuscator (iO) ensures that the obfuscation of any
two functionally equivalent programs (i.e. circuits) are computationally indis-
tinguishable. In the following definition, a distinguisher D is an adversary that
aims at identifying which of the two programs has been obfuscated.

Definition 9 (Admissible Circuit Sampler). Let p be a polynomial. A PPT
algorithm S is called a p-admissible circuit sampler if

1 − Pr(C0,C1)←$S(1n)[∀x ∈ {0, 1}n C0(x) = C1(x)]

is negligible in n and for all n ∈ N and all pairs (C0,C1) in the range of A(1n),
it holds that the size of C0 and the size of C1 is upper bounded by p(n).

Definition 10 (Indistinguishability Obfuscator). A PPT algorithm iO,
parameterized by a polynomial p, is called an indistinguishability obfuscator if
for any p-admissible circuit sampler S the following conditions are satisfied:

Correctness. For all circuits C and for all inputs x to the circuit,

Pr[C′(x) = C(x) : C′ ←$ iO(C)] = 1,

where the probability is over the randomness of iO.
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Security. For all p-admissible S and any PPT distinguisher D, the following
distinguishing advantage is negligible:

|Pr(C0C1)←$S [D(iO(C0)) = 1] − Pr(C0C1)←$S [D(iO(C1)) = 1]| ≤ negl(n),

where the probabilities are over the randomness of the algorithms.

When obfuscating cryptographic algorithms with keys it is often convenient
to use the notation C[k](x) to denote the circuit with fixed encoded key(s) k and
variable input x.

3 Hardware-Bound White-Box Key Derivation Function

In this section, we first introduce our notion of a hardware module and explain
how we instantiate it in our setting. Then, we provide the syntax and security
notion for a hardware-bound key derivation function, present our construction
and provide a security reduction to indistinguishability obfuscation and PPRFs.

3.1 Hardware Module

A schematic overview over the hardware module functionalities executed on the
secure hardware is given in Fig. 4. Namely, a hardware module comes with a key
generation algorithm that generates the hardware main key kHWm.

HW : kHWm

kHWs ← SubKgenHW(kHWm, label)

σ ← RespHW(kHWm, label , x)

label

kHWs

x, label

σ

Fig. 4. Functionalities of the hardware module per-
formed in the hardware. The Check operation is per-
formed by the software program corresponding to
the label .

This key generation algo-
rithm is run at the manu-
facturer of the hardware and
thus not depicted in Fig. 4.
The secure hardware allows to
export a sub-key via querying
the secure hardware with a
label . The hardware then runs
the sub-key generation algo-
rithm SubKgenHW on kHWm and
label and returns the result-
ing sub-key kHWs. In addition,
the secure hardware can be
queried with a pair (x, label).
The hardware, then, uses the
algorithm RespHW to generate
a PRF/MAC value σ for x under kHWm. In order to avoid storing kHWs for all
values label , the hardware re-derives kHWs anew each time RespHW is called. The
PRF/MAC value can be checked outside of the secure hardware by running
CheckSW on kHWs and the pair (x, σ).
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Remarks. In this paper, we assume that the hardware module is secure and,
as the only part of the device, not subject to white-box attacks. Even more,
we assume that the hardware looks like a secure black-box to the white-box
adversary and is not subject to side-channel attacks.

With regard to the white-box program, it is important that the verification key
kHWs is not stored inplain since, otherwise, onemightderivePRF/MACvalues using
kHWs rather than querying the hardware. Thus, the CheckSW functionality will need
to be white-boxed (and will later be bound to another functionality such as our
white-box KDF), essentially making it asymmetric. Note that the syntax and cor-
rectness of our hardware module also allows to be directly implemented by a (stan-
dard, asymmetric) signature scheme such as provided by the Android Keystore [4].
In that case, the verification key does not need additional protection. We chose to
implement the hardware with a symmetric primitive for efficiency and simplicity
of the proof. Note that regardless of whether one uses MACs or signature schemes
as a hardware functionality, the verification functionality needs to be cryptograph-
ically bound to a software program to be useful; else the software program can be
code-lifted and run without performing the verification check.

Regardless of efficiency, both approaches, using signature schemes directly
or making MAC verification asymmetric, are sound approaches. Importantly,
in both cases, the soundness of the approach relies on domain separation, i.e.,
signatures/MAC for one label should not be mixed up with signatures/MACs for
a different label . Finally, recall that fixed device identifiers (that do not depend
on the input x) tend to provide very weak hardware-binding guarantees only,
since once intercepted, they can be emulated for a code-lifted software program.
We now give the syntax for our hardware-module.

Definition 11. (Hardware Module HWM). A hardware module HWM consists
of four algorithms (KgenHW, SubKgenHW, RespHW, CheckSW), where KgenHW is a PPT
algorithm, and the algorithms SubKgenHW, RespHW and CheckSW are deterministic
algorithms with the following syntax:

kHWm ←$ KgenHW(1
n) σ ← RespHW(kHWm, label , x)

kHWs ← SubKgenHW(kHWm, label) b ← CheckSW(kHWs, x, σ),

Correctness requires that for all security parameters n ∈ N,

Pr[CheckSW(SubKgenHW(kHWm, label), x, RespHW(kHWm, label , x)) = 1] = 1,

where the probability is over the sampling of kHWm ←$ KgenHW(1
n).

We do not define or prove security of the hardware module as a standalone
primitive, since we will later prove security of our white-box KDF directly
based on the puncturable PRFs used in the hardware module construction. Note
that a standalone security definition for a hardware module could not capture
MACs/PRFs and signature security simultaneously. In our hardware module
construction below, key generation samples a random key, sub-key generation
applies a PRF to it to derive a sub-key, and RespHW and CheckSW essentially imple-
ment a PRF-based MAC. Note that the additional PRG evaluation in CheckSW is
merely used to enable the proof technique by Sahai and Waters [35].
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Construction 1. Let PRG be a pseudorandom generator, PRF be a pseudoran-
dom function and PPRF be a puncturable pseudorandom function. We construct
a hardware module HWM as follows:

KgenHW(1n)

1 : kHWm ←$ {0, 1}n

2 : return kHWm

SubKgenHW(kHWm, label)

1 : kHWs ← PRF(kHWm, label)

2 : return kHWs

RespHW(kHWm, label , x)

1 : σ ← PPRF(PRF(kHWm, label), x)

2 : return σ

CheckSW(kHWs, x, σ)

1 : if PRG(σ) = PRG(PPRF(kHWs, x))

2 : return 1 else return 0

Hardware-Bound White-Box Key Derivation Function. We now define
and construct a hardware-bound white-box key derivation function WKDF. We
here build on the previously introduced hardware module and a traditional KDF.
In the compiling phase, a compiler Comp takes as input the KDF key kkdf and
the sub-key kHWs for CheckSW. The compiler generates a program WKDF which
takes as input a pair (e, σ) and, intuitively, first checks whether σ is valid for e
under kHWs and, if so, evaluates the KDF on kkdf and e. The role of the compiler,
conceptually, is to return a program where the KDF operation is bound to the
verification operation, i.e., the two functionalities cannot be separated from each
other and the (outcome of the) verification cannot be manipulated.

Definition 12. (WKDF). A white-box key derivation scheme with hardware
binding WKDF consists of a hardware module HWM, a key derivation func-
tion KDF, and a PPT compiling algorithm Comp:

WKDF ←$ Comp(kkdf, kHWs).

For all genuine kHWm, for all kkdf, for all label , for all e, for all kHWs =
SubKgenHW(kHWm, label) and σ = RespHW(kHWm, label , e), we have

Pr[KDF(kkdf, e) = WKDF(e, σ)] = 1

where the probability is taken over compiling WKDF ←$ Comp(kkdf, kHWs).

Security Model. We now define security for a WKDF via the IND-WKDF secu-
rity game, illustrated in Fig. 5. We want to capture the pseudorandomness of
keys derived from the WKDF, i.e., an adversary should not be able to distinguish
between a key produced from the WKDF and an equally long key sampled at
random. As a white-box adversary, the game provides the adversary with the
capability of inspecting the WKDF itself (i.e. its circuit or implementation code).
Recall that additionally, we want to capture the notion of hardware-binding:
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ExpIND-WKDF
WKDF,A (1n)

b ←$ {0, 1}
Q := ∅
label ←$ A(1n)

kkdf ←$ Kgen(1n)

kHWm ←$ KgenHW(1
n)

kHWs ← SubKgenHW(kHWm, label)

WKDF ←$ Comp(kkdf, kHWs)

b′ ←$ AOResp,OKDF
OSubKgenHW

(WKDF)

return b′

OKDF()

e ←$ {0, 1}n

Q := Q ∪ {e}
if b = 0

k̂ ← KDF(kkdf, e)

else

k̂ ←$ {0, 1}n

return (e, k̂)

OResp(e)

assert e /∈ Q
Q := Q ∪ {e}
σ ← RespHW(kHWm, label , e)

return σ

OSubKgen(label ′)

assert label ′ �= label

k′
HWs ← SubKgenHW(kHWm, label

′)

return k′
HWs

Fig. 5. The ExpIND-WKDF
WKDF,A (1n) security game.

if the adversary tries to run the WKDF without having access to its designated
hardware, the WKDF should not be executable anymore.

We model this by giving the adversary hardware access via a OResp ora-
cle, which the adversary queries by providing a context value e and which the
adversary can query a polynomial number of times. With the reply σ from the
hardware component, the adversary is able to run WKDF on the context value
e used for querying OResp. Additionally, we grant the adversary access to an
oracle OSubKgen. This oracle produces hardware sub-keys which might be used
to generate new hardware-bound white-box key derivation functions. To avoid
trivial attacks, the adversary is not allowed to request a sub-key under the same
label that was used to generate the initial WKDF. To capture the pseudorandom-
ness of derived keys, the adversary has access to a real-or-random oracle OKDF.
The oracle OKDF first samples a new context value e and then, depending on a
random bit b, it either returns the output of the KDF (under key kkdf) or a ran-
dom string of equal length. To avoid trivial attacks, the adversary is not allowed
to query the OResp oracle with the same context value that was sampled by the
challenger. Finally, A outputs a bit b′ and wins if b′ = b.

Definition 13 (IND-WKDF). We say that a hardware-bound white-box key
derivation scheme WKDF is IND-WKDF-secure if all PPT adversaries A have a
negligible distinguishing advantage in game ExpIND-WKDF

WKDF,A (1n), see Fig. 5.
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Note that one could also provide the adversary with a recompilation ora-
cle [22] so that the adversary can request several (independent) copies of the WKDF
based on the same key. We refrain from including this feature into our model, but
note that our construction can be shown to achieve also this stronger notion, as
indistinguishability obfuscation makes recompilation adversarially simulatable.

3.2 Construction of a WKDF

We now construct a WKDF, based on a traditional KDF and the previously
introduced hardware module HWM. As discussed before, the compiler Comp, on
input the KDF key kkdf and the hardware sub-key kHWs binds the hardware
CheckSW procedure to the KDF evaluation. Concretely, the compiler constructs a
circuit C[kkdf, kHWs] and obfuscates it using indistinguishability obfuscation. The
circuit C[kkdf, kHWs], on input (e, σ) first checks whether CheckSW(kHWs, e, σ) equals
1. If yes, it returns the output of KDF(kkdf, e). Else, it returns the all-zero string.
The reason that the construction is secure, is, intuitively, that the obfuscation
of C[kkdf, kHWs] achieves the desired binding property. We now first give the KDF
construction and then the WKDF construction directly below.

Construction 2. Let PPRF be a puncturable pseudorandom function scheme,
then we construct our KDF as follows:

Kgenkdf(1
n)

1 : kkdf ←$ {0, 1}n

2 : return kkdf

KDF(kkdf, e)

1 : k̂ ← PPRF(kkdf, e)

2 : return k̂

Construction 3. Let iO be an indistinguishability obfuscator. Based on the
hardware module HWM given in Construction 1 and the key derivation scheme
KDF given in Construction 2, we construct WKDF by defining the following com-
piler Comp:

C[kkdf, kHWs](e, σ)

1 : v ← CheckSW(kHWs, e, σ)

2 : if v = ⊥ return 0n

3 : else

4 : k̂ ← KDF(kkdf, e)

5 : return k̂

Comp(kkdf, kHWs)

1 : WKDF ←$ iO(C[kkdf, kHWs])

2 : return WKDF

Theorem 1. Let PRG be a pseudorandom generator, let PRF be a pseudorandom
function, let PPRF be a puncturable PRF, and iO be an indistinguishability obfus-
cator for appropriate p-admissible samplers. Then Construction 3 is a secure
white-box KDF scheme WKDF.
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C1[kkdf, kHWs](e, σ)

if PRG(σ) = PRG(PPRF(kHWs, e))

k̂ ← PPRF(kkdf, e)

return k̂

else return 0n

C2[kkdf, z, kz, τ ](e, σ)

if e = z and PRG(σ) = PRG(τ)

or if PRG(σ) = PRG(Eval(kz, e))

k̂ ← PPRF(kkdf, e)

return k̂

else return 0n

C3[kkdf, z, kz, y](e, σ)

if e = z and PRG(σ) = y

or if PRG(σ) = PRG(Eval(kz, e))

k̂ ← PPRF(kkdf, e)

return k̂

else return 0n

C4[kz
kdf, z, kz, y, k](e, σ)

if e = z and PRG(σ) = y

return k

if PRG(σ) = PRG(Eval(kz, e))

k̂ ← Eval(kz
kdf, e)

return k̂

else return 0n

C5[kz
kdf, z, kz, y](e, σ)

if e = z and PRG(σ) = y

return 0n

if PRG(σ) = PRG(Eval(kz, e))

k̂ ← Eval(kz
kdf, e)

return k̂

else return 0n

Proof. Let A be a PPT adversary. Let
ExpIND-WKDF

A,b denote the IND-WKDF game with
a value b ∈ {0, 1} hardcoded. We show that

ExpIND-WKDF
A,0 (1n) ≈ ExpIND-WKDF

A,1 (1n).

Overview: The proof is a hybrid argument over

the number of queries q that A makes to the
OKDF oracle which either evaluates a punc-
turable PRF and returns its output or a ran-
dom string of the same length. Our hybrid
games maintain a counter j that increases by
1 whenever the adversary queries the OKDF
oracle. The i-th hybrid game Gamei

1 returns
a random string whenever the counter j > i,
otherwise it returns the evaluation of the PPRF.
In other words, whenever we move to the next
hybrid, the oracle returns an additional ran-
dom string such that we sequentially replace
PPRF values by random strings of appropriate
size. After at most polynomial steps we have
replaced all OKDF outputs by random values
and obtain ExpIND-WKDF

A,1 (1n).

Detailed Proof: Let q(n) be a polynomial
which is a strict upper bound on the num-
ber of queries that A makes to oracle OKDF.
We define a sequence of adversary-dependent
hybrid games Game01 to Gameq(n)

1 such that

ExpIND-WKDF
A,0 ≈ Game01 (1)

ExpIND-WKDF
A,1 ≈ Gameq(n)

1 . (2)

Using 18 game hops we show that for 0 ≤ i ≤
q(n) − 1:

Gamei
1 ≈ Gamei

18 (3)

Gamei
18 ≈ Gamei+1

1 . (4)

Indistinguishability of Game01 and Gameq(n)
1

then follows by a standard hybrid argument,
guessing the hybrid index at random. We
define the games and specify the game-hops below and the required circuit def-
initions are depicted on the right-hand side of this page. Equation 4 follows by
inspection of the definitions of Gamei

18 and Gamei+1
1 . We now turn to showing

Eq. 3 which is the technical heart of the theorem.
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Gamei
1(1

n)

Gamei
18(1

n)

1 : z ←$ {0, 1}n, Q := {z}
2 : j ← 0

3 : label ←$ A(1n)

4 : kkdf ←$ {0, 1}n

5 :

6 : k ← PPRF(kkdf, z)

7 : kHWm ←$ {0, 1}n

8 : kHWs ←$ PRF(kHWm, label)

9 :

10 :

11 : C ← C1[kkdf, kHWs]

12 : WKDF ←$ iO(C, 1n)

13 : b′ ←$ ARespHW,OKDF
OSubKgen (WKDF)

14 : return b′

OResp(e)

1 : assert e /∈ Q
2 : Q := Q ∪ {e}
3 : y ← PPRF(kHWs, e, 1n)

4 : return y

OKDF()

1 : j ← j + 1

2 : if i = j k′ ←$ {0, 1}n

3 : return (z, k) (z, k′)

4 : else e ←$ {0, 1}n

5 : Q := Q ∪ {e}
6 : if j > i

7 : k̂ ← PPRF(kkdf, e)

8 : else k̂ ←$ {0, 1}n

9 : return (e, k̂)

OSubKgenHW(label
′)

1 : assert label ′ �= label

2 : k′
HWs ← PRF(kHWm, label

′)

3 : return k′
HWs

Gamei
2(1

n)

Gamei
17(1

n)

z ←$ {0, 1}n, Q := {z}
j ← 0

label ←$ A(1n)

kkdf ←$ {0, 1}n

k ← PPRF(kkdf, z)

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

C ← C1[kkdf, kHWs]

WKDF ←$ iO(C, 1n)

b′ ←$ ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q ∪ {e}
y ← PPRF(kHWs, e, 1n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e ←$ {0, 1}n

Q := Q ∪ {e}
if j > i

k̂ ← PPRF(kkdf, e)

else k̂ ←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label
′)

assert label ′ �= label

k′
HWs ← PRF(kHWm, label

′)

return k′
HWs

Gamei
3(1

n)

Gamei
16(1

n)

z ←$ {0, 1}n, Q := {z}
j ← 0

label ←$ A(1n)

kkdf ←$ {0, 1}n

k ← PPRF(kkdf, z)

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

kz ←$ Punct(kHWs, z)

τ ← PPRF(kHWs, z)

C ← C2[kkdf, z, kz, τ ]

WKDF ←$ iO(C, 1n)

b′ ←$ ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q ∪ {e}
y ← Eval(kz, e, 1n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e ←$ {0, 1}n

Q := Q ∪ {e}
if j > i

k̂ ← PPRF(kkdf, e)

else k̂ ←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label
′)

assert label ′ �= label

k′
HWs ← PRF(kHWm, label

′)

return k′
HWs

PRF security

PRF security iO security

iO security PPRF sec.
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Gamei
4(1

n)

Gamei
15(1

n)

1 : z ←$ {0, 1}n, Q := {z}
2 : j ← 0

3 : label ←$ A(1n)

4 : kkdf ←$ {0, 1}n

5 :

6 : k ← PPRF(kkdf, z)

7 : kHWm ←$ {0, 1}n

8 : kHWs ←$ {0, 1}n

9 : kz ←$ Punct(kHWs, z)

10 : τ ←$ {0, 1}n

11 : C ← C2[kkdf, z, kz, τ ]

12 : WKDF ←$ iO(C, 1n)

13 : b′ ←$ ARespHW,OKDF
OSubKgen (WKDF)

14 : return b′

OResp(e)

1 : assert e /∈ Q
2 : Q := Q ∪ {e}
3 : y ← Eval(kz, e, 1n)

4 : return y

OKDF()

1 : j ← j + 1

2 : if i = j k′ ←$ {0, 1}n

3 : return (z, k) (z, k′)

4 : else e ←$ {0, 1}n

5 : Q := Q ∪ {e}
6 : if j > i

7 : k̂ ← PPRF(kkdf, e)

8 : else k̂ ←$ {0, 1}n

9 : return (e, k̂)

OSubKgenHW(label
′)

1 : assert label ′ �= label

2 : k′
HWs ← PRF(kHWm, label

′)

3 : return k′
HWs

Gamei
5(1

n)

Gamei
14(1

n)

z ←$ {0, 1}n, Q := {z}
j ← 0

label ←$ A(1n)

kkdf ←$ {0, 1}n

k ← PPRF(kkdf, z)

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

kz ←$ Punct(kHWs, z)

τ ←$ {0, 1}n; y ← PRG(τ)

C ← C3[kkdf, z, kz, y]

WKDF ←$ iO(C, 1n)

b′ ←$ ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q ∪ {e}
y ← Eval(kz, e, 1n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e ←$ {0, 1}n

Q := Q ∪ {e}
if j > i

k̂ ← PPRF(kkdf, e)

else k̂ ←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label
′)

assert label ′ �= label

k′
HWs ← PRF(kHWm, label

′)

return k′
HWs

Gamei
6(1

n)

Gamei
13(1

n)

z ←$ {0, 1}n, Q := {z}
j ← 0

label ←$ A(1n)

kkdf ←$ {0, 1}n

k ← PPRF(kkdf, z)

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

kz ←$ Punct(kHWs, z)

y ←$ {0, 1}2n

C ← C3[kkdf, z, kz, y]

WKDF ←$ iO(C, 1n)

b′ ←$ ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q ∪ {e}
y ← Eval(kz, e, 1n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e ←$ {0, 1}n

Q := Q ∪ {e}
if j > i

k̂ ← PPRF(kkdf, e)

else k̂ ←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label
′)

assert label ′ �= label

k′
HWs ← PRF(kHWm, label

′)

return k′
HWs

iO sec.

iO sec.

PRG sec.

PRG sec.

iO sec.
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Gamei
7(1

n)

Gamei
12(1

n)

1 : z ←$ {0, 1}n, Q := {z}
2 : j ← 0

3 : label ←$ A(1n)

4 : kkdf ←$ {0, 1}n

5 : kz
kdf ←$ Punct(kkdf, z)

6 : k ← PPRF(kkdf, z)

7 : kHWm ←$ {0, 1}n

8 : kHWs ←$ {0, 1}n

9 : kz ←$ Punct(kHWs, z)

10 : y ←$ {0, 1}2n

11 : C ← C4[kz
kdf, z, kz, y, k]

12 : WKDF ←$ iO(C, 1n)

13 : b′ ←$ ARespHW,OKDF
OSubKgen (WKDF)

14 : return b′

OResp(e)

1 : assert e /∈ Q
2 : Q := Q ∪ {e}
3 : y ← Eval(kz, e, 1n)

4 : return y

OKDF()

1 : j ← j + 1

2 : if i = j k′ ←$ {0, 1}n

3 : return (z, k) (z, k′)

4 : else e ←$ {0, 1}n

5 : Q := Q ∪ {e}
6 : if j > i

7 : k̂ ← Eval(kz
kdf, e)

8 : else k̂ ←$ {0, 1}n

9 : return (e, k̂)

OSubKgenHW(label
′)

1 : assert label ′ �= label

2 : k′
HWs ← PRF(kHWm, label

′)

3 : return k′
HWs

Gamei
8(1

n)

Gamei
11(1

n)

z ←$ {0, 1}n, Q := {z}
j ← 0

label ←$ A(1n)

kkdf ←$ {0, 1}n

kz
kdf ←$ Punct(kkdf, z)

k ← {0, 1}n

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

kz ←$ Punct(kHWs, z)

y ←$ {0, 1}2n

C ← C4[kz
kdf, z, kz, y, k]

WKDF ←$ iO(C, 1n)

b′ ←$ ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q ∪ {e}
y ← Eval(kz, e, 1n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e ←$ {0, 1}n

Q := Q ∪ {e}
if j > i

k̂ ← Eval(kz
kdf, e)

else k̂ ←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label
′)

assert label ′ �= label

k′
HWs ← PRF(kHWm, label

′)

return k′
HWs

Gamei
9(1

n)

Gamei
10(1

n)

z ←$ {0, 1}n, Q := {z}
j ← 0

label ←$ A(1n)

kkdf ←$ {0, 1}n

kz
kdf ←$ Punct(kkdf, z)

k ←$ {0, 1}n

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

kz ←$ Punct(kHWs, z)

y ←$ {0, 1}2n

C ← C5[kz
kdf, z, kz, y]

WKDF ←$ iO(C, 1n)

b′ ←$ ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q ∪ {e}
y ← Eval(kz, e, 1n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e ←$ {0, 1}n

Q := Q ∪ {e}
if j > i

k̂ ← Eval(kz
kdf, e)

else k̂ ←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label
′)

assert label ′ �= label

k′
HWs ← PRF(kHWm, label

′)

return k′
HWs

PPRF security

PPRF security

iO/stat. gap

iO/stat. gap

perfect
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We now reduce each game-hop to the underlying assumption. We omit boiler-
plate code for simulations and focus instead on describing the conceptual argu-
ment that underlies the reduction. We discuss the game-hops in the forward
direction. The reductions for the backward direction proceed analogously.

Game 1 to Game 2. This game hop reduces to the PRF security of the PRF
keyed with kHWm. We here rely on the fact that OSubKgenHW(label

′) does not allow
to query PRF(kHWm, ·) on label .

Game 2 to Game 3. This game hop reduces to iO security and relies on the
correctness of the PPRF. The correctness of the PPRF implies that the first two
lines of C1 and C2 are equivalent, which allows to apply iO security. Note that the
oracle OResp cannot be queried on z since z is added to Q in the very beginning
of the game. Therefore, it suffices to use the punctured key kz in OResp.

Game 3 to Game 4. This game hop reduces to the IND-PPRF security of PPRF
keyed with kHWs and punctured at z. For the reduction, it is important to note
that throughout the game, only punctured versions kz of kHWs are used, except
for calculating τ .

Game 4 to Game 5. This game hop replaces C2[kkdf, z, kz, τ ] by C3[kkdf, z, kz, y]
and relies on iO security. Instead of hardcoding τ into C2 and computing y as
PRG(τ) within circuit C2, the value y = PRG(τ) is directly hardcoded into circuit
C3. As the two circuits are functionally equivalent, the game hop reduces to iO
security.

Game 5 to Game 6. This game hop replaces y = PRG(τ) by a randomly sampled
value y. This game hop reduces to PRG security, since the variable τ that is
sampled in Gamei

5(1
n) is not used anywhere else in the game(s).

Game 6 to Game 7. This game hop reduces to iO security with an additional
negligible statistical loss. In detail, the uniformity of the sampling of z from
{0, 1}n ensures that, with overwhelming probability, the oracle OKDF does not
return (e, ∗) for a different than the ith query of A to the OKDF oracle, i.e.,
the change to OKDF yields a negligible statistical difference between Gamei

6(1
n)

and Gamei
7(1

n). The more important change is the use of kz
kdf in C4. Due to

the correctness of the puncturable PRF, the circuits C3 and C4 are functionally
equivalent and thus, this game hop can be reduced to iO security.

Game 7 to Game 8. This game hop reduces to the IND-PPRF security of PPRF,
keyed with kkdf and punctured at z. For the reduction, it is important to note
that throughout the game, only the punctured version kz

kdf of kkdf is used, except
for calculating k.

Game 8 to Game 9. Note that with overwhelming probability, y is not in the
image of the PRG, since the image of the PRG is of size 2n only, whereas y is
sampled from a set of size 22n. Therefore, y is most likely outside the image of
the PRG. If it is, then the circuits C4 and C5 are functionally equivalent as the
if condition in the first line of C4 cannot be satisfied by any input. Thus, this
game hop reduces to iO security.
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Game 9 to Game 10. Importantly, C5 does not depend on k anymore and thus,
it is perfectly indistinguishable for the adversary whether the OKDF uses k or an
independently drawn value k′ that OKDF samples in the moment of the ith query.

Game 10 to Game 18. These game hops are analogous in the backward direction.
Note that k is not used in OKDF anymore in the game hops from Game 10 to
Game 18.

Connecting the Hybrids. We now show that Eq. 4 holds, which we recall is

Gamei
18 ≈ Gamei+1

1

On a high-level, Gamei
18 and Gamei+1

1 are identical since they both sample the
first i + 1 keys in the OKDF oracle at random and compute the remaining keys
using the PPRF. Note that Gamei

18 and Gamei+1
1 are only identical up to a negligi-

ble statistical difference since the pre-sampled value z is consumed at query i to
the OKDF oracle in Gamei

18 and only in query i+1 in Gamei+1
1 . However, as z is

sampled uniformly at random from {0, 1}n, z remains statistically hidden from
the adversary until it is returned as an output from the OKDF oracle. Thus, it
is infeasible to determine when the pre-sampled value z was returned. We omit
a detailed code-comparison, since it is quite simple.

Connecting the Hybrids to the Original Game. Finally, we show Eq. 1 and Eq. 2.
We start with the former which we recall is

ExpIND-WKDF
A,0 ≈ Game01.

On a high-level, ExpIND-WKDF
A,0 and Game01 are identical since they both compute

all keys in the OKDF oracle using the PPRF. Moreover, due to the correctness of
the hardware module, it is functionally equivalent to use PPRF(kHWs, e, 1n) and
PPRF(PRF(kHWm, e, 1n)) in oracle OResp. However, there is a negligible statistical
difference between ExpIND-WKDF

A,0 and Game01, since Game01 pre-samples a uniformly
random value z from {0, 1}n, while ExpIND-WKDF

A,0 does not. However, as z is sam-
pled uniformly at random, it remains statistically hidden from the adversary
until it is returned as an output from the OKDF oracle. We omit a detailed
code-comparison, since it is quite simple. The reasoning for Eq. 2 is analogous,
which concludes the proof of Theorem 1. �

4 Secure Payment Application

In this section we build a secure payment scheme, assuming an IND-WKDF-
secure WKDF, as constructed in the previous section. As mentioned before, the
main idea of the construction of the payment application is to bind a symmetric
encryption scheme (that is only known to provide black-box security) on top of
the WKDF via a layer of indistinguishability obfuscation and thereby bootstrap
the security of the WKDF to the security of the symmetric encryption scheme
and the entire payment application.
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We start with describing the process flow of an abstract payment application,
illustrated in Fig. 6. Note that this abstract payment application might also be
implementable differently than assuming a WKDF. A payment application relies
on a hardware module (see Definition 11), which we recall has a main hardware
key kHWm, allows to derive sub-keys kHWs ← SubKgen(kHWm, label) from the main
hardware key and allows to obtain MAC/PRF values σ ← RespHW(kHWm, label , x)
that can be verified outside of the hardware via the algorithm CheckSW(kHWs, x, σ)
that returns 0 or 1.

Server

kpay ←$ Kgenpay

WPAY ←$ CompApp(kpay, kHWs, P )

(idtk , tk) ←$ GenToken

ServerTokens[idtk ] ← tk

(idtk , etk) ←$ EnTok(kpay, (idtk , tk))

Tokens[idtk ] ← etk

tk ← ServerTokens[idtk ]

⊥ �= m ← Process(idtk , req , tk)

{kHWs}pkS

WPAY,Tokens
idtk , label σ

idtk , req

User

HW

kHWs ← SubKgenHW(kHWm, label)

σ ← EvalHW(kHWm, label , idtk )

(idtk , req) ← WPAY(idtk , etk , σ, m)

WPAY

Fig. 6. Diagram of our payment scheme. The hardware calculates the value σ via the
EvalHW function on input idtk , the label and the master key. WPAY executes the CheckSW
function on input σ and on the sub-key and idtk .

As the payment application is bound to a hardware module, the user starts by
deriving a hardware sub-key kHWs ← SubKgen(kHWm, label) in their hardware and
transmit it securely to the server. In Fig. 6, we hint at this secure transmission
of kHWs via an encryption under the server’s public-key pkS . In our model, we
later refrain from modeling this off-band transmission of kHWs and simply assume
that it is implemented securely.

The server then draws a symmetric key kpay for the user and binds it to the
user’s hardware sub-key kHWs via the compilation algorithm CompApp:

WPAY ←$ CompApp(kpay, kHWs, P ).

The predicate function P restricts the set of valid messages that can be encrypted
via WPAY. An example for useful restrictions are limits on the amount of the
payment or hardcoding of the user’s payment data. Note that potentially, P can
also contain cryptographic functionalities (which we do not model).

As we consider a tokenized payment scheme, in addition to WPAY the server
also generates several tokens, encrypts them under kpay and stores the encrypted
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tokens in an array Tokens that is indexed by token identifiers. It then transmits
WPAY to the user, together with the array Tokens, see Fig. 6.

Now, the user can use WPAY to generate requests to the server. To do so, WPAY
takes as input a message m as well as a pair of a token identifier idtk and its
corresponding encrypted token etk . Conceptually, the goal of WPAY is to return a
request req to the server that contains an encryption of m under the unencrypted
token contained in etk . To facilitate verification on the server’s side, the user’s
WPAY will also return the token identifier idtk :

(idtk , req) ← WPAY(idtk , etk , σ,m)

Importantly, in addition to the aforementioned inputs, WPAY also takes as
input σ, which is a hardware value obtained from making an RespHW query to the
hardware for (label , idtk ). To ensure the hardware-binding, conceptually, WPAY
needs to evaluate the algorithm CheckSW(kHWs, idtk , σ) internally and only perform
the desired operations based on this check succeeding. Intuitively, the CheckSW
operation also needs to be bound to all further operations of WPAY.

Finally, upon receiving (idtk , req), the server retrieves the token tk corre-
sponding to idtk and processes the request req via the algorithm Process. If the
request is accepted, Process returns the message m that the client encrypted.
Else, Process returns an error symbol ⊥.

Note that we require the server to know the secret key kpay to encrypt the
tokens under kpay before sending it to the user. The advantage of this design
is that the values of the tokens are not exposed before being stored. Note that
we consider the server to be a trusted and secure party which is a necessary
assumption: As the server is in charge of generating the tokens, the server knows
the token values anyway. Thus, the server additionally knowing the value of
the secret key kkdf of the user does not compromise the security of the mobile
payment application from the perspective of the user.

Definition 14 (Hardware-Bound White-Box Payment Scheme). A
hardware-bound white-box payment scheme WPAY is parameterized with a mes-
sage length parameter �(n) and consists of a hardware module HWM and the
following algorithms:

– kpay ←$ Kgenpay(1
n) : This randomized algorithm takes as input the security

parameter and outputs the secret payment key kpay;
– (idtk , tk) ←$ GenToken(1n) : This randomized algorithm takes as input the

security parameter and returns a token tk and a token identifier idtk , where
we assume that identifiers are unique with overwhelming probability;

– (idtk , etk) ←$ EnTok(kpay, (idtk , tk)) : This randomized algorithm takes as
input a token tk together with its corresponding identifier idtk and outputs an
encrypted token etk , together with its corresponding token identifier idtk ;

– WPAY ←$ CompApp(kpay, kHWs, P ) : This randomized algorithm takes as input a
payment key kpay, a hardware-binding key kHWs and a message filtering predi-
cate P : {0, 1}�(n) → {0, 1}. It outputs a white-box payment application WPAY
with syntax (idtk , req) ← WPAY(idtk , etk , σ,m), where σ denotes a hardware



244 E. Alpirez Bock et al.

value σ, m ∈ {0, 1}�(n) denotes a payment message, and req constitutes a
payment request;

– m ← Process(idtk , req , tk) : This deterministic algorithm takes as input a
token identifier idtk , a token value tk and a a request req. It outputs a message
m or ⊥.

Moreover, we require that the following correctness property holds: For all keys
kpay, for all main hardware keys kHWm, for all pairs of tokens and token identifier
(idtk , tk), for all predicates P , for all messages m ∈ {0, 1}�(n) such that P (m) =
1, for σ = RespHW(kHWm, label , idtk ), it holds that

Pr[Process(WPAY(idtk , etk , σ,m), tk) = m] = 1,

where the probability is taken over compiling WPAY ←$ CompApp(kpay, kHWs, P ) and
encrypting the token (idtk , etk) ←$ EnTok(kpay, (idtk , tk)).

4.1 Security of White-Box Payment Applications

We now specify security of a white-box payment application scheme WPAY. Cor-
rectness of WPAY ensures that when having access to the hardware, the appli-
cation WPAY is useful to generate payment requests. In turn, hardware-binding
security ensures that when not having access to the hardware, then the applica-
tion becomes useless. In other words, in absence of the hardware, the adversary
cannot generate new requests and does not learn anything about the content
of the requests sent to the server. Thus, the desired security properties in the
absence of the hardware are the following:

(1) Integrity of the requests transmitted from user to server.
(2) Confidentiality of the messages contained in the requests transmitted from

user to server.

We capture both properties via the IND-WPAY security game, depicted in
Fig. 7. IND-WPAY starts with a setup phase where the relevant keys are sam-
pled, first for the hardware (line 3 and 4) and then for the payment application
(line 5). Then, WPAY is compiled (line 6). Note that we allow the adversary to
choose the filter function P , modeling that security should hold for all possible
filter functions. We also allow the adversary to choose the hardware label . In
practice, neither P nor label are adversarially chosen, but giving this ability to
the adversary in the setup phase only makes our model stronger. Note that we
consider our adversary as stateful, i.e., the adversary in the setup phase (line
2) shares state with the adversary that accesses oracles (line 7) in order to find
out the secret bit b. As the adversary is a white-box adversary, it receives the
compiled WPAY as input (line 7). We now turn to the explanation of the oracles.

Oracles OResp and OSubKgen model the adversary’s hardware access. Upon
querying OResp, a pair of token and its respective identifier are sampled at
random. The value of the token identifier is used for generating the hardware
value σ, and the oracle returns all three values. The adversary is thus able to
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ExpIND-WPAY
WPAY,A (1n)

1 : b ←$ {0, 1}
2 : (label , P ) ←$ A(1n)

3 : kHWm ←$ KgenHW(1n)

4 : kHWs ← SubKgenHW(kHWm, label)

5 : kpay ←$ Kgenpay(1
n)

6 : WPAY ←$ CompApp(kpay, kHWs, P )

7 : b∗ ←$ AOResp,OSubKgen,OGetTok
OProcess,OTransaction (WPAY)

8 : return (b∗ = b)

OResp()

1 : (idtk , tk) ←$ GenToken(1n)

2 : σ ← RespHW(kHWm, label , idtk )

3 : RespUsed[idtk ] ← 1

4 : (idtk , etk) ←$ EnTok(kpay, (idtk , tk))

5 : return (idtk , etk , σ)

OSubKgen(label ′)

1 : assert label ′ �= label

2 : k′
HWs ← SubKgenHW(kHWm, label

′)

3 : return k′
HWs

OGetTok()

1 : (idtk , tk) ←$ GenToken(1n)

2 : ServerTokens[idtk ] ← tk

3 : (idtk , etk) ←$ EnTok(kpay, (idtk , tk))

4 : return (idtk , etk)

OTransaction(m0, m1)

1 : assert |m0| = |m1| = �(n)

2 : assert P (m0) = 1 ∧ P (m1) = 1

3 : (idtk , tk) ←$ GenToken(1n)

4 : ServerTokens[idtk ] ← tk

5 : (idtk , etk) ←$ EnTok(kpay, (idtk , tk))

6 : σ ← RespHW(kHWm, label , idtk )

7 : (idtk , req) ← WPAY(idtk , etk , σ, mb)

8 : C := C ∪ {req}
9 : return (idtk , etk , req)

OProcess(idtk , req)

1 : assert RespUsed[idtk ] = 0

2 : assert req /∈ C

3 : tk ← ServerTokens[idtk ]

4 : m ← Process(idtk , req , tk)

5 : ServerTokens[idtk ] ← ⊥
6 : if b = 0 return m

7 : else return ⊥

Fig. 7. ExpIND-WPAY
WPAY,A (1n) game capturing integrity and confidentiality.

run their own WPAY to generate a request message for that specific token, token
id and hardware value.

OSubKgen lets the adversary observe hardware sub-key values. Such values
could be values used by different applications or values from older versions of
a payment application. To avoid trivial attacks, the adversary is not allowed to
obtain the sub-key kHWs that was used for compiling the white-box application
WPAY (line 6 in the main ExpIND-WPAY

WPAY,A procedure).
Oracle OGetTok models generation and encryption of the tokens on the

server’s side and storing them in a list. We recall that a white-box adversary
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might be able to access the encrypted tokens stored on a user’s phone and thus,
OGetTok returns the encrypted token and its identifier to the adversary.

We now turn to the two remaining oracles that encode the desired security
properties of confidentiality and integrity. We start with the transaction oracle
OTransaction, which encodes the confidentiality property. On a conceptual level,
OTransaction plays a similar role as the left-or-right encryption oracle in the
security game for authenticated encryption (cf. Definition 2): It encrypts either
the left or the right message, depending on whether the secret bit b is 0 or 1. Upon
submitting the two messages to the OTransaction oracle, the oracle randomly
samples a pair of a token and its respective identifier and the token value is
encrypted via the EnTok algorithm. The oracle then generates the necessary
hardware value σ based on the sampled token identifier, and then generates a
request message based on the token identifier, the encrypted token, the value σ
and one of the two messages submitted by the adversary. The oracle then saves
the generated request on a list C and returns the token identifier, the encrypted
token and the request message.

Note that the adversary is not able to use their own app to generate the same
request message received by the transaction oracle. Namely, while the adversary
is able to choose which message to encrypt with their own app, the token used for
encrypting the message is chosen at random and only with negligible probability
will both request messages look the same.

The process oracle OProcess encodes the integrity of the request messages
similarly to the decryption oracle in authenticated encryption. The adversary can
submit arbitrary values as long as those were not obtained from OTransaction
(check if they are in the set C) or if they were not generated using an idtk
generated by the OResp oracle for generating the hardware value σ. The server
retrieves (line 3) the token tk corresponding to idtk from the token list, decrypts
(line 4) the request req with idtk and tk using the Process algorithm and deletes
tk from the token list. Authenticity is modeled by only returning the message
to the adversary if b = 0 and returning an error if b = 1. Thereby, the adversary
is able to learn the secret bit b whenever the adversary is able to forge a fresh
request.

Remark. Note that many useful properties are implied by our security definition.
For instance, IND-WPAY security implies that the token values remain secret,
unless the adversary queries the hardware on idtk .

Definition 15 (IND-WPAY Security). A hardware-bound white-box pay-
ment application scheme WPAY is said to be IND-WPAY-secure if all PPT adver-
saries A have negligible distinguishing advantage in the game ExpIND-WPAY

WPAY,A (1n)
as specified in Fig. 7.

4.2 Construction of White-Box Payment Scheme

We now construct a white-box payment scheme WPAY, which is IND-WPAY-secure
(see Fig. 7), assuming the IND-WKDF-security of a white-box key derivation func-
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tion WKDF (see Fig. 5). We first give an overview of the algorithms of our con-
struction. First, Kgenpay randomly samples a payment key kpay and the GenToken
algorithm randomly samples a token tk and its respective identifier idtk . EnTok
encrypts a token tk in the following way: For each token with the identifier idtk ,
it generates a key k̂ ← KDF(kpay, idtk ), and uses an authenticated encryption
scheme to encrypt the token using k̂. That is, each token is encrypted using a
different key. Note that each key is generated based on the same key kpay, but
based on a different context value idtk since each token has a unique identifier.

Kgenpay(1
n)

1 : kkdf ←$ Kgen(1n)

2 : kpay ← kkdf

3 : return kpay

CompApp(kpay, kHWs, P )

1 : WKDF ←$ Comp(kpay, kHWs)

2 : WPAY ←$ iO(C[WKDF, P ])

3 : return WPAY

Process(idtk , req , tk)

1 : nc ← idtk

2 : c2 ← req

3 : m′ ← Dec2(tk , c2, nc)

4 : return m′

GenToken(1n)

1 : tk ←$ {0, 1}n

2 : idtk ←$ {0, 1}n

3 : return (idtk , tk)

EnTok(kpay, (idtk , tk))

1 : nc ← idtk

2 : e ← idtk

3 : k̂ ← KDF(kpay, e)

4 : c1 ← Enc1(k̂, tk , nc)

5 : etk ← c1

6 : return (idtk , etk)

C[WKDF, P ](idtk , etk , σ, m)

1 : e ← idtk

2 : nc ← idtk

3 : c1 ← etk

4 : k̂ ← WKDF(e, σ)

5 : tk ← Dec1(k̂, c1, nc)

6 : if |m| = �(n) and P (m) = 1

7 : c2 ← Enc2(tk , m, nc)

8 : req ← c2

9 : else req ← ⊥
10 : return (idtk , req)

Fig. 8. Construction of a WPAY scheme

The compilation algorithm CompApp of the payment scheme takes as input
a payment key kpay, a sub-key value kHWs as well as a message filtering pred-
icate P . It uses the compilation algorithm Comp of the WKDF and runs it on
(kpay, kHWs) to obtain a hardware-bound white-box program WKDF. It then runs
indistinguishability obfuscation on a circuit C[WKDF, P ] and returns the output
of the obfuscation as WPAY. The circuit C[WKDF, P ] and WPAY provide the same
functionality, but in WPAY, due to the layer of obfuscation, one should not be able
to separate the different operations from each other (see the discussion below).
C[WKDF, P ] takes as input a pair (idtk , etk) of an encrypted token and its token
identifier as well as a hardware value σ and a message m. It first runs WKDF on
(idtk , σ) to obtain an output k̂, and recall that the security of WKDF ensures that
k̂ is only a KDF (and not an error value) if σ is the correct hardware value that
yields CheckSW(kHWs, idtk , σ) = 1. Thus, the hardware-binding of WPAY is directly
inherited from the hardware-binding of WKDF. Now, C[WKDF, P ] uses k̂ to decrypt
the etk (line 5), checks whether P (m) = 1 (line 6) and, if so, encrypts the mes-
sage m using the token tk as key (line 7–8) and returns the resulting ciphertext
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as a request message req along with the token identifier (line 10). Note that
in the construction, we need to avoid the use of randomness, since we cannot
rely on the randomness being honestly generated. Thus, we use a nonce-based
encryption scheme, and the nonce nc used for encryption of the token is not
only retrieved (line 2) for decryption of the token (line 5), but also re-used for
encrypting the request (line 7). Note that the nonce in etk is not malleable since
we encrypt the tokens with an authenticated encryption scheme which provides
ciphertext integrity.

Recall that WPAY returns not only req but also the token identifier idtk of the
token that was used to encrypt m. This is because the use of tk authenticates the
user towards the server which, on its side, retrieves the token tk corresponding
to idtk , and runs the Process algorithm on (req , tk) which decrypts req with tk
and returns the result.

Construction 4. Based on two authenticated encryption schemes (Enc1, Dec1),
(Enc2, Dec2) and the WKDF in Construction 3, we construct a white-box
payment scheme with hardware-binding WPAY = (Kgenpay, GenToken, EnTok,
CompApp, Process) as detailed in Fig. 8.

On the use of iO. As mentioned above, the compiler of the payment application
in our construction applies indistinguishability obfuscation to the circuit describ-
ing the application (see line 2 of CompApp in Fig. 8). We obfuscate WPAY with the
following purposes. First we may wish to ensure the confidentiality of internal
variables, such as the outputs of the WKDF and the raw value of the tokens. Sec-
ond, by obfuscating the program we can also ensure that no operation can be
separated from the rest, achieving thus a form of application binding. We note
however that in the security proof provided for the theorem below, we do not
prove any of these properties. Namely our IND-WPAY security model does not
capture any form of application binding for the WPAY and only captures confi-
dentiality for tokens and other internal variables for the cases that an adversary
does not have access to the determined hardware.

Thus, our construction directly derives its security from the WKDF and could
also be proven secure even without using any form of obfuscation. However we
choose to obfuscate WPAY still, given that in practice, one would usually apply
one layer of obfuscation to the application in order to increase its robustness. We
note however that our model could be extended in order to capture some type
of application binding property, which could then be achieved by using iO on
our construction, as long as the relevant primitives used within the applications
are puncturable. For instance, one could challenge the adversary with providing
the output k̂ of the WKDF for a given context value e. Here, we could puncture
the WKDF (which is itself constructed from puncturable PRFs) and also puncture
the decryption algorithm as follows. For one ciphertext c∗, hardcode its corre-
sponding token value tk∗ and output tk∗ every time c∗ is provided as input. For
all other ciphertexts, perform a normal decryption. Note that hardcoding the
corresponding token value of a given ciphertext is possible, since the tokens are
generated and encrypted in advance (see the GenToken and EnTok processes).
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Given both, the puncturable WKDF and the puncturable decryption program, we
can effectively apply indistinguishability obfuscation and ensure that an adver-
sary cannot separate the WKDF from the decryption and cannot extract any value
k̂.

Theorem 2. Let (Enc1, Dec1) and (Enc2, Dec2) be two AE-secure symmetric
encryption schemes, let WKDF be a IND-WKDF-secure white-box key deriva-
tion scheme, and let iO be an indistinguishability obfuscator for appropriate p-
admissible samplers. Then the white-box payment scheme WPAY in Construc-
tion 4 is IND-WPAY-secure.

In the following we provide a short sketch of the proof. The full details can
be found on the full version of this paper [2].

Proof Sketch. Let A be a PPT adversary. Let ExpIND-WPAY
A,0 denote the IND-WPAY

game with b = 0 hardcoded and let ExpIND-WPAY
A,1 denote the IND-WPAY game

with b = 1 hardcoded. We need to show that A has negligible distinguishing
advantage, i.e., that the probability that A returns 1 in ExpIND-WPAY

A,0 differs from
the probability that A returns 1 in ExpIND-WPAY

A,1 at most by a negligible amount.
On a high-level, the security proof proceeds as follows. (1) We replace all

keys generated by the WKDF with random keys in OTransaction and OGetTok
and reduce this game hop to the security of the WKDF. (2) In the OTransaction
and OGetTok oracles, instead of encrypting the tokens tk with SE1, we encrypt
0|tk |. To do so, we make a hybrid argument over the number of queries that the
adversary makes to OTransaction and OGetTok and for each such query make a
reduction to the AE security of SE1. (3) In the OTransaction oracle, instead of
encrypting m0, we now encrypt m1. At the same time, in the OProcess oracle, we
do not perform decryptions anymore but rather answer all adversarial queries
by ⊥. This proof again proceeds via a hybrid argument over the number of
queries to OTransaction and OGetTok, since one token value is generated in each
of these calls and we need to reduce to the security to each of them. (4) We now
de-idealize SE1 again and encrypt the real token values. (5) We de-idealize the
WKDF. The full technical details appear in the full version of the paper.
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Abstract. Circular security is the most elementary form of key-
dependent message (KDM) security, which allows us to securely encrypt
only a copy of secret key bits. In this work, we show that circular security
is complete for KDM security in the sense that an encryption scheme sat-
isfying this security notion can be transformed into one satisfying KDM
security with respect to all functions computable by a-priori bounded-
size circuits (bounded-KDM security). This result holds in the presence of
any number of keys and in any of secret-key/public-key and CPA/CCA
settings. Such a completeness result was previously shown by Apple-
baum (EUROCRYPT 2011) for KDM security with respect to projection
functions (projection-KDM security) that allows us to securely encrypt
both a copy and a negation of secret key bits. Besides amplifying the
strength of KDM security, our transformation in fact can start from an
encryption scheme satisfying circular security against CPA attacks and
results in one satisfying bounded-KDM security against CCA attacks.
This result improves the recent result by Kitagawa and Matsuda (TCC
2019) showing a CPA-to-CCA transformation for KDM secure public-key
encryption schemes.

Keywords: Key-dependent message security · Circular security ·
Chosen ciphertext security

1 Introduction

1.1 Background

Key-dependent message (KDM) security, introduced by Black, Rogaway, and
Shrimpton [7], guarantees confidentiality of communication even if an adversary
can get a ciphertext of secret keys. This notion was formulated in order to capture
situations where there could be correlations between secret keys and messages
to be encrypted. Although it seems that such situations only arise from bugs
or errors, it turned out that they naturally occur in natural usage scenarios of
encryption schemes such as hard-disc encryption [8], anonymous credentials [10],
c© International Association for Cryptologic Research 2020
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and formal methods [2]. Moreover, until today, a number of works have shown
that KDM security is useful when constructing various cryptographic primi-
tives including fully homomorphic encryption (FHE) [15], non-interactive zero-
knowledge (NIZK) proofs/arguments [11,12,22,25], homomorphic secret shar-
ing [9], and chosen ciphertext secure encryption schemes and trapdoor functions
[19,23].

KDM security is defined with respect to a function family F . Informally, a
public-key encryption (PKE) scheme is said to be F-KDM(n) secure if confiden-
tiality of messages is protected even when an adversary can see a ciphertext of
f(sk1, · · · , skn) under the s-th public key for any f ∈ F and s ∈ {1, · · · , n},
where n denotes the number of keys. Also, KDM security is considered in both
the chosen plaintext attack (CPA) and chosen ciphertext attack (CCA) settings.

Completeness of Projection-KDM Security. KDM security with respect to the
family of projection functions (projection-KDM security) is one of the most
widely studied notions. A projection function is an elementary function in which
each output bit depends on at most a single bit of an input. Therefore, roughly
speaking, projection-KDM security only guarantees that an encryption scheme
can securely encrypt a copy and a negation of secret key bits.

Although this security notion looks somewhat weak at first glance, Apple-
baum [3] showed that it is complete for KDM security in the sense that we
can construct an encryption scheme satisfying KDM security with respect to all
functions computable by a-priori bounded-size circuits (bounded-KDM secu-
rity) based on one satisfying projection-KDM security. The completeness of
projection-KDM security in [3] has generality in the sense that it is insensitive to
the exact setting of KDM security. More specifically, a projection-KDM secure
encryption scheme can be transformed into a bounded-KDM secure one for any
number of keys and in any of secret-key/public-key and CPA/CCA settings.

Moreover, recent works [22,23,25] also showed the power and usefulness of
projection-KDM secure encryption schemes for achieving other security notions
and constructing other primitives. Specifically, Kitagawa, Matsuda, and Tanaka
[23] showed that projection-KDM secure PKE implies IND-CCA secure PKE,
and Kitagawa and Matsuda [22] and Lombardi, Quach, Rothblum, Wichs, and
Wu [25] independently showed that it implies a reusable designated-verifier NIZK
argument system for any NP language.

Completeness of Circular Security? The focus in this work is on circular security,
which is another elementary form of KDM security that has been widely studied
from both the positive side [10,11,15,19] and the negative side [1,13,17,20,24,
28]. Circular security is a weaker security notion compared to even projection-
KDM security since circular security allows us to securely encrypt only a copy
of secret key bits.1 In this work, we clarify whether this most elementary form
of KDM security is also complete in the above sense or not.

1 Note that the phrase “circular security” is sometimes used to mean a (similar but)
different notion, such as security when encrypting key cycles.



Circular Security Is Complete for KDM Security 255

Let us explain the motivations for studying the completeness of circular secu-
rity for KDM security. From the practical aspect, although it is an elementally
form of KDM security, it is known to be sufficient for many practical appli-
cations of KDM security such as anonymous credentials, formal methods, and
FHE listed above. Thus, studying circular security is expected to give us insights
on these applications. From the theoretical aspect, it has impacts on the study
of public-key cryptography since several recent works [22,23,25] showed that
a projection-KDM secure encryption scheme is useful as a building block for
constructing two important and central primitives of IND-CCA secure PKE
and reusable designated-verifier NIZK argument systems, among which we will
expand explanations on the former in the paragraph below. Furthermore, study-
ing whether the ability to securely encrypt only a copy of secret key bits has a
similar power to that to securely encrypt both a copy and a negation of secret
key bits at the same time, is well-motivated from the viewpoint of “negation-
complexity” of cryptographic primitives [16,18]. For example, Goldreich and
Izsak [16] showed that a one-way function can be computed by a monotone cir-
cuit and yet a pseudorandom generator cannot. It is interesting to investigate
whether such a barrier exists in the context of KDM security.

Implications to the Study of CPA vs CCA. The question whether an IND-CCA
secure PKE scheme can be constructed from an IND-CPA secure one has been
standing as a major open question in cryptography. The completeness of circular
security for KDM security also has a deep connection to this question: Hajiabadi
and Kapron [19] tackled the above question, and they built an IND-CCA secure
PKE scheme based on a PKE scheme satisfying circular security and a ran-
domness re-usability property called reproducibility [6]. Also, Kitagawa et al.
[23] showed that an IND-CCA secure PKE scheme can be constructed from a
projection KDM secure PKE scheme.

The above two results surely made a progress on the study of CCA secu-
rity versus CPA security by showing that an IND-CCA secure PKE scheme
can be constructed from a PKE scheme satisfying only security notions against
“CPA” (i.e. no decryption queries). Here, the above results are incomparable
since the former result requires a structural property while the latter requires
projection-KDM security that is stronger than circular security for the building
block scheme. It is an open question whether we can construct an IND-CCA
secure PKE scheme based on a PKE scheme satisfying only circular security
without requiring any structural property for the building block scheme. We
see that this question is solved affirmatively if we can prove the completeness
of circular security for KDM security by combining it with the previous results
[22,23,25].

1.2 Our Results

In this work, we show that circular security is complete in the sense that an
encryption scheme satisfying this security notion can be transformed into a
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bounded-KDM secure one. In this work, unless stated otherwise, circular secu-
rity indicates a security notion that guarantees that an encryption scheme can
securely encrypt a copy of each of secret key bits separately. We show that this
result has the same level of generality as the completeness of projection-KDM
security shown by Applebaum [3]. Namely, we obtain the following theorem.
Below, we denote circular security against CPA under n key pairs as CIRC(n)

security.

Theorem 1 (Informal). If there exists a CIRC(n) secure PKE (resp. SKE)
scheme, then there exists a bounded-KDM(n)-CCA secure PKE (resp. SKE)
scheme for any number of keys n.

Note that the above theorem implies the completeness of circular security in
both the CPA and CCA settings at the same time since we start with a scheme
satisfying circular security against CPA and obtain a scheme satisfying bounded-
KDM security against CCA. We obtain Theorem 1 in the following way.

How to Obtain Completeness in the Public-Key Setting. We first focus on the
case where there is only a single key pair. In Sect. 4, as our main technical
result, we show that an encryption primitive called targeted encryption (TE),
formalized by Barak, Haitner, Hofheinz, and Ishai [5], can be constructed from
the combination of a CIRC(1) secure SKE scheme and an IND-CPA secure PKE
scheme. Since both of the building blocks are implied by CIRC(1) secure PKE,
and a TE scheme in turn can be transformed into a bounded-KDM(1)-CPA
secure PKE scheme as shown by Barak et al. [5], this result implies that a
CIRC(1) secure PKE scheme can be transformed into a bounded-KDM(1)-CPA
secure PKE scheme. Once we construct a bounded-KDM(1)-CPA secure PKE
scheme, by combining with the result by Kitagawa and Matsuda [22], we can
transform it into a bounded-KDM(1)-CCA secure PKE scheme, which is stated
in Sect. 5.

We then turn our attention to the case where there are multiple key pairs.
Similarly to the above, we can construct a bounded-KDM(n)-CPA secure PKE
scheme based on a CIRC(n) secure one for any n through a primitive called
augmented TE [5] that is an extension of TE. However, in the case of multiple
key pairs, there is no transformation from a KDM-CPA secure PKE scheme to
a KDM-CCA secure one regardless of the function family with respect to which
we consider KDM security. Thus, in this case, we cannot easily carry the result
in the CPA setting to that in the CCA setting.

To overcome the above problem, in Sect. 6, we first introduce a primitive that
we call conformed TE (CTE). CTE is an extension of TE (with several similar-
ities to augmented TE of Barak et al. [5]) that is conformed to the construction
of a KDM-CCA secure PKE scheme in the presence of multiple key pairs. We
then construct a CTE scheme based on a CIRC(n) secure SKE scheme and
an IND-CPA secure PKE scheme. Finally, in Sect. 7, we construct a bounded-
KDM(n)-CCA secure PKE scheme from a CTE scheme, a garbling scheme, an
IND-CCA secure PKE scheme, and a (reusable) DV-NIZK argument system.
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The last two components are implied by a circular secure PKE scheme from our
result in the case of a single key pair and the results by Kitagawa and Matsuda
[22] and Lombardi et al. [25]. This implies that circular security is complete in
both the CPA and CCA settings even when there are multiple key pairs. Note
that this result improves that of Kitagawa and Matsuda [22] in the following two
aspects: Not only our construction can start from a circular secure PKE scheme,
but also it works in the case of multiple key pairs.

How to Obtain Completeness in the Secret-Key Setting. From the result shown
by Backes, Pfitzmann, and Scedrov [4], we can transform a bounded-KDM(n)-
CPA secure SKE scheme into a bounded-KDM(n)-CCA secure one for any n.
Thus, in the secret-key setting, all we have to do is to construct a bounded-
KDM(n)-CPA secure SKE scheme based on a CIRC(n) secure one. Similarly to
the public-key setting, this is possible via the secret-key version of TE for the
case of a single key pair and via the secret-key version of augmented TE for
the case of multiple key pairs. These constructions are almost the same as the
public-key counterparts, and thus we omit their formal descriptions in the paper.
(In Sect. 2, this construction is outlined since we explain a technical overview of
our results using the secret-key version of TE.)

Implications of Our Completeness Result. We obtain the following additional
results: We show that the construction of the bounded-KDM(1)-CPA secure
PKE scheme mentioned above, is in fact a fully black-box construction [27] if we
restrict the function family to projection functions. Thus, by combining this fact
with the result by Kitagawa et al. [23], we obtain a fully black-box construction
of an IND-CCA secure PKE scheme from a circular secure one.2 Moreover, by
simply combining Theorem 1 with the result independently achieved by Kita-
gawa and Matsuda [22] and Lombardi et al. [25], we see that a reusable DV-NIZK
argument system can also be constructed from a circular secure PKE scheme.

1.3 Paper Organization

The rest of the paper is organized as follows: In Sect. 2, we give a technical
overview of our results. In Sect. 3, we review definitions of cryptographic primi-
tives. In Sect. 4, we present our construction of TE. In Sect. 5, we show several
implications of our TE scheme, and in particular the completeness of circular
security for the single-key setting. In Sect. 6, we introduce CTE and present its
construction. Finally, in Sect. 7, we present the completeness of circular security
in the multi-key setting using CTE.

2 Note that this result does not simply follow from Theorem 1 since the construction
of KDM-CCA secure PKE used to show it is non-black-box due to the use of a
DV-NIZK argument.
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2 Technical Overview

In this section, we provide a technical overview of our results. Our main technical
contribution is to show that we can realize TE (and conformed TE) based only
on a circular secure encryption scheme in a completely generic way. Thus, in this
overview, we mainly focus on this part after briefly explaining how to construct a
bounded-KDM secure scheme based on TE. For simplicity, we explain our ideas
in this part by showing how to construct the secret-key version of a TE scheme
based only on a CIRC(1) secure SKE scheme. In the following, for a natural
number n, we let [n] denote the set {1, . . . , n}.

2.1 Secret-Key TE

We first introduce the secret-key version of TE [5]. A secret-key TE scheme
consists of the three algorithms TKG, TEnc, and TDec.3 Similarly to an ordinary
SKE scheme, TKG is given a security parameter and outputs a secret key sk.
We let �sk denote the secret key length. On the other hand, TEnc and TDec
have a functionality of a somewhat special form. As we will soon see below,
they are optimized for encrypting labels of garbled circuits [29]. In addition
to the secret key sk, TEnc is given an index i ∈ [�sk] and a pair of messages
(X0,X1), and outputs a ciphertext as ct ← TEnc(sk, i,X0,X1). Correspondingly,
given the secret key sk, the index i ∈ [�sk], and the ciphertext ct, TDec outputs
(only) Xsk[i], where sk[i] denotes the i-th bit of sk. (Thus, it is similar to an
oblivious transfer.) For TE, we consider two security notions: security against
the receiver and security against outsiders. Security against the receiver ensures
that ct hides the information of X1⊕sk[i] even against the receiver who holds
sk. Security against outsiders ensures that ct hides both X0 and X1 against
adversaries who do not hold sk.4

Bounded -KDM(1)-CPA Security via TE. As shown by Barak et al. [5], we can
construct a bounded-KDM(1)-CPA secure SKE scheme based on a secret-key
TE scheme by using garbled circuits.5 The construction is fairly simple. The
secret key of the resulting SKE scheme is that of the underlying secret-key
TE scheme itself. When encrypting a message m, we first garble an �sk-bit-
input constant function Cm that outputs m for any input. This results in a
single garbled circuit ˜C and 2�sk labels (labi,v)i∈[�sk],v∈{0,1}. Then, for every index
i ∈ [�sk], we encrypt the pair of labels (labi,0, labi,1) under the index i into cti
using TEnc. The resulting ciphertext for the SKE scheme consists of ˜C and

3 Here, we adopt the syntax that is slightly different from the one we use in the
subsequent sections, in that the latter allows to encrypt Xv for each v ∈ {0, 1}
separately. The syntax used here makes the following explanations easier and cleaner.
For the formal definition, see Sect. 3.3.

4 Hereafter, we refer to adversaries that do not hold the secret key as outsiders.
5 Note that the actual transformation shown by Barak et al. is in the public-key

setting. Also, the following explanations assume that the reader is familiar with a
garbling scheme. See the full version for its formal definition.
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(cti)i∈[�sk]. When decrypting this ciphertext, we first obtain (labi,sk[i])i∈[�sk] from
(cti)i∈[�sk] by using TDec with sk. Then, we evaluate the garbled circuit ˜C with
these labels. This results in m from the correctness of the garbling scheme.

We can prove that the above construction is bounded-KDM(1)-CPA secure.
In a high level, we can generate a simulated encryption of f(sk) without using
sk itself that is indistinguishable from a real ciphertext based on the security
against the receiver of the underlying secret-key TE scheme and the security of
the underlying garbling scheme, where f is a function queried by an adversary
as a KDM-encryption query. We then finish the security proof by relying on the
security against outsiders of the secret-key TE scheme. For more details, see [5].

2.2 Secret-Key TE Based on Circular Secure SKE

Below, we explain how to construct a secret-key TE scheme based on a CIRC(1)

secure SKE scheme. We first show that a secret-key TE scheme can be naturally
realized from a projection-KDM(1) secure SKE scheme. We then show how to
weaken the starting point to a CIRC(1) secure SKE scheme.

Secret-Key TE Based on Projection-KDM Secure SKE. Consider the following
naive way to realize a secret-key TE scheme based on an SKE scheme SKE.
A secret key sk of SKE is used as that of the secret-key TE scheme. When
encrypting (X0,X1) under an index i ∈ [�sk], we just encrypt Xsk[i] into ct by
using the encryption algorithm Enc of SKE with the secret key sk. We call this
naive realization Naive. Naive clearly satisfies security against the receiver since
ct is independent of X1⊕sk[i]. However, it is not clear whether we can prove the
security against outsiders of Naive if we only assume that SKE satisfies IND-
CPA security. This is because the encrypted message Xsk[i] is dependent on the
secret key sk. On the other hand, we can prove the security against outsiders
of Naive if SKE satisfies projection-KDM(1)-CPA security which allows us to
securely encrypt both a copy and a negation of sk[i].

To see this in detail, we suppose that Xsk[i] is encrypted by SKE in a bit-by-
bit manner, and its length is μ. We denote the j-th bit of X0 (resp. X1) by X0[j]
(resp. X1[j]). We can classify the indices in [μ] into the following four types:

Type 1: j ∈ [μ] such that X0[j] = X1[j] = 0.
Type 2: j ∈ [μ] such that X0[j] = X1[j] = 1.
Type 3: j ∈ [μ] such that X0[j] = 0 and X1[j] = 1.
Type 4: j ∈ [μ] such that X0[j] = 1 and X1[j] = 0.

We have to generate the following ciphertexts of SKE for each type to encrypt
Xsk[i]:

– For j of Type 1, we have to generate Enc(sk, 0) regardless of the value of sk[i].
– For j of Type 2, we have to generate Enc(sk, 1) regardless of the value of sk[i].
– For j of Type 3, we have to generate Enc(sk, sk[i]), that is, an encryption of

a copy of sk[i].
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– For j of Type 4, we have to generate Enc(sk, 1 ⊕ sk[i]), that is, an encryption
of a negation of sk[i].

Namely, when some bit of X0 is 0 and the corresponding bit of X1 is 1, we
have to generate an encryption of a copy of sk[i]. Similarly, when some bit of
X0 is 1 and the corresponding bit of X1 is 0, we have to generate an encryption
of a negation of sk[i]. However, if SKE is projection-KDM(1)-CPA secure, then
Xsk[i] is hidden from outsiders. Since X1⊕sk[i] is completely hidden (even against
the legitimate receiver), Naive satisfies security against outsiders based on the
projection-KDM(1)-CPA security of SKE.

Replacing Projection-KDM-CPA Secure SKE with Circular Secure SKE. We
now try to realize a secret-key TE scheme based on a circular secure (CIRC(1)

secure) SKE scheme. Recall that CIRC(1) security allows us to securely encrypt
only a copy of secret key bits. Thus, as the first attempt to avoid encrypting
negations of secret key bits, we modify the above construction Naive into the
following construction that we call Naive∗.

In Naive∗, when encrypting (X0,X1) under an index i ∈ [�sk], we basically
encrypt Xsk[i] in a bit-by-bit manner in the same way as Naive. However, for
indices j ∈ [μ] of Type 4, we replace the ciphertext of SKE with the special
symbol flip. When receiving the symbol flip instead of the j-th ciphertext,
the receiver sets the value of Xsk[i][j] as 1⊕sk[i]. This is possible since the receiver
has sk and knows the value of sk[i]. Thus, if we modify the construction in this
way, the receiver holding sk can obtain the entire bits of Xsk[i] similarly to Naive.

In Naive∗, we now need to generate encryptions of only a copy of sk[i] and not
those of a negation of sk[i]. However, we cannot prove that Naive∗ satisfies the
two security notions of TE (security against the receiver/outsiders) based on the
CIRC(1) security of SKE. For example, considering security against outsiders, X0

and X1 are partially leaked to outsiders because of the use of the symbol flip.
Concretely, outsiders can know that X0[j] = 1 and X1[j] = 0 for the indices j of
Type 4. A similar problem lies in the argument on security against the receiver.
Concretely, the receiver holding sk can know X1⊕sk[i][j] for the indices j of Type
4 and either one of Type 1 or 2 depending on the value of sk[i]. The reason
why X1⊕sk[i][j] for the indices j of Type 4 are leaked to the receiver is clear.
The reason why those for the indices j of Type 1 or 2 are leaked to the receiver
is as follows. For example, when sk[i] = 0, the receiver finds that the value of
X1⊕sk[i][j] is 1 for j of Type 2 from the fact that the decrypted message from
the j-th ciphertext is 1 but the symbol flip was not sent for this j.

To summarize, if SKE is CIRC(1) secure, the following properties hold for
Naive∗: X0[j] and X1[j] for the indices j of Type 1, 2, and 3 are hidden but
those for the indices j of Type 4 are leaked to outsiders. Also, X1⊕sk[i][j] for the
indices j of Type 3 and either one of Type 1 or 2 are hidden but the remaining
parts are leaked to the receiver holding sk.

Transforming into a Full-Fledged Secret-Key TE Scheme. A natural question
here is whether the above Naive∗ is useful or not. We show that by using a
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leakage-resilient SKE scheme lrSKE, we can transform Naive∗ into an ordinary
secret-key TE scheme sTE. As we will explain later, the type of leakage-resilience
that lrSKE should satisfy is weak, and any IND-CPA secure SKE scheme can be
transformed into one satisfying it. Thanks to this transformation, we can realize
a secret-key TE scheme based only on a CIRC(1) secure SKE scheme.

The description of sTE is as follows. The secret key sk of sTE is that of Naive∗

itself. When encrypting (X0,X1) under the index i ∈ [�sk], we first generate two
keys lrk0 and lrk1 of lrSKE. Then, we encrypt X0 and X1 into lrct0 and lrct1
by using lrSKE with the keys lrk0 and lrk1, respectively. Moreover, we encrypt
(lrk0, lrk1) into ct by using Naive∗ with the key sk. The resulting ciphertext of
sTE is (lrct0, lrct1, ct). When decrypting this ciphertext, we first obtain lrksk[i]
from ct by using Naive∗ with the key sk. We then obtain Xsk[i] by decrypting
ctsk[i] using lrSKE with the key lrksk[i].

We now argue that sTE satisfies (full-fledged) security against the receiver
and that for outsiders. Without loss of generality, we assume that lrk0 and lrk1
are uniformly random n-bit strings. We define Type 1, 2, 3, and 4 for indices in
[n] as before using lrk0 and lrk1 instead of X0 and X1. Since lrk0 and lrk1 are
chosen uniformly at random, these four types appear equally likely. In this case,
ct hides expectedly a 1/2-fraction of bits of lrk1⊕sk[i] against the receiver holding
sk. Also, ct hides expectedly a 3/4-fraction of bits of each of lrk0 and lrk1 against
outsiders. Thus, if lrSKE is resilient against both forms of secret key leakage, sTE
satisfies both security against the receiver and security against outsiders.

Fortunately, the leakage-resilience that lrSKE should satisfy in the above
argument is weak. The amount of leakage is (expectedly) only a constant frac-
tion. In addition, more importantly, which bits of the secret key are leaked is
determined completely at random from the fact that Type 1, 2, 3, and 4 appear
uniformly at random, out of the control of adversaries. Leakage-resilience against
such secret key leakage is weak, and we can transform any IND-CPA secure SKE
scheme into one satisfying it by using the leftover hash lemma [14,21]. From this
fact, sTE can be realized from a CIRC(1) secure SKE scheme.

2.3 Towards the Completeness in the Public-Key Setting

As we mentioned earlier, in the actual technical sections, we deal with the public-
key setting. Namely, we prove Theorem 1 in the PKE setting. We finally explain
how to prove it with the techniques explained so for.

Single-Key Setting. We first construct a (public-key) TE scheme based on a
CIRC(1) secure SKE scheme and an IND-CPA secure PKE scheme both of which
are implied by a CIRC(1) secure PKE scheme. This construction is almost the
same as that of sTE above except that we use a leakage-resilient PKE scheme
instead of a leakage-resilient SKE scheme. By combining this transformation
with the previous results [5,22], we can obtain Theorem 1 in the PKE setting for
the number of key pairs n = 1.



262 F. Kitagawa and T. Matsuda

Multi-key Setting. We then move on to the case of multiple key pairs. As men-
tioned before, for achieving the completeness in this setting, we introduce an
extended version of TE that we call conformed TE (CTE). CTE is conformed
to construct KDM(n)-CCA secure PKE schemes for n > 1. Roughly, CTE is TE
that satisfies the following two additional properties.

– When generating a public/secret key pair, it additionally generates a trapdoor
that enables us to recover both a “0-side” message X0 and a “1-side” message
X1 from a ciphertext encrypting (X0,X1). (Recall that in ordinary TE, the
receiver can recover only one of them even having the secret key.)

– A CTE scheme has additional (untargeted and secret-key) encryption and
decryption algorithms, and a ciphertext generated by the additional encryp-
tion algorithm is indistinguishable even under the existence of the above trap-
door and encryptions of a “key cycle” generated by the additional encryp-
tion algorithm. Encryptions of a key cycle are ciphertexts such that the s-th
ciphertext is an encryption of the (s mod n) + 1-th secret key under the s-th
secret key when there are n keys. We call this property special weak circular
security.

We remark that a TE scheme satisfying only the second property is almost the
same as augmented TE introduced by Barak et al. [5] to construct a bounded-
KDM(n)-CPA secure PKE scheme for n > 1. Roughly speaking, when construct-
ing a KDM-CCA secure PKE scheme, the first property mainly plays its role
to deal with decryption queries, and the second property plays its role to deal
with multiple key pairs. For the details of the formalization of CTE as well as
its relation to augmented TE, see Sect. 6.

We construct a CTE scheme based on a CIRC(n) secure SKE scheme and an
IND-CPA secure PKE scheme. Basically, this construction is again an extension
of sTE in which a leakage-resilient PKE scheme is used instead of a leakage-
resilient SKE scheme. The trapdoor of the construction consists of secret keys
of the leakage-resilient PKE scheme. Also, the special weak circular security of
it is proved based on the CIRC(n) security of the underlying SKE scheme.

We finish the proof of Theorem1 in the public-key setting for n > 1 by con-
structing a bounded-KDM(n)-CCA secure PKE scheme from the combination of
the following four building blocks: (1) a CTE scheme, (2) an IND-CCA secure PKE
scheme, (3) a garbling scheme for circuits, and (4) a reusable DV-NIZK argument
system for NP languages. As we already explained, by Theorem1 for n = 1 and
results by [22,25], an IND-CCAsecurePKE scheme and a reusableDV-NIZKargu-
ment system can be constructed from the combination of an IND-CPA secure PKE
scheme and a CIRC(1) secure SKE scheme. Also, a garbling scheme for circuits can
be constructed from a one-way function. Thus, all the building blocks can be based
on the combination of an IND-CPA secure PKE scheme and a CIRC(n) secure SKE
scheme. This completes the proof of Theorem 1 in the PKE setting for n > 1.

Our construction of bounded-KDM-CCA secure PKE in the multi-key setting
can be seen as combining the construction ideas from the two existing construc-
tions: the construction of KDM-CPA secure PKE in the multi-key setting based
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on an augmented TE scheme by Barak et al. [5], and the construction of KDM-
CCA secure PKE in the single key setting based on an IND-CPA secure PKE
scheme and a projection-KDM secure SKE scheme by Kitagawa and Matsuda
[22]. However, a simple combination of each of the techniques from [5,22] as it
is is not sufficient. We bridge the gap with the properties of the CTE scheme.
For the details, see Sect. 7.

3 Preliminaries

In this section, we review the basic notation, and the definitions as well as
existing results for cryptographic primitives treated in this paper.

3.1 Basic Notation and Notions

For n ∈ N, we define [n] := {1, . . . , n}. For strings x and y, “|x|” denotes the
bit-length of x, “x[i]” (with i ∈ [|x|]) denotes the i-th bit of x, and “(x ?= y)” is
the operation that returns 1 if x = y and 0 otherwise. For a discrete finite set S,
“|S|” denotes its size, and “x

r←− S” denotes choosing an element x uniformly at
random from S. For a (probabilistic) algorithm A, “y ← A(x)” denotes assigning
to y the output of A on input x, and if we need to specify a randomness r used
in A, we write “y ← A(x; r)”. If furthermore O is a function or an algorithm,
then “AO” means that A has oracle access to O. A function ε(λ) : N → [0, 1]
is said to be negligible if ε(λ) = λ−ω(1). We write ε(λ) = negl(λ) to mean ε
being negligible. The character “λ” always denotes a security parameter. “PPT”
stands for probabilistic polynomial time. For a distribution X , the min-entropy of
X is defined by H∞(X ) := − log2(maxx Pr[X = x]). For distributions X and Y
(forming a joint distribution), the average min-entropy of X given Y is defined
by ˜H∞(X|Y) := − log2(Ey←Y [maxx Pr[X = x|Y = y]]).

3.2 Public-Key and Secret-Key Encryption

Here, we recall the definitions for public-key and secret-key encryption schemes.
We first introduce the definitions for PKE, and then briefly mention how to
recover those for SKE.

Syntax of Public-Key Encryption. A PKE scheme PKE consists of the three PPT
algorithms (KG,Enc,Dec):6

– KG is the key generation algorithm that takes 1λ as input, and outputs a
public/secret key pair (pk, sk).

– Enc is the encryption algorithm that takes a public key pk and a message m
as input, and outputs a ciphertext ct.

6 In this paper, we only consider (public-key/secret-key) encryption schemes in which
secret keys and messages are bit strings, whose lengths are determined by the security
parameter λ.
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ExptwlrPKE,A,L(λ) :
(f, st) ← A0(1λ)
(pk, sk) ← KG(1λ)
b

r←− {0, 1}
b′ ← AOEnc(·,·)

1 (pk, f(sk), st)
Return (b′ ?= b).

OEnc(m0,m1) : // |m0| = |m1|
Return ct ← Enc(pk,mb).

Fig. 1. The weak noisy-leakage-resilience experiment for PKE. In the experiment, it is
required that L ≥ H∞(sk) − ˜H∞(sk|f(sk), st).

– Dec is the (deterministic) decryption algorithm that takes a public key pk, a
secret key sk, and a ciphertext ct as input, and outputs a message m or the
invalid symbol ⊥.

A PKE scheme PKE = (KG,Enc,Dec) is said to be correct if for all λ ∈ N,
(pk, sk) ← KG(1λ), and m, we have Dec(pk, sk,Enc(pk,m)) = m.

We refer to a PKE scheme whose message space is 1-bit as a bit-PKE scheme.

Simple Key Generation. We say that a PKE scheme has simple key generation if
its key generation algorithm KG first picks a secret key sk uniformly at random
(from some prescribed secret key space) and then computes a public key pk
from sk. For PKE with simple key generation, we slightly abuse the notation
and simply write pk ← KG(sk) to denote this computation. Any IND-CPA/IND-
CCA secure PKE scheme can be viewed as one with simple key generation by
just regarding a randomness used in the key generation algorithm as sk.

Weak Noisy-Leakage-Resilience. We will use a PKE scheme that satisfies weak
noisy-leakage-resilience (against CPA), formalized by Naor and Segev [26]. In the
weak “noisy” leakage setting, an adversary’s leakage function f must be chosen
before seeing pk, and must satisfy the condition that the average min-entropy of
sk given f(sk) is greater than a pre-determined lower bound.

Formally, for a PKE scheme PKE = (KG,Enc,Dec), a polynomial L = L(λ),
and an adversary A = (A0,A1), consider the experiment described in Fig. 1. In
the experiment, A is required to be L-noisy-leakage-respecting, which requires
that L ≥ H∞(sk) − ˜H∞(sk|f(sk), st) hold.

Definition 1 (Weak Noisy-Leakage-Resilience). Let L = L(λ) be a poly-
nomial. We say that a PKE scheme PKE is weakly L-noisy-leakage-resilient
if for all PPT L-noisy-leakage-respecting adversaries A = (A0,A1), we have
AdvwlrPKE,A,L(λ) := 2 · |Pr[ExptwlrPKE,A,L(λ) = 1] − 1/2| = negl(λ).

Any IND-CPA secure PKE scheme can be straightforwardly converted into
a weakly noisy-leakage-resilient one by using the leftover hash lemma [14,21].
In fact, Naor and Segev [26] showed this fact for the case of weak “bounded”
leakage-resilience (where the output-length of a leakage function is bounded),
and it is easy to see that their proof carries over to the case of weak noisy-
leakage-resilience. Furthermore, this conversion is fully black-box and preserves
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Exptkdmcca
PKE,F,A,n(λ) :

Lkdm ← ∅
∀s ∈ [n] : (pks, sks) ← KG(1λ)
b

r←− {0, 1}
b′ ← AOkdm(·,·,·),Odec(·,·)((pks)s∈[n])
Return (b′ ?= b).

Okdm(α, f0, f1) : // α ∈ [n], f0, f1 ∈ F
m ← fb((sks)s∈[n])
ct ← Enc(pkα,m)
Lkdm ← Lkdm ∪ {(α, ct)}
Return ct.

Odec(α, ct) : // α ∈ [n]
If (α, ct) ∈ Lkdm then return ⊥.
Return Dec(pkα, skα, ct).

Fig. 2. The KDM-CCA experiment for PKE.

the simple key generation property. (It works for SKE as well.) Since we will use
this fact in Sect. 5, we state it formally, whose formal proof is given in the full
version.

Lemma 1. Assume that there exists an IND-CPA secure PKE scheme with
simple key generation whose secret key length is �sk = �sk(λ). Then, for any
polynomials L = L(λ) and �′

sk = �′
sk(λ) satisfying �′

sk − (L+ �sk) = ω(log λ), there
exists a weakly L-noisy-leakage-resilient PKE scheme with simple key generation
whose secret key length is �′

sk. Furthermore, the construction is fully black-box.7

For example, from an IND-CPA secure PKE scheme with simple key generation
with secret key length �sk, for any constant β ∈ [0, 1), we can construct a scheme
whose secret key length is �′

sk and satisfies weak (β�′
sk)-noisy-leakage-resilience

by setting the term ω(log λ) simply as λ and setting �′
sk := �sk+λ

1−β .

KDM-CCA/CPA Security. We recall KDM-CCA/CPA security for PKE.

Definition 2 (KDM-CCA/CPA Security). Let PKE = (KG,Enc,Dec) be a
PKE scheme whose secret key length and message length are �sk and μ, respec-
tively. Let n = n(λ) be a polynomial, and F be a family of functions with
domain ({0, 1}�sk)n and range {0, 1}μ. We say that PKE is KDM-CCA secure
with respect to F in the n-key setting (F-KDM(n)-CCA secure) if for all PPT
adversaries A, we have Advkdmcca

PKE,F,A,n(λ) := 2 · |Pr[Exptkdmcca
PKE,F,A,n(λ) = 1]−1/2| =

negl(λ), where the experiment Exptkdmcca
PKE,F,A,n(λ) is described in Fig. 2.

KDM-CPA security with respect to F in the n-key setting (F-KDM(n)-CPA
security) is defined analogously, except that A is disallowed to use Odec.

Function Families for KDM Security. In this paper, the function families for
KDM security that we will specifically treat are as follows.

7 A fully black-box construction of a primitive Q from another primitive P means that
(1) the construction of Q treats an instance of P as an oracle, and (2) the reduction
algorithm (for proving the security of the construction of Q) treats the adversary
attacking the construction of Q and the instance of P as oracles. (See [27] for the
formal treatment.).
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ExptcircPKE,A,n(λ) :
∀s ∈ [n] : (pks, sks) ← KG(1λ)
b

r←− {0, 1}
b′ ← AOcirc(·,·)((pks)s∈[n])
Return (b′ ?= b).

Ocirc(α, cmd) : // α ∈ [n],
// cmd ∈ ([n] × [�sk]) ∪ {zero, one}

m1 ←

⎧⎪⎨⎪⎩
skβ [i] if cmd = (β, i) ∈ [n] × [�sk]
0 if cmd = zero

1 if cmd = one

m0 ← 0
Return ct ← Enc(pkα,mb)

Fig. 3. The circular security experiment for bit-PKE.

– P (Projection functions): A function is said to be a projection function if each
of its output bits depends on at most a single bit of its input. We denote by
P the family of projection functions.

– Bsize (Circuits of a-priori bounded size size): We denote by Bsize, where size =
size(λ) is a polynomial, the function family each of whose members can be
described by a circuit of size size.

Circular Security. In this paper, we also treat circular security (against CPA),
which we consider for bit-encryption schemes. Although it is a special case of
KDM security, it is convenient for us to introduce a separate definition in the
form we use in this paper.

Definition 3 (Circular Security for Bit-PKE). Let n = n(λ) be a polyno-
mial. Let PKE = (KG,Enc,Dec) be a bit-PKE scheme with the secret key length
�sk. We say that PKE is circular secure in the n-key setting (CIRC(n) secure) if
for all PPT adversaries A, we have AdvcircPKE,A,n(λ) := 2 · |Pr[ExptcircPKE,A,n(λ) =
1] − 1/2| = negl(λ), where the experiment ExptcircPKE,A,n(λ) is described in Fig. 3.

Our definition here follows the definition called “circular security with respect
to indistinguishability of oracles” formalized by Rothblum [28], with a slight
modification to the interface of the oracle: In addition to capturing the multi-
key setting, the circular-encryption oracle Ocirc in our definition accepts the
special commands “zero” and “one” (returning an encryption of 0 and that
of 1, respectively, in the case b = 1) to explicitly capture ordinary IND-CPA
security. This is for convenience and clarity: A bit-encryption scheme satisfies
our definition if and only if it simultaneously satisfies the original definition in
[28] (without the augmentation of the oracle interface) and IND-CPA security.

Secret-Key Encryption. An SKE scheme SKE consists of the three PPT algo-
rithms (K,E,D):

– K is the key generation algorithm that takes 1λ as input, and outputs a secret
key sk.

– E is the encryption algorithm that takes a secret key sk and a message m as
input, and outputs a ciphertext ct.
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– D is the (deterministic) decryption algorithm that takes a secret key sk and
a ciphertext ct as input, and outputs a message m or the invalid symbol ⊥.

An SKE scheme SKE = (K,E,D) is said to be correct if for all λ ∈ N, sk ← K(1λ)
and m, we have D(sk,E(sk,m)) = m.

We refer to an SKE scheme whose message space is 1-bit as a bit-SKE scheme.
Weak noisy-leakage-resilience, KDM security, and circular security for (bit-)

SKE are defined analogously to those defined for (bit-)PKE, with the following
natural adaptions in the security experiments:

– All of (pk, sk) ← KG(1λ), Enc(pk, ·), and Dec(pk, sk, ·) in the experiments for
PKE are replaced with sk ← K(1λ), E(sk, ·), and D(sk, ·) in the experiments for
SKE, respectively. We do the same treatment for those with the superscripts
s, α ∈ [n].

– All the public keys pk and pks (s ∈ [n]) given as input to an adversary in the
experiments for PKE are replaced with 1λ in the experiments for SKE.

Results from [22,23]. We recall the results on IND-CCA/KDM-CCA secure PKE
from [22,23], which we will use in Sect. 5.

Theorem 2 ([23]). If there exist an IND-CPA secure PKE scheme and a
P-KDM(1)-CPA secure SKE scheme, then there exists an IND-CCA secure PKE
scheme. Furthermore, the construction is fully black-box.

Theorem 3 ([22]). If there exist an IND-CPA secure PKE scheme and a
P-KDM(1)-CPA secure SKE scheme, then for any polynomial size = size(λ),
there exists a Bsize-KDM(1)-CCA secure PKE scheme.

We note that [22] also showed a construction of a multi-key-KDM-CCA secure
PKE scheme by additionally assuming (passive) RKA-KDM security with
respect to projection functions for the underlying SKE scheme. We do not for-
mally recall it here since it is not known if it follows from the multi-key version
of ordinary P-KDM security and our result in Sect. 7 improves it in terms of the
strength of assumptions.

3.3 Targeted Encryption

Here, we recall targeted encryption (TE) [5]. A TE scheme TE consists of the
three PPT algorithms (TKG,TEnc,TDec):

– TKG is the key generation algorithm that takes 1λ as input, and outputs a
public/secret key pair (pk, sk), where |sk| =: �sk.

– TEnc is the encryption algorithm that takes a public key pk, an index i ∈ [�sk],
a bit v ∈ {0, 1}, and a message m as input, and outputs a ciphertext ct.

– TDec is the (deterministic) decryption algorithm that takes a public key pk,
a secret key sk ∈ {0, 1}�sk , an index i ∈ [�sk], and a ciphertext ct as input, and
outputs a message m or the invalid symbol ⊥.
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ExptreceiverTE,A (λ) :
(i∗ ∈ [�sk], st) ← A0(1λ)
(pk, sk) ← TKG(1λ)
b

r←− {0, 1}
b′ ← AOTEnc(·,·)

1 (pk, sk, st)
Return (b′ ?= b).

OTEnc(m0,m1) : // |m0| = |m1|
ct ← TEnc(pk, i∗, 1 ⊕ sk[i∗],mb)
Return ct.

ExptoutsiderTE,A (λ) :
(i∗ ∈ [�sk], v∗ ∈ {0, 1}, st) ← A0(1λ)
(pk, sk) ← TKG(1λ)
b

r←− {0, 1}
b′ ← AOTEnc(·,·)

1 (pk, st)
Return (b′ ?= b).

OTEnc(m0,m1) : // |m0| = |m1|
ct ← TEnc(pk, i∗, v∗,mb)
Return ct.

Fig. 4. The experiments for TE: Security against the receiver (left) and security against
outsiders (right).

As the correctness for a TE scheme, we require that for all λ ∈ N, (pk, sk) ←
TKG(1λ), i ∈ [�sk], and m, we have TDec(pk, sk, i,TEnc(pk, i, sk[i],m)) = m.

Barak et al. [5] defined two kinds of security notions for TE: security against
the receiver and security against outsiders. We recall them here.

Security Against the Receiver. As the name suggests, this is a security notion
against a receiver who holds a secret key. More specifically, this security notion
ensures that for every i ∈ [�sk], if a message is encrypted under the position
(i, 1 ⊕ sk[i]), its information does not leak to the receiver of the ciphertext who
holds a secret key sk. For convenience, we introduce the multi-challenge version of
this security notion, which can be shown to be equivalent to the single-challenge
version defined in [5] via a query-wise hybrid argument.

Formally, for a TE scheme TE = (TKG,TEnc,TDec) and an adversary A =
(A0,A1), consider the experiment ExptreceiverTE,A (λ) described in Fig. 4 (left). We
emphasize again that since this security is considered against a receiver, an
adversary is given a secret key sk as input.8

Definition 4 (Security against the Receiver). We say that a TE scheme
TE satisfies security against the receiver if for all PPT adversaries A, we have
AdvreceiverTE,A (λ) := 2 · |Pr[ExptreceiverTE,A (λ) = 1] − 1/2| = negl(λ).

Security Against Outsiders. This security notion simply ensures that ciphertexts
generated under any pair (i, v) ∈ [�sk] × {0, 1} do not leak the information of
encrypted messages. Again, we introduce the multi-challenge version for this
security notion, which is equivalent to the single-challenge version formalized in
[5].

Formally, for a TE scheme TE = (TKG,TEnc,TDec) and an adversary A =
(A0,A1), consider the experiment ExptoutsiderTE,A (λ) described in Fig. 4 (right).

8 The original definition by Barak et al. [5] considered statistical security (i.e. security
against computationally unbounded adversaries), but it was remarked there that
computational security suffices for their construction of KDM-CPA secure PKE.
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Definition 5 (Security against Outsiders). We say that a TE scheme
TE satisfies security against outsiders if for all PPT adversaries A, we have
AdvoutsiderTE,A (λ) := 2 · |Pr[ExptoutsiderTE,A (λ) = 1] − 1/2| = negl(λ).

Result from [5]. Barak et al. [5] showed the following result, which we will use in
Sect. 5.

Theorem 4 ([5]). If there exists a TE scheme satisfying security against the
receiver and security against outsiders, then for any polynomial size = size(λ),
there exists a Bsize-KDM(1)-CPA secure PKE scheme. Furthermore, there is a
fully black-box construction of a P-KDM(1)-CPA secure PKE scheme from a TE
scheme satisfying the two security notions.

We remark that the result on the fully black-box construction can be extended
to any function family such that a canonical description of a circuit computing
any function in the family can be learned and reconstructed (with overwhelming
probability) by just making polynomially many oracle queries to the function.
(This is because in the security proof in [5], what is garbled is a function queried
as a KDM-encryption query.) We only state it for P-KDM security since it is
sufficient for our purpose.

We also remark that [5] also showed that their construction achieves KDM-
CPA security in the multi-key setting by additionally assuming that the under-
lying TE scheme is an augmented TE scheme satisfying circular security in the
multi-key setting. We do not recall this result and the formal definition of aug-
mented TE since we do not use them directly. In Sect. 6, we introduce conformed
TE, which is also an extension of TE in a similar manner to augmented TE but
has several differences. For the details, see the explanation there.

3.4 Additional Primitives

Here, we briefly recall the syntax of a DV-NIZK argument system and a garbling
scheme used in Sect. 7. Due to the space limitation, we omit the formal security
definitions in the proceedings version. See the full version for them.

Designated-Verifier Non-interactive Zero-Knowledge Arguments. Let L be an NP
language associated with the corresponding NP relation R. A DV-NIZK argu-
ment system DVNIZK for L consists of the three PPT algorithms (DVKG,P,V):
DVKG is the key generation algorithm that takes 1λ as input, and outputs a
public proving key pk and a secret verification key sk; P is the proving algorithm
that takes a public proving key pk, a statement x, and a witness w as input,
and outputs a proof π; V is the (deterministic) verification algorithm that takes
a secret verification key sk, a statement x, and a proof π as input, and outputs
either accept or reject.

For correctness, we require that for all λ ∈ N, (pk, sk) ← DVKG(1λ), and
(x,w) ∈ R, we have V(sk, x,P(pk, x, w)) = accept.

We require that a DV-NIZK argument system satisfy (adaptive) soundness
and (adaptive) zero-knowledge. As in [22,25], we consider the reusable setting,
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where the security experiment for soundness (resp. zero-knowledge) allows an
adversary to make multiple verification (resp. proving) queries. A DV-NIZK
argument system satisfying these versions of soundness and zero-knowledge is
called reusable. The formal definitions are given in the full version.

Garbling. Let C = {Cn}n∈N be a family of circuits, where the input length of each
member in Cn is n. A garbling scheme GC for C consists of the three PPT algo-
rithms (Garble,Eval,Sim): Garble is the garbling algorithm that takes as input
1λ and (the description of) a circuit C ∈ Cn, where n = n(λ) is a polynomial.
Then, it outputs a garbled circuit ˜C and 2n labels (labi,v)i∈[n],v∈{0,1}; Eval is
the (deterministic) evaluation algorithm that takes a garbled circuit ˜C and n
labels (labi)i∈[n] as input, and outputs an evaluation result y; Sim is the simu-
lator algorithm that takes 1λ, the size parameter size (where size = size(λ) is a
polynomial), and a string y as input, and outputs a simulated garbled circuit ˜C
and n simulated labels (labi)i∈[n].

For correctness, we require that for all λ, n ∈ N, x ∈ {0, 1}n, and C ∈ Cn,
the following two conditions hold: (1) Eval(˜C, (labi,x[i])i∈[n]) = C(x) holds for
all (˜C, (labi,v)i∈[n],v∈{0,1}) output by Garble(1λ,C), and (2) Eval(˜C, (labi)i∈[n]) =
C(x) holds for all (˜C, (labi)i∈[n]) output by Sim(1λ, |C|,C(x)), where |C| denotes
the size of C.

4 Targeted Encryption from Circular Security
and Leakage-Resilience

In this section, as our main technical result, we show how to construct a TE
scheme from the combination of a circular secure bit-SKE scheme (in the single-
key setting) and a weakly noisy-leakage-resilient PKE scheme.

Construction. Our construction uses the following building blocks:

– Let SKE = (K,E,D) be a CIRC(1) secure bit-SKE scheme with the secret-
key length �k for some polynomial �k = �k(λ). We assume that there exists
a special symbol flip that is perfectly distinguishable from possible outputs
of E.

– Let PKE = (KG,Enc,Dec) be a weakly L-noisy-leakage-resilient PKE scheme
with simple key generation whose secret-key length is �sk for some polynomial
�sk = �sk(λ). We assume L = 0.6�sk.

Using these building blocks, we construct a TE scheme TE =
(TKG,TEnc,TDec), whose secret key length is �k, as described in Fig. 5.

Correctness. The correctness of TE follows from that of the building blocks
SKE and PKE. Specifically, since TEnc(PK, i,SK[i] = k[i],m) just computes
Enc(pki,k[i],m) and TDec(PK,SK, i, ct) computes Dec(pki,k[i], sk

′, ct) in its last
step, it suffices to see that sk′ computed in TDec always equals to ski,k[i] for any
i ∈ [�k]. Indeed, for every j ∈ [�sk], we have
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TKG(1λ) :
k ← K(1λ)
∀i ∈ [�k]:

∀v ∈ {0, 1}: ski,v
r←− {0, 1}�sk ; pki,v ← KG(ski,v)

∀j ∈ [�sk]:

ei,j ←
{
flip if (ski,0[j], ski,1[j]) = (1, 0)
E(k, ski,k[i][j]) otherwise

PK ← (pki,0, pki,1, ei,1, . . . , ei,�sk)i∈[�k]; SK ← k
Return (PK, SK).

TEnc(PK, i, v,m) :
(pki,0, pki,1, ei,1, . . . , ei,�sk)i∈[�k] ← PK
Return ct ← Enc(pki,v,m).

TDec(PK, SK = k, i, ct) :
(pki,0, pki,1, ei,1, . . . , ei,�sk)i∈[�k] ← PK
∀j ∈ [�sk]:

sk′[j] ←
{
1 ⊕ k[i] if ei,j = flip

D(k, ei,j) otherwise
Return m ← Dec(pki,k[i], sk

′, ct).

Fig. 5. The construction of a TE scheme TE from a circular secure bit-SKE scheme
SKE and a weakly noisy-leakage-resilient PKE scheme PKE.

– If (ski,0[j], ski,1[j]) = (1, 0), then note that this case implies ski,k[i][j] = 1⊕k[i].
On the other hand, ei,j = flip holds by the design of TKG. Hence, TDec sets
sk′[j] ← 1 ⊕ k[i] = ski,k[i][j].

– Otherwise (i.e. (ski,0[j], ski,1[j]) �= (1, 0)), ei,j is just an encryption of ski,k[i][j].
Thus, TDec decrypts it as sk′[j] = D(k, ei,j) = ski,k[i][j].

Hence, we have sk′[j] = ski,k[i][j] for every j ∈ [�sk], namely, sk′ = ski,k[i] holds.
Thus, TE satisfies correctness.

Security. We now show that TE satisfies the two security notions for TE.

Theorem 5. If PKE is weakly (0.6�sk)-noisy-leakage-resilient, then TE satisfies
security against the receiver.

Proof of Theorem 5. Let A = (A0,A1) be any PPT adversary that attacks
the security against the receiver of TE. We show that for A, there exists a
PPT (0.6�sk)-noisy-leakage-respecting adversary B such that AdvreceiverTE,A (λ) =
AdvwlrPKE,B,0.6�sk

(λ), which implies the theorem. The description of B = (B0,B1) is
as follows.

B0(1λ): B0 first runs (i∗, st) ← A0(1λ). Next, B0 computes k ← K(1λ), and
picks ski∗,k[i∗]

r←− {0, 1}�sk . Let P := {j ∈ [�sk] | ski∗,k[i∗][j] = 1 ⊕ k[i∗]} and
� := |P |, and suppose P is {p1, . . . , p�} such that 1 ≤ p1 < · · · < p� ≤ �sk. B0

defines the leakage function fP : {0, 1}�sk → {0, 1}� by

fP (z) := (z[p1], . . . , z[p�]) ∈ {0, 1}�.

Then, B0 sets stB as all the information known to B0, and terminates with
output (fP , stB).
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BOEnc(·,·)
1 (pk′, fP (sk′) = (sk′[p1], . . . , sk′[p�]) ∈ {0, 1}�, stB): (where (pk′, sk′)

denotes the key pair generated in B’s experiment) B1 first computes
pki∗,k[i∗] ← KG(ski∗,k[i∗]), and regards pk′ as pki∗,1⊕k[i∗] (correspondingly,
implicitly regards sk′ as ski∗,1⊕k[i∗] ∈ {0, 1}�sk). Then, for every j ∈ [�sk],
B1 generates ei∗,j by

ei∗,j ←
{

flip if j ∈ P ∧ sk′[j] = k[i∗]
E(k, ski∗,k[i∗][j]) otherwise

.

Note that by the definition of P , we have ski∗,k[i∗][j] = 1 ⊕ k[i∗] if and only if
j ∈ P . Furthermore, by the definition of the leakage function fP (·), we have
sk′[j] = ski∗,1⊕k[i∗][j] for all j ∈ P . Hence, we have

j ∈ P ∧ sk′[j] = k[i∗] ⇐⇒ (ski∗,k[i∗][j], ski∗,1⊕k[i∗][j]) = (1 ⊕ k[i∗], k[i∗])
⇐⇒ (ski∗,0[j], ski∗,1[j]) = (1, 0).

Hence, the generation of ei∗,j is in fact exactly the same as in ExptreceiverTE,A (λ).
Then, B1 generates the remaining components in PK = (pki,0, pki,1,
ei,1, . . . , ei,�sk)i∈[�k] (i.e. the components for the positions i ∈ [�k] \ {i∗}) by
itself exactly as TKG(1λ) does.
Now, B1 runs A1(PK,SK = k, st). When A1 submits an encryption query
(m0,m1), B1 just forwards it to its own encryption oracle OEnc(·, ·), and
returns whatever returned from the oracle to A1.
When A1 terminates with output b′, B1 terminates with output b′.

The above completes the description of B. As mentioned above, B generates
the key pair (PK,SK) with exactly the same distribution as that in the actual
experiment for security against the receiver. Since B embeds its instance pk′ to
the position (i∗, 1 ⊕ k[i∗]), it is straightforward to see that B perfectly simulates
the security experiment for A so that A’s the challenge bit is that of B’s, and
thus B’s advantage is exactly the same as that of A’s.

It remains to confirm that B is a (0.6�sk)-noisy-leakage-respecting adversary,
namely, 0.6�sk ≥ H∞(sk′) − ˜H∞(sk′|fP (sk′), stB) = �sk − ˜H∞(sk′|fP (sk′), stB)
or equivalently 2− ˜H∞(sk′|fP (sk′),stB ) ≤ 2−0.4�sk holds. To see this, firstly note
that stB output by B0 is independent of the choice of sk′ r←− {0, 1}�sk , and thus
we have ˜H∞(sk′|fP (sk′), stB) = ˜H∞(sk′|fP (sk′)). Thus, it is sufficient to show
2− ˜H∞(sk′|fP (sk′)) ≤ 2−0.4�sk . Next, notice that P is distributed uniformly over
2[�sk] (i.e. all the subsets of [�sk]), since P is determined by the random choice of
ski∗,k[i∗]

r←− {0, 1}�sk . Thus, we have

2− ˜H∞(sk′|fP (sk′)) = E
P

r←−2[�sk], y
r←−{0,1}|P |

[

max
x∗ Pr

sk′ r←−{0,1}�sk

[sk′ = x∗|fP (sk′) = y]
]

= E
P

r←−2[�sk]

[

2−�sk+|P |
]

= 2−2�sk ·
∑

P ′⊆[�sk]

2|P ′| = 2−2�sk ·
�sk
∑

k=0

(

�sk
k

)

· 2k

(∗)
= 2−2�sk · 3�sk = 2−(2−log2 3)�sk

(†)
< 2−0.4�sk ,
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where the equality (*) uses
∑n

k=0

(

n
k

)

xk = (1 + x)n, and the inequality (†) uses
log2 3 < 1.6. Hence, B is (0.6�sk)-noisy-leakage-respecting. � (Theorem 5)

Theorem 6. If SKE is CIRC(1) secure and PKE is (0.6�sk)-noisy-leakage-
resilient, then TE satisfies security against outsiders.

Proof of Theorem 6. Let A = (A0,A1) be any PPT adversary that attacks the
security against outsiders of TE. We show that there exist PPT adversaries Bc

and Bw (where the latter is (0.6�sk)-noisy-leakage-respecting) satisfying

AdvoutsiderTE,A (λ) ≤ 2 · AdvcircSKE,Bc,1(λ) + AdvwlrPKE,Bw,0.6�sk
(λ), (1)

which implies the theorem.
To this end, we consider the following two games Game 1 and Game 2.

Game 1: This is the experiment for security against outsiders ExptoutsiderTE,A (λ).

Game 2: Same as Game 1, except that every invocation of E(k, ·) during the
generation of PK is replaced with E(k, 0).

For t ∈ {1, 2}, let SUCt be the event that A succeeds in guessing the challenge
bit (i.e. b′ = b occurs) in Game t. By the definitions of the games and events
and the triangle inequality, we have

AdvoutsiderTE,A (λ) = 2·
∣

∣

∣Pr[SUC1]−1
2

∣

∣

∣ ≤ 2·
∣

∣

∣Pr[SUC1]−Pr[SUC2]
∣

∣

∣+2·
∣

∣

∣Pr[SUC2]−1
2

∣

∣

∣. (2)

In the following, we show how the terms appearing in Eq. 2 are bounded.

Lemma 2. There exists a PPT adversary Bc such that AdvcircSKE,Bc,1(λ) =
|Pr[SUC1] − Pr[SUC2]|.

Proof of Lemma 2. The description of Bc is as follows. Below, k and β denote
the secret key and the challenge bit, respectively, chosen in Bc’s experiment.
Furthermore, since there is only a single key in the experiment of Bc, we simplify
the interface of the circular-encryption oracle Ocirc to take just cmd ∈ [�k] ∪
{zero, one} as input.

BOcirc(·)
c (1λ): Bc first runs (i∗, v∗, st) ← A0(1λ). Next, for every i ∈ [�k], Bc does

the following:

1. For both v ∈ {0, 1}, pick ski,v
r←− {0, 1}�sk and compute pki,v ← KG(ski,v).

2. For the positions j ∈ [�sk] for which (ski,0[j], ski,1[j]) = (1, 0) holds, set ei,j ←
flip.

3. For the remaining positions j ∈ [�sk] with (ski,0[j], ski,1[j]) �= (1, 0), set

cmdj ←

⎧

⎪

⎨

⎪

⎩

zero if (ski,0[j], ski,1[j]) = (0, 0)
one if (ski,0[j], ski,1[j]) = (1, 1)
i if (ski,0[j], ski,1[j]) = (0, 1)

,

submit cmdj to Bc’s oracle Ocirc(·), and receive ei,j as the answer from Ocirc.
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Note that if (ski,0[j], ski,1[j]) = (0, 1) then ski,k[i][j] = k[i] holds, and the
latter is trivially true for the cases (ski,0[j], ski,1[j]) ∈ {(0, 0), (1, 1)}. Thus,
Ocirc computes ei,j as follows:

ei,j ←
{

E(k, ski,k[i][j]) if β = 1
E(k, 0) if β = 0

.

Therefore, if β = 1 (resp. β = 0), then ei,j for every j ∈ [�sk] is computed
exactly as in Game 1 (resp. Game 2).

Then, Bc sets PK ← (pki,0, pki,1, ei,1, . . . , ei,�sk)i∈[�k], picks b
r←− {0, 1}, and runs

A1(PK, st).
Bc answers encryption queries (m0,m1) from A1 by returning ct ←

Enc(pki∗,v∗ ,mb) to A1.

When A1 terminates with output b′, Bc terminates with output β′ ← (b′ ?= b).

The above completes the description of Bc. It is straightforward to see that
if β = 1 (resp. β = 0), then Bc simulates Game 1 (resp. Game 2) perfectly for
A. Since Bc outputs β′ = 1 if and only if A succeeds in guessing the challenge
bit (i.e. b′ = b occurs), we have

AdvcircSKE,Bc,1(λ) =
∣

∣

∣Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0]
∣

∣

∣ =
∣

∣

∣Pr[SUC1] − Pr[SUC2]
∣

∣

∣.

� (Lemma 2)

Lemma 3. There exists a PPT (0.6�sk)-noisy-leakage-respecting adversary Bw

such that AdvwlrPKE,Bw,0.6�sk
(λ) = 2 · |Pr[SUC2] − 1/2].

Proof Sketch of Lemma 3. The reduction algorithm Bw for the proof of this lemma
proceeds very similarly to B used in the proof of Theorem5, with the following
differences:

– Bw embeds its instance pk′ into the position (i∗, v∗) output by A0

(rather than (i∗, 1 ⊕ k[i∗])), which means that (pk′, sk′) now corresponds to
(pki∗,v∗ , ski∗,v∗); Bw generates the key pair of the opposite position, namely
(pki∗,1⊕v∗ , ski∗,1⊕v∗) by itself.

– Bw defines the set P by P := {j ∈ [�sk]|ski∗,1⊕v∗ [j] = v∗}, and uses it to
define the leakage function fP (·) exactly B in the proof of Theorem5 does.
Note that since we have the correspondence sk′ = ski∗,v∗ , the leakage fP (sk′)
is (ski∗,v∗ [j])j∈P .

– For every j ∈ [�sk], Bw generates ei∗,j by

ei∗,j ←
{

flip if j ∈ P ∧ sk′[j] = 1 ⊕ v∗

E(k, 0) otherwise
.

Then, by the definition of P and the correspondence sk′ = ski∗,v∗ , we have

j ∈ P ∧ sk′[j] = 1 ⊕ v∗ ⇐⇒ (ski∗,1⊕v∗ [j], ski∗,v∗ [j]) = (v∗, 1 ⊕ v∗)
⇐⇒ (ski∗,0[j], ski∗,1[j]) = (1, 0).

Thus, ei∗,j is generated exactly as in Game 2.
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Then, it is straightforward to see that Bw is (0.6�sk)-noisy-leakage-respecting
and simulates Game 2 perfectly for A, and its advantage in attacking the weak
noisy-leakage-resilience of PKE is exactly 2 · |Pr[SUC2] − 1/2|. � (Lemma 3)

Combining Lemmas 2 and 3 with Eq. 2, we can conclude that there exist PPT
adversaries Bc and Bw satisfying Eq. 1. � (Theorem 6)

5 Implications of Our TE Scheme

In this section, we explain the implications of our TE scheme in Sect. 4.

Completeness of Circular Security for KDM Security in the Single-Key Setting.
Note that our construction of TE is a fully black-box construction from the
building blocks. Moreover, by appropriately setting parameters, we can con-
struct a PKE scheme with simple key generation whose secret key length is �sk
and that satisfies weak (0.6�sk)-noisy-leakage-resilience, based on any IND-CPA
secure PKE scheme via Lemma 1. Hence, the following theorem follows from the
combination of Theorems 4, 5, and 6, and Lemma 1.

Theorem 7. If there exist an IND-CPA secure PKE scheme and a CIRC(1)

secure bit-SKE scheme, then for any polynomial size = size(λ), there exists a
Bsize-KDM(1)-CPA secure PKE scheme. Furthermore, there exists a fully black-
box construction of a P-KDM(1)-CPA secure PKE scheme from an IND-CPA
secure PKE scheme and a CIRC(1) secure bit-SKE scheme.

Combining Theorem 7 with Theorem 3, we obtain the following completeness
theorem for KDM security in the single-key setting. This improves the results of
[3] and [22] in terms of assumptions.

Theorem 8. If there exists an IND-CPA secure PKE scheme and a CIRC(1)

secure bit-SKE scheme, then for any polynomial size = size(λ), there exists a
Bsize-KDM(1)-CCA secure PKE scheme.

In Sect. 7, we will show that a similar completeness theorem for KDM security
in the multi-key setting can be established. For the result, we will rely on the
results on IND-CCA secure PKE and a reusable DV-NIZK argument system9

for NP languages stated below.

Additional Results on IND-CCA PKE and DV-NIZK. As stated in Theorem 7,
a P-KDM(1)-CPA secure PKE scheme can be constructed from an IND-CPA
secure PKE and a CIRC(1) secure bit-SKE scheme in a fully black-box manner.
Hence, combined with Theorem 2, we obtain the following result on IND-CCA
secure PKE, which improves the results of [23] and [19] in terms of assumptions.

9 The formal definitions for IND-CCA security and a reusable DV-NIZK argument
system are given in the full version.
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Theorem 9. There exists a fully black-box construction of an IND-CCA secure
PKE scheme from an IND-CPA secure PKE scheme and a CIRC(1) secure bit-
SKE scheme.

Finally, combining Theorem7 with the results in [22,25] that a reusable DV-
NIZK argument system for all NP languages can be constructed from the combi-
nation of IND-CPA secure PKE and P-KDM(1)-CPA secure SKE, we also obtain
the following result that improves [22] and [25] in terms of assumptions.

Theorem 10. If there exists an IND-CPA secure PKE scheme and a CIRC(1)

secure bit-SKE scheme, then there exists a reusable DV-NIZK argument system
for all NP languages.

6 Conformed Targeted Encryption

In this section, we introduce an encryption primitive that we call conformed
targeted encryption (CTE). This is an extension of an ordinary TE, and has some
similar flavor to augmented TE formalized by Barak et al. [5]. Our definitional
choice of CTE is made so that (1) it can be achieved from the combination of
an IND-CPA secure PKE scheme and a circular secure bit-SKE scheme, and
(2) it is sufficient as a building block for constructing a KDM-CCA secure PKE
scheme in the multi-key setting.

In Sect. 6.1, we give the definitions for CTE and explain its difference with
augmented TE formalized by Barak et al.. In Sect. 6.2, we show how our TE
scheme presented in Sect. 4 can be extended to be a CTE scheme satisfying all
the requirements.

6.1 Definitions

Syntax and Correctness. A conformed targeted encryption (CTE) scheme TE

consists of the six algorithms (CKG,CEnc,CDec, ĈDec,CSEnc,CSDec):

– CKG, CEnc, and CDec are defined similarly to the key generation, encryption,
and decryption algorithms of a TE scheme, respectively, except that in addi-
tion to a public/secret key pair (pk, sk), CKG also outputs a trapdoor td. This
process is written as (pk, sk, td) ← CKG(1λ).

– ĈDec is the trapdoor-decryption algorithm that takes td, an index i ∈ [�sk], a
bit v ∈ {0, 1}, and a ciphertext ct (supposedly generated by CEnc) as input,
and outputs a message m.

– CSEnc and CSDec are the additional secret-key encryption and decryption
algorithms, respectively, where they use a secret key sk generated by CKG.
We denote ˜ct to indicate that it is a ciphertext generated by CSEnc.

As the correctness for a CTE scheme, we require that for all λ ∈ N and
(pk, sk, td) ← CKG(1λ), the following conditions are satisfied:

1. CDec(pk, sk, i,CEnc(pk, i, sk[i],m)) = m holds for all i ∈ [�sk] and m.
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2. ĈDec(td, i, v,CEnc(pk, i, v,m)) = m holds for all (i, v) ∈ [�sk] × {0, 1} and m.
3. CDec(pk, sk, i, ct) = ĈDec(td, i, sk[i], ct) holds for all i ∈ [�sk] and ct (not

necessarily in the support of CEnc).
4. CSDec(sk,CSEnc(sk,m)) = m holds for all m.

Note that the first condition of correctness ensures that (CKG,CEnc,CDec)
constitutes a TE scheme when td in the output of CKG is discarded. We also
remark that the third condition of correctness is required to hold for all values
of ct not necessarily in the support of CEnc. Looking ahead, this property plays
an important role in our construction of KDM-CCA secure PKE in Sect. 7.

Security Definitions for CTE. For a CTE scheme, we require two security
notions: security against the receiver and special weak circular security (in the
multi-key setting).10 The former is defined in exactly the same way as that for
TE, except that we just discard and ignore the trapdoor td generated from CKG.
Thus, we omit its formal description.

The latter security notion, special weak circular security, requires that the
additional secret-key encryption/decryption algorithms (CSEnc,CSDec) satisfy
a weak form of circular security in the multi-key setting. Specifically, in the
n-key setting, we require that messages encrypted by CSEnc be hidden even
in the presence of public keys {pks}s∈[n], trapdoors {tds}s∈[n], and encryptions
of a “key cycle” {CSEnc(sks, sk(s mod n)+1)}s∈[n]. We call it weak since except
for giving {(pks, tds)}s∈[n] to an adversary, our definition is the same as the
definition of weak circular security formalized by Cash, Green, and Hohenberger
[13].

Formally, let n = n(λ) be a polynomial. For a CTE scheme
(CKG,CEnc,CDec, ĈDec,CSEnc,CSDec), n, and an adversary A, consider the
experiment Exptsp−wcirc

CTE,A,n(λ) described in Fig. 6. Note that in the experiment,
OCSEnc is an ordinary (challenge) encryption oracle. Thus, except for the encryp-
tions of a key cycle {CSEnc(sks, sk(s mod n)+1)}s∈[n], A is not allowed to directly
obtain encryptions of key-dependent messages.

Definition 6 (Special Weak Circular Security). Let n = n(λ) be a poly-
nomial. We say that a CTE scheme CTE satisfies special weak circular security
in the n-key setting (special weak CIRC(n) security) if for all PPT adversaries
A, we have Advsp−wcirc

CTE,A,n(λ) := 2 · |Pr[Exptsp−wcirc
CTE,A,n(λ) = 1] − 1/2| = negl(λ).

Relation to Augmented TE. As mentioned earlier, Barak et al. [5] introduced the
notion of augmented TE, and used it to construct a Bsize-KDM(n)-CPA-secure
PKE scheme for any polynomials n = n(λ) and size = size(λ). An augmented
TE scheme is a TE scheme with the additional public-key encryption/decryption
algorithms, for which Barak et al. assumed circular security in the n-key setting.

10 We can also consider security against outsiders for CTE. However, we do not for-
malize it since we need not use it in our construction of KDM-CCA secure PKE.
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Exptsp−wcirc
CTE,A,n(λ) :

∀s ∈ [n] : (pks, sks, tds) ← CKG(1λ)
(c̃ts)s∈[n] ← EncCycle((sks)s∈[n])
b

r←− {0, 1}
b′ ← AOCSEnc(·,·,·)((pks, tds, c̃t

s)s∈[n])
Return (b′ ?= b).

EncCycle((sks)s∈[n]) :
∀s ∈ [n] : c̃ts ← CSEnc(sks, sk(s mod n)+1)
Return (c̃ts)s∈[n].

OCSEnc(α,m0,m1) : // α ∈ [n], |m0| = |m1|
c̃t ← CSEnc(skα,mb)
Return c̃t.

Fig. 6. The experiment for defining special weak circular security for a CTE scheme.

(Their definition requires that encryptions of a key cycle of length n are indis-
tinguishable from encryptions of some fixed messages.)

We observe that their security proof goes through even if (1) the additional
encryption/decryption algorithms are of secret-key, and (2) we only require weak
circular security in the n-key setting [13], which requires that IND-CPA security
holds in the presence of encryptions of a key cycle of length n.

Our formalization for CTE is based on these observations, but CTE has an
additional syntactical extension involving a trapdoor generated in the key gen-
eration algorithm, together with the additional correctness requirements. This
plays an important role in the security proof for our Bsize-KDM(n)-CCA secure
PKE scheme presented in Sect. 7. We also remark that we do not require CTE
to satisfy security against outsiders, while it is necessary for augmented TE used
in the construction of KDM-CPA secure PKE in [5]. Our construction of KDM-
CCA secure PKE does not require security against outsiders for the underlying
CTE scheme because of the other building blocks. (See Sect. 7.)

6.2 Construction

Let n = n(λ) be a polynomial for which we would like our CTE scheme CTE

to satisfy special weak CIRC(n) security. Let PKE = (KG,Enc,Dec) and SKE =
(K,E,D) be PKE and SKE schemes as in Sect. 4, respectively, where we now
require SKE to be CIRC(n) secure.

Our construction of a CTE scheme CTE = (CKG,CEnc,CDec, ĈDec,CSEnc,
CSDec) based on PKE and SKE, is a simple extension of our TE scheme
TE = (TKG,TEnc,TDec) presented in Sect. 4. Specifically, each algorithm of
CTE operates as follows:

– CKG computes a public/secret key pair (PK,SK) in exactly the same way as
TKG, and additionally outputs td := (pki,v, ski,v)i∈[�k],v∈{0,1} as a trapdoor.

– CEnc and CDec are exactly TEnc and TDec, respectively.
– ĈDec(td, i, v, ct) := Dec(pki,v, ski,v, ct).
– CSEnc and CSDec use E and D to encrypt/decrypt a message/ciphertext in a

bit-wise fashion. More specifically, CSEnc(SK = k,m ∈ {0, 1}μ) outputs ˜ct =
(˜ctt)t∈[μ], where ˜ctt ← E(k,m[t]) for each t ∈ [μ]; CDec(SK = k, ˜ct = (˜ctt)t∈[μ])
computes m[t] ← D(k, ˜ctt) for each t ∈ [μ], and outputs m.
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Correctness. The first condition of correctness is exactly the same as the cor-
rectness for TE. The third condition of correctness holds because sk′ computed
in CDec(PK,SK = k, i, ·) is ski,k[i] as we saw for the correctness of TE. The sec-
ond and fourth conditions of correctness are trivially satisfied because of the
correctness of PKE and SKE, respectively.

Security. The following theorems guarantee that CTE satisfies the two kinds of
security notions for CTE. We omit the proof of Theorem11 since it is exactly
the same as that of Theorem 5.

Theorem 11. If PKE is weakly (0.6�sk)-noisy-leakage-resilient, then CTE satis-
fies security against the receiver.

Theorem 12. Let n = n(λ) be a polynomial. If SKE is CIRC(n) secure, then
CTE satisfies special weak CIRC(n) security.

Proof Sketch of Theorem 12. This is straightforward to see by noting that CSEnc
directly uses E to encrypt a given message in a bit-wise fashion, and the trapdoor
td consists only of key pairs of the underlying PKE scheme PKE and thus is
independent of a secret key SK = k.

More specifically, for s ∈ [n], let SKs = ks denote the s-th secret key.
Then, consider a modified security experiment, which proceeds similarly to the
experiment for the special weak CIRC(n) security of CTE, except that for every
s ∈ [n], all invocations of E(ks, ·) (which include those during the execution of
EncCycle((SKs = ks)s∈[n]), those during the execution of (PKs,SKs = ks, tds) ←
CKG(1λ), and those for encryption queries from an adversary) are replaced with
E(ks, 0). Note that this modified experiment is independent of the challenge bit b,
and thus any adversary has zero advantage. Furthermore, by the CIRC(n) secu-
rity of SKE, for any PPT adversary, its advantage in the original special weak
CIRC(n) security experiment is negligibly close to that in the modified experi-
ment. � (Theorem 12)

7 KDM-CCA Security in the Multi-key Setting

In this section, we show the completeness of circular security in the multi-key
setting. Specifically, we show the following theorem:

Theorem 13. Let n = n(λ) be a polynomial. Assume that there exist an IND-
CPA secure PKE scheme and a CIRC(n) secure bit-SKE scheme. Then, for any
polynomial size = size(λ), there exists a Bsize-KDM(n)-CCA secure PKE scheme.

Note that this result improves the result by Kitagawa and Matsuda [22] (recalled
as Theorem 3) in terms of the strength of assumptions and the number of keys.

As explained earlier, we will show the above theorem by constructing a
Bsize-KDM(n)-CCA secure PKE scheme from the building blocks that are all
implied by an IND-CPA secure PKE scheme and a CIRC(n) secure bit-SKE
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scheme. Our construction can be seen as combining the construction ideas
from the bounded-KDM(n)-CPA secure PKE scheme from an augmented TE
scheme by Barak et al. [5] and the bounded-KDM(1)-CCA secure PKE scheme
from an IND-CPA secure PKE scheme and a projection-KDM(1)-CPA secure
SKE scheme by Kitagawa and Matsuda [22]. The latter construction in fact
uses an IND-CCA secure PKE scheme, a garbling scheme, and a reusable DV-
NIZK argument system as additional building blocks, which are implied by the
assumption used in [22]. Construction-wise, roughly speaking, our construction is
obtained by replacing the underlying IND-CPA secure scheme of the Kitagawa-
Matsuda construction with a CTE scheme.

Construction. To construct a Bsize-KDM(n)-CCA secure PKE scheme, we use
the following building blocks all of which are implied by the combination of an
IND-CPA secure PKE scheme and a CIRC(n) secure SKE scheme:

– Let CTE = (CKG,CEnc,CDec, ĈDec,CSEnc,CSDec) be a CTE scheme whose
secret key length is �sk. Let �ẽ denote the length of a ciphertext when encrypt-
ing a message of length �sk by using CSEnc. We denote the randomness space
of CEnc by R.

– Let PKEcca = (KGcca,Enccca,Deccca) be an IND-CCA secure PKE scheme.
– Let GC = (Garble,Eval,Sim) be a garbling scheme for circuits.11

– Let DVNIZK = (DVKG,P,V) be a reusable DV-NIZK argument system for
the following NP language L:12

L =

⎧

⎨

⎩

(

pk, (cti,v)i∈[�sk],v∈{0,1}
)

∣

∣

∣

∣

∣

∣

∃(labi, ri,0, ri,1)i∈[�sk] s.t.
∀(i, v) ∈ [�sk] × {0, 1} :

cti,v = CEnc(pk, i, v, labi; ri,v)

⎫

⎬

⎭

.

Let μ = μ(λ) be a polynomial that denotes the length of messages to be
encrypted by our constructed PKE scheme. Let n = n(λ) and size = size(λ) ≥
max{n · �sk, μ} be polynomials for which we wish to achieve Bsize-KDM(n)-CCA
security. Finally, let pad = O(n · (|CSDec| + �ẽ) + size) ≥ size be the size param-
eter for the underlying garbling scheme (which is the size of a circuit that will
be specified in the security proof), where |CSDec| denotes the size of the circuit
computing CSDec.

Using these ingredients, we construct our proposed PKE scheme PKEkdm =
(KGkdm,Enckdm,Deckdm) whose message space is {0, 1}μ as described in Fig. 7.

Correctness. The correctness of PKEkdm follows from that of the building blocks.
Specifically, let (PK,SK) = ((pk, pkcca, pkdv, ˜ct), sk) be a key pair output by
KGkdm, let m ∈ {0, 1}μ be any message, and let CT ← Enckdm(PK,m) be an hon-
estly generated ciphertext. Due to the correctness of CTE, PKEcca, and DVNIZK,
11 For the formal security definition of a garbling scheme, see the full version.
12 Intuitively, a statement (pk, (cti,v)i∈[�sk],v∈{0,1}) of the language L constitutes a (�sk×

2)-matrix of ciphertexts such that the pair (cti,0, cti,1) in the i-th row encrypt the
same plaintext labi for each i ∈ [�sk].
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KGkdm(1λ) :
(pk, sk, td) ← CKG(1λ)
(pkcca, skcca) ← KGcca(1λ)
(pkdv, skdv) ← DVKG(1λ)
c̃t ← CSEnc(sk, (skcca, skdv))
PK ← (pk, pkcca, pkdv, c̃t); SK ← sk
Return (PK, SK).

Deckdm(PK, SK = sk,CT) : (�)

(pk, pkcca, pkdv, c̃t) ← PK
(skcca, skdv) ← CSDec(sk, c̃t)
(Q̃, (cti,v)i,v, π) ← Deccca(pkcca, skcca,CT)
x ← (pk, (cti,v)i,v)
If V(skdv, x, π) = reject then return ⊥.
∀i ∈ [�sk] : labi ← CDec(pk, sk, i, cti,sk[i])
Return m ← Eval(Q̃, (labi)i).

Enckdm(PK,m) :
(pk, pkcca, pkdv, c̃t) ← PK

(Q̃, (labi)i) ← Sim(1λ, pad,m)
∀(i, v) ∈ [�sk] × {0, 1} :

ri,v
r←− R

cti,v ← CEnc(pk, i, v, labi; ri,v)
x ← (pk, (cti,v)i,v)
w ← (labi, ri,0, ri,1)i
π ← P(pkdv, x, w)
CT ← Enccca(pkcca, (Q̃, (cti,v)i,v, π))
Return CT.

Fig. 7. The construction of a Bsize-KDM(n)-CCA secure PKE scheme PKEkdm from a
CTE scheme CTE, an IND-CCA secure PKE scheme PKEcca, a garbling scheme for
circuits GC, and a reusable DV-NIZK argument system DVNIZK. The notations like
(Xi,v)i,v and (Xi)i are abbreviations for (Xi,v)i∈[�sk],v∈{0,1} and (Xi)i∈[�sk], respectively.
(�) If CSDec, CDec, or Deccca returns ⊥, then Deckdm returns ⊥ and terminate.

each decryption/verification done in the execution of Deckdm(PK,SK,CT) never
fails, and just before the final step of Deckdm, the decryptor can recover a
garbled circuit ˜Q and the labels (labi)i, which is generated as (˜Q, (labi)i) ←
Sim(1λ, pad,m). Then, by the correctness of GC, we have Eval(˜Q, (labi)i) = m.

Security. The following theorem guarantees the Bsize-KDM(n)-CCA security of
PKEkdm. Combined with Theorems 9, 10, 11, and 12, it implies Theorem 13.

Theorem 14. Let n = n(λ), μ = μ(λ), and size = size(λ) ≥ max{n · �sk, μ} be
any polynomials. Also, let pad = O(n · (|CSDec| + �ẽ) + size) ≥ size (which is the
size of a circuit that will be specified in the proof), where |CSDec| denotes the size
of the circuit computing CSDec. Assume that CTE satisfies security against the
receiver and special weak CIRC(n) security, PKEcca is IND-CCA secure, GC is a
secure garbling scheme, and DVNIZK is a reusable DV-NIZK argument system
(satisfying soundness and zero-knowledge) for the NP language L. Then, PKEkdm

is Bsize-KDM(n)-CCA secure.

Overview of the Proof. Due to the space limitation, the formal proof is given in
the full version. Here, we give an overview of the proof.

The proof uses a sequence of games argument. The first game is the original
Bsize-KDM(n)-CCA experiment regarding PKEkdm. Let A be a PPT adversary,
and for s ∈ [n], let (PKs = (pks, pks

cca, pk
s
dv, ˜ct

s
),SKs = sks) denote the s-th

public/secret key pair.



282 F. Kitagawa and T. Matsuda

We first invoke the zero-knowledge of DVNIZK to change the security game
so that the simulator S = (S1,S2) is used to generate each (pks

dv, sk
s
dv) at key

generation, and generate π in the response to KDM-encryption queries.
Next, we deal with the KDM-encryption queries (α, f0, f1), and make the

behavior of the KDM-encryption oracle (essentially) independent of the secret
keys {sks}s∈[n]. If there existed only a single key pair (PK,SK = sk), then
we could change the generation of the CTE-ciphertexts (cti,v)i,v in the KDM-
encryption oracle so that we garble the KDM function fb by (˜Q, (labi,v)i,v) ←
Garble(1λ, fb) and then encrypt labi,v by cti,v ← CEnc(pks, i, v, labi,v) for every
(i, v) ∈ [�sk] × {0, 1}. Since Eval(˜Q, (labi,sk[i])i∈[�sk]) = fb(sk), this can go unno-
ticed by A due to the security of GC and the security against the receiver of CTE,
and the behavior of the resulting KDM-encryption oracle becomes independent
of the secret key sk. However, we cannot take this rather simple approach in the
multi-key setting, since the KDM-function fb here is a function that takes all
keys {sks}s∈[n] as input, while we need to garble a circuit that takes a single key
skα as input. Here, we rely on the clever technique of Barak et al. [5] to transform
the KDM function fb to a circuit Q so that Q(skα) = fb((sks)s∈|n|) holds, by
using encryptions of the key cycle {ẽs = CSEnc(sks, sk(s mod n)+1)}s∈[n]. Specif-
ically, Q has α, fb, and {ẽs}s∈[n] hardwired, and it on input skα decrypts the
encryptions of the key cycle one-by-one to recover all keys {sks}s∈[n] and then
outputs fb((sks)s∈[n]). Then, we can garble Q instead of garbling fb directly,
and the argument goes similarly to the above. This change necessitates that the
subsequent games generate the encryptions of the key cycle.

Then, we deal with the decryption queries (α,CT), and make the behavior
of the decryption oracle independent of the secret keys {sks}s∈[n]. To achieve
this, notice that the only essential part that we need to use the secret key skα in
the decryption procedure is the step of executing labi ← CDec(pkα, skα, cti,sk[i])
for every i ∈ [�sk]. To eliminate the dependency on skα in this step, in the next
game we replace the above step with labi ← ĈDec(tdα, i, skα[i], cti,skα[i]) for every
i ∈ [�sk]. This makes no change in the behavior of the decryption oracle due to
the third condition of the correctness of CTE. Next, we further change this step
to always decrypt the “0-side” ciphertext cti,0 as labi ← ĈDec(tdα, i, 0, cti,0) for
every i ∈ [�sk]. Now the behavior of the decryption oracle becomes independent
of the secret keys {sks}s∈[n]. The behavior of the decryption oracle could differ
between the change only if ĈDec(tdα, i∗, 0, cti∗,0) �= ĈDec(tdα, i∗, 1, cti∗,1) holds
for some i∗ ∈ [�sk] and yet the proof π recovered from CT is valid. Let us call
such a query a bad decryption query. If A does not make a bad decryption
query, this change of the behavior of the decryption oracle cannot be noticed
by A. Similarly to [22], we bound the probability of a bad query occurring to
be negligible using a deferred analysis technique and postpone to bound it in a
later (in fact the final) game, together with the second correctness condition of
CTE. See the formal proof for this argument.
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Now, since the behavior of the KDM-encryption and decryption oracles
become independent of the secret keys {sks}s∈[n], the remaining steps in which
we use the secret keys are to generate {˜ct

s}s∈[n] in public keys, and to generate
the encryptions of the key cycle {ẽs}s∈[n]. Then, we can rely on the special weak
CIRC(n) security of CTE to ensure that ˜ct

s
is indistinguishable from an encryp-

tion of a garbage that contains no information on (sks
cca, sk

s
dv) in the presence of

the trapdoors {tds}s∈[n] and the encryptions of the key cycle {ẽs}s∈[n]. Finally,
we invoke the IND-CCA security of PKEcca to conclude that A’s advantage in
the final game is negligible.

For all the details, see the formal proof in the full version.
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Abstract. A multi-recipient key encapsulation mechanism, or mKEM,
provides a scalable solution to securely communicating to a large group,
and offers savings in both bandwidth and computational cost compared
to the trivial solution of communicating with each member individually.
All prior works on mKEM are only limited to classical assumptions and,
although some generic constructions are known, they all require spe-
cific properties that are not shared by most post-quantum schemes. In
this work, we first provide a simple and efficient generic construction
of mKEM that can be instantiated from versatile assumptions, including
post-quantum ones. We then study these mKEM instantiations at a prac-
tical level using 8 post-quantum KEMs (which are lattice and isogeny-
based NIST candidates), and CSIDH, and show that compared to the
trivial solution, our mKEM offers savings of at least one order of mag-
nitude in the bandwidth, and make encryption time shorter by a factor
ranging from 1.92 to 35. Additionally, we show that by combining mKEM
with the TreeKEM protocol used by MLS – an IETF draft for secure
group messaging – we obtain significant bandwidth savings.

1 Introduction

Secure communication within a system of several users is becoming indispens-
able in our everyday lives. One leading example is the recent trend in secure
group messaging (Zoom, Signal, WhatsApp, and so on) to handle large groups
– up to 50000 users according to the IETF draft of the Message Layer Security
(MLS) architecture [38, Section 3.1]. The scenario is that users in a system, each
holding their public and secret key, frequently exchange messages with a group
of users. More than often, the solution adopted is the trivial approach of indi-
vidually encrypting the same message M using the public keys associated with

c© International Association for Cryptologic Research 2020
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the respective recipients in the group.1 However, this trivial approach makes the
required bandwidth and computational costs grow by a factor N (where N is
the number of recipients), compared to sending a message to a single recipient.
Therefore, as the number of recipients increases, this trivial solution has poor
scalability.

An additional motivation for lowering the bandwidth and computa-
tional costs is the current phase of gradual transition towards post-quantum
cryptography—a type of cryptography that is known to be resilient against
quantum adversaries. Most, if not all, post-quantum secure schemes are known to
incur bandwidth and/or computational overheads compared to classical schemes.
For example, all key encapsulation mechanisms (KEMs) still considered for
standardization by NIST require an order of magnitude more bandwidth than
ECDH [9] at a comparable classical security level. Therefore, lowering the cost
of communication with multiple recipients even when the number of recipients
N is only moderately large, say N ≥ 10, will already be of value.

Multi-recipient Key Encapsulation Mechanism (mKEM), coined by Smart
[40]2, is a primitive designed with the above motivations in mind. On a high level,
an mKEM is like a standard KEM that securely sends the same session key K to a
group of recipients. Subsequently, the sender transmits a single ciphertext to all
the recipients by encrypting the message M using K as a secret key for a secret-
key encryption scheme. The latter procedure corresponds to the standard DEM.
The main requirement that makes mKEM appealing is that the bandwidth and
computational resources required to send the session key K are less than those
required when individually encrypting K using the recipients’ public keys. To
be precise, we can trivially construct an mKEM from any public-key encryption
(PKE) scheme by encrypting the same session key K with respect to all the
recipients’ public keys. However, this trivial construction will be as inefficient as
the aforementioned trivial solution (modulo the efficient DEM component), and
therefore, the main goal for mKEM is to offer a more efficient alternative.

Due to its practically appealing and theoretically interesting nature, the
study of mKEM has attracted much attention, e.g., [8,24,26,33,35,42]. Also, sim-
ilar variants of mKEM, such as multi-message multi-recipient public-key encryp-
tion [11–13,33], have been considered prior to mKEM with similar motivations
in mind, and have illustrated the importance of investigating the multi-recipient
settings. As a consequence, by now many exciting results regarding mKEMs have
appeared. However, we like to point out three unsatisfactory issues remaining
with burdening the current state of affairs. First, to the best of our knowledge, all
the literature on mKEMs is based on classical assumptions (e.g., Diffie-Hellman
type assumptions) which are believed to not endure quantum adversaries. We are
aware of one recent work [17] that claims the construction of an IND-CCA secure
mKEM from the learning parity with noise (LPN) assumption, which is believed

1 To be more precise, it is common to rely on the KEM/DEM framework [19,22] to
lower the reliance on the more inefficient public key cryptography.

2 We note that very similar variants of mKEM have been considered prior to this work
[11–13,33]. More details follow.
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to be quantumly secure. However, while going over their results, we noticed that
their scheme is insecure since there is a trivial break in their claimed IND-CCA
security. In particular, the ciphertexts are easily malleable. Second, earlier works
such as [8,24,35] provide a somewhat generic construction of mKEM from a
(single-recipient) PKE, but require the underlying PKE to satisfy rather specific
properties that seems somewhat tailored to classical Diffie-Hellman type assump-
tions. For instance, [8] requires a notion of weak reproducibility, which informally
states that there is an efficient procedure to re-randomize a ciphertext under a
certain public key to a ciphertext under another public key. Unfortunately, such
properties are not known to exist for post-quantum assumptions, such as lattice-
based assumptions. Therefore, we still do not have a truly general framework
for constructing mKEMs from standard building blocks. Here, “standard” build-
ing blocks mean blocks that are potentially instantiable from many hardness
assumptions.

Summarizing thus far, the first question we are interested in this work is:

(Theoretical Question) Are there any simple and efficient generic con-
structions of mKEM that can be based on versatile assumptions, including
post-quantum assumptions?

The third issue, which is orthogonal to the above concerns, is that all previous
works on mKEM do not come with any implementations. Notably, most literature
only points out the efficiency gain in a rather theoretical manner and does not
provide comparisons with the trivial solution (i.e., running KEM in parallel).
Since these gains depend on the concrete mKEM implementation and also on
the choice of KEM used in the trivial solution, the benefit of using an mKEM is
unclear without proper comparison. Considering the practical oriented nature of
mKEM, we believe understanding the concrete gain of using an mKEM instead
of using the trivial solution would help in illustrating the practical relevance of
this primitive and in providing insight on when to use an mKEM.

Therefore, the second question we are interested in this work is:

(Practical Question) What is the concrete gain of using an mKEM
compared to the trivial solution? What are the concrete applications of
mKEMs?

1.1 Our Contributions and Techniques

Theoretical Contribution. We provide a new simple and efficient generic con-
struction of an IND-CCA secure multi-recipient KEM (mKEM) from any IND-CPA
secure multi-recipient PKE (mPKE).3 The construction is proven secure in the
classical and quantum random oracle model ((Q)ROM). Here, mPKE is a variant
of mKEM where a user can encrypt any same message M (rather than a random
session key K) to multiple recipients. We then show that IND-CPA secure mPKEs
3 As standard in practice, we consider indistinguishability under chosen ciphertext

attacks (IND-CCA) to be the default security requirement on our resulting scheme.
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can be constructed very easily from most assumptions known to imply standard
PKEs (including classical Diffie-Hellman type assumptions). The construction
of an IND-CPA secure mPKE is in most cases a simple modification of a stan-
dard IND-CPA secure PKE to the multi-recipient setting. Concretely, we show
how to construct mPKEs based on lattices and isogenies. Compared to previous
works [8,24,35] which provide some types of generic constructions of mKEM,
ours require an mPKE whereas they only require a single-recipient PKE. How-
ever, we only require very natural properties from the underlying mPKE, such as
IND-CPA. Considering that our mPKE can be instantiated with diverse assump-
tions (including but not limited to post-quantum assumptions) in a very natural
way from standard PKEs, we believe our generic construction to be more versa-
tile and handy than previous ones. We point out that our mKEM achieves both
implicit and explicit rejection.

Moreover, we introduce a new notion of recipient anonymity which we believe
to be of independent interest. The notion captures the fact that the ciphertext
does not leak the set of intended group members or recipients. We provide a mild
additional property for the underlying IND-CPA secure mPKE, under which our
above generic construction naturally implies a recipient-anonymous IND-CCA
secure mKEM. Our lattice and isogeny-based instantiations satisfy the extra
property without any modification. An overview of our generic construction is
provided in the following section.

Practical Contribution. An immediate consequence of our theoretical contribu-
tion is that it opens the door to a large number of post-quantum instantiations
of mKEM. A natural next step is to study these mKEM instantiations at a prac-
tical level and compare them to the trivial solution of running standard KEMs
in parallel. Doing this work is precisely one of our practical contributions. As it
turns out, at least 9 post-quantum schemes are compatible with our construction
of mKEM: 7 lattice-based NIST candidates, the only isogeny-based NIST can-
didate SIKE, and the CSIDH scheme. We performed a systematic study of the
bandwidth efficiency and found that for all of these schemes, our mKEM variants
are more compact than the trivial solution with the original schemes by at least
one order of magnitude (for a clearly defined metric). In addition, for a subset
of these 9 schemes (CSIDH, FrodoKEM, Kyber, SIKE), we implemented their
mKEM counterparts and compared their performance (cycle count). We found
our mKEM variants to be (asymptotically) faster than the trivial solution with
original schemes by factors ranging from 1.92 to more than 35.

Additionally, we show that we can use the mKEM primitive for the TreeKEM
protocol obtaining significant bandwidth savings. To give some context, the
importance of TreeKEM could be best understood by looking at its parent pro-
tocol, MLS [10,38], a IETF draft for secure (group) messaging. MLS has gained
considerable industrial traction and has attracted a fair amount of academic
scrutiny. TreeKEM constitutes the cryptographic backbone of MLS, as well as
its main bottleneck in bandwidth and computational efficiency. Indeed, given N
users, it requires each of them to compute and send O(log N) ciphertexts at reg-
ular intervals. We highlight a simple but powerful interplay between TreeKEM
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and mKEM, and show that by applying our technique we can reduce communi-
cation cost by a factor between 1.8 and 4.2 compared to using standard KEMs.

Our Techniques: Generic Construction of IND-CCA Secure mKEM. On
a high level, our generic construction can be seen as a generalization of the
Fujisaki-Okamoto (FO) transform [23]. The FO transform (roughly) converts any
IND-CPA secure PKE into an IND-CCA secure KEM. There are several variants of
the FO transform and most of the variants are secure in the ROM [18,22,25,37]
and/or QROM [15,25,29–32,39,41,43]. The high-level construction is as follows:
to encrypt, we sample a random message M ← M and derive randomness for the
underlying encryption algorithm of the PKE by hashing M with a hash function
G modeled as a (Q)RO. That is, ct ← PKE.Enc(pk,M;G(M)). The session key is
then set as K := H(M), where H is another hash function modeled as a (Q)RO. To
decrypt, we first decrypt M′ ← PKE.Dec(sk, ct) and then only accept K = H(M′)
if M′ re-encrypts back to ct, that is, we check ct = PKE.Enc(pk,M′;G(M′)).
Although the actual proof is rather complicated, intuitively, it achieves IND-CCA
security since the adversary must have queried G to have constructed a valid
ciphertext ct. Therefore, in the ROM, to answer a decapsulation-oracle query,
the simulator runs through all the messages that have been queried to G to
check if any of them re-encrypts to ct. Since the simulator no longer requires sk
to simulate the decapsulation oracle, we can invoke the IND-CPA security of the
underlying PKE.

Our idea is to generalize the FO transform to the mPKE/mKEM set-
ting. At first glance, this may seem to not work. Indeed, an mPKE typ-
ically comes with a multi -encryption algorithm with the following syntax:
mEnc(pp, (pki)i∈[N ],M; r) → ct, where ct is targeted to the set of N recipients
with public keys (pki)i∈[N ]. There is also an extraction algorithm mExt which
takes as input an index i ∈ [N ] and ct, and outputs the ciphertext component
cti targeted to the i-th recipient, say Ri, holding pki. Recipient Ri can then run
the decryption algorithm on cti using its secret key ski. The reason why the FO
transform cannot be directly applied to mPKE becomes clear. Assume r = G(M)
and that recipient Ri decrypted to M. Then, to check validity of cti, Ri must re-
encrypt the entire ciphertext ct by running mEnc(pp, (pki)i∈[N ],M; r). Therefore,
the decapsulation time will depend on N , which is highly undesirable.

To get around this issue, in this work we consider a slight variant of mPKE
with a decomposable flavor. Informally, a decomposable multi-encryption algo-
rithm mEnc takes randomness of the form r = (r0, r1, · · · , rN ) as input, and
creates a public-key-independent ciphertext ct0 ← mEnci(r0) and public-key-
dependent ciphertexts ̂cti ← mEncd(pki,M; r0, ri). The resulting ciphertext for
recipient Ri is then cti = (ct0, ̂cti). We view this as a natural formalization of
mPKE as it is satisfied by all the mPKE constructions that we are aware of. More-
over, this feature is desirable in practice as it allows to parallelize part of the
encryption algorithm. Now, to perform the FO transform, we derive r0 = G(M)
and ri = G(pki,M). It is evident that Ri can re-encrypt and check the validity of
its ciphertext. Notably, the decapsulation time is now independent of N . With
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this new formalization, the proof in the (classical) ROM follows in a straightfor-
ward manner (with minor modification) from the standard FO transform [25].

However, the security proof of our mKEM in the quantum ROM (QROM)
requires more work. Prior proof strategies in the QROM for standard IND-CCA
secure KEMs based on the FO transform – which fix the description of the
QROM at the outset of the game [15,25,29–31,39,41] – seem to be an ill fit for
mPKE. This is because in the multi-recipient setting, the decapsulation oracle
is required to output a different (implicit) rejection value for each of the users
when the ciphertext is invalid, and to output the same session key K when the
ciphertext is valid. Due to this discrepancy between invalid and valid cipher-
texts (i.e., the former requires to output different random values, whereas the
latter requires to output the same random value), previous proof techniques that
always output random values fail. Note that in the single-user setting, regardless
of the ciphertext being valid or invalid, the decapsulation oracle could output
random values without being detected by the adversary, and hence, this obsta-
cle was absent. To overcome this, we use the recently introduced compressed
oracles technique [43]. This allows the simulator to perform lazy sampling and
to check the validity of the ciphertext submitted to the decapsulation oracle
without interfering with the adversary’s state. Although the high-level structure
of the proof is similar to the classical case, much subtle care is required in the
QROM case as the simulator must not disturb the adversary’s state. We note
that Zhandry [43] showed security of one variant of the FO transform which
converts a perfectly correct IND-CPA secure PKE to an IND-CCA secure PKE.

2 Preliminaries

2.1 Hard Problems for Lattices

For any natural number d and q, let Rq denote the ring Z[X]/(q,Xd + 1). The
learning with errors (LWE) problem is defined below.

Definition 1 (Learning with Errors (LWE)). Let d, q, n1, n2, n3 be natural
numbers, and Ds and De be distributions over Rq. We say that the advantage of
algorithm A in solving the (decisional) LWEn1,n2,n3 problem over the ring Rq is

AdvLWE
n1,n2,n3(A) := | Pr[A ← Rn1×n2

q ,S ← Dn2×n3
s ,E ← Dn1×n3

e : 1 ← A(A,AS + E)]

− Pr[A ← Rn1×n2
q ,B ← Rn1×n3

q : 1 ← A(A,B)]
∣
∣ .

We say the LWEn1,n2,n3 problem is hard if, for any (possibly quantum) effi-
cient adversary A, its advantage is negligible.

We also consider a variant of the LWE problem, called learning with rounding
(LWR) problem [7], where the least significant bits are removed. The benefit of
this variant is that we no longer require to sample the noise, as it is removed.
Below the function �·�p : Zq → Zp, where q > p ≥ 2, is defined as �x�p =
�(p/q) · x� mod p. The definition of the LWR problem follows.
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Definition 2 (Learning with Rounding (LWR)). Let d, p, q, n1, n2, n3 be
natural numbers such that q > p, and Ds a distributions over Rq. We say that
the advantage of algorithm A in solving the (decisional) LWRn1,n2,n3 problem
over the rings Rp and Rq is

AdvLWR
n1,n2,n3

(A) := | Pr[A ← Rn1×n2
q ,S ← Dn2×n3

s : 1 ← A(A, �AS�p)]

− Pr[A ← Rn1×n2
q ,B ← Rn1×n3

p : 1 ← A(A,B)]
∣

∣ .

We say the LWRn1,n2,n3 problem is hard if, for any (possibly quantum) efficient
adversary A, its advantage is negligible.

2.2 Hard Problems for Isogenies

In the following sections we propose two different isogeny-based schemes: one
stemming from the SIDH key exchange [21] and the other from the CSIDH key
exchange [16]. Both key exchanges share common mathematical tools, but several
technical differences make them, and their descendants, substantially different.
As a consequence, schemes in the SIDH family rely on hardness assumptions
different from those used for schemes in the CSIDH family. Our schemes make
no exception, as they use distinct security assumptions.

SIDH-Based Assumption. Let p be an odd prime of the form 2e23e3 −1, with
e2, e3 ∈ N and 2e2 ≈ 3e3 . For a supersingular elliptic curve E over Fp2 we will
denote by B2 = {P2, Q2} and B3 = {P3, Q3} bases for E[2e2 ] and E[3e3 ], respec-
tively. Under the hypothesis that |E(Fp2)| = (2e23e3)2, both torsion subgroups
E[2e2 ] and E[3e3 ] are contained in E(Fp2). Given the curve E and s ∈ Z2e2 , by
pk2(s) we denote the tuple (E/ 〈R2 = P2 + [s]Q2〉 , φ〈R2〉(P3), φ〈R2〉(Q3)), where
φ〈R2〉 is the isogeny from E having kernel 〈R2〉. Analogously, for r ∈ Z3e3 we
define pk3(r) as (E/ 〈R3 = P3 + [r]Q3〉 , φ〈R3〉(P2), φ〈R3〉(Q2)).

The security of our scheme relies on a decisional variant, named SSDDH
[21], of the SSCDH assumption. The latter is used by one of NIST second-round
candidate KEMs, called SIKE [28], which is deduced from the key exchange
SIDH.

Definition 3 (Supersingular Decisional Diffie-Hellman (SSDDH)). Let
E be a supersingular elliptic curve over Fp2 such that |E(Fp2)| = (2e23e3)2. We
say that the advantage of algorithm A in solving the SSDDHp,E,B2,B3 problem is

AdvSSDDH
p,E,B2,B3

(A) := | Pr[s ← Z2e2 , r ← Z3e3 :

1 ← A(pk2(s), pk3(r), E/ 〈P2 + [s]Q2, P3 + [r]Q3〉)]
− Pr[(s, s′) ← (Z2e2 )2, (r, r′) ← (Z3e3 )2 :

1 ← A(pk2(s), pk3(r), E/ 〈P2 + [s′]Q2, P3 + [r′]Q3〉)]| .

We say the SSCDHp,E,B2,B3 problem is hard if, for any (possibly quantum) effi-
cient adversary A, its advantage is negligible.
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CSIDH-Based Assumption. The CSIDH key exchange works with supersin-
gular elliptic curves and isogenies as well, but they are defined over a prime field
Fp. Despite offering weaker security guarantees than SIDH, CSIDH enjoys a sim-
pler design based on the action of a group G on a set of curves. The simplicity of
its design makes it easy to use CSIDH for constructing cryptographic primitives.
Details on the CSIDH assumption we use are provided in the full version.

3 Multi-recipient PKE and KEM

3.1 Decomposable Multi-recipient Public Key Encryption

Definition 4 (Decomposable Multi-Recipient Public Key Encryption).
A (single-message) decomposable multi-recipient public key encryption (mPKE)
over a message space M and ciphertext spaces C and Csingle consists of the fol-
lowing five algorithms mPKE = (mSetup,mGen,mEnc,mExt,mDec) :

– mSetup(1κ) → pp: The setup algorithm on input the security parameter 1κ

outputs a public parameter pp.
– mGen(pp) → (pk, sk): The key generation algorithm on input a public param-

eter pp outputs a pair of public key and secret key (pk, sk).
– mEnc(pp, (pki)i∈[N ],M; r0, r1, · · · , rN ) → ct = (ct0, (̂cti)i∈[N ]): The (decom-

posable) encryption algorithm running with randomness (r0, r1, · · · , rN ), splits
into a pair of algorithms (mEnci,mEncd) :

• mEnci(pp; r0) → ct0: On input a public parameter pp and randomness r0,
it outputs a (public key Independent) ciphertext ct0.

• mEncd(pp, pki,M; r0, ri) → ̂cti: On input a public parameter pp, a public
key pki, a message M ∈ M, and randomness (r0, ri), it outputs a (public
key Dependent) ciphertext ̂cti.

– mExt(i, ct) → cti = (ct0, ̂cti) or ⊥: The deterministic extraction algorithm on
input an index i ∈ N and a (multi-recipient) ciphertext ct ∈ C, outputs either
a (single-recipient) ciphertext cti = (ct0, ̂cti) ∈ Csingle or a special symbol ⊥Ext

indicating extraction failure.
– mDec(sk, cti) → M or ⊥: The deterministic decryption algorithm on input a

secret key sk and a ciphertext cti ∈ Csingle, outputs either M ∈ M or a special
symbol ⊥ �∈ M.

Although we can consider non-decomposable multi-recipient PKEs, we only
focus on decomposable schemes as they are compatible with the Fujisaki-
Okamoto (FO) transform [23]. Informally, the FO transform relies on the recip-
ient being able to recover the encryption randomness from the ciphertext and
to check validity of the ciphertext by re-encrypting with the recovered random-
ness. Therefore, in the multi-recipient setting, if we do not impose decomposable
encryption, then the recipient may require all the public keys that were used in
constructing ct to be able to re-encrypt. However, this is clearly undesirable
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since the decryption time may now depend on the number of public keys used
to encrypt, and furthermore, the size of the ciphertext will grow by appending
all the public keys used. Therefore, in this paper, when we say mPKE, we always
assume it is decomposable. We require the following properties from a mPKE.

Definition 5 (Correctness). A mPKE is δ-correct if

δ ≥ E

[

max
M∈M

Pr
[

ct0 ← mEnci(pp), ̂ct ← mEncd(pp, pk,M) :
M �= mDec(sk, (ct0, ̂ct))

]]

, (1)

where the expectation is taken over pp ← mSetup(1κ) and (pk, sk) ← mGen(pp).

We also define the notion of well-spreadness [23] which states informally that
the ciphertext has high min-entropy.

Definition 6 (γ-Spreadness). Let mPKE be a decomposable multi-recipient
PKE with message space M and ciphertext spaces C and Csingle. For all pp ∈
Setup(1κ), and (pk, sk) ∈ Gen(pp), define

γ(pp, pk) := − log2

(

max
ct∈Csingle,M∈M

Pr
r0,r

[

ct =
(

mEnci(pp; r0),mEncd(pp, pk,M; r0, r)
)]

)

.

We call mPKE γ-spread if E[γ(pp, pk)] ≥ γ, where the expectation is taken
over pp ← mSetup(1κ) and (pk, sk) ← mGen(pp).

Finally, we define the notion of indistinguishability of chosen plaintext attacks
(IND-CPA) for mPKE.

Definition 7 (IND-CPA). Let mPKE be a decomposable multi-recipient PKE
with message space M and ciphertext space C. We define IND-CPA by a game
illustrated in Fig. 1 and say the (possibly quantum) adversary A = (A1,A2) wins
if the game outputs 1. We define the advantage of A against IND-CPA security
of mPKE parameterized by N ∈ N as AdvIND-CPA

mPKE,N (A) = |Pr[A wins] − 1/2| .
Remark 1 (Insider corruption). We point out that insider corruptions for mPKE
are not considered [8,40]. This is because if an adversary obtains a secret key
corresponding to any of the public keys used to encrypt, then it can trivially
recover the encrypted message.

Remark 2 (Inefficient m-PKE from any standard (single-recipient) PKE). Our
definition of mPKE captures the trivial solution of sending different ciphertexts
obtained with a standard single-recipient PKE to multiple recipients. That is,
independently encrypting the same message to all recipients using their respec-
tive public keys. In the above syntax of mPKE, this amounts to setting mEnci

as a null function and setting r0 as an empty string. Also, mExt will simply pick
the relevant ciphertext component for the particular recipient. Therefore, in the
context of ciphertext compression, the goal is to obtain a mPKE with better
efficiency/ciphertext-size compared to this trivial method.
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Remark 3 (Number of recipients). In general, the number of recipients N =
poly(κ) can be chosen arbitrary by the sender (or adversary). Some schemes may
require an upper bound on N since the concrete provably-secure parameters may
have a dependance on N , e.g., the reduction loss degrades by a factor of 1/N .
Our proposal does not require such an upper bound since N only shows up in a
statistical manner, and so we can handle large N , say N = 215, without having
any large impact on the concrete parameter choice.

3.2 Multi-recipient Key Encapsulation Mechanism

Definition 8 (Multi-recipient Key Encapsulation Mechanism). A
(single-message) multi-recipient key encapsulation mechanism (mKEM) over a
key space K and ciphertext space C consists of the following five algorithms
mKEM = (mSetup,mGen,mEncaps,mExt,mDecaps):

GAME IND-CPA
1: pp ← mSetup(1κ)
2: for i ∈ [N ] do
3: (pki, ski) ← mGen(pp)
4: (M∗

0,M
∗
1, state) ← A1(pp, (pki)i∈[N ])

5: b ← {0, 1}
6: ct∗ ← mEnc(pp, (pki)i∈[N ],M

∗
b)

7: b′ ← A2(pp, (pki)i∈[N ], ct
∗, state)

8: return [b = b′]

GAME IND-CCA
1: pp ← mSetup(1κ)
2: for i ∈ [N ] do
3: (pki, ski) ← mGen(pp)
4: (K∗

0, ct
∗) ← mEncaps(pp, (pki)i∈[N ])

5: K∗
1 ← K

6: b ← {0, 1}
7: b′ ← AD(pp, (pki)i∈[N ], ct

∗,K∗
b)

8: return [b = b′]

Decapsulation Oracle D(i, ct)
1: ct∗i := mExt(i, ct∗)
2: if ct = ct∗i then
3: return ⊥
4: K := mDecaps(ski, ct)
5: return K

Fig. 1. IND-CPA of mPKE and IND-CCA of mKEM.

– mSetup(1κ) → pp: The setup algorithm on input the security parameter 1κ

outputs a public parameter pp.
– mGen(pp) → (pk, sk): The key generation algorithm on input a public param-

eter pp outputs a pair of public key and secret key (pk, sk).
– mEncaps(pp, (pki)i∈[N ]) → (K, ct): The encapsulation algorithm on input a

public parameter pp, and N public keys (pki)i∈[N ], outputs a key K and a
ciphertext ct.

– mExt(i, ct) → cti: The deterministic extraction algorithm on input an index
i ∈ N and a ciphertext ct, outputs either cti or a special symbol ⊥Ext indicating
extraction failure.
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– mDecaps(sk, cti) → K or ⊥: The deterministic decryption algorithm on input
a secret key sk and a ciphertext cti, outputs either K ∈ K or a special symbol
⊥ �∈ K.

Definition 9 (Correctness). A mKEM is δN -correct if

δN ≥ Pr
[

(K, ct) ← mEnc(pp, (pki)i∈[N ]), (cti ← mExt(i, ct))i∈[N ]

: ∃i ∈ [N ] s.t. K �= mDec(sk, cti)] ,

where the probability is taken over pp ← mSetup and (pki, ski) ← mGen(pp) for
all i ∈ [N ].

We define the notion of indistinguishability of chosen ciphertext attacks
(IND-CCA) for mKEM.

Definition 10 (IND-CCA). Let mKEM be a multi-recipient KEM. We define
IND-CCA by a game illustrated in Fig. 1 and say the (possibly quantum) adver-
sary A (making only classical decapsulation queries to D) wins if the game
outputs 1. We define the advantage of A against IND-CCA security of mKEM
parameterized by N ∈ N as AdvIND-CCA

mKEM,N (A) = |Pr[A wins] − 1/2| .

3.3 Recipient Anonymity for mPKE and mKEM

In many practical scenarios, it is often convenient to have an additional guar-
antee of recipient anonymity, which stipulates that the ciphertext does not leak
any information about the set of intended recipients. Informally, we say mPKE
(mKEM) is IND-Anon-CPA (IND-Anon-CCA) if there exists a fake encryption
(encapsulation) algorithm mEnc (mEncaps), which takes as input only the num-
ber of recipients and outputs a fake ciphertext indistinguishable from an honestly
generated ciphertext. The definition is formally provided in the full version.

4 FO Transform: (IND-CPA mPKE) ⇒ (IND-CCA mKEM)

4.1 Generic Construction via FO Transform

We provide a generic transformation of an IND-CPA secure mPKE to an IND-CCA
secure mKEM following the (generalized) Fujisaki-Okamoto transform. This is
illustrated in Fig. 2. The scheme provides implicit rejection as opposed to explicit
rejection, where in the latter type, the decapsulation algorithm outputs a special
symbol ⊥ to explicitly indicate decapsulation failure. We discuss later how to
tweak our scheme to get explicit rejection with no additional cost. In Fig. 2,
G1,G2,H,H′ are hash functions modeled as random oracles in the security proof.
They can be simulated by a single random oracle by using appropriate domain
separation. Finally, we include an �-bit seed to perform implicit rejection by
viewing H′(seed, ·) as a pseudorandom function in the (Q)ROM.

The following theorem classically and quantumly reduce the IND-CCA secu-
rity of mKEM to the IND-CPA security of mPKE, where the classical reduction
is tight. The proof for each theorem is provided in the subsequent sections.
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mSetup(1κ)
1: pp ← mSetupp(1κ)
2: return pp

mGen(pp)
1: (pk, skp) ← mGenp(pp)
2: seed ← {0, 1}�

3: sk := (skp, seed)
4: return (pk, sk)

mExt(i, ct)
1: cti ← mExtp(i, ct)
2: return cti

mEncaps(pp, (pki)i∈[N ])

1: M ← M
2: ct0 := mEnci(pp;G1(M))
3: for i ∈ [N ] do
4: ̂cti := mEncd(pp, pki,M;

G1(M),G2(pki,M))
5: K := H(M)
6: return (K, ct := (ct0, (̂cti)i∈[N ]))

mDecaps(sk, ct)
1: sk := (skp, seed)
2: M := mDec(skp, ct)
3: if M = ⊥ then
4: return K := H′(seed, ct)
5: ct0 := mEnci(pp;G1(M))
6: ̂ct := mEncd(pp, pk,M;G1(M),G2(pk,M))
7: if ct �= (ct0, ̂ct) then
8: return K := H′(seed, ct)
9: else
10: return K := H(M)

Fig. 2. An IND-CCA secure mKEM from a decomposable IND-CPA secure mPKE =
(mSetupp,mGenp,mEnc = (mEnci,mEncd),mExtp,mDec). We include the superscript p

to make the code more readable.

Theorem 1 (Classical: IND-CPA mPKE ⇒ IND-CCA mKEM). Assume mPKE
with message space M is δ-correct and γ-spread. Then, for any classical PPT
IND-CCA adversary A issuing at most qD queries to the decapsulation oracle D,
a total of at most qG queries to G1 and G2, and at most qH, q′

H queries to H and
H′, there exists a classical PPT adversary BIND such that

AdvIND-CCA
mKEM,N (A) ≤ 2 · AdvIND-CPA

mPKE,N (BIND) + (2qG + qD + 2) · δ + qD · 2−γ

+
(qG + qH)

|M| + q′
H · N · 2−�.

where the running time of BIND is about that of A, and � is the number of bits
of the seed composing a private key.

Theorem 2 (Quantum: IND-CPA mPKE ⇒ IND-CCA mKEM). Assume mPKE
with message space M is δ-correct and γ-spread. Then, for any quantum PT
IND-CCA adversary A issuing at most qD classical queries to the decapsulation
oracle D, a total of at most qG quantum queries to G1 and G2, and at most qH, q′

H

quantum queries to H and H′, there exists a quantum PT adversary BIND such
that

AdvIND-CCA
mKEM,N (A) ≤

√

2 · (qG + 1) · AdvIND-CPA
mPKE,N (BIND) +

4(qG + 1)
√|M|

+ 12 · (qG + qD + 1)2 · δ + qD · (9
√

2−γ + 2μ−2) + q′
H · N · 2

−�+1
2 ,
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where the running time of BIND is about that of A, � is the number of bits of
the seed composing a private key, and μ = max(r0,r)∈R{|r0| , |r|} where R is the
randomness space of mPKE.

Remark 4 (Implicit vs explicit rejection). In our construction in Fig. 2, we use
implicit rejection. That is, mDecaps does not explicitly output ⊥ to indicate that
the input ciphertext was invalid. This may be suitable in practice when we do
not want to let the adversary know that decapsulation failed. However, we note
that our proof is agnostic to this choice, and in particular, the same proof can be
shown in case we want explicit rejection, where mDecaps outputs ⊥ in case either
M = ⊥ or ct is not the same as the reencrypted ciphertext (ct0, ̂cti). Concretely,
we obtain an IND-CCA secure mKEM with explicit rejection by simply outputting
⊥ rather than outputting H′(seed, ct) in Fig. 2. We emphasize that this tweak
cannot be made in general since the security proofs may hinge on the fact that
the adversary does not learn decapsulation failures (see [15,39]).

4.2 Proof for Classical Case

Proof (Proof of Theorem 1). Let A be a classical PPT adversary against the
IND-CCA security of mKEM. We upper bound its advantage by considering the
following game sequence. We denote by Ei the event A wins in Gamei.

– Game1: This is the real IND-CCA security game: AdvIND-CCA
mKEM,N (A) =

|Pr[E1] − 1/2|.
– Game2: In this game, we replace the computation of H′(seedi, ·) by a ran-
dom function ̂H′

i(·) in case M = ⊥ or ct �= (ct0, ̂ct) occurs when answering the
decapsulation oracle with input i ∈ [N ]. Here, ̂H′

i(·) is a random function that
cannot be accessed by the adversary. Since this modification remains unnoticed
by the adversary unless H′(seed, ·) is queried for any seed ∈ {seedi}i∈[N ], we have

|Pr[E1] − Pr[E2]| ≤ q′
H·N
2� .

– Game3: In this game, we enforce that no decryption failure occurs. Namely, we
modify the random oracle so that the output is distributed randomly over the
space of randomness that leads to no decryption failures. By the correctness of
mPKE, we have |Pr[E2] − Pr[E3]| ≤ (qG + qD + 1) · δ.

(The next Game4, Game5 and Game6 aim to get rid of the secret keys ski to
answer A’s decapsulation oracle queries.)

– Game4: In this game, we add an additional check when answering the decap-
sulation oracle query. This is illustrated in Fig. 3 where the red underline
indicates the modification. Here, LG is a list that stores the random oracle
queries made to G1 and G2. We have M ∈ LG if either G1 was queried on
M or G2 was queried on (pk,M) for any pk. The only difference occurs when
A queries a ciphertext ct = (ct0, ̂cti) such that M := mDec(skpi , ct) has not
been queried to the random oracles G1 and G2 but ct0 = mEnci(pp;G1(M))
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Game4 : Decap. Oracle D(i, ct �= ct∗i )

1: ski := (skpi , seedi)
2: M := mDec(skpi , ct)
3: if M /∈ LG then
4: return K := ̂H′

i(ct)

5: if M = ⊥ then
6: return K := ̂H′

i(ct)
7: ct0 := mEnci(pp;G1(M))
8: ̂cti := mEncd(pp, pki,M;G1(M),G2(pki,M))
9: if ct �= (ct0, ̂cti) then
10: return K := ̂H′

i(ct)
11: else
12: return K := H(M)

Game5 : Decap. Oracle D(i, ct �= ct∗i )
1: for M ∈ LG do
2: ct0 := mEnci(pp;G1(M))
3: ̂cti := mEncd(pp, pki,M;

G1(M),G2(pki,M))
4: if ct = (ct0, ̂cti) then
5: return K := H(M)
6: return K := ̂Hi(ct)

Fig. 3. Decapsulation oracles of Game4 and Game5. We enforce ct is not ct∗i :=
mExt(i, ct∗) at the input level for simplicity.

and ̂cti = mEncd(pp, pki,M;G1(M),G2(pki,M)). Since G1(M) and G2(pki,M) are
information theoretically hidden from A, we can use γ-spreadness of mPKE to
conclude |Pr[E3] − Pr[E4]| ≤ qD · 2−γ .

– Game5: In this game, we further modify the way a decapsulation-oracle query
is answered. This is illustrated in Fig. 3, where notice that we no longer require
the secret keys ski to answer the queries.

If the decapsulation oracle in Game4 outputs K := H(M), then M ∈ LG and
ct = (ct0, ̂cti) holds. Therefore, the decapsulation oracle in Game5 outputs K as
well. On the other hand, assume the decapsulation oracle in Game5 outputs K :=
H(M) for some M ∈ LG such that ct = (ct0, ̂cti) where ct0 := mEnci(pp;G1(M))
and ̂cti := mEncd(pp, pki,M;G1(M),G2(pki,M)). Then, since we have no correct-
ness error (due to Game3), ct must decrypt to M. Hence, this implies that the
decapsulation oracle Game4 outputs the same K as well. Combining the argu-
ments together, we get Pr[E4] = Pr[E5].

– Game6: In this game, we undo the change we made in Game3 and alter the
output of the random oracles G1 and G2 to be over all the randomness space.
Due to the same argument as before, we have |Pr[E5] − Pr[E6]| ≤ (qG + 1) · δN .

(The following final Game7 aims to get rid of M∗ in the challenge ciphertext.)

– Game7: In this game, we sample the random message M∗ ← M to be used
to generate the challenge ciphertext at the beginning. We then define Query as
the event that A queries the random oracles H(·), G1(·), or G2(�, ·) on input
M∗, where � denotes an arbitrary element. When Query occurs, we abort the
game and force A to output a random bit. We show in the full version that
|Pr[E6] − Pr[E7]| ≤ 2 · AdvIND-CPA

mPKE,N (BIND) + (qG+qH)
|M| for some classical PPT adver-

sary BIND with similar runtime as A.
In Game7, the view of the adversary is independent of the challenge bit b.

Therefore, we have Pr[E7] = 1
2 . This concludes the proof.
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4.3 Proof for Quantum Case

The proof structure for the quantum case follows very closely the classical case.
Minimal background on quantum computation is provided in the full version,
and we refer for more details to other works, such as [6,20,27,43].

The main difference between our proof and prior proofs for IND-CCA secure
KEM in the QROM, e.g., [15,25,29–31,39,41], is that we use the lazy sampling
with compressed quantum oracles introduced in [43]. This allows the simulator
to check the validity of the ciphertext submitted to the decapsulation oracle
without interfering with the adversary’s state. Specifically, other than how we
specify and interact with the random oracle, the proof structure is essentially
the same as the classical case. We refer to the full version for the full proof.

4.4 Adding Recipient Anonymity

The construction provided in Sect. 4.1 immediately give rise to a recipient anony-
mous mKEM if we additionally assume the underlying IND-CPA secure mPKE is
IND-Anon-CPA secure. In particular, we define the fake encapsulation algorithm
mEncaps (see Sect. 3.3) as: sample K ← K, run ct ← mEnc(pp, N), and output
(K, ct), where mEnc is the fake encryption algorithm of the underlying mPKE
(see Sect. 3.3). The only modification to the proofs of Theorems 1 and 2 is that
we add an additional game at the end where we invoke the IND-Anon-CPA secu-
rity game. Since, by the end of both proofs, the key K∗ are distributed uniformly
random, it remains to guarantee that ct∗ is distributed independently of the
public keys (pki)i∈[N ]. We omit the full proof as it directly reduces from the
IND-Anon-CPA security game.

5 Multi-recipient KEM from Post-quantum Assumptions

We provide two types of IND-CCA secure mKEM instantiations: one scheme based
on lattices, and two schemes based on isogenies (in the SIDH and CSIDH set-
ting). Specifically, we provide two types of IND-CPA secure mPKEs and use The-
orems 1 and 2 to generically convert them into IND-CCA secure mKEMs in the
ROM and QROM, respectively. As we see in Sect. 6, both types of instantiations
are designed to fit with many of the NIST round 2 candidate (single-recipient)
PKE/KEMs.

5.1 Multi-recipient KEM from Lattices

In this section, we show that the lattice-based (single-recipient) PKE based
on the Lindner-Peikert framework [34] provides a natural mPKE with the
required properties. Since we are able to reuse a large part of the ciphertext
for lattice-based schemes, we get a notable efficiency gain compared to the triv-
ial mPKE/mKEM which runs PKE/KEM independently for each recipient (as
discussed in Remark 2).
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The mPKE scheme based on the Lindner-Peikert framework [34] is provided
in Fig. 4. Here, Encode (resp. Decode) is an efficiently computable bijective func-
tion that maps elements from the message space (resp. Rm̄×m

q ) to Rm̄×m
q (resp.

message space). The details of Encode and Decode are scheme specific and not
significant for this section. We show the mPKE scheme in Fig. 4 has all the
properties required for applying the “multi-recipient” Fujisaki-Okamoto trans-
form (Theorems 1 and 2). First, it is straightforward to see that we can easily
set the parameters as to have δ-correctness and γ-spreadness for exponentially
small δ and 2−γ . Moreover, practical schemes such as NIST candidates also allow
for exponentially small δ and 2−γ . It remains to show that the Linder-Peikert
framework provides not only a secure PKE but also a secure mPKE.

Algorithm 1 mSetup(1κ)
Input: Security parameter 1κ

Output: Public parameter pp
1: A ← Rn×n

q

2: return pp := A

Algorithm 2 mGen(pp)
Input: Public parameter pp = A
Output: Public key pk, a secret key sk
1: S ← Dn×m

s

2: E ← Dn×m
e

3: B ← AS+E � B ∈ Rn×m
q

4: return pk := B, sk := S

Algorithm 3 mEnc(pp, (pki)i∈[N ],M)

Input: Public parameter pp = A, set of
public keys (pki = Bi)i∈[N ], message M

Output: Ciphertext ct = (ct0, (̂cti)i∈[N ])
1: r0 := (R,E′) ← Dm̄×n

s × Dm̄×n
e

2: ct0 := mEnci(pp; r0)
3: for i ∈ [N ] do
4: ri := E′′

i ← Dm̄×m
e

5: ̂cti := mEncd(pp, pki,M; r0, ri)
6: return ct := (ct0, ̂ct1, . . . , ̂ctN )

Algorithm 4 mEncd(pp, pki,M; r0, ri)
Input: Public parameter pp = A, public

key pki = Bi, messageM, randomness
r0 = (R,E′) and ri = E′′

i

Output: (Public key dependent) cipher-
text ̂cti

1: Vi ← RBi +E′′
i + Encode(M) �

Vi ∈ Rm̄×m
q

2: return ̂cti := Vi

Algorithm 5 mEnci(pp; r0)
Input: Public parameter pp = A, random-

ness r0 = (R,E′)
Output: (Public key independent) cipher-

text ct0
1: U ← RA+E′ � U ∈ Rm̄×n

q

2: return ct0 := U

Algorithm 6 mDec(sk, ct)
Input: Secret key sk = S, ciphertext

ct = (U,V)
Output: Message M
1: M ← V − US � M ∈ Rm̄×m

q

2: return M := Decode(M)

Fig. 4. Lattice-based mPKE via the Lindner-Peikert framework [34]. mExt with input
index i is defined by picking the relevant components (ct0, ĉti) from ct.
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IND-(Anon-)CPA Security. It is straightforward to see that IND-CPA security
follows naturally from the LWE assumption. The proof of the following lemma
is given in the full version for completeness.

Lemma 1 Assume mPKE as shown in Fig. 4. Then, for any (classical/quantum)
IND-CPA adversary A, there exist (classical/quantum) adversaries B1 and B2

such that

AdvIND-CPA
mPKE,N (A) ≤ AdvLWE

n,n,Nm(B1) + AdvLWE
(n+Nm),n,m̄(B2).

Moreover, as a simple consequence of the proof of the above lemma, we have
IND-Anon-CPA for free. In particular, the fake encryption algorithm mEnc simply
outputs a random element in Rm̄×n

q × (Rm̄×m
q )N .

Remark 5 (Using LWR instead of LWE). The mPKE presented in Fig. 4 readily
generalizes to the LWRsetting. The only difference is that instead of adding the
noise terms (i.e., E,E′,E′′

i ), we round. For instance, the public key pk will be
�AS�p ∈ Rn×m

p rather than AS + E ∈ Rn×m
q . It is easy to show that mPKE has

γ-spreadness, is δ-correct and IND-CPA secure assuming the LWR assumption.

5.2 Multi-recipient KEMs from Isogenies

Retracing the steps that lead to the hashed version of ElGamal encryption from
the Diffie-Hellman key exchange, public-key encryption schemes can be deduced
from both SIDH [21] and CSIDH. Building on such encryption schemes, we
present two isogeny-based IND-CPA secure mPKEs. Both of them satisfy the
generic properties required in Theorems 1 and 2 for obtaining an IND-CCA secure
mKEM. Since a unified presentation of the two schemes would be rather convo-
luted, for the sake of readability we differentiate their explanations. We note
that both schemes require a family of universal hash functions H = {Hk : X ⊂
F → {0, 1}w}k∈K indexed by a finite set K, where F denotes a finite field. The
scheme based on SIDH is detailed below, while, due to space limitation, the
CSIDH-based mPKE is provided in the full version.

Isogeny-Based mPKE via SIDH. The mPKE deduced from SIDH is provided
in Fig. 5. We highlight that the public parameter pp output by mSetup on input a
security parameter 1κ consists of: a prime p of the form 2e23e3−1; a supersingular
elliptic curve E defined over Fp2 and such that |E(Fp2)| = (2e23e3)2; bases
B2 = {P2, Q2} and B3 = {P3, Q3} for E[2e2 ] and E[3e3 ], respectively; a hash
function H uniformly sampled from a family of universal hash functions H =
{Hk : X ⊂ Fp2 → {0, 1}w}k∈K . Here X is the set of all supersingular j-invariants
in Fp2 , for which holds |X | = p/12+ε, with ε ∈ {0, 1, 2} [21]. Furthermore, Encode
(resp. Decode) is an efficiently computable bijective function from the message
space (resp. {0, 1}w) to {0, 1}w (resp. message space). The details of Encode and
Decode are not significant for this section, since they are scheme specific.

The perfect correctness of the SIDH-based public-key encryption scheme from
which our mPKE is deduced implies that the latter has δ-correctness, with δ = 0.
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Algorithm 7 mSetup(1κ)
Input: Security parameter 1κ

Output: Public parameter pp
1: Select e2, e3, E, B2 = {P2, Q2}, B3 =

{P3, Q3}
2: H ← H
3: return pp := (E, {(ej , Bj)}j=2,3, H)

Algorithm 8 mGen(pp)

Input: Public parameter pp = (E, {(ej ,
Bj)}j=2,3, H)

Output: Public key pk, a secret key sk
1: (P2, Q2) ← B2, (P3, Q3) ← B3

2: s ← Z3e3

3: R3 ← P3 + [s]Q3

4: E3 ← E/ 〈R3〉
5: U2 ← φ〈R3〉(P2), V2 ← φ〈R3〉(Q2)
6: return pk := (E3, U2, V2), sk := s

Algorithm 9 mEnc(pp, (pki)i∈[N ],M)

Input: Public parameter pp = (E,
{(ej , Bj)}j=2,3, H), set of public keys
(pki = (E(i)

3 , U
(i)
2 , V

(i)
2 ))i∈[N ], message M

Output: Ciphertext ct = (ct0, (̂cti)i∈[N ])
1: r0 := r ← Z2e2

2: ct0 := mEnci(pp; r0)
3: for i ∈ [N ] do
4: ̂cti := mEncd(pp, pki,M; r0)
5: return ct := (ct0, ̂ct1, . . . , ̂ctN )

Algorithm 10 mEncd(pp, pki,M; r0)

Input: Public parameter pp = (E,
{(ej , Bj)}j=2,3, H), public key pki

= (E(i)
3 ,U (i)

2 , V
(i)
2 ), message M, ran-

domness r0 = r
Output: (Public key dependent) ci-

phertext ̂cti
1: Ti ← U

(i)
2 + [r]V (i)

2

2: Ji ← jInvariant(E(i)
3 / 〈Ti〉)

3: Fi ← H(Ji) ⊕ Encode(M)
4: return ̂cti := Fi

Algorithm 11 mEnci(pp; r0)

Input: Public parameter pp = (E,
{(ej , Bj)}j=2,3, H), randomness r0 = r

Output: (Public key independent) cipher-
text ct0

1: (P2, Q2) ← B2, (P3, Q3) ← B3

2: R2 ← P2 + [r]Q2

3: E2 ← E/ 〈R2〉
4: U3 ← φ〈R2〉(P3), V3 ← φ〈R2〉(Q3)
5: return ct0 := (E2, U3, V3)

Algorithm 12 mDec(sk, ct)

Input: Public parameter pp = (E,
{(ej , Bj)}j=2,3, H), secret key sk = s,
ciphertext ct = (E2, U3, V3, F )

Output: Message M
1: R′ ← U3 + [s]V3

2: E′ ← E2/ 〈R′〉
3: J ′ ← jInvariant(E′)
4: M ← F ⊕ H(J ′)
5: return M := Decode(M)

Fig. 5. SIDH-based mPKE via hashed ElGamal [21]. mExt with input index i is defined
by picking the relevant components (ct0, ĉti) from ct. Note that mEncd does not require
any randomness ri for i ∈ [N ].

In addition, for a given security parameter 1κ, the prime p = 2e23e3 − 1 in the
public parameter pp ← mGen(1κ) is fixed [28]. The first component of each
element in Csingle contains a curve 2e2-isogenous to E. We denote by W the set
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{j(E/ 〈P2 + [r]Q2〉)|r ∈ Z2e2 } of all such curves. Since p/12 + ε � |W |, one
expects that the number of pairs of distinct coefficients r, r̃ ∈ Z2e2 such that
j(E/ 〈P2 + [r]Q2〉) = j(E/ 〈P2 + [r̃]Q2〉) is very small [1]. Hence, we can assume
that |W | = 2e2 and deduce γ(pp, pk) ≥ e2. This value is independent of the
public key pk and E,B2, B3 in pp, therefore the mPKE scheme has γ-spreadness
with γ = e2. We observe that 1/2e2 ≈ 1/

√
p, which is negligible in the security

parameter κ (e2 ≥ κ for any set of SIDH parameters [28]).

IND-(Anon-)CPA Security. The IND-CPA security of the SIDH-based mPKE fol-
lows from the SSDDH assumption and the Leftover Hash Lemma. The proof of
the following lemma is given in the full version for completeness.

Lemma 2 Assume mPKE as shown in Fig. 5. Then, for any (classical/quantum)
IND-CPA adversary A, there exists a (classical/quantum) adversary B such that

AdvIND-CPA
mPKE,N (A) ≤ N ·

(

AdvSSDDH
p,E,B2,B3

(B) +
1
2

√

2w/p

)

. (2)

We note that in concrete instantiations, log2 p assumes one of the values
434, 503, 610, while the corresponding w is 128,192 or 256, respectively [28].
Therefore the quantity (1/2)

√

2w/p is bounded by 2152 for each pair (p,w) and
it can be safely discarded in the right term of Eq. (2). Moreover, as a simple con-
sequence of the concrete proof of the above lemma, we have IND-Anon-CPA for
free. In particular, the fake encryption algorithm mEnc simply outputs a tuple
composed by a ciphertext ct0 and N uniformly random elements in {0, 1}w.

Isogeny-Based mPKE via CSIDH. Since the high level structure of our
CSIDH-based mPKE is similar to our SIDH-based mPKE, we refer the full details
to full version. We consider the action of a cyclic group G on a set of supersin-
gular elliptic curves. However, it can be easily adapted to the case where the
structure of G is unknown.

6 Instantiating mKEM with NIST Candidates and CSIDH

In this section, we concretely instantiate the generic mKEM framework laid out
in previous sections. We take the PKEs underlying 8 existing lattice-based and
isogeny-based NIST KEMs (as well as CSIDH). We first modify them into efficient
mPKEs (following Sect. 5) and then into mKEMs via our generic transformation
(Theorem 1 and 2). We note that we did not consider the corresponding mKEM
for the CISDH mPKE, for reasons explained later. We compare these mKEMs to
the trivial solution that uses (single-recipient) KEMs in parallel, and show that
our mKEMs provide efficiency gains, both in communication and computation,
of an order of magnitude.

Until the end of this document, we denote by |x| the bytesize of an object x,
where x may be any cryptographic object (a public key, a ciphertext, etc.)
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6.1 Comparison Methodology

Our goal is to provide an accurate assessment of the gains provided by various
mKEM instantiations. A natural way to do that is to compare the performances
of these mKEMs (with N recipients) with N instantiations of the original (single-
recipient) KEMs. This comparison can be done via two metrics:

(C1) Communication cost. How much data does the encryptor broadcast when
using mKEM with N recipients, and how does it compare to N instances
of the original KEM (one per recipient)?

(C2) Computational cost. How many cycles does one instance of mKEM with N
recipients cost, and how does it compare to N instances of KEM?

For (C1), we measure the ratio:

Data broadcast when usingN instances of the originalKEM
Data broadcast when usingmKEMwithNrecipients

. (3)

With mKEM the encryptor broadcasts a single multi-ciphertext of size |ct0| +
∑

i∈[N ] |̂cti| = |ct0| + N |̂cti|, whereas with N instances of KEM he broadcasts
N ciphertexts ct = (ct0, ̂cti) – except for NewHope, see Footnote 4 – for a total
size N |ct0| + N |̂cti|. Therefore, the ratio converges to a value independent of N
when N tends to infinity. Specifically, the value (3) is:

N |ct0| + N |̂cti|
|ct0| + N |̂cti|

−→
N→∞

1 +
|ct0|
|̂cti|

. (4)

Let kcomm = 1 + |ct0|
|̂cti| . This value measures asymptotically “how much more

compact” mKEM is compared to the original KEM, and serves as our metric for
(C1). Similarly, the following value serves as our metric for (C2):

kcycles = lim
N→∞

Cycles spent to runN instances of the originalKEM
Cycles spent to runmKEMwithNrecipients

(5)

We note that kcyclesis far less absolute than kcommas a metric, since the number of
cycles depend on the implementation of a scheme, the architecture of the target
platform, etc. However, it is a useful indicator of the efficiency gain that one can
expect by using mKEM. All cycles measurements in this section are performed on
a processor i7-8665U (Whiskey Lake) @ 1.90 GHz, with Turbo Boost disabled.

6.2 Instantiation with Lattice-Based NIST Candidates

In this section, we provide concrete instantiations of the high-level scheme
described in Sect. 5.1. Our efforts are facilitated by the fact that 7 lattice-based
NIST candidate KEMs are deduced from PKEs that follow the Lindner-Peikert
framework:
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– Kyber;
– FrodoKEM;

– LAC;
– NewHope;

– Round5;
– Saber;

– ThreeBears.

Full specifications of these 7 schemes are available at [36]. Out of these,
FrodoKEM, Kyber, LACand NewHopefollow the most closely the Lindner-Peikert
framework, since they are based on LWE, Module-LWE, Ring-LWEand Ring-LWE,
respectively. Round5and Saberare based on variants of LWR. This implies a few
changes on Fig. 4, since the addition of noise error is replaced in some instances by
rounding. See Rem. 4 for a short discussion on this change. Finally, ThreeBearsis
based on an extremely recent variant called Module Integer-LWE. In addition,
each scheme has different parameters and uses different tweaks. A widespread
trick is for ̂cti to drop the least significant bits of Vi, since the message M is
encoded in the most significant bits. This reduces the size of a (multi-)ciphertext.
Note that bit dropping is more beneficial to mKEMs than to KEMs as it reduces
|̂cti|, hence a larger bandwidth impact for mKEMs – see (4).

These 7 KEMs and the PKEs they are based on serve as the bases for our
mKEM constructions. We tweaked them in order to fit the frameworks described
in Fig. 4 (IND-CPA mPKE) and Fig. 2 (conversion into an IND-CCA mKEM). Note
that our tweaks break compatibility with the specifications of the aforementioned
schemes, for two reasons. First, we fix the public matrix A in order to fit Fig. 4
(see Remark 6 below). Second, the transform of Fig. 2 is completely different
from the ones used in the 7 aforementioned KEMs, which themselves differ from
each other. As a consequence, comparing our mKEMs to these KEMs is not
an entirely apples-to-apples comparison, as the 7 KEMs we cited claim some
additional properties such as contributivity or security in specific threat models
(see Remark 6). For our mKEMs, we do not claim to achieve any security notion
besides those proven in this document.

Remark 6 (Reusing the public matrix). A difference between Fig. 4 and the afore-
mentioned NIST schemes is that the latter use PKEs for which the matrix A is
made part of the public key pk. That is, each user has its A rather than sharing
it. The main argument for this choice is to hinder all-for-the-price-of-one attacks
[2, Section 3]. The associated threat model considers an attacker that has enough
cryptanalytic capabilities to break one hard instance of a lattice problem, but
not much more. This is an arguably specific security model, one that implicitly
considers that the parameter set of the scheme may not be cryptographically
secure. In order to enable our mKEM instantiations, we instead make A part of
the public parameter pp, as per Fig. 4. This can be done with minimal changes
to the PKEs used by the original KEMs, and has no impact on their concrete
security analysis.

Communication Costs. Table 1 provides a comparison of NIST KEMs with
their mKEM variants. Sending N ciphertexts costs N ·|ct| bytes for a NIST KEM,
whereas using its mKEM counterpart costs |ct0|+N ·|̂cti|. The gain in bandwidth
kcommis of one order of magnitude (sometimes two). Schemes based on module
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lattices (Saber, Kyber, ThreeBears) and standard lattices (FrodoKEM) see the
most dramatic gains (as high as a factor 169 times for FrodoKEM).

Table 1. Bandwidth impact of our solution on various schemes. Sizes are in bytes.

Scheme |ct0| |ĉti| |ct| kcomm

FrodoKEM-640 9600 120 9720 81

FrodoKEM-976 15616 128 15744 123

FrodoKEM-1344 21504 128 21632 169

Kyber-512 640 96 736 7.67

Kyber-768 960 128 1088 8.5

Kyber-1024 1408 160 1568 9.8

LAC-128 512 200 712 3.56

LAC-192 1024 164 1188 7.24

LAC-256 1024 400 1424 3.56

NewHope-512-CCA-KEM 896 192 1120 5.83

NewHope-1048-CCA-KEM 1792 384 2208 5.75

Round5 R5ND 1KEMb 429 110 539 4.9

Round5 R5ND 3KEMb 756 74 830 11.22

Round5 R5ND 5KEMb 940 142 1082 7.62

LightSaber 640 96 736 7.67

Saber 960 128 1088 8.5

FireSaber 1280 192 1472 7.67

BabyBear 780 137 917 6.69

MamaBear 1170 137 1307 9.54

PapaBear 1560 137 1697 12.38

Unlike other lattice-based KEMs, the CCA variant of
NewHopeadds a hash to the ciphertext. So in this particular
case |ct| = |ct0| + |ĉti| + {32, 64}.

Computational Costs. Due to time constraints, we only implemented mKEM
on two lattice-based schemes: FrodoKEM and Kyber. Nevertheless, we believe
these examples already showcase the efficiency gain provided by our techniques.
Starting from reference implementations available on Github4,5, we tweaked
them to obtain mKEMs. As shown by Table 2, our mKEM variants perform
(multi-)encapsulation between one and two orders of magnitude faster than their
original KEM counterparts. We provide additional experiments in the full version
and show that the target platform can play an important role in the performance
gain.
4 https://github.com/Microsoft/PQCrypto-LWEKE.
5 https://github.com/pq-crystals/kyber/.

https://github.com/Microsoft/PQCrypto-LWEKE
https://github.com/pq-crystals/kyber/
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Table 2. Encapsulation times of FrodoKEM and Kyber vs their mKEM variants. Times
are in cycles and are normalized by the number of recipients (here, 1000).

Scheme Trivial KEM Our mKEM kcycles

FrodoKEM-640 4948835 251405 19.68

FrodoKEM-976 10413149 387733 26.86

FrodoKEM-1344 18583122 519973 35.74

Kyber-512 181297 42647 4.25

Kyber-768 279210 52471 5.32

Kyber-1024 414774 61808 6.71

6.3 Instantiation with Isogeny-Based Schemes

In this section, we focus on isogeny-based instantiations of mKEM and mPKE.
Concerning SIKE, we obtain an mKEM from the mPKE of Fig. 5, and we compare
it with the trivial solution consisting in N instances of SIKE. For CSIDH, we
compare our mPKE in the full version with N instances of the CSIDH-based
hashed ElGamal. Since CSIDH is a key-exchange, we simply construct a trivial
IND-CPA secure PKE from it (rather than constructing an IND-CCA secure KEM)
and compare it with our mPKE from Sect. 5.2.

To obtain proof-of-concept implementation of mPKE for CSIDH and mKEM
for SIKE, we have modified implementation available in the NOBS library6.

Communication Cost. Our construction provides the most significant gain
when used with SIKE/p434. In this case our mKEM variant can be over 20
times more efficient (Table 3).

Table 3. Bandwidth impact of our mKEM on isogeny schemes. Sizes are in bytes.

Scheme |ct0| |ĉti| |ct| kcomm

SIKE/p434 330 16 346 21.63

SIKE/p503 378 24 402 16.75

SIKE/p751 564 32 596 18.63

SIKE/p434 compressed 196 16 209 13.25

SIKE/p503 compressed 224 24 248 10.33

SIKE/p751 compressed 331 32 363 11.34

cSIDH PKE/p512 64 16 80 5

6 https://github.com/henrydcase/nobs.

https://github.com/henrydcase/nobs
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Computational Costs. In SIKE and CSIDH-based hashed ElGamal, the com-
putational cost is dominated by isogeny computations. In both schemes, encap-
sulation/encryption requires the computation of two smooth-degree isogenies.
Assuming SIKE key compression is not used, we can assume that both computa-
tions have a similar cost C. When running SIKE/CSIDH-based hashed ElGamal
for N recipients, the total computation cost is roughly 2 ·N ·C. By applying our
mKEM/mPKE this cost reduces to (N + 1) · C. So, the expectation is that our
approach will be roughly two times faster. The results from the benchmarking in
Table 4 confirms the expected speed-up. It is worth noticing that the gain from
using mKEM is expected to be bigger when using SIKE with key compression.
That is because computing |ct0| is a slower operation than computing |̂cti|.

Table 4. Encapsulation times of SIKE vs its mKEM variant and encryption times
of CSIDH-based hashed ElGamal vs its mPKE variant. Times are in cycles and are
normalized by the number of recipients (here, 100).

Scheme Trivial KEM Our mKEM kcycles

SIKE/p434 1657655212 759202275 2.18

SIKE/p503 2301014376 1037469650 2.22

SIKE/p751 6900791605 3150069659 2.19

cSIDH/p512 37455411429 19438021692 1.92

7 Application to Secure Group Messaging

In this section, we show how our mKEM can be used to optimize the TreeKEM
protocol [3,5,14] used within secure group messagings. The resulting protocol
has a lower communication cost than the standard version of TreeKEM [5,14].

7.1 Syntax and Notations for Group Messaging

We first introduce group messaging-related notions. We observe that group mes-
saging is an extensive topic; we keep our presentation minimal and introduce
notions that are strictly required for our argument. More in-depth discussions
on group messaging can be found in e.g. [3,5,10,14].

Continuous group key agreement (CGKA), which generalizes the notion of
continuous key agreement (CKA, see [4]), forms the backbone of secure group
messaging (SGM) protocols. Informally, one can think of CGKA as a group key
exchange where the group members dynamically change and the (group) session
keys need to be re-established in each epoch to maintain strong security. Once
a session key is established for a given epoch, a user can then use the key to
securely communicate with the group members. Therefore, a SGM protocol can
be described as a continuum of running CGKA and exchanging secured messages.
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Definition 11 (Continuous Group Key Agreement. [5]). A continuous
group key agreement CGKA = (Init,Create,Add,Remove,Update,Process) con-
sists of the following algorithms:

– Initialization. Init takes an ID ID and outputs an initial state state.
– Group creation. Create takes a state state, a list of IDs (IDi)i∈[N ] and

outputs a new state state′ and a control message W .
– Add. Add takes a state state, an ID ID and outputs a new state state′ and

control messages W,T .
– Remove. Remove takes a state state, an ID ID and outputs a new state state′

and a control message T .
– Update. Update takes a state state and outputs a new state state′ and a

control message T .
– Process. Processtakes a state state and outputs a new state state′ and an

update secret I.

Above, Updateallows a user to update the session key on behalf of the whole
group (it is run on every epoch to maintain strong security), and Processallows
each group member to process the updated session key. Four properties are
required from a CGKA: correctness, privacy, forward privacy (FS), and post-
compromise security (PCS). At a high level, FS states that if any group member
is compromised at some point, then all previous session keys remain hidden from
the attacker; and PCS states that after every compromised group member per-
forms an update, the session key becomes secret again. As the precise definitions
are not relevant to our work, we refer to [5, Section 3.2] for more details.

In the following, we focus on TreeKEM; a specific instantiation of CGKA that
forms the building block of the SGM protocol MLS [10]. It was first described
in [14] and various improvements have been proposed in [3,5]. TreeKEM is at
the heart of the MLS protocol [10], and is arguably one of MLS’ main efficiency
bottlenecks due to the large number of public key material sent. To be more con-
crete, our efforts are directed at optimizing the Update algorithm of TreeKEM;
this algorithm constitutes an efficiency bottleneck (in computation and com-
munication) of TreeKEM as it is performed on a regular basis (in contrast to
Create, Add and Remove, which are performed upon punctual events). In effect,
improving the efficiency of Update will improve the efficiency of TreeKEM (and
hence the MLS protocol) on a similar scale. Details on TreeKEM follows.

Dendrologic Notations. In a (binary or m-ary) tree T, a leaf is a node with
no child, an internal node is a node that is not a leaf, and the root root is the
unique node that has no parent. By synecdoche, we may abusively refer to a
node by its label; for example in Fig. 6, “1” denotes the bottom left node.

Let u be a node in a tree T. Its siblings, siblings(u), is the set of nodes v �= u
in T with the same parent as u. Its path, path(u), is the set of nodes between
u and root, including u but excluding root. Its co-path, copath(u), is the set of
siblings of nodes in its path: copath(u) =

⋃

v∈path(u) siblings(v). For example, in
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Fig. 6, the only sibling of “1” is “2”, its path is the set of red nodes ( ), and

its co-path is the set of green nodes ( ).

TreeKEM. In TreeKEM, a (binary or m-ary) tree T is constructed with the N
group members as its leaves. As an example, Fig. 6 illustrates the tree T associ-
ated to a group of 16 users (numbered from 1 to 16). Let PRG be a pseudorandom
generator. Then, to each node i is associated a secret seed seedi and a keypair
(pki, ski) = mGen(pp;PRG(seedi)L), where PRG(·)L (resp. PRG(·)R) denotes the
left (resp. right) half output of the PRG. In particular, mGen is run on random-
ness PRG(seedi)L. The root does not need a keypair, but its seed will in effect
be the group secret I (i.e., session key). The TreeKEM invariant states that a
group member u knows seedi if and only if i ∈ path(u). When a user u performs
an update (via Update), he does the following:

(U1) Generate a new secret seed seedu for u.
(U2) For each i ∈ path(u), update its keypair: (pki, ski) = mGen(pp;PRG(seedi)L),

and compute a new secret seed for its parent: seedparent(i) = PRG(seedi)R.
(U3) For each i ∈ path(u), compute the ciphertext

cti ← mEncaps(pp, (pkj)j∈siblings(i); seedparent(i)). (6)

Note that mEncaps is derandomized here. For our construction in Fig. 2,
this is equivalent to setting the random message Mi = PRG(seedparent(i)).

(U4) Send the update package (pki, cti)i∈path(u) to the server, which dispatches
it to the other group members (this is known as server-side fan-out).

Upon receiving the update package, a user v processes it (via Process) as follows:

(P1) Update each pki he received.
(P2) Compute the closest common ancestor w of u and v, then recover seedw

by decapsulating the adequate cti.
(P3) Recover the secret seeds of all remaining common ancestors of u and v by

computing seedparent(i) = PRG(seedi)R. The update secret is I = seedroot

This description is more generic than previous ones [3,5,10,14] in the following
sense. All existing instantiations of TreeKEM take Tto be a binary tree, in which
case there is no need for a mKEM as a single-recipient KEM suffices. Note that
while our description uses mKEM as a building block, it is easily adapted to work
with an mPKE. Figure 6 illustrates the “classical” instantiation of TreeKEM.
Each update contains at most �log2(N)� public keys and as many ciphertexts,
so its bytesize is at most:

�log2(N)� · (|pk| + |ct0| + |̂cti|
)

(7)

m-ary TreeKEM. We now show how to obtain significant efficiency gains by
instantiating TreeKEM with an m-ary tree combined with mKEM. As mentioned



Scalable Ciphertext Compression Techniques for Post-quantum KEMs 315

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1611 22

Fig. 6. TreeKEM (Color figure online)

in [14], TreeKEM can be instantiated with an m-ary tree instead of binary; see
Fig. 7 for an example where “1” issues a package update. At first, it is not obvious
that this is more efficient than the instantiation of Fig. 6, since in our example
the update package now contains 2 public keys (one for each node ( ) in the

path) and 6 ciphertexts (one for each node ( ) in the co-path).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B C D

22 33 44

A

11

Fig. 7. 4-ary TreeKEM (Color figure online)

We make the following observation: when a user u issues an update, the
update package may encapsulate several times the same information. Precisely,
for each i ∈ path(u), the update package encapsulates seedparent(i) under the key
pkj for each j ∈ siblings(i). In the example of Fig. 7, this means that an update
package issued by 1 encapsulates seedA under pk2, pk3, pk4, and seedroot under
pkB , pkC , pkD. The bandwidth gain happens exactly here: since the same value
seedA is encapsulated under pk2, pk3, pk4, one can use mKEM to perform this
(multi-)encapsulation. And similarly at each level of the tree. Hence the total
size of an update package is at most: �logm(N)� · (|pk| + |ct0| + (m − 1) · |̂cti|

)

.
One can see that this generalizes (7) to any integer m > 2. It is clear that
whenever |pk| + |ct0| � |̂cti|, it is advantageous efficiency-wise to take m > 2.
This is illustrated in the next section.

7.2 Concrete Instantiations of m-ary TreeKEM

We now illustrate the substantial communication gains that can be obtained
in practice with the method described above. A good rule of thumb is to take
m−1 ≈ |pk|+|ct0|

|̂cti| . According to (7), the bytesize of an update package for binary

TreeKEM will then be approximately �log2(N)� · m · |̂cti|. On the other hand,
the bytesize for our proposal is about �logm(N)� · 2(m − 1) · |̂cti|. Compared to



316 S. Katsumata et al.

the standard TreeKEM, our proposal improves communication cost by a factor
equal to the ratio of the two values, which is approximately:


log2(N)�·m·|̂cti|

logm(N)�·2(m−1)·|̂cti| −→

N→∞
m

2(m−1) · log2(m)

= O(log m).

Our solution provides a gain O(log m) compared to TreeKEM. A concrete com-
parison is provided by Fig. 8, which compares the bytesize of an update pack-
age for binary TreeKEM - using FrodoKEM, Kyber, SIKEor cSIDHas a (single-
recipient) KEM/PKE - and m-ary TreeKEM - using the mKEM/mPKE obtained
from FrodoKEM, Kyber, SIKEor cSIDH, respectively. For the schemes consid-
ered, our proposal improves the communication cost for large groups by a factor
between 1.8 and 4.2.
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Fig. 8. Comparing the classic “binary” TreeKEM with m-ary TreeKEM, when instan-
tiated with four schemes: FrodoKEM, Kyber, SIKEand cSIDH. In each case, the x-axis
represent the number N of group members (from 2 to 215) and the y-axis represent the
maximal size of an update package in kilobytes. The arity m depends on the scheme
and the group size N , and is omitted for readability.
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Abstract. We present a computer-verified formalization of the post-
quantum security proof of the Fujisaki-Okamoto transform (as analyzed
by Hövelmanns, Kiltz, Schäge, and Unruh, PKC 2020). The formalization
is done in quantum relational Hoare logic and checked in the qrhl-tool
(Unruh, POPL 2019).

1 Introduction

In this paper, we present the first formal verification of the post-quantum security
of the Fujisaki-Okamoto transform.

Cryptographic security proofs tend to be complex, and, due to their complexity,
error prone. Small mistakes in a proof can be difficult to notice and may invalidate
the whole proof. For example, the proof of the OAEP construction [7] went through
a number of fixes [13,14,27] until it was finally formally proven in [4] after years of
industrial use. The PRF/PRP switching lemma was a standard textbook example
for many years before it was shown that the standard proof is flawed [8]. And more
recently, an attack on the ISO standardized blockciphermodeOCB2 [19]was found
[18], even though OCB2 was believed to be proven secure by [24].

While a rigorous and well-structured proof style (e.g., using sequences of
games as advocated in [8,28]) can reduce the potential for hidden errors and
imprecisions, it is still very hard to write a proof that is 100% correct. (Especially
when proof techniques such as random oracles [9] or rewinding [30,36] are used.)
And especially if a mistake in a proof happens in a step that seems very intuitive,
it is quite likely that the mistake will also not be spotted by a reader.

This problem is exacerbated in the case of post-quantum security (i.e., secu-
rity against quantum adversaries): Post-quantum security proofs need to reason
about quantum algorithms (the adversary). Our intuition is shaped by the expe-
rience with the classical world, and it is easy to have a wrong intuition about
quantum phenomena. This makes it particularly easy for seemingly reasonable
but incorrect proof steps to stay undetected in a post-quantum security proof.

In a nutshell, to ensure high confidence in a post-quantum security proof,
it is not sufficient to merely have it checked by a human. Instead, we advocate
formal (or computer-aided) verification: the security proof is verified by software
that checks every proof step. In this paper, we present the first such formal veri-
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fication, namely of a variant of the Fujisaki-Okamoto transform [12] as analyzed
by Hövelmanns, Kiltz, Schäge, and Unruh [17].
Post-Quantum Security. Quantum computers have long been known to be
a potential threat to cryptographic protocols, in particular public key encryp-
tion. Shor’s algorithm [26] allows us to efficiently solve the integer factorization
and discrete logarithm problems, thus breaking RSA and ElGamal and variants
thereof. This breaks all commonly used public key encryption and signature
schemes. Of course, as of today, there are no quantum computers that even come
close to being able to execute Shor’s algorithm on reasonable problem sizes. Yet,
there is constant progress towards larger and more powerful quantum comput-
ers (see, e.g., the recent breakthrough by Google [2]). In light of this, it is likely
that quantum computers will be able to break today’s public key encryption and
signature schemes in the foreseeable future. Since the development, standardiza-
tion, and industrial deployment of a cryptosystem can take many years, we need
to develop and analyze future post-quantum secure protocols already today. One
important step in this direction is the NIST post-quantum competition [23] that
will select a few post-quantum public-key encryption and signature schemes for
industrial standardization.
Quantum Random Oracles. One important proof technique in cryptography
are randomoracles [6]. In a proof in the randomoraclemodel, we idealize hash func-
tions by assuming that every hash function is simply a uniformly random function.
(All algorithms including the adversary get oracle access to that function.) Based
on this assumption, security proofs become considerably simpler. In some cases, we
only know security proofs in the random oracle model. Of course, this comes at a
cost: This assumption is an idealization; concluding that a protocol that is secure
in the random oracle model is also secure using a real-world hash function is merely
a heuristic argument. (And this heuristic is known to be false in certain contrived
cases, e.g., [11].)

As first explicitly pointed out by [9], in the quantum setting, the random
oracle becomes more involved: To get a realistic modeling, the adversary needs
to be given superposition access to the random oracle, i.e., the adversary can
evaluate the random oracle/hash function in a quantum superposition of many
possible inputs. Due to this, quantum random oracle proofs are much harder
than in the classical setting.

Of importance for this paper is the O2H theorem [1]. The O2H theorem tells
us – very roughly – that the probability of noticing whether a specific output H(x)
of the random oracle has been changed (“reprogrammed”) can be bounded in terms
of the probability of guessing that input x. This technique is used in a number of
QROM proofs, in particular those for the FO transform described next.

Fujisaki-Okamoto. A common approach for constructing public key encryp-
tion schemes is the Fujisaki-Okamoto (FO) transform [12] or a variant thereof.
The FO transform takes a public-key encryption scheme with some weak pas-
sive security notion (such as IND-CPA or one-way security) and transforms it
into an actively secure public-key encryption or KEM1 scheme (IND-CCA secu-
rity). On a very high level, instead of executing the encryption algorithm with
1 A KEM, key encapsulation scheme, is similar to an encryption scheme but specialized

for use in hybrid encryption schemes.
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true randomness, the FO transform hashes the plaintext and uses the resulting
hash value as the randomness for the encryption algorithm. This removes some
of the flexibility the attacker has when constructing fake ciphertexts and makes
chosen-ciphertext attacks impossible. The advantage of the FO transform is that
it gets us IND-CCA security at no or almost no increase in ciphertext size or
computational cost. The disadvantage is that the FO transform is only proven
in the random oracle model, which means that there is a heuristic element to its
security proof. Due to its high efficiency, the FO transform or some variations
thereof is used in basically all public key encryption candidates in the NIST com-
petition. Because of this, it is very important to understand the post-quantum
security of the FO transform. However, due to the intricacies of the quantum
random oracle model, proving the security of the FO transform is not as easy as
in the classical setting. The first positive result was made by Ebrahimi Targhi
and Unruh [29] who proved the security of an FO variant that includes one more
hash value in the ciphertext. That result was adapted by [15] to several other FO
variants, but still using an additional hash. ([15] also gives an excellent overview
over the different FO variants.) The first result to prove post-quantum security of
FO without an additional hash was given by Saito, Xagawa, and Yamakawa [25].
To achieve this, they introduced a new intermediate security notion called “dis-
joint simulatability”. However, [25] relies on the assumption that the underlying
passively-secure encryption scheme has perfect correctness, i.e., the probability
of incorrectly decrypting honestly generated ciphertexts is zero. Unfortunately,
this is not the case with typical lattice-based encryption schemes (they have a
negligible failure probability), making the results of [25] inapplicable to many rel-
evant encryption schemes such as, to the best of our knowledge, all lattice-based
NIST candidates. This situation was resolved by Hövelmanns, Kiltz, Schäge, and
Unruh [17] who show the security of an FO variant (without additional hash)
that is secure even in the presence of decryption failures. (This result is the one
we formalize in this work. We will refer to [17], specifically to the part concerned
with the FO transformation, as HKSU in the following.)

Formal Verification of Cryptography. As mentioned above, a state-of-the-
art approach for writing cryptographic security proofs are sequences of games.
This approach is also well suited for formal verification. A number of framework-
s/tools use this approach for verifying classical cryptography, e.g., EasyCrypt [3].
EasyCrypt requires the user to explicitly specify the games that constitute the
security proof (as is done in a pen-and-paper proof), and to additionally pro-
vide justification for the fact that two consecutive games are indeed related as
claimed. This justification will often be considerably more detailed than in a pen-
and-paper proof where the fact that two slightly different games are equivalent
will often be declared to be obvious.

Their approach for proving the relationship of consecutive games is to give a
proof in relational Hoare logic. Relational Hoare logic is a logic that allows us to
express the relationship between two programs by specifying a relational precon-
dition and a relational postcondition. A relational Hoare judgment of the form
{A}c ∼ d{B} intuitively means that if the variables of the programs c and d are
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related as described by the precondition A before execution, and we execute c and
d, then afterwards their variables will be related as described by B. A very sim-
ple example would be {x1 ≤ x2}x ← x + 1 ∼ x ← x + 1{x1 ≤ x2}. This means
that if the variable x in the left program is smaller-equal than in the right one,
and both programs increase x, then x in the left program will still be smaller-equal
than in the right one. As this example shows, relational Hoare logic can express
more complex relationships than simple equivalence of two games. This makes the
approach very powerful. To reason about cryptography, one needs a variant of rela-
tional Hoare logic that supports probabilistic programs. Such a probabilistic rela-
tional Hoare logic (pRHL) was developed for this purpose by Barthe, Grégoire, and
Zanella Béguelin [5]. EasyCrypt uses pRHL for proving the relationship between
cryptographic games.

Formal Verification of QuantumCryptography. When considering the veri-
fication of post-quantum cryptography, one might wonder whether the tools devel-
oped for classical cryptography may not already be sufficient. Unfortunately, this
is not the case. The soundness of the existing tools is proven relative to classical
semantics of the protocols and of the adversary. In fact, at least for EasyCrypt,
Unruh [32] gave an explicit example of a protocol which can be shown secure in
EasyCrypt but which is known not to be secure against quantum adversaries. For
the purpose of verifying quantum cryptography, Unruh [32] introduced a gener-
alization of pRHL, quantum relational Hoare logic (qRHL) that allows to prove
relational statements about quantum programs. (We will describe qRHL in more
detail in Sect. 2.) Unruh [32] also developed a tool qrhl-tool for reasoning in
qRHL for the purpose of verifying quantum cryptography. However, except for a
toy example, the post-quantum security of a very simple encryption scheme, to
the best of our knowledge, no post-quantum security proof has been formally ver-
ified before this work. qrhl-tool uses a hybrid approach: Reasoning about qRHL
judgments is hardcoded in the tool, but verification conditions (i.e., auxiliary sub-
goals, e.g., implications between invariants) are outsourced to the theorem prover
Isabelle/HOL [22].

Our Contribution. In this work, we formally verified the security proof of the
FO transformation from HKSU [17].2 The FO-variant analyzed by HKSU is a
state-of-the-art construction for building efficient public-key encryption schemes,
and can be applied to many of the NIST submissions to get IND-CCA secure
encryption schemes (e.g., Frodo [20] or Kyber [10]).

2 To be precise, we formalize the security proof from the February 2019 version [16]
of [17]. The proof has been improved upon in later revisions of the paper. In par-
ticular, the requirement of injective encryption (see Footnote 5) has been removed.
We formalized the earlier version of the proof since the formalization was already
under way when the proof was updated. Their new proof does not use substantially
different techniques, and we believe that formalizing their new proof in qRHL would
not pose any challenges different from the ones encountered in this work. However,
since their new proof is an almost complete rewrite (i.e., a different proof), it is
not possible to simply update our formalization. Instead, a new development from
scratch would be needed.
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Our formalization follows the overall structure of HKSU (i.e., it uses roughly
the same games) but introduces many additional intermediate games. (Alto-
gether, our proof defines 136 programs, which covers games, oracles, and explic-
itly constructed adversaries in reductions.) The formalization has 3455 lines of
proof in qRHL and 1727 lines of proof in Isabelle/HOL for auxiliary lemmas.
(Not counting comments and blank lines or files autogenerated by search &
replace from others.) We mostly follow the structure of HKSU (but in many
places we need to do some adjustments to achieve the level of rigor required for
formal verification). In the process, we identified a few best practices for doing
proofs in qrhl-tool that we list in Sect. 2.4.

We furthermore extended the qrhl-tool with a tactic o2h that implements
an application of the Semiclassical O2H Theorem [1]. This is needed in HKSU,
but the O2H Theorem is often in post-quantum crypto proofs, so we expect this
addition to be very useful for future verifications, too. (Details are given in the
full version [35].)

Organization. In Sect. 2, we review qRHL and the qrhl-tool. In Sect. 3, we
review the result and part of the proof from HKSU. In Sect. 4, we go through
the parts of the formalization that make up the specification of the main result.
In Sect. 5, we discuss the formal proof. We conclude in Sect. 6. The source code
of the formalization is provided in [33]. A full version with additional details is
available at [35].

2 Quantum Relational Hoare Logic

In this section, we give an overview of quantum relational Hoare logic (qRHL).
We will not give formal definitions or a set of reasoning rules. For these, refer
to [32]. Instead, our aim is to give an intuitive understanding of the logic that
allows to understand (most of) the reasoning steps in our formalization.

2.1 Quantum While Language

qRHL allows us to reason about the relationship between quantum programs
(that encode cryptographic games). The programs are written in a simple while
language that has the following syntax (where c and d stand for programs):

c,d := skip, c;d (no operation / sequential composition)

x ← e, x $← e (classical assignment/sampling)
if e then c else d, while e do c (conditional/loop)

q1 . . .qn
q← e (initialization of quantum registers)

apply e to q1 . . .qn (quantum application)
x ← measure q1 . . .qn with e (measurement)
{local V ; c} (local variable declaration)
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The language distinguishes two kinds of variables, quantum and classical. In
the above syntax, classical variables are denoted by x and quantum variables
by q. The command x ← e evaluates the expression e (which can be any well-
typed mathematical expression involving only classical variables) and assigns
the value to x. In contrast x $← e evaluates e which is supposed to evaluate to
a distribution D, and then samples the new value of x according to D. If- and
while-statements branch depending on a classical expression e.

To initialize quantum variables, we use q1 . . .qn
q← e. Here e is evaluated to

return a quantum state (i.e., a classical expression returning the description of
a quantum state). Then q1 . . .qn are jointly initialized with that state. E.g., we
can write q q← |x〉 (where x is a classical bit variable) to initialize a quantum
bit q.

Given an expression e that computes a unitary U , we use apply e toq1 . . .qn

to apply U jointly to q1 . . .qn. E.g., applyCNOT toq1q2.
x ← measureq1 . . . qn with e evaluates e to get a description of a measure-

ment, measures q1 . . .qn jointly with that measurement and assigns the result
to x. Typically, e might be something like computational_basis, denoting a
computational basis measurement.

Finally, {localV ; c} declares the variables V as local inside c. (This is an
extension of the language from [34].)

2.2 QRHL Judgements

Recall from the introduction that in relational Hoare logics, judgments are of the
form {A}c ∼ d{B} where c,d are programs, and A,B are relational predicates
(the pre- and postcondition). In particular, {A}c ∼ d{B} means that if the
variables of c,d (jointly) satisfy A before execution, then they (jointly) satisfy B
after execution.

Predicates. The same idea is used in qRHL but the concept of predicates
becomes more complex because we want to express something about the state
of quantum variables. In fact, predicates in qRHL are subspaces of the Hilbert
space of all possible states of the quantum variables of the two programs. We
will illustrate this by an example:

Say q is a quantum variable in the first program c. We refer to q as q1 to
distinguish it from a variable with the same name in program d. Say we want to
express the fact that q1 is in state |+〉. That means that the whole system (i.e.,
all quantum variables together), are in a state of the form |+〉q1 ⊗|Ψ〉vars where
vars are all other variables (of c and d), except q1. The set of all states of this
form forms a subspace of the Hilbert space of all possible states of the quantum
variables. Thus A := {|+〉q1 ⊗ |Ψ〉vars : |Ψ〉 ∈ Hvars} (with Hvars denoting the
corresponding Hilbert space) is a subspace and thus a valid predicate for use in a
qRHL judgment. For example, we could then write {A}applyX toq ∼ skip{A}
to express the fact that, if q is in state |+〉 in the left program, and we apply
X (a quantum bit flip) to q, then afterwards q is still in state |+〉. Of course,
writing A explicitly as a set is very cumbersome. (And, in the setting of formal
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verification, one would then have no syntactic guarantees that the resulting set
is indeed a valid predicate.) Instead, we have the shorthand span{|+〉} »q1 to
denote the above predicate A. (More generally, S»q1 . . .qn means that q1 . . .qn

are jointly in a state in S.)
We can build more complex predicates by combining existing ones. E.g., if

A,A′ are predicates, then A ∩ B is a predicate that intuitively denotes the fact
that both A and B hold. We will also often have to compare predicates. A ⊆ B
means that A is a subspace of B for all values of the classical variables. Intuitively,
this means A implies B.

Predicates with Classical Variables. In most cases, however, we do not
only have quantum variables, but also classical variables. Especially in a post-
quantum cryptography setting, the majority of variables in a predicate tends to
be classical. Support for classical variables in qRHL predicates is straightforward:
A predicate A can be an expression containing classical variables. Those are
then substituted with the current values of those variables, and the result is a
subspace that describes the state of the quantum variables as explained above.
For example, we can write the predicate span{|x2〉} »q1. This would mean that
q1 (a qubit in the left program) is in state |x2〉.

This already allows us to build complex predicates, but it is rather inconve-
nient if we want to express something about the classical variables only, e.g., if
we want to express that x1 = x2 always holds. To express such classical facts, we
use an additional shorthand: Cla[b] is defined to be H (the full Hilbert space) if
b = true, and defined to be 0 (the subspace containing only 0) if b = false. Why
is this useful? Consider the predicate Cla[x1 = x2]. If x1 = x2, this evaluates to
Cla[true = H]. Since H contains all possible states, the state of the quantum
variables will necessarily be contained in Cla[true], hence the predicate is sat-
isfied. If x1 
= x2, Cla[x1 = x2] evaluates to Cla[false = 0], and the state of
the quantum variables will not be contained in Cla[false], hence the predicate
will not be satisfied. Thus, Cla[x1 = x2] is satisfied iff x1 = x2; the state of the
quantum variables does not matter. In general Cla[e] allows us to translate any
classical predicate e into a quantum predicate. (And this predicate can then be
combined with quantum predicates, e.g., Cla[x1 = x2] ∩ span{|+〉} »q1.)

Quantum Equality. One very important special case of predicates are equal-
ities. We will often need to express that the variables of the left and right pro-
grams have the same values. We have already seen how to do this for classical
variables. For quantum variables, the situation is more complex. We cannot
write Cla[q1 = q2], this is not even a meaningful expression (inside Cla[. . .], only
classical variables are allowed). Instead, we need to define a subspace that in
some way expresses the fact that two quantum variables are equal. The solu-
tion proposed in [32] is: Let q1 ≡quant q2 denote the subspace of all states that
are invariant under exchanging q1 and q2 (i.e., invariant under applying a swap
operation). Then q1 ≡quant q2 is a quantum predicate. And – this is less easy to
see but shown in [32] – q1 ≡quant q2 does indeed capture the idea that q1 and
q2 have the same value in a meaningful way. We can now write, for example,
Cla[x1 = x2] ∩ (q1 ≡quant q2) to denote the fact that the variables x (classical)
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and q (quantum) have the same value in both programs. In particular, if c
only contains those two variables, we have {Cla[x1 = x2] ∩ (q1 ≡quant q2)}c ∼
c{Cla[x1 = x2] ∩ (q1 ≡quant q2)}. What if there are more quantum variables?
The advantage of the quantum equality is that we hardly ever need to recall the
actual definition in terms of swap invariance. All we need to remember is that
q1 ≡quant q2 is a quantum predicate/subspace that intuitively encodes equality
of q1 and q2.

The most common form of predicate that we will see is A= :=
Cla[x(1)

1 = x(1)
2 ∧ · · · ∧ x(1)

1 = x(1)
2 ]∩ (q(1)

1 . . .q(m)
1 ≡quant q

(1)
2 . . .q(m)

2 ). In fact, if
both sides have the same program c (and c contains no variables besides the
ones mentioned in A=), then {A=}c ∼ c{A=} holds. Intuitively, this means: if
the inputs of two programs are equal, the outputs are equal.

2.3 Reasoning in qRHL

To derive qRHL judgments, one will hardly ever go directly through the defi-
nition of qRHL itself. Instead one derives complex qRHL judgments from ele-
mentary ones. For example, to derive the elementary {Cla[x1 = 0]}x ← x+ 1 ∼
skip{Cla[x1 = 1]}, we use the Assign1 rule [32] that states {B{e1/x1}}x ← e ∼
skip{B}. (Here e1 is the expression e where all variables y are replaced by y1.
And B{e1/x1} means every occurrence of x1 in B is replaced by e1.) With B :=
Cla[x1 = 1], we get from Assign1: {Cla[x1 + 1 = 1]}x ← e ∼ skip{Cla[x1 = 1]}.
Since x1 + 1 = 1 is logically equivalent to x1 = 1 (assuming the type of x is,
e.g., integers or reals), this statement is equivalent to {Cla[x1 = 0]}x ← x+ 1 ∼
skip{Cla[x1 = 1]}. (This is an example of reasoning in the “ambient logic”:
Besides application of qRHL rules, we need to use “normal” mathematics to
derive facts about predicates. This is external to qRHL itself.)

One can then combine several judgments into one, using, e.g., the Seq rule:
“If {A}c ∼ d{B} and {B}c′ ∼ d′{C} holds, then {A}c; c′ ∼ d;d′{C} holds.”
For example, once we have derived {Cla[true]}x ← 1 ∼ skip{Cla[x1 = 1]}
and {Cla[x1 = 1]}skip ∼ y ← 1{Cla[x1 = y2]}, we conclude using Seq that
{Cla[true]}x ← 1 ∼ y ← 1{Cla[x1 = y2]}. (We use here implicitly that x ←
1; skip is the same as x ← 1 and analogously for skip;y ← 1.)

We will not give the full list of rules here, see [32] and the manual of [31] for
a comprehensive list.

One common approach to prove more complex qRHL judgments is backward
reasoning: One starts by stating the judgment one wants to prove, say G1 :=
{Cla[true]}x ← 1 ∼ y ← 1{Cla[x1 = y2]}. Then one applies one qRHL rule to
the very last statement on the left or right, say y ← 1. By application of the Seq
and Assign2 rule, we see that G2 := {Cla[true]}x ← 1 ∼ skip{Cla[x1 = 1]}
implies G1. So we have reduced our current goal to showing G2. (Using a rea-
soning step that can be fully automated.) By application of Seq and Assign1,
we see that G3 := {Cla[true]}skip ∼ skip{Cla[1 = 1]} implies G2. So our new
proof goal is G3. And finally, G3 is implied by G4 := (Cla[true] ⊆ Cla[1 = 1]). So
our final goal is G4 which is a trivial statement in ambient logic because 1 = 1 is
true. Hence the proof concludes and G1 holds. The advantage of this approach
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is that it is fully mechanical in many cases, e.g., for sequences of assignments
and applications of unitaries. The proof tool qrhl-tool (see the next section)
follows exactly this approach.

So far, we have gotten a glimpse how to derive qRHL judgments. In a
cryptographic proof, however, we are interested not in qRHL judgments but
in statements about probabilities. Fortunately, we can derive those directly
from a qRHL judgment using the QrhlElimEq rule. It states (somewhat
simplified): Assuming X and Q are all the variables occurring in c,d, then
{Cla[X1 = X2] ∩ (Q1 ≡quant Q2)}c ∼ d{Cla[e1 =⇒ f2]} implies Pr[e : c] ≤
Pr[f : d] (and similarly for = instead of ≤). (Here Pr[e : c] denotes the proba-
bility that the Boolean expression e is true after executing c, and analogously
Pr[f : d].) Thus to derive an inequality or equality of probabilities of program
outcomes, we convert it into a qRHL proof goal with QrhlElimEq, and then
use the reasoning rules of qRHL to derive that qRHL judgment. This is, on a
high level, how crypto proofs in qRHL are done (modulo many concrete details).

2.4 The qrhl-tool

While reasoning using qRHL in pen-and-paper proofs is possible in principle,
qRHL was specifically designed for formal verification on the computer. To that
end, an interactive theorem prover for qRHL was developed, qrhl-tool [31,32].
To execute our formalization, version 0.5 is required. See README.txt there for
instructions on how to check/edit our formalization, and manual.pdf for detailed
information. In the following, we recap the most important facts about the tool.

In addition to that review, we also list some “best practices” for developing
proofs in the tool, based on our experience while formalizing HKSU.

Architecture of the Tool. qrhl-tool has a hybrid architecture: It embeds
the theorem prover Isabelle/HOL, and all reasoning in the ambient logic is done
by Isabelle/HOL. The tool handles qRHL judgments directly. As a consequence,
proofs are written in two files: .thy files contain native Isabelle/HOL code and
can reason only about ambient logic (no support for qRHL itself). Those .thy
files are also used to specify the logical background of the formalization (e.g.,
declaring constants such as the encryption function in our development). .qrhl
files are executed natively by qrhl-tool and contain specifications of programs,
as well as proofs in qRHL. They can also contain proofs in ambient logic (arbi-
trary Isabelle/HOL tactics can be invoked) but this is only suitable for simple
proofs in ambient logic. Complex ambient logic facts are best proven as an aux-
iliary lemma in the .thy files. It is possible to split a proof into many files by
including one .qrhl file from another using the include command.

The tool can be run in two modes, batch and interactive mode. In batch mode,
a given .qrhl file is checked on the command-line and the run aborts with an
error if the proof is incorrect. In interactive mode, an Emacs/ProofGeneral-based
user interface allows us to edit and execute the proofs.

Best practice: Create one file variables.qrhl that declares all program vari-
ables and loads the .thy files. Furthermore, create a separate file p.qrhl for every
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declared program p , and a separate file lemma_l.qrhl for every lemma l. This
allows us to execute proofs without too much runtime overhead and at the same
time allows us to find quickly which entity is declared where. �
Declarations. All program variables that occur in any analyzed program need
to be declared globally (even if the variable is used only as a local variable).
This is done using classical/quantum/ambient var x : type where type is
any type understood by Isabelle/HOL. (ambient var declares an unspecified
constant value that can be used in programs and in ambient logic subgoals.)
Programs are declared by program name := { code } where code is a quan-
tum program as described in Sect. 2.1. For describing games this approach is
sufficient, but when specifying adversaries or oracles or helper functions, we
would like to define procedures that take arguments and have return values.
Unfortunately, such procedure calls are not supported by the language underly-
ing qRHL yet. What has to be done instead is to pass values to/from procedures
via global variables. A program X can be invoked by another program using
call X,3 and we need to write the program X so that it communicates with the
invoking program via global variables that are set aside for this purpose. While
this approach is not very convenient, we found that with disciplined variable use,
no bigger problems arise.

One highly important feature in more advanced cryptographic definitions
and proofs are oracles. Roughly speaking, an oracle is a program O that is given
as an argument to another program A, so that the other program can execute it
whenever needed. (For example, an adversary A may get access to a decryption
oracle Dec that decrypts messages passed to it.) Programs that take oracles
are supported by qrhl-tool. One can declare a program via, e.g., program
prog(O1,O2) := {code} where code can contain, e.g., a call O1 statement.
Then prog is a program that needs to be instantiated with oracles when invoked,
e.g.: call prog(Enc,Dec).

Finally, to model adversaries we need to declare programs of unspecified code.
(This then means that anything that is proven holds for any adversary.) The
command adversary A declares an adversary A that can be invoked via call A.
Additional arguments to the adversary command allow to specify global vari-
ables that the adversary may access, and whether A expects oracles.

Best practice: When declaring a program that is intended as a subroutine
(e.g., an oracle or an adversary), make explicit which global variables are used
as inputs/outputs to simulate procedure calls. (E.g., an adversary might be anno-
tated with a comment “Input: c (ciphertext). Output: b (guessed bit). Internal
state: stateA.”)

All variables (especially quantum variables) that are used that are not needed
between consecutive invocations should be made local at the beginning of the
program using the local program statement.

3 Semantically, call X is not a separate language feature. It just means that the source
code of X is included verbatim at this point.
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When invoking a program taking an oracle (e.g., call A(queryH)where queryH
expects inputs/outputs in variables Hin,Hout), the input/output variables should be
made local at that call. (E.g., { local Hin,Hout; call A(queryH);}.) Otherwise,
qrhl-tool will not be able to determine that Hin,Hout are not changed globally,
even if the code of A internally already contains a local statement.

print programname can be used in interactive mode to check the list of vari-
ables used by a program.

Following these rules may make many proofs somewhat longer (due to addi-
tional boilerplate for removing local commands) but it removes a lot of poten-
tial for conflicts in variable use. (Especially with quantum variables: due to the
idiosyncrasies of the quantum equality, any quantum variable used non-locally by
a subprogram will have to be carried around explicitly in all quantum equalities.)

�
Note that qRHL did not initially support local variables. The addition of local

variables to qrhl-tool and the corresponding theory [34] were prompted by our
experiences in the present formalization. Without local variables, it becomes
very difficult to maintain a larger formalization involving quantum equalities.

Proving Lemmas. Finally, to state a lemma one can either state a lemma in
ambient logic (extended with syntax Pr[...] for talking about the results of pro-
gram executions), or qrhl subgoals. The command lemma name: formula states
the former, the command qrhl name: {precondition} call X; ∼ call Y;
{postcondition} the latter. The syntax Pr[e : prog(rho)] denotes the prob-
ability that the Boolean expression e is true after running prog with initial
quantum state rho. Most of the time we will thus state lemmas of the form
Pr[b=1 : prog1(rho)] = Pr[b=1 : prog2(rho)] where rho is an ambient
variable (meaning, the initial state is arbitrary). This can be converted into a
qRHL subgoal using the tactic byqrhl (implementing the rule QrhlElimEq).

Once one has stated a qRHL proof goal, the proof proceeds via backwards rea-
soning as described in Sect. 2.3. For example, to remove the last assign statement
from a goal (and rewrite the postcondition accordingly) as done in Sect. 2.3, one
writes wp left/right (or wp n m for the last n/m statements on the left/right).
Once all statements are gone (skip on both sides), the tactic skip replaces
{A}skip ∼ skip{B} by the ambient logic goal A ⊆ B. Another important tactic
is conseq pre/post: C which replaces the current pre-/postcondition by C (and
adds a ambient logic subgoal to prove that this replacement is justified). This
allows to clean up subgoals and increases readability. The tactic simp simplifies
the current goal using the Isabelle/HOL simplifier.

Best practice:To make proofs more maintainable, before each tactic invocation
add a comment which line of code it addresses. E.g., wp left will always affect
the last command of the left program. If that command is, e.g., x <- 1+y, add
the comment #x. This ensures that if a change in a program definition breaks an
existing proof, it is easier to find out where the proof script went out of sync.

Additionally, at regular intervals add the tactic conseq post: X commands
where X is the current postcondition (possibly, but not necessarily simplified).
This serves both as a documentation of the current state of the proof, and it
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makes maintenance easier because the proof will fail at the first point where the
postcondition is not what was expected anymore (as opposed to failing at a later
point). �
Isabelle/HOL Micro Primer. For an introduction to Isabelle/HOL we rec-
ommend [21]. Here, we only give some minimal information to help reading the
code fragments in the paper (Figs. 7, 8 and 9). This micro primer does not
does not allow us to understand the definitions given in this paper in depth. In
particular, to understand them in depth one needs to know the predefined con-
stants in Isabelle/HOL and in the qrhl-tool. But with the syntax given here,
it should at least be possible to make educated guesses about the meanings of
the definitions.

All constants in Isabelle/HOL are typed. A function f taking arguments of
types t1, . . . , tn and returning t has type t1 ⇒ · · · ⇒ tn ⇒ t. To invoke f with
arguments a1, . . . , an, we write f a1 a2 . . . an. (Not f(a1, . . . , an).) To declare
(axiomatically) the existence of a new constant c of type type, we write

Here the optional facts are logical propositions that we assume about c. For
example, we can declare the existence of a commutative binary operation op on
natural numbers via

Instead of axiomatizing constants, we can also define them in terms of existing
constants. This cannot introduce logical inconsistencies. The syntax for this is

Instead of = we can also write ↔ when defining a proposition (i.e., if the
return type is bool). For example, if we wanted to define the operation op above
as twice the sum of its arguments, we could write:

The parts before where are optional and will be inferred if necessary.

This summary of the operation of qrhl-tool does not, of course, replace a
reading of the manual. However, it should give a first impression as well as help
in reading Sects. 4–5.

3 Fujisaki-Okamato á la HKSU

In this section, we describe the FO variant analyzed by HKSU [17] and their
proof. We stress that the proof we analyzed (and describe here) is the one from
the earlier version [16] of HKSU, it has been rewritten since we started our
formalization.
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DSreal

01 (pk , sk) ← Keygen()
02 m

$← M
03 c ← Enc(pk ,m)
04 b ← A(pk , c)

DSfake

05 (pk , sk) ← Keygen()
06 c ← Enc(pk)
07 b ← A(pk , c)

Fig. 1. Games from definition of disjoint simulatability. In the random oracle model,
A is additionally given oracle access to all random oracles.

The goal of the FO transform is to transform an encryption scheme that is
passively secure into a chosen-ciphertext secure key encapsulation mechanism
(KEM). The variant analyzed by HKSU can be described modularly by consec-
utively applying three transformations (called Punc, T, and U�⊥

m) to the passively
secure encryption scheme.

3.1 Transformation Punc

We start with a base public-key encryption scheme (Keygen0,Enc0,Dec0) with
message space M0. We assume the base scheme to be IND-CPA secure. (We
assume further that decryption is deterministic, but we do not assume that
decryption succeeds with probability 1, or that decrypting a valid ciphertext
returns the original plaintext with probability 1.)

The first step is to construct a scheme with disjoint simulatability (DS). DS
security [25] means that there exists a fake encryption algorithm Enc that (with-
out being given a plaintext) returns ciphertexts that are indistinguishable from
valid encryptions of random messages, but that are guaranteed to be distinct
from any valid ciphertext with high probability.

More precisely:

Definition 1 (Disjoint simulatability). We call (Keygen,Enc,Dec) with mes-
sage space M and randomness space R DS secure iff for any quantum-
polynomial-time A, |Pr[b = 1 : DSreal] − Pr[b = 1 : DSfake]| is negligible, for the
games defined in Fig. 1.

We say (Keygen,Enc,Dec) is ε-disjoint iff for all possible public keys pk ,
Pr[(∃m ∈ M, r ∈ R. c = Enc(pk ,m; r)) : c ← Enc(pk)] ≤ ε.

The transformation Punc is very straightforward: The encryption scheme
is not really modified (i.e., the resulting Keygen,Enc,Dec are the same in the
base scheme). But the message space is reduced by one element. I.e., we simply
declare one plaintext m̂ as invalid, hence encryptions of that plaintext will be
disjoint from valid ciphertexts, and thus we can produce fake encryptions Enc
by encrypting m̂. We summarize Punc in Fig. 2. The proof that the resulting
scheme is both DS and IND-CPA secure is very straightforward, and we omit it
here. (But we have formalized it, of course.)
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Fig. 2. Transformation Punc. Input scheme: (Enc0,Dec0,Keygen0) with message space
M0. Output scheme: (Enc,Dec,Keygen) with message space M0 and fake encryption
algorithm Enc.

Fig. 3. Transformation T. Input scheme: (Enc,Dec,Keygen) with message space M
and fake encryption algorithm Enc. Output scheme: (Enc′,Dec′,Keygen′) with message
space M′ and fake encryption algorithm Enc′. G : M → R is a hash function (modeled
as a random oracle).

3.2 Transformation T

Transformation Punc gave us a DS secure encryption scheme Enc. However, as
the starting point for the transformation U�⊥

m below, we need a deterministic
encryption scheme (that is still DS secure).

Transformation T achieves this by a simple technique: Instead of running
Enc normally (i.e., Enc(pk ,m; r) with r uniformly from the randomness space
R), the modified encryption algorithm Enc′ computes the randomness r from
the message m as r := G(m). Here G is a hash function (modeled as a random
oracle).

Transformation T also strengthens the decryption algorithm: The decryption
algorithm resulting from T rejects any invalid ciphertexts (i.e., any ciphertext
that is not in the range of Enc′). This is achieved by adding an extra check
to the decryption algorithm Dec′: After decrypting a ciphertext c to m, m is
reencrypted and compared with the ciphertext c. Since Enc′ is deterministic,
this will always succeed for honestly generated ciphertexts, but it will always
fail for invalid ones.

We summarize transformation T in Fig. 3.

Security of Transformation T. HKSU shows the following:

Theorem 1 (DS security of Enc′, informal). If Enc is ε-disjoint, so is Enc′.
If Enc is DS secure and IND-CPA secure, then Enc′ is DS secure.

(In HKSU, the result is given with concrete security bounds.)
The core idea of the proof is to show that the adversary cannot distinguish

between uniform randomness (as used in Enc) and randomness r := G(m∗) where
m∗ is the challenge message (as used in Enc′). This is shown by bounding the
probability for guessing m∗ and then using the Semiclassical O2H theorem [1]
to bound the distinguishing probability.



Post-Quantum Verification of Fujisaki-Okamoto 335

Fig. 4. Transformation U�⊥
m. Input scheme: (Enc′,Dec′,Keygen′) with message space M′

and fake encryption algorithm Enc′. Output scheme: (KeygenFO,Encaps,Decaps) with
key space K. (The key space is the space of encapsulated keys, not of public/secret key
pairs.) PRF is a pseudorandom function with key space KPRF. H : M′ → K is a hash
function (modeled as a random oracle).

We omit the proof from this exposition (we will focus on the more complex
proof of transformation U�⊥

m below). The full proof can be found in [16].

3.3 Transformation U �⊥
m

Finally, the transformation U�⊥
m takes the deterministic DS secure encryption

scheme and transforms it into a KEM. In a KEM, we have an encapsulation
algorithm Encaps that, instead of accepting a plaintext as input, uses a random
(symmetric) key K as plaintext (intended for use in a symmetric encryption
scheme) and returns both that key and the ciphertext. (We stress that K must
not be confused with the public/secret keys of the KEM.) And the decapsulation
algorithm Decaps takes the ciphertext and returns the key, like a decryption does.

The encapsulation algorithm constructed by transformation U�⊥
m picks a uni-

form m
$← M′ and encrypts it (resulting in a ciphertext c). However, instead of

using m directly as the symmetric key, the key is set to be K := H(m). (Here
H is a hash function modeled as a random oracle.)

Decapsulating c is straightforward: By decrypting c we get m back, and
then we can compute the key K := H(m). However, there is a subtlety in case
of decryption failures: If m = ⊥, then Decaps does not return ⊥, but instead
returns a key K that is indistinguishable from one that would result from a
successful decryption. (This is called “implicit rejection”, as opposed to “explicit
rejection” that would return ⊥.) This key K is generated from the ciphertext as
K := PRF(k, c) where PRF is a pseudorandom function.4 And the PRF-key k is
part of the secret key of the KEM. We describe the transformation U�⊥

m in Fig. 4.

Security of Transformation U�⊥
m. HKSU does not show the security of trans-

formation U�⊥
m (in the sense of showing that Encaps is secure if Enc′ satisfies

certain properties), but instead directly analyzes the result of applying both T

4 Note that HKSU [16] instead uses a secret random function Hr. (Not a public ran-
dom function like the random oracle.) But it is understood that this secret random
function is to be implemented by a PRF. Here, we directly use the PRF since we
want to avoid keeping the proof step that replaces the PRF by a random function
implicit.
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Fig. 5. Games in the definition of IND-CCA security. In the random oracle model, A
is additionally given oracle access to all random oracles.

and U�⊥
m. That is, they show that Encaps is secure if Enc satisfies certain proper-

ties. HKSU does not completely modularize the proof (i.e., it does not separately
analyze T and U�⊥

m) but shows the following:

Theorem 2. Assume Enc has injective encryption5 and is IND-CPA secure and
DS secure and ε-disjoint, and has ε′-correctness.6 (For negligible ε, ε′) Then
Encaps (as constructed by transformations T and U�⊥

m from Enc) is IND-CCA
secure.

The result stated in HKSU includes concrete security bounds. We also recall the
definition of IND-CCA security for KEMs used in the preceding theorem:

Definition 2. A KEM (KeygenFO,Encaps,Decaps) with key space K is IND-CCA
secure iff for any quantum-polynomial-time adversary A,
|Pr[b = 1 : IND-CCA0] − Pr[b = 1 : IND-CCA1]| is negligible, using the games from
Fig. 5.

Intuitively, this means that A cannot distinguish between the true key K∗

contained in the ciphertext c∗ and a uniformly random key K∗.
Note that in this definition, we slightly deviate from HKSU: In HKSU, only

one game is given. This game picks randomly whether to play IND-CCA0 or
IND-CCA1 from our definition. The security definition then requires that the
adversary guesses which game is played with probability negligibly close to 1

2 .
(We call this a “bit-guessing-style definition”) In contrast, our definition requires
the adversary to distinguish with its output bit between two games. (We call
this a “distinguishing-style definition”.) It is well-known that bit-guessing-style
and distinguishing-style definitions are equivalent. But in the context of for-
mal verification, it seems (according to our experiences) easier to work with
distinguishing-style definitions.

Security Proof of Transformation U�⊥
m. We give a compressed overview of

the proof of Theorem 2 from HKSU. For details, see [16].
5 This means that for any m0 �= m1 in the message space, Enc(pk , m0) �= Enc(pk , m1)

with probability 1. Note that this does not imply the possibility of correct decryption:
While information theoretically, the plaintext is determined by the ciphertext, it may
be computationally infeasible to determine the correct plaintext with probability 1,
even given the secret key.

6 This means that for random (pk , sk) ← Keygen() and worst-case m, Dec(sk ,Enc(pk ,
m)) = m with probability at least 1 − ε. See [16] for a precise definition.
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Fix an adversary A. By definition of IND-CCA security (Definition 2), we
need to bound |Pr[b = 1 : IND-CCA0] − Pr[b = 1 : IND-CCA1]| for the games from
Fig. 5.

We use essentially the same games in this proof as HKSU, with one differ-
ence: Since we decided to define IND-CCA security via a distinguishing-style
definition, we need to adapt the games accordingly. All arguments from HKSU
carry over trivially to our changed presentation.

The first step is to rewrite IND-CCA0 by unfolding the definitions of KeygenFO,
Encaps, Decaps. (I.e., we make all constructions introduced by T and U�⊥

m

explicit.) In addition, we replace the PRF by a uniformly random function Hr

(that is not accessible to the adversary). The resulting game is:

Here (A → B) is the set of functions from A to B. And C is the ciphertext space.
From the fact that PRF is a pseudorandom function, we get that

|Pr[b = 1 : IND − CCA0] − Pr[b = 1 : Game 0]| is negligible.
Next, we chose the random oracle H differently: Instead of chosing H uni-

formly, we define it as the composition of a uniformly random function Hq and
the encryption function Enc(pk ,−;G(−)). (The − stands for the function argu-
ment.) Since Enc has injective encryption, Enc(pk ,−;G(−)) is injective, and thus
H is still uniformly distributed. We get the following game (changed lines are
marked with boldface line numbers):

Note that we additionally replaced two invocations H(m∗), H(m) by Hq(c∗),
Hq(c). By construction, the new invocations return the same values. We have
Pr[b = 1 : Game 0] = Pr[b = 1 : Game 1].

In the next game hop, we change the decapsulation oracle. Instead of return-
ing Hr(c) or Hq(c), depending on the result of the decryption, we now always
return Hq(c). The resulting game is:
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Since Hr and Hq are both random functions, at the first glance it might seem
that this change does not matter at all, the return value is still random. However,
Hq is indirectly accessible to the adversary via H! A more careful case analysis
reveals that the adversary can distinguish the two games if it finds a message m
with “bad randomness”. That is, a message m such that Dec(sk ,Enc(pk ,m; r)) 
=
m where r := G(m). If such bad randomness did not exist (i.e., when using a
perfectly correct base scheme), this case would never happen. However, we do
not assume perfect correctness. The solution from HKSU is to first replace the
uniformly chosen G

$← (M → R) by a G that outputs only good randomness
(short: a “good G”). I.e., for each m, G(m) := r is chosen uniformly from the
set of all r with Dec(sk ,Enc(pk ,m; r)) = m. Once we have such a good G, bad
randomness does not occur any more, and we can show that switching between
Hr and Hq cannot be noticed (zero distinguishing probability). And then we

replace G back by G
$← (M → R).

To show that replacing the uniform G by a good G, HKSU reduces distinguish-
ing the two situations to distinguishing a sparse binary function F from a constant-
zero function F0 (given as an oracle). And for that distinguishing problem (called
GDPB), they give a lemma that shows the impossibility of distinguishing the F and
F0. Altogether, we get that |Pr[b = 1 : Game 1] − Pr[b = 1 : Game 2]| is negligible.

Our formalization deviates somewhat from that proof: Instead of using the
lemma about GDPB (which we would have to implement in the tool, first), we
use the O2H Theorem [1] to show this indistinguishability. (We had to implement
the O2H Theorem anyway because it is used in the analysis of transformation T.)

Note that this makes our bound somewhat worse. In HKSU, the proof step
involving GDPB leads to a summand of O(q2δ) in the final bound, while we
achieve O(q

√
δ) instead (last but one summand of (1)). Here q is the number of

queries and δ the correctness error of the underlying scheme.
In the next game, we change how the challenge ciphertext c∗ is generated.

Instead of encrypting m∗, we simply produce a fake ciphertext c∗ ← Enc(pk).
The resulting game is:
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By DS security of Enc, this fake encryption cannot be distinguished from a real
encryption. (Note that the secret key is not used any more in Game 2.) Hence
|Pr[b = 1 : Game 2] − Pr[b = 1 : Game 3]| is negligible.

Finally, we change how K∗ is chosen. Instead of picking K∗ := Hq(c∗), we
chose K∗ uniformly:

Since Hq is a random function, this change can only be noticed if Hq(c∗) is
queried somewhere else. The adversary has access to Hq via H, but through
H it can only query Hq on values that are in the range of Enc. But since c∗

was constructed as a fake encryption Enc(pk), the ε-disjointness of Enc guaran-
tees that c∗ is, with overwhelming probability, not in the range of Enc. In that
case, Hq(c∗) is independent from anything the adversary might query. Thus
|Pr[b = 1 : Game 3] − Pr[b = 1 : Game 4]| is negligible.

So far, we have shown that the games IND-CCA0 and Game 4 are indistin-
guishable. To show indistinguishability of IND-CCA0 and IND-CCA1, we write
down a similar sequence of games Game 0’ to Game 4’ where K∗ is chosen uni-
formly (as in IND-CCA1). We then have indistinguishability of IND-CCA1 and
Game 4’. Game 4 and Game 4’ are identical, thus IND-CCA0 and IND-CCA1 are
indistinguishable, finishing the proof of IND-CCA security of Encaps.

Fig. 6. The main theorem. File: lemma_security_encFO.qrhl
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4 Formalizing HKSU – the Specification

A proof (formal or pen-and-paper) will consist of two separate parts: A spec-
ification of the result that is proven, and the proof itself. This separation is
important because if we trust that the proof is correct, we only need to read the
specification. In a pen-and-paper proof, this specification will usually consist of
the theorem together with all information required for interpreting the theorem,
i.e., all definitions that the theorem refers to, and all assumptions (if they are
not stated within the theorem itself). In the case of formal verification, we tend
to trust the proof (because it has been verified by the computer) but we have to
check the specification – does it indeed encode what we intended to prove?

In this section we go through the specification part of our HKSU formaliza-
tion (available at [33]). It consists roughly of five parts: The main theorem. The
specification of the encryption algorithm and other functions in Isabelle/HOL.
The specification of the security definitions (security games). The specification
of the adversary. And the specification of the reduction-adversaries (we explain
below why this is a relevant part of the specification).

The Main Theorem. The source code for the main theorem is shown in
Fig. 6. Line 2 is the IND-CCA advantage AdvCCA of the adversary attacking the
KEM Encaps resulting from the transformations Punc, T, U�⊥

m. (See Sect. 3.3.)
AdvCCA is defined as the difference between the probability of adversary-output
b = 1 in games indcca_encFO_0 and indcca_encFO_1. We will see those games
below. In 4 we have the advantage AdvPRF of a reduction-adversary7 against the
pseudorandom function PRF, expressed as the probability-difference between
games PRF_real and PRF_ideal. In 5, we have basically the same but with
respect to a different reduction-adversary. We have two reduction-adversaries for
PRF since we used the pseudorandomness twice in the proof. Since the adver-
sary is hardcoded in the games,8 we express this in terms of further games
PRF_real’ and PRF_ideal’. In 6 we have the IND-CPA advantage Adv′′′

CPA

of a reduction-adversary against the base scheme Enc0, expressed in terms of
games indcpa_enc0_0’’’ and indcpa_enc0_1’’’. Similarly, we have advan-
tages Adv′′

CPA in lines 7–8, Adv′
CPA in 6, and AdvCPA in lines 7–8, against further

reduction-adversaries. The term δ := correctness params0 ... in lines 11
and 12 refers to the correctness of Enc0, i.e., we assume Enc0 to be δ-correct.
(Cf. Footnote 6 for the meaning and Fig. 7 for the formalization of correctness.)
Finally, card (msg_space()) is the cardinality of the message space M of Enc.
qG, qH , qD are the number of queries made to the three oracles, and q := qG+2qH .

7 By reduction-adversary, we mean an adversary that we have explicitly constructed.
8 Due to a lack of a proper module system in qrhl-tool, we have a lot of code dupli-

cation. A module system for games and adversaries such as in EasyCrypt would be
a valuable addition to qrhl-tool and would have simplified our proofs considerably.
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Fig. 7. Some definitions from General_Definitions.thy. See Page 11 for a micro
primer on Isabelle/HOL syntax.

With the notation we introduced in this explanation, we can write the main the-
orem more readably:

AdvCCA ≤ AdvPRF + Adv′
PRF + Adv′′′

CPA + 2
√

1 + q
√

Adv′′
CPA + 4q/|M|

+Adv′
CPA + 2

√
1 + q

√
AdvCPA + 4q/|M|

+8
√

4(q + qD + 2)(q + qD + 1)δ + 2δ. (1)

Encryption Algorithm and Other Definitions. In order to make sense of
the main theorem, we first need to check the definitions of the KEM and the
building blocks used in its construction. The simplest is the pseudorandom func-
tion PRF, defined in Fig. 8, lines 1–2. The axiomatization command declares
two constants PRF (the PRF) and keygenPRF (the key generation algorithm for
the PRF, given as a distribution over keys). It furthermore axiomatizes the fact
the key generation is a total distribution (axiom keygenPRF_total). (We do not
need to axiomatize the security of PRF; its security is used implicitly by having
AdvPRF occur in the main theorem.)

Similarly, we axiomatize the encryption scheme Enc0 in lines 4–16. All encryp-
tion schemes in our work consist of a public parameter distribution (we only use
this here for chosing the random oracles), a key generation, an encryption, a
decryption algorithm, and a message space (which we allow to depend on the
public parameters). The base scheme does not have public parameters, so we
define params0 as the point distribution that always returns the dummy value
() (4). The key generation keygen0 (lines 6–9) takes the public parameter and
returns a distribution of public/secret key pairs. We assume that key generation
is a total distribution (axiom weight_keygen0). Additionally we assume a func-
tion pk_of_sk that returns the corresponding pk for every sk in the support of
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Fig. 8. Building blocks: Base scheme and pseudorandom function. File:
Base_Scheme.thy (last line: FO_Specification.thy). See Page 11 for a micro
primer on Isabelle/HOL syntax.

keygen.9 We define the encryption by first defining enc0r, a function that takes
the public parameters, public key, message, and explicit randomness to compute
a ciphertext (11). From this we define enc0 as the distribution resulting from
applying enc0r to the uniform distribution on the randomness (12). Decryption
(dec0, 13) may fail, hence the return type is msg option, which means it can
be None or Some m with a message m. Finally, msg_space0 is a non-empty set
(lines 15–16). We have an additional axiom enc0_injective (lines 18–19) which
encodes the assumption that our base scheme is injective. (Cf. Footnote 5 for
the meaning and Fig. 7 for the formalization of injective_enc.)

The transformations Punc, T, and U�⊥
m are given in Fig. 9. As with our base

scheme, we always define a deterministic encryption/encapsulation that takes
explicit randomness first. The final KEM consists of the functions keygenFO,
encapsFO, decapsFO, etc. We omit a discussion of the details of the function
definitions, they follow our exposition in Sect. 3.

Security Definitions/Games. Next we have to understand the games that
define the various advantages in the main theorem. We start with the IND-
CCA security of Encaps. AdvCCA was defined as the difference in probabilities
that an adversary A (Adv_INDCCA_encFO in our case) outputs b = 1 in games
indcca_encFO_0/1. The formalization of these games is given in Fig. 10. It is
a direct encoding of the games in Fig. 5, with several small differences: Since
we do not support procedures with parameters and return values, we use the
global variables in_pk and in_cstar and Kstar for the inputs pk and c∗ and
K∗. And the global variable b is used for the return value (guessing bit). Below,
when defining the adversary, we will then make sure the adversary gets access

9 This assumption is not explicit in HKSU but clearly necessary for defining the
decryption in transformation T: since the decryption re-encrypts, it needs to know
the public key.
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Fig. 9. Functions resulting from transformations Punc, T, U�⊥
m. Files: Punc_

Specification.thy (l.1–6), T_Specification.thy (l.8–15), FO_Specification.thy
(l.7–25). See Page 11 for a micro primer on Isabelle/HOL syntax.

to those global variables.10 Access to the oracle decapsQuery is by passing it
to the adversary as one of the oracles. Communication with decapsQuery is
through variables c (input) and K’ (output). It checks explicitly whether c 
= c∗

and returns None otherwise. (In Fig. 5, it was not made explicit how we enforce
c 
= c∗.) Additionally, we model the access to the random oracles G,H by giving
A access to queryG, queryH. queryG operates on global variables Gin, Gout and
applies the unitary transformation Uoracle G on them. (Uoracle is a built-in
function that transforms a function G into a unitary |x, y〉 �→ |x, y ⊕ G(x)〉.)
Analogously queryH.

Similarly we define the games used in the rhs (right hand side) of the
main theorem. The games PRF_real and PRF_ideal defining PRF-security
for adversary Adv_PRF are given in Fig. 11. Again, we define oracles to either
evaluate a pseudo-random function PRF or a random function RF and pass
them to the adversary. The adversary Adv_PRF is explicitly defined in terms
of Adv_INDCCA_encFO as part of our reduction, but its implementation details
do not matter for us (except for some necessary sanity checks, see below). The
primed variants Adv_real’ and Adv_ideal’ are identical except that they use
a different reduction-adversary.

10 We do not use pk and cstar directly for passing pk and c∗ since that would mean
giving A access to those variables. Then A could change the value of pk and c∗ but
the oracle decapsQuery relies on having the original values of pk and c∗.
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Fig. 10. IND-CCA security definition for Encaps. Files: indcca_encfo_0.qrhl,
indcca_encfo_1.qrhl, decapsQuery.qrhl, queryG.qrhl, queryH.qrhl.

Fig. 11. Pseudorandomness game for Adv_PRF. Files PRF_real.qrhl, PRF_ideal.qrhl,
queryPRF.qrhl, queryRF.qrhl.

Fig. 12. IND-CPA security definition of Enc0 for Adv_INDCPA_enc0_1/2. Files
indcpa_enc0_1.qrhl, indcpa_enc0_0.qrhl.

Similarly, we define IND-CPA security of Enc0 against Adv_INDCPA_enc0_1/2
in Fig. 12. The primed variants are identical except that they use a different
adversary.

The Adversary. In the games indcca_encFO_1/2, we use the adversary A :=
Adv_INDCCA_encFO. Since we want the main theorem to hold for arbitrary adver-
saries, we need to declare the adversary as an unspecified program. This is done



Post-Quantum Verification of Fujisaki-Okamoto 345

Fig. 13. Adversary declaration. File: Adv_INDCCA_encFO.qrhl.

in Fig. 13. It declares that the adversary has access to the variables classA,
quantA, b, in_pk, in_cstar, Kstar, i.e., we say the adversary has those free
variables. Here classA, quantA are the global state of the adversary (quantum
and classical part), and the others are the variables used for inputs/outputs of
the adversary. Furthermore, the adversary needs to be able to access the vari-
ables Hin, Hout, Gin, Gout, c, K’ that are used as inputs/outputs for its oracles
decapsQuery, queryG, queryH (see above). Those variables are not declared as
free variables (i.e., the adversary will have to hide them under a local com-
mand) but may be used internally, in particular before or after invoking the
oracle. Finally, calls ?,?,? means that the adversary takes three oracles.

However, we are not interested in arbitrary adversaries, but in ones that
always terminate and that make ≤ qG, qH , qD queries to its various oracles. For
this, we add various axioms to the file axioms.qrhl, stating the termination and
the number of queries performed when instantiated with various oracles. The
file with all axioms is discussed in the full version [35]. Unfortunately, this file
contains a lot of repetitions because qrhl-tool does not allow us to allquantify
over the oracles, so we need to state the axioms for any oracle we want to
instantiate the adversary with.11

Reduction-Adversaries. Finally, to fully check whether the main theorem
states what we want it to state (namely, that the KEM Encaps is secure assum-
ing that the underlying encryption scheme Enc0 and the PRF are secure), we
also need to inspect the reduction-adversaries. This is because the main theo-
rem basically says: If Adv_INDCCA_encFO breaks Encaps, then one of the adver-
saries in the games on the rhs breaks Enc0 or PRF. (I.e., one of Adv_PRF,
Adv_PRF’, Adv_INDCPA_enc0/1, etc.) But this is vacuously true – it is easy
to construct an adversary that breaks Enc0 or PRF. Namely, that adversary
could run in exponential-time and perform a brute-force attack. Or that adver-
sary could directly access the global variables containing, e.g., the secret key.
So, while the exact details of what the reduction-adversaries do are not impor-
tant, we need to check: Are the reduction-adversaries quantum-polynomial-time
if Adv_INDCCA_encFO is? (Or even some more refined runtime relationship if we
want tight concrete security bounds.) And do the reduction-adversaries access
only variables that are not used by the security games themselves? The latter
can be checked using the print command in interactive mode that prints all
variables of a program (e.g., print Adv_PRF). This shows that the adversaries
in the PRF games only access cstar, classA, b, c, K’, quantA, and in partic-
ular not prfk or RF. And the adversaries in the IND-CPA games access only

11 Another place where a more advanced module system would help, cf. Footnote 8.
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Find, mstar, S, in_cstar, in_pk, classA, b, is_puncture, G, quantA, but not
the forbidden sk, pk, cstar.12 To check the runtime of the adversaries, there
is currently no better way than to manually inspect the code of all adversaries
explicitly to see whether they do anything that increases the runtime too much.
To the best of our knowledge, this is the state-of-the-art also in classical crypto
verification. We believe that coming up with formal verification support for run-
time analysis in qrhl-tool and similar tools is a very important next step. If
this would be solved, the reduction-adversaries could be removed from the list
of things we need to check as part of the specification.

By checking all the above points, we can have confidence that the formal proof
indeed proves the right thing. (There are quite a lot of points to check, but we
stress that in a pen-and-paper proof, the situation is similar – one needs to check
whether all security definitions are correct, etc.)

5 Formalizing HKSU – The Proof

Since the formal proof is much too long to go through in detail, we only show a
few select elements here to given an impression. HKSU shows security of three
transformations Punc, T, U�⊥

m. The proof follows the overall structure of HKSU,
lemma_ds_security.qrhl and lemma_indcpa_security.qrhl establishing DS
and IND-CPA security of Punc, lemma_ds_encT_security.qrhl establishing DS
security of T, and lemma_encFO_indcca.qrhl establishing IND-CCA security of
the combination of T and U�⊥

m. Finally lemma_security_encFO.qrhl combines
all those results into one overall result, the “main theorem” discussed in Sect. 4.

lemma_encFO_indcca.qrhl establishes IND-CCA security using the same
sequence of games as described in Sect. 3.3, encoded as programs game0FO, . . . ,
game4FO, game3FO’, . . . , game0FO’ in the eponymous files.

Game 1 to Game 2. We zoom in some more onto the proof of the relationship
between Game 1 and Game 2 (lemma_game1FO_game2FO.qrhl). We follow the
basic intuition from Sect. 3.3, and split the proof of that step into the following
subgames (all in eponymous .qrhl files):

(1) game1FO: Game 1 from Sect. 3.3.
(2) game1FO_goodbad: In this game, we prepare for replacing uniform G by a

good G. For this purpose, instead of picking G uniformly, we pick a good
Ggood (i.e., picking Ggood(m) uniformly from the good randomnesses for
every m) and a bad Gbad, and a set S of messages. We define G(m) to be
Ggood(m) if m /∈ S and Gbad(m) otherwise. By choosing the distribution of
S properly, we have that the resulting G is still uniform.
We additionally remove all direct access to G, and make sure that queryG
is used everywhere instead. This is necessary for bringing the game into
the shape needed in the following step. This means all classical queries to

12 Again, a more refined module system would allow us to automatically derive that
certain variable-disjointness conditions hold, cf. Footnote 8.
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G (e.g., in the creation of the challenge ciphertext) need to be replaced
by quantum queries with subsequent measurements (we define a wrapper
oracle ClassicalQueryG(queryG) for this), and we cannot simply define
the function H in terms of G (see Game 1, line 03 in Sect. 3.3). Instead,
we need to construct an oracle queryH_Hq that implements superposition
queries of H in terms of superposition queries of G (via queryG). This
makes this proof step considerably more complex than many of the other
game steps.
That Pr[b = 1] does not change is shown in lemma_game1FO_goodbad.qrhl.

(3) game1FO_goodbad_o2h_right: We rewrite the previous game to have the
right shape for the O2H theorem. The O2H theorem allows us to replace
one oracle by another one that differs only in a few (hard to find) places. In
order to apply the O2H theorem [1] (or the o2h tactic in qrhl-tool), the
game needs to have a very specific form: count ← 0; $← (S,G,G′, z′)D;
{localV ; call AO2H (Count(query))} for an oracle Count that counts
queries in variable count and query that implements superposition queries
to G′. The distribution D and the program AO2H can be chosen freely. In
our case we choose D := goodbad_o2h_distr such that G′ is G from the
previous game, and G is Ggood, and we choose AO2H = Adv_O2H_Game1FO
to simulate the rest of the game. We show that the probability of Pr[b = 1]
does not change (lemma_game1FO_goodbad_o2h_right.qrhl).

(4) game1FO_goodbad_o2h_left: We replace queries to G′ by queries to G
(recall that G was, in the previous game, made to return only good random-
ness). The Semiclassical O2H theorem [1] (implemented via our tactic o2h)
allows us to do this replacement. In the resulting game Pr[b = 1] will differ
by an amount that can be bounded in terms of the probability of finding
an element in S. Bounding this probability involves a side-chain of games
that we omit here. Altogether, lemma_game1FO_o2h_concrete.qrhl gives
a concrete bound on the difference of Pr[b = 1].

(5) game1FO_goodbad_o2h_left’: We remove the query-counting wrapper ora-
cle Count that was introduced for the o2h tactic. We do this in a separate
game step because it would be in the way in the next step. The probability
Pr[b = 1] does not change (lemma_game1FO_goodbad_o2h_left’.qrhl).

(6) game1FO_goodbad_o2h_left_class: We unwrap the adversary
Adv_O2H_Game1FO again which we introduced in (5). We also undo the vari-
ous replacements done in (2) (which ensured that G was never used directly)
to make the game simpler for the following steps. The probability Pr[b = 1]
does not change (lemma_game1FO_goodbad_o2h_left_class.qrhl).

(7) game1FO_goodbad_badpk: In (2), we ignored one problem: Even if there is
just one m without any good randomness, then it is not well-defined to pick
G uniformly from the set of good G’s because that set is empty.13 For that
reason, in (2), we actually defined G(m) to be good if good randomness
exists. But this definition breaks the next step below which relies on the
fact that all randomness is good. Our solution is to introduce a predicate

13 This problem also exists in HKSU but was not noticed there.
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bad_pk pk sk that tells us whether there is an m (for that key pair) with-
out good randomness. We then change the definition of the game to make
a case distinction on bad_pk pk sk. If true, the new game behaves in a
way that makes the next proof step trivially true. If false, the new game
behaves as before. The probability for bad_pk pk sk is bounded by the
correctness error of Enc0, so we can bound the difference of Pr[b = 1] in
lemma_game1FO_goodbad_badpk.qrhl.

(8) game2FO_goodbad_range: In the previous games, the choice whether
Decaps returns Hr(c) or Hq(c) depended on whether we have a reencryp-
tion failure or not. (See Decaps in Game 1 in Sect. 3.3.) Instead, we use
Hr(c) or Hq(c) depending on whether c is in the range of Enc′. We can
show that, assuming good randomness, these two conditions are equiva-
lent. Since G contains only good randomness, Pr[b = 1] does not change
(lemma_game1FO_game2FO_o2h.qrhl).

(9) game2FO_goodbad_o2h_left’: In the previous game, Decaps returns Hr(c)
if c is not in the range of Enc′. We replace this by always returning Hq(c) as
in Game 2 (Sect. 3.3). By analysis of the game, we can see that Hq is used in
other places of the game only on the range of Enc′ = encT, hence Hq(c) and
Hr(c) are both fresh randomness if c is not in the range. Hence the replace-
ment does not change Pr[b = 1] (lemma_game2FO_goodbad_range.qrhl).

(10) The rest of the proof steps are analogous to those done in (2)–(6), in reverse
order until we reach game2FO.

Verification of ClassicalQueryG. To finish our illustration, we give the
details of one of the subproofs of step (2), namely the proof that access-
ing G directly is the same querying G via ClassicalQueryG(queryG). The
source of ClassicalQueryG is given in Fig. 14, lines 1–6. It initializes Gin with
|gin〉, Gout with |gout〉, calls the query oracle (which will query G in super-
position), and measures Gout into gout. Lines 8–11 claim that after doing
so (in the right program) we will have gout2 = G2(gin2). And furthermore,
that this preserves quantum equality of quantA, aux between the left and
right side. Lines 13–14 inlines the definitions of the programs that we use,
and lines 15–16 removes the local variable declarations. (The subgoal now has
the same pre-/postcondition as before, but the right program is the code of
ClassicalQueryG without the local statement.) Then wp right (17) consumes
the statement gout <- measure Gout with computational_basis, and the
postcondition becomes (after simplification) what is written in lines 18–19. Basi-
cally, this proof step tells us that having |gin2, G2 gin2〉 in Gin2,Gout2 is suf-
ficient for having gout2 = G2(gin2) after measurement. Next (lines 21–24) we
consume “on Gin,Gout apply (Uoracle G)” from queryG (see Fig. 10, evalua-
tion of G in superposition) and show that now it is sufficient to have |gin2, 0〉 in
Gin2,Gout2. In lines 25–29, we remove the initialization Gout <q ket 0, now
the necessary condition is to have |gin〉 in Gin2. And in lines 30–32, we remove
Gin <q ket gin, removing the last requirement. Now left and right program are
both skip and the pre-/postcondition are identical. The skip tactic (33) solves
such a qRHL subgoal.
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Fig. 14. Verification of ClassicalQueryG. Files: ClassicalQueryG.qrhl (l.1–6),
lemma_ClassicalQueryG_queryG.qrhl (l.8–35).

6 Conclusion

In this work, we have shown how to formally verify the HKSU security proof of
a Fujisaki-Okamoto variant.

The experience shows that formal proofs of post-quantum secure schemes
seem definitely possible using the approach in the qrhl-tool. Besides challenges
due to the early development stage of the tool, probably the most troublesome
part is reasoning about quantum computations. E.g., in one technical lemma14
we show that a superposition query to the function H := Hq(Enc(pk ,−;G(−)))
as defined in Game 1, line 03 in Sect. 3.3 can be implemented by the simply
quantum circuit that performs a superposition query to G, a superposition query
to Hq(Enc(pk ,−;−)) and another superposition query to G for uncomputation.15
The simplification of the resulting verification condition is a 200 lines Isabelle
proof that takes almost ten minutes to execute (on the authors laptop).16 Given

14 File lemma_queryH_invariant.qrhl.
15 This quantum circuit is formalized as a program in file queryH_Hq.qrhl.
16 File FO_Proofs_Very_Slow.thy.
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the simplicity of the fact that is proven, we feels this proof should be fully
automatic and finish almost instantaneously.

What other post-quantum security proofs are possible using the same
methodology? We feel that proofs of other post-quantum secure cryptographic
schemes both in the standard model and the random oracle model should be
feasible as well, as long as they do not use any advanced random oracle rea-
soning techniques beyond the O2H Theorem. How hard or easy it is to handle
other proof techniques for the random oracle, or proof techniques that involve
rewinding (which is notoriously challenging in the quantum setting) is not clear
at this point. Similarly, it is not clear at this point how easily security proofs
that involve reasoning about quantum information theory (such as quantum key
distribution proofs, for example) can be formalized.

Possible directions for future research include:

– Formalizations of security proofs of the actual NIST candidates. While HKSU
is quite close to some of the NIST candidates, to have highest assurance, we
should analyze the schemes exactly as standardized and not merely schemes
that are very similar to them. While unlikely, even a small difference such as
the order in which the different inputs to a hash functions are concatenated
might make a scheme insecure.

– Improved methods for reasoning about the quantum parts of the schemes,
in particular methods for evaluating quantum computations such as the one
mentioned in the beginning of this section. (Sequences of applications of uni-
taries in the program translate to multiplications of operators in the pre-
/postconditions.)

– Support for other post-quantum security proof techniques beside the O2H
Theorem. (E.g., rewinding, other random-oracle proof techniques.) Ideally,
those proof techniques should be derived in the tool directly from first prin-
ciples.

– Formal verification of “fully quantum” protocols such as quantum key distri-
bution, quantum money, etc.
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Abstract. HQC is an IND-CCA2 KEM running for standardization
in NIST’s post-quantum cryptography project and has advanced to the
second round. It is a code-based scheme in the class of public key encryp-
tions, with given sets of parameters spanning NIST security strength 1,
3 and 5, corresponding to 128, 192 and 256 bits of classic security.

In this paper we present an attack recovering the secret key of an
HQC instance named hqc-256-1. The attack requires a single precompu-
tation performed once and then never again. The online attack on an
HQC instance then submits about 264 special ciphertexts for decryption
(obtained from the precomputation) and a phase of analysis studies the
subset of ciphertexts that are not correctly decrypted. In this phase, the
secret key of the HQC instance is determined.

The overall complexity is estimated to be 2246 if the attacker bal-
ances the costs of precomputation and post-processing, thereby claiming
a successful attack on hqc-256-1 in the NIST setting. If we allow the
precomputation cost to be 2254, which is below exhaustive key search on
a 256 bit secret key, the computational complexity of the later parts can
be no more than 264. This is a setting relevant to practical security since
the large precomputation needs to be done only once. Also, we note that
the complexity of the precomputation can be lower if the online attack
is allowed to submit more than 264 ciphertexts for decryption.

Keywords: Code-based cryptography · IND-CCA · NIST
post-quantum standardization · Decryption errors · HQC · Reaction
attack

1 Introduction

Integer factorization and the discrete logarithm problem have been corner-
stone problems for asymmetric cryptography, but this is changing due to quan-
tum computers, as their ability to efficiently solve such mathematical problems
through Shor’s algorithm [42] compromises the security of currently used asym-
metric primitives. These developments have created the emergence of the area of
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post-quantum cryptography and it motivated NIST to organize a post-quantum
cryptography standardization project, with the ultimate goal of standardiz-
ing new quantum-resistant public-key crypto primitives. Submissions rely on
problems from various fields within post-quantum cryptography, such as lattice-
based, code-based and multivariate cryptography.

We specifically consider code-based cryptosystems. By this term, we mean
cryptosystems where the algorithmic primitive uses an error correcting code.
The primitive typically add an error to a codeword of the code and the primitive
relies on the difficulty of decoding the received word back to the codeword. The
first of those systems was a public key encryption scheme proposed by McEliece
in 1978 [35]. The private key is a random binary irreducible Goppa code and the
public key is a generator matrix of a randomly permuted and scrambled version
of the original generator matrix for that code. The ciphertext is a codeword with
some errors added, and only the knowledge of the private key (the Goppa code)
can efficiently remove those errors. More formally, it is based on the difficulty of
the syndrome decoding problem1, which was proved to be NP-hard in [12]. After
40 years, some parameters have been adjusted, but no serious attack is known,
even when using a quantum computer.

The birth of post-quantum cryptography made code-based cryptography a
very interesting and the second most research-intense area after lattice-based
crypto. Let us mention some recent code-based public key cryptosystems. The
landmark paper presenting QC-MDPC [37] showed how the size of the public
key could be made small, compared to the original McEliece scheme.

The different code-based proposals in the NIST process like NIST PQC can-
didates BIKE [5], LEDAcrypt [9], HQC [2], and others, showed that fully IND-
CCA2 secure schemes could be built, using Fujisaki-Okamoto transform [22] or
some similar conversion. They could also provide provable security in the sense
that a proof of security related to a difficult decoding problem was given. The
above mentioned schemes rely on decoding problems in the Hamming metric,
whereas the schemes ROLLO [6] and RQC [3] rely on problems using the rank
metric.

There are 17 remaining second-round candidates for public-key encryption
and key-establishment algorithms in the NIST PQC project, among them six
code-based schemes. The HQC submission [2] considered in this paper is such an
IND-CCA2 KEM proposal running for standardization in NIST’s post-quantum
cryptography project and has advanced to the second round2. It is a code-based
scheme in the class of public key encryptions, with given sets of parameters
spanning NIST security strength 1, 3 and 5, corresponding to 128, 192 and 256
bits of classic security.

As for many of the code-based schemes (as well as for lattice-based schemes),
there is no absolute guarantee that the decryption algorithm will succeed to
decrypt to the transmitted message. Rather, there is a small probability of error

1 A stronger hardness assumption in the average case is required.
2 NIST announced the round-3 candidates in July 2020 and HQC is one of the eight

alternate candidates.
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for the decryption process, which for HQC is <2−128 or even smaller. This work
studies an attack that uses the possibility of having decryption errors as a part
of the cryptanalysis process to finally determine the secret key.

1.1 Related Works

On code-based schemes without CCA2 conversion we have a few attacks in lit-
erature that require more than the CPA assumption. Using a partially known
plaintext attack [16], one can reduce the code dimension in the decoding and
thus achieve a lower complexity. In a resend attack, Alice resends the same mes-
sage twice, or possible two related messages. The message can then be efficiently
found [14]. A reaction attack [29] is a weaker version of a chosen ciphertext attack.
The attacker sends a ciphertext or modifies an intercepted one and observes the
reaction of the recipient (correct decryption or failure, but not the result of
decryption). Again, one can in certain cases efficiently find the message corre-
sponding to an intercepted ciphertext. Note that all these attacks are message
recovery attacks.

In [26], an attack in the form of a reaction attack was given on the QC-
MDPC scheme. The interesting fact for this attack was that it could be applied
on the CCA version of the QC-MDPC scheme and still be successful; and it
was a key-recovery attack. The journal version [27] expanded some details of the
attack, e.g. the secret key recovery.

Following this work, many attacks on similar schemes were reported, for
example on QC-LDPC [20], and attacks on LRPC [7,41]. All these attacks require
that the decryption failure rate is fairly large, and subsequently the new schemes
were designed with a much lower failure probability.

A similar development can be found for lattice-based schemes. For the lattice-
based scheme NTRU (NTRUEncrypt) some problems due to decryption failures
were identified already in [32,33]. More recently, several CCA type attacks using
decryption failures on lattice-based schemes without CCA transforms has been
reported, Fluhrer [21], Bernstein [13], on New-hope in CT-RSA 2019 [10], and
mis-use attacks found in [8].

Attacking CCA secure lattice-based schemes through decryption failures in
the spirit of [26] has been less successful. However, recently, CCA attacks based
on failures were modeled and some initial attack attempts on an NTRU version
were presented [17,25]. The most recent work in this direction is the attack on
the LAC proposal [34] given in [28].

The proposed attack in this paper shares some similarities with these attacks
in the sense that it uses a first precomputation phase to generate a set of
encrypted messages for which the corresponding error vectors are causing the
decryption failure probability to be much larger that the average case. The online
attack then makes a statistical analysis of the information obtained from the
ciphertexts that failed to decrypt and extracts enough information to recover
the secret key.

There are also major differences, one being that HQC is a code-based scheme.
Another major difference is that the LAC attack can only target weak secret keys
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(e.g. one out of 264 key pairs), whereas this attack on HQC targets any public
key.

A relevant research direction is to investigate failure amplification tricks,
including [38] in the code-based regime and [18] in the lattice-based regime.
These techniques seem not directly to apply to attacking HQC.

1.2 Contributions

In this paper we present a CCA attack recovering the secret key of an HQC
instance named hqc-256-1. The attack requires a single precomputation per-
formed once and then never again. The online attack then submits about 264

special ciphertexts for decryption (obtained from the precomputation) and a sta-
tistical analysis step processes information from the subset of ciphertexts that
are not correctly decrypted. In this phase, the secret key of the HQC instance
is determined. The overall complexity is estimated to be 2246 when the online
decryption calls are limited to 264. With the given attack, this parameter choice
hqc-256-1 can be attacked faster than exhaustive key search for a single key.
One could also allow a large precomputation to reduce the post-processing cost
since the single precomputation is performed only once. One example is to per-
form a precomputation of about 2254, which is still below exhaustive key search
on a 256 bit secret key. The computational complexity of the online and the
post-processing steps is no more than the cost of submitting 264 ciphertexts for
decryption. Also, the complexity of the precomputation can be lower if the online
attack is allowed to submit more than 264 ciphertexts for decryption.

Last, we should note that once the precomputation is completed, the attack
can be mounted on any HQC public keys when this cryptosystem is deployed. In
this case, the precomputation complexity of the attack can be amortized. There-
fore, several other parameter choices of HQC can be successfully targeted as well,
in the sense that all the attacked keys can be recovered with complexity below
the claimed security level. The amortized complexity is similar to Hellman’s
“cost per solution” [30], and the vulnerability comes from that the attacked
HQC parameter sets cannot provide sufficient security compared with that of
time-memory trade-off attacks on their block cipher counterpart such as AES.
This attack model is not considered in the attacking framework in the NIST PQC
standardization project. However, it could have high practical relevance since a
scheme will be widely deployed if it becomes a standard. Time-memory trade-off
attacks are relevant in practice and this attack model should be discussed also
in the PKC area.

1.3 Organizations

The remaining of the paper is organized as follows. We briefly describe the HQC
scheme in Sect. 2. Then we give a high-level description of the attack, explaining
the basic underlying ideas in Sect. 3. In Sect. 4 we then give a more formal and
detailed description of the attack and provide a theoretical basis for estimating
the required complexity. Section 5 specifically considers the security of several
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other HQC parameter sets. Section 6 discusses some aspects of the HQC scheme
that are to the advantage of the attacker and related countermeasures. Section 7
concludes the paper.

2 Description of HQC

We briefly describe the HQC proposal [2] as submitted to the second round of
the NIST post-quantum cryptography standardization process. HQC stands for
Hamming Quasi-Cyclic and the underlying scheme was published in [36]. For
more details we refer to the original design document [2] as we give only a brief
description of the scheme. In particular, no description of the underlying difficult
problems or the proofs of security are given in this section.

2.1 Notation

The scheme processes binary vectors of some length n, so such a vector y =
(y0, y1, . . . yn−1) ∈ F

n
2 , where yi ∈ F2, for i = 0, 1, . . . , n − 1. By ω(y) we mean

the Hamming weight of the vector y, i.e., the number of nonzero coordinates.
Since the field is F2, one can replace the operation of − by +. Given a set S,
we use #S to denote its cardinality.

Let R = F2[X]/(Xn − 1). An element y(x) ∈ R is a polynomial of degree at
most n − 1 expressed through the coefficients y(x) = y0 + y1x + · · · + yn−1x

n−1.
We will interchange between the expression of a vector y as a row vector and
the corresponding polynomial y(x). We may also write y $← R, meaning that we
randomly select a binary vector y also considered as a polynomial.

For two vectors u,v ∈ F
n
2 we define their product u·v as the coefficients of the

polynomial u(x)v(x) ∈ R. This product can also be expressed using circulant
matrices. For a vector y ∈ F

n
2 , the circulant matrix induced by y is denoted

rot(y) and defined as

rot(y) =

⎛
⎜⎜⎜⎝

y0 yn−1 . . . y1
y1 y0 . . . y2
...

...
. . .

...
yn−1 yn−2 . . . y0

⎞
⎟⎟⎟⎠ .

The multiplication uv can now alternatively be written as

uv = u · rot(v)T = v · rot(u)T
,

where (·)T denotes transpose.
We give some basic definitions and properties from coding theory and refer

to [2] or any textbook on the subject. A linear code C of length n and dimension
k (an [n, k] code) is a subspace of Fn

2 of dimension k. A matrix G ∈ F
k×n
2 is a

generator matrix of the code if

C = {mG,m ∈ F
k
2}.
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A matrix H ∈ F
(n−k)×n
2 is a parity check matrix of the code if

C = {v ∈ F
n
2 , such that vHT = 0}.

Fix a parity check matrix and let v ∈ F
n
2 . Then the syndrome of v is the value

vHT. If v ∈ C then the syndrome is 0. The minimum distance d of the code
is the minimum weight taken over all nonzero codewords in the code. Such a
code is capable of correcting δ = �d−1

2 � errors. This means that if a codeword is
disturbed by adding a binary vector known to be of weight at most δ, then there
is an algorithm that can find and remove this noise and return the codeword.

A repetition code, denoted 1n, is an [n, 1] code that has a generator matrix
of the form G = [1]. It means transmitting a single bit and repeating it n times.
Such a code can then correct up to δr = �n−1

2 � errors. BCH codes are a very
common class of codes as they achieve a good error correction capability. We do
not need to define them, but rather just note that there is an efficient algorithm
for correcting errors. By BCH(n1, k1, δ) we denote a BCH code that is capable
of correcting up to δ errors.

Finally, a tensor product code C, denoted C1 ⊗ C2, is a code built from two
codes C1 and C2. If C1 is an [n1, k1, d1] code and C2 is an [n2, k2, d2] code then
the tensor product code C is an [n1n2, k1k2, d1d2] code. You can view the length
n1n2 codewords in C1 ⊗ C2 as a n1 × n2 array, where every row is a codeword
in C1 and every column is a codeword in C1. We will only be concerned with
the construction BCH(n1, k, δ) ⊗ 1n2 . It means that every position in the BCH
codeword is repeated n2 times. The decoding procedure first decodes every rep-
etition code by simply counting the number of zeros (or ones). Then the output
is used as the value for each position in the BCH code, which is then decoded.
In particular, if we want to find an error that will not decode correctly, we need
to have at least δr = �n2 +1

2 � errors in each of at least δ + 1 different columns
(repetition codes).

2.2 The HQC Scheme

The public key encryption (PKE) version of HQC is shown in Fig. 1. HQC makes
use of the tensor product code of two different codes, one being a BCH code and
the other being a simple repetition code. The code is denoted by C and has a
corresponding generator matrix G ∈ F

k×n
2 . We return to the details of the tensor

product code later.
The scheme follows the steps of many lattice-based schemes, but here errors

are considered in the Hamming metric. The key generation randomly selects a
public h ∈ R and two private vectors x,y ∈ R with very low Hamming weight.
It computes s = x+h ·y as the second part of the public key, which presumably
looks like a randomly chosen vector.

In the encryption one generates noise e, r1, r2 ∈ R with very low Hamming
weight and computes u = r1 +h · r2 and v = mG+ s · r2 + e, which is returned
as the ciphertext.
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In decryption, one has access to the secret key y and computes v − u · y.
The decoder for the code then finally removes all the noise. An expansion of the
expression shows

v − u · y = mG + (x + h · y) · r2 + e − (r1 + h · r2) · y = mG + e′,

where
e′ = x · r2 − y · r1 + e. (1)

Throughout the paper, we denote the i-th entry of e (e′) by ei (e′
i). If the

Hamming weight of e′ is not too large, the decoder will be able to decode and
return the correct message m. As all parts of the expression for e′ are of very
low weight, also e′ will be of somewhat low weight.

Fig. 1. Description of the proposal HQC.PKE [2].

A transform [31] is then applied to HQC.PKE to achieve IND-CCA2 for the
KEM/DEM version of HQC (see HQC.KEM in Fig. 2). The KEM version can
be converted to an IND-CCA2 PKE using generic transforms.

In the description, G,H and K are different hash functions, e.g. SHA512.
Also, E denotes the IND-CPA secure HQC.PKE primitive including randomness
input.

The noise term written as e′ = x · r2 − y · r1 + e is a sparse vector, but not
extremely sparse. The decryption is guaranteed to succeed if ω(e′) is an error
that is within the decoding capability of the employed error-correcting code. So
the code must be very powerful and be able to correct many errors. In the HQC
scheme, the error correcting code with generator matrix G is the tensor product
code C = BCH(n1, k, δ) ⊗ 1n2 . This is a powerful code employed to reduce the
decryption failure probability. It guarantees to correct any error of weight up to
δ · (n2 +1)/2, but will most likely also correct errors of somewhat higher weight.

2.3 Parameter Settings

The proposed parameters of different instances of HQC are shown in Table 1.
The parameter n is a prime number slightly larger than n1 ×n2, ω is the weight
of the secret and ωr, ωe is the weight of the noise vectors.
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Fig. 2. Description of the proposal HQC.KEM [2].

Table 1. Proposed parameters for HQC.

n1 n2 n k δ ω ωr = ωe Security pfail

hqc-128-1 796 31 24,677 256 60 67 77 128 <2−128

hqc-192-1 766 57 43,669 256 57 101 117 192 <2−128

hqc-192-2 766 61 46,747 256 57 101 117 192 <2−192

hqc-256-1 766 83 63,587 256 57 133 153 256 <2−128

hqc-256-2 796 85 67,699 256 60 133 153 256 <2−192

hqc-256-3 796 89 70,853 256 60 133 153 256 <2−256

3 Basic Ideas for the Attack

In this section we try to describe the underlying ideas behind the attack and
the detailed analysis is done in the following sections. The first step is to find
out how we can produce decryption failures and to do that we need to study
the details of the decoding procedure. The scheme uses the tensor product code
C = BCH(n1, k, δ) ⊗ 1n2 which means that the received vector can be split
in n1 parts each of length n2. The decoding is done in two steps. First, each
subvector of length n2 corresponding to a repetition code is decoded to a single
bit {0, 1}. This leaves a length n1 vector which is decoded through a decoder
for the BCH code to correct up to δ errors. This means that in order to have an
overall decoding error, one has to get at least δ + 1 of the repetition codes to
make an individual decoding error. Such an individual error appears if the noise
e′ has more ones than zeros in the n2 positions corresponding to that particular
repetition code.

Let us now look at a typical error pattern e′ to be decoded. Since the noise
term can be written as e′ = x · r2 − y · r1 + e, almost all nonzero contribution
comes from the two product terms. If we for example use the parameters for
hqc-256-1 then x has weight 133, r2 has weight 153, and the product between
them will have weight close to 133 ·153, say about weight 20000. Adding another
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Fig. 3. How decoding is split in two parts.

such error contribution from y · r1 of the similar weight results in a typical error
vector of weight around 27000 and length 63587. The ones in e′ are distributed
roughly with the same probability for all positions thus also roughly with the
same probability in each repetition code (Fig. 3).

So how can we increase the overall probability of a decoding error? The
idea is that we use a lot of precomputation to test many different messages and
look at what error vectors they create (through the hash functions that gives
the error vectors in the CCA version). The problem is to figure out what kind
of error vectors will increase the overall probability of a decoding error. One
answer to this problem is to consider the set of vectors where we have a lot
of ones close together in the vector. More specifically, we keep and store only
messages for which the generated r2 vector contains an interval (chunk) of length
l1 containing many ones, say at least l0 ones. An example of a parameter choice
might be l1 = 55 and l0 = 38. Now, let us look at the contribution of x · r2 to
the error e′. So x has weight 133, meaning that the result of x · r2 is the sum of
133 different rotated versions of r2. The average distance between ones in x is
almost 500. This means that length l1 intervals of many ones in the 133 rotated
versions of r2 almost never coincide in positions, but leave (almost) 133 intervals
of many ones in the result of x ·r2. In more detail, a single interval of many ones
may either end up completely inside a single repetition code or it will contribute
in two adjacent repetition codes. This depends on the exact starting position of
the interval of many ones as well as the positions of the ones in the secret x.
This is all depicted in Fig. 4, where we can see the top interval of many ones
(illustrated as a box) affecting two adjacent repetition codes whereas the second
top interval in the figure affects only a single repetition code.

In any case, the result is that the ones in e′ are no longer uniformly dis-
tributed, but some repetition codes will have many errors and others very few.
Concentrating the errors to a subset of the repetition codes drastically changes
the overall probability of a decoding error. Whereas an average error vector has
probability much smaller than 2−128 of not being correctly decoded, errors of the
above form with l1 = 55 and l0 = 38 show an overall decoding error probability
of 2−14!

We now assume that we have observed a number of decryption errors by
feeding the decryption oracle these special messages and recording their cor-
responding error vectors generated in the encryption. The second task in the
attack is to recover some part of the secret key x,y. We do that by the follow-
ing observation. We consider a position i and look at whether it is likely that
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Fig. 4. The appearance of ones in x · r2 when r2 contains an interval of many ones.

xi = 1. If this is the case and an interval of many ones starts at position j for a
particular r2, then we will have a contribution of many ones starting at position
i + j. Since we got a decryption error it is much more likely that the repetition
codes corresponding to position i + j and l1 positions onwards, will decode in
error, compared to the general case.

Now, since the overall error is e′ = x·r2−y ·r1+e another observation is that
if a repetition code is not decoding correctly, it is likely that the independent
noise part e is “helping out to make a decoding error”. If the contribution from
the x · r2 term for xi = 1 gives a chunk of many ones in a repetition code that
is assumed not to decoding correctly, then the corresponding e values will be
more likely to be zero if there is already a one contributed from the interval of
many ones. Similarly, the corresponding e values will be more likely to be one if
there is a zero contribution from the interval of many ones, or if the position is
outside the interval.

These two observations put together gives us a strategy of examining the
Hamming weight of the given e vector in the repetition codes corresponding to
position i + j. Basically, if the Hamming weight of these parts taken over many
different such e vectors is following the above observation, then we can come to
the conclusion that xi = 1, otherwise we set xi = 0. We come back to the details
of this procedure in the next section.

There is some dependence for positions that are closely located, so it is actu-
ally a good approach to only establish many positions for which we have xi = 0.
Then we can use an information set decoding algorithm to solve for x,y using
the knowledge from the public key. The complexity of this procedure has very
limited complexity.
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4 Attack Model and Detailed Steps

We follow the newly-proposed attack using decryption failures adopting the
weak-ciphertext attack model from [17], although no assumption on weak keys is
used. The attack consists of three main steps. Firstly, we prepare ‘weak’ cipher-
texts with the noise tuple (r1, r2, e) of a specific form. We then submit these
ciphertexts to the decryption oracle and collect the decryption errors that occur.
The last step is to perform a statistical analysis (e.g., hypothesis testing) to
extract the key information. We will also include classical solving algorithms in
code-based cryptography like Information Set Decoding (ISD) to improve the
key-recovery efficiency.

4.1 Weak-Ciphertext Preparation

We select a set (denoted A) of ‘weak’ ciphertexts and the corresponding noise
tuples (r1, r2, e) with r2 having a consecutive l1 positions with at least l0 ones
in this chunk. Let Ai denote the event that this consecutive chunk exists and
starts from the i-th position. We estimate the probability of this event as

Pr[Ai] =

(
wr

l0

) · (
n−wr

l1−l0

)
(

n
l1

) .

The overall probability of finding such a chunk in a length n vector, denoted
as p, can then be estimated as

p = Pr[∪iAi] ≈
∑

i

Pr[Ai] −
∑
i,j

Pr[Ai ∩ Aj ]. (2)

Thus, we expect that we need p−1 computations (hash calls to G) to generate one
‘weak’ ciphertext with the chosen form. For hqc-256-1, as shown in the second
column of Table 2, the precomputation costs differ for different choices of l1
and l0. This cost is bounded by 2191 if we set l1 = 53 and l0 = 29. Note that
even though the precomputation is searching a larger space than allowed in the
scheme, if we set l1 = 55 and l0 ≥ 36, we include and discuss these parameter
choices for the purpose of simulation of parts of the attack.

4.2 Collecting Errors

We send the selected ciphertexts in set A to the decryption oracle for decryption
and store the tuple (r1, r2, e) for ciphertexts leading to a decryption error. An
important task is to estimate the decryption error rate for the chosen parameters.

The Convolution of Probability Distributions. Let Xi = 1 be the event
that decoding output of the i-th repetition code is erroneous, for i ∈ {0, . . . , n1−
1}. We denote this event by pi, i.e., pi = Pr[Xi = 1], and thus, the probability
Pr[Xi = 0] is (1 − pi). Let D denote the event that the tuple (r1, r2, e) leads to
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Table 2. The estimated decryption error rate (DER) for hqc-256-1. The starting posi-
tion is 0.

l1 l0 log2(p
−1) The DER (in log2(·))

in estimation

55 38 276 −14.72

55 37 266 −17.65

55 36 256 −20.84

53 29 191 −48.61

63 30 191 −48.03

66 30 188 −49.17

55 26 163 −63.91

45 16 86 −112.6

a decryption error. If we assume that all the Xi’s are independent3, then we can
recursively estimate the probability of D as

Pr[
n1−1∑
i=0

Xi > δ] = pn1−1 · Pr[
n1−2∑
i=0

Xi ≥ δ] + (1 − pn1−1) · Pr[
n1−2∑
i=0

Xi > δ]. (3)

This method is referred to as the convolution of probability distributions.
The computed decryption error probabilities (DER) for different choices of l1

and l0 are shown in the third column of Table 2. We see that for the simulation
purpose, the decryption error probability can be as low as 2−14 if l1 = 55 and
l0 = 38; for a theoretical attack, the decryption error probability is estimated
to be 2−48.61 if l1 = 53 and l0 = 29. The pi’s can be computed and also tested
in simulation. The exact calculation of the pi’s for a given error pattern in A
is considered later in the section. In practice, we run a large number of trials
to empirically test the values of pi and then use the convolution of probability
distributions to compute the decryption error probabilities (DER). In a later part
(see Table 5) we report on testing the accuracy of this estimation approach and
obtained simulation results are close to the estimation. This estimation approach
is actually a bit conservative from the attacker’s viewpoint.

4.3 Statistical Analysis

After collecting all the tuples (r1, r2, e) that lead to a decryption error, we
attempt to recover partial secret key information on x. In this part, we first
present the empirical statistical dependence observed for a key recovery attack

3 The independence assumption will lead to a conservative estimation from the
attacker’s viewpoint. The reason is this assumption can cause a DER estimation
smaller than the true value, which fits the results [19,28] on LAC and has been
verified by simulation in Table 5.
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and develop theoretical estimations on this dependence. The developed theory
nicely explains the observed distinguishing property and shows that the property
is even stronger when the DER drops. We also discuss techniques and tricks
employed in this statistical test step.

Observation. Assume for simplicity that all chunks of many ones in r2 start
in position 0. Our approach to recover partial secret key information is to inves-
tigate and compute the frequency of {ei = 1|D}, where 0 ≤ i ≤ n1n2 − 1 and D
means that the tuple (r1, r2, e) leads to a decryption error.

The basic observation is that if xi0 = 1, then with high probability (due to
the sparsity of x), only one nonzero entry is in the interval [n2 · t, n2 · (t + 1)),
for t = �i0/n2�. Then #{ei = 1|D} for i ∈ [i0, i0 + l1] is smaller than for the
values corresponding to the other positions in the interval [n2 · t, n2 · (t + 1)).
We can observe no difference (i.e., behave like the random) for an interval I
corresponding to a repetition code without an i0 such that i0 ∈ I and xi0 = 1.
We refer to the prior as CASE I and the latter as CASE II.

The controlled window of length l1 can be divided into two halves and con-
tributes to two consecutive but different repetition decoding intervals. In this
case we can still observe these (possibly weaker) frequency differences.

Visual Illustration from Experiments. This phenomenon is visually illus-
trated in Fig. 5, where the simulation results for targeting the hqc-256-1 param-
eters by setting l1 = 55 and l0 = 38 are provided. The DER is simulated to be
2−14.3. We select at random two CASE I repetition code intervals and two CASE
II repetition code intervals, which are plotted in the top two sub-figures and the
bottom two sub-figures in Fig. 5, respectively. In the first two plots we re-order
the positions by putting the length l1 controlled window at the beginning. We
then derive four length n2 − l1 vectors with entry i being the summation of l1
consecutive positions starting from i in the re-ordered repetition code intervals.
One can in this way visually observe the differences of CASE I and CASE II in
the repetition code intervals.

This figure shows that one can recover key information if a sufficient number
of decryption failures are provided. The above presented distinguisher, however,
is far from optimal. We will now present a better maximum likelihood distin-
guisher that will also give an estimate of the required number of decryption
failures.
Theoretical Estimation on Pr[ej = 1|D]. Let us examine Pr[ej = 1|D] for

0 ≤ j ≤ n1n2 − 1 through

Pr[ej = 1|D] = Pr[Xi = 1|D]Pr[ej = 1|Xi = 1,D]
+ Pr[Xi = 0|D]Pr[ej = 1|Xi = 0,D],

where Xi = 1 represents the event that the i-th repetition decoding is erroneous,
and vice versa, for i = �j/n2�. We denote the i-th repetition code interval as Ii,
where Ii = [i · n2, (i + 1) · n2).
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Fig. 5. The sum of l1 consecutive #{ei = 1|D} in a repetition decoding interval with
re-ordering. The top two sub-figures plot CASE I intervals and the last two figures
plot the opposite case. 735, 000 decryption errors are collected with DER 2−14.3. The
CASE I and CASE II intervals could be distinguished.

We assume that the events (ej = 1|Xi = 1) and (D|Xi = 1) are independent,
as ej roughly only depends on Xi and not any other Xj for j �= i. Then we
derive that

Pr[ej = 1|Xi = 1,D] =
Pr[ej = 1,D|Xi = 1]

Pr[D|Xi = 1]
≈ Pr[ej = 1|Xi = 1],

Also, Pr[ej = 1|Xi = 0,D] ≈ Pr[ej = 1|Xi = 0]. Then we can rewrite as

Pr[ej = 1|D] ≈Pr[Xi = 1|D]Pr[ej = 1|Xi = 1]
+ Pr[Xi = 0|D]Pr[ej = 1|Xi = 0]

= Pr[Xi = 1|D](Pr[ej = 1|Xi = 1] − Pr[ej = 1|Xi = 0])
+ Pr[ej = 1|Xi = 0].

We note that

Pr[Xi = 1|D] =
Pr[Xi = 1,D]

Pr[D]
=

pi · Pr[
∑

j �=i Xj ≥ δ]
Pr[D]

.
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l1

Fig. 6. The matrix representation of r1 in case that the controlled interval starts from
Position 0.

We also know that

Pr[ej = 1,Xi = 1] = Pr[ej = 1,
∑
k∈Ii

e′
k > δr]

= Pr[ej = 1, e′
j = 1] · Pr[

∑
k �=j,k∈Ii

e′
k > δr − 1]

+ Pr[ej = 1, e′
j = 0] · Pr[

∑
k �=j,k∈Ii

e′
k > δr]

and

Pr[ej = 1|Xi = 1] =
Pr[ej = 1,Xi = 1]

Pr[ej = 1,Xi = 1] + Pr[ej = 0,Xi = 1]
. (4)

We can analogously compute Pr[ej = 1|Xi = 0] as

Pr[ej = 1|Xi = 0] =
Pr[ej = 1] − Pr[ej = 1,Xi = 1]

1 − Pr[Xi = 1]
, (5)

where Pr[ej = 1] = ωe/n.
Thus, all the intermediate probability values can be obtained via recursively

computing the convolution of probability distributions if pi, Pr[ej = 1, e′
j = 1],

Pr[ej = 1, e′
j = 0], and Pr[e′

k = 1] are known. We next show how to estimate pi,
Pr[ej = 1, e′

j = 1], Pr[ej = 1, e′
j = 0], and Pr[e′

k = 1].

Computation of Probabilities pi: Firstly, the probability pi can also be
computed using the convolution of probability distributions of Pr[ej = 1] : j ∈ Ii,
but a simpler strategy is to test the values experimentally, since these probability
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Table 3. The computed Pr[Xi = 1|D] from the simulation results on hqc-256-1 with
l1 = 53 and l0 = 29.

l′ Index Pr[Xi = 1|D]

0 25 0.00506

71 0.00504

166 0.00504

250 0.00502

365 0.00500

590 0.00506

53 68 0.3089

127 0.3087

186 0.3089

356 0.3089

482 0.3089

695 0.3089

values are relatively significant. An important observation shown in Table 3 is
that the computed Pr[Xi = 1|D] is a function of the length l′ of the controlled
window in the repetition code interval. Here l′ = 0 corresponds to the random
case and l′ = l1 corresponds to having a full length l1 chunk. Intermediate
values appear when a chunk of many ones is split in two different repetition
code intervals. In this table, the computed Pr[Xi = 1|D] from the simulation
results regarding the hqc-256-1 parameters, where l1 = 53 and l0 = 29 and the
controlled interval starting form position 0. We choose at random 6 repetition
code intervals with controlled length 0 and repetition code intervals with the
full controlled length 53. The second column shows the index of the selected
repetition code interval and the last column shows the computed probability
Pr[Xi = 1|D]. We see the computed probabilities are close in the same group
and have a huge gap between the two groups with different l′.

Computation of Remaining Probabilities: Secondly, with assumptions of
certain independence, if the contribution from the marked strip in Fig. 6 is cor-
rectly guessed, then one can apply similar arguments as Proposition 1.4.1 in [2] to
derive closed formulas to estimate the probabilities Pr[e′

k = 1], Pr[ej = 1, e′
j = 1],

and Pr[ej = 1, e′
j = 0].

Proposition 1 (Proposition 1.4.1 in [2]). Let x = (X0, . . . , Xn−1) (resp.
r = (R0, . . . , Rn−1)) be a random vector where Xi (resp. Ri) are independent
Bernoulli variables of parameters p (resp. pr), Pr[Xi = 1] = p and Pr[Ri = 1] =
pr. Assuming x and r are independent, and denoting z = x · r = (Z0, . . . , Zn−1)
as defined as the multiplication of x and r in R, we have

p̂ = Pr[Zk = 1] =
1
2

− 1
2
(1 − 2ppr)n. (6)



A New Decryption Failure Attack Against HQC 369

Table 4. The simulated probabilities v.s. the estimated probabilities on hqc-256-1.
The starting position is 0. The distinguishing property is stronger when the DER level
drops.

l1 l0 In estimation In simulation The DER level

prandom phigh plow prandom phigh plow (in log2(·))
55 38 0.002406 0.002412 0.002401 0.002404 0.002460 0.002347 −14

55 36 0.002406 0.002419 0.002393 0.002404 0.002468 0.002340 −20

53 29 0.002408 0.002446 0.002369 – – – −48

Thus, the contribution of y·r2 can be modeled as a Bernoulli random variable
with probability p̂. For a position j, if we guess the sub-vector xpart of x corre-
sponding to the controlled interval of length l1 shown in the marked strip, its
contribution denoted Υpart to e′

j is then known. Let ωpart be the weight of xpart, we
then model the position in the remaining sub-vector of x as a Bernoulli random
variable with probability ω − ωpart

n−l1
. We model the position in the unmarked part

of r1 as a Bernoulli random variable with probability ωr − l0
n−l1 . The contribution

of x · r1 − Υpart is modeled as a Bernoulli random variable with probability p̃,
where

p̃ =
1
2

− 1
2
(1 − 2 · ω − ωpart

n − l1
· ωr − l0

n − l1
)n−l1 .

We derive the following proposition.

Proposition 2. We have that,

Pr[e′
k − Υpart = 0, ek = 1] =

ωe

n
· (p̂ · (1 − p̃) + (1 − p̂) · p̃) , (7)

Pr[e′
k − Υpart = 1, ek = 1] =

ωe

n
· (p̂ · p̃ + (1 − p̂) · (1 − p̃)) , (8)

Pr[e′
k − Υpart = 1, ek = 0] =

(
1 − ωe

n

)
· (p̂ · (1 − p̃) + (1 − p̂) · p̃) , (9)

and

Pr[e′
k − Υpart = 0, ek = 0] =

(
1 − ωe

n

)
· (p̂ · p̃ + (1 − p̂) · (1 − p̃)) . (10)

Putting all the formulas together, we can compute the probability
Pr[ej = 1|D] in the different cases. The distinguishing property can then be
depicted as in Fig. 7. We plotted two repetition decoding intervals, a CASE II
interval at the right with a probability of Pr[ej = 1|D] denoted by prandom and
a CASE I interval at the left. For the latter, for the position outside a window
of length l1 corresponding to the controlled section, we know that the contribu-
tion of Υpart is always 0, thus showing a higher probability of Pr[ej = 1|D] than
prandom denoted by phigh; otherwise, the contribution Υpart can be either 0 or 1,
showing a higher or lower probability of Pr[ej = 1|D], respectively. We denote
the lower probability of Pr[ej = 1|D] by plow.



370 Q. Guo and T. Johansson

Fig. 7. Graphic illustration of the distinguishing property.

Example 1: We apply the theoretical analysis on hqc-256-1 with results as shown
in Table 4. When the starting position is 0, l1 = 55 and l0 = 38, for a CASE II
repetition decoding window, we estimate that Pr[ej = 1|D] is 0.002406 (prandom);
for a CASE I repetition decoding window, we estimate that Pr[ej = 1|D] is
0.002401 (plow) for the case Υpart = 1, and Pr[ej = 1|D] is 0.002412 (phigh) for
the case Υpart = 0. The difference (or called bias) between phigh and plow becomes
larger for parameters with lower estimated decryption error rates (say l0 = 29).

The remaining problem is to correctly guess the contribution Υpart from the
marked strip, which is a hypothesis testing problem revealing partial information
on the secret key x.

Maximum Likelihood Ratio Test. We describe the maximum likelihood
ratio test to correctly guess the contribution Υpart. We guess a small chunk of x
and then obtain the corresponding Υpart. We then group the positions according
to its guessed contribution Υpart and to decide if the resulted distribution is more
close to the theoretically derived one, i.e., with a high Pr[ej = 1|D] for Υpart = 0
and withe a low Pr[ej = 1|D] for Υpart = 1, or more close to the random case (i.e.
CASE II).

In the implementation, we test bit-by-bit, i.e., running through all the posi-
tions of x and for each position, using maximum likelihood test to decide if that
position should be zero, under the assumption that the rest positions are all
zero. This approach is definitely the simplest strategy, and is demonstrated to
be efficient in simulation. There exist many other possible approaches for this
statistical test step.

Double Distinguishing. In the previous discussion, we prepare the weak
ciphertext set A whose r2 part has a consecutive l1 positions with l0 ones, to
recover partial information of x. Also, we can prepare another set (denoted A’)
of weak ciphertexts whose r1 part has a consecutive l1 positions with l0 ones,
to recover partial information of y. Due to the 264 constraint on the number of
the submitted ciphertexts, we let A’ and A be both of size 263. One call to the
encryption function will return both the r1 and r2 parts. Thus, if 2γ encryptions
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are required to detect a ciphertext in A (or A′) with the desired pattern, we only
need 2γ+63 encryption calls in total to prepare the two sets.

4.4 Information Set Decoding

This step will be applied if no full key-recovery is achieved after the statistical
analysis. The basic idea is that, with the partial information obtained from the
statistical analysis step, recovering the secret key sk = (x,y) from the public
key pk = (h, s = x + h · y) is a simple task.

To be more specific, if one knows from the previous step the l positions in x
and also l positions in y that are zero with the highest probability, then a new
decoding problem with code length 2l and dimension n can be derived. This
problem can be much easier to solve as the chosen positions are rarely non-zero.

The plain ISD [40] algorithm works very well if the guessed positions are
reliable. This process could possibly be accelerated by applying advanced infor-
mation set decoding algorithms like Stern’s algorithm [43] and BJMM [11]. In
addition, the previous hypothesis testing step provides soft information of the
secret key, so the ISD variant with bit reliability [39] and the soft-Stern algo-
rithm [23,24] could be employed to accelerate this post-processing step.

4.5 Simulation Results on hqc-256-1

We in this part present implementation results on hqc-256-1. In the later analysis
we will stick with the empirical distributions from the largest simulation we
conducted. This analysis is conservative from an attacker’s viewpoint, since the
distinguishing property is stronger when the DER drops.

The Tested Bias. We have tested the different probabilities of phigh, plow, and
prandom, computed in the previous parts. The comparison between the theoretical
results and the simulated results is shown in Table 4. We could see that for a fixed
l1 (here l1 = 55), when the value of l0 drops (meaning that the precomputation
cost drops and also the decryption error probability), the differences (also named
bias) between two of the probabilities increase. Most importantly, the simulated
bias is much larger than then estimated bias. For instance, we observed a gap
of 0.000055 between phigh and prandom, while only of 0.000006 in the theoretical
estimation, when setting l1 = 55 and l0 = 38.

This table (Table 4) verifies our theoretical analysis, i.e., explaining the rea-
son of observing the different probabilities in CASE I and CASE II, though the
real bias is much larger than the one computed. Due to the crypt-analytic nature
of this work, we want to upper-bound the complexity of the newly proposed
attack. In the later analysis, thus, we make a conservative choice by employing
the empirical distributions obtained from the largest simulation we conducted.
Note that these chosen probabilities (prandom, phigh, plow) correspond to the case
that the decryption error probability is about 2−22. Though the true bias when
launching the attack for parameters (of l1 = 53 and l0 = 29) with decryption
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Table 5. The simulated DER v.s. the estimated DER (with starting position 0).

l1 l0 The DER (in log2(·))
in estimation

The DER (in log2(·))
in simulation

55 38 −14.72 −14.3

55 37 −17.65 −17.2

55 36 −20.84 −20.3

error probability of about 2−48 is beyond our capability to simulate, it will be
larger than the one in our simulation.

The Accuracy of the Convolution Method. We have tested the accuracy
of the estimation using the convolution of probability distributions as shown in
Table 5. The estimation is always slightly lower than the simulated decryption
error rate, caused by the weak dependence between different positions. We see
that the ratio between the simulated DER and the estimated DER becomes
larger when the error rate is smaller, and it is already 20.54 when the DER is
about 2−20. We expect to have the ratio to be 2 when considering the case that
the DER is smaller than 2−48.

Estimation from Different Starting Positions. We have observed that the
estimated decryption error rates fluctuate slightly if the starting position differs.
The mean over all starting positions is 2−48.98 for l1 = 53 and l0 = 29. Since
the estimation is slightly conservative, we could expect to collect 264−49+1 = 216

decryption errors in practice.

A Full Test. We run simulation to demonstrate that 216 decryption errors, i.e.,
215 decryption errors for each test when employing the double distinguishing
procedure, are enough for a full-key recovery with complexity bounded by the
264 online decryption oracle queries. As discussed before, if one launches the
attack with decryption error probability of about 2−48, the bias will be larger
and lead to a reduced attack complexity.

In the simulation, we pick l1 = 40 and l0 = 34 leading to a simulated decryp-
tion error probability of 2−21.8. As it is slightly smaller than 2−20.3, the sim-
ulated decryption error probability when setting l1 = 55 and l0 = 36, it is
reasonable to have the bias of the simulated probabilities (prandom, phigh, plow) =
(0.2404, 0.2467, 0.2333) also slightly larger. We then roughly compute the diver-
gence, which is 2−13.17, between the probability distributions over an interval
of length 83 in CASE I and CASE II. Since we only need to detect positions
that are highly probable to be 0 and the noise vector is very sparse, the sample
number 215 is theoretically large enough.

We test the bits of the secret vector x and assume that it works for y as
well since the double distinguishing procedure just repeats the same test. To
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be specific, we run 236.8 encryptions using randomly generated ciphertexts with
the r2 part having the desired pattern. We then obtain the likelihood that one
position of x is zero by the bit-by-bit test. It is interesting to see that in the
46875 most reliable positions that are decided to be zero, only 22 positions are
actually one, and these positions all have a non-zero neighbor which falsifies the
assumption of our test, i.e., only one bit is one and the rest are all zero. A test
can be more efficient if it can handle in a smarter manner the close-by non-zero
pairs in the secret.

Since only one position error occurs in the 16056 most reliable positions, we
could have 14500 error-free positions effortlessly. Assuming that we have the
same test result for the y vector, we then need to solve a new decoding problem
with code-length 64750, dimension 35587, and the error weight 44. This new
problem can be solved with complexity 250 Gaussian Eliminations, by using
the plain ISD algorithm. The overall complexity of the post-processing can be
bounded by 257 Gaussian Eliminations, which is negligible compared with the
cost of the online decryption oracle calls.

We also test that the post-processing complexity increases to 2165 Gaussian
Eliminations if the number of decryption errors is reduced by a factor of 6.

4.6 Summarizing the Complexity of Attacking hqc-256-1

We summarize the attack on hqc-256-1. Firstly, if the attacker chooses the attach-
ing parameters l1 = 53 and l0 = 29, then he will obtain 216 decryption errors
after sending out 264 decryption oracles calls, i.e., 215 errors for each test when
the double distinguishing procedure are applied. We then in simulation test that
this amount of decryption errors are sufficient for a full key recovery.

Note that in the above analysis, we employ the bias tested empirically from
simulations with decryption error rate of only 2−22, which is stronger in the
attacking scenario with decryption error rate of 2−48. Unlike the precomputation
phase and the online decryption phase, the statistical analysis phase and the
post-processing phase using the ISD algorithms require computational costs that
are sensitive to the bias. Though the current complexity number claimed is
already below the cost of the online phase, the true cost should be even smaller
since it drops drastically if the bias increases. This trend has been well verified
in the simulation.

We conclude that 216 decryption errors are enough to correct a number of
entries in x and y so that the full key can be recovered in a later ISD step with
complexity negligible to the 264 online decryption requests. Thus, the complexity
of this CCA attack on hqc-256-1 can be estimated as 264 online decryption
requests, after one large precomputation of 2254.

If we remove the constraint that an attack can only submit 264 ciphertexts
for decryption, the precomputation cost can be lower. The precomputation cost
for one ciphertext and its corresponding decryption error rate are shown in
Table 2. Since the bias will be even stronger when the DER becomes smaller,
216 decryption errors are more than sufficient in these parameter settings. If an
attacker is allowed to submit 280 decryption requests, then the precomputation
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Table 6. The trade-off between the precomputation cost and the number of online
decryption oracle queries for hqc-256-1. We assume that 216 decryption failures are
sufficient for a full-key recovery.

l1 l0 Online DOQs
(in log2(·))

Precomputation cost
(in log2(·))

53 29 64 254

55 26 80 242

45 16 128 213

cost can drop to 2242 when setting l1 = 55 and l0 = 26. The cost even drops to
2213 if 2128 ciphertexts are allowed to be decrypted online. We summarize the
trade-off between the precomputation cost and the number of online decryption
oracle queries (DOQs) in Table 6, when assuming that 216 decryption failures
are sufficient for a full-key recovery.

When the Overall Complexity Includes the Precomputation Cost. In
the previous analysis, we ensure the complexity of the online querying and the
post-processing to be bounded by the 264 decryption oracle calls. This cost also
bounds the whole attacking complexity since the large precomputation only
needs to be done once and therefore should not be included in the attacking
complexity of one particular attack. We now consider a different optimization
goal to optimize the complexity including the precomputation cost. Thus, the
attacker could employ a heavier post-processing to reduce the precomputation
cost.

As stated in Sect. 4.5, we tested that one could reduce the required number of
decryption errors by a factor of 6 and still kept the post-processing complexity far
below 2220. We then select (l1, l0) = (61, 29) and estimate the DER to be 2−51.5

by the convolution method. We obtain enough decryption errors if allowing 264

decryption oracle calls, and the corresponding precomputation cost is 2248 due
to the double distinguishing procedure.

In Table 4, we see that the simulated bias is larger than the estimated bias.
We can extrapolate the distribution when the DER is close to 2−50 if a simple
model where prandom is almost unchanged and psimT ≈ pestiT + δ are adopted. Here
T ∈ {high, low}, psimT means the simulated pT and pestiT means the estimated pT. By
this simple model, we could select (l1, l0) = (63, 29) and give a sharper estimation
that the precomputation cost of 2246 could be enough for a full key-recovery.

Comparing with AES256 in the TMTO Model. We emphasize the prac-
tical relevance of ensuring the complexity in the real attacking phase to be
bounded by the 264 online decryption oracle queries. In this case, a large pre-
computation is done and the real-time complexity T and the memory constraint
M can be set to be 264. Therefore, by splitting the cost into the precomputation
and the online parts, a natural model to compare with is the famous Hellman’s
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Table 7. The estimated decryption failure probability.

l1 l0 log2(p
−1) The DER (in log2(·))

in estimation

hqc-128-1 20 16 110 −46.25

hqc-192-1 41 24 157 −47.56

hqc-192-2 50 28 187 −48.36

time-memory trade-off (TMTO) attack on block ciphers [30]. It is well-known
that the trade-off relationship for Hellman’s TMTO attack is

TM2 = 22λ,

where T is the time complexity, M is the memory complexity, and λ is the
claimed security level. It can be easily checked that, for our attack on hqc-256-1,
the value of TM2 is much smaller than 2512.

NIST classified the range of the security strengths from symmetric crypto-
graphic primitives like AES (see [1]). We conclude, also from the perspective
of time-memory trade-off attacks, that hqc-256-1 cannot provide sufficient secu-
rity compared with block ciphers such as AES256. Similar discussions on several
other HQC parameter sets will be presented in the next section.

5 On Other HQC Parameters

Comparing with AES in the TMTO Model. We adopt the assumption
that 216 decryption errors – for the case that the decryption error probability
is close to 2−48 – are sufficient for recovering the key with complexity negligible
to the 264 online decryption oracle calls, as we discussed in the previous section.
This assumption for hqc-192-1 was verified in simulation. Table 7 shows the
estimated DER from the convolution of probability distributions for three HQC
parameter sets, hqc-128-1, hqc-192-1, and hqc-192-2. For all the three parameter
sets, it is possible to attack with complexity bounded by 264 online decryption
oracle calls. We can set the time and memory constraints to be 264 and the new
attacks are much better than Hellman’s TMTO relationship for a block cipher.

Thus, we similarly claim that all the three parameter sets cannot provide
sufficient security regarding the TMTO attacks.

When the Precomputation Can Be Amortized. The precomputation is
excluded from the time complexity constraint T in the TMTO model. We could
consider a different model of attacking more keys and amortizing the precom-
putation complexity. In other words, the precomputation is still done once and
never again; the attacker then use the precomputed weak ciphertexts to attack
all the public keys once the HQC cryptosystem is deployed. If HQC is used for
a very long period, we could assume that the attacker can have 264 public keys
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to target. His goal is to recover all the keys with complexity below 264+λ, where
λ is the claimed security level. If so, the amortized complexity is below 2λ for
recovering one key. Moreover, the memory cost for storing the precomputed noise
seeds is also amortized.

The idea of attacking many keys for a lower RAM and precomputation cost
than attacking each key separately was originally discussed by Hellman, also
in his seminal work [30]. Note that this model is different from the usual multi-
target model where only one key among the 264 keys needs to be recovered, whose
counterpart for block ciphers (e.g., AES) is discussed as time/memory/data
trade-off attacks in [15] for recovering one out of many possible keys.

The previous section shows that hqc-256-1 can be solved with 2254 precom-
putation, which can be amortized to 2190 for recovering 264 keys in the new
model. Due to the double distinguishing procedure, we see from Table 7 that the
precomputation costs for hqc-128-1, hqc-192-1 and hqc-192-2 are 2110+63=173,
2220, and 2250, respectively. If 264 keys are attacked in this model, the amortized
precomputation complexity can be estimated as 2109, 2156, and 2186, respec-
tively, each of which is below its claimed security level. If one makes an extreme
assumption that there is an infinite number of HQC keys to attack, then the
complexity per key is only 264, dominated by that of the online attacking phase.

Experiments. We tested our assumption for hqc-192-1 in simulation that 216

decryption errors are sufficient in our attack scenario. For the ease of simula-
tion, we also select parameters leading to a DER close to 2−20. Firstly, we have
detected a stronger bias for hqc-192-1, e.g., the absolution value of (phigh−prandom)
is almost twice as large as the simulated value for hqc-256-1. We then collected
215 decryption errors and performed a full test similar to the version described
in Sect. 4.5. As expected, the experimental results are even better, and the post-
processing complexity is estimated to be less than 249 Gaussian Eliminations
using the plain ISD.

We also tested the accuracy of the convolution method by running 237.3

encryptions. The simulated DER is 2−19.29, larger than the estimated DER of
2−20.55 by a factor of about 21.3. In this sense, our attack complexity estimation
is conservative and the actual complexity could be slightly lower.

6 Discussion and Countermeasures

In [4], NIST commented on HQC that “HQC presents a strong argument that
its decryption failure rate is low enough to obtain chosen ciphertext security.
This is the strongest argument, at present, of CCA security among the second-
round candidate code-based cryptosystems, where information set decoding is
the limiting attack for both private key recovery and message recovery (BIKE,
HQC, and LEDAcrypt).” The newly proposed attack partly proves and disproves
these comments at least for certain parameter sets.

From one perspective, we do not falsify the designers’ claim on the DER anal-
ysis (for instance, we do not break their claim that the averaged decryption error



A New Decryption Failure Attack Against HQC 377

probability (DER) is below 2−128 for hqc-256-1)4. Our experiments to test the
accuracy of the convolution method can be treated as a partial verification that
the error-correcting implementation in HQC matches its theoretical estimation,
i.e., the correlation among positions is much weaker (than that in LAC [19,28]).

On the other hand, our attack shows that the (CCA) security claim of HQC
is problematic. In the NIST setting – with only 264 online chosen ciphertext
submission and only one public key is assumed – the proposed parameters of hqc-
256-1 with DER below 2−128 is insufficient to ensure the claimed CCA security
level. One should consider parameter settings with even lower DER. The problem
becomes even more severe in the model where more keys are assumed and the
precomputation cost can be amortized.

Secure Parameters. The current attack version does not affect the security
claim of hqc-256-2 and hqc-256-3.

Protection. The attacks on hqc-128-1, hqc-192-1 and hqc-192-2 with amortized
precomputation cost can be thwarted by employing the multi-target protection
technique, i.e., using G(pk,m) rather than only G(m) where G is a hash function,
in the random noise generation process. We suggest the designers to include this
technique in a later version. For the highest security level, we suggest to use the
other parameter settings, hqc-256-2 and hqc-256-3, that are invulnerable to the
new attacks.

Not a Weak-Key Attack. Note that the current attack version includes no
weak-key analysis, which has been proven a big threat [28] to the LAC [34]
scheme. We leave this problem for further research.

More Discussions on the Attack Models. In this paper, we have discussed
the attack with three different models, i.e., the NIST setting, the model that the
precomputation cost can be amortized, and the TMTO model that the precom-
putation cost is excluded from the trade-off formula. The last two models are of
practical relevance.

To be specific, the precomputation cost is done only once and is done before
the adversary gets a target to attack. It can be used for all targets in the future.
Later the adversary may get one or many targets to attack and the online com-
plexity to find the key is only 264. Also, the targeted keys can be in different
HQC systems. We see that the second model and the TMTO model are not the
same as a multitarget attack model in general.
4 Actually, by computing the convolution of distributions, we estimate the decryption

error rates for the selected keys in simulation to be 2−163 for hqc-192-1 and 2−151

for hqc-256-1, which supports their official claim of DER smaller than 2−128. Since
the gap between the two estimation method (2−151 v.s. 2−128) is large, it may be
too conservative to only multiply a factor of 2 to adjust DER estimation value in
Sect. 4.5.
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The TMTO attacks are not considered in the current NIST PQC framework
but could be considered relevant because if precomputation is for free, a TMTO
attack is the best known attack on all versions of HQC (and other NIST can-
didates), by attacking the random seed to public key setup. In such a case the
NIST security definition would relate to a generic TMTO attack instead of a
simple exhaustive key search.

It is stated in the NIST submission requirements that “Any attack that
breaks the relevant security definition must require computational resources com-
parable to or greater than those required for key search on a block cipher with
a 128-bit key (e.g. AES128)”, and NIST goes on “any attack must require com-
putational resources comparable to or greater than the stated threshold, with
respect to ALL metrics that NIST deems to be potentially relevant to practi-
cal security”. Similar requirements are explicitly stated for other security levels.
Thus, if NIST considers the TMTO attack model to be a relevant metric, then
hqc-128-1, hqc-192-1, and hqc-192-2 are all affected.

7 Concluding Remarks

We have presented a new CCA attack on the HQC proposal that has advanced
to the second round in the NIST post-quantum cryptography standardization
project. For hqc-256-1, the secret key can be recovered with complexity 2248

estimated by using simulation data (or 2246 using an extrapolation model), if
only 264 online decryption oracle calls are submitted. This analysis questions the
security claim of hqc-256-1 in the NIST setting. Moreover, we could bound the
online and post-processing complexity to 264 online decryption oracle calls, if a
large precomputation of 2254 is included. The precomputation cost needs to be
done only once and can be smaller if more decryption oracle calls are allowed.
We also presented attacks on hqc-128-1, hqc-192-1, and hqc-192-2 with amortized
precomputation complexity below the claimed security levels, respectively, if
multiple keys are assumed. Compared with AES in the TMTO attack model,
all the four parameter sets, hqc-128-1, hqc-192-1, hqc-192-2, and hqc-256-1 are
insufficient for providing security w.r.t. the claimed security levels. There are
safe parameter choices like hqc-256-2 and hqc-256-3.

We present this attack version to demonstrate the vulnerability of the broken
HQC parameter settings; the attack, however, can be further optimized. Firstly,
employing better ISD algorithms with bit reliability like the Soft-Stern [23,24]
will allow reduced post-processing complexity. Secondly, performing larger imple-
mentation will lead to a more accurate complexity estimation with a smaller
complexity number, as the bias will be stronger if the error rate becomes even
lower. Thirdly, a more sophisticated distinguisher better dealing with the close-
by ones would reduce the required number of errors, thereby reducing the attack
complexity further. Last, one could design a more powerful weak-key version
similar to the attack [28] on LAC, which only works for a small fraction of keys.

It is interesting to apply similar ideas to other proposals in the NIST PQC
project, e.g., the rank-based proposal Rollo [6]. This attacking approach can be
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generally applied to code-based primitives using the tensor product codes built
from BCH codes and the repetition codes. This error-correcting scheme is also
employed in Lepton [44], a round-1 candidate in the NIST PQC project. The
attack may need to be adjusted when considering other coding implementations,
which would be interesting for future research.
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8. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.: Mis-
use attacks on post-quantum cryptosystems. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. Misuse attacks on post-quantum cryptosystems, vol. 11477, pp. 747–
776. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 26

9. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDAcrypt. Tech-
nical report. National Institute of Standards and Technology (2019). https://csrc.
nist.gov/projects/post-quantum-cryptography/round-2-submissions

10. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse
resilience of NewHope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp.
272–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 14

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.6028/NIST.IR.8240
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-17656-3_26
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-12612-4_14


380 Q. Guo and T. Johansson

11. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 31

12. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems (corresp.). IEEE Trans. Inf. Theory 24(3), 384–386
(1978). https://doi.org/10.1109/TIT.1978.1055873

13. Bernstein, D.J., Bruinderink, L.G., Lange, T., Panny, L.: HILA5 pindakaas: on the
CCA security of lattice-based encryption with error correction. Cryptology ePrint
Archive, Report 2017/1214 (2017). https://eprint.iacr.org/2017/1214

14. Berson, T.A.: Failure of the McEliece public-key cryptosystem under message-
resend and related-message attack. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 213–220. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0052237

15. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved time-memory trade-offs
with multiple data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383 8

16. Canteaut, A., Sendrier, N.: Cryptanalysis of the original McEliece cryptosystem.
In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 187–199.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-49649-1 16

17. D’Anvers, J.-P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Ver-
bauwhede, I.: Decryption failure attacks on IND-CCA secure lattice-based schemes.
In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 565–598. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 19

18. D’Anvers, J.-P., Rossi, M., Virdia, F.: (One) Failure Is Not an Option: bootstrap-
ping the search for failures in lattice-based encryption schemes. In: Canteaut, A.,
Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 3–33. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45727-3 1

19. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: The impact of error dependen-
cies on Ring/Mod-LWE/LWR based schemes. In: Ding, J., Steinwandt, R. (eds.)
PQCrypto 2019. LNCS, vol. 11505, pp. 103–115. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25510-7 6
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Abstract. ARX algorithms are a class of symmetric-key algorithms
constructed by Addition, Rotation, and XOR, which achieve the best
software performances in low-end microcontrollers. To evaluate the resis-
tance of an ARX cipher against differential cryptanalysis and its variants,
the recent automated methods employ constraint satisfaction solvers,
such as SMT solvers, to search for optimal characteristics. The main
difficulty to formulate this search as a constraint satisfaction problem
is obtaining the differential models of the non-linear operations, that is,
the constraints describing the differential probability of each non-linear
operation of the cipher. While an efficient bit-vector differential model
was obtained for the modular addition with two variable inputs, no dif-
ferential model for the modular addition by a constant has been proposed
so far, preventing ARX ciphers including this operation from being eval-
uated with automated methods.

In this paper, we present the first bit-vector differential model for
the n-bit modular addition by a constant input. Our model contains
O(log2(n)) basic bit-vector constraints and describes the binary loga-
rithm of the differential probability. We also represent an SMT-based
automated method to look for differential characteristics of ARX, includ-
ing constant additions, and we provide an open-source tool ArxPy to find
ARX differential characteristics in a fully automated way. To provide
some examples, we have searched for related-key differential character-
istics of TEA, XTEA, HIGHT, and LEA, obtaining better results than
previous works. Our differential model and our automated tool allow
cipher designers to select the best constant inputs for modular additions
and cryptanalysts to evaluate the resistance of ARX ciphers against dif-
ferential attacks.
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1 Introduction

Low-end devices such as RFID tags, sensor networks, and the Internet of Things
(IoT) are becoming ubiquitous. In 2018, Gartner, Inc. forecasted that there will
be more than 25 billion connected devices forming the IoT by 2021 [1]. Tradi-
tional cryptographic algorithms are not suitable for these resource-constrained
devices, and several lightweight cryptographic algorithms have been recently
proposed to meet this growing demand. In this regard, the National Institute of
Standards and Technology (NIST) has started a process to evaluate and stan-
dardize lightweight cryptographic algorithms [2].

ARX primitives, composed exclusively of modular Additions, cyclic Rota-
tions, and XORs, are a promising class of lightweight cryptographic algorithms
with the most efficient software implementations on low-end microcontrollers [3].
There are many noteworthy ARX algorithms, such as the hash function BLAKE
[4], the stream cipher Salsa20 [5], the MAC algorithm Chaskey [6] and notable
block ciphers like HIGHT [7], LEA [8], SPECK [9] or SPARX [10]. Usually,
ciphers that are exclusively composed of ARX operations and other common
bit-vector operations (e.g., modular multiplication or logical shifts) are also con-
sidered in the class of ARX ciphers, such as IDEA [11], TEA [12], or XTEA
[13].

The security of ARX ciphers is evaluated by analysing their robustness
against various attacks. Some of the most successful attacks applied to ARX
algorithms are differential cryptanalysis and their variants, such as boomerang
or related-key differential attacks [8,14]. These attacks exploit differences in the
inputs that propagate through the cipher with high probability. The standard
approach to show an ARX cipher is secure against differential attacks is by
finding the optimal characteristics (i.e., trails of differences with the highest
probabilities) that cover most of the rounds of the cipher and checking that
their probabilities are negligible [7,8]. When the best attack in the design stage
is a differential attack, the number of rounds of the cipher is determined by
the number of rounds that optimal characteristics can cover with non-negligible
probability. Thus, searching for optimal characteristics is a crucial step in the
design and security analysis of a cipher.

Two main techniques have been applied to search for optimal characteris-
tics of ARX algorithms: branch-and-bound algorithms [15,16] based on Matsui’s
algorithm [17], and the recent automated methods based on constraint satisfac-
tion problems, such as SMT (Satisfiability Modulo Theories) or MILP (Mixed
Integer Linear Programming) problems [18,19]. Automated methods formulate
the characteristic search problem as a constraint satisfaction problem and dele-
gate the solving task to one of the powerful off-the-shelf constraint satisfaction
solvers available nowadays [20,21]. The main difficulty to formulate the search
problem lies in the differential models of the non-linear operations, that is, the
constraints describing the differential probability of the non-linear operations of
the cipher.

ARX ciphers can be efficiently described using the bit-vector theory of SMT,
and several bit-vector differential models have been proposed so far [22–24]. For
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the modular addition with two n-bit operands, the foremost non-linear oper-
ation in ARX primitives, Lipmaa and Moriai found a bit-vector algorithm for
computing the differential probability with complexity O(log2 n) [22]. This algo-
rithm can be straightforwardly translated to a bit-vector differential model, and
it has been used in several SMT-based methods to search for characteristics of
ARX ciphers [18,24,25].

However, no bit-vector differential model has been proposed for the modular
addition with a constant input, preventing from searching for characteristics of
ARX ciphers that contain constant additions. Lipmaa’s algorithm is restricted
to the modular addition with two operands, and it cannot be applied when one
of the inputs is fixed to a constant as we will discuss later. Machado proposed an
algorithm to compute the differential probability of the constant addition [26],
but it cannot be translated to an efficient bit-vector differential model due to its
recursive nature and the use of floating-point arithmetic.

Contributions. We propose an efficient bit-vector differential model for the mod-
ular addition by an n-bit constant. Our model contains O(log2 n) basic bit-vector
constraints and it is composed of a bit-vector formula that determines whether a
differential over the constant addition has non-zero probability and a bit-vector
function that computes the binary logarithm of the differential probability. Our
bit-vector model exploits the properties of the carry chain of the modular addi-
tion and relies on efficient well-known bit-vector functions, such as the hamming
weight or the bit-reversal, and new bit-vector functions that we have developed
for the binary logarithm.

Furthermore, we describe an SMT-based automated method to search for
characteristics of ARX ciphers including constant additions. Our method is com-
posed of an iterated search of optimal characteristics of round-reduced versions
of the cipher and an automated encoding technique which formulates the SMT
problems from the Single Static Assignment (SSA) form of the cipher. We have
implemented our method in an open-source tool ArxPy1, which fully automated
the search of ARX characteristics. ArxPy offers a simple interface to represent
any ARX cipher, different types of characteristics to search, and a complete doc-
umentation. To provide some examples, we have applied our characteristic search
method to several ARX ciphers containing constant additions. In particular, we
have searched for different types of related-key characteristics of TEA, XTEA,
HIGHT and LEA. With our automated approach, we have revisited results pre-
viously found with manual and ad-hoc techniques, and we have obtained better
characteristics in terms of probability and number of rounds.

With our bit-vector model for the constant addition, the SMT-based auto-
mated method, and our open-source tool ArxPy, we provide cipher designers with
the resources to design ARX ciphers including constant additions that are secure
against differential attacks. Thus, cipher designers can choose the best constants
for the modular additions and optimize the number of rounds to strike a balance
between security and efficiency.

1 https://github.com/ranea/ArxPy.

https://github.com/ranea/ArxPy
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Outline. The notation and preliminaries are introduced in Sect. 2, and the bit-
vector model for the modular addition by a constant is described in Sect. 3.
Section 4 illustrates the formulation of the characteristic search as a sequence of
SMT problems, SMT-based search method, and the encoding of bit-vector SMT
problems for ARX characteristics. Section 5 presents the characteristics found
for TEA, XTEA, HIGHT, and LEA using our automated approach and finally
Sect. 6 concludes the paper and addresses future works.

2 Preliminaries

2.1 Notations

Let x be an integer such that its n-bit vector representation when 0 ≤ x < 2n

is x = (x[n − 1], . . . , x[0]), where x[0] and x[n − 1] denote respectively the least
and the most significant bit. For ease of notation, we define x[i] = 0 when i < 0
and the symbol ∗ stands for an undetermined bit. The usual integer operations
are denoted by (+,−,×, /) and the basic bit-vector operations are gathered in
Table 1.

A mathematical expression only involving bit-vector variables and basic bit-
vector operations is called a bit-vector expression. A bit-vector formula is a
bit-vector expression returning True or False, such as Equals, whereas an n-bit
vector function is a bit-vector expression returning an n-bit vector. In order to
measure the complexity of the bit-vector differential model that we propose in
this paper, we define the bit-vector complexity of a bit-vector expression as the
number of basic bit-vector operations that the expression is composed of.

Table 1. Basic bit-vector operations for n-bit vectors.

x[i, j] the bit-vector (x[i], . . . , x[j]), n > i ≥ j ≥ 0

¬x bit-wise NOT of x

x ‖ y concatenation of x and y

x ∧ y bit-wise AND of x and y

x ∨ y bit-wise OR of x and y

x ⊕ y bit-wise XOR of x and y

x � i (logical) left shift of x by i bits

x � i right shift of x by i bits

x ≪ i left cyclic rotation of x by i bits

x ≫ i right cyclic rotation of x by i bits

x � y modular addition of x and y

x � y modular subtraction of x and y

Equals(x, y) bit-vector equality of x and y, returning True

if x and y are the same, otherwise False
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In the literature of the bit-vector theory, the set of basic bit-vector oper-
ations usually includes the operations gathered in Table 1 and few additional
operations, such as modular multiplication or modular division [27]. However,
modular multiplication and modular division are much more costly than the
other operations in practice, and we have excluded them from our set of basic
bit-vector operations, which resembles the unit-cost RAM model used in [22].

Apart from the basic bit-vector operations listed in Table 1, we will also
employ the following well-known bit-vector functions: Carry,Rev,RevCarry,HW
and LZ. The carry function c = Carry(x, y) returns the n-bit carry chain of the
n-bit modular addition x � y. It is defined iteratively as c[0] = 0 and c[i + 1] =
(x[i]∧y[i])⊕(x[i]∧c[i])⊕(y[i]∧c[i]). Note that the carry has bit-vector complexity
O(1), since Carry(x, y) = x ⊕ y ⊕ (x � y).

The bit-reversal function Rev(x) reverses the order of bits of x, i.e.,
Rev(x) = (x[0], x[1], . . . , x[n − 1]). We will use this function to define the reverse
carry, RevCarry(x, y) = Rev(Carry(Rev(x),Rev(y))). The hamming weight HW(x)
returns an n-bit vector denoting the number of non-zero bits of the n-bit input
x. Lastly, the leading zeros function LZ(x) marks the leading zeros of an n-bit
input x, that is, for 0 ≤ i < n we have LZ(x)[i] = 1 ⇐⇒ x[n − 1, i] = 0. Note
that the functions Rev,RevCarry,HW and LZ can be computed using a divide
and conquer approach with bit-vector complexity O(log2 n) [28].

2.2 Differential Cryptanalysis

A block cipher is a family of permutations parameterized by a κ-bit key k,
mapping n-bit plaintexts p to n-bit ciphertexts c. Most block ciphers consist
of a key scheduling algorithm KS, which derives round keys k1, . . . , kr from the
master key k, and an encryption algorithm Ek, which processes the plaintext
by iterating a round function f and injecting a round key at each round, i.e.,
Ek = fkr

◦ · · · ◦ fk1 .
Block ciphers are shown to be secure by analysing their resistance against all

known attacks. One of the most powerful attacks, specially to ARX primitives,
is differential cryptanalysis [29]. Basically, it exploits non-random propagation
of differences in the input to recover the secret key.

Let F be an n-bit to n-bit function and (Δp,Δc) be the XOR of a pair
of inputs (p, p′) and their corresponding outputs (c, c′), i.e., Δp = p ⊕ p′ and
Δc = c ⊕ c′. The pair (Δp,Δc) is called a differential and its probability is
defined as

Pr[Δp
F−→ Δc] =

#{p : F (p) ⊕ F (p ⊕ Δp) = Δc}
2n

.

A differential is valid if it has non-zero probability. In this case, its weight is
defined as

weightF (Δp,Δc) = − log2(Pr[Δp
F−→ Δc]) .

The differential 0 F−→ 0 has probability 1 for any function F , and a differential
with non-zero input difference over a random n-bit permutation has probability
2−n. Differential cryptanalysis [29] exploits a differential over the n-bit block
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cipher with probability p > 2−n to recover the secret key with roughly O(p−1)
encryption calls.

Related-key differential cryptanalysis [30] extends differential cryptanalysis
by considering key differences. A related-key differential is given by a pair of
differentials over the key schedule and the encryption function respectively,

(Δk
KS−−→ (Δk1 , . . . , Δkr

)), (Δp
E−→ Δc) ,

where the ciphertext difference is computed using the related round-key pairs,

Δc = (fkr
◦ · · · ◦ fk1)(p) ⊕ (fkr⊕Δkr

◦ · · · ◦ fk1⊕Δk1
)(p ⊕ Δp) .

The probability of a related-key differential is the product of the probability of
key schedule differential pKS and the probability of encryption differential pE .

A related-key attack exploits a related-key differential with pKS > 2−κ and
pE > 2−n to recover the secret key with complexity O((pKS × pE)−1). The
attacker takes about p−1

KS key pairs to find one key, on average, that satisfies
the key schedule differential. Next and for each key pair, the attacker runs a
differential attack over the encryption using O(p−1

E ) encryption calls.
Related-key differential cryptanalysis requires a very powerful attacker that

can query the encryption function Ek⊕Δk
for many keys k ⊕ Δk. In fact, if

an adversary can query Ek⊕Δk
for 2m key differences Δk, any block cipher is

vulnerable to a related-key attack with complexity O(2m + 2n−m) [31]. Thus,
we distinguish between weak related-key differentials (i.e., pKS < 1) and strong
related-key differentials (i.e., pKS = 1), which can be exploited in practice with
a single related-key pair. Furthermore, we call equivalent keys as pairs of related
keys (k, k ⊕Δk) such that ∀p, Ek(p) = Ek⊕Δk

(p⊕Δp)⊕Δc, for some (Δp,Δc).
Note that a related-key differential with pE = 1 leads to 2κpKS pairs of equivalent
keys.

Searching for Differentials. The most difficult step to launch a differential
attack is finding a differential with high probability. The main approach is to
analyse how differences propagate through the round function and search for a
characteristic, that is, a trail of differences

Ω = (Δp = Δx0

fk1−−→ Δx1 → · · · → Δxr−1

fkr−−→ Δxr
= Δc) .

Similar to differentials, a characteristic Ω is valid if it has non-zero probability
and its weight is defined as − log2(Pr[Ω]). Furthermore, we denote a related-
key characteristic by a pair of characteristics (ΩKS, ΩE), where ΩKS is the key
schedule characteristic containing the trail of differences from the master key to
the round keys and ΩE is the encryption characteristic containing the trail of
differences through the encryption.

Obtaining the exact probability of a characteristic is computationally infea-
sible. Thus, two assumptions are commonly made. First, it is assumed that the
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differential probabilities over each round are independent, which allows to com-
pute the weight of a characteristic by summing the round weights, i.e.,

weight(Ω) =
r∑

i=0

weight(Δxi
→ Δxi+1) .

Second, it is assumed that the probability of a characteristic does not strongly
depend on the choice of the secret key, also known as the hypothesis of stochas-
tic equivalence [32], which allows to compute the weight of a characteristic by
averaging over all keys.

On top of that, designers also assume that the probability of a differential
(Δp,Δc) is close to the probability of the best characteristic (Δp → · · · → Δc),
and they prove a cipher is secure against differential cryptanalysis by showing
that characteristics with high probability cannot cover most rounds of the cipher.
While these assumptions do not always hold, currently this is the best systematic
approach to argue security against differential cryptanalysis, and this heuristic
approach is widely used for ARX ciphers in practice [18,19,23,25,33,34].

SMT Solvers. A recent approach to search for characteristics of ARX ciphers
is by formulating the search problem as an SMT problem in the bit-vector the-
ory [18,23–25,35]. Satisfiability Modulo Theories (SMT) refers to the problem of
determining whether a first order formula is satisfiable with respect to some logi-
cal theory. SMT problems are a generalization of SAT problems; while the latter
problems are expressed in propositional logic, SMT formulas can be expressed
in richer logics, such as the theory of bit-vectors or the theory of integers.

SMT has grown in recent years into a very active research field and several
off-the-shelf SMT solvers are available nowadays [20]. Most SMT solvers can not
only determine the satisfiability of a problem but also obtain an assignment of
the variables that satisfies the problem. This feature allows SMT solvers to be
applied in search problems.

An SMT problem in the bit-vector theory is given by a set of bit-vector
variables and a set of bit-vector formulas or constraints. The constraints can be
defined with the usual logical operations (e.g., Equals,NotEquals, Implies, etc.)
and with the usual bit-vector operations (e.g., ⊕,�,≪, etc.).

2.3 Differential Models

To represent a characteristic in a constraint satisfaction problem, it is necessary
to find a differential model of the round function f . For an SMT problem in
the bit-vector theory, a differential model of a function y = f(x) is given by
a bit-vector formula validf (Δx,Δy) and a bit-vector function weightf (Δx,Δy).
The formula validf (Δx,Δy) is True if and only if the differential (Δx → Δy)
over f is valid, and the function weightf (Δx,Δy) returns the weight of a valid
differential (Δx → Δy).

Characteristics over ARX ciphers are usually defined by considering the dif-
ference after each ARX operation. The differential models of the XOR and
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the cyclic rotations are very simple since these operations propagate differences
deterministically, that is,

Δx1 ,Δx2

f(x1,x2)=x1⊕x2−−−−−−−−−−−→ Δx1 ⊕ Δx2 ,

Δx
fa(x)=x≪a−−−−−−−−→ Δx ≪ a ,

Δx
fa(x)=x⊕a−−−−−−−−→ Δx ,

Δx
fa(x)=x≫a−−−−−−−−→ Δx ≫ a .

For the modular addition with two n-bit inputs, y = f(x1, x2) = x1 � x2, the
algorithm by Lipmaa et al. [22] can be translated into the following differential
model with bit-vector complexity O(log2 n).

Theorem 1. Let ((Δx1 ,Δx2),Δy) be a differential over the modular addition
y = x1 � x2 and denote ←−x = x � 1 and eq(a, b, c) = (¬a ⊕ b) ∧ (¬a ⊕ c). Then,
the differential is valid if and only if the bit-vector formula

valid�((Δx1 ,Δx2),Δy) = Equals(0, eq(
←−−
Δx1 ,

←−−
Δx2 ,

←−
Δy) ∧ (Δx1 ⊕ Δx2 ⊕ Δy ⊕ ←−−

Δx2))

is True. In this case, the differential weight is given by the bit-vector function

weight�((Δx1 ,Δx2),Δy) = HW(¬eq(Δx1 ,Δx2 ,Δy) � 1) .

For the modular addition with a constant input �a(x) = x � a, Machado
obtained the following algorithm to compute the differential probability [26].

Theorem 2. Let (u, v) be a differential over the n-bit constant addition �a.
Then, the differential probability is given by

Pr[u �a−−→ v] = ϕ0 × · · · × ϕn−1 ,

where ϕi depends on the δi−1 and Si, each one defined for 0 ≤ i < n by

Si = (u[i − 1], v[i − 1], u[i] ⊕ v[i]) ,

δi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a[i − 1] + δi−1)/2, Si = 000

0, Si = 001

a[i − 1], Si ∈ {010, 100, 110}
δi−1, Si ∈ {011, 101}
1/2, Si = 111

ϕi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, Si = 000

0, Si = 001

1/2, Si ∈ {010, 011, 100, 101}
1 − (a[i − 1] + δi−1 − 2a[i − 1]δi−1), Si = 110

(a[i − 1] + δi−1 − 2a[i − 1]δi−1), Si = 111,

For i = −1, Si and δi are defined by S−1 = ⊥ and δ−1 = 0.
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Unfortunately, the algorithm illustrated in Theorem2 is not suitable for con-
straint satisfaction problems due to its recursive nature and the use of floating-
point arithmetic.

Some authors [36, Corollary 2] [37] have adapted the differential model of
the 2-input addition (i.e., the modular addition with two independent inputs)
for the constant addition by setting the difference of the second operand to zero,
that is,

valid�a
(Δx,Δy) ← valid�((Δx, 0),Δy) ,

weight�a
(Δx,Δy) ← weight�((Δx, 0),Δy) .

(1)

The approximation given by Eq. (1) models the differential (Δx
�a−−→ Δy) by

averaging over all a. While this approach can be used to model the constant
addition by a round key, since the characteristic probability is also computed by
averaging over all keys, for a fixed constant this approach is rather inaccurate.

Surprisingly, the differential properties of the 2-input addition and the con-
stant addition are very different. The 2-input addition was shown to be CCZ-
equivalent to a quadratic function [38], that is, the differential properties of the
2-input addition are the same of some quadratic function. In particular, the set
of inputs (x1, x2) satisfying a differential ((Δx1 ,Δx2) → Δy) over the 2-input
addition forms a subspace of F

n
2 , which allows to describe its differential model

using few basic operations.
On the other hand, the constant addition is not CCZ-equivalent to a qua-

dratic function, since the set of inputs (x1, x2) satisfying a differential (Δx,Δy)
over �a does not form a subspace for many a. In other words, the probability
of a differential over the constant addition is not necessarily of the form 2−α

for a positive integer α, and finding a differential model for the constant input
addition is a much harder problem.

We checked experimentally how accurate was the approximation given by
Eq. (1) for 8-bit constants a. For most values of a, validity formulas differ roughly
in 213 out of all 216 differentials, and for those differentials where they did not
differ, the difference between their weights was significantly high in average.

Consequently, no differential model of the constant addition suitable for con-
straint satisfaction problems has been proposed so far. In the next section we
present the first differential model of the constant addition for SMT problems
in the bit-vector theory.

3 Bit-Vector Differential Model of the Constant Addition

We present a bit-vector differential model of the constant addition, composed
of a bit-vector formula to determine whether a given differential is valid and a
bit-vector function that computes the weight of the valid differential. Our model
takes benefit from Theorem 2 [26]; however, we avoid bit iterations, floating-
point arithmetic, multiplications and look-up tables, in order to obtain efficient
bit-vector constraints to be used in bit-vector SMT problems.
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Before we illustrate our model, we remark an essential property of Theo-
rem 2. When the state Si is not 110 or 111, the probability of the step i, ϕi,
depends exclusively on Si; otherwise, ϕi depends on Si and δi−1. When Si = 11*,
Si−1 ∈ {010, 100, 110, 000} and for the first three cases, δi−1 is equal to a[i− 2].
However, considering the forth case, i.e., Si−1 = 000, δi−1 depends on δi−2

and this dependency will proceed until we obtain a state Si−�i
�= 000 for some

positive integer �i. Thus, δi−1 has the following expression when Si = 11*,

δi−1 =
a[i − �i − 1]

2�i−1
+

�i∑

j=2

a[i − j]
2j−1

. (2)

Therefore, when Si = 11*, ϕi also depends on the previous states Si−1 · · · , Si−�i
,

which motivates the following definition.

Definition 1. Let Si = 11*. The chain Γi is defined as the smallest set of
previous states {Si−1, Si−2, · · · , Si−�i

} that completely determine ϕi, and the
positive integer �i is called the length of Γi.

Given a chain Γi = {Si−1, Si−2, · · · , Si−�i
}, note that Si−�i

�= 000 and the
remaining states in the chain (if any) are all equal to 000.

3.1 Validity

Let (u, v) be a differential over �a, the modular addition by n-bit constant a.
According to Theorem 2, the differential probability of (u, v) can be expressed as
ϕ0×· · ·×ϕn−1. Thus, (u, v) is a valid differential, i.e., with non-zero probability,
if and only if all ϕi are non-zero. If ϕi = 0, note that Si must be 001, 110 or
111. While Si = 001 always implies ϕi = 0, the other two cases require an extra
condition to result in ϕi = 0, as shown in the next lemma.

Lemma 1. Let the state Si be 11b, for b ∈ {0, 1}. Then, ϕi is equal to 0 if and
only if ¬b ⊕ a[i − 1] = a[i − 2] = · · · = a[i − �i − 1] .

Proof. Having Si = 11b, ϕi = 0 if and only if ¬b = δi−1 ⊕ a[i − 1]. Let �i be
the chain length of Si. The case for �i = 1 is trivial, since δi−1 = a[i − 2]. To
achieve δi−1 = a[i − 1] ⊕ ¬b when �i > 1, the non-negative rational number δi−1

must be equal to 0 or 1. Since δi−1 is a monotonically increasing function of
(a[i−2], . . . , a[i− �i −1]) regarding Eq. (2), δi−1 reaches its extrema in (0, . . . , 0)
and (1, . . . , 1), that is,

δi−1 = c ⇐⇒ a[i − 2] = a[i − 3] = · · · = a[i − �i − 1] = c , ∀c ∈ {0, 1} ,

Thus, δi−1 = a[i − 1] ⊕ ¬b ⇐⇒ δi−1 = a[i − 2] = · · · = a[i − �i]. ��
The next lemma provides a bit-vector expression to check Lemma 1 by

exploiting the fact that the carry chain allows a bit to affect the bits to its
left.
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Lemma 2. Consider the following n-bit values,

s00* = ¬(u � 1) ∧ ¬(v � 1), s**1 = u ⊕ v, a′ = (a ⊕ (a � 1)) � 1,

c = Carry
(
s00* ∧ ¬a′,¬(s00* � 1)

)
, g = (s**1 ⊕ a′) ∧ (c ∨ ¬(s00* � 1)).

Then, for all states Si = 11*, we have ϕi = 0 if and only if g[i] = 1.

Proof. Let Si = 11b with chain length �i. Note that a′[i] = a[i−1]⊕a[i−2] and
that s00*[i] = 1 (resp. s**1[i] = 1) if and only if Si = 00* (resp. Si = **1).

The first operand of g[i], i.e., (s**1 ⊕ a′)[i], is equal to one if and only if
b = ¬(a[i − 1] ⊕ a[i − 2]). For �i = 1 it is easy to see that Si−1 �= 00*; therefore,
the second operand of g[i] is 1, and by Lemma 1 g[i] = 1 if and only if ϕi = 0.

When �i > 1, Si−1 = 000 and the second major operand of g[i] reduces to c.
In particular, the two major operands of the Carry function of c are given by

(s00* ∧ ¬a′)[i, i − �i] = (¬(a[i − 1] ⊕ a[i − 2]), . . . ,¬(a[i − �i] ⊕ a[i − �i − 1]), 0),
¬(s00* � 1)[i, i − �i] = (0, . . . , 0, 1, ∗).

Thus, c[i] = c[i− 1]∧¬a′[i− 1] and c[i− �i + 1] = c[i− �i]∧¬s00*[i− �i − 1] = 0;
otherwise, for 0 ≤ j ≤ i − �i − 1 we will obtain s00*[j] = 0 which does not
conform to S0 = 00*. By unrolling the recursive definition of c[i], we see that
c[i] = ¬a′[i − 1] ∧ · · · ∧ ¬a′[i − �i + 1]. In other words, c[i] = 1 if and only if
a[i − 2] = · · · = a[i − �i − 1]. Together with the condition for (s**1 ⊕ a′)[i] = 1,
we have that g[i] = 1 exactly when ϕi = 0, regarding Lemma 1. ��

Lemma 2 provides a bit-vector variable g that detects the states Si = 11*
leading to invalidity. The next theorem presents the final bit-vector formula for
the validity by taking into account the states Si = 001 as well.

Theorem 3. Let (u, v) be a differential over the n-bit constant addition �a.
Consider the n-bit value g defined in Lemma 2 and the following n-bit values

s001 = ¬(u � 1) ∧ ¬(v � 1) ∧ (u ⊕ v) , s11* = (u � 1) ∧ (v � 1).

Then, the bit-vector formula valid�a
(u, v) = Equals(s001 ∨ (s11* ∧ g), 0) is True if

and only if the differential (u, v) is valid.

Proof. By the definition of s001 and s11*, s001[i] = 1 (respectively s11*[i] = 1) if
and only if Si = 001 (respectively Si = 11*). Moreover, ϕi = 0 exactly when
Si = 001, or when Si = 11∗ and g[i] = 1 (Lemma 2). Thus, ϕi = 0 if and only if
s001 ∨ (s11* ∧ g)[i] = 1. ��

Since the number of basic bit-vector operations of our bit-vector validity
formula is independent of the bit-size of the inputs, the bit-vector complexity of
valid�a

is O(1).
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3.2 Weight of a Valid Differential

In this section, we propose a bit-vector function that computes the weight of a
valid differential over the constant addition. Working with differential weights
has the advantage that multiple differential weights can be combined by adding
them up, while probabilities need to be multiplied, a very costly operation in a
bit-vector SMT problem.

The weight of a valid differential over the constant addition is an irrational
value in general, and it cannot be represented as a fixed-sized bit-vector. Thus,
our bit-vector function computes a close approximation of the weight, and we
provide almost tight bounds for the approximation error.

Through the rest of the section, let (u, v) be a valid differential over the n-bit
constant addition �a. According to Theorem 2, the weight can be obtained by

weight�a
(u, v) = − log2

(
n−1∏

i=0

ϕi

)
= −

n−1∑

i=0

log2(ϕi). (3)

Let I denote the set of indices corresponding to the states 11* with chain
length bigger than one, i.e., I = {1 ≤ i ≤ n − 1 | Si = 11*, �i > 1}. For i /∈ I,
the probability ϕi only depends on the current state Si and ϕi is either 1 or 1/2.
Since ϕi = 1/2 when Si ∈ {01∗, 10∗}, it is easy to see that

−
∑

i/∈I
log2(ϕi) = HW((u ⊕ v) � 1). (4)

Equation 4 describes the sum of log2(ϕi) when i �∈ I as a bit-vector expression
with complexity O(log2 n). To describe the logarithmic summation when i ∈ I
as a bit-vector, we will first show how to split ϕi as the quotient of two integers.

Lemma 3. Let i ∈ I and let pi be the positive integer defined by

pi =

{
a[i − 2, i − �i] + a[i − �i − 1], u[i] ⊕ v[i] ⊕ a[i − 1] = 1
2�i−1 − (a[i − 2, i − �i] + a[i − �i − 1]), u[i] ⊕ v[i] ⊕ a[i − 1] = 0

where �i > 1 is the chain length of the state Si = 11*. Then, ϕi =
pi

2�i−1
.

Proof. Considering the definition of ϕi when Si = 11*,

ϕi =

{
δi−1, u[i] ⊕ v[i] ⊕ a[i − 1] = 1
1 − δi−1, u[i] ⊕ v[i] ⊕ a[i − 1] = 0

and following the definition of δi−1 given by Eq. (2),

2�i−1δi =
�i−2∑

j=0

2ja[i − �i + j] + a[i − �i − 1] = a[i − 2, i − �i] + a[i − �i − 1] ,

we obtain that ϕi = pi/2�i−1. Moreover, having 0 < ϕi ≤ 1 and �i > 1 results
in 0 < pi ≤ 2�i−1. Thus, pi is always a positive integer. ��
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Due to Lemma 3, we can decompose the logarithmic summation over I as
∑

i∈I
log2(ϕi) =

∑

i∈I
log2(pi) −

∑

i∈I
(�i − 1) .

The next lemma shows how to describe the summation involving the chain
lengths with basic bit-vector operations.

Lemma 4. Consider the n-bit vector s000 = ¬(u � 1) ∧ ¬(v � 1). Then,
∑

i∈I
(�i − 1) = HW

(
s000 ∧ ¬LZ(¬s000)

)
.

Proof. Recall that there are exactly (�i − 1) states in each chain Γi such that

Si−1 = Si−2 = · · · = Si−(�i−1) = 000.

Therefore, we have
∑

i∈I(�i − 1) = #{Sj |Sj = 000 and ∃i ∈ I s.t. Sj ∈ Γi} .
When Sj = 000, the next state Sj+1 will be a member of the set {000, 11*}. As
a result, it is easy to see that for an arbitrary j, if Sj is equal to 000, then either
Sj is included in some chain Γi, i ∈ I, or Sj belongs to the set Γ′ defined by

Γ′ = {Sn−1 = 000, · · · , Sn−k = 000} ,

for some k > 0, where Sn−k−1 �= 000. Concerning Definition 1, one can observe
that Γ′ is not a chain. Therefore,

∑
i∈I(�i − 1) = #{Sj |Sj = 000 and Sj �∈ Γ′}.

Since we are assuming that the differential is valid, there are no states Sj =
001, and s000[j] = 1 if and only if Sj = 000. On the other hand, the function
LZ can be used to detect the states from the set Γ′. In particular, LZ(¬s000)[i]
is equal to 1 if and only if Si ∈ Γ′. Therefore, we obtain

∑

i∈I
(�i − 1) = HW

(
s000 ∧ (¬LZ(¬s000))

)
.

��
Representing the sum of log2(pi) by a bit-vector expression is the most com-

plex and challenging part of our differential model. Thus, we will proceed in
several steps. First, we will show how to obtain a bit-vector w that contains all
the pi as some sub-vectors.

Lemma 5. Consider the following n-bit values,

s000 = ¬(u � 1) ∧ ¬(v � 1) , s′
000 = s000 ∧ ¬LZ(¬s000) ,

t = ¬s′
000 ∧ (s′

000 � 1) , t′ = s′
000 ∧ (¬(s′

000 � 1)) ,

s = ((a � 1) ∧ t) � (a ∧ (s′
000 � 1)) , q =

(
(¬((a � 1) ⊕ u ⊕ v)) � 1

) ∧ t′ ,
d = RevCarry(s′

000, q) ∨ q , w = (q � (s ∧ d)) ∨ (s ∧ ¬d).

Then, for all states Si = 11* with i ∈ I, w[i − 1, i − �i] = pi.
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Proof. For each i ∈ I and 0 ≤ j < n, note that s′
000[j] = 1 exactly when

Sj = 000 and Sj ∈ Γi, and t[j] = 1 (resp. t′[j] = 1) if and only if Sj = Si−�i
(resp.

Sj = Si−1). Denoting s = s1�s2, where s1 = (a � 1)∧t and s2 = a∧(s′
000 � 1),

when i ∈ I the sub-vectors

s1[i − 1, i − �i − 1] = (0, 0, . . . , 0, a[i − �i − 1], 0) ,
s2[i − 1, i − �i − 1] = (0, a[i − 2], . . . , a[i − �i + 1], a[i − �i], 0),

result in s[i−1, i−�i] = a[i−2, i−�i]+a[i−�i −1]. In particular, s[i−1, i−�i] ≤
2�i−1 and the equality holds when s[i − 1, i − �i] = 10...0.

It is easy to see that q[i − 1] = ¬(a[i − 2] ⊕ u[i − 1] ⊕ v[i − 1]) when i ∈ I
and q is zero elsewhere. Then, the sub-vectors d[i − 1, i − �i] are composed of
repeated copies of q[i − 1] when i ∈ I, as shown by the following sub-vectors

s′
000[i, i − �i − 1] = (0, 1, 1, . . . , 1, 0, ∗) ,

q[i, i − �i − 1] = (0, q[i − 1], 0, . . . , 0, 0, ∗) ,
RevCarry(s′

000, q)[i, i − �i − 1] = (∗, 0, q[i − 1], . . . , q[i − 1], q[i − 1], 0) ,
d[i, i − �i − 1] = (∗, q[i − 1], q[i − 1], . . . , q[i − 1], q[i − 1], ∗).

The only exception for the above equations is when i − �i = −1, where the two
least significant bits of the above sub-vectors will be equal to zero.

Let w = w1 ∧ w2, where w1 = q � (s ∧ d) and w2 = s ∧ ¬d. Regarding the
acquired patterns for q and d, we prove the following inequalities for i ∈ I

(s ∧ d)[i − 1, i − �i] ≤ q[i − 1, i − �i] ,
(s ∧ d)[i − �i − 1, 0] ≤ q[i − �i − 1, 0] ,

which imply the identity w1[i − 1, i − �i] = q[i − 1, i − �i] � (s ∧ d)[i − 1, i − �i].
The first inequality can be derived from the fact that s[i−1, i−�i] ≤ 10...0.

For the second inequality, consider the index set J = {j|∀i ∈ I, Sj /∈ Γi}. Then,
the second inequality holds since for j ∈ J and c ∈ {0, 1} we can see that

s′
000[j + 1 − c] = 0 =⇒ s1[j − c] = s2[j − c] = 0 .

We are now ready to evaluate w[i − 1, i − �i] when i ∈ I. If q[i − 1] = 0, then
d[i − 1, i − �i] = (0, . . . , 0), w1[i − 1, i − �i] reduces to 0, and

w[i − 1, i − �i] = w2[i − 1, i − �i] = a[i − 2, i − �i] + a[i − �i − 1] .

If q[i − 1] = 1, then d[i − 1, i − �i] = (1, . . . , 1), w2[i − 1, i − �i] reduces to 0, and

w[i − 1, i − �i] = w1[i − 1, i − �i] = (1, 0, . . . , 0) � s[i − 1, i − �i]

= 2�i−1 − (a[i − 2, i − �i] + a[i − �i − 1]) .

Hence, for q[i−1] = ¬(a[i−1]⊕u[i]⊕v[i]) and regarding Lemma3, we obtain
that w[i − 1, i − �i] = pi. ��
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Recall that both LZ and RevCarry have bit-vector complexity O(log2 n).
Therefore, w can be described with O(log2 n) basic bit-vector operations.

Since pi is not always a power of two, log2(pi) cannot be represented by
a fixed-sized bit-vector. Thus, we will use the following approximation for the
binary logarithm of a positive integer x,

apxlog2(x) � m +
Truncate(x[m − 1, 0])

24
, (5)

where m = �log2(x)� and Truncate(z) for an m-bit vector z is defined by

Truncate(z) =

⎧
⎨

⎩

z[m − 1,m − 4], m ≥ 4

z[m − 1, 0] ‖ (

4−m︷ ︸︸ ︷
0, . . . , 0), m < 4

In other words, apxlog2 includes the integer part of the logarithm and takes
the four bits right after the most significant one as the “fraction” bits. While
Truncate can be generalized to consider more fraction bits, we will show later
that four fraction bits are enough to minimize the bounds of our approximation
error.

To describe
∑

i∈I apxlog2(pi) with basic bit-vector operations, we will intro-
duce in the next proposition two new bit-vector functions ParallelLog and
ParallelTrunc. Given a bit-vector x with sub-vectors delimited by a bit-vector
y, ParallelLog(x, y) computes the sum of the integer part of the logarithm of the
delimited sub-vectors, whereas ParallelTrunc(x, y) calculates the sum of the four
most significant bits of the delimited sub-vectors.

Proposition 1. Let x and y be n-bit vectors such that y has r sub-vectors

y[it, jt] = (1, 1, . . . , 1, 0), t = 1, . . . , r

where i1 > j1 > i2 > j2 > · · · > ir > jr ≥ 0, and y is equal to zero elsewhere.
We define the bit-vector functions ParallelLog and ParallelTrunc by

ParallelLog(x, y) = HW(RevCarry(x ∧ y, y))
ParallelTrunc(x, y) = (HW(z0) � 3) � (HW(z1) � 2) � (HW(z2) � 1) � HW(z3)

where zλ = x ∧ (y � 0) ∧ · · · ∧ (y � λ) ∧ ¬(y � (λ + 1)).

a) If x[it, jt] > 0 for t = 1, . . . , r, then

r∑

t=1

�log2(x[it, jt])� = ParallelLog(x, y) .

b) If at least �log2(n)� + 4 bits are dedicated to ParallelTrunc(x, y), then

r∑

t=1

Truncate(x[it, jt + 1]) = ParallelTrunc(x, y) .
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Proof. Case a) Let m = �log2(x[i1, j1])� and c = RevCarry(x ∧ y, y). Note that
c[n − 1, i1] = 0, since y[n − 1, i1 + 1] = 0. For m ≥ 1, we obtain the sub-vectors

i1, . . . , j1+ m + 1, j1+ m, j1+ m − 1, . . . , j1+ 1, j1, j1− 1
y[i1, j1− 1] = (1, . . . , 1, 1, 1, . . . , 1, 0, ∗) ,

(x ∧ y)[i1, j1− 1] = (0, . . . , 0, 1, ∗, . . . , ∗, 0, ∗) ,
c[i1, j1− 1] = (0, . . . , 0, 0, 1, . . . , 1, 1, 0) .

In particular, c[i1, j1] has m bits set to one. If m = 0, x[i1, j1 + 1] = 0 and
y[j1] = 0, which implies that there is no carry chain, i.e., c[i1, j1] = 0. Therefore,
in both cases HW(c)[i1, j1]) = m = �log2(x[i1, j1])�.

Note that the reversed carry chain stops at j1, and c[j1 − 1, i2] = 0 · · · 0.
Therefore, the same argument can be applied for t = 2, . . . , r, obtaining

HW(c[it, jt]) = �log2(x[it, jt])� , c[jt − 1, it+1] = 0 .

Finally, it is easy to see that c[jr − 1, 0] = 0, concluding the proof for this case.

Case b) First note that for λ = 0, . . . , 3 and t = 1, . . . , r, the variable zλ is

zλ[i] =

{
x[i], if i = it − λ > jt

0, otherwise

Therefore, the hamming weight of zλ computes the following summation:

HW(zλ) =
∑

t
it−λ>jt

x[it − λ] .

While we define HW as a bit vector function returning an n-bit output given
an n-bit input, �log2(n)� + 1 bits are sufficient to represent the output of HW.
Therefore, by representing each HW(zλ) � (3−λ) in a (�log2(n)�+4)-bit variable
hλ, the bit-vector expression h0 � h1 � h2 � h3 does not overflow, and we obtain

r∑

t=1

Truncate(x[it, jt + 1]) =
r∑

t=1

3∑

λ=0
it−λ>jt

x[it − λ] × 23−λ = h0 � h1 � h2 � h3 ,

which concludes the proof. ��
Since both HW and Rev have O(log2 n) bit-vector complexities, so do the

functions ParallelLog and ParallelTrunc. The next lemma applies ParallelLog and
ParallelTrunc to provide a bit-vector expression of the sum of apxlog2(pi).

Lemma 6. Let r and f be the bit-vectors given by

r = ParallelLog((w ∧ s′
000) � 1, s′

000 � 1) ,

f = ParallelTrunc(w � 1,RevCarry((w ∧ s′
000) � 1, s′

000 � 1)) .

If at least �log2(n)� + 5 bits are dedicated to r and f , then

24
∑

i∈I
apxlog2(pi) = (r � 4) � f .
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Proof. Regarding Lemma 5, w[i − 1, i − �i] represents the �i-bit vector of pi and
s′
000[i − 1, i − �i] conforms to the pattern (1, · · · , 1, 0) for any i ∈ I. Therefore,

∑

i∈I
�log2(pi)� = HW

(
RevCarry((w ∧ s′

000) � 1, s′
000 � 1)

)
,

following Proposition 1. For the second case, let c be the n-bit vector given by
c = RevCarry((w∧s′

000) � 1, s′
000 � 1). Denoting by j = i−li and m = �log2(pi)�

for a given i ∈ I, note that pi[m] is the most significant active bit of pi and

i+1, . . . , j+m+2, j+m+1, j+m, . . . , j+2, j+1, j
(w � 1)[i+1, j] = (0, . . . , 0 pi[m], pi[m−1], . . . , pi[1], pi[0] 0) ,

c[i+1, j] = (0, . . . , 0 0, 1, . . . , 1, 1 0) .

Thus c[j + m, j] conforms to the pattern (1, · · · , 1, 0) and Proposition 1 leads to
∑

i∈I
m=�log2(pi)�

Truncate(pi[m − 1, 0]) = ParallelTrunc(w � 1, c) .

For any n-bit variables x and y, it is easy to see that ParallelLog(x, y) < n.
Thus, �log2(n)� + 4 bits are sufficient to represent (r � 4), and f can also be
represented with the same number of bits following Proposition 1. Therefore,
by representing (r � 4) and f in (�log2(n)� + 5)-bit variables, the bit-vector
expression (r � 4) � f does not overflow. ��

Recall that the differential weight of constant addition can be decomposed
as

weight�a
(u, v) = −

∑

i/∈I
log2(ϕi) −

∑

i∈I
log2

(
1

2�i−1

)
−

∑

i∈I
log2(pi) .

If the binary logarithm of pi is replaced by our approximation of the binary
logarithm apxlog2(pi), we obtain the following approximation of the weight,

apxweight�a
(u, v) � −

∑

i/∈I
log2(ϕi) −

∑

i∈I
log2

(
1

2�i−1

)
−

∑

i∈I
apxlog2(pi) . (6)

Our weight approximation can be computed with the bit-vector function
BvWeight described in Algorithm 1, as shown in the lemma.
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Algorithm 1. Bit-vector function BvWeight(u, v, a).
Require: (u, v, a)
Ensure: BvWeight(u, v, a)

s000 ← ¬(u � 1) ∧ ¬(v � 1)
s′
000 ← s000 ∧ ¬LZ(¬s000)

t ← ¬s′
000 ∧ (s′

000 � 1)
t′ ← s′

000 ∧ (¬(s′
000 � 1))

s ← ((a � 1) ∧ t) � (a ∧ (s′
000 � 1))

q ← (
(¬((a � 1) ⊕ u ⊕ v)) � 1

) ∧ t′

d ← RevCarry(s′
000, q) ∨ q

w ← (q � (s ∧ d)) ∨ (s ∧ ¬d)
int ← HW((u ⊕ v) � 1) � HW(s′

000) � ParallelLog((w ∧ s′
000) � 1, s′

000 � 1)
frac ← ParallelTrunc(w � 1,RevCarry((w ∧ s′

000) � 1, s′
000 � 1))

return (int � 4) � frac

Lemma 7. If at least �log2(n)� + 5 bits are dedicated to BvWeight(u, v, a), then

24apxweight�a
(u, v) = BvWeight(u, v, a) .

Proof. Regarding Eq. 4 and Lemmas 4 and 6 we respectively obtain

−
∑

i/∈I
log2(ϕi) = HW((u ⊕ v) � 1) , −

∑

i∈I
log2

(
1

2�i−1

)
= HW(s′

000) ,

24
∑

i∈I
apxlog2(pi) = (ParallelLog((w ∧ s′

000) � 1, s′
000 � 1) � 4) � frac .

All in all, we get the following identities,

24apxweight�a
(u, v) = 24((int � 4) � frac) = BvWeight(u, v, a) .

��
Note that the four least significant bits of BvWeight(u, v, a) correspond to

the fraction bits of the approximate weight. In other words, the output of
BvWeight(u, v, a) represents the rational value

�log2(n)�+4∑

i=0

2i−4BvWeight(u, v, a)[i] .

The bit-vector complexity of BvWeight is dominated by the complexity of
LZ,Rev,HW,ParallelLog and ParallelTrunc. Since these operations can be com-
puted with O(log2 n) basic bit-vector operations, so does BvWeight.

Theorem 4 shows that BvWeight leads to a close approximation of the differ-
ential weight and provides explicit bounds for the approximation error.
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Theorem 4. Let (u, v) be a valid differential over the n-bit constant addition
�a, let weight�a

(u, v) be the differential weight of (u, v), and let BvWeight be the
bit-vector function defined by Algorithm1. Then, the approximation error,

E = weight�a
(u, v) − apxweight�a

(u, v) = weight�a
(u, v) − 2−4BvWeight(u, v, a)

is bounded by −0.029 · n ≤ E ≤ 0 .

The next subsection is devoted to the proof of Theorem4, where we will also
analyse the error caused by our approximated binary logarithm.

3.3 Error Analysis - Proof of Theorem 4

In this subsection, we will prove Theorem 4 by gradually analysing the error
produced by our approximation of the binary logarithm. As we can see from
Eqs. (3) and (6), the gap between weight�a

(u, v) and apxweight�a
(u, v) is

weight�a
(u, v) − apxweight�a

(u, v) = −
∑

i∈I

(
log2(pi) − apxlog2(pi)

)
.

Note that the integer part of apxlog2 is equal to the integer part of log2
and the error is caused by the fraction part of the logarithm. While apxlog2(x)
considers four bits of the input x for the fraction part, we generalize the definition
of apxlog2(x) to include variable number of bits of x. Given a positive integer x
and the corresponding m = �log2(x)�, we define apxlogκ

2 as

apxlogκ
2 (x) =

{
m + x[m − 1, 0]/2m, m ≤ κ

m + x[m − 1, x − κ]/2κ, m > κ

The non-negative integer κ is called the precision of the fraction part, and for
κ = 4 we have apxlog42(x) = apxlog2(x), which is defined in Eq. (5).

The following lemma bounds the approximation error of apxlog2 when κ ≥
�log2(x)�, with a similar proof as [39] for the sake of completeness. The main
idea is that after extracting integer part of the logarithm in base 2, one can
estimate log2(1 + γ) by γ when 0 ≤ γ < 1.

Lemma 8. Consider a positive integer x and the binary logarithm approxima-
tion log2(x) ≈ m + x[m − 1, 0]/2m , where m = �log2(x)�. Then, the approxima-
tion error e = log2(x) − (m + x[m − 1, 0]/2m) is bounded by 0 ≤ e ≤ B, where
B = 1 − (

1 + ln(ln(2))
)
/ ln(2) ≈ 0.086.

Proof. Let x = 2m + b, where b is a non-negative integer such that 0 ≤ b < 2m.
Therefore, x[m − 1, 0] = x − 2m = b and the error is given by

e = log2(x)−(m+
x[m − 1, 0]

2m
) = log2(2

m +b)−(m+
b

2m
) = log2(1+

b

2m
)− b

2m
.

For γ = b/2m, we obtain 0 ≤ γ < 1 and e = log2(1 + γ) − γ. Note that e is a
concave function of γ where e ≥ 0 if and only if 0 ≤ γ ≤ 1. By deriving e = e(γ),
one can see that max(e) = B = 1 − (

1 + ln(ln(2))
)
/ ln(2) ≈ 0.086 is reached

when γ = 1/ ln(2) − 1 ≈ 0.44. ��
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The bound B is an almost tight bound, e.g., when x = 3, the obtained error
is log2(3) − (1 + 1

2 ) � 0.085. Similar to apxlogκ
2 , we generalize apxweight�a

as

apxweightκ�a
(u, v) = −

(∑

i∈I
apxlogκ

2 (pi) +
∑

i∈I
log2(

1
2�i−1

) +
∑

i/∈I
log2(ϕi)

)
,

where apxweight4�a
(u, v) = apxweight�a

(u, v) is defined by Eq. (6).
Finally, we prove Theorem 4 by generalizing the definition of approximated

weight error Eκ = weight�a
(u, v) − apxweightκ�a

(u, v) and showing that if we
dedicate at least 4 bits to the fraction precision κ, the approximation error is
always bounded by −0.086 · (n/3) ≤ Eκ ≤ 0.

Proof (Theorem 4). First, we mention that log2(ϕi) is an integer number when
Si �= 11* or for Si = 11* we see �i < 3. For these cases, log2(ϕi) = �log2(ϕi)�
and the approximation error is equal to zero.

Next, for each i ∈ I when �i ≥ 3, let pi = 2mi + bi such that mi and bi are
two non-negative integers, mi ≤ �i −2 and 0 ≤ bi < 2mi . If �i ≤ κ+2, we obtain
mi ≤ κ and apxlogκ

2 (pi) = mi + bi · 2−mi . Thus, the resulting error

ei = log2(pi) − apxlogκ
2 (pi) = log2(pi) − (mi + bi · 2−mi)

is exactly the same as the error defined in Proposition 8, and 0 ≤ ei ≤ B ≈ 0.086.
On the other hand, for mi > κ, i.e., �i ≥ κ + 3, let pi = 2mi + ti · 2mi−κ + ζi,

where ti and ζi are two non-negative integers such that 0 ≤ ti < 2κ as well as
0 ≤ ζi < 2mi−κ. In this case, the approximated binary logarithm is apxlogκ

2 (pi) =
mi + ti · 2−κ. We now define a new error e′

i as

e′
i = log2(pi) − apxlogκ

2 (pi) = log2(1 + ti · 2−κ + ζi · 2−mi) − ti · 2−κ .

Due to the fact that ζi ≥ 0, we can see that

e′
i = log2(pi) − (mi + ti · 2−κ) ≥ log2(pi) − (mi + ti · 2−κ + ζi · 2−mi) = ei ≥ 0 .

Since ζi < 2mi−κ and by reforming the error, we obtain the upper bound of e′
i

e′
i ≤ log2(1 + ti · 2−κ + 2−κ) − ti · 2−κ = (log2(1 + γ′

i) − γ′
i) + 2−κ ,

where γ′
i = (ti + 1) · 2−κ and 2−κ ≤ γ′

i < 1. Regarding Proposition 8, the new
error e′

i is bounded by 0 ≤ e′
i ≤ B + 2−κ. Finally, by defining the conditional

index set Iβ
α = {i ∈ I | α ≤ �i ≤ β} we obtain

Eκ = weight�a
(u, v) − apxweightκ�a

(u, v)

= −
∑

i∈I
(log2(pi) − apxlogκ

2 (pi)) = −( ∑

i∈Iκ+2
3

ei +
∑

i∈In
κ+3

e′
i

)

≥ −(
B

∑

i∈Iκ+2
3

1 + (B + 2−κ)
∑

i∈In
κ+3

1
) ≥ −(B

3

∑

i∈Iκ+2
3

�i + (
B + 2−κ

κ + 3
)
∑

i∈In
κ+3

�i

)
.
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For κ ≥ 4, we can see that
B + 2−κ

κ + 3
≤ B

3
, resulting in

0 ≥ Eκ ≥ −(B

3

∑

i∈In
3

�i

) ≥ −(
B

3
n) ≈ −0.029n .

Since for κ = 4, we have E4 = E = weight�a
(u, v)−apxweight�a

(u, v), the above
inequalities hold for the approximation error E as well. ��

While dedicating κ = 4 bits as the fraction precision is enough to obtain
the same error bounds as κ > 4, considering κ < 4 creates a trade-off between
the lower bound of the error and the complexity of Algorithm1. As an example,
choosing κ = 3 removes one HW call in Algorithm 1. However, by following the
proof of Theorem4 for κ = 3, the error will be lower bounded by −0.035n, which
potentially is an acceptable trade-off.

The differential model of the constant addition as well as the approximation
error will be used in the automated method that we will present in the next
section to search for characteristics of ARX ciphers.

4 SMT-Based Search of Characteristics

In this section, we describe how to formulate the search of an optimal charac-
teristic as a sequence of SMT problems, which can be solved by an off-the-shelf
SMT solver such as Boolector [40] or STP [41]. This approach was originally
used by Mouha and Preneel to search for single-key characteristics of Salsa20
[18].

To search for characteristics up to probability 2−n, the probability space is
decomposed into n intervals Iw =

(
2−w−1, 2−w

]
, where w = 0, 1, . . . , n − 1, and

for each interval, the decision problem of whether there exists a characteristic
with probability p ∈ Iw is encoded as an SMT problem. Note that a characteristic
Ω has probability p ∈ Iw if and only if its integer weight �weight(Ω)� is equal to
w. Sect. 4.1 describes the encoding process for an ARX cipher.

The SMT problems are provided to the SMT solver, which checks their satisfi-
ability in increasing weight order. When the SMT solver finds the first satisfiable
problem, an assignment of the variables that makes the problem satisfiable is
obtained, and the search finishes. The assignment contains a characteristic with
integer weight ŵ, and it is optimal in the sense that there are no characteristics
with integer weight strictly smaller than ŵ. If the n SMT problems are found to
be unsatisfiable, then it is proved there are no characteristics with probability
higher than 2−n.

To speed up the search, we perform the search iteratively on round-reduced
versions of the cipher. First, we search for an optimal characteristic for a small
number of rounds r; let ŵ denote its integer weight. Then, we search for an
optimal (r+1)-round characteristic, but skipping the SMT problems with weight
strictly less than ŵ. Since these SMT problems were found to be unsatisfiable
for r rounds, they will also be unsatisfiable for r + 1 rounds. This procedure is
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repeated until the total number of rounds is reached. Our strategy prioritises
SMT problems with low weight and small number of rounds, which are faster
to solve. In addition, our search also finds optimal characteristics of round-
reduced versions, which can be used in other differential-based attacks, such as
the rectangle or rebound attacks [42,43].

This automated method can be used to search for either single-key or related-
key characteristics. Furthermore, additional SMT constraints can be added to
the SMT problems in order to search for different types of characteristics. For
related-key characteristics, this method search by default characteristics mini-
mizing the total weight weight(Ω) = weight(ΩKS)+weight(ΩE). Strong related-
key characteristics can be searched by adding the constraint weight(ΩKS) = 0
in the SMT problems. Similarly, equivalent keys can be found by adding the
constraint weight(ΩE) = 0.

In some cases, the integer weight computed by the SMT solver is not the
exact integer weight of the characteristic, but a bound of the error ε is known.
For example, for an ARX cipher with constant additions, the weight of the
constant additions is computed in the SMT problems using Theorem4, which
introduces an error that can be bounded (Theorem4). Nonetheless, this method
can find the optimal characteristic in this case by finding all the characteristics
with integer weights {ŵ, ŵ + 1, . . . , ŵ + �ε�}, where ŵ is the integer weight of
the first characteristic found by the SMT solver.

This method only ensures optimality if the differential probabilities over
each round are independent and the characteristic probability does not strongly
depend on the choice of the secret key. When these assumptions do not hold
for a cipher, we empirically compute the weight of each characteristic found by
sampling many input pairs satisfying the input difference and counting those sat-
isfying the difference trail. In this case, this method provides a practical heuristic
to find characteristics with high probability, and it is one of the best systematic
approaches for some families of ciphers, such as ARX.

4.1 Encoding the SMT Problems

In this section, we explain how to formulate the decision problem of determining
whether there exists a characteristic Ω with integer weight W of an ARX cipher
as an SMT problem in the bit-vector theory.

First, the ARX cipher is represented in Static Single Assignment (SSA) form,
that is, as an ordered list of instructions y ← f(x) such that each variable is
assigned exactly once and each instruction is a modular addition, a rotation or
an XOR.

For each variable x in the SSA representation, a bit-vector variable Δx denot-
ing the difference of x is defined in the SMT problem. Then, for every instruc-
tion y ← f(x), the weight and the differential model of f are added to the SMT
problem as a bit-vector variable w and bit-vector constraints validfi

(Δx,Δy) and
Equals(w,weightfi

(Δx,Δy)), following Table 2.
Finally, the following bit-vector constraints are added to the SMT problem,

NotEquals(Δp, 0) , Equals(W,w1 � · · · � wr) ,
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Table 2. Bit-vector differential models of ARX operations.

y = fa(x) Validity Weight

y = x1 ⊕ x2 Equals(Δy, Δx1 ⊕ Δx2) 0

y = x ⊕ a Equals(Δy, Δx) 0

y = x ≪ a Equals(Δy, Δx ≪ a) 0

y = x ≫ a Equals(Δy, Δx ≫ a) 0

y = x1 � x2 Theorem 1 Theorem 1

y = x � a Theorem 3 Theorem 4

where Δp denotes the input difference and (w1, . . . , wr) denote the weight of each
operation. The first constraint excludes the trivial characteristic with zero input
difference, while the second constraint fixes the weight of the characteristic to the
target weight. Note that the bit-size of the weights might need to be increased
to prevent an overflow in the modular addition of the last constraint.

4.2 Implementation

We have developed an open-source2 tool to find characteristics of ARX ciphers
implementing the method described in the previous sections. ArxPy provides
high-level functions that automate the search of optimal characteristics, a simple
interface to represent ARX ciphers, and a complete documentation in HTML
format, among other features.

ArxPy workflow is represented in Fig. 1. The user first defines the ARX cipher
using the interface provided by ArxPy and chooses the parameters of the search

Fig. 1. Workflow of ArxPy
2 https://github.com/ranea/ArxPy.

https://github.com/ranea/ArxPy
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(e.g., the type of the characteristic to search, the SMT solver to use, etc.). Then,
ArxPy automatically translates the python implementation of the ARX cipher
into SSA form, encodes the SMT problems associated to the type of search
selected by the user, and solves the SMT problems by querying the SMT solver.
For each satisfiable SMT problem found, ArxPy reconstructs the characteristic
from the assignment of the variables that satisfies the problem and empirically
verifies the weight of the characteristic. Finally, ArxPy returns the results of the
search to the user.

Internally, ArxPy is implemented in Python 3 and uses the libraries SymPy
[44] to obtain the SSA representation through symbolic execution and PySMT
[45] for the communication with the SMT solvers. Thus, all the SMT solvers
supported by PySMT can be directly used for ArxPy.

5 Experiments

We have applied our method for finding characteristics to some ARX ciphers
that include constant additions. In particular, we have searched for related-key
characteristics of TEA, XTEA, HIGHT and LEA.

Due to the difficulty of searching for characteristics of ciphers with con-
stant additions this far, cipher designers have avoided constant additions in the
encryption functions so that they can search for single-key characteristics, the
most threatening ones. Only a few ciphers include constant additions in the
encryption function, and their ad-hoc structures makes them more suitable to
be analysed with other types of differences, such as additive differences in the
case of TEA [15]. As a result, we have focused on searching related-key charac-
teristics of some well-known ciphers.

However, the usual assumptions (i.e., round independence and the hypothesis
of stochastic equivalence) do not always hold for related-key characteristics, as
in this case. Thus, we empirically verify each characteristic and stopped each
round-reduced search after the first valid characteristic is found.

To verify a related-key characteristic Ω, we split Ω in smaller characteristics
Ωi = (Δxi

→ · · · → Δyi
) with weight wi lower than 20, and empirically compute

the probability of each differential (Δxi
,Δyi

) by sampling a small multiple of
2wi input pairs for 210 related-key pairs. After combining the probability of each
differential, we obtain 210 characteristic probabilities, one for each related-key
pair. If the characteristic probability is non-zero for several key pairs, we consider
the characteristic valid and we define its empirical probability (resp. weight) as
the arithmetic mean of the 210 characteristic probabilities (resp. weights), but
excluding those key pairs with zero probability.

Thus, for each characteristic that we have found, we provide: (1) the the-
oretical key schedule and encryption integer weights (wKS, wE), computed by
summing the weight of each ARX operation; (2) the empirical key schedule
and encryption integer weights (wKS, wE), computed by sampling input pairs
as explained before; and (3) the percentage of key pairs that lead to non-zero
probability in the weight verification. In the extended version, we provide the
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round weights and round differences for the characteristics covering the most
rounds.

For the experiments, we have used ArxPy equipped with the SMT solver
Boolector [40], winner of the SMT competition SMT-COMP 2019 in the bit-
vector track [46]. We run the search for one week on a single core of an Intel
Xeon 6244 at 3.60 GHz. Table 3 lists the characteristics we have found and com-
pares them with the previous longest-known characteristics. Note that better
characteristics could be found if the round-reduced searches are not stopped
after the first valid characteristic or if more time is employed.

Table 3. Best related-key characteristics of XTEA, HIGHT and LEA.

Cipher Ch. Type Rounds (wKS, wKS) (wE , wE) % valid keys Reference

XTEA Strongrelated-key 16 0 32 – [47]

16 (0,0) (37, 32) 46% This paper

18 (0,0) (57, 49) 48% This paper

Weakrelated-key 18 17 19 – [47,48]

18 (4, 3) (16, 14) 100% This paper

27 (6, 5) (40, 39) 7% This paper

HIGHT Strongrelated-key 10 0 12 – [49]

10 (0, 0) (12, 9) 34% This paper

15 (0, 0) (45, 42) 8% This paper

Weakrelated-key 12 2 19 – [50]

12 (2, 3) (19, 17) 40% This paper

14 (13, 9) (14, 11) 17% This paper

LEA Weakrelated-key 11 – – – [8]

6 (1, 1) (24, 22) 100% This paper

7 (2, 4) (36, 34) 100% This paper

TEA. Designed by Wheeler and Needham, TEA [12] is a block cipher with 64-
bit block size and 128-bit key size. It iterates 64 times an ARX round function
including constant additions and logical shifts. Since the logical shifts propagate
XOR differences deterministically, the encoding method presented in Sect. 4.1
can be easily extended to include these operations.

The best related-key characteristics were obtained by Kelsey, Schneier, and
Wagner in [51]. They found a 2-round iterative strong related-key characteristic
Ω with weight (wk, we) = (0, 1), which they extended to a 60-round characteristic
with weight (0, 30). They also discovered in [30] that each TEA key has 3 other
equivalent keys.

Using ArxPy, we revisited the results by Kelsey et al., but in a fully auto-
mated way. We found three related-key characteristic with weight zero over the
full cipher, confirming that each key is equivalent to exactly three other keys.
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Excluding these three characteristics, we also obtained a 60-round strong related-
key characteristic with weight (0, 30), and all the 60-round SMT problems with
smaller weights were found to be unsatisfiable. Since a 60-round related-key
characteristic is sufficient to mount the related-key differential cryptanalysis on
full-round TEA [51], there is no need to search for characteristics containing
more rounds of TEA and we stop at 60 rounds.

XTEA. To fix the weakness of TEA against related-key attacks, the same design-
ers propose XTEA [13]. This block cipher has a 64-bit block size and a 128-bit
key size. The ARX round function includes logical shifts, but the key schedule
is composed exclusively of constant additions.

The longest related-key characteristics found so far are the 16-round strong
related-key differential with weight 32, manually found by Lu in [47], and the 18-
round weak related-key characteristic with weights (wKS, wE) = (19, 19), manu-
ally found by Lee et al. [48] but later improved to (17, 19) by Lu [47].

The results of our automated search are listed in Table 3. In the strong
related-key search we found an 18-round characteristic with weight 57; all the
SMT problems for 19 rounds were found to be unsatisfiable. In the weak related-
key search, we found characteristics up to 27 rounds, where the 27-round char-
acteristic has total weight 6+40 = 46. No equivalent keys were found for XTEA.

HIGHT. Adopted as an international standard by ISO/IEC [52], HIGHT [7] is
a lightweight cipher with block size of 64 bits and a key size of 128 bits. The
encryption function performs an initial and final key-whitening transformations,
and iterates 32 times a round function including XORs, 2-input additions and
rotations; the constant additions are performed in the key schedule.

The longest related-key characteristics found for HIGHT are a 10-round
strong characteristic with weight 12 found by Lu [49], and a 12-round weak
characteristic with weights (wKS, wE) = (2, 19) found by Koo et al. [50].

In our automated search, we found related-key characteristic up to 15 rounds,
listed in Table 3. The longest strong related-key characteristic we found covered
15 rounds with weights (0, 45), whereas the longest weak related-key character-
istic covered 14 rounds with total weight 13 + 14 = 27.

LEA. Among the family of ARX ciphers LEA [8], we have analysed LEA-128, the
version with 128-bit block size, 24 rounds and 128-bit key size. The encryption
round function of LEA performs 2-input additions, rotations and XORs, whereas
the key schedule contains constant additions and rotations.

The designers of LEA found related-key characteristics up to 11 rounds, but
only specifying that the 11-round characteristics are valid for a small part of the
key space and without providing the weights of such characteristics [8]. Excluding
these characteristics, there are no others examples of related-key characteristics
of LEA. In our automated search, we found weak related-key characteristic up to
7 rounds valid for the full key space, listed in Table 3. Strong characteristics with
weight smaller than 128 were found up to 4 rounds, and all the strong related-key
SMT problems for 5 rounds were found unsatisfiable. No equivalent keys were
found for LEA.
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6 Conclusion

In this paper we proposed the first bit-vector differential model of the n-bit
modular addition with a constant. We described a bit-vector formula, with bit-
vector complexity O(1), that determines whether a differential is valid and a bit-
vector function, with complexity O(log2 n), that provides a close approximation
of the differential weight. In this regard, we carefully studied our approximation
error and obtained almost tight bounds.

Moreover, we described an SMT-based automated method to search for char-
acteristics of ARX ciphers including constant additions. Our method formulates
the search problem as a sequence of SMT problems in the bit-vector theory, which
are encoded from the SSA representation of the cipher and the bit-vector dif-
ferential models of each operation. We have implemented our method in ArxPy,
an open-source tool to find characteristic of ARX ciphers in a fully automated
way. To show some examples, we have applied our automated method to search
for equivalent keys and related-key characteristics of TEA, XTEA, HIGHT, and
LEA. For TEA, we revisited previous results obtained in a manual approach,
whereas for XTEA, HIGHT and LEA we improved the previous best-known
related-key characteristics in both the strong-key and weak-key settings.

Our differential model relies on a bit-vector friendly approximation on
the binary logarithm. Thus, future works could explore other approximations
improving the bit-vector complexity or the approximation error, which could
also be applied to other SMT problems involving the binary logarithm. While
we have focused on the modular addition by a constant, there are other simple
operations for which no differential model have been proposed so far, such as
the modular multiplication. Obtaining differential models for more operations
will allow designing ciphers with more flexibility, leading to new designs that
potentially are more efficient.
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Abstract. Impossible differentials cryptanalysis and impossible poly-
topic cryptanalysis are the most effective approaches to estimate the
security of block ciphers. However, the previous automatic search meth-
ods of their distinguishers, impossible differentials and impossible poly-
topic transitions, neither consider the impact of key schedule in the
single-key setting and the differential property of large S-boxes, nor apply
to the block ciphers with variable rotations.

Thus, unlike previous methods which focus on the propagation of
the difference or s-difference, we redefine the impossible differentials and
impossible (s + 1)-polytopic transitions according to the propagation of
state, which allow us to break through those limitations of the previous
methods. Theoretically, we prove that traditional impossible differentials
and impossible (s+1)-polytopic transitions are equivalent to part of our
redefinitions, which have advantages from broader view. Technically, we
renew the automatic search model and design an SAT-based tool to
evaluate our redefined impossible differentials and impossible (s + 1)-
polytopic transitions efficiently.

As a result, for GIFT64, we get the 6-round impossible differentials
which cannot be detected by all previous tools. For PRINTcipher, we
propose the first modeling method for the key-dependent permutation
and key-dependent S-box. For MISTY1, we derive 902 4-round impos-
sible differentials by exploiting the differential property of S-boxes. For
RC5, we present the first modeling method for the variable rotation and
get 2.5-round impossible differentials for each version of it. More remark-
able, our tool can be used to evaluate the security of given cipher against
the impossible differentials, and we prove that there exists no 5-round 1
input active word and 1 output active word impossible differentials for
AES-128 even consider the relations of 3-round keys. Besides, we also get
the impossible (s + 1)-polytopic transitions for PRINTcipher, GIFT64,
PRESENT, and RC5, all of which can cover more rounds than their
corresponding impossible differentials as far as we know.
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1 Introduction

Impossible differential cryptanalysis was proposed by Biham et al. and Knudsen
respectively, where Biham et al. used it to analyze the security of Skipjack [4],
and Knudsen utilized it to analyze the security of DEAL [14]. Up to now, impos-
sible differential cryptanalysis has been applied to lots of block ciphers, such as
AES [18], SIMON [8], XTEA [9], and so on. There is no doubt that it is one
of the most effective cryptanalytic approaches to evaluate the security of block
ciphers.

In the impossible differential cryptanalysis, attackers derive the right keys by
discarding the wrong keys that lead to the impossible differentials inherent to
the given cipher. Thus how to find an impossible differential as longer as possible
is the most essential and critical problem in regard to this kind of attacks.

Impossible (s + 1)-polytopic cryptanalysis was proposed by Tiessen [29],
which is a generalization of impossible differential cryptanalysis. Unlike the
impossible differentials are constructed by considering the interdependencies
of the differences of two plaintexts and the accordingly two ciphertexts, the
distinguishers of impossible (s + 1)-polytopic cryptanalysis, named impossible
(s + 1)-polytopic transitions, are constructed by considering the interdependen-
cies between the s-differences of (s + 1) plaintexts and (s + 1) ciphertexts 1.

In the last 20 years, using automatic tools to search the distinguishers
becomes a new trend. The first automatic tool for the impossible differentials is
presented by Kim et al. [13], named U-method. Then, Luo et al. [17] extended
it as UID-method. After that, Wu and Wang [31] introduced another method
using the idea of solving equations, called WW-method. However, those tools
to search impossible differentials cannot describe the details of S-boxes, which
waste plenty of differential property of the propagation.

This problem is settled with the application of the Mixed Integer Linear
Programming (MILP) method to symmetric cryptography. The MILP problem
is a mathematical optimization problem that finds the minimum or maximum
value of some objective function under the conditions of linear equations and
inequalities of integer variables. Mouha et al. [22] first introduced it to symmetric
cryptography to find the lower bound on the number of active S-boxes for both
differential and linear cryptanalysis. Later, Sun et al. [28] proposed the modelling
method to depict the valid differential propagation of small S-boxes (typically 4
bits), and Fu et al. [12] presented the modelling method to depict all the valid
differential/linear characteristics propagations of modular addition. Thus, the
differential propagation of any round for the small S-boxes based block ciphers
and ARX block ciphers can be modeled by a set of linear inequalities accurately.
1 Convention. In our paper, the impossible (s + 1)-polytopic transition is uniformly

defined for (s ≥ 2), excluding the case of the impossible differential, since it has been
studied in-depth separately.
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On that basis, Cui et al. [10] proposed a MILP-based tool to search the
impossible differentials for lightweight block ciphers, and an algorithm to ver-
ify the impossible differentials. Soon after, Sasaki and Todo [27] presented a
MILP-based tool to search the impossible differential for SPN block ciphers. In
particular, they proposed the best search method at present for large S-boxes
based block ciphers, named the arbitrary S-box mode, which only treats the
large S-boxes as permutations in order to make their tool valid to detect the
contradiction in linear components.

However, the previous automatic search tools for impossible differentials have
the following limitations in general.

– Previous tools cannot take into account the key schedule in the single-key
setting.

– Previous tools cannot consider the differential property of large S-boxes.
– Previous tools cannot be applied to the block ciphers with variable rotation.

As to impossible polytopic transitions, there was only a search method pro-
posed for DES and AES in the original paper [29]. However, due to the lim-
itation that the searching spaces increase rapidly with the number of rounds,
this method can only be confined to a small number of rounds. Besides, this
tool cannot take into account the key schedule in the single-key setting and be
applied to the block ciphers with variable rotations either.

Our Contributions. In this paper, we define a series of new notations, s-
polygon to describe a tuple with s states, s-polygonal trail to depict the propa-
gation of s-polygon, possible s-polygons and impossible s-polygons to depict the
relations between two s-polygons.

Then, unlike the traditional impossible differentials and impossible (s + 1)-
polytopic transitions that are constituted according to the propagation of dif-
ference and s-difference, we redefine the impossible differentials and impossible
(s + 1)-polytopic transitions based on the propagation of the s-polygon2. Thus,
the key schedule in the single-key setting can be considered in the construction
of redefined impossible differentials and impossible (s+1)-polytopic transitions.
We define the i-impossible differential (resp. i-impossible (s+1)-polytopic tran-
sition) to represent the redefined impossible differential (resp. impossible (s+1)-
polytopic transition) which is constituted in the round key independent setting
and d-impossible differential (resp. d-impossible (s + 1)-polytopic transition) to

2 This idea can be traced back to [21]. In [21], Mironov et al. used the idea of the
transition of states to search two states that satisfy a fixed differential path, which is
the critical step to find a collision of the hash function. Recently, two papers [16,26]
that also used the idea of the transition of states appeared in the ePrint. As we
understand, [16] applied the transition of two states to the non-linear layer. [26]
utilized the idea to determine whether a given differential path of ARX based block
ciphers is compatible or not. In our paper, we exploit the idea of the transition of
multi-states to search the impossible differential and the impossible (s+1)-polytopic
transition for block ciphers.
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represent the redefined impossible differential (resp. impossible (s+1)-polytopic
transition) which is constituted by considering the key schedule.

Next, we study the relation between our redefined impossible differential
(resp. impossible (s+1)-polytopic transition) and traditional impossible differen-
tial (resp. impossible (s+1)-polytopic transition). We show that the i-impossible
differential (resp. i-impossible (s+1)-polytopic transition) is equivalent to tradi-
tional impossible differential (resp. impossible (s+1)-polytopic transition) which
is constructed by taking into account the inside property of S-boxes for the block
ciphers with SPN or Feistel structures and the block cipher MISTY1.

Finally, we model the propagations of states by the statements in the CVC
format of STP3 (a solver of the SAT problem) for each operation, and design an
SAT-based unified automatic tool for searching the redefined impossible differ-
ential and impossible (s + 1)-polytopic transition. Since traditional impossible
differential is equivalent to the i-impossible differential and traditional impossi-
ble (s+1)-polytopic transition is equivalent to the i-impossible (s+1)-polytopic
transition, our tool can be used to search the traditional impossible differential
and traditional impossible (s + 1)-polytopic transition. Furthermore, our tool
has the following advantages.

Able to Search the Distinguishers by Considering the Impact of Key
Schedule in the Single-Key Setting. Our automatic search tool focuses
on the propagations of states, which are impacted by the value of key. By
adding the constraints of key variables according to the key schedule, it can
be used to search the impossible differentials and impossible (s+1)-polytopic
transitions in the single-key setting confirming the key schedule. As far as we
know, this is the first automatic search tool that considers the impact of key
schedule in the single-key setting for impossible differentials and impossible
(s + 1)-polytopic transitions.

Able to Search the Distinguishers for the Block Ciphers with Variable
Rotation. In this paper, by exploiting the conditional term of the CVC
format, we propose a novel method to model the propagations of states for
variable rotation. This method allows us to search the impossible differentials
and impossible (s + 1)-polytopic transitions for block ciphers with variable
rotation automatically. As far as we know, this is the first automatic search
method for such type of block ciphers.

Able to Search Impossible Differentials for Block Ciphers with Large
S-boxes by Considering the Differential Property of Large S-boxes.
We make use of the conditional terms to model the propagations of states
for large S-boxes. This way allows us to search the impossible differentials for
the block ciphers with large S-boxes by considering the differential property
of large S-boxes. As far as we know, this is the first automatic tool to search
the impossible differentials for such ciphers taking account in the differential
property of large S-boxes.

3 http://stp.github.io/.

http://stp.github.io/
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New Proving Tool for Resisting Impossible Differentials in Aspect of
Cipher Design. Our tool not only can be used to evaluate the security of
block ciphers against traditional impossible differentials for block ciphers with
large S-box in the case of considering the differential property of large S-boxes,
but also can be used to evaluate the security of block ciphers (includes block
ciphers with key-dependent permutation) against the impossible differentials
in the case of considering the key schedule in the single-key setting. It is very
favorable in aspect of block ciphers design and assessment.

We apply our tool to various block ciphers, these results can be divided into
three aspects4.

Deriving New Impossible Differentials

– For GIFT64 [2], we get the 6-round impossible differentials, which cannot be
detected by Sun et al.’s method or Sasaki et al.’s method. This result shows
that, our tool can detect more contradictions than the previous methods.

– For PRINTcipher48/96 [15], we can not only give the first modeling method
for the key-dependent permutation, but also give the first direct modeling
method for the key-dependent S-box, which is consisted of the key-dependent
permutation and the fixed S-box. Take either of the two modeling methods,
by considering all the details of the key schedule, we found 730 4-round impos-
sible differentials for PRINTcipher48 and 234 5-round impossible differentials
for PRINTcipher96.

– For MISTY1 [20], we found 902 4-round i-impossible differentials by exploit-
ing the differential property of S-boxes, while only 28 4-round i-impossible
differentials were got by implementing the arbitrary S-box mode of Sasaki et
al.’s method.

– For RC5-32/64/128 [24], we propose the first modeling method for variable
rotation, which allows us to get the 2.5-round impossible differentials for them
in the key independent setting.

Evaluating the Resistance Against the Impossible Differentials. Besides
applying our tool directly, we also propose three phases technique and inside
value technique to speed up our proving process.
4 Illustrantion. Note that, when to search the r-round distinguishers by considering

the key schedule in our model, different beginning round lead to different final mod-
els, since the round constants are different from each round. To a common format,
we place the distinguishers of our model in the 1st round by default (except GIFT64,
since the round key is not XORed with plaintext in the first round, we place the
distinguishers in the 2nd). That is, when we say a distinguisher is an r-round dis-
tinguisher, it is an r-round distinguisher placed from 1st round to the r-th round.
Similarly, when we say there exists no r-round impossible differentials in the search
space, it means that for all the input differences and output differences where the
input differences placed at the 1st round and the output differences placed at the
r-th round, the differences cannot be connected. Actually, in other cases that the
distinguishers do not begin with the 1st round, the distinguisher can be searched
similarly.
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– For GIFT64, PRESENT [6], Midori64 [1], PRINTcipher48, and PRINTci-
pher96, we prove that, in the search space where the input difference only
actives one S-box in the first substitution and the output difference only
actives one S-box in the last substitution, there exists no 7-round, 7-round, 6-
round, 5-round, and 6-round impossible differentials for GIFT64, PRESENT,
Midori64, PRINTcipher48, and PRINTcipher96 even taking account in the
details of the key schedule.

– For AES [11], by adopting the new proposed three phases technique, we prove
that even considering the relations of middle three-round keys, there still
exists no 5-round 1 input active word and 1 output active word impossible
differentials.

– For 5-round MISTY1 [20] with the FL layers placed at the even rounds, by
adopting the three phases technique and inside value technique, we prove
that there exists no 1 input active bit and 1 output active bit impossible
differentials.

Resulting in New Impossible (s+1)-Polytopic Transition (s ≥ 2). Besides
applying our tool directly, we further propose the step by step strategy to speed
up the search.

– For PRINTcipher, by considering all the details of the key schedule, we obtain
the 6-round d-impossible 3-polytopic transition and 7-round d-impossible
4-polytopic transition for PRINTcipher48, and 7-round d-impossible 3-
polytopic transition and 8-round d-impossible 4-polytopic transition for
PRINTcipher96. Moreover, we investigate the impact of the restraints of the
xor keys (i.e. the keys which are xored with the state) and control keys
(i.e. the keys which are used to control the key-dependent permutation). The
result shows that, both the restraints of the xor keys and control keys will
lead to more contradictions.

– For GIFT64, we get a 7-round d-impossible 3-polytopic transition.
– For RC5-32, we get 108 3-round i-impossible 3-polytopic transitions. Simi-

larly, we get a 3-round i-impossible 3-polytopic transition for RC5-64.
– For PRESENT, we get a 7-round i-impossible 4-polytopic transition.

Outline. We introduce the notations and related work in Sect. 2. Our redefined
impossible differentials and impossible (s+1)-polytopic transitions and the rela-
tions between our redefinitions and traditional definitions are shown in Sect. 3.
The SAT modeling methods and our search algorithm are detailed in Sect. 4. We
apply our method to impossible differentials from the cryptanalysis aspect and
design aspect in Sect. 5 and Sect. 6, respectively. In Sect. 7, we apply our method
to impossible polytopic transitions. In Sect. 8, we conclude this paper.
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2 Preliminaries

2.1 Notations

The following notations are used in this paper.

– xm,s : the tuple (x0, . . . , xs−1), where xi ∈ F
m
2 (0 ≤ i ≤ s − 1).

– xm,s
i : the tuple (xi,0, . . . , xi,s−1), where xi,j ∈ F

m
2 (0 ≤ j ≤ s − 1).

– xm,s ||ym,s : the tuple (x0||y0, . . . , xs−1||ys−1), where xi, yi ∈ F
m
2 (0 ≤ i ≤

s − 1).
– xm,s+1 � αm,s : the tuple xm,s+1 satisfy x0 ⊕ xj+1 = αj (0 ≤ j ≤ s − 1).
– 0p1q: the concatenation of p successive 0s and q successive 1s.
– apbq: the concatenation of p-bit constant a and q-bit constant b.
– W (a): the hamming weight of a, i.e., the 1’s number in the bit representation

of a.
– en

I : an n bits value, whose i-th bit is 1 for i ∈ I, and 0 otherwise.
– BC(n,m, l): the set of all iterated block ciphers whose block size is n-bit,

master key size is m-bit, and round key size is l-bit.
– Er

k(x): the output of encryption E ∈ BC(n,m, l) on the state x ∈ F
n
2 after

r-round under k ∈ (Fl
2)

r.
– Er

k(xn,s): the tuple (Er
k(x0), . . . , Er

k(xs−1)).
– IKSl

r: the set {(k1, . . . , kr)|ki ∈ F
l
2, 1 ≤ i ≤ r}.

– DKSm,l
r : the set {(k1, . . . , kr)|k ∈ F

m
2 , ki ∈ F

l
2, ki = Gi(k), 1 ≤ i ≤ r}, where

Gi denotes the key schedule to generate the round key ki from the master
key k for a block cipher E ∈ BC(n,m, l).

2.2 A Brief Introduction of Impossible Differentials and Impossible
(s + 1)-Polytopic Transitions

Impossible differential is the distinguisher of impossible differential cryptanaly-
sis, and impossible (s+1)-polytopic transition is the distinguisher of the impos-
sible polytopic cryptanalysis. Here, we only recall the definitions of impossible
(s + 1)-polytopic transition, since impossible differential is the special case of
s = 1. First, let us recall the definition of s-polytope and s-difference.

Definition 1 (s-polytope [29]). An s-polytope in F
n
2 is an s-tuple of values in

F
n
2 .

Definition 2 (s-difference [29]). An s-difference over F
n
2 is an s-tuple of values

in F
n
2 . For an (s + 1)-polytope (m0,m1, . . . ,ms) , the corresponding s-difference

is defined as (m0 ⊕ m1,m0 ⊕ m2, . . . ,m0 ⊕ ms).

Next, we recall the propagation rule of s-difference and the valid (s + 1)-
polytopic trail.

Definition 3 (The Propagation Rule of The s-difference [29]). Let f :
F

n
2 → F

q
2 be a function. For the input s-difference αn,s and the output s-

difference βq,s , if there exists x such that, f(x ⊕ αi) ⊕ f(x) = βi(0 ≤ i ≤ s − 1),

we call that αn,s can propagate to βq,s , denoted as αn,s f→ βq,s . Otherwise,
we call that αn,s cannot propagate to βq,s , denoted as αn,s f

� βq,s .
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Definition 4 (Valid (s + 1)-polytopic Trail [29]). Let f : F
n
2 → F

n
2 be a

function that is the iterated composition of round functions fi : F
n
2 → F

n
2 :

f := fr ◦ · · · ◦ f2 ◦ f1.

Let αn,s
0 be the input s-difference and αn,s

r be the output s-difference. Then, a
valid (s+1)-polytopic trail for (αn,s

0 ,αn,s
r ) on f is an (r+1)-tuple (αn,s

0 ,αn,s
1 , . . . ,

αn,s
r ), where αn,s

i

fi+1→ αn,s
i+1(0 ≤ i ≤ r − 1).

By exploiting the definition of the valid (s+1)-polytopic trail, the definitions
of possible (s+1)-polytopic transition and impossible (s+1)-polytopic transition
can be re-expressed as follows.

Definition 5 (Possible (s + 1)-polytopic Transition [29]). A pair of input
and output s-differences (Δi

n,s,Δ0
n,s) is called an r-round possible (s + 1)-

polytopic transition if and only if there exists an r-round valid (s + 1)-polytopic
trail for (Δi

n,s,Δ0
n,s).

Definition 6 (Impossible (s+1)-polytopic Transition [29]). A pair of input
and output s-differences (Δi

n,s,Δ0
n,s) is called an r-round impossible (s + 1)-

polytopic transition if and only if there exists no r-round valid s + 1-polytopic
trail for (Δi

n,s,Δ0
n,s).

2.3 SAT Problem and STP

The Boolean Satisfiability Problem (SAT) is a classic scientific computation
problem aiming to determine whether a given boolean formula has a solution.
STP is the openly available solver for the SAT problem, which supports the CVC
format as the file-based input formats.

When to solve an SAT problem, we first model it by the statements in CVC
format and save those statements as a file. Then, we invoke the STP for this file.
If the target SAT problem has no solution, STP will return “Valid.”. Otherwise,
it will return a solution of the SAT problem and “Invalid.”.

In particular, it is worth to mention that the CVC format supports the con-
ditional term, i.e., the statement “IF a THEN b ELSE c ENDIF”, where a
is a boolean term, and b and c are bitvector terms. By exploiting the condi-
tional term, we give our modeling methods for S-boxes and variable rotation in
Sects. 4.1.

3 New Definitions of Impossible Differentials
and Impossible (s + 1)-Polytopic Transitions

In this section, we define the notations of s-polygon, possible s-polygons, and
impossible s-polygons. Based on this, we redefine the impossible differentials and
impossible (s+1)-polytopic transitions. Then, we study the relations between our
redefinitions and traditional definitions of impossible differentials and impossible
(s + 1)-polytopic transitions.
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3.1 New Definitions of Impossible Differentials and Impossible
(s + 1)-Polytopic Transitions

Let us think over the definitions of traditional impossible differentials and impos-
sible (s + 1)-polytopic transitions. For E ∈ BC(n,m, l), suppose (Δi

n,s,Δo
n,s)

is an r-round traditional impossible (s + 1)-polytopic transition of it. Then, for
∀k ∈ (F l

2)
r, ∀xi

n,s+1 � Δi
n,s and ∀yi

n,s+1 � Δo
n,s, it holds Er

k(xi
n,s+1) 	=

yi
n,s+1. In particular, if (Δi,Δ0) is an r-round impossible differential. Then, for

∀k ∈ (F l
2)

r, ∀x ∈ F
n
2 and ∀y ∈ F

n
2 , it holds (Er

k(x), Er
k(x ⊕ Δi)) 	= (y, y ⊕ Δo).

Thus, it is important to research the relations between two (resp. s + 1) input
states and two (resp.s + 1) output states for forming the impossible differentials
(resp.impossible (s + 1)-polytopic transitions). To investigate such relations, we
define the s-polygon firstly.

Definition 7 (s-polygon). For ∀E ∈ BC(n,m, l), its s-polygon is a tuple with
s elements, where each element belongs to F

n
2 .

For an iterated block cipher, the s-polygon propagates through round by
round, which constitutes the s-polygonal trail.

Definition 8 (s-polygonal Trail). Let E ∈ BC(n,m, l) and r ∈ Z. For any
s-polygon xn,s and ∀k = (k1, . . . , kr) ∈ (Fl

2)
r, we have the following chain of

propagation:

xn,s → E1
(k1)

(xn,s) → E2
(k1,k2)

(xn,s) → · · · → Er
k(xn,s).

We call (xn,s, E1
(k1)

(xn,s), . . . , Er
k(xn,s)) an r-round s-polygonal trail. More-

over, if k ∈ IKSl
r, the trail is called an r-round i-s-polygonal trail; if

k ∈ DKSm,l
r , the trail is called an r-round d-s-polygonal trail.

Based on the definitions of s-polygon and s-polygonal trail, according to the
compatibility of a pair of input and output s-polygons, the possible s-polygon
and impossible s-polygon are defined as follows.

Definition 9 (Possible s-polygons). Let E ∈ BC(n,m, l), a pair of input and
output s-polygons (xn,s,yn,s) is called r-round possible s-polygons of E, if
there exists k = (k1, . . . , kr) ∈ (Fl

2)
r and s-polygonal trail (xn,s, E1

(k1)
(xn,s), . . . ,

Er
k(xn,s)) s.t. yi = Er

k(xi)(0 ≤ i ≤ s − 1). Moreover, if k ∈ IKSl
r, (xn,s,yn,s)

is called r-round i-possible s-polygons; if k ∈ DKSm,l
r , (xn,s,yn,s) is called

r-round d-possible s-polygons.

Definition 10 (Impossible s-polygons). Let E ∈ BC(n,m, l), a pair of input
and output s-polygons (xn,s,yn,s) is called r-round i-impossible s-polygons
(resp. r-round d-impossible s-polygons) of E, if (xn,s,yn,s) is not the r-
round i-possible s-polygons (resp. r-round d-possible s-polygons).

Now, based on the definition of impossible s-polygons, we propose two defi-
nitions of impossible (s+1)-polytopic transitions: i-impossible (s+1)-polytopic
transition and d-impossible (s + 1)-polytopic transition.
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Definition 11 (The i-impossible (resp.d-impossible) (s + 1)-polytopic
Transition). Let E ∈ BC(n,m, l), a pair of input and output tuples (αn,s,βn,s)
is called an r-round i-impossible (resp.d-impossible) (s + 1)-polytopic
transition, if for ∀xn,s+1 � αn,s and ∀yn,s+1 � βn,s, (xn,s+1,yn,s+1) are
r-round i-impossible (resp.d-impossible) (s + 1)-polygons.

Here, we give the definitions of i-impossible differential and d-impossible
differential independently for clarity, while actually impossible differential is a
particular case of impossible (s + 1)-polytopic transition.

Definition 12 (The i-impossible (resp. d-impossible) Differential). Let
E ∈ BC(n,m, l), α ∈ F

n
2 , and β ∈ F

n
2 , (α, β) is called an r-round i-impossible

(resp. d-impossible) differential, if for ∀(x0, x1) ∈ {(α0, α1) ∈ F
n
2 × F

n
2 |α0 ⊕

α1 = α} and ∀(y0, y1) ∈ {(β0, β1) ∈ F
n
2 × F

n
2 |β0 ⊕ β1 = β}, (x0, x1) and (y0, y1)

are r-round i-impossible (resp. d-impossible) 2-polygons.

According to the definitions of d-possible (s + 1)-polygons and i-possible
(s + 1)-polygons, the relation between i-impossible (s + 1)-polytopic transition
and d-impossible (s + 1)-polytopic transition is obviously as follows.

Theorem 1. Let E ∈ BC(n,m, l). Then an i-impossible (s+1)-polytopic tran-
sition of E must be a d-impossible (s+1)-polytopic transition of E. In particular,
an i-impossible differential of E must be a d-impossible differential of E.

3.2 The Equivalence of i-impossible (s + 1)-Polytopic Transitions
and Traditional Impossible (s + 1)-Polytopic Transitions

SPN structure and Feistel structure are widely used in the design of block ciphers.
In this subsection, we show that the i-impossible (s+1)-polytopic transitions are
equivalent to traditional impossible (s + 1)-polytopic transitions for the block
ciphers with SPN structure or Feistel structure. Moreover, with the same app-
roach, the equivalence also holds for the block cipher MISTY1. Note that, since
impossible differentials are the particular case of impossible (s + 1)-polytopic
transitions, we are not going to state the equivalency for impossible differentials
solely here.

First, for narrative purposes, we define a class of round function, which is
widely used in block ciphers.

Definition 13 (Common Round Function). A function Fr is called common
round function(CRF), if it can be represented as Fr = (P

′
r◦Sr◦Pr◦Kr)◦· · ·◦(P

′
1◦

S1 ◦ P1 ◦ K1) ◦ (P
′
0 ◦ S0 ◦ P0), where Si(0 ≤ i ≤ r) denotes the substitution layer

which is composed of a set of S-boxes in parallel, Pi(0 ≤ i ≤ r) and P
′
i (0 ≤ i ≤ r)

denote the linear permutation layers, and Ki(1 ≤ i ≤ r) denotes the key mixing
layer, where the key is fully Xored with the state. In particular, in the case of
r = 0, denote F0 = (P

′
0 ◦ S0 ◦ P0).

The above definition of CRF includes a lot of round functions, which are
broadly used in block ciphers. For example, the round function of AES [11] is of
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the “SP” structure, in which the substitution layer precedes the linear layer. It
is the CRF in the case of r = 0 and P0 is the identical permutation. The round
function of Prince [7] in the last half rounds is of the “PS” structure, in which
the linear layer precedes the substitution layer. It is the CRF in the case of r = 0
and P

′
0 is the identical permutation. The round function of RoadRunneR [3] is

of the “SPKSPKSPKS” structure. It is the CRF in the case of r = 3 and P
′
3 is

the identical permutation.
Since the common round function is widely used in block ciphers, we study

the relationship between the valid (s + 1)-polytopic transitions and i-possible
(s + 1)-polygons of it.

α0
n,s P0 S0 P

′
0 P1 S1 P

′
1 P2 S2 P

′
2 α3

n,s

K1 K2

β0
n,s γ0

n,s
α1

n,s α1
n,s β1

n,s γ1
n,s

α2
n,s α2

n,s β2
n,s γ2

n,s

x0
n,s+1 P0 S0 P

′
0 P1 S1 P

′
1 P2 S2 P

′
2 w2

n,s+1

K1 K2

y0
n,s+1 z0

n,s+1 w0
n,s+1 x1

n,s+1 y1
n,s+1 z1

n,s+1 w1
n,s+1 x2

n,s+1 y2
n,s+1 z2

n,s+1

Fig. 1. The Valid (s + 1)-polytopic Trail and (s + 1)-polygonal Trail for CRF

Theorem 2 (The Equivalence of CRF). Let Fr be a CRF. Then, (α0
n,s,

αr+1
n,s) is a valid polytopic transition of Fr if and only if there exist i-possible

(s+1)-polygons (x0
n,s+1,wr

n,s+1) of Fr , where x0
n,s+1�α0

n,s and wr
n,s+1�

αr+1
n,s.

Proof. We only prove this theorem in the case of r = 2. The other cases can be
proved analogously.

Suppose (α0
n,s,α3

n,s) is a valid polytopic transition of F2. Then there exists
a valid (s+1)-polytopic trail (α0

n,s,α1
n,s,α2

n,s,α3
n,s), as shown in the upper

half of Fig. 1. For 0 ≤ i ≤ 2, since (βi
n,s,γi

n,s) is a possible (s + 1)-polytopic
transition of Si, there exists ai such that Si(ai) ⊕ Si(ai ⊕ βi,j) = γi,j(0 ≤ j ≤
s − 1). Let yi

n,s+1 = (yi,0, . . . , yi,s) and zi
n,s+1 = (zi,0, . . . , zi,s), where yi,0 =

ai, yi,j+1 = ai ⊕ βi,j , zi,0 = Si(ai) and zi,j+1 = S(ai) ⊕ γi,j , then we have
S(yi,j) = zi,j(0 ≤ j ≤ s). Denote xi

n,s+1 = (xi,0, . . . , xi,s) and wi
n,s+1 =

(wi,0, . . . , wi,s), where xi,j = P−1
i (yi,j) and wi,j = P

′
i (zi,j)(0 ≤ j ≤ s). Since

αi,j = P−1
i (βi,j), we have xi,0 ⊕ xi,j+1 = αi,j(0 ≤ j ≤ s − 1). Similar, we

have wi,0 ⊕ wi,j+1 = αi+1,j(0 ≤ j ≤ s − 1). Thus, for 1 ≤ i ≤ 2, we have
wi−1,0 ⊕ wi−1,j+1 = αi,j = xi,0 ⊕ xi,j+1(0 ≤ j ≤ s − 1). Let Ki = wi−1,0 ⊕ xi,0,
then we have xi,j = wi−1,j ⊕ Ki(0 ≤ j ≤ s). Therefore, we have constructed i-
possible (s+1)-polygons of F2, which is (x0

n,s+1,w2
n,s+1) with w2

n,s+1�α3
n,s

and x0
n,s+1 � α0

n,s, as shown in the lower half of Fig. 1.
Since all the procedures above are invertible, it is easy to show that if there

exist x0
n,s+1 � α0

n,s and w2
n,s+1 � α3

n,s, such that (x0
n,s+1,w2

n,s+1) is the
i-possible (s+1)-polygons of F2, then (α0

n,s,α3
n,s) is the valid polytopic tran-

sition of F2. 
�
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With the same technique, we also can show the equivalence between tra-
ditional impossible (s + 1)-polytopic transition and the i-impossible (s + 1)-
polytopic transition for the block ciphers with SPN structure and Feistel struc-
ture as follows. The specific process of proofs are shown in the Full Version of
our paper in the ePrint because of space cause.

Theorem 3 (The Equivalence of SPN Structure Block Ciphers). Let
E ∈ BC(n,m, l) be an SPN structure block cipher whose round function is a
CRF, and the round keys are fully Xored with the state. Then, (α0

n,s,αr
n,s) is

an r-round traditional impossible (s + 1)-polytopic transition if and only if it is
an r-round i-impossible (s + 1)-polytopic transition.

Theorem 4 (The Equivalence of Feistel Structure Block Ciphers). Let
E ∈ BC(2n,m, l) be a Feistel structure block cipher whose round function is a
CRF and the round keys are fully Xored with the branch. Then, (α0

n,s||β0
n,s,

αr
n,s||βr

n,s) is an r-round traditional impossible (s + 1)-polytopic transition if
and only if it is an r-round i-impossible (s + 1)-polytopic transition.

The block cipher MISTY1 [20] is designed by adopting the theory of provable
security [23]. We can also show that traditional impossible (s + 1)-polytopic
transition is equivalent to the i-impossible (s + 1)-polytopic transition for the
block cipher MISTY1 as the following theorem. The specific process of proof is
also shown in the Full Version of our paper.

Theorem 5 (The Equivalence of The Block Cipher MISTY1). Let E
denote the block cipher MISTY1. Then, (α0

32,s||β0
32,s,αr

32,s||βr
32,s) is an r-

round traditional impossible (s + 1)-polytopic transition if and only if it is an
r-round i-impossible (s + 1)-polytopic transition.

The Avantages of i-Impossible Differentials and i-Impossible (s + 1)-
Polytopic Transitions. Since i-impossible differentials (resp. i-impossible
(s+1)-polytopic transitions) are equivalent to traditional impossible differentials
(resp. traditional impossible (s+1)-polytopic transitions), our method gives new
view of traditional impossible differentials and impossible (s+1)-polytopic tran-
sitions, which allows us to get the distinguishers for the block cipher with large
S-boxes or variable rotation in the key independent setting using full knowledge
of their differential or s-differential property. In particular, by exploiting this new
view, we can evaluate the security of block ciphers against traditional impossi-
ble differentials for block ciphers with large S-box in the case of considering the
differential property of large S-boxes.

4 Automatic Search Method

In this section, we propose an unified automatic search algorithm for our rede-
fined impossible differentials and impossible (s+1)-polytopic transitions. Firstly,
we give the statements in CVC format to model the propagation of the state
under each operation.
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4.1 Model the Propagation of the State by Statements in CVC
Format

Here, we model the propagation of the state under the operations (Generalized-)
Copy, (Generalized-) Xor, (Generalized-) Modular Addition, Linear Transforma-
tions, S-box and Variable Rotation by statements in CVC format.

Model 1 ((Generalized-)Copy). Let F be a (Generalized-)Copy function,
where the input x takes value from F

q
2, and the output is calculated as

(y0, y1, . . . , yt−1) = (x, x, . . . , x). Then, the following statements can describe
the propagation of the state under the (Generalized-)Copy operation.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ASSERT(y0 = x);
ASSERT(y1 = x);

...
ASSERT(yt−1 = x);

Model 2 ((Generalized-)Xor). Let F be a (Generalized-)Xor function, where
the input (x0, x1, . . . , xt−1) take values from (Fq

2)
t, and the output is calculated

as y = ⊕i=t−1
i=0 xi. Then, the following statement can describe the propagation of

the state under the (Generalized-)Xor operation.5

ASSERT(y = BVXOR(· · · (BVXOR(BVXOR(x0, x1), x2), . . . , xt−1));

Model 3 ((Generalized-)Modular Addition). Let F be a (Generalized-)
Modular Addition function, where the input (x0, x1, . . . , xt−1) take values from
(Fq

2)
t, and the output is calculated as y = �i=t−1

i=0 xi.6 Then, the following state-
ment can describe the propagation of the state under the (Generalized-)Modular
Addition operation.

ASSERT(y = BVPLUS(q, x0, . . . , xt−1));

The linear transformations of block ciphers have various representations, such
as the permutation layer of PRESENT [6], and the MDS matrix in AES [11].
Since all the representations of linear transformations can be converted to the
binary matrix multiplication, we only show the modeling method for the binary
matrix multiplication here.

Model 4 (Binary Matrix Multiplication). Let M = (mi,j)0≤i≤s−1,0≤j≤t−1

be a binary matrix, where the input x = (x0, x1, . . . , xt−1) take values from F
t
2,

and the output of multiplication y = (y0, y1, . . . , ys−1) is calculated as

yi =
{

xk, if mi,k = 1 and |{j|mi,j 	= 0}| = 1,
⊕{j|mi,j �=0}xj , otherwise.

Then, the statements to describe the propagation of the state under binary
matrix multiplication operation can be combined by the modeling methods for
Copy and (Generalized-) Xor.
5 BVXOR: Bitwise XOR function which is supported by the CVC format of STP.
6 BVPLUS: Bitvector Add function which is supported by the CVC format of STP.
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S-box is often used to provide confusion for block ciphers. By exploiting
the conditional term, we can describe the propagation of the state under it
specifically.

Algorithm 1. Function for Modeling S-box
1: Input: S, x, y
2: Output: The statement to describe the propagation of the state under S-box
3: statement1 = S[0]
4: for j = 1 to 2t − 1 do
5: statement1 = “IF x = j THEN S[j] ELSE statement1”
6: endfor
7: statement = “ASSERT (y = statement1);”
8: return statement

Model 5 (S-box). Let S be an S-box which substitutes t-bit to s-bit, where the
input x takes values from F

t
2, and the output y ∈ F

s
2 is calculated as y = S(x).

Then the statement generated by Algorithm 1 can describe the propagation of
the state under S-box operation.

Variable rotation is a novel operation used in some typical block ciphers,
such as RC5 [24] and RC6 [25]. Due to the output of variable rotation operation
is closely related to the input values, it is hard to model the propagation of
difference and s-difference under it. In our new model, we exploit the conditional
term to describe the propagation of the state under the variable rotation.

Algorithm 2. Function for Modeling Variable Rotation
1: Input: q, x, y, z
2: Output: The statement to describe the propagation of the state under variable

rotation
3: statement1 = x
4: for j = 1 to q − 1 do
5: statement1 = “IF (y mod q) = j THEN x ≪j ELSE statement1”
6: endfor
7: statement = “ASSERT (z = statement1);”
8: return statement

Model 6 (Variable Rotation). Let F be a variable rotation function, the
input (x, y) take values from F

q
2 × F

q
2, and the output is calculated as z =

x ≪y∈ F
q
2. Then, the statement generated by the Algorithm 2 can describe the

propagation of the state under variable rotation operation.
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4.2 The Automatic Search Method for Redefined Impossible
Differentials and Impossible (s + 1)-Polytopic Transitions

In this subsection, we show our automatic search algorithm for the i-impossible
(resp. d-impossible) (s + 1)-polytopic transitions. Since an i-impossible (resp. d-
impossible) differential is an i-impossible (resp. d-impossible) 2-polytopic tran-
sition, the automatic search algorithm for i-impossible (resp. d-impossible) dif-
ferentials can be derived from the algorithm for i-impossible (resp. d-impossible)
(s + 1)-polytopic transitions with s = 1. First, we propose our method for
determining whether a pair of input and output s-differences is an i-impossible
(resp. d-impossible) (s + 1)-polytopic transition. Then, we discuss the selection
of parameter s and the search space of our method.

The i-Impossible (resp. d-Impossible) (s + 1)-Polytopic Transition
Determining Method.
Our method for determining whether a pair of input and output s-differences
(αn,s,βn,s) is an i-impossible (resp. d-impossible) (s+1)-polytopic transition can
be divided into two phases: statements generated phase and STP invoked phase.
In the statements generated phase, we generate a system of statements as a file
to describe the (s + 1)-polygons xn,s+1 propagate to yn,s+1 with xn,s+1 � αn,s

and yn,s+1 � βn,s. In the STP invoked phase, we invoke the STP for the file
to determine whether (αn,s,βn,s) is an i-impossible (resp. d-impossible) (s+1)-
polytopic transition.

Specification of the statements generated phase.
The algorithm shown in Algorithm3 generates the statements for judging
whether a pair of input and output s-differences (αn,s,βn,s) is an r-round
impossible (s + 1)-polytopic transition.

Algorithm 3. Generating statements in CVC format
1: Input: the number of rounds r, the input s-difference αn,s, the output s-difference

βn,s and keyflag∈ {True, False}
2: Output: System of statements in CVC format
3: Declare the input and output (s + 1)-polygons of xn,s+1 and yn,s+1.
4: Declare the intermediate variables and key variables.
5: for i = 0 to s do
6: Model the r-round propagation of (xi, yi).
7: endfor
8: Generate the constraint of xn,s+1 such that xn,s+1 � αn,s.
9: Generate the constraint of yn,s+1 such that yn,s+1 � βn,s.

10: if keyflag then
11: Generate the constraint of key variables according to key shedule.
12: endif
13: Add the statements “QUERY(FALSE);” and “COUNTEREXAMPLE;”.



430 X. Hu et al.

We present certain illustrations for Algorithm 3 as follows.

– Line 3–4. Declare the variables which are used in the system of statements,
including the variables which are used to represent the input (s + 1)-polygon
and output (s+1)-polygon, the intermediate variables and key variables used
to describe the propagation from the input (s + 1)-polygon to the output
(s + 1)-polygon.

– Line 5–7. According to the propagation rules for each operation which are
given in Sect. 4.1, model the propagation from the input (s + 1)-polygon
xn,s+1 to the output (s + 1)-polygon yn,s+1 with the aid of the intermediate
variables and key variables.

– Line 8–9. Generate the statements in CVC format such that the input (s+1)-
polygon xn,s+1 satisfies the input s-difference αn,s and the output (s + 1)-
polygon yn,s+1 satisfies the output s-difference βn,s.

– L ine 10–12. If “keyflag=True”, then the algorithm generates the statements
to constraint the key variables according to the key schedule. In this case,
the algorithm generates the statements to judge whether a pair of input and
output s-differences (αn,s,βn,s) is an r-round d-impossible (s + 1)-polytopic
transition; Otherwise, it generates the statements to judge whether a pair of
input and output s-differences (αn,s,βn,s) is an r-round i-impossible (s+1)-
polytopic transition.

– Line 13. The statements “QUERY(FALSE);” and “COUNTEREXAMPLE;”
are added to the system of statements. This is a common method in STP
to determine whether an SAT problem has a solution. By adding those two
statements, if the SAT problem has solutions, the STP will return one of the
solutions and the statement “Invalid.”; Otherwise, it returns “Valid.”.

Specification of the Invoke STP Phase.
We invoke the STP for the file which is consisted of the system of state-
ments. If the statements generated in the case of keyflag=True, then the
s-differences (αn,s,βn,s) is an r-round d-impossible (s + 1)-polytopic tran-
sition when the STP returns “Valid.”, and (αn,s,βn,s) is not an r-round
d-impossible (s + 1)-polytopic transition when the STP returns an r-round
d-(s+1)-polygonal trail and “Invalid.”. Similarly, if the statements generated
in the case of keyflag=False, then the s-differences (αn,s,βn,s) is an r-round
i-impossible (s + 1)-polytopic transition when the STP returns “Valid.”, and
(αn,s,βn,s) is not an r-round i-impossible (s + 1)-polytopic transition when
the STP returns an r-round i-(s + 1)-polygonal trail and “Invalid.”.

Work as a Proof Tool. Once the search space fixed, we can run our tool
for all the input and output s-differences in such space. If none of the input
and output s-differences is an r-round i-impossible (resp. d-impossible) (s + 1)-
polytopic transition, we can declare that there exists no r-round i-impossible
(resp. d-impossible) (s + 1)-polytopic transition in this space.

The Select of Parameter s and Search Space.
In our automatic search method for impossible (s + 1)-polytopic transition, the
total time cost mainly depends on the size of the search space and the time
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cost for determining whether an element in the search space is an impossible
(s + 1)-polytopic transition.

The time cost for determining whether an element in the search space is an
impossible (s + 1)-polytopic transition is closely related to operations contained
in the block cipher and the value of parameter s we selected. In our experiment,
we choose s at most 4, since the search time will cost quite a lot if s increases
beyond this range.

For the search space, traditional automatic tools focus on search the μ input
active bits (resp. nibbles) and ν output active bits (resp. nibbles) impossible
differentials. Since the impossible (s+1)-polytopic transition is the generation of
impossible differential, we define the (μ0, . . . , μs−1) active bits and (μ0, . . . , μs−1)
active nibbles to generate the search space.

Definition 14 ((μ0, . . . , μs−1) Active Bits). For a block cipher E ∈
BC(n,m, l), we call the s-difference αn,s satisfied the (μ0, . . . , μs−1) active bits,
if there are μi bits of the binary representation of αi(0 ≤ i ≤ s−1) are non-zero.

Definition 15 ((μ0, . . . , μs−1) Active Nibbles). For a block cipher E ∈
BC(n,m, l) whose S-box size is q, for any s-difference αn,s, the binary rep-
resentation of αi (0 ≤ i ≤ s − 1) can be divided into n

q pieces, where
αi,j = {αi,q·j , . . . , αi,q·j+q−1} (0 ≤ j ≤ n

q − 1). We call the s-difference αn,s sat-
isfied the (μ0, . . . , μs−1) active nibbles, if there are μi pieces of αi(0 ≤ i ≤ s− 1)
have non-zero items.

Our method focuses on searching the (μ0, . . . , μs−1) input active bits and
(ν0, . . . , νs−1) output active bits or (μ0, . . . , μs−1) input active nibbles and
(ν0, . . . , νs−1) output active nibbles, or the subset of those two spaces according
to the experimental result. Due to the limitation of the size of the executable
search space, we mainly search some small values of active bits and active nibbles.
Assume the value μ′

i (0 ≤ i ≤ g) appears ϕi times in the tuple (μ0, . . . , μs−1)
and value ν′

i (0 ≤ i ≤ h) appears φi times in the tuple (ν0, . . . , νs−1). Then,
for a block cipher E ∈ BC(n,m, l), the number of pairs of input and output s-
differences with (μ0, . . . , μs−1) input active bits and (ν0, . . . , νs−1) output active
bits is
((

n
μ′
0

)

ϕ0

)

×· · ·×
((

n
μ′
g

)

ϕg

)

×
((

n
ν′
0

)

φ0

)

×· · ·×
((

n
ν′
h

)

φh

)

∼ O(nμ′
0ϕ0+···+μ′

gϕg+ν′
0φ0+···+ν′

hφh).

For a block cipher E ∈ BC(n,m, l) whose S-box size is q, let p = n
q , the number

of pairs of input and output s-differences with (μ0, . . . , μs−1) input active nibbles
and (ν0, . . . , νs−1) output active nibbles is

((
p

μ′
0

) · (2q − 1)

ϕ0

)
×· · ·×

((
p

μ′
g

) · (2q − 1)

ϕg

)
×

((
p
ν′
0

) · (2q − 1)

φ0

)
×· · ·×

((
p

ν′
h

) · (2q − 1)

φh

)
,

which is O(pμ′
0ϕ0+···+μ′

gϕg+ν′
0φ0+···+ν′

hφh · 2q·(μ′
0+···+μ′

g+ν′
0+···+ν′

h)).



432 X. Hu et al.

According to the above analysis, the size of the search space is still large even
we only search for small values of active bits and active nibbles for impossible
(s+1)-polytopic transitions with small value of parameter s. For example, if we
search the (1, 1) input active bits and (1, 1) output active bits for the impossible
3-polytopic transition of a block cipher whose block size is 64, the number of
pairs of input and output s-differences is

((641 )
2

) × ((641 )
2

)
= 4064256 ≈ 222. Thus,

we propose the following step by step strategy, which is quite helpful to search
the impossible (s + 1)-polytopic transitions when the search space is too large.

Step by Step Strategy. The core of this strategy is to search the impossi-
ble (s + 1)-polytopic(s ≥ 2) transition based on the result of the impossible
s-polytopic transition. To be specific, for a block cipher E ∈ BC(n,m, l), if
we know that (αn,s−1,βn,s−1) is an impossible s-polytopic transition, then we
search the impossible (s + 1)-polytopic(s ≥ 2) transition in the set

{(α0, . . . , αs−2, α) × (β0, . . . , βs−2, β)|the active bits (nibbles) of α and β is u

and v respectively},

where u and v are the predetermined values.

5 Applications to Impossible Differentials from the
Aspect of Cryptanalysis

In this section, we apply our method to various block ciphers, including the
block cipher GIFT64 [2], the key-dependent permutation (or the key-dependent
S-box) based block cipher PRINTcipher [15], the large S-boxes based block
cipher MISTY1 [20], and the variable rotation based block cipher RC5 [24]. Only
concise descriptions of those block ciphers are specified here. For more details,
please refer to their coresponding references. All the experiments in this paper
are conducted on this platform: Intel(R) Xeon(R) CPU E5-2650 v2 @2.60 GHz,
64.00G RAM, 64-bit Windows 7 system. The source codes are available in
https://github.com/HugeChaos/Impossible-differentials-and-impossible-polyto
pic-transitions.

5.1 GIFT64

GIFT64 was designed by Banik el at. [2], it is a 64-bit block cipher with 128-
bit master key. Interestingly, its round key is 32-bit while it adopts the SPN
structure.

Previous Best Result. In [2], they searched the impossible differentials by
limiting the input difference activates only one of the first four S-boxes and the
output difference activates only one S-box. The maximum number of rounds of
impossible differentials they got in this search space is 6.

Advantage of Our Tool. Compared with the previous tools, our tools can
search the impossible differentials taking into account the key schedule.

https://github.com/HugeChaos/Impossible-differentials-and-impossible-polytopic-transitions
https://github.com/HugeChaos/Impossible-differentials-and-impossible-polytopic-transitions
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Configurations for the Tool. Firstly, in the search space where the input and
output difference activates only one S-box, the maximum number of rounds of
the impossible differentials we got is also 6. Then, we try to find the 6-round
impossible differentials in which the contradiction cannot be detected by the
previous method. To achieve this purpose, we randomly pick the input differences
activate at most the right 16 bits and the output differences activate at most the
i-th (i ∈ {0, 4, 8, 12, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63}) bit. In this way, it
allows at most the 0th, 4th, 8th and 12th S-box to be active in the 2nd round
by propagating the input difference in the forward direction, and at most the
0th, 1st, 2nd and 3rd S-box to be active in the 5th round by propagating the
output difference in the backward direction. After 65536 random tests, we find
3 6-round impossible differentials that the previous tools cannot detect.

Example of 6-Round d-Impossible Differentials. One of the 6-round d-
impossible differentials is

0x0000000000000600 6−round
� 0x0000004020000110.

Automatic Verification for Above Example of Impossible Differential
of GIFT64. Since this impossible differential cannot be detected by the prop-
agation of difference, verifying this impossible differential by manual is difficult,
we modify the verification algorithm in [10] and apply it to verify this impossible
differential. The details of our verification are shown in the Full Version of our
paper.

5.2 PRINTcipher

PRINTcipher [15] is proposed by Lars et al. at CHES 2010, consisting of two
versions: PRINTcipher48 and PRINTcipher96. PRINTcipher48 is a block cipher
with 48-bit block and 80-bit key. PRINTcipher96 is a block cipher with 96-bit
block and 160-bit key.

Advantage of Our Tool. Previous tools cannot apply to PRINTcipher directly
due to that they cannot handle the operation of key-dependent permuta-
tion. By making use of the conditional term, we propose the first modeling
method to describe the propagation of state for key-dependent permutation:
ASSERT(y2@y1@y0 = (IF k1@k0 = 0bin11 THEN x0@x1@x2 ELSE (IF k1@k0
= 0bin10 THEN x2@x0@x1 ELSE (IF k1@k0 = 0bin01 THEN x1@x2@x0 ELSE
x2@x1@x0 ENDIF) ENDIF) ENDIF));

where x2||x1||x0 is the input variable, y2||y1||y0 is the output variable, and
k1||k0 is the control key. This modeling method allows us to search the impossible
differentials for PRINTcipher by considering the impact of all the details of key
schedule. Besides, the PRINTcipher also can be regarded as the key-dependent
S-box based block cipher, where the key-dependent S-box is consisted of the key-
dependent permutation and the fixed S-box. We also propose the first modeling
method to describe the propagation of state for key-dependent S-box directly,
which is shown in the Full Version of our paper.
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Configurations for the Tool. By considering all the details of key schedule,
we search the impossible differentials for PRINTcipher48 and PRINTcipher96
in the space where the input difference activates only one S-box in the first
substitution layer and the output difference activates only one S-box in the last
substitution layer . Finally, we found 730 4-round d-impossible differentials for
PRINTcipher48 and 234 5-round d-impossible differentials for PRINTcipher96
in total.

Example of d-Impossible Differentials of PRINTcipher. One of the 730
4-round d-impossible differentials of PRINTcipher48 is

0x000000000001 4−round
� 0x000000000008.

One of the 234 5-round d-impossible differentials of PRINTcipher96 is

0x000000000000000200000000 5−round
� 0x000000000000000000001000.

Manual Verification for the Above Example of Impossible Differential
of PRINTcipher. As the impossible differentials are detected by considering
the key schedule, the verification is completely different from the previous impos-
sible differentials. First, we have the following observation for the composition
of key-dependent permutation and S-box.

Observation 1. Let SPk = S ◦ Pk, where S denotes the S-box of PRINTcipher
and Pk denotes the key-dependent permutation. Then, 1 SP0−→ {1, 3, 5, 7}, 1 SP1−→
{1, 3, 5, 7}, 1 SP2−→ {2, 3, 6, 7}, and 1 SP3−→ {4, 5, 6, 7}. On the contrary, we have
{1, 3, 5, 7} SP0−→ 1, {1, 3, 5, 7} SP1−→ 1, {2, 3, 6, 7} SP2−→ 1, and {4, 5, 6, 7} SP3−→ 1.

Then, we verify the 4-round example of impossible differential of
PRINTcipher48 in case that 0th or 5th S-box in the 3rd round is active. More
details of the proof are given in the Full Version of our paper. The 5-round
example of PRINTcipher96 can be verified similarly.

5.3 MISTY1

The block cipher MISTY1 was designed by Matsui [20]. It is a 64-bit block cipher
which adopts the theory of provable security [23] against differential attack [5]
and linear attack [19].

The Result by Sasaki et al.’s Method. Sasaki et al.’s method is the most
advanced previous method to search the impossible differentials for block ciphers
with large S-boxes. We employ this method to search the 1 input active bit and 1
output active bit impossible differentials by limiting the input difference activates
only the right branch and the output difference activates only the left branch.
After 32 × 32 = 1024 tests, the maximum number of rounds we got is 4 and a
total of 28 4-round impossible differentials are found.
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Advantage of Our Tool. Compared with previous tools, our tool is the first
tool that can search the impossible differentials for large S-boxes based block
ciphers taking into account the differential property of the S-boxes in the inde-
pendent key setting.

Configurations for the Tool. We run our tool to search the i-impossible dif-
ferentials in the search space as that by Sasaki et al.’s method. Finally, we found
902 4-round i-impossible differentials, and all the 4-round impossible differentials
derived by Sasaki et al.’s method are detected by our tool.

List of 4-Round i-Impossible Differentials. All the 4-round impossible dif-
ferentials we found are shown in the Table 1, where Z32 = {0, 1, . . . , 31} and
A = {33, 35, 36, 46, 49, 50, 51, 52, 53, 57, 58, 62}.

Table 1. 4-round impossible differentials of MISTY-1

ID ΔP ΔC Number

001 e64i (i ∈ Z32/{3, 12, 19, 28}) e6432 28

002 e64i (i ∈ Z32/{14, 30}) e6434 30

003 e64i (i ∈ Z32/{7, 23}) e6437 30

004 e64i (i ∈ {0, 9, 11, 12, 13, 14, 15, 16, 25, 27, 28, 29, 30, 31}) e6438 14

005 e64i (i ∈ {1, 4, 5, 6, 7, 10, 17, 20, 21, 22, 23, 26} e6443 12

006 e64i (i ∈ {4, 5, 6, 7, 10, 20, 21, 22, 23, 26}) e6444 10

007 e64i (i ∈ {0, 3, 4, 5, 6, 7, 8, 10, 16, 19, 20, 21, 22, 23, 24, 26} e6445 16

008 e64i (i ∈ Z32/{12, 28}) e6448 30

009 e64i (i ∈ Z32/{6, 22}) e6454 30

010 e64i (i ∈ Z32) e64j (j ∈ A) 384

011 e64i (i ∈ Z32/{12 + j, 28 + j}) e6455+j(j ∈ {0, 1}) 60

012 e64i (i ∈ Z32/{11, 27}) e64j (j ∈ {47, 63}) 60

013 e64i (i ∈ Z32/{11, 12, 13, 27, 28, 29}) e64j (j ∈ {59, 60, 61}) 78

014 e64i (i ∈ Z32/{12 + j, 28 + j}) e6439+j(j ∈ {0, 1, 2, 3}) 120

Manual Verification for the 4-Round i-Impossible Differentials (e64i , e6452)
(i ∈ Z32) of MISTY1. First, we study the property of the FL and FO function
of MISTY1.

Observation 2. Let F denote the FL function of MISTY1, if the input differ-
ence is one of e32i , e32i+16, and e32i,i+16 (0 ≤ i ≤ 15), all possible output difference
of F is {e32i , e32i+16, e

32
i,i+16}. Moreover, all possible output difference of F 2 is also

{e32i , e32i+16, e
32
i,i+16}, where F 2 denotes the composition of two FL function.

Proposition 1. Let F denote the FO function of MISTY1 and γi(0 ≤ i ≤ 1)
be the 16-bit variables, for ∀(γ1||γ0) ∈ {β|e3220 F−→ β}, the weight of γ1 must be
greater than 1.
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Then, we verify the 4-round i-impossible differentials (e64i , e6452)(i ∈ Z32) of
MISTY1, which is finished in the Full Version of our paper.

5.4 RC5

RC5 is designed by Rivest in 1994 [24]. The block size of it can be 32, 64, or 128
bits. For each block size n, the version is denoted as RC5-n(n = 32, 64, 128).

Advantage of Our Tool. The operation variable rotation highly depends
on the value of state, which cannot be handled by the previous automatic
search tools for impossible differentials. In our model, by exploiting the mod-
eling method we proposed in Sect. 4.1, we give the first automatic method for
searching the impossible differentials of RC5.

Configurations of Our Tool. The key schedule of RC5 is very complex. Thus,
we focus on searching i-impossible differentials. By observing the structure of
RC5-n, the difference en

(i,i+n
2 ) propagates to the difference en

(i+n
2 ) after 0.5-round

in the encryption direction. Thus, we search the i-impossible differentials for
RC5-n(n = 32, 64, 128) by limiting the input difference and output difference in
the set (en

(i,i+n
2 ), e

n
(j))(0 ≤ i ≤ n

2 − 1, 0 ≤ j ≤ n − 1).

List of 2.5-round i-Impossible Differentials. As a result, our tool found
12 i-impossible differentials for RC5-32, 27 i-impossible differentials for RC5-64,
and 58 i-impossible differentials for RC5-128. This is the first result of impossible
differentials for RC5. All the results are shown in Table 2.

Table 2. 2.5-Round i-impossible Differentials of RC5

Block Size ΔP ΔC Number

32 e32(i,i+16)(4 ≤ i ≤ 15) e32(15) 12

64 e64(i,i+32)(5 ≤ i ≤ 31) e64(31) 27

128 e128(i,i+64)(6 ≤ i ≤ 63) e128(63) 58

Manual Verification for the i-Impossible Differential (en
(n
2 −1,n−1), e

n
(n
2 )−1)

of RC5-n. First, we study the relation of a pair of input values and a pair
of output values for the operation variable rotation, and have that the par-
ity of W (z ⊕ w) is the same as W (x ⊕ u), where z = x ≪ y, w = u ≪ v,
x, y, z, u, v, w ∈ F

m
2 . Then, we verify the 2.5-round i-impossible differential

(e32(15,31), e
32
(15)) of RC5-32, (e64(31,63), e

64
(31)) of RC5-64, and (e128(63,127), e

128
(63)) of RC5-

128 together. The details of our manual process are shown in the Full Version of
our paper.
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6 Applications to Impossible Differentials from the
Aspect of Design

In this section, we apply our tool to evaluate the security of lightweight block
ciphers against the d-impossible differentials directly. For block ciphers with large
S-boxes, we propose the three phases technique and inside value technique, which
improve the security evaluation efficiency against the impossible differentials.

Three Phases Technique. For a block cipher, proving that all the input dif-
ferences in Λ and output differences in Θ are the r-round possible differentials
may be time-consuming. To overcome this dilemma, we pick two sets Φ and Ψ
satisfied: for ∀α ∈ Λ, there exists α0 ∈ Φ such that α can propagate to α0 after
r1 rounds in the forward direction, and for ∀β ∈ Θ, there exists β0 ∈ Ψ such that
β can propagate to β0 after r2 rounds in the backward direction. In this way, we
just need to prove all the difference of the Φ and Ψ are the (r − r1 − r2)-round
possible differentials.

Inside Value Technique. For a block cipher, proving (α, β) is an r-round i-
possible (resp. d-possible) differential directly may be time-consuming. To solve
this problem, we prove that (0, α) and (0, β) is an i-possible (resp. d-possible)
2-polygon instead. Our experimental results show that this technique speeds up
our proof process.

6.1 Direct Application to GIFT64, PRESENT, Midori64,
PRINTcipher48, and PRINTcipher96

By exploiting our tool, we prove that, in the search space where the input differ-
ence activates only one S-box in the first substitution and the output difference
activates only one S-box in the last substitution, there exists no 7-round, 7-round,
6-round, 5-round, and 6-round impossible differential for GIFT64, PRESENT,
Midori64, PRINTcipher48, and PRINTcipher96 even considering the details of
the key schedule.

6.2 Three Phases Technique: Apply to AES-128

AES-128 is the most famous standard block cipher designed by Vincent Rijmen
and Joan Daemen [11]. It is a 128-bit block cipher with 128-bit key. AES-128
adopts the SPN structure. Its 128-bit internal state s can be represented as a
4 × 4 matrix of bytes si,j ∈ F

8
2 (0 ≤ i, j ≤ 3), each values in the finite fields F

8
2.

For more details of AES, please refer to [11].

Previous Result. Wang el at. [30] have proved that there exists no 5-round
1 input active word and 1 output active word impossible differentials for AES-
128 without the last MC operation even considering all the details of the S-box
in the key independent setting. But, the influence of the key schedule for the
impossible differentials about AES-128 is still unknown.
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Our Method. Determine whether a pair of input and output differences is
the 5-round impossible differential by considering all the details of the relations
of the round keys is very time-consuming. To resolve this issue, we adopt the
three phases technique to finish our proof. First, according to the following two
observations and further the propositions by studying the differential property
of the S-box of AES, we propagate the input difference one round in the forward
direction and the output difference two rounds in the backward direction. Then,
we run our algorithm to show that those differences after the propagation can be
connected through two rounds of AES even considering the relation of 3-round
keys.

Observation 3. Let S denote the S-box of AES, define DDTin(β) = {α|∃x ∈
F
8
2, s.t.S(x) ⊕ S(x ⊕ α) = β}, then we have DDTin(0x01) ∪ DDTin(0x02) ∪

DDTin(0xec) = F
8
2.

Observation 4. Let S denote the S-box of AES, define DDTout(α) = {β|∃x ∈
F
8
2, s.t.β = S(x) ⊕ S(x ⊕ α)}, then we have DDTout(0x01) ∪ DDTout(0x02) ∪

DDTout(0xf7) = F
8
2. Moreover, we have

{0x0d, 0x1a, 0xff} = {0x0d × 0x01, 0x0d × 0x02, 0x0d × 0xf7} ∈ DDTout(0x01),

{0x0b, 0x16, 0xfb} = {0x0b × 0x01, 0x0b × 0x02, 0x0b × 0xf7} ∈ DDTout(0x03),

{0x09, 0x12, 0x0e} = {0x09 × 0x01, 0x09 × 0x02, 0x09 × 0xf7} ∈ DDTout(0x06),

{0x0e, 0x1c, 0xfd} = {0x0e × 0x01, 0x0e × 0x02, 0x0e × 0xf7} ∈ DDTout(0x09).

Proposition 2. Let F1 = MC ◦ SR ◦ SB ◦ ARK, any difference Di,j
α (0 ≤ i ≤

3, 0 ≤ j ≤ 3, α ∈ F
8
2/{0}) can propagate to at least one of the differences of

MC ◦ SR(Di,j
0x01), MC ◦ SR(Di,j

0x02), and MC ◦ SR(Di,j
0xec) through F1.

Proposition 3. Let F2 = ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ SR ◦ SB and

P =

⎛

⎜
⎜
⎝

0x09 0x03 0x01 0x06
0x06 0x09 0x03 0x01
0x01 0x06 0x09 0x03
0x03 0x01 0x06 0x09

⎞

⎟
⎟
⎠ .

Let k = (j + i) mod 4. Then, for any difference Di,j
α (0 ≤ i ≤ 3, 0 ≤ j ≤ 3, α ∈

F
8
2/{0}), the difference Gi,j := D0,k

P0,i
+D

1,(k+1)mod4
P1,i

+D
2,(k+2)mod4
P2,i

+D
3,(k+3)mod4
P3,i

can propagate to it through F2.

Proof. Let Q be the inverse matrix of the MDS used in AES7. According to
Observation 4, for ∀z ∈ {0x01, 0x02, 0x7f}, we have Gi,j

SR◦SB−→ D0,k
Q0,i×z +

7

Q =

⎛
⎜⎜⎝

0x0e 0x0b 0x0d 0x09
0x09 0x0e 0x0b 0x0d
0x0d 0x09 0x0e 0x0b
0x0b 0x0d 0x09 0x0e

⎞
⎟⎟⎠ .

.
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D1,k
Q1,i×z + D2,k

Q2,i×z + D3,k
Q3,i×z, since the S-box is applied to each byte of the

state in parallel in the SB operation. Then based on the definition of Q, we
have MC(D0,k

Q0,i×z + D1,k
Q1,i×z + D2,k

Q2,i×z + D3,k
Q3,i×z) = Di,k

z . According to Obser-
vation 4, for any difference Di,j

α (0 ≤ i ≤ 3, 0 ≤ j ≤ 3, α ∈ F
8
2/{0}), at least

one of Di,k
0x01,D

i,k
0x02, and Di,k

0x7f can propagate to it through SR ◦ SB. Thus, for
any difference Di,j

α (0 ≤ i ≤ 3, 0 ≤ j ≤ 3, α ∈ F
8
2/{0}), the difference Gi,j can

propagate to it through F2. 
�
Our Experiment. Let F3 = ARK◦(MC◦SR◦SB◦ARK)2. For 0 ≤ i, j, s, t ≤ 3,
by considering the relations of K1, K2, and K3 according to the key schedule,
we run our tool to determine whether all the differences of MC ◦ SR(Di,j

0x01),
MC ◦SR(Di,j

0x02), and MC ◦SR(Di,j
0xec) can propagate to Gs,t through F3. After

a total of 16 × 16 × 3 = 768 tests, our result shows that all the differences of
MC ◦SR(Di,j

0x01), MC ◦SR(Di,j
0x02), and MC ◦SR(Di,j

0xec) can propagate to Gs,t

through F3 in our setting, which leads to the following theorem.

Theorem 6. For 5-round AES-128 without the last MC operation, there exists
no 1 input active word and 1 output active word impossible differentials by
considering the relations of K1, K2, and K3.

6.3 Combination of Three Phases Technique and Inside Value
Technique: Application to MISTY1

Previous Result. Since MISTY1 adopts the 7-bit and 9-bit S-boxes, no auto-
matic search tool could be used to evaluate its security taking account into the
differential property of S-boxes so far.

Our Approach. We combine the three phases technique and inside value tech-
nique to accelerate our tool in this part. Denote β0||α0 be the 1 input active bit
difference and β5||α5 be the 1 output active bit difference, and FO(KI,KO) be
the FO function, where KI and KO are the secret keys in the FO function. Let

β1||α1 =
{

e64i+32, if (β0||α0) = e64i (0 ≤ i ≤ 31),
(FO0,0(0) ⊕ FO0,0(e32i−32))||e32i−32, if β0||α0) = e64i (32 ≤ i ≤ 63).

β4||α4 =
{

e32i ||(FO0,0(0) ⊕ FO0,0(e32i ))e64i+32, if (β5||α5) = e64i (0 ≤ i ≤ 31),
e64i−32, if β5||α5) = e64i (32 ≤ i ≤ 63).

That is, we propagate the difference β0||α0 through one round to β1||α1 in the
forward direction and the difference β5||α5 through one round to β4||α4 in the
backward direction. Then, we prove that (0, β1||α1) and (0, β4||α4) is the i-
possible 2-polygons.

Our Experiment. We run our tool to determine whether the input 2-polygons
(0, β1||α1) and the output 2-polygons (0, β4||α4) are the i-possible 2-polygons
for 3 rounds MISTY1. After a total of 64 × 64 = 4096 tests, our result shows
that all the input 2-polygons (0, β1||α1) and the output 2-polygons (0, β4||α4)
are the i-possible 2-polygons for 3-round MISTY1, which leads to the following
theorem.



440 X. Hu et al.

Theorem 7. For 5-round MISTY1 in which the FL layers were placed at the
even rounds, there exists no 1 input active bit and 1 output active bit impossible
differentials in the key independent setting.

7 Applications to Impossible (s + 1)-Polytopic (s ≥ 2)
Transitions

In this section, we run our tool to search the impossible (s+1)-polytopic(s ≥ 2)
transitions for PRINTcipher, GIFT64, PRESENT, and RC5. All the contradic-
tions of the distinguishers in this section can be detected by our verification
algorithm, the details are shown in the Full Version of our paper in the supple-
mentary materials. First, for S-boxes based block ciphers, we define some search
spaces for the input and output s-differences.

Search Space1: In this space, the input 2-difference (b1, b2) is the (1, 1) active
bit which only activates the two right S-boxes in the first round, and the output
2-difference (e1, e2) is the (1, 1) active bit.

Search Space2: In this space, the input 2-difference (b1, b2) is the (1, 1) input
active bit which only activates the first right S-box in the first round and the
2-difference (e1, e2) is the (1, 1) output active bit which activates the same S-box
in the last round.

Search Spacei(i = 3, 4): In this space, the input 3-difference is of pattern (b1, b2,
b1 ⊕ b2) and the output 3-difference is of pattern (e1, e2, e1 ⊕ e2), where (b1, b2)
and (e1, e2) are in Search spacei−2.

7.1 The d-Impossible Polytopic Transitions of PRINTcipher

In this part, we show our method to search the impossible 3-polytopic transitions
and impossible 4-polytopic transitions for PRINTcipher48 and PRINTcipher96
by considering all the details of the key schedule. Besides, we also study the influ-
ence of the Xor key and control key for the d-impossible 3-polytopic transitions
of PRINTcipher48.

For the d-impossible 3-polytopic transitions of PRINTcipher48, we search
such distinguishers in the Search space1. After a total of

((61)
2

) × ((481 )
2

)
= 16920

tests, the maximum number of rounds of d-impossible 3-polytopic transitions
in this search space is 6, and a total of 1471 6-round d-impossible 3-polytopic
transitions are found. One of them is

(0x000000000001, 0x000000010000) 6−round
� (0x000000000002, 0x000000000200).

Impact of the constraints of the Xor keys. In our search above, we restrict the Xor
keys and control keys according to the key schedule. To investigate the impact
of the constraints of the Xor keys, we further release the constraints of the Xor
keys and keep the constraints of the control keys. Then, we run our tool to
search the 6-round impossible 3-polytopic transitions in Search space1. Finally,



Mind the Propagation of States 441

we get 1448 6-round impossible 3-polytopic transitions. This result shows that,
the constraint of the Xor keys leads to more contradictions for constructing the
impossible 3-polytopic transitions.

Impact of the Constraints of the Control Keys. Similarly, we keep the constraints
of the Xor keys and release the constraints of the control keys over again. Then,
we run our tool to search the 6-round impossible 3-polytopic transitions in Search
space1. Finally, we found that there exists no 6-round impossible 3-polytopic
transitions in such search space. This result shows that the constraints of the
control keys have a very significant impact on constructing the impossible 3-
polytopic transitions.

Those two results show that, both the Xor keys and control keys may have
influences on the results of impossible (s+1)-polytopic transitions. Thus, in the
search of impossible (s+ 1)-polytopic transitions, we should consider the details
of key schedule as much as possible if the time cost permits.

For the d-impossible 4-polytopic transitions of PRINTcipher48, we search
such distinguishers in Search space3. Finally, we found one 7-round d-impossible
4-polytopic transition of PRINTcipher48 as follows and stop our tool due to the
limitation of search time.

(0x000000000001, 0x000000010000, 0x000000010001) 7−round
�

(0x000000000001, 0x000000000200, 0x000000000201).

For the d-impossible 3-polytopic transitions of PRINTcipher96, we search
such distinguishers in Search space1. Finally, we find one 7-round d-impossible
3-polytopic transition of PRINTcipher96 as follows and stop our tool due to the
limitation of search time.

(0x000000000000000000000001, 0x000000000000000100000000) 7−round
�

(0x000000000000000000000001, 0x000000000000000008000000)

For the d-impossible 4-polytopic transitions of PRINTcipher96, we search
such distinguishers in Search space3. Finally, we find one 8-round d-impossible
4-polytopic transition of PRINTcipher96 as follows (as the left 48-bit of each
value are 0, we only show the right 48 bits here) and stop our tool due to the
limitation of search time.

(0x000000000001, 0x000100000000, 0x000100000001) 8−round
�

(0x000000000001, 0x000000000200, 0x000000000201).

7.2 The 7-Round d-Impossible 3-Polytopic Transition of GIFT64

For GIFT64, we search the d-impossible 3-polytopic transitions in Search space2
Finally, we find one 7-round d-impossible 3-polytopic transition as follows and
stop our tool due to the limitation of search time.

(0x0000000000000001, 0x0000000000000002) 7−round
�

(0x0000000000000001, 0x0000000000000008).
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7.3 The 7-Round i-Impossible 4-Polytopic Transition of PRESENT

For the i-impossible 4-polytopic transitions of PRESENT, we search such distin-
guishers in Search space4. Finally, we find one 7-round d-impossible 4-polytopic
transition of PRESENT as follows and stop our tool due to the limitation of
search time.

(0x0000000000000001, 0x0000000000000002, 0x0000000000000003) 7−round
�

(0x0000000000000001, 0x0000000000010000, 0x0000000000010001).

7.4 The 3-Round i-Impossible 3-Polytopic Transition of RC5-32
and RC5-64

In this subsection, we show our method for searching the i-impossible 3-polytopic
transition of RC5-32 and RC5-64 by adopting the step by step strategy.

For RC5-32, since (0x80008000, 0x00008000) is the 2.5-round impossible dif-
ferential, we search the i-impossible 3-polytopic transitions by limiting the input
2-difference (b1, b2) in the set {(0x80008000, e32i,i+16)|0 ≤ i ≤ 15} and the output
2-difference (e1, e2) in the set {(0x00008000, e32i )|0 ≤ i ≤ 31}. Finally, we find
108 3-round i-impossible 3-polytopic transitions and result in that there exists
no 3.5-round i-impossible 3-polytopic transitions in such search space. One of
the transitions is

(0x80008000, 0x00100010) 3−round
� (0x80000000, 0x00200000).

By adopting the same method for RC5-32, we find one 3-round i-impossible
3-polytopic transition as follows.

(0x8000000080000000, 0x0000002000000020) 3−round
�

(0x8000000000000000, 0x0000004000000000).

8 Conclusion

In this paper, we redefine the impossible differentials and impossible (s + 1)-
polytopic transitions based on the notation of s-polygon, and design a unity
SAT-based automatic tool to search them. We apply our tool to various block
ciphers. These results show that our tool can not only be used to search the
distinguishers by considering the key schedule in the single-key setting, but also
make the most of the inside property of large S-boxes or variable rotation for
several typical classes of block ciphers.

Moreover, we derive an interesting result that, with the increase of the param-
eter s, the number of rounds in which the impossible (s+1)-polytopic transition
exists also increases. Although due to the limitations of computing power, we
can only search the impossible (s + 1)-polytopic transition with a small value
of s. But, the result indicates a challenge clearly that the impossible (s + 1)-
polytopic transition may bring threats for block ciphers with the development
of the solver of the SAT and the computing power, and it is better to resist this
kind of cryptanalysis in a theoretical way of cipher design.
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Abstract. Since it was proposed in 2015 as a generalization of inte-
gral properties, the division property has evolved into a powerful tool
for probing the structures of Boolean functions whose algebraic normal
forms are not available. We capture the most essential elements for the
detection of division properties from a pure algebraic perspective, propos-
ing a technique named as monomial prediction, which can be employed
to determine the presence or absence of a monomial in any product of
the coordinate functions of a vectorial Boolean function f by counting
the number of the so-called monomial trails across a sequence of simpler
functions whose composition is f . Under the framework of the mono-
mial prediction, we formally prove that most algorithms for detecting
division properties in literature raise no false alarms but may miss. We
also establish the equivalence between the monomial prediction and the
three-subset bit-based division property without unknown subset pre-
sented at EUROCRYPT 2020, and show that these two techniques are
perfectly accurate.

The monomial prediction technique can be regarded as a purification
of the definitions of the division properties without resorting to exter-
nal multisets. This algebraic formulation gives more insights into division
properties and inspires new search strategies. With the monomial predic-
tion, we obtain the exact algebraic degrees of Trivium up to 834 rounds
for the first time. In the context of cube attacks, we are able to explore a
larger search space in limited time and recover the exact algebraic nor-
mal forms of complex superpolies with the help of a divide-and-conquer

Due to page limits, all appendixes and some tables of this paper are provided in our
full version [11].
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strategy. As a result, we identify more cubes with smaller dimensions,
leading to improvements of some near-optimal attacks against 840-, 841-
and 842-round Trivium.

Keywords: Division property · Monomial prediction · Detection
algorithm · Algebraic degree · Cube attack · Trivium

1 Introduction

The division property [25] was first proposed by Todo at EUROCRYPT 2015
to uncover and exploit the spectrum of properties hidden between the two
extremes—the ALL and BLANCE properties in the traditional integral crypt-
analysis [6,16] targeting word-oriented primitives. Compared with the traditional
integral cryptanalysis, the division property presents a more refined way for
cryptanalysts to identify balanced output bits, where the algebraic degree infor-
mation of the local components of the target is fully utilized. Its powerfulness and
potential were undoubtedly demonstrated by the break of the full Misty1 [24].
Subsequently, by considering the division property at the bit level, Todo and
Morii [27] introduced the bit-based division property to find balanced bits of
the round-reduced Simon. Moreover, to capture also constant output bits and
some cancellation characteristics ignored by the conventional bit-based division
property, the so-called three-subset bit-based division property was proposed in
the same work [27].

This seemingly natural and obvious migration from words to bits (1-bit word)
not only makes division properties applicable to bit-oriented designs, but also
reveals the intimate relationship between division properties and the algebraic
normal forms (ANF) of the target [26], well-beyond merely the algebraic degree.
This relationship hints at how the division property can be employed to probe
the ANF of a complex Boolean function whose explicit formula is typically not
available. As expected, the division property was shown to be useful in (par-
tially) determining the algebraic structures of the superpolies arising in cube
attacks [9,26,29,30]. Essentially, every cryptanalysis attempt based on the divi-
sion property employs some procedures which we call detection algorithms.

Detection Algorithms. Given a Boolean function f , a detection algorithm
for a certain property P is a procedure used to determine whether P holds for
f . The property P can be as simple as “f is a constant” or as complicated as
“the sum of f over all possible values of certain variables is zero regardless of
the values of some other variables”. Given a Boolean function f and a detection
algorithm for P, four possibilities are in order:

• Hit: P holds and the output of the algorithm is positive;
• Miss: P holds but the output of the algorithm is negative;
• False alarm: P does not hold but the output of the algorithm is positive;
• Correct reject: P does not hold and the output of the algorithm is negative.



448 K. Hu et al.

At this point, we remind the readers that a lot of research that has been done on
division property so far is about the construction of detection algorithms, loosely
speaking, for the balance (or more generally the key-independent constant) prop-
erty, or more essentially, the absence of certain monomials. A no-false-alarm
algorithm can be employed by an attacker (e.g., to find balanced output bits),
while a no-miss algorithm can be employed by a designer in security proofs. Our
ultimate goal is to devise a perfect and efficient detection algorithm that never
misses and never raises false alarms.

Our Contributions. Capturing the algebraic essentials of many attempts to
make the detection of division properties more accurate, we propose a new
technique called monomial prediction. This is a perfect detection algorithm for
detecting the presence and absence of any monomial xu in the product yv of
any output bits of a vectorial Boolean function y = f(x) by counting the num-
ber of the so-called monomial trails connecting xu and yv across a sequence
of simpler vectorial Boolean functions whose composition is f . We then estab-
lish an equivalence between the monomial prediction approach and the recently
proposed three-subset bit-based division property without unknown subset at
EUROCRYPT 2020 [9]. We also show that all the predecessors of [9] (except
the lazy propagation method [27]) can be categorized as no-false-alarm detection
algorithms.

The monomial prediction technique can be regarded as a new language for
describing the division properties. The original language for the division proper-
ties is somehow indirect and vague since a property (the division property) of an
object (a vectorial Boolean function) is defined via its effects on external objects
(multisets) rather than via its own intrinsic natures. The monomial prediction
delivers a definition of division properties fully getting rid of the external mul-
tisets. This new treatment not only gives us a unified view on the two-subset
bit-based division property, three-subset bit-based division property, and three-
subset division property without unknown subset, but also naturally leads to
new search strategies. We revisit several well-known applications of the division
property with the monomial prediction approach, and identify some improve-
ments over the state-of-the-art.

By showing the presence of monomials with a certain degree and the absence
of monomials with larger degrees, we obtain the exact algebraic degree of the
output bits of Trivium up to 834 rounds for the first time. Our results show
that the algebraic degree of 834-round Trivium is only 78, which is much lower
than the previous estimations by Liu at CRYPTO 2017 [18], where the upper
bound of 793-round Trivium has already reached 79. Along the way, we observe
and report on an interesting and somewhat counter-intuitive phenomenon: The
algebraic degree of Trivium can drop as the number of rounds grows. For exam-
ple, the degree of 807-round Trivium has been proven to achieve 71, but the
degree of the next round drops to 70.

For a Boolean function f , we can check the presence and absence of all mono-
mials that are divisible by the cube term to recover the superpoly in the cube
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attack. With the help of a divide-and-conquer strategy, our algorithm achieves
high efficiency and scales well, making it possible to test many cubes in a limited
time. As a result, we are able to identify some cubes with smaller dimensions for
Trivium than the previous best works, for instance, in [8,9] all the cubes cho-
sen for 840-, 841- and 842-round Trivium are of dimension 78, which take 278

encryptions of Trivium to recover one bit information of the key, and take 279

Trivium encryption to recover the remaining key bits by exhaustive search. Thus
the total complexity of the key-recovery attack is estimated as 278+279 ≈ 279.6.
Using our technique, for 840-round Trivium, we can recover superpolies with
three different cubes that have dimension of only 75, which reduces the com-
plexity for recovering the key to 277.8 encryption. For 841-round Trivium, we
recover two superpolies with two different cubes of dimension 76, which reduces
the complexity for recovering the full key to 278.6 encryption. For 842-round
Trivium, with two different cubes of dimension 76 together with their super-
polies, we can recover the full key with time complexity 278.6. We summarize
our cube attacks on Trivium in Table 1.

Table 1. The complexity of cube attacks on 840-, 841- and 842-round Trivium mea-
sured by the encryption of Trivium. #Cube means the number of cubes used in the
offline phase of the cube attack.

#Round Offline phase Online phase Total time Reference
#Cube Dimension #Key

840 1 78 1 279 279.6 [9]
3 75, 75, 75 3 277 277.8 Sect. 5.2

841 1 78 1 279 279.6 [9]
2 76, 76 2 278 278.6 Sect. 5.2

842 1 78 1 279 279.6 [8]
2 76, 76 2 278 278.6 Sect. 5.2

Remark. Before going any further, we would like to briefly discuss the rela-
tionship between the monomial prediction and division properties. When used
as detection algorithms for the key-independent sum property, both monomial
prediction and the three-subset bit-based division property without unknown
subsets are perfect. Originally, the division properties are defined over the mul-
tisets that the target cipher acts on, while the monomial prediction technique is
fully formulated via the algebraic structure of the cipher itself. Our philosophy is
that the effect of a cipher on multisets should be regarded as the manifestations
of the cipher’s intrinsic property, which should not be mixed with the definition
of this property. A unified view naturally emerges with the monomial prediction
technique for all previous division properties, since all of them are the manifesta-
tions of the properties of the ANFs of the target cipher. Finally, we would like to
mention that Hebborn et al. [10] show that the three-subset bit-based division
property without unknown subsets allows to decide whether or not a specific
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monomial appears in the ANF with the help of the parity set proposed in [2].
So we say that the monomial prediction and the division properties achieve the
same goal through different routes.

Organization. In Sect. 2, we introduce necessary notations and preliminaries.
The principle of the monomial prediction approach is established in Sect. 3. This
leads to the applications to the degree evaluation in Sect. 4 and to cube attacks
in Sect. 5. In Sect. 6, we establish the equivalence between the three-subset bit-
based division property without unknown subsets and the monomial prediction
technique, and theoretically prove that they are perfect in detecting the key-
independent sum property. Also, we theoretically show that other algorithms
for division properties raise no false alarms. Section 7 concludes and discusses
potential future work.

2 Preliminaries

We use bold italic lowercase letters to represent bit vectors, and 0 represents a bit
vector with all elements being 0. For an n-bit vector u ∈ F

n
2 , its i-th coordinate

is denoted by ui, and thus u = (u0, · · · , un−1). The complementary vector of u
is denoted by ū where ui ⊕ ūi = 1 for 0 ≤ i < n. The Hamming weight of u is
wt(u) =

∑n−1
i=0 ui. For any n-bit vectors u and u′, we define u � u′ if ui ≥ u′

i

for all i, otherwise, u � u′. Similarly, we define u � u′ if ui ≤ u′
i for all i, u ≺ u′

if ui < u′
i for all i and u 
 u′ if ui > u′

i for all i.
Let f : F

n
2 → F2 be a Boolean function in F2[x0, x1, . . . , xn−1]/(x2

0 − x0, x
2
1 −

x1, . . . , x
2
n−1 − xn−1) whose algebraic normal form (ANF) is

f(x) = f(x0, x1, . . . , xn−1) =
⊕

u∈Fn
2

au

n−1∏

i=0

xui
i ,

where au ∈ F2, and

xu = πu (x) =
n−1∏

i=0

xui
i with xui

i =

{
xi, if ui = 1,
1, if ui = 0,

is called a monomial. If the coefficient of xu in f is 1, we say xu is contained
by f , denoted by xu → f . Otherwise, xu is not contained by f , we denote it by
xu

� f . In the remaining paper, we will use xu and πu (x) interchangeably to
avoid using the awkward notation x (i)u (j) when both x and u have superscripts.

Example 1. Let f(x0, x1) = x0x1 ⊕ x0 ⊕ 1, then we have x0x1 → f , x0 → f ,
1 → f , and x1 � f .

Let y = (y0, · · · , ym−1) = f(x) = (f0(x), · · · , fm−1(x)) be a vectorial
Boolean function from F

n
2 to F

m
2 . For v = (v0, v1, . . . , vm−1) ∈ F

m
2 , a mono-

mial yv of y can be symbolically expressed as a polynomial of the variable x:

yv =
m−1∏

i=0

(fi(x))vi =
⊕

u∈Fn
2

auxu , au ∈ F2.
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In the following, we show how to determine whether xu → yv for a given
monomial xu .

3 Monomial Prediction

Let f : F
n
2 → F

m
2 be a vectorial Boolean function sending x = (x0, · · · , xn−1)

to y = (y0, · · · , ym−1) with yi = fi(x). By the monomial prediction we mean
the problem of determining the presence or absence of a particular monomial
xu in yv , that is, whether xu → yv . This is a trivial problem if the ANF of
f is available. However, in the context of the symmetric-key cryptography, in
most cases, the ANF of the targeted f is too complicated to be computed (or
even to be stored) in practice. Typically, the only fact we know is that f is built
by composition from a sequence of vectorial Boolean functions whose ANFs are
known, i.e.,

y = f(x) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x).

Now, how do we determine whether xu → yv ?
Let x(i) and x(i+1) be the input and output variables of f (i) : F

ni
2 → F

ni+1
2 ,

respectively. Then x(i+1) = f (i)(x(i)) for 0 ≤ i < r, and thus x(i) can be
represented as a vectorial Boolean function of x(j) with j < i:

x(i) = f (i−1) ◦ · · · ◦ f (j+1) ◦ f (j)(x(j)), for 1 ≤ i ≤ r.

Since the ANF of x(i+1) = f (i)(x(i)) is available, one can determine whether
πu(i)(x(i)) → πu(i+1)(x(i+1)) for any u(i) and u(i+1), which gives rise to the
concept of the monomial trail.

Definition 1 (Monomial Trail). Let x(i+1) = f (i)(x(i)) for 0 ≤ i < r. We
call a sequence of monomials (πu(0)(x(0)), πu(1)(x(1)), . . . , πu(r)(x(r))) an r-round
monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)) with respect to the com-
posite function f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0) if

πu(0)(x(0)) → · · · → πu(i)(x(i)) → · · · → πu(r)(x(r)).

If there is at least one monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)), we
write πu(0)(x(0)) � πu(r)(x(r)). Otherwise, πu(0)(x(0)) � πu(r)(x(r)).

Note that a monomial trail is always specified with respect to a given com-
position sequence f (r−1) ◦f (r−2) ◦ · · · ◦f (0). When this sequence is obvious from
the context, we will omit it to keep the presentation concise. Also, we always
assume in default that

x(r) = f (r−1)(x(r−1)) = f (r−1) ◦ f (r−2)(x(r−2)) = · · · = f (r−1) ◦ · · · ◦ f (0)(x(0)).
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Example 2. Let z = (z0, z1) = f (1)(y0, y1) = (y0y1, y0 ⊕ y1), y = (y0, y1) =
f (0)(x0, x1, x2) = (x0 ⊕ x1 ⊕ x2, x0x1 ⊕ x0 ⊕ x2) and f = f (1) ◦ f (0).

Consider the monomial (x0, x1, x2)(1,0,0) = x0. Since the ANF of f (0) is
available, we can compute all monomials of y, i.e.,

(y0, y1)
(0,0) = 1, (y0, y1)

(1,0) = y0 = x0 ⊕ x1 ⊕ x2, (y0, y1)
(0,1) = y1 = x0x1 ⊕ x0 ⊕ x2,

(y0, y1)
(1,1) = y0y1 = x0x1x2 ⊕ x0x1 ⊕ x1x2 ⊕ x0 ⊕ x2.

Then
x0 → y0, x0 → y1, x0 → y0y1

are all the three monomial trails of f (0) connecting x0 and monomials of y.
Similarly, we can compute all the monomials of z as follows,

(z0, z1)(0,0) = 1, (z0, z1)(1,0) = z0 = y0y1, (z0, z1)(0,1) = z1 = y0 ⊕ y1,

(z0, z1)(1,1) = z0z1 = 0.

There are three monomial trails of f connecting x0 and monomials of z:

x0 → y0 → z1, x0 → y1 → z1, x0 → y0y1 → z0.

Lemma 1. πu(0)(x(0)) � πu(r)(x(r)) if πu(0)(x(0)) → πu(r)(x(r)), and thus
πu(0)(x(0)) � πu(r)(x(r)) implies πu(0)(x(0)) � πu(r)(x(r)).

Proof. We prove it by induction on r. Assuming this lemma holds for r < s, we
are going to show that it also holds for r = s. First, we expand πu(s)(x(s)) on
x(s−1) as

πu(s)(x(s)) =
⊕

π
u (s−1) (x(s−1))→π

u (s) (x(s))

πu(s−1)(x(s−1)).

Since πu(0)(x(0)) → πu(s)(x(s)), there is at least one πu(s−1)(x(s−1)) contained by
πu(s)(x(s)) satisfying πu(0)(x(0)) → πu(s−1)(x(s−1)). According to our assump-
tion, πu(0)(x(0)) � πu(s−1)(x(s−1)), then πu(0)(x(0)) � πu(s)(x(s)). ��

According to Lemma 1, πu(0)(x(0)) → πu(r)(x(r)) is sufficient for
πu(0)(x(0)) � πu(r)(x(r)). However, the conversion is not true in general. Con-
sidering Example 2, although x0 � z1, we have x0 � z1 since

z1 = y0 ⊕ y1 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1 ⊕ x0 ⊕ x2 = x0x1 ⊕ x1.

The reason is that two x0’s (underlined in the above equation) cancel each other.
In the following, we will demonstrate that whether πu(0)(x(0)) → πu(r)(x(r)) is
determined by the number of monomial trails connecting them rather than the
existence of the monomial trail, which raises the definition below.

Definition 2 (Monomial Hull). For f with a specific composition sequence,
the monomial hull of πu(0)(x(0)) and πu(r)(x(r)), denoted by πu(0)(x(0)) ��

πu(r)(x(r)), is the set of all monomial trails connecting them. The number of
trails in the monomial hull is called the size of the hull and is denoted by
|πu(0)(x(0)) �� πu(r)(x(r))|.
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Example 3. Consider Example 2, the monomial hull of x0 and z1 is the set

x0 �� z1 = {x0 → y0 → z1, x0 → y1 → z1} .

Thus the size of x0 �� z1 is 2. Furthermore, since x0 � z0z1, x0 �� z0z1 = ∅ and
|x0 �� z0z1| = 0.

For i ≥ 1, if πu(0)(x(0)) � πu(i)(x(i)), |πu(0)(x(0)) �� πu(i)(x(i))| can be
calculated recursively as follows,

Lemma 2. For i ≥ 1, if πu(0)(x(0)) � πu(i)(x(i)),

|πu (0)(x(0)) �� πu (i)(x(i))| =

⎧
⎪⎪⎨

⎪⎪⎩

1, i = 1,
∑

π
u (i−1) (x

(i−1))

→π
u (i) (x

(i))

|πu (0)(x(0)) �� πu (i−1)(x(i−1))|, i ≥ 2.

The time has come to address the monomial prediction problem we mentioned
at the beginning of this section.

Proposition 1. πu(0)(x(0)) → πu(r)(x(r)) if and only if |πu(0)(x(0)) ��

πu(r)(x(r))| is odd.

Proof. We prove it by induction on r. Assuming this proposition holds for r < s,
we are going to show that it also holds for r = s. First, we expand πu(s)(x(s))
on x(s−1) as

πu(s)(x(s)) =
⊕

π
u (s−1) (x(s−1))→π

u (s) (x(s))

πu(s−1)(x(s−1)).

Consequently, we have

|πu(0)(x(0)) �� πu(s)(x(s))| =
∑

π
u (s−1) (x

(s−1))

→π
u (s) (x

(s))

|πu(0)(x(0)) �� πu(s−1)(x(s−1))|.

Moreover, πu(0)(x(0)) → πu(s)(x(s)) if and only if there are odd number of
πu(s−1)(x(s−1)) contained by πu(s)(x(s)) such that πu(0)(x(0)) → πu(s−1)(x(s−1)),
or equivalently, according to the induction hypothesis we made at the begin-
ning, there are odd number of πu(s−1)(x(s−1)) contained by πu(s)(x(s)) such that
|πu(0)(x(0)) �� πu(s−1)(x(s−1))| is odd. Finally, Proposition 1 is true for r = s
since |πu(0)(x(0)) �� πu(s)(x(s))| is odd if and only if

∑

π
u (s−1) (x(s−1))→π

u (s) (x(s))

|πu(0)(x(0)) �� πu(s−1)(x(s−1))| is odd.

��
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3.1 Derived Function

When applying the monomial prediction technique to cryptanalysis, we may
consider functions that are derived from a vectorial Boolean function f by fixing
some variables of f to known constants. In this case, the derived function has
fewer variables than the original function f . Also, the remaining variables are
not treated equally. Some of them are public (IV bits, plaintext bits, tweak
bits, etc.), while some of them are secret (key bits). To highlight the semantic
difference of the variables and distinguish between the variables fixed to 0 and
those fixed to 1, we introduce the notion of variable masks. Together with the
original function f , these masks completely determine the derived function, and
tells us which variables of the derived function are public and which are secret.

Remark. The only purpose of introducing the concept of the derived function
is to have a unified approach to specify the functions to which our techniques
are applied. It has no theoretical significance and the readers who do not care
about the details of the attacks on concrete targets can safely skip this part to
avoid being overloaded by unnecessary notations. Actually, skipping this part is
encouraged and the readers can look back when necessary.

Variable Masks and Derived Function. Let Γ 0, Γ 1, Γ p , and Γ s ∈ F
n
2

be constant vectors such that {0 ≤ i < n : Γ 0
i = 1}, {0 ≤ i < n : Γ 1

i = 1},
{0 ≤ i < n : Γ p

i = 1}, and {0 ≤ i < n : Γ s
i = 1} form a partition of {0, · · · , n−1},

which are called variable masks. For a vectorial Boolean function f(x) from F
n
2

to F
m
2 , we can derive a new function fd from f with the variable masks by

setting certain variables of f to constants according to the following rule for
i ∈ {0, 1, · · · , n − 1}: {

xi ← 0, if Γ 0
i = 1,

xi ← 1, if Γ 1
i = 1.

The remaining xi’s are still treated as variables but with different access per-
missions: xi’s with Γ p

i = 1 are public variables and can be manipulated by the
attackers, while xi’s with Γ s

i = 1 are secret variables. Although in practice secret
variables typically represent secret key bits and are actually fixed to unknown
constants, in our framework we still regard them as symbolic objects rather than
constants. The concept of the derived function should be best understood by a
concrete example.

Example 4. For y = f(x0, x1, x2, x3, k0, k1, k2, k3) where x0, x1, x2, x3 are four
public input bits and k0, k1, k2, k3 are four secret input bits. If we fix x0 to 0 and
x1 to 1, the resulting function mapping (0, 1, x2, x3, k0, k1, k2, k3) to

f(0, 1, x2, x3, k0, k1, k2, k3)

is a derived function from f with the following variable masks

Γ 0 = (1, 0, 0, 0, 0, 0, 0, 0), Γ 1 = (0, 1, 0, 0, 0, 0, 0, 0),
Γ p = (0, 0, 1, 1, 0, 0, 0, 0), Γ s = (0, 0, 0, 0, 1, 1, 1, 1).



An Algebraic Formulation of the Division Property 455

In the following sections, we typically first give a function f which can be
directly obtained from the description of the targeted cipher, and then we specify
the associated variable masks. Finally, the techniques presented in this work are
applied to the corresponding derived function.

In the case of fd, we should note xv ≡ 1 for any v � Γ 1, then xu⊕v =
xu · xv = xu for any v � Γ 1 and the Proposition 1 can be converted to the
following proposition.

Proposition 2. Let fd be the derived function of f with Γ 0,Γ 1,Γ p,Γ s. For
x(r) = fd(x(0)) and u(0) � Γ p ⊕ Γ s, πu(0)(x(0)) → πu(r)(x(r)) if and only if

∑

v�Γ 1

|πu(0)⊕v (x
(0)) �� πu(r)(x(r))| mod 2 = 1.

4 Application I: Degree Evaluation

Since the algebraic degree of a symmetric-key primitive significantly affects
its security against cryptanalytic techniques such as algebraic attacks [20],
higher-order differential attacks [15,17], interpolation attacks [14], and integral
attacks [6,16], methods and tools for degree evaluation have been an impor-
tant topic in the community all along. To put our approach into perspective,
we highlight several important works in this line of research. At EUROCRYPT
2002, Canteaut and Videau developed a method for upper bounding the algebraic
degree of composite functions [5], which was improved by Boura et al. [3] at FSE
2011. In [1], the authors identified a simple closed formula bounding the num-
ber of rounds necessary to achieve full degree for the block ciphers with secret
components. At CRYPTO 2017, Liu presented a general framework known as
numeric mapping, which is exclusively used for estimating the algebraic degrees
of the cryptosystems based on the nonlinear feedback shift register (NFSR) [18].

Another approach for the degree evaluation is based on the division property.
The accuracy of this approach is determined by the accuracy of the “propagation
rules” of the underlying detection algorithms for division properties. When the
detection algorithm is perfect (The meaning of perfect will be more concrete in
Sect. 6), its estimation is exact. In the following, we show that the monomial
prediction technique achieves this exactness.

4.1 Compute Exact Algebraic Degree of a Boolean Function

The algebraic degree of a Boolean function f is defined as follows,

deg(f) = max
π

u (0) (x(0))→f
wt(u(0)). (1)

To determine the algebraic degree of f , we only need to prove the existence of a
monomial πu(0)(x(0)) such that πu ′(x(0)) � f for any u′ with wt(u′) > d, which
can be done in two steps:
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1. Find a monomial πu(0)(x(0)) � f with wt(u) = d and prove πu ′(x(0)) � f
for any wt(u′) > d.

2. Compute |πu(0)(x(0)) �� f | to confirm the presence of πu(0)(x(0)), if the value
is odd, then deg(f) = d, else, we need to repeat the process until we find a
desired monomial of f .

The Mixed Integer Linear Programming (MILP) approach has been exten-
sively used to probe the structure of Boolean functions in previous works such
as [9,22,26,28–31]. In this work, we also employ the MILP-based approach to
search for the monomials of f . In this MILP model, the objective function of the
model is to maximize wt(u(0)) according to Eq. (1). One solution of the MILP
model is a sequence of (u(0),u(1), . . . ,u(r))1, such that

πu(0)(x(0)) → πu(1)(x(1)) → · · · → πu(r)(x(r)).

To confirm the presence of πu(0)(x(0)) as in the above Step 2, we use the
PoolSearchMode of Gurobi to compute |πu(0)(x(0)) �� f |.
PoolSearchMode of Gurobi. To judge whether the size of a monomial hull is an
odd number, we frequently need to find all solutions of a MILP model. Following
Hao et al.’s work at EUROCRYPT 2020 [9], we also employ the PoolSearchMode
of Gurobi2 to perform solution enumerations. The PoolSearchMode is a mode
implemented by Gurobi to systematically search for multiple solutions. Let M
be a MILP model, we use

M.PoolSearchMode ← 1

to signal that the PoolSearchMode is turned on. All the source codes are available
at https://github.com/hukaisdu/MonomialPrediction.

4.2 Application to Trivium

Specification of Trivium. Trivium [4] is an NFSR-based stream cipher
with a 288-bit internal state x = (x0, x1, . . . , x287) divided into three registers
(denoted as Reg 0, Reg 1 and Reg 2 in Fig. 1). The 80-bit secret key K is loaded
to the first register (Reg 0), and the 80-bit initialization vector IV is loaded to
the second register. The other bits of the three registers are set to 0 except the
last three bits of the third register. Namely, we have

(x0, x1, . . . , x92) ← (K[0],K[1], . . . ,K[79], 0, . . . , 0),
(x93, x94, . . . , x176) ← (IV [0], IV [2], . . . , IV [79], 0, . . . , 0),

(x177, x178, . . . , x287) ← (0, 0, . . . , 0, 1, 1, 1).

1 In this section, we focus on the Boolean function, so u(r) is always a unit vector.
2 https://www.gurobi.com.

https://github.com/hukaisdu/MonomialPrediction
https://www.gurobi.com
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Let h : F
5
2 → F2 be a Boolean function such that h(α0, α1, α2, α3, α4) = α0 ⊕

α1α2 ⊕ α3 ⊕ α4. The pseudo code of the update function is given by

t1 ← h(x65, x90, x91, x92, x170) = x65 ⊕ x90x91 ⊕ x92 ⊕ x170,

t2 ← h(x161, x174, x175, x176, x263) = x161 ⊕174 x175 ⊕ x176 ⊕ x263,

t3 ← h(x242, x285, x286, x287, x68) = x242 ⊕ x285x286 ⊕ x287 ⊕ x68.

The state of the next clock is computed as

(x0, x1, . . . , x92) ← (t3, x0, . . . , x91),
(x93, x94, . . . , x176) ← (t1, x93, . . . , x175),

(x177, x178, . . . , x287) ← (t2, x177, . . . , x286).

During the initialization, the state is updated 1152 times without producing any
output. After the initialization, one bit key is produced per application of the
update function by the key stream generation function g : F

288
2 → F2 as

z ← g(x0, x1, . . . , x287) = x65 ⊕ x92 ⊕ x161 ⊕ x176 ⊕ x242 ⊕ x287.

MILP Model for a Monomial Trail of Trivium. Let x(0) denote the initial
state of Trivium and x(i+1) denote the state after the i-th update function f (i).
The output bit after r-round Trivium3 zr is a Boolean function of x(0) which is
denoted by zr = f(x(0)). Naturally, f is the composition of the update functions
and the key stream generation function as

zr = f(x(0)) = g ◦ f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x(0))

= g(x(r)) = x
(r)
65 ⊕ x

(r)
92 ⊕ x

(r)
161 ⊕ x

(r)
176 ⊕ x

(r)
242 ⊕ x

(r)
287. (2)

To construct the MILP model for the monomial trail of Trivium, we should
study the ANFs of f (i) and g and model the monomial trail locally for them.

Fig. 1. The illustration of f (i). In the first phase, if j /∈ {92, 176, 287}, y
(i)
j = x

(i)
j . In

the second phase, x
(i+1)

(j+1) mod 288 = y
(i)
j .

3 When saying (reduced) r-round of Trivium, we mean the update function f is called
r times and then the key stream generation function g is finally performed.
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According to Fig. 1, f (i) can be represented by parallel bit-permutations and
three H functions such as

x
(i+1)
j+1 mod 288 = x

(i)
j , if j /∈ {65,90,91,92,170,161,174,175,176,263,242,285,286,287,68}, (3)

(x(i+1)
66 , x

(i+1)
91 , x

(i+1)
92 , x

(i+1)
93 , x

(i+1)
171 ) = H(x(i)

65 , x
(i)
90 , x

(i)
91 , x

(i)
92 , x

(i)
170) (4)

(x(i+1)
162 , x

(i+1)
175 , x

(i+1)
176 , x

(i+1)
177 , x

(i+1)
264 = H(x(i)

161, x
(i)
174, x

(i)
175, x

(i)
176, x

(i)
263) (5)

(x(i+1)
243 , x

(i+1)
286 , x

(i+1)
287 , x

(i+1)
0 , x

(i+1)
69 ) = H(x(i)

242, x
(i)
285, x

(i)
286, x

(i)
287, x

(i)
68 ) (6)

where H : F
5
2 → F

5
2 defined as follows,

(β0, β1, β2, β3, β4) = H(α0, α1, α2, α3, α4) = (α0, α1, α2, α0⊕α1α2⊕α3⊕α4, α4).

H can be decomposed into a sequence of smaller functions such as COPY, AND
and XOR, which is shown in Fig. 2.

Fig. 2. The decomposition of H function by COPY, AND and XOR.

MILP Model for the Monomial Trail of f (i). The operations in Eq. (3) are simple
bit-permutations which can be handled by directly changing the positions of
the variables, thus no inequalities are required for this condition. To model H
function, we generate inequalities to model the monomial trials of COPY, AND and
XOR. For COPY, consider x

COPY−−−→ (x, x) where x is a bit variable, we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0(= 1) → x0 · x0(= 1), x0(= 1) � x0 · x1(= x)
x0(= 1) � x1 · x0(= x), x0(= 1) � x1 · x1(= x)
x1(= x) � x0 · x0(= 1), x1(= x) → x0 · x1(= x)
x1(= x) → x1 · x0(= x), x1(= x) → x1 · x1(= x)

.

Then there are four valid monomial trails of COPY, i.e., (0, 0, 0), (1, 0, 1), (1, 1,
0) and (1, 1, 1). Similarly, AND has two monomial trials (0, 0, 0) and (1, 1, 1),
while XOR has three monomial trials (0, 0, 0), (1, 0, 1) and (0, 1, 1).

To generate inequalities for monomial trails of each function, we follow Sun
et al.’s approach in [23] to derive linear inequalities by Sage4 and then use the
4 https://www.sagemath.org.

https://www.sagemath.org
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greedy algorithm to simplify them. At last, a set of 15 inequalities L with 5
auxiliary variables (given in Appendix A of [11]) is sufficient to describe the H
function. Thus we need 45 linear inequalities and 15 auxiliary variables to model
f (i). In Appendix B (Ref. [11]), we provide an alternative method to describe
the monomial trails of H with less inequalities, where H is treated as a whole.
Note that Proposition 1 implies that the decomposition with different granularity
levels of the target Boolean function will not affect the parity of the number of
the monomial trails of the Boolean function.

MILP Model for the Monomial trail of g. Since g is a simple Boolean function
that contains 6 monomials (Eq. (2)), a set of simple constraints as

{
u
(r)
65 + u

(r)
92 + u

(r)
161 + u

(r)
176 + u

(r)
242 + u

(r)
287 = 1,

u
(r)
j = 0, if j /∈ {65, 92, 161, 176, 242, 287}.

(7)

will complete our modeling.
In Algorithm 1, we demonstrate how to generate the MILP model for Triv-

ium, where L represents the inequalities for the model of H. Note in some cases
we may want to manipulate the first (e.g., line 16 of Algorithm 2) and last
terms (e.g., line 11 of Algorithm 3) of the monomial trail. Then the MILP model
in Algorithm 1 excludes the model of g, instead the variables representing the

Algorithm 1: (M,u(0),u(r)) = GenerateTriviumModel(r)
Input: r, the targeted number of rounds of Trivium
Output: The MILP model M for r-round Trivium and the MILP variables

representing the initial state u(0)

1 Declare an empty MILP model M;
2 M.var ← u

(0)
0 , u

(0)
1 , . . . , u

(0)
287;

3 M.var ← u0, u1, . . . , u287;
4 u ← u(0);
5 for i = 0; i < r; i ← i + 1 do
6 M.var ← v65, v90, v91, v92, v170, w0, w1, w2, w4, t;
7 M.con ← L(u65, u90, u91, u92, u170, v65, v90, v91, v92, v170, w0, w1, w2, w4, t);
8 ui ← vi, i ∈ {65, 90, 91, 92, 170};
9 M.var ← v161, v174, v175, v176, v263, w0, w1, w2, w4, t;

10 M.con ←
L(u161, u174, u175, u176, u263, v161, v174, v175, v176, v263, w0, w1, w2, w4, t);

11 ui ← vi, i ∈ {161, 174, 175, 176, 263};
12 M.var ← v242, v285, v286, v287, v68, w0, w1, w2, w4, t;
13 M.con ←

L(u242, u285, u286, u287, u68, v242, v285, v286, v287, v68, w0, w1, w2, w4, t);
14 ui ← vi, i ∈ {242, 285, 286, 287, 68};
15 ui+1 mod 288 ← ui;

16 u(r) ← u;
17 return M, u(0), u(r);
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first monomial πu(0)(x(0)) and the last monomial πu(r)(x(r)) are also returned
in order for later usage.

Degree of Trivium. The output bit zr = f(x(0)) after r-round Trivium is
a Boolean function of the initial state x(0). If we regard the IV bits as public
variables and the key bits as secret variables, the initial setup of the state implies
the following derived function with four variable masks Γ 0,Γ 1,Γ p,Γ s:

Γ 0
i =

{
1, if 80 ≤ i ≤ 92 or 173 ≤ i ≤ 284,
0, otherwise.

Γ 1
i =

{
1, if 285 ≤ i ≤ 287,
0, otherwise.

Γ p
i =

{
1, if 93 ≤ i ≤ 172,
0, otherwise.

Γ s
i =

{
1, if 0 ≤ i ≤ 79,
0, otherwise.

In accordance, the derived function and its variable masks can be used to
modify the algebraic degree expression given in Eq. (1), therefore the algebraic
degree of zr can be computed as

deg(zr) = max
u(0)�Γ p⊕Γ s

π
u (0) (x

(0))→zr

{ ∑

Γ p
i =1

u
(0)
i

}
= max

u(0)�Γ p⊕Γ s

π
u (0) (x

(0))→zr

{ ∑

93≤i≤172

u
(0)
i

}
.

By calling Algorithm 1, Algorithm 2 finds the monomial with the potential
maximum degree satisfying πu(0)(x(0)) � zr. Thereafter, |πu(0)(x(0)) �� zr| is
computed under the PoolSearchMode to determine if πu(0)(x(0)) → zr holds.
Once πu(0)(x(0)) → zr is confirmed, we derive the exact algebraic degree of
r-round Trivium.

Our Results. With the help of the monomial prediction we are able to evaluate
the exact algebraic degree of Trivium up to 834 rounds and the results are listed
in Table 5 in Appendix E (Ref. [11]). Interestingly, for the first time, we notice
a counter-intuitive phenomenon that the algebraic degree of Trivium is not
monotonously increasing with rounds. For example, the degrees of 806-, 807- and
808-round Trivium are 69, 71, 70, respectively. It implies that some monomials
with the maximum degree are canceled in the subsequent round. Such degree
drops are highlighted in Table 5.

A comparison of monomial prediction and the numeric mapping technique
for upper bounding the degree of NFSR ciphers [18] is illustrated in Fig. 3. As
the number of iterated rounds gets larger, the gap between the upper bound
and the exact degree becomes more significant. For the degree of the 793-round
Trivium, the numeric mapping technique gives an upper bound of 79, while the
monomial prediction method tells us that the exact degree is only 67.
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Algorithm 2: deg = SearchDegree(r)
Input: r, the targeted number of rounds of Trivium
Output: The degree of r-round Trivium

/* Search For πu (0)(x(0)) � f */
1 (M0, u

(0), u(r)) ← GenerateTriviumModel(r)

2 for i = 0; i < 288; i ← i + 1 do
3 if Γ 0

i is 1 then
4 u

(0)
i ← 0

5 for i = 0; i < 288; i ← i + 1 do
6 if i /∈ {65, 92, 161, 176, 242, 287} then
7 M0.con ← u

(r)
i = 0;

8 M0.con ← u
(r)
65 + u

(r)
92 + u

(r)
161 + u

(r)
176 + u

(r)
242 + u

(r)
287 = 1;

9 M0.obj ← max(u(0)
93 + u

(0)
94 + · · · + u

(0)
172);

10 while true do
11 M0.optimize();
12 if M0.status is OPTIMAL then

/* Compute |πu (0)(x(0)) �� f | */
13 (M1, u

′(0), u′(r)) ← GenerateTriviumModel(r)
14 M1.SolutionPoolMode ← 1;

15 for i = 0; i < 288; i ← i + 1 do
16 u

′(0)
i ← u

(0)
i .val;

17 for i = 0; i < 288; i ← i + 1 do
18 if i /∈ {65, 92, 161, 176, 242, 287} then
19 M1.con ← u

′(r)
i = 0;

20 M1.con ← u
′(r)
65 + u

′(r)
92 + u

′(r)
161 + u

′(r)
176 + u

′(r)
242 + u

′(r)
287 = 1;

21 M1.optimize();
22 if M1.status is OPTIMAL then
23 if M1.solnum is odd then
24 return M0.objval;
25 else

/* Note the values of the last 3 bits are all 1 */
26 M0.con ← remove(u′(0)

0 , u
′(0)
1 , . . . , u

′(0)
284 )

27 M0.update();
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Fig. 3. The exact degree derived by monomial prediction and the upper bound derived
by numeric mapping [18].

We also perform the degree evaluations with the two-subset bit-based division
property [27] to estimate the upper bound of the degree of r-round Trivium.
The results show that the division property is quite precise. From 1- to 834-
round Trivium, there are only 14 cases where the division property fails to hit
the exact degrees, which are listed in Table 2.

Table 2. The gaps among the exact degree, the upper bound obtained by the two-
subset bit-based division property and the numeric mapping for several special cases of
Trivium up to 834-round. For the other cases, the result obtained by the two-subset
bit-based division property equals to the exact degree.

#Round 508 509 514 515 719 770 773 783 789 806 810 816 831 833

Exact degree 13 13 15 15 51 59 59 62 63 69 71 72 78 78

Division property 14 14 16 16 52 60 60 63 64 70 72 73 79 79

Numeric mapping 16 16 16 17 55 72 72 76 76 >80 >80 >80 >80 >80

5 Application II: Cube Attacks

The cube attack was proposed by Dinur and Shamir [7] at EUROCRYPT 2009.
Let f(x) be a Boolean function from F

n
2 to F2, and u ∈ F

n
2 be a constant vector.

Then f(x) can be represented uniquely as

f(x) = xup(x) + q(x),

where each term of q(x) is not divisible by xu . Note that in our notations, the set
Iu = {0 ≤ i ≤ n−1 : ui = 1} ⊆ {0, · · · , n−1} and the monomial xu correspond
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to the cube indices and cube term that are commonly used in the literature of
cube attacks5. If we compute the sum of f over the cube Cu = {x ∈ F

n
2 : x � u},

we have ⊕
x∈Cu

f(x) =
⊕

x∈Cu
(xup(x) + q(x)) = p(x),

where p(x) is called the superpoly of the cube Cu , and p(x) only involves vari-
ables xj with j ∈ Iū = {0 ≤ i ≤ n − 1 : ui = 0}.

The superpoly recovery plays a critical role in the cube attack. The attacker
recovers the superpoly in the offline phase, and then in the online phase, he/she
queries the encryption oracle with the cube, and finally gets the value of the
superpoly. If the superpoly is a balanced Boolean function, a bit information of
the secret key can be obtained. The remaining key bits can be recovered by the
exhaustive search.

At the early stage in the applications of cube attacks, the superpoly recovery is
achieved experimentally by summing the outputs over certain “good” cubes, and
therefore the sizes of cubes are largely confined in a practical range. Moreover,
superpolies derived from small cubes have to be extremely simple (typically lin-
ear or quadratic functions [7,19]) in order to be recovered in a probabilistic way.

In [26], the division property was first introduced to enhance cube attacks,
which allows us to identify the key bits that do not present in the superpoly.
This approach is deterministic and can be used to analyze cubes whose sizes
are beyond practical reach. By setting the key bits that are not involved in the
superpoly to arbitrary constants and varying the remaining l key bits, one can
obtain the truth table of the superpoly for a subsequent key-recovery attack with
complexity 2|I|+l. At CRYPTO 2018, Wang et al. proposed the flag technique
and term enumeration technique to recover directly all the monomials of the
superpoly based on the two-subset bit-based division property, which further
lowers the complexity of the superpoly recovery and thus attacks of more rounds
on several targets are mounted [29].

However, in [26,29], it was assumed that every identified secret key variable
or the monomial must be involved in the superpoly. If such an assumption does
not hold, the superpoly can be much simpler than estimated, or even falls into
the extreme case: p(x) ≡ 0. In fact it has been reported in [8,9,30,32] that
some of previous key-recovery attacks are actually distinguishers. To get rid of
this assumption, Wang et al. for the first time proposed a systematic method
based on the three-subset bit-based division property to recover the exact super-
poly [30]. In [9], the method was refined as the three-subset bit-based division
property without unknown subsets and was modeled under the PoolSearchMode
of Gurobi. As a result, they recovered the exact superpolies for 840-, 841- and
842-round Trivium.

5.1 Apply Monomial Prediction to Superpoly Recovery

It is natural to apply the monomial prediction to the recovery of the superpoly.
For f : F

n
2 → F2, we define a constant vector u ∈ F

n
2 and let the corresponding

5 When there is no ambiguity, we denote the cube indices as I and its size as |I|.
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cube term be xu . To recover the superpoly which is a polynomial of xi’s with
ūi = 1, we find all the possible monomials like xu⊕w = xu · xw where w � ū
satisfying xu⊕w → f . Then the superpoly of xu is

p(x) =
⊕

w�ū
xu ⊕w →f

xw =
( ⊕

w�ū
xu ⊕w →f

xu⊕w
)
/xu .

To find all xu⊕w → f for w � ū, we could take the PoolSearchMode of Gurobi
solver to find all solutions satisfying xu⊕w � f . Next, we store all the xu⊕w into
a hash table which are indexed by (u,w), the size of each possible xu⊕w

�� f
for w � ū can be counted naturally.

Speedup and Memory Reduction: A Divide-and-Conquer Strategy. In
this paper, we only study the composite function f , where

f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0).

According to Lemma 2, if πu(0)(x(0)) � f , then for 0 < i < r,

|πu (0)(x(0)) �� f | ≡
∑

π
u (r−i) (x

(r−i))→f

|πu (0)(x(0)) �� πu (r−i)(x(r−i))| (mod 2). (8)

Generally speaking, computing |πu(0)(x(0)) �� πu(r−i)(x(r−i))| one by one is
much easier than computing |πu(0)(x(0)) �� f | when i is significantly smaller
than r. In this paper, we always expand f firstly and then obtain the speedups
and memory reductions by the divide-and-conquer strategy.

5.2 Application to Trivium

Let zr = f(x(0)) be the output of the r-round Trivium with x(0) ∈ F
288
2 . When

the cube attack is applied to Trivium, only the cube variables indexed by the
cube indices I and the secret key bits are regarded as symbolic variables in our
analysis, and all other input variables are fixed to constants. Therefore, we are
actually analyzing the derived function of f with the variable masks Γ 0, Γ 1,
Γ p, and Γ s given as follows:

Γ 0
i =

{
1, if xi ≡ 0,
0, otherwise.

Γ 1
i =

{
1, if xi ≡ 1,
0, otherwise.

Γ p
i =

{
1, if i ∈ I,

0, otherwise.
Γ s

i =

{
1, if 0 ≤ i ≤ 79,
0, otherwise.

(9)

To recover the superpoly corresponding to the cube indices I = {0 ≤ i ≤ 287 :
Γ p

i = 1}, we need to find all πΓ p⊕w (x(0)) → f for all w � Γ s.
In practice, we take the divide-and-conquer strategy based on Eq. (8) to keep

the consumption of computational resources under control. Let the internal state
of the i-th round Trivium be x(i). We first express zr as a polynomial of x(r−r0)

for some r0. According to Proposition 3, when r0 is not very large, the expression
of zr in x(r−r0) can be got by the monomial prediction technique 6.
6 According to our experiments, a reasonable range of r0 is from 200 to 300.
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Proposition 3. Let zr = f(x(0)), and

Ur−r0 = {u(r−r0) : |πu(r−r0)(x(r−r0)) �� f | mod 2 = 1 }, then

f =
⊕

u(r−r0)∈Ur−r0

πu(r−r0)(x(r−r0)).

Based on Proposition 3, an algorithm to express r-round Trivium in x(r−r0) is
presented in Algorithm 4 in Appendix D (Ref. [11]).

Remark. We can also get the expression by symbolic computation. We choose the
monomial prediction technique because most variables and constraints needed
to complete this step are already presented in our model, which significantly
reduces the burden of extra coding efforts.

Algorithm 3 shows how we recover the superpoly of a certain cube based
on the divide-and-conquer strategy. The divide-and-conquer strategy leads to
remarkable speedups and memory reductions in practice, which makes it possible

Algorithm 3: Uk = ComputeSuperpoly(r,Γ 0,Γ 1,Γ p,Γ s)
Input: The targeted number of rounds r and the four variables masks for fd

Output: A set Uk for the monomials in superpoly like πΓ p⊕w (x(0)) for w � Γ s

1 Allocate a hash table T ;
2 Ur−r0 ← ExpandTrivium(r, r0); // Practically, we set r0 = 200
3 for each u′(r−r0) ∈ Ur−r0 do
4 (M, u(0), u(r−r0)) ← GenerateModel(r − r0);
5 M.PoolSearchMode ← 1;
6 for i = 0; i < 288; i ← i + 1 do
7 if Γ 0

i is 1 then
8 u

(0)
i ← 0;

9 if Γ p
i is 1 then

10 u
(0)
i ← 1;

11 u(r−r0) ← u′(r−r0);
12 M.optimize();
13 if M.status is OPTIMAL then

/* Store all the solutions in hash table and count */
14 for i = 0; i < M.solnum; i ← i + 1 do
15 M.SolutionNumber ← i;
16 T [(u(0)

0 , u
(0)
1 , . . . , u

(0)
79 )] ← T [(u(0)

0 , u
(0)
1 , . . . , u

(0)
79 )] + 1;

17 for i = 0; i < H.linenumber; i ← i + 1 do
18 if T [i] mod 2 is 1 then
19 Uk ← Uk ∪ {i};

20 return Uk
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to test more cubes with limited resources. As a result, we identify some cubes
with smaller dimensions for Trivium, and thus improve upon several currently
known best attacks on Trivium. We list our experimental results with different
smaller-dimension cubes in Table 3 (Ref. [11]). To verify our program, we re-
conduct the experiments in [9] using the same cube indices for 840- and 841-
round Trivium and obtain the same superpolies.

Cube Attack on 840-Round Trivium. We find the superpolies pI1 , pI2 and
pI3 for three different cube indices I1, I2 and I3

7, whose dimensions are 75, 76,
and 76, respectively.

Taking the cube of dimension 75 as I1 = {0, 1, . . . , 69, 71, 73, 75, 77, 79} with

IV [70] = IV [72] = IV [74] = IV [76] = IV [78] = 0,

we recover a balanced superpoly for 840-round Trivium that has 41 terms and
of the algebraic degree 4. The independent monomial of the superpoly is labeled
by the red text.

pI1 =k79 ⊕ k77 ⊕ k78k77 ⊕ k76k75 ⊕ k76k63 ⊕ k75k74k63 ⊕ k73k63 ⊕ k72k63 ⊕ k71k63⊕
k72k71k63 ⊕ k71k70k63 ⊕ k70k69k63 ⊕ k63k61 ⊕ k63k60 ⊕ k61k60 ⊕ k63k59⊕
k63k59k58 ⊕ k61k59k58 ⊕ k63k57 ⊕ k63k57k56 ⊕ k52 ⊕ k50 ⊕ k63k50 ⊕ k63k49⊕
k63k46 ⊕ k63k45 ⊕ k63k44 ⊕ k63k33 ⊕ k61k33 ⊕ k63k32 ⊕ k63k31 ⊕ k63k26⊕
k71k63k12 ⊕ k70k69k63k12 ⊕ k63k59k12 ⊕ k63k58k12 ⊕ k63k57k12 ⊕ k63k58k57k12⊕
k63k50k12 ⊕ k63k44k12 ⊕ k63k26k12.

Taking the cube of dimension 76 as I2 = {0, 1, . . . , 71, 73, 75, 77, 79} with

IV [72] = IV [74] = IV [76] = IV [78] = 0,

we recover a balanced superpoly for 840-round Trivium that has 4 terms and
algebraic degree of 2, and give it as follows

pI2 = 1 ⊕ k64 ⊕ k63k62 ⊕ k37.

Taking the cube of dimension 76 as I3 = {0, 1, . . . , 69, 71, 72, 73, 75, 77, 79} with

IV [70] = IV [74] = IV [76] = IV [78] = 0,

we recover a balanced superpoly for 840-round Trivium that has 6 terms and
algebraic degree of 3 as below,

pI3 = 1 ⊕ k63 ⊕ k59 ⊕ k59k50 ⊕ k59k49k48 ⊕ k59k23.

Let CI = {x ∈ F
288
2 : x � Γ p}, where Γ p is set as Eq. (9). since I2 = I1 ∪ {70},

pI2 =
⊕

x∈CI2

f(x) =
⊕

x∈CI1 ,IV [70]=1

f(x) ⊕
⊕

x∈CI1 ,IV [70]=0

f(x),

7 For convenience, every element in the cube indices Ii, 0 ≤ i ≤ 11 in this subsection
is the index of IV , i.e. from 0 to 79.
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and
pI1 =

⊕

x∈CI1

f(x) =
⊕

x∈CI1 ,IV [70]=0

f(x),

then we can deduce that pI4 = pI1 ⊕ pI2 is the superpoly for the cube indices
I4 = {0, 1, . . . , 69, 71, 73, 75, 77, 79} with

IV [72] = IV [74] = IV [76] = IV [78] = 0, IV [70] = 1.

Similarly, we can deduce that pI5 = pI1 ⊕pI3 is the superpoly for the cube indices
I5 = {0, 1, . . . , 69, 71, 73, 75, 77, 79} with

IV [70] = IV [74] = IV [76] = IV [78] = 0, IV [72] = 1.

pI1 , pI4 and pI5 are balanced Boolean functions because there are monomials that
are independent of other monomials, respectively. Therefore, we can recover 3
bits of key information by using 3 × 275 ≈ 276.6 time complexity. The dominant
part of the whole key recovery attack is the exhaustive search after the recovery
of the 3-bit key information, which is 277 time complexity. So in total, the time
complexity for this 840-round Trivium is 276.6 + 277 ≈ 277.8.

Cube Attack on 841-Round Trivium. We find the superpolies pI6 and pI7

for the set of cube indices I6 and I7, whose dimensions are 76 and 77, respectively.
Taking the cube of dimension 76 as I6 = {0, 1, . . . , 69, 71, 73, 74, 75, 77, 79} with

IV [70] = IV [72] = IV [76] = IV [78] = 0,

we recover a balanced superpoly p6 for 841-round Trivium that has 3632 terms
and algebraic degree of 9. Since the number of terms in pI6 (and other super-
polies, e.g., pI7 , pI9and pI10 are too many, we provide them at https://github.
com/hukaisdu/MonomialPrediction/blob/master/superpoly.pdf.

Taking the cube of dimension 77 as I7 = {0, 1, . . . , 71, 73, 74, 75, 77, 79} with

IV [72] = IV [76] = IV [78] = 0,

we recover a balanced superpoly pI7 for 841-round Trivium that has 1400 terms
and algebraic degree of 8.

Similar with pI4 , pI8 = pI6 ⊕ pI7 is the superpoly for the cube indices I8 =
{0, 1, . . . , 69, 71, 73, 7475, 77, 79} with

IV [72] = IV [76] = IV [78] = 0, IV [70] = 1.

Hence, we can recover 2 bits of the key information with time complexity 277 =
2 × 276. The dominant part of the whole key recovery attack is the exhaustive
search after 2-bit key recovery, which is 278 time complexity. Therefore, totally
the time complexity of the attack on the 841-round Trivium is 278+277 ≈ 278.6.

Cube Attack on 842-Round Trivium. We find the superpolies pI9 and
pI10 for the set of cube indices I9 and I10, whose dimensions are 76 and 77,
respectively.

https://github.com/hukaisdu/MonomialPrediction/blob/master/superpoly.pdf
https://github.com/hukaisdu/MonomialPrediction/blob/master/superpoly.pdf
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Taking the cube of dimension 76 as I9 = {0, 1, . . . , 71, 73, 75, 77, 79} with

IV [72] = IV [74] = IV [76] = IV [78] = 0,

we recover a balanced superpoly for 842-round Trivium that has 5147 terms
and algebraic degree of 8.

Taking the cube of dimension 77 as I10 = {0, 1, . . . , 73, 75, 77, 79} with

IV [74] = IV [76] = IV [78] = 0,

we recover a balanced superpoly p10 for 842-round Trivium that has 4174 terms
and algebraic degree of 8.

Similar with pI4 , pI11 = pI9 ⊕ pI10 is the superpoly of the cube indices I11 =
{0, 1, . . . , 71, 73, 75, 77, 79} with IV [74] = IV [76] = IV [78] = 0, IV [72] = 1.
Therefore, we can recover 2 bits of key information by using 277 = 2 × 276

time complexities. The dominant part of the whole key recovery attack is the
exhaustive search after 2-bit key recovery, which is 278 time complexity. Totally,
the time complexity is 278 + 277 ≈ 278.6.

6 Division Property from an Algebraic Viewpoint

Since 2015, various division properties together with their “propagation rules” are
proposed in the literature, including the word-based division property [21,25],
the two-subset bit-based division property [27] (a.k.a. the conventional bit-based
division property), the three-subset bit-based division property [27], and the
recent three-subset bit-based division property without unknown subset [9,30].
Based on these properties with their associated propagation rules, detection
algorithms or tools can be built. In a narrow sense, these detection algorithms
are used to detect whether the sum of an output bit of a symmetric-key primitive
over a carefully constructed input data set is key-independent, that is, the sum
is a constant (0 or 1) for any key.

We now look at the detection algorithms for the key-independent property
from an algebraic viewpoint. Before we go any further, we would like to men-
tion that the first attempt to formulate the division property in an algebraic
way was made by Boura and Canteaut at CRYPTO 2016 [2]. However, they
only focused themselves on local components rather than on the global (keyed)
Boolean functions. Furthermore, Biryukov, Khovratovich, and Perrin proposed
the multiset-algebraic cryptanalysis which can also be seen as an algebraic treat-
ment of the division property [1]. But they focused more on the algebraic degree
only. Now, let us proceed to show the following conclusions:

• A perfect detection algorithm for the key-independent property can be con-
structed based on the monomial prediction (i.e., this algorithm never raises
false alarms and never misses).

• The word-based division property [25], two-subset bit-based division prop-
erty [27] and three-subset bit-based division property [27] together with their
propagation rules lead to no-false-alarm detection algorithms for the key-
independent property (however, these algorithms can miss).
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• The three-subset bit-based division property without unknown subset with
its propagation rules [9] forms a perfect detection algorithm for the key-
independent property, and an equivalence between it and the monomial pre-
diction technique can be established.

6.1 A Perfect Detection Algorithm Based on Monomial Prediction

For a composite function f : F
n
2 → F

m
2 ,x(r) = f(x(0)), we define a constant

vector u ∈ F
n
2 then we derive a structure of the input values X = {x ∈ F

n
2 : x �

u}. We want to detect whether

λ =
⊕

x∈X

πu(r)(f(x))

is independent of the variables xi’s with ūi = 1 denoted by ū-(in)dependent.
From the viewpoint of presence and absence of monomials, we have

λ =
{

ū-dependent, if πu⊕w (x(0)) → πu(r)(x(r)) for some 0 ≺ w � ū
ū-independent, if πu⊕w (x(0)) � πu(r)(x(r)) for all 0 ≺ w � ū

Hence, for f , the monomial prediction can detect whether λ is independent
of xi with ūi = 1 precisely in theory by computing |πu⊕w (x(0)) �� πu(r)(x(r))|
for every possible 0 ≺ w � ū.

Application to Derived Function. When applying the monomial prediction
to a practical cipher, some part of the public variables will be fixed as a constant
value. Let Γ 0,Γ 1,Γ p and Γ s be four constant vectors indicating the 0-constant
public variables, 1-constant public variables, the non-constant public variables
and the secret variables, respectively. Then we study the derived function fd of
f with Γ 0,Γ 1,Γ p,Γ s. In the integral attack, the chosen plaintext set is

X0 = {x ⊕ Γ 1 ∈ F
n
2 : x � Γ p}. (10)

And we are interested in whether

Λ =
⊕

x∈X0

πu(r)(fd(x)).

is independent of the secret variables xi with Γ s
i = 1, denoted by key-

(in)dependent. Similarly,

Λ =
{

key-dependent, if πΓ p⊕w (x(0)) → πu(r)(x(r)) for some 0 ≺ w � Γ s

key-independent, if πΓ p⊕w (x(0)) � πu(r)(x(r)) for all 0 ≺ w � Γ s

Hence, by computing |πΓ p⊕w (x(0)) �� πu(r)(x(r))| for every possible 0 ≺ w � Γ s,
we can predict whether Λ is or not key-independent.
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6.2 No-False-Alarm Detection Algorithms

Although the monomial prediction can predict the key-independent property
precisely, computing the size of a monomial hull is commonly difficult, especially
for a block cipher because the size of the monomial hull is usually huge. Further-
more, for attackers, integral property of any bits (it is not necessary to find all) is
useful in distinguishing attacks. Therefore, some trade-off between the efficiency
and precision is necessary and reasonable.

Following this idea of trade-off, we show a simple observation. Recall
Lemma 1, if πu (x(0)) � πu(r)(x(r)), we have πu (x(0)) � πu(r)(x(r)). Then
if we are able to make the claim that Λ is key-independent according to
πΓ p⊕w (x(0)) � πu(r)(x(r)) for any w � Γ s, the detection algorithm we employ
will never raise false alarms.

Definition 3 (No-False-Alarm Approximations). For two detection algo-
rithms A1 and A2, if A1 claims a certain property P holds, A2 must also claim
P holds, then we say A1 is a no-false-alarm approximation of A2.

Next we prove that the two-subset bit-based division property is a no-false-alarm
approximation of the monomial prediction.

Definition 4 (Two-Subset Bit-Based Division Property [27]). Let X be
a multiset whose elements are n-bit vectors and K be a set whose elements are
n-bit vectors. When the multiset X has the division property D1n

K
, it fulfills the

following conditions:

⊕

x∈X

πu (x) =
{

unknown, if there exist k ∈ K s.t. u � k,
0, otherwise.

Let fd be the derived function of f with Γ 0,Γ 1,Γ p,Γ s. Suppose the initially
chosen set (multiset) of the plaintext is X0 as defined in Eq. (10) and the multiset
of the ciphertext is Xr = {y : y = fd(x),x ∈ X0}. Then we first compute the
division property of X0 as D1n

K0
, where

K0 = {k ∈ F
n
2 : k � Γ p}. (11)

To compute the division property of Xr, i.e., D1n

Kr
, we will trace all the propaga-

tion from the vectors in K0. The propagation rules for the two-subset bit-based
division property are listed in [13,27,31].

Proposition 4. The two-subset bit-based division property is a no-false-alarm
approximation of the monomial prediction in detecting the balance property,
therefore the two-subset bit-based division property claims

⊕
x(r)∈Xr

πk(r)(x(r)) ≡
0 without false alarms.

Proof. Firstly, for any k(0) ∈ K0, πk(0)(x(0)) = πΓ p⊕w (x(0)) where w = Γ p ⊕
k(0) � Γ 1 ⊕ Γ s. Next, we consider the propagation from these vectors in K0.
Note all kinds of components of a cipher can be seen as an S-box: y = S(x),
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and the propagation of the S-box for the two-subset bit-based division property
has been concluded as a rule: Let D1n

Kin
and D1n

Kout
be the input and output two-

subset bit-based division property of S, respectively. If u ∈ Kin can propagates
to v ∈ Kout, there must be u′ � u satisfying πu ′(x) → yv . Since the monomial
trail requires xu → yv , then from the same u, the two-subset bit-based division
property can propagate to a larger range of vectors v.

Hence, if k(r) /∈ Kr, we have πk(x(0)) � πk(r)(x(r)) for all k ∈ K0. Therefore,
πk(r)(x(r)) does not contain any terms like πΓ p⊕w (x(0)) = πw (x(0))πΓ p(x(0)) for
w � Γ 1 ⊕ Γ s, naturally,

⊕

x(r)∈Xr

πk(r)(x(r)) =
⊕

x(0)∈X0

πk(r)(fd(x
(0))) ≡ 0.

��

According to the proof, it can be checked even if k(r) ∈ Kr, we cannot deter-
mine whether πk(0)(x(0)) � πk(r)(x(r)) (let alone πk(0)(x(0)) → πk(r)(x(r))),
while the two-subset division property claims that the parity is an unknown
value, i.e., the two-subset bit-based division property may miss some balance
properties.

Similarly, we can prove that the three-subset bit-based division property and
the word-based division property are also no-false-alarm approximation of the
monomial prediction. The proofs are provided in Appendix C (Ref. [11]).

6.3 The Three-Subset Bit-Based Division Property Without
Unknown Subset is Perfect

In [30], Wang et al. found that we can only focus on a part of the propagation
of the three-subset bit-based division property when processing a public-update
cipher. Later in [9], Hao et al. formulated this method to the three-subset bit-
based division property without unknown subset. In this subsection, we show it
is perfect in detecting the key-independent property.

Definition 5 (Three-SubsetBit-BasedDivisionPropertyw/oUnknown
Subset [9,30]). Let X and L be two multisets whose elements are n-bit vec-
tors. When the multiset X has the three-subset bit-based division property without
unknown subset T 1n

L
, it fulfills the following conditions:

⊕

x∈X

π�(x) =

{
1, if there are odd-number � in L,

0, if there are even-number � in L.

Let fd be the derived function of f with Γ 0,Γ 1,Γ p,Γ s8. Suppose the initial
chosen set (multiset) of the plaintext is X0 in Eq. (10), and the multiset of the
8 In [9], the definition of the three-subset division property without unknown subset

made no distinction between the public and secret variables, equivalently, Γ s = 0
and Γ p indicates all variables.
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ciphertext is Xr = {y : y = fd(x),x ∈ X0}. Then we first compute the division
property of X0 as T 1n

L0
[30], where

L0 = {� ∈ F
n
2 : Γ p � � � Γ p ⊕ Γ 1}. (12)

To compute the division property of Xr, i.e., T 1n

Lr
, we will trace all the propa-

gation from the vectors in L0. The propagation rules for three-subset bit-based
division property without unknown subset are listed in [9,30].

Proposition 5. The three-subset bit-based division property without unknown
subset predicts

⊕
x(r)∈Xr

π�(r)(x
(r)) for any �(r) perfectly.

Proof. Firstly, for any �(0) ∈ L0, π�(0)(x
(0)) = πΓ p⊕w (x(0)) where w = Γ p ⊕

�(0) � Γ 1. Then πΓ p⊕w (x(0)) = πΓ p(x(0)). Next, we consider the propagation
from these vectors in L0. Since all kinds of components of a cipher can be seen
as an S-box: y = S(x) and the propagation of the S-box for the three-subset bit-
based division property without unknown subset has been concluded as a rule
that guarantees xu → yv [30], we can trace the propagation and compute out
Lr. Therefore, for every vector �(r) ∈ Lr, there is a monomial trail connecting
π�(0)(x

(0)) and π�(r)(x
(r)) since xu → yv is also required by Definition 1. Let

�(r) appears N times in Lr, then

N =
∑

�∈L0

|π�(x(0)) �� π�(r)(x
(r))| =

∑

w�Γ 1

|πΓ p⊕w (x(0)) �� π�(r)(x
(r))|.

According to Proposition 2, πΓ p(x(0)) → π�(r)(x
(r)), if and only if N mod 2 = 1.

��

6.4 An Alternative Detection Algorithm for Division Property

The algebraic insights into the division property bring us much more flexibil-
ity in designing new detection algorithms for balance properties. Although the
three-subset bit-based division property is more accurate than the two-subset
bit-based division property [30], the latter is more MILP-friendly and needs
simpler programming, therefore the two-subset version is more efficient. Accord-
ing to the existing literature, the three-subset bit-based division property can
find several more balanced bits, but hardly surpass the two-subset version by
rounds. Hence, the two-subset bit-based division property is still the dominant
method in searching for the integral property.

From an algebraic viewpoint, we show how to design a new detection
algorithm of division property which surpasses the capability but achieves
the similar efficiency with the two-subset bit-based division property. For the
derived function fd with Γ 0,Γ 1,Γ p,Γ s, if we want to determine whether⊕

x∈X0
πu(r)(fd(x)) is key-independent or not, we only need to check whether

πu(r)(x(r)) contains any term in

S0 = {πΓ p⊕w (x(0)) : 0 ≺ w � Γ s}.
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Table 3. Some experimental results of our new detection algorithm compared with
the previous ones. All results are re-produced on the same platform.

Cipher #Data #Round #Constant Time Method

Simon32 231 15 –† – [31]
3 27 s [12]
3 120 s [30]
3 3 s Ours

Simon32 (102)‡ 231 20 1 3 s [31]
3 25 s [12]
3 3 s Ours

Simon48 (102) 247 28 3 8 s [31]
3 9 s [12]
3 8 s Ours

Simon64 (102) 263 36 1 23 s [31]
3 1.1 h [12]
3 30 s Ours

† The two-subset bit-based division property cannot find the 15-
round integral distinguisher for Simon32.
‡ Simon32 (102) means the rotation constants are (1,0,2) rather
than (8,1,2), see [31].

Consider Sr = {πu(r)(x(r)) : πu(0)(x(0)) � πu(r)(x(r))}, if πu(r)(x(r)) /∈ Sr, then
we know fd does not contain any monomials in S0 since there is no monomial
trail. Therefore

⊕
x∈X0

πu(r)(fd(x)) is a key-independent value.
To detect it, firstly, we construct the model of πu(0)(x(0)) � πu(r)(x(r)) by

decomposing the target cipher like we do for Trivium. Secondly, we impose
another constraint on all the round key bits ki on the MILP model M as

M ←
∑

i

ki ≥ 1.

Finally, we check the validity of this model. If the model is infeasible,
then πu(r)(x(r)) contains no monomial in S0 and

⊕
x∈X0

πu(r)(fd(x)) is key-
independent. Since we do not need to compute the size of the monomial hull,
the model is easy to solve. Some experiments are conducted to show the capibility
of this alternative detection algorithm, we list the results in Table 3.

7 Conclusion and Discussion

In this work, a pure algebraic treatment of the division property is presented, and
we propose the monomial prediction technique which determines the presence
or absence of a monomial by counting the number of monomial trails in the
corresponding monomial hull. Based on this technique, we manage to obtain the
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exact algebraic degrees of Trivium up to 834 rounds and improved key-recovery
attacks on 840-, 841- and 842-round Trivium.

Moreover, we categorize existing detection algorithms for division proper-
ties into perfect, no-false-alarm, and no-missing classes. In particular, we prove
that the three-subset bit-based division property without unknown subset and
monomial prediction are perfect. At this point, a natural question arises. Can we
design an efficient no-missing detection algorithm for the division property that
does not raise too many false alarms, which would be very useful for designers
to theoretically determine the security bounds against attacks based on division
properties.
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Abstract. Algebraically simple PRFs, ciphers, or cryptographic hash
functions are becoming increasingly popular, for example due to their
attractive properties for MPC and new proof systems (SNARKs,
STARKs, among many others).

In this paper, we focus on the algebraically simple construction MiMC,
which became an attractive cryptanalytic target due to its simplicity, but
also due to its use as a baseline in a competition for more recent algo-
rithms exploring this design space.

For the first time, we are able to describe key-recovery attacks on all
full-round versions of MiMC over F2n , requiring half the code book. In
the chosen-ciphertext scenario, recovering the key from this data for the
n-bit full version of MiMC takes the equivalent of less than 2n−log2(n)+1

calls to MiMC and negligible amounts of memory.
The attack procedure is a generalization of higher-order differential

cryptanalysis, and it is based on two main ingredients. First, we present
a higher-order distinguisher which exploits the fact that the algebraic
degree of MiMC grows significantly slower than originally believed. Sec-
ondly, we describe an approach to turn this distinguisher into a key-
recovery attack without guessing the full subkey. Finally, we show that
approximately �log3(2 · R)� more rounds (where R = �n · log3(2)� is the
current number of rounds of MiMC-n/n) can be necessary and sufficient
to restore the security against the key-recovery attack presented here.

The attack has been practically verified on toy versions of MiMC.
Note that our attack does not affect the security of MiMC over prime
fields.
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1 Introduction

The design of symmetric cryptographic constructions exhibiting a clear and ide-
ally low-degree algebraic structure is motivated by many recent use cases, for
example the increasing popularity of new proof systems such as STARKs [8],
SNARKs (e.g., Pinocchio [44]), Bulletproofs [19], and other concepts like secure
multi-party computation (MPC). To provide good performance in these new
applications, ciphers and hash functions are designed in order to minimize spe-
cific characteristics (e.g., the total number of multiplications, the depth, or other
parameters related to the nonlinear operations). In contrast to traditional cipher
design, the size of the field over which these constructions are defined has only
a small impact on the final cost. In order to achieve this new performance goal,
some crucial differences arise between these new designs and traditional ones. For
example, we can consider the substitution (S-box) layer, that is, the operation
providing nonlinearity in the permutation: In these new schemes, the S-boxes
composing this layer are relatively large compared to the ones used in classical
schemes (e.g., they operate over 64 or 128 bits instead of 4 or 8 bits) and/or
they can usually be described by a simple low-degree nonlinear function (e.g.,
x �→ xd for some d). Examples of these schemes include LowMC [4], MiMC
[3], Jarvis/Friday [6], GMiMC [2], HadesMiMC [31], Vision/Rescue [5], and
Starkad/Poseidon [30].

The structure of these schemes has a significant impact on the attacks that
can be mounted. While statistical attacks (including linear [42] and differential
[11] ones) are among the most powerful techniques against traditional schemes,
algebraic attacks turned out to be especially effective against these new primi-
tives. In other words, these constructions are naturally more vulnerable to alge-
braic attacks than those which do not exhibit a clear and simple algebraic struc-
ture. For example, this has been shown in [1], in which algebraic strategies cov-
ering the full-round versions of the attacked primitives are described. Although
the approaches can be quite different, most of them exploit the low degree of the
construction.

In this paper, we focus on MiMC [3]. The MiMC design constructs a cryp-
tographic permutation by iterated cubing, interleaved with additions of random
constants to break any symmetries. A secret key is added after every such round
to obtain a block cipher. The design of MiMC is very flexible and can work with
binary strings as well as integers modulo some prime number. Security analy-
sis by the designers rules out various statistical attacks, and the final number
of rounds is derived from an analysis of attack vectors that exploit the simple
algebraic structure. We remark that the designers chose the number of rounds
with a minimal security margin for efficiency. For a more detailed specification
and a summary of previous analysis, we refer to Sect. 2.3.

Since its publication in 2016, MiMC has become the preferred choice for many
use cases that benefit from a low multiplication count or algebraic simplicity
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Table 1. Various attacks on MiMC. In this representation, n denotes the block size (and
key size). The unit for the attack complexity is usually the cost of a single encryption
(number of multiplications over F2n necessary for a single encyption). The SK and KR
attacks can be implemented using chosen plaintexts CP and/or chosen ciphertexts CC.
The memory complexity is negligible for all approaches listed.

Type n Rounds Time Data Source

KR� 129 38 265.5 260.2 CP [41]

SK 129 80 2128 XOR 2128 CP/CC Sect. 4.1

SK n �log3(2
n−1 − 1)� − 1 2n−1 XOR 2n−1 CP/CC Sect. 4.1

KK 129 160 (≈ 2 × full) – 2128 Sect. 4.3

KK n 2 · �log3(2
n−1 − 1)� − 2 – 2n−1 Sect. 4.3

KR 129 82 (full) 2122.64 2128 CC Sect. 5

KR 255 161 (full) 2246.67 2254 CC Sect. 5

KR n �n · log3(2)� (full) ≤ 2n−log2(n)+1 2n−1 CC Sect. 5

KR ≡ Key-Recovery, KR� ≡ attack on a variant of MiMC proposed in a low-
memory scenario, SK ≡ Secret-Key Distinguisher, KK ≡ Known-Key Distinguisher

[32,45]. It also serves as a baseline for various follow-up designs evaluated in the
context of the public “STARK-Friendly Hash Challenge” competition1.

1.1 Our Contribution

As the main results in this paper, we present

(1) a new upper bound for the algebraic degree growth in key-alternating
ciphers with low-degree round functions,

(2) a secret-key higher-order distinguisher on almost full MiMC over F2n ,
(3) a known-key zero-sum distinguisher on almost double the rounds of MiMC,
(4) the first key-recovery attack on full-round MiMC over F2n .

We also show that the technique we use for MiMC is sufficiently generic to
apply to any permutation fulfilling specific properties, which we will define in
detail. Our attacks and distinguishers on MiMC, as well as other attacks in the
literature, are listed in Table 1.

Secret-Key Higher-Order Distinguishers. After recalling some preliminary
facts about higher-order differentials, in Sect. 3 we analyze the growth of the al-
gebraic degree for key-alternating ciphers whose round function can be described
as a low-degree polynomial over F2n .

For an SPN cipher over a field F where each round has algebraic degree δ, the
algebraic degree of the cipher is expected to grow essentially exponentially in δ.
Several analyses made in the literature [17,18,20] confirm this growth for most

1 https://starkware.co/hash-challenge/.

https://starkware.co/hash-challenge/
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ciphers, except when the algebraic degree of the function is close to its maximum.
As a result, the number of rounds necessary for security against higher-order
differential attacks generally grows logarithmically in the size of F. Different
behaviour has been observed for certain non-SPN designs, such as some designs
with partial nonlinear layers where the algebraic degree grows exponentially in
some (not necessarily integer) value smaller than δ [26].

In Sect. 3, we show that if the round function can be described as an invertible
low-degree polynomial function in F2n , then the algebraic degree grows linearly
with the number of rounds, and not exponentially as generally expected. More
precisely, let d denote the exponent of the power function x �→ xd used to define
the S-boxes. Then, we show that in the case of key-alternating ciphers over F2n ,
the algebraic degree δ(r) as a function in the number of rounds r is

δ(r) ∈ O(log2(d
r)) = O(r).

As an immediate consequence, our observation implies that roughly n · logd(2)
rounds are necessary to provide security against higher-order differential attacks,
much more than the expected ≈ logδ(n − 1) rounds.

Distinguishers on MiMC over F2n . Our new bounds on the number of rounds
necessary to provide security against higher-order differential cryptanalysis have
a major impact on key-alternating ciphers with large S-boxes. A concrete exam-
ple for this class of ciphers is MiMC [3], a key-alternating cipher defined over
F2n (for odd n ∈ N), where the round function is simply defined as the cube
map x �→ x3. Since any cubic function over F2n has algebraic degree 2, one may
expect that approximately log2(n) rounds are necessary to prevent higher-order
differential attacks. Our new bound implies that a much larger number of rounds
is required to provide security, namely approximately n · log3(2).

As a concrete example, in Sect. 4 we show that MiMC-n/n has a security
margin of only 1 or 2 rounds against (secret-key) higher-order distinguishers
(depending on n), which is much smaller than expected by the designers. More-
over, we can set up a known-key distinguisher for approximately double the
number of rounds of MiMC, by showing that the same number of rounds is nec-
essary to reach the maximum degree in the decryption direction. Our findings
have been practically verified on toy versions.

We remark that the designers presented other non-random properties (includ-
ing GCD and interpolation attacks) that can cover a similar number of rounds.
The number of rounds proposed by the designers were chosen in order to provide
security against key-recovery attacks based on these properties. As we are going
to show, the number of rounds is not sufficient against our new attack based on
a higher-order differential property.

Results using the Division Property. For completeness, in Sect. 4.5 we search
for higher-order distinguishers for MiMC-n/n with the division property [46]
proposed by Todo at Eurocrypt 2015, a powerful tool for finding the best integral
distinguishers for block ciphers. By modeling the most recently proposed variant
of the bit-based division property, which is called three-subset bit-based division
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property without unknown subset in [34], we are able to reproduce exactly the
same higher-order distinguishers for cases with small n-bit S-boxes, where n ∈
{5, 7, 9}. However, as far as we know, it is an open problem to model the three-
subset bit-based division property for a larger S-box of size bigger than 9 in
practical time. Therefore, we conclude that the division property is unlikely to
help us for the ciphers we focus on.

Key-Recovery Attack on MiMC-n/n and on Generic Ciphers. A triv-
ial way to extend an r-round distinguisher to an (r + 1)-round key-recovery
attack is based on guessing the last round key, partially decrypting/encrypting,
and finally exploiting the distinguisher to filter wrong key guesses. Unfortu-
nately, this strategy does not work for MiMC, since guessing the full last round
key required to invert the large S-box is equivalent to exhaustive key search.
Another key-recovery approach that has been combined with integral distin-
guishers is based on interpolating the Boolean polynomials that define the final
rounds. However, this strategy requires evaluating the distinguisher several times
to collect enough equations, which is not feasible for our distinguisher due to its
large data complexity.

In Sect. 5, we show how to solve this problem. Instead of guessing the last round
key, we set up an equation overF2n with the master key as a variable. To obtain this
equation, we symbolically express the zero sum at the input to the last round as
a polynomial function of the key, whose coefficients depend on the queried cipher-
texts. We show how the resulting polynomial equation can be solved efficiently to
recover the key. As a result, in the chosen-ciphertext case only, recovering the key
from this data for the full n-bit version of MiMC takes the equivalent of less than
2n−log2(n)+1 calls to MiMC, 2n−1 chosen ciphertexts, and negligible amounts of
memory. Moreover, we show that approximately �log3(2 ·R)� more rounds (where
R = �n · log3(2)� is the current number of rounds of MiMC-n/n) can be necessary
and sufficient to restore the security against the key-recovery attackpresentedhere.
Thiswould, for example, imply thatwe need to add 5more rounds for themost used
version MiMC-129/129 (which currently has 82 rounds).

A Generic Strategy. Our strategy is an instance of a broader class of algebraic key-
recovery approaches based on solving equations in the key variables. As such, it
shares some ideas with other algebraic approaches like optimized interpolation
attacks. However, while most algebraic key-recovery approaches of the last years
construct and solve systems of many Boolean linear equations, we use a single uni-
variate equation of higher degree that canbe solvedwith polynomial factoring algo-
rithms such as Berlekamp’s algorithm. In Sect. 6, we outline a more detailed and
generic procedure for such an attack. It is interesting to note that a comparatively
old technique which basically disappeared for the cryptanalysis of AES-like ciphers
turns out to be very competitive for schemes with large S-boxes.

2 Preliminaries

In this section, we recall the most important results about polynomial represen-
tations of Boolean functions and summarize the currently best known results
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regarding the growth of the algebraic degree in the context of SP networks.
We also provide the specification of MiMC and give an overview of previous
cryptanalytic results.

We emphasize that in general it is only possible to give a lower bound regard-
ing the number of rounds which we can attack using higher-order differential
techniques, in the following denoted as “necessary number of rounds to provide
security”. While upper-bounding the algebraic degree is more important from
an adversary’s point of view, lower bounds on the degree are much more relevant
when arguing about security against algebraic attacks (such as e.g. [24,38,40,49])
from a designer’s viewpoint. However, at the current state of the art and to the
best of our knowledge, it seems hard to find such a lower bound for a given cipher
without investigating concrete instances experimentally – which, of course, limits
the scope of any analysis.

2.1 Polynomial Representations over Binary Extension Fields

We denote addition (and subtraction) in binary extension fields by the symbol
⊕. For n ∈ N, every function F : F2n → F2n can be uniquely represented by an
n-tuple (F1, F2, . . . , Fn) of polynomials over F2 in n variables with a maximum
degree of 1 in each variable. In this representation, Fi is of the form

Fi(X1, . . . , Xn) =
⊕

u=(u1,...,un)∈{0,1}n

ϕi(u) · Xu1
1 · · · · · Xun

n , (1)

where the coefficients ϕi(u) can be computed by the Moebius transform.
As is common, we denote functions F : Fn

2 → F2 as Boolean functions and
functions of the form F : Fn

2 → F
m
2 , for n,m ∈ N, as vectorial Boolean functions.

Definition 1. The algebraic normal form (ANF) of a Boolean function F :
F

n
2 → F2, as given in Eq. (1), is the unique representation as a polynomial over

F2 in n variables and with a maximum univariate degree of 1. The algebraic
degree δ(F ) of F – or δ for simplicity – is the degree of the above represen-
tation of F as a multivariate polynomial over F2. If G : F

n
2 → F

n
2 is a vec-

torial Boolean function and (G1, . . . , Gn) is its representation as an n-tuple of
multivariate polynomials over F2, then its algebraic degree δ(G) is defined as
δ(G) := max1≤i≤n δ(Gi).

The link between the algebraic degree and the univariate degree of a vecto-
rial Boolean function is well-known, and is for example established in [22]: the
algebraic degree of F : F2n → F2n can be computed from its univariate polyno-
mial representation, and is equal to the maximum hamming weight of the 2-ary
expansion of its exponents.

Lemma 1. Let F : F2n → F2n be a function and let F (X) =
∑2n−1

i=0 ϕi · Xi

denote the corresponding univariate polynomial description over F2n . The alge-
braic degree δ(F ) of F as a vectorial Boolean function is the maximum hamming
weight2 of its exponents, i.e., it is δ(F ) = max0≤i≤2n−1 {hw(i) |ϕi 	= 0} .

2 Given x =
∑χ

i=0 xi · 2i for xi ∈ {0, 1}, the hamming weight of x is hw(x) =
∑χ

i=0 xi.
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2.2 Higher-Order Differential Cryptanalysis

Higher-order differential attacks [38,40] form a prominent class of attacks
exploiting the low algebraic degree of a nonlinear transformation such as a clas-
sical block cipher. If this degree is sufficiently low, an attack using multiple input
texts and their corresponding output texts can be mounted. In more detail, if
the algebraic degree of a Boolean function f is δ, then, when applying f to all
elements of an affine vector space V ⊕ c of dimension greater than δ and taking
the sum of these values, the result is 0, i.e.,

⊕
v∈V⊕c f(v) = 0.

Security Against Higher-Order Differential Attacks – State of the Art.
To prevent higher-order differential attacks against iterated block ciphers, one
would usually want the maximum algebraic degree to be reached (well) within the
suggested number of rounds. To achieve this goal, and to assess the security mar-
gins, it is crucial to estimate how the algebraic degree grows with the number of
rounds.

The algebraic degree of composing two functions, F,G : Fn
2 → F

n
2 , can be

generically bounded by

deg(F ◦ G) ≤ deg(F ) · deg(G), (2)

and hence an upper bound is found by iterative use of this on the round function.
The resulting bound does, however, fail to reflect the real growth of the algebraic
degree for many cryptosystems, and the problem of estimating the growth has
been widely studied in the literature. After the initial work of Canteaut and
Videau [20], a tighter upper bound was presented by Boura, Canteaut, and De
Cannière [18] at FSE’11. There, the authors show how to deduce a new bound
for the algebraic degree of iterated permutations for a special category of SP
networks over (F2n)t, which includes functions that have a number t ≥ 1 of
balanced S-boxes as their nonlinear layer. Specifically, the authors show that
the algebraic degree of the considered SP network grows almost exponentially,
except when it is close to its maximum.

Proposition 1 ([18]). Let F be a function from F
N
2 to F

N
2 corresponding to

the concatenation of t smaller S-boxes S1, . . . , St defined over F
n
2 . Then, for any

function G from F
N
2 to F

N
2 , we have

deg(G ◦ F (·)) ≤ min

{
deg(F ) · deg(G), N − N − deg(G)

γ

}
, where (3)

γ = max
i=1,...,n−1

n − i

n − δi
≤ n − 1, (4)

and where δi is the maximum degree of the product of any i coordinates of any
of the smaller S-boxes.

Thus, the number of rounds necessary to prevent higher-order differential
attacks is in general bigger than the one obtained using the trivial bound in
Eq. (2).
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Fig. 1. The MiMC encryption function with r rounds.

2.3 Specification and Previous Analysis of MiMC

MiMC [3] is a key-alternating n-bit block cipher, where in each round the same
n-bit key is added to the state. The nonlinear component of the construction is
the evaluation of the cube function f(x) = x3 over F2n . Additionally, a different
round constant is added in each round to break symmetries, where the first
round constant is 0. The total number of rounds is then

r = �n · log3(2)� ,

and we refer to Fig. 1 for a graphical representation of the encryption function.
MiMC is defined to work over prime fields and binary fields. In this paper,

we focus on the binary field versions of MiMC3, for which the block size n has
to be odd in order for the S-box to be a permutation.

MiMC:Related Attacks in the Literature. The designers recommend MiMC with
�n · log3(2)� rounds [3]. They derive this number of rounds by considering a
variety of different key-recovery attacks on MiMC. According to their analysis,
the most powerful attacks are interpolation [36] and GCD attacks. About higher-
order differential attacks, the authors claim that “the large number of rounds
ensures that the algebraic degree of MiMC in its native field will be maximum or
almost maximum. This naturally thwarts higher-order differential attacks [...]”.

The first attack on MiMC-n/n [41], presented at SAC 2019, targets a reduced-
round version of MiMC proposed by the designers for a scenario in which the
attacker has only limited memory, but it does not affect the security claims of
full-round MiMC. The Feistel version of MiMC was attacked shortly after, by
using generic properties of the used Feistel construction instead of exploiting
properties of the primitive itself [16]. Finally, a specific attack on MiMC using
Gröbner bases was considered in [1]. The authors state that by introducing
a new intermediate variable in each round, the resulting multivariate system
of equations is already a Gröbner basis and thus the first step of a Gröbner
basis attack is for free. However, recovering univariate polynomials from this
representation and then applying techniques like the GCD attack will result in
a prohibitively large computational complexity, since the recovered polynomials
will be of degree ≈ 3r after r rounds. Hence, the authors conclude that MiMC
cannot be attacked directly by using known Gröbner basis techniques.
3 Since the only subspaces of Fp, where p is a prime number, are {0} and Fp itself,

our attack does not affect the security of MiMC over prime fields.
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3 Higher-Order Differentials of Key-Alternating Ciphers

Our bound on the growth of the algebraic degree does not depend on the cubing
of the round function in MiMC, so we introduce the following generalization of
the result on MiMC from Sect. 2.3.

3.1 Setting

Let Er
k : F2n → F2n be a key-alternating cipher defined by

Er
k(x) := kr ⊕ R(· · · R(k1 ⊕ R(k0 ⊕ x)) · · · ) (5)

over r ≥ 1 rounds, where k0, k1, . . . , kr ∈ F2n are derived from a master key
k ∈ F2n using a key schedule. Each round function R : F2n → F2n is defined as
some invertible univariate polynomial function

R(x) := ρ0 ⊕
d⊕

i=1

ρi · xi (6)

of univariate degree d ≥ 3, where ρi ∈ F2n and ρd 	= 0. We will, without loss
of generality, assume d ≤ dinv, where dinv denotes the degree of the composi-
tional inverse of R (otherwise, an attacker would target the decryption function
instead). Furthemore, we assume that the round function has low univariate
degree, i.e., low compared to the size of F2n . In other words, we work with
d  2n − 1.

3.2 Growth of the Degree

In this section, we show that the algebraic degree δ of a key-alternating cipher Er
k

grows much slower than commonly presented in the literature. More precisely, in
some cases it can grow linearly in the number of rounds and not exponentially.

Proposition 2. Let Er
k be a an r-round key-alternating block cipher with a

round function R of degree d, as defined in Eq. (5). If r ≤ Rlin − 1, where

Rlin =
⌈
logd

(
2n−1 − 1

)⌉ ≈ (n − 1) · logd(2), (7)

then the algebraic degree δ of Er
k is at most n − 2. Then, a (secret-key) higher-

order distinguisher using at most 2n−1 data can be applied to Er
k.

4

Proof. Due to the relation between the word-level degree and the algebraic
degree, Er

k reaches its maximum algebraic degree of n − 1 if at least one mono-
mial with the exponent 2n − 2j − 1 (for 0 ≤ j < n) appears in the polynomial
representation. Indeed, note that all these monomials have an algebraic degree
of n − 1. Since the smallest exponent of this form is 2n − 2n−1 − 1 = 2n−1 − 1,
4 We denote our bound by Rlin to indicate the almost linear growth of the algebraic

degree for this specific class of constructions.
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and since the degree of Er
k after r rounds is at most dr, we require dr ≥ 2n−1 −1

to make x2n−1−1 appear, or equivalently,

r ≥ �logd(2
n−1 − 1)�.

Hence, the degree is not maximal for r < �logd(2n−1 − 1)� and a higher-order
distinguisher using at most 2n−1 data can be applied. ��

The Difficulty of Lower-Bounding the Growth of the Degree. We point
out that it is always possible to set up a (secret-key) higher-order distinguisher if
the number of rounds is smaller than Rlin. However, a number of rounds greater
than or equal to Rlin does not necessarily provide security.

One of the main problems in order to derive a sufficient condition for the
number of rounds that provides security is the difficulty of analyzing the non-
vanishing coefficients in the polynomial representation of Er

k. Note, in general it
is not easy to give a condition guaranteeing that a particular monomial appears,
since many factors (including the secret key, the constant addition, and the
details of the S-box) influence the result.

Without going into the details, we consider the influence of the S-box in some
concrete examples. Working with R(x) = xd for a certain 3 ≤ d ≤ 2n − 2 (where
d 	= 2d′

for d′ ∈ N), we focus for simplicity only on two extreme cases d = 2d′ ±1.
By exploiting Lucas’s Theorem5:

– If d = 2d′
+ 1 for some d′ ∈ N, then the output of a single round is sparse:

(x ⊕ y)2
d′

+1 = x2d
′
+1 ⊕ x2d

′
· y ⊕ y2d

′
· x ⊕ y2d

′
+1

(note that it contains only 4 terms instead of d + 1 = 2d′
+ 2).

– If d = 2d′ − 1 for some d′ ∈ N, then the output of a single round is full, since

(x ⊕ y)2
d′ −1 =

2d
′ −1⊕

i=0

xi · y2d
′ −1−i.

Even if a single round is not sparse, the output of several combined rounds is
not guaranteed to be full (even if it is in general dense). As a concrete example,
while the output of (x ⊕ k0)3 ⊕ k1 is full, the same is not true for

((x ⊕ k0)3⊕k1)3 ⊕ k2 = x9 ⊕ x8 · k0 ⊕ x6 · k1 ⊕ x4 · k2
0 · k1 ⊕ x3 · k2

1

⊕ x2 · (k0 · k2
1 ⊕ k2

0 · k2
1 ⊕ k4

0 · k1) ⊕ x · k8
0 ⊕ c(k0, k1, k2),

(8)

where both x5 and x7 are missing, and where c(k0, k1, k2) is a function that
depends only on the keys. This simple example emphasizes the difficulty of ana-
lyzing the sparsity of the polynomial that defines Ek.

5 By Lucas’s Theorem,
(

n
m

) ≡ ∏k
i=0

(
ni
mi

)
(mod 2), it follows that where n =

∑k
i=0 ni ·

2i and m =
∑k

i=0 mi · 2i is the 2-ary expansion of n and m, respectively.
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3.3 Comparison with Other Bounds

We now compare the new number of rounds necessary to provide security against
secret-key higher-order distinguishers with other possible bounds. An alternative
strategy is to apply generic bounds focusing on the algebraic degree of the round
function, as recalled in Proposition 1. Recall that Rlin is the number of rounds
from Proposition 2, and we will denote the number of round based on generic
bounds by Rgen. The comparison will make use of δlin(r), the upper bound on
the algebraic degree after r rounds following Proposition 2. The upper bound
from Eq. (3) will be denoted by δgen(r). Note that δgen(r) can, for example, take
advantage of a slower growth in the algebraic degree, as in Eq. (8) by considering
two rounds instead of one. Despite this, the overall trend of δgen(r) will still be
exponential. On the other hand, if the round function can be described by a
polynomial of low univariate degree d over F2n , we expect a linear behaviour in
δlin(r):

δlin(r) ≤ �log2(d
r + 1)� ≈ r · log2(d).

As a result, the round numbers Rlin and Rgen necessary to provide security grow
respectively linearly and logarithmically in the size n of the field, namely

Rlin ∈ O(n) and Rgen ∈ O(logδ(n)).

A concrete comparison of δlin(r) and δgen(r) for MiMC-129/129 is given in
Fig. 2. In this setting we have δlin(r) = �log2(3r + 1)�, and δgen(r) has been
derived using the observation that two rounds of MiMC have algebraic degree
two (see [28, App. A] for more details). In particular, we find Rgen = 13 and
Rlin = 81.

Remark. We emphasize that every (invertible) S-box/round function in F
n
2 can

be rewritten as a polynomial over F2n . The crucial point here is that given
a “random” S-box/round function over F

n
2 , the corresponding polynomial over

F2n has in general a high univariate degree (e.g., d ≈ 2n − ε for some small
ε). In such a case, even if our argument still holds, the final result becomes
meaningless, since logd(2n − 1) ≈ log2n−ε(2n − 1) ≈ 1 is basically constant (i.e.,
it does not grow linearly with n). Hence, our results turn out to be relevant only
for S-boxes/round functions for which the corresponding polynomial over F2n

has “small” degree (namely, small compared to the field size, i.e., d  2n).

4 Distinguishers for Reduced-Round and Full MiMC

Exploiting the previous result, we now discuss the possibility to set up higher-
order differential distinguishers and attacks on MiMC [3]. We show that

(1) MiMC has a security margin of only 1 or 2 round(s) against (secret-key)
higher-order distinguishers, depending on n, and that
(2) a zero-sum known-key distinguisher can be set up for approximately dou-
ble the number of rounds of MiMC.
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Fig. 2. Different upper bounds of the growth of the algebraic degree for MiMC-129/129.
The trivial bound is 2r. A tighter bound, δgen(r), exploits the observation that 2 rounds
only have degree 2 (see Eq. (8)). Our new bound, δlin(r), is linear in the number of
rounds.

4.1 Secret-Key Higher-Order Distinguisher for MiMC

The results just presented allow to set up a nontrivial (secret-key) higher-order
distinguisher on �log3(2n−1 −1)�−1 rounds of MiMC, where �log3(2n−1 −1)�−
1 < �n · log3(2)� for all n. Consequently, the security margin is reduced to

1 ≤ �n · log3(2)� − (�log3(2
n−1 − 1)� − 1

) ≤ 2

rounds. To give some concrete examples, MiMC has 1 round of security margin
for n ∈ {33, 63, 255}, and 2 rounds of security margin for n ∈ {31, 65, 127, 129}.

4.2 Practical Results

In this section we compare the results from Proposition 2 with practical results
from scaled-down versions of MiMC. The tests6 have been performed in the
following way: Instead of computing the ANF of a keyed permutation (which
is expensive even for small field sizes), we evaluate the higher-order differential
zero-sum property (as given in Sect. 2.2) for a specific input vector space. Namely,
for random keys, random constants, and an input subspace of dimension n − 1,
we look for the minimum number of rounds r for which the corresponding sum of
the ciphertexts is different from zero. Such a number corresponds to the number
of rounds necessary to prevent higher-order distinguishers. In order to avoid the
influence of weak keys or round constants, we repeated the tests multiple times
(with new random keys and round constants). The practical number of rounds
we give in each row is the smallest number of rounds among all tested keys and
round constants necessary to prevent higher-order distinguishers. This means
that a potentially higher number of rounds can be attacked by choosing the keys
and round constants in a particular way.
6 The source code for the attacks and the tests is available on https://github.com/

IAIK/mimc-analysis.

https://github.com/IAIK/mimc-analysis
https://github.com/IAIK/mimc-analysis
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Table 2. Theoretical and practical round numbers necessary to prevent higher-order
distinguishers for MiMC over F2n .

Param. Theoretical Practical

n Rlin Rgen R
7 4 5 5

9 6 5 6

11 7 7 7

13 8 7 9

15 9 7 10

17 11 7 11

33 21 9 21

65 41 11 -

129 81 13 -

The results, denoted R, are given in Table 2. We also present Rlin (from
Proposition 2) and Rgen (see [28, App. A]) for comparison. We emphasize that
the theoretical values predicted by Rlin match the practical results in about half
of the cases, and are off by at most one.

4.3 Known-Key Zero-Sum Distinguisher for MiMC

A known-key distinguisher is a scenario introduced in [39] where the attacker
knows the key, and it is important in all settings in which no secret material is
present. To succeed, the attacker has to discover some property of the attacked
cipher that holds with a probability higher than for an ideal cipher, or is believed
to be hard to exhibit generically. The goal of a known-key zero-sum distinguisher
is to find a set of plaintexts and ciphertexts whose sums are equal to zero. To do
this, the idea is to exploit the inside-out approach. By choosing a subspace of
texts V, one simply defines the plaintexts as the rdec-round decryption of V and
the ciphertexts as the renc-round encryption of V. Such a distinguisher can then
cover renc + rdec rounds. Examples of this approach are given in the literature
for Keccak [7,10,18], Luffa [7,18], or PHOTON [50].

In the case of MiMC, the idea is to choose V as a subspace of F2n of dimension
n − 1. The maximum number of encryption rounds renc for which it is possible
to guarantee a zero sum has been given in the previous paragraph. Based on
Sect. 4.2, we can set up a known-key distinguisher on (more than) full MiMC-
n/n. For our distinguisher on MiMC, we first recall the following result from
[17].

Proposition 3 (Corollary 3 of [17]). Let F be a permutation of F
n
2 . Then,

deg(F−1) = n − 1 if and only if deg(F ) = n − 1.

Corollary 1. Let renc be the number of rounds necessary for MiMC over F2n

to reach its maximum algebraic degree in the encryption direction. The same
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number of rounds is necessary for reaching the maximum algebraic degree in the
decryption direction, i.e., rdec = renc = �log3(2n−1 − 1)�.

It follows that, given a subspace V ⊆ F2n of dimension n − 1, the sums of
the corresponding texts after rdec − 1 decryption rounds and renc − 1 encryption
rounds are always equal to zero, i.e.,

⊕

w∈V⊕v

R−(rdec−1)(w) = 0

︸ ︷︷ ︸
Zero sum

R−(rdec−1)

←−−−−−−− V ⊕ v
Rrenc−1

−−−−−→ 0 =
⊕

w∈V⊕v

Rrenc−1(w)

︸ ︷︷ ︸
Zero sum

for each v ∈ F2n . Hence, a known-key zero-sum distinguisher can be set up for

2 · (�log3(2
n−1 − 1)� − 1) ≈ 2(n − 1) · log3(2) − 2 =

= n · log3(2)
︸ ︷︷ ︸
= full MiMC

+ [(n − 2) · log3(2) − 2]

rounds of MiMC-n/n, which is much more than full MiMC-n/n.

4.4 Impact of the Known-Key Distinguisher on Full MiMC

Sponge Function. In [3], the authors propose a hash function by instantiating
a sponge construction with MiMCπ, a fixed-key version of MiMC. The sponge
hash function is indifferentiable from a random oracle up to 2c/2 calls to the
internal permutation P (where c is the capacity) if P is modeled as a randomly
chosen permutation [9]. Thus, even if it is not strictly necessary, it is desirable
that MiMC is resistant against known-key distinguishers.

For completeness, we mention that even if there is a way to distinguish a
permutation from a random one, it seems difficult to exploit a zero-sum distin-
guisher of the internal permutation of a sponge construction in order to attack
the hash function. To give a concrete example, consider the case of Keccak: As
a consequence of the zero-sum distinguisher found on 18-round Keccak-f [1600],
the number of rounds has been increased from 18 to 24 in the second round of
the SHA-3 competition in order to avoid “non-ideal” properties (see [10,18] for
more details). However, the best known attack on the Keccak hash function
can only be set up when using 6-/7-round Keccak-f [33].

In any case, we remark that such distinguishers based on zero sums cannot
be set up for an arbitrary number of rounds, and they do indeed exploit the
internal properties of a primitive using the inside-out approach found in this
paper and in other literature. Hence, they cannot be considered meaningless.

Other Approaches. Even though the original MiMC paper only specifies a
sponge-based hash function using MiMC, there are various applications and/or
specific considerations that would make a block-cipher-based approach more
advantageous (like, for example, being forced to use a block size which is too
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small for a sponge-based approach). Another way to turn a block cipher into
a hash function is to use a compression function like the Davies–Meyer one
together with something like the Merkle–Damg̊ard construction. Similar to the
case of sponge constructions, the security of such an algorithm is proven in the
ideal cipher model [12]. This choice is, however, not supported by the MiMC
designers, who use our results to support their advice against using a block-
cipher-based approach (even though such implementations can still be found7).
It follows that, since the attacker has control of the key in such scenarios, it is
desirable for MiMC to be resistant against known- and chosen-key distinguishers,
even if it does not seem to be strictly necessary.

4.5 Results Using the Division Property

Finally, in [28, App. C] we present our practical results obtained using “Mixed
Integer Linear Programming (MILP)”, which models the propagation of the
(conventional) bit-based division property.

The (conventional) bit-based division property [48] was proposed to investi-
gate integral characteristics of block ciphers at a bit level. With this approach,
the integral property of each bit is studied independently. Naturally, this strat-
egy allows to capture more information of the propagation than the word-level
version, and thus integral characteristics for more rounds can be found with this
new technique. For example, the integral distinguishers of SIMON32 have been
improved from 10 rounds [46] (the current best result at word level) to 14 rounds
[52] (obtained by the experimental method cited before).

Instead of separating the parity into the two cases “0” and “unknown” as
for the (conventional) bit-based division property, three-subset bit-based divi-
sion property [48] was introduced to enhance the accuracy of the conventional
one, where the parity is separated into three sets, i.e., “0”, “1”, and “unknown”.
It shows that the three-subset bit-based division property can indeed be more
accurate than the two-subset bit-based division property for some ciphers [35,53].
However, it becomes harder to efficiently model the three-subset division prop-
erty propagation even for ciphers with simple structures. Recently, [34] pointed
out that the three-subset division property has a couple of known problems when
applied to cube attacks, and proposed a modified three-subset bit-based division
without the “unknown” set to overcome these problems. By modeling this mod-
ified version of the three-subset bit-based division property for our cases with
small n-bit S-boxes, where n ∈ {5, 7, 9}, we confirm the practical results given
in Table 2.

However, as far as we know, it is still an open problem to model the (modified)
three-subset bit-based division property for a larger S-box of size bigger than
9. The S-boxes we focus on in this paper can be described as a (low-degree)
polynomial function in F2n , where n is much larger than 9. Therefore, the division
property, which is commonly believed as the most efficient tool to find the best
integral distinguishers, might not help us as much for the ciphers we focus on.

7 https://github.com/HarryR/ethsnarks/blob/master/src/gadgets/mimc.hpp.

https://github.com/HarryR/ethsnarks/blob/master/src/gadgets/mimc.hpp
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5 Key-Recovery Attack on MiMC

Since the security margin of MiMC with respect to a (secret-key) higher-order
distinguisher is of only 1 or 2 round(s) depending on n, it is potentially possible to
extend a distinguisher to a key-recovery attack. Given a subspace V of plaintexts
whose sum is equal to zero after r rounds, we can consider r+1 rounds, partially
guess the last subkey and decrypt, and filter wrong key guesses that do not satisfy
the zero sum:

V ⊕ v
Rr(·)−−−→

⊕

w∈V⊕v

Rr(w) = 0

︸ ︷︷ ︸
Higher-order distinguisher

R−1(·)←−−−−−−−−
Key guessing

{Rr+1(w) | w ∈ V ⊕ v}
︸ ︷︷ ︸

Ciphertexts

.

However, since the subkeys of MiMC are equal to the master key plus constants,
and due to the single full-state S-box, even a (partial) decryption of a single round
requires guessing the full key. As a result, a key-recovery attack on full MiMC
based on this strategy seems infeasible.

In this section, we present an alternative strategy that allows to break full-
round MiMC. Since a trivial key-guessing approach is inefficient, our idea is to
construct a polynomial of low degree, which we can then try to solve.

5.1 Strategy of the Attack

From Proposition 2 and Proposition 3, a zero sum can be set up for at least
�(n − 1) log3(2)� − 1 = �n log3(2)� − ε rounds in the encryption and decryption
direction with a vector space V⊕v of dimension n−1, where ε ∈ {1, 2}. Recalling
that �n · log3(2)� is the number of rounds of full MiMC, we define rZS, rKR as

rZS = �(n − 1) log3(2)� − 1 and rKR = 1 + (�n log3(2)� − �(n − 1) log3(2)�) ,

where rZS is the number of rounds that we can cover with a zero sum, rKR =
�n · log3(2)� − rZS ∈ {1, 2}.

Let fr(x,K) be the function corresponding to r rounds of MiMCk(·) (and
f−r(x,K) be r rounds of decryption, MiMC−1

k (·)), where x is the input text and
K is a symbolic variable that represents the secret key k. We intend to use these
functions to create a polynomial from which we can deduce k. More precisely,
for a fixed vector space V ⊕ v, we consider the equations

⊕

x∈MiMC−1
k (V⊕v)

frKR(x,K)

︸ ︷︷ ︸
=F (K)

= 0 and
⊕

x∈MiMCk(V⊕v)

f−rKR(x,K)

︸ ︷︷ ︸
=G(K)

= 0. (9)

After having received all x values from an oracle, the attacker can construct
one of the polynomials F (K) = 0 or G(K) = 0. The secret key k can now be
determined by finding the roots of either of these polynomials.
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In the case of MiMC, the degree of a single encryption round is 3, while the
degree of a single decryption round is (2n+1 − 1)/3 (which is significantly larger
than 3 for large n). Due to the slow degree growth in the encryption direction
of MiMC, we will focus on finding the roots of F (K) given in Eq. (9).

Finding the Roots of Univariate Polynomials. Let F (X) ∈ F2n [X]/〈X2n+
X〉 be a univariate polynomial of degree D. Furthermore, let M(D) denote a
number such that multiplying two polynomials of degree ≤ D over F2n requires
O(M(D)) operations in F2n . For instance, a straightforward method would yield
M(D) = D2, whereas M(D) = D · log(D) · log log(D) holds for methods based
on fast Fourier transforms [21]. The Berlekamp algorithm for determining the
roots of F is then expected to require C ∈ O (M(D) log(D) log (2nD)) operations
in F2n (see [29, Chapter 14.5]).

5.2 Details of the Attack

Assume V ⊕ v is a coset of a subspace V of dimension n − 1. We define

W = MiMC−1
k (V ⊕ v) ≡ {MiMC−1

k (x) ∈ F2n |x ∈ V ⊕ v}

under a fixed secret key k. Here, we present the details of the attack for the cases
rKR = 1 and rKR = 2, and we analyze the computational cost. We introduce the
following notation:

∀d ∈ N : Pd :=
⊕

x∈W
xd, (10)

and whenever possible we will make use of the fact that squaring is a linear oper-
ation over F2n . More specifically, computing P2d only requires a single squaring
operation once Pd is calculated:

P2d :=
⊕

x∈W
x2d =

(
⊕

x∈W
xd

)2

= P2
d . (11)

This allows to reduce the total number of XOR operations.

Case: rKR = 1. Since a single round of MiMC is described by (x ⊕ k)3 =
k3 ⊕ k2 · x ⊕ k · x2 ⊕ x3, the function F (K) is given by

F (K) = K2 · P1 ⊕ K · P2 ⊕ P3.

A complete pseudo code of the attack can be found in Algorithm1, which makes
it easy to see that the cost of the attack is well approximated by

– |V| = 2n−1 multiplications,
– |V| = 2n−1 + 1 squarings,
– 2 · |V| + 1 = 2n + 1 n-bit XOR operations,
– cost of finding the roots of a univariate polynomial of degree 2.
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Algorithm 1: Attack on MiMC – Case: rKR = 1.
Input: Vector subspace V of ciphertexts of dimension dim(V) = n − 1.
Output: Secret key k.

1 P1,P2,P3 ← 0.
2 for x ∈ V ⊕ v do
3 p ← MiMC−1

k (x) from the decryption oracle.
4 P1 ← P1 ⊕ p.
5 q ← p2.
6 P3 ← P3 ⊕ q · p.

7 P2 ← (P1)
2.

8 F (K) = P1 · K2 ⊕ P2 · K ⊕ P3.
9 Find a solution k of F (K) = 0 – see Section 5.1 (filter multiple solutions by

brute force).
10 return k.

Case: rKR = 2. The attack for the case rKR = 2 is similar. From Eq. (8) (using
k0 = k, k1 = k ⊕ c1 and k2 = 0), the function F (K) is described by

F (K) = K
8 · P1 ⊕ K

5 · P2 ⊕ K
4 · (P2 · c1 ⊕ P1) ⊕ K

3 · (P4 ⊕ P2)

⊕K
2 · (P4 · c1 ⊕ P3 ⊕ P1 · c

2
1) ⊕ K · (P8 ⊕ P6 ⊕ P2 · c

2
1) ⊕ (P9 ⊕ P6 · c1 ⊕ P3 · c

2
1),

where c1 is the round constant of the first round. As also noted in Sect. 3.2,
while P9 is the largest Pd in this expression, both P5 and P7 are missing, and
hence do not need to be computed. A complete pseudo code of the attack can
be found in Algorithm 2. Again, it is easy to see that the cost of the attack is
well approximated by

– 2 · |V| + 6 = 2n + 6 multiplications,
– 2 · |V| + 4 = 2n + 4 squarings,
– 3 · |V| + 8 = 3 · 2n−1 + 8 n-bit XOR operations,
– cost of finding the roots of a univariate polynomial of degree 8.

5.3 Complexity Estimation

As we have just seen, our attack requires half of the code book (namely, 2n−1

chosen ciphertexts). Here we show that our attacks are better than exhaustive
search (from the computational point of view). In order to do this, we measure
the time complexities in equivalent encryption operations.

A single encryption round in MiMC requires one addition, one squaring oper-
ation, and one multiplication in the extension field. Since the cost of a single n-bit
XOR operation is much smaller than the cost of a multiplication over F2n , and
since the number of XOR operations is similar to the number of multiplications,
in the following we do not consider XOR operations. After this simplification, we
find that the time complexity of rKR = 1 is dominated by 2n−1 squaring and
multiplication operations or, equivalently, 2n−1 encryption rounds. A similar line
of reasoning reveals that rKR = 2 is comparable to 2n encryption rounds.
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Algorithm 2: Attack on MiMC – Case: rKR = 2.
Input: Vector subspace V of ciphertexts of dimension dim(V) = n − 1.
Output: Secret key k.

1 P1,P2,P3, . . . ,P9 ← 0.
2 for x ∈ V ⊕ v do
3 p ← MiMC−1

k (x) from the decryption oracle.
4 P1 ← P1 ⊕ p.
5 q2 ← p2.
6 q3 ← q2 · p.
7 P3 ← P3 ⊕ q3.
8 q6 ← q23 .
9 P9 ← P9 ⊕ q6 · q3.

10 P2 ← (P1)
2.

11 P4 ← (P2)
2.

12 P6 ← (P3)
2.

13 P8 ← (P4)
2.

14 F (K) = K8 ·P1 ⊕ K5 ·P2 ⊕ K4 · (P2 · c1 ⊕P1) ⊕ K3 · (P4 ⊕P2) ⊕ K2 · (P4 ·
c1 ⊕ P3 ⊕ P1 · c21) ⊕ K · (P8 ⊕ P6 ⊕ P2 · c21) ⊕ (P9 ⊕ P6 · c1 ⊕ P3 · c21).

15 Find a solution k of F (K) = 0 (filter multiple solutions by brute force).
16 return k.

Since the cost of solving a single low-degree equation is negligible, and one
unit of encryption contains �n · log3(2)� rounds, it follows that the cost of our
attacks is about

rKR · 2n−1

�n · log3(2)�
encryptions for rKR ∈ {1, 2}. That is, the computational cost of the key-recovery
part of our attacks is upper-bounded by 2n−log2(n)+1, and hence the total cost
is smaller than that of a brute-force attack (namely, 2n encryptions) for each
n ≥ 3.

5.4 Practical Verification

We implemented Algorithm 1 and Algorithm 2 in the computer algebra system
Magma, and verified both algorithms for all odd integers n ∈ [5, 35]. We note
that Algorithm 1 (rKR = 1) yields the correct answer for all the tested 5 ≤ n ≤
35, even if �n log3(2)� 	= �(n − 1) log3(2)�. Namely, in practice it is possible to
cover one more round with a zero sum than what we theoretically expect. In
other words, �(n − 1) log3(2)� rounds of the decryption function of MiMC fail
to obtain the maximum algebraic degree for these parameters, which is reached
after �(n − 1) log3(2)�+1 rounds (see [28, App. B] for more details on the degree
growth of MiMC−1). Since we are not able to prove this behavior for larger
values of n, we leave it as an open question whether Algorithm 1 can be applied
to MiMC for odd integers n > 35.
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Considerations on Data and Computational Costs of This Attack. A
possible drawback of our attack is the cost. Since we are not able to provide
an estimation of the growth of the degree in the decryption direction, we can
only exploit the fact that a certain number of rounds are necessary in order to
achieve maximum degree. It follows that the attacker is forced to use half of
the code book in order to set up the attack, which also has an impact on the
computational cost.

Even if our attack is not practical, we believe it provides valuable theo-
retical insight. It is also in line with several other attacks found in the litera-
ture, which are set up under a similar assumption on the data and/or computa-
tional cost. To give some concrete examples, consider the case of zero-correlation
attacks [14], which exploit linear approximations that hold with probability 1

2 .
The crucial limitation for basic zero-correlation linear cryptanalysis is that it
requires half of the code book. Only follow-up works have been able to reduce
this data requirement, including the more powerful distinguisher called multiple
zero-correlation (MPZC) linear distinguisher proposed in [15], which exploits the
fact that there are numerous zero-correlation linear approximations in suscepti-
ble ciphers. While needing (close to) the full code book is an inherent property
of zero-correlation attacks, the reason for the high data complexity in our case
is purely due to the specification of MiMC and the attacked number of rounds,
and not due to an inherent property of our attack.

Splice-and-cut meet-in-the-middle attacks and biclique attacks are other
examples of attacks that often come with time complexities relatively close to
exhaustive search. Indeed, an extension of the biclique approach first described
in [13] has a brute-force phase for a number of rounds as part of the attack. It
can in principle work for any number of rounds and is hence best described as a
particular optimization of brute-force key guessing. However, later variants then
showed examples where the gain over brute force was in the order of millions [37].
Still, we note that the complexity of biclique attacks scales differently than our
attack, whose runtime cost depends strongly on the details of the target cipher
MiMC.

Finally, we point out that any attack that is better than brute force is rele-
vant, even if it requires unrealistic amounts of data or storage. Indeed, the main
goal of cryptanalysis is finding a “certificated weakness”, that is, an evidence that
the cipher does not perform as advertised. In other words, in academic cryptog-
raphy, a weakness or a break in a scheme is usually defined quite conservatively:
It may require impractical amounts of time, memory, or data.

The Number of Rounds Needed for Security. It may be of interest to
estimate the number of rounds needed for MiMC to be resistant against this
attack. To this end, we bound the operations needed to compute all monomials
of odd degree, up to a maximum degree D.

Lemma 2. Let 1 ≤ D ≤ 2n − 1 and x ∈ F2n . The overall number of operations
needed to compute all odd powers xi for i ∈ [3,D] is given by 1 squaring and⌊

D−1
2

⌋
multiplications.
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Proof. From x, calculate and store q := x2. The odd powers of x can now be
successively computed as xi+2 = xi · q for all odd integers i in the interval
[1,D − 2]. This yields a total of 1 squaring and

⌊
D−1
2

⌋
multiplications. ��

Assume for simplicity that �n · log3(2)� − 1 rounds can be covered by a zero
sum, and that the cost of solving the final polynomial equation is negligible.
As before, we expect the time complexity to be dominated by the number of
operations needed to construct the polynomial F (K). Since the degree of this
polynomial is upper-bounded by 3rKR , by Lemma 2 at most [(3rRK −1)/2] ·2n−1

multiplications are required to compute all monomials with odd exponents in
F (K) (where all monomials with even exponents are computed via Eq. (11)).

Since one encryption of MiMC costs �n · log3(2)� multiplications, the number
of extra rounds ρ for MiMC must satisfy

(3ρ+1 − 1) · 2n−2 ≥ 2n · (�n · log3(2)� + ρ)

in order to provide security against the attack just presented. This would, for
example, require at least ρ = 5 extra rounds for n = 129 (more generally, if R
is the number of rounds of MiMC-n/n, then ρ ≈ �log3(2 · R)� more rounds are
sufficient to restore the security8). We remark that this rough estimation is not
intended to replace the number of rounds proposed by the designers.

6 An Algebraic Attack on Ciphers with Low-Degree
Round Functions

Here we generalize the key-recovery attack on MiMC described in Sect. 5 and
discuss a generic attack strategy for any block cipher working over (F2n)t, where
n, t ∈ N, t ≥ 2 and n ≥ 3.

6.1 Setting

We consider an r-round block cipher Er
k : (F2n)t → (F2n)t with

Er
k(x) = (Rr ◦ Rr−1 ◦ · · · ◦ R1)(x ⊕ k),

and where R,Ri : (F2n)t → (F2n)t are defined by Ri(x) = R(x) ⊕ k(i). Here, R
denominates the (nonlinear) round function. Since Er

k consists of t components,
we can write

Er
k(x) = (Er

k,1(x), . . . , Er
k,t(x)),

where Er
k,i : (F2n)t → F2n . We denote the compositional inverse of Er

k by E−r
k .

We assume that

8 In more details, ρ ≥ log3(4 · (R + ρ) + 1) − 1. The previous estimation is obtained
by assuming ρ ≤ R/2.
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(1) the i-th round key k(i) ∈ (F2n)t is derived from the master key k =
(k1, . . . , kt) ∈ (F2n)t by some low-degree (e.g., linear) key schedule,

(2) the round function R can be described by a polynomial

R(x = (x1, . . . , xt)) =
⊕

j=(j1,...,jt)∈{0,1,...,2n−1}t

j1+···+jt≤d

αj · xj1
1 · · · · · xjt

t

of low-degree d with coefficients αj ∈ (F2n)t.

Our attack requires the symbolic evaluation of the encryption function Er′
k for a

small number of rounds r′ to be relatively easy, which motivates the requirements
of a low-degree round function R and a low-degree key schedule. This ensures
that the polynomial representation of Er′

k can be computed efficiently. In both
cases, low-degree means low compared to the size of the field F2n , i.e., d  2n−1.
A cipher in the literature that satisfies above assumptions and does indeed use
low-degree round functions is, e.g., HadesMiMC [31].

6.2 Strategy of the Attack

The idea of our generic attack is to recover the secret master key k of a cipher
Er

k by exploiting a given higher-order distinguisher over the subset X ⊆ (F2n)t

covering 1 ≤ rZS < r rounds in the encryption or the decryption direction.
For the sake of simplicity, we follow the approach of the attack on MiMC in
Sect. 5 and assume that the higher-order distinguisher covers rZS rounds in the
decryption direction.

In our attack, we symbolically evaluate ErKR
k (y) with respect to the remaining

rKR := r − rZS rounds in the encryption direction and obtain polynomials (1 ≤
i ≤ t)

ErKR
(K1,...,Kt),i

(Y ) ∈ F2n [K1, . . . ,Kt, Y1, . . . , Yt]

over F2n with the master key words Kj and plaintext variables (Y1, . . . , Yt) =: Y
as indeterminates – in short, one polynomial for each of the t components of
ErKR

k (y). In general, we work with rKR  rZS , since the symbolic evaluation of
ErKR

k (y) is expensive.
Having a zero sum after rZS rounds in the decryption direction with respect

to the subset X ⊆ (F2n)t means that
⊕

x∈X
E−rZS

k (x) = 0.

The main observation behind our attack is the following: We exploit the relation9

0 =
⊕

x∈X
E−rZS

k (x) =
⊕

x∈X

(
ErKR

k ◦ E−r
k

)
(x) =

⊕

y∈E−r
k (X )

ErKR
k (y) (12)

9 Note that in this representation, Er
k = ErZS

k ◦ ErKR
k and E−rZS

k = ErKR
k ◦ E−r

k .
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Algorithm 3: Attack on a generic cipher Er
k over (F2n)t.

Input: Number of rounds r of the cipher Er
k, number of rounds rZS in the

decryption direction and a subset X ⊆ (F2n)t satisfying the zero sum⊕
x∈X E−rZS

k (x) = 0.
Output: Secret key k = (k1, . . . , kt).

1 rKR ← r − rZS.
2 for each 1 ≤ i ≤ t do
3 Compute the symbolic evaluation

fi = fi(Y1, . . . , Yt, K1, . . . , Kt) = ErKR
(K1,...,Kt),i

(Y1, . . . , Yt) of word i in the
encryption direction for rKR rounds.

4 for each monomial Y i1
1 . . . Y it

t · Kj1
1 . . . Kjt

t in fi with i1 + · · · + it ≥ 1 do
5 Pi1,...,it ← 0.
6 for each x ∈ X do
7 y = (y1, . . . , yt) ← E−r

k (x), via the decryption oracle.

8 Pi1,...,it ← Pi1,...,it

⊕
yi1
1 · · · · · yit

t .

9 Replace Y i1
1 . . . Y it

t · Kj1
1 . . . Kjt

t with Pi1,...,it · Kj1
1 · · · · · Kjt

t .

10 Fi(K1, . . . , Kt) ← fi(K1, . . . , Kt).

11 Find a solution k = (k1, . . . , kt) of F1(k1, . . . , kt) = · · · = Ft(k1, . . . , kt) = 0.
12 return k = (k1, . . . , kt).

to set up the following equations (1 ≤ i ≤ t) over F2n in the variables k1, . . . , kt:

Fi(k1, . . . , kt) :=
⊕

y∈E−r
k (X )

ErKR
(k1,...,kt),i

(y) = 0. (13)

Again, ErKR
(k1,...,kt),i

(y) denotes the symbolic evaluation of the i-th word after
rKR rounds in the encryption direction with the master key words as variables
k1, . . . , kt and evaluated at y ∈ F2n . Once we have set up the equation system
arising from Eq. (13), we apply Gröbner basis techniques to solve this system
over F2n for the key variables k1, . . . , kt.

In Algorithm 3 we summarize the approach of our generic attack and present
a pseudo code of the attack procedure. For completeness, a rough complexity
estimation of the attack is derived in [28, App. E].

6.3 Comparison with Related Work

Interpolation Attacks. Originally introduced as a standalone attack, inter-
polation attacks [36] are algebraic attacks that express the (potentially round-
reduced) cipher as a polynomial equation with unknown, key-dependent coef-
ficients, and recover these coefficients from known inputs and outputs. More
recently, this approach has been combined as a key-recovery approach together
with integral distinguishers.

Attack on CAST. In an attack [43] on the CAST cipher the authors use a higher-
order differential distinguisher to set up an equation system and finally solve
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this systems for the key variables. In contrast to our attack, the authors of [43]
work with linear equation systems over F2. While this is sufficient for CAST,
working at bit level is in general more expensive than working on word level
when analyzing ciphers that are natively defined at word level.

Optimized Interpolation Attacks. One type of optimized interpolation attacks
was described in [23], where the authors find attacks on reduced-round versions
of LowMC which are more efficient than previous attacks based on key guess-
ing [25]. A similar attack was also used to break the full-round version of the
Frit permutation in an Even–Mansour setting [26]. The overall strategy of this
interpolation attack is to find a distinguisher (for example a constant sum in
the encryption direction in the case of LowMC) with which one attacks the
construction by finding the unknown monomials of the sums of the symbolic
representations in the inverse direction. By determining these (key-dependent)
monomials, the full key can eventually be found. Since the approach in [23]
shares some similarities with our proposal, we describe the differences between
these two strategies in detail.

The main difference regarding the two strategies concerns the way in which
the system of equations Fi(K) = 0 is constructed and consequently solved:

– In [23], the idea is to construct the function using a “standard” interpolation
technique. Specifically, the attacker does not care about the specification of
the monomials of F , which are simply considered as unknowns. Hence, the
idea is to recover (interpolate) the unknown coefficients of FK(C), and then
use various ad-hoc techniques (which are not part of the framework described
in this section) in order to recover the actual secret key.

– In our case, we heavily exploit the simple algebraic structure of the round
function in order to construct the system of equations Fi(K) = 0. In other
words, the system of equations is constructed by using a symbolic evaluation
and not by interpolation techniques.

We emphasize that the possibility to set up one of the two attacks does
not imply the possibility to set up the other one. For example, it seems hard
to use the attack presented in [23] against full-round MiMC, while we show
that our strategy can break it. Indeed, since we already need 2n−1 data for the
distinguishing property (i.e., half of the code book), we do not see how to apply
the approach from [23] to MiMC without further increasing the data complexity
due to data needed for the interpolation step.

Attack on Pyjamask. Only recently, a similar attack on Pyjamask, competing
in the ongoing NIST call for lightweight authenticated encryption, has been
presented [27]. The authors propose an attack on the full block cipher Pyjamask-
96 by combining higher-order differentials with an in-depth ad-hoc analysis of
the system of equations obtained for 2.5 rounds of Pyjamask-96. As is the case
for CAST, the attack is set up at bit level.
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Cube Attacks. Although our attack and cube attacks [24] exploit low degrees
in the polynomial description of a cipher, they are quite different from a concep-
tual point of view and can be regarded as two different cryptanalytic methods.
To justify this conclusion, we briefly present the idea behind cube attacks and
contrast them with our attack ideas.

Given a cipher with input variables x0, . . . , xn−1 as the public variables (IV
bits, plaintext bits, tweak bits, etc.), and xn, . . . , xn+m−1 as the secret variables
(key bits), the output of the cipher can be regarded as a polynomial f = f(x)
in x = (x0, . . . , xn+m−1). For every set I ⊂ {0, . . . , n − 1}, f can be uniquely
decomposed into

f = tI · fS(I) + q,

where tI :=
∏

i∈I xi denotes the product of all variables indexed by elements
in I, the polynomial fS(I) does not contain any variables from tI , and where
q misses at least one variable from tI . The polynomial fS(I) is also called the
superpoly with respect to I. For any subset I ⊆ {0, . . . , n − 1} of size |I|, the
authors of [24] call the set CI of 2|I| vectors, where all the |I| variables indexed
by I range over all possible combinations of elements in F2 and the remaining
n+m−|I| variables remain undetermined, a |I|-dimensional Boolean cube. Then
the sum of f over all values in the cube CI yields the equation of polynomials

⊕

v∈CI

f(v) = fS(I).

Cube attacks consist of two steps. First, attackers recover the superpoly in
the offline phase. In this phase, the attacker might need to try sufficiently many
cubes and assignments for the remaining public variables such that the superpoly
fS(I) is a balanced function of the secret variables. Moreover, determining the
actual coefficients of fS(I) requires the additional assumption that the attacker
is allowed to tweak both public and secret variables. Then, with this usable
superpoly, during the online phase, the attacker leaves the secret variables unde-
termined and queries the encryption oracle with every value c ∈ CI and gets
f(c) ∈ F. Eventually, the attacker computes

fI :=
⊕

c∈CI

f(c).

The secret key information can be recovered by solving the corresponding equa-
tion system fI = fS(I).

Compared with our attack, cube attacks involve an initial step of finding
balanced superpolies that contain independent secret variables. Apart from that,
cube attacks do not exploit the algebraic structure of a cipher, since they rely
on the assumption of tweakable black box polynomials. In this sense, our attack
is different, since it makes heavy use of the algebraic structure of a cipher when
symbolically evaluating a certain number of rounds. Furthermore, cube attacks
use the assumption that both key and plaintext variables are tweakable, while
we rely on the assumption that some rounds of the cipher can be efficiently
evaluated symbolically (which is why we work with low-degree round functions).
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7 Concluding Remarks and Future Work

Reducing the Cost of the Attack. As shown in [28, App. E], two steps – namely,
(1st) the construction of the system of equations Fi(k1, . . . , kt) = 0 for 1 ≤ i ≤ t
and (2nd) solving such a system – mainly constitute the cost of the attack. In
general, it could make sense to balance the costs of the two steps in order to
either minimize the total cost of the attack or maximize the number of rounds
that can be broken.

In more detail, consider the case in which the cost of the attack is well
approximated by the cost of constructing the system of equations Fi(K) = 0.
Since this cost grows with the size of the subspace V, one strategy could be to
consider a smaller subset X .10 Obviously, this implies in general the possibility
to cover fewer rounds rZS using a higher-order distinguisher, which means that
more rounds rKR must be covered in general. However, the overall cost of the
attack may benefit from this strategy. On the other hand, the case in which the
attack cost is well approximated by the cost of solving the system of equations
Fi(K) = 0 requires the opposite strategy.

Moreover, we point out that the attacks can be improved by exploiting the
details of the cipher. To give a concrete example, consider the case of MiMC
given in Algorithm 1: The attack and its computational complexity benefit from
the fact that F (K) does not depend on P5 or P7. As another example, consider
the case of an SPN cipher where the round function is defined as

R(x = (x1, . . . , xt)) = M × (S(x1), S(x2), . . . , S(xt)),

where M ∈ (F2n)t×t and S : F2n → F2n (here, ‘×’ denotes matrix-vector mul-
tiplication). The cost of the attack can potentially be reduced by taking into
account the fact that all monomials in the polynomial representation R depend
only on a single variable xi.

Further Generalization: Ciphers over Fp. Finally, the attack strategy can be
generalized to include ciphers over (Fp)t for a prime p. This is of particular
importance since many of the new applications named in the introduction (e.g.,
STARKs and MPC) natively work over Fp, which means that many of the
recently proposed primitives are natively constructed over Fp. We remark that
the strategy of the attack does not depend on the details of the field F. Hence,
the only thing that seems to preclude this possibility seems to be a lack of knowl-
edge regarding efficient distinguishers over (Fp)t. Indeed, while it is well-known
how to find a higher-order distinguisher over Boolean fields (e.g., by exploiting
division property tools present in the literature [47,51,53]), the same is not yet
true for prime fields.

10 We note that we cannot adopt this strategy for MiMC since we are not able to
predict the growth of the degree of MiMC−1. With such an estimation, the strategy
proposed here can potentially reduce the cost of the attack.
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28. Eichlseder, M., Grassi, L., Lüftenegger, R., Øygarden, M., Rechberger, C.,
Schofnegger, M., Wang, Q.: An algebraic attack on ciphers with low-degree round
functions: application to full MiMC. IACR Cryptol. ePrint Arch. 2020, 182 (2020)

29. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, (3ed) Cambridge
University Press, New York (2013)

https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/978-3-642-34047-5_3
https://doi.org/10.1007/978-3-642-21702-9_15
https://doi.org/10.1007/3-540-46035-7_34
https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-319-30840-1_6
https://doi.org/10.1007/978-3-030-38471-5_7
https://doi.org/10.1007/978-3-030-38471-5_7


An Algebraic Attack on Ciphers with Low-Degree Round Functions 505

30. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.:
Starkad and Poseidon: New Hash Functions for Zero Knowledge Proof Systems.
Cryptology ePrint Archive, Report 2019/458 (2019)
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Abstract. In this paper, we show how to significantly improve alge-
braic techniques for solving the MinRank problem, which is ubiquitous
in multivariate and rank metric code based cryptography. In the case of
the structured MinRank instances arising in the latter, we build upon a
recent breakthrough [11] showing that algebraic attacks outperform the
combinatorial ones that were considered state of the art up until now.
Through a slight modification of this approach, we completely avoid
Gröbner bases computations for certain parameters and are left only
with solving linear systems. This does not only substantially improve
the complexity, but also gives a convincing argument as to why alge-
braic techniques work in this case. When used against the second round
NIST-PQC candidates ROLLO-I-128/192/256, our new attack has bit
complexity respectively 71, 87, and 151, to be compared to 117, 144,
and 197 as obtained in [11]. The linear systems arise from the nullity
of the maximal minors of a certain matrix associated to the algebraic
modeling. We also use a similar approach to improve the algebraic Min-
Rank solvers for the usual MinRank problem. When applied against the
second round NIST-PQC candidates GeMSS and Rainbow, our attack
has a complexity that is very close to or even slightly better than those
of the best known attacks so far. Note that these latter attacks did not
rely on MinRank techniques since the MinRank approach used to give
complexities that were far away from classical security levels.

Keywords: Post-quantum cryptography · NIST-PQC candidates ·
Rank metric code-based cryptography · Algebraic attack

1 Introduction

Rank Metric Code-Based Cryptography. In the last decade, rank metric
code-based cryptography has proved to be a powerful alternative to traditional
c© International Association for Cryptologic Research 2020
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code-based cryptography based on the Hamming metric. This thread of research
started with the GPT cryptosystem [22] based on Gabidulin codes [21], which
are rank metric analogues of Reed-Solomon codes. However, the strong algebraic
structure of those codes was successfully exploited for attacking the original GPT
cryptosystem and its variants with the Overbeck attack [34] (see [32] for the lat-
est developments). This is similar to the Hamming metric situation where essen-
tially all McEliece cryptosystems based on Reed-Solomon codes or variants of
them have been broken. However, recently a rank metric analogue of the NTRU
cryptosystem [28] has been designed and studied, starting with the pioneering
paper [23]. NTRU relies on a lattice with vectors of rather small Euclidean norm.
It is precisely those vectors that allow an efficient decoding/deciphering process.
The decryption of the cryptosystem proposed in [23] relies on LRPC codes with
rather short vectors in the dual code, but this time for the rank metric. This
cryptosystem can also be viewed as the rank metric analogue of the MDPC
cryptosystem [31] relying on short dual code vectors for the Hamming metric.

This new way of building rank metric code-based cryptosystems has led to a
sequence of proposals [5,6,23,25], culminating in submissions to the NIST post-
quantum competition [2,3], whose security relies solely on decoding codes in rank
metric with a ring structure similar to those used in lattice-based cryptography.
Interestingly enough, one can also build signature schemes using the rank metric;
even though early attempts which relied on masking the structure of a code [9,26]
have been broken [16], a promising recent approach [8] only considers random
matrices without structural masking.

Decoding Fqm-Linear Codes in Rank Metric. In other words, in rank metric
code-based cryptography we are now only left with assessing the difficulty of the
decoding problem in rank metric. The trend there is to consider linear codes of
length n over an extension Fqm of degree m of Fq, i.e., Fqm -linear subspaces of
F

n
qm . Let (β1, . . . , βm) be any basis of Fqm as a Fq-vector space. Then words of

those codes can be interpreted as matrices with entries in the ground field Fq

by viewing a vector x = (x1, . . . , xn) ∈ F
n
qm as a matrix Mat(x) = (Xij)i,j in

F
m×n
q , where (Xij)1≤i≤m is the column vector formed by the coordinates of xj

in (β1, . . . , βm), i.e., xj = β1X1j + · · · + βmXmj . Then the “rank” metric d on
F

n
qm is the rank metric on the associated matrix space, namely

d(x,y) := |y − x|rank , where we define |x|rank := Rank (Mat(x)) .

Hereafter, we will use the following terminology.

Problem 1 ((m,n, k, r)-decoding problem).
Input : an Fqm-basis (c1, . . . , ck) of a subspace C of F

n
qm , an integer r ∈ N,

and a vector y ∈ F
n
qm such that |y − c|rank ≤ r for some c ∈ C.

Output : c ∈ C and e ∈ F
n
qm such that y = c + e and |e|rank ≤ r.

This problem is known as the Rank Decoding problem, written RD. It is equiv-
alent to the Rank Syndrome Decoding problem, for which one uses the parity
check matrix of the code. There are two approaches to solve RD instances: the
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combinatorial ones such as [10,24] and the algebraic ones. For some time it was
thought that the combinatorial approach was the most threatening attack on
such schemes especially when q is small, until [11] showed that even for q = 2
the algebraic attacks outperform the combinatorial ones. If the conjecture made
in [11] holds, the complexity of solving by algebraic attacks the decoding problem
is of order 2O(r log n) with a constant depending on the code rate R = k/n.

Even if the decoding problem is not known to be NP-complete for these Fqm-
linear codes, there is a randomized reduction to an NP-complete problem [27]
(namely to decoding in the Hamming metric). The region of parameters which
is of interest for the NIST submissions corresponds to m = Θ (n), k = Θ (n) and
r = Θ (

√
n).

The MinRank Problem. The MinRank problem was first mentioned in [13]
where its NP-completeness was also proven. We will consider here the homoge-
neous version of this problem which corresponds to

Problem 2 (MinRank problem).
Input : an integer r ∈ N and K matrices M1, . . . ,MK ∈ F

m×n
q .

Output : field elements x1, x2, . . . , xK ∈ Fq that are not all zero such that

Rank

(
K∑

i=1

xiM i

)
≤ r.

It plays a central role in public key cryptography. Many multivariate schemes
are either directly based on the hardness of this problem [15] or strongly related
to it as in [35–37] and the NIST post-quantum competition candidates Gui [17],
GeMSS [14] or Rainbow [18]. It first appeared in this context as part of Kipnis-
Shamir’s attack [29] against the HFE cryptosystem [35]. It is also central in rank
metric code-based cryptography, because the RD problem reduces to MinRank
as explained in [19] and actually the best algorithms for solving this problem
are really MinRank solvers taking advantage of the Fqm underlying structure as
in [11]. However the parameter region generally differs. When the RD problem
arising from rank metric schemes is treated as a MinRank problem we generally
have K = Θ

(
n2
)

and r is rather small r = Θ (
√

n)) whereas for the multivariate
cryptosystems K = Θ (n) but r is much bigger.

The current best known algorithms for solving the MinRank problem have
exponential complexity. Many of them are obtained by an algebraic approach
too consisting in modeling the MinRank problem by an algebraic system and
solving it with Gröbner basis techniques. The main modelings are the Kipnis-
Shamir modeling [29] and the minors modeling [20]. The complexity of solving
MinRank using these modelings has been investigated in [19,20,38]. In particular
[38] shows that the bilinear Kipnis-Shamir modeling behaves much better than
generic bilinear systems with respect to Gröbner basis techniques.

Our Contribution. Here we follow on from the approach in [11] and propose
a slightly different modeling to solve the RD problem. Roughly speaking the
algebraic approach in [11] is to set up a bilinear system satisfied by the error we
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are looking for. This system is formed by two kinds of variables, the “coefficient”
variables and the “support” variables. It is implicitly the modeling considered
in [33]. The breakthrough obtained in [11] was to realize that

– the coefficient variables have to satisfy “maximal minor” equations: the max-
imal minors of a certain r × (n − k − 1) matrix (i.e. the r × r minors) with
entries being linear forms in the coefficient variables have to be equal to 0.

– these maximal minors are themselves linear combinations of maximal minors
cT of an r × n matrix C whose entries are the coefficient variables.

This gives a linear system in the cT ’s provided there are enough linear equations.
Moreover the original bilinear system has many solutions and there is some
freedom in choosing the coefficient variables and the support variables. With the
choice made in [11] the information we obtain about the cT ’s is not enough to
recover the coefficient variables directly. In this case the last step of the algebraic
attack still has to compute a Gröbner basis for the algebraic system consisting
of the original system plus the information we have on the cT ’s.

Our new approach starts by noticing that there is a better way to use the
freedom on the coefficient variables and the support variables: we can actually
specify so many coefficient variables that all those that remain unknown are
essentially equal to some maximal minor cT of C. With this we avoid the Gröbner
basis computation: we obtain from the knowledge of the cT ’s the coefficient
variables and plugging in theses values in the original bilinear system we are left
with solving a linear system in the support variables. This new approach gives a
substantial speed-up in the computations for solving the system. It results in the
best practical efficiency and complexity bounds that are currently known for the
decoding problem; in particular, it significantly improves upon [11]. We present
attacks for ROLLO-I-128, ROLLO-I-192, and ROLLO-I-256 with bit complexity
respectively in 70, 86, and 158, to be compared to 117, 144, and 197 obtained
in [11]. The difference with [11] is significant since as there is no real quantum
speed-up for solving linear systems, the best quantum attacks for ROLLO-I-192
remained the quantum attack based on combinatorial attacks, when our new
attacks show that ROLLO parameters are broken and need to be changed.

Our analysis is divided into two categories: the “overdetermined” and the
“underdetermined” case. An (m,n, k, r)-decoding instance is overdetermined if

m

(
n − k − 1

r

)
≥
(

n

r

)
− 1. (1)

This really corresponds to the case where we have enough linear equations by
our approach to find all the cT ’s (and hence all the coefficient variables). In that
case we obtain a complexity in

O
(

m

(
n − p − k − 1

r

)(
n − p

r

)ω−1
)

(2)

operations in the field Fq, where ω is the constant of linear algebra and
p = max{i : i ∈ {1..n},m

(
n−i−k−1

r

) ≥ (n−i
r

)− 1} represents, in case the overde-
termined condition (1) is comfortably fulfilled, the use of punctured codes. This
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complexity clearly supersedes the previous results of [11] in terms of complexity
and also by the fact that it does not require generic Gröbner Basis algorithms.
In a rough way for r = O (

√
n) (the type of parameters used for ROLLO and

RQC), the recent improvements on algebraic attacks can be seen as this: before
[11] the complexity for solving RD involved a term in O(n2) in the upper part
of a binomial coefficient, the modeling in [11] replaced it by a term in O

(
n

3
2

)
whereas our new modeling involves a term in O(n) at a similar position. This
leads to a gain in the exponential coefficient of order 30% compared to [11] and
of order 50% compared to approaches before [11]. Notice that for ROLLO and
RQC only parameters with announced complexities 128 and 192 bits satisfied
condition (1) but not parameters with announced complexities 256 bits.

When condition (1) is not fulfilled, the instance can either be underdeter-
mined or be brought back to the overdetermined area by an hybrid approach
using exhaustive search with exponential complexity to guess few variables in the
system. In the underdetermined case, our approach is different from [11]. Here we
propose an approach using reduction to the MinRank problem and a new way to
solve it. Roughly speaking we start with a quadratic modeling of MinRank that
we call “support minors modeling” which is bilinear in the aforementioned coef-
ficient and support variables and linear in the so called “linear variables”. The
last ones are precisely the xi’s that appear in the MinRank problem. Recall that
the coefficient variables are the entries of a r × n matrix C. The crucial obser-
vation is now that for all positive integer b all maximal minors of any (r + b)×n
matrix obtained by adding to C any b rows of

∑
i xiM i are equal to 0. These

minors are themselves linear combinations of terms of the form mcT where cT is
a maximal minor of C and m a monomial of degree b in the xi’s. We can predict
the number of independent linear equations in the mcT ’s we obtain this way
and when the number of such equations is bigger than the number of mcT ’s we
can recover their values and solve the MinRank problem by linearization. This
new approach is not only effective in the underdetermined case of the RD prob-
lem it can also be quite effective for some multivariate proposals made to the
NIST competition. In the case of the RD problem, it improves the attacks on [7]
made in [11] for the parameter sets with the largest values of r (corresponding
to parameters claiming 256 bits of security). The multivariate schemes that are
affected by this new attack are for instance GeMSS and Rainbow. On GeMSS it
shows MinRank attacks together with this new way of solving MinRank come
close to the best known attacks against this scheme. On Rainbow it outperforms
slightly the best known attacks for certain high security parameter sets.

At last, not only do these two new ways of solving algebraically the RD or
MinRank problem outperform previous algebraic approaches in certain parame-
ter regimes, they are also much better understood: we do not rely on heuristics
based on the first degree fall as in [11,38] to analyze its complexity, but it really
amounts to solve a linear system and understand the number of independent
linear equations that we obtain which is something for which we have been able
to give accurate formulas predicting the behavior we obtain experimentally.
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2 Notation

In what follows, we use the following notation and definitions:

– Matrices and vectors are written in boldface font M .
– The transpose of a matrix M is denoted by Mᵀ.
– For a given ring R, the set of matrices with n rows, m columns and coefficients

in R is denoted by Rn×m.
– {1..n} stands for the set of integers from 1 to n.
– For a subset I ⊂ {1..n}, #I stands for the number of elements in I.
– For two subsets I ⊂ {1..n} and J ⊂ {1..m}, we write M I,J for the submatrix

of M formed by its rows (resp. columns) with index in I (resp. J).
– For an m × n matrix M we use the shorthand notation M∗,J = M{1..m},J

and M i,j for the entry in row i and column j.
– |M | is the determinant of a matrix M , |M |I,J is the determinant of the

submatrix M I,J and |M |∗,J is the determinant of M∗,J .
– α ∈ Fqm is a primitive element, that is to say that (1, α, . . . , αm−1) is a basis

of Fqm seen as an Fq-vector space.
– For v = (v1, . . . , vn) ∈ F

n
qm , the support of v is the Fq-vector subspace of Fqm

spanned by the vectors v1, . . . , vn. Thus this support is the column space of
the matrix Mat(v) associated to v (for any choice of basis), and its dimension
is precisely Rank(Mat(v)).

– An [n, k] Fqm-linear code is an Fqm-linear subspace of Fn
qm of dimension k.

3 Algebraic Modeling of the MinRank and the Decoding
Problem

3.1 Modeling of MinRank

The modeling for MinRank we consider here is related to the modeling used for
decoding in the rank metric in [11]. The starting point is that, in order to solve
Problem 2, we look for a nonzero solution (S,C,x) ∈ F

m×r
q × F

r×n
q × F

K
q of

SC =
K∑

i=1

xiM i. (3)

S is an unknown matrix whose columns give a basis for the column space of
the matrix

∑K
i=1 xiM i of rank ≤ r we are looking for. The j-th column of C

represents the coordinates of the j-th column of the aforementioned matrix in
this basis. We call the entries of S the support variables, and the entries of C
the coefficient variables. Note that in the above equation, the variables xi only
occur linearly. As such, we will dub them the linear variables.

Let rj be the j-th row of
∑K

i=1 xiM i. (3) implies that each row rj is in
the rowspace of C (or in coding theoretic terms rj should belong to the code
C := {uC,u ∈ F

r
q}. The following (r+1)×n matrix C′

j is therefore of rank ≤ r:

C ′
j =

(
rj

C

)
.
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Therefore, all the maximal minors of this matrix are equal to 0. These maximal
minors can be expressed via cofactor expansion with respect to their first row.
In this way, they can be seen as bilinear forms in the xi’s and the r × r minors
of C. These minors play a fundamental role in the whole paper and we use the
following notation for them.

Notation 1. Let T ⊂ {1..n} with #T = r. Let cT be the maximal minor of C
corresponding to the columns of C that belong to T , i.e.

cT := |C|∗,T .

These considerations lead to the following algebraic modeling.

Modelling 1 (Support Minors modeling). We consider the system of bilin-
ear equations, given by canceling the maximal minors of the m matrices C ′

j:{
f = 0

∣∣∣f ∈ MaxMinors
(

rj

C

)
, j ∈ {1..m}

}
. (4)

This system contains:

– m
(

n
r+1

)
bilinear equations with coefficients in Fq,

– K +
(
n
r

)
unknowns: x = (x1, · · · , xK) and the cT ’s, T ⊂ {1..n} with #T = r.

We search for the solutions xi, cT ’s in Fq.

Remark 1.

1. One of the point of having the cT as unknowns instead of the coefficients Cij

of C is that, if we solve (4) in the xi and the Cij variables, then there are many
solutions to (4) since when (x,C) is a solution for it, then (x,AC) is also a
solution for any invertible matrix A in F

r×r
q . With the cT variables we only

expect a space of dimension 1 for the cT corresponding to the transformation
cT �→ |A| cT that maps a given solution of (4) to a new one.

2. Another benefit brought by replacing the Cij variables by the cT ’s is that it
decreases significantly the number of possible monomials for writing the alge-
braic system (4) (about r! times less). This allows for solving this system by
linearization when the number of equations of the previous modeling exceeds
the number of different xicT monomials minus 1, namely when

m

(
n

r + 1

)
≥ K

(
n

r

)
− 1. (5)

This turns out to be “almost” the case for several multivariate cryptosystem
proposals based on the MinRank problem where K is generally of the same
order as m and n.
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3.2 The Approach Followed in [11] to Solve the Decoding Problem

In what follows, we consider the (m,n, k, r)-decoding problem for a code C of
length n, dimension k over Fqm with a y ∈ F

n
qm at distance r from C and look

for c ∈ C and e such that y = c + e and |e| = r. We assume that there
is a unique solution to this problem (which is relevant for our cryptographic
schemes). The starting point is the Ourivksi-Johansson approach, consisting in
considering the linear code C̃ = C + 〈y〉. From now on, let G̃ = (Ik+1 R)
(respectively H̃ = (−Rᵀ In−k−1)) be the generator matrix in systematic form
(respectively a parity-check matrix) of the extended code C̃. By construction,
e belongs to C̃ as well as all its multiples λe, λ ∈ Fqm . Looking for non-zero
codewords in C̃ of rank weight r has at least qm − 1 different solutions, namely
all the λe for λ ∈ F

×
qm .

It is readily seen that finding such codewords can be done by solving
the (homogeneous) MinRank problem with M ij := Mat(αi−1cj) (we adopt
a bivariate indexing of the M i’s which is more convenient here), for (ij) ∈
{1..m}×{1..k +1} and where c1, · · · , ck+1 is an Fqm -basis of C̃. This is because
the αi−1cj ’s form an Fq-basis of C̃. However, the problem with this approach is
that K = (k + 1)m = Θ

(
n2
)

for the parameters relevant to cryptography. This
is much more than for the multivariate cryptosystems based on MinRank and
(5) is far from being satisfied here. However, as observed in [11], it turns out in
this particular case, it is possible because of the Fqm linear structure of the code,
to give an algebraic modeling that only involves the entries of C. It is obtained
by introducing a parity-check matrix for C̃, that is a matrix H whose kernel is
C̃:

C̃ = {c ∈ F
n
qm : cHᵀ = 0}.

In our Fqm linear setting the solution e we are looking for can be written as

e =
(
1 α . . . αm−1

)
SC, (6)

where S ∈ F
m×r
q and C ∈ F

r×n
q play the same role as in the previous subsection:

S represents a basis of the support of e in
(
F

m
q

)r and C the coordinates of e in
this basis. By writing that e should belong to C̃ we obtain that(

1 α . . . αm−1
)
SCHᵀ = 0n−k−1. (7)

This gives an algebraic system using only the coefficient variables as shown by

Proposition 1 ([11], Theorem 2). The maximal minors of the r × (n−k −1)
matrix CHᵀ are all equal to 0.

Proof. Consider the following vector in F
r
q: e′ :=

(
1 α . . . αm−1

)
S whose entries

generate (over Fq) the subspace generated by the entries of e (i.e. its support).
Substituting

(
1 α . . . αm−1

)
S for e′ in (7) yields e′CHᵀ = 0n−k−1. This shows

that the r × n matrix CHᵀ is of rank ≤ r − 1. ��
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These minors CHᵀ are polynomials in the entries of C with coefficients in
Fqm . Since these entries belong to Fq, the nullity of each minor gives m algebraic
equations corresponding to polynomials with coefficients in Fq. This involves the
following operation.

Notation 2. Let S := {∑j aijmij = 0, 1 ≤ i ≤ N} be a set of polynomial
equations where the mij’s are the monomials in the unknowns that are assumed
to belong to Fq, whereas the aij’s are known coefficients that belong to Fqm . We
define the aijk’s as aij =

∑m−1
k=0 aijkαk, where the aijk’s belong to Fq. From this

we can define the system “unfolding” over Fq as

UnFold(S) :=

⎧⎨
⎩
∑

j

aijkmij = 0, 1 ≤ i ≤ N, 0 ≤ k ≤ m − 1

⎫⎬
⎭ .

The important point is that the solutions of S over Fq are exactly the solutions
of UnFold(S) over Fq, so that in that sense the two systems are equivalent.

By using the Cauchy-Binet formula, it is proved [11, Prop. 1] that the max-
imal minors of CHᵀ, which are polynomials of degree ≤ r in the coefficient
variables Cij , can actually be expressed as linear combinations of the cT ’s. In
other words we obtain m

(
n−k−1

r

)
linear equations over Fq by “unfolding” the(

n−k−1
r

)
maximal minors of CHᵀ. We denote such a system by

UnFold ({f = 0|f ∈ MaxMinors(CHᵀ)}) . (8)

It is straightforward to check that some variables in C and S can be spe-
cialized. The choice which is made in [11] is to specialize S with its r first rows
equal to the identity (S{1..r},∗ = Ir), its first column to 1ᵀ = (1, 0, . . . , 0)ᵀ and
C has its first column equal to 1ᵀ. It is proved in [11, Section 3.3] that if the
first coordinate of e is nonzero and the top r × r block of S is invertible, then
the previous specialized system has a unique solution. Moreover, this will always
be the case up to a permutation of the coordinates of the codewords or a change
of Fqm -basis.

It is proved in [11, Prop. 2] that a degree-r Gröbner basis of the unfolded
polynomials MaxMinors is obtained by solving the corresponding linear system
in the cT ’s. However, this strategy of specialization does not reveal the entries of
C (it only reveals the values of the cT ’s). To finish the calculation it still remains
to compute a Gröbner basis of the whole algebraic system as done in [11, Step
5, §6.1]). There is a simple way to avoid this computation by specializing the
variables of C in a different way. This is the new approach we explain now.

3.3 The New Approach : Specializing the Identity in C

As in the previous approach we note that if (S,C) is a solution of (7) then
(SA−1,AC) is also a solution of it for any invertible matrix A in F

r×r
q . Now,

when the first r columns of a solution C form a invertible matrix, we will still
have a solution with the specialization

C =
(
Ir C ′) .
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We can also specialize the first column of S to 1ᵀ =
(
1 0 . . . 0

)ᵀ. If the first r
columns of C are not independent, it suffices as in [11, Algo. 1] to make several
different attempts of choosing r columns. The point of this specialization is that

– the corresponding cT ’s are equal to the entries Cij of C up to an unessential
factor (−1)r+i whenever T = {1..r}\{i}∪ {j} for any i ∈ {1..r} and j ∈ {r +
1..n}. This follows on the spot by writing the cofactor expansion of the minor
cT = |C|∗,{1..r}\{i}∪{j}. Solving the linear system in the cT ’s corresponding to
(8) yields now directly the coefficient variables Cij . This avoids the subsequent
Gröbner basis computation, since once we have C we obtain S directly by
solving (7) which has become a linear system.

– it is readily shown that any solution of (8) is actually a projection on the Cij

variables of a solution (S,C) of the whole system (see Proposition 3). This
justifies the whole approach.

In other words we are interested here in the following modeling

Modelling 2. We consider the system of linear equations, given by unfolding
all maximal minors of

(
Ir C ′)Hᵀ:

UnFold
({

f = 0
∣∣∣f ∈ MaxMinors

((
Ir C ′)Hᵀ)}) . (9)

This system contains:

– m
(
n−k−1

r

)
linear equations with coefficients in Fq,

–
(
n
r

)− 1 unknowns: the cT ’s, T ⊂ {1..n} with #T = r, T �= {1..r}.
We search for the solutions cT ’s in Fq.

Note that from the specialization, c{1..r} = 1 is not an unknown. For the reader’s
convenience, let us recall the specific form of these equations which is obtained
by unfolding the following polynomials (see [11, Prop. 2] and its proof).

Proposition 2. MaxMinors(CHᵀ) contains
(
n−k−1

r

)
polynomials of degree r

over Fqm , indexed by the subsets J ⊂ {1..n − k − 1} of size r, that are the

PJ =
∑

T1⊂{1..k+1},T2⊂J,
#T1+#T2=r

T=T1∪(T2+k+1)

(−1)σJ (T2) |R|T1,J\T2
cT , (10)

where the sum is over all subsets T1 ⊂ {1..k + 1} and T2 subset of J , with
#T1 +#T2 = r, and σJ(T2) is an integer depending on T2 and J . We denote by
T2 + k + 1 the set {i + k + 1 : i ∈ T2}.
Let us show now that the solutions of this linear system are projections of the
solutions of the original system. For this purpose, let us bring in

– The original system (7) over Fqm obtained with the aforementioned special-
ization

FC =
{(

1 α · · · αm−1
) (

1ᵀ S′) (Ir C ′)Hᵀ = 0n−k−1

}
, (11)

where 1ᵀ =
(
1 0 . . . 0

)ᵀ, S =
(
1ᵀ S′) and C =

(
Ir C ′).
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– The system in the coefficient variables we are interested in
FM =

{
f = 0

∣∣∣f ∈ MaxMinors
((

Ir C ′)Hᵀ)} .

– Let VFq
(FC) be the set of solutions of (11) with all variables in Fq, that is

VFq
(FC) =

{
(S∗,C∗) ∈ Fq

m(r−1)+r(n−r) : (1α · · · αm−1)(1ᵀ S∗)(Ir C∗)

Hᵀ = 0
}

.

– Let VFq
(FM ) be the set of solutions of FM with all variables in Fq, i.e.

VFq
(FM ) =

{
C∗ ∈ Fq

r(n−r) : RankFqm

((
Ir C∗)Hᵀ) < r

}
.

With these notations at hand, we now show that solving the decoding prob-
lem is left to solve the MaxMinors system depending only on the C variables.

Proposition 3. If e can be uniquely decoded and has rank r, then

VFq
(FM ) =

{
C∗ ∈ F

r(n−r)
q : ∃S∗ ∈ F

m(r−1)
q s.t. (S∗,C∗) ∈ VFq

(FC)
}

, (12)

that is VFq
(FM ) is the projection of VFq

(FC) on the last r(n − r) coordinates.

Proof. Let (S∗,C∗) ∈ VFq
(FC), then

(
1 S∗

2 . . . S∗
r

)
=
(
1 α · · · αm−1

) (
1ᵀ S∗)

belongs to the left kernel of the matrix
(
Ir C∗)Hᵀ. Hence this matrix has rank

less than r, and C∗ ∈ VFq
(FM ). Reciprocally, if C∗ ∈ VFq

(FM ), then the matrix(
Ir C∗)Hᵀ has rank less than r, hence its left kernel over Fqm contains a non

zero element (S∗
1 , . . . , S∗

r ) = (1, α, . . . , αm−1)S∗ with the coefficients of S∗ in Fq.
But S∗

1 cannot be zero, as it would mean that (0, S∗
2 , . . . , S∗

r )
(
Ir C∗) is an error

of weight less than r solution of the decoding problem, and we assumed there
is only one error of weight exactly r solution of the decoding problem. Then,
(S∗

1
−1(S∗

2 , . . . , S∗
r ),C∗) ∈ VFq

(FC). ��

4 Solving RD: Overdetermined Case

In this section, we show that, when the number of equations is sufficiently large,
we can solve the system given in Modeling 2 with only linear algebra computa-
tions, by linearization on the cT ’s.

4.1 The Overdetermined Case

The linear system given in Modeling 2 is described by the following matrix
MaxMin with rows indexed by (J, i) : J ⊂ {1..n−k−1},#J = r, 0 ≤ i ≤ m−1
and columns indexed by T ⊂ {1..n} of size r, with the entry in row (J, i) and
column T being the coefficient in αi of the element ± |R|T1,J\T2

∈ Fqm . More
precisely, we have

MaxMin[(J, i), T ] =

{
0 ifT2 �⊂ J

[αi](−1)σJ (T2)(|R|T1,J\T2
) ifT2 ⊂ J,

(13)

with T1 = T ∩ {1..k + 1},

and T2 = (T ∩ {k + 2..n}) − (k + 1).
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The matrix MaxMin can have rank
(
n
r

)−1 at most; indeed if it had a maximal
rank of

(
n
r

)
, this would imply that all cT ’s are equal to 0, which is in contradiction

with the assumption c{1..r} = 1.

Proposition 4. If MaxMin has rank
(
n
r

)−1, then the right kernel of MaxMin

contains only one element
(
c 1
) ∈ F

(n
r)

q with value 1 on its component corre-
sponding to c{1..r}. The components of this vector contain the values of the cT ’s,
T �= {1..r}. This gives the values of all the variables Ci,j = (−1)r+ic{1..r}\{i}∪{j}.

Proof. If MaxMin has rank
(
n
r

)− 1, then as there is a solution to the system,
a row echelon form of the matrix has the shape(

I(n
r)−1 −cᵀ

0 0

)

with c a vector in Fq of size
(
n
r

) − 1: we cannot get a jump in the stair of the
echelon form as it would imply that FM has no solution. Then

(
c 1
)

is in the
right kernel of MaxMin. ��
It is then easy to recover the variables S from (11) by linear algebra. The fol-
lowing algorithm recovers the error if there is one solution to the system (11).
It is shown in [11, Algorithm 1] how to deal with the other cases, and this can
be easily adapted to the specialization considered in this paper.

Input: Code C, vector y at distance r from C, such that m
(
n−k−1

r

) ≥ (
n
r

) − 1
and MaxMin has rank

(
n
r

) − 1
Output: The error e of weight r such that y − e ∈ C
Construct MaxMin, the m

(
n−k−1

r

) × (
n
r

)
matrix over Fq associated to the

system FM ;

Let
(
c 1

)
be the only such vector in the right kernel of MaxMin ;

Compute the values C∗ = (C∗
i,j)i,j from c;

Compute the values (S∗
1 , . . . , S

∗
r ) ∈ F

r
qm by solving the linear system

(S1, . . . , Sr)C
∗Hᵀ = 0

and taking the unique value with S∗
1 = 1;

return (1, S∗
2 , . . . , S

∗
r )C∗ ;

Algorithm 1: (m,n, k, r)-decoding in the overdetermined case.

Proposition 5. When m
(
n−k−1

r

) ≥ (
n
r

) − 1 and MaxMin has rank
(
n
r

) − 1,
then Algorithm 1 recovers the error in complexity

O
(

m

(
n − k − 1

r

)(
n

r

)ω−1
)

(14)

operations in the field Fq, where ω is the constant of linear algebra.
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Proof. To recover the error, the most consuming part is the computation of

the left kernel of the matrix MaxMin in F
m(n−k−1

r )×(n
r)

q , in the case where
m
(
n−k−1

r

) ≥ (nr)− 1.
This complexity is bounded by Eq. (14). ��
We ran a lot of experiments with random codes C such that m

(
n−k−1

r

) ≥(
n
r

) − 1, and the matrix MaxMin was always of rank
(
n
r

) − 1. That is why we
propose the following heuristic about the rank of MaxMin.

Heuristic 1 (Overdetermined case). When m
(
n−k−1

r

) ≥ (nr)− 1, with over-
whelming probability, the rank of the matrix MaxMin is

(
n
r

)− 1.

Figure 1 gives the experimental results for q = 2, r = 3, 4, 5 and different
values of n. We choose to keep m prime and close to n/1.18 to have a data set
containing the parameters of the ROLLO-I cryptosystem. We choose for k the
minimum between n

2 and the largest value leading to an overdetermined case.
We have k = n

2 as soon as n ≥ 22 for r = 3, n ≥ 36 for r = 4, n ≥ 58 for
r = 5. The figure shows that the estimated complexity is a good upper bound
for the computation’s complexity. It also shows that this upper bound is not
tight. Note that the experimental values are the complexity of the whole attack,
including building the matrix that requires to compute the minors of R. Hence
for small values of n, it may happen that this part of the attack takes more time
than solving the linear system. This explains why, for r = 3 and n < 28, the
experimental curve is above the theoretical one.

Figure 2 shows the theoretical complexity for the same parameter regime as
Fig. 1 which fit the overdetermined case. The graph starts from the first value of
n where (n/1.18, n, 2k, r) is in the overdetermined case. We can see that theoret-
ically, the cryptosystem ROLLO-I-128 with parameters (79, 94, 47, 5) needs 273

bit operations to decode an error, instead of the announced 2128 bits of security.
In the same way, ROLLO-I-192 with parameters (89, 106, 53, 6) would have 86
bits of security instead of 192. The parameters (113, 134, 67, 7) for ROLLO-I-256
are not in the overdetermined case.

There are two classical improvements that can be used to lower the complex-
ity of solving an algebraic system. The first one consists in selecting a subset of
all equations, when some of them are redundant, see Sect. 4.2. The second one
is the hybrid attack that will be explained in Sect. 4.3.

4.2 Improvement in the “Super”-Overdetermined Case by
Puncturing

We consider the case when the system is “super”-overdetermined, i.e. when the
number of rows in MaxMin is really larger than the number of columns. In that
case, it is not necessary to consider all equations, we just need the minimum
number of them to be able to find the solution.

To select the good equations (i.e. the ones that are likely to be linearly
independent), we can take the system MaxMinors obtained by considering code
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Fig. 1. Theoretical vs Experimental value of the complexity of the computation. The
computations are done using magma v2.22-2 on a machine with an IntelR© XeonR©

2.00 GHz processor (Any mention of commercial products is for information only and
does not imply endorsement by NIST ). We measure the experimental complexity in
terms of clock cycles of the CPU, given by the magma function ClockCycles(). The

theoretical value is the binary logarithm of m
(
n−k−1

r

)(
n
r

)2.81−1
. m is the largest prime

less than n/1.18, k is the minimum of n/2 (right part of the graph) and the largest
value for which the system is overdetermined (left part).

C̃ punctured on the p last coordinates, instead of the entire code. Puncturing
code C̃ is equivalent to shortening the dual code, i.e. considering the system

MaxMinors
(
C∗,{1..n−p}(H

ᵀ){1..n−p},{1..n−k−1−p}
)
. (15)

as we take H to be systematic on the last coordinates. This system is formed by
a sub-sequence of polynomials in MaxMinors that do not contain the variables
ci,j with n − p + 1 ≤ j ≤ n. This system contains m

(
n−p−k−1

r

)
equations in(

n−p
r

)
variables cT with T ⊂ {1..n − p − k − 1}. If we take the maximal value

of p such that m
(
n−p−k−1

r

) ≥ (n−p
r

)− 1, we can still apply Algorithm 1 but the
complexity is reduced to

O
(

m

(
n − p − k − 1

r

)(
n − p

r

)ω−1
)

(16)

operations in the field Fq.

4.3 Reducing to the Overdetermined Case: Hybrid Attack

Another classical improvement consists in using an hybrid approach mixing
exhaustive search and linear resolution, like in [12]. This consists in special-
izing some variables of the system to reduce an underdetermined case to an
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Fig. 2. Theoretical value of the complexity of the computation in the overdetermined
cases, which is the binary logarithm of m

(
n−k−1

r

)(
n
r

)2.81−1
. m is the largest prime less

than n/1.18, n = 2k. The axis “R1, R2, R3” correspond to the values of n for the
cryptosystems ROLLO-I-128; ROLLO-I-192 and ROLLO-I-256.

overdetermined one. For instance, if we specialize a columns of the matrix C,
we are left with solving qar linear systems MaxMin of size m

(
n−k−1

r

)× (n−a
r

)
,

and the global cost is

O
(

qarm

(
n − k − 1

r

)(
n − a

r

)ω−1
)

(17)

operations in the field Fq. In order to minimize the previous complexity (17), one
chooses a to be the smallest integer such that the condition m

(
n−k−1

r

) ≥ (n−a
r

)−1
is fulfilled. Figure 3 page 16 gives the best theoretical complexities obtained for
r = 5 . . . 9 with the best values of a and p, for n = 2k. Table 1 page 24 gives the
complexities of our attack (column “This paper”) for all the parameters in the
ROLLO and RQC submissions to the NIST competition; for the sake of clarity,
we give the previous complexity from [11].

5 Solving RD and MinRank: Underdetermined Case

This section analyzes the support minors modeling approach (Modeling 1).
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Fig. 3. Theoretical value of the complexity of RD in the overdetermined case (using
punctured codes or specialization). C is the smallest value between (17) and (16). m is
the largest prime less than n/1.18, n = 2k. The dashed axes correspond to the values
of n for the cryptosystems ROLLO-I-128; ROLLO-I-192 and ROLLO-I-256.

5.1 Solving (3) by Direct Linearization

The number of monomials that can appear in Modeling 1 is K
(
n
r

)
whereas the

number of equations is m
(

n
r+1

)
. When the solution space of (3) is of dimension

1, we expect to solve it by direct linearization whenever:

m

(
n

r + 1

)
≥ K

(
n

r

)
− 1. (18)

We did a lot of experiments as explained in Sect. 5.6, and they suggest that it is
the case.

Remark 2. Note that, in what follows, the Eq. (18) will sometimes be referred
as the “b = 1 case”.

5.2 Solving Support Minors Modeling at a Higher Degree, q > b

In the case where Eq. (18) does not hold we may produce a generalized version of
Support Minors Modeling, multiplying the Support Minors Modeling equations
by homogeneous degree b − 1 monomials in the linear variables, resulting in
a system of equations that are homogeneous degree 1 in the variables cT and
homogeneous degree b in the variables xi. The strategy will again be to linearize
over monomials. Unlike in the simpler b = 1 case, for b ≥ 2 we cannot assume that
all m

(
n

r+1

)(
K+b−2

b−1

)
equations we produce in this way are linearly independent
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up to the point where we can solve the system by linearization. In fact, we can
construct explicit linear relations between the equations starting at b = 2.

In this section, we will focus on the simpler q > b case. We will deal with the
common q = 2 case in Sect. 5.3. There is however an unavoidable complication
which occurs whenever we consider b ≥ q, q �= 2.

We can construct linear relations between the equations from determinantal
identities involving maximal minors of matrices whose first rows are some of the
rj ’s concatenated with C. For instance we may write the trivial identity for any
subset J of columns of size r + 2:∣∣∣rj

rk
C

∣∣∣
∗,J

+
∣∣∣rk
rj

C

∣∣∣
∗,J

= 0.

Notice that this gives trivially a relation between certain equations correspond-
ing to b = 2 since a cofactor expansion along the first row of

∣∣∣rj
rk
C

∣∣∣
∗,J

shows that

this maximal minor is indeed a linear combination of terms which is the mul-

tiplication of a linear variable xi with a maximal minor of the matrix
(

rk

C

)
(in other words an equation corresponding to b = 2). A similar result holds for∣∣∣rk
rj

C

∣∣∣
∗,J

where a cofactor expansion along the first row yields terms formed by

a linear variable xi multiplied by a maximal minor of the matrix
(

rj

C

)
. This

result can be generalized by considering symmetric tensors (Sj1,··· ,jr
)1≤j1≤m···
1≤jr≤m

of

dimension m of rank b ≥ 2 over Fq. Recall that these are tensors that satisfy

Sj1,··· ,jb
= Sjσ(1),··· ,jσ(b)

for any permutation σ acting on {1..b}. This is a vector space that is clearly
isomorphic to the space of homogeneous polynomials of degree b in y1, · · · , ym

over Fq. The dimension of this space is therefore
(
m+b−1

b

)
. We namely have

Proposition 6. For any symmetric tensor (Sj1,··· ,jb
)1≤j1≤m···
1≤jb≤m

of dimension m of

rank b ≥ 2 over Fq and any subset J of {1..n} of size r + b, we have:

m∑
j1=1

· · ·
m∑

jb=1

Sj1,··· ,jb

∣∣∣∣ rj1···
rjb
C

∣∣∣∣
∗,J

= 0.

Proof. Notice first that the maximal minor
∣∣∣∣rj1···
rjb
C

∣∣∣∣
∗,J

is equal to 0 whenever at

least two of the ji’s are equal. The left-hand sum reduces therefore to a sum of

terms of the form
∑

σ∈Sb
Sσ(j1),··· ,σ(jb)

∣∣∣∣
rσ (j1)···
rσ (jb )

C

∣∣∣∣
∗,J

where all the ji’s are different.

Notice now that from the fact that S is a symmetric tensor we have
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∑
σ∈Sb

Sσ(j1),··· ,σ(jb)

∣∣∣∣
rσ (j1)···
rσ (jb )

C

∣∣∣∣
∗,J

= Sj1,··· ,jb

∑
σ∈Sb

∣∣∣∣
rσ (j1)···
rσ (jb )

C

∣∣∣∣
∗,J

= 0

because the determinant is an alternating form and there as many odd and even
permutations in the symmetric group of order b when b ≥ 2. ��

This proposition can be used to understand the dimension D of the space of
linear equations we obtain after linearizing the equations we obtain for a certain
b. For instance for b = 2 we obtain m

(
n

r+1

)
K linear equations (they are obtained

by linearizing the equations resulting from multiplying all the equations of the
support minors modeling by one of the K linear variables). However as shown by
Proposition 6 all of these equations are not independent and we have

(
n

r+2

)(
m+1
2

)
linear relations coming from all relations of the kind

m∑
j=1

m∑
k=1

Sj,k

∣∣∣ rj
rk
C

∣∣∣
∗,J

= 0. (19)

In our experiments, these relations turnt out to be independent yielding that the
dimension D of this space should not be greater than m

(
n

r+1

)
K − ( n

r+2

)(
m+1
2

)
.

Experimentally, we observed that we indeed had

Dexp = m

(
n

r + 1

)
K −

(
n

r + 2

)(
m + 1

2

)
.

For larger values of b things get more complicated but again Proposition 6 plays
a key role here. Consider for example the case b = 3. We have in this case
m
(

n
r+1

)(
K+1
2

)
equations obtained by multiplying all the equations of the support

minors modeling by monomials of degree 2 in the linear variables. Again these
equations are not all independent, there are

(
m+1
2

)(
n

r+2

)
K equations obtained

by mutiplying all the linear relations between the b = 2 equations derived from
(19) by a linear variable, they are of the form

xi

m∑
j=1

m∑
k=1

Sj,k

∣∣∣ rj
rk
C

∣∣∣
∗,J

= 0. (20)

But all these linear relations are themselves not independent as can be checked
by using Proposition 6 with b = 3, we namely have for any symmetric tensor
Si,j,k of rank 3:

m∑
i=1

m∑
j=1

m∑
k=1

Si,j,k

∣∣∣∣ ri
rj
rk
C

∣∣∣∣
∗,J

= 0. (21)

This induces linear relations among the equations (20), as can be verified by a
cofactor expansion along the first row of the left-hand term of (21) which yields
an equation of the form

m∑
i=1

xi

m∑
j=1

m∑
k=1

Si
j,k

∣∣∣ rj
rk
C

∣∣∣
∗,J

= 0
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where the Si = (Si
j,k)1≤j≤m

1≤k≤m
are symmetric tensors of order 2. We would then

expect that the dimension of the set of linear equations obtained from (20) is
only

(
m+1
2

)(
n

r+2

)
K − ( n

r+3

)(
m+2
3

)
yielding an overall dimension D of order

D = m

(
n

r + 1

)(
K + 1

2

)
−
(

m + 1
2

)(
n

r + 2

)
K +

(
n

r + 3

)(
m + 2

3

)
,

which is precisely what we observe experimentally. This argument extends also
to higher values of b, so that, if linear relations of the form considered above
are the only relevant linear relations, then the number of linearly independent
equations available for linearization at a given value of b is:

Heuristic 2

Dexp =
b∑

i=1

(−1)i+1

(
n

r + i

)(
m + i − 1

i

)(
K + b − i − 1

b − i

)
. (22)

Experimentally, we found this to be the case with overwhelming probability
(see Sect. 5.6) with the only general exceptions being:

1. When Dexp exceeds the number of monomials for a smaller value of b, typically
1, the number of equations is observed to be equal to the number of monomials
for all higher values of b as well, even if Dexp does not exceed the total number
of monomials at these higher values of b.

2. When the MinRank Problem has a nontrivial solution and cannot be solved
at b = 1, we find the maximum number of linearly independent equations is
not the total number of monomials but is less by 1. This is expected, since
when the underlying MinRank problem has a nontrivial solution, then the
Support Minors Modeling equations have a 1 dimensional solution space.

3. When b ≥ r + 2, the equations are not any more linearly independent, and
we give an explanation in Sect. 5.4.

In summary, in the general case q > b, the number of monomials is
(
n
r

)(
K+b−1

b

)
and we expect to be able to linearize at degree b whenever b < r + 2 and

(
n

r

)(
K + b − 1

b

)
−1 ≤

b∑
i=1

(−1)i+1

(
n

r + i

)(
m + i − 1

i

)(
K + b − i − 1

b − i

)
(23)

Note that, for b = 1, we recover the result (18). As this system is very sparse, with
K(r + 1) monomials per equation, one can solve it using Wiedemann algorithm
[39]; thus the complexity to solve MinRank problem when b < q, b < r + 2 is

O
(

K(r + 1)
((

n

r

)(
K + b − 1

b

))2
)

(24)

where b is the smallest positive integer so that the condition (23) is fulfilled.
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5.3 The q = 2 Case

The same considerations apply in the q = 2 case, but due to the field equations,
x2

i = xi, for systems with b ≥ 2, a number of monomials will collapse to a lower
degree. This results in a system which is no longer homogeneous. Thus, in this
case it is most profitable to combine the equations obtained at a given value of
b with those produced using all smaller values of b. Similar considerations to the
general case imply that as long as b < r + 2 we will have

Dexp =
b∑

j=1

j∑
i=1

(−1)i+1

(
n

r + i

)(
m + i − 1

i

)(
K

j − i

)
. (25)

equations with which to linearize the
∑b

j=1

(
n
r

)(
K
j

)
monomials that occur at a

given value of b. We therefore expect to be able to solve by linearization when
b < r + 2 and b is large enough that

b∑
j=1

(
n

r

)(
K

j

)
− 1 ≤

b∑
j=1

j∑
i=1

(−1)i+1

(
n

r + i

)(
m + i − 1

i

)(
K

j − i

)
. (26)

Similarly to the general case for any q described in the previous section, the
complexity to solve MinRank problem when q = 2 and b < r + 2 is

O

⎛
⎜⎝K(r + 1)

⎛
⎝ b∑

j=1

(
n

r

)(
K

j

)⎞⎠
2
⎞
⎟⎠ (27)

where b is the smallest positive integer so that the condition (26) is fulfilled.

5.4 Toward the b ≥ r + 2 Case

We can also construct additional nontrivial linear relations starting at b = r +2.
The simplest example of this sort of linear relations occurs when m > r + 1.
Note that each of the Support Minors modeling equations at b = 1 is bilinear
in the xi variables and a subset consisting of r + 1 of the variables cT . Note
also, that there are a total of m equations derived from the same subset (one
for each row of

∑K
i=0 xiMi.) Therefore, if we consider the Jacobian of the b = 1

equations with respect to the variables cT , the m equations involving only r + 1
of the variables cT will form a submatrix with m rows and only r + 1 nonzero
columns. Using a Cramer-like formula, we can therefore construct left kernel
vectors for these equations; its coefficients would be degree r + 1 polynomials
in the xi variables. Multiplying the equations by this kernel vector will produce
zero, because the b = 1 equations are homogeneous, and multiplying equations
from a bilinear system by a kernel vector of the Jacobian of that system cancels
all the highest degree terms. This suggests that Eq. (22) needs to be modified
when we consider values of b that are r + 2 or greater. These additional linear
relations do not appear to be relevant in the most interesting range of b for
attacks on any of the cryptosystems considered, however.
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5.5 Improvements for Generic Minrank

The two classical improvements Sect. 4.2 in the “super”-overdetermined cases
the hybrid attack and Sect. 4.3 can also apply for Generic Minrank.

We can consider applying the Support Minors Modeling techniques to sub-
matrices

∑K
i=1 M ′

ixi of
∑K

i=1 M ixi. Note that if
∑K

i=1 M ixi has rank ≤ r, so
does

∑K
i=1 M ′

ixi, so assuming we have a unique solution xi to both systems of
equations, it will be the same. Generically, we will keep a unique solution in the
smaller system as long as the decoding problem has a unique solution, i.e. as
long as the Gilbert-Varshamov bound K ≤ (m − r)(n − r) is satisfied.

We generally find that the most beneficial settings use matrices with all m
rows, but only n′ ≤ n of the columns. This corresponds to a puncturing of
the corresponding matrix code over Fq. It is always beneficial for the attacker
to reduce n′ to the minimum value allowing linearization at a given degree b,
however, it can sometimes lead to an even lower complexity to reduce n′ further
and solve at a higher degree b.

On the other side, we can run exhaustive search on a variables xi in Fq and
solve qa systems with a smaller value of b, so that the resulting complexity is
smaller than solving directly the system with a higher value of b. This optimiza-
tion is considered in the attack against ROLLO-I-256 (see Table 1); more details
about this example are given in Sect. 6.1.

5.6 Experimental Results for Generic Minrank

We verified experimentally that the value of Dexp correctly predicts the number
of linearly independent polynomials. We constructed random systems (with and
without a solution) for q = 2, 13, with m = 7, 8, r = 2, 3, n = r + 3, r + 4, r + 5,
K = 3, . . . , 20. Most of the time, the number of linearly independent polynomials
was as expected. For q = 13, we had a few number of non-generic systems
(usually less than 1% over 1000 random samples), and only in square cases where
the matrices have a predicted rank equal to the number of columns. For q = 2
we had a higher probability of linear dependencies, due to the fact that over
small fields, random matrices have a non-trivial probability to be non invertible.
Anyway, as soon as the field is big enough or the number Dexp is large compared
to the number of columns, all our experiments succeeded over 1000 samples.

5.7 Using Support Minors Modeling Together with MaxMin for RD

Recall that from MaxMin, we obtain m
(
n−k−1

r

)
homogeneous linear equations

in the cT ’s. These can be used to produce additional equations over the same
monomials as used for Support Minors Modeling with K = m(k + 1). However
here, unlike in the overdetermined case, it is not interesting to specialize the
matrix C. Indeed, in that case it is sufficient to assume that the first component
of e is nonzero, then we can specialize to (∗, 0, . . . , 0)ᵀ the first column of SC.
Now, Eq. (3) gives m−1 linear equations involving only the xi’s, that allows us to
eliminate m− 1 variables xi’s from the system and reduces the number of linear
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variables to K = mk + 1. We still expect a space of dimension 1 for the xαcT ’s,
and this will be usefull for the last step of the attack described in Sect. 5.8.

When q > b, we multiply the equations from MaxMin by degree b monomials
in the xi’s. When q = 2, this can be done by multiplying the MaxMin equations
by monomials of degree b or less. All these considerations lead to a similar
heuristic as Heuristic 1, i.e. linearization is possible for q > b, 0 < b < r + 2
when:(

n

r

)(
mk + b

b

)
− 1 ≤

m

(
n − k − 1

r

)(
mk + b

b

)
+

b∑
i=1

(−1)i+1

(
n

r + i

)(
m + i − 1

i

)(
mk + b − i

b − i

)
,

and for q = 2, 0 < b < r + 2 whenever:

Ab − 1 ≤ Bc + Cb (28)

where

Ab :=
b∑

j=1

(
n

r

)(
mk + 1

j

)

Bb :=
b∑

j=1

(
m

(
n − k − 1

r

)(
mk + 1

j

))

Cb :=
b∑

j=1

j∑
i=1

(
(−1)i+1

(
n

r + i

)(
m + i − 1

i

)(
mk + 1
j − i

))
.

For the latter, it leads to a complexity of

O ((Bb + Cb)Aω−1
b

)
(29)

where b is the smallest positive integer so that the condition (28) is fulfilled. This
complexity formula correspond to solving a linear system with Ab unknowns and
Bb + Cb equations, recall that ω is the constant of linear algebra.

For a large range of parameters, this system is particularly sparse, so one
could take advantage of that to use Wiedemann algorithm [39]. More precisely,
for values of m, n, r and k of ROLLO or RQC parameters (see Table 3 and
Table 4) for which the condition (28) is fulfilled, we typically find that b ≈ r.

In this case, Bb equations consist of
(
k+r+1

r

)
monomials, Cb equations consist

of (mk + 1)(r + 1) monomials, and the total space of monomials is of size Ab.
The Wiedemann’s algorithm complexity can be written in term of the average
number of monomials per equation, in our case it is

Db :=
Bb

(
k+r+1

r

)
+ Cb(mk + 1)(r + 1)
Bb + Cb

.
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Thus the linearized system at degree b is sufficiently sparse that Wiedemann
outperforms Strassen for b ≥ 2. Therefore the complexity of support minors
modeling bootstrapping MaxMin for RD is

O (DbA
2
b

)
(30)

where b is still the smallest positive integer so that the condition (28) is fulfilled.
A similar formula applies for the case q > b.

5.8 Last Step of the Attack

To end the attack on MinRank using Support Minors modeling or the attack on
RD using MaxMinors modeling in conjunction with Support Minors modeling,
one needs to find the value of each unknown. When direct linearization at degree
b works, we get v = (v∗

α,T )α,T one nonzero vector containing one possible value
for all xαcT , where the xα’s are monomials of degree b − 1 in the xi’s, and all
the other solutions are multiples of v (as the solution space has dimension 1).

In order to extract the values of all the xi’s and thus finish the attack, one
needs to find one i0 and one T0 such that xi0 �= 0 and cT0 �= 0. This is easily done
by looking for a nonzero entry v∗ of v corresponding to a monomial xb−1

i0
cT0 .

At this point, we know that there is a solution of the system with xi0 = 1 and
cT0 = v∗. Then by computing the quotients of the entries in v corresponding to
the monomials xix

b−2
i0

cT0 and xb−1
i0

cT0 we get the values of

xi =
xi

xi0

=
xix

b−2
i0

cT0

xb−1
i0

cT0

, 1 ≤ i ≤ K. (31)

Doing so, one gets the values of all the xi’s. This finishes the attack. This works
without any assumption on MinRank, and with the assumption that the first
coordinate of e is nonzero for RD. If it is not the case, one uses another coordinate
of e.

6 Complexity of the Attacks for Different Cryptosystems
and Comparison with Generic Gröbner Basis
Approaches

6.1 Attacks Against the Rank Decoding Problem

Table 1 presents the best complexity of our attacks (see Sects. 4 and 5) against
RD and gives the binary logarithm of the complexities (column “This paper”)
for all the parameters in the ROLLO and RQC submissions to the NIST com-
petition and Loidreau cryptosystem [30]; for the sake of clarity, we give the
previous best known complexity from [11] (last column). The third column gives
the original rate for being overdeterminate. The column ‘a’ indicates the num-
ber of specialized columns in the hybrid approach (Sect. 4.3), when the system is
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not overdetermined. Column ‘p’ indicates the number of punctured columns in
the “super”-overdetermined cases (Sect. 4.2). Column ‘b’ indicates that we use
Support Minors Modeling in conjunction with MaxMin (Sect. 5.7).

Let us give more details on how we compute the best complexity, in Table 1,
for ROLLO-I-256 whose parameters are (m,n, k, r) = (113, 134, 67, 7). The attack
from Sect. 4 only works with the hybrid approach, thus requiring a = 8 and result-
ing in a complexity of 158 bits (using (17) and ω = 2.81). On the other hand, the
attack from Sect. 5.7 needs b = 2 which results in a complexity of 154 (this time
using Wiedemann’s algorithm). However, if we specialize a = 3 columns in C, we
get b = 1 and the resulting complexity using Wiedemann’s algorithm is 151.

Table 1. Complexity of the attack against RD for different cryptosystems. A “*” in
column “This paper” means that the best complexity uses Widemann’s algorithm,
otherwise Strassen’s algorithm is used.

(m,n, k, r)
m(n−k−1

r )
(n

r)−1
a p b This paper [11]

Loidreau ([30]) (128, 120, 80, 4) 1.28 0 43 0 65 98

ROLLO-I-128 (79, 94, 47, 5) 1.97 0 9 0 71 117

ROLLO-I-192 (89, 106, 53, 6) 1.06 0 0 0 87 144

ROLLO-I-256 (113, 134, 67, 7) 0.67 3 0 1 151* 197

ROLLO-II-128 (83, 298, 149, 5) 2.42 0 40 0 93 134

ROLLO-II-192 (107, 302, 151, 6) 1.53 0 18 0 111 164

ROLLO-II-256 (127, 314, 157, 7) 0.89 0 6 1 159* 217

ROLLO-III-128 (101, 94, 47, 5) 2.52 0 12 0 70 119

ROLLO-III-192 (107, 118, 59, 6) 1.31 0 4 0 88 148

ROLLO-III-256 (131, 134, 67, 7) 0.78 0 0 1 131* 200

RQC-I (97, 134, 67, 5) 2.60 0 18 0 77 123

RQC-II (107, 202, 101, 6) 1.46 0 10 0 101 156

RQC-III (137, 262, 131, 7) 0.93 3 0 0 144 214

6.2 Attacks Against the MinRank Problem

Table 2 shows the complexity of our attack against generic MinRank problems
for GeMSS and Rainbow, two cryptosystems at the second round of the NIST
competition. Our new attack is compared to the previous MinRank attacks,
which use minors modeling in the case of GeMSS [14], and a linear algebra
search [18] in the case of Rainbow. Concerning Rainbow, the acronyms RBS and
DA stand from Rainbow Band Separation and Direct Algebraic respectively; the
column “Best/Type” shows the complexity of the previous best attack against
Rainbow, which was not based on MinRank before our new attack (except for
Ia). All new complexities are computed by finding the number of columns n′ and
the degree b that minimize the complexity, as described in Sect. 5.
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Table 2. Complexity comparison between the new and the previous attacks against
GeMSS and Rainbow parameters [18].

Complexity

GeMSS(D, n, Δ, v) n/m K r n′ b New Previous Type
GeMSS128(513, 174, 12, 12) 174 162 34 61 2 154 522 MinRank
GeMSS192(513, 256, 22, 20) 265 243 52 94 2 223 537 MinRank
GeMSS256(513, 354, 30, 33) 354 324 73 126 3 299 1254 MinRank

RedGeMSS128(17, 177, 15, 15) 177 162 35 62 2 156 538 MinRank
RedGeMSS192(17, 266, 23, 25) 266 243 53 95 2 224 870 MinRank
RedGeMSS256(17, 358, 34, 35) 358 324 74 127 3 301 1273 MinRank

BlueGeMSS128(129, 175, 13, 14) 175 162 35 63 2 158 537 MinRank
BlueGeMSS192(129, 265, 22, 23) 265 243 53 95 2 224 870 MinRank
BlueGeMSS256(129, 358, 34, 32) 358 324 74 127 3 301 1273 MinRank

Rainbow(GF (q), v1, o1, o2) n K r n′ b New Previous Best / Type
Ia(GF (16), 32, 32, 32) 96 33 64 82 3 155 161 145 / RBS

IIIc(GF (256), 68, 36, 36) 140 37 104 125 5 208 585 215 / DA
Vc(GF (256), 92, 48, 48) 188 49 140 169 5 272 778 275 / DA

6.3 Our Approach vs. Using Generic Gröbner Basis Algorithms

Since our approach is an algebraic attack, it relies on solving a polynomial sys-
tem, thus it looks like a Gröbner basis computation. In fact, we do compute a
Gröbner basis of the system, as we compute the unique solution of the system,
which represents its Gröbner basis.

Nevertheless, our algorithm is not a generic Gröbner basis algorithm as it
only works for the special type of system studied in this paper: the RD and
MinRank systems. As it is specifically designed for this purpose and for the
reasons detailed below, it is more efficient than a generic algorithm.

There are three main reasons why our approach is more efficient than a
generic Gröbner basis algorithm:

• We compute formally (that is to say at no extra cost except the size of the
equations) new equations of degree r (the MaxMinors ones) that are already
in the ideal, but not in the vector space

Fr := 〈uf : u monomial of degree r − 2, f in the set of initial polynomials〉.

In fact, a careful analysis of a Gröbner basis computation with a standard
strategy shows that those equations are in Fr+1, and that the first degree fall
for those systems is r + 1. Here, we apply linear algebra directly on a small
number of polynomials of degree r (see the next two items for more details),
whereas a generic Gröbner basis algorithm would compute many polynomials
of degree r + 1 and then reduce them in order to get those polynomials of
degree r.
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• A classical Gröbner basis algorithm using linear algebra and a standard strat-
egy typically constructs Macaulay matrices, where the rows correspond to
polynomials in the ideal and the columns to monomials of a certain degree.
Here, we introduce variables cT that represent maximal minors of C, and
thus represent not one monomial of degree r, but r! monomials of degree
r. As we compute the Gröbner basis by using only polynomials that can be
expressed in terms of those variables (see the last item below), this reduces
the number of columns of our matrices by a factor around r! compared to
generic Macaulay-like matrices.

• The solution can be found by applying linear algebra only to some specific
equations, namely the MaxMinors ones in the overdetermined case, and in
the underdetermined case, equations that have degree 1 in the cT variables,
and degree b−1 in the xi variables (see Sect. 5.2). This enables us to deal with
polynomials involving only the cT variables and the xi variables, whereas a
generic Gröbner basis algorithm would consider all monomials up to degree
r + b in the xl and the ci,j variables. This drastically reduces the number of
rows and columns in our matrices.

For all of those reasons, in the overdetermined case, only an elimination on
our selected MaxMinors equations (with a “compacted” matrix with respect to
the columns) is sufficient to get the solution; so we essentially avoid going up to
the degree r + 1 to produce those equations, we select a small number of rows,
and gain a factor r! on the number of columns.

In the underdetermined case, we find linear equations by linearization on
some well-chosen subspaces of the vector space Fr+b. We have theoretical reasons
to believe that our choice of subspace should lead to the computation of the
solution (as usual, this is a “genericity” hypothesis), and it is confirmed by all
our experiments.

7 Examples of New Parameters for ROLLO-I and RQC

In light of the attacks presented in this article, it is possible to give a few examples
of new parameters for the rank-based cryptosystems, submitted to the NIST
competition, ROLLO and RQC. With these new parameters, ROLLO and RQC
would be resistant to our attacks, while still remaining attractive, for example
with a loss of only about 50% in terms of key size for ROLLO-I.

For cryptographic purpose, parameters have to belong to an area which does
not correspond to the overdetermined case and such that the hybrid approach
would make the attack worse than in the underdetermined case.

Alongside the algebraic attacks in this paper, the best combinatorial attack
against RD is in [4]; its complexity for (m,n, k, r) decoding is

O
(
(nm)2qr�m(k+1)

n �−m
)

.

In the following tables, we consider ω = 2.81. We also use the same notation
as in ROLLO and RQC submissions’ specifications [1,7]. In particular, n is the
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block-length and not the length of the code which can be either 2n or 3n. More-
over, for ROLLO (Table 3):

– over/hybrid is the cost of the hybrid attack; the value of a is the smallest
to reach the overdetermined case, a = 0 means that parameters are already
in the overdetermined case,

– under is the case of underdetermined attack.
– comb is the cost of the best combinatorial attack mentioned above,
– DFR is the binary logarithm of the Decoding Failure Rate,

and for RQC (Table 4):

• hyb2n(a): hybrid attack for length 2n, the value of a is the smallest to reach
the overdetermined case, a = 0 means that parameters are already in the
overdetermined case,

• hyb3n(a): non-homogeneous hybrid attack for length 3n, a is the same as
above. This attack corresponds to an adaptation of our attack to a non-
homogeneous error of the RQC scheme, more details are given in [1],

• und2n: underdetermined attack for length 2n,
• comb3n: combinatorial attack for length 3n.

Table 3. New parameters and attacks complexities for ROLLO-I.

Instance q n m r d pk size (B) DFR over/hybrid a p under b comb

new2ROLLO-I-128 2 83 73 7 8 757 −27 233 18 0 180 3 213

new2ROLLO-I-192 2 97 89 8 8 1057 −33 258* 17 0 197* 3 283*

new2ROLLO-I-256 2 113 103 9 9 1454 −33 408* 30 0 283* 6 376*

Table 4. New parameters and attacks complexities for RQC.

Instance q n m k w wr δ pk (B) hyb2n(a) hyb3n(a) und2n b comb3n

newRQC-I 2 113 127 3 7 7 6 1793 160(6) 211(0) 158 1 205

newRQC-II 2 149 151 5 8 8 8 2812 331(24) 262(0) 224 3 289

newRQC-III 2 179 181 3 9 9 7 4049 553(44) 321(5) 324 6 401

8 Conclusion

In this paper, we improve on the results by [11] on the Rank Decoding problem
by providing a better analysis which permits to avoid the use of generic Gröbner
bases algorithms and permits to completely break rank-based cryptosystems
parameters proposed to the NIST Standardization Process, when the analysis in
[11] only attacked them slightly.
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We generalize this approach to the case of the MinRank problem for which
we obtain the best known complexity with algebraic attacks.

Overall, the results proposed in this paper give a new and deeper understand-
ing of the connections and the complexity of two problems of great interest in
post-quantum cryptography: the Rank Decoding and the MinRank problems.
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Abstract. Only the method to estimate the upper bound of the alge-
braic degree on block ciphers is known so far, but it is not useful for the
designer to guarantee the security. In this paper we provide meaningful
lower bounds on the algebraic degree of modern block ciphers.
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1 Introduction

Along with stream ciphers and, more recently, permutation based cryptography,
block ciphers are among the most efficient cryptographic primitives. As such
block ciphers are one of the cornerstones of our cryptographic landscape today
and indeed are used to ensure the security for a large fraction of our daily com-
munication. In a nutshell, a block cipher should be an, efficient to implement,
family of permutations that cannot be distinguished from a randomly selected
family of permutations without guessing the entire secret key. The community
has, in general, a rather good understanding of the security of block ciphers and
arguments of their security have become significantly more precise and, using
tool-based approaches for many aspects, significantly less error-prone. However,
for some of the most basic properties a block cipher should fulfill, good arguments
are still missing. One of those properties is the algebraic degree of a permutation,
resp. the degree of a family of permutations. For a randomly drawn permuta-
tion, the degree is n − 1 almost certainly. Thus, in order to be indistinguishable
from a random permutation, a block cipher should also have degree n − 1. This
observation, and generalisations of it, leads indeed to a class of attacks called
integral attacks, introduced already in [10,14]. Very similar concepts are known
as high-order differential attacks [15] and cube-attacks [11].

It is highly desirable to be able to argue that a given block-cipher has
degree n − 1, or in general high degree. However, so far, we only have upper
bounds on the degree of our ciphers. Those bounds, see e.g., [15] and in par-
ticular [6,8] are very efficient to compute in most cases and far from trivial.
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12491, pp. 537–566, 2020.
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Unfortunately, upper bounds on the degree are not very helpful for a designer
of a cipher, as this is not what is needed to argue about the security of a given
design. What we actually need, and what has not been achieved so far, is to give
meaningful lower bounds on the degree.

Algebraic Degree of Keyed (Vectorial) Functions. Before we describe
our results, we will define precisely the degree and discuss how lower and upper
bounds have to be understood in order to avoid confusion, see e.g., [9] for more
background on Boolean functions. Consider a general set-up of a (parameterized,
vectorial) Boolean function

Fk : Fn
2 → F

m
2

with k ∈ F
�
2. Any such function can be uniquely described by its algebraic normal

form as
Fk(x) =

∑

u∈Fn
2

pu(k)xu

where xu is short for
∏

i xui
i and pu(k) are functions

pu : F�
2 → F

m
2

mapping keys to values in F
m
2 . If there is no parameter, i.e., no key, then all pu

degenerate naturally to constants and if, on top, it is not a vectorial Boolean
function, i.e., if m = 1, these constants are just bits, i.e., pu ∈ F2. The definition
of (algebraic) degree is the same in all cases and is given as

deg(F ) := max
u

{wt(u) | pu �= 0}.

Here wt(u) denotes the Hamming weight of u, i.e., the number of 1 and this
weight corresponds to the number of variables multiplied in xu.

For clarity, consider the case of a keyed vectorial function. The degree of F
is d or higher if there exist a u of Hamming weight d such that pu is not zero,
i.e., not the constant zero function.

A lower bound d on the degree of F implies that there exists at least one key
and at least one output bit which is of degree at least d. An upper bound d on
the degree of F implies that for all keys all output bits are of degree at most d.

For cryptographic purposes, the degree as defined above is not always sat-
isfactory. An attacker can always pick the weakest spot, e.g., an output bit of
lowest degree. A vectorial function of high degree might still have very low degree
in one specific output bit or, more general, in a specific linear combination of
output bits. This motivates the notion of minimum degree. For this, one con-
siders all non-zero linear combination of output bits 〈β, F 〉 and the minimum
degree of all those Boolean functions

minDeg(F ) = min
β �=0

deg(〈β, F 〉).

A lower bound d on the minimum degree of a function implies that for all com-
ponent functions 〈β, F 〉 there exist a key such that the degree of the component
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function is at least d. An upper bound d on the minimum degree of a function
implies that there exist at least one component function that has degree at most
d for all keys.

Table 1. Summary of the number of rounds to get full degree/full minimum degree/ap-
pearance of all max-degree monomials. We also label “tight” when they fit with the
upper bounds.

Full degree Full minimum degree All max-degree monomials

GIFT-64 8 (tight) 10 11

SKINNY64 10 (tight) 11 (tight) 13

PRESENT 8 (tight) 10 11

Note

AES Algebraic degree is at least 116 in 4 rounds

Fig. 1. Algebraic degree and minimum degree on SKINNY64, where UB and LB denote
upper bound and lower bound, respectively.

Our Results. In this paper we present – for the first time – non-trivial lower
bounds on the degree and minimum degree of various block ciphers with the sole
assumption of independent round-keys. More precisely, we assume that after each
round a new round key is added to the full state.

We hereby focus in particular on the block ciphers that are used most fre-
quently as building blocks in the ongoing NIST lightweight project1, namely
GIFT-64, SKINNY64, and AES. Furthermore, we investigate PRESENT. Our results
are summarized in Table 1. To give a concrete example of our results, consider
the block cipher SKINNY64 [4]. We are able to show that 10 and 11 rounds
are sufficient to get full, i.e., 63, degree and minimum degree, respectively.
Together with the known upper bounds, we get a rather good view on the actual
degree development of SKINNY64 with increasing number of rounds (see Fig. 1).
1 https://csrc.nist.gov/Projects/lightweight-cryptography.

https://csrc.nist.gov/Projects/lightweight-cryptography
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Besides the degree and the minimum degree, we also elaborate on the appear-
ance of all n possible monomials of maximal degree, i.e., degree n − 1. While
this is not captured by a natural notion of degree, it does capture large classes
of integral attacks. With respect to this criterion, we also show that 13 rounds
are enough for SKINNY64.

Technical Contribution. Our results are based on the concept of division
property and require a non-negligible, but in all cases we consider, practical
computational effort. They can be derived within a few hours on a single PC.
All code required for our results will be made publicly available.

The main technical challenge in our work (and many previous works based
on division property) is to keep the model solvable and the number of division
trails in a reasonable range. For our purpose, we solve this by optimizing the
division property of the key, a freedom that was (i) previously not considered
and (ii) allows to speed-up our computations significantly.

Previous Works. This paper has strong ties with all the previous works related
to division property. Division property is a cryptanalysis technique introduced at
EUROCRYPT’15 by Todo [19], which was then further refined in several works
[20,21]. Technically, the papers at EUROCRYPT’20 [12] is the most important
previous work for us. We will give a more detailed review of previous works in
Sect. 2 when also fixing our notation.

Outline. We present our notation related to the division property in Sect. 2.
We try to simplify and clarify some previous definitions and results. We hope
that in particular readers without prior knowledge on division property might
find it accessible. In Sect. 3 we provide a high-level overview of our results and
how they were achieved. As mentioned above, the main technical contribution is
the optimization for a suitable division-property for the key, which is explained
in Sect. 4. Our applications and the detailed results for the ciphers studied are
given in Sect. 5. Being the first paper to derive meaningful lower bounds on
ciphers by relying only on independent round-keys, our work leaves many open
questions and room for improvements. We elaborate on this in Sect. 6 concluding
our work.

Finally we note that all our implementations are available at

https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree.

2 Notation and Preliminaries

Let us start by briefly fixing some basic notation. We denote by F2 the finite
field with two elements, basically a bit, and by F

n
2 the n-dimensional vector

space over F2, i.e., the set of n-bit vectors with the XOR operation as the addi-
tion. For x, y ∈ F

n
2 we denote by 〈x, y〉 =

∑
i xiyi the canonical inner product.

https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree


Lower Bounds on the Degree of Block Ciphers 541

For a function F : F
n
2 → F

m
2 given as F (x) = (F (1)(x), . . . , F (m)(x)) with

F (i) : Fn
2 → F2, the F (i) are referred to as the coordinate functions of F and any

linear combination 〈β, F (x)〉 of those as a component function of F . We use +
to denote all kind of additions (of sets, vectors, polynomials, monomials) as it
should be clear from context.

In this section we start by recalling the development of division property
since its first introduction by Todo [18]. The technique has been proven very
helpful in many applications and led to a large variety of results. The notion of
trails [22] has been an important technical improvement that itself already has
undergone several iterations. We try to simplify notations and at the same time
make some previous definitions and results more rigid and precise. The aim is to
be self contained and accessible to readers without prior knowledge on division
property. Before doing so, we briefly recapture the previous developments.

2.1 Previous Works on Division Properties

This paper has strong ties with all the previous works related to division property
and as such, we would like to precisely describe where our work fits and what
are the precise relations and differences with the division property. Division
property is a cryptanalysis technique introduced at EUROCRYPT’15 by Todo
as a technique to study the parity of xu [19]. This initial variant is by now
referred to as the conventional division property (CDP). This was further refined
to the bit-based division property (BDP) by Todo and Morii at FSE’16 [21]. The
core idea of the division property is to evaluate whether the ANF of a block
cipher contains some specific monomials. More precisely, given a monomial m in
the plaintext variables, the BDP can essentially allows us to derive one of two
possible results: either the ANF of a block cipher does not contain any multiple
of the monomial m, or we simply do not know anything (i.e., we cannot prove
the existence or non-existence of the monomial or its multiples). Another way
to see the BDP is that, for a given set X, it splits the space F

n
2 into two distinct

parts, depending on the value of the sum su =
∑

x∈X
xu, u ∈ F

n
2 :

– A set K ⊂ F
n
2 such that for any u ∈ K, we do not know the value of su.

– For the remaining u ∈ F
n
2 \ K, we know that su = 0.

While this was already powerful enough to find new integral distinguishers (e.g.
[18,20]), the imperfect nature of the division property means that some known
integral distinguisher could not be explained using the division property. This
was noticed by Todo and Morii in their FSE’16 paper, as a 15-round distin-
guisher over the block cipher SIMON [3] could not be explained with BDP.
They thus extended the concept to three-subset division property (3SDP) to
cover this distinguisher. Now, for a given monomial, the 3SDP can give us one
of the following:

– The ANF does not contains any multiple of the monomial.
– The ANF contains exactly this monomial.
– We cannot prove neither existence nor non-existence of the monomials.
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The term three-subset comes from the fact that we now split Fn
2 into three parts:

one where we know that su = 0, one where we know that su = 1 (aka, the L

set), and the results is unknown for the remaining u’s (aka, the K set). Again,
there is still a loss of information and there are some cases where we do not get
any information.

The main reason for this loss of information comes from the fact that pre-
vious techniques give results that are independent from the key used, hence the
inability to precisely compute (parts of) the ANF. This fact was noticed and
exploited at EUROCRYPT’20 by Hao et al. [12], where they introduced the
three-subset division property without unknown subset (3SDPwoU). Their idea
was to remove the “unknown subset”, splitting F

n
2 into two parts, either su = 0

or su = 1, however the implication for this is that we can no longer ignore the
key. While they applied this technique to stream ciphers, they mentioned that
this technique might be used for block ciphers, but left as an open problem.

It is worth noting that this idea of splitting F
n
2 into two parts where either

su = 0 or su = 1 has also been studied as another view of the division property
by Boura and Canteaut at CRYPTO’16 [7] using the term parity set. However,
they did not focus on actual algorithmic aspects. For our results, the focus on
algorithmic aspects and in particular the notation of division trails is essential.

To summarize, originating with the division property, many variants such as
BDP, 3SDP, and the parity set (which is essentially the same as the 3SDPwoU)
have been proposed. After many algorithmic improvements for BDP and 3SDP,
nowadays, it enables us to evaluate the most extreme variant, parity set, which
allows to decide whether or not a specific monomial appears in the ANF.

2.2 Division Properties and the ANF

Any function F : Fn
2 → F

n
2 can be uniquely expressed with its algebraic normal

form.
F (x) =

∑

u

λuxu

where λu ∈ F
n
2 . It is well known that the coefficients can be computed via the

identity

λu =
∑

x�u

F (x) (1)

where x � u if and only if xi ≤ ui for all i where elements of F2 are seen as
integers.

We start by recalling the division property, more accurately the definition of
parity set, as given in [7].

Definition 1 (Parity Set). Let X ⊆ F
n
2 be a set. We define the parity set

of X as

U(X) :=

{
u ∈ F

n
2 such that

∑

x∈X

xu = 1

}
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The power of the division property as introduced in [19] is that (i) it is often
easier to trace the impact of a function on its parity set than on the set itself
and (ii) the evolution of certain parity sets is related to the algebraic normal
form of the functions involved.

Defining the addition of two subsets X,Y ⊆ Fn
2 by

X + Y := (X ∪ Y) \ (X ∩ Y)

the set of all subsets of Fn
2 becomes a binary vector space of dimension 2n. Note

that this addition is isomorphic to adding the binary indicator vectors of the
sets. Also note that if an element is contained both in X and Y is not contained
in the sum.

From this perspective U is a linear mapping and the division property can
be seen as a change of basis. In particular for Xi ⊂ F

n
2 it holds that

U
(∑

Xi

)
=

∑
U (Xi)

It was shown in [7] that there is a one to one correspondence between sets and
its parity set, that is the mapping

U : X → U(X)

is a bijection and actually its own inverse, i.e.,

U(U(X)) = X.

Those properties follow from the linearity of U and the following lemma. The
proof is added for completeness and to get familiar with the notation.

Lemma 1. Let U be the mapping defined above and � be an element in F
n
2 . Then

1. U({�}) = {u ∈ F
n
2 | u � �}

2. U({x ∈ F
n
2 | x � �}) = {�}

Proof. For the first property, we note that xu = 1 if and only if u � x. Thus we
get

U({�}) =

⎧
⎨

⎩u ∈ F
n
2 such that

∑

x∈{�}
xu = 1

⎫
⎬

⎭

= {u ∈ F
n
2 such that �u = 1}

= {u ∈ F
n
2 | u � �}

For the second property, we see that
∑

x∈Fn
2 | x�� xu = 1 if and only if u = �.

Let Au be the number of elements x � � such that xu = 1 we get

Au = |{x � � | xu = 1}| = |{x � � | u � x}| = |{x ∈ F
n
2 | u � x � �}|

and it holds that Au is odd if and only if � = u, which completes the proof. ��
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We next introduce the propagation of the division property and the notion
of the division trail. More formally, as our focus is the parity set, its propagation
is identical to the propagation of the so-called L set in 3SDP introduced in
[21]. Moreover, the division trail is identical to the three-subset division trail
introduced in [12].

The division property provides the propagation rule for some basic opera-
tions, such as XOR or AND, and the propagation has been defined in this context
as a bottom-up approach. The propagation rule allows us to evaluate any ciphers
without deep knowledge for underlying theory for the division property, and it is
one of advantages as a cryptanalytic tool. On the other hand, for a mathemati-
cal definition of the propagation, a top-down approach, starting with a general
function and deriving the propagation rules as concrete instances, is helpful.

Definition 2 (Propagation). Given F : Fn
2 → F

m
2 and a ∈ F

n
2 , b ∈ F

m
2 we say

that the division property a propagates to the division property b, denoted by

a
F−→ b

if and only if
b ∈ U(F (U({a})))

Here the image of a set X under F is defined as

F (X) :=
∑

a∈X

{F (a)},

that is again using the addition of sets as defined above.
The propagation is defined without specifying each concrete operation in

Definition 2. For any application, Definition 2 will never be applied directly.
Nevertheless, only using this definition reveals one important property of the
propagation very simply. Given U1 = U(X), for any function F , U2 = U(F (X))
is evaluated as

U2 = U(F (X)) =
∑

x∈X

U(F ({x})) =
∑

a∈U(X)

U(F (U({a}))) =
∑

a∈U1

a
F−→b

{b}. (2)

This shows that our definition fits to the intuitive meaning of propagation: In
order to determine U2 after applying the function F , it is enough to consider
what happens with individual elements of U1 to start with. Here again, we like
to emphasize that the sum in Eq. 2 is modulo two, that is, if an element appears
an even number of times on the right side, it actually does not appear in U2.
Of course, to evaluate the propagation in real, we need to mention the concrete
propagation a

F−→ b, and we also give the following proposition, which allows to
easily deduce the possible propagation given the ANF of a function.

Proposition 1. Let F : Fn
2 → F

m
2 be defined as

F (x1, . . . , xn) = (y1, . . . , ym) = y
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where yi are multivariate polynomials over F2 in the variables xi. For a ∈ F
n
2

and b ∈ F
m
2 , it holds that a

F→ b if and only if yb contains the monomial xa.

Proof. By Definition 2, we have a
F→ b if and only if b ∈ U(F (U({a}))). Using

Lemma 1, we can see that

Y := F (U({a})) = {F (x) | x � a, x ∈ F
n
2}.

Hence b ∈ U(Y) exactly means
∑
x�a

F b(x) = 1. Note that F b is a Boolean function

over the variables x1, . . . , xn whose ANF is exactly yb, that is

F b(x) =
∑

u∈Fn
2

λuxu = yb.

Using the well known relation between a function and the coefficients of its ANF,
having

∑
x�a

F b(x) = 1 directly gives that λa = 1, i.e., the monomial xa appears

in the ANF of F b, said ANF being exactly yb. ��
We remark that all propagation rules already introduced in [21] are generated
by assigning concrete function to F . We refer the reader to [21] for more details
about these propagation rules

Following previous work, we now generalize the definition above to the setting
where F is actually given as the composition of many functions

F = FR ◦ · · · ◦ F2 ◦ F1.

Definition 3 (Division Trail). Given F : Fn
2 → F

n
2 as

F = FR ◦ · · · ◦ F2 ◦ F1

and a0 . . . aR ∈ F
n
2 we call (a0, . . . , aR) a division trail for the compositions of F

into the Fi if and only if

∀i ∈ {1, . . . , R}, ai−1
Fi−→ ai.

We denote such a trail by

a0
F1−→ a1

F2−→ · · · FR−−→ aR.

Using the same considerations as in Eq. 2, we can now state the main reason of
why considering trails is useful.

Theorem 1. Given F : Fn
2 → F

n
2 as

F = FR ◦ · · · ◦ F2 ◦ F1

and X ⊆ F
n
2 . Then

U(F (X)) =
∑

a0,...,aR

a0∈U(X),a0
F1−→a1

F2−→···
FR−−→aR

{aR}
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The important link between the division property and the ANF is the following
observations and is actually a special case of Proposition 1.

Corollary 1. Let F : Fn
2 → F

n
2 be a function with algebraic normal form

F (x) =
∑

u∈Fn
2

λuxu

where λu = (λ(1)
u , . . . , λ

(n)
u ) ∈ F

n
2 . Furthermore, let X be the set such that U(X) =

{�}. Then
λ
(i)
� = 1 ⇔ ei ∈ U(F (X))

Proof. If U(X) = {�}, by Lemma 1 we have

X = {x ∈ F
n
2 | x � �}.

Now by Eq. (1) we get

λ
(i)
� =

∑

x��

F (i)(x) =
∑

x∈X

F (i)(x)

=
∑

x∈F (X)

xei =
{

1 if ei ∈ U(F (X))
0 otherwise

which concludes the proof. ��
Theorem 1 and Corollary 1 finally result in the following corollary.

Corollary 2. Let F : Fn
2 → F

n
2 be a function with algebraic normal form

F (x) =
∑

u∈Fn
2

λuxu

where λu = (λ(1)
u , . . . , λ

(n)
u ) ∈ F

n
2 and F = FR ◦ · · · ◦F2 ◦F1. Then λ

(i)
� = 1 if and

only if the number of trails

�
F1−→ a1

F2−→ · · · FR−−→ ei

is odd.

Proof. Follows immediately from the statements above. ��
This is what is actually solved using SAT solvers and/or mixed integer linear
programming techniques. Before going into the details of the algorithmic app-
roach, we explain why the case of a keyed function does not significantly change
the perspective in our application in the next section.
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3 High-Level Approach

Conceptually, there is no difference between key variables and input variables
when it comes to division properties as used here and outlined in the previous
section. It is only about splitting the set of variables into two (or potentially
more) sets and changing the notation accordingly. Consider a function

E : Fn
2 × F

m
2 → F

n
2

(x, k) → E(x, k)

When thinking of E as a block cipher, we usually rephrase this as a family of
functions indexed by k, i.e., we consider

Ek : Fn
2 → F

n
2

where Ek(x) = E(x, k).

The algebraic normal form (ANF) of E and Ek are not identical, but related.
Starting with the ANF of E expressed as

E(x, k) =
∑

u∈Fn
2 ,v∈Fm

2

λu,vxukv, (3)

we get the ANF of Ek by rearranging terms as

Ek(x) =
∑

u∈Fn
2

⎛

⎝
∑

v∈Fm
2

λu,vkv

⎞

⎠ xu =
∑

u∈Fn
2

pu(k)xu,

where
pu(k) =

∑

v∈Fm
2

λu,vkv

are the key-dependent coefficients of the ANF of function Ek.
Note that the degree of E and Ek, which we already defined in Sect. 1 are

usually different as

deg(E) = max
u∈Fn

2 ,v∈Fm
2

{wt(u) + wt(v) | λu,v �= 0}

while
deg(Ek) = max

u∈Fn
2

{wt(u) | pu(k) �= 0}.

Here, clearly, we are interested in the later.
In order to lower bound the degree of Ek by some value d, we have to find a

vector u of hamming weight d, such that pu(k) is non-zero. For a given u, there
are two basic approaches to do so.
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Fixed Key. Conceptually, the easiest way to lower bound the degree of Ek

is to simply choose a random key k and, using Corollary 2 for computing one
ANF coefficient of large degree. If this is feasible for a random key and the
corresponding coefficient is actually 1, the degree must be larger or equal than
d. If, however, the corresponding coefficient is zero, nothing can be concluded
and one might have to repeat either for a different key or a different coefficient,
or both. The advantage of this approach is its conceptual simplicity and that it
can take an arbitrary key-scheduling into account. The significant drawback is
that this approach becomes quickly impossible in practice. We elaborate on our
initial findings using this approach in Sect. 6.

Variable Key. Luckily, we can use another approach. Namely, in order to show
that the degree of Ek is at least d, it is sufficient to identify a single u ∈ F

n
2 of

Hamming weight d and an arbitrary v ∈ F
m
2 such that λu,v �= 0 (see Eq. 3) as

this implies pu(k) �= 0. While this approach might seem more difficult at first
glance, computationally it is significantly easier, especially when independent
round-keys are assumed.

By definition, the keyed function Ek has degree at least d if for one u ∈ F
n
2

of weight d and any v ∈ F
m
2 the coefficient vector

λu,v = (λ(1)
u,v, . . . , λ(n)

u,v) ∈ F
n
2 .

is non zero. So actually it is enough if, for one such u of weight d, an arbitrary
v and any 1 ≤ i ≤ n it holds that λ

(i)
u,v = 1.

3.1 Minimum Degree

However, from an attacker perspective it is sufficient if there exists a single
output bit of low degree. Thus, a stronger bound on the degree would potentially
show that for all i there exist a u of weight d and an arbitrary v such that
λ
(i)
u,v = 1. This would ensure that for each output bit there exists a key such that

the degree of this output bit is at least d.
Again, this is not enough, as the attacker could equally look at any linear

combination of output bits of her choice. The above result does not imply any
bound on the degree of such linear combinations. Indeed, we would like to show
that for each linear combination, there exists a key such that the degree of this
linear combination is at least d. This is exactly captured in the definition of
minimum degree.

Definition 4. The minimum degree of a function F : Fn
2 → F

n
2 is defined as

minDeg(F ) = min
β∈Fn

2 ,β �=0
deg〈β, F 〉

Now, while for the degree it was sufficient to identify a single suitable coef-
ficient λ

(i)
u,v equal to one, things are more intricate here. There are, in principle,
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2n − 1 component functions 〈β, F 〉 to be studied. Indeed, considering a single
(u, v) pair and the corresponding λu,v coefficient is not sufficient, as choosing any
β such that 〈β, λu,v〉 = 0 results in a component function that does not contain
the monomial kvxu in its ANF. It is this canceling of high degree monomials
that has to be excluded for lower bounding the minimum degree.

In order to achieve this it is sufficient (and actually necessary) to find a set

S = {(u1, v1), . . . , (ut, vt)}

of pairs (u, v) of size t ≥ n and compute the value of λ
(i)
u,v for all i and all

(u, v) ∈ S. This will lead to a binary matrix

MS(Ek) =

⎛

⎜⎜⎜⎜⎝

λ
(1)
u1,v1 λ

(1)
u2,v2 · · · λ

(1)
ut,vt

λ
(2)
u1,v1 λ

(2)
u2,v2 · · · λ

(2)
ut,vt

...
λ
(n)
u1,v1 λ

(n)
u2,v2 · · · λ

(n)
ut,vt

⎞

⎟⎟⎟⎟⎠
.

What has to be excluded, in order to bound the minimum degree is that columns
of this matrix can be combined to the all zero vector, as in this case all monomials
kvixui cancel in the corresponding linear combination. Clearly, this is possible
if and only if the columns are linear dependent. This observation is summarized
in the following proposition.

Proposition 2. A keyed function Ek has minimum degree at least d if and only
if there exist a set S such that the matrix MS(Ek) has rank n and

d ≤ min
(u,v)∈S

wt(u)

3.2 Appearance of All High-Degree Monomials

Returning to the attacker perspective, it is clear that bounds on the minimum
degree are more meaningful than bounds on the algebraic degree. However, it
is also clear that even those are not enough to exclude the existence of integral
attacks. In particular, even so the minimum degree of a function is n−1, it could
be the case that a certain monomial xu of degree n− 1 never occurs in the ANF
of the linear combination 〈β,Ek(x)〉 of output bits. That is, a minimum degree
of n − 1 does not exclude that 〈β, λu,v〉 = 0 for a fixed u and all v.

In order to ensure that this does not happen we have to show that for each
fixed u of weight n − 1 there exist vectors vi such that MSu

(Ek) has full rank
for

Su = {(u, v1), . . . , (u, vt)}.

Here, we are (i) more restricted in the choice of the pairs in S as we always have
to use the same fixed u and (ii) have to repeat the process n times, once for each
u of weight n − 1.
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Interestingly, the appearance of all high-degree monomials excludes a large
class of integral distinguishers. Namely, for a cipher where all high-degree mono-
mials appear (for at least one key), there will not be integral distinguisher by
fixing bits that work for all keys. This is a consequence of the following obser-
vation that separates the pre-whitening key from the remaining round keys.

Proposition 3. Let Ek : Fn
2 → F

n
2 be a cipher with ANF

Ek(x) =
∑

u∈Fn
2

pu(k)xu

and consider a version of Ek with an additional pre-whitening key k0, i.e.

Ek,k0(x) := Ek(x + k0)

with ANF
Ek,k0(x) =

∑

v∈Fn
2

qv(k, k0)xv

If, for all u of weight n − 1 the coefficient pu(k), is non-constant, it follows that
qv(k, k0) is non-constant for all v of weight less than n.

Proof. We first express qv(k, k0) in terms of pu. We get

Ek,k0(x) = Ek(x + k0) =
∑

u∈Fn
2

pu(k) (x + k0)
u

=
∑

u∈Fn
2

pu(k)

⎛

⎝
∑

v�u

xvku⊕v
0

⎞

⎠ =
∑

v∈Fn
2

⎛

⎝
∑

u�v

pu(k)ku⊕v
0

⎞

⎠ xv

This shows that
qv(k, k0) =

∑

u�v

pu(k)ku⊕v
0

Now, for any v of weight at most n−1, there exists at least one u′ � v of weight
n − 1 in the sum above. By the assumption on Ek it holds that pu′(k) is not
constant. Therefore, qv is not constant as a function in k and k0, which concludes
the proof. ��

3.3 The Key Pattern

Computing the values of λ
(i)
u,v is certainly not practical for arbitrary choice of

(u, v) and i. There is not a lot of freedom in the choice of u, especially not if
we aim at showing the appearance of all high degree monomials. However, there
is a huge freedom in the choice of v, that is in the key monomial kv that we
consider.

It is exactly the careful selection of suitable v that has a major impact on
the actual running time and finally allows us to obtain meaningful results in
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practical time. It is also here where assuming independent round-keys is needed.
Consider that case of a key-alternating block cipher depicted below2

Optional Expansion Algorithm

k

s0 f
s1

. . . f
sR

sR+1

k0 k1 kR−1 kR

When considering independent round-keys, the key monomial kv actually
consists of

kv = kv(0)

0 kv(1)

1 . . . kv(R)

R .

Here, we can select for each round-key ki a suitable vector v(i) freely.
Returning to Corollary 2 and the division property, recall that λ

(i)
u,v = 1 if and

only if the number of division trails (u, v) → ei is odd. The vector v and therefore
its parts v = (v(0), . . . , v(R)) correspond to (parts of) the input division property.
We will refer to v and its parts as the key-pattern. The number of trails, and
therefore the computational effort, is highly dependent on this choice. This is
the main technical challenge we solve, which is described in the following Sect. 4.

4 How to Search Input/Key/Output Patterns

As we already discussed above, we need to find u (called an input pattern)
and (v0, . . . , vR) (called a key pattern), in which the number of trails from
(u, v0, . . . , vR) to some unit vector ei (called a output pattern) is odd and, equally
important, efficiently computable. To do so, we will mainly rely on the use of
automatic tools such as MILP and SAT. We refer the reader to [12] for the mod-
eling in MILP and to [16] for the modeling in SAT (note that this paper shows
how to modelize BDP in SAT, but it can easily be adapted in our context).

Once we get such an input/key/output pattern, it is very easy to verify the
lower bound of the degree using standard techniques. We simply enumerate all
trails and check the parity of the number of trails3.

Therefore, the main problem that we need to solve is how to select suitable
input/key/output patterns. In general, we search key patterns whose Hamming
weight is as high as possible. The number of trails is highly related to the number
of appearances of the same monomial when they are expanded without canceling
in each round. Intuitively, we can expect such a high-degree monomial is unlikely
to appear many times. Unfortunately, even if the key pattern is chosen with
high weight, the number of trails tends to be even or extremely large when these
patterns are chosen without care.
2 Thanks to TikZ for Cryptographers [13].
3 We also provide a simple code to verify our results about lower bounds.
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Parasite Sub-Trails. To understand the difficulty and our strategy to find
proper input/key/output patterns, we introduce an example using SKINNY64.

Fig. 2. Extraction from the trail of SKINNY64

Assume that we want to guarantee that the lower bound of algebraic degree of
R-round SKINNY64 is 63. Given an input/key/output pattern, let us assume that
there is a trail that contains the trail shown in Fig. 2 somewhere in the middle
as a sub-trail. This sub-trail only focuses on the so-called super S-box involving
the 4th anti-diagonal S-boxes in the (r + 1)th round and the 1st-column S-boxes
in the (r + 2)th round. A remarkable, and unfortunately very common, fact is
that this sub-trail never yields an odd-number of trails because we always have
the following two different sub-trails.

T1 : 0x76E0
SC−−→ 0xC420

ART (+0x2000)−−−−−−−−−→ 0xE420
MC−−→ 0x0E60

SC−−→ 0x0240

T2 : 0x76E0
SC−−→ 0x1420

ART (+0x2000)−−−−−−−−−→ 0x3420
MC−−→ 0x0360

SC−−→ 0x0240

The trail shown in Fig. 2 is T1, and we always have another trail T2. Like this,
when the number of sub-trails is even under the fixed input, key, and output
pattern of the sub-trail, we call it an inconsistent sub-trail. Moreover, inconsistent
sub-trails are independent of other parts of the trail and might occur in several
parts of trails simultaneously. Assuming that there are 10 inconsistent sub-trails,
the number of the total trails is at least 210. In other words, inconsistent sub-
trails increase the number of total trails exponentially .

Heuristic Approach. It is therefore important to avoid trails containing incon-
sistent sub-trails. Instead of getting input/key/output pattern, the goal of the
first step in our method is to find a trail, where all sub-trails relating to each
super S-box are consistent, i.e., there is no inconsistent sub-trail as long as each
super S-box is evaluated independently. Note that this goal is not sufficient for
our original goal, and the number of total trails might still be even. Therefore,
once we get such a trail, we extract the input/key/output pattern from the found
trail, and check the total number of trails with this pattern.

We have several approaches to find such a trail. As we are actually going
to search for these patterns and enumerate the number of trails using MILP
or SAT solvers, the most straightforward approach is to generate a model to
represent the propagation by each super S-box accurately. However, modeling
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a 16-bit keyed S-box has never been done before. Considering the difficulty to
model even an 8-bit S-box, it is unlikely to be a successful path to follow.

Another approach is to use the well-known modeling technique, where the S-
box and MixColumns are independently modeled, and exclude inconsistent sub-
trail in each super S-box only after detecting them in a trail4. This approach is
promising, but the higher the number of rounds gets, the less efficient it is as the
number of super S-boxes we need to check the consistency increases. Indeed, as
far as we tried, this approach is not feasible to find proper patterns for 11-round
SKINNY64.

The method that we actually used is a heuristic approach that builds the
trail round by round. Let xr, yr, and zr be an intermediate values for the input
of the (r + 1)th S-box layer, output of the (r + 1)th S-box layer, and input of
the (r + 1)th MixColumns in each trail, respectively. Our main method consists
of the following steps.

1. Given ei(= yR−1), determine (xR−2, vR−1), where the Hamming weight of
xR−2 and vR−1 is as high as possible and the number of trails from xR−2 to
ei is odd and small (1 if possible).

2. Compute (xR−3, vR−2, yR−2), where the Hamming weight of xR−3 and vR−2

is as high as possible and the number of trails from xR−3 to yR−2 is odd (1
if possible). Then, check if the number of trails from xR−3 to ei is odd (1 if
possible) under (vR−2, vR−1).

3. Repeat the procedure above to Rmid rounds. This results in a key pattern
(vRmid+1, . . . , vR−1), where the number of trails from xRmid

to ei is odd and
small (again, 1 in the best case).

4. Compute (v1, . . . , vRmid
) such that the number of trails from u(= x0) to yRmid

is odd.
5. Compute the number of trails satisfying (u, v1, . . . , vR−1) → ei.

Our method can be regarded as the iteration of the local optimization. As we
already discussed in the beginning of this section, we can expect that the number
of trails from pattern with high weight is small. The first three steps, called trail
extension in our paper, are local optimization in this context from the last round.
Note that these steps are neither a deterministic nor an exhaustive methods. In
other words, the trail extension is randomly chosen from a set of optimal or
semi-optimal choices. Sometimes, there is an unsuccessful trail extension, e.g., it
requires too much time to extend the trail after a few rounds or we run into trails
that cannot reach the input pattern u. The heuristic and randomized algorithm
allows, in case we faces such unsuccessful trail extensions, to simply restart the
process from the beginning.

As far as we observe some ciphers, unsuccessful trail extensions happens
with higher probability as the trail approaches the first round. Therefore, after
some Rmid rounds, we change our strategy, and switch to the more standard
way of searching for (u, v1, . . . , vRmid

), e.g., Rmid = 5 or 6 is used in SKINNY64.

4 When we use Gurobi MILP solver, we can easily implement this behavior by using
callback functions.
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More formally, we search trails from u to yRmid
while excluding inconsistent sub-

trails. Note that this is possible now because this trail has to cover less rounds.
Once we find such a trail, we extract the key-patterns (u, v1, . . . , vRmid

) from the
trail and check if the number of trails from (u, v1, . . . , vRmid

) to yRmid
is odd. If

so, we finally extract the entire input/key/output pattern and verify the number
of trails satisfying (u, v1, . . . , vR−1) → ei.

Our algorithm is not generic, and it only searches “the most likely spaces”
at random. Therefore, it quickly finds the proper pattern only a few minutes
sometimes, but sometimes, no pattern is found even if we spend one hour and
more.

We like to stress again that, once we find input/key/output patterns whose
number of trails is odd, verifying the final number of trails is easy and standard,
and for this we refer the reader to the code available at https://github.com/
LowerBoundsAlgDegree/LowerBoundsAlgDegree.

How to Compute Minimum-Degree. The minimum degree is more impor-
tant for cryptographers than the algebraic degree. To guarantee the lower bound
of the minimum degree, we need to create patterns whose resulting matrix
MS(Ek) has full rank.

Our method allows us to get the input/key/output pattern, i.e., compute
λ
(i)
u,v for the specific tuple (u, v, i). However, to construct this matrix, we need

to know all bits of λu,v. And, the use of the input/key pattern for different
output patterns is out of the original use of our method. Therefore, it might
allow significantly many trails that we cannot enumerate them with practical
time.

To solve this issue, we first restrict ourselves to use a non-zero key pattern
vR−1 for the last-but one round during the trail extension. This is motivated by
the observation that, usually, a single round function is not enough to mix the full
state. Therefore it is obvious that the ANF of some output bits is independent
of some key-bits k

vR−1
r .

Equivalently, many output bits of λu,v are trivially 0, i.e., the number of
trails is always 0. Thus, the matrix MS(Ek) is a block diagonal matrix

MS(Ek) =

⎛

⎜⎜⎜⎝

MS1(Ek) 0 · · · 0
0 MS2(Ek) · · · 0
...

...
. . .

...
0 0 · · · MSm

(Ek)

⎞

⎟⎟⎟⎠ .

As such, MS(Ek) has the full rank when MSi
(Ek) has the full rank for all i.

This technique allows us to generate input/key/output patterns for the full-rank
matrix efficiently.

Even if we use non-zero vR−1, we still need to get full-rank block matrices.
Luckily, there is an important (algorithmic) improvement that we like to briefly
mention here. In many cases, it is not needed to compute the entire set of entries of
a matrix MS(F ) to conclude it has full rank. As an example, consider the matrix

https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree
https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree
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MS(F ) =

⎛

⎝
1 0 ∗
0 1 0
0 0 1

⎞

⎠

where ∗ is an undetermined value. Then MS(F ) has full rank, no matter what
the value of ∗ actually is. Even so this observation is rather simple, it is often
an important ingredient to save computational resources.

How to Compute All High-Degree Monomials. Guaranteeing the appear-
ance of all high-degree monomials is more important for cryptographers than
minimum degree. Conceptually, it is not so difficult. We simply use a specific u
in the 4th step instead of any u whose Hamming weight is n − 1 and guarantee
the lower bound of the minimum degree. Then, we repeat this procedure for all
us with Hamming weight n − 1.

How to Compute Lower Bounds for Intermediate Rounds. While the
most interesting result for cryptographers is to show the full algebraic degree and
full minimum degree, it is also interesting to focus on the degree or minimum
degree in the intermediate rounds and determine how the lower bounds increase.

In our paper, these lower bounds are computed by using the input/key/out-
put pattern, which is originally generated to guarantee the full degree and min-
imum degree. For example, when we prove the lower bound of r rounds, we first
enumerate all trails on this pattern, and extract xR−r whose number of trails
(xR−r, vR−r+1, . . . , vR−1) → ei is odd. Let X

(i)
R−r be the set of all extracted

values, and a lower bounds of the algebraic degree for r rounds is given by

max
i

max
u∈X

(i)
R−r

wt(u).

A more involved technique is needed for the minimum degree. We first construct
the matrix MS(Ek) for R rounds, where for non-diagonal elements, we set 0 if
there is no trail, and we set ∗ if there is trail. If this matrix has the full rank, we
always have the full-rank matrix even when we focus on intermediate rounds. In
this case, a lower bounds of the minimum degree for r rounds is given by

min
i

max
u∈X

(i)
R−r

wt(u).

How to Compute Upper Bounds. While some work has been done previ-
ously to find upper bounds on the algebraic degree [6,8], we want to point out
that we can easily compute such upper bounds using our MILP models, and our
results in Sect. 5 show that the resulting upper bounds are quite precise, espe-
cially for the algebraic degree. Indeed, to prove an upper bound for R rounds
and for the i-th coordinate function, we simply generate a model for R rounds,
fix the output value of the trail to the unit vector ei and then simply ask the
solver to maximize wt(u). This maximum value thus leads to an upper bound
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Fig. 3. Round function of GIFT-64 using SSB-friendly description

on the degree, since it is the maximum weight that u can have so that there is at
least one trail. Then, once we collected an upper bound ubi for each coordinate
function, we easily get an upper bound on the algebraic degree of the vectorial
function as maxi ubi. To get an upper bound on the minimum degree, recall
that the minimum degree is defined as the minimal algebraic degree of any lin-
ear combination of all coordinate functions. Thus, in particular, this minimum
degree is at most equal to the minimal upper bound we have on each coordinate
function, i.e., using the upper bounds on each coordinate function as before, we
simply need to compute mini ubi.

5 Applications

Clearly, we want to point out that the result about the lower bounds do not
depend on how we model our ciphers. That is, the parity of the number of trails
must be the same as long as we create the correct model. However the number
of trails itself highly depends on the way we model, e.g., the number is 0 for one
model but it is 1,000,000 for another model. As enumerating many trails is a
time consuming and difficult problem, we have to optimize the model.

For example, we could use only the COPY, XOR and AND operations to
describe the propagation through the S-box. However this would lead to more
trails than necessary, while directly modeling the propagation using the convex
hull method as in [22] significantly reduces the induced number of trails.

We already mentioned earlier that we consider independent round-keys added
to the full state. In particular for GIFT and SKINNY, the cipher we study are
strictly speaking actually not GIFT and SKINNY. However, we stress that this is a
rather natural assumption that is widely used for both design and cryptanalysis
of block ciphers.

5.1 GIFT

GIFT is a lightweight block cipher published at CHES’17 by Banik et al. [2]. Two
variants of this block cipher exists depending on the block length (either 64-bit
or 128-bit) and use a 128-bit key in both case. Its round function and the Super
S-boxes are depicted in Fig. 3. Note that in the original design, the round key
is added only to a part of the state.
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Table 2. Propagation table for the S-box of GIFT

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 x x

1 x x x x

2 x x

4 x x x x

8 x x

3 x x x x

5 x x x x x x x x x x

6 x x

9 x x x x x x

A x x x x x x

C x x

7 x x x x x x

B x x x x

D x x x x x x x

E x x x x x x

F x

Modeling. The round function of GIFT-64 is very simple and only consist of
an S-box layer and a bit permutation layer. We give the propagation table of
this S-box in Table 2, namely, an x in row u and column v means that u

S→ v
where S is the GIFT-64 S-box. For example, the column 0x1 corresponds to the
monomials appearing in the ANF of the first output bit of the S-box. We can
obtain linear inequalities to modelize this table according to the technique given
in [22].

The bit permutation is simply modelized by reordering the variables
accordingly.

Algebraic Degree. We applied our algorithm for GIFT-64 and obtained that
the algebraic degree of all coordinate functions is maximal (i.e., 63) after 9
rounds. However, we can go even further and prove that 32 of the coordinate
functions are of degree 63 after only 8 rounds. As such, the algebraic degree of
GIFT-64 as a vectorial function is maximal after only 8 rounds. In Fig. 4 on the
left side, we give the lower and upper bounds for the algebraic degree of GIFT-64,
and we will give the detailed lower and upper bounds for each coordinate function
in the full version of the paper.

Note that we thus have two data-sets: one for 8 rounds and another one for
9 rounds. To get the curve for the lower bounds on algebraic degree, we simply
“merged” the data-sets and extracted the best lower bound for each coordinate
function and for each number of rounds. Thus this curve shows the best results
we were able to get.
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While the execution time can widely vary depending on a lot of factors, in
practice our algorithm proved to be quite efficient when applied to GIFT-64.
Indeed, to prove that each output bit is of maximal degree after 9 rounds as
well as computing the lower bounds for a smaller number of rounds, we needed
less than one hour on a standard laptop, and about 30 min to find all coordinate
functions with algebraic degree 63 after 8 rounds (and again, also computing all
lower bounds for less rounds).

Fig. 4. Algebraic degree and minimum degree for GIFT-64

Minimum Degree. In about one hour of computation on a standard laptop,
we were able to show that the minimum degree is maximal after 10 rounds. In
Fig. 4 on the right side we show the lower and upper bounds on the minimum
degree for each number of rounds from 1 to 10.

All Maximal Degree Monomials. As described in Sect. 3.2 we were able
to show that all 63-degree monomials appear after 11 rounds for any linear
combination of the output bits. This computation was a bit more expensive
than the previous one, yet our results were obtained within about 64 h.

5.2 SKINNY64

SKINNY is a lightweight block cipher published at CRYPTO’16 by Beierle
et al. [4]. SKINNY supports two different block lengths (either 64 bits or 128 bits).
The round function adopts the so-called AES-like structure, where significantly
lightweight S-box and MixColumns are used.

Please refer to Fig. 2 for the figure of the round function of our variant of
SKINNY64.

Modeling. We introduce how to create the model to enumerate trails. For the
S-box, the method is the same as for GIFT, i.e. using the technique from [22].
Therefore, here, we focus on MixColumns.
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Table 3. Algebraic degree and minimum degree on SKINNY64

1R 2R 3R 4R 5R 6R 7R 8R 9R 10R 11R

degree UB 3 8 19 33 47 58 61 62 62 63 63

LB 3 8 18 29 39 49 55 59 61 63 –

minDeg UB 2 3 8 17 33 47 58 61 62 62 63

LB 2 2 5 8 14 26 39 50 57 61 63

Naively, propagation through linear layers would be done with a combination
of COPY and XOR propagations as in [12]. However, this leads to more trails
that we need to count, which thus increase the overall time needed for our
algorithm. Therefore, we use that MixColumns of SKINNY can be seen as the
parallel application of several small linear S-boxes, denoted by L-box hereinafter.
Formally, MixColumns is the multiplication over F24 , but equivalently, we can
see this operation over F2, where it is the multiplication with the following block
matrix over F2 ⎛

⎜⎜⎝

I4 0 I4 I4
I4 0 0 0
0 I4 I4 0
I4 0 I4 0

⎞

⎟⎟⎠ ,

where I4 is the identity matrix over F2 of dimension 4. By carefully examining
the structure of this matrix, we can actually notice that it can be written as the
parallel application of 4 L-boxes, which is defined as

L(x1, x2, x3, x4) = (x1 ⊕ x3 ⊕ x4, x1, x2 ⊕ x3, x1 ⊕ x3),

Hence, instead of using the COPY and XOR operations, we consider that it
is actually the parallel application of this L-box. Thus, the modelization for
MixColumns is done in the same way as for S-boxes using the technique from [22].

Algebraic Degree. Before we discuss the algebraic degree of SKINNY, we intro-
duce a column rotation equivalence. We now focus on SKINNY, where all round
keys are independent and XORed with the full state. Then, the impact on the
round constant is removed, and each column has the same algebraic normal form
with different input. Overall, we remove the last ShiftRows and MixColumns,
and the output bit is the output of the last S-box layer. Then, in the context of
the division property, once we find a trail (u, v0, . . . , vR) → ei, we always have
a trail (u≪32·i, v≪32·i

0 , . . . , v≪32·i
R ) → ei+32·i), where u≪32·i is a value after

rotating u by i columns. The column rotation equivalence enables us to see that
it is enough to check the first column only.

We evaluated the upper bound of the algebraic degree for each coordinate
function in the first column. The UB of degree in Table 3 shows the maximum
upper bound among upper bounds for 16 coordinate functions, as well as the
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best lower bounds we managed to compute. The detailed results for the UB and
LB of each coordinate function will be given in the full version of the paper.

In 10 rounds, the lower bound is the same as the upper bound. In other
words, the full degree in 10 rounds is tight, and we can guarantee the upper
bound of the algebraic degree is never less than 63 in 10-round SKINNY under
our assumption.

Minimum Degree. The upper bound of the algebraic degree for bits in the
2nd row is 62 in 10 rounds. Therefore, 10 rounds are clearly not enough when we
consider the full minimum degree. As we already discussed in Sect. 3.1, we need
to construct 64 input/key patterns whose matrix MS(Ek) has the full rank.

Fig. 5. Deterministic trail extension for the last MixColumns and S-box

To guarantee the lower bounds of the minimum degree, the method shown
in Sect. 4 is used. In SKINNY64, when vR−2 is non-zero, the resulting matrix
becomes a block diagonal matrix, where each block is 16× 16 matrix. Moreover,
thanks to the column rotation equivalence, we always have input/key patterns
such that each block matrix is identical. Therefore, only getting one full-rank
16×16 block matrix is enough to guarantee the lower bound of minimum degree.

Unfortunately, the use of the technique described in Sect. 4 is not sufficient to
find patterns efficiently. We use another trick called a deterministic trail exten-
sion, where we restrict the trail extension for the last MixColumns and S-box
such that it finds key patterns whose matrix is the full rank efficiently. Figure 5
summarizes our restriction, where the cell labeled deep red color must have
non-zero value in the trail. We assume that taking the input of each pattern is
necessary for the trail to exist. Then, taking Pattern 1 (resp. Pattern 3) implies
that λ

(i)
u,v can be 1 only when i indicates bits in the 1st nibble (resp. 3rd nibble).

Taking Pattern 2 allows non-zero λ
(i)
u,v for i which indicates bits in the 1st, 2nd,

and 4th nibbles. Taking Pattern 4 allows non-zero λ
(i)
u,v for i which indicates bits

in the 1st, 3rd, and 4th nibbles. In summary, we can expect the following matrix

MS1(Ek) =

⎛

⎜⎜⎝

A ∗ 0 ∗
0 B 0 0
0 0 C ∗
0 ∗ 0 D

⎞

⎟⎟⎠ ,

where 0 is 4 × 4 zero matrix, and ∗ is an arbitrary 4 × 4 matrix. We can notice
that this matrix is full rank if A, B, C, and D are full rank.
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By using these techniques, we find 16 input/key patterns to provide the
lower bound of the minimum degree on SKINNY64 (see minDeg in Table 3). In
11 rounds, the lower bound is the same as the upper bound, thus having full
minimum degree in 11 rounds is tight. In other words, we can guarantee the
upper bound of the minimum degree is never less than 63 in 11-round SKINNY
under our assumption.

All Maximum-Degree Monomials. To guarantee the appearance of all
maximum-degree monomials, much more computational power must be spent.
The column rotation equivalence allows us to reduce the search space, but it is
still 64 times the cost of the minimum degree. After spending almost one week
of computations, we can get input/key patterns to prove the appearance of all
maximum-degree monomials in 13-round SKINNY64. All input/key patterns are
listed in https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree.

Fig. 6. Round function of PRESENT using SSB-friendly description

5.3 PRESENT

PRESENT is another lightweight block cipher published at CHES’07 [5], with a
64-bit block size and two variants depending on the key-length : either 80 bits
or 128 bits. Its round function is very similar to the round function of GIFT and
is also built using a 4-bit S-box and a bit permutation, see Fig. 6.

Modeling. As for GIFT-64, the S-box is modelized using the technique from
[22] and the bit permutation can easily be modelized by reordering variables.

Algebraic Degree. Using our algorithm, we were able to show that all output
bits have an algebraic degree of 63 after 9 rounds in about nine hours, including
the lower bounds for a smaller number of rounds. Even better, for 8 rounds,
we were able to show that 54 out of all 64 coordinate functions are actually
already of degree 63. We give the resulting lower and upper bounds for the
algebraic degree of PRESENT on the left side of Fig. 7. As for GIFT-64, these
curves were obtained by taking the best bounds over all coordinate functions,
and the detailed bounds for each coordinate function will be given in the full
version of the paper.

https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree
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Minimum Degree. Note that while directly using the PRESENT specification
would still allow us to get some results for the minimum degree, we found out
a way to largely improve the speed of the search for this case. Similarly to
SKINNY64, we used a deterministic trail extension for the last S-box layer. We
will give the full details about this observation and how we managed it in the
full version.

Fig. 7. Algebraic degree and minimum degree for PRESENT

In short, we change the S-box in the last S-box layer to a linearly equivalent
one S′ (thus preserving the correctness of our results for the minimum degree)
and add additional constraints to help finding “good” key patterns during the
search. While these constraints could slightly restrict the search space, in practice
it proved to be a very efficient trick to speed up the search and was enough to
prove the full minimum degree over 10 rounds. The same trick is used for the all
monomial property since it is essentially the same as for the minimum degree,
only repeated several time for each possible input monomial. In the end, within
about nine hours, we were able to show that the minimum degree is also maximal
after 10 rounds using this trick. In Fig. 7 on the right side, we give the lower
and upper bounds for the minimum degree over 1 to 10 rounds.

All Maximal Degree Monomials. Showing that all 63-degree monomials
appear after 11 rounds for any linear combinations of output bits required quite
a bit more computational power, however we were still able to show this result
in about 17 days of computation.

5.4 AES

Despite many proposals of lightweight block ciphers, AES stays the most widely-
used block cipher. The application to AES of our method is thus of great interest.

However, our method uses automatic tools such as MILP or SAT and such
tools are not always powerful for block ciphers using 8-bit S-boxes like AES.
As therefore expected, our method also has non-negligible limitation, and it is
difficult to prove the full, i.e., 127, lower bound of algebraic degree. Yet, our
method can still derive new and non-trivial result regarding the AES.
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Fig. 8. Trail on 5-round AES

Modeling. We first construct linear inequalities to model the propagation table
for the AES S-box, where we used the modeling technique shown in [1]. While
a few dozens of linear inequalities are enough to model 4-bit S-boxes, 3,660
inequalities are required to model the AES S-box. Moreover, the model for Mix-
Columns is also troublesome because the technique using L-boxes like SKINNY is
not possible. The only choice is a naive method, i.e., we would rely on the COPY
+ XOR rules for the division property [21]. Unfortunately, this method requires
184, which is equal to the weight of the matrix over F2, temporary variables, and
such temporary variables increase the number of trails. In particular, when the
weight of the output pattern in MixColumns is large, the number of sub-trails
exponentially increases even when we focus on one MixColumns.

Algebraic Degree. Due to the expensive modeling situation, proving full alge-
braic degree is unlikely to be possible. Nevertheless, this model still allows us to
get non-trivial results. We exploit that the number of sub-trails can be restrained
to a reasonable size when the weight of the output pattern in MixColumns is
small. Namely, we extend the trail such that only such trails are possible.

Figure 8 shows one trail for 5-round AES. When the input/key/output pat-
tern, shown in red, is fixed, the number of trails is odd. Moreover, we confirmed
that the number of trails for reduced-number of rounds is odd, e.g., in 3-round
AES, the number of trails (x2, v3, v4) → y4 is odd.

This result provides us some interesting and non-trivial results.
On 3-round AES, the input of this trail is 16 values with Hamming weight

7. In other words, the lower bound of the degree is 16 × 7 = 112. Considering
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well-known 3-round integral distinguisher exploits that the monomial with all
bits in each byte is missing, this lower bound is tight.

From the 4-round trail, we can use the input, which includes 0xFF. Unfortu-
nately, using many 0xFF implies the output of MixColumns with higher Ham-
ming weight, and as we already discussed, the resulting number of trails increases
dramatically. While we can have 12 0xFF potentially, we only extend the trail to
4 0xFF. Then, the lower bound of the degree is 116 in 4-round AES.

The first column in x1 has 0xFFFFFFFF. When we use the naive COPY+XOR
rules, there are many trails from 0xFFFFFFFF to 0xFFFFFFFF via MixColumns.
However, this trail must be possible and this input (resp. output) cannot prop-
agate to other output (resp. input). Therefore, we bypass only this propagation
without using COPY+XOR rule. This technique allows us to construct x0 in
Fig. 8. One interesting observation is all diagonal elements take 0xFF, and well-
known 4-round integral distinguisher exploits that the monomial with all bits
in diagonal elements is missing. Our result shows 5-round AES includes the
monomial, where 84 bits are multiplied with the diagonal monomial.

While we can give non-trivial and large enough lower bound for 3-round and
4-round AES, the results are not satisfying. Many open questions are still left,
e.g., how to prove the full degree, full minimum degree, the appearance of all
high-degree monomials.

6 Conclusion

Cryptographers have so far failed to provide meaningful lower bounds on the
degree of block cipher, and in this paper, we (partially) solve this long-lasting
problem and give, for the first time, such lower bounds on a selection of block
ciphers. Interestingly, we can now observe that the upper bounds are relatively
tight in many cases. This was hoped for previously, but not clear at all before
our work.

Obviously, there are some limitations and restrictions of our current work
that, in our opinion, are good topics for future works. The main restriction is the
applicability to other ciphers. For now, all ciphers studied so far needed some
adjustment in the procedure to increase the efficiency and derive the results.
It would be great if a unified and improved method could avoid those hand
made adjustments. This restriction is inherently related to our heuristic search
approach for the key-pattern. A better search, potentially based on new insights
into how to choose the key-pattern in an optimal way, is an important topic
for future research. Moreover, if we focus on the appearance of all maximal
degree monomials, we still have a gap between the best integral distinguishers
and our results. Thus, either our bounds or the attacks might be improved in
the future. Finally, for now, computing good bounds for fixed key variants of the
ciphers is not possibly with our ideas so far. This is in particular important for
cryptographic permutations where we fail for now to argue about lower bounds
for the degree. Only in the case of PRESENT, we were able to compute a non-
trivial lower bound on the algebraic degree in the fixed key setting for a few bits
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for 10 rounds. Here, we counted the number of trails using a #SAT solver5 [17].
Especially for other ciphers with a more complicated linear layer like SKINNY,
we were not able to show a lower bound on any output bit.
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Abstract. Tweakable block ciphers (TBCs) have been established as
a valuable replacement for many applications of classical block ciphers.
While several dedicated TBCs have been proposed in the previous years,
generic constructions that build a TBC from a classical block cipher
are still highly useful, for example, to reuse an existing implementation.
However, most generic constructions need an additional call to either
the block cipher or a universal hash function to process the tweak, which
limited their efficiency.

To address this deficit, Bao et al. proposed Tweak-aNd-Tweak (TNT)
at EUROCRYPT’20. Their construction chains three calls to indepen-
dent keyed permutations and adds the unmodified tweak to the state in
between the calls. They further suggested an efficient instantiation TNT-
AES that was based on round-reduced AES for each of the permutations.
Their work could prove 2n/3-bit security for their construction, where n
is the block size in bits. Though, in the absence of an upper bound, their
analysis had to consider all possible attack vectors with up to 2n time,
data, and memory. Still, closing the gap between both bounds remained
a highly interesting research question.

In this work, we show that a variant of Mennink’s distinguisher on
CLRW2 with O(

√
n23n/4) data and O(23n/2) time from TCC’18 also

applies to TNT. We reduce its time complexity to O(
√

n23n/4), show
the existence of a second similar distinguisher, and demonstrate how to
transform the distinguisher to a key-recovery attack on TNT-AES[5, ∗, ∗]
from an impossible differential. From a constructive point of view, we
adapt the rigorous STPRP analysis of CLRW2 by Jha and Nandi to
show O(23n/4) TPRP security for TNT. Thus, we move towards closing
the gap between the previous proof and attacks for TNT as well as its
proposed instance.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12491, pp. 567–597, 2020.
https://doi.org/10.1007/978-3-030-64837-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64837-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-64837-4_19


568 C. Guo et al.

Keywords: Cryptanalysis · Block cipher · Tweakable block cipher ·
AES · Impossible differential

1 Introduction

Tweakable Block Ciphers (TBCs) differ from classical block ciphers in the
sense that they take a public input called tweak that can increase the secu-
rity or the performance of higher-level schemes effectively, e.g., in encryption
modes [KR11,PS16], MACs [IMPS17,Nai15], or in authenticated-encryption
schemes [IMPS17,JNP16]. Initially, TBCs have been built from classical block
ciphers and universal hash functions, starting with Liskov et al.’s construc-
tions [LRW02] LRW1 and LRW2. Various works enlarged the portfolio of generic
TBC constructions, e.g. the cascade CLRW2 [LST12], Mennink’s constructions
˜F [1] and ˜F [2] [Men15], XHX [JLM+17], XHX2 [LL18], or the constructions by
Wang et al. [WGZ+16]. These proposals processed the tweak either with a uni-
versal hash function or an additional call to the classical block cipher.

As An Alternative Approach, several works proposed dedicated TBCs in the
previous decade. In particular, the TWEAKEY framework [JNP14b] found wide
adoption, e.g. in Deoxys-BC, Joltik-BC [JNP14b], or Skinny [BJK+16]. Though,
since TWEAKEY treats key and tweak equally, any update needs a call to
(significant parts of) the TWEAKEY schedule. However, tweak updates occur
usually considerably more frequently than key updates. For example, modes like
CTRT or ΘCB3 employ a different tweak in each primitive call. Thus, performant
tweak-update functions can boost efficiency. KIASU-BC [JNP14a] or CRAFT
[BLMR19] avoid tweak schedules, but need further analysis. Moreover, some
applications cannot easily be equipped with novel dedicated TBCs but would
profit rather from efficient transformations that turn an existing block-cipher
implementation into a TBC. For this purpose, generic constructions such as
CLRW2 are still relevant. Yet, it would be desirable if its internal hash function
could be eliminated to avoid its implementation and the storage of its keys.

Tweak-aNd-Tweak (TNT) is a recent proposal by Bao et al. [BGGS20] for
generating a TBC from three block ciphers EK1 , EK2 , EK3 : K×F

n
2 → F

n
2 , where

F2 is the Galois Field of characteristic 2 and K a non-empty set of keys. The
encryption of TNT is defined as

TNT[EK1 , EK2 , EK3 ](T,M) def= EK3(EK2(EK1(M) ⊕ T ) ⊕ T ).

where the tweak space is T = 2n. The intermediate values are illustrated in
Fig. 1. We will use ΔM , ΔT , etc. to refer to the differences between two values
M and M ′, T and T ′, and so on. This extends naturally to the other variables.
Given ideal secret permutations π1, π2, π3 ∈ Perm(Fn

2 ), where Perm(X ) is the set
of all permutations over a set X , Bao et al. [BGGS20] showed that TNT is a
secure tweakable permutation for at least O(22n/3) queries.

TNT-AES instantiates the individual keyed permutations in TNT with round-
reduced variants of AES. More precisely, TNT-AES[r1, r2, r3] denotes the version
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M π1 π2 π3 C

T T

S U V W

Fig. 1. The encryption of a message M under a tweak T with TNT[π1, π2, π3].

where πi uses ri rounds of the AES, for 1 ≤ i ≤ 3, and the tweak matches the
state size of the AES, i.e. T = B = (F8

2)
4×4, and n = 128. The concrete proposal

was TNT-AES[6, 6, 6] [BGGS20]. While the earlier proposal contained no explicit
claim, it suggested that TNT should be treated as a secure tweakable block cipher
for up to O(22n/3) queries and TNT-AES should provide n-bit security, even in
the related-key chosen-tweak setting: “Following the proven security bound of
TNT, TNT-AES offers 2n/3-bit security, i.e., there exists no key-recovery attack,
given that the data (the combination of tweak and plaintext with no restriction
on individual input) and time complexities are bounded by 22·128/3 � 285. Due
to the fact that there is no attack against TNT matching the 22n/3 bound, all our
security analysis against TNT-AES are following the 2n = 2128 bound for both
data and time” [BGGS20, Sect. 5.2]. The best attack in [BGGS20] was a related-
tweak boomerang distinguisher on TNT-AES[∗, 5, ∗] with 21 active S-boxes. The
asterisks indicate that the analysis holds for arbitrary values for r1 and r3.

Contribution. This work aims at narrowing the security gap from both sides.
We show in Sect. 2 that a variant of Mennink’s distinguisher on CLRW2 [Men18]
also applies to TNT, which yields a theoretical TPRP (i.e., chosen-tweak, chosen-
plaintext) distinguisher in O(

√
n23n/4) time, data, and memory complexity. As

improvements, we reduce the complexity of Mennink’s information-theoretic dis-
tinguisher from O(23n/2) to O(23n/4) computations. More precisely, we show two
similar TPRP distinguishers that we call parallel-road and cross-road distinguish-
ers. We use one of them to mount a partial key-recovery attack on the instance
TNT-AES[5, ∗, ∗] with an impossible differential in Sect. 3. Since it needs more
message pairs, its complexity exceeds O(23n/4) but is still considerably below
2n computations and data. We emphasize that we do not break the proposed
version TNT-AES[6, 6, 6] of [BGGS20].

From a constructive point of view, we show that the rigorous STPRP (i.e.,
chosen plain- and ciphertext queries) analysis by Jha and Nandi on CLRW2, that
showed security for up to O(23n/4) queries, can be adapted to a TPRP proof of
TNT with similar complexity. Thus, we move a considerable step towards closing
the gap between proofs and attacks for TNT and its proposed instance.

Notation. We use uppercase characters for variables and functions, lowercase
characters for indices, calligraphic characters for sets and distributions, and sans-
serif characters for random variables. For n ∈ N, let [n] =def {1, 2, . . . , n} and
[0..n] =def {0, 1, . . . , n}. For a bit string X ∈ F

n
2 , let X = (Xn−1Xn−2 . . . X0)

be its individual bits. We assume that the most significant bit is the leftmost,
and the least significant bit is the rightmost bit, s.t. the integer representation
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x of X is x =
∑

i 2i · Xi. For x < 2n, we will use X = 〈x〉n as conversion of an
integer x into a n-bit string X that represents x. For non-negative integers ≤ n
and X ∈ F

n
2 , we will use lsbx(X) as function that returns the least significant x

bits of X and msbx(X) to return the most significant x bits of X. (n)k denotes
the falling factorial n!/(n−k)!. For non-negative integers x+y = n and Z ∈ F

n
2 ,

we will use (X,Y )
x,y←−− Z to denote that X ‖Y = Z where |X| = x and |Y | = y.

Similar to Perm, we define P̃erm(T ,X ) as the set of all tweakable permutations
π̃ : T × X → X over X with tweak space T .

Practical Implications. While an STPRP proof is desirable, the implications
of higher TPRP security already provide a valuable gain for TBC-based schemes
that do not need the primitive’s inverse. Considering authenticated encryp-
tion schemes, examples of such schemes include SCT [PS16], ZAE [IMPS17],
ZOTR [BGIM19], or the TBC-based variants of OTR (OTR) [Min14] and COFB
(iCOFB) [CIMN17,CIMN20]. Considering MACs, there exist various such con-
structions, e.g. ZMAC [IMPS17] and its derivates [LN17,Nai18]. The security of
those schemes is limited by the minimum of O(2min(n,(n+t)/2)) queries and the
TPRP security of the underlying primitive. Since the latter is the bottleneck, its
improvement yields directly higher security guarantees for the schemes.

AES. We assume that the reader is familiar with the AES. We use R to refer
to the round function, Xi for the state after i rounds, starting with X0 as the
plaintext, and K0 for the initial round key. We use Xi

SB, Xi
SR, and Xi

MC to refer
to the state directly after the SubBytes, ShiftRows, and MixColumns operation in
the i-th round, respectively. Moreover, Xi[j] refers to the j-th byte of Xi. For
I ⊆ {0, 1, 2, 3}, we adopt the subspaces for diagonals DI , columns CI , inverse
(or anti-)diagonals IDI , and mixed spaces MI from Grassi et al. [GRR16].

2 Distinguishers on TNT

Here, we briefly describe two distinguishers on TNT with O(
√

n · 23n/4) queries,
which implies an upper bound on the (query) security of TNT of at most
O(q4/(

√
n · 23n)). Our distinguishers are illustrated in Fig. 2. We do not claim

that our observations are novel. Instead, both are applications of [LNS18] and
[Men18]. The latter, however, is an information-theoretic distinguisher that uses
O(

√
n · 23n/4) queries, but the description by Mennink demands O(23n/2) offline

operations to identify the required pairs.
We note that Sibleyras’ work [Sib20] proposes generic key-recovery attacks

for LRW2 and cascades that also hold for CLRW2. Those attacks slightly reduce
the time complexity of Mennink’s attack, but require more queries, roughly
22(n+k)/3, and are hence in O(2n) for plausible values of the key size k ≥ n/2.

2.1 General Setup

Let M0,M1 ∈ F
n
2 be two distinct messages and T 0 and T 1 be two sets of

q = 23n/4+x pairwise distinct random tweaks Tj for 0 ≤ j < q in each set, where
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Fig. 2. Cross- (left) and parallel-road (right) distinguishers on TNT. Solid horizontal
lines are probabilistic equalities that hold with probability around 2−n each. Dotted
lines hold either by choice or by design once the solid-line equalities are fulfilled.

T i associates all tweaks with a fixed message M i for T i for i = 0, 1. We describe
two ways to combine two pairs to quartets each that differ in the way where
the messages are used. Figure 2 may illustrate why we call them parallel- and
cross-road distinguishers. For both distinguishers, we want two pairs, (Mi, Ti)
and (Mj , Tj) as well as (Mk, Tk) and (M�, T�), with the same tweak difference
ΔTi,j = Ti ⊕ Tj = ΔTk,� = Tk ⊕ T�, and for which Ci = Cj and Ck = C�.

2.2 Cross-Road Distinguisher

Here, we denote the queries and intermediate variables

– related to (M0, T 0
i ) ∈ T 0 also as (S0

i , U0
i , V 0

i ,W 0
i , C0

i ),
– those related to (M1, T 1

j ) ∈ T 1 also as (S1
j , U1

j , V 1
j ,W 1

j , C1
j ),

– those related to (M0, T 0
k ) ∈ T 0 also as (S0

k, U0
k , V 0

k ,W 0
k , C0

k), and
– those related to (M1, T 1

� ) ∈ T 1 also as (S1
� , U1

� , V 1
� ,W 1

� , C1
� ).

Clearly, we want i �= k and j �= � as well as (i, j) �= (k, �).

Procedure. We define two construction functions:

τ0(i)
def= 0n/4−x ‖ 〈i〉3n/4+x, and τ1(j)

def= 〈j〉3n/4+x ‖ 0n/4−x.

The resulting tweak structures are illustrated in Fig. 3. The distinguisher pro-
cedure is given on the left-hand side of Algorithm 1. Let θ ≥ 0 be a threshold.
The threshold depends on the desired error (and success) probability and will
be discussed in Sect. 3.3. The distinguisher can be described as:
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Algorithm 1. Distinguishers on TNT.
11: function crossRoad
12: K � F

k
2

13: M0 � F
n
2

14: M1 � F
n
2

15: coll ← 0
16: L ← [] × [0..2n − 1] � 2n elements
17: D ← 0 × [0..2n − 1] � 2n elements
18: for i ← 0..q − 1 do � q iterations
19: T 0

i ← τ0(i)
20: C0

i ← EK(T 0
i , M0)

21: L[C0
i ]

∪← {T 0
i }

22: for j ← 0..q − 1 do � q iterations
23: T 1

j ← τ1(j)
24: C1

j ← EK(T 1
j , M1)

25: coll ← coll+findNumColls(L, D, T 1
j , C1

j )

26: return coll ≥ θ

31: function findNumColls(L, D, T 1
j , C1

j )
32: c ← 0
33: for all T 0

i in L[C1
j ] do

34: � 2n/2 calls over all executions
35: ΔTi,j ← T 0

i ⊕ T 1
j

36: c ← c + D[ΔTi,j ]
37: D[ΔTi,j ] ← D[ΔTi,j ] + 1

38: return c

11: function parallelRoad
12: K � F

k
2

13: M0 � F
n
2

14: M1 � F
n
2

15: coll ← 0
16: L ← [] × [0..2n − 1] � 2n elements
17: D ← 0 × [0..2n − 1] � 2n elements
18: for i ← 0..q − 1 do � q iterations
19: T 0

i ← τ0(i)
20: C0

i ← EK(T 0
i , M0)

21: for all T 0
j in L[C0

i ] do
22: ΔT 0

i,j ← T 0
i ⊕ T 0

j

23: D[ΔT 0
i,j ] ← D[ΔT 0

i,j ] + 1

24: L[C0
i ]

∪← {T 0
i }

25: L ← [] × [0..2n − 1] � 2n elements
26: for k ← 0..q − 1 do � q iterations
27: T 1

k ← τ1(k)
28: C1

k ← EK(T 1
k , M1)

29: for all T 1
� in L[C1

k ] do
30: � 2n/2 calls over all executions
31: ΔT 1

k,� ← T 1
k ⊕ T 1

�

32: coll ← coll + D[ΔT 1
k,�]

33: L[C1
k ]

∪← {T 1
k }

34: return coll ≥ θ

1. Initialize two lists L and D and initialize a counter coll = 0.
2. For i ∈ [0..q − 1]:

– Use τ0(i) as tweak-construction function to generate queries (M0, T 0
i ).

Encrypt them to obtain C0
i ← EK(T 0

i ,M0). Insert T 0
i to L[C0

i ].
3. For j ∈ [0..q − 1]:

– Use τ1(j) as tweak-construction function to generate queries (M1, T 1
j ).

Encrypt them to obtain C1
j ← EK(T 1

j ,M1).
3.1. For each T 0

i ∈ L[C1
j ]:

– Derive ΔTi,j = T 0
i ⊕T 1

j . Derive the number of pairs (T 0
k , T 1

� ) with the
same tweak difference from D[ΔTi,j ], add this number c to the total
number of colliding quartets, coll, and increment D[ΔTi,j ].

4. If coll > θ, return “real” and “random” otherwise.

Since the i-th and k-th query share the same message M0, it follows that S0
i =

S0
k; a similar argument holds from M1

j = M1
� to S1

j = S1
� . With probability

2−n, it holds that S0
i ⊕ S1

� = T 0
i ⊕ T 1

� . In this case, it follows that U0
i = U1

� .
By combination, there exist approximately (23n/4+x)2 · 1/(2n − 1) � 2n/2+2x

ordered collision pairs U0
i = U1

� between (M0, T 0
i ) and (M1, T 1

� ). There exist
(23n/4+x − 1)2 · 1/(2n − 1) � 2n/2+2x ordered collision pairs U0

k = U1
j between

(M0, T 0
k ) and (M1, T 1

j ). Note that this is a conditional probability; since S0
k = S0

i

and S1
j = S1

� , it follows from T 0
k ⊕ T 1

j = S0
k ⊕ S1

j that T 0
k ⊕ T 1

j = T 0
i ⊕ T 1

� . Those
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Fig. 3. Construction of the tweak sets.

will be mapped to V 0
i = V 1

� and V 0
k = V 1

j . Thus, by combination, there are
(

2n/2+2x

2

)

� 2n+4x−1 pairs of pairs (quartets) with T 0
i ⊕ T 1

� and T 0
k ⊕ T 1

j . With
probability 2−n, a quartet has V 0

i ⊕ V 1
� = T 0

k ⊕ T 1
j , which implies W 0

i = W 0
j .

Since V 0
i = V 1

� and V 0
k = V 1

j , this implies that W 0
k = W 1

� also holds. We obtain

(

2n/2+2x

2

)

· 2−n � 24x−1 quartets.

Similarly, we expect (23n/4+x)2 · 2−n � 2n/2+2x pairs C0
i = C1

j formed by acci-
dent, which can be combined to

(

2n/2+2x

2

)

· 2−n � 24x−1 quartets.

For a random tweakable permutation, only the latter events occur, whereas we
have two sources in the real world. Thus, we can expect twice as many quartets
in the real construction compared to the ideal world.

Experimental Verification. To improve the understanding, we followed Men-
nink’s approach and also implemented the distinguisher for small permutations.
We used TNT with three independent instances of Small-PRESENT-n [Lea10],
the small-scale variants of PRESENT [BKL+07], with the original key schedule
of PRESENT as proposed there, where the original round keys Ki are truncated
to their rightmost (least significant) n bits for n ∈ {16, 20, 24}. We employed the
full 31 rounds as for the original PRESENT cipher. For the real construction, we
sampled uniformly and independently 1 000 random keys, one per experiment,
and two random messages. The tweaks were constructed as in Fig. 3. For the
ideal world, we sampled the ciphertexts uniformly and independently at random
and verified that no message-pair for the same tweak amid any experiment col-
lides. The results of our implementation are summarized in Table 1a. The source
code of all experiments can be found freely available to the public.1

1 https://gitlab.com/elist/tnt.

https://gitlab.com/elist/tnt
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Table 1. Average #quartets for TNT with Small-PRESENT-n as permutations πi

(“real”) and pseudorandom sampling (“ideal”) over 1 000 experiments with random
keys, two random messages, and 2t tweaks per message in each experiment.

(a) Cross-road distinguisher.

n t Ideal Real

16 11 0.026 0.061

16 12 0.485 1.009

16 13 7.967 15.970

16 14 127.458 255.133

n t Ideal Real

20 14 0.032 0.055

20 15 0.494 0.960

20 16 8.087 16.162

20 17 128.057 255.739

n t Ideal Real

24 17 0.034 0.066

24 18 0.482 1.009

24 19 7.979 16.174

24 20 127.941 255.661

(b) Parallel-road distinguisher.

n t Ideal Real

16 11 0.015 0.050

16 12 0.232 0.787

16 13 4.076 12.127

16 14 64.274 192.275

n t Ideal Real

20 14 0.024 0.057

20 15 0.274 0.749

20 16 3.892 11.952

20 17 64.405 191.398

n t Ideal Real

24 17 0.016 0.063

24 18 0.233 0.726

24 19 4.016 12.170

24 20 63.686 191.599

2.3 Parallel-Road Distinguisher

Our second distinguisher is described in the right-hand side of Algorithm1 and
is illustrated on the right-hand side of Fig. 2. The core difference is the choice
of sets for collisions. While the first distinguisher used collisions from different
messages, the second one uses collisions from ciphertexts from the same set.
Here, we denote the queries and intermediate variables

– related to (M0, T 0
i ) ∈ T 0 also as (S0

i , U0
i , . . .),

– those related to (M0, T 0
j ) ∈ T 0 also as (S0

j , U0
j , . . .),

– those related to (M1, T 1
k ) ∈ T 1 also as (S1

k, U1
k , . . .), and

– those related to (M1, T 1
� ) ∈ T 1 also as (S1

� , U1
� , . . .).

By combination, we obtain about (23n/4+x)2 · 2−n � 2n/2+2x collisions U0
i = U1

k

between (M0, T 0
i ) and (M1, T 1

k ), and the approximately same number of col-
lisions U1

j = U1
� between (M1, T 1

j ) and (M1, T 1
� ). Those will be mapped to

V 0
i = V 1

k and V 0
j = V 1

� . We can form
(

2n/2+2x

2

)

� 2n+4x−1 pairs of pairs (quar-
tets). With probability 2−n, a quartet has V 0

i ⊕ V 0
j = T 0

i ⊕ T 0
j , which implies

W 0
i = W 0

j . Since V 0
i = V 1

k and V 1
j = V 1

� , it follows that W 1
k = W 1

� holds. Thus,

we obtain 24x−1 quartets. Moreover, we expect
(

23n/4+x

2

)

· 2−n � 2n/2+2x−1 pairs
C0

i = C0
j that are formed randomly and can be combined with 2n/2+2x−1 pairs

C1
k = C1

� . We obtain

(2n/2+2x−1)2 · 2−n � 24x−2 quartets (1)



Towards Closing the Security Gap of Tweak-aNd-Tweak (TNT) 575

Algorithm 2. More efficient variant of the parallel-road distinguisher on TNT.

11: function parallelRoad
12: K � F

k
2

13: M0 � F
n
2

14: M1 � F
n
2

15: coll ← 0
16: L ← [] × [0..q − 1] � q elements
17: D ← [] × [0..q − 1] � q elements
18: for i ← 0..q − 1 do � q iterations
19: T 0

i ← τ0(i)
20: C0

i ← EK(T 0
i , M0)

21: (b0i , c
0
i )

n/4,3n/4←−−−−−− C0
i

22: for all (T 0
j , b0j ) in L[c0i ] do

23: if b0i = b0j then � C0
i = C0

j

24: ΔT 0
i,j ← T 0

i ⊕ T 0
j

25: (s0i,j , t0i,j)
n/4,3n/4←−−−−−− ΔT 0

i,j

26: D[t0i,j ]
∪← {s0i,j}

27: L[c0i ]
∪← {(T 0

i , b0i )}

28: L ← [] × [0..q − 1] � q elements
29: for k ← 0..q − 1 do � q iterations
30: T 1

k ← τ1(k)
31: C1

k ← EK(T 1
k , M1)

32: (b1k, c1k)
n/4,3n/4←−−−−−− C1

k

33: for all (T 1
� , b1�) in L[c1k] do

34: if b1k = b1� then � C1
k = C1

�

35: ΔT 1
k,� ← T 1

k ⊕ T 1
�

36: (s1k,�, t
1
k,�)

n/4,3n/4←−−−−−− ΔT 1
k,�

37: for all s0i,j in D[t1k,�] do
� ΔT 0

i,j = ΔT 1
k,�

38: if s0i,j = s1k,� then
39: coll ← coll + 1

40: L[c1k]
∪← {(T 1

k , b1k)}
41: return coll ≥ θ

formed at random. In sum, this yields

24x−1 + 24x−2 = 3 · 24x−2 quartets

in the real construction, which implies that we can expect roughly three times
as many quartets in the real construction compared to a random tweakable
permutation wherin only the latter events occur.

Experimental Verification. We implemented the distinguisher with Small-
PRESENT and state and tweak sizes of n ∈ {16, 20, 24} bits. The results are
summarized in Table 1b.

2.4 Efficiency

Mennink’s [Men18] distinguisher evaluated the number of quartets for each tweak
difference Δ ∈ F

n
2 . From the choice of pairs given τ0 and τ1, there existed 2n/2+2x

possible pairs (C0
i , C1

j ) for each tweak difference. Thus, the naive way needed
2n·2n/2+2x � O(23n/2+2x) operations to exhaust all 2n possible tweak differences.
To reduce the computational complexity below O(2n), we give an improved
description of the parallel-road distinguisher.

The lists L and D needed to reserve 2n cells each, which was the bottleneck.
To reduce the complexity, we shrink L to a list of 23n/4 sub-lists, where L[x]
holds a sub-list of tweaks T 0

i s.t. lsb3n/4(C0
i ) = 〈x〉3n/4. This means that we

truncate the n/4 most significant bits (MSB) of C0
i . Additionally, we store also

the n/4 truncated bits as part of the entry: (T 0
i ,msbn/4(C0

i )). Similarly, we no
longer store a list of 2n counters in D. Instead, each entry will be a sub-list of full
tweak differences. Thus, D[x] contains 23n/4 slots, where ΔTi,j is stored in the
sub-list at location lsb3n/4(ΔTi,j) = 〈x〉3n/4. Clearly, the length of the sub-list
at D[x] equals the previous counter value that was stored in D[x] before.
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Fig. 4. Key recovery and impossible differential trail through 1 + 4 rounds of AES.
Hatched bytes are active; filled bytes are targeted key bytes; indices in bytes denote
that a set index is encoded into them.

On average, Line 22 of Algorithm 2 is called
(

23n/4+x

2

)

· 2−3n/4 � 23n/4+2x−1

times. The second test in the if-statement on n/4 bits is fulfilled in about
2n/2+2x−1 calls. Thus, the first loop from Line 18 in Algorithm2 has roughly
23n/4+2x operations on average. A similar argument holds for the second test in
Line 33 of Algorithm 2. Thus, the second outer loop over q tweaks from Line 29 of
Algorithm 2 also contains roughly 23n/4+2x operations on average. More detailed,
the first 3n/4-bit filter reduces again the number of pairs

(

23n/4+x

2

)

· 2−3n/4 � 23n/4+2x−1

times. The second test in the if-statement on n/4 bits is fulfilled in 2n/2+2x−1

times on average. The 3n/4-bit tweak-difference filter lets the check in Line 34 in
Algorithm 2 be successful 2n/4+4x−2 times for (23n/4+2x−1)2 pairs. Thus, it will
be called at most 23n/4+x + 2n/2+2x + 2n/4+4x−2 and the overall computational
complexity is in O(23n/4+2x).

3 An Impossible-Differential Attack on TNT-AES[5, ∗, ∗]

We combine the well-known impossible differential on four-round AES for key-
recovery attacks on versions of TNT-AES. We describe the key-recovery phase
in the first round and both key recovery and impossible differential in π1.

3.1 Core Idea

The core idea is based on the following assumption. The O(
√

n ·23n/4)-distingui-
sher works iff we can find pairs that collide in U . Let us consider the parallel-road
distinguisher. It needs pairs (M0,M1) whose difference π1(M0)⊕π1(M1) = S0⊕
S1 equals the difference of their corresponding tweaks: S0⊕S1 = T 0

i ⊕T 1, which
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implies that U0 = U1. The adversary can choose differences ΔT of its choice as
well as plaintexts with certain input differences. If it can manage to exclude that
ΔT occurs for the message inputs of its choice, then, the distinguisher cannot
happen. This implies that U0 �= U1 for all choices of M0 and M1. As a result,
the values V 0

i , V 0
j , V 1

k , V 1
� are pairwise unique for each quartet and the number

of colliding pairs will then match that of a random tweakable permutation.
For this purpose, the adversary considers tweaks such that their differences

ΔT are output differences of an impossible differential. Then, each correct quar-
tet from the distinguisher is possible only if the message was not encrypted
through the first (few) round(s) to an input difference of the impossible differ-
ential, which allows discarding all keys that would have encrypted it in this way.
We need a sufficient number of pairs such that for all key candidates, we will
expect a correct quartet (for TNT-AES), except for the correct key.

We use the impossible differential from Fig. 4, where ΔX5
MC (the difference

after five rounds) is identical to ΔT . Let I = {0, 1, 2} and let MI denote the
mixed space after applying MixColumns to a vector space that is active in the
first three inverse diagonals (cf. [GRR16]). Our choice leaves a space of 296 − 1
differences for ΔT ∈ MI and call T the space of desired tweak differences.

3.2 Messages

We need message pairs with the impossible difference after π1. Since the dif-
ference has 32 zero bits, a zero difference in the rightmost inverse diagonal has
a probability of 2−32. We try to recover K0[0, 5, 10, 15]. For a message pair
(M i,M j) that produces the impossible difference after π1, we can discard all
key candidates that would lead to a difference of ΔX1 =def R(M i) ⊕ R(M j)
that is active in only a single byte after the first round. On average, there exist
4 · 28 = 210 possible output differences ΔX1. Since M i ⊕ M j is fixed, approxi-
mately one input-output mapping exists for the AES S-box on average. Hence,
210 keys produce an impossible ΔX1 on average and can be discarded. Assuming
that the discarded keys are uniformly randomly and independently distributed,
the probability that a key candidate can be discarded from a given pair (M i,M j)
is 2−22. Under standard assumptions, we need Npairs pairs to reduce the number
of key candidates to 232−a, where a is the advantage in bits:

(1 − 2−22)Npairs ≤ 2−a. (2)

Equation (2) yields approximately 223.47, 224.47, 225.47, and 226.47 necessary mes-
sage pairs that fulfill the impossible difference after π1 to obtain an advantage
of a = 4, 8, 16, and 32 bits, respectively. If we fix the position of the inactive
diagonal, we need 226.47 · 232 � 258.47 message pairs, or 2 · 229.24 � 230.24 pair-
wise distinct messages. The number of message pairs with less than four active
input bytes is negligible. We define 2s � �229.24�. We employ a space of a single
plaintext diagonal, where we can focus on the first diagonal D{0}. The remaining
diagonals are fixed to constants. We want a certain tweak difference that is zero
in the final inverse diagonal. We add computational effort by choosing many
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Fig. 5. Encoding the indices i and j into the tweaks to build the tweak sets T i and T j

corresponding to the messages M i and M j .

messages that we partially compensate for by fixing those 32 bits to constants
in all tweaks and define ν =def n − 32 = 96 for the AES.

Expected Number of Pairs. To each message M i, we associate a tweak set
T i, where we use the same tweaks for each message. Among the pairs in a single
set (M,T i) and (M,T j), the probability for Ci = Cj is approximately 2−n.

Using 2t tweaks in a set, we obtain
(

2t

2

)

· 2−n � 22t−n−1 pairs. Given two
messages that do not have the desired tweak difference after π1, we can combine
the pairs, where each pair collides in its ciphertexts, to (22t−n−1)2 quartets,
which have the correct tweak difference after π1 with probability 23n/4 = 2−96.
Thus, the number of quartets become

(22t−n−1)2 · 2−3n/4 � 24t−11n/4−2 � 24t−354. (3)

For messages that produce the desired difference after π1, i.e., have 32 zero bits
in the rightmost inverse diagonal, we can form 2t · 2t · 2−3n/4 � 22t−3n/4 pairs
after π1 since only the 96-bit tweak difference must match that of the message
difference at that point. From those pairs, we can build quartets that collide
with probability 2−n after π2. Thus, the number of quartets becomes

(

22t−3n/4

2

)

· 2−n � 24t−5n/2−1 � 24t−321. (4)

Note that the number of quartets in Eq. (3) differs significantly from the 24x−2 of
Eq. (1) since we restrict the valid tweak differences. Here, we need more message
pairs so that enough of them possess the desired 32-bit condition of the zero-
difference anti-diagonal after π1. Thus, the here-proposed attack is less efficient
but allows us to recover a part of the secret key.

3.3 Success Probability, Advantage, and Data Complexity

Samajder and Sarkar [SS17] gave rigorous upper bounds on the data complex-
ities for differential and linear cryptanalysis that improved previous results.
For the parallel-road distinguisher, 2 · 2t message-tweak tuples in total produce
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24t−5n/2−1 +24t−11n/4−2 quartets for the real world, and 24t−11n/4−2 quartets in
the ideal world on average. Thus, we can define for the probability of quartets

pcor � 2−321 + 2−354 and pwrong � 2−354.

Let θ be a threshold and H0 be the hypothesis that a given message pair M i,M j

has the 32-bit zero difference after π1 in the rightmost anti-diagonal. We say that
H0 holds if N i,j

quartets > θ. Otherwise, we reject H0.
Let α =def Pr[N i,j

quartets < θ|M i⊕M j ∈ T ] be the Type-I error, i.e., a pair with
correct difference has too few quartets. This event is not essential, but yields more
surviving wrong key candidates. Let β =def Pr[N i,j

quartets ≥ θ|M i ⊕ M j �∈ T ] be
the Type-II error, i.e., a pair with wrong difference after π1 has more quartets
than the threshold and is incorrectly classified as correct. The latter event is
crucial since the pair might suggest the correct key as wrong and the attack will
fail. Therefore, the success probability is given by

1 −
∑

i<j

Pr
[

N i,j
quartets ≥ θ

]

· 2−22 ≤ 1 −
(

258.47 · Pr
[

N i,j
quartets ≥ θ

]

· 2−22
)

.

Thus, β should be far below 2−36.5. From [SS17, Proposition 5.1], it follows that
the number of quartets (for each message pair) should fulfill

Nquartets ≥
3
(

√

pcor ln
(

1
α

)

+
√

pwrong ln
(

2
β

)

)2

(pcor − pwrong)
2 . (5)

Since the distinguisher produces Nquartets = 24t−2 quartets, we can derive t =
(log2(Nquartets) + 2)/4. Results of t for plausible values of α and β are listed in
Table 2. For Hypothesis 3, Samajder and Sarkar [SS17] suggest a threshold of

θ =

√

3Nquartets · pwrong · ln
(

2
β

)

,

which is given in Table 2 for the sake of simplicity. Equation (5) targets single-
differential key-recovery attacks.

Remark 1. We point out that Samajder and Sarkar also studied an upper bound
for the data complexity of distinguishers in [SS17, Proposition 8.1]:

Nquartets ≥
v2 ln

(

1
Pe

)

2 (D (P ‖Q) + D (Q‖P))2
. (6)

Though, [SS17, Sect. 10] showed that Eq. (5) yields a better upper bound for
single-differential cryptanalysis. Details can be found in their work.
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Table 2. Logarithmic data complexity per set t and logarithmic threshold values θ for
varying error probabilities.

− log2(β)/log2(θ)

− log2(α) 38 39 41 45 53 69

1 80.882/– 80.882/– 80.882/– 80.882/– 80.882/– 80.882/–

2 81.382/−0.201 81.382/−0.201 81.382/−0.201 81.382/−0.201 81.382/−0.200 81.382/−0.200

4 81.882/3.204 81.882/3.204 81.882/3.204 81.882/3.204 81.882/3.204 81.882/3.204

8 82.382/5.730 82.382/5.730 82.382/5.730 82.382/5.730 82.382/5.730 82.382/5.730

16 82.882/8.012 82.882/8.012 82.882/8.012 82.882/8.012 82.882/8.012 82.882/8.012

32 83.382/10.183 83.382/10.183 83.382/10.183 83.382/10.183 83.382/10.183 83.382/10.183

Data Complexity. Choosing a sufficiently high threshold for the number of
quartets allows identifying message pairs with the desired difference after π1.
Only those pairs are needed for subkey filtering. t = 83.39 gives approximately
212.56 quartets on average, which implies 2 · 229.24 · 283.39 � 2113.63 messages.

We employ Mennink’s way of constructing tweaks. In each set, the tweaks iter-
ate over 283.39 values in the leftmost three anti-diagonals in the state X5

SR before
the MixColumns operation of Round 5 is applied to each tweak. We define that
μ0(i) : Z284 → (F28)4×4 encodes the integer i into the 12 bytes 0, 1, 2, 4, 5, 7, 8,
10, 11, 13, 14, 15, from most to least significant bits and define μ1(j) : Z284 →
(F28)4×4 encodes (j � 12) (left shift by 12 bits) into the 12 bytes 0, 1, 2, 4, 5, 7, 8,
10, 11, 13, 14 , 15, from most to least significant bits. This is illustrated in Figs. 4
and 5. In total, we need 2 · 2s · 2t � 2113.63 message-tweak pairs.

3.4 Procedure

The attack proceeds as follows:

1. Zeroize 22s counters N i,j
quartets, and prepare lists L0, D0, L1, and D1. Initialize

a list K of 232 true flags that represent the values of K0[0, 5, 10, 15].
2. Construct the messages M i and tweak sets T i as described above and ask for

the encryption of all tweak-message tuples. Each message-tweak set can be
considered separately.

3. For 2s messages M i, 0 ≤ i < 2s:
3.1 Call the first loop of the parallel-road distinguisher. For tweak set T i,

store the results into L0,i[c0,i
k ], for all 0 ≤ k < 2t. The 22t−n−1 pairs are

stored in D0,i.
4. For 2s messages M j , 2s ≤ j < 2s+1:

4.1 Call the second loop of the parallel-road distinguisher and store their
results into L1,j [c1,j

k ] for each tweak set T j and 0 ≤ k < 2t. On average,
22t−n−1 ciphertext pairs per tweak set need lookups in D1,j .

4.2 For each message M i:
i. Look up D0,i for matches of the tweak difference. Increase the counter

N i,j
quartets if there are matches.
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Fig. 6. Key recovery and impossible differential trail through 1 + 4 rounds of Small-
AES 36. Hatched bytes are active; filled bytes are targeted key bytes; indices in bytes
denote that a set index is encoded into them.

5. For all counters N i,j
quartets that are above the threshold θ, derive the 4 ·28 � 210

round-key candidates K0[0, 5, 10, 15] that would encrypt M i⊕M j to a single-
byte difference after the first round.

6. For all round-key candidates set the corresponding entry in K to false.
7. Output the entries of K that are still marked as true.

3.5 Computational and Memory Complexity

The total computational complexity is given by

1. 2 · 229.24 · 283.39 � 2113.63 encryptions.
2. About 229.24 · 283.39 � 2112.63 memory insertions and lookups to obtain all

pairs of equal ciphertexts in the sets T 0,i that are used to fill D0,i.
3. About 229.24 · 283.39 � 2112.63 memory insertions and lookups to obtain all

pairs of equal ciphertexts in the sets T 1,j .
4. About 2s · 22t−1−n � 229.24 · 22·83.39−1−128 � 267 lookups into the sets D0,i.
5. We expect to have an advantage of at least a � 32 bits. Thus, there will be

at most 296 remaining key candidates on average.

Thus, we have 2113.63 + 296 � 2113.63 encryptions and 2112.63 + 2112.63 + 280.1 �
2113.63 memory accesses. The memory complexity is upper bounded by storing
2112.63 ciphertext-tweak tuples in the lists L0,i and L1,j each and the same
amount of tweak differences in D0,i and D1,j , which is upper bounded by the
memory for 2113.63 states and 232 key candidates.

3.6 Experiments

For verification purposes, we considered a reduced version of the AES. A natural
starting point is the 64-bit version, Small-AES [CMR05], where each cell is
an element in F24 . Since the complexity of O(23n/4) = O(248) operations and
memory, multiplied by 100 keys is still hardly feasible, we reduced the cipher
further to a 3 × 3-matrix structure of cells with 36-bit state, which we will
denote as Small-AES36. We borrow almost all components from Small-AES,
except for the MixColumns operation. In Small-AES36, MixColumns employs
the circulant MDS matrix circ(1, 1, 2), with elements in the field F24/p(x) with
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Key recovery

#Pairs μ σ a

32 2897.14 128.49 0.50

64 2025.67 131.33 1.02

128 992.78 90.57 2.04

256 234.67 38.19 4.13

384 57.34 13.82 6.16

512 14.44 5.25 8.15

640 4.71 2.30 9.76

768 1.85 0.97 11.11

896 1.34 0.66 11.58

1024 1.09 0.28 11.88

Fig. 7. Mean (μ) and standard deviation (σ) for the number of key candidates, as well
as the advantage in bits (a), for 100 experiments of Small-AES36 each with varying
numbers of message pairs with the desired difference ΔT after π1 and random keys.

p(x) = (x4 + x + 1). We verified that the matrix is MDS in the given field with
a python script.

The key-recovery phase targets the first diagonal of the first round key K0.
We iterate over all 212 messages of the first diagonal and consider all mes-
sage pairs (M i,M j) for distinct i, j that yield more than θ collisions for fil-
tering. Each set T i,0 employs 2t tweaks. Again, we use a variant of Mennink’s
tweak encoding: The t-bit tweaks 〈i〉24 = (i0, i1, i2, i3, i4, i5) are encoded as
MC(i0, i1, 0, i2, 0, i3, 0, i4, i5) in the cells 0-8, as shown in Fig. 6.

Expected Number of Messages. We experimented with varying numbers of
message pairs that fulfilled the desired tweak differences ΔT . The results are
illustrated in Fig. 7. We experimented with 1 000 random keys and 212 messages
that iterated over all values of the first diagonal and used a random value of
the other cells. On average, we observed approximately 211.1 message pairs with
the desired difference after π1, which yielded a probability of 2−11.9 � 212 that
matches our expectation since we have 12 bit conditions in ΔX5

SR.

Expected Number of Quartets. The distribution of quartets among message
pairs with and without the desired difference is shown in Table 3.

Recall Eqs. (3) and (4). In our reduced AES version, we have a 24-bit tweak
space, which must replace the 3n/4 terms in those equations. In the following, we
use 2t = 224+x. First, assume that t ≤ 24 for a message pair that does not fulfill
the correct difference after π1. Then, we can combine

(

2t

2

)

tweaks pairs for one
message and obtain 2−n pairs that collide in their ciphertexts. We can combine
those pairs for both messages to quartets, and have a probability of 2−24 that
the tweak differences match for both pairs. If t > 24, we have

(

224+x

2

)

· 2−n pairs
per message whose ciphertexts collide. Building quartets, their tweak differences
will match with probability 2−x · 2−24. Hence, we obtain
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{

(22t−n−1)2 · 2−24 � 24t−96−2 � 24t−98 if t ≤ 24
(22t−n−1)2 · 2−x−24 � 24t−96−2−x � 24t−98−x otherwise.

(7)

For a message pair that produces the desired difference after π1, we have 2t−x ·
2t−x tweaks in their tweak sets that lead to a collision with probability 2−24

after π1, and thus to 22t−2x−24 pairs. Note that we can combine only the tweak
sets that share the same 12-bit value in the anti-diagonal MC−1(ΔT )[2, 4, 6]. If
t = 24+x for non-negative x, there are 2x times such pairs on average: 22t−2x−24

for every value in the anti-diagonal, assuming 2x is integer. Thus, we have
{

(

22t−24

2

)

· 2−n � 24t−48−36−1 � 24t−85 if t ≤ 24
(

2x·22t−2x−24

2

)

· 2−n � 24t−2x−48−36−1 � 24t−2x−85 otherwise.
(8)

quartets. For the messages with the desired difference after π1, we observe
approximately 23, 27, 211, 213, 215, and 217 quartets with the standard devi-
ation matching about the square root, for 2t message-tweak tuples per message,
and t ∈ {22, . . . , 27}. This matches our expectations in Eq. (8) including the
break at t = 24. For t ≤ 24, one can observe an increasing factor of 24 quartets
for each increment of t, which becomes 22 for t > 24.

For message pairs without the desired difference after π1, the numbers of
quartets are far below those of pairs with the desired difference, with means of
2−10, 2−6, 2−2, 21, and 24, and 27. Again, the factor from t to t+1 changes from
24 if t ≤ 24, to a factor of 23 times more quartets from t to t + 1 when t > 24,
as expected.

The standard deviations are about the square root of the expectations, which
matches Bernoulli distributions. The major insight is that the gap in the number
of quartets is huge enough – in the order of 213, 212, and 211 for t = 24, 25, 26 –
to reasonably choose a threshold and not have a single non-desired message pair
that could mistakenly filter out the correct partial key.

4 Provable Security Preliminaries

4.1 Provable Security Notations

Given a sequence X = (X1, . . . , Xq), we use X q to indicate that it con-
sists of q elements; ̂X q = {X1, . . . , Xq} denotes their set and μ(X q,X) the
multiplicity of an element X in X q. For an index set I ⊆ [q] and X q,
X I =def (Xi)i∈I . For a pair of sequences X q and Yq, (X q,Yq) denotes the
two-ary q-tuple ((X1, Y1), . . . , (Xq, Yq)). An n-ary q-tuple is defined naturally.
A two-ary tuple (X q,Yq) is said to be permutation-compatible, denoted as
X q � Yq, iff Xi = Xj ⇔ Yi = Yj . A three-ary tuple (T q,X q,Yq) is said
to be tweakable-permutation-compatible, denoted as (T q,X q) � (T q,Yq), iff
(Ti,Xi) = (Tj ,Xj) ⇔ (Ti, Yi) = (Tj , Yj). For any function F : X → Y and
X q, F (X q) denotes (F (Xi), . . . , F (Xq)). For a set X , X � X means that X is
sampled uniformly at random and independently from other variables from X .
Moreover, let ∃∗ mean “there exist distinct”.
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Table 3. Probabilities (μ) and standard deviations (σ) for #quartets of messages with
the desired difference after π1, from m experiments with random keys each and 2t

distinct tweaks per message.

With desired difference?

With Without

t m log2(μ) log2(σ) log2(μ) log2(σ)

22 10 000 2.994 1.511 −10.480 −5.241

23 1 000 6.997 3.550 −6.158 −2.991

24 100 11.005 5.502 −1.837 −0.907

25 100 12.998 6.479 1.233 0.664

26 100 15.001 7.437 3.986 2.097

27 100 17.002 8.395 6.987 3.497

A distinguisher A is an algorithm that tries to distinguish between two worlds
Oreal and Oideal via black-box interaction with one of them chosen randomly and
invisible from A. At the end of its interaction, A has to output a decision bit.
AdvOideal;Oreal

(A) denotes the advantage of A to distinguish between both. We
consider information-theoretic distinguishers that are bounded only in terms of
the number of queries and message material that they can ask to the available
oracles. AdvOideal;Oreal

(q) =def maxA

{

AdvOideal;Oreal
(A)

}

denotes the maxi-
mum of advantages over all possible adversaries A that are allowed to ask at
most q queries to its oracles. Later, we exclude trivial distinguishers, i.e., dis-
tinguishers who ask duplicate queries or queries to which the answer is already
known.

4.2 Expectation Method

Let A be a computationally unbounded deterministic distinguisher that tries to
distinguish between a real world Oreal and an ideal world Oideal. The queries and
responses of the interaction of A with its oracles are collected in a transcript
τ . It may also contain additional information which would make the adversary
only stronger. By Θreal and Θideal, we denote random variables for the transcript
when A interacts with the real world or the ideal world, respectively. Since A
is deterministic, the probability of A’s decision depends only on the oracle and
the transcript. A transcript τ is called attainable if its probability in the ideal
world is non-zero.

The expectation method is a generalization of the popular H-coefficient
method by Patarin [Pat08], which is a simple corollary of the following result.

Lemma 1 (Expectation Method [HT16]). Let Ω be a set of all transcripts
that can be partitioned into two disjoint non-empty sets of good transcripts,
GoodT and bad transcripts, BadT. For some εbad > 0 and a non-negative
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function εratio : Ω → [0,∞), suppose Pr[Θideal ∈ BadT] ≤ εbad and for any
τ ∈ GoodT, it holds that Pr[Θreal = τ ]/Pr[Θideal = τ ] ≥ 1 − εratio. Then, for
any distinguisher A that tries to distinguish between Oreal and Oideal, it holds:

AdvOideal;Oreal
(A) ≤ εbad + E [εratio(Θideal)] .

4.3 Mirror Theory

Patarin [Pat10] defined the Mirror Theory as an approach to estimate the
number of solutions of a linear system of equalities and linear inequalities in
cyclic groups. He followed a recursive sophisticated proof [Pat08,Pat10] that was
brought to the attention of a wider audience by Mennink and Neves [MN17]. Jha
and Nandi [JN20] revisited it for a tight proof of CLRW2 [LRW02]. We follow
their description that itself referred to Mennink and Neves’ interpretation of the
Mirror theory. For q ≥ 1, let L be a system of linear equations of the form

{ e1 : U1 ⊕ V1 = λ1, . . . , eq : Uq ⊕ Vq = λq } ,

where Ui and Vi are the unknowns, λi the knowns, and Ui, Vi, λi ∈ F
n
2 . We denote

their sets as Uq and Vq, respectively. Moreover, L contains a set of inequalities
that uniquely determine ̂Uq and ̂Vq, respectively. We assume that ̂Uq and ̂Vq

are indexed in arbitrary order by index sets [qu] and [qv], where qu = | ̂Uq| and
qv = |̂Vq|. Then, we can define two surjective index maps

ϕu :

{

[q] → [qu]
i → j iff Ui = ̂Uj .

ϕv :

{

[q] → [qv]
i → j iff Vi = ̂Vj .

Thus, L is uniquely determined by (ϕu, ϕv, λq) and vice versa. Let G(L) =def

([qu], [qv], E) be a labeled bipartite graph corresponding to L, where

E def= {(ϕu(i), ϕv(i), λi) : i ∈ [q]}

is the set of edges and λi the edge labels. Thus, each equation in L corresponds
to a unique labeled edge if there exist no duplicate equations in L. We need
three definitions to use the fundamental theorem of the Mirror Theory.

Definition 1 (Cycle-freeness). We call L cycle-free iff G(L) is acyclic.

Definition 2 (Maximal Block Size). Two equations ei and ej for distinct
i, j are in the same component iff the corresponding edges (vertices) in G(L) are
in the same graph component. The size of any component C ∈ L, denoted ξ(C),
is given by the number of vertices in the corresponding component of G(L). The
maximal component size of G(L) is denoted by ξmax(L) or short by ξmax.

Definition 3 (Non-degeneracy). L is called non-degenerate iff there exists
no path of length ≥ 2 in G(L) such that the labels along its edges sum to zero.
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Theorem 1 (Fundamental Theorem of the Mirror Theory [Pat10]). Let
L be a system of equations over the unknowns (Uq,Vq) that is (i) cycle-free,
(ii) non-degenerate, and (iii) possesses a maximal component size of ξmax with
ξ2max ·max{qu, qv} ≤ 2n. Then, the number of solutions (U1, . . . , Uqu , V1, . . . , Vqv )
of L, denoted as hq, such that Ui �= Uj and Vi �= Vj for all i �= j, satisfies

hq ≥
(2n)qu

· (2n)qv

(2n)q
. (9)

hq is multiplied by a factor of (1 − ε) for some ε > 0 at the end. For ξ ≥ 2 and
ε > 0, we denote as the (ξ, ε)-restricted Mirror-Theory theorem the variant with
ξmax = ξ and hq ≥ (1 − ε) · h∗

q , where h∗
q is the right-hand side of Eq. (9).

4.4 Transcript Graph

For TNT, a transcript τ will consist of the queries and responses (Ti,Mi, Ci) as
well as intermediate values. We will later use a transcript of TNT as the tuple
of tuples (T q, Mq, Cq, X q, Yq, Vq) that will collect the values Ti, Mi, etc., for
1 ≤ i ≤ q, respectively. The roles of the individual variables are shown in Fig. 9.

Given a transcript τ , a transcript graph is a graph-isomorphic unique bipar-
tite representation of the mappings in τ . For our purpose, the relevant transcript
graph will reflect the mappings of X q and Uq. The transcript τ is therefore iso-
morphic to a graph on (X q,Uq).

Definition 4. A transcript graph G = (X q,Uq, Eq) that is associated with
(X q,Uq) is denoted as G(X q,Uq) and defined as X =def {(Xi, 0) : i ∈ [q]},
U =def {(Ui, 1) : i ∈ [q]}, and E =def {((Xi, 0), (Ui, 1)) : i ∈ [q]}. A label λi is
associated with the edge ((Xi, 0), (Ui, 1)) ∈ E .

The resulting graph may contain parallel edges. The 0 and 1 in (Xi, 0) and
(Ui, 1) will be dropped for simplicity. If for distinct i, j ∈ [q], it holds that
Xi = Xj (or Ui = Uj), we denote that as shared vertex Xi,j (or Ui,j). Since
there is a bijection of each edge (Xi, Ui) ∈ E to i, we can also represent the edge
by i.

4.5 Extended Mirror Theory

Jha and Nandi [JN20] applied the mirror theory to the tweakable-permutation
setting. We briefly recall their main result and the necessary notations.

In an edge-labeled bipartite graph G = (Y,V, E), an edge (Y, V, λ) is isolated
iff both Y and V have degree one. A component S ⊆ G is called a star iff ξ(S) ≥ 3
(recall that ξ(S) is the number of vertices in S) and there is a unique vertex
V ∈ S with degree ξ(S) − 1. V is called the center of S. S is called a Y-star (or
V-star) if its center Y ∈ Y (or V ∈ V). Consider an equation system L

{e1 : Y1 ⊕ V1 = λ1, e2 : Y2 ⊕ V2 = λ2, . . . , eq : Yq ⊕ Vq = λq} ,
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such that each component in G(L) is either an isolated edge or a star. Let c1, c2,
and c3 denote the number of isolated, Y-star, and V-star components, respec-
tively. Moreover, q1 = c1, q2, and q3 denote the number of their equations. The
equations in L can be arranged in arbitrary order. The isolated edges are indexed
first, followed by the star components. Jha and Nandi show the following:

Theorem 2 (Theorem 5.1 in [JN20]). Let L be as above with q < 2n−2

and ξmaxq ≤ 2n−1. Then, the number of tuples (YqY ,VqV ) that satisfy L with
Yi �= Yj and Vi �= Vj for all i �= j satisfies

hq ≥
(

1 − 13q4

23n
− 2q2

22n
−

(

c2+c3
∑

i=1

η2
ci+1

)

4q2

22n

)

·
(2n)q1+c2+q3

· (2n)q1+q2+c3
∏

λ′∈λ2 (2n)μ(λq,λ′)
,

where ηj = ξj − 1 and ξj denotes the number of vertices of the j-th component
for j ∈ [c1 + c2 + c3].

4.6 Universal Hashing

Let X and Y be non-empty sets or spaces in the following, and let H = {H|H :
X → Y} be a family of hash functions.

Definition 5 (Almost-Universal Hash Function [CW79]). We say that
H is ε-almost-universal (ε-AU) if, for all distinct X,X ′ ∈ X , it holds that
Pr[H(X) = H(X ′)] ≤ ε, where the probability is taken over H � H.

Definition 6 (Almost-XOR-Universal Hash Function [Kra94,Rog95]).
Let Y ⊆ F

∗
2. We say that H is ε-almost-XOR-universal (ε-AXU) if, for all distinct

X,X ′ ∈ X and arbitrary Δ ∈ Y, it holds that Pr[H(X)⊕H(X ′) = Δ] ≤ ε, where
the probability is taken over H � H.

Let H : {H|H : T → F
n
2} be a family ε-almost-universal hash functions and

H � H be an instance. Let X q =def H(T q) be the sequence of outputs Xi from
H(Ti), for i ∈ [q] queries. In the following, [JN20] defined, in an abstract way,
variables νi for the number of occurrences of the hash value i, and defined coll
for the number of colliding pairs in X q.

Lemma 2 (Lemma 4.3 in [JN20]). Since E [coll] ≤
(

q
2

)

ε, it holds that

E

[

r
∑

i=1

ν2
i

]

= 2 · E [coll] +
r

∑

i=1

νi ≤ 4 · E [coll] ≤ 2q2ε.

Thus, Lemma 2 says that the number of collisions is limited by 2q2ε on expecta-
tion. Furthermore, the corollary below upper bounds the number of occurrences
of any single hash value. The proof in [JN20] stems from Markov’s inequality.

Corollary 1 (Corollary 4.1 in [JN20]). Let νmax = max{νi : i ∈ [r]}. Then,
for some a ≥ 1, it holds that Pr[νmax ≥ a] ≤ 2q2ε

a2 .
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M π1 π2 C

H1(T ) H1(T ) ⊕ H2(T ) H2(T )

X Y V U
λ

Fig. 8. CLRW2.

M π1 π2 π3 C

T T

X Y V U
λ

Fig. 9. TNT with relabeled variables.

The following lemma from [JN20] bounds the probability that four distinct
inputs to two ε-AU hash functions yield three alternating collisions.

Lemma 3 (Alternating-collisions Lemma in [JN20]). Let H1,H2 � H
be independently sampled ε-AU hash functions with domain X . Let X1, . . .,
Xq ∈ X q be pairwise distinct inputs. Then, it holds, over H1,H2 � H, that

Pr [∃∗i, j, k, � ∈ [q] :H1(Xi)=H1(Xj) ∧ H2(Xj)=H2(Xk) ∧ H1(Xk)=H1(X�)]

is at most q2ε1.5.

5 TPRP Proof of TNT

We followed the footsteps of the STPRP proof of CLRW2 by [JN20] closely to
show Theorem 3. We provide an extract that highlights where both constructions
and proofs differ. Thus, we do not claim novelty of the proof approach but show
that it applies also to TNT in encryption direction only with minor adaptions.

Theorem 3 (TPRP Security of TNT). Let q ≤ 2n−2, and EK1 , EK2 , EK3 :
K × F

n
2 → F

n
2 be block ciphers with K1,K2,K3 � K. Then,

AdvTPRP
TNT[EK1 ,EK2 ,EK3 ]

(q) ≤ 91q4

23n
+

2q2

22n
+

4q2

21.5n
+ 3 · AdvPRP

E (q).

First, we can replace the secret-key block ciphers EK1 , EK2 , EK3 with K1,
K2, K3 � K by random permutations π1, π2, π3 � Perm(Fn

2 ). For TNT, the
advantage between both settings is upper bounded by

AdvTPRP
TNT[EK1 ,EK2 ,EK3 ]

≤ 3 · AdvPRP
E (q) + AdvTPRP

TNT[π1,π2,π3](q).

We consider the information-theoretic setting with a computationally unboun-
ded distinguisher A. W.l.o.g., we assume that A is deterministic and non-trivial.
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5.1 Oracle Descriptions

The Real Oracle. Oreal runs TNT[π1, π2, π3]. The transcript random variable
Θreal yields the transcript as the tuple (T q, Mq, Cq, X q, Yq, Vq) where for all
queries i ∈ [q], the values Ti, Mi, Ci, Xi, Yi, Vi, Ui, λi refer to the variables as
given in Fig. 9, which can be compared to those in CLRW2 in Fig. 8. The sets
Uq = Cq and λq = T q can be derived directly from the transcript.

The Ideal Oracle. Oideal implements ˜Π � P̃erm(Fn
2 , Fn

2 ). Moreover, we treat
the first permutation and tweak addition in TNT as equivalent to the first hash
function in CLRW2. Thus, the ideal oracle samples π1 � Perm(Fn

2 ) and gives all
values Xi to A after A finished its interactions but before it outputs its decision
bit. The transcript looks as before, where Ti,Mi, Ci are the inputs and outputs
from Ci = ˜Π(Ti,Mi) or Mi = ˜Π−1(Ti, Ci), λi = Ti, Xi ← π1(Mi)⊕Ti, Ui ← Ci.
The values of the sets X q, Uq, and T q are defined honestly.

Jha and Nandi [JN20] characterized so-called bad hash keys. Given the par-
tial transcript (T q,Mq, Cq,X q) – plus for CLRW2 also the hash functions H1

and H2 – they defined a number of conditions when (H1,H2) where considered
good or bad, respectively, and defined the sets Hgood and Hbad for this purpose.
While TNT omits hash functions, the predicates were not conditions on the hash
keys but instead on equalities of internal variables that can also occur in TNT.
Therefore, we consider their cases analogously. A hash key was defined to be bad
iff one of the following predicates was true:

1. badH1: ∃∗i, j ∈ [q] such that Xi = Xj ∧ Ui = Uj .
2. badH2: ∃∗i, j ∈ [q] such that Xi = Xj ∧ Ti = Tj .
3. badH3: ∃∗i, j ∈ [q] such that Ui = Uj ∧ Ti = Tj .
4. badH4: ∃∗i, j, k, � ∈ [q] such that Xi = Xj ∧ Uj = Uk ∧ Xk = X�.
5. badH5: ∃∗i, j, k, � ∈ [q] such that Ui = Uj ∧ Xj = Xk ∧ Uk = U�.
6. badH6: ∃k ≥ 2n/2q, ∃∗i1, i2, . . . , ik ∈ [q] such that Xi1 = · · · = Xik .
7. badH7: ∃k ≥ 2n/2q, ∃∗i1, i2, . . . , ik ∈ [q] such that Ui1 = · · · = Uik .

In the absence of hash keys, we cannot label those as H being bad or good. Thus,
we call them bad and good hash equivalent instead.

Bad Hash Equivalent: If one of the events badH1 through badH7 occurs, the
ideal oracle samples the values Yq and Vq as Yi = Vi = 0 for all i ∈ [q].

Good Hash Equivalent: In the other case, it will be useful to study the tran-
script graph G(X q,Uq) of the associations (X q,Uq) that arises from the tran-
script when no badH event occurs. Figure 10 shows all possible types of compo-
nents in G(X q,Uq). There, (star) components of the Types (2) and (3) contain
exactly one vertex with a degree of ≥ 2. Components of Types (4) and (5) can
contain one vertex with a degree of ≥ 2 in U and one such vertex in X .

Lemma 4 (Lemma 6.1 in [JN20]). The transcript graph G(X q,Uq) (G for
short, hereafter) by a good hash equivalent has the following properties:
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Xi

Ui

Xi..k

Ui Uj

· · ·
Uk

Xi Xj

· · ·
Xk

Ui..k

Xi..k X�

Ui Uj

· · ·
Uk,�

Xi Xj

· · ·
Xk,�

Ui..k U�

Fig. 10. Components types of a transcript graph corresponding to a good hash equiv-
alent. Type (1) is the only component with a single edge. Types (2) and (3) are X - and
U-star components, respectively. Types (4) and (5) are the only components that are
neither isolated nor stars since they can have vertices of degree ≥2 in both X and U .

1. G is simple, acyclic, and possesses no isolated vertices.
2. G has no two adjacent edges i and j such that Ti ⊕ Tj = 0.
3. G has no component of size ≥ 2n/2q edges.
4. G has no component with more than one vertex of degree ≥ 2 in neither X

or U (though, it can have one vertex with degree ≥ 2 in X and one in U).

The proof is given in [JN20].
For the sake of completeness, we describe the sampling process of Yq and Vq

in the case of a good hash equivalent. This is the same process as for CLRW2 in
[JN20]. Therefore, this part is only a revisit and attributed to [JN20]:

The indices i ∈ [q] are collected in index sets I1, . . . , I5, corresponding to
the edges in all Type-1, . . . , Type-5 components, respectively. The five sets are
disjoint and [q] =

⋃5
i=1 Ii. Let I =

⋃3
i=1 Ii and consider the system of equations

L def= {Yi ⊕ Vi = Ti : i ∈ I} ,

where Yi = Yj (respectively Vi = Vj) holds iff Xi = Xj (respectively Ui = Uj)
for all i, j ∈ [q]. The solution set of L is precisely the set

S def=
{

(YI ,VI) : YI � X I ∧ VI � UI ∧ YI ⊕ VI = T I}

.

Given these definitions, the ideal-world oracle Oideal samples (Yq,Vq) as follows:

– (YI ,VI) � S. This means, Oideal samples uniformly one valid assignment
from the set of all valid assignments.

– Let G\I denote the subgraph of G after the removal of edges and vertices
corresponding to i ∈ I. For each component C ⊂ G\I:

– If (Xi, Ui) ∈ C corresponds to the edge in C where both Xi and Ui have
a degree ≥ 2. Then, Yi � F

n
2 and Vi = Yi ⊕ Ti.

– For each edge (Xi′ , Ui′) �= (Xi, Ui) ∈ C, either Xi′ = Xi or Ui′ = Ui. Take
the case that Xi′ = Xi. Then, Yi′ = Yi and Vi′ = Yi′ ⊕ Ti′ . In the other
case Ui′ = Ui. Then, Vi′ = Vi and Yi′ = Vi′ ⊕ Ti′ .
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Then, the transcript in the ideal world is completely defined, maintaining both
the consistency of equations of the form Yi ⊕ Vi = Ti as in the real world and
the permutation consistency within each component for good hash equivalents.
Still, there can be collisions among the values of Y or among the values of V
from different components.

5.2 Definition of Bad Transcripts

The analysis of bad transcripts and of bad hash equivalents, in particular, is
the core aspect wherein the analyses of CLRW2 and TNT differ. However, there
can be collisions among the values of Y or among the values of V from different
components that have to be treated in bad transcripts. Their treatment can be
done similarly as in [JN20]. They are essential for the proof of TNT and listed
in this subsection only for the sake of completeness, but we refer to [JN20] for
their proof.

The set of transcripts Ω is the set of all tuples τ = (T q,Mq, Cq,X q,Yq,Vq)
defined as before. Recall that Uq = Cq holds for TNT. Following [JN20], a bad
transcript definition needs the following preprocessing steps:

1. Eliminate all tuples (X q,Uq, T q) such that both Yq and Vq are trivially
restricted by linear dependencies.

2. Eliminate all tuples (X q,Uq,Vq,Yq) such that X q �� Yq or Uq �� Vq.

A transcript τ is called a bad hash-equivalent transcript if one of the conditions
badH1 through badH7 holds. We define a compound event badH =def

⋃7
i=1 badHi

that ensures that the first requirement is fulfilled.
For the second requirement, all conditions that might lead to X q �� Yq or

Uq �� Vq have to be addressed. The transcript is trivially inconsistent if one of
them is fulfilled and we consider that badH does not hold in the following. If the
transcript is still bad, it is called sampling-induced bad iff one of the following
conditions from [JN20] holds, for some α ∈ {1, . . . , 5} and β ∈ {α, . . . , 5}:

– ycollα,β : ∃i ∈ Iα, j ∈ Iβ such that Xi �= Xj ∧ Yi = Yj and
– vcollα,β : ∃i ∈ Iα, j ∈ Iβ such that Ui �= Uj ∧ Vi = Vj ,

where Ii is defined as before. It holds that

badsamp
def=

⋃

α∈[5],β∈{α,...,5}

(

ycollα,β ∪ vcollα,β

)

.

By varying α and β over all 30 values, one obtains 30 conditions that could yield
that X q �� Yq or Uq �� Vq. Some of these conditions cannot be satisfied due
to the sampling mechanism. Those are

ycoll1,1, ycoll1,2, ycoll1,3, ycoll2,2, ycoll2,3, ycoll3,3,

vcoll1,1, vcoll1,2, vcoll1,3, vcoll2,2, vcoll2,3, vcoll3,3.
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A transcript is called bad if it is a bad hash-equivalent or bad sampling-induced
transcript. All other transcripts are called good and all good transcripts are
attainable. It holds that

Pr [Θideal ∈ BadT] ≤ Pr
Θideal

[badH] + Pr
Θideal

[badsamp] .

5.3 Analysis of Bad Transcripts

The analysis of bad transcript is the core point where the analysis of CLRW2
and TNT differ. This is mainly because TNT lacks hash functions, but adds the
unmodified tweak to the state between the permutation calls. As a result, hash
collisions as in CLRW2 cannot occur for distinct tweaks.

Lemma 5. For TNT, it holds in the ideal world that

Pr [badH] ≤ 4q2

21.5n
+

32q4

23n
.

Proof. We study the probabilities of the individual events badH in the following.
Prior, we note that F (Ti,Mi) =def π1(Mi)⊕Ti is ε-AU for ε ≤ 1/(2n−1) ≤ 21−n,
and at most 1/(2n − (q − 1)) if q − 1 values Mi had been queried before. Since
q ≤ 2n−2, it holds that ε ≤ 4/(3 · 2n).

– badH1. This event holds if for some distinct i, j both Xi = Xj and Ui = Uj .
If Ti = Tj , it must hold that Mi �= Mj , which implies that Xi �= Xj and the
event cannot hold. If Ti �= Tj , Xi = Xj implies Yi = Yj and Ui = Uj implies
Vi = Vj . Thus, it would have to hold that Ti = Tj , which is a contradiction.
Hence, the probability is zero.

– badH2. This event holds if for some distinct i, j both Xi = Xj and Ti = Tj .
Since T = T , it must follow that Mi = Mj . Though, since A does not ask
duplicate queries, this implies that Xi �= Xj . So, the probability is zero.

– badH3. This event holds if for some distinct i, j both Ui = Uj and Ti = Tj .
Again, the latter condition implies that Mi �= Mj . Ui = Uj implies that
Vi = Vj , which implies that Yi = Yj , Xi = Xj , and π1(Mi) = π1(Mj), which
is a contradiction and therefore has zero probability.

– badH4. This event holds if for some distinct i, j, k, �, Xi = Xj , Uj = Uk, and
Xk = X�. The values of X are results from an ε-universal hash function. The
values U are sampled uniformly at random in the ideal world from a set of at
least 2n − q values for the current tweak. Thus, its sampling process can be
interpreted to be ε-AU with ε ≤ 1/(2n − q). We can apply Lemma 3 to obtain

Pr [badH4] ≤ q2ε1.5 ≤ 41.5q2

(3 · 2n)1.5
≤ 2q2

21.5n
.

– badH5. This event holds if for some distinct i, j, k, �, Ui = Uj , Xj = Xk, and
Uk = U�. From a similar argumentation as for badH4, it holds that

Pr [badH5] ≤ 2q2

21.5n
.
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– badH6. This event holds if there exist distinct i1, . . . , ik ∈ [q] for k ≥ 2n/2q
such that Xi1 = · · · = Xik . Since (Ti,Mi) �= (Tj ,Mj) for none of the indices,
we can use Corollary 1 with a = 2n/2q to upper bound it by

Pr [badH6] ≤ 8q4ε

22n
≤ 16q4

23n
.

– badH7. This event holds if there exist distinct i1, . . . , ik ∈ [q] for k ≥ 2n/2q
such that Ui1 = · · · = Uik . From a similar argumentation as for badH6, we
get

Pr [badH7] ≤ 16q4

23n
.

Lemma 5 follows then from the sum of probabilities of all badH events. ��

Lemma 6. For TNT, it holds in the ideal world that

Pr [badsamp] ≤ 14q4

23n
.

The proof is exactly as in [JN20] and is deferred to the full version of this
work.

5.4 Analysis of Good Transcripts

Lemma 7. For an arbitrary good transcript τ , it holds that

Pr [Θreal = τ ]
Pr [Θideal = τ ]

≥ 1 − 45q4

23n
− 2q2

22n
.

Again, the proof can follow a similar argumentation as the analysis of good
transcripts in [JN20] and is therefore deferred to the full version of this work.

6 Summary and Discussion

This work tried to conduct a step towards closing the security gap of TNT.
We showed in Sect. 2 that a variant of Mennink’s distinguisher from [Men18]
also applies to TNT, which yields a theoretical distinguisher in O(

√
n · 23n/4)

time, data, and memory complexity. For this purpose, we reduce the complex-
ity of Mennink’s information-theoretic distinguisher from O(23n/2) to O(23n/4)
computations and show that at least two similar distinguishers exist. There-
upon, we use the distinguisher to mount a partial key-recovery attack on
the instance TNT-AES[5, ∗, ∗] from an impossible differential. This attack is
described in Sect. 3. Since it needs multiple pairs, its complexity is higher than
O(23n/4). We emphasize that our analysis does not break the proposed version
of TNT-AES[6, 6, 6] from [BGGS20].
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From a constructive point of view, we followed the rigorous analysis by Jha
and Nandi on CLRW2. We show in Sect. 5 that their STPRP security proof of
CLRW2 for up to O(23n/4) queries can be adapted to an TPRP proof of TNT
with similar complexity. We could build on the approach by Jha and Nandi on
CLRW2 since we restricted the adversary’s queries to the forward direction only.
Thus, the first permutation and tweak addition masks the inputs, similar to the
first hash function in CLRW2. Since an equivalent is missing at the ciphertext
side, one cannot directly derive STPRP security. However, a four-round variant of
TNT would possess such hash-function-like masking at the ciphertext-side. This
implies that a four-round variant that adds a fourth independent permutation
π4 and encrypts M under T as

TNT4[π1, π2, π3, π4](T,M) def= π4(π3(π2(π1(M) ⊕ T ) ⊕ T ) ⊕ T ),

would directly inherit the O(23n/4) STPRP security from CLRW2. Still, it remains
a highly interesting work to conduct an STPRP analysis of the three-round con-
struction TNT. In particular, the Mirror-theory approach seems not easily adapt-
able since the sampling process in the ideal world is unclear.

From our studies, we see strong indications that TNT is STPRP-secure for
approximately O(23n/4) queries if the primitives are secure – although, we were
not able to show it at this point of time. However, we found the problem of
sampling the variables from both sides consistently in the middle non-trivial.
An alternative strategy could be a more precise, but also considerably more
sophisticated, study of the original χ2-based proof of TNT from [BGGS20].
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Abstract. In CRYPTO 2015, Cogliati et al. have proposed one-round
tweakable Even-Mansour (1-TEM) cipher constructed out of a single n-
bit public permutation π and a uniform and almost XOR-universal hash
function H as (k, t, x) �→ Hk(t) ⊕ π(Hk(t) ⊕ x), where t is the tweak, and
x is the n-bit message. Authors have shown that its two-round exten-
sion, which we refer to as 2-TEM, obtained by cascading 2-independent
instances of the construction gives 2n/3-bit security and r-round cascad-
ing gives rn/r+2-bit security. In ASIACRYPT 2015, Cogliati and Seurin
have shown that four-round tweakable Even-Mansour cipher, which we
refer to as 4-TEM, constructed out of four independent n-bit permuta-
tions π1, π2, π3, π4 and two independent n-bit keys k1, k2, defined as

k1 ⊕ t ⊕ π4(k2 ⊕ t ⊕ π3(k1 ⊕ t ⊕ π2(k2 ⊕ t ⊕ π1(k1 ⊕ t ⊕ x)))),

is secure upto 22n/3 adversarial queries. In this paper, we have shown
that if we replace two independent permutations of 2-TEM (Cogliati et
al., CRYPTO 2015) with a single n-bit public permutation, then the
resultant construction still guarantees security upto 22n/3 adversarial
queries. Using the results derived therein, we also show that replacing
the permutation (π4, π3) with (π1, π2) in the above equation preserves
security upto 22n/3 adversarial queries.

Keywords: Tweakable block cipher · Key alternating cipher ·
Tweakable Even-Mansour cipher · H-Coefficient

1 Introduction

Block Cipher and Tweakable Block Cipher. A block cipher is a funda-
mental cryptographic primitive and a workhorse in symmetric key cryptography.
A block cipher E : K × M → M with key space K and message space M is a
family of permutations over M indexed by key k ∈ K. A tweakable block cipher
(TBC) is similar to a block cipher except that it takes an additional public
input parameter t, called tweak. The signature of a tweakable block cipher is
˜E : K × T × M → M with key space K, tweak space T and message space
M such that for each k ∈ K and each tweak t ∈ T , m �→ ˜E(k, t,m) is a per-
mutation over M. A block cipher is different from a tweakable block cipher in
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12491, pp. 601–629, 2020.
https://doi.org/10.1007/978-3-030-64837-4_20
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the sense that for each key k, the former is a permutation over M whereas the
latter is a family of permutations over M indexed by t ∈ T . The purpose of
introducing tweak was to bring the inherent variability in the cipher in about
the same way a nonce or an IV brings variability in a block cipher based encryp-
tion mode. After a rigorous formalization of tweakable block ciphers by Liskov,
Rivest and Wagner [25], it has recently become one of the fundamental sym-
metric key primitives and has been found to be used in multiple applications
like message authentication codes [8,26,32], length preserving tweakable enci-
phering mode [13,18,19,40], online ciphers [1,20,37] and various authenticated
encryption modes [25,26,34]. Offering higher security guarantee is one of the
reasons that various cryptographic modes of operations are now build on top of
a tweakable block cipher than conventional block ciphers [8,26,34].

Before the formalization of TBC by Liskov et al. [25], there were few tweak-
able block ciphers which were designed from scratch. For example, block ciphers
like Hasty Pudding cipher [38], Mercy cipher [11], Threefish (which is used in
Skein hash function [15]) natively supports tweaks. Along with the formalization
of the primitive, Liskov et al. [25] also proposed two generic constructions of a
TBC out of a conventional block cipher in a black-box fashion and proved their
birthday bound security, i.e., when the adversary is allowed to make roughly
2n/2 queries to the encryption or decryption oracle, where n is the block size
of the block cipher. Since then, designing TBC in a black-box mode (i.e., build
from a standard block cipher) has become one of the main avenues of symmetric
key research [4,29,36]. Recently, a number of beyond birthday bound secure con-
structions build on top of block ciphers have also been emerged [23,24,27,30].
Security of all these constructions have been proven in the standard model (i.e.,
assuming that the underlying block cipher is a pseudorandom permutation),
except for constructions proposed in [24,27] that were analyzed in the ideal
cipher model.

However, in the black box mode of TBC design, where changing the tweak
enforces to change the key of the underlying block cipher [30], are tend to be
avoided for efficiency reasons, as re-keying a block cipher is often a costly oper-
ation. Hence, most of the existing proposals of designing a TBC out of a block
cipher have the property that changing the tweak should not alter the key of the
block cipher. In this regard, LRW1 and LRW2, proposed by Liskov et al. [25],
are two such examples of birthday bound secure TBC which are build on top
of a conventional block cipher and do not have the re-keying issue. Later on,
Landecker et al. [23] proposed a beyond birthday bound secure TBC designed
on top of a block cipher by just simply cascading two independent instances of
LRW2 construction. Authors of [23] have shown that cascaded LRW2 (CLRW2) is
secure against any adaptive adversary that makes roughly at most 22n/3 encryp-
tion and decryption queries1. This line of research was later extended by Lampe
and Seurin [22], who showed rn/r + 2-bit security by cascading r-independent

1 Later, a flaw in the security proof was found in the original paper of Landecker et al.
[23], which was fixed by Procter [35]. However, a different way of fixing the proof
was proposed by Landecker et al. in the revised version of [23].
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LRW2 instances and they conjectured a tight rn/r + 1-bit security. Later on,
Mennink [28] showed 3n/4-bit tight security bound on CLRW2. However, Men-
nink’s analysis is based on 4-wise independent almost-xor universal (axu) hash
function and each tweak value should occur for at most 2n/4 times. These non-
trivial bottlenecks are lifted in a recent work of Jha and Nandi [21].

TBC design from lower level primitives. There have been several pro-
posals of designing beyond the birthday bound TBC on top of a block
cipher [23,24,27]. But unfortunately none of the them seem to be truly practi-
cal [9]. Thus, in an another line of work, researchers study how to build TBC from
some lower level primitives like public permutations instead from a conventional
block cipher. This was undertaken by Goldenberg et al. [16], who showed how to
incorporate tweak in a feistel based cipher. This was later extended to general-
ized feistel ciphers by Iwata and Mitsuda [31]. In parallel to feistel based ciphers,
a similar study was undertaken for iterated Even-Mansour (IEM) cipher [3,6], a
super class of popular SPN based networks. An r-round iterated Even-Mansour
cipher based on a tuple of r independent permutations (π1, . . . , πr) and a tuple
of r + 1 independent keys (k0, . . . , kr) is defined as follows: for x ∈ {0, 1}n,

IEMπ
k (x) = kr ⊕ πr(kr−1 ⊕ πr−1(. . . π2(k1 ⊕ π1(k0 ⊕ x)) . . .)).

Similar to the feistel based designs, it is a natural quest to investigate how to
incorporate tweaks in IEM cipher. In other words, how to mix the tweak and
the key in an IEM cipher. We generally refer to this cipher as Tweakable Even-
Mansour (TEM) cipher.

To address the question of incorporating tweaks in an IEM cipher, Cogliati
and Seurin [10] and independently Farshim and Proecter [14] analyzed the simple
case with n-bit key and n-bit tweak and showed that one can simply xor the
tweak and the key in each round of IEM cipher to get a secure tweakable block
cipher. However, they showed that such an approach gives no security for one
and two rounds. Moreover, they had proved birthday bound security for three
rounds and in fact, due to a result by Bellare and Kohno [2], it can be seen that
xoring an n-bit tweak with an n-bit key in each round of IEM construction does
not give security beyond the birthday bound. Therefore, to achieve beyond the
birthday bound security, we should go for a complex mixing functions of tweak
and key. Even if the function is linear, it should prevent the TBC construction
from being of the form E(k ⊕ t,m) for some block cipher E with n-bit key and
n-bit tweak.

Beyond Birthday Bound TEM. Designing beyond the birthday bound
secure TEM was first undertaken by Cogliati et al. [7]. They used almost-xor
universal hash functions as mixing functions of key and tweak as shown in Fig. 1.
In particular, the mixing function is of the form Hki

(t), where ki the key and t
is the tweak.

Cogliati et al. have shown that one round TEM with non-linear mixing func-
tion gives n/2-bit security and 2-round gives 2n/3-bit security. In general, they
also gave a non-tight asymptotic security bound on r-round TEM with rn/r+2-
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x ⊕

h1(t)

P1 ⊕

h1(t) ⊕ h2(t)

P2 ⊕

h2(t)

y

Fig. 1. 2-round tweakable Even-Mansour cipher with non-linear tweak and key mix-
ing [7]. h1, h2 are two independent almost-xor universal hash functions.

bit security. Out of a particular relevance in this paper, we refer to Cogliati et
al.’s 2-round TEM with non-linear mixing function as 2-TEM.

However, implementing an axu hash function might be costly [9]. For example
multiplication based hashing [39] is a classic example of an axu hash function
and implementing field multiplication is practically not efficient. Thus, a linear
mixing function of key and tweak is always preferable over a non-linear one.
Therefore, one would ask for whether it is possible to design a beyond birthday
bound secure TEM with linear mixing function. In this regard, Cogliati and
Seurin (CS) [9] have showed that with 2n-bit keys and an n-bit tweak, one can
realize a beyond the birthday bound secure TEM by simply xoring the key and
the tweak in an alternating fashion in a 4-round IEM cipher (in the way as LED-
128 [17] is designed) as depicted in Fig. 2. Again, out of a particular relevance
in this paper, we refer to this construction as 4-TEM.

x ⊕ P1 ⊕ P2 ⊕ yP3 ⊕ P4 ⊕

k1 ⊕ t k2 ⊕ t k1 ⊕ t k2 ⊕ t k1 ⊕ t

Fig. 2. 4-round tweakable Even-Mansour cipher with linear tweak and key mixing
function [9]. k1, k2 are two independently sampled n-bit keys, t is an n-bit tweak and
P1, P2, P3, P4 are independent n-bit public random permutations.

CS [9] have shown that 4-TEM gives 2n/3-bit security. However, realizing a
beyond birthday bound secure TEM with n-bit tweak and n-bit key is open till
date.

We would like to mention here that all the existing beyond birthday
bound secure TEM constructions use independent permutations. Iterated Even-
Mansour (resp. Tweakable Even-Mansour) cipher stands as a theoretical model
for formally arguing the security of SPN based block ciphers (resp. tweakable
block ciphers). However, almost every constructions following SPN paradigm fix
a permutation P and keeps iterating it for multiple times to generate the output.
Thus, the theoretical abstractions for SPN based tweakable block ciphers where
independent round permutations are used, deviates from practical instantiations.
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Hence, it is natural to study the security of the TEM ciphers using a single per-
mutation. In this regard, Chen et al. [5] studied the beyond birthday bound
security of single permutation based two-round iterated Even-Mansour cipher.
Hence, it is natural to investigate whether we can design a single permutation
based TEM cipher that achieves beyond the birthday bound security.

Our Contribution. Inspired from the work of Chen et al. [5], we study the
security of single permutation based 2-TEM cipher. In particular, we study the
security of 2-TEM, as depicted in Fig. 1, where P1 = P2 = π, π is an n-bit
public random permutation. We show that single permutation based 2-TEM
construction is secure against all adversaries that make roughly 22n/3 queries.
As a second part of the contribution, we have also reduced the number of per-
mutations from four to two in 4-TEM and show that the resulting construction
is secure against any adversaries that make roughly 22n/3 queries. In particular,
we study the beyond birthday bound security of 4-TEM as depicted in Fig. 2,
where P1 = P4 = π1 and P2 = P3 = π2, π1 and π2 are two independent n-bit
public random permutations (Fig. 3).

x ⊕ π1 ⊕ π2 ⊕ yπ2 ⊕ π1 ⊕

k1 ⊕ t k2 ⊕ t k1 ⊕ t k2 ⊕ t k1 ⊕ t

Fig. 3. 4-round tweakable Even-Mansour cipher with linear tweak and key mixing
function. k1, k2 are two independently sampled n-bit keys, t is an n-bit tweak and π1

and π2 are independent n-bit public random permutations.

However, we would like to mention here that for both of our contributions, we
have not reduced the number of independent keys used in the construction, i.e.,
for 2-TEM, we require two independent hash keys and for 4-TEM we require two
independent n-bit keys. A natural open problem is to investigate that whether
one can reduce the number of keys of the construction as well without degrading
the security.

2 Preliminaries

Basic Notations. For a set X , x ←$ X denotes that x is sampled uniformly at
random from X and is independent to all other random variables defined so far.
For any natural number q, [q] denotes the set {1, . . . , q}. We denote an empty set
as φ. We say two sets X and Y are disjoint if X ∩ Y = φ. We denote their union
as X � Y (which we refer to as disjoint union). Let X = (X1, . . . ,Xs) be a finite
collection of finite sets. We say X is a disjoint collection if for each j 	= j′ ∈ [s],
Xj and Xj′ are disjoint. The size of X, denoted as |X| = |X1| + . . . + |Xs|.
For a disjoint collection X = (X1, . . . ,Xs,Xs+1), we write X \ Xs to denote
the collection (X1, . . . ,Xs). For two disjoint collections X = (X1, . . . ,Xs) and



606 A. Dutta

Y = (Y1, . . . ,Ys′), we say X is inter disjoint with Y if for all j ∈ [s], j′ ∈ [s′], Xj

is disjoint with Yj′ . If X is inter disjoint with Y, then we denote their union as
X�Y. Moreover, |X�Y| = |X|+|Y|. For a set S and for a finite disjoint collection
of finite sets X = (X1, . . . ,Xs), we write S \X to denote S \ (X1 � . . .�Xs). For a
tuple x̃ = (x1, x2, . . . , xq), where each xi ∈ S for some finite set S, δx̃(x) denotes
the number of times x ∈ S appears in the tuple x̃.

For any natural number n, {0, 1}n denotes the set of all binary strings of
length n. We denote |{0, 1}n| as N = 2n throughout the paper. For integers
1 ≤ b ≤ a, (a)b denotes a(a − 1) . . . (a − b + 1), where (a)0 = 1 by convention.
We denote the set of all n-bit permutations π as Pn. Let Z1 = (z1

1 , . . . , z1
q ) and

Z2 = (z2
1 , . . . , z2

q ) be two finite tuples of length q such that for each i ∈ [q],
z1

i , z2
i ∈ {0, 1}n. We say an n bit permutation π ∈ Pn maps Z1 to Z2, denoted

as Z1
π�→ Z2, if for all i ∈ [q], π(z1

i ) = z2
i . We say Z1 is permutation compatible

to Z2 if there exists at least one π ∈ Pn such that Z1
π�→ Z2.

For a given tuple of ordered pairs Q = ((x1, y1), . . . , (xq, yq)), where each xi

are pairwise distinct n-bit strings and each yi are pairwise distinct n bit strings,
we define the following two sets: Dom(Q) = {xi ∈ {0, 1}n : (xi, yi) ∈ Q} and
Ran(Q) = {yi ∈ {0, 1}n : (xi, yi) ∈ Q}. Clearly, |Dom(Q)| = |Ran(Q)| = q. We
say that an n-bit permutation π ∈ Pn extends Q, which we denote as π �→ Q,
if for all i ∈ [q], π(xi) = yi. We say that Q is extendable if there exists at least
one π ∈ Pn such that π �→ Q. One can naturally generalize this extendable
notion for more than one tuple of ordered pairs. Let ˜Q = (Q1, . . . ,Qs) such
that for each j ∈ [s], Qj is defined as Qj = ((xj

1, y
j
1), . . . , (x

j
qj , y

j
qj )), where each

xj
i are pairwise distinct n-bit strings and each yj

i are pairwise distinct n-bit
strings. Now, for each j ∈ [s], we define the following two sets: Dom(Qj) =
{xj

i : (xj
i , y

j
i ) ∈ Qj} and Ran(Qj) = {yj

i : (xj
i , y

j
i ) ∈ Qj}. Clearly, for each

j ∈ [s], |Dom(Qj)| = |Ran(Qj)| = qj . We say that an n-bit permutation π ∈ Pn

extends ˜Q, which we denote as π �→ ˜Q, if for all j ∈ [s], π �→ Qj . For the sake
of notational simplicity, we will be using the following: if for all j 	= j′ ∈ [s],
Dom(Qj) is disjoint with Dom(Qj′) and Ran(Qj) is disjoint with Ran(Qj′), then
X = (Dom(Q1), . . . ,Dom(Qs)) and Y = (Ran(Q1), . . . ,Ran(Qs)) becomes two
disjoint collection of finite sets and in that case, as an alternative notation of
π �→ ˜Q, we write X

π�→ Y. If S = {s1, . . . , sq} ⊆ {0, 1}n and D = {d1, . . . , dq} ⊆
{0, 1}n are two finite sets of equal cardinality, then we write (S,D) to denote
the sequence of ordered pairs: ((s1, d1), . . . , (sq, dq)).

2.1 A Simple Result on Probability

Having set up the basic notations, in this section, we state two simple yet useful
probability results that we will be frequently using while proving the security of
the construction.

Proposition 1. Let ˜Q = (Q1, . . . ,Qs+1) be an s+1 tuple of ordered pairs such
that for j ∈ [s + 1], Qj is defined as Qj = ((xj

1, y
j
1), . . . , (x

j
qj , y

j
qj )). Moreover,

for each j, j′ ∈ [s + 1], Dom(Qj) ∩ Dom(Qj′) = φ and Ran(Qj) ∩ Ran(Qj′) = φ.
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Therefore, X = (Dom(Q1), . . . ,Dom(Qs+1)) and Y = (Ran(Q1), . . . ,Ran(Qs+1))
be two disjoint collection of finite sets such that for each j ∈ [s+1], |Dom(Qj)| =
|Ran(Qj)| = qj. Then, we have

Pr[π ←$ Pn : X\Dom(Qs+1)
π�→ Y\Ran(Qs+1) | π �→ Qs+1] =

1
(N − qs+1)q1+...+qs

.

By setting s = 1 in the above proposition gives the following simple corollary:

Corollary 1. For two sets Q1 and Q2, where Q1 = ((x1
1, y

1
1), . . . , (x1

q1 , y
1
q1))

of cardinality q1 and Q2 = ((x2
1, y

2
1), . . . , (x2

q2 , y
2
q2)) of cardinality q2, such that

Dom(Q1) ∩ Dom(Q2) = φ and Ran(Q1) ∩ Ran(Q2) = φ. Then, we have

Pr[π ←$ Pn : π �→ Q1 | π �→ Q2] =
1

(N − q2)q1

.

2.2 Security Definition

In this section, we recall the security definition of tweakable block ciphers, almost
xor universal hash function and tweakable Even Mansour cipher.

Tweakable Block Ciphers. A tweakable block cipher (TBC) with key space
K, tweak space T and domain X is a mapping ˜E : K × T × X → X such
that for all key k ∈ K and all tweak t ∈ T , x �→ ˜E(k, t, x) is a permutation of
X . We denote TBC(K, T ,X ) the set of all tweakable block ciphers with tweak
space T and message space X . A tweakable permutation with tweak space T
and domain X is a mapping π̃ : T × X → X such that for all tweak t ∈ T ,
x �→ π̃(t, x) is a permutation of X . We write TP(T , n) denotes the set of all
tweakable permutations with tweak space T and n-bit messages.

AXU, Universal and Almost Regular Hash Function. Let Kh and X
be two non-empty finite sets and H be a keyed function H : Kh × X → {0, 1}n.
Then, (i) H is said to be an ε-almost xor universal hash function if for any distinct
x, x′ ∈ X and for any Δ ∈ {0, 1}n,

Pr [kh ←$ Kh : Hkh
(x) ⊕ Hkh

(x′) = Δ] ≤ ε.

H is said to be an ε-almost regular hash function if for any x ∈ X and for any
Δ ∈ {0, 1}n,

Pr [kh ←$ Kh : Hkh
(x) = Δ] ≤ ε.

Tweakable Even-Mansour. We first fix some integer n, r ≥ 1. Let K and
T be two non-empty finite sets and let Ψ = (Ψ0, . . . ,Ψr) be r + 1-tuple of
functions from K × T to {0, 1}n. Then, an r-round tweakable Even-Mansour
cipher TEM[n, r,Ψ], constructed from a r-tuple of n-bit independent permuta-
tions π = (π1, . . . , πr), specifies a tweakble block cipher, with key space K, tweak
space T and message space {0, 1}n, denoted as TEMπ that maps a key k, tweak
t and a plaintext x ∈ {0, 1}n to the ciphertext defined as:

TEMπ (k, t, x) = Ψr(k, t) ⊕ πr(. . . π2(Ψ1(k, t) ⊕ π1(Ψ0(k, t) ⊕ x)) . . .). (1)
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Note that, 2-TEM is a special class of Eq. (1) where r = 2, k = (k1, k2) and
Ψ0(k, t) = Hk1(t),Ψ1(k, t) = Hk1(t) ⊕ Hk2(t) and Ψ2(k, t) = Hk2(t), where
H = {Hkh

}kh∈Kh
is a family of almost-xor universal and almost-regular hash

functions that maps elements from T to {0, 1}n. Similarly, 4-TEM is a special
class of Eq. (1) where r = 4, k = (k1, k2) and Ψ0(k, t) = k1 ⊕ t,Ψ2(k, t) =
k2 ⊕ t,Ψ3(k, t) = k1 ⊕ t,Ψ4(k, t) = k2 ⊕ t and Ψ5(k, t) = k1 ⊕ t.

Security Definition of TEM. We study the indistinguishability of r-round
tweakable Even-Mansour construction TEM[n, r,H] in the random permutation
model where we consider an adaptive distinghisher A that interacts with a tuple
of r + 1 oracles ( ˜O,π), where ˜O is a tweakable permutations with tweak space
T and message space {0, 1}n and π = (π1, . . . , πr) are n-bit public random per-
mutations. The goal of the distinguisher is to distinguish between the following
two worlds: in the real world it interacts with the oracle (TEMπ

k ,π), where the
key k is sampled uniformly at random from some finite key space K. In the ideal
world, it interacts with (π̃0,π), where π̃0 is uniformly sampled from TP(T , n)
and π is a tuple of n-bit public random permutations independent of π̃0. We
refer TEMπ

k/π̃0 as the construction oracle and π as the primitive oracles. We
assume that A is not only adaptive, but is also bi-directional (i.e., it can make
forward and inverse queries to its oracle). Moreover, A is also allowed to query
the primitive oracles in an interleave fashion with the construction oracle queries.
We define the strong tweakable pseudo-random permutation (stprp) advantage
of TEM[n, r,Ψ] as

Advtsprp
TEM (A) Δ= | Pr[A(TEMπ

k ,π ) ⇒ 1] − Pr[A(π̃0,π ) ⇒ 1] |, (2)

where AO ⇒ 1 denotes the event that A outputs 1 after interacting with the
oracle O. The first probability in Eq. (2) is defined over the randomness of k
and π, whereas the second probability is defined over the randomness of π̃0 and
π. In the rest of the paper we assume that A is computationally unbounded and
hence a deterministic distinguisher. We call such a distinguisher as information
theoretic distinguisher. We also assume that A does not repeat queries and never
makes pointless queries2. As we study the security analysis of single permutation
variant of 2-TEM and two independent permutations variant of 4-TEM, from now
onwards, we concentrate on only these two constructions.

2.3 H-Coefficient Technique

H-Coefficient technique [6,33] is an important tool to upper bound the statistical
distance between the answers of two interactive systems and is typically used to
prove the information theoretic pseudo randomness of constructions. We discuss
this result in the light of tweakable Even-Mansour cipher. Let us consider an
information theoretic deterministic distinguisher A with access to the following
tuple of oracles: in the real world it interacts with (TEMπ

k ,π) and in the ideal
world it interacts with (π̃0,π). After this interaction is over, A outputs a decision
2 Queries whose answer can be deduced from previous query-responses.
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bit. The collection of all queries and responses that is made to and from the oracle
during the interaction of A with O, is summarized in a transcript (τc, τp), where
τc is the transcript that summarizes the interaction with construction oracle
and τp summarizes the interaction with primitive oracles. More formally, τc =
{(t1, x1, y1), . . . , (tq, xq, yq)} is the set of all construction queries and responses
and τp = {(u1, v1), . . . , (up, vp)} is the set of all primitive queries and responses,
where A makes q construction queries and p primitive queries. Since A is bi-
directional, A can make either forward construction query (t, x) and receives
response y or can make inverse construction query (t, y) and receives response x.
Similarly, for primitive query A can either make forward query u to its primitive
π and receives response y or can make inverse query v to π−1 and receives
response u. Since, we assume that A never makes pointless queries, none of the
transcripts contain any duplicate elements. We also assume that A repeats tweaks
in the construction query. Hence, we assume that there are μ distinct tweaks
(t1, t2, . . . , tμ) in the set of construction queries and qi denotes the number of
construction queries with i-th tweak such that

μ
∑

i=1

qi = q.

We modify the experiment by releasing internal information to A after it has
finished the interaction but has not output yet the decision bit. In the real world,
we reveal the key k which is used in the construction and in the ideal world, we
sample a dummy key k uniformly at random from the keyspace and reveal it to
the distinguisher. In all the following, the complete transcript is (τc, τp,k). Note
that, the modified experiment only makes the distinguisher more powerful and
hence the distinguishing advantage of A in this experiment is no way less than
its distinguishing advantage in the former one.

Let Dre (resp. Did) denotes the random variable representing the real world
and the ideal world transcript respectively. The probability of realizing a tran-
script (τc, τp,k) in the ideal (resp. real) world is called ideal (resp. real) inter-
polation probability. A transcript (τc, τp,k) is said to be attainable with respect
to A if its ideal interpolation probability is non zero. We denote the set of all
such attainable transcripts by Θ. Following these notations, we state the main
theorem of H-Coefficient Technique as follows.

Theorem 1 (H-Coefficient Technique). Let Θ = Θg �Θb be some partition
of the set of attainable transcripts. Suppose there exists εratio ≥ 0 such that for
any τ = (τc, τp,k) ∈ Θg,

pre(τ)
pid(τ)

Δ=
Pr[Dre = τ ]
Pr[Did = τ ]

≥ 1 − εratio,

and there exists εbad ≥ 0 such that Pr[Did ∈ Θb] ≤ εbad. Then,

Advtsprp
TEM (A) ≤ εratio + εbad. (3)
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Having explained the H-Coefficient technique in the view of our construction,
we now state the following result from [7,9].

Lemma 1. Let τ = (τc, τp,k) ∈ Θ be an attainable transcript. Let p(τ) Δ=
Pr[π ←$ Pn : TEMπ

k �→ τc | π �→ τp]. Then, we have

pre(τ)
pid(τ)

= p(τ) ·
μ

∏

i=1

(N)qi

Therefore, to apply Theorem 1, for a properly defined good transcript τ , we need

to compare p(τ) and
μ
∏

i=1

(N)qi .

2.4 Sum Capture Lemma

In this section, we state an important probabilistic result, dubbed as sum capture
lemma. In the following, we state two variants of the sum-capture lemma. The
first variant will be used in the security proof of single permutation variant of 2-
TEM and the other variant will be used in the security proof of two independent
permutations variant of 4-TEM.

Sum-Capture Lemma-Variant I. We use the sum capture lemma by Chen
et al. [5]. Informally, the result states that for a random subset S of {0, 1}n of
size q0 and for any two arbitrary subsets A and B of {0, 1}n, the size of the set

μ(S,A,B) Δ= |{(s, a, b) ∈ S × A × B : s = a ⊕ b}|,

is at most q0|A||B|/N , except with negligible probability.

Lemma 2 (Sum-Capture Lemma). Let n, q0 ∈ N such that 9n ≤ q0 ≤ N/2.
Let S be a random subset of {0, 1}n of size q0. Then, for any two subsets A and
B of {0, 1}n, we have

Pr[∃A,B : μ(S,A,B) ≥ q0|A||B|
N

+
2q2

0

√

|A||B|
N

+ 3
√

nq0|A||B|] ≤ 2
N

, (4)

where the randomness is defined over the set S.

Sum-Capture Lemma-Variant II. We use the sum capture lemma by
Cogliati et al. [9], which is dubbed as Extended Sum-Capture Lemma [9]. Infor-
mally, the result states that for a fixed automorphism Φ and a probabilistic
adversary A, the size of the set

μ(Q,U ,V) Δ= |{
(

(t, x, y), u, v
)

∈ Q × U × V : x ⊕ u = Φ(y ⊕ v)}|,

is at most q|U||V|/N , except with negligible probability, where the set Q =
{(t1, x1, y1), . . . , (tq, xq, yq)} denotes the interaction of A with an uniform random
tweakable permutation π̃.
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Lemma 3 (Extended Sum-Capture Lemma). Let Φ be a fixed automor-
phism and T be a fixed non-empty finite set. Let π̃ be a uniform tweakable random
permutation in TP(T , n) and A be some probabilistic adversary that makes two
sided adaptive queries to π̃. Let Q = {(t1, x1, y1), . . . , (tq, xq, yq)} be the tran-
script of the interaction of A with π̃ and for any two subsets U ⊆ {0, 1}n,V ⊆
{0, 1}n, let us define

μ(Q,U ,V) Δ= |{
(

(t, x, y), u, v
)

∈ Q × U × V : x ⊕ u = Φ(y ⊕ v)}|.

Then, for 9n ≤ q ≤ N/2, we have

Pr[∃U ,V : μ(Q,U ,V) ≥ q|U||V|
N

+
2q2

√

|U||V|
N

+ 3
√

nq|U||V|] ≤ 2
N

, (5)

where the randomness is defined over the set Q and the random coin of A.

When we apply Lemma 3 in our security analysis, we consider the automorphism
Φ to be an identity function.

3 BBB Security of Single Permutation Variant of 2-TEM

3.1 Security Statement

In this section, we state the security result of single permutation based 2-TEM
cipher. Let H be a family of ε-almost-xor universal and ε-almost-regular hash
functions that maps elements from tweak space T to {0, 1}n. Then, single per-
mutation based 2-TEM is defined as

2-TEMπ
h1,h2

(t, x) = π(π(x ⊕ h1(t)) ⊕ h1(t) ⊕ h2(t)) ⊕ h2(t) = y,

where π ∈ Pn is an n-bit public random permutation, (h1, h2) ←$ H2 are two
independently sampled hash functions, t ∈ T is the tweak and x ∈ {0, 1}n

is the plaintext. For convenience, we refer the single permutation based 2-TEM
construction as 2-TEM+. The main result of this section is to prove the following:

Theorem 2. Let A be any adaptive deterministic distinguisher that makes q
many construction queries with μ distinct tweaks and p many primitive queries in
both the forward and the backward directions. Let H be an ε-almost-xor universal
and ε-almost regular hash function that maps elements from tweak space T to
{0, 1}n. Then,

Advtsprp
2-TEM+(A) ≤

(

3qp2

N2
+

2pq2

N2
+

5q3

3N2
+

6p
√

q

N
+

11q3/2

N
+

14q

N2/3
+

38q2

N4/3
+

6q

N

+
4q(p + 6

√
q + 3q)2

N2
+

24
√

nq

N1/3
+

48
√

q

N1/3

)

.



612 A. Dutta

In particular, if the almost-xor universal and the almost-regular advantage of
H is roughly 2−n, then one can see that 2-TEM+ is secure roughly upto 22n/3

adversarial queries.
In the rest of the section we prove Theorem 2. Our security proof relies on

H-Coefficient technique. As a result, the first step of our proof would be to
identify bad transcripts and upper bound their probability in the ideal world.
Followed by this, we will show that for a good transcript τ , its real interpolation
probability is very close to its ideal interpolation probability.

3.2 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in the ideal
world. For a transcript τ = (τc, τp, k1, k2), we define U = Dom(τp), the domain
of primitive queries and V = Ran(τp), the range of primitive queries. Moreover,
for a pair of keys (k1, k2) and for any t ∈ T , we write h1(t) to denote Hk1(t)
and h2(t) to denote Hk2(t). For a transcript τ = (τc, τp, k1, k2), we associate the
following parameters:

α1
Δ= |{(t, x, y) ∈ τc : x ⊕ h1(t) ∈ U}|

α2
Δ= |{(t, x, y) ∈ τc : y ⊕ h2(t) ∈ V }|

β1
Δ= |{(t, x, y) 	= (t′, x′, y′) ∈ τc : x ⊕ h1(t) = x′ ⊕ h1(t′)}|

β2
Δ= |{(t, x, y) 	= (t′, x′, y′) ∈ τc : y ⊕ h2(t) = y′ ⊕ h2(t′)}|

Definition 1 (Bad Transcript). An attainable transcript τ ′ = (τc, τp, k1, k2)
is called a bad transcript if any one of the following condition holds:

– B.1: ∃ i ∈ [q], j, j′ ∈ [p] such that xi ⊕ h1(ti) = uj , yi ⊕ h2(ti) = vj′ .
– B.2: ∃ i ∈ [q], j, j′ ∈ [p] such that xi ⊕ h1(ti) = uj , vj ⊕ h1(ti) ⊕ h2(ti) = uj′ .
– B.3: ∃ i ∈ [q], j, j′ ∈ [p] such that yi ⊕ h2(ti) = vj , uj ⊕ h1(ti) ⊕ h2(ti) = vj′ .
– B.4: ∃ i, i′ ∈ [q], j ∈ [p] such that xi ⊕ h1(ti) = uj , vj ⊕ h1(ti) ⊕ h2(ti) =

xi′ ⊕ h1(ti′).
– B.5: ∃ i, i′ ∈ [q], j ∈ [p] such that yi ⊕ h2(ti) = vj , uj ⊕ h1(ti) ⊕ h2(ti) =

yi′ ⊕ h2(ti′).
– B.6: ∃ i, i′ ∈ [q], j ∈ [p] such that xi ⊕ h1(ti) = uj , yi ⊕ h2(ti) = yi′ ⊕ h2(ti′).
– B.7: ∃ i, i′ ∈ [q], j ∈ [p] such that yi ⊕ h2(ti) = vj , xi ⊕ h1(ti) = xi′ ⊕ h1(ti′).
– B.8: ∃ i, i′ ∈ [q] such that xi ⊕h1(ti) = xi′ ⊕h1(ti′), h1(ti)⊕h2(ti) = h1(ti′)⊕

h2(ti′).
– B.9: ∃ i, i′ ∈ [q] such that yi ⊕h2(ti) = yi′ ⊕h2(ti′), h1(ti)⊕h2(ti) = h1(ti′)⊕

h2(ti′).
– B.10: ∃ i, i′, i′′ ∈ [q] such that xi ⊕ h1(ti) = xi′ ⊕ h1(ti′), yi ⊕ h2(ti) = yi′′ ⊕

h2(ti′′).
– B.11: ∃ i, i′ ∈ [q], j, j′ ∈ [p] such that xi ⊕ h1(ti) = uj , xi′ ⊕ h1(ti′) = uj′ , vj ⊕

h1(ti) ⊕ h2(ti) = vj′ ⊕ h1(ti′) ⊕ h2(ti′).
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– B.12: ∃ i, i′ ∈ [q], j, j′ ∈ [p] such that yi ⊕ h2(ti) = vj , yi′ ⊕ h2(ti′) = vj′ , uj ⊕
h1(ti) ⊕ h2(ti) = uj′ ⊕ h1(ti′) ⊕ h2(ti′).

– B.13: D Δ= |{(ti, xi, yi), (tj , xj , yj), (tk, xk, yk) ∈ τc : yi ⊕ h2(ti) ⊕ h2(tj) =
xk ⊕ h1(tk) ⊕ h1(tj)}| ≥ 3q3/N + 3q

√
nq.

– B.14: α1 ≥ √
q

– B.15: α2 ≥ √
q.

– B.16: β1 ≥ √
q ∨ β2 ≥ √

q.

Recall that, we denote Θb (resp. Θg) the set of bad (resp. good) transcripts. We
bound the probability of bad transcripts in the ideal world as follows.

Lemma 4 (Bad Lemma). Let τ = (τc, τp, k1, k2) be any attainable transcript.
Let Did and Θb be defined as above. Then

Pr[Did ∈ Θb] ≤ εbad =
3qp2

N2
+

2pq2

N2
+

3q2

2N2
+

q3

6N2
+

2p
√

q

N
+

q

N
+

q3/2

N
.

Proof. Let τ = (τc, τp, k1, k2) be any attainable transcript. Recall that, in the
ideal world k1 and k2 are drawn uniformly at random from the keyspace. Using
the union bound, we have

Pr[Did ∈ Θb] ≤
( 16

∑

i=1,
i�=4,5,13

Pr[B.i]
)

︸ ︷︷ ︸

A

+ (Pr[B.4] + Pr[B.5] + Pr[B.13])
︸ ︷︷ ︸

B

. (6)

We bound part (A) in exactly the similar way as done in [7] and hence we omit
it. However, for the sake of completeness, we give its detail proof in [12]. Ahead
of the calculation, we have

A ≤ 3qp2

N2
+

3q2

2N2
+

q3

6N2
+

2p
√

q

N
+

q + 2
N

+
q3/2

N
. (7)

To bound, part (B) in the following, we begin with bounding event B.4 and B.5
as follows:

Bounding B.4 and B.5. We consider the event B.4. For a fixed (ti, xi, yi) 	=
(ti′ , xi′ , yi′) ∈ τc and for a fixed (uj , vj) ∈ τp, one has by the regularity of H and
h1 and h2 are drawn independent to each other,

Pr[h1(ti) = xi ⊕ uj , h2(ti) = vj ⊕ h1(ti) ⊕ xi′ ⊕ h1(ti′)] ≤ 1
N2

.

By summing over all possible choices of (ti, xi, yi), (ti′ , xi′ , yi′) ∈ τc, (uj , vj) ∈ τp,
we have

Pr[B.4] ≤ pq2

2N2
. (8)

Similarly, for B.5 one obtains,

Pr[B.5] ≤ pq2

2N2
. (9)
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Bounding B.13. For bounding B.13, we introduce the following sets: H1 =
{x ⊕ h1(t) : (t, x, y) ∈ τc} and H2 = {y ⊕ h2(t) : (t, x, y) ∈ τc} and H3 =
{h1(t) ⊕ h2(t) : (t, x, y) ∈ τc}. Then,

|D| = |{
(

h3, h1, h2)
)

∈ H3 × H1 × H2 : h3 = h1 ⊕ h2}|.

Therefore, to bound the probability of the event B.13, it is enough to bound the
probability of the following event:

E
Δ= |{

(

h3, h2, h1

)

∈ H3 × H1 × H2 : h3 = h1 ⊕ h2}| ≥ 3q3

N
+ 3q

√
nq.

From Lemma 2, the probability of event E is bounded above by 2/N . Hence,

Pr[B.13] ≤ 2
N

. (10)

From Eq. (6)–Eq. (10), the result follows. ��

3.3 Analysis of Good Transcripts

In this section, we state that for a good transcript τ = (τc, τp, k1, k2) such that
τc has μ distinct tweaks, realizing τ is almost as likely in the real world as in the
ideal world. More formally,

Lemma 5. (Good Lemma). Let τ = (τc, τp, k1, k2) ∈ Θg be a good transcript
such that τc has μ distinct tweaks. Let Dre and Did be defined as above. Then,

Pr[Dre = τ ]
Pr[Did = τ ]

≥ 1 −
(

4p
√

q

N
+

10q3/2

N
+

14q

N2/3
+

4q(p + 6
√

q + 3q)2

N2
+

38q2

N4/3
+

5q

N

+
24

√
nq

N1/3
+

48
√

q

N1/3

)

.

Proof of this lemma is the most difficult part of the paper. Hence, we devote the
following separate section for proving it. Therefore, by applying H-Coefficient
technique (i.e., Theorem 1) with Lemma 4 and Lemma 5, the result follows. ��

4 Proof of Good Lemma

In this section, we prove that for a good transcript τ = (τc, τp, k1, k2), realizing
it in the real world is as likely as realizing it in the ideal world. Note that, we
have shown in Lemma 1 that to compute the ratio of real to ideal interpolation
probability for a good transcript τ , one needs to compare

p(τ) Δ= Pr[π ←$ Pn : 2-TEM+π
k1,k2

�→ τc | π �→ τp]

with (N)q1 · (N)q2 . . . (N)qµ , where recall that μ is the distinct number of tweaks
(t1, . . . , tμ) and qi is the number of times tweak ti appears in the construction
queries τc ∈ τ . Therefore, it is enough to establish a lower bound of p(τ).
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4.1 Establishing Lower Bound on p(τ )

First of all, recall that U is the set of all domain points of primitive queries
and V is the set of all range points of it. For a good transcript (τc, τp, k1, k2),
we define the following two sets: I = {xi ⊕ h1(ti) : (ti, xi, yi) ∈ τc} and O =
{yi ⊕ h2(ti) : (ti, xi, yi) ∈ τc}. Since, τ is a good transcript, we can partition
the set of construction queries τc ∈ τ into a finite number of disjoint groups as
follows:

(a) QU
Δ
= {(t, x, y) ∈ τc : x ⊕ h1(t) ∈ U}, (b) QV

Δ
= {(t, x, y) ∈ τc : y ⊕ h2(t) ∈ V }

(c) QX
Δ
= {(t, x, y) ∈ τc : δI(x ⊕ h1(t)) > 1, x ⊕ h1(t) /∈ U}

(d) QY
Δ
= {(t, x, y) ∈ τc : δO(y ⊕ h2(t)) > 1, y ⊕ h2(t) /∈ V }

(e) Q0
Δ
= {(t, x, y) ∈ τc : δI(x ⊕ h1(t)) = δO(y ⊕ h2(t)) = 1, x ⊕ h1(t) /∈ U, y ⊕ h2(t) /∈ V }

Having defined the sets, we now claim that the sets are disjoint and they exhaust
the entire set of attainable good transcripts.

Proposition 2. Let τ = (τc, τp, k1, k2) ∈ Θg be a good transcript. Then the sets
(QU ,QV ,QX ,QY ,Q0) are pairwise disjoint.

Proof. First of all, according to the definition of the sets, QU ∩ QX = φ,QU ∩
Q0 = φ, QV ∩ QY = φ,QV ∩ Q0 = φ. Moreover, QX ∩ Q0 = φ,QY ∩ Q0 = φ.
Now, QU ∩ QV = φ, otherwise bad condition B.1 would be satisfied. Similarly,
QU ∩ QY = φ (resp. QV ∩ QX = φ), otherwise bad condition B.6 (resp. B.7)
would be satisfied. Moreover, QX ∩QY = φ otherwise bad condition B.10 would
be satisfied. Moreover, it is easy to see that a good transcript τ belongs to exactly
one of these five sets. ��

Note that, since τ is a good transcript, we have,

α1
Δ= |QU | ≤ √

q, α2
Δ= |QV | ≤ √

q.

Let EU denotes the event 2-TEM+π
k1,k2

�→ QU . Similarly, EV denotes the event
2-TEM+π

k1,k2
�→ QU , EX denotes the event 2-TEM+π

k1,k2
�→ QX , EY denotes the

event 2-TEM+π
k1,k2

�→ QY and finally, E0 denotes the event 2-TEM+π
k1,k2

�→ Q0.
Now, it is easy to see that

p(τ) = Pr[EU ∧ EV ∧ EX ∧ EY ∧ E0 | π �→ τp]
= Pr[EU ∧ EV | π �→ τp]

︸ ︷︷ ︸

p1(τ)

·Pr[EX ∧ EY ∧ E0 | EU ∧ EV ∧ π �→ τp]
︸ ︷︷ ︸

p2(τ)

(11)

Thus, it is enough to establish a good lower bound on p1(τ) and p2(τ) for a good
transcript τ .
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4.2 Lower Bound of p1(τ )

To lower bound p1(τ), we define the following sets:

S1
Δ= {x ⊕ h1(t) : (t, x, y) ∈ QU}, S2

Δ= {x ⊕ h1(t) : (t, x, y) ∈ QV }
D1

Δ= {y ⊕ h2(t) : (t, x, y) ∈ QU}, D2
Δ= {y ⊕ h2(t) : (t, x, y) ∈ QV }

Note that, |S1| = α1 and |D2| = α2. Moreover, S1 ⊆ U,D2 ⊆ V . Without loss of
generality, let us assume that xi ⊕ h1(ti) = ui for (ti, xi, yi) ∈ QU and similarly,
yi ⊕ h2(ti) = vi for (ti, xi, yi) ∈ QV . Now, we define two additional sets:

X1
Δ= {v1 ⊕ h1(t1) ⊕ h2(t1), . . . , vα1 ⊕ h1(tα1) ⊕ h2(tα1)}

X2
Δ= {u1 ⊕ h1(t1) ⊕ h2(t1), . . . , uα2 ⊕ h1(tα2) ⊕ h2(tα2)}

In the following we state that every element of D1 is distinct and does not collide
with any primitive query output. Similarly, every element of S2 is distinct and
does not collide with any primitive query input.

Proposition 3. Every element of D1 is distinct and does not collide with any
primitive query output. Similarly, every element of S2 is distinct and does not
collide with any primitive query input.

Proof of this proposition can be found in [12]. The above result says that |D1| =
α1 and |S2| = α2. Now, we have the following proposition which states that
every element of X1 and X2 are distinct and X1 is pairwise disjoint with S1 and
S2. Similarly, every element of X2 is distinct and pairwise disjoint with D1 and
D2. Proof of the result can be found in [12].

Proposition 4. Every element of X1 is distinct and X1 ∩ S1 = φ,X1 ∩ S2 = φ.
Moreover, every element of X2 is distinct and X2 ∩ D1 = φ,X2 ∩ D2 = φ.

Now, from Proposition 3 and Proposition 4, we have |S1| = |X1| = |D1| = α1
and |S2| = |X2| = |D2| = α2. Also recall that |U | = |V | = p. Now, we consider
the following two sequences:

X1D1
Δ
=

(
(vi ⊕ h1(ti) ⊕ h2(ti), yi ⊕ h2(ti))i : vi ⊕ h1(ti) ⊕ h2(ti) ∈ X1, yi ⊕ h2(ti) ∈ D1

)
.

S2X2
Δ
=

(
(xi ⊕ h1(ti), ui ⊕ h1(ti) ⊕ h2(ti))i : xi ⊕ h1(ti) ∈ S2, ui ⊕ h1(ti) ⊕ h2(ti) ∈ X2

)
.

From Proposition 3 and Proposition 4, it follows that the domain of X1D1 is
disjoint with the domain of S2X2. Moreover, they are individually disjoint with
U . Similarly, the range of X1D1 is disjoint with the range of S2X2. Moreover,
they are individually disjoint with V . Therefore, we have X = (U,X1,S2) and
Y = (V,D1,X2) are disjoint collections. Thus, from Proposition 2 one has,

p1(τ) Δ= Pr[π ←$ Pn : X \ U
π�→ Y \ V | π �→ τp] =

1
(N − p)α1+α2

. (12)
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4.3 Lower Bound on p2(τ )

In the last section, we have seen that π has been fixed on α1 + α2 input-output
(apart from p input-output primitive pairs). Moreover, the collection of input
and output sets of π that have been explored in the last section is X = (U,X1,S2)
and Y = (V,D1,X2). Now, to bound p2(τ) for τ , we first define few sets:

S ′
1

Δ= {x ⊕ h1(t) : (t, x, y) ∈ QX}, S ′
2

Δ= {x ⊕ h1(t) : (t, x, y) ∈ QY }.

D′
1

Δ= {y ⊕ h2(t) : (t, x, y) ∈ QX}, D′
2

Δ= {y ⊕ h2(t) : (t, x, y) ∈ QY }.

Let α′
1 = |S ′

1|, α′
2 = |D′

1|. Moreover, α′′
1 = |S ′

2|, α′′
2 = |D′

2|. Let us enumerate the
set S ′

1 and D′
2 as follows: S ′

1 = {s′
1,1, . . . , s

′
1,α′

1
} and D′

2 = {d′′
2,1, . . . , d

′′
2,α′′

2
}. Our

goal is to construct the set P (S ′
1), P

−1(D′
1), P (S ′

2) and P−1(D′
2), where

P (S ′
1)

Δ= {π(x ⊕ h1(t)) : x ⊕ h1(t) ∈ S ′
1}.

P−1(D′
1)

Δ= {π−1(y ⊕ h2(t)) : y ⊕ h2(t) ∈ D′
1}.

Similarly, the set P (S ′
2) and P−1(D′

2) are defined. It is to be noted that initially
these sets are undefined as the permutation is not sampled yet. Recall that, β1

refers to the number of input-colliding pair of construction queries and β2 refers
to the number of output-colliding pair of construction queries. Therefore, we can
write,

β1 =
∑

x∈{0,1}n:
δI(x)>1

δI(x), β2 =
∑

x∈{0,1}n:
δO(x)>1

δO(x),

where recall that I = {x ⊕ h1(t) : (t, x, y) ∈ τc} and O = {y ⊕ h2(t) : (t, x, y) ∈
τc}. Moreover, we have the following bound on α′

1.

α′
1 ≤

∑

x∈{0,1}n:
δI(x)>1

1 ≤
∑

x∈{0,1}n:
δI(x)>1

δI(x)
2

=
β1

2
≤

√
q

2
.

Similarly, one can derive α′′
2 ≤ β2/2 ≤ √

q/2. Now, we consider the elements of
D′

1. We claim that each element of D′
1 is distinct. This is because if two of them

collides then that would satisfy condition B.10. This gives us the following upper
bound on α′

2, which is derived as follows:

α′
2 ≤

α′
1

∑

i=1

δI(s′
1,i) ≤

∑

x∈{0,1}n:
δI(x)>1

δI(x) = β1 ≤ √
q.

By a similar reasoning, one can derive α′′
1 ≤ β2 ≤ √

q. Moreover, since, each
element of D′

1 is distinct, α′
1 = |QX |. Similarly, as each element of S ′

2 is distinct,
α′′

2 = |QY |. Now, to lower bound p2(τ), we need to define two more additional
sets as follows:

U Δ= {x ⊕ h1(t) : (t, x, y) ∈ Q0}, V Δ= {y ⊕ h2(t) : (t, x, y) ∈ Q0}.
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Since, (QU ,QV ,QX ,QY ,Q0) forms a partition of a good construction query
transcript τc, it is obvious that

q′ Δ= |Q0| = q − (|QU | + |QV | + |QX | + |QY |) = q − (α1 + α2 + α′′
1 + α2).

Thus, we have q′ = |U| = |V|. Let us enumerate the set U and V as follows: U =
{ũ1,i,j : 1 ≤ i ≤ μ, 1 ≤ j ≤ q′

i} and V = {ṽ2,i,j : 1 ≤ i ≤ μ, 1 ≤ j ≤ q′
i}, where

recall that μ is the distinct number of tweaks (t1, . . . , tμ) and q′
i is the number

of construction queries (t, x, y) ∈ Q0 with tweak value ti. Besides constructing
P (S ′

1), P (S ′
2), P

−1(D′
1) and P−1(D′

2), we also construct two additional sets:

P (U) Δ= {π(x ⊕ h1(t)) : (t, x, y) ∈ Q0}.

P−1(V) Δ= {π−1(y ⊕ h2(t)) : (t, x, y) ∈ Q0}.

Let X+ = (S ′
1,S ′

2, ,U) and Y+ = (D′
1,D′

2,V). Now, we state the following propo-
sition that says that X+ is a disjoint collection and it is inter disjoint with X.
Moreover, Y+ is a disjoint collection and it is inter disjoint with Y. Due to the
lack of space, we give its proof in [12].

Proposition 5. X+ is a disjoint collection and it is inter disjoint with X. More-
over, Y+ is a disjoint collection and it is inter disjoint with Y.

From Proposition 5, X+ is inter disjoint with X and Y+ is inter disjoint with Y.
Thus, we have X++ = X+ � X and Y++ = Y+ � Y. It is easy to see that,

Δ1
Δ= |X++| = p + q′ + α1 + α2 + α′

1 + α′′
1

Δ2
Δ= |Y++| = p + q′ + α1 + α2 + α′

2 + α′′
2 .

Our Goal: Now, our goal is to construct the set P (S ′
1), P (S ′

2), P (U) and
P−1(D′

1), P−1(D′
2) and P−1(V) in such a way so that

1. (S ′
1, P (S ′

1)) becomes extendable
2. (S ′

2, P (S ′
2)) becomes extendable

3. (U , P (U)) becomes extendable

Similarly,

1. (P−1(D′
1),D′

1) becomes extendable
2. (P−1(D′

2),D′
2) becomes extendable

3. (P−1(V),V) becomes extendable

Note that X++ and Y++ are the set of elements of the domain and range
of the partially completed permutation π respectively until the construction
of the sets P (S ′

1), P (S ′
2), P (U) and P−1(D′

1), P−1(D′
2) and P−1(V). Moreover,

the elements of P (S ′
1) uniquely determines the elements of P−1(D′

1), elements
of P−1(D′

2) uniquely determines the elements of P (S ′
2) and elements of P (U)

uniquely determines the elements of P−1(V). Hence, we sample the elements of
P (S ′

1) in such a way so that it preserves the permutation compatibility between
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S ′
1 and P (S ′

1) and between P−1(D′
1) and D′

1. Similarly, we sample the elements
of P−1(D′

2) in such a way so that it preserves the permutation compatibility
between D′

2 and P−1(D′
2) and between S ′

2 and P (S ′
2). Finally, we sample the

elements of P (U) in such a way so that it preserves the permutation compatibility
between U and P (U) and between V and P−1(V). To this end, we define the
following sets: for each u, v ∈ {0, 1}n,

Xu = {(t, x, y) ∈ τc : x ⊕ h1(t) = u}
Yv = {(t, x, y) ∈ τc : y ⊕ h2(t) = v}

Step-I: Construct set P (S ′
1) and P−1(D′

1). Let N1 be the number of tuple
of distinct values (v′

1,1, . . . , v
′
1,α′

1
) in {0, 1}n \ Y++ such that it satisfies the fol-

lowing two conditions:

• for each i ∈ [α′
1] and for each (t, x, y) ∈ Xs′

1,i
, v′

1,i ⊕ h1(t) ⊕ h2(t) /∈ X++

• for each i ∈ [α′
1], for each (t, x, y) ∈ Xs′

1,i
, for each j < i and for each

(t′, x′, y′) ∈ Xs′
1,j

, v′
1,i ⊕ h1(t) ⊕ h2(t) 	= v′

1,j ⊕ h1(t′) ⊕ h2(t′)

Let Z1 be the set of all tuple of distinct values (v′
1,1, . . . , v

′
1,α′

1
) in {0, 1}n \Y++

that satisfies the above two conditions. Note that, |{0, 1}n \ Y++| = (N − (p +
q′ +α1 +α2 +α′

2 +α′′
2)). Moreover, the first condition excludes at most (p+ q′ +

α1 + α2 + α′
1 + α′′

1)|Xs′
1,i

| values for v′
1,i and the last condition excludes at most

|Xs′
1,i

| · (|Xs′
1,1

| + . . . + |Xs′
1,i−1

|) ≤ α′
2 · |Xs′

1,i
| values for v′

1,i. Thus, one has

|Z1| = N1 ≥
α′

1−1
∏

i=0

(

N − Δ2 − i − (Δ1 + α′
2)|Xs′

1,i+1
|
)

. (13)

We set P (S ′
1) = {v′

1,1, . . . , v
′
1,α′

1
} and P−1(D′

1) = {v′
1,i ⊕ h1(t) ⊕ h2(t) : i ∈

[α′
1], (t, x, y) ∈ Xs′

1,i
}. Note that such assignment makes (S ′

1, P (S ′
1)) extendable

and (P−1(D′
1),D′

1) extendable. It is easy to see that P (S ′
1) is disjoint with each

set of Y++ and P−1(D′
1) is disjoint with each set of X++. Thus, we have, X3+ =

X++ �P−1(D′
1) and Y3+ = Y++ �P (S ′

1). Moreover, Δ3
Δ= |X3+| = Δ1 +α′

2 and
Δ4

Δ= |Y3+| = Δ2 + α′
1.

Step-II: Construct set P (S ′
2) and P−1(D′

2). To begin the construction of
the sets, we would like to note here that X3+ and Y3+ are the set of elements of
domain and range of the partially completed permutation π until the construc-
tion of the sets P (S ′

2), P (U) and P−1(D′
2) and P−1(V). Let N2 be the number

of tuple of distinct values (u′′
2,1, . . . , u

′′
2,α′′

2
) in {0, 1}n \ X3+ such that it satisfies

the following two conditions:

• for each i ∈ [α′′
2 ] and each (t, x, y) ∈ Yd′′

2,i
, u′′

2,i ⊕ h1(t) ⊕ h2(t) /∈ Y3+

• for each i ∈ [α′′
2 ], for each (t, x, y) ∈ Yd′′

2,i
, for each j < i and for each

(t′, x′, y′) ∈ Yd′′
1,j

, u′′
1,i ⊕ h1(t) ⊕ h2(t) 	= u′′

1,j ⊕ h1(t′) ⊕ h2(t′)
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Let Z2 be the set of all tuple of distinct values (u′′
2,1, . . . , u

′′
2,α′

2
) in {0, 1}n \ X3+

that satisfies the above two conditions. Note that, |{0, 1}n \X3+| = (N − (Δ1 +
α′

2)). Moreover, the first condition excludes at most (Δ2+α′
1)|Yd′′

2,i
| values for u′′

2,i

and the last condition excludes at most |Yd′′
2,i

|·(|Yd′′
2,1

|+. . .+|Yd′′
2,i−1

|) ≤ α′′
1 ·|Yd′′

2,i
|

values for u′′
2,i. Thus, one has

|Z2| = N2 ≥
α′′

2 −1
∏

i=0

(

N − Δ3 − i − (Δ4 + α′′
1)|Yd′′

2,i+1
|
)

. (14)

We set P−1(D′
2) = {u′′

2,1, . . . , u
′′
2,α′′

2
} and P (S ′

2) = {u′′
2,i ⊕ h1(t) ⊕ h2(t) : i ∈

[α′′
2 ], (t, x, y) ∈ Yd′′

2,i
}. Note that such assignment makes (S ′

2, P (S ′
2)) extendable

and (D′
2, P

−1(D′
2)) extendable.

It is easy to see that P (S ′
2) is disjoint with each set of Y3+ and P−1(D′

2)
is disjoint with each set of X3+. Thus, we have, X4+ = X3+ � P−1(D′

2) and
Y4+ = Y3+ � P (S ′

2). Moreover, Δ
Δ= |X4+| = Δ3 + α′′

2 = Δ4 + α′′
1 = |Y4+|. Let

X0 = X+4 \ U and Y0 = Y+4 \ U . For a fixed choice of elements from Z1 and
Z2, we have,

p̂ = Pr[π ←$ Pn : X0 \ X
π�→ Y0 \ Y | X π�→ Y] =

1
(N − (p + α1 + α2))Δ′

, (15)

where Δ′ = Δ − (p + q′ + α1 + α2). Now, we come to the last step in the
construction of sets, i.e., we construct set P (U) and P−1(V.)

Step-III: Construct set P (U) and P−1(V). Recall that q′ = q − (α1 +α2 +
α′′

1 + α′
2). Let us consider the following parameter:

M =
q′

N1/3

such that q′ − 3M = q′/2, which holds true for n ≥ 9. Let p′ = (p + α1 + α2 +
α′

1 +α′
2 +α′′

1 +α′′
2) and q′′ = q′ − 2α for some α such that 0 ≤ α ≤ M . We know

that (q1 + . . . + qμ) = q. Now, for each i ∈ [μ], we define q′′
i and q′

i such that
q′′
i ≤ q′

i ≤ qi and

μ
∑

i=1

q′
i = q′,

μ
∑

i=1

q′′
i = q′′, q′′

i = q′
i − θi, for some θi, 1 ≤ i ≤ μ

Let Z0 be the tuple of distinct values that makes (U , P (U)) extendable and
(P−1(V),V) extendable. Let N0 be the number of such tuples. Then, we have
the following result:

Lemma 6. Let N0, p
′, q′, q′′

i , α,M be defined as above. Moreover, μ is the dis-
tinct number of tweaks appearing in the construction query transcript. Then,

N0 ≥
∑

0≤α≤M

(q′)2α

α!
· (1 − ε0) ·

μ
∏

i=1

(

N − 2p′ − 2q′ − 2α − 2
i−1
∑

k=1

q′′
k

)

q′′
i

,
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where ε0 = 4q/N2/3 + 24q2/N4/3 + 24
√

nq/N1/3 + 48
√

q/N1/3. Moreover, P (U)
is disjoint with each set of Y4+, P−1(V) is disjoint with each set of X4+. Even
more, the number of input-ouput pairs on which a random permutation π becomes
fixed to map U to P (U) and P−1(V) to V is 3α + 2q′′

Note that, the number of way of choosing the tuple looks different than that of
N1 and N2 (which looks alike). This is because, we are allowing collisions between
P (U) and V or P−1(V) and U . In other words, if P (U)∩V = φ or P−1(V)∩U = φ,
then we end up with birthday bound term. Due to this enforcement of collision,
the counting of the set Z0 becomes involved. A proof of the result can be found
in [12].

From Lemma 6 and Eq. (15) and for a fixed choice of elements from Z0,Z1

and Z2, we have,

p̂2 = Pr[π ←$ Pn : X0 \ X
π�→ Y0 \ Y

∧

π �→ (U , P (U))
∧

π �→ (P −1(V), V) | X π�→ Y]

=
1

(N − p − α1 − α2)Δ′+3α+2q′′
(16)

From Eq. (13), Eq. (14), Eq. (16) and Lemma 6, we have,

p2(τ) = N0 · N1 · N2 · 1

(N − p − α1 − α2)Δ′+3α+2q′′
, (17)

where Δ′ = Δ − (p + q′ + α1 + α2).

4.4 Final Step of the Proof

In this section we finalize the proof by combining the results derived in Sect. 4.2
and Sect. 4.3. We once again recall here the following parameters:

Δ1 = p + q′ + α1 + α2 + α′
1 + α′′

1

Δ2 = p + q′ + α1 + α2 + α′
2 + α′′

2

Δ3 = p + q′ + α1 + α2 + α′
1 + α′′

1 + α′
2s

Δ4 = p + q′ + α1 + α2 + α′
2 + α′′

2 + α′
1

Δ = p + q′ + α1 + α2 + α′
1 + α′′

1 + α′
2 + α′′

2

Moreover, we would like to recall that α′
1 ≤ √

q, α′
2 ≤ √

q, α′′
1 ≤ √

q and α′′
2 ≤ √

q.
Now, from Eq. (11), Eq. (12) and Eq. (17), we have

p(τ) ·
μ∏

i=1

(N)qi = N0 · N1 · N2 ·

μ∏

i=1
(N)qi

(N − p)Δ+3α+2q′′−p−q′

=
N1

(N − p)α′
1︸ ︷︷ ︸

N1

· N2

(N − p − α′
1)α′′

2︸ ︷︷ ︸
N2

·
N0 ·

μ∏

i=1
(N)qi

(N − p − α′
1 − α′′

2 )α1+α2+α′′
1 +α′

2+3α+2q′′
︸ ︷︷ ︸

N0
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Ahead of the calculation, we have

N1 ≥
(

1 −
(

2p
√

q

N
+

3q3/2

N
+

3q

N

)

)

(18)

N2 ≥
(

1 −
(

2p
√

q

N
+

3q3/2

N
+

2q

N

)

)

(19)

N0 ≥
(

1 − 4q3/2

N
− 10q

N2/3
− 4q(p + 6

√
q + 3q)2

N2
− 14q2

N4/3
− ε0

)

. (20)

where ε0 = 4q/N2/3 + 24q2/N4/3 + 24
√

nq/N1/3 + 48
√

q/N1/3. Derivation of
these bounds can be found in [12]. Finally, from Eq. (18), Eq. (19) and Eq. (20),
we have

p(τ)

1/
μ∏

i=1
(N)qi

≥
(
1 −

(
4p

√
q

N
+

10q3/2

N
+

10q

N2/3
+

4q(p + 6
√

q + 3q)2

N2
+

14q2

N4/3
+

5q

N

)

︸ ︷︷ ︸
ε1

−ε0

)

Therefore, for a good transcript τ and from Lemma 1 and Lemma 6, we have

pre(τ)
pid(τ)

≥ 1 −
(

4p
√

q

N
+

10q3/2

N
+

14q

N2/3
+

4q(p + 6
√

q + 3q)2

N2
+

38q2

N4/3
+

5q

N

+
24

√
nq

N1/3
+

48
√

q

N1/3

)

.

This proves Lemma 5. ��

5 BBB Security of Two Permutations Variant of 4-TEM

5.1 Security Statement

In this section, we state the security result of two permutation based 4-TEM
construction. Let k1, k2 ←$ {0, 1}n be two independently chosen random n-bit
keys. Then, the two permutations variant of 4-TEM is defined as

4-TEMπ1,π2
k1,k2

(t, x) = k1 ⊕ t ⊕ π1(k2 ⊕ t ⊕ π2(k1 ⊕ t ⊕ π2(k2 ⊕ t ⊕ π1(k1 ⊕ t ⊕ x)))),

where π1, π2 ∈ Pn be two independently sampled n-bit public random permu-
tations, k1 ←$ {0, 1}n, k2 ←$ {0, 1}n be two independently sampled n-bit key,
t ∈ {0, 1}n is the tweak and x ∈ {0, 1}n is the plaintext. For convenience, we
refer the two permutations based 4-TEM construction as 4-TEM+. The main
result of this section is to prove the following:

Theorem 3. Let A be any adaptive deterministic distinguisher that makes q
many construction queries with μ distinct tweaks and p many primitive queries
in both the forward and the backward directions. Then,

Advtsprp

4-TEM+ (A) ≤
(
3qp2

N2
+

31pq2

N2
+

21p
√

q

N
+

31q3/2 + 2p3/2)

N
+

3p
√

nq + 2

N
+

14q

N2/3

+
4q(p + 6

√
q + 3q)2

N2
+

38q2

N4/3
+

5q

N
+

24
√

nq

N1/3
+

48
√

q

N1/3
+

4q
√

p

N
+

4q3

N2

)
.
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5.2 Definition and Probability of Bad Transcripts

For a transcript τ = (τc, τp1 , τp1 , k1, k2), we define U (b) = Dom(τpb
) = {u(b) ∈

{0, 1}n : (u(b), v(b)) ∈ τpb
}, the domain of primitive queries and V (b) =

Ran(τpb
) = {v(b) ∈ {0, 1}n : (u(b), v(b)) ∈ τpb

}, the range of primitive queries
for b ∈ {1, 2}. For a transcript τ = (τc, τp1 , τp1 , k1, k2), we associate the following
parameters:

ν1
Δ
= |{(

(t, x, y), (u(1), v(1))
) ∈ τc × τp1 : k1 = x ⊕ t ⊕ u(1)}|

ν2
Δ
= |{(

(t, x, y), (u(2), v(2))
) ∈ τc × τp2 : k1 = u(2) ⊕ v(2) ⊕ t}|

ν3
Δ
= |{(

(t, x, y), (u(2), v(2))
) ∈ τc × τp2 : k1 ⊕ k2 = x ⊕ v(2)}|

ν3
Δ
= |{(

(t, x, y), (u(2), v(2))
) ∈ τc × τp2 : k1 ⊕ k2 = y ⊕ u(2)}|

ν4
Δ
= |{(

(t, x, y), (u(1), v(1))
) ∈ τc × τp1 : k1 = y ⊕ t ⊕ u(1)}|

ν5
Δ
= |{(

(t, x, y), (t′, x′, y′), (u(2), v(2))
) ∈ (τc)

2 × τp2 : k1 ⊕ k2 = x ⊕ t ⊕ v(2) ⊕ t′}|

Moreover, we also have

ν′
5

Δ
= |{(

(t, x, y), (t′, x′, y′), (u(2), v(2))
) ∈ (τc)

2 × τp2 : k1 ⊕ k2 = y ⊕ t ⊕ u(2) ⊕ t′}|
ν2,3

Δ
= |{(

(t, x, y), (u(2), v(2)), (u′(2), v′(2))
) ∈ τc × (τp2)

2 : k1 = u(2) ⊕ v′(2) ⊕ t}|
ν6

Δ
= |{(

(t, x, y), (t′, x′, y′), (u(1), v(1)), (u(2), v(2))
) ∈ (τc)

2 × τp1 × τp2 :

x ⊕ k1 ⊕ t = u(1), v(1) ⊕ v(2) ⊕ t ⊕ t′ = k1 ⊕ k2}|
ν7

Δ
= |{(

(u(2), v(2)), (u′(2), v′(2))
) ∈ (τp2)

2 : (u(2), v(2)) �= (u′(2), v′(2))
u(2) ⊕ v(2) = u′(2) ⊕ v′(2)}|

Definition 2 (Bad Transcript). An attainable transcript τ ′ = (τc, τp1 , τp2 ,
k1, k2) is called a bad transcript if any one of the following condition holds:

– B.1: ∃ i ∈ [q], j, j′ ∈ [p] such that k1 ⊕ ti = xi ⊕ u
(1)
j = yi ⊕ v

(1)
j′ .

– B.2: ∃ i ∈ [q], j, j′ ∈ [p] such that xi ⊕ k1 ⊕ ti = u
(1)
j , v

(1)
j ⊕ k2 ⊕ ti = u

(2)
j′ .

– B.3: ∃ i ∈ [q], j, j′ ∈ [p] such that yi ⊕ k1 ⊕ ti = v
(1)
j , u

(1)
j ⊕ k2 ⊕ ti = v

(2)
j′ .

– B.4: ν1 ≥ √
q.

– B.5: ν2 ≥ √
q.

– B.6: ν3 ≥ √
q.

– B.7: ν′
3 ≥ √

q.
– B.8: ν4 ≥ √

q.
– B.9: ν5 ≥ p

√
q.

– B.10: ν′
5 ≥ p

√
q.

– B.11: ν2,3 ≥ p
√

q.
– B.12: ν6 ≥ p

√
q.

– B.13: ν7 ≥ √
p.

Recall that, we denote Θb (resp. Θg) the set of bad (resp. good) transcripts.
Then we have the following result:
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Lemma 7 (Bad Lemma). Let τ = (τc, τp1 , τp2 , k1, k2) be any attainable tran-
script. Let Did and Θb be defined as above. Then

Pr[Did ∈ Θb] ≤ εbad =
3qp2

N2
+

3pq2

N2
+

5p
√

q

N
+

2(q3/2 + p3/2)
N

+
3p

√
nq + 2
N

.

Proof of this lemma can be found in [12].

5.3 Analysis of Good Transcripts

In this section, we state that for a good transcript τ = (τc, τp1 , τp2 , k1, k2) such
that τc has μ distinct tweaks, realizing τ is almost as likely in the real world as
in the ideal world. More formally,

Lemma 8 (Good Lemma). Let τ = (τc, τp1 , τp2 , k1, k2) ∈ Θg be a good tran-
script such that τc has μ distinct tweaks. Let Dre and Did be defined as above.
Then,

Pr[Dre = τ ]

Pr[Did = τ ]
≥ 1 −

(

16p
√

q

N
+

29q3/2

N
+

14q

N2/3
+

4q(p + 6
√

q + 3q)2

N2
+

38q2

N4/3
+

5q

N

+
24

√
nq

N1/3
+

48
√

q

N1/3
+

28pq2

N2
+

4q
√

p

N
+

4q3

N2

)

.

By the grace of Lemma 1, we need to compute the following: for a good transcript
τ = (τc, τp1 , τp2 , k1, k2),

p(τ) Δ= Pr[(π1, π2) ←$ (Pn)2 : 4-TEM+π1,π2
k1,k2

�→ τc | π1 �→ τp1 , π2 �→ τp2 ]. (21)

The proof proceeds in two steps: in the first step we will lower bound that
a randomly sampled permutation π1 satisfy some good condition (definition is
given below). Then, assuming π1 is good, we will lower bound over the choice of
π2, 4-TEM+π1,π2

k1,k2
�→ τc. For the second step, we will directly appeal to the result

developed for 2-TEM+ in previous sections.

Definition 3. A permutation π1 ∈ Pn such that π1 �→ τp1 is said to be bad if it
satisfies at least one of the following conditions:

– C.1: ∃ i ∈ [q], j, j′ ∈ [p] such that π1(xi ⊕ k1 ⊕ ti) ⊕ k2 ⊕ ti = u
(2)
j , π−1

1 (yi ⊕
k1 ⊕ ti) ⊕ k2 ⊕ ti = v

(2)
j′ .

– C.2: ∃ i ∈ [q], j, j′ ∈ [p] such that π1(xi⊕k1⊕ti)⊕k2⊕ti = u
(2)
j , v

(2)
j ⊕k1⊕ti =

u
(2)
j′ .

– C.3: ∃ i ∈ [q], j, j′ ∈ [p] such that π−1
1 (yi⊕k1⊕ti)⊕k2⊕ti = v

(2)
j , u

(2)
j ⊕k1⊕ti =

v
(2)
j′ .

– C.4: ∃ i, i′ ∈ [q], j ∈ [p] such that π1(xi⊕k1⊕ti)⊕k2⊕ti = u
(2)
j , v

(2)
j ⊕k1⊕ti =

π1(xi′ ⊕ k1 ⊕ ti′) ⊕ k2 ⊕ ti′ .
– C.5: ∃ i, i′ ∈ [q], j ∈ [p] such that π1(yi⊕k1⊕ti)⊕k2⊕ti = v

(2)
j , u

(2)
j ⊕k1⊕ti =

π−1
1 (yi′ ⊕ k1 ⊕ ti′) ⊕ k2 ⊕ ti′ .
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– C.6: ∃ i, i′ ∈ [q], j ∈ [p] such that π1(xi ⊕ k1 ⊕ ti) ⊕ k2 ⊕ ti = u
(2)
j , π−1

1 (yi ⊕
k1 ⊕ ti) ⊕ ti = π−1

1 (yi′ ⊕ k1 ⊕ ti′) ⊕ ti′ .
– C.7: ∃ i, i′ ∈ [q], j ∈ [p] such that π−1

1 (yi ⊕ k1 ⊕ ti) ⊕ k2 ⊕ ti = v
(2)
j , π1(xi ⊕

k1 ⊕ ti) ⊕ ti = π1(xi′ ⊕ k1 ⊕ ti′) ⊕ ti′ .
– C.8: ∃ i, i′ ∈ [q] such that π1(xi ⊕k1 ⊕ ti)⊕ ti = π1(xi′ ⊕k1 ⊕ ti′)⊕ ti′ , ti = ti′ .
– C.9: ∃ i, i′ ∈ [q] such that π−1

1 (yi⊕k1⊕ti)⊕ti = π−1
1 (yi′ ⊕k1⊕ti′)⊕ti′ , ti = ti′ .

– C.10: ∃ i, i′, i′′ ∈ [q] such that π1(xi ⊕ k1 ⊕ ti) ⊕ ti = π1(xi′ ⊕ k1 ⊕ ti′) ⊕
ti′ , π−1

1 (yi ⊕ k1 ⊕ ti) ⊕ ti = π−1
1 (yi′′ ⊕ k1 ⊕ ti′′) ⊕ ti′′ .

– C.11: ∃ i, i′ ∈ [q], j, j′ ∈ [p] such that π1(xi ⊕k1 ⊕ ti)⊕k2 ⊕ ti = u
(2)
j , pi1(xi′ ⊕

k1 ⊕ ti′) ⊕ k2 ⊕ ti′ = u
(2)
j′ , v

(2)
j ⊕ ti = v

(2)
j′ ⊕ ti′ .

– C.12: ∃ i, i′ ∈ [q], j, j′ ∈ [p] such that π−1
1 (yi⊕k1⊕ti)⊕k2⊕ti = v

(2)
j , π−1

1 (yi′ ⊕
k1 ⊕ ti′) ⊕ k2 ⊕ ti′ = v

(2)
j′ , u

(2)
j ⊕ ti = u

(2)
j′ ⊕ ti′ .

– C.13: D Δ= |{(ti, xi, yi), (tj , xj , yj), (tk, xk, yk) ∈ τc : π−1
1 (yi ⊕ k1 ⊕ ti) ⊕ k2 ⊕

ti ⊕ k1 ⊕ tj = π1(xk ⊕ k1 ⊕ tk) ⊕ k2 ⊕ tk ⊕ k1 ⊕ tj}| ≥ 3q3/N + 3q
√

nq.
– C.14: α1

Δ= |{
(

(t, x, y), (u(2), v(2))
)

∈ τc×τp2 : π1(x⊕k1⊕t)⊕k2⊕t = u(2)}| ≥√
q.

– C.15: α2
Δ= |{

(

(t, x, y), (u(2), v(2))
)

∈ τc × τp2 : π−1
1 (y ⊕ k1 ⊕ t) ⊕ k2 ⊕ t =

v(2)}| ≥ √
q.

– C.16: β1
Δ= |{

(

(t, x, y), (t′, x′, y′)
)

∈ (τc)2 : (t, x, y) 	= (t′, x′, y′), π1(x ⊕ k1 ⊕
t) ⊕ t = π1(x′ ⊕ k1 ⊕ t′) ⊕ t′}| ≥ √

q.
– C.17: β2

Δ= |{
(

(t, x, y), (t′, x′, y′)
)

∈ (τc)2 : (t, x, y) 	= (t′, x′, y′), π−1
1 (y ⊕ k1 ⊕

t) ⊕ t = π−1
1 (y′ ⊕ k1 ⊕ t′) ⊕ t′}| ≥ √

q.

Let Pb be the set of all permutations π1 such that π1 �→ τp1 and satisfies at least
one of the above events. Let Pg = Pn \ Pb. Then, we have the following lemma.

Lemma 9. Let Pb be the set of bad permutations π1 such that π1 �→ τp1 . Then,

Pr[π1 ←$ Pn : π1 ∈ Pb] ≤ 28pq2

N2
+

12p
√

q

N
+

19q3/2

N
+

4q
√

p

N
+

4q3

N2
.

We include the proof of the lemma in [12]. Having stated the result, we now
move to the second step of the proof.

Second Step of the proof. We fix a permutation π1 ∈ Pn that satisfies
π1 �→ τp1 . Then, we define a new query transcript and denote the following:

τ̃c
Δ= {(t, π1(x ⊕ t ⊕ k1), π−1

1 (y ⊕ t ⊕ k1) : (t, x, y) ∈ τc}.

p̃(τ, π1)
Δ= Pr[π2 ←$ Pn : 4-TEM+π2

k1,k2
�→ τ̃c | π2 �→ τp2 ].

Once π1 is fixed, 4-TEM+π1,π2
k1,k2

�→ τc is equivalent to 4-TEM+π2
k1,k2

�→ τ̃c. Therefore,
following Lemma 5 of [9], we have for a good transcript τ ,

Pr[Dre = τ ]
Pr[Did = τ ]

≥
∑

π1∈Pg

p̃(τ, π1)

(N − p)!
μ
∏

i=1

1/(N)qi

, (22)
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where recall that qi is the number of construction queries in τc with tweak
value ti. Moreover, note that the query transcripts τ ′ = (τc, τp2) satisfies exactly
the conditions defining a good transcript as per Definition 1. Moreover, for a

good permutation π1, the ratio p̃(τ, π1)/
μ
∏

i=1

1/(N)qi is exactly the ratio of the

probabilities to get τ ′ in the real and in the ideal world. Hence, we can apply
Lemma 5 to yield

p̃(τ, π1)
μ
∏

i=1

1/(N)qi

≥ 1 −
(

4p
√

q

N
+

10q3/2

N
+

14q

N2/3
+

4q(p + 6
√

q + 3q)2

N2
+

38q2

N4/3
+

5q

N

+
24

√
nq

N1/3
+

48
√

q

N1/3

)

. (23)

Finalizing the proof. Let

ε =
4p

√
q

N
+

10q3/2

N
+

14q

N2/3
+

4q(p + 6
√

q + 3q)2

N2
+

38q2

N4/3
+

5q

N
+

24
√

nq

N1/3
+

48
√

q

N1/3
.

ε0 =
28pq2

N2
+

12p
√

q

N
+

19q3/2

N
+

4q
√

p

N
+

4q3

N2
.

From Eq. (22) and Eq. (23), we have

Pr[Dre = τ ]
Pr[Did = τ ]

≥
(

1 − ε

) ∑

π1∈Pg

1
(N − p)!

=
(

1 − ε

)

· Pr[π1 ∈ Pg]

=
(

1 − ε

)

·
(

1 − Pr[π1 ∈ Pb]
)

(1)

≥
(

1 − ε

)

·
(

1 − ε0

)

≥
(

1 − ε − ε0

)

,

where (1) follows from Lemma 9. By substituting the value of ε0 and ε, the result
follows. ��

6 Conclusion

This work shows that single permutation based 2-TEM and two-independent
permutations based 4-TEM are beyond birthday bound secure TEM. As already
mentioned that it would be interesting to investigate the security of 2-TEM+

and 4-TEM+ with reduced number of keys. We also conjecture that single per-
mutation based 4-TEM (i.e., make all permutations of 4-TEM identical) is also
beyond the birthday bound secure, but we currently we do not know how to
prove its security.

Acknowledgement. This work has been done in Indian Institute of Technology,
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Abstract. Fresh rekeying is a well-established method to protect a
primitive or mode against side-channel attacks: an easy to protect but
cryptographically not so involved function generates a subkey from the
master key, and this subkey is then used for the block encryption of a
single or a few messages. It is an efficient way to achieve side-channel
protection, but current solutions only achieve birthday bound security
in the block size of the cipher and thus halve its security (except if
more involved primitives are employed). We present generalized solu-
tions to parallel block cipher rekeying that, for the first time, achieve
security beyond the birthday bound in the block size n. The first solu-
tion involves, next to the subkey generation, one multiplication and the
core block cipher call and achieves 22n/3 security. The second solution
makes two block cipher calls, and achieves optimal 2n security. Our third
solution uses a slightly larger subkey generation function but requires
no adaptations to the core encryption and also achieves optimal secu-
rity. The construction seamlessly generalizes to permutation based fresh
rekeying. Central to our schemes is the observation that fresh rekeying
and generic tweakable block cipher design are two very related topics,
and we can take lessons from the advanced results in the latter to improve
our understanding and development of the former. We subsequently use
these rekeying schemes in a constructive manner to deliver three authen-
ticated encryption modes that achieve beyond birthday bound security
and are easy to protect against side-channel attacks.

Keywords: Fresh rekeying · Block cipher · Generalization · Beyond
birthday bound · Optimal

1 Introduction

The security of cryptographic constructions is typically analyzed in a black-box
model. The analysis is based on the assumption that the adversary adheres to
the conditions and limitations set by the security model, and that it only obtains
information about the cryptographic function by model-wise permitted evalua-
tions of that function. The emerging threat of side-channel attacks questions the
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credibility of this approach. Side-channel attackers obtain additional informa-
tion about a cryptographic function, typically via passive attacks such as timing
attacks [52], differential power analysis [54], or electromagnetic radiation [56].
With black-box security of cryptographic schemes improving, side-channel secu-
rity is often the weak spot. In particular, a cryptographic function could achieve
very strong black-box security, but its security may be nullified if its implemen-
tation is in an unprotected environment.

Securing a cryptographic function against side-channel attacks is a serious
challenge. One way of doing so is at the implementation level, namely through
hiding [62] or masking [24,31,44,85]. However, these approaches are often design-
specific and could be prohibitively expensive. An alternative approach is to
change the mode at the protocol level, i.e., to develop the protocol in such a
way that secret-key material is used scarcely and its usage is easier to protect.

One of the most basic and practically appealing expositions of this idea is
fresh parallel rekeying. In this approach one does not use a block cipher in its
naive fashion, but rather uses a subkey generation function on top of that. This
subkey generation function has access to the master key (hence needs strong side-
channel protection) but does not need to be a cryptographically strong primitive.
The block cipher evaluation itself must of course be cryptographically strong,
but only uses every subkey once or a few number of times, and does not need
strong side-channel protection. In practical cases, the subkey generation needs
to be protected against the stronger differential power analysis (DPA) whereas
the core encryption only needs to be protected against simple power analysis
(SPA) and related techniques [9,93]. This concept is called a “leveled implemen-
tation” [79]. The first appearance of the idea of rekeying was by Abdalla and
Bellare [1], and it was independently introduced and proposed as side-channel
countermeasure by Borst [21, Section 6.6.1]. The approach was recently recon-
sidered and popularized by Medwed et al. [64]: they suggest multiplication as
subkey generation (but, see Sect. 7). In this way, the cryptographic strength
and the side-channel resistance of the scheme are virtually disconnected into a
light but strongly protected multiplication and a strong but lightly protected
core encryption. Medwed et al. [63] generalized it to a multi-party variant, but
later, Dobraunig et al. [28] demonstrated that Medwed et al.’s solutions allowed
for birthday bound key recoveries in the block size of the cipher. Dobraunig
et al. [30] later resolved this by introducing two fresh rekeying solutions: one
based on the subkey generation function and two block cipher calls that is still
birthday bound secure (though optimally key recovery secure), and one based on
a subkey generation function and a tweakable block cipher call that is optimally
secure (in the ideal model). Patented ideas on the topic appeared in [35,53]. We
refer to Sect. 3 for a detailed survey of the schemes and their relation.

One might argue that the idea to separate cryptographic building blocks
into a part that must be DPA-protected and a part that must be SPA-protected
has been overtaken by time. Most notably, single trace attacks have improved
over the last decades, in particular with the soft-analytical side-channel attacks
enhanced with belief propagation [37,50,92]. These attacks, however, focus on
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unprotected implementations of which the behavior was known prior to the
attack (e.g., how the implementation responds to known inputs with known
key). In practical applications, such as smart cards, this is usually not the case.
More fundamentally, in [37, Section 6] it is already confirmed that for noisy
implementations, multiple traces simply give more information to an attacker
than a single trace, and likewise [50, Section 1] conclude that DPA attacks are
more powerful in the context of noisy implementation. From this viewpoint, it
is fair to conclude that in practical settings, multiple traces simply give more
information to an attacker than a single trace. The separation of schemes into a
DPA-protected part and an SPA-protected part is thus a very valuable approach
towards efficient cryptography.

None of the solutions so far is particularly desirable: rekeying a plain block
cipher halves its security (this applies to the schemes of Medwed et al. [63,64]
and the first one of Dobraunig et al. [30]), and beyond birthday bound security
is only achieved using heavier machinery, namely a tweakable block cipher (this
applies to the second one of Dobraunig et al. [30]). Of course, dedicated tweakable
block cipher designs such as SKINNY or MANTIS [11] or QARMA [4] exist, but
this solution is unsatisfying for securing implementations of the plain AES or
lightweight block ciphers like PRESENT [19], CLEFIA [90], Midori [5], GIFT [6],
and others [10,20,39,89].

Strikingly, it turns out that the idea of fresh rekeying is very related to generic
tweakable block cipher design [60]: not only in its appearance as underlying
primitive in Dobraunig et al.’s second construction, but more importantly from a
bigger picture (see also [38]). Contrary to the field of rekeying, generic tweakable
block cipher design has faced extensive research, in particular in the design and
understanding of beyond birthday bound secure solutions. This direction was
initiated by Landecker et al. [58], and optimally secure solutions (in the ideal
model) were given by Mennink [65], Wang et al. [94], and Jha et al. [49]. A
detailed survey of the state of the art and the relations among these schemes is
given in Sect. 4.

1.1 Beyond Birthday Bound Security Block Cipher Rekeying

We tackle the problem of developing beyond birthday bound secure yet efficient
parallel rekeying solutions of block ciphers. First, one may suggest that an instan-
tiation of Dobraunig et al.’s tweakable block cipher based construction with a
beyond birthday bound secure tweakable block cipher immediately reaches our
goal, but this is not true: the analysis of Dobraunig et al. is performed in the
ideal tweakable cipher model and thus only holds under the assumption that
the tweakable block cipher is perfectly random. No generic construction can
be perfectly secure, and as we will demonstrate in Sect. 5.2, composition may
already collapse at the birthday bound. Instead, a direct analysis is necessary. In
addition, Dobraunig et al. built a rekeying scheme on top of a tweakable block
cipher, but it appears that one can use (variants of) tweakable block ciphers as
rekeying schemes. Although the difference is subtle, this gives an efficiency gain
as we will see later on (in Sect. 8).
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Therefore, in Sect. 5, we investigate how to use beyond birthday bound secure
tweakable block ciphers more efficiently in the context of rekeying. This is a
delicate task: not all state of the art solutions are suitable. The first scheme is
based on the simplest beyond birthday bound secure tweakable block cipher from
Mennink [65], along with some cosmetic simplifications that appear unnecessary
in the composition. The scheme, called R1, consists of one subkey generation
function, one multiplication, and one block cipher call. It is depicted in Fig. 1,
and achieves security up to complexity 22n/3, where n is the block size of the
cipher. The second solution is an instantiation of Dobraunig et al.’s scheme with
an optimally secure tweakable block cipher from Wang et al. [94], along with
some necessary changes to avoid that security collapses at 2n/2. The adjusted
scheme, called R2, is depicted in Fig. 2 and achieves optimal 2n security.

Albeit the two solutions achieve beyond birthday bound security and are
reasonably efficient, they may be unsatisfying in certain settings. This is in
part as they use a block cipher whose key size and block size are the same,
but also as they consist of a sequential evaluation of three operations (subkey
generation, then multiplication/block cipher, then block cipher). For our third
generalized solution, we depart from state of the art on rekeying, and note that
the tweakable block cipher XHX from Jha et al. [49] in itself is already well-suited
for rekeying. Our third scheme R3 is a simplification and adaptation of XHX
in such a way that it is easy to understand and analyze and at the same time
general enough to be broadly applicable in a side-channel setting. The resulting
scheme is introduced in Sect. 6 and depicted in Fig. 3. It uses a larger key than
R1 and R2, but performs subkey generation more efficiently and flexibly, and
consists of only two functions (subkey generation, then block cipher). In addition,
key size reduction is possible. The scheme achieves optimal 2n security. The
scheme easily generalizes to a permutation based variant, concretely a rekeying
scheme for Even-Mansour [33], in birthday bound security in the state size of
the permutation, where we remark that the state of a permutation is typically
much larger than the block size of a block cipher (see Sect. 6).

We elaborate on instantiations of the schemes in Sect. 7, where we also discuss
possible key size reduction of R3, and we describe and discuss the costs of the
schemes relative to the state of the art in Sect. 8. This comparison, summarized
in Table 1, indicates that our schemes R1, R2, and R3, compare favorably. For
example: R2 is equally expensive as the block cipher based solution of Dobraunig
et al., yet optimally secure. The scheme R1, in turn, achieves a lower level of
provable security than R2, but it is also cheaper and intuitively more appealing.
Scheme R3, finally, has higher subkey generation cost and a priori larger key,
but it achieves optimal security and is more generic.

1.2 Application: Rekeying-Based Authenticated Encryption

Tweakable block ciphers have played an important role in the design and analysis
of authenticated encryption schemes. Either implicitly or explicitly, 18 out of 57
submissions to the CAESAR competition for the development of a portfolio of
authenticated encryption schemes [22] were based on a tweakable block cipher.
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The reason for this is a technical one: in analyzing the authenticated encryp-
tion mode, one can discard many technicalities and argue security of the mode
assuming that the tweakable block cipher is secure. Then, these technicalities
are dealt with at the tweakable block cipher level, which is by design a smaller
and easier to handle object.

In Sect. 9, we benefit from the solid state of the art on authenticated encryp-
tion, and use our observation that generic tweakable block cipher design and fresh
parallel rekeying are very related. We take the ΘCB authenticated encryption
mode of Krovetz and Rogaway [55] as application, and instantiate it with our
rekeying schemes R1, R2, and R3. The three resulting modes are parallelizable,
have a security bound dominated by that of the underlying tweakable rekeying
scheme (hence, 22n/3, 2n, and 2n, respectively), and are by design easy to protect
against side-channel attacks (as R1, R2, and R3 are). We compare the solu-
tions among each other, with OCB3, with DTE [16,17], and other alternatives
in Sect. 9.3.

It is important to note that the gains we achieve here are independent of
the fact that we used ΘCB: they are purely caused by the use of our rekeying
schemes. Further applications can be found in tweakable block cipher based
MAC or AE schemes such as ZMAC [47] or ZOCB/ZOTR [7], and the achieved
efficiency and security gains are comparable to that of the application outlined
in Sect. 9.

1.3 Outline

Section 2 includes the preliminaries of this work. An in-depth survey of rekeying
schemes is given in Sect. 3 and of tweakable block ciphers in Sect. 4. The first
two schemes, R1 and R2, are given in Sect. 5. The third scheme, R3, is given in
Sect. 6. We elaborate on instantiations of the schemes in Sect. 7, and perform
a cost analysis of the schemes in Sect. 8. In Sect. 9, we apply our findings to
authenticated encryption and instantiate ΘCB with our rekeying solutions. The
work is concluded in Sect. 10.

2 Preliminaries

For natural n ∈ N, {0, 1}n denotes the set of all n-bit strings. {0, 1}∗ denotes
the set of arbitrarily sized strings. For a finite set X , x

$←− X denotes the random
sampling of an element x from X . For natural m,n ∈ N such that m ≤ n, we
denote by (n)m = n(n − 1) · · · (n − m + 1) the falling factorial.

2.1 (Tweakable) Block Ciphers

For κ, ρ, n ∈ N, a block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n is a mapping such
that for every key k ∈ {0, 1}κ, the function Ek(·) = E(k, ·) is a permutation on
n-bit strings. Its inverse is denoted E−1

k (·). A tweakable block cipher ˜E : {0, 1}κ×
{0, 1}ρ × {0, 1}n → {0, 1}n is a mapping such that for every key k ∈ {0, 1}κ and
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every tweak r ∈ {0, 1}ρ, the function ˜Ek(r, ·) = ˜E(k, r, ·) is a permutation on
n-bit strings. Its inverse is denoted ˜E−1

k (r, ·).
Note that a block cipher is a family of 2κ n-bit permutations, and a tweakable

block cipher is a family of 2κ+ρ n-bit permutations (gluing together key and
tweak). For arbitrary μ, n ∈ N, we denote by tperm(μ, n) the set of all families
of 2μ n-bit permutations.

2.2 Universal Hashing

For κ, ρ, n ∈ N, let h : {0, 1}κ × {0, 1}ρ → {0, 1}n be a family of keyed hash
functions. Let α ≥ 0. We say that h is α-uniform if for any x ∈ {0, 1}ρ and
y ∈ {0, 1}n:

Prk (h(k, x) = y) ≤ α ,

where the probability is taken over k
$←− {0, 1}κ. For m ≤ n, we say that h is

α-m-partial-XOR-uniform if for any distinct x, x′ ∈ {0, 1}ρ and y ∈ {0, 1}m:

Prk

(

h(k, x) ⊕ h(k, x′) = 0n−m‖y
) ≤ α ,

where the probability is taken over k
$←− {0, 1}κ. Partial-XOR-uniformity is a

generalization of the well-known XOR-uniformity condition on hash function
families. It was introduced in [73]. We simply refer to α-XOR-uniformity in case
m = n.

2.3 Rekeying Schemes and Security Model

A rekeying scheme R : {0, 1}κ′ × {0, 1}ρ × {0, 1}n → {0, 1}n is a mathematical
function that gets as input a key k ∈ {0, 1}κ′

, a tweak r ∈ {0, 1}ρ, and bijectively
encrypts an input m to a ciphertext c. The tweak r is typically restricted to be
a counter, nonce, or random value. For secret k, R should behave as a family
of n-bit permutations indexed by r: for different choices of r the outcomes are
uniformly random, whereas identical r’s will give distinct outputs naturally. This
means that a rekeying scheme has the same functionality as a tweakable block
cipher, and we can inherit the security model.

The security of a rekeying scheme R considers a distinguisher D that has
bi-directional query access to either Rk for k

$←− {0, 1}κ′
or to π̃

$←− tperm(ρ, n),
and tries to distinguish both worlds. The capabilities of the distinguisher are
typically bounded by the number of queries it can make to its oracle, q, and the
time it can use for offline computations, p. (We do not take storage into account.)
In our work, we consider R to be based on a block cipher E : {0, 1}κ ×{0, 1}n →
{0, 1}n, and logically, the distinguisher may want to evaluate E offline as much
as possible. Assuming that one evaluation of E takes one unit of time, it can
make at most p evaluations of E offline. In our setting, we will consider security
of R in the ideal cipher model, which means that the distinguisher has query
access to E

$←− tperm(κ, n) and can make p queries to it. Besides these queries,
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we allow D to have unlimited time, we consider it computationally unbounded.
We end up with the following definition.

Definition 1. Let κ′, κ, ρ, n ∈ N. Consider R : {0, 1}κ′ × {0, 1}ρ × {0, 1}n →
{0, 1}n based on a block cipher E ∈ tperm(κ, n). Let D be any computation-
ally unbounded distinguisher. The “strong tweakable pseudorandom permutation
security” security of R is defined as

Advstprp
R (D) =

∣

∣

∣Prk,E

(

DR±
k ,E±

= 1
)

− Prπ̃,E

(

Dπ̃±,E±
= 1

)∣

∣

∣ , (1)

where the probabilities are taken over k
$←− {0, 1}κ′

, E
$←− tperm(κ, n), and

π̃
$←− tperm(ρ, n). The superscript “±” indicates that the distinguisher has bi-

directional access to the oracle.

Above model poses no restriction on the choice of r by the distinguisher: it can
freely choose it. In practical rekeying schemes, however, r is typically restricted
to be a counter, nonce, or random value, as explicitly outlined in the schemes
below. This does not change the security model, yet it does influence the security
analysis and the scope of the schemes.

3 State of the Art on Rekeying Schemes

Throughout this section, let E : {0, 1}κ × {0, 1}n → {0, 1}n be a block cipher. If
the block cipher is used many times under the same key, a poorly protected block
cipher may leak this key. Abdalla and Bellare [1] formalized the idea of rekeying,
where a particular function is used to generate subkeys for E. They introduced
two variants, a parallel and a serial one; we will only be concerned with the
parallel one. Using a PRF F : {0, 1}κ′ × {0, 1}ρ → {0, 1}κ, they considered

AB : {0, 1}κ′ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(F (k, r),m) ,
(2)

where r is in principle a counter (the scheme could also be implemented with
random r, but this may induce extra collisions for F ). The approach was intro-
duced independently, and suggested for side-channel protection, by Borst [21,
Section 6.6.1]. Abdalla and Bellare proved that if F is a secure PRF and E is a
secure cipher, AB is a perfectly secure rekeying mechanism (as a pseudorandom
function).

Medwed et al. [64] initiated the investigation of the minimal conditions
needed on the block cipher and the subkey generation to obtain side-channel
security. They introduced a function

MSGR : {0, 1}κ′ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(h(k, r),m) ,
(3)
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for some function h : {0, 1}κ′ × {0, 1}ρ → {0, 1}κ, and where r is necessarily a
random value for each evaluation. The idea of the scheme is that E is crypto-
graphic machinery that does not need to be equipped with strong side-channel
protection (just against SPA) and h is a function that does not need to have
strong cryptographic properties but it processes the master key and hence needs
to resist strong side-channel attacks (SPA and DPA). For a block cipher with
256-bit key, Medwed et al. suggested to take κ′ = κ = 256, and to define h
as multiplication in GF28 [x]/f(x) for f(x) = xd + 1 for d ∈ {4, 8, 16}. In other
words, h(k, r) = r ·k in above-mentioned ring. The scheme does not come with a
theoretical security analysis, but the authors do provide extensive side-channel
analysis. The scheme was later generalized to the multi-party setting by Medwed
et al. [63].

In their introduction, Medwed et al. [64] did not draw the equivalence with
the scheme of Abdalla and Bellare. Most importantly, h does not behave as a
PRF. Dobraunig et al. [28] subsequently described a birthday bound key recovery
attack on both schemes of Medwed et al. [63,64].1 The attack is based on the idea
that if a session key is recovered, the master key can be derived by invertibility
of h. In other words, the attack relies on two weaknesses of MSGR:

(i) a subkey can be recovered in total complexity around 2n/2;
(ii) once a subkey is recovered, the master key can be recovered by invertibility

of h.

Later, Dobraunig et al. [30] presented two solutions to remedy the situation.
The first one does so by enhancing the subkey generation function, and works
for κ = n:

DKM+1 : {0, 1}κ′ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(E(h(k, r), r) ⊕ r ⊕ h(k, r),m) .
(4)

Also in this scheme, h needs to be secured against SPA and DPA, whereas
the block cipher only needs to be SPA secure. The value r can be random or
a counter. DKM+1 differs from MSGR by having a one-way subkey generation
function, and reducing the security to that of AB. To wit, the subkey generation
function in DKM+1 is the function h followed by the Miyaguchi-Preneel com-
pression function [82]. Nonetheless, the resulting subkey generation only behaves
like a PRF up to the birthday bound: the authors prove that if h is bijective for
either the left or the right of its inputs fixed and if E is an ideal cipher, the result-
ing scheme is secure up to complexity 2n/2. For h, they suggest multiplication
in GF2[x]/f(x) for any irreducible polynomial f(x) of degree n.

The second scheme of Dobraunig et al. [30] achieves security beyond the
birthday bound, but it is based on a tweakable block cipher ˜E : {0, 1}κ×{0, 1}ρ×
{0, 1}n → {0, 1}n:

1 They pointed out that the attack strategy also works on stateless schemes, such as
Kocher’s [53]. The attack is detailed in [30].
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DKM+2 : {0, 1}κ′ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ ˜E(h(k, r), r,m) .
(5)

One can see this construction as an abstraction of DKM+1 by “uniting” the
two block cipher calls into a single tweakable block cipher call. The value r can,
again, be random or a counter. This construction is perfectly secure under the
assumption that h is bijective for either the left or the right of its inputs fixed
and that ˜E is an ideal tweakable block cipher.

For future discussion, it is of importance to understand how the schemes
of Dobraunig et al. [30] improve over the one of Medwed et al. [64]. The first
scheme, DKM+1, improves over MSGR by resolving weakness (ii) above, namely
by assuring that the subkey generation is non-invertible. It may still be possible
to recover a session key in complexity 2n/2; this is no problem, but de facto
contributes to the fact that the scheme only achieves 2n/2 security. The second
scheme, DKM+2, resolves both weaknesses (i) and (ii) and is the first scheme in
the line to achieve beyond birthday bound security, but at a considerable cost:
it assumes that ˜E is an ideal tweakable block cipher. This particularly means
that it is only meaningful for instantiation with a dedicated tweakable block
cipher design (assumed to be perfectly secure). Any instantiation with a generic
tweakable block cipher design (such as the ones in next section) violates the
“ideal tweakable block cipher” assumption, and does not necessarily induce a
secure scheme; to the contrary, as we will demonstrate in Sect. 5.2.

4 State of the Art on Tweak-Rekeyable Tweakable Block
Ciphers

Throughout this section, let E : {0, 1}κ × {0, 1}n → {0, 1}n be a block cipher.
A tweakable block cipher extends a conventional one by the extra input of a
“tweak” r ∈ {0, 1}ρ: the tweakable block cipher behaves as an independent block
cipher for every tweak. The initial formalization of a tweakable block cipher is
by Liskov et al. [60]. As part of their formalization, Liskov et al. suggested that
changing the tweak should be cheaper than changing the key. Their formalization
included two designs, most notably a construction currently known as LRW2:

LRW2 : {0, 1}κ+κ′ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k1‖k2, r,m) 	→ E(k1,m ⊕ h(k2, r)) ⊕ h(k2, r) ,
(6)

where h : {0, 1}κ′ ×{0, 1}ρ → {0, 1}n is a universal hash function family. Various
generalizations of the scheme have appeared [23,70,87]. A cascade of multiple
LRW2’s was proven to be secure beyond the birthday bound [57,58,68,84].
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Cascading, however, makes the scheme more expensive, and alternatives to
achieving beyond birthday bound secure tweakable block ciphers have been con-
sidered. Minematsu [71] introduced the following scheme based on block cipher
E and a PRF F : {0, 1}κ′ × {0, 1}ρ → {0, 1}κ:

Min : {0, 1}κ′ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(F (k, r),m) ,
(7)

where, depending on the application, the user can choose the tweak input r.
Minematsu proved security up to max{2n/2, 2n−ρ} and the bound is known to
be tight [67]. Note that Min is equivalent to AB but the security bounds are
different: this is because Minematsu poses no restriction on repeated usage of r.

Mennink [65] introduced two constructions that achieve beyond birthday
bound security with minimal key material. Both constructions assume κ = ρ = n
(but we will keep using κ, ρ, n as this more clearly describes the roles of the
different sets). The first construction makes one call to E and one multiplication:

Men1 : {0, 1}κ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(k ⊕ r,m ⊕ r · k) ⊕ r · k ,
(8)

where multiplication is in GF2[x]/f(x) for any irreducible polynomial f(x) of
degree n. The scheme is proven secure up to total complexity 22n/3 in the ideal
cipher model. Mennink’s second construction,

Men2 : {0, 1}κ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(k ⊕ r,m ⊕ E(2 · k, r)) ⊕ E(2 · k, r) ,
(9)

makes two block cipher calls (instead of one block cipher call and one mul-
tiplication) and is proven to achieve optimal 2n security in the ideal cipher
model [65,66].2 One can simply take E(k, r) for mask, provided that one restricts
the tweak to r 
= 0.

Clearly, Men1 and Men2 are not so interesting from a leakage resilience point
of view: the key input to the (possibly unprotected) block cipher is k ⊕ r from
which k can be recovered with knowledge of r. Nevertheless, the work of Men-
nink [65] set the stage for a line of research on tweak-rekeyable schemes, where
the key input to the internal primitive may change depending on the tweak.
Wang et al. [94] generalized the construction Men2 to 32 variants WGZ+i for
i ∈ {1, . . . , 32} that are based on two block cipher calls and achieve optimal 2n

security. The approach is systematic and gives an exhaustive list of all “inter-
esting” solutions. We will highlight one of them, WGZ+12, which we consider
to be the simplest and most elegant scheme, as well as the most suitable one for
our purposes (the reason being that for WGZ+12 the masking E(0, k) needs to
be computed only once). Also this construction assumes κ = ρ = n:

WGZ+12 : {0, 1}κ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(k ⊕ r,m ⊕ E(0, k)) ⊕ E(0, k) .
(10)

2 The conference version [65] contained a bug, pointed out by Wang et al. [94]; we
took the adjusted function from the full version [66].
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Naito [74] introduced XKX, a generalization of Min specifically targeting
authenticated encryption. In addition to the PRF F : {0, 1}κ′×{0, 1}ρ → {0, 1}κ,
it uses a hash function family h : {0, 1}κ′′ × {0, 1}ρ′ → {0, 1}n and is defined as

XKX : {0, 1}κ′+κ′′ × {0, 1}ρ+ρ′ × {0, 1}n → {0, 1}n ,

(k1‖k2, N‖r,m) 	→ E(F (k1, N),m ⊕ h(k2, r)) ⊕ h(k2, r) .
(11)

Here, N is a nonce and r a counter, such that N‖r is unique for every query.
The PRF F is then instantiated using the sum of permutations [14,15,18,27,46,
61,77,78].

Jha et al. presented the generalized construction XHX [49]. It uses a universal
hash function family h : {0, 1}κ′ × {0, 1}ρ → {0, 1}κ × {0, 1}n × {0, 1}n, and is
defined as

XHX : {0, 1}κ′ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(u,m ⊕ v) ⊕ w, where (u, v, w) ← h(k, r) .
(12)

They subsequently consider h to be constructed of three universal hash func-
tion families h1, h2, h3, all receiving subkeys k1, k2, k3 derived from k using the
block cipher E. The construction generalizes Men2 as well as the 32 WGZ+i
constructions. Jha et al. [49] derive minimal conditions on the functions and
on the subkey generation for XHX to be secure, and prove that security up to
2(κ+n)/2 is achieved. Note that the XHX scheme is quite general (and in fact it
is not described in full generality here), but this generality goes at the cost of
simplicity, and in fact, if E-based subkey generation for h is omitted the scheme
simplifies drastically. Also, security turns out not to be sacrificed if one uses
identical masking before and after the block cipher, i.e., if one sets v = w.

It is important to note that, although Minematsu’s Min and Naito’s XKX can
still be proven secure in the standard cipher model, the analyses of Mennink’s
Men1 and Men2, Wang et al.’s WGZ+i, and Jha et al.’s XHX are performed in
the ideal cipher model. This difference comes from the fact that the adversary
can change tweaks, subsequently influence the key input to the block cipher,
and the model of related-key secure block ciphers has to be deployed in order to
get standard model security. The construction can subsequently never be prop-
erly proven to be beyond birthday bound secure. Mennink [67] performed an
extensive theoretical analysis of this phenomenon and demonstrated that prov-
ably optimal security is impossible in the standard model, under the assumption
that no non-tweak-rekeyable scheme based on approximately σ block cipher calls
achieves security beyond 2σn/(σ+1). This assumption, in turn, is still open, and
the security of cascaded LRW2 is known to reside on the edge of this bound [68].
Cogliati [25] recently considered multi-user beyond birthday bound security of
tweakable block ciphers, and presented refinements of [68] in the case of block
ciphers whose key space is larger than the block size.
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5 Improved DKM+2 Instantiations

The rekeying scheme DKM+1 [30] (see (4)) is seen as a specific instantiation of
AB, namely by putting PRF F :

F : {0, 1}κ′ × {0, 1}ρ → {0, 1}κ ,

(k, r) 	→ E(h(k, r), r) ⊕ r ⊕ h(k, r) .
(13)

Instead, in hindsight it is more reasonable to think of it as an instantiation of
DKM+2 for an inconveniently designed tweakable block cipher design:

˜E : {0, 1}κ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(E(k, r) ⊕ r ⊕ k,m) .

As a tweakable block cipher, this function can be broken in complexity 2n/2. In
the remainder of this section, we start from DKM+2 and consider two of the
most suitable ways of instantiating the tweakable block cipher.

5.1 First Scheme

The simplest choice, following Sect. 4, is to instantiate DKM+2 with the Men1
tweakable block cipher [65] (see (8)). We call this scheme R1. It is based on a
block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n and internally uses a hash function
family h : {0, 1}κ′ × {0, 1}ρ → {0, 1}κ, where κ = ρ = n (and typically, but not
necessarily, κ′ = κ):

R1 : {0, 1}κ′ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(h(k, r),m ⊕ r · h(k, r)) ⊕ r · h(k, r) ,
(14)

where multiplication is in GF2[x]/f(x) for any irreducible polynomial f(x) of
degree n. The scheme is depicted in Fig. 1. We remark that this is not exactly a
composition of DKM+2 with Men1: such a composition would have h(k, r) ⊕ r
as key input to E. As we have included subkey generation h(k, r) to the scheme,
the addition of r is not needed.

r h u
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\

ρ

\
κ′

\

κ
m E c

r · u

u

r · u

\

n

\ κ

\

n

Fig. 1. Generalized rekeying construction R1 of (14) with κ = ρ = n: subkey generation
(left) and core encryption (right).

Intuitively, as DKM+2 is optimally 2n secure and Men1 is 22n/3 secure, one
expects R1 to be 22n/3 secure. Unfortunately, one cannot simply claim security
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of R1 in such a hybrid argument. The reason is that DKM+2 is proven secure
under the assumption that ˜E is an ideal tweakable block cipher, and Men1 does
not meet this criterion. Fortunately, however, a dedicated proof would be similar
to that of Men1, the overlay of DKM+2 coming at limited effort.

Formally, in the security model of Definition 1, we will prove that R1 achieves
security up to complexity 22n/3. The proof is given in the full version [69]. It is
inspired by that of Mennink [65], but it is not quite the same due to the usage of
the subkey generation function. In fact, the security of R1 cannot be concluded
from the security results on DKM+2 and Men1. The proof of R1 is, as that
of [65], based on the Szemerédi-Trotter theorem [91], which claims that if one
takes q lines and p points in a two-dimensional finite field F

2, the number of
point-line incidences is at most min{q1/2p + q, qp1/2 + p}.

Theorem 1. Let κ′, κ, ρ, n ∈ N with κ = ρ = n. Let h : {0, 1}κ′ × {0, 1}ρ →
{0, 1}κ be a family of keyed hash functions that is injective for fixed k ∈ {0, 1}κ′

and α-uniform. Let D be a distinguisher making at most q construction queries
and p primitive queries. Then,

Advstprp
R1 (D) ≤ 2min{q1/2p + q, qp1/2 + p}α . (15)

Note that for q = p, the bound simplifies to 2(q3/2 + q)α. There exist hash
function families h that meet the conditions for α = 2−κ (see Sect. 7). Recalling
that κ = n, this implies 22n/3 security.

The condition that h needs to be injective for fixed k ∈ {0, 1}κ′
can be traded

for the requirement that for any distinct r, r′ ∈ {0, 1}ρ and y ∈ {0, 1}κ,

Prk (h(k, r) = h(k, r′) = y) ≤ α2 . (16)

This relaxation will add
(

q
2

)

α2 to the security bound. The proof is trivial: it
simply considers the event h(k, r) = h(k, r′) = y as a bad event for any two
construction queries.

5.2 Second Scheme

The first scheme R1 is efficient, but achieves security up to 22n/3 only. We
consider an alternative instantiation of DKM+2 with a tweakable block cipher
based on two block cipher calls. We will not take Men2 [65] (see (9)), but rather
one of the solutions of Wang et al., WGZ+12 [94] (see (10)) to be precise, which
we found more suitable. The resulting scheme R2 is based on the same primitives
as R1 and is defined as follows:

R2 : {0, 1}κ′ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(h(k, r),m ⊕ E(r, h(k, r))) ⊕ E(r, h(k, r)) .
(17)

The scheme is depicted in Fig. 2.
It is important to note that the scheme is not exactly a composition of

DKM+2 with WGZ+12. First of all, as for R1, the subkey input h(k, r) ⊕ r
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Fig. 2. Generalized rekeying construction R2 of (17) with κ = ρ = n: subkey generation
(left) and core encryption (right).

is simplified to h(k, r). More importantly, a literal composition would have
E(0, h(k, r)) as masking rather than E(r, h(k, r)). This would make it easier
to attack: an adversary can make q construction queries with m = 0 for varying
r, and p primitive evaluations E(0, l) = y for varying l, and the proof aborts
at the point that the adversary has a correct guess h(k, r) = l, which happens
with probability qp/2n. This also perfectly marks the weak spot of the ideal
tweakable cipher model used to prove DKM+2: composition does not work as
nicely as hoped for. It is also for the same reason that not any of the 32 WGZ+i
schemes could do the job, as became clear after experimentation.

In the full version [69], we will give a formal analysis in the security model of
Definition 1 that R2 achieves security with complexity 2n. The proof is inspired
by that of Wang et al. [94], but it is more complex due to the changes in the
construction and the usage of the subkey generation function. In fact, the security
of R2 cannot be concluded from the security results on DKM+2 and WGZ+12.

Theorem 2. Let κ′, κ, ρ, n ∈ N with κ = ρ = n. Let h : {0, 1}κ′ × {0, 1}ρ →
{0, 1}κ be a family of keyed hash functions that is α-uniform and α-XOR-
uniform. Let D be a distinguisher making at most q construction queries and
p primitive queries. Then,

Advstprp
R2 (D) ≤ q(3q − 3 + 2p)α

2n
+ (q + p)α +

p

2n
. (18)

For q = p and for simplicity of reasoning taking h to meet the conditions for
α = 2−κ = 2−n (see Sect. 7), the bound simplifies to 5q2

22n + 3q
2n . This implies

security up to complexity 2n.

6 Simpler Optimally Secure Block Cipher Rekeying

The links between fresh rekeying and generic tweakable block cipher design are
apparent, but in-depth analyses of the problems in both directions have been
performed mostly disjointly, and the equivalence has never been properly drawn
and exploited. This is, in part, caused by the fact that the design incentives are
different. For example, whereas Minematsu’s tweakable block cipher Min [71] (see
(7)) is identical to Abdalla and Bellare’s AB [1] (see (2)) and almost identical to
Medwed et al.’s rekeying scheme MSGR [64] (see (3)), schemes like Men1 and
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Fig. 3. Generalized rekeying construction R3 of (19): subkey generation (left) and core
encryption (right).

Men2 do not achieve leakage resilience in the sense that MSGR, DKM+1, or
DKM+2 do, at least not with the same minimal leakage resilience assumptions.

Yet, there is resemblance in the directions, and we can take advantage of this
in our quest to optimally secure block cipher rekeying. Our third generalized
solution discards the earlier rekeying schemes in its entirety and takes inspira-
tion of the state of the art on tweakable block ciphers. The resulting scheme
is reminiscent of XHX [49] (see (12)) but we make significant simplifications
to balance between generality, simplicity, and the possibility to achieve leak-
age resilience under reasonable conditions. Our rekeying construction for block
cipher E : {0, 1}κ × {0, 1}n → {0, 1}n internally uses a hash function family
h : {0, 1}κ′ × {0, 1}ρ → {0, 1}κ × {0, 1}n, and is defined as

R3 : {0, 1}κ′ × {0, 1}ρ × {0, 1}n → {0, 1}n ,

(k, r,m) 	→ E(u,m ⊕ v) ⊕ v, where u‖v ← h(k, r) .
(19)

The scheme is depicted in Fig. 3. Note that we pose no restrictions on κ′, κ, ρ, n.
We remark that XHX is a particularly useful choice in the context of lightweight
applications. For instance, due to its beyond birthday bound security (in the
block size) it has been the base of the tweakable block cipher in REMUS [45], a
first-round submission to the NIST lightweight cryptography competition [75].

In the security model of Definition 1, we will prove that R3 achieves security
up to complexity 2(κ+n)/2. The proof is given in the full version [69]; it is a
simplification of that of Jha et al. [49].

Theorem 3. Let κ′, κ, ρ, n ∈ N. Let h : {0, 1}κ′ ×{0, 1}ρ → {0, 1}κ×{0, 1}n be a
family of keyed hash functions that is α-uniform and α-n-partial-XOR-uniform.
Let D be a distinguisher making at most q construction queries and p primitive
queries. Then,

Advstprp
R3 (D) ≤ q(q − 1 + 2p)α . (20)

As we will discuss in Sect. 7, there exists a hash function family h that meets the
requested conditions for α = 2−(κ+n). Equating q = p for simplicity, above bound
simplifies to 3q2/2κ+n. This roughly gives security up to complexity 2(κ+n)/2.

We remark that using a universal hash function family with (κ = n)-bit
output and setting

(k, r,m) 	→ E(h(k, r),m ⊕ h(k, r)) ⊕ h(k, r)
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does not allow to achieve security beyond the birthday bound. An adversary
can make q evaluations with m = 0 and varying r. It can additionally make p
primitive evaluations E(l, l) for varying l. Any construction query collides with
any primitive query if h(k, r) = l, which happens with probability qp/2n.

Recall that in R3 we pose no restriction on κ. One could consider κ = 0: in
this case, E ∈ tperm(0, n) is simply a permutation, and one can consider R3 to
be a rekeying scheme for Even-Mansour [33]. Following Theorem 3, it achieves
security up to around 2n/2, where n is the state size of the permutation. Practi-
cal permutations are typically much larger than block ciphers. For example, the
AES [26] has a block size of n = 128 bits, but the Keccak/SHA-3 [34] permuta-
tion has a state size of n = 1600 bits.

7 Instantiations

Medwed et al. and Dobraunig et al. initially suggested multiplication for h.
Later, it was demonstrated [12,13,40,80] that its use should be done with care
as the algebraic structure enables certain types of attacks. A formal treatment
was delivered by Dziembowski et al. [32]. In their introduction of a side-channel
secure authenticated encryption scheme ISAP, Dobraunig et al. [29] suggested
the sponge for subkey generation.

Nonetheless, for the sake of comparison in Sect. 8, we will adopt the approach
of using finite field multiplication for h in our schemes. For R1 and R2, the same
approach as that of Dobraunig et al. works. In detail, finite field multiplication in
GF2[x]/f(x) for any irreducible polynomial f(x) of degree n is known to be 2−n-
uniform and 2−n-XOR-uniform (assuming r 
= 0ρ). For R3, multiplication also
works but one would need a hash function family with (κ+n)-bit range, meaning
multiplication in GF2[x]/f(x) for irreducible polynomial f(x) of degree κ+n. It
is possible to improve the efficiency to smaller multiplications by instantiating
h using two independent keys. Let κ, n ∈ N be the parameters of the underlying
block cipher E, set ρ ≤ min{κ, n} and κ′ = κ + n, and consider the folklore
construction

hmult : {0, 1}κ′ × {0, 1}ρ → {0, 1}κ × {0, 1}n ,

(k1‖k2, r) 	→ (r · k1 , r · k2) ,
(21)

where multiplication is in GF2[x]/f(x) for any irreducible polynomial f(x) of
degree n, and r is always injectively padded to obtain a string of size κ resp. n
bits. Assuming r 
= 0ρ, it is straightforward to prove that hmult is 2−(κ+n)-
uniform and 2−(κ+n)-n-partial-XOR-uniform.

Proposition 1. hmult of (21) is 2−(κ+n)-uniform and 2−(κ+n)-n-partial-XOR-
uniform.
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Proof. Starting with 2−(κ+n)-uniformity, consider any r ∈ {0, 1}ρ\{0ρ} and
(u, v) ∈ {0, 1}κ × {0, 1}n. Then,

Prk1,k2 (hmult(k1‖k2, r) = (u, v)) = Prk1 (r · k1 = u) · Prk2 (r · k2 = v) = 1/2
κ+n

,

where the randomness is taken over k1
$←− {0, 1}κ and k2

$←− {0, 1}n.
For 2−(κ+n)-n-partial-XOR-uniformity, consider any distinct r, r′ ∈ {0, 1}ρ

and v ∈ {0, 1}n. Then,

Prk1,k2 (hmult(k1‖k2, r) ⊕ hmult(k1‖k2, r
′) = (0κ, v))

= Prk1 ((r ⊕ r′) · k1 = 0κ) · Prk2 ((r ⊕ r′) · k2 = v)

= 1/2κ+n ,

where the randomness is taken over k1
$←− {0, 1}κ and k2

$←− {0, 1}n. ��
Alternative solutions, particularly for larger and possibly variable length values
of ρ, are described in [49].

The universal hash function family hmult is thus optimally secure, and yields
a construction R3 that is secure as long as, roughly, q2 + 2qp ≤ 2κ+n (see
Theorem 3). It has the disadvantage that two keys are needed. It is possible to
reduce this key material. An obvious choice for this is to use the block cipher E.
A direct simplification of the technique used in XHX suggests the following key
generation that takes a single κ-bit key k:

h(k, r) = (r · E(k, 0) , r · E(k, 1)) , (22)

assuming for a moment that κ = n.3 This works fine as long as none of the
construction queries or primitive queries made by the distinguisher matches the
evaluations of E(k, 0) or E(k, 1). Incorporating this in the proof is simple but
technically involved; we refer to [49] for details.

From the perspective of leakage resilience, there is not much gain in this
approach: computing the subkeys every evaluation of R3 would imply that E
needs to be DPA protected (it evaluates the master key multiple times for each
query). Alternatively, the subkeys can be precomputed and stored, but in this
case the advantage over simply generating and storing random subkeys (k1, k2)
is marginal.

8 Cost Comparison

We perform a comparison of the symmetric-cryptographic solutions around, i.e.,
those of Abdalla and Bellare [1], Medwed et al. [64], Dobraunig et al. [30], and
ours. The comparison is given in Table 1. The cost is split into a subkey gen-
eration cost and a core generation cost: the subkey generation must be secure

3 If κ < n, one needs to truncate the first block. If κ > n one may need extra calls
E(k, 2), E(k, 3), . . . to generate subkey material.



Beyond Birthday Bound Secure Fresh Rekeying 647

against differential power analysis (DPA) whereas the core part needs to be
secure against simple power analysis (SPA). All security bounds are derived in
the ideal model for the core (that is, the ideal cipher model or ideal tweakable
cipher model).

Here, for simplicity of comparison, we keep κ = ρ = n and take the instantia-
tion of h using finite field multiplications of Sect. 7. In particular, any evaluation
of h in R1 and R2 is considered to cost one multiplication and any evaluation of
h in R3 to cost two multiplications. The main characteristics of the comparison
hold for arbitrary choice of h: de facto, that of R3 is simply considered to be
twice as expensive as that of the others.

Table 1. Cost comparison. Here, F a random function, ˜E is a tweakable block cipher,
E a block cipher, and ⊗ finite field multiplication of n-bit elements. We estimate the
cost of subkey generation h with finite field multiplications as outlined in Sect. 7. (We
stress that instantiation can also be done using different hash function families, as long
as the conditions of Theorems 1–3 are met.) Cost is split into “subkey” to generate a
session key from the master key and “core” that corresponds to the core encryption
performed using the session key. For the number of finite field multiplications, key size,
and security bound, we assume that κ = ρ = n for simplicity.

scheme subkey core keysize security

F ⊗/h ˜E E ⊗
AB (2) 1 0 0 1 0 n 2n

MSGR (3) 0 1 0 1 0 n 2n/2�

DKM+1 (4) 0 1 0 2 0 n 2n/2

DKM+2 (5) 0 1 1 0 0 n 2n

R1 (14) 0 1 0 1 1 n 22n/3

R2 (17) 0 1 0 2 0 n 2n

R3 (19) 0 2 0 1 0 2n 2n

*the scheme permits master key recovery attacks in
complexity 2n/2.

Clearly, DPA protection is most expensive, so in the subkey generation a
minimal primitive is desirable. This, in particular, led Dobraunig et al. [30]
to instantiating the PRF F in AB as (13). Yet, DKM+1 only achieved birth-
day bound security. The transition to DKM+2 was to replace the two block
cipher calls by a tweakable block cipher: the resulting construction is optimally
secure, yet, the security loss is implicit in the ideal tweakable block cipher. If the
scheme is instantiated with a dedicated tweakable block cipher such as SKINNY
or MANTIS [11] or QARMA [4], this is reasonable. On the other hand, instanti-
ations using generic block cipher constructions cost at least two expensive oper-
ations (either two block cipher calls or a block cipher call and a multiplication,
see Sect. 4) to become beyond birthday bound secure [65]. Stated differently, if
DKM+2’s security is wished for using a conventional block cipher rather than a
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tweakable block cipher as underlying primitive, at least two block cipher calls or
at least a block cipher call and a multiplication are needed.

Needless to say, it is preferable to have as few block cipher calls as possible.
Instantiating DKM+2 with Men1 gives 2n/3-security using a single key, as given
by our construction R1. We had to perform a dedicated analysis, as the analysis
of the original DKM+2 is in the ideal tweakable cipher model. Our construction
R2 achieves optimal 2n security at cost identical to DKM+1.

Our construction R3 generalizes. Assuming κ = n and using two independent
n-bit keys (as suggested in Sect. 7), it achieves optimal 2n security as well. Using
a 2n-bit key may be arguably worse from a practitioner’s perspective, and in
some settings R1 is preferable over R3. From a theoretical perspective, the use
of an extra key in R3 is justifiable compared to the analysis of DKM+2. To wit,
both analyses are in the ideal model for the core primitive. This means that
the formal security analysis of DKM+2 is based on the random generation of
˜E

$←− tperm(κ + ρ, n) and of k
$←− {0, 1}κ,4 i.e., the random elements are taken

uniformly randomly from a pool of

(2n!)2
κ+ρ · 2κ

elements. In the analysis of R3, the security is based on the random generation
of E

$←− tperm(κ, n) and of k1‖k2
$←− {0, 1}κ+n (see Sect. 7), i.e., the random

elements are taken uniformly randomly from a pool of

(2n!)2
κ · 2κ+n

elements. It is clear to see that this is a much smaller pool of randomness.
As a general rule, the larger the pool of randomness, the stronger the security
assumption, and the easier a security analysis is performed.

In addition, as discussed in Sect. 6, R3 also generalizes to permutation based
rekeying, namely by setting κ = 0 and instantiating it with an n-bit permutation
P

$←− tperm(0, n). The resulting scheme generates a subkey at cost 1 evaluation
of ⊗/h, and encrypts data at cost 1 evaluation of P . It has keysize n and achieves
2n/2 security.

9 Authenticated Encryption from Fresh Rekeying

Tweakable block ciphers have historically been used a lot in the context of
authenticated encryption [3,41,55,72,81,87,88]. They serve as an intermediate
construction in a generic security proof: one can argue security of the authenti-
cated encryption scheme via the tweakable block cipher to the underlying block
cipher. Leading in this respect is the ΘCB (formally named ΘCB3) authenticated
encryption mode that was proven secure relative to the security of its underly-
ing tweakable block cipher [55]. It forms the base of OCB1-OCB3 if instantiated

4 We take κ′ = κ here for the sake of a fair comparison of the two schemes.
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with (a variant of) XEX [55,87,88], of OPP if instantiated with MEM [36], and
Deoxys-I if instantiated with a dedicated tweakable block cipher [48].5

In this section, we will combine this approach with our insights that tweak-
able block ciphers and block cipher rekeying are related. In more detail, we will
instantiate ΘCB with the rekeying schemes R1, R2, and R3, and compare the
resulting solutions with state of the art side-channel secure authenticated encryp-
tion schemes. We remark that ΘCB purely serves as example here. The security
and efficiency gains that are achieved in this section are attributed to the use of
our rekeying schemes. Comparable results can be achieved when these rekeying
schemes are used to instantiate other tweakable block cipher based MAC or AE
schemes such as ZMAC [47] or ZOCB/ZOTR [7].

The model of authenticated encryption is discussed in Sect. 9.1 and we
describe ΘCB in Sect. 9.2. We instantiate ΘCB with our rekeying schemes in
Sect. 9.3, and discuss the security and efficiency of the resulting schemes from a
side-channel protection point of view.

9.1 Authenticated Encryption

We will be concerned with authenticated encryption schemes defined by param-
eters κ′, κ, ρ, n, τ ∈ N such that τ ≤ n, and that internally use a block cipher
E ∈ tperm(κ, n).

An authenticated encryption scheme AE consists of an encryption function E
and a decryption function D. The encryption function E gets as input a key k ∈
{0, 1}κ′

, initial value iv ∈ {0, 1}n, associated data a ∈ {0, 1}∗, and message m ∈
{0, 1}∗, and outputs a ciphertext c ∈ {0, 1}|m| and a tag t ∈ {0, 1}τ . Decryption
D gets as input a key k ∈ {0, 1}κ′

, initial value iv ∈ {0, 1}n, associated data
a ∈ {0, 1}∗, ciphertext c ∈ {0, 1}∗, and tag t ∈ {0, 1}τ , and it outputs a message
m ∈ {0, 1}|c| (if the authentication is correct) or a dedicated failure symbol ⊥:

E(k, iv , a,m) = (c, t) ,

D(k, iv , a, c, t) = m or ⊥ ,

in such a way that for any (k, iv , a,m), we have D(k, iv , a, E(k, iv , a,m)) = m.
The security of an authenticated encryption scheme AE = (E ,D) consists of

confidentiality and authenticity (these could be merged into a single definition,
but it is convenient to treat them separately). In confidentiality, a distinguisher
D has query access to either Ek for k

$←− {0, 1}κ′
or to a random function $ that

for each input (iv , a,m) returns a random (c, t) $←− {0, 1}|m|+τ . As in Sect. 2.3, we
consider security in the ideal cipher model, which means that the distinguisher
also has bi-directional query access to E

$←− tperm(κ, n). It can make q queries

5 This instantiation must be done with care, as a small oversight may make the scheme
insecure. Recently, Inoue and Minematsu [43] (see also Inoue et al. [42]) pointed
out an oversight in OCB2. Their attack (informally) relies on the observation that
OCB2 consists of an instantiation of not only XEX but also a simpler variant XE,
but without proper separation of both. The attack of Inoue and Minematsu does
not apply to the schemes introduced in this section.
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to its construction oracle, in total of size at most σ n-bit blocks, and it can
make p queries to the ideal cipher. The q construction queries must be made for
non-repeated iv (i.e., the iv is a nonce). Besides these queries, we allow D to
have unlimited time, we consider it computationally unbounded.

For authenticity, the distinguisher D has query access to Ek, and in addition
to either Dk or a function ⊥ that always returns the ⊥-sign. As before, it has
bi-directional access to the underlying ideal cipher E

$←− tperm(κ, n). Its goal
is to generate a forgery: a query (iv , a, c, t) to Dk that returns a valid message
m, in such a way that (iv , a,m) has not been queried to Ek before. The query
and computational complexities of D are as before, with the difference that it is
allowed to repeat an iv for decryption queries. It can make qv forgery attempts.

We obtain the following definitions for confidentiality and authenticity.

Definition 2. Let κ′, κ, n, τ ∈ N. Consider AE = (E ,D) based on a block cipher
E ∈ tperm(κ, n). Let D be any computationally unbounded distinguisher. The
“confidentiality” of AE is defined as

Advconf
AE (D) =

∣

∣

∣Prk,E

(

DEk,E±
= 1

)

− Pr$,E

(

D$,E±
= 1

)∣

∣

∣ , (23)

and the “authenticity” of AE is defined as

Advauth
AE (D) =

∣

∣

∣Prk,E

(

DEk,Dk,E±
= 1

)

− PrE

(

DEk,⊥,E±
= 1

)∣

∣

∣ , (24)

where the probabilities are taken over k
$←− {0, 1}κ′

, E
$←− tperm(κ, n), and the

function $ that returns a random (c, t) ∈ {0, 1}|m|+τ for each input (iv , a,m). The
distinguisher is not allowed to make two encryption queries for the same iv, and it is
not allowed to query Dk/⊥ on the outcome of an earlier query to Ek. The superscript
“±” indicates that the distinguisher has bi-directional access to the oracle.

9.2 ΘCB

The ΘCB authenticated encryption scheme was first described by Krovetz and
Rogaway [55]. It is internally based on a tweakable block cipher ˜E : {0, 1}κ′ ×
{0, 1}ρ′ × {0, 1}n → {0, 1}n with ρ′ = n + ρ. The encryption function of ΘCB
for integral data is depicted in Fig. 4. We refer to [55] for a formal description
of the function and its corresponding decryption function. Krovetz and Rog-
away proved optimal security of ΘCB under the assumption that the under-
lying tweakable block cipher is secure [55]. It is important to note that their
result is in the standard model, but we will directly phrase it in the ideal cipher
model (Definitions 1 and 2 are both in the ideal cipher model), where we look
ahead and observe that our application is internally based on an ideal cipher
E

$←− tperm(κ, n). For now, this does not bias the discussion; we will elaborate
on this in Sect. 9.3.1.

Theorem 4. Let κ′, κ, ρ, n, τ ∈ N, and write ρ′ = n + ρ. Consider ΘCB based
on a tweakable block cipher ˜E ∈ tperm(κ′, ρ′, n), that is in turn based on a block
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Fig. 4. The ΘCB encryption function Ek [87] for integral data. The associated data
a and message m are padded into n-bit blocks. The tweak to each tweakable block
cipher call consists of an n-bit string (either 0 or the initial value iv) and a ρ-bit string

tw
a/⊕/m
i that unambiguously determines the position of the tweakable block cipher

within the ΘCB construction.

cipher E ∈ tperm(κ, n). Let D be a distinguisher making at most q construction
queries (in total of length at most σ blocks), qv forgery attempts, and at most p
offline evaluations of E. Then,

Advconf
ΘCB(D) ≤ 0 + Advstprp

˜E
(D′), (25)

Advauth
ΘCB(D) ≤ 2n−τqv

2n − 1
+ Advstprp

˜E
(D′), (26)

for some distinguisher D′ making at most σ construction queries and p primitive
queries.

As mentioned before, OCB1-OCB3 are designed by instantiating ΘCB with
variants of XEX [87]. Here, we focus on OCB3 [55], which can be seen as being
instantiated using the following simplified version of XEX:

XEX : {0, 1}κ × ({0, 1}n × {0, 1}n) × {0, 1}n → {0, 1}n ,

(k, r‖a,m) 	→ E(k,m ⊕ 2aE(k, r)) ⊕ 2aE(k, r) .
(27)

Here, exponentiation and multiplication are over an appropriate finite field, and
the value a ∈ {0, 1}ρ is first interpreted as a non-negative integer. In fact, the
domain of a must be limited in some way to avoid colliding masks 2a = 2a′

, but
this fine-tuning is irrelevant for the current discussion (refer to Rogaway [87] or
Granger et al. [36]). In particular, in OCB3 the value a is updated according to
the Gray code as this allows for optimization in the mask update. This tweakable
block cipher is tightly birthday bound secure (in both the standard cipher model
and the ideal cipher model), and from Theorem 4 it can be deduced that OCB3
is tightly birthday bound secure.

9.3 Instantiation of ΘCB with R1-R3

The security of ΘCB instantiated with R1, R2, or R3 follows readily from
Theorem 4 on ΘCB and the security result on the respective rekeying scheme
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in Theorem 1, 2, or 3. The corresponding results are stated in Corollaries 1, 2,
and 3, respectively.

Corollary 1. Let κ′, κ, ρ, n, τ ∈ N, and write ρ′ = n + ρ. Let h : {0, 1}κ′ ×
{0, 1}ρ′ → {0, 1}κ be a family of keyed hash functions that is α-uniform
and α-n-partial-XOR-uniform. Consider ΘCB based on rekeying scheme R1 ∈
tperm(κ′, ρ′, n) of (14), that is in turn based on a block cipher E ∈ tperm(κ, n).
Let D be a distinguisher making at most q construction queries (in total of length
at most σ blocks), qv forgery attempts, and at most p offline evaluations of E.
Then,

Advconf
ΘCB-R1(D) ≤ 0 + 2min{σ1/2p + σ, σp1/2 + p}α, (28)

Advauth
ΘCB-R1(D) ≤ 2n−τqv

2n − 1
+ 2min{σ1/2p + σ, σp1/2 + p}α. (29)

Corollary 2. Let κ′, κ, ρ, n, τ ∈ N, and write ρ′ = n + ρ. Let h : {0, 1}κ′ ×
{0, 1}ρ′ → {0, 1}κ be a family of keyed hash functions that is α-uniform and
α-XOR-uniform. Consider ΘCB based on rekeying scheme R2 ∈ tperm(κ′, ρ′, n)
of (17), that is in turn based on a block cipher E ∈ tperm(κ, n). Let D be a
distinguisher making at most q construction queries (in total of length at most
σ blocks), qv forgery attempts, and at most p offline evaluations of E. Then,

Advconf
ΘCB-R2(D) ≤ 0 +

σ(3σ − 3 + 2p)α
2n

+ (σ + p)α +
p

2n
, (30)

Advauth
ΘCB-R2(D) ≤ 2n−τqv

2n − 1
+

σ(3σ − 3 + 2p)α
2n

+ (σ + p)α +
p

2n
. (31)

Corollary 3. Let κ′, κ, ρ, n, τ ∈ N, and write ρ′ = n + ρ. Let h : {0, 1}κ′ ×
{0, 1}ρ′ → {0, 1}κ ×{0, 1}n be a family of keyed hash functions that is α-uniform
and α-n-partial-XOR-uniform. Consider ΘCB based on rekeying scheme R3 ∈
tperm(κ′, ρ′, n) of (19), that is in turn based on a block cipher E ∈ tperm(κ, n).
Let D be a distinguisher making at most q construction queries (in total of length
at most σ blocks), qv forgery attempts, and at most p offline evaluations of E.
Then,

Advconf
ΘCB-R3(D) ≤ 0 + σ(σ − 1 + 2p)α , (32)

Advauth
ΘCB-R3(D) ≤ 2n−τqv

2n − 1
+ σ(σ − 1 + 2p)α . (33)

Efficiency-wise, the cost of authenticating and encrypting 	a associated data
blocks and 	m message blocks (each of size n bits) using either of ΘCB-R1,
ΘCB-R2, or ΘCB-R3 can be obtained by multiplying the cost of the corre-
sponding underlying rekeying scheme from Table 1 by 	a + 	m + 1 (the number



Beyond Birthday Bound Secure Fresh Rekeying 653

of times that the rekeying scheme is evaluated in one evaluation of the con-
struction). As ΘCB itself is optimally secure (see Theorem 4), the security of
the rekeying scheme will dominate that of the resulting construction: ΘCB-R1
achieves 22n/3 security, and ΘCB-R2 and ΘCB-R3 achieve 2n security. Even
though R3 (and thus ΘCB-R3) has a larger key than R1 and R2, it achieves
optimal security based on only one evaluation of the underlying ideal cipher, and
it can arguably considered to be the best alternative of the three. Therefore, in
the remainder, we focus on ΘCB-R3. The scheme is depicted in Fig. 5. We com-
pare ΘCB-R3 with OCB3 and with alternative leakage resilient authenticated
encryption schemes in Sects. 9.3.1 and 9.3.2, respectively.

E
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Fig. 5. The ΘCB-R3 encryption function Ek for integral data. The associated data a
and message m are padded into n-bit blocks. The universal hash function hk transforms
a (n+ρ)-bit tweak into (κ+n)-bit subkey. The tweaks themselves are identical to those
in ΘCB (see Fig. 4).

9.3.1 Comparison with OCB3
We acknowledge that the resulting construction ΘCB-R3 is more expensive than
OCB3. Indeed, for the authenticated encryption of an input consisting of 	a

associated data blocks and 	m message blocks (each of size n bits), OCB3 makes
	a + 	m + 2 block cipher calls, whereas ΘCB-R3 makes 	a + 	m + 1 block cipher
calls and around 2(	a + 	m + 1) universal hash function calls (taking the scaling
of Sect. 8 on the number of universal hash function calls in R3 for granted).

On the other hand, Corollary 3 shows that our construction ΘCB-R3 achieves
2n security whereas OCB3 achieves tight birthday bound security, only. The
comparison must be taken with a grain of salt, though: OCB3 can be proven
in the standard cipher model, but for ΘCB-R3 we have to resort to the ideal
cipher model. That said, no standard model attack on ΘCB-R3 is known, and the
difference seems to arise mostly due to the standard-versus-ideal phenomenon
investigated by Mennink [67] in the context of tweakable block ciphers (cf. the
last paragraph of Sect. 4).

More importantly, ΘCB-R3 is easier to protect against side-channel attacks
than OCB3. For OCB3, all block cipher calls are performed for the same key,
and the implementation of E needs to be DPA protected. In addition, a typical
instantiation of OCB3 makes use of multiplications in the masking that are hard
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to protect due to their algebraic structure (recall the first paragraph of Sect. 7).
In ΘCB-R3, only the “lighter” function hk needs DPA protection. It is possible
to incorporate a cheaper rekeying function in OCB3, for instance MSGR [64]
(see (3)) [2], but the resulting authenticated encryption mode would only be
birthday bound secure and security analysis must likewise be performed in the
ideal cipher model.

We conclude by remarking that the efficiency of OCB3 in part comes from
the fact that the computation of E(k, iv) needs to be computed only once per
evaluation of the construction. A similar efficiency improvement may be achieved
in ΘCB-R3 by smart selection of hk. In that case, the total cost of the evaluations
of hk in one evaluation of ΘCB-R3 may reduce to around 	a + 	m + 2.

9.3.2 Comparison with Leakage Resilient Authenticated Encryption
Schemes

State of the art on leakage resilient authenticated encryption is slim. The most
relevant proposal is by Berti et al. [16,17], that improves upon earlier proposals
of Pereira et al. [79]. Their proposal DTE (Digest, Tag, and Encrypt), in a
nutshell, operates as follows:

– Evaluate a hash function on the initial value iv and the message m;
– Transform the output through a side-channel-protected evaluation of Ek. The

resulting value is the tag t;
– Transform the tag through another evaluation of the side-channel-protected

evaluation of Ek. The resulting value is the subkey k0;
– Evaluate a two-layer encryption part: the top layer evolves the subkey as

ki = Eki−1(const1) and the second layer derives a key stream block as si =
Eki−1(const2), where const1 and const2 are two distinct constants.

Thus, for the authenticated encryption of a message of length 	m n-bit blocks,
DTE makes one cryptographic hash function evaluation on 	m + 1 blocks, two
side-channel-protected E-calls, and 2	m E-calls. Associated data of 	a blocks can
be covered by feeding these blocks to the cryptographic hash function as well.
Assuming, for simplicity of counting, that hashing 	 blocks is approximately
as expensive as 	 E-calls (this is the case for generic Merkle-Damg̊ard hash
functions based on the Davies-Meyer compression function), we obtain that DTE
takes 	a + 	m + 1 unprotected E-calls, 2	m SPA-protected E-calls, and 2 DPA-
protected E-calls.

Comparing DTE with ΘCB-R3 is like comparing apples with oranges: the
security models and incentives are different. In particular, DTE is proven to
be misuse resistant and to achieve security against decryption leakages, a much
stronger security requirement. Effectively, this leads to an efficiency gain in ΘCB-
R3, in the number of primitive evaluations as well as in the fact that it is
parallelizable. Furthermore, both security proofs require E to be an ideal cipher,
but DTE is only birthday bound secure while ΘCB-R3 is optimally secure.
Also, in ΘCB-R3, E needs only SPA-protection as long as hk is DPA-protected;
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DTE requires two evaluations of E to have strong side-channel protection (the
remaining 	a + 3	m + 1 can have lighter protection).

Dobraunig et al. [29] took a different avenue. Their proposal ISAP is sponge
based: it uses the sponge with a very small rate to compress key material. ISAP
relies on the philosophy that once the sponge has a state with sufficient entropy,
it can perform authentication and encryption with a larger rate without any
security sacrifice. ISAP is inherently sequential; in addition, it is infeasible to
compare ΘCB-R3 with ISAP as its design rationale is different (block cipher
versus permutation).

An alternative approach to design an authenticated encryption scheme is
by generic composition of a MAC function and an authenticated encryption
scheme. Barwell et al. [8] studied generic composition (MtE, M&E, EtM) under
leakage and concluded that only the latter is leakage resilient. They present a
generic solution, called SIVAT, a three-layer misuse resistant and leakage secure
authenticated encryption scheme. The resulting construction can be instanti-
ated with a PRF, an encryption scheme, plus a MAC function. Overall, Barwell
et al. [8] target a different (stronger) security goal, and in part due to the generic
nature of the approach, the resulting construction becomes more expensive.

10 Concluding Remarks

Depending on the subkey generation function, one may have to require the tweak
to be unpredictable. In our formal security analyses, there is no issue, the adver-
sary can freely choose it (provided that the tweakable block cipher is strong
enough). The analysis does not limit the number of times a user may use a
certain tweak, but one typically needs to limit it, in order to ensure that no
subkey to the underlying block cipher is used too often. Indeed, in this case,
for the functions to be side-channel secure it suffices for the block cipher to be
secure against SPA (rather than DPA). It is possible to improve the bounds of
Theorems 1–3 if the number of appearances per tweak is restricted. In the field
of generic tweakable block cipher design and analysis, such a condition appeared
before in [59,68].

We remark that the rekeying solutions serve as an alternative to other strong
side-channel countermeasures, at least for specific scenarios. Still, the primitives
of the rekeying functions still require certain level of protection. It would be an
interesting direction to investigate in what degree the cost of countermeasures
gets reduced in practice.

It is fascinating to see that, as this work shows, two seemingly disjoint direc-
tions have such a strong relation that the knowledge from one direction (generic
tweakable block cipher design) can be used to improve the state of the art of the
other field (fresh rekeying). Other conclusions from the former field may likewise
result in fruitful solutions to side-channel security, and it is worth exploring this
direction. Conversely, there may be possibilities of using the extensive state of
the art on, for example, leakage resilient pseudorandom number generators to
classical cryptography.
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Abstract. The tight security bound of the KAC (Key-Alternating
Cipher) construction whose round permutations are independent from
each other has been well studied. Then a natural question is how the
security bound will change when we use fewer permutations in a KAC
construction. In CRYPTO 2014, Chen et al. proved that 2-round KAC
with a single permutation (2KACSP) has the same security level as the
classic one (i.e., 2-round KAC). But we still know little about the security
bound of incompletely-independent KAC constructions with more than
2 rounds. In this paper, we will show that a similar result also holds for
3-round case. More concretely, we prove that 3-round KAC with a single

permutation (3KACSP) is secure up to Θ(2
3n
4 ) queries, which also caps

the security of 3-round KAC. To avoid the cumbersome graphical illus-
tration used in Chen et al.’s work, a new representation is introduced
to characterize the underlying combinatorial problem. Benefited from it,
we can handle the knotty dependence in a modular way, and also show a
plausible way to study the security of rKACSP. Technically, we abstract
a type of problems capturing the intrinsic randomness of rKACSP con-
struction, and then propose a high-level framework to handle such prob-
lems. Furthermore, our proof techniques show some evidence that for
any r, rKACSP has the same security level as the classic r-round KAC
in random permutation model.

1 Introduction

In provable-security setting, the construction of a practical cipher is often
abstracted into a reasonable model with certain assumptions (e.g., the underly-
ing primitives are random functions/permutations and independent from each
other). Under those assumptions, we try to prove that the abstract construction
is immune to all (known or unknown) attacks executed by an adversary with spe-
cific abilities. Then the provable-security results provide some heuristic support
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for the underlying design-criteria of the cipher, since the practical underlying
primitives do not satisfy the assumptions in general.

As aforementioned, the provable-security results are closely related to the
abstract assumptions. If the assumptions are closer to the actual implementa-
tions, then the corresponding results will be more persuasive. For example, most
of the existing work reduces the security of SPN block ciphers to the classic KAC
construction (see Eq. (2)), in which the underlying round permutations as well
as the round keys are random and independent from each other. Unfortunately,
most KAC-based practical ciphers use the same round function and generate the
round keys from a shorter master-key (i.e., the underlying round permutations
and round keys are not independent from each other at all). Thus, there is still a
big gap between the existing provable-security results and the practical ciphers.

Opposite to the KAC construction with independent round permutations and
round keys (i.e., the classic KAC construction), we refer to the one whose round
permutations or round keys are not independent from each other as incompletely-
independent KAC or KAC with dependence. It is well known that r-round KAC
is Θ(2

r
r+1n)-secure in the random permutation model [CS14,HT16]. To charac-

terize the actual SPN block ciphers, we should abstract a natural KAC construc-
tion (with dependence) satisfying two requirements: all the round permutations
are the same and the round keys are generated from a shorter master-key by a
certain deterministic algorithm. Hence, the ultimate question is whether there
exists such a r-round incompletely-independent KAC construction which can
still achieve Θ(2

r
r+1n)-security. In other words, we want to know whether the

required randomness of KAC construction can be minimized without a signifi-
cant loss of security.

Up to now, people know little about the incompletely-independent KAC con-
structions (even with very small number of rounds), since it becomes much more
complicated when either the underlying round permutations or round keys are
no longer independent. To our knowledge, the best work about the KAC with
dependence was given by Chen et al. [CLL+18]. They proved that several types
of 2-round KAC with dependence have almost the same security level as 2-round
KAC construction. However, it is still open about the security of incompletely-
independent KAC with more than 2 rounds in provable-security setting.

In this paper, we initiate the study on the incompletely-independent KAC with
more than 2 rounds. Here, we mainly focus on a special class of KAC, in which all
the round permutations are the same and the round keys are still independent
from each other, and refer to it as KACSP construction. Given a permutation P :
{0, 1}n → {0, 1}n, as well as r + 1 round keys k0, . . . , kr, the r-round KACSP
construction rKACSP[P ; k0, . . . , kr] maps a message x ∈ {0, 1}n to

kr ⊕ P
(
kr−1 ⊕ P

(
· · · P (x ⊕ k0) · · ·

))
. (1)

Before turning into the results, we review the related existing work on classic
KAC and KAC with dependence, respectively.
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Results on Classic KAC. KAC construction is the generalization of the
Even-Mansour construction [EM97] over multiple rounds. As one of the most
popular ways to construct a practical cipher, the KAC construction captures
the high-level structure of many SPN block ciphers, such as AES [DR02],
PRESENT [BKL+07], LED [GPPR11] and so on. Given r permutations
P1, . . . , Pr: {0, 1}n → {0, 1}n, as well as r +1 round keys k0, . . . , kr, the r-round
KAC construction rKAC[P1, . . . , Pr; k0, . . . , kr] maps a message x ∈ {0, 1}n to

kr ⊕ Pr

(
kr−1 ⊕ Pr−1

(
· · · P1(x ⊕ k0) · · ·

))
. (2)

In the random permutation model, it was proved by Even and Mansour
[EM97] that an adversary needs roughly 2

n
2 queries to distinguish the 1-round

KAC construction from a true random permutation. Their bound was matched
by a distinguishing attack [Dae91] which needs about 2

n
2 queries in total. Many

years later, Bogdanov et al. [BKL+12] proved that r-round KAC is secure up to
2

2n
3 queries and the result is tight for r = 2 . Besides, they also conjectured that

the security for r-round KAC should be 2
rn
r+1 because of a simple generic attack.

After that, Steinberger [Ste12] improved the bound to 2
3n
4 queries for r ≥ 3 by

modifying the way to upper bound the statistical distance between two product
distributions. In the same year, Lampe et al. [LPS12] used coupling techniques
to show that 2

rn
r+1 queries and 2

rn
r+2 queries are needed for any nonadaptive and

any adaptive adversary, respectively. The first asymptotically tight bound was
proved by Chen et al. [CS14] through an elegant path-counting lemma. Recently,
Hoang and Tessaro [HT16] refined the H-coefficient technique (named as the
expectation method) and gave the first exact bound of KAC construction. At
this point, the security bound of the classic KAC construction is solved perfectly.

Results on KAC with dependence. The development in the field of
incompletely-independent KAC is much slower, since it usually becomes very
involved when the underlying components are no longer independent from each
other. Dunkelman et al. [DKS12] initiated the study of minimizing 1-round KAC
construction, and showed that several strictly simpler variants provide the same
level of security. After that, the best work was given by Chen et al. [CLL+14] in
CRYPTO 2014. They proved that several types of incompletely-independent 2-
round KAC have almost the same security level as the classic one. The result even
holds when only a single permutation and a n-bit master-key are used, where n
is the length of a plaintext/ciphertext. In their work, a generalized sum-capture
theorem1 is used to upper bound the probability of bad transcripts. And the
1 Informally, the type of sum-capture theorems state that when choosing a random

subset A of Zn
2 of size q, the value

μ(A) = max
U,V ⊆Z

n
2

|U|=|V |=q

|{(a, u, v) ∈ A × U × V : a = u ⊕ v}|

is close to the expected value q3/N . In the extended version of [CLL+18], the set A
can be produced by a set of query-answer pairs, and an automorphism transformation
is also allowed.
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probability calculation related to good transcripts is reduced to a combinatorial
problem. Using the similar techniques, Cogliati and Seurin [CS18] obtained the
security bound of the single-permutation encrypted Davies-Meyer construction.
Nevertheless, their work is still limited in the scope of 2-round constructions.

Recently, Dai et al. [DSST17] proved that the 5-round KAC with a non-
idealized key-schedule is indifferentiable from an ideal cipher. The model
employed in their work is however orthogonal to ours and hence the result is
not directly comparable.

Our Contributions. In this paper, we initiate the study on the incompletely-
independent KAC with more than 2 rounds and give a tight security bound
of 3KACSP construction. Our contributions are conceptually novel and mainly
two-fold:

1. We prove the tight security bound Θ(2
3n
4 ) queries of 3KACSP, which is an

open problem (proposed in [CLL+18]) for incompletely-independent KAC
with more than 2 rounds. That is, we can use only one instead of three distinct
permutations to construct 3-round KAC without a significant loss of security.
Notably, our proof framework is general and theoretically workable for any
rKACSP. Following the ideas of analyzing 3KACSP, we strongly believe that
rKACSP is also Θ(2

r
r+1n)-secure in random permutation model, provided

that the input/output size n is sufficiently large.
2. We develop a lot of general techniques to handle the dependence. Firstly, a

new representation (see Sect. 3.3) is introduced to circumvent the cumbersome
graphical illustration used in [CLL+18]. Benefited from it, we can handle the
underlying combinatorial problem in a natural and intuitive way. Secondly,
we abstract a type of combinatorial problems (i.e., Problem 1) capturing the
intrinsic randomness of rKACSP, and also propose a high-level framework (see
Sect. 5.1) to solve such problems. To instantiate the framework, we introduce
some useful notions such as Core, target-path, shared-edge, and so on (see
Sect. 3.3). Combining with the methods for constructing multiple shared-
edges, we solve successfully the key problem in 3KACSP (see Sect. 5.2). At
last, we also develop some new tricks (see Section 6 in the full version of
this paper [WYCD20]) which are crucial in analyzing rKACSP (r ≥ 3). Such
tricks are not needed in 2KACSP, since it is relatively simple and does not
have much dependence to handle.

It is rather surprising that the randomness of a single random permutation
can provide such high level of security. From our proof, we can know an important
reason is that, the information obtained by adversary is actually not so much.
For instance, assume that n is big enough and an adversary can make Θ(2

3n
4 )

queries to the random permutation, then the ratio of known points (i.e., roughly
2−n

4 ) is still very small. Furthermore, our work means a lot more than simply
from 2 to 3, and we now show something new compared to Chen et al.’s work.

1. It is the first time to convert the analysis of rKACSP into a type of com-
binatorial problems, thus we can study the higher-round constructions in a
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modular way. To solve such problems, we propose a general counting frame-
work, and also successfully instantiate it for a 3-round case which is much
more involved than the 2-round cases.

2. An important discovery is that we can adapt the tricks used in 2KACSP
to solve the corresponding subproblems in 3KACSP, by designing proper
assigning-strategy and RoCs(Range of Candidates, see Notation 5). We
believe that the similar properties also hold in the analysis of general
rKACSP.

3. A very big challenge in rKACSP(r ≥ 3) is to combine all the subproblems
together into a desired bound. We do not need to consider that problem
in the case of 2KACSP, since there is only one 2-round case in it. As a
result, we develop some useful techniques to handle the dependence between
the subproblems. Particularly, the key-points as shown at the beginning of
Section 6 in the full version [WYCD20] are also essential in rKACSP(r ≥ 4).

Combining all above findings together, we point out that a plausible way to
analyze rKACSP is by induction, and what’s left is only to solve a single r-
round case of Problem 1. That is, we actually reduce an extremely complex
(maybe intractable) problem into a single combinatorial problem, which can
be solved by our framework theoretically. From the view of induction, Chen
et al. [CLL+18] proved the basis step, while we have done largely the non-trivial
work of the inductive step. Besides the conceptually important results, the new
notions and ideas used in our proof are rather general and not limited in the
rKACSP setting. We hope that they can be applied to analyze more different
cryptographic constructions with dependence.

Outline of This Paper. We start in Sect. 2 by setting the basic notations,
giving the necessary background on the H-coefficient technique, and showing
some helpful lemmas. In Sect. 3, we state the main result of this paper and
introduce the new representation used throughout the paper. After that, the
main result is proved in Sect. 4 where we also illustrate the underlying combi-
natorial problem and give two technical lemmas. The core part is Sect. 5, where
we propose the general framework and also show the high-level technical route
to handle the key subproblem in 3KACSP. At last, we conclude and give some
extra discussion in Sect. 6.

2 Preliminaries

2.1 Basic Notations

In this paper, we use capital letters such as A,B, . . . to denote sets. If A is a
finite set, then |A| denotes the cardinality of A, and A denotes the complement
of A in the universal set (which will be clear from the context). For a finite set
S, we let x ←$ S denote the uniform sampling from S and assigning the value to
x. Let A and B be two sets such that |A| = |B|, then we denote Bjt(A → B) as
the set of all bijections from A to B. If g and h are two well-defined bijections,
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then let g ◦ h(x) = h
(
g(x)

)
. Fix an integer n ≥ 1, let N = 2n, In = {0, 1}n,

and Pn be the set of all permutations on {0, 1}n, respectively. If two integers s,
t satisfy 1 ≤ s ≤ t, then we will write (t)s = t(t − 1) · · · (t − s + 1) and (t)0 = 1
by convention.

Given Q = {(x1, y1), . . . , (xq, yq)}, where the xi’s (resp. yi’s) are pairwise
distinct n-bit strings, as well as a permutation P ∈ Pn, we say that the permu-
tation P extends the set Q, denoting P 	 Q, if P (xi) = yi for i = 1, . . . , q. Let
X = {x ∈ In : (x, y) ∈ Q} and Y = {y ∈ In : (x, y) ∈ Q}. We call X and Y
respectively the domain and range of the set Q.

Definition 1 (Q′ is strongly-disjoint with Q). Let Q = {(x1, y1), . . . ,
(xm, ym)} and Q′ = {(x′

1, y
′
1), . . . , (x

′
n, y′

n)}. We denote X,Y ,X ′,Y ′ as the
domains and ranges of Q and Q′, respectively. Then we say that Q′Q′Q′ is strongly-
disjoint with QQQ if X ∩ X ′ = Ø and Y ∩ Y ′ = Ø, and denote it as Q′ ⊥ QQ′ ⊥ QQ′ ⊥ Q.

2.2 Indistinguishability Framework

We will focus on the provable-security analysis of block ciphers in random per-
mutation model, which allows the adversary to get access to the underlying
primitives of the block ciphers. Consider the rKACSP construction (see Eq.
(1)), a distinguisher D can interact with a set of 2 permutation oracles on n
bits that we denote as (PO, PI). There are two worlds in terms of the instan-
tiations of the 2 permutation oracles. If P is a random permutation and the
round keys KKK = (k0, . . . , kr) are randomly chosen from I(r+1)n, we refer to
(rKACSP[P ;KKK], P ) as the “real” world. If E is a random permutation indepen-
dent from P , we refer to (E,P ) as the “ideal” world. We usually refer to the first
permutation PO (instantiated by rKACSP[P ;KKK] or E) as the outer permutation,
and to permutation PI (instantiated by P ) as the inner permutation. Given a
certain number of the queries to the 2 permutation oracles, the distinguisher D
should distinguish whether the “real” world or the “ideal” world it is interact-
ing with. The distinguisher D is adaptive such that it can query both sides of
each permutation oracle, and also can choose the next query based on the query
results it received. There is no computational limit on the distinguisher, thus we
can assume wlog that the distinguisher is deterministic (with a priori query which
maximizes its advantage) and never makes redundant queries (which means that
it never repeats a query, nor makes a query Pi(x) for i ∈ {I,O}, if it receives x
as an answer of a previous query P −1

i (y), or vice-versa).
The distinguishing advantage of the adversary D is defined as

Adv(D) =
∣∣∣Pr[DrKACSP[P ;KKK],P = 1] − Pr[DE,P = 1]

∣∣∣ , (3)

where the first probability is taken over the random choice of P and KKK, and the
second probability is taken over the random choice of P and E. D(·) denotes
that D can make both forward and backward queries to each permutation oracle
according to the random permutation model described before.

For non-negative integers qe and qp, we define the insecurity of rKACSP
against any adaptive distinguisher (even with unbounded computational source)
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who can make at most qe queries to the outer permutation oracle (i.e., PO) and
qp queries to the inner permutation oracle (i.e., PI) as

Advcca
rKACSP(qe, qp) = maxD Adv(D), (4)

where the maximum is taken over all distinguishers D making exactly qe queries
to the outer permutation oracle and qp queries to the inner permutation oracle.

2.3 The H-Coefficient Method

H-coefficient method [Pat08,CS14] is a powerful framework to upper bound the
advantage of D and has been used to prove a number of results. We record all
interactions between the adaptive distinguisher D and the oracles as an ordered
list of queries which is also called a transcript. Each query in a transcript has the
form of (i, b, z, z′), where i ∈ {I,O} represents which permutation oracle being
queried, b is a bit indicating whether this is a forward or backward query, z is the
value queried and z′ is the corresponding answer. For a fixed distinguisher D,
a transcript is called attainable if exists a tuple of permutations (PO, PI) ∈ P 2

n

such that the interactions among D and (PO, PI) yield the transcript. Recall
that the distinguisher D is deterministic and makes no redundant queries, thus
we can convert a transcript into 2 following lists of directionless queries without
loss of information

QE = {(x1, y1), . . . , (xqe , yqe)},

QP = {(u1, v1), . . . , (uqp , vqp)}.

We can reconstruct the transcript exactly through the 2 lists, since D is
deterministic and each of its next action is determined by the previous oracle
answers (which can be known from those lists) it has received. As a side note,
the 2 lists contain the description of the deterministic distinguisher/algorithm D
implicitly. Therefore, the above two representations of an attainable transcript
are equivalent with regard to a fixed deterministic distinguisher D. Based on
Eq. (3), our goal is to know the values of the two probabilities. It can be veri-
fied that the first probability (i.e., the one related to the “real” world) is only
determined by the number of coins which can produce the above 2 directionless
lists, and the probability is irrelevant to the order of each query in the original
transcript. Thus, it seems that the adaptivity of D is “dropped” (More details
can be found in [CS14]). Through this conceptual transition, upper bounding
the advantage of D is often reduced to certain probability problems. That is
why the H-coefficient method works well in lots of provable-security problems,
especially for an information-theoretic and adaptive adversary.

As what [CS14],[CLL+18] did, we will also be generous with the distinguisher
D by giving it the actual key KKK = (k0, . . . , kr) when it is interacting with the
“real” world or a dummy key KKK ←$ I(r+1)n when it is interacting with the
“ideal” world at the end of its interaction. This treatment is reasonable since it
will only increase the advantage of D. Hence, a transcript τ we consider actually
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is a tuple (QE ,QP ,KKK). We refer to τ̂ = (QE ,QP ) as the permutation transcript
of τ and say that a transcript τ is attainable if its corresponding permutation
transcript τ̂ is attainable. Let T denote the set of attainable transcripts. We
denote Tre, resp. Tid, as the probability distribution of the transcript τ induced
by the “real” world, resp. the “ideal” world. It should be pointed out that the
two probability distributions depend on the distinguisher D, since its description
is embedded in the conversion between the aforementioned two representations.
And we also use the same notation to denote the random variable distributed
according to each distribution.

The H-coefficient method has lots of variants. In this paper, we will employ
the standard “good versus bad” paradigm. More concretely, the set of attainable
transcripts T is partitioned into a set of “good” transcripts T1 such that the
probability to obtain some τ ∈ T1 are close in the “real” world and in the “ideal”
world, and a set of “bad” transcripts T2 such that the probability to obtain any
τ ∈ T2 is small in the “ideal” world. Finally, a well-known H-coefficient-type
lemma is given as follows.

Lemma 1 (Lemma 1 of [CLL+18]). Fix a distinguisher D. Let T = T1�T2 be
a partition of the set of attainable transcripts. Assume that there exists ε1 such
that for any τ ∈ T1, one has

Pr[Tre = τ ]
Pr[Tid = τ ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[Tid ∈ T2] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

2.4 A Useful Lemma

Lemma 2 (3KACSP version, Lemma 2 of [CLL+18]). Let τ =(
QE ,QP ,KKK = (k0, k1, k2, k3)

)
∈ T be an attainable transcript. Let p(τ) =

Pr
[
P ←$ Pn : 3KACSP[P ;KKK] 	 QE | P 	 QP

]
. Then

Pr[Tre = τ ]
Pr[Tid = τ ]

= (N)qe · p(τ).

Following Lemma 2, it is reduced to lower-bounding p(τ) if we want to
determine the value of ε1 in Lemma 1. In brief, p(τ) is the probability that
3KACSP[P ;KKK] extends QE when P is a random permutation extending QP .

3 The Main Result and New Representation

3.1 3-Round KAC with a Single Permutation

Let n be a positive integer, and let P : In → In be a permutation on In. On
input x ∈ In and round keys KKK = (k0, k1, k2, k3) ∈ I4n, the block cipher 3KACSP
returns y = P

(
P

(
P (x ⊕ k0) ⊕ k1

)
⊕ k2

)
⊕ k3. See Fig. 1 for an illustration of

the construction of 3KACSP.
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k3

Fig. 1. Illustration of 3KACSP

3.2 Statement of the Result and Discussion

Since 3KACSP is a special case of 3-round KAC construction, its security is also
capped by a distinguishing attack with O(2

3n
4 ) queries. We will show that the

bound is tight by establishing the following theorem, which gives an asymptotical
security bound of 3KACSP. Following the main theorem, we also give some
comments. The proof of Theorem 1 can be found in Sect. 4, where we also
illustrate the underlying combinatorial problem and give two technical lemmas.

Theorem 1 (Security Bound of 3KACSP). Consider the 3KACSP con-
struction, in which the underlying round permutation P is uniformly random
sampled from Pn and the round keys KKK = (k0, k1, k2, k3) are uniformly random
sampled from I4n. Assume that n ≥ 32 is sufficiently large, 28(qe)

2

N ≤ qp ≤ qe
5

and 2qp +5qe ≤ N
2 , then for any 6 ≤ t ≤ N1/2

8 , the following upper bound holds:

Advcca
3KACSP(qe, qp) ≤ 98t ·

( qe

N3/4

)
+ 10t2 ·

( qe

N

)
+ ζ(qe),

where ζ(qe) =

{
32
t2 , if qe ≤ t

6N1/2

9N
q 2
e

, if qe ≥ 7t
6 N1/2

.

Obtaining a concrete upper bound. Due to the special form of error term
ζ(qe), a single constant t cannot optimize the bound for all qe’s simultaneously.
The above result gives an upper bound for a range of qe’s once t is chosen, thus
different constants t will give different upper bounds for a fixed qe. That is, for
each qe, we can make the error term ζ(qe) be arbitrarily small by choosing a
proper t, as long as the n is big enough. In general, we prefer to choose a small t
to obtain the bound, since the first two terms in it are proportional to t. As an
explanatory example, we next will show how to choose the constant t, assume
that the threshold value of ζ(qe) is set to 0.01.

Firstly, we should determine the range of qe’s which are suitable for the
minimum t = 6. It is easy to verify that, for the range of big qe ≥ 30N1/2, it
must has ζ(qe) ≤ 0.01, since ζ(qe) = 9N

q2
e

for qe ≥ 7N1/2 (when setting t = 6).
But for a small qe it needs a larger t, since we will use the function ζ(qe) = 32

t2

to obtain a desired ζ(qe). For simplicity, we can set t = 60 for each qe ≤ 10N1/2,
because it has ζ(qe) = 32

602 < 0.01. Now what’s left is to choose a proper t for
covering the remain range of 10N1/2 < qe < 30N1/2. Using again the function
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ζ(qe) = 32
t2 , we can crudely set t = 180, which implies that ζ(qe) = 32

1802 < 0.001
for all qe ≤ 30N1/2. As a side note, a slightly better choice is to choose t = 6c
for qe = cN1/2, where 10 < c < 30.

From the above process, we obtain a concrete upper bound as follows.

Advcca
3KACSP(qe,qp)≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

588
(

qe

N3/4

)
+360( qe

N )+0.01, for qe≥30N1/2 (Set t=6)

17640
(

qe

N3/4

)
+324000( qe

N )+0.001, for 10N1/2<qe<30N1/2 (Set t=180)

5880
(

qe

N3/4

)
+36000( qe

N )+0.01, for qe≤10N1/2 (Set t=60)

It is easy to see that t = 6 is available for almost all of the qe’s (i.e., except the
fraction of 30

N1/2 ). That is, the bound Adv ≤ 588
(

qe
N3/4

)
+360

(
qe
N

)
+ 9N

q2
e

is suitable
for almost qe’s. We also stress here that Theorem 1 is an asymptotical result (for
sufficiently large n) and we are not focusing on optimizing parameters. The point
is that it actually shows that Ω(N3/4) queries are needed to obtain a significant
advantage against 3KACSP. Combining with the well-known matching attack,
we conclude that the 3KACSP construction is Θ(2

3n
4 )-secure.

Discussion about the result. It should be pointed out that the deviation
term ζ(qe) and the assumption on qp in Theorem 1 are artifacts of our proof,
and have no effect on the final result.

1. The ζ(qe) is simply caused by the inaccuracy of Chebyshev’s Inequality (i.e.,
Lemma 5), rather than our proof methods nor the intrinsic flaws of 3KACSP.
It is well-known that Chebyshev’s Inequality is rather coarse and there must
exist a more accurate tail-inequality (e.g., Chenoff Bound). The ζ(qe) and
t will disappear, as long as a bit more accurate tail-inequality is applied
during the computation of Eq. (95) in full version [WYCD20]. That is, just
by replacing with a better tail-inequality, our proof techniques actually can
obtain a concrete bound such like Adv ≤ 98

(
qe

N3/4

)
+ 10

(
qe
N

)
, i.e., t = 1 and

ζ(qe) = 0 in Theorem 1. But to our knowledge, there is no explicit expression
of the moment generating function for a hypergeometric distribution, hence
we now have no idea how to obtain a Chernoff-Type bound.

2. The assumption on qe and qp is determined by the assigning-strategy and all
the RoCs (there are dozens in total) designed in the formal proof. It means
that a better choice corresponds to a weaker assumption. Theoretically, there
exist choices which can eliminate the assumption without changing our proof
framework. However, optimizing such a choice is rather unrealistic, since it is
extremely hard to find even one feasible solution (as provided in our formal
proof).

In a word, our results and proof techniques are strong enough to show that
3KACSP is Θ(N3/4)-secure in random permutation model.

3.3 New Representation

In this subsection, we will propose a new representation which will be used
throughout the paper. The representation improves our understanding of the
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underlying combinatorial problem, and is very helpful to handle the dependence
caused by the single permutation. From our proof, it can be found that this new
representation is natural to capture the intrinsic combinatorial problem, and the
complicated graphical illustration used in [CLL+18] can also be avoided. More
specifically, the new representation consists of several definitions.

Definition 2 (Directed-Edge). Let A denote a set and a, b ∈ A. If a permu-
tation Ψ on A maps a to b, then we denote it as a

Ψ−→ b and say that there is a
ΨΨΨ-directed-edge (or simply directed-edge if Ψ is clear from the context) from a

to b. We also use a
Ψ−→ b to denote the ordered query-answer pair (a, b) of the

permutation oracle Ψ . That is, if we make queries Ψ(a) (resp. Ψ−1(b)), then b
(resp. a) will be the answer.

For a directed-edge a
Ψ−→ b, we refer to a as the previous-point of b under

Ψ , and to b as the next-point of a under Ψ , respectively. Naturally, the notation
a

Ψ−→ means that the next-point of a under Ψ is undefined, and the notation
Ψ−→ b means that the previous-point of b under Ψ is undefined.

Definition 2 aims to view the binary relation under a permutation as a set
of directed-edges. Consider a permutation P ∈ Pn, the list of directionless
queries QP = {(u1, v1), . . . , (uq, vq)} can be written as the set of P -directed-

edges {u1
P−→ v1, . . . , uq

P−→ vq}. From now on, we will not distinguish the two
representations.

Definition 3 (Directed-Path and CoreCoreCore). Let ϕ[·] : Pn → Pn be a block-cipher
construction invoking one permutation P ∈ Pn. Fix an attainable transcript
τ = (QE ,QP ,KKK), where QE and QP are the lists of directionless queries of the
outer and inner permutation oracle, respectively.

For a specific P ∈ Pn and a string a ∈ In, the steps related to P in the
calculation of ϕ[P ](a) can be denoted as a chain of P -directed-edges and has
the form of 〈f(a) P−→ a1, . . . , am

P−→ g−1(ϕ[P ](a))〉, where f(·) and g(·) are
invertible operations before the first invocation of P and after the last invo-
cation of P in the construction ϕ[·], respectively.2 We refer to such a chain

as a
((

a, ϕ[P ](a)
)
, ϕ[P ]

)((
a, ϕ[P ](a)

)
, ϕ[P ]

)((
a, ϕ[P ](a)

)
, ϕ[P ]

)
-directed-path, where a and ϕ[P ](a) are called as the

source and destination of the directed-path, respectively. We may simply say a
directed-path for convenience, if all things are clear from the context.

Let QE = {(x1, y1), . . . , (xq, yq)}, where xi’s (resp. yi’s) are pairwise distinct
n-bit strings. We say a permutation P ∈ Pn is ϕ[·]-correct with respect to
QE, if ϕ[P ] 	 QE. That is, the ϕ[P ]-directed-path starting from xi must end
at yi (i.e., yi = ϕ[P ](xi)) for a correct permutation P , where i = 1, · · · , q. We
refer to the set of P -directed-edges used in above q directed-paths as a ϕ[P ]-Core
with respect to QE, and denote it as Core(ϕ[P ] 	 QE)Core(ϕ[P ] 	 QE)Core(ϕ[P ] 	 QE). In addition, we use the
notation Core(ϕ[·] 	 QE) to denote a certain ϕ[P ]-Core in general. And we may
simply say a Core for convenience, if ϕ[·] and QE are clear from the context.

2 In this paper, f(·) and g(·) are often the identity functions.
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Definition 3 aims to highlight the steps related to P when calculating the
value of ϕ[P ](a). In fact, the form of a directed-path is only determined by the
construction ϕ[·].3 That is, each

(
(∗, ∗), ϕ[P ]

)
-directed-path consists of m P -

directed-edges, where m is the invoking number of P in the construction ϕ[·].
Thus, we often use the notation ϕ[·]-directed-path to denote a directed-path of
the form in general. In addition, the calculation steps independent of P (e.g., the
operations f(·) and g(·) in Definition 3) are always omitted, since we only care
about the assignments of P . Of course, those omitted steps can still be inferred
from the directed-path since they are deterministic. For instance, the calculation
of P

(
P (x)�1

)
= y can be denoted as the directed-path 〈x P−→ P (x), P (x)�1 P−→

y〉, in which the step from P (x) to P (x) � 1 is omitted but can still be known
from it. Next, we will give an explanatory example for the above definitions.

Example 1. Let P denote a permutation on Z5 = {0, 1, 2, 3, 4}, as well as QE =
{(0, 4), (1, 0)}, QP = Ø and ϕ[P ](x) = P

(
P (x) � 1

)
, where � represents the

modulo-5 addition.
Case 1: If P = {0 P−→ 1, 1 P−→ 2, 2 P−→ 3, 3 P−→ 4, 4 P−→ 0}, then all directed-

paths constructed by ϕ[P ] are 〈0 P−→ 1, 2 P−→ 3〉, 〈1 P−→ 2, 3 P−→ 4〉, 〈2 P−→ 3, 4 P−→
0〉, 〈3 P−→ 4, 0 P−→ 1〉, and 〈4 P−→ 0, 1 P−→ 2〉. That is, the permutation ϕ[P ] maps
0 to 3, 1 to 4, 2 to 0, 3 to 1 and 4 to 2, respectively. Obviously, the P is not
ϕ[·]-correct with respect to QE , since the ϕ[P ]-directed-path 〈0 P−→ 1, 2 P−→ 3〉
leads 0 to 3 which is inconsistent with the source-destination pair (0, 4) ∈ QE .

Case 2: If P = {0 P−→ 2, 1 P−→ 1, 2 P−→ 0, 3 P−→ 4, 4 P−→ 3}, then we have
ϕ[P ] 	 QE because the directed-paths 〈0 P−→ 2, 3 P−→ 4〉 and 〈1 P−→ 1, 2 P−→ 0〉 lead
0 to 4 and 1 to 0, respectively. Also, we can know that Core(P ) = {0 P−→ 2, 1 P−→
1, 2 P−→ 0, 3 P−→ 4}, and thus |Core(P )| = 4.

Case 3: If P = {0 P−→ 3, 1 P−→ 0, 2 P−→ 1, 3 P−→ 2, 4 P−→ 4} , then it is easily
to verify that ϕ[P ] 	 QE , as well as Core(P ) = {0 P−→ 3, 1 P−→ 0, 4 P−→ 4} and
|Core(P )| = 3.

Case 4: Similarly, if P = {0 P−→ 0, 1 P−→ 4, 2 P−→ 1, 3 P−→ 2, 4 P−→ 3}, then
ϕ[P ] 	 QE . Furthermore, it has Core(P ) = {0 P−→ 0, 1 P−→ 4} and |Core(P )| = 2.

Statement. For convenience, we will simply use the terms edge and path instead
of directed-edge and directed-path, respectively. In addition, if xβ

α denotes the
source of a path (where α and β are some symbols), then the notation yβ

α always
denotes the corresponding destination of the path and vice-versa, and the cor-
respondence can be easily inferred from the context.

We have known that a path can be used to denote a complete calculation
given the construction, source and P . In fact, we often confront an incomplete
path whose source and destination are fixed, provided that the permutation

3 Recall that the adversary can obtain the keys after the querying phrase in our proof
setting.
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P is partially defined.4 Namely, there are some edges missing in such a path.
Particularly, we most interest in a special form of incomplete path which is called
target-path.

Definition 4 (Target-Path). Assume that P is partially defined, then a(
(a, b),

(
(a, b),

(
(a, b), ϕ[P ]

)
ϕ[P ]

)
ϕ[P ]

)
-target-path is a ϕ[·]-path in which all the inner-nodes are unde-

fined while the source a and the destination b are fixed. Thus, a target-path always
has the form of 5

〈a P−→ ,
P−→ , · · · ,

P−→ ,
P−→ b〉.

In essence, the proof of main result is reduced to the task of completing a group
of target-paths (i.e., Problem 1). That is why we refer to such type of paths as
target-paths. In general, it is convenient to consider a group of (target-)paths
having the same form. Then, the notion of shared-edge can also be introduced
naturally.

Definition 5 (Group of Paths and Shared-Edge). Fix a permutation P ,
which can be partially defined.

We call the paths
(
(x1, y1), ϕ[P ]

)
-path, . . . ,

(
(xq, yq), ϕ[P ]

)
-path as a

group of ϕ[·]-paths, and denote it as (QE , ϕ[P ])(QE , ϕ[P ])(QE , ϕ[P ])-paths, where QE =
{(x1, y1), . . . , (xq, yq)} is the set of source-destination pairs. Also, we may simply
use the notation QE-paths if ϕ[P ] is clear from the context.

Similarly, we call the target-paths
(
(a1, b1), ϕ[P ]

)
-target-path, . . . ,

(
(aq, bq),

ϕ[P ]
)
-target-path as a group of ϕ[·]-target-paths, and denote it as (Q, ϕ[P ])(Q, ϕ[P ])(Q, ϕ[P ])-

target-paths, where Q = {(a1, b1), . . . , (aq, bq)} is the set of source-destination
pairs.

If an edge is used in at least 2 different paths, then we refer to it as a shared-
edge.

From now on, we can use Definition 5 to denote a group of (target-)paths con-
veniently. And it should be pointed out that the shared-edge is a key primitive
in our proof, though the concept is rather simple and natural. Moreover, the
notion of partial-P will be useful, since P is often partially defined.

Definition 6 (Partial-PPP and Partially-Sample). Let P be a permutation on
In, and let A be a subset of In. Then we refer to the set of edges {xi

P−→ P (xi) :
xi ∈ A} as the partial-P from A to P (A).

Let S and T be two sets of elements whose next-points and previous-points
are undefined under P , respectively. If |S| = |T |, then we can sample randomly
a bijection f ←$ Bjt(S → T ) and define x

P−→ f(x) for each x ∈ S. We refer
to the above process as sample partial-P randomly from S to T , or P is
partially-sampled randomly from S to T .

4 Informally, we say a permutation P is partially defined, if the correspondence of some
points are undefined.

5 For simplicity, we assume here that the operations f(·) and g(·) in construction ϕ[·]
are both identity functions.
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It should be pointed out that a partial-P is a subset of P , and also a set of
P -edges. Now let’s reconsider the sampling P ←$ Pn conditioned on P 	 QP ,
where QP = {u1

P−→ v1, . . . , uq
P−→ vq}. If we denote S = In \ {u1, . . . , uq} and

T = In \ {v1, . . . , vq}, then the above sampling is equivalent to sample partial-
P randomly from S to T . Furthermore, it is natural to view QP as the priori
information of P . That is, we can fix the q edges of QP in advance, and then
sample partial-P randomly from S to T .

4 Proof of Theorem 1

In this section, we will use the standard H-Coefficient method (i.e., Lemma 1) to
prove our main result. That is, all attainable transcripts T should be partitioned
into two disjoint parts: a set of “good” transcripts denoted as T1 and a set of
“bad” transcripts denoted as T2. Determining the partition is often a subtle task,
since it is intrinsically a trade-off between ε1 and ε2. If we add more conditions on
good transcripts to make they have better property (i.e., with smaller ε1), then
the set of bad transcripts becomes larger accordingly (i.e., ε2 becomes larger),
or vice-versa.

Intuitively, the chance to obtain any τ ∈ T1 in “real” world should be very
close to the chance in “ideal” world, and it should be very rare to obtain any
τ ∈ T2 in the “ideal” world. For an attainable transcript τ =

(
QE ,QP ,KKK =

(k0, k1, k2, k3)
)
, we know that (from Lemma 2) the quotient of Pr[Tre = τ ] and

Pr[Tid = τ ] is determined by the value of

p(τ) = Pr
[
P ←$ Pn : 3KACSP[P ;KKK] 	 QE | P 	 QP

]
. (5)

That is, a transcript τ is whether “good” or not, can also be determined by the
value of p(τ).

Therefore, we firstly illustrate the meaning of p(τ) through our new repre-
sentation, and then give the definition of “bad” transcripts. In fact, it is also a
good example to show that the knotty dependence can be sorted out if we use
a proper representation. At the end of this section, we will prove Theorem 1
directly by combining two technical lemmas together.

4.1 Transcripts and p(τ )

In this subsection, we firstly expound the meaning of p(τ) for a fixed transcript
τ , and then give the concrete definition of “bad” transcripts. To reduce the
complexity of notations, we now rewrite the p(τ) into another equivalent form.

A Conceptual Transformation. For an attainable transcript τ =
(QE ,QP ,KKK), we modify the inner permutation P and its permutation tran-
script τ̂ = (QE ,QP ) as follows:

P ′ = P ⊕ k1,

Q′
E = {(x ⊕ k0, y ⊕ k1 ⊕ k3) : (x, y) ∈ QE},

Q′
P = {(u, v ⊕ k1) : (u, v) ∈ QP }.
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Let

X = {x′ ∈ In : (x′, y′) ∈ Q′
E}, Y = {y′ ∈ In : (x′, y′) ∈ Q′

E},

U = {u′ ∈ In : (u′, v′) ∈ Q′
P }, V = {v′ ∈ In : (u′, v′) ∈ Q′

P }

denote the domains and the ranges of Q′
E and Q′

P , respectively. Thus, |QE | =
|Q′

E | = |X| = |Y | = qe, and |QP | = |Q′
P | = |U | = |V | = qp.

Accordingly, we also transform the 3KACSP construction into the 3KACSP′

construction (as shown in Fig. 2), i.e., P ′ ◦ P ′ ◦ (⊕k1 ⊕ k2) ◦ P ′. The above
modification is reasonable, since we show the actual key used in 3KACSP after
the distinguisher D finishing the query phase (i.e., after obtaining QE and QP ).
Thus, it is simply a conceptual transformation and only the notations should be
changed. That is, we can consider that the distinguisher D is querying the outer
permutation and inner permutation oracles instantiated by 3KACSP′ and P ′,
respectively. Then the resulting transcript is τ ′ = (Q′

E ,Q′
P ,KKK). From now on,

we will not distinguish the transcripts τ and τ ′, since they can transform from
each other easily. Thus, we have

p(τ) = p(τ ′) = Pr[P ′ ←$ Pn : 3KACSP′[P ′;KKK] 	 Q′
E |P ′ 	 Q′

P ]. (6)

x′ P ′ P ′ P ′

k1 k2

y′

Fig. 2. 3KACSP′: a conceptual transformation of 3KACSP

Notation 1 (Abbreviation). Let A be a set of n-bit strings, and a be an ele-
ment of A. From now on, we will abbreviate the expression a⊕ k1 ⊕ k2 as a⊕ for
convenience. Similarly, we also denote that A⊕ = {a⊕ : a ∈ A}.

Illustration of p(τ ′). Next, we will show the underlying combinatorial prob-
lem of p(τ ′) intuitively. Fix arbitrarily a transcript τ ′ = (Q′

E ,Q′
P ,KKK), the event

3KACSP′[P ′;KKK] 	 Q′
E means that for each pair (x′, y′) ∈ Q′

E , the 3KACSP′-
path starting from x′ ends exactly at y′. A complete 3KACSP′-path consists of
3 P ′-edges, and has the form of

〈x′ P ′
−→ ∗1, ∗1 P ′

−→ ∗2, (∗2)⊕
P ′
−→ y′〉, (7)

where ∗1 and ∗2 are the 2 inner-nodes should be assigned.
Before turning into the value of p(τ ′), we consider a simpler case that Q′

P = Ø
as first. Since no edge of the Q′

E-paths has been fixed in advance, our task is sim-
ply to complete all the (Q′

E , 3KACSP′)-target-paths, by sampling P ′ uniformly
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random from Pn. In fact, we will see that it is exactly the Problem 1 instantiated
by ϕ[P ′] = P ′ ◦ P ′

⊕ ◦ P ′, Q1 = Q′
E , Q2 = Ø, and can be solved directly by a

general framework6.
Unfortunately, it becomes much more complex when Q′

P �= Ø, since some
3KACSP′-target-paths will be “damaged”. More specifically, a path will turn
into “some other construction”-target-path, when some edges in it are fixed by
Q′

P . We now give some intuition about those paths. Assume that qe and qp

are O(N3/4) and KKK is uniformly random sampled from I4n, then there are at
most 4 types of paths. On average, there are O(1) paths containing 3 fixed edges.
Similarly, we know that there exist O(N1/4) (resp. O(N1/2)) paths whose 2 edges
(resp. 1 edge) are fixed in advance. And there are O(N3/4) paths containing
no fixed edge (i.e., they are 3KACSP′-target-paths). It can be found that the
circumstances are more involved than before, since the constructions of missing-
edges are no longer uniform. In other words, there may exist several different
constructions of target-paths to be completed. Thus, we should analyze each of
the constructions and complete them in turns.

In fact, we judge a transcript τ ′ is whether “good” or not, according to
the Q′

E-paths and the edges fixed by Q′
P . Firstly, a transcript will be classified

into the set of “bad” transcripts, if there exists some Q′
E-path containing 3

fixed edges. Otherwise, we should further study the circumstances of paths and
fixed edges determined by the transcript. More specifically, for such a transcript,
we can classify the qe paths between Q′

E into three groups (see Fig. 3 as an
illustration) according to the number of fixed edges.

� Group-2. The paths containing 2 fixed edges belong to Group-2. More specif-
ically, there are 3 subcases of such paths according to the position of fixed edges.
Recall that U and V denote the domain and range of Q′

P , respectively.
- Group-2.1: The paths whose first two edges are fixed. That is, Group-2.1

consists of the paths starting from the subset XII ⊂ X, where

XII ⊂ U
∧

Q′
P (XII) ⊂ U

∧ (
Q′

P

(
Q′

P (XII)
))

⊕
∩ U = Ø

⇐⇒ ∀x ∈ XII ,∃ w1, w2, s.t. (x,w1), (w1, w2) ∈ Q′
P ∧ (w2)⊕ �∈ U.

- Group-2.2: The paths whose last two edges are fixed. That is, Group-2.2
consists of the paths ending at the subset YB ⊂ Y , where

YB ⊂ V
∧ (

Q′−1
P (YB)

)
⊕ ⊂ V

∧
Q′−1

P

((
Q′−1

P (YB)
)
⊕

)
∩ V = Ø

⇐⇒ ∀y ∈ YB ,∃ w1, w2, s.t. (w1, w2),
(
(w2)⊕, y

)
∈ Q′

P ∧ w1 �∈ V.

- Group-2.3: The paths whose first and third edges are fixed. That is, Group-
2.3 consists of the paths starting from the subset DX ⊂ X to the corresponding
DY = Q′

E(DX) ⊂ Y , where

DX ⊂ U
∧

DY ⊂ V
∧ (Q′

P (DX)
) ∩ U = Ø

∧ (
(Q′

P )−1(DY )
)
⊕ ∩ V = Ø

⇐⇒ ∀x ∈ DX , ∃ w1, w2, s.t. (x, w1),
(
w2, Q′

E(x)
) ∈ Q′

P ∧ w1 /∈ U ∧ (w2)⊕ 
∈ V.

6 The framework and the technical route can be found in Sect. 5.1 and 5.2, respectively.
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〈x1
Q′

P−−→ Q′
P (x1), Q′

P (x1)
Q′

P−−→ Q′
P (Q′

P (x1)),
P ′
−→ y1〉

· · ·

〈xα2

Q′
P−−→ Q′

P (xα2), Q′
P (xα2)

Q′
P−−→ Q′

P (Q′
P (xα2)),

P ′
−→ yα2〉

〈xα2+1
P ′
−→ Q′

P
−1

((
Q′

P
−1(yα2+1)

)
⊕

)
Q′

P−−→
(
Q′

P
−1(yα2+1)

)
⊕

, Q′
P

−1(yα2+1)
Q′

P−−→ yα2+1〉

· · ·

〈xα2+β2

P ′
−→ Q′

P
−1

((
Q′

P
−1(yα2+β2)

)
⊕

)
Q′

P−−→
(
Q′

P
−1(yα2+β2)

)
⊕

, Q′
P

−1(yα2+β2)
Q′

P−−→ yα2+β2〉

〈xα2+β2+1
Q′

P−−→ Q′
P (xα2+β2+1),

P ′
−→ Q′

P
−1(yα2+β2+1)

Q′
P−−→ yα2+β2+1〉

· · ·

〈xδ2

Q′
P−−→ Q′

P (xδ2),
P ′
−→ Q′

P
−1(yδ2)

Q′
P−−→ yδ2〉

〈xδ2+1

Q′
P−−→ Q′

P (xδ2+1),
P ′
−→ P ′

−→ yδ2+1〉

· · ·

〈xδ2+α1

Q′
P−−→ Q′

P (xδ2+α1),
P ′
−→ P ′

−→ yδ2+α1〉

〈xδ2+α1+1
P ′
−→ P ′

−→ Q′
P

−1(yδ2+α1+1)
Q′

P−−→ yδ2+α1+1〉

· · ·

〈xδ2+δ1
P ′
−→ P ′

−→ Q′
P

−1(yδ2+δ1)
Q′

P−−→ yδ2+δ1〉

〈xδ2+δ1+1
P ′
−→ P ′

−→ P ′
−→ yδ2+δ1+1〉

· · ·

〈xqe

P ′
−→ P ′

−→ P ′
−→ yqe

〉

XII

YB

DX DY

XI

YA

Group-2

Group-1

Group-0

Fig. 3. Illustration of the missing-edges in Q′
E-paths

Notation 2 (Group-2). We denote |XII | = α2, |YB | = β2, |DX | = |DY | = γ2,
and δ2 = α2 +β2 + γ2. Thus, Group-2 contains δ2 paths in total, where α2 paths
belong to Group-2.1, β2 paths belong to Group-2.2 and the other γ2 paths belong
to Group-2.3. For convenience, we assume wlog that XII = {x1, . . . , xα2}, YB =
{yα2+1, . . . , yα2+β2}, DX = {xα2+β2+1, . . . , xδ2} and DY = {yα2+β2+1, . . . , yδ2}.

� Group-1. The paths containing 1 fixed edge belong to Group-1. More specif-
ically, there are 2 subcases of such paths according to the position of fixed edge.
Recall that U and V denote the domain and range of Q′

P , respectively.
- Group-1.1: The paths whose first edge is fixed. That is, Group-1.1 consists

of the paths starting from the subset XI ⊂ X, where

XI ⊂ U
∧

Q′
P (XI) ∩ U = Ø

⇐⇒ ∀x ∈ XI ,∃ w1, s.t. (x,w1) ∈ Q′
P ∧ w1 �∈ U.
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- Group-1.2: The paths whose third edge is fixed. That is, Group-1.2 consists
of the paths ending at the subset YA ⊂ Y , where

YA ⊂ V
∧ (

Q′−1
P (YA)

)
⊕ ∩ V = Ø

⇐⇒ ∀y ∈ YA,∃ w1, s.t. (w1, y) ∈ Q′
P ∧ (w1)⊕ �∈ V.

Notation 3 (Group-1). We denote |XI | = α1, |YA| = β1 and δ1 = α1 + β1.
Namely, Group-1 contains δ1 paths in total, where α1 paths belong to Group-1.1
and the other β1 paths belong to Group-1.2. For convenience, we assume wlog
that XI = {xδ2+1, . . . , xδ2+α1} and YA = {yδ2+α1+1, . . . , yδ2+δ1}.

� Group-0. Each path belongs to Group-0 contains no fixed edge.

Notation 4 (Group-0). We denote δ0 = qe − δ2 − δ1. Thus, Group-0 contains
δ0 paths in total. Let X0 and Y0 denote the sets of sources and destinations
of Group-0, respectively. For convenience, we assume wlog that X0 = {xi :
δ2 + δ1 + 1 ≤ i ≤ qe} and Y0 = {yi : δ2 + δ1 + 1 ≤ i ≤ qe}.
For a fixed transcript τ ′, its circumstances of Q′

E-paths and fixed edges can be
illustrated as Fig. 3, where the missing-edges are the ones marked with a colored
square. At this point, it is clear that p(τ ′) (see Eq. (6)) represents the probability
that, all missing-edges are filled by sampling P ′ uniformly random from the set
of permutations extending Q′

P . Furthermore, the above problem becomes more
straightforward if we use the notion of target-path (see Definition 4).

Definition 7 (Structure of Missing-Edges).
Let E2 denote the event that the δ2 paths of Group-2 are completed (i.e., the δ2
missing-edges in Group-2 are filled).

Let E11 denote the event that the
(
Q′

E11
, ϕ11[·]

)
-target-paths are com-

pleted (i.e., the 2α1 missing-edges in Group-1.1 are filled), where Q′
E11

={(
Q′

P (xi), yi

)
: xi ∈ XI

}
and ϕ11[P ′] = P ′

⊕ ◦ P ′.
Let E12 denote the event that the

(
Q′

E12
, ϕ12[·]

)
-target-paths are com-

pleted (i.e., the 2β1 missing-edges in Group-1.2 are filled), where Q′
E12

={(
xi,Q′−1

P (yi)
)

: yi ∈ YA

}
and ϕ12[P ′] = P ′ ◦ P ′

⊕.
Let E0 denote the event that the

(
Q′

E0
, ϕ0[·]

)
-target-paths are completed (i.e.,

the 3δ0 missing-edges in Group-0 are filled), where Q′
E0

= {(xi, yi) : xi ∈
X0} and ϕ0[P ′] = P ′ ◦ P ′

⊕ ◦ P ′.

Immediately, we can know that

p(τ ′) = Pr[P ′ ←$ Pn : E2 ∧ E11 ∧ E12 ∧ E0|P ′ 	 Q′
P ]. (8)

Obviously, lower-bounding the value of p(τ ′) is reduced to several subproblems
which can be applied directly with the counting framework (proposed in Sect.
5.1). For a “good” transcript, we can successfully obtain an appropriate lower
bound for each subproblem.7

7 In fact, as shown in proof sketch of Lemma 3, we will handle each subproblem with
an additional restriction.
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Definition of Bad Transcripts. Now, we will give the concrete definition
of “bad”/“good” transcripts. From the formal proof, it will be seen that each
attainable permutation transcript τ̂ can be extended to a “good” transcript
by adding a “good” key KKK. Thus, it is equivalent to study the properties of
“bad”/“good” keys for a fixed permutation transcript τ̂ .

Definition 8 (Bad Transcripts and Bad Keys). Fix arbitrarily a permu-
tation transcript τ̂ = (QE ,QP ). If the extended transcript τ ′ = (Q′

E ,Q′
P ,KKK)

satisfies KKK ∈ BadK =
⋃

1≤i≤9 BadKi, then we say the τ = (QE ,QP ,KKK) is
a “bad” transcript and the KKK is a “bad” key for τ̂ . Otherwise, we say the τ
is a “good” transcript and the KKK is a “good” key for τ̂ . More specifically, the
definitions of BadKi (1 ≤ i ≤ 9) are shown as follows.

KKK ∈ BadK1 ⇐⇒ There exists a Q′
E-path containing 3 fixed edges.

KKK ∈ BadK2 ⇐⇒ α2 >
qe

N1/2

∨
β2 >

qe

N1/2

∨
γ2 >

qe

N1/2

∨
α1 >

qe

N1/4

∨
β1 >

qe

N1/4

KKK ∈ BadK3 ⇐⇒ U,
(
Q′

P

(Q′
P (XII)

))

⊕
, Q′ −1

E (YB) and Q′
P (DX) are not

pariwise disjoint
∨

V, Q′
E(XII), Q′ −1

P

((Q′ −1
P (YB)

)
⊕

)
and

(Q′ −1
P (DY )

)
⊕ are not pairwise disjoint

KKK ∈ BadK4 ⇐⇒ |Q′
P (XI) \ (T11)⊕| >

α1

N1/4

∨
|Q′

E(XI) \ (S11)⊕| >
α1

N1/4

when α2, β2, γ2 ≤ qe

N1/2
and α1, β1 ≤ qe

N1/4

KKK ∈ BadK5 ⇐⇒ |Q′
P (XI) ∩ (Q′

E(XI)
)
⊕| >

α1

N1/4
when α2, β2, γ2 ≤ qe

N1/2

and α1, β1 ≤ qe

N1/4

KKK ∈ BadK6 ⇐⇒ |Q′−1
E (YA) \ T12| >

β1

N1/4

∨
|Q′−1

P (YA) \ (S12)⊕| >
β1

N1/4

when α2, β2, γ2 ≤ qe

N1/2
and α1, β1 ≤ qe

N1/4

KKK ∈ BadK7 ⇐⇒ |Q′−1
E (YA) ∩ (Q′−1

P (YA)
)
⊕| >

β1

N1/4
when α2, β2, γ2 ≤ qe

N1/2

and α1, β1 ≤ qe

N1/4

KKK ∈ BadK8 ⇐⇒ |X0 \ T0| >
δ0

N1/4

∨
|X0 \ (T0)⊕| >

δ0

N1/4

∨
|Y0 \ S0| >

δ0

N1/4

∨
|Y0 \ (S0)⊕| >

δ0

N1/4
when α2, β2, γ2

≤ qe

N1/2
and α1, β1 ≤ qe

N1/4

KKK ∈ BadK9 ⇐⇒ |X0 ∩ Y0| >
δ0

N1/4

∨
|(X0)⊕ ∩ Y0| >

δ0

N1/4
when α2, β2, γ2

≤ qe

N1/2
and α1, β1 ≤ qe

N1/4
,
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where Si (resp. Ti) are the sets of n-bit strings whose next-points (resp. previous-
points) are undefined when considering the subproblem related to Ei, for i ∈
{11, 12, 0}.8

It should be pointed out that the conditions for “bad” keys are not designed
only for the “real” world. In fact, all discussion in Sect. 4.1 depends only on
the relation between permutation transcript τ̂ and KKK (which is dummy in the
“ideal” world), and is irrelevant to which world we consider.

4.2 Two Technical Lemmas

In this subsection, we give two technical lemmas to upper-bound the values
of ε1 and ε2 in Lemma 1, respectively. More specifically, Lemma 3 considers
arbitrarily an attainable permutation transcript τ̂ , and lower-bounds the value of
Pr[Tre = (τ̂ ,KKK)])/(Pr[Tid = (τ̂ ,KKK)] for any “good” key KKK. This is the major task
in our formal proof. And Lemma 4 upper-bounds the value of Pr[KKK is bad for τ̂ ]
in “ideal” world, where τ̂ can be any attainable permutation transcript.

Lemma 3. Consider the 3KACSP construction, and fix arbitrarily an attainable
permutation transcript τ̂ = (QE ,QP ), where |QE | = qe and |QP | = qp. Assume
that n ≥ 32, 6 ≤ t ≤ N1/2

8 , 28(qe)
2

N ≤ qp ≤ qe
5 and 2qp + 5qe ≤ N

2 . Following the
Definition 8, if KKK is a good key for τ̂ , then we have the bound

Pr[Tre = (τ̂ ,KKK)]
Pr[Tid = (τ̂ ,KKK)]

≥ 1 − 97t ·
( qe

N3/4

)
− 10t2 ·

( qe

N

)
− ζ(qe).

Outline of the Proof. From Lemma 2 and the Eq. (8), we know that

Pr[Tre = (τ̂ ,KKK)]
Pr[Tid = (τ̂ ,KKK)]

= (N)qe · Pr[P ′ ←$ Pn : E2 ∧ E11 ∧ E12 ∧ E0|P ′ 	 Q′
P ]

≥ (N)qe · Pr[P ′ ←$ Pn : E2 ∧ Ẽ11 ∧ Ẽ12 ∧ Ẽ0|P ′ 	 Q′
P ]

= (N)qe

× Pr[P ′ ←$ Pn : E2|P ′ 	 Q′
P ] (9)

× Pr[P ′ ←$ Pn : Ẽ11|P ′ 	 Q′
P ∧ E2] (10)

× Pr[P ′ ←$ Pn : Ẽ12|P ′ 	 Q′
P ∧ E2 ∧ Ẽ11] (11)

× Pr[P ′ ←$ Pn : Ẽ0|P ′ 	 Q′
P ∧ E2 ∧ Ẽ11 ∧ Ẽ12], (12)

where Ẽ11 denotes the event E11

∧
|Core(ϕ11[P ′] 	 Q′

E11
)| ≥ (2 − 1

N1/4 )α1, Ẽ12

denotes the event E12

∧
|Core(ϕ12[P ′] 	 Q′

E12
)| ≥ (2 − 1

N1/4 )β1, and Ẽ0 denotes
the event E0

∧
|Core(ϕ0[P ′] 	 Q′

E0
)| ≥ (3 − 2t

N1/2 )δ0.

8 For completeness, we give directly the concrete definition here. A more natural way
is showing some intuition on “good” transcripts before such a rigorous definition.
The interested readers can refer to the Definitions 9 and 13 in full version [WYCD20]
for more interpretations about the properties of “bad”/“good” keys.
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We will see that it is easy to calculate the value of (9) when KKK is a “good”
key for τ̂ . Hence what’s left is to lower-bound the values of (10)–(12) for any
“good” transcript, respectively. Intrinsically, the 3 probabilities belong to the
same type of combinatorial problems (i.e., the Problem 1). That means we can
view Eqs. (10)–(12) as a 2-round, 2-round and 3-round instantiation of Problem
1, respectively. Interestingly, we find that the techniques used in [CLL+18] can
be tailored to obtain desired values of the 2-round cases. Nonetheless, our 2-
round cases are more involved and there are some new non-trivial tasks should be
solved. Furthermore, the 3-round case is a whole new challenge, and is much more
difficult than the 2-round ones. To handle it, we introduce a general framework
in Sect. 5, where we also give the high-level technical route.

However, knowing how to solve (9)–(12) individually is still far from enough.
It is a very big challenge to combine all the lower bounds together to obtain
an appropriate result, since those subproblems affect each other by sharing the
same resource of permutation P . There are numerous technical specifics should
be handled, and we defer the formal proof of Lemma 3 to Section 6 of the full
version [WYCD20].

Lemma 4. Consider the “ideal” world, and fix arbitrarily an attainable permu-
tation transcript τ̂ = (QE ,QP ), where |QE | = qe and |QP | = qp. Following the
Definition 8, if qp ≤ qe

5 , then it has

Pr[KKK ←$ I4n : KKK is bad for τ̂ ] ≤ 6 ·
( qe

N3/4

)
.

The formal proof of Lemma 4 is deferred to Section 7 of the full version
[WYCD20].

4.3 Concluding the Proof of Theorem 1

At this point,we are ready to complete the proof of Theorem 1. It can be inferred
that ε1 = 97t ·

(
qe

N3/4

)
+ 10t2 ·

(
qe
N

)
+ ζ(qe) and ε2 = 6 ·

(
qe

N3/4

)
from Lemma 3

and Lemma 4, respectively. Following the H coefficient method and Lemma 1,
we finally obtain

Advcca
3KACSP(qe, qp) ≤ ε1 + ε2

≤ 97t ·
( qe

N3/4

)
+ 10t2 ·

( qe

N

)
+ ζ(qe) + 6 ·

( qe

N3/4

)

≤ 98t ·
( qe

N3/4

)
+ 10t2 ·

( qe

N

)
+ ζ(qe),

where we use the fact that t ≥ 6 for the last inequality.

5 A Type of Combinatorial Problem

It is known that the proof of Lemma 3 can be reduced to several subproblems
having a similar form. In fact, the analysis of rKACSP can also be reduced to
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the same type of problems. That is a key perspective to simplify the task of
studying the security of rKACSP.

In this section, we will only study how to solve such type of problems individ-
ually, while the tricks of balancing all the subproblems are deferred to the formal
proof. More specifically, a general framework which can theoretically solve such
problems is proposed. For the reason of space, we here only instantiate it for the
3-round case and the full version [WYCD20] also gives the 2-round instance as
a warm-up.

First of all, the general definition of aforementioned problems is given as
follows.

Problem 1 (Completing A Group of Target-Paths). Consider a group of
(Q1, ϕ[·])-target-paths, where Q1 is the set of source-destination pairs. Let Q2

denote the set of fixed edges, and it has Q1 ⊥ Q2. Then, how to lower-bound
the value of

p = Pr[P ←$ Pn : ϕ[P ] 	 Q1|P 	 Q2]. (13)

It should be pointed out that each target-path in the group has the same
construction, and hence the same number of missing-edges. This number of
missing-edges is the principal character of Problem 1. In addition, we do not
care about the specific values of the source-destination pairs in Q1, as long as
they satisfy some “good” properties and Q1 ⊥ Q2. More importantly, our work
shows some evidence that, the problems with the same number of missing-edges
can be solved by similar techniques.

Compared to Chen et al.’s ad-hoc work, our techniques stand in a higher level
and unearth something more intrinsic. In a very high level, our method is reduced
to constructing a certain number of shared-edges by assigning inner-nodes.

Statement. For simplicity, we assume that all edges defined in this section are
well-defined and compatible from each other.

5.1 Counting Framework

In this subsection, we will study how to handle the Problem 1 with at least
2 missing-edges, since the case of 1 missing-edge is trivial. More specifically, a
counting framework will be proposed based on the notions of Core (see Definition
3) and shared-edge (see Definition 5). Before that, we will give some intuition
about the framework.

Intuition. Let U and V denote the domain and range of Q2, respectively. Then,
the sets S = In\U and T = In\V denote the sets of the strings whose next-points
and previous-point are undefined, respectively. In fact, we will only use the edges
from S to T to complete all the target-paths. Namely, the Cores we construct
must be strongly-disjoint with Q2. The reason why we can still construct enough
Cores is that, the number of known edges (i.e., |Q2|) is relatively rather small.
For example, |QP | = O(N3/4) is far more smaller than N (i.e., roughly 1 out of
N1/4) when n is big enough.
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Let PC = {P ∈ Pn : ϕ[P ] 	 Q1 ∧ P 	 Q2} denote the set of all correct per-
mutations extending Q2, and C = {C̃ : C̃ ⊥ Q2

∧
∃ P ∈ PC s.t. C̃ =

Core(ϕ[P ] 	 Q1)} denote the set of all possible Cores strongly-disjoint with
Q2. From the definition, we know that each correct permutation P ∈ PC must
determine a Core(ϕ[P ] 	 Q1). On the other side, for a specific C̃ ∈ C, there
exist exactly (N − |Q2| − |C̃|)! different correct permutations P ∈ PC such that
Core(ϕ[P ] 	 Q1) = C̃. That is because such P must contain the |Q2| edges fixed
in Q2 and the |C̃| edges fixed in C̃, while the rest of edges can be defined freely.
We can know that the above (|Q2|+ |C̃|) edges are distinct and have no conflict,
since it has C̃ ⊥ Q2. Additionally, it is easy to know that the size of the sample
space is equal to (N − |Q2|)!, thus we have

(13) =
|PC |

(N − |Q2|)!

≥
∑

C̃∈C
∣∣{P ∈ PC : Core(ϕ[P ] 	 Q1) = C̃}

∣∣
(N − |Q2|)!

=

∑
C̃∈C(N − |Q2| − |C̃|)!

(N − |Q2|)!

=

∑
m

∑
C̃∈C:|C̃|=m(N − |Q2| − m)!

(N − |Q2|)!

=
∑
m

∣∣∣
{

C̃ ∈ C : |C̃| = m
}∣∣∣

(N − |Q2|)m
. (14)

Intrinsically, we classify the correct permutations according to the cardinality
of the corresponding Core. In fact, we only interest in the Cores strongly-disjoint
with Q2, since they are easier to be counted. From Eq. (14), it is known that
the value of p can be lower-bounded, if we can count the number of Cores with
a specific cardinality and also know how to sum all the related terms up.

The Counting Framework. Based on the above intuition, a 4-step counting
framework is proposed in Fig. 4. Roughly, the first 3 steps aim to lower-bound
the number of Cores with a specific cardinality, and the last step will handle the
calculation of a summation. As shown in Fig. 4, our first task is to instantiate
the Problem 1 with specific parameters (i.e., Step 1). Then, we should propose
an appropriate assigning strategy for constructing a specific number of shared-
edges, and hence obtain the Cores with the specific cardinality (i.e., Step 2). Also,
we should count the number of possible assignments which can be constructed
from the above strategy (i.e., Step 3). Thus, we actually establish a lower bound
for the number of Cores with a specific cardinality. At last, we should calculate
a summation to obtain the final result (i.e., Step 4).
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Step 1: Modeling the problem

⎧
⎨

⎩

Determine the group of target-paths

Determine the set of fixed edges

Step 2: Constructing Cores

⎧
⎨

⎩

Study the method(s) for constructing 1 shared-edge

Propose an assigning strategy for multiple shared-edges

Step 3: Counting Cores

⎧
⎨

⎩

Study the underlying samplings

Determine each range of candidates (RoC)

Step 4: Calculating

⎧
⎨Use an appropriate tail inequality

Use an appropriate combinatorial inequality

Fig. 4. Illustration of the counting framework

5.2 The Key Subproblem in 3KACSP

In this subsection, we will instantiate the counting framework for the 3-round
case to show how it works. For brevity, we here only give the high-level technical
route, and all the details will be completed in the formal proof. First of all, we
abstract the 3-round subproblem in 3KACSP as follows.

Problem 2 (A Problem with 3 Missing-Edges). Let QE = {(x1, y1), . . . , (xq, yq)}
be the set of source-destination pairs of ϕ2[·]-target-paths, and QP =
{(u1, v1), . . . , (up, vp)} be the set of known edges, where ϕ2[P ] = P ◦ P⊕ ◦ P
and QP ⊥ QE . Then, how to lower-bound the value of

p2 = Pr[P ←$ Pn : ϕ2[P ] 	 QE |P 	 QP ]. (15)

Modeling The Problem. Following the counting framework in Fig. 4, our
first task is to make clear the group of target-paths (including the construction
and source-destination pairs) and the set of fixed edges. Obviously, Problem 2
is exactly the Problem 1 instantiated by ϕ[·] = ϕ2[·], Q1 = QE and Q2 = QP .
We denote X and Y as the domain and range of QE , respectively. And let
S = In \ {u1, . . . , up} and T = In \ {v1, . . . , vp} denote the sets of strings whose
next-points and previous-points are undefined, respectively. Then, it has |S| =
|T | = N − p.

As shown in (16), there are 2 inner-nodes (i.e., ∗i,1 and ∗i,2) to be assigned
in each (QE , ϕ2[·])-target-path. We refer to the 2 inner-nodes in such a target-
path as 1st-inner-node and 2nd-inner-node, respectively. Since a well-defined
assignment of all the inner-nodes (i.e., the tuple of (∗1,1, ∗1,2, . . . , ∗q,1, ∗q,2)) is
equivalent to a Core(ϕ2[·] 	 QE), we will not distinguish them from now on.
Moreover, we will count the number of assignments of all the inner-nodes, to
lower-bound the value of (15).
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(QE , ϕ2[·])-target-paths

⎧
⎪⎪⎨
⎪⎪⎩

〈x1
P−→ ∗1,1, ∗1,1

P−→ ∗1,2, (∗1,2)⊕
P−→ y1〉

. . .

〈xq
P−→ ∗q,1, ∗q,1

P−→ ∗q,2, (∗q,2)⊕
P−→ yq〉

(16)

Constructing Cores. In essence, constructing Cores with a specific cardinality
is equivalent to constructing a specific number of shared-edges. Our goal is to
construct Cores with 3q − k − h edges, where k and h are variables of positive
integers. It means that k + h shared-edges (each of them is used exactly in
2 paths) should be constructed. Naturally, we study 2 assigning methods for
constructing such shared-edges at first, and then use them to save k edges and
h edges, respectively. In addition, we also need to know how to construct the
edges, which are used exclusively in only 1 target-path (i.e., the ones are not
shared-edges).

Definition 9 (Exclusive-Element). We say an inner-node is assigned by an
exclusive-element, if it not creates any new shared-edge at this moment. In this
paper, we always use a notation related to w (e.g., wi) to denote an exclusive-
element.

Consider the (QE , ϕ2[·])-target-paths in (16), we will only focus on the shared-
edge involved exactly in 2 paths (i.e., each such shared-edge will save 1 edge).
It is easy to verify that a shared-edge is established once a 1st-inner-node is
assigned by an element from X or Y . Similarly, a shared-edge is also established
once a 2nd-inner-node is assigned by an element from X⊕ or Y . Therefore, for
constructing a shared-edge, we choose a target-path at first, and then assign a
proper value to its 1st-inner-node or 2nd-inner-node. In either case, the chosen
value determines the other path sharing an edge with the former one. To dis-
tinguish them, we refer to the later determined target-path as a negative-path
(denoted as path−), since it is determined passively by the assigning. Accord-
ingly, we call the former path as a positive-path (denoted as path+).

Next, we will further interpret the above process. Since both of the 2 inner-
nodes can be used to establish shared-edges, we discuss the 2 cases separately. At
first, we will show how to construct shared-edges by assigning 1st-inner-nodes.

� 1st1st1st-Inner-Node. In fact, we will construct exactly 1 shared-edge for each
path+. That is, the 2nd-inner-node of a path+ must be assigned by an exclusive-
element. According to the position of the shared-edge(s) in path−, there are 3
cases as follows.

– Case 1: Fix a target-path from x to y as the path+ at first. If we assign ẍ ∈ X
as its 1st-inner-node (i.e., the one with box), then the target-path from ẍ to
ÿ becomes the corresponding path− whose first edge (i.e., the bold one) is
the shared-edge. That is, the 1st-inner-node (i.e., the underline one) in path−

must be the same exclusive-element (i.e., w) as the 2nd-inner-node in path+.
Additionally, if ÿ is not assigned to the 1st- nor 2nd- inner-node of any target-
path, then we can assign an exclusive-element (i.e., w̃) to the 2nd-inner-node
of path−. As a result, we obtain a Type1a sharing-gadget (as shown in (17))
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containing 2 paths, 1 shared-edge and 2 exclusive-elements. And we refer to
the 2 paths as a Type1a-path+ and a Type1a-path−, respectively.

Type1a

sharing-gadget

⎧
⎨
⎩

〈x P−→ ẍ , ẍ
P−→ w, w⊕

P−→ y〉 (path+)

〈ẍ P−→ w, w
P−→ w̃, w̃⊕

P−→ ÿ〉 (path−)
(17)

– Case 2: Fix a target-path from x to y as the path+ at first. If we assign
ÿ ∈ Y as its 1st-inner-node (i.e., the one with box), then the target-path
from ẍ to ÿ becomes the corresponding path− whose third edge (i.e., the
bold one) is the shared-edge. That is, the 2th-inner-node (i.e., the underline
one) in path− must be assigned by x⊕. Additionally, if ẍ is not assigned
to the 1st-inner-node of any target-path and ẍ⊕ is not assigned to the 2nd-
inner-node of any target-path, then we can assign an exclusive-element (i.e.,
w̃) to the 1st-inner-node of path−. As a result, we obtain a Type1b sharing-
gadget (as shown in (18)) containing 2 paths, 1 shared-edge and 2 exclusive-
elements. And we refer to the 2 paths as a Type1b-path+ and a Type1b-path−,
respectively.

Type1b

sharing-gadget

⎧
⎨
⎩

〈x P−→ ÿ , ÿ
P−→ w, w⊕

P−→ y〉 (path+)

〈ẍ P−→ w̃, w̃
P−→ x⊕, x

P−→ ÿ〉 (path−)
(18)

– Case 3: Interestingly, a path− can share edges with 2 different paths+ simul-
taneously. Fix the target-path from x1 to y1 as path+

1 , and fix the target-
path from x2 to y2 as path+

2 . If we assign ẍ (resp. ÿ) as the 1st-inner-node
of path+

1 (resp. path+
2 ) (i.e., the ones with box), then the target-path from

ẍ to ÿ becomes the path− of path+
1 and path+

2 simultaneously. That is, the
1st-inner-node in path− must be the same exclusive-element (i.e., w) as the
2nd-inner-node in path+

1 , and the 2nd-inner-node in path− must be assigned
by (x2)⊕. As a result, we obtain a Type1c sharing-gadget (as shown in (19))
containing 3 paths, 2 shared-edge and 2 exclusive-elements. And we refer to
the 3 paths as a Type1c-path+

1 , a Type1c-path+
2 and a Type1c-path−, respec-

tively.

Type1c

sharing-gadget

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

〈x1
P−→ ẍ , ẍ

P−→ w, w⊕
P−→ y1〉 (path+

1 )

〈x2
P−→ ÿ , ÿ

P−→ w̃, w̃⊕
P−→ y2〉 (path+

2 )

〈ẍ P−→ w, w
P−→ (x2)⊕, x2

P−→ ÿ〉 (path−)

(19)

At this point, we have known how to construct a shared-edge for a path+ by
assigning its 1st-inner-node. Naturally, we can establish k such shared-edges if k
paths+ are considered. It is easy to verify that the following Method 1 actually
establishes k shared-edges for the involved paths+ and paths−.9

9 In brief, Step 1 establishes k shared-edges, while Step 2 produces no shared-edge.
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Method 1 for constructing kkk shared-edges:

−Step 1 Choose k proper target-paths as the paths+, and then choose
k proper elements from X ∪ Y as their 1st-inner-nodes, respec-
tively. Namely, we choose a Type1a/Type1b/Type1c-path− for
each of the k paths+.

−Step 2 For the paths+ and paths− determined in Step 1, we assign in
turn each undefined inner-node with an exclusive-element.

We can see that Method 1 allows the paths− to be a mixture of Type1a-,
Type1b- and Type1c- paths−. This is a key point to obtain an appropriate lower
bound in our proof, since it enlarge the number of candidates for paths− (i.e.,
roughly double the one involved in 2-round case10). It should be pointed out that
the number of paths− is determined by the 1st-inner-nodes of the k paths+, and
is not necessarily equal to k. In a sense, the k paths+ with their 1st-inner-nodes
determine almost “everything” about the involved paths+ and paths−.

� 2nd2nd2nd-Inner-Node. It is similar to construct a shared-edge by assigning the
2nd-inner-node of a path+. We will also construct exactly 1 shared-edge for each
path+. That is, the 1st-inner-node of a path+ must be assigned by an exclusive-
element. According to the position of the shared-edge(s) in path−, there are also
3 cases. For reason of the space, we omit the explanation here, and defer the
details to the corresponding part of full version [WYCD20].

– Case 1:

Type2a

sharing-gadget

⎧
⎨
⎩

〈x P−→ w, w
P−→ ẍ⊕ , ẍ

P−→ y〉 (path+)

〈ẍ P−→ y, y
P−→ w̃, w̃⊕

P−→ ÿ〉 (path−)
(20)

– Case 2:

Type2b

sharing-gadget

⎧
⎨
⎩

〈x P−→ w, w
P−→ ÿ , ÿ⊕

P−→ y〉 (path+)

〈ẍ P−→ w̃, w̃
P−→ w⊕, w

P−→ ÿ〉 (path−)
(21)

– Case 3:

Type2c

sharing-gadget

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

〈x1
P−→ w, w

P−→ ẍ⊕ , ẍ
P−→ y1〉 (path+

1 )

〈x2
P−→ w̃, w̃

P−→ ÿ , (ÿ)⊕
P−→ y2〉 (path+

2 )

〈ẍ P−→ y1, y1
P−→ w̃⊕, w̃

P−→ ÿ〉 (path−)

(22)

10 More details can be found in the corresponding part of the full version [WYCD20],
in which we also give the assigning strategy of 2-round case.
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At this point, we have known how to construct a shared-edge for a path+ by
assigning its 2nd-inner-node. Naturally, we can establish h such shared-edges if h
paths+ are considered. It is easy to verify that the following Method 2 actually
establishes h shared-edges for the involved paths+ and paths−.

Method 2 for constructing hhh shared-edges:

−Step 1 Choose h proper target-paths as the paths+, and then choose h
proper elements from X⊕ ∪ Y as their 2nd-inner-nodes, respec-
tively. Namely, we choose a Type2a/Type2b/Type2c-path− for
each of the h paths+.

−Step 2 For the paths+ and paths− determined in Step 1, we assign in
turn each undefined inner-node with an exclusive-element.

Similarly, the number of paths− is determined by the 2nd-inner-nodes of the
h paths+, and is not necessarily equal to h. In a sense, the h paths+ with their
2nd-inner-nodes determine almost “everything” about the involved paths+ and
paths−.

Combing the Method 1 and Method 2, we propose the assigning strategy
for constructing a Core with 3q − k − h edges. As shown in Fig. 5, Step 1 (resp.
Step 2) establishes k (resp. h) shared-edges, and Step 3 produces no shared-edge.
In brief, we fix k paths+ and their 1st-inner-nodes firstly, then other h paths+

and their 2nd-inner-nodes. At last, we assign all the undefined inner-nodes with
proper exclusive-elements.

Assigning Strategy:

−Step 1 Choose k proper target-paths as the paths+, and then choose k proper
elements from X ∪ Y as their 1st -inner-nodes, respectively.

−Step 2 Apart from the paths involved in Step 1, we choose h proper target-
paths as the paths+, and then choose h proper elements from X⊕ ∪Y
as their 2nd-inner-nodes, respectively.

−Step 3 Assign in turn each undefined inner-node with an exclusive-element.

Fig. 5. Assigning strategy for constructing a Core(ϕ2[·] � QE) with 3q − k − h edges

Counting Cores. Intrinsically, the assigning strategy consists of several sam-
plings such as the paths+, paths−, and so on. To lower-bound the number of
Cores constructed by Fig. 5, we should know how many elements can be chosen
for each sampling. For convenience, we introduce the notation RoC to denote
the range of candidates for a sampling.

Notation 5 (Range of Candidates). Let A denote a finite set to be sampled,
then we write RoC(A) as a set of elements which can be chosen into A.
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That is, we should determine the size of each RoC to count the number of
possible assignments. The analysis is rather cumbersome, and we defer it to the
formal proof. Here, we can just assume that the lower bound of the number of
Cores with 3q − k − h edges is given as follows.

#Cores3q−k−h ≥ LB(k, h), (23)

where #Cores3q−k−h denotes the number of Cores with 3q − k − h edges, and
LB(k, h) is a function of k and h.

Calculating the lower bound. At this point, we are ready to calculate a
lower bound of (15). Since |S| = |T | = N − p, and from the Eq. (14) and (23),
we finally obtain that

p2 ≥
∑
k,h

LB(k, h)
(N − p)3q−k−h

≥
∑

0≤k≤M
0≤h≤M

LB(k, h)
(N − p)3q−k−h

=
∑

0≤k≤M
0≤h≤M

MHypN,a,b,c(k, h)

︸ ︷︷ ︸
Use Lemma 5 to obtain
a proper lower bound

· (Major Terms)︸ ︷︷ ︸
Use Lemma 6 to obtain
a proper lower bound
independent of k and h

· (Minor Terms)︸ ︷︷ ︸
Obtain directly a
proper lower bound

independent of k and h

,

where MHypN,a,b,c is a multivariate hypergeometric distribution random vari-
able. It can be seen that a tail inequality (i.e., Lemma 5) and a combinatorial
inequality (i.e., Lemma 6) will be used during the calculation.

Lemma 5 (Chebyshev’s Inequality). Let X ∼ HypN,a,b be a hypergeometric

distribution random variable, that is, Pr[X = k] = (b
k)(N−b

a−k)
(Na) = (a)k(b)k(N−b)a−k

k!(N)a
.

Then we have

Pr[X > λ] ≤ ab(N − a)(N − b)
(λN − ab)2 (N − 1)

. (24)

Lemma 6. Let N, a, b, c, d be positive integers such that c + d = 2b and 2a +
2b ≤ N . Then

(N)a (N − 2b)a

(N − c)a (N − d)a
×

(N − b
2 )a

(N − b)a
≥ 1 − 8ab3

N3
. (25)

6 Conclusion and Discussion

The practical block-ciphers often iterate the same round function and use a
key-schedule algorithm to produce round-keys, while there are a few theoretical
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results supporting such designing philosophy. Particularly, only a little provable-
security work considers the dependence between components, since it always
becomes very complicated.

In this paper, we study a family of KAC construction with dependence, and
finally prove that 3KACSP construction has the same security level as the classic
3KAC construction. It means that the randomness of one random permutation
and a random 4n-bit string is enough to make the 3KAC construction achieve
the ideal security. To our knowledge, it is the first time to obtain a tight bound
about an incompletely-independent KAC construction with more than 2 rounds.

Besides the tight security analysis of 3KACSP, our most valuable contribu-
tions are the insights into the general rKACSP. Before our work, there is no
proof method handling the knotty dependence in a high level. Compared to
Chen et al.’s techniques, ours are more general and highly modular so that they
can be easily generalized. More concretely, we abstract a type of combinatorial
problems capturing the intrinsic randomness of rKACSP construction. To solve
such problems, we also propose a general counting framework and successfully
apply it to the cases with 2 and 3 missing-edges. Following the proof ideas in
this work, we give some intuition on the analysis of rKACSP.

Intuition on rKACSP. Intuitively, when handling a “good” transcript, the
paths between QE can be classified into r groups according to the number of fixed
edges. Similar to 3KACSP, we denote the Group-i as the group of paths whose
i edges are fixed by QP , where 0 ≤ i ≤ r − 1. The subproblem of completing
the paths in Group-i can be instantiated by Problem 1 with r − i missing-
edges. Inspired by the analysis of 3KACSP, the tricks used in (r − i)KACSP can
be tailored to solve the corresponding subproblems related to Group-i, where
1 ≤ i ≤ r −2. By induction, what’s left is only to solve a single r-round instance
of Problem 1. Our counting framework, as well as the notions of shared-edges
and assigning strategy can still work, but the circumstances of analysis would
be very complicated.

To our conjecture, rKACSP construction is also Θ(2
r

r+1n)-secure in the ran-
dom permutation model, which is a well-known result for classic rKAC construc-
tion.

Conjecture 1. Consider the rKACSP construction (see Eq. (1)), if P is a ran-
dom permutation, as well as the round keys KKK = (k0, . . . , kr) are random and
independent from each other, then rKACSP is Θ

(
2

r
r+1n

)
-secure in the random

permutation model.

In fact, the bottleneck of pushing our work to higher-round case is simply
the computational power. Following our ideas, the technical roadmap for ana-
lyzing rKACSP is rather clear, and one can solve it given sufficient energy. Hon-
estly, we consider that the complexity of proof specifics will increase very fast
(maybe exponentially) so that the proof may not be explicitly written out, but
we strongly believe that Conjecture 1 is intrinsically correct. If the conjecture is
true, then it is exactly a powerful support for the aforementioned broadly-used
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designing philosophy. Moreover, the proof complexity may just reveal the reason
why there often exist gaps between the practical and theoretical results.

Open Problems. Currently, our results only apply when the round keys are
random and independent from each other. Thus, it is unknown that whether we
can reduce the randomness of round keys without a significant loss of security.
Another challenging open problem is of course to generalize our results to larger
number of rounds. In addition, the new representation and counting framework
are rather generic, therefore we hope that they can be used in more scenarios.
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Abstract. In this paper, we prove that the nonce-based enhanced hash-

then-mask MAC (nEHtM) is secure up to 2
3n
4 MAC queries and 2n ver-

ification queries (ignoring logarithmic factors) as long as the number of

faulty queries μ is below 2
3n
8 , significantly improving the previous bound

by Dutta et al. Even when μ goes beyond 2
3n
8 , nEHtM enjoys graceful

degradation of security.
The second result is to prove the security of PRF-based nEHtM; when

nEHtM is based on an n-to-s bit random function for a fixed size s such
that 1 ≤ s ≤ n, it is proved to be secure up to any number of MAC queries
and 2s verification queries, if (1) s = n and μ < 2

n
2 or (2) n

2
< s < 2n−s

and μ < max{2
s
2 , 2n−s}, or (3) s ≤ n

2
and μ < 2

n
2 . This result leads

to the security proof of truncated nEHtM that returns only s bits of
the original tag since a truncated permutation can be seen as a pseu-
dorandom function. In particular, when s ≤ 2n

3
, the truncated nEHtM

is secure up to 2n− s
2 MAC queries and 2s verification queries as long

as μ < min{2
n
2 , 2n−s}. For example, when s = n

2
(resp. s = n

4
), the

truncated nEHtM is secure up to 2
3n
4 (resp. 2

7n
8 ) MAC queries. So trun-

cation might provide better provable security than the original nEHtM
with respect to the number of MAC queries.

Keywords: Message authentication codes · Beyond-birthday-bound
security · Mirror theory · Graceful degradation · Truncation

1 Introduction

MACs. A message authentication code (MAC) is typically built from a block
cipher, e.g., CBC-MAC [4], PMAC [6], OMAC [16], or from a cryptographic hash
function, e.g., HMAC [2]. At a high level, many of these constructions follow
the well-established UHF-then-PRF design paradigm: a message is first mapped
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onto a short string through a universal hash function (UHF), and then encrypted
through a fixed-input-length PRF to obtain a short tag. This method is simple, in
particular, being deterministic and stateless, yet its security caps at the so-called
birthday bound; any collision at the output of the UHF, which translates into
a tag collision, is usually enough to break the security of the scheme. However,
the birthday bound security might not be enough, in particular, when the MAC
construction is instantiated with a lightweight block cipher such as PRESENT [7],
LED [14] and GIFT [1] operating on small blocks. Better security bounds can be
obtained by incorporating in the tag computation a nonce (a value that never
repeats), e.g. in Wegman-Carter type MACs [5,9,29,31] or a random value [3,
11,17,18,24]. The focus of this paper is put on nonce-based MACs.

Nonce-Misuse Resistant MACs. The Wegman-Carter MAC (based on a
pseudorandom function) guarantees a strong security bound when nonces are
never reused. However, only a single nonce repetition can completely break its
security [20]. The problem is that it might be challenging to maintain the unique-
ness of the nonce in certain environments, for example, when a nonce is chosen
randomly from a small set, or when the state of the MAC is reset due to some
fault in its implementation. For this reason, there has been a considerable amount
of research on the construction of (nonce-based) MACs that provide security
under nonce misuse [9,10,12,23,26].

In this line of research, Cogliati and Seurin [9] proposed EWCDM, and then
Datta et al. [10] made a slight modification to it, dubbed DWCDM, in order
to reduce the number of block cipher keys. Both constructions provide beyond-
birthday-bound security in a nonce respecting settings, and secure up to the
birthday bound even in a nonce misuse setting. Mennink and Neves [23] also
proved the PRF-security of EWCDM up to 2n/(67n) queries in a nonce respect-
ing setting (without considering verification queries). However, their security
degrades to the birthday bound as soon as only a single nonce is misused.

Recently, Dutta et al. [12] proposed a new construction of MACs, which
is called nonce-based Enhanced Hash-then-Mask (nEHtM). They proved that
nEHtM is secure up to 2

2n
3 MAC queries and 2n verification queries in a nonce

respecting setting. Moreover, nEHtM enjoys graceful degradation of security in a
nonce misuse setting. More precisely, with respect to the number of faulty nonces
μ, their bound on the forging advantage includes μq/2n and μv/2n terms, where q
and v denote the number of MAC queries and the number of verification queries,
respectively. So the threshold number of MAC queries and verification queries
linearly decreases as the number of faulty queries increases in a logarithmic scale.

Our Results. In this paper, we revisit the nEHtM construction; when nEHtM
is based on a universal hash function H and a block cipher E, the tag for an
(n − 1)-bit nonce N and a message M is defined as

nEHtM[H,E]Kh,K(N,M) = EK(0||N) ⊕ EK(1||(HKh
(M) ⊕ N))

using a hash key Kh and a block cipher key K (see Fig. 1).
We prove that nEHtM is secure up to 2

3n
4 MAC queries and 2n verification

queries (ignoring logarithmic factors) as long as the number of faulty queries μ
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Fig. 1. nEHtM based on a universal hash function H and a block cipher E.

is below 2
3n
8 , significantly improving the previous bound by Dutta et al. Even

when μ goes beyond 2
3n
8 , nEHtM enjoys graceful degradation of security. It is

known that there is a forging attack on nEHtM using 2
n
2 faulty queries [12],

which means that μ cannot go beyond 2
n
2 . Figure 2 compares our new bound to

the previous one given in [12].
The second result is to prove the security of PRF-based nEHtM. When the

structure of nEHtM was first proposed in [24], it was based on independent
pseudorandom functions using random IVs instead of nonces. Its security has
been proved up to 2

2n
3 MAC queries, and later Dutta et al. [11] tightly proved

its 3n/4-bit security with a matching attack. In this work, we study its security
in a nonce respecting/misuse setting. More precisely, when nEHtM is based on
a single n-to-s bit random function (with domain separation) for a fixed size s
such that 1 ≤ s ≤ n, it is proved to be secure up to any number of MAC queries
and 2s verification queries, if (1) s = n and μ < 2

n
2 or (2) n

2 < s < 2n−s and
μ < max{2

s
2 , 2n−s}, or (3) s ≤ n

2 and μ < 2
n
2 . This result leads to the security

proof of truncated nEHtM that returns only s bits of the original tag since a
truncated permutation can be seen as a pseudorandom function. In particular,
when s ≤ 2n

3 , the truncated nEHtM is secure up to 2n− s
2 MAC queries and

2s verification queries as long as μ < min{2
n
2 , 2n−s}. For example, when s =

n
2 (resp. s = n

4 ), the truncated nEHtM is secure up to 2
3n
4 (resp. 2

7n
8 ) MAC

queries. So truncation might provide better provable security than the original
nEHtM with respect to the number of MAC queries.

Proof Technique. The main tool of our security proof is Mirror theory [27,28]
that systematically estimates the number of solutions to a system of equations.
However, we cannot directly apply Mirror theory to our problem in a black box
manner; the original theory requires that ξ2maxq ≤ 2n, where ξmax and q denote
the maximum component size and the number of edges, respectively, when a
system of equations is represented by a graph. Unfortunately, this restriction
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does not hold in our graph, possibly containing large components. Furthermore,
our system includes non-equations corresponding to verification queries. For this
reason, we need to refine and generalize Mirror theory. More precisely, we decom-
pose our graph into four subgraphs - the union of the components containing
at least one trail of length three, the union of “stars”, the set of isolated edges,
and the set of isolated vertices. For a subgraph whose components are small, we
sharply estimate the number of solutions to the subgraph, while we probabilis-
tically upper bound the number of larger components.

Recently, deterministic double-block hash-then-sum MACs have been proved
to be tightly secure up 3n

4 queries [21,22], while the security proof of nonce-based
constructions turn out to be even more challenging since (faulty) nonces can be
adaptively chosen by an adversary.

Comparison. Table 1 compares nEHtM with existing beyond-birthday-bound
MACs based on a block cipher E and a δ-AXU-hash function H. “Nonce” indi-
cates that whether it is nonce-based MAC or not. “# Keys” gives the total
number of hash and block cipher keys. The number of queries and the maximum
message length (in block) are denoted q and �, respectively. Security is evaluated
by assuming δ ≈ �

2n and v = 0. We always have the trivial bound μ < q. We
see that nEHtM is the first (nonce-based) MAC construction based on a block
cipher that provides 3n

4 -bit provable security.

Fig. 2. Comparison of the security bounds (in terms of the threshold number of MAC
queries and verification queries) as functions of μ. The solid lines (resp. dashed lines)
represent our bounds (resp. the previous bounds in [12]). In (b), we used parameter L
satisfying μ2L = LL · 2(L−1)n for each μ (see Theorem 2).
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Table 1. Comparison of nEHtM with existing beyond-birthday-bound MACs.

Scheme Nonce # Keys Security References

SUM-ECBC ✗ 4 �o(1)q
4
3 /2n + �4q

4
3 /22n [21,32]

PMAC-Plus ✗ 3 �
2
3 q

4
3 /2n + �2q/2n [21,33]

3kf9 ✗ 3 �
4
3 q

4
3 /2n + �2q2/22n + �6q4/23n [21,34]

LightMAC-Plus ✗ 3 q
4
3 /2n [21,25]

EWCDM ✓ 3
�q/2n + q

3
2 /2n if μ = 0 [9]

�q2/2n if μ ≥ 1

DWCDM ✓ 1
�q/2n + q/2

2n
3 if μ = 0 [10]

�q2/2n if μ ≥ 1

nEHtM ✓ 2 �μq/2n + �q3/22n [12]

nEHtM ✓ 2 �μ2/2n + �μq
3
2 /2

3n
2 + �

1
2 q2/2

3n
2 This work

2 Preliminaries

Notation. In all of the following, we fix a positive integer n such that n ≥ 3.
We denote 0n (i.e., n-bit string of all zeros) by 0. The set {0, 1}n is sometimes
regarded as a set of integers {0, 1, . . . , 2n − 1} by converting an n-bit string
an−1 · · · a1a0 ∈ {0, 1}n to an integer an−12n−1 + · · · + a12 + a0. We also identify
{0, 1}n with a finite field GF(2n) with 2n elements. For a positive integer q, we
write [q] = {1, . . . , q}.

Given a non-empty set X , x ←$ X denotes that x is chosen uniformly at
random from X . The set of all functions from X to Y is denoted Func(X ,Y), and
the set of all permutations of X is denoted Perm(X ). The set of all permutations
of {0, 1}n is simply denoted Perm(n). The set of all sequences that consist of b
pairwise distinct elements of X is denoted X ∗b. For integers 1 ≤ b ≤ a, we will
write (a)b = a(a − 1) · · · (a − b + 1) and (a)0 = 1 by convention. If |X | = a, then
(a)b becomes the size of X ∗b.

When two sets X and Y are disjoint, their (disjoint) union is denoted X �Y.
For a set X ⊂ {0, 1}n and λ ∈ {0, 1}n, we will write X ⊕ λ = {x ⊕ λ : x ∈ X}.
For a graph G = (V, E), we will interchangeably write |V| and |G| for the number
of vertices of G.

Almost Xor Universal Hash Functions. Let δ > 0, and let H : Kh ×M →
X be a keyed function for three non-empty sets Kh, M, and X . H is said to be
δ-almost XOR universal (AXU) if for any distinct M,M ′ ∈ M and X ∈ X ,

Pr [Kh ←$ Kh : HKh
(M) ⊕ HKh

(M ′) = X] ≤ δ.

For a positive integer q, fix M1, . . . ,Mq ∈ M. For a random key Kh ∈ Kh, let
Xi = HKh

(Mi) for i = 1, . . . , q. Then we can define an equivalence relation ∼ on
[q]: for α, β ∈ [q], α ∼ β if and only if Xα = Xβ . For some nonnegative integer
r, let P1, . . . ,Pr denote the equivalence classes of [q] with respect to ∼ such that
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pi =def |Pi| ≥ 2 for i = 1, . . . , r. Jha and Nandi [19] proved the following lemma,
which is also useful in our security proof.

Lemma 1. Let pi, i = 1 . . . , r, be the random variables as defined above. Then
we have

Ex

[
r∑

i=1

p2i

]
≤ 2q2δ,

where the expectation is taken over the uniform distribution of Kh ∈ Kh.

Proof. Let c denote the random variable that counts the number of “X-colliding”
pairs. More precisely,

c
def=

∣∣{(i, j) ∈ [q]2 : i < j and Xi = Xj

}∣∣ .

Then it is easy to show that

r∑
i=1

p2i = 2c +
r∑

i=1

pi ≤ 4c.

Furthermore, we have Ex[c] ≤
(
q
2

)
δ, which completes the proof. ��

PRFs and PRPs. Let F : K × X → Y be a keyed function with key space K,
domain X , and range Y, where X is a subset of {0, 1}∗. We will denote FK(X) for
F (K,X). A (q, t, l)-distinguisher against F is an algorithm A with oracle access
to a function from X to Y, making at most q oracle queries, each of length at
most l in blocks, running in time at most t, and outputting a single bit. The
advantage of A in breaking the PRF-security of F , i.e., in distinguishing F from
a uniformly randomly chosen function R ←$ Func(X ,Y), is defined as

AdvprfF (A) =
∣∣Pr

[
K ←$ K : AFK = 1

]
− Pr

[
R ←$ Func(X ,Y) : AR = 1

]∣∣ .

When X = Y and F (K, ·) is a permutation for each K ∈ K, the PRP-security
of F is defined as

AdvprpF (A) =
∣∣Pr

[
K ←$ K : AFK = 1

]
− Pr

[
R ←$ Perm(X ,Y) : AR = 1

]∣∣ .

For atk ∈ {prf, prp}, we define AdvatkF (q, t, l) as the maximum of AdvatkF (A) over
all (q, t, l)-distinguishers against F . We will consider PRP-security only for a
block cipher whose input size is fixed (e.g., X = {0, 1}n); in this case, we will
simply drop the parameter l. On the other hand, when we consider information
theoretic security, we will drop the parameter t.

Nonce-based MACs. Given four non-empty sets K, N , M, and T , a nonce-
based keyed function with key space K, nonce space N , message space M and
tag space T is simply a function F : K × N × M → T . Stated otherwise, it
is a keyed function whose domain is a cartesian product N × M. We denote
FK(N,M) for F (K,N,M).
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For K ∈ K, let AuthK be the MAC oracle which takes as input a pair
(N,M) ∈ N ×M and returns FK(N,M), and let VerK be the verification oracle
which takes as input a triple (N,M, T ) ∈ N ×M×T and returns 1 (“accept”) if
FK(N,M) = T , and 0 (“reject”) otherwise. We assume that an adversary makes
queries to the two oracles AuthK and VerK for a secret key K ∈ K. A MAC
query (N,M) made by an adversary is called a faulty query if the adversary has
already queried to the MAC oracle with the same nonce but with a different
message.

A (μ, q, v, t)-adversary against the nonce-based MAC-security of F is an
adversary A with oracle access to AuthK and VerK , making at most q MAC
queries to its first oracle with at most μ faulty queries and at most v verifica-
tion queries to its second oracle, and running in time at most t. We say that A
forges if any of its queries to VerK returns 1. The advantage of A against the
nonce-based MAC-security of F is defined as

Advmac
F (A) = Pr

[
K ←$ K : AAuthK ,VerK forges

]
.

where the probability is also taken over the random coins of A, if any. The
adversary is not allowed to ask a verification query (N,M, T ) if a previous query
(N,M) to AuthK returned T . When μ = 0, we say that A is nonce-respecting,
otherwise A is said nonce-misusing. However, the adversary is allowed to repeat
nonces in its verification queries.

We define Advmac
F (μ, q, v, t) as the maximum of Advmac

F (A) over all (μ, q, v, t)-
adversaries. When we consider information theoretic security, we will drop the
parameter t.

Nonce-based Enhanced Hash-then-Mask MACs. Let

H : Kh × M −→ {0, 1}n−1

(Kh,M) −→ HKh
(M)

be a keyed function. Given a block cipher

E : K × {0, 1}n −→ {0, 1}n

(K,X) −→ EK(X),

one can define the nEHtM MAC with key space Kh × K, nonce space {0, 1}n−1,
message space M and tag space {0, 1}n: for a key (Kh,K) ∈ Kh × K, a nonce
N ∈ {0, 1}n−1, a message M ∈ M, the tag is computed as follows:

nEHtM[H,E]Kh,K(N,M) = EK(0||N) ⊕ EK(1||(HKh
(M) ⊕ N)).

More generally, the underlying block cipher can be replaced by a compression
function E : K × {0, 1}n −→ {0, 1}m for some m < n.

Expectation Method. Consider the nEHtM construction based on H and E
using keys (Kh,K). Suppose that a distinguisher A adaptively makes q MAC
queries and v verification queries to either (AuthKh,K ,VerKh,K) for a random



704 W. Choi et al.

secret key (Kh,K) ∈ Kh×K (in the real world) or (Rand,Rej) (in the ideal world),
where Rand returns an independent random value (instantiating a truly random
function) and Rej always return 0 for every verification query. Furthermore, A
records all the queries in

τm
def= ((N1,M1, T1), . . . , (Nq,Mq, Tq)) ,

τv
def= ((N ′

1,M
′
1, T

′
1, b

′
1), . . . , (N

′
v,M ′

v, T ′
v, b′

v)) ,

where either AuthKh,K(Ni,Mi) = Ti or Rand(Ni,Mi) = Ti for i = 1, . . . , q, and
either VerKh,K(N ′

i ,M
′
i , T

′
i ) = b′

i or Rej(N ′
i ,M

′
i , T

′
i ) = b′

i(= 0) for i = 1, . . . , v,
according to the world that A interacts with.

At the end of the interaction, we will provide the distinguisher A with the
hash key Kh for free. In the ideal world, a dummy key Kh will be selected uni-
formly at random from Kh, and given to A. This will not degrade the adversarial
distinguishing advantage since the distinguisher is free to ignore this additional
information.

We will call
τ = (Kh, τm, τv)

the transcript of the attack; it contains all the information that A has obtained
at the end of the attack. When we consider an information theoretic distin-
guisher, we can assume that the distinguisher is deterministic without making
any redundant query.

A transcript τ is called attainable if the probability to obtain this transcript in
the ideal world is non-zero. Note that any key Kh ∈ Kh and any sequence of tags
(T1, . . . , Tq) ∈ ({0, 1}n)q uniquely determine an attainable transcript containing
them, and each attainable transcript appears in the ideal world with the same
probability, namely 1/Nq. We denote Γ the set of attainable transcripts. We also
denote Tre (resp. Tid) the probability distribution of the transcript τ induced by
the real world (resp. the ideal world). By extension, we use the same notation
to denote a random variable distributed according to each distribution.

In this setting, it is obvious that A’s distinguishing advantage upper bounds
A’s forging probability and when v = 0, we can derive PRF-security of the
of nEHtM. In order to upper bound the distinguishing advantage, we will use
Patarin’s coefficient-H technique; we partition the set of attainable transcripts
Γ into a set of “good” transcripts Γgood such that the probabilities to obtain
some transcript τ ∈ Γgood are close in the real world and the ideal world, and a
set Γbad of “bad” transcripts such that the probability to obtain any τ ∈ Γbad

is small in the ideal world. The lower bound in the ratio of the probabilities to
obtain a good transcript in both worlds will be given as a function of τ , and we
will take its expectation. This refinement is called the expectation method, first
introduced in [15], summarized in the following theorem.

Lemma 2. Fix a forging adversary A. Let Γ = Γgood � Γbad be a partition of
the set of attainable transcripts, where there exists a non-negative function ε1(τ)
such that for any τ ∈ Γgood,
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Pr [Tre = τ ]
Pr [Tid = τ ]

≥ 1 − ε1(τ),

and there exists ε2 such that Pr[Tid ∈ Γbad] ≤ ε2. Then one has

Advmac
nEHtM[H,E](A) ≤ Ex[ε1(τ)] + ε2,

where the expectation is taken over the distribution Tid in the ideal world.

Proof. Since the distinguisher’s output is a (deterministic) function of the tran-
script, its distinguishing advantage is upper bounded by the statistical distance
between Tid and Tre. So we have

Advmac
nEHtM[H,E](A) ≤ ‖Tre − Tid‖

def=
1
2

∑
τ∈Γ

|Pr[Tre = τ ] − Pr[Tid = τ ]| .

Moreover we have:

‖Tre − Tid‖ =
∑
τ∈Γ

Pr[Tid=τ ]>Pr[Tre=τ ]

(Pr[Tid = τ ] − Pr[Tre = τ ])

=
∑
τ∈Γ

Pr[Tid=τ ]>Pr[Tre=τ ]

Pr[Tid = τ ]
(

1 − Pr[Tre = τ ]
Pr[Tid = τ ]

)

≤
∑

τ∈Γgood

Pr[Tid = τ ]ε1(τ) +
∑

τ∈Γbad

Pr[Tid = τ ]

≤ Ex[ε1(τ)] + ε2.

��

3 Extended Mirror Theory

The goal of this section is to lower bound the number of solutions to a certain
type of system of equations and non-equations. For simplicity of notation, we
will denote N = 2n throughout this section.

We will represent a system of equations and non-equations by a graph. Each
vertex corresponds to an n-bit distinct unknowns. We will assume that the num-
ber of vertices is at most N/4, and by abuse of notation, identify the vertices with
the values assigned to them. We distinguish two types of edges, namely, =-labeled
edges and �=-labeled edges that correspond to equations and non-equations,
respectively. Each of the edge is additionally labeled by an element in {0, 1}n. So,
if two vertices P and Q are adjacent by an edge with label (λ,=) (resp. (λ, �=))
for some λ ∈ {0, 1}n, then it would mean that P ⊕ Q = λ (resp. P ⊕ Q �= λ).

Consider a graph G = (V, E= � E �=), where E= and E �= denote the set of
=-labeled edges and the set of �=-labeled edges, respectively. Then G can be seen
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as a superposition of two subgraphs G= =def (V, E=) and G �= =def (V, E �=). Let

P
λ
− Q denote a (λ,=)-labeled edge in G=. For � > 0 and a trail1

L : P0

λ1− P1

λ2− · · ·
λ�− P�

in G=, its label is defined as

λ(L)
def= λ1 ⊕ λ2 ⊕ · · · ⊕ λ�.

In this work, we will focus on a graph G = (V, E= � E �=) with certain prop-
erties, as listed below.

1. G= contains no cycle.
2. λ(L) �= 0 for any trail L in G=.
3. If P and Q are connected with a (λ, �=)-labeled edge, then they are not con-

nected by a λ-labeled trail in G=.

Any graph G satisfying the above properties will be called a nice graph. Given
a nice graph G = (V, E= � E �=), an assignment of distinct values to the vertices
in V satisfying all the equations in E= and all the non-equations in E �= is called
a solution to G. We remark that if we assign any value to a vertex P , then
=-labeled edges determine the values of all the other vertices in the component
containing P in G=, where the assignment is unique since G= contains no cycle,
and the values in the same component are all distinct since λ(L) �= 0 for any trail
L. Furthermore, any non-equation between two vertices in the same component
will be redundant due to the third property above.

The number of possible assignments of distinct values to the vertices in V is
(N)|V|. One might expect that when such an assignment is chosen uniformly at
random, it would satisfy all the equations and non-equations in G with probabil-
ity close to 1/Nq, where q denotes the number of =-labeled edges (i.e., equations)
in G=. Indeed, we can prove that the number of solutions to G is close to (N)|V|

Nq

up to a certain error (that can be negligible according to the parameters). We
begin with a simple bound that holds for any type of graphs.

In the following lemma, we partition the set of vertices V into two disjoint
sets, denoted Vkn and Vuk, respectively, and fix an assignment of distinct values
to the vertices in Vkn. Subject to this assignment, the number of possible assign-
ments of distinct values to the vertices in Vuk can be lower bounded (in a way
that the entire assignment becomes a solution to G).

Lemma 3. For a positive integer q and a nonnegative integer v, let G = (V, E=�
E �=) be a nice graph such that |E=| = q and |E �=| = v. Suppose that

1. V is partitioned into two subsets, denoted Vkn and Vuk;
2. there is no =-labeled edge that is incident to a vertex in Vkn;
3. there is no �=-labeled edge connecting two vertices in Vkn.
1 A trail is a walk in which all edges are distinct.



Improved Security Analysis for Nonce-Based Enhanced Hash-then-Mask 707

Suppose that G=
uk = (Vuk, E=) is decomposed into k components C1, . . . , Ck for

some k. Given a fixed assignment of distinct values to the vertices in Vkn, the
number of solutions to G, denoted h(G), satisfies

h(G)Nq

(N − |Vkn|)|Vuk|
≥ 1 − |V|2

N2

k∑
i=1

|Ci|2 − 2v

N
.

If every component of the graph contains exactly two vertices, then we can
improve the bound as follows.

Lemma 4. For a positive integer q and a nonnegative integer v, let G = (V, E=�
E �=) be a nice graph such that |E=| = q and |E �=| = v. Suppose that

1. V is partitioned into two subsets, denoted Vkn and Vuk;
2. there is no =-labeled edge that is incident to a vertex in Vkn;
3. there is no �=-labeled edge connecting two vertices in Vkn.

Suppose that G=
uk = (Vuk, E=) is decomposed into q components of size two. Given

a fixed assignment of distinct values to the vertices in Vkn, the number of solutions
to G, denoted h(G), satisfies

h(G)Nq

(N − |Vkn|)|Vuk|
≥ 1− 4|Vkn|2q

N2
− 4|Vkn|q2

N2
− 18q2

N2
− 32|Vkn|q3

3N3
− 16q4

N3
− 2v

N
− 16qv

N2
.

The proof of Lemma 3 and 4 will be deferred to the full version due to the space
limit. Finally, we consider a graph containing no =-labeled edges. So G= consists
only of isolated vertices.

Lemma 5. For a nonnegative integer v, let G = (V, E �=) be a nice graph such
that |E �=| = v. Suppose that

1. V is partitioned into two subsets, denoted Vkn and Vuk;
2. there is no �=-labeled edge connecting two vertices in Vkn.

Given a fixed assignment of distinct values to the vertices in Vkn, the number of
solutions to G, denoted h(G), satisfies

h(G)
(N − |Vkn|)|Vuk|

≥ 1 − 2v

N
.

Proof. The number of possible assignments of distinct values outside Vkn to
the vertices in Vuk is (N − |Vkn|)|Vuk|. Among these assignments, at most (N −
|Vkn|)|Vuk|−1 assignments violate any fixed �=-labeled edge. Therefore, we have

h(G) ≥ (N − |Vkn|)|Vuk| − v(N − |Vkn|)|Vuk|−1,

which means
h(G)

(N − |Vkn|)|Vuk|
≥ 1 − 2v

N
.

��
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Given an arbitrary nice graph G, we will decompose G= into four subgraphs,
denoted G=

3 , G=
2 , G=

1 and G=
0 , respectively, where

– G=
3 = (V3, E=

3 ) is the union of components containing at least one trail of
length three;

– G=
2 = (V2, E=

2 ) is the union of components containing at least one trail of
length two (i.e., stars), but not a trail of length three;

– G=
1 = (V1, E=

1 ) is the union of components of size two (i.e., trails of length
one);

– G=
0 = (V0, E=

0 ) is the set of isolated vertices.

For i = 0, 1, 2, 3, let E �=
i denote the set of �=-labeled edges connecting a vertex in

Vi and one in
⊔3

j=i Vj , and let

Gi =

⎛
⎝ 3⊔

j=i

Vj ,

3⊔
j=i

E=
j �

3⊔
j=i

E �=
j

⎞
⎠ .

In order to lower bound the number of solutions to G, we will first lower bound
the number of solutions to G3 and G2 using Lemma 3, and then G1 and G0 (= G)
using Lemma 4 and Lemma 5, respectively. In the following theorem, G3 and G2

can be any partition of the components containing trails of length two, but the
current partition will be used later in our security proof.

Theorem 1. For positive integers q and v, let G = (V, E= �E �=) be a nice graph
such that |E=| = q and |E �=| = v. With the notations defined as above, assume
that G=

2 is decomposed into k components C1, . . . , Ck for some k. Then the number
of solutions to G, denoted h∗(G), satisfies

h∗(G)2nq

(2n)|V|
≥ 1 − |G=

3 |4

22n
− (|G=

3 | + |G=
2 |)2

22n

k∑
i=1

|Ci|2 − 8(|G=
3 | + |G=

2 |)q2
22n

− 18q2

22n
− 16q4

23n
− 2v

2n
− 16qv

22n

provided that q ≤ 2n−3.

The proof of Theorem 1 will be deferred to Appendix A.

4 Security of nEHtM Based on a Block Cipher

In this section, we consider nEHtM[H,E] based on an (n − 1)-bit δ-AXU hash
function H and an n-bit block cipher E. A message M with an (n−1)-bit nonce
N is encrypted as

EK(0 ‖ N) ⊕ EK(1 ‖ (HKh
(M) ⊕ N))

by a hash key Kh and a block cipher key K (see Sect. 2).
Up to the PRP-security of E, the keyed permutation EK can be replaced by

a truly random permutation π. The goal of this section is to prove the security
of nEHtM[H,π] using Theorem 1. As a result, we have the following theorem.
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Theorem 2. Let δ > 0, and let H : K × M → {0, 1}n be a δ-almost universal
hash function. For positive integers μ, q, v, and L such that q + v ≤ 2n−3, we
have

Advmac
nEHtM[H,π](μ, q, v) ≤ 10q2δ

1
2

2n
+

16q4

23n
+ 5μ2δ +

μ2

2n
+

3μq
3
2 δ

2
n
2

+
6μ3δ

1
2

2n

+
24μq2

22n
+

25μ4

22n
+ (2L + 1)vδ +

2v

2n
+ 2n

(
eμ2

L2n

)L

+ ε

where

ε = 6qδ +
q

2n
+ 6q2δ2 +

q2δ

2n
+

18q2

22n
+ 4μδ +

24μ2δ
1
2

2n

+
4μ2qδ

2n
+

36μ3

22n
+

36μq2δ
3
2

2n
+

54μ2q2δ

22n
+

16qv

22n
.

Note that ε contains all the negligible terms, not dominating the entire bound.

Interpretation. Setting δ ≤ �
2n for a constant � and L = n, we have

Advmac
nEHtM[H,π](μ, q, v) = O

(
�

1
2 q2

2
3n
2

+
�μq

3n
2

2
3n
2

+
�μ2

2n
+

�nv

2n

)
.

4.1 Graph Representation of Transcripts

Suppose that an adversary A makes q MAC queries using at most μ faulty
nonces, and makes v verification queries. Throughout the security proof, we will
assume that

q + v ≤ 2n−3.

Let

τm = (Ni,Mi, Ti)1≤i≤q ,

τv =
(
N ′

j ,M
′
j , T

′
j , b

′
j

)
1≤j≤v

denote the list of MAC queries and the list of verification queries, respectively.
Note that A is given Kh for free at the end of the attack. Then, from the
transcript

τ = (Kh, τm, τv) ,

one can fix Xi =def HKh
(Mi) ⊕ Ni for i = 1, . . . , q, and X ′

j =def HKh
(M ′

j) ⊕ N ′
j

for j = 1, . . . , v.
The core of the security proof is to estimate the number of possible ways

of fixing evaluations of π in a way that π(0 ‖ Ni) ⊕ π(1 ‖ Xi) = Ti for i =
1, . . . , q, and π(0 ‖ N ′

j) ⊕ π(1 ‖ X ′
j) �= T ′

j for j = 1, . . . , v. We will identify
{π(0 ‖ Ni)} ∪

{
π(0 ‖ N ′

j)
}

with a set of unknowns

P = {P1, . . . , Pq1}
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where q1 ≤ q, since there might be collisions between nonces. Similarly, we
identify {π(1 ‖ Xi)} ∪

{
π(1 ‖ X ′

j)
}

with a set of unknowns

Q = {Q1, . . . , Qq2}

for some q2 ≤ q.
For i = 1, . . . , q, let π(0 ‖ Ni) = Pj ∈ P and let π(1 ‖ Xi) = Qk ∈ Q. Then

Pj and Qk are connected with a (Ti,=)-labeled edge. Similarly, for i = 1, . . . , v,
Pj and Qk are connected with a (T ′

i , �=)-labeled edge if π(0 ‖ N ′
i) = Pj and

π(1 ‖ X ′
i) = Qk. In this way, we obtain a graph on V =def P � Q, called the

transcript graph of τ and denoted Gτ . By definition, Gτ has no isolated vertices.
Furthermore, Gτ is a bipartite graph with independent sets P and Q.

4.2 Bad Transcripts

For fixed positive numbers L1 and L2, a transcript τ = (Kh, τm, τv) is defined
as bad if one of the following conditions holds.

– bad1 ⇔ there exists (i, j) ∈ [q]∗2 such that Ni = Nk for some k(�= i), Nj = Nl

for some l(�= j) and Xi = Xj .
– bad2 ⇔ bad2a ∨ bad2b ∨ bad2c ∨ bad2d ∨ bad2e, where

• bad2a ⇔ there exists i ∈ [q] such that Ti = 0;
• bad2b ⇔ there exists (i, j) ∈ [q]∗2 such that Ni = Nj and Ti = Tj ;
• bad2c ⇔ there exists (i, j) ∈ [q]∗2 such that Xi = Xj and Ti = Tj ;
• bad2d ⇔ there exists (i, j, k) ∈ [q]∗3 such that Xi = Xj , Nj = Nk and

Ti ⊕ Tj ⊕ Tk = 0;
• bad2e ⇔ there exists (i, j, k, l) ∈ [q]∗4 such that Xi = Xj , Nj = Nk,

Xk = Xl and Ti ⊕ Tj ⊕ Tk ⊕ Tl = 0.
– bad3 ⇔ bad3a ∨ bad3b, where

• bad3a ⇔ there exist i ∈ [q] and j ∈ [v] such that Ni = N ′
j , Xi = X ′

j and
Ti = T ′

j ;
• bad3b ⇔ there exist (i, j, k) ∈ [q]∗3 and l ∈ [v] such that Xi = Xj ,

Nj = Nk, Xk = X ′
l , N ′

l = Ni, and Ti ⊕ Tj ⊕ Tk ⊕ T ′
l = 0.

– bad4 ⇔ |{i ∈ [q] : Xi = Xj , Nj = Nk for some j, k s.t. j �= i, k �= j}| ≥ L1.
– bad5 ⇔ |{i ∈ [q] : Xi = Xj for some j such that j �= i}| ≥ L2.

If a transcript τ is not bad, then it will be called a good transcript. For a good
transcript τ , we observe that

1. G=
τ , being a bipartite graph, contains no cycle without bad1;

2. G=
τ contains no trail L such that λ(L) = 0 without bad1 ∨ bad2;

3. if two vertices are connected by a λ-labeled trail in G=, then they cannot be
connected with a (λ, �=)-labeled edge without bad1 ∨ bad3.

Furthermore, we see that G=
τ contains no trail of length 5 without bad1. With

this observation, we conclude that for a good transcript τ ,

1. the transcript graph Gτ is nice (as defined in Sect. 3);
2. |G| ≤ 2(q + v) ≤ 2n−2.
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These properties allow us to use Theorem 1 later. The following lemma upper
bounds the probability of bad transcripts in the ideal world.

Lemma 6. With the notations defined as above, it holds that

Pr[Tid ∈ Γbad] ≤ 2μqδ

L1
+

q

2n
+

q2δ

L2
+

q2δ

2n
+ 4μ2δ +

μ2

2n
+

3μq
3n
2 δ

2
n
2

+
4μ2qδ

2n
+ (2L3 + 1)vδ + 2n

(
eμ2

L32n

)L3

.

Proof. In order to analyze bad3b later, we need to define a certain auxiliary event,
which is parameterized by a positive number L3; let

IT
def= {i ∈ [q] : Ni = Nj and Ti ⊕ Tj = T for some j < i}

for T ∈ {0, 1}n, and let
-aux ⇔ there exists T ∗ ∈ {0, 1}n such that |IT ∗ | > L3.

1. For fixed T ∈ {0, 1}n and i ∈ [q], suppose that i ∈ IT . It means that the
i-th query is faulty, and that Ti ⊕Tj = T for any (previous) j-th query such
that Ni = Nj , which happens with probability at most μ/2n. Therefore we
have

Pr [aux] ≤ 2n

(
μ

L3

) ( μ

2n

)L3

≤ 2n

(
eμ2

L32n

)L3

.

2. The number of queries using any repeated nonce is at most 2μ. So the
number of pairs (i, j) ∈ [q]∗2 such that Ni = Nk for some k(�= i) and
Nj = Nk′ for some k′(�= j) is at most 4μ2. For each of such pairs, say (i, j),
the probability that Xi = Xj is at most δ. Therefore, we have

Pr[bad1] ≤ 4μ2δ.

3. The probability that Ti = 0 for some i ∈ [q] is q
2n ; namely,

Pr[bad2a] ≤ q

2n
.

4. By symmetry, we can assume that i < j, which means that Nj is a faulty
nonce. For each MAC query using a faulty nonce, there are at most μ other
queries using the same nonce. So the number of pairs (i, j) such that i < j
and Ni = Nj is at most μ2. For each of such pairs (i, j), the probability that
Ti = Tj is 1

2n . Therefore, we have

Pr [bad2b] ≤ μ2

2n
.

Similarly, we can show that

Pr [bad2c] ≤ q2δ

2n
.



712 W. Choi et al.

5. Consider the case that i > max{j, k}. On the i-th query, the number of
pairs (j, k) ∈ [q]∗2 such that Nj = Nk is at most 2μ2. For each such pair
(j, k), the probability that Ti ⊕ Tj ⊕ Tk = 0 and Xi = Xj is δ

2n . By similar
arguments for the other cases (i.e., j > max{i, k} and k > max{i, j}), we
see

Pr [bad2d] ≤ 4μ2qδ

2n
.

6. Consider the case that k > max{i, j, l} and the k-th query makes bad2e. For
each Z ∈ Kh, let

IZ
def=

{
(i, j) ∈ [l − 1]∗2 : HZ(Mi) ⊕ HZ(Mj) = Ni ⊕ Nj

}
,

JZ
def= {l ∈ [l − 1] : HZ(Mk) ⊕ HZ(Ml) = Nk ⊕ Nl} .

Since H is δ-almost XOR universal, we have
∑

Z∈Kh
|IZ | ≤ q2δ|Kh| and∑

Z∈Kh
|JZ | ≤ qδ|Kh|. Then the probability that the k-th query completes

a trail of length 4 satisfying Ti ⊕ Tj ⊕ Tk ⊕ Tl = 0 is upper bounded by

∑
Z∈Kh

Pr [Kh = Z] · min
{

|IZ | |JZ |
2n

, 1
}

≤ 1
|Kh|

∑
Z∈Kh

√
|IZ | |JZ |

2n

≤ 1
|Kh|

√√√√( ∑
Z∈Kh

|IZ |
2n

) ( ∑
Z∈Kh

|JZ |
)

≤
√

q3δ2

2n
,

where the last inequality follows from the Cauchy-Schwarz inequality. Since
the k-th query makes an inner edge of the trail, it should be a faulty query.
Therefore this case happens with probability at most

μ

√
q3δ2

2n
. (1)

Next, consider the case that l > max{i, j, k} and the l-th query makes bad2e.
For each Z ∈ Kh, let

R def= {i ∈ [l − 1] : Ni = Nj for some j ∈ [l − 1] such that j �= i} ,

I ′
Z

def= {(i, j) ∈ ([l − 1] × R) : i �= j and HZ(Mi) ⊕ HZ(Mj) = Ni ⊕ Nj} ,

J ′
Z

def= {k ∈ R : HZ(Mk) ⊕ HZ(Ml) = Nk ⊕ Nl} .

Since |R| ≤ 2μ and H is δ-almost XOR universal, we have
∑

Z∈Kh
|I ′

Z | ≤
2μqδ|Kh| and

∑
Z∈Kh

|J ′
Z | ≤ 2μδ|Kh|. Then the probability that the l-th

query completes a trail of length 4 satisfying Ti ⊕ Tj ⊕ Tk ⊕ Tl = 0 is upper
bounded by
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∑
Z∈Kh

Pr [Kh = Z] · min
{

|I ′
Z | |J ′

Z |
2n

, 1
}

≤ 1
|Kh|

∑
Z∈Kh

√
|I ′

Z | |J ′
Z |

2n

≤ 1
|Kh|

√√√√( ∑
Z∈Kh

|I ′
Z |

2n

) ( ∑
Z∈Kh

|J ′
Z |

)
≤

√
4μ2qδ2

2n
.

Therefore this case happens with probability at most

q

√
4μ2qδ2

2n
. (2)

By symmetry, (1) and (2) cover the other cases (i.e., i > max{j, k, l} and
j > max{i, k, l}). Therefore we have

Pr [bad2e] ≤ μ

√
q3δ2

2n
+ q

√
4μ2qδ2

2n
=

3μq
3n
2 δ

2
n
2

.

7. When an adversary makes a verification query (N ′
j ,M

′
j , T

′
j), there is at most

one MAC query (Ni,Mi, Ti) such that Ni = N ′
j and Ti = T ′

j without bad2b,
since there would not be a pair of MAC queries whose nonces and tags are
all the same.2 For this pair of indices, the probability that Xi = X ′

j is upper
bounded by vδ. Therefore, we have

Pr[bad3a | ¬bad2b] ≤ vδ.

8. Suppose that an adversary makes a verification query (N ′
l ,M

′
l , T

′
l ), assuming

bad1 ∨ aux did not happen. In order for this verification query to complete
a cycle of length 4 containing it, there should be only a single MAC query,
say (Ni,Mi, Ti), such that Ni = N ′

l since otherwise we have bad1. Let T =
Ti ⊕ T ′

l . Then it should be the case that either Xj = Xi or Xj = X ′
l for

some j ∈ IT , which happens with probability at most 2L3δ. Therefore, we
have

Pr [bad3b ∧ ¬bad1 ∧ ¬aux] ≤ 2L3vδ.

9. The number of possible choices for j is at most 2μ since the j-th query uses
a repeated nonce. For a fixed i ∈ [q], the probability that Xi = Xj is at
most δ. By Markov inequality, we have

Pr [bad4] ≤ 2μqδ

L1
.

10. By Markov inequality, we have

Pr [bad5] ≤ q2δ

L2
.

2 For simplicity of analysis, one can assume that an adversary begins making verifica-
tion queries after it makes all the MAC queries.
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All in all, we have

Pr[Tid ∈ Γbad] ≤ Pr [bad1 ∨ bad2 ∨ bad3 ∨ bad4 ∨ bad5]

≤ Pr [aux] + Pr [bad1] +
∑

x∈{a,b,c,d,e}
Pr [bad2x]

+ Pr [bad3a | ¬bad2b] + Pr [bad3b ∧ ¬bad1 ∧ ¬aux]
+ Pr [bad4] + Pr [bad5]

≤ 2μqδ

L1
+

q

2n
+

q2δ

L2
+

q2δ

2n
+ 4μ2δ +

μ2

2n
+

3μq
3n
2 δ

2
n
2

+
4μ2qδ

2n
+ (2L3 + 1)vδ + 2n

(
eμ2

L32n

)L3

.

��

4.3 Concluding the Proof Using Mirror Theory

For any good transcript τ , let G=
τ denote the graph obtained by deleting all �=-

labeled edges from Gτ . We can decompose G=
τ into four subgraphs in the same

way as we did in Sect. 3, namely,

G=
τ = G=

3 � G=
2 � G=

1 � G=
0 ,

where G=
3 is the union of the components containing at least one trail of length

three, G=
2 is the union of “stars”, G=

1 is the set of isolated edges, and G=
0 is the set

of isolated vertices. We also decompose G=
3 and G=

2 into connected components
as follows.

G=
3 = (V3, E=

3 ) = C′
1 � · · · � C′

k′ ,

G=
2 = (V2, E=

2 ) = C1 � · · · � Ck,

for some k and k′. Let ci = |Ci| for i = 1, . . . , k. We will also write c = |G=
2 | (=∑k

i=1 ci) and c′ = |G=
3 |.

The probability of obtaining τ in the real world is computed over the ran-
domness of π. By Theorem 1, the number of possible ways of evaluating π at
the unknowns in V (i.e., h∗(Gτ )) is lower bounded by

(2n)|V|
2nq

(1 − ε1(τ))

where

ε1(τ)
def=

c′4

22n
+

(c + c′)2

22n

k∑
i=1

ci
2 +

8(c + c′)q2

22n
+

18q2

22n
+

16q4

23n
+

2v

2n
+

16qv

22n
. (3)

Since the probability that π realizes each assignment is exactly 1/(2n)|V|, and

Pr [Tid = τ ] =
1

|Kh| · 2nq
,
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we have
Pr [Tre = τ ]
Pr [Tid = τ ]

≥ 1 − ε1(τ). (4)

Upper Bounding c and c′. Each component C′
i has a trail of length 3, so

without bad1, V3 ∩P should contain at least one vertex of degree one (i.e., a leaf
of C′

i). We fix such a vertex, denoted P ∗
i , and its unique neighbor, denoted Q∗

i ,
for every i = 1, . . . , k′. Again, without bad1, every vertex of C′

i except P ∗
i and

Q∗
i should be connected with Q∗

i by a trail of length 1, 2, or 3. Without bad4,
the number of vertices in V3 ∩ P that are connected with some Q∗

i by a trail of
length 3 is at most L1. The number of vertices in V3∩Q that are connected with
some Q∗

i by a trail of length 2 is at most μ. Since k′ ≤ L1, we have

c′ ≤ 2k′ + L1 + μ ≤ 3L1 + μ. (5)

On the other hand, we observe that each edge of E=
2 � E=

3 corresponds to
either a repeated nonce or a collision on X. Therefore, we have

c + c′ = k + k′ + |E=
2 � E=

3 | ≤ k + k′ + 2μ + L2 ≤ 2L2 + 3μ (6)

since k + k′ ≤ μ + L2.

Taking the Expectation of ε1(τ). Connected components Ci of G=
2 can be

classified into two types; a vertex P ∈ P and its adjacent vertices in Q, called
a P -star, and a vertex Q ∈ Q and its adjacent vertices in P, called a Q-star.
By renaming the components, let D1, . . . ,Dr denote the Q-stars in G=

2 , and
let D′

1, . . . ,D′
s denote the P -stars in G=

2 for some r and s. Let di = |Di| for
i = 1, . . . , r and let d′

i = |D′
i| for i = 1, . . . , s. When a single nonce is repeatedly

used d+1 times for any d ≥ 1, the d faulty nonces will make a P -star containing
d + 2 vertices. Therefore we have

s∑
i=1

(d′
i − 2) ≤ μ

and
s∑

i=1

d′
i
2 ≤

s∑
i=1

(d′
i − 2)2 + 4

s∑
i=1

(d′
i − 1) ≤ μ2 + 4μ.

Each Q-star Di corresponds to an equivalent class of size di − 1 (defined in
Lemma 1). Therefore we have

(c + c′)2

22n

k∑
i=1

ci
2 ≤ (2L2 + 3μ)2

22n

k∑
i=1

ci
2

=
(2L2 + 3μ)2

22n

(
r∑

i=1

di
2 +

s∑
i=1

d′
i
2

)

≤ (2L2 + 3μ)2

22n

(
r∑

i=1

di
2 + μ2 + 4μ

)
(7)
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Furthermore, by using Lemma 1 with pi = di − 1 and a δ-AXU hash function
(N,M) → N ⊕ HKh

(M), and since di ≥ 3 for every i = 1, . . . , r, we have

Ex

[
r∑

i=1

di
2

]
≤ Ex

[
r∑

i=1

(di − 1)2 +
r∑

i=1

2di

]
≤ Ex

[
r∑

i=1

3(di − 1)2
]

≤ 6q2δ. (8)

By (3), (5), (6), (7) and (8), we have

Ex [ε1(τ)] ≤ (3L1 + μ)4

22n
+

(2L2 + 3μ)2(6q2δ + μ2 + 4μ)
22n

+
8(2L2 + 3μ)q2

22n
+

18q2

22n
+

16q4

23n
+

2v

2n
+

16qv

22n
. (9)

By (4), (9), Lemma 2 and Lemma 6, and by setting L1 = μ
3 and L2 = 2n−1δ

1
2 ,

we obtain Theorem 2.

5 Security of nEHtM Based on a Pseudorandom Function

In this section, we consider nEHtM[H,F ] based on an (n − 1)-bit δ-AXU hash
function H and an n-to-s bit keyed function F , where 1 ≤ s ≤ n. Up to the
PRF-security of F , we will replace F by a truly random function ρ, and prove
the security of nEHtM[H, ρ].

Graph Representation of Transcripts. Suppose that an adversary A
makes q MAC queries using at most μ faulty nonces, and makes v verification
queries, obtaining

τm = (Ni,Mi, Ti)1≤i≤q ,

τv =
(
N ′

j ,M
′
j , T

′
j , b

′
j

)
1≤j≤v

.

as well as Kh for free at the end of the attack. Once Kh is fixed, we can also fix
Xi = HKh

(Mi) ⊕ Ni for i = 1, . . . , q, and X ′
j = HKh

(M ′
j) ⊕ N ′

j for j = 1, . . . , v.
Then, exactly in the same way as we did in Sect. 4, we can define the transcript
graph of τ , denoted Gτ , and the graph obtained by deleting all �=-labeled edges
from Gτ , denoted G=

τ .

Bad Transcripts. A transcript τ = (Kh, τm, τv) is defined as bad if one of the
following conditions holds.

– bad1 ⇔ there exists (i, j) ∈ [q]∗2 such that Ni = Nk for some k(�= i), Nj = Nk′

for some k′(�= j), and Xi = Xj .3

– bad2 ⇔ there exist i ∈ [q] and j ∈ [v] such that Ni = N ′
j , Xi = X ′

j , and
Ti = T ′

j .
– bad3 ⇔ there exist (i, j, k) ∈ [q]∗3 and l ∈ [v] such that Xi = Xj , Nj = Nk,

Xk = X ′
l , N ′

l = Ni, and Ti ⊕ Tj ⊕ Tk ⊕ T ′
l = 0.

3 It is possible that k = j and k′ = i.
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If a transcript τ is not bad, then it will be called a good transcript. For a good
transcript τ , we observe that

1. G=
τ , being a bipartite graph, contains no cycle without bad1;

2. if two vertices are connected by a λ-labeled trail in G=, then they cannot be
connected with a (λ, �=)-labeled edge without bad1 ∨ bad2 ∨ bad3.

For a good transcript τ , the transcript graph G=
τ is decomposed into trees. Due

to the second property above, any �=-labeled edge connects two different trees.

Upper Bounding the Probability of Bad Events. In order to upper
bound the probability of each bad event (in the ideal world), we fix a positive
number L, let

IT
def= {i ∈ [q] : Ni = Nj and Ti ⊕ Tj = T for some j such that j < i}

for T ∈ {0, 1}s, and then define the following two auxiliary events.

– aux1 ⇔ there exists (i, j) ∈ [q]∗2 such that Ni = Nj and Ti = Tj .
– aux2 ⇔ there exists T ∗ ∈ {0, 1}s such that |IT ∗ | > L.

Events aux1, aux2, bad1, bad2 and bad3 are similar to bad2b, aux, bad1, bad3a and
bad3b defined in Sect. 4, respectively (except that the tag size is s bits). So we
have

Pr[aux1] ≤ μ2

2s
, Pr[aux2] ≤ 2s

(
eμ2

L2s

)L

, Pr[bad1] ≤ 4μ2δ,

Pr[bad2 ∧ ¬aux1] ≤ vδ, Pr[bad3 ∧ ¬bad1 ∧ ¬aux2] ≤ 2Lvδ,

and hence,

Pr[Tid ∈ Γbad] ≤ Pr[aux1 ∨ aux2 ∨ bad1 ∨ bad2 ∨ bad3]

≤ μ2

2s
+ 4μ2δ + (2L + 1)vδ + 2s

(
eμ2

L2s

)L

. (10)

Concluding the Proof. For any good transcript τ , let V denote the vertex
set of G=

τ . Then the number of components of G=
τ is |V| − q, so the number of

solutions to the set of all equations in G=
τ is exactly 2s(|V|−q). When a single �=-

labeled edge is replaced by a =-labeled edge, the resulting graph has |V| − q − 1
components. This means that there are exactly 2s(|V|−q−1) solutions to G=

τ that
violate a single non-equation. Since there are v non-equations, we conclude that
the number of solutions to Gτ is at least

2s(|V|−q) − v2s(|V|−q−1).

Since the probability that ρ realizes each assignment (in the real world) is exactly
1/2s|V|, we have

Pr [Tre = τ ] ≥ 1
|Kh|

(
1

2sq
− v

2s(q+1)

)
.
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Since
Pr [Tid = τ ] =

1
|Kh| · 2sq

,

we have
Pr [Tre = τ ]
Pr [Tid = τ ]

≥ 1 − v

2s
. (11)

By (10), (11) and Lemma 2, we obtain following theorem.

Theorem 3. Let δ > 0, and let H : K × M → {0, 1}n be a δ-almost universal
hash function. For positive integers μ, q, v, and for any L > 0, we have

Advmac
nEHtM[H,ρ](μ, q, v) ≤ μ2

2s
+ 4μ2δ +

v

2s
+ (2L + 1)vδ + 2s

(
eμ2

L2s

)L

.

When L = μ + 1, we have Pr [aux2] = 0 since |IT | ≤ μ. Then, by Theorem 3, we
have

Advmac
nEHtM[H,ρ](μ, q, v) ≤ μ2

2s
+ 4μ2δ +

v

2s
+ (2μ + 3)vδ. (12)

When 1 ≤ s ≤ 1
δ2s , let L = 1

δ2s . Assuming 2eμ2δ ≤ 1, we have

2s
(
eμ2δ

) 1
δ2s ≤ 2s

(
eμ2δ

)s ≤ 2eμ2δ,

and hence,

Advmac
nEHtM[H,ρ](μ, q, v) ≤ μ2

2s
+ (2e + 4)μ2δ +

3v

2s
+ vδ. (13)

Alternative Bound. Interestingly, we can obtain an alternative bound by
slightly modifying the bad events. A transcript τ is defined as bad if it satisfies
bad1 (as defined above), bad′

2 or bad′
3, where

– bad′
2 ⇔ there exist i ∈ [q] and j ∈ [v] such that Ni = N ′

j and Xi = X ′
j .

– bad′
3 ⇔ there exist i ∈ [q] and j ∈ [v] such that Ni = Nk for some k(�= i) and

Xi = X ′
j .

If two vertices are connected by a λ-labeled trail in G=, then they cannot be
connected with a (λ, �=)-labeled edge without bad′

2 ∨ bad′
3.

1. When an adversary makes a verification query (N ′
j ,M

′
j , T

′
j), there are at most

μ + 1 MAC queries (Ni,Mi, Ti) such that Ni = N ′
j . For each such pair, the

probability that Xi = X ′
j is upper bounded by δ. Therefore, we have

Pr[bad′
2] ≤ (μ + 1)vδ.

2. For a verification query (N ′
j ,M

′
j , T

′
j) and a query (Ni,Mi, Ti) using any

repeated nonce, the probability that Xi = X ′
j is at most δ. Therefore, we

have
Pr[bad′

3] ≤ 2μvδ.
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With this type of bad transcripts, we have the following theorem.

Theorem 4. Let δ > 0, and let H : K × M → {0, 1}n be a δ-almost universal
hash function. For positive integers μ, q, v, we have

Advmac
nEHtM[H,ρ](μ, q, v) ≤ 4μ2δ +

v

2s
+ (3μ + 1)vδ.

The main difference of Theorem 4 from Theorem 3 is that the tag size s does
not affect the number of faulty queries μ, while this bound contains the term
μvδ (which is not in Theorem 3), so μ possibly limits the number of verification
queries v.

Interpretation. Given that nEHtM[H, ρ] is secure up to any number of MAC
queries and 2s verification queries, one might wonder how many faulty queries
can be allowed. Assuming δ ≈ 1

2n , we observe the following:

1. When n
2 < s ≤ 1

δ2s , nEHtM[H, ρ] is secure as long as μ < max{2
s
2 , 2n−s}

by (13) and Theorem 4.
2. When s ≤ n

2 , nEHtM[H, ρ] is secure as long as μ < 2
n
2 by Theorem 4.

When s = n, we have

Advmac
nEHtM[H,ρ](μ, q, v) ≤ 4μ2δ +

μ2

2n
+

2eμ2

n2n
+ (2n + 1)vδ +

v

2n

by Theorem 3 with L = n(= s), which means that nEHtM[H, ρ] is secure when
μ < 2

n
2 and v < 2n

n .

6 Security of Truncated nEHtM

In this section, we analyze how tag truncation affects the security of nEHtM
when nEHtM is based on a block cipher E (which is modeled as a truly random
permutation π). We can take two different approaches.

First, we can use Theorem 5 in [8]; let F : K×N ×M → {0, 1}n be a nonce-
based MAC with key space K, nonce space N , message space M and tag space
T = {0, 1}n. For any 1 ≤ s ≤ n−1, let Trs : {0, 1}n → {0, 1}s be a function that
takes s bits of the input in any way (e.g., the leftmost s bits of an n-bit input).
Let

Fs
def= Trs ◦ F

denote a truncated variant of F that returns only s bits of the original tag.
Cogliati et al. [8] proved that

Advmac
Fs

(μ, q, v, t) ≤ Advmac
F (μ, q, 2n−sv, t). (14)

We can combine (14) with Theorem 2. However, the threshold number of MAC
queries would not go beyond 2

3n
4 anyway.
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An alternative approach is to use Theorem 3 and 4 by seeing a truncated
permutation as a pseudorandom function. In [13,30], it has been proved that

AdvprfTrs◦π(q) ≤ q

2n− s
2

for a random permutation π. Since a (μ, q, v)-forging adversary makes at most
2(q + v) calls to the underlying (truncated) block cipher, we have the following
theorem.

Theorem 5. Let δ > 0, and let H : K × M → {0, 1}n be a δ-almost universal
hash function. For positive integers μ, q, v, and for any L > 0, we have

Advmac
nEHtM[H,π]s(μ, q, v) ≤ min{A,B},

where

A =
μ2

2s
+ 4μ2δ +

v

2s
+ (2L + 1)vδ + 2s

(
eμ2

L2s

)L

+
q + v

2n− s
2−1

,

B = 4μ2δ +
v

2s
+ (3μ + 1)vδ +

q + v

2n− s
2−1

.

Interpretation. When s ≤ 2n
3 , nEHtM[H,π]s is secure up to 2n− s

2 MAC
queries and 2s verification queries as long as μ < min{2

n
2 , 2n−s} by Theo-

rem 5 (using B). In particular, we observe that

1. when s = n
2 , nEHtM[H,π]s is secure up to 2

3n
4 MAC queries, 2s verification

queries, and 2
n
2 faulty queries;

2. when s = n
4 , nEHtM[H,π]s is secure up to 2

7n
8 MAC queries, 2s verification

queries, and 2
n
2 faulty queries.

A Proof of Theorem 1

Proof. For i = 1, 2, 3, let qi = |E=
i | and let vi = |E �=

i |. Then we have q =
q1+q2+q3 (with q0 = 0) and v = v0+v1+v2+v3. Note that we interchangeably
write |Gi|, |G=

i | and |Vi| for i = 1, 2, 3.
Suppose that G=

3 is decomposed into k′ components C′
1, . . . , C′

k′ for some k′.
Then by Lemma 3, the number of solutions to G3, denoted h(G3), satisfies

h(G3)Nq3

(N)|V3|
≥ 1 − |V3|2

N2

k′∑
i=1

|C′
i|
2 − 2v3

N
≥ 1 − |V3|4

N2
− 2v3

N
. (15)

Again, by Lemma 3, for a fixed solution to G3, the number of solutions to G2,
denoted h(G2), satisfies

h(G2)Nq2

(N − |V3|)|V2|
≥ 1 − (|V3| + |V2|)2

N2

k∑
i=1

|Ci|2 − 2v2
N

. (16)
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By Lemma 4, for a fixed solution to G2, the number of solutions to G1, denoted
h(G1), satisfies

h(G1)Nq1

(N − |V3| − |V2|)|V1|
≥ 1 − 4(|V3| + |V2|)2q1

N2
− 4(|V3| + |V2|)q21

N2

− 18q21
N2

− 32(|V3| + |V2|)q31
3N3

− 16q41
N3

− 2v1
N

− 16q1v1
N2

≥ 1 − 8(|V3| + |V2|)q2
N2

− 18q2

N2
− 64q4

3N3
− 2v1

N
− 16qv

N2

(17)

since |V3| + |V2| + 2q1 ≤ 2q ≤ N/4. By Lemma 5, for a fixed solution to G1, the
number of solutions to G0, denoted h(G0), satisfies

h(G0)
(N − |V3| − |V2| − |V1|)|V0|

≥ 1 − 2v0
N

. (18)

By (15), (16), (17), (18), we have

h∗(G)Nq

(N)|V|
=

h(G3)Nq3

(N)|V3|
· h(G2)Nq2

(N − |V3|)|V2|

× h(G1)Nq1

(N − |V3| − |V2|)|V1|
· h(G0)
(N − |V3| − |V2| − |V1|)|V0|

≥ 1 − |V3|4

N2
− (|V3| + |V2|)2

N2

k∑
i=1

|Ci|2 − 8(|V3| + |V2|)q2
N2

− 18q2

N2
− 64q4

3N3
− 2v3

N
− 2v2

N
− 2v1

N
− 2v0

N
− 16qv

N2

≥ 1 − |V3|4

N2
− (|V3| + |V2|)2

N2

k∑
i=1

|Ci|2 − 8(|V3| + |V2|)q2
N2

− 18q2

N2
− 64q4

3N3
− 2v

N
− 16qv

N2
.

��
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Abstract. We consider the security of two of the most commonly used
cryptographic primitives—message authentication codes (MACs) and
pseudorandom functions (PRFs)—in a multi-user setting with adaptive
corruption. Whereas is it well known that any secure MAC or PRF is
also multi-user secure under adaptive corruption, the trivial reduction
induces a security loss that is linear in the number of users.

Our main result shows that black-box reductions from “standard”
assumptions cannot be used to provide a tight, or even a linear-
preserving, security reduction for adaptive multi-user secure determinis-
tic stateless MACs and thus also PRFs. In other words, a security loss
that grows with the number of users is necessary for any such black-box
reduction.

1 Introduction

Message authentication codes (MACs) are one of the most fundamental cryp-
tographic primitives. MACs are secret-key primitives that enable a party to
produce a “tag” for messages in such a way that, while anyone possessing the
secret key can verify the validity of the tag, an adversary without access to the
key is unable to forge a correct tag for a message. This allows the participating
parties to use the tags to confirm that a tagged message is authentic—that is,
that it originated from a trusted sender and was delivered without modification.
A pseudorandom function (PRF) is a related primitive which can easily be used

Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, NSF
Award CNS-1561209, AFOSR Award FA9550-18-1-0267, DARPA SIEVE award
HR00110C0086, and a JP Morgan Faculty Award. This research is based upon work
supported in part by the Office of the Director of National Intelligence (ODNI), Intel-
ligence Advanced Research Projects Activity (IARPA), via 2019-19-020700006. The
views and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies, either expressed or implied, of
ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes notwithstanding any copyright
annotation therein.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12491, pp. 724–753, 2020.
https://doi.org/10.1007/978-3-030-64837-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64837-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-64837-4_24


On the Adaptive Security of MACs and PRFs 725

to construct a MAC; in addition to being unforgeable by an adversary, the out-
put (“tag”) from a PRF is also pseudorandom (i.e., indistinguishable from true
randomness to the adversary).

Multi-user Security and Adaptive Corruptions. MACs and PRFs are also some of
the most commonly used cryptographic primitives in practice; as such, they are
often deployed in contexts with huge numbers of users. For instance, MACs are
used in protocols for secure key exchange (as first formalized in [21]), including
the well-known and widely employed TLS protocol [18–20], which is used today
by major websites with billions of daily active users. A natural question, then,
is to what extent the multi-user setting in which MACs or PRFs are practically
employed affects the security of these primitives. In particular, in a multi-user
setting it is natural to consider an adaptive adversary who may decide to corrupt
a subset of the users (and as a result of the corruption receive their secret
keys); given such an adversary, we would like to guarantee that uncorrupted
users’ instances remain secure. Indeed, various forms of multi-user security have
been considered since the work of Bellare et al. [9] (see also e.g., [7,8,10,36,
39]). In recent work, Bader et al. [3] explicitly consider a notion of adaptive
multi-user security for signature schemes and MACs. They remark that a simple
“guessing” reduction, originally proposed in [9] for multi-user security of PRFs
without corruption, shows that any single-user secure MAC is adaptively multi-
user secure. Specifically, given a multi-user adversary that runs, say, � instances
of a MAC, one can construct a single-user adversary that, given an instance of
the MAC, simulates the game for the multi-user adversary by embedding its own
instance into a random one of the multi-user instances and generating �−1 keys
to simulate the rest of the instances (including returning the respective keys
for corruption queries). If the multi-user adversary picks the correct instance
to break by forging a tag, then the single-user adversary can use the forgery it
returns to win its own game.

Security Loss and Linear-Preserving Reductions. The above argument shows
that any “single-user” secure MAC also is multi-user secure under adaptive cor-
ruption; a similar argument holds also for PRFs [2]. However, security is only
“polynomially” preserved; in a concrete sense, the reduction incurs a significant
security loss [32], as one might note that the single-user adversary we describe
is far less efficient than the multi-user adversary on which it is based. In partic-
ular, in a setting where we have a large number � of instances available to the
adversary, the single-user adversary’s probability of success is indeed reduced
by a proportionate factor of �. As discussed in works such as [36,39], this has
considerable implications on the concrete security of such a primitive in a setting
where a large number of instances might be in use at once. More formally, the
security loss is defined as the “work”, or expected running time, required by the
reduction to break the underlying assumption (in the above example, single-user
security) using a particular adversary against a primitive (adaptive multi-user
security) as an oracle, divided by the work required by the adversary to break the
primitive. Intuitively, the “best possible” type of reduction is one with a constant
security loss, or a tight [32] reduction, which guarantees that the primitive will
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inherit roughly the same level of concrete security as the underlying assumption.
A reduction with a security loss equal to a fixed polynomial p(n) in the security
parameter, also known as a linear-preserving reduction, is still intuitively desir-
able. The “guessing” reduction above, however, has a security loss of �, or the
number of instances in the multi-user security game, and so it is neither tight nor
linear-preserving. A natural question, then, is whether we can do better than this
trivial reduction and construct a provably secure MAC with a linear-preserving
reduction.

In fact, the work of [3] shows how to overcome the security loss of this “trivial”
guessing reduction: as a key building block towards an “almost-tightly secure”
authenticated key exchange protocol, the authors present an elegant construc-
tion of an adaptively multi-user secure digital signature scheme with a linear-
preserving reduction. In particular, the security loss of their constructions is
linear in the security parameter n, and independent of the number of users!

On the Importance of Determinstic Tagging. However, the signature construction
given in [3] requires introducing randomness into the signing algorithm. While
this scheme can indeed be interpreted as a MAC, the fact that the signing algo-
rithm is randomized means that the resulting MAC also becomes randomized.
While some theoretical textbooks (see e.g., [25]) allow the tagging mechanism in
the definition of a MAC to be randomized, practical texts (e.g., the Handbook
of Applied Cryptography [34]), as well as NIST standardizations [6], require the
tagging algorithm to be deterministic. As far as we know, all constructions used
in practice, as well as all standardized constructions of MACs, are deterministic;
indeed, there are several good reasons for sticking to deterministic constructions.
First, reliable randomness is hard to generate, and thus randomized construc-
tions are avoided in practice for time-critical primitives that are used repeatedly
and on a large scale, as is the case for MACs. Furthermore, any PRF, when
viewed as a MAC, is by definition deterministic, and additionally is internally
stateless; in fact, we remark that almost all practical MAC constructions are also
stateless, a notable exception being GMAC [22].1 Obtaining a tightly secure PRF
in a multi-user setting requires, at a minimum, a tightly secure deterministic and
stateless MAC.

As such, the current state of affairs leaves open the important problem of
determining the concrete multi-user security of the MACs and PRFs used in
practice today. In particular, focusing on the case of stateless MACs, we consider
the question of whether either deterministic MACs or PRFs can, in an adaptive
multi-user setting, have a security loss that is independent of the number of
users:

Can there exist tight or linear-preserving reductions for proving the adap-
tive multi-user security of any deterministic (and stateless) MAC or any
PRF based on some “standard assumption”?

1 GMAC is deterministic but stateful; it keeps an internal counter to use as an addi-
tional non-reusable input, or nonce. Stateful MACs such as GMAC are not subject
to the results we prove here.
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At first glance, it may seem that answering this question is trivial, since any ran-
domized MAC can be made deterministic. Indeed, as shown in [25] for signature
schemes, one may simply fix the randomness to be the result of applying a PRF
to the input message. This construction, however, only preserves the tightness of
the reduction if the underlying PRF itself is tightly secure in the adaptive multi-
user setting—however, since any such PRF is already trivially a (deterministic)
MAC, we end up precisely where we started.

1.1 Our Results

Our main result, in fact, provides a strong negative answer to the above question.
We demonstrate that there exists no linear-preserving (or, hence, tight) black-
box reduction for basing adaptive multi-user security of any deterministic MAC,
and thus also any PRF, on any secure “standard” assumption. By a “standard”
assumption, we here refer to any assumption that can be modeled as a game, or
an interaction between a challenger C and a polynomial-time adversary A, that
proceeds in an a priori bounded number of rounds—following [38], we refer to
this class of assumptions as bounded-round assumptions.

Theorem 1 (Informal). If there exists a linear-preserving black-box reduc-
tion R for basing adaptive multi-user security of a deterministic MAC on some
bounded-round assumption C, then C can be broken in polynomial time.

In particular, we show that any such black-box reduction (to a secure bounded-
round assumption) requires a security loss of Ω(

√
�), where � is the number of

users. We remark that since any PRF or deterministic digital signature scheme
trivially implies a deterministic MAC (via a tight security reduction), our the-
orem also directly rules out linear-preserving black-box reductions for basing
adaptive multi-user security of PRFs or deterministic signatures on standard
assumptions.

Related Results. A few prior works have in fact dealt with this question for other
types of primitives. Non-adaptive multi-user security was originally introduced
by Bellare, Canetti, and Krawczyk [9] for pseudorandom function families; the
authors also introduced the original version of the classical “guessing” reduction
from multi-user to single-user security in that context. As mentioned above, [3]
introduced adaptive multi-user security in the context of signatures and MACs
(and presented applications for secure key exchange), and [2] considered it in the
context of PRFs. Recently, there has been a wealth of positive results demon-
strating the achievability of tight reductions from multi-user to single-user secu-
rity of authenticated encryption protocols and block cipher-based schemes (see,
e.g., [3,13,27,28,33]); some of these results, as we have noted, consider the case
of randomized or stateful (nonce-based) MACs such as GMAC, which are not
subject to our security bound.

Concerning negative results, several prior works have ruled out certain
restricted classes of linear-preserving reductions from multi-user security of var-
ious primitives. Bellare et al. [8] first introduced the (non-adaptive) notion of



728 A. Morgan et al.

multi-user security for public-key encryption and demonstrated that there does
not exist an efficient generic reduction from multi-user to single-user security
which works for every encryption scheme. But one may still hope to circum-
vent this by constructing a specific encryption scheme for which such a reduc-
tion exists, or by directly basing multi-user security on some other (standard)
assumption; indeed, [8] does demonstrate certain schemes for which security
loss can be avoided. A later work by Jager et al. [30] proves a negative result
for authenticated encryption, showing that certain restricted types of black-box
reductions—in particular, “straight-line” (i.e., non-rewinding) reductions—from
adaptive multi-user security to single-user security of any authenticated encryp-
tion scheme possessing a strong “key uniqueness” property (i.e., that any two
keys which produce the same ciphertexts for some polynomial number of inputs
must agree on all inputs) must inherit a similarly large security loss.

Most relevantly to our work, Chatterjee et al. [15] show a negative result for
the case of generic reductions from adaptive multi-user to single-user security
of MACs. Specifically, the authors propose a “collision-finding” attack on multi-
user MAC security whose success probability increases by a factor of roughly �
(the number of instances) in a multi-user setting as compared to its single-user
analogue against an idealized MAC. Similarly to [8], this elegantly demonstrates
that a security loss is inherent in generic reductions from multi-user to single-user
security; however, their results still leave open the question of whether the same
holds true for a reduction to a specific MAC (where, as [8] shows for public-key
encryption, there may be more effective single-user attacks), let alone whether
it holds for directly reducing multi-user security to an underlying assumption
without relying on single-user security.

In contrast to the above results, the bound we show here applies to any (i.e.,
not a restricted class of) black-box reduction and to any “standard” (bounded-
round) assumption; additionally, it applies to any construction of the primitives
we consider (i.e., deterministic MACs and PRFs).

Our work builds on a line of research on using “meta-reductions” [12] to
prove impossibility results for black-box reductions, and in particular to study
the inherent security loss of (single-user) secure digital signatures. Most recently,
expanding upon earlier results [4,16,29,31] which dealt with restricted reduc-
tions, [35] provides a security loss bound ruling out linear-preserving reductions
for single-user security of a primitive called unique signature schemes. While we
rely on a significant amount of insight from these prior results (and in particular
from [35]), adapting their techniques to our setting is quite non-trivial (as we
shall explain below). Indeed, as far as we are aware, all known black-box separa-
tions using the meta-reduction paradigm only apply to primitives that embody
some form of uniqueness or rerandomizability (which in turn can be viewed as
a “distributional uniqueness”) property—we will return to what this unique-
ness property means shortly (and how it is used). In contrast, our impossibility
result does not (explicitly) refer to or require a primitive that embodies such a
property.
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Summarizing the above discussion, as far as we know, our results not only
constitute the first “complete” black-box lower bound (in the sense that we
consider “unrestricted” reductions) on the security loss of any primitive in the
multi-user setting, but also address the security of two of the most fundamental
primitives—MACs and PRFs—used practically in a multi-user setting. Addi-
tionally, we present the first usage of the meta-reduction paradigm to rule out
reductions from a primitive that does not itself embody a uniqueness (or reran-
domizability) property.

1.2 Overview

The Meta-reduction Paradigm. We prove our security loss bound using an
adaptation of the “meta-reduction” paradigm, originally devised in [12] (see
also [1,5,11,14,23,24,26,38] for related work concerning meta-reductions). The
paradigm was originally used to show black-box impossibility results, but Coron
in [16] pioneered the usage of meta-reductions to instead show lower bounds on
security loss; this line of work was continued in [4,31,35]. Meta-reductions were
first used in relation to multi-user security in [30], which dealt with multi-user to
single-user reductions for authenticated encryption (satisfying a key-uniqueness
property).

At a high level, the meta-reduction paradigm proves the impossibility of any
black-box reduction from a primitive Π to a secure assumption C.2 To illustrate
this approach for the case of an impossibility result, consider attempting to
prove the impossibility of such a reduction R that breaks the assumption C
by using black-box access to some “ideal adversary” A (which in turn breaks
security of the constructed primitive). By definition, if A breaks the primitive
with probability 1, then RA should break C with non-negligible probability, even
if we construct A to be inefficient (e.g., win by brute force).

It remains then to show that, if such an R exists, then C can be broken
efficiently, contradicting the assumption of C’s security. While RA itself clearly
will not break C efficiently if A uses brute force, one can instead create an efficient
meta-reduction B that efficiently “emulates” A while running R. If one can show
that the meta-reduction B always succeeds in emulating the real interaction RA,
then the meta-reduction breaks C with non-negligible probability.

On the other hand, it might be impossible to create a meta-reduction that
emulates RA perfectly; instead, it might be the case that we can construct B that
emulates RA with probability at least 1−p(n) for some inverse polynomial p(·).
In this case, if RA breaks C with probability non-negligibly greater than p(n),
then B, being identically distributed to RA except with probability p(n), will in
fact still break C with non-negligible probability, thus ruling out any such R. By
bounding R’s success probability in terms of its running time, this observation

2 Consider C to be the “challenger” for the security game; an efficient adversary
“breaks” C by forcing it to output Accept with probability non-negligibly better
than a certain threshold t.
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can be used to derive a security loss bound for any reduction R in cases where
such reductions may not be fully impossible.

Rewinding Techniques. Of course, a useful meta-reduction requires two impor-
tant constructions: (1) the ideal and inefficient adversary A, and (2) the meta-
reduction B. Most importantly, while it would be simple to construct an adver-
sary A that breaks C by brute force, B must also be able to gain enough informa-
tion by simulating and receiving responses to A’s messages in order to determine,
with high probability, the secret information necessary to break C without brute
force.

Coron’s original meta-reduction presents an effective way of accomplishing
this in the setting where A breaks the unforgeability of unique signatures, or,
more generally, any “one-more” style security game where an adversary, after
making some number of queries, must then guess the result of querying a new
input. Specifically, if we assume A makes a significant number of queries �(n)
with inputs x1, . . . , x�(n) before brute-forcing its guess (and, importantly, will
return ⊥ instead if the answers to its queries are incorrect), B can make the
same set of queries and, rather than brute-forcing a guess, may instead pick the
new input x∗ and rewind the reduction R up to �(n) different times3, each time
replacing a different one of the messages with x∗ in the hopes that R will provide
a valid response that B can use in the main execution.

This rewinding technique in fact can be shown to emulate A except with
probability O(1/�(n)); intuitively, this is because, if B is unable to extract a
correct response in some rewinding, that rewinding corresponds to a sequence
of randomness where, if it occurs in the non-rewound execution, A receives an
incorrect response to one of its queries and hence does not need to return a
forgery. Hence, at a very high level, for each sequence of messages x1, . . . , x�(n)

where B fails to extract a forgery, B must receive an incorrect response to x∗

in each of the �(n) rewindings, and so there are �(n) sequences where B can
successfully emulate A (as both can return ⊥).

It is important to note where uniqueness of the signature scheme comes in:
to ensure that B is correctly simulating the distribution of A’s messages, we
need to make sure that the forgery extracted by B from R is the same as the
forgery that A would have generated. In the case of a unique signature, we know
there can only be a single valid forgery; as such, B indeed generates the right
distribution if it manages to extract a forgery from R.

The Case of Adaptive Multi-user Unforgeability. Coron’s meta-reduction was
tailored to the specific case of unique signatures; however, in our case, adaptive
multi-user unforgeability—that is, the security of a MAC—can also be thought of
as a type of “one-more” assumption. Specifically, an adversary against � instances
of a MAC can make � − 1 key-opening queries and subsequently guess the last
key in order to break the security of the respective unopened instance (i.e.,
by guessing the MAC on an unqueried input); a natural approach to creating

3 In fact, in Coron’s theorem, it was sufficient to pick a random one of these rewindings,
but this is not sufficient for our result.
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a meta-reduction for this case, then, would be to have B rewind these key-
opening queries and try opening the final instance in the rewindings, similar to
Coron’s treatment of queries for unique signatures. However, there are several
complications with this approach that, for various reasons, did not need to be
considered in [16]; we next present a high-level overview of these issues and how
we approach them in this work.

“Effective” Key Uniqueness. First, recall that R does not necessarily need to act
as an honest challenger, and so B must have a way to verify that R’s responses
to its queries (in this case, key-opening queries) are correct. As mentioned above,
this is why Coron’s results (and those following) only applied to unique signa-
tures, and why, for the case of adaptive multi-user security, [30] considered only
schemes with a key uniqueness property.

We do not want to require any sort of inherent “key uniqueness” for the class
of MACs we rule out; hence, we instead move to considering a more elaborate
“ideal” adversary A. In particular, we let A first make a large number of random
tag queries to each instance of the MAC; then, upon receiving a response to a
key-opening query, A will verify that all of the responses to the tag queries are
consistent with the returned key. Towards analyzing this technique, we present
an information-theoretic lemma showing that if the number of queries q(n) is
sufficiently larger than the length of the key n, then, with high probability, any
pair of keys that are consistent with one another on the q(n) tag queries is such
that the keys will also agree on another random input (i.e., the input for which
we produce the forgery to break security of the MAC).

In essence, then, our approach makes keys “effectively” unique in the sense
that, with high probability, they operate indistinguishably on random inputs
with respect to our particular ideal adversary A. As far as we know, this stands in
contrast to all prior impossibility results following the meta-reduction paradigm,
which explicitly worked only with primitives where the adversary’s responses to
the queries to be rewound are unique or “distributionally unique” (i.e., reran-
domizable).

Reductions with Concurrency and Rewinding. Furthermore, Coron’s result in
[16], as well as many subsequent security loss bounds proven using meta-
reductions (e.g., [4,30,31]) only apply to restricted reductions that are “straight-
line” in the sense that R will never attempt to rewind A and R will always
finish executing a single instance of A before starting another one. In general,
reductions may run multiple instances of the adversary concurrently, which can
be highly problematic for rewinding-based meta-reductions, as B may have to
rewind a “nested” instance of its adversary to produce a correctly-distributed
output while already in the middle of rewinding another instance. If many
instances need to be rewound concurrently, the running time of B can poten-
tially be super-polynomial, which fails to uphold the requirement that B break
C efficiently.

Luckily, some recent works have presented meta-reductions that deal
with concurrent interactions, primarily by using techniques from concurrent
zero-knowledge (see [35,38]). We build on the technique established in the
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generalization of Coron’s bound given in [35], which shows that B can safely
ignore any rewindings which would require any sort of nested rewinding. At a
high level, if R runs few instances of A, then other instances rarely interfere
with rewinding during B, resulting in virtually no change to the failure proba-
bility; on the other hand, if R runs many instances, then the time taken by R
compared to A will be the dominant factor in the security loss, so the increase
in failure probability caused by potentially having many ignored rewindings has
very limited relevance in the analysis.

This approach nonetheless requires non-trivial modification to work in our
case, due to the additional caveat that R may attempt to rewind instances of
A. While [35] relied on a “rewinding-proof” construction of A and B where the
randomness was determined at the start, so that the uniqueness property would
guarantee only a single possible accepting transcript (thus making rewinding
pointless), recall that we no longer have a guaranteed uniqueness property, but
instead one that holds “most of the time”. Furthermore, we can no longer con-
struct A to be fully resilient to rewinding, due to the additional complexity of
having both tag queries and key-opening queries; instead, we construct A to
be resilient to most rewinding—particularly, all rewinding except from the key-
opening query phase to the tag query phase—and prove our bound in terms of
how often “meaningful” rewinding (i.e., rewinding that does affect the result)
can occur in addition to the number of instances of A.

This requires some additional care, however: while A can easily be made
rewinding-proof (with the exception of the “meaningful” rewinding), we in fact
can only show that B is resilient to rewinding as long as key uniqueness holds;
otherwise, while A can always pick a determinstic one of the brute-forced keys
for a forgery, B cannot necessarily do this efficiently just from the responses to
rewound queries, and so R could theoretically rewind B to try and get multiple
different forgeries to correspond to multiple different keys. We thus require a
hybrid argument with an unconditionally rewinding-proof but inefficient hybrid
B′ (which acts identically to B when uniqueness holds and to A when it does
not) for the majority of our analysis, subsequently showing that B′ is identically
distributed to B except in the rare case when uniqueness fails.

Interactive Assumptions. Lastly, many of the preceding works were restricted
to ruling out reductions to non-interactive, or two-round, assumptions, since
B rewinding the reduction R might require additional, or different, queries to
be made to the challenger C for the underlying assumption, which cannot be
rewound and whose output may be dependent on the number, order, or content
of queries made. However, as demonstrated in earlier rewinding-based meta-
reductions such as [35,38], we may once again safely ignore rewindings that
contain such external communication as long as the number of rounds of external
communication is bounded by some polynomial r(·) in the security parameter—
that is, as long as the underlying assumption is a bounded-round assumption.
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2 Preliminaries and Definitions

We note that the definitions we provide in Sects. 2.2 through 2.4 are adapted
from [35].

2.1 Multi-user Secure MACs Under Adaptive Corruption

First, we define the notion of a message authentication code.

Definition 1. We refer to a tuple of efficient (poly(n)-time) algorithms Π =
(Gen,Tag,Ver), where:

– Gen(1n) → k takes as input a security parameter n and outputs a secret key
k ∈ {0, 1}n,

– Tagk(m) → σ takes as input a secret key k and a message m from some
message space Mn of size super-polynomial in n, and outputs a tag σ for the
message, and

– Verk(m,σ) → {Accept,Reject} takes as input a secret key k, a message
m, and a tag σ, and outputs Accept or Reject denoting whether the tag
σ is valid for the message m, specifically in such a manner that Pr[k ←
Gen(1n);Verk(m,Tagk(m)) → Accept] = 1 for any valid message m ∈ Mn,

as a message authentication code (MAC). If, in addition, the following hold:

– Tagk(m) is a deterministic function, and
– Verk(m,σ) → Accept if and only if Tagk(m) = σ,

then we refer to Π as a deterministic MAC.

Note that we focus here on MACs having both an input (message) and output
(tag) space superpolynomial in the length of a key (the security parameter n), a
property which is satisfied by virtually all standard definitions and constructions.

The traditional notion of security for a MAC states that, given some instance
of a MAC (i.e., a secret key k ← Gen(1n)), an efficient adversary given an oracle
for the Tag algorithm is unable to forge a valid tag for a new message (i.e., return
a pair (m,σ) where Verk(m,σ) → Accept) without having queried a tag for that
message using the oracle. Our definition of multi-user security with adaptive
corruption expands this to a polynomial number �(n) of instances of the MAC,
and allows the adversary to make key-opening queries (i.e., to “corrupt” an
instance and recover its key) in addition to tag queries; the adversary wins if
they produce a valid forgery (m,σ) for some instance without having either
queried the tag for m on that instance or corrupted the instance itself. Formally:

Definition 2. A MAC Π = (Gen,Tag,Ver) is an �(n)-key unforgeable MAC
under adaptive corruption (or adaptively �(n)-key unforgeable) if, for any
interactive oracle-aided non-uniform probabilistic polynomial-time algorithm A,
there is a negligible function ε(·) such that, for all n ∈ N,

Pr
[
〈A, C�(n)

Π 〉(1n) = Accept
]

≤ ε(n)
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where C�(n)
Π is the interactive challenger that does as follows on input 1n:

– Let (k1, . . . , k�(n)) ← Gen(1n). Initialize empty transcript τ .
– Upon receiving a tag query (Query, i,m) for i ∈ [�(n)], append

((Query, i,m),Tagki
(m)) to τ and send τ .

– Upon receiving a key-opening query (Open, i) for i ∈ [�(n)], append the tuple
((Open, i), ki) to τ and send τ .

– Upon receiving a forgery (m∗, σ∗, i∗) from A, output Reject if one of the fol-
lowing three conditions is true:

• τ contains a key opening query (Open, i∗).
• τ contains an oracle query (Query, i∗,m∗).
• Verki∗ (m∗, σ∗) → Reject.

– Otherwise, output Accept.

We call a MAC Π an adaptively multi-key unforgeable MAC if it is
adaptively �(n)-key unforgeable for every polynomial �(·).

For syntactic clarity, we will assume that a machine interacting with a multi-
key MAC adversary will begin interaction with a new instance of the adversary
by sending a special message (Init, s), where s is the “identifier” for the instance,
and communicate with the adversary by sending a partial transcript and receiv-
ing a next message as described above for oracle interaction.

2.2 Intractability Assumptions

We define a notion of “game-based security assumptions” as in [37,38]. Infor-
mally, an assumption can be thought of as a pair of a challenger and a threshold
function, where an adversary is able to “break” the assumption by causing the
challenger to accept an interaction with probability non-negligibly greater than
the given threshold.

Definition 3. For polynomial r(·), we call a pair (C, t(·)) an r(·)-round
intractability assumption if t(·) ∈ [0, 1] is a function and C is a (possibly
randomized) interactive algorithm taking input 1n and outputting either Accept
or Reject after at most r(n) rounds of external communication.

Given a probabilistic interactive algorithm A which interacts with C, we say
that A breaks the assumption (C, t(·)) with some non-negligible probability p(·)
if, for infinitely many n ∈ N: Pr [〈A, C〉(1n) = Accept] ≥ t(n) + p(n).

Conversely, we refer to C as secure if there exists no A which breaks C with
non-negligible probability.

Lastly, we call an assumption (C, t(·)) a bounded-round intractability
assumption if there exists some polynomial r(·) such that (C, t(·)) is an r(·)-
round intractability assumption.

The general notion of an intractability assumption captures any standard
cryptographic assumption, including our earlier definition of adaptive multi-
key unforgeability. Specifically, this would be the unbounded-round assumption
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(C�(n)
Π , 0) (using the challenger defined in Definition 2). Clearly, we cannot hope

to rule out tight reductions from, say, adaptive multi-key unforgeability to itself;
as such, we focus on ruling out only reductions to bounded-round assumptions,
but we note that virtually all “standard” cryptographic assumptions fall into
this category.4

2.3 Black-Box Reductions

We next formalize what it means to “base the security of one assumption (C1) on
another assumption (C2)”. Intuitively, this requires a proof that, if there exists
an adversary breaking C1, then there likewise must exist an adversary breaking
C2, which implies the desired result by contrapositive.

In practice, virtually all reductions are “black-box” reductions, where the
adversary breaking C2 is given by an efficient oracle-aided machine R which
interacts in a “black-box” manner with an adversary which breaks C1 and uses
the view of the interaction to break C2. Formally:

Definition 4. Given a probabilistic polynomial-time oracle-aided algorithm R,
we say that R is a black-box reduction for basing the hardness of assump-
tion (C1, t1(·)) on that of (C2, t2(·)) if, given any deterministic algorithm A that
breaks (C1, t1(·)) with non-negligible probability p1(·), RA breaks (C2, t2(·)) with
non-negligible probability p2(·).

Furthermore, if on common input 1n RA queries A only on input 1n, we
refer to R as fixed-parameter.

We notably allow reductions to rewind their oracles (by sending a transcript
from earlier in the interaction) and even run multiple, potentially interleaved,
instances of their oracle.

The restriction to deterministic oracles A may seem strange at first, but we
stress that we can (and will) in fact simply model a randomized oracle by a
family of deterministic oracles (where each deterministic oracle represents some
fixed setting of the randomness). Using deterministic oracles enables us to reason
about cases where the reduction R can rewind or restart the oracle. We also
will restrict to fixed-parameter reductions: this is a restriction inherent to the
meta-reduction paradigm, yet it is a natural one (since, as far as we know, all
reductions in practice are indeed fixed-parameter).

Of course, we can apply the definition of a reduction to adaptive unforge-
ability as defined above, using the natural formulation as an intractability
assumption:

Definition 5. We shall refer to a probabilistic polynomial-time oracle-aided
algorithm R as a fixed-parameter black-box reduction for basing adaptive
�(n)-key unforgeability of a MAC Π on the hardness of an assumption

4 An example of a “non-standard” assumption that does not fit this definition would
be a non-falsifiable assumption, e.g., a “knowledge of exponent” assumption (see,
e.g., [17]).
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(C, t(·)) if it is a fixed-parameter black-box reduction for basing the hardness of
assumption (C�(n)

Π , 0) on that of (C, t(·)), where C�(n)
Π is as given in Definition 2.

We refer to a probabilistic polynomial-time oracle-aided algorithm R as
a fixed-parameter black-box reduction for basing adaptively secure
unforgeability of a MAC Π on the hardness of an assumption (C, t(·))
if there exists polynomial �(·) for which R is a fixed-parameter black-box reduc-
tion for basing adaptively secure �(n)-key unforgeability of Π on the hardness of
(C, t(·)).

2.4 Security Loss

Finally, we define a notion of the “inherent efficiency” of a reduction, or the
security loss, intuitively representing a worst-case ratio between the “work”
(expected time) needed to break the assumption C2 (i.e., the underlying assump-
tion) and the “primitive” C1 (in our case, adaptive multi-key unforgeability). If
the primitive is significantly easier to break than the underlying assumption,
this indicates that the reduction is intuitively “less powerful” at guaranteeing
security for the primitive, which corresponds to a higher security loss.

Definition 6. Let R be a black-box reduction for basing the hardness of assump-
tion (C1, t1(·)) on that of (C2, t2(·)). Given any deterministic A, we define the
following, where τM(x) denotes the time taken by an algorithm M in experiment
x, rA denotes all random coins used by A and C1 in the experiment 〈A, C1〉, and
rR denotes all random coins used by A, C2, and R in the experiment 〈RA, C2〉:
– SuccessA(n) = PrrA [〈A, C1〉rA(1n) = Accept] − t1(n)
– SuccessRA(n) = PrrR [〈RA, C2〉rR(1n) = Accept] − t2(n)
– TimeA(n) = maxrA(τA([A ↔ C1]rA(1n)))
– TimeRA(n) = maxrR(τRA([RA ↔ C2]rR(1n))).

Then the security loss [32] of R is defined as:

λR(n) = maxA

(
SuccessA(n)
SuccessRA(n)

TimeRA(n)
TimeA(n)

)

If there exists polynomial p(·) for which λR(n) ≤ p(n) given sufficiently large
n ∈ N, we call R linear-preserving. If there exists a constant c for which
λR(n) ≤ c given sufficiently large n ∈ N, we call R tight.

3 Main Theorem

We present our main result, which rules out the possibility of basing the provable
security of a deterministic MAC on any “standard” (bounded-round) assumption
with a linear-preserving reduction:

Theorem 2. Let Π be a deterministic MAC. If there exists a fixed-parameter
black-box reduction R for basing adaptive multi-key unforgeability of Π on some
r(·)-round intractability assumption (C, t(·)) (for polynomial r(·)), then either:
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(1) R is not a linear-preserving reduction, or
(2) there exists a polynomial-time adversary B breaking the assumption (C, t(·)).

As we mentioned in the introduction, Theorem 2 can be generalized fairly
directly to apply as written to several other primitives besides simply determin-
istic MACs; however, as we focus on the case of MACs in this paper, we present
our result for deterministic MACs in full here and opt to refer the interested
reader to the full version of our paper for detailed discussion of its applications
to other primitives. Specifically, in the full version, we show that we can rule out
linear-preserving reductions from adaptively multi-key unforgeable deterministic
digital signature schemes to bounded-round assumptions, and that we can rule
out linear-preserving reductions from adaptive multi-key pseudorandomness of
a family of functions (i.e., adaptive multi-key PRFs) to bounded-round assump-
tions.

To prove Theorem 2, we first present the following crucial lemma, which we
prove in full in Sect. 4:

Lemma 1. Let Π be a deterministic MAC, and let (C, t(·)) be some r(·)-
round intractability assumption for polynomial r(·). If for some polynomial �(·)
there exists a fixed-parameter black-box reduction R for basing adaptive �(n)-key
unforgeability of Π on the hardness of (C, t(·)), then either R’s security loss is
at least

λR(n) ≥
(

1 − 1
2�(n)2

)
(
√

�(n) − (r(n) + 2))

for all sufficiently large n ∈ N, or there exists a polynomial-time adversary B
that breaks the assumption (C, t(·)).

Because p(·) in the definition of a linear-preserving reduction is an a priori
fixed polynomial, and in particular cannot depend on �(n), this lemma will prove
Theorem 2, as follows:

Proof. Let R be a reduction from adaptive multi-key unforgeability of Π to the
hardness of (C, t(·)). Assume for the sake of contradiction that Lemma 1 is true,
yet R is linear-preserving and (C, t(·)) is secure. Because R is linear-preserving,
there is some polynomial p(·) such that λR(n) ≤ p(n) for sufficiently large n.
Furthermore, R is by definition a reduction from adaptive �(n)-key unforgeability
for every polynomial �(n), including, say, �(n) = (2p(n) + r(n) + 3)2, so by
Lemma 1 we have:

λR(n) ≥
(

1 − 1
2�(n)2

)
(
√

�(n) − (r(n) + 2)) ≥ 1
2
(2p(n) + 1) > p(n)

which is a clear contradiction. �
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3.1 Technical Overview

Next, we shall explain the methodology for the proof of Lemma 1 at a high level.

The Ideal Adversary. We begin by constructing and investigating an “ideal”
adversary A. To summarize, A will first make q(n) random tag queries (where
q(n) is a polynomial to be determined later) to each of the �(n) instances of the
MAC Π, continue by opening all but one of the keys in a random order (while
also verifying that the challenger or R answered its queries consistently with the
opened keys), and lastly, if it received correct responses for the opened instances,
use the information gained from the queries for the remaining instance to attempt
to brute-force a forgery for that instance. (On the other hand, if verification fails,
A will “reject”, returning ⊥ instead of a forgery.)

In virtually all meta-reductions to date, the ideal adversary is able to per-
fectly brute-force the challenger’s secret information and break the primitive with
probability 1. Here, however, that is not the case; A is limited to a polynomial
number of tag queries (which is necessary for simulatability) and furthermore
has no way to publicly verify whether a certain key or forgery is correct. The
most A can do, in fact, is brute-force the set of all keys consistent with the tag
queries it makes for the unopened instance, pick one of those keys, and use it to
generate a forgery in the hopes that it will match with the key the challenger
has selected.

This is where the “key uniqueness” property discussed in the introduction
will first factor in. We show that, since the key picked by the adversary agrees
with the key picked by the challenger on all q(n) tag queries, then it must with
overwhelming probability also agree on a large fraction (1−2n/q(n)) of possible
messages. Hence, A will have a 1−2n/q(n) chance of producing a correct forgery
when it evaluates the Tag function using the key it extracts on a random message
m∗ (i.e., the message it eventually will randomly select for its forgery)—that is,
SuccessA(n) ≥ 1 − 2n/q(n).

Before proceeding to discuss the meta-reduction, we need to address one final
technical issue with the ideal adversary. Namely, since A works by returning the
“next-message” function given a transcript of the interaction thus far, we need
to ensure that R must actually complete the full interaction with A in order
to cause A to accept and return a forgery, rather than potentially guessing a
“fake” accepting transcript for a later point in the interaction to “skip” or avoid
responding to certain queries from A. In particular, a reduction R that skips
key-opening queries would be extremely problematic in our analysis of the meta-
reduction later on, since the meta-reduction will rely on R’s responses to these
queries to properly emulate the ideal adversary A.

Unfortunately, it turns out that A’s key-opening queries, since they convey no
information besides the instance to open, have low entropy and thus are easy to
predict (and skip) by R. To fix this, we introduce additional “dummy” queries—
specifically, random tag queries to instances whose keys have not yet been
opened—made after each of the key-opening queries. These serve the purpose
of increasing the entropy present in the key-opening phase of the transcript—
which guarantees that R must answer all �(n) − 1 of A’s key-opening queries to
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successfully complete the interaction (unless it can correctly guess the random
input for the dummy query)—but are otherwise ignored.

The Meta-reduction. In our discussion of A, we were able to bound SuccessA(n);
thus, we turn next to investigating SuccessRA(n). To do this, we construct a
meta-reduction B which runs R while attempting to efficiently emulate the inter-
action between R and A. B will simulate instances of A by, exactly as before,
making q(n) random tag queries to each instance, opening the key for all but
one instance (in a random order and with the interleaved tag queries as above),
and checking R’s responses for consistency.

The key difference, of course, is that B cannot brute-force a forgery; instead,
for the unopened instance, B will attempt to extract a correct key from R
by rewinding the interaction to the key-opening queries and substituting the
unopened instance for each other instance in turn. If R responds to any of the
valid queries with a key that matches with the tag queries for that instance, then
B will apply that key to a random message m∗ to generate a forgery. If B does
not receive a valid key in this fashion, then it will abort, returning Fail.

Notably, B will also have to ignore rewindings where, before returning its
response to the key-opening query, either R attempts to communicate exter-
nally with C (which could change the state of the challenger if forwarded),
R requests a forgery from another instance of A (as this would require addi-
tional “nested” rewinding which could grow exponentially), or R would rewind
A (which precludes R returning a key); this will factor into the analysis of the
failure probability later.

The main task in proving our lemma, then, reduces to that of bounding
Pr[〈RA, C〉 → Accept] − Pr[〈B, C〉 → Accept]. Intuitively, if we come up with
such a bound (call it p(n)), then, if SuccessRA is non-negligibly higher than
p(n)—that is, 〈RA, C〉 accepts with such a probability—then 〈B, C〉 will accept
with non-negligible probability, hence breaking C. Bounding this probability p(n)
is in fact quite non-trivial, as one cannot, say, näıvely apply earlier techniques for
meta-reduction analysis to the meta-reduction B. Intuitively, this is because we
no longer have a strong “uniqueness” property characteristic of meta-reductions
to date—that is, there is no longer a unique possible valid forgery B can extract
from its rewinding. Not only does this make it difficult to guarantee that A and
B produce close distributions of forgeries, but, in conjunction with B’s rewinding
strategy, this makes analyzing the failure probability problematic for more com-
plex reasons. For example, consider a reduction R which might try to rewind A
and change its responses to queries in order to attempt to change the forgery
generated; it is straightforward to see that proof techniques such as that of
[35] immediately fail (due to a potentially unbounded number of nested forgery
requests) if R can theoretically expect to receive many different forgeries by
repeatedly rewinding the same instance.

A “Hybrid” Meta-reduction. We present a way to effectively separate dealing
with the issues of uniqueness and rewinding, namely by defining a “hybrid”
meta-reduction B′ which, while inefficient, is easy to compare to either A or B.
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At a high level, we construct B′ so that it behaves identically to B as long as
there is only a single possible forgery to return, and so that it behaves identically
to A whenever rewinding succeeds. More specifically, it acts identically to B
until after rewinding finishes, then, if it obtains a forgery, brute-forces one in the
same manner as A. Clearly, B′ can only diverge from B if the forgery B extracts
is different from the one B′ brute-forces. A straightforward application of our
earlier “key uniqueness” lemma shows that this happens with at most 2n/q(n)
probability per forgery returned by B′.

On the other hand, B′ will always return the same forgery as A if it returns
a forgery, but we still need to determine the probability with which B′ fails to
return a forgery due to unsuccessful rewinding. Luckily, since B′ now does have
the uniqueness property, we can proceed along the same lines as in [35] and
bound the rewinding failure probability by effectively bounding the probability
that a randomly chosen ordering of key-opening queries can result in rewinding
failure (while assuming that the rest of the randomness in the interaction is
fixed arbitrarily, as, if the bound applies to arbitrarily fixed randomness, it must
likewise apply when taken over all possible assignments of the same randomness).

The intuition behind the argument is that, if we assume a bound of W (n)
on the number of times R will rewind past when B′ generates the ordering π of
the key-opening queries (and note that, due to uniqueness and careful construc-
tion, W (n) will also be a bound on the number of distinct forgery requests R
can make, as we show that any others will be internally simulatable and thus
“pointless”), every sequence π that causes B′ to fail must do so because all of its
rewindings fail, and the rewindings specifically correspond to other sequences π
that can occur. Furthermore, if a rewinding fails due to R responding to a query
incorrectly (as opposed to, e.g., external communication or a nested forgery
request), then this rewinding corresponds to a “good” sequence where A and B′

return ⊥ (and emulation is successful). So, if some sequence π contains more than
W (n) + r(n) + 1 queries at which rewindings of other sequences fail, then, since
we can have at most W (n) (unique) forgery requests and r(n) rounds of exter-
nal communication, at least one query must fail due to an incorrect response,
which shows that π is a “good” sequence. A counting argument then allows us
to achieve a bound of (W (n) + r(n) + 1)/�(n) on the failure probability of B′

each time it performs rewinding, or W (n)(W (n) + r(n) + 1)/�(n) overall failure
probability.

Bounding Security Loss. Combining all of the facts so far, we know that the
above quantity is equivalent to the probability with which A and B′ diverge,
while the probability with which B′ and B diverge is 2nW (n)/q(n) (i.e., the
probability that uniqueness fails for at least one of the W (n) forgeries). Thus,
SuccessRA(n), as we have argued, is bounded above by the sum of these, which
(taking q(n) sufficiently large) is at most W (n)(W (n)+ r(n)+2)/�(n). Further-
more, TimeRA(n)/TimeA(n) ≥ W (n) by our assumption that in the worst case
R runs W (n) instances of A. Lastly, SuccessA(n) ≥ 1 − 2n/q(n) as we noted
earlier.
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Hence, either (C, t(·)) is insecure (and our bound for SuccessRA(n) does not
apply), or, by the above facts and case analysis (to deal with the possibility that
W (n) might be arbitrarily large), we obtain the result:

λR(n) ≥
(

1 − 1
2�(n)2

)
(
√

�(n) − (r(n) + 2))

4 Proof of Lemma 1

We continue by formally proving Lemma 1. Assume a deterministic MAC Π, a
reduction R, and an assumption (C, t(·)) as defined in the statement of Lemma
1. Consider an ideal but inefficient adversary A, which technically is given by a
random selection from a family of inefficient adversaries A ← {AO} (where O is
a uniformly chosen random function) defined as in Figs. 1 and 2; also consider
an efficient meta-reduction B defined as in Figs. 3 and 4.

Before analyzing the properties of A and B, we verify that B runs efficiently
through the following claim, proven in the full version:

Claim 1. B(1n) runs in time polynomial in n.

4.1 Analyzing the Ideal Adversary

In order to establish a bound to the security loss λR(n), we shall determine
bounds for SuccessA(n) and SuccessRA(n); time analysis will follow naturally.

We begin by analyzing the probability SuccessA(n). This is fairly straight-
forward, following from the critical “key uniqueness” lemma which states that
two keys agreeing on all of the q(n) tag queries made by A are overwhelmingly
likely to agree on “most” messages m. Hence, the key chosen by A, even if not
the same as that chosen by the challenger, is by definition consistent with it on
all of the tag queries and thus should agree on a large fraction of the possible
forgery inputs m∗. Formally:

Claim 2. There exists a negligible function ν(·) such that:

SuccessA(n) ≥ 1 − 2n

q(n)
− ν(n)

Proof. The claim follows readily from the following lemma (and the fact that
there is only a negligible chance that A generates an invalid m∗):

Lemma 2. There exists negligible ν(·) such that, for any family of functions U =
{fk : Xn → Yn}k∈{0,1}n,n∈N, except with probability ν(n) over q(n) uniformly
random queries (x1,j∗ , . . . , xq(n),j∗) ← (Xn)q(n), for any k1, k2 ∈ ({0, 1}n)2 such
that fk1(xi,j∗) = fk2(xi,j∗) for all i ∈ [q(n)], it is true that:

Pr [x∗ ← Xn : fk1(x
∗) = fk2(x

∗)] ≥ 1 − 2n

q(n)
(1)
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– On receiving an initialization message (Init, s), let m1,1 denote a uniformly
random message in Mn generated by random coins resulting from applying
the oracle O to the input (s, 1, 1, 1), and send (Query, 1, m1,1).

– On receiving a transcript of the form

τ = (q1,1, q1,2, . . . , q1,�(n), q2,1, . . . , qi,j)

where either i < q(n) or i = q(n) and j < �(n), such that each qu,v is of the
form ((Query, v, mu,v), σu,v), do the following:

• Let j′ = (j mod �(n)) + 1.
• Let i′ = i + 1 if j′ = 1 and i′ = i otherwise.
• Let mi′,j′ be a uniformly random message in Mn generated by random

coins resulting from applying the oracle O to the input (s, i′, j′, 1).
• Return (Query, j′, mi′,j′).

– On receiving a transcript of the form τ = τ1||τ2, where

τ1 = (q1,1, q1,2, . . . , q1,�(n), q2,1, . . . , qq(n),�(n))

and where each qu,v is of the form ((Query, v, mu,v), σu,v), do the following:
• Let c be the number of Open queries that have so far appeared in τ2.
• Let π = (π1, . . . , π�(n)) be a uniformly random permutation of [�(n)],

generated by random coins resulting from applying O to the input τ1.
• If τ2 is empty or ends with messages of the form ((Open, j), kj), then:

∗ Generate ωc+1 as a uniformly random message in Mn generated
by random coins resulting from applying the oracle O to the input
τ1||(s, q(n) + 1, c + 1,Valid(O, τ∗, s)) and return (Query, q, ωc+1),
where q is the lexicographically first instance for which τ2 does not
contain an Open query.

• Otherwise, if c < �(n) − 1 and the last part of τ2 contains messages of
the form ((Query, q, ωc+1), ·), then return (Open, πc+1).

• Lastly, if τ2 ends with ((Query, q, ω�(n)), ·) and c = �(n) − 1, return a
forgery as follows:

∗ If Valid(O, τ, s) = 0, return ⊥.
∗ Otherwise, use exhaustive search to find the set K∗ of all keys

k∗ such that, given j∗ = π�(n) as determined above, and for each
i ∈ [q(n)], Verk∗(mi,j∗ , σi,j∗) = Accept. If K∗ is empty then return
⊥.

∗ Lastly, using random coins generated by applying O to a new in-
put τ1||(s, q(n)+ 2, 0, 1), generate a uniformly random message m∗

(which will be distinct from all mi,j∗ with all-but-negligible proba-
bility) and take the lexicographically first element k∗ of K∗. Return
the forgery (m∗,Tagk∗(m∗), j∗).

Fig. 1. Formal description of the “ideal” adversary AO (1).

Proof. For any key pair (k1, k2), let

Sk1,k2 � {x∗ ∈ Xn : fk1(x
∗) = fk2(x

∗)}
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Let the predicate Valid(O, τ, s) be defined as follows:

– Parse τ as τ1||τ2, where

τ1 = (q1,1, q1,2, . . . , q1,�(n), q2,1, . . . , qq(n),�(n))

such that each qu,v is of the form ((Query, v, mu,v), σu,v). If τ cannot be
parsed as such, return 0.

– Let π = (π1, . . . , π�(n)) be a permutation of [�(n)] generated in the same
manner as in A, using random coins generated by applying O to the input
τ1.

– Parse
τ2 = (q∗

1 , q∗
2 , . . . , q∗

c [, q∗
c+1])

such that each q∗
i is of the form ((Query, qi, ωi), ·, (Open, πi), kπi) and q∗

c+1,
if present, is of the form ((Query, qi, ωc+1), ·). If τ2 cannot be parsed as such,
or if c > �(n) − 1, return 0.

– Verify that each qi in τ2 is equal to the lexicographically first instance
q ∈ [�(n)] such that q does not appear in an Open query earlier in τ2. If not
true, return 0.

– Verify that, for all i ∈ [q(n)] and all j ∈ {π1, . . . , πc}, Verkj (mi,j , σi,j) =
Accept. (Do not verify the responses to queries ωi in τ2.) If not true, return
0.

– Verify that every mi,j parsed from the transcript is correctly generated by
random coins resulting from applying O to the input (s, i, j, 1) (for i ∈
[q(n)]) and that each ωj is correctly generated by random coins resulting
from applying O to the input τ1||(s, q(n) + 1, j, 1). If not true, return 0.

– Otherwise, return 1.

Fig. 2. Formal description of the “ideal” adversary AO (2).

be the set of inputs where the two keys’ outputs are identical.
So, if (1) is false for some pair (k1, k2), i.e., |Sk1,k2 | ≤ |Xn|

(
1 − 2n

q(n)

)
; then

the probability over {xi,j∗} that both keys agree in all q(n) queries to f made
by A, or equivalently the probability that q(n) uniformly random queries {xi,j∗}
lie in Sk1,k2 , is bounded above by:

(
1 − 2n

q(n)

)q(n)

=

((
1 − 2n

q(n)

)q(n)/2n
)2n

<

(
1
e

)2n

= exp(−2n)

There exist no more than (2n)2 = 22n possible key pairs (k1, k2) ∈ ({0, 1}n)2,
each of which by the above must either have the property (1) or be such that

Pr
[
(x1,j∗ , . . . , xq(n),j∗) ← (Xn)q(n) : fk1(xi,j∗) = fk2(xi,j∗)∀i ∈ [q(n)]

]

= Pr
[
(x1,j∗ , . . . , xq(n),j∗) ← (Xn)q(n) : xi,j∗ ∈ Sk1,k2∀i ∈ [q(n)]

]
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≤ exp(−2n)

Then the probability over {xi,j∗} that some key pair exists which does not have
property (1) yet does have fk1(xi,j∗) = fk2(xi,j∗) for all xi,j∗ is, by a union
bound, at most:

Pr
[
(x1,j∗ , . . . , xq(n),j∗) ← (Xn)q(n) : ∃(k1, k2) ∈ ({0, 1}n)2 :

xi,j∗ ∈ Sk1,k2∀i ∈ [q(n)] and |Sk1,k2 | ≤ |Xn|
(

1 − 2n

q(n)

)]

≤
∑

(k1,k2)∈({0,1}n)2

1|Sk1,k2 |≤|Xn|(1−2n/q(n))Pr
[
(x1,j∗ , . . . , xq(n),j∗) ← (Xn)q(n) :

xi,j∗ ∈ Sk1,k2∀i ∈ [q(n)]]

< 22ne−2n = (2/e)2n

which is clearly negligible in n. �
To prove the claim, we consider the above lemma, letting fk be the determin-

istic function Tagk. When interacting with an honest challenger, the responses
to tag queries for each instance will always be consistent with the respective
keys, and so A will never return ⊥ due to the Valid predicate failing or K∗

being empty. Furthermore, for the instance π�(n) for which A outputs a forgery,
it is overwhelmingly likely (with probability 1 − ν(n)), by Lemma 2, that all
keys in the set K∗ recovered by A will agree with the correct (challenger’s) key
k′ for that instance on a large (1 − 2n/q(n)) fraction of random messages m∗.
Specifically, this means that, given any choice of key k∗ from K∗, A will pro-
duce a correct forgery (m∗, σ∗) (i.e., such that σ∗ = Tagk′(m∗), or equivalently
Verk′(m∗, σ∗) = Accept) given random m∗ with probability at least 1− 2n/q(n).

Thus, A succeeds in the interaction in the event that Lemma 2 does not fail
(i.e., property (1) holds for every key pair) and that A chooses a “good” m∗ (i.e.,
one which does not repeat a previous query and produces the same tag under k∗

as under the challenger’s key k′) given its choice of k∗ ← K∗; the claim follows
from the union bound over these events. �

We require one additional claim concerning the adversary, which states that
the reduction R must have actually responded to all �(n)−1 key-opening queries
to have a non-negligible chance of receiving a forgery. This will be important
later, to ensure that R cannot “cheat” by sending a fake transcript while inter-
acting with B.

Claim 3. There exists a negligible function ν(·) such that, for all n ∈ N, the
probability, over all randomness in the experiment [RAO ↔ C](1n), that some
instance of A returns a forgery (i.e., something besides ⊥) to R without having
received responses to all �(n) − 1 (Open, i) (key-opening) queries from R, is less
than ν(n).
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Proof. We demonstrate that, if A returns a forgery (i.e., not ⊥) to R after R
responds to strictly fewer than �(n) − 1 distinct key-opening queries from A,
then this requires R to guess a uniformly random message generated using the
output of A’s random oracle O on a new input, which can happen with at
most probability p(n)/|Mn| for some polynomial p(·) due to O being uniformly
random.

Assume that R responds to fewer than �(n) − 1 key-opening queries. Then
there exists some i ∈ [�(n) − 1] for which R does not send A a partial transcript
ending with ((Open, πi), kπi

) (i.e., a response to A’s ith key-opening query). By
the definition of the Valid predicate, in order for R to receive a final message from
A that contains a forgery (and not ⊥), R must send to A a complete transcript

τ = τ1||(. . . , (Open, πi), kπi
, (Query, q, ωi+1), . . .)

where ωi+1 is a uniformly random message generated by random coins resulting
from applying O to τ1||(s, q(n) + 1, i + 1, 1).

By construction of A and the assumption that R does not send A a par-
tial transcript ending with ((Open, πi), kπi

), however, R can never have received
either ωi+1 or any message depending on the correct input τ1||(s, q(n)+1, i+1, 1)
to O. Hence, since ωi+1 is uniformly distributed and independent of any other
message, we can conclude that R will send the correct ωi+1 in its final transcript
with at most probability 1/|Mn| (i.e., by guessing a random message correctly).
While R can attempt to retrieve a forgery multiple times, it is restricted to
polynomial time, so the probability with which it can guess ωi+1 (which is nec-
essary to receive a forgery from A) is bounded above by ν(n) = p(n)/|Mn| for
polynomial p(·), which is negligible because we assume the message space to be
super-polynomial (asymptotically greater than any polynomial) in n. �

4.2 Analyzing the Meta-reduction

The remaining part of the proof is devoted to analyzing the success probability
SuccessRA(n). This, as previously discussed, involves investigating the probabil-
ity with which the meta-reduction B and the ideal adversary RA diverge while
interacting with C. We formalize this with the following claim:

Claim 4. If (C, t(·)) is a secure assumption and we can bound

Pr[〈RA, C〉 → Accept] − Pr[〈B, C〉 → Accept] ≤ p(n)

then there is a negligible ε(·) such that SuccessRA(n) ≤ p(n) + ε(n).

Proof. Since B is efficient and (C, t(·)) is secure, there is a negligible ε(·) such
that Pr[〈B, C〉 → Accept] ≤ t(n) + ε(n).

So, given Pr[〈RA, C〉 → Accept] − Pr[〈B, C〉 → Accept] ≤ p(n), then we
conclude that Pr[〈RA, C〉 → Accept] ≤ t(n) + p(n) + ε(n), and thus:

SuccessRA(n) = Pr[〈RA, C〉 → Accept] − t(n) ≤ p(n) + ε(n)

�
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– Set initial view v ← ⊥ and set J ← 1. Execute R, updating the current
view v according to the following rules.

– When R begins a new instance of A with some message (Init, s), label this in-
stance as instance J . Generate and store �(n)q(n) uniformly random queries
m1

J = (m1
J,1,1, . . . , m

1
J,q(n),�(n)). Also initialize a variable kJ ← {}. Lastly,

respond with τ∗
J = (Query, 1, m1

J,1,1) and increment J .
– When R attempts to communicate externally with C, forward the message,

return C’s response to R, and update v accordingly.
– For any i ∈ [q(n)], when R sends to some instance I of A a transcript of

the form
τ = (q1,1, q1,2, . . . , q1,�(n), q2,1, . . . , qi,j)

where either i < q(n) or i = q(n) and j < �(n), such that each qu,v is of the
form ((Query, v, mu,v), σu,v), do the following:

• Let j′ = (j mod �(n)) + 1.
• Let i′ = i + 1 if j′ = 1 and i′ = i otherwise.
• Return the response (Query, j′, m1

I,i′,j′).
– When R sends to some instance I of A a transcript of the form τ = τ1||τ2,

where
τ1 = (q1,1, q1,2, . . . , q1,�(n), q2,1, . . . , qq(n),�(n))

and where each qu,v is of the form ((Query, v, mu,v), σu,v), do the following:
• Let c be the number of Open messages appearing in τ2 so far.
• If there is some tuple (τ1, I, π, ω, m∗) stored, let π, ω, and m∗ be

as stored in the tuple. Otherwise, let π = (π1, . . . , π�(n)) be a uni-
formly random permutation of [�(n)], generate 2�(n) additional mes-
sages ω = (ω0

1 , . . . , ω0
�(n), ω

1
1 , . . . , ω1

�(n)) and a target forgery m∗, and
store the tuple (τ1, I, π, ω, m∗).

• Consider the suffix transcript τ2. If τ2 is empty or ends with messages of
the form ((Open, j), kj), then return (Query, q, ω

Valid(τ,I)
c+1 ), where q is the

lexicographically first instance for which τ2 does not contain an Open
query.

• Otherwise, if c < �(n) − 1 and τ2 ends with messages of the form
((Query, q, ωc+1), ·), then return (Open, πc+1).

• Otherwise, if τ2 ends with ((Query, q, ω�(n)), ·) and c = �(n)−1, generate
a forgery as follows:

∗ If Valid(τ, I) = 0, then return ⊥.
∗ Otherwise, run the procedure Rewind below for the instance I.
∗ If, after running Rewind, there is a stored key kI , then return the

forgery (m∗,TagkI
(m∗), π�(n)) and continue executing R as above.

Otherwise, abort the entire execution of B and return Fail.

Let the predicate Valid(τ, I) be defined as follows:

– Parse τ as τ1||τ2, where τ1 = (q1,0, q1,1, . . . , q1,�(n)−1, q2,0, . . . , qq(n),�(n)) such
that each qu,v is of the form ((Query, v, mu,v), σu,v). If τ cannot be parsed
as such, return 0.

Fig. 3. Formal description of the meta-reduction B (1).
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– If there is a stored tuple (τ1, I, π, ω, m∗) then set π = (π1, . . . , π�(n)) equal
to the third element of this tuple and set ω = (ω0

1 , . . . , ω0
�(n), ω

1
1 , . . . , ω1

�(n))
equal to the fourth element. If there is no such tuple then return 0.

– Parse τ2 = (q∗
1 , q∗

2 , . . . , q∗
c [, q∗

c+1]) such that each q∗
i is of the form

((Query, qi, ωi), ·, (Open, πi), kπi) and q∗
c+1, if present, is of the form

((Query, qi, ωc+1), ·). If τ2 cannot be parsed as such, or if c > �(n) − 1,
return 0.

– Verify that each qi in τ2 is equal to the lexicographically first instance
q ∈ [�(n)] such that q does not appear in an Open query earlier in τ2. If not
true, return 0.

– Verify that, for all i ∈ [q(n)] and all j ∈ {π1, . . . , πc}, Verkj (mi,j , σi,j) =
Accept. (Do not verify the responses to queries ωi in τ2.) If not true, return
0.

– Verify that every mi,j parsed from the transcript τ1 is equal to the stored
m1

I,i,j , and that every ωj parsed from τ2 is equal to the respective ω1
j . If

not, then return 0. Otherwise, return 1.

Rewind procedure:

– Given instance I, for j ∈ [�(n)] let V j denote the view immediately before
the query (ωπj , (Open, πj)) for instance I (i.e., the query corresponding to
the opening of the jth instance after the order of instances π to open is
randomized).

– For j ∈ [�(n)], “rewind” the view to V j as follows: Let J ′ ← J , let π′

be identical to π except with π�(n) and πj swapped (i.e., π′
j = π�(n) and

π′
�(n) = πj), and begin executing R from the view V ′ ← V j as in the main

routine, with the following exceptions:
• Replace any instances of π with π′ (including in Valid).
• When R begins a new instance of A, label this instance as instance J ′

and increment J ′.
• When R attempts to communicate externally with C or “rewind” the

current instance of A by sending a message corresponding to a point
in the interaction before V j , abort the rewinding and continue to the
next repetition.

• When R sends an end message for a valid instance I ′ �= I of A (i.e., a
transcript τ such that A’s next message would be a forgery (m∗, σ∗) for
instance I ′), abort the rewinding and continue to the next repetition.
(If instead A’s next message would be ⊥ because Valid(τ, I) = 0, return
⊥.)

• If v′ ever contains a message whose transcript contains a response kI

to any query for (Open, π�(n)) (i.e., (Open, π′
k)), then, if it is the case

that VerkI (mI,i,π�(n) , σI,i,π�(n)) = Accept for every i ∈ [q(n)] (letting m
and σ variables be defined as in the Valid predicate), store kI and end
the Rewind procedure (i.e., return to the outer execution); if kI is not
a correct key, store nothing to kI and continue to the next repetition.

Fig. 4. Formal description of the meta-reduction B (2).
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So it suffices to bound Pr[〈RA, C〉 → Accept] − Pr[〈B, C〉 → Accept]. In
order to do so, we begin by defining an inefficient “hybrid” meta-reduction
B′ which acts identically to B, with the sole exception that, during the Rewind
procedure, if B′ encounters a response kI to a query for (Open, π�(n)) (i.e., a
key for the instance for which B′ must produce a forgery), and if the recov-
ered kI is valid (i.e., VerkI

(mI,i,π�(n) , σI,i,π�(n)) = Accept for every i ∈ [q(n)]),
then B′ will first determine, using brute force, whether there are any other
keys k′ such that Verk′(mI,i,π�(n) , σI,i,π�(n)) = Accept for every i ∈ [q(n)] but
Tagk′(m∗

I) �= TagkI
(m∗

I). If not (i.e., either kI is the only such key or there is a
unique correct forgery (m∗

I , σ
∗
I )), then B′ stores kI , identically to B; otherwise,

B′ stores the lexicographically first such key k′ and uses that key instead of kI

to produce the forgery (identically to A).
For ease of notation, let us further define some experiments and variables:

– Let Real(1n) denote the experiment [B ↔ C](1n), and Output[Real(1n)] the
output distribution 〈B, C〉(1n). Let Hyb(1n) and Output[Hyb(1n)] be defined
analogously for the “hybrid” experiment [B′ ↔ C](1n), and lastly Ideal(1n)
and Output[Ideal(1n)] for the “ideal” experiment [RA ↔ C](1n).

– For any such experiment, let {mI , πI} define the randomness used to gener-
ate, respectively, all query variables (m(·) or ω(·)) and the permutation π for
an instance I (real or simulated) of A (including the case where a query or
permutation might be regenerated after, e.g., rewinding). Let Oext denote all
other randomness. Furthermore, let M(n) be an upper bound to the number
of instances of A started by R.

– For instance, an experiment Real{m I ,πI}I∈[M(n)]\J ,Oext
(1n) (which we hence-

forth abbreviate as Real{m I ,πI}−J ,Oext
(1n)) would indicate the interaction

between B and C with all randomness fixed except for the variables m and π
for a particular instance J of A (simulated by B).

– Naturally, an experiment denoted by, e.g., Real{m I ,πI}I∈[M(n)],Oext
(1n), has all

randomness fixed and hence is deterministic.

Let Unique({mI , πI}I∈[M(n)],Oext) be the “key-uniqueness” predicate on the
randomness of Real (or Ideal) which is true if, during execution of the experiment
Real{m I ,πI}I∈[M(n)],Oext

(1n), whenever B returns a forgery (m∗, σ∗), it is the case
that σ∗ = Tagk∗(m∗), where k∗ is the lexicographically first key k such that
Verk(mI,i,πI,j

, σI,i,πI,j
) = Accept for all i ∈ [q(n)]. That is, Unique is true when-

ever, given the randomness of an experiment, B (if rewinding succeeds) returns
the same forgery as A would in the Ideal experiment. The occurrence of Unique
is hence fully determined by the randomness ({mI , πI}I∈[M(n)] and Oext) that
fully determines the execution of Real or Ideal.

We must also deal with the fact that R may rewind A. Let W (n) be a
polynomial upper bound to the number of times that R causes A to generate
a permutation π (including by rewinding) in the experiment Ideal(1n), and note
that, trivially, W (n) ≥ M(n).

Now, with setup completed, we can proceed in two major steps. Our goal is
to bound

|Pr[Output[Real(1n)] = Accept] − Pr[Output[Ideal(1n)] = Accept]|
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which we can do by bounding

|Pr[Output[Real(1n)] = Accept] − Pr[Output[Hyb(1n)] = Accept]|
and

|Pr[Output[Hyb(1n)] = Accept] − Pr[Output[Ideal(1n)] = Accept]|

4.3 Comparing the Real and Hybrid Experiments

We begin with the first of these quantities, which is relatively straightforward to
bound. Informally, whenever Unique holds (the probability of which is dictated
by Lemma 2), B and B′ behave identically by construction. The complete proof
is given in the full version.

Claim 5. There exists negligible ν(·) such that, for all n ∈ N:

|Pr[Output[Real(1n)] = Accept] − Pr[Output[Hyb(1n)] = Accept]|

<
2nW (n)

q(n)
+ ν(n)

taken over the randomness of {mI , πI}I∈[M(n)] and Oext.

4.4 Comparing the Hybrid and Ideal Experiments

To relate the hybrid B′ to the “ideal” interaction with RA, we next present
the following claim, which informally holds because, by construction, B′ behaves
identically to A as long as rewinding does not fail (in which case it would return
Fail). The complete proof is again given in the full version.

Claim 6

|Pr[Output[Hyb(1n)] = Accept] − Pr[Output[Ideal(1n)] = Accept]|
≤ Pr[Output[Hyb(1n)] = Fail]

taken over the randomness of {mI , πI}I∈[M(n)] and Oext.

4.5 Bounding the Hybrid’s Failure Probability

So all that remains is to investigate the probability of Hyb outputting Fail; to do
this we can make a critical observation about rewinding in the context of our
construction. Formally, we prove the following:

Proposition 1. There exists a negligible function ε(·) such that, for all n ∈ N,
taken over the randomness of {mI , πI}I∈[M(n)] and Oext:

Pr[Output[Hyb(1n)] = Fail] ≤ W (n)
(

W (n) + r(n) + 1
�(n)

)
+ ε(n)
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Proof. First, we show that without loss of generality R can never rewind except
from a point after π is generated to a point before π is generated; intuitively,
this is because all of A’s queries to R are dependent only on (1) the permutation
π and (2) the validity of R’s responses, and as such any rewinding that does not
result in π being regenerated can in fact be internally simulated by R. Formally,
we state the following claim, which we prove in the full version:

Claim 7. Given any R that rewinds any instance of A either (1) from a point
before π is generated or (2) to a point after π is generated, there exists an R′

with identical success probability that does not perform such rewinding.

Hence, we assume without loss of generality that R sends at most W (n) “end
messages” (i.e., forgery requests) requiring rewinding, as π is by assumption gen-
erated no more than W (n) times and the responses to any further end messages
are effectively simulatable by R. We disregard end messages sent for instances
for which R has not answered all �(n) − 1 key opening queries, since, with all-
but-negligible probability, A or B′ can directly respond to these with ⊥ (as Valid
will evaluate to 0 unless R guesses a random and unknown ωi correctly).

At this point, we have shown that our hybrid experiment gives us a set-
ting with minimal rewinding and guaranteed key uniqueness, much like the
setting discussed in [35] for the case of unique signatures. Hence, we can
leverage this observation to prove the following claim, analogous to the key
“rewinding lemma” therein. Consider the following for any possible execution
Hyb{m I ,πI}−J ,mJ ,Oext

(1n) (i.e., for any fixed setting of all randomness aside from
πJ), and notice that, since it applies to arbitrarily fixed randomness, it must thus
apply over all possible randomness of the experiment Hyb(1n):

Claim 8. Given any experiment Hyb{m I ,πI}−J ,mJ ,Oext
(1n), the probability, over

the uniformly chosen permutation πJ , that the simulated instance J will return
Fail when rewinding any end message, is, for all n ∈ N, at most

W (n) + r(n) + 1
�(n)

The claim is nearly identical to its analogue in [35], but for completeness we
provide a proof in the full version of our paper. We can conclude as desired that
the probability of any forgery request causing B′ to return Fail in the experiment
Hyb is at most

W (n)
(

W (n) + r(n) + 1
�(n)

)
+ ε(n)

by combining Claim 8 (taken over all possible assignments of the fixed random-
ness) with the union bound over our bound of W (n) possible (unique) forgery
requests for which R has answered all key-opening queries. For any requests for
which this is not the case, we know by Claim 3 that the probability of such
requests causing B′ to return anything besides ⊥ is negligible, so, since R is
polynomial-time, these requests add at most a negligible ε(n) to the probability
of Hyb returning Fail. �
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4.6 Bounding the Security Loss

Finally, we must translate this bound on the failure probability of B′ into a
bound on the security loss of the reduction R. As the argument is fairly similar
to that of [35], we defer the complete argument to the full version of our paper;
to conclude, we derive that, if (C, t(·)) is secure, then:

λR(n) ≥
(

1 − 1
2�(n)2

)
(
√

�(n) − (r(n) + 2))

which finishes the proof of Lemma 1.
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Abstract. In EUROCRYPT ’96, Aiello and Venkatesan proposed two
candidates for 2n-bit to 2n-bit pseudorandom functions (PRFs), called
Benes and modified Benes (or mBenes), based on n-bit to n-bit PRFs.
While Benes is known to be secure up to 2n queries (Patarin, AFRICA-
CRYPT ’08), the security of mBenes has only been proved up to 2n(1−ε)

queries for all ε > 0 by Patarin and Montreuil in ICISC ’05. In this work,
we show that the composition of a 2n-bit hash function with mBenes is
a secure variable input length (VIL) PRF up to 2n−2 queries (given
appropriate hash function bounds). We extend our analysis with block
ciphers as the underlying primitive and obtain two optimally secure VIL
PRFs using block ciphers. The first of these candidates requires 6 calls to
the block cipher. The second candidate requires just 4 calls to the block
cipher, but here the proof is based on Patarin’s mirror theory. Further,
we instantiate the hash function with a PMAC+/LightMAC+ like hash,
to get six candidates for deterministic message authentication codes with
optimal security.

Keywords: PRF · MAC · Benes · Modified Benes · PMAC+ ·
LightMAC+

1 Introduction

Pseudorandom functions (PRF) over variable length inputs are keyed func-
tions that take as input a bit string of arbitrary length and output a fixed length
bit string that should be indistinguishable from uniformly random bits. This
primitive is useful in practice as it can serve as a Message Authentication Code
(MAC) in order to provide integrity and authenticity of messages. Moreover,
when adequately combined with an encryption scheme (e.g. using the generic
SIV structure [1]), it can also provide authenticated encryption. Unfortunately,
barring a few examples like SURF [2], SipHash [3] and AES-PRF [4], building a
concrete secure PRF from scratch has remained elusive.

Block Cipher-Based PRF: Given the ubiquity of block ciphers (BC), build-
ing a provably secure PRF from block ciphers has been a widely studied problem
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12491, pp. 754–784, 2020.
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in symmetric cryptography. As far as fixed input length (FIL) is concerned, the
problem is essentially solved as several highly secure constructions already exist.
For example, given two n-bit permutations Π1 and Π2, the following PRP-to-
PRF constructions offer security up to (roughly) 2n adversarial queries:

– the sum x �→ Π1(x) ⊕ Π2(x) of both permutations and its single-keyed vari-
ant the TWIN construction x �→ Π1(0||x) ⊕ Π1(1||x): after their introduction
by Bellare et al. [5], their security has been the subject of a long line of
research [5–7], culminating with [8,9] and [10] where optimal security has
been proven;

– the Encrypted Davies-Meyer (EDM) construction x �→ Π2(Π1(x) ⊕ x) and its
dual (EDMD) x �→ Π2(Π1(x))⊕Π1(x): EDM has been introduced in [11], and
security up to roughly 2n/n queries has been proven in [12], while EDMD has
been designed and proven optimally secure in [12].

However, for the case of variable input length (VIL), very few constructions
actually provide security beyond the birthday bound. The most notable excep-
tions are, the SUM-ECBC construction [13], the PMAC+ construction [14] and its
single-key variant 1k-PMAC+ [15], 3kf9 [16] and LightMAC+ [17] since they offer
beyond the birthday bound (but still suboptimal) security. Those modes of oper-
ations use the relatively new Double-block Hash-then-Sum or DbHtS paradigm
[18], which applies n-bit block cipher calls to the two n-bit halves of a 2n-bit hash
function and then sums the encrypted output. Although the DbHtS paradigm is
known to achieve very high security [19,20], it is not yet known whether it can
achieve optimal security. A more traditional approach towards PRF construc-
tion is the classical Hash-then-PRF paradigm [21], that relies on an n-bit block
cipher along with two other components:

– a hash function with 2n-bit output; and
– a 2n-bit to n-bit PRF.

Designing the latter primitive is deeply linked to the problem of domain extension
for PRFs, which has also been the subject of a long line of research. Since
we focus on the problem of designing an optimally secure construction from a
block cipher, this restricts the set of possible finalization constructions to the
Benes construction and its variants [22], and Feistel networks with at least four
rounds [23]1. Unfortunately, optimal security for Feistel networks when round
functions are instantiated with PRPs still remains to be proven. Hence, using
Feistel networks as a finalization function would require implementing the round
PRFs as the xor of two permutations, thus increasing the number of block cipher
calls to 8. As we will see, considering other structures will allow the design of
more efficient schemes.

benes and Modified Benes: In [22], Aiello and Venkatesan introduced the
Benes and modified Benes (or mBenes) constructions that build a 2n-bit to n-bit
1 The actual Feistel networks are from 2n-bit to 2n-bit. In that case, 5 rounds are

required for optimal security. Since we only require n-bit outputs, the final round
can actually be dropped.



756 B. Cogliati et al.

PRF2 from respectively 6 and 4 independent n-bit PRFs, where each underlying
PRF is called once for each call to the construction. Patarin showed that Benes
transformation is n-bit secure [24]. For mBenes, although Aiello and Venkatesan
conjecture n-bit security, until now only a high level proof idea is shown [24,
25] for security up to (roughly) 2n(1−ε) queries for all ε > 0. In order to use
PRPs as the underlying primitive in Benes and mBenes while keeping optimal
security, the most obvious solution would be to rely on an optimally secure PRP-
to-PRF conversion method. However, this would increase the number of PRP
calls of the construction to 12 for the Benes construction, and 8 for the mBenes
construction. Current proof techniques unfortunately are not sufficient to prove
optimal security for PRP-based Benes and mBenes constructions using a smaller
number of permutation calls. Indeed, the current best result by Jha and Nandi
shows that mBenes using 4 block ciphers is secure up to 23n/4 queries [19].

1.1 Our Contributions

Table 1. Summary of beyond-the-birthday bound secure variable input length pseu-
dorandom functions. Here � denotes the length of the input message after padding.

Scheme Primitive Security

Type No. of calls Bound Restriction

3kf9 [16] PRP � + 2 O
(

�2q4/3

2n

)
[20] −

PMAC+ [14] PRP � + 2 O
(

q4/3�2/3+�2q
2n

)
[20] � � 2n/2 [20]

1k-PMAC+ [15] PRP � + 2 O
(

qσ2

22n

)
−

LightMAC+a [17] PRP 2� + 2 O
(

q4/3

2n

)
[20] −

LightMac+2a [17] PRP 2� + 2 + t O
(

qt+1

2t

)
t ≤ 7; � = O

(
2n/2

)

mPMAC+-f PRF/PRP � + 3 O
(

σ
2n

)
� = O

(
2n/2

)

mPMAC+-p1 PRP � + 5 O
(

σ
2n

)
� = O

(
2n/2

)

mPMAC+-p2 PRP � + 3 O
(

σ
2n

)
� = O

(
2n/2

)

mLightMAC+-fa PRF/PRP 2� + 3 O
( q
2n

)
� = O

(
2n/2

)

mLightMAC+-p1a PRP 2� + 5 O
( q
2n

)
� = O

(
2n/2

)

mLightMAC+-p2a PRP 2� + 3 O
( q
2n

)
� = O

(
2n/2

)
aIn order to simplify the comparison, we focus on the case m = n/2 for LightMAC+-based
constructions

Our contribution is twofold. First, we introduce a novel construction dubbed
HtmB for Hash-then-modified-Benes. This construction captures the design of a
VIL-PRF based on a FIL primitive where the input is first hashed, then given as
input to mBenes. This hashing step is what allows us to avoid the main difficulties
that are encountered when one tries to prove optimal security for the mBenes

2 The actual Benes and mBenes constructions are from 2n-bit to 2n-bit, requiring 8
and 6 calls respectively (see Sect. 3 for details). For now, just n-bit output suffices.
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construction. In more details, we introduce a new statistical property for hash
functions with 2n-bit outputs: Diblock Almost q-Collision-free Universality or
DbACUq (see Sect. 2.2). We then show that the composition of a DbACUq hash
function and the mBenes construction is n-bit secure (see Sect. 4), and propose
several extensions:

– HtmB-f: the standard HtmB construction based on 4 functions;
– HtmB-p1: the HtmB construction where two functions are replaced with per-

mutations, and the remaining ones are replaced with the sum of two permu-
tations

– HtmB-p2: the standard HtmB based on 4 permutations.

It is worth noting that the security proofs for the first two constructions are
straightforward and rely on the same technique as Patarin’s classical proofs for
Benes [24]. The security proof for the last construction relies on the fundamen-
tal result of Mirror Theory [9, Theorem 6]. Note that DbACUq can be easily
achieved by concatenation of two independent almost universal (AU) hash func-
tions. Moreover, we will show two instances where this property is also achieved
for concatenation of dependent AU hash functions.

Second, we define two families of block cipher modes of operation dubbed
mLightMAC+ and mPMAC+ (see Sect. 5). Both are concrete instantiations of
HtmB where the hashing algorithm is based respectively on the LightMAC+ and
PMAC+ algorithms. In more details, both schemes are provably secure PRFs
with n-bit output and have the following properties:

– mPMAC+ processes n bits of (padded) input per block cipher call during the
hashing phase and is secure as long as the number of (padded) queried blocks
is small in front of 2n and no query is longer than 2n/2 blocks;

– for any fixed integer m ∈ {1, . . . , n − 1}, mLightMAC+ processes n − m bits
of input per block cipher call during the hashing phase and is secure as long
as the number of adversarial queries is small in front of 2n3 and no query is
longer than 2m blocks.

Table 1 summarizes this information and compares our modes with the origi-
nal LightMAC+ and PMAC+ constructions, while Fig. 1 highlights the changes
between mPMAC+-p2, our mPMAC+ instantiation based on HtmB-p2, and the
original PMAC+ construction.

In [26], Naito proposed a PMAC variant based on PMAC+ like masking and
claimed length-independent bounds on the collision probability of the underlying
hash layer. However, the proof is incorrect owing to a flaw identified in [27], and
apparently it cannot be fixed within the proof setup developed in [26] (see [27]
for further details). Consequently, in Sect. 6.2, we first discuss this flaw and then
derive a slightly worse bound which is still sufficient to prove optimal security
of mPMAC+.

The key sizes in HtmB could be an issue in some memory-constrained envi-
ronments. In Sect. 7, we address this problem and present some variants of HtmB

3 Note that this is true regardless of the total length of all adversarial queries.
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that require lesser key material. Finally, we conclude in Sect. 8 with some open
problems.

Π0

⊕Δ1

M1

Π0

⊕

⊕Δ2

M2

· · · · · ·

· · · · · · ⊕

Π0

⊕Δ�

M�

Π1

Π2

⊕ Π3

⊕ Π4

⊕

� ⊕ � ⊕

2 2 S

Fig. 1. Schematic of mPMAC+-p2, operating over a padded message of length �n bits.
Π0, . . . , Π4 are independent random permutations, and Δi = 2i � Π0(0) ⊕ 22i � Π0(1),
where � denotes the multiplication operator of GF(2n). Components drawn in blue
dashed lines represent the addition over the original PMAC+ construction. Components
drawn in red dotted lines represent the deletion over the original PMAC+ construction.
Note that the modified hash layer saves one block cipher call as compared to the one
in PMAC+. (Color figure online)

2 Preliminaries

Notational Setup: For n ∈ N, [n] denotes the set {1, 2, . . . , n}, and {0, 1}n

denotes the set of bit strings of length n. Let GF(2n) be the field of order 2n. We
identify bit string and finite field element of GF(2n) by representing the string
a = an−1 . . . a0 ∈ {0, 1}n as polynomial a(x) = an−1x

n−1 + . . . + a0 ∈ GF(2n)
and vice versa. As usual, we define field addition ⊕ as polynomial addition, and
multiplication � as polynomial multiplication modulo the irreducible polynomial
f(x) used to represent GF(2n). Therefore, we can view {0, 1}n as the finite field
GF(2n) with ⊕ as field addition and � as field multiplication. When the context
is clear, we will denote by 2 the primitive element of GF(2n). The set of all
bit strings (including the empty string) is denoted {0, 1}∗, and |X| denotes the
number of bits in X ∈ {0, 1}∗. For any integer m, {0, 1}≤m denotes the set of
all bit strings of bit length at most m. For n ∈ N and any two bit strings M and
M ′, we denote by M ||M ′ the concatenation of M and M ′, and we define pad(M)
as M ||10 · · · 0, such that |pad(M)| is the smallest multiple of n that is greater
than |M |. For i,m ∈ N such that i < 2m, we define <i>m as the m-bit little
endian encoding of the integer i. For n, r ∈ N, such that 0 ≤ r ≤ n, we define
the falling factorial (n)r := n!/(n − r)! = n(n − 1) · · · (n − r + 1). The set of all
functions from X to Y is denoted F(X ,Y), and the set of all permutations of X
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is denoted P(X ). We simply write F(a, b) and P(a), whenever X = {0, 1}a and
Y = {0, 1}b. For a finite set X , X ←$X denotes the uniform at random sampling
of X from X . For any property P of some random variable X, Pr [P [X]] denotes
the probability that P [X] is satisfied.

For q ∈ N, Xq denotes the q-tuple (X1,X2, . . . , Xq). By an abuse of notation
we also use Xq to denote the multiset {Xi : i ∈ [q]}. For q ∈ N, for any set X ,
(X )q denotes the set of all q-tuples with distinct elements from X . For a pair of
tuples Xq and Y q, (Xq, Y q) denotes the 2-ary q-tuple ((X1, Y1), . . . , (Xq, Yq)).
An n-ary q-tuple is defined analogously. For any tuple Xq ∈ X q, and for any
function f : X → Y, f(Xq) denotes the tuple (f(X1), . . . , f(Xq)).

2.1 Keyed Functions and Block Ciphers

Keyed Function: A (K,X ,Y)-keyed function F with key space K, domain
X , and range Y is a function F : K × X → Y. We write FK(X) for F (K,X).

Block Cipher: A (K, {0, 1}n)-block cipher E with key space K and block space
{0, 1}n is a (K, {0, 1}n, {0, 1}n)-keyed function, such that for any key K ∈ K,
X �→ E(K,X) is a permutation of {0, 1}n. We write EK(X) for E(K,X).

Security Definitions: A (q, t)-distinguisher is an interactive algorithm with
access to an oracle, that makes at most q oracle queries, runs in time at
most t, and outputs a single bit. By convention, t = ∞ denotes computation-
ally unbounded (information-theoretic) and deterministic distinguishers. In this
paper, we assume that the distinguisher never makes a duplicate query.

Pseudorandom Function: The pseudorandom function or PRF advantage
of any distinguisher A against a (K,X ,Y)-keyed function F is defined as

Advprf
F (A ) = AdvF ;Γ(A ) :=

∣
∣
∣
∣

Pr
K ←$K

[

A FK = 1
]

− Pr
Γ ←$F(X ,Y)

[

A Γ = 1
]
∣
∣
∣
∣
. (1)

Deterministic message authentication codes (or MAC) are keyed functions which
provide both integrity and authenticity of data. It is a well-known fact [28] that
a secure PRF is a good candidate of deterministic MAC.

Pseudorandom Permutation: The pseudorandom permutation or PRP
advantage of any distinguisher A against a (K, {0, 1}n)-block cipher E is defined
as

Advprp
E (A ) = AdvE;Π(A ) :=

∣
∣
∣
∣

Pr
K ←$K

[

A EK = 1
]

− Pr
Π ←$P(n)

[

A Π = 1
]
∣
∣
∣
∣
. (2)

Remark 2.1. All our results will be given in the information-theoretic setting,
and their computational counterparts can be easily obtained via a boilerplate
hybrid argument. In other words, instead of first starting with block ciphers (or
PRFs), we will directly work with random permutations (or functions) as the
underlying primitives.
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Sum of Permutations: In 1998, two independent works [5,29] on building
PRFs from PRPs proposed the Sum of Permutation (SoP) construction. For two
independent random permutations Π1,Π2 ←$P(n), the SoP, denoted Π1 ⊕ Π2,
is defined as the mapping X �→ Π1(X) ⊕ Π2(X). After several attempts [6,7,9],
Dai et al. [10] finally showed that SoP is a secure PRF up to 2n queries. In
Proposition 2.1, we restate the well-known and celebrated result of [10]. A proof
of Proposition 2.1 is available in [10].

Proposition 2.1. For n ≥ 4, q ≤ 2n−4, and all (q,∞)-distinguisher A we have

Advprf
Π1⊕Π2

(A ) ≤ q1.5

21.5n
.

2.2 Universal Hash Functions

We recall the usual definition of universal hash function. A (K,X ,Y)-keyed func-
tion H is said to be ε-almost universal (AU) hash function if for any distinct
X,X ′ ∈ X , we have

Pr
K ←$K

[HK(X) = HK(X ′)] ≤ ε. (3)

Let us fix a non-empty set X ⊂ {0, 1}∗. In this article, we are going to consider a
slightly more general notion of universality. Namely, let H be a (K,X ,Y)-keyed
function that processes its inputs in n-bit blocks. H is said to be (q, σ, ε)-Almost
θ-Collision-free Universal (or ACUθ) if, for every Xq ∈ (X )q such that Xq

contains at most σ blocks, one has Pr [C ≥ θ] ≤ ε, where

C := |{(i, j) : 1 ≤ i < j ≤ q, HK(Xi) = HK(Xj)}|.

In the case of a (q, σ, ε)-ACU1 hash function H, we simply say that H is (q, σ, ε)-
AU. Note that if q = 2, we recover the standard AU notion. Moreover, the
following proposition is a simple application of Markov’s inequality.

Proposition 2.2. For q, θ ∈ N and 0 ≤ ε ≤ 1, let H be an ε-AU hash function.
Then H is (q,∞, q2ε

θ ) − ACUθ.

The proof of Proposition 2.2 follows from Markov’s inequality and is thus skipped
here.

We also define a new combined notion for the concatenation of two hash
function. Namely, we say that a pair H = (H1,H2) of two (K,X ,Y)-keyed hash
functions H1,H2 is (q, σ, ε2, ε1)-Diblock ACUq (or DbACUq) if H is (q, σ, ε2)-AU
and H1, H2 are (q, σ, ε1)-ACUq. A simple example of DbACUq hash function is
the concatenation of two independent AU hash functions. In section 5, we present
two other DbACUq hash functions LightHash and PHash based respectively on
the LightMAC+ and PMAC+ constructions.

The concatenation of Two Independent AU Hash Functions: Let
H1 and H2 be two ε-AU hash functions with key space K, message space X
and range Y. We define the concatenation H = (H1,H2) of H1 and H2 as a
(K2,X ,Y2)-keyed function defined as H(K1,K2)(X) = (H1,K1(X),H2,K2(X)) for
every X ∈ X , (K1,K2) ∈ K2. The following result holds.
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Proposition 2.3. Let H1,H2 be two ε-AU hash functions keyed independently
and H = (H1,H2). For q, σ ∈ N, H is (q, σ, q2ε2, qε)-DbACUq.

A proof of Proposition 2.3 relies on the independence of both components and
on Proposition 2.2.

2.3 Coefficient-H Technique

The coefficient-H technique by Patarin [30,31] is a tool to upper bound the
distinguishing advantage of any deterministic and computationally unbounded
distinguisher A in distinguishing the real oracle R from the ideal oracle I. The
collection of all queries and responses that A made and received to and from
the oracle, is called the transcript of A , denoted as τ .

Let Tre and Tid denote the transcript random variable induced by A ’s interac-
tion with R and I, respectively. Let T be the set of all transcripts. A transcript
τ ∈ T is said to be attainable if Pr [Tid = τ ] > 0, i.e., it can be realized by
A ’s interaction with I. Following these notations, we state the main result of
coefficient-H technique in Theorem 2.1. A proof of this theorem is available in
[4,32], among others.

Theorem 2.1. For ε1, ε2 ≥ 0, suppose there is a set Tbad ⊆ T , that we call the
set of bad transcripts, such that the following conditions hold:

– Pr [Tid ∈ Tbad] ≤ ε1; and

– For any τ /∈ Tbad, τ is attainable and
Pr [Tre = τ ]
Pr [Tid = τ ]

≥ 1 − ε2.

Then, for any computationally unbounded and deterministic distinguisher A , we
have

AdvR;I(A ) ≤ ε1 + ε2.

3 Benes and mBenes Transformations

Butterfly transformation: Given four functions f1, . . . , f4 ∈ F(n, n), the
Butterfly transformation (illustrated in Fig. 2) is a function from {0, 1}2n to
{0, 1}2n, which is defined as Butterfly[f1, . . . , f4](L,R) := (X,Y ), where

X := f1(L) ⊕ f2(R) and Y := f3(L) ⊕ f4(R).

Benes transformation: Given eight functions f1, . . . , f8 ∈ F(n, n), the
Benes transformation (illustrated in Fig. 2) is a function from {0, 1}2n to
{0, 1}2n, which is defined as the composition of two Butterfly transformations,
i.e. Benes[f1, . . . , f8](L,R) := (S, T ), where

S := f5(f1(L) ⊕ f2(R)) ⊕ f6(f3(L) ⊕ f4(R)) = f5(X) ⊕ f6(Y ),
T := f7(f1(L) ⊕ f2(R)) ⊕ f8(f3(L) ⊕ f4(R)) = f7(X) ⊕ f8(Y ).
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Modified Benes transformation: The modified Benes or mBenes trans-
formation (illustrated in Fig. 2) is a simplification of the Benes transformation,
where f2 and f3 are identity functions. So, we have X = f1(L)⊕R, Y = f4(R)⊕L,
and (S, T ) = mBenes[f1, f4, f5, . . . , f8](L,R), such that S = f5(X) ⊕ f6(Y ) and
T = f7(X) ⊕ f8(Y ).

For brevity we drop the parameters f1, . . . , f8, whenever they are understood
from the context.

L R

⊕
X

⊕
Y

f1 f2 f3 f4

L R

⊕ ⊕

⊕
S

⊕
T

f1 f2 f3 f4

f5 f6 f7 f8

L R

⊕ ⊕

⊕
S

⊕
T

f1 f4

f5 f6 f7 f8

Fig. 2. Left to right: Butterfly, Benes and mBenes transformations. An edge (u, v) with
label g denotes the mapping v = g(u). Unlabelled edges are identity mapping.

3.1 Revisiting the Security Analysis of Benes and mBenes

Let (Lq, Rq) denote a q-tuple of inputs. Given f1, . . . , f4 ∈ F(n, n), we can define
(Xq, Y q) by the definition of Benes or mBenes, as applicable.

Dependency Graph: To (Lq, Rq) and any f1, . . . , f4 ∈ F(n, n), we associate
the dependency graph G[Lq, Rq; f1,...,4] = ([q], E), over the set of all query indices
[q], where {i, j} ∈ E if and only if Xi = Xj (the edge is colored red) or Yi = Yj

(the edge is colored blue). G[Lq, Rq; f1,...,4] may contain parallel edges, but their
coloring will be different. Figure 3 is a possible dependency graph for q = 12.

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 3. A possible dependency graph for some 12-tuple of inputs. (Color figure online)

Definition 3.1 (Alternating cycle). An alternating cycle or circle of length
k ≥ 2, k even, is simply a cycle denoted by a sequence of k + 1 indices, vk+1 =
(v1, . . . , vk, vk+1) such that

– vk+1 = v1,
– {vi, vi+1} ∈ E for all i ∈ [k],
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– {v1, v2} is colored red, and
– {vi, vi+1} and {vi+1, vi+2} do not share the same color, for all i ∈ [k − 1].

Example 3.1. Any parallel edge is an example of alternating cycle. In Fig. 3,
(1, 2, 3, 4, 1) and (11, 12, 11) are two possible alternating cycles.

Let AC[Lq, Rq; f1,...,4] denote the property that G[Lq, Rq; f1,...,4] contains an alter-
nating cycle. We will drop the parameters (Lq, Rq; f1,...,4), whenever they are
understood from the context.

For f1, . . . , f8 ←$F(n, n), Aiello and Venkatesan [22] showed that PRF
advantage of any distinguisher against Benes and mBenes is at most the proba-
bility that AC is satisfied. Similar results were later also shown in [24,25]. The-
orem 3.1 is a reformulation of [22, Lemma 2] (also [25, Theorem 5.2] and [24,
Theorem 1]) in our notations.

Theorem 3.1. For Γ1 . . . , Γ8 ←$F(n, n), F ∈ {Benes,mBenes}, and any
(q,∞)-distinguisher A , we have

Advprf
F [Γ1,...,Γ8]

(A ) ≤ ACP(q) := max
(Lq,Rq)

Pr
Γ1,...,Γ4

[AC[Lq, Rq; Γ1,...,4]].

A proof of Theorem 3.1 is available in [25] among others. For the sake of com-
pleteness, we reproduce it in the full version of this paper.

Aiello and Venkatesan [22] claimed that ACP(q) ≤ q2/22n. Later, Patarin
and Montreuil [25] showed that the initial analysis of ACP(q) by Aiello and
Venkatesan was overly optimistic, and subsequently gave a non-tight estimate
for Benes. The main idea of their analysis was to consider each equation in the
alternating cycle, one-by-one, distinguishing whether the equation is dependent
over the previous equations or not. If the i-th equation is independent then they
freely choose the new index4, i.e., (i + 1)-th index in q − i ways. However, when
the equation is dependent, then there exist j, j′ < i such that Li = Lj and
Ri = Rj′ , hence we only have i(i − 1) ways to choose the (i + 1)-th index. By
continuing in this way and making some algebraic simplifications, they derive
the upper bound

ACP(q) ≤ d(k)
q2

22n+1
+

q4

24n+2
+

qk+1

2nk
,

for all k ≥ 1, where d(k) = 6.5 +
∑k

j=6 j2j + k2k. So, for any k and suf-
ficiently large n, we can claim security up to q ≤ min{2nk/k+1,

√

22n/d(k)}.
However, the bound becomes increasingly moot as we increase the value of k.
Suppose we aim for security up to 2kn/k+1 queries. Then, for k = 6 we need
n > 112, for k = 7 we need n > 161, and for k = 9 we need n > 290, where n
denotes the output size of the underlying functions. Clearly, very high security
(close to 0.9n) is only possible for large output size (n > 290). In practice, with
such a large output size, even a birthday bound security guarantee might suffice.

4 Each equation (except the last one) gives a new index.
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Patarin and Montreuil also claimed similar security bounds for mBenes [25].
However, they only gave a very high level and terse sketch of the proof. We refer
the readers to [25] for details.

First Dependency and Tight Bound for Benes: Patarin [24] devised an
elegant way to derive a more tighter estimate for ACP(q) in case of Benes.

Definition 3.2 (Alternating trail). An alternating trail or line of length
k ≥ 2 is simply a trail denoted by a sequence of k + 1 vertices, vk+1 =
(v1, . . . , vk, vk+1) such that

– {vi, vi+1} ∈ E, for all i ∈ [k].
– {vi, vi+1} and {vi+1, vi+2} do not share the same color, for all i ∈ [k − 1].

In addition, we say that vk+1 is a red (res. blue) trail if {v1, v2} is colored red
(res. blue).

Example 3.2. An alternating cycle is in fact a special type of alternating red
trail with even length. In Fig. 3, (1, 2, 3, 4, 1), (5, 6, 7, 8, 9, 10), and (11, 12, 11)
are some of the possible alternating trails. Note that all these trails are red
trails. On the other hand, (2, 3, 4, 1, 2) is a blue trail.

Associated System of Equations: By definition, each edge in the depen-
dency graph G corresponds to an equation. For example, say we have an edge
{u, v} with red color, then the associated equation is Xu = Xv. By extension,
each connected component corresponds to a system of equations. In particular,
any alternating trail (or cycle) vk+1 can be uniquely associated with a system of
k equations. For example, suppose vk+1 is an alternating red trail of even length.
Then, the associated system of equation is Xv1 = Xv2 , . . . , Yvk

= Yvk+1 .

Example 3.3. In Fig. 3, we can have the following associated system of equations:

– For alternating cycle (1, 2, 3, 4, 1): X1 = X2, Y2 = Y3, X3 = X4, Y4 = Y1.
– For alternating trail (5, 6, 7, 8, 9, 10): X5 = X6, Y6 = Y7, X7 = X8, Y8 =

Y9, X9 = X10.
– For parallel edge (11, 12, 11): X11 = X12, Y12 = Y11.

Definition 3.3 (First dependency [24]). An alternating trail of length k ≥ 2
is said to have first dependency if all the equations in the associated system of
equations, except the last one are independent of others, and the last equation is
a consequence of the previous equations.

An alternating cycle of length k ≥ 2 is said to have first dependency if all
the equations in the associated system of equations, except one are independent
of others, and exactly one is a consequence of the other equations.

Example 3.4. In Fig. 3, suppose L5 = L9, L6 = L10, R5 = R6, R9 = R10. Then,
X5 = X6 holds if f1(L5) = f1(L6) (as R5 = R6). Similarly, X9 = X10 holds if
f1(L9) = f1(L10) (as R9 = R10). But, L9 = L5 and L10 = L6. Thus, X9 = X10

is a consequence of X5 = X6. Hence, X5 = X6, Y6 = Y7, X7 = X8, Y8 =
Y9, X9 = X10 is an alternating trail of length 5 with first dependency.
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Any alternating cycle of length k must have one of the following:

1. All the equations in the associated system of equations are independent.
2. The cycle has first dependency, i.e., all equations are independent except one.
3. The cycle contains an alternating trail of length < k which has first depen-

dency.

The first case is easy to bound as we have to choose k indices and we have k
independent equations, which gives O(qk/2nk) bound. The second case is similar
to the last one, which is more general. Patarin argued that whenever an alter-
nating trail has first dependency, then among the k + 1 indices at least two are
fixed once the other k − 1 indices are chosen. Indices 6 and 9, for instance, are
fixed once we choose indices 5 and 10 in Example 3.4. This observation immedi-
ately gives a bound of the form O(qk−1/2n(k−1)), since the first k − 1 equations
are independent. On combining the three cases, Patarin obtained the following
bound on ACP(q) in case of Benes.

ACP(q) ≤ 8590q2

22n
(4)

Notice the large constant in the bound, which compels large n to get appreciable
security in practice. The main component of this constant is an infinite sum
∑∞

k=3

(
k5

2k−3

)

. For large k, we observed that this sum can be approximated to
8588. In the same paper, Patarin also gave another improved bound [24, Theorem
9] using a more involved analysis which can be approximated to 26q2/22n +
200076q3/24n for large k.

First Dependency in mBenes: While the first dependency idea is quite useful
for deriving tight security bound of Benes, Patarin noted that the same is not true
in case of mBenes. In fact, a crucial argument—among the k+ 1 indices 2 indices
are fixed once we fix k−1 indices—fails in case of mBenes. For example, suppose
X1 = X2, Y2 = Y3, X3 = X4 is an alternating trail with first dependency, such
that L1 = L3, L2 = L4, and R1 ⊕ R2 ⊕ R3 ⊕ R4 = 0. It is clear to see that here
only one index is fixed given the other three (L4 = L2 and R4 = R1 ⊕ R2 ⊕ R3).
Consequently, Patarin speculates:

Therefore, a proof of security in O(2n)for the Modified Benes will be dif-
ferent, and probably more complex than our proof of security on O(2n) for
the regular Benes.

4 HtmB: Hash Then Modified Benes

Section 3 gives a clear indication that the exact security of mBenes is a difficult
problem. The main difficulty in the analysis is a simple fact that the distin-
guisher has complete control over the inputs to mBenes. However, in practice
PRFs are mostly required to work over arbitrary domains, which requires an
additional preprocessing phase before the application of fixed input length PRF.
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This preprocessing is often done via a universal hash function—the so-called
Hash-then-PRF paradigm [21]. This added layer of preprocessing somewhat cur-
tails the distinguisher’s ability to control the inputs to mBenes. Indeed, now we
show that the composition of a universal hash function with mBenes leads to
optimal security, with domain extension as byproduct.

Hash-Then-Modified-Benes: Let M ⊆ {0, 1}∗. Given a pair H =
(H1,H2) of two (K,M, {0, 1}n)-keyed hash functions (H1 and H2 may share
the same key), and f1, . . . , f4 ∈ F(n, n), the Hash-then-modified-Benes or
HtmB transformation is a function from M to {0, 1}n, which is defined as
HtmB[H, f1, . . . , f4](M) := S, where

(L,R) := HK(M) X := f1(L)⊕R Y := f2(R)⊕L S = f3(X)⊕f4(Y ). (5)

Remark 4.1. Note that, we reduced the output length of HtmB from 2n bits to
n bits. This is mainly due to the fact that n bits of the output of a VIL PRF is
sufficient to achieve 2n query deterministic MAC security (a major inspiration
for this work). In any case, another n-bit block can be easily generated by setting
T = f5(X) ⊕ f6(Y ) for some f5, f6 ∈ F(n, n).

We extend the dependency graph of Sect. 3.1 to incorporate the hash function
H. To any input Mq ∈ (M)q, K ∈ K, and f1, f2 ∈ F(n, n), we associate the
dependency graph G[Mq;K, f1,2] = ([q], E), where E is defined as before. Thus,
G is again a bichromatic graph. We define AC[Mq;K, f1,2], ACP(q), alternating
trails, cycles, and the first dependency property analogously as in Sect. 3.1.

In the following subsections we present three security results on HtmB based
on the choice of f1, . . . , f4.

M

L R

⊕ ⊕

⊕
S

H1 H2

Γ1 Γ2

Γ3 Γ4

M

L R

⊕ ⊕

⊕
S

H1 H2

Π1 Π2

F G

M

L R

⊕ ⊕

⊕
S

H1 H2

Π1 Π2

Π3 Π4

Fig. 4. The three instantiations of Hash-then-modified-Benes or HtmB transformation.
H = (H1, H2) is a DbACUq hash function. From left to right: HtmB-f[H, Γ1, . . . , Γ4] =
HtmB[H, Γ1, . . . , Γ4] based on Γ1, . . . , Γ4 ←$F(n, n); HtmB-p1[H, Π1, . . . , Π6] =
HtmB[H, Π1, Π2, F, G] based on Π1, . . . , Π6 ←$P(n), where F(X) = Π3(X)⊕Π4(X) and
G(Y ) = Π5(Y ) ⊕ Π6(Y ); and HtmB-p2[H, Π1, . . . , Π4] = HtmB[H, Π1, . . . , Π4] based on
Π1, . . . , Π4 ←$P(n). An edge (u, v) with label g denotes the mapping v = g(u). Unla-
belled edges are identity mapping.
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4.1 HtmB-f: Random Function Based Construction

Given Γ1, . . . , Γ4 ←$F(n, n), we obtain the hash-then-PRF instance where the
PRF is instantiated with mBenes[Γ1, . . . , Γ4] (truncated to first n-bit). Formally,
we define HtmB-f[H, Γ1, . . . , Γ4] (see Fig. 4) as HtmB[H, Γ1, . . . , Γ4].

Recall that ACP(q) denotes the maximum probability of getting an alternat-
ing cycle in the dependency graph G, where the probability is maximized over
all choices of message tuple Mq. Lemma 4.1 gives a bound on ACP(q).

Lemma 4.1. For ε1, ε2, σ ≥ 0, q ≤ 2n−1, (q, σ, ε2, ε1)-DbACUq hash function
HK instantiated with K ←$K, and Γ1, Γ2 ←$F(n, n), we have

ACP(q) ≤ 4q2

22n
+

2q2

23n
+ ε2 + 2ε1.

Proof. Fix a q-tuple Mq ∈ (M)q that maximizes ACP(q). Recall that (Lq, Rq) =
HK(Mq), Xq = Γ1(Lq) ⊕ Rq and Y q = Γ2(Rq) ⊕ Lq. We bound the probability
of AC[Mq;K, Γ1,2] conditioned on the following events:

– Fresh: ∀ i, j ∈ [q], (Li, Ri) �= (Lj , Rj).
– Lpairs: |{(i, j) : 1 ≤ i < j ≤ q, Li = Lj}| < q.
– Rpairs: |{(i, j) : 1 ≤ i < j ≤ q,Ri = Rj}| < q.

Let Triv = ¬(Fresh ∩ Lpairs ∩ Rpairs).
First, consider the probability of getting an alternating cycle of length 2

(parallel edge). Suppose the alternating cycle is Xi1 = Xi2 , Yi1 = Yi2 , which can
be rewritten as

Γ1(Li1) ⊕ Ri1 = Γ1(Li2) ⊕ Ri2

Γ2(Ri1) ⊕ Li1 = Γ2(Ri2) ⊕ Li2 .

Suppose Li1 = Li2 . Then, since Fresh holds, Ri1 �= Ri2 , whence the first equa-
tion is not satisfied. Therefore, Li1 �= Li2 . A similar argument implies Ri1 �= Ri2 .
Then, the system of equations must have full rank, i.e. rank 2. Using the ran-
domness of Γ1 and Γ2, we get q2/22n.

For even k > 2, let Xi1 = Xi2 , Yi2 = Yi3 , · · · , Yik
= Yi1 be an alternating

cycle of length k. Then, we can rewrite it as

Γ1(Li1) ⊕ Ri1 = Γ1(Li2) ⊕ Ri2

Γ2(Ri2) ⊕ Li2 = Γ2(Ri3) ⊕ Li3

...
Γ2(Rik

) ⊕ Lik
= Γ2(Ri1) ⊕ Li1 .

Now, we must have one of the following three cases:

1. Independent cycle: All k equations are independent, i.e., rank is k. Then, we
can bound the probability to qk/2kn.
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2. Strict sub-trail with first dependency: The cycle contains an alternating sub-
trail of length k′ < k, which has first dependency. Therefore, all the equations
are independent except the last equation which is a consequence of previous
equations. Without loss of generality, we assume that k′ is odd. Then, we
must have an associated system of equations

Γ1(Li1) ⊕ Ri1 = Γ1(Li2) ⊕ Ri2

Γ2(Ri2) ⊕ Li2 = Γ2(Ri3) ⊕ Li3

...
Γ1(Lik′ ) ⊕ Rik′ = Γ1(Lik′+1

) ⊕ Rik′+1
.

Since the last equation is a consequence of previous equations, we must have
some ij , ij′ < ik′ , such that Lik′ = Lij

and Lik′+1
= Lij′ . Using the fact

that Lpairs holds, we can have at most q choices for (ik′ , ij) and at most
q choices for (ik′+1, ij′). Similarly, we can use Rpairs when k′ is even. The
remaining k′ − 3 indices can be chosen in at most qk′−3 ways. Finally, we
bound the probability to at most qk′−1/2(k

′−1)n (as exactly k′ − 1 equations
are independent).

3. Circle has first dependency: All the equations are independent except for the
last one. This case can be handled in a similar manner as case 2. In fact, we
get qk−2/2(k−1)n which is a better bound as compared to case 2.

Combining the three cases we have

Pr [AC|¬Triv] ≤
∞∑

i=2

qi

2in
+

∞∑

j=4

qj−2

2(j−1)n
+

∞∑

k=3

qk−1

2(k−1)n

≤ 1
1 − q

2n

×
(

2q2

22n
+

q2

23n

)

≤ 4q2

22n
+

2q2

23n
, (6)

where the last inequality follows from q ≤ 2n−1. Finally, we have

Pr [AC] ≤ Pr [AC|¬Triv] + Pr [¬Fresh] + Pr [¬Lpairs] + Pr [¬Rpairs]

≤ 4q2

22n
+

2q2

23n
+ ε2 + 2ε1.

At the last inequality, the third term on the right hand side follows from the
(q, σ, ε2)-AU property of H, and the fourth term follows from the (q, σ, ε1)-ACUq

property of H1 and H2. ��

Remark 4.2. The utility of universal hash layer lies in the analysis of case 2 (and
3) in the proof. Specifically, we use the (q, σ, ε1)-ACUq property of H1 and H2

to reduce the count of pairs with same L (or R) value from q2 to q, which in
turn helps us in reducing the overall choices for the k′ + 1 indices to k′ − 1.
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Remark 4.3. This pair idea is not applicable to mBenes as the distinguisher has
full control over the inputs (Li, Ri). For instance, the distinguisher can fix a
single L value across all q queries, so that we have exactly q(q − 1) pairs.

By now, it should be clear that Lemma 4.1 resolves the main hurdle in a
proof of security up to O(2n) queries for HtmB-f. Theorem 4.1 quantifies the
PRF security of HtmB-f.

Theorem 4.1. For ε1, ε2, σ ≥ 0, q ≤ 2n−1, Γ1 . . . , Γ4 ←$F(n, n), and
(q, σ, ε2, ε1)-DbACUq hash function HK instantiated with K ←$K, the PRF
advantage of any (q,∞)-distinguisher A against HtmB-f[H, Γ1, . . . , Γ4] is given
by

Advprf
HtmB-f[H,Γ1,...,Γ4]

(A ) ≤ 4q2

22n
+

2q2

23n
+ ε2 + 2ε1.

Proof. A proof of this theorem can be derived using similar arguments as in case
of Theorem 3.1 after substituting the bound of ACP(q) from Lemma 4.1.

4.2 HtmB-p1: Random Permutation Based Construction

In this subsection, we aim to give a random permutation based instantiation of
HtmB, called HtmB-p1. The obvious inspiration behind this is the wide avail-
ability of block ciphers which can be used to instantiate HtmB-p1.

A trivial way to achieve this is to replace the random functions with sum
of independent random permutations. But this will cost 8 random permutation
calls (2 calls for each fi, i ∈ [4]). Instead, we observe that f1 and f2 can each
be instantiated with single random permutation without any appreciable drop
in security. This reduces the number of random permutation calls to 6.

Given Π1, . . . ,Π6 ←$P(n), we define the mappings, F,G ∈ F(n, n) as

F(X) = Π3(X) ⊕ Π4(X) and G(Y ) = Π5(Y ) ⊕ Π6(Y ),

and HtmB-p1[H,Π1, . . . ,Π6] (see Fig. 4) is defined as HtmB[H,Π1,Π2,F,G]. The-
orem 4.2 gives the PRF security of HtmB-p1.

Theorem 4.2. For n ≥ 4, ε1, ε2, σ ≥ 0, q ≤ 2n−4, Π1, . . . ,Π6 ←$P(n), and
(q, σ, ε2, ε1)-DbACUq hash function HK instantiated with key K ←$K, the PRF
advantage of any (q,∞)-distinguisher A against HtmB-p1[H,Π1, . . . ,Π6] is given
by

Advprf
HtmB-p1[H,Π1,...,Π6]

(A ) ≤ 2q1.5

21.5n
+

16q2

22n
+

16q2

23n
+ ε2 + 2ε1.

Proof. Using hybrid argument, we replace F and G functions in the lower layer
with independent random functions Γ3, Γ4 ←$F(n, n). This incurs a cost of
2q1.5/21.5n (using Proposition 2.1). We denote the resulting construction by
HtmB�. Then we must have a (q,∞)-distinguisher B against HtmB�, such that

Advprf
HtmB-p1[H,Π1,...,Π6]

(A ) ≤ Advprf
HtmB�(B) +

2q1.5

21.5n
. (7)
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Now, using a similar line of argument as used in Theorem 3.1, one can show that

Advprf
HtmB�(B) ≤ ACP(q). (8)

Lemma 4.2 bounds ACP(q) to 16q2

22n + 16q2

23n + ε2 +2ε1, which in combination with
Eq. (7) and (8) gives the result. ��

Lemma 4.2. For q ≤ 2n−2, K ←$K, and Π1,Π2 ←$P(n), we have

ACP(q) ≤ 16q2

22n
+

16q2

23n
+ ε2 + 2ε1.

Proof. The proof idea is similar to the proof of Lemma 4.1 given in the previous
subsection. So, we reuse the same set of notations and definitions.

Fix a q-tuple Mq ∈ (M)q that maximizes ACP(q). We bound the probability
of AC[Mq;K,Π1,2] conditioned on the following events:

– Fresh: ∀ i, j ∈ [q], (Li, Ri) �= (Lj , Rj).
– Lpairs: |{(i, j) : 1 ≤ i < j ≤ q, Li = Lj}| < q.
– Rpairs: |{(i, j) : 1 ≤ i < j ≤ q,Ri = Rj}| < q.

The proof follows in exactly the same manner, except a minor change in the
probability bound, due to a distributional change in the underlying randomness
(random function to random permutation). It is easy to see that a system of
k independent equations holds with probability less than 1/(2n − k)k, when
Π1 and Π2 are random permutations. We further simplify it to 2k/2kn using
k < q < 2n−1.

Using the above mentioned probability bound, along with the argumentation
used in the proof of Lemma 4.1, we get

Pr [AC|Fresh ∩ Lpairs ∩ Rpairs] ≤
∞∑

i=2

2iqi

2in
+

∞∑

j=4

2j−1qj−2

2(j−1)n
+

∞∑

k=3

2k−1qk−1

2(k−1)n

≤ 1
1 − q

2n−1

×
(

8q2

22n
+

8q2

23n

)

≤ 16q2

22n
+

16q2

23n
, (9)

where the last inequality follows from q ≤ 2n−2. Finally, we have

ACP(q) ≤ 16q2

22n
+

16q2

23n
+ ε2 + 2ε1.

��

4.3 HtmB-p2: An Improvement over HtmB-p1

One can further reduce the number of permutation calls in HtmB-p1, if the
generalized version of Mirror Theory [9,33,34] is correct. Specifically, we simply
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replace F and G in the definition of HtmB-p1 with the permutations Π3 and Π4

to get HtmB-p2. Formally, given Π1, . . . ,Π4 we define HtmB-p2[H,Π1, . . . ,Π4]
(see Fig. 4) as HtmB[H,Π1, . . . ,Π4].

For any Mq ∈ (M)q, K ∈ K, and π1, π2 ∈ P(n), Xq, Y q, and Sq are
well-defined. In addition to AC[Mq;K,π1,2], we define two more properties on
G[Mq;K,π1,2]:

– LC[Mq;K,π1,2](ξ): The largest component in G[Mq;K,π1,2] contains at least
ξ + 1 vertices.

– DG[Mq;K,π1,2]: G[Mq;K,π1,2] contains an alternating trail vk+1, k odd, such
that

⊕k+1
j=1 Svj

= 0.

Patarin’s Mirror Theory: Mirror theory [9,33,34] is a tool to obtain lower
bound on the number of solutions of a system of equalities and non-equalities
in finite groups. We restrict ourselves to the binary field GF(2n) with ⊕ as the
group operation. We use Mennink and Neves interpretation [12,19,35] of mirror
theory, tailored to our needs and notational setup.

From Xq and Y q, we define the mappings φ, ψ ∈ F([q], [q]) as φ(i) = min{j :
Xj = Xi} and ψ(i) = min{k : Yk = Yi}. Let φ([q]) and ψ([q]) denote the range
of φ and ψ, respectively. Consider the set of equations L := {Uφ(i) ⊕Vψ(i) = Si :
i ∈ [q]}, where Uj and Vk denote the unknowns for all j ∈ φ([q]) and k ∈ ψ([q]).
We define three properties on L:

– Circle-free: L is called circle-free if AC[Mq;K,π1,2] is false.
– Non-degenerate: L is called non-degenerate if DG[Mq;K,π1,2] is false.
– ξ-block-maximal: L is called ξ-block-maximal if LC[Mq;K,π1,2](ξ) is false.

Whenever L is circle-free, non-degenerate, and ξ-block-maximal, then we say
that L is mirror theory compatible till ξ. The fundamental result of mirror theory
[9, Theorem 6] is given in Theorem 4.3.

Theorem 4.3. (Theorem 3 in[12]). Suppose L, as defined above, is mirror
theory compatible till ξ. Then, as long as ξ2 · max{|φ([q])|, |ψ([q])|} ≤ 2n/67,
the number of solutions for L, such that Ui �= Uj for distinct i, j ∈ φ([q]) and
Vk �= V� for distinct k, 
 ∈ ψ([q]), is at least

(2n)|φ([q])|(2n)|ψ([q])|
2nq

.

In [9], Patarin gave a very high level sketch of the proof. Later, in [34] Nachef,
Patarin and Volte gave a proof that works till q < 2n−3. In [12], Mennink and
Neves gave a detailed exposition on mirror theory, and utilized the theory to get
close to n-bit security bounds for EDM (and EWCDM [11], in nonce-respecting5

setting). Jha and Nandi [19] developed a variant of mirror theory to derive tight
security bounds for CLRW2 [36] and DbHtS. Independently, Kim et al. [20] used
the theory to derive tight security bounds for several DbHtS MACs, including
PMAC+ and LightMAC+. We use Theorem 4.3 in the security proof of HtmB-p2.
5 Each query requires a distinct nonce input.
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Theorem 4.4. For ε1, ε2, σ ≥ 0, q ≤ min{2n−2, 2n/67n2}, Π1, . . . ,Π4 ←$P(n),
and (q, σ, ε2, ε1)-DbACUq hash function H instantiated with key K ←$K, the
PRF advantage of any (q,∞)-distinguisher A against HtmB-p2[H,Π1, . . . ,Π4]
is given by

Advprf
HtmB-p2[H,Π1...,Π4]

(A ) ≤ 16q2

23n
+

36q2

22n
+

4q

2n
+ ε2 + 2ε1.

Proof approach: The idea is quite similar to the proof of HtmB-f. How-
ever, just avoiding AC in G is not enough. This is due to the switch from ran-
dom functions to random permutations. For example, the system of equations
Π3(Xq) ⊕ Π4(Y q) = Sq should be non-degenerate. Otherwise, we might get a
case where Π3(Xi) = Π3(Xj) for Xi �= Xj , which is clearly not possible. We
show that the system is mirror theory compatible till n, except with very negli-
gible probability as long as q ≤ 2n−2. Then, we apply the fundamental result of
mirror theory to get the proof of security using coefficient-H technique.

Proof. A tries to distinguish the real oracle R := (HtmB-p2[H,Π1, . . . ,Π4]) from
the ideal oracle I := (Γ′) for Γ′ ←$F(M, {0, 1}n). Let [q] denote the set of all
query indices, and (Mq, Sq) denote A ’s transcript, where Mq is the q-tuple of
inputs and Sq is the q-tuple of outputs.

Consider a variant distinguishing game, where the oracle releases Lq, Rq, Xq,
and Y q, once the distinguisher has made all q queries. Note that this can only
increase A ’s advantage, and not diminish it. In R, this is quite straightforward,
as Lq, Rq, Xq, and Y q, are already computed during the query phase. The ideal
oracle I, samples dummy K ←$K and Π1,Π2 ←$P(n), and sets (Lq, Rq) =
HK(Mq), Xq = Π1(Lq) ⊕ Rq and Y q = Π2(Rq) ⊕ Lq.

Bad Transcript: Let T denote the set of all transcripts. Let Bad denote the
event that the system of equations L := {Uφ(i) ⊕ Vψ(i) = Si : i ∈ [q]} is not
mirror theory compatible till n, and good otherwise. So Bad holds if at least one
of AC, LC(n), or DG is satisfied. We say that a transcript (Mq, Lq, Rq,Xq, Y q, Sq)
is bad if Bad happens, and good otherwise. Let Tbad ⊂ T denote the set of all
bad transcripts. Then, we have Pr [Tid ∈ Tbad] = Pr [Bad].

We bound the probability of Bad conditioned on the following events:

– Fresh: ∀ i, j ∈ [q], (Li, Ri) �= (Lj , Rj).
– Lpairs: |{(i, j) : 1 ≤ i < j ≤ q, Li = Lj}| < q.
– Rpairs: |{(i, j) : 1 ≤ i < j ≤ q,Ri = Rj}| < q.

Let Triv = ¬(Fresh ∩ Lpairs ∩ Rpairs). Then, we have

Pr [Bad] ≤ Pr [Bad|¬Triv] + Pr [Triv]

(∗)
≤ Pr [LC(n)|¬Triv] + Pr [DG|¬Triv] + Pr [AC|¬Triv] + Pr [Triv]

(∗∗)
≤ Pr [LC(n)|¬Triv] + Pr [DG|¬Triv] +

16q2

22n
+

16q2

23n
+ ε2 + 2ε1, (10)
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where inequality (∗) follows from the definition of Bad, and inequality (∗∗) follows
from Lemma 4.2. Lemma 4.3 bounds the probability of LC(n) and Lemma 4.4
bounds the probability of DG conditioned on ¬Triv.
Good Transcript: Fix a good transcript (Mq, Lq, Rq,Xq, Y q, Sq). Since the
ideal oracle faithfully (identical to the real oracle) simulates the computation of
Lq, Rq, Xq, and Y q, it is sufficient to concentrate on the ratio of the probabilities
that (Xq, Y q) maps to Sq in the real oracle and Mq maps to Sq in the ideal oracle.

Pr [Tre = (Mq, Lq, Rq,Xq, Y q, Sq)]
Pr [Tid = (Mq, Lq, Rq,Xq, Y q, Sq)]

=
Pr [Π3(Xq) ⊕ Π4(Y q) = Sq]

Pr [Γ′(Mq) = Sq]
(∗)
= 2nq × hq

(2n)|φ([q])|(2n)|ψ([q])|
(∗∗)
≥ 1. (11)

where hq denotes the number of solutions of the system of equations Π3(Xq) ⊕
Π4(Y q) = Sq, such that Π3(Xi) �= Π3(Xj) and Π4(Yk) �= Π4(Y�) for all Xi �= Xj

and Yk �= Y�. Further, each solution holds with exactly 1/(2n)|φ([q])|(2n)|ψ([q])|
probability, since Π3 and Π4 are invoked on exactly |φ([q])| and |ψ([q])|, respec-
tively, distinct points. This justifies equality (∗). Let Uφ(i) = Π3(Xi) and
Vψ(i) = Π4(Yi) for all i ∈ [q]. Since the transcript is good, L := {Uφ(i) ⊕ Vψ(i) =
Si : i ∈ [q]} is mirror theory compatible till n. Hence, using Theorem 4.3, we
have

hq ≥
(2n)|φ([q])|(2n)|ψ([q])|

2nq
. (12)

This justifies the inequality (∗∗). The result follows from Eq. (10), Lemmata 4.3
and 4.4, and Theorem 2.1. ��

Remark 4.4. In Eq. (11) we have substituted hq with the lower bound claimed in
the fundamental result of mirror theory (see Theorem 4.3). However, as reported
in multiple works [10,19,35,37], a concrete proof of this result is still not avail-
able. Here, we discuss the impact of a weaker mirror theory result on Theorem
4.4. Suppose, in future we get a mirror theory proof that holds for some ξ < n
and the lower bound is

(1 − δ) ×
(2n)|φ([q])|(2n)|ψ([q])|

2nq
,

for some δ > 0. Here δ can be viewed as the degree of deviation from the perfect
bound. Then, the bound in Theorem 4.4 is revised asymptotically to

Advprf
HtmB-p2[H,Π1...,Π4]

(A ) = O

(
q2

22n

)

+ O

(
qξ+1

2nξ

)

+ δ + ε2 + 2ε1,

where the red colored terms are due to the degradation in mirror theory bound.
Specifically, O(qξ+1/2nξ) arises in the bound of LC(ξ)|¬Triv, and δ appears on
the right hand side of Eq. (11) by substituting the weaker bound for hq.
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Lemma 4.3. For q ≤ 2n−2, K ←$K, and Π1,Π2 ←$P(n), we have

Pr [LC(n)|¬Triv] ≤ 8q2

22n
+

4q

2n
.

Lemma 4.4. For q ≤ 2n−2, K ←$K, Π1,Π2 ←$P(n), and Γ′ ←$

F(M, {0, 1}n), we have

Pr [DG|¬Triv] ≤ 12q2

22n
.

Given the similarity of the proofs of Lemmata 4.3 and 4.4 with the proof of
Lemma 4.2, they are deferred to the full version of this paper.

5 mLightMAC+ and mPMAC+

In this section, we define two families mLightMAC+ and mPMAC+ of deter-
ministic MAC candidates based on block ciphers. Both families are constructed
as the HtmB construction, where the DbACUq hash functions (see Sect. 2) are
instantiated with the LightHash and PHash hash functions. In particular, our
schemes have the following properties:

– they are secure VIL PRFs as long as the number of queried blocks are small
in front of 2n, where n denotes the block size;

– the calls to the underlying permutation can be computed in parallel.

5.1 mLightMAC+

In this section, we define the mLightMAC+ construction and prove its security.
We are going to proceed in two steps: first, we define the LightHash family
of permutation-based hash functions and upper bound the probability to get
colliding outputs in Lemma 5.1, and then we use Theorems 4.1–4.4 to prove the
actual security bound on mLightMAC+ in Corollary 5.1.

The LightHash Universal Hash Function: Given a permutation π ∈ P(n)
and a positive integer m ∈ [n − 2], the LightHash universal hash function is a
function from {0, 1}≤(n−m)2m−1 to {0, 1}2n defined as follows. For all messages
M ∈ {0, 1}≤(n−m)2m−1, we let M ′ = pad(M), l = |M ′|/(n − m) and M ′ =
M1|| · · · ||M l, where |M i| = n − m for all i ∈ [l]. The hash of the message M is
defined as LightHash[π,m](M) = (LightHash1[π,m](M), LightHash2[π,m](M)),
where

LightHash1[π,m](M) = (〈l〉m||M l) ⊕
l−1⊕

i=1

π
(

〈i〉m||M i
)

,

LightHash2[π,m](M) = (〈l〉m||M l) ⊕
l−1⊕

i=1

2l−iπ
(

< i >m ||M i
)

.

Note that LightHash requires 1 less block cipher call as compared to the hash layer
in LightMAC+. The probability that two distinct messages generate colliding
outputs in both components of LightHash can be upper bounded as follows.
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Lemma 5.1. Let n ∈ N, m ∈ [n − 2]. For any two distinct messages M1,M2 in
{0, 1}≤(n−m)2m−1 and Π ←$P(n), one has

Pr [LightHash[Π,m](M1) = LightHash[Π,m](M2)] ≤ 4
22n

,

Pr [LightHashb[Π,m](M1) = LightHashb[Π,m](M2)] ≤ 2
2n

,

for b ∈ {0, 1}. In particular LightHash is (q,∞, 2q2

22n , q
2n )-DbACUq.

The proof of this Lemma can be found in Sect. 6.1.

The mLightMAC+ Family of PRFs: Given π0, . . . , π6 ∈ P(n), f1, . . . , f4 ∈
F(n, n) and an integer m ∈ [n−2], the functions of the mLightMAC+ family are
functions from {0, 1}≤(n−m)2m−1 to {0, 1}n that are formally defined as

mLightMAC+-f[π0, f1 . . . , f4,m] := HtmB-f [LightHash[π0,m], f1, . . . , f4] ,
mLightMAC+-p1[π0, π1 . . . , π6,m] := HtmB-p1 [LightHash[π0,m], π1, . . . , π6] ,
mLightMAC+-p2[π0, π1 . . . , π4,m] := HtmB-p2 [LightHash[π0,m], π1, . . . , π4] .

Corollary 5.1 gives the PRF security of mLightMAC+.

Corollary 5.1. For q < 2n−4, m ≤ n − 2, and Π0, . . . ,Π6 ←$P(n), Γ1, . . . ,
Γ4 ←$F(n, n), the PRF advantage of any (q,∞)-distinguisher A against mLight-
MAC+ is given by

Advprf
mLightMAC+-f[Π0,Γ1,...,Γ4,m](A ) ≤ 6q2

22n
+

2q2

23n
+

2q

2n
,

Advprf
mLightMAC+-p1[Π0,...,Π6,m](A ) ≤ 2q1.5

21.5n
+

18q2

22n
+

16q2

23n
+

2q

2n
,

Advprf
mLightMAC+-p2[Π0,...,Π4,m](A ) ≤ 16q2

23n
+

38q2

22n
+

6q

2n
.

For the second and third inequalities, we also assume n ≥ 4 and q ≤ 2n/67n2,
respectively.

Proof. This result is a direct combination of Lemma 5.1 and Theorems 4.1, 4.2
and 4.4. ��

5.2 mPMAC+

As in the previous section, we define the mPMAC+ construction and prove its
security. We first define the PHash family of permutation-based hash functions
and upper bound the probability to get colliding outputs in Lemma5.2, and
then we use Theorems 4.1–4.4 to prove the actual security bound on mPMAC+
in Corollary 5.2.

The PHash Universal Hash Function: Given a permutation π ∈ P(n),
the PHash universal hash function is a function from {0, 1}≤n2n/2−1 to {0, 1}2n
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defined as follows. For all messages M ∈ {0, 1}≤n2n/2−1, we let M ′ = pad(M),
l = |M ′|/n and M ′ = M1|| · · · ||M l, where |M i| = n for all i ∈ [l]. The hash of the
message M is then defined as PHash[π](M) = (PHash1[π](M),PHash2[π](M)),
where

PHash1[π](M) = M l ⊕
l−1⊕

i=1

π
(

M i ⊕ 2iπ(0n) ⊕ 22iπ(10n−1)
)

,

PHash2[π](M) = M l ⊕
l⊕

i=1

2l−iπ
(

M i ⊕ 2iπ(0n) ⊕ 22iπ(10n−1)
)

.

Again note that PHash requires 1 less block cipher call as compared to the hash
layer in PMAC+. One has the following result on the DbACUq bound of PHash.

Lemma 5.2. Let n ≥ 6. For Π ←$P(n), σ ∈ N, PHash[Π] is (q, σ, ε2, ε1)-
DbACUq where

ε2 ≤ 2σ2 + 28qσ + 28q2

22n
+

3q

2n − 2
+ 3

σ + q

2n − 1
and ε1 ≤ 4σ + 9q

2n
.

The proof of this Lemma can be found in Sect. 6.2.

The mPMAC+ Family of PRFs: Given π0, . . . , π6 ∈ P(n) and f1, . . . , f4 ∈
F(n, n), the functions of the mPMAC+ family are functions from {0, 1}n2n/2−1

to {0, 1}n that are formally defined as

mPMAC+-f[π0, f1, . . . , f4] := HtmB-f [PHash[π0], f1, . . . , f4]] ,
mPMAC+-p1[π0, π1, . . . , π6] := HtmB-p1 [PHash[π0], π1, . . . , π6]] ,
mPMAC+-p2[π0, π1, . . . , π4] := HtmB-p2 [PHash[π0], π1, . . . , π4]]

Corollary 5.2 gives the PRF security of mPMAC+.

Corollary 5.2. Let n ≥ 6. For q < 2n−4 and Π0, . . . ,Π6 ←$P(n), and
Γ1, . . . , Γ4 ←$F(n, n), the PRF advantage of any (q,∞)-distinguisher A against
mPMAC+ is given by

Advprf
mPMAC+-f[Π0,Γ1,...,Γ4]

(A ) ≤ 2q2

23n
+

2σ2 + 28qσ + 32q2

22n
+

11σ + 15q

2n − 2
,

Advprf
mPMAC+-p1[Π0,...,Π6]

(A ) ≤ 2q1.5

21.5n
+

16q2

23n
+

2σ2 + 28qσ + 44q2

22n
+

11σ + 15q

2n − 2
,

Advprf
mPMAC+-p2[Π0,...,Π4]

(A ) ≤ 16q2

23n
+

2σ2 + 28qσ + 64q2

22n
+

11σ + 19q

2n − 2
,

where σ denotes an upper bound on the total number of n-bit blocks queried by
A . For the last inequality, we also assume q ≤ 2n/67n2.

Proof. This result is a direct combination of Lemma 5.2 and Theorem 4.1, 4.2
and 4.4. ��
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6 Proofs Related to LightHash and PHash

6.1 Proof of Lemma 5.1

Let q ∈ N, m ∈ [n − 2], Mq ∈
(

{0, 1}(n−m)2m−1
)

q
.

Let us now fix two distinct integers i1, i2 ∈ [q], and let M1 = Mi1 , M2 = Mi2 .
The proof for the first inequality closely follows the proof of [17, Lemma 1] for

the original LightHash construction, with slight changes to handle our variant.
It is thus deferred to the full version of this paper for reasons of space.

We now consider the second inequality we have to prove, and denote by l1
(resp. l2) the length of pad(M1) (resp. pad(M2)) in (n−m)-bit blocks. Note that
1 ≤ l1, l2 ≤ 2m ≤ 2n−2. Then the event

LightHash1[Π,m](M1) = LightHash1[Π,m](M2)

is equivalent to:

(

〈l1〉m||M l1
1

)

⊕
l1−1⊕

i=1

Π
(

〈i〉m||M i
1

)

=
(

〈l2〉m||M l2
2

)

⊕
l2−1⊕

i=1

Π
(

〈i〉m||M i
2

)

. (13)

We consider two different cases: l1 �= l2 and l1 = l2. Consider the first case. Let
us assume that 1 ≤ l1 < l2. Thus, thanks to domain separation of the inputs
and since at most l1 + l2 ≤ 2n−1 outputs appear in Eq. (13), fixing all the other
outputs will provide a unique solution for Π(〈l2〉m||M l2

2 ). Hence, the probability
that (13) is satisfied is at most 1/(2n − l1− l2+3). Now consider the second case.
Since the adversary cannot repeat queries and our padding is injective, pad(M1)
and pad(M2) must differ in at least one block. Let i0 ≥ 1 be the first such index.
Then, even when eliminating the colliding outputs from Eq. (13), at least the
outputs with index i0 will remain. If i0 ≤ l1 − 1, fixing all the other outputs will
provide a unique solution for Π(〈i0〉m||M i0

1 ), and the probability that Eq. (13)
is satisfied is also at most 1/(2n − l1 − l2 + 3). Otherwise, if i0 = l1, Eq. (13) is
reduced to M l1

1 = M l2
2 , which cannot hold by definition of i0.

Overall, since l1 + l2 ≤ 2n−1, one has

Pr [LightHash1[Π,m](M1) = LightHash1[Π,m](M2)] ≤ 2
2n

.

Similarly, one has

Pr [LightHash2[Π,m](M1) = LightHash2[Π,m](M2)] ≤ 2
2n

.

We conclude the proof of the second part of Lemma 5.1 by summing over the
q(q − 1)/2 pairs of queries and using Markov’s inequality.

6.2 Proof of Lemma 5.2

A flaw in [26]: The probability of observing a full collision in PHash has
already been considered in [26]. However, Chakraborty et al. [27] identified a flaw
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in the argument. In more details, when considering what is referred to as Type-
5 collisions, the author tries to upper bound the probability, over the random
choice of two n-bit masks L1 and L2, that the following system is satisfied:

(2i1 ⊕ 2i2)L1 ⊕ (23i1 ⊕ 23i2)L2 = X1

(2i3 ⊕ 2i4)L1 ⊕ (23i3 ⊕ 23i4)L2 = X2

for some n-bit values X1, X2 and four integers i1, i2, i3, i4 such that at least three
of them are distinct. It is then argued that either the system is of rank two, and
has exactly one solution, or both equations are equal. In the second case, the
author shows that 2i1 ⊕ 2i2 = 2i3 ⊕ 2i4 and 23i1 ⊕ 23i2 = 23i3 ⊕ 23i4 imply i1 =
i2 = i3 = i4 which is impossible. However, it seems that another case is possible:
the second equation can be a multiple of the first one. In that case, there exists a
non-zero value α such that α(2i1 ⊕2i2) = 2i3 ⊕2i4 , α(23i1 ⊕23i2) = 23i3 ⊕23i4 and
αX1 = X2, and the previous impossibility argument does not apply anymore.
With a more complex analysis, it may still be possible to prove a bound that is
independent from the length of the queries. Another approach could be to use a
different masking, as demonstrated in [27,38], that avoids the above mentioned
case. In our work, we leave this question as an interesting open problem and
we use a slightly worse bound that depends on the number of queried message
blocks, but is still sufficient to provide optimal security.

Proof of Lemma 5.2. Let n ≥ 6, q ≤ 2n be two integers and let us fix a
q-tuple of messages Mq ∈

(

{0, 1}n2n/2−1
)

q
whose total block length is σ. We

parse pad(Mi) as M1
i || · · · ||M li

i , where i ∈ [q], |M j
i | = n for every i ∈ [li], and

li ≤ 2n/2. Note that, because of our padding,
∑q

i=1 li ≤ σ + q. We are going to
introduce several new random variables that depend on the uniformly random
draw of Π:

– L1 = Π(0n) and L2 = Π(10n−1);
– for all i ∈ [q] and all j ∈ [li − 1], Xj

i = M j
i ⊕ 2jL1 ⊕ 22jL2 and Y j

i = Π(Xj
i );

– for i ∈ [q],

Σi = PHash1[Π](Mi) = M li ⊕
li−1⊕

j=1

Y j
i and

Θi = PHash2[Π](Mi) = M li ⊕
li−1⊕

j=1

2li−jY j
i .

Let us fix two distinct integers i1, i2 in [q], and assume w.l.o.g. that li1 ≥ li2 . The
first step of our proof is to upper bound the probability to create a collision in
the output of PHash1. More precisely, we want to upper bound the probability
that Σi1 = Σi2 .
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Claim 6.1. One has

Pr [Σi1 = Σi2 ] ≤ 2
li1 + li2 + 4

2n
,

Pr [Θi1 = Θi2 ] ≤ 2
li1 + li2 + 4

2n
.

The proof of this claim is deferred to the full version of this paper for reasons of
space.

Let C1 (resp. C2) be the number of Σ (resp. Θ) collisions. Summing over
every pair of queries yields

Ex [C1] ≤
∑

i1<i2

2
li1 + li2 + 4

2n
≤ 4q(σ + q) + 4q2

2n
≤ 4qσ + 9q2

2n
.

Similarly, one has Ex [C2] ≤ 4qσ+9q2

2n . Using Markov’s inequality ends the first
part of the proof of this lemma.

Our goal is now to upper bound the probability of the following event (dubbed
Coll in the following): there exist two distinct indices i1 and i2 such that

PHash[Π](Mi1) = PHash[Π](Mi2).

We are going to break this event into several different events that will be easier
to handle:

– Coll0: there exist i ∈ [q] and j ∈ [li − 1] such that Xj
i = 0n;

– Coll1: there exist i ∈ [q] and j ∈ [li − 1] such that Xj
i = 10n−1;

– 3Coll: there exist i ∈ [q] and three pairwise distinct integers j1, j2, j3 ∈ [li−1]
such that Xj1

i = Xj2
i = Xj3

i ;
– CleanColl: this event corresponds to Coll ∧ ¬Coll0 ∧ ¬Coll1 ∧ ¬3Coll.

Clearly, one has

Pr [Coll] ≤ Pr [Coll0] + Pr [Coll1] + Pr [3Coll] + Pr [CleanColl]. (14)

It is also easy to see that

Pr [Coll0] ≤ σ + q

2n − 1
and Pr [Coll1] ≤ σ + q

2n − 1
. (15)

Let us now consider the event 3Coll. Fix any i ∈ [q] and any pairwise distinct
j1, j2, j3 ∈ [li − 1]. The system (S) of equations Xj1

i = Xj2
i = Xj3

i can be
rewritten as

(2j1 ⊕ 2j2)L1 ⊕ (22j1 ⊕ 22j2)L2 = M j1
i ⊕ M j2

i

(2j1 ⊕ 2j3)L1 ⊕ (22j1 ⊕ 22j3)L2 = M j1
i ⊕ M j3

i
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Since j1, j2, j3 are pairwise distinct and smaller than 2n−1, the values 2j1 , 2j2 , 2j3

are pairwise distinct and (S) is equivalent to

L1 ⊕ (2j1 ⊕ 2j2)L2 = (M j1
i ⊕ M j2

i )/(2j1 ⊕ 2j2)

L1 ⊕ (2j1 ⊕ 2j3)L2 = (M j1
i ⊕ M j3

i )/(2j1 ⊕ 2j3).

Since 2j2 �= 2j3 , the system has a unique solution, and is verified with probability
at most 1/2n(2n − 1).

Summing over every possible choice of i, j1, j2, j3 yields

Pr [3Coll] ≤
q

∑

i=1

l3i
2n(2n − 1)

(∗)
≤

q
∑

i=1

li
2n − 1

≤ σ + q

2n − 1
, (16)

where inequality (∗) comes from the fact that li ≤ 2n/2 for every i ∈ [q].
We now have to handle the event CleanColl. We make the following claim.

Claim 6.2

Pr [CleanColl] ≤ 2σ2 + 28qσ + 28q2

22n
+

3q

2n − 2
.

The proof this claim is deferred to the full version of this paper for reasons of
space.

Combining Eqs. (14), (15), (16) and Claim 6.2 yields

Pr [Coll] ≤ 2σ2 + 28qσ + 28q2

22n
+

3q

2n − 2
+

3(σ + q)
2n − 1

,

which ends the proof.

7 Reducing the Number of Keys

HtmB-f, HtmB-p1, and HtmB-p2 need 4, 6, and 4 keys, respectively, apart from
the hash key. This could be an issue in certain memory-restricted scenarios. In
this section, we present some simple variants of these constructions that require
less key material, albeit with a slight loss of security.

For any function F ∈ F and b ∈ {0, 1}<n, we define two mappings:

F̂ b := �F (b‖·)�n−|b| F̃ b(X) := F (b‖·),
where �Y �n−d denotes the (n − d)-least significant bits of Y for all Y ∈ {0, 1}n

and d < n. In the following discussion M ⊆ {0, 1}∗.

Single-key variant of HtmB-f: Given Γ ←$F(n, n) and a pair H = (H1,H2)
of two (K,M, {0, 1}n−2)-keyed hash functions, we define the single-key variant
of HtmB-f, denoted 1k-HtmB-f, as:

1k-HtmB-f[H, Γ] := HtmB-f[H, Γ̂00, Γ̂01, Γ̃10, Γ̃11].
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Theorem 7.1. For ε1, ε2, σ ≥ 0, q ≤ 2n−3, Γ ←$F(n, n), and (q, σ, ε2, ε1)-
DbACUq hash function HK instantiated with K ←$K, the PRF advantage of
any (q,∞)-distinguisher A against 1k-HtmB-f[H, Γ] is given by

Advprf
1k-HtmB-f[H,Γ](A ) ≤ 64q2

22n
+

128q2

23n
+ ε2 + 2ε1.

Three-key variant of HtmB-p1: Given Π1,Π2,Π3 ←$P(n) and a pair H =
(H1,H2) of two (K,M, {0, 1}n−1)-keyed hash functions, we define the three-key
variant of HtmB-p1, denoted 3k-HtmB-p1, as:

3k-HtmB-p1[H,Π1,Π2,Π3] := HtmB-p1[H, Π̂0
1, Π̂

1
1, Π̃

0
2, Π̃

1
2, Π̃

0
3, Π̃

1
3].

Theorem 7.2. For n ≥ 8, ε1, ε2, σ ≥ 0, q ≤ 2n−5, Π1,Π2,Π3 ←$P(n), and
(q, σ, ε2, ε1)-DbACUq hash function HK instantiated with key K ←$K, the PRF
advantage of any (q,∞)-distinguisher A against 3k-HtmB-p1[H,Π1,Π2,Π3] is
given by

Advprf
3k-HtmB-p1[H,Π1,Π2,Π3]

(A ) ≤ 2q

2n
+

6q1.5

21.5n
+

64q2

22n
+

128q2

23n
+ ε2 + 2ε1.

Two-Key Variant of HtmB-p2: Given Π1,Π2 ←$P(n) and a pair H =
(H1,H2) of two (K,M, {0, 1}n−1)-keyed hash functions, we define the two-key
variant of HtmB-p2, denoted 2k-HtmB-p2, as:

2k-HtmB-p2[H,Π1,Π2] := HtmB-p2[H, Π̂0
1, Π̂

1
1, Π̃

0
2, Π̃

1
2].

Theorem 7.3. For ε1, ε2, σ ≥ 0, q ≤ min{2n−3, 2n/67n2}, Π1,Π2 ←$P(n), and
(q, σ, ε2, ε1)-DbACUq hash function H instantiated with key K ←$K, the PRF
advantage of any (q,∞)-distinguisher A against 2k-HtmB-p2[H,Π1,Π2] is given
by

Advprf
2k-HtmB-p2[H,Π1,Π2]

(A ) ≤ 128q2

23n
+

136q2

22n
+

8q

2n
+ ε2 + 2ε1.

The proofs of Theorem 7.1, 7.2, and 7.3 follow very similar strategies as used in
the proofs of Theorem 4.1, 4.2, and 4.4, respectively. So, we skip formal proofs
for economical reasons. For the sake of verification, we provide proof sketches in
the full version of this paper.

8 Conclusion

In this paper, we proposed a novel method of constructing VIL PRFs, dubbed
as the Hash-then-modified-Benes or HtmB transformation. Based on the type
of internal primitive, we gave three instances of HtmB, viz. HtmB-f, HtmB-p1,
and HtmB-p2. We showed that all three instances retain security for close to
2n queries. We instantiate the three VIL PRFs using LightMAC+ and PMAC+
based hash functions, called LightHash and PHash, respectively. We explicitly
derived relevant collision probability bounds for LightHash and PHash that, in
combination with the bounds for HtmB instances, implies almost 2n blocks secu-
rity. Lastly, we proposed some reduced-key variants of HtmB-f, HtmB-p1, and
HtmB-p2.
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8.1 Further Discussion

On Single-Key Variants for HtmB-p1 and HtmB-p2: There is a scope
of further reducing the key size in case of HtmB-p1 and HtmB-p2 by using 2 and
1 extra bit(s), respectively, for domain separation. However, there is an obstacle
in proving the security of resulting constructions. This obstacle stems from the
fact that the permutation calls in the lower level are no longer independent of
the permutation calls in the upper layer. As a result, the existing bounds on the
sum of permutations [8,10] (in case of HtmB-p1) and mirror theory [9,33,34]
(in case of HtmB-p2) are no longer applicable. It seems that we need a stronger
result like sum of permutations under some added input/output restrictions. A
partial positive result in this direction has been shown in [15], where the authors
show similar result for queries up to 22n/3. We leave it as an open problem to
extend the result to close to 2n queries under appropriate conditions.

On Hash Function Requirement: The reduced-key variants of HtmB need
hash functions with unusual output sizes like 2n − 2 and 2n − 4 bits. However,
one can easily generate such hash outputs by chopping appropriate bits of an ε-
Almost XOR Universal (AXU) hash function, i.e. a hash function HK such that for
distinct inputs x, y and any difference δ, PrK [HK(x) ⊕ HK(y) = δ] ≤ ε. Suppose
we have a pair of n-bit hash functions H = (H1,H2) that satisfies two properties:

– Hb are ε1-AXU hash functions for b ∈ [2], and
– H is an ε2-AXU hash function.

Then, if we chop d < n bits from each of H1 and H2, the resulting hash function
can be shown to be (q, σ, q222dε2, q2dε1)-DbACUq.

Unfortunately, LightHash and PHash of Sect. 5 do not satisfy the AXU con-
dition. Note that, we saved one block cipher call in LightHash and PHash as
compared to the hash layer in LightMAC+ and PMAC+, by absorbing the last
data block directly. It would be interesting to see whether the original hash
layer in LightMAC+ and PMAC+ can be used as appropriate replacements for
LightHash and PHash, respectively, in the reduced-key variants.
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Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
{david.knichel,pascal.sasdrich,amir.moradi}@rub.de

Abstract. Implementing cryptographic functions securely in the pres-
ence of physical adversaries is still a challenge although a lion’s share
of research in the physical security domain has been put in develop-
ment of countermeasures. Among several protection schemes, masking
has absorbed the most attention of research in both academic and indus-
trial communities, due to its theoretical foundation allowing to provide
proofs or model the achieved security level. In return, masking schemes
are difficult to implement as the implementation process often is manual,
complex, and error-prone. This motivated the need for formal verifica-
tion tools that allow the designers and engineers to analyze and verify
the designs before manufacturing.

In this work, we present a new framework to analyze and verify masked
implementations against various security notions using different security
models as reference. In particular, our framework – which directly pro-
cesses the resulting gate-level netlist of a hardware synthesis – particu-
larly relies on Reduced Ordered Binary Decision Diagrams (ROBDDs)
and the concept of statistical independence of probability distributions.
Compared to existing tools, our framework captivates due to its simplic-
ity, accuracy, and functionality while still having a reasonable efficiency
for many applications and common use-cases.

Keywords: Verification · Side-Channel Analysis · Probing security ·
Reduced Ordered Binary Decision Diagram · Statistical independence ·
Probability distribution

1 Introduction

Even after two decades of research since the seminal description of Side-Channel
Analysis (SCA) as a threat to cryptographic implementations [32,33], secure
implementation of cryptographically strong algorithms is still a challenging and
open problem. In particular, those decades of research have shown that SCA on
cryptographic implementations can be performed by observing various physical
sources and effects, such as timing [32], power consumption [33], electromagnetic
(EM) emanations [27], or temperature and heat dissipation [30]. Eventually,

D. Knichel and P. Sasdrich—These authors contributed equally to the work.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12491, pp. 787–816, 2020.
https://doi.org/10.1007/978-3-030-64837-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64837-4_26&domain=pdf
http://orcid.org/0000-0002-2510-8881
http://orcid.org/0000-0002-5443-626X
http://orcid.org/0000-0002-4032-7433
https://doi.org/10.1007/978-3-030-64837-4_26


788 D. Knichel et al.

observing the physical characteristics of an electronic device during security-
critical cryptographic operations can reveal secret and sensitive information to
any observer and adversary. As a consequence, a wide range of protection mech-
anisms and countermeasures have been proposed to prevent or mitigate any
side-channel leakage.

Among all candidates, masking (based on the concepts of secret sharing) is
one of the most promising countermeasures against SCA due to its formal and
sound security foundation [18]. As a consequence, many different schemes and
variants have been introduced and proposed over the years [28,29,31,39,42,43]
to address different implementation and security requirements. Unfortunately,
not a few of those schemes have been shown to be insecure due to design flaws
or inaccurate models or assumptions [36]. As a result, all these examples confirm
that design and implementation of protection mechanisms and countermeasures
against SCA is a mostly manual, complex, and error-prone process which requires
good understanding of the execution environment and careful consideration of
physical and security models.

To this end, an entirely new branch of research started to focus on the devel-
opment of formal models for adversaries and physical execution environments to
simplify and assist in formal verification [5,23,26,31]. Ideally, strong theoretical
foundations in security models can assist and help to simplify the design, imple-
mentation, and verification of cryptographic implementations and appropriate
security mechanisms. In the context of masking, formal verification often is con-
ducted in the simple and abstract Ishai-Sahai-Wagner (ISW) d-probing security
model [31] (under some basic assumptions on noise and independence of inputs),
which allows an adversary to probe (observe) up to d intermediate values during
the processing of sensitive information.

Due to its conceptual simplicity and level of abstraction, the d-probing model
was rapidly and widely adopted for formal verification [2–4,6,11,20,24,38,44].
Indeed, the introduction of this simple but effective security model propelled the
automation of formal verification, allowing to reduce the combinatorial complex-
ity of security proofs for masking schemes and their implementations. In fact,
development of automated formal verification tools also – in return – stimulated
the research and progress on masking schemes, e.g., reducing the cost in terms of
randomness [9] or solving the problem of secure composition of masked circuits
and gadgets [3,4,17].

However, in its basic manifestation, the d-probing model does not consider
specific physical defaults, such as glitches, transitions, or couplings [26], that
may occur during the processing of sensitive information on a physical device. In
fact, many schemes proven to be secure in the d-probing model, eventually fail in
security analyzes when concretely implemented. That is mainly due to undesired
and unintentional physical defaults that particularly violate the assumption on
the independence of inputs. In particular for hardware implementations, glitches
are well-known to be an issue and concern for masking schemes [39], wherefore
Bloem et al. [11] and Faust et al. [26] independently proposed an extension of the
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basic ISW d-probing model considering glitches for hardware implementations
of masking schemes.

In addition, Bloem et al. used the concept of Fourier coefficient estima-
tion to implement an automated tool formally verifying the security of mask-
ing schemes and their implementations against the basic and glitch-extended
d-probing model. However, due to computational limitations based on the esti-
mation of Fourier coefficients, this tool primarily applies to the security anal-
ysis of the first-order setting without consideration of advanced notions such
as Non-Interference (NI), Strong Non-Interference (SNI), and Probe-Isolating
Non-Interference (PINI). In contrast to this, Barthe et al. [2] recently presented
a language-based formal verification tool called maskVerif which uses the prob-
abilistic information flow to assess the security of masking schemes and their
implementations. In particular, using conservative heuristics and an optimistic
sampling method, maskVerif executes more efficiently than the tool by Bloem
et al., while minimizing but still accepting false negatives for non-linear cases.

Contributions. In this work, we present and introduce an efficient methodol-
ogy to analyze and verify the security of masked circuits and implementations
under various security notions. Due to a symbolic and exhaustive analysis of
probability distributions and statistical independence of joint distributions, we
can avoid false negatives and overly conservative decisions. In particular, by
means of ROBDDs, a well-known concept and methodology for Integrated Cir-
cuit (IC) testing and verification, we formally analyze and verify masked circuits
in the ISW d-probing model even in the presence of glitches as physical defaults.

In addition, based on the seminal work of De Meyer et al. [21], we reformulate
the security notions of d-probing security, d-Non-Interference, d-Strong Non-
Interference, and, for the first time, d-Probe-Isolating Non-Interference based on
statistical independence which can be efficiently checked and verified by our tool.
Hence, for the first time, state-of-the-art security notions for masked circuits can
be analyzed exhaustively without false negatives. Eventually, this contribution
is even extended further by efficient verification methods to check and verify the
uniformity for output sharings of arbitrary masked circuits.

Outline. While Sect. 2 briefly summarizes our notations and introduces prelim-
inary concepts and notions, including ROBDDs, our circuit model, and security
notions, Sect. 3 is dedicated to a conception and discussion of our verification
approach. Besides, Sect. 3 outlines our leakage models and discusses the main
ideas of our verification concept, particularly sketching the application of ROB-
DDs to check and verify security notions. In Sect. 4, we then provide formal
proofs for all security notions and our leakage verification concept based on sta-
tistical independence checks. Before we present details on practical evaluations
and experiments in Sect. 6, we briefly discuss and compare our approach and
concept to essential related work in Sect. 5. Eventually, we conclude our work in
Sect. 7.
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2 Background

2.1 Notation

We use upper-case characters to denote random variables, bold ones for sets of
random variables, and subscripts for elements within a set of variables. Further,
let us denote Xi as the set of variables X \ Xi. Accordingly, we use lower-
case characters to denote values a random variable can take, bold ones for sets
of values, and subscripts for elements within the set of values. Again, let us
denote xi as the set of values x \ xi. In addition, we use Pr[X = x] for the
probability that a random variable X takes a value x, while Pr[X = x] denotes
the joint probability that each Xi ∈ X takes the value xi ∈ x. Accordingly, the
conditional probability for X = x given Y = y is written as Pr[X = x|Y = y].
Hence, Pr[X = x|Y = y] denotes the conditional probability that each Xi ∈ X
takes the value xi ∈ x, if each Yi ∈ Y takes the value yi ∈ y. Moreover, the
joint distribution over the set X is denoted as Pr[X], while Pr[X|Y] = Pr[X] is
simply equivalent to Pr[X = x|Y = y] = Pr[X = x] for all possible combination
of x and y. Extending this notation, Pr[X|Y] = Pr[X|Z] is the same as Pr[X =
x|Y = y] = Pr[X = x|Z = z] for all possible combination of x,y, and z.

Further, functions are denoted using sans-serif fonts. Handling masked func-
tions, we denote the s-th share of the a variable as Xs. Hence, the set of
all unshared inputs of a function f is denoted as X = (X0, . . . , Xn−1) while
the set containing all t shares of each variable in X is denoted as Sh(X) =
(X0

0 ,X1
0 , . . . , Xt−1

0 ,X0
1 , . . . , X0

n−1, . . . , X
t−1
n−1). Similarly, the set containing all

shares of Xi ∈ X is denoted as Sh(Xi). Eventually, for a set of indices
I ⊆ [0, . . . , t−1], Sh(X)I denotes the set containing all shares Xs

i with 0 ≤ i < n
and s ∈ I.

2.2 Reduced Ordered Binary Decision Diagrams (ROBDDs)

Binary Decision Diagrams (BDDs) are a basic structure in discrete mathematics
and computer science introduced by Akers [1] and refined by Bryant (introducing
variable ordering) [15]. In particular, many applications in computer-aided IC
design and verification make use of (reduced, ordered) BDDs.

In general, BDDs are concise and unique (i.e., canonical) graph-based rep-
resentations of Boolean functions F

n
2 → F2 with a single root node and two

terminal nodes (leaves) {T,F}. The formal definition of ROBDDs, given in the
following paragraphs, is divided into a purely syntactical definition, describing
the structure based on (DAGs), before providing a semantical definition, clari-
fying the representation of Boolean functions as ROBDDs.

Syntactical Definition of ROBDDs. Before providing a syntactical defini-
tion for ROBDDs, we first recall the (syntactical) definition of Ordered Binary
Decision Diagrams (OBDDs).
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Definition 1 (OBDD Syntax). An Ordered Binary Decision Diagram is a
pair (π,G), where π denotes the variable ordering of the OBDD and G = (V, E)
is a finite DAG with vertices V, edges E, and the following properties:

(1) There is a single root node and each node v ∈ V is either a non-terminal
node or one of two terminal nodes {T,F}.

(2) Each non-terminal node v is labeled with a variable in X, with |X| = n,
denoted as var(v), and has exactly two child nodes in V which are denoted
as then(v) and else(v).

(3) For each path from the root node to a terminal node, the variables in X
are encountered at most once and in the same order defined by the variable
ordering π. More precisely, the variable ordering π of an OBDD is a bijection
π : {1, 2, . . . , n} → X.

Furthermore, assuming the following two restrictions ensures a concise and
canonical representation (under a given variable ordering π), defined as ROBDD.

Definition 2 (ROBDD Syntax). An OBDD is called Reduced Ordered
Binary Decision Diagram, if and only if there is no node v ∈ V such that
then(v) = else(v) and there are no duplicate nodes, i.e., two nodes {v, v′} ∈ V
such that var(v) = var(v′), then(v) = then(v′), and else(v) = else(v′).

Semantical Definition of ROBDDs. Each ROBDD with root v ∈ V recur-
sively defines a Boolean function f : Fn

2 → F2 according to the following defini-
tion.

Definition 3 (ROBDD Semantics). An ROBDD over X represents a
Boolean function f recursively carried out at each node and defined as follows:

(1) If v is the terminal node F, then fv|x = 0, otherwise, if v is the terminal
node T, then fv|x = 1.

(2) If v is a non-terminal node and var(v) = xi, then fv is defined by the Shannon
decomposition fv = xi · fthen(v)|xi=1 + xi · felse(v)|xi=0.

Boolean Operations over ROBDDs. Given the syntactical and semantical
definitions for ROBDDs, we now can define arbitrary Boolean operations over
Boolean functions fv1 and fv2 represented by two ROBDDs with root nodes
v1 and v2. In particular, let f = fv1 ◦ fv2 where ◦ denotes any binary Boolean
operation, then the ROBDD for f can be derived and composed recursively as:

f = xi · f|xi=1 + xi · f|xi=0

= xi · (fv1 ◦ fv2)|xi=1 + xi · (fv1 ◦ fv2)|xi=0

= xi · (fv1 |xi=1 ◦ fv2 |xi=1) + xi · (fv1 |xi=0 ◦ fv2 |xi=0)
(1)

2.3 Circuit Model

For the remainder of this work, we consider and model a deterministic circuit
C as a DAG, where the vertices are combinational gates and edges are wires
carrying elements from the finite field F2.
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Physical Model. Without loss of generality, the physical structure of a deter-
ministic circuit C at gate level is modeled using the set of combinational gates
{not, and, nand, or, nor, xor, xnor} (with fan-in at most 2) while all sequential
memory gates reg model a clock-dependent synchronization point. Further, each
Boolean input variable is associated with a single in gate (with fan-in 0), while the
output and result of a Boolean function is associated with a single out gate (with
fan-out 0). Eventually, ref are special-purpose gates with fan-in 0 that introduce
a independently and identically distributed (i.i.d) random element from the finite
field F2.

Functional Model. Each deterministic circuit C realizes an n × m vectorial
Boolean function F : Fn

2 → F
m
2 given its coordinate functions f1, . . . , fm defined

over X ∈ F
n
2 . In particular, each Xi ∈ X is assumed to be independently and

identically distributed (i.i.d) and associated with a single in gate, while each fi
is associated with a single out gate.

Further, the function of each gate within the circuit model C is derived recur-
sively over the functions of its fan-in gates by means of Boolean operations over
ROBDDs. Hence, each gate in the circuit model itself can be considered as a
Boolean function over (a subset of) the inputs X ∈ F

n
2 and we can introduce

a functional abstraction layer to the physical circuit model using ROBDDs to
canonically represent and store the derived Boolean functions.

Security Model. Eventually, security critical circuits handling a sensitive
secret X are associated with a security order d and protected (masked) based
on Boolean sharing. This means, each security critical and sensitive secret X is
shared with at least d + 1 shares such that X =

⊕d
0 Xi. Similarly, sensitive and

security critical outputs of a masked circuit are shared using Boolean sharing,
such that F(X) =

⊕d
0 F

i(X).

2.4 Security Notions

Before introducing our verification approach and methodology to analyze an
arbitrary circuit under various security notions, we first introduce the definitions
of all necessary security notions. In particular, our security definitions are based
on the work in [21] while we reformulate the definitions in order to provide
generalizations from circuits with d+1 input shares to circuits with an arbitrary
number of shares when examining dth-order security. In addition, we extend the
definitions from single sensitive and secret variable to a set of arbitrary number
of secret variables.

Probing Security. Probing security is defined as the probes being statistically
independent of any sensitive input. More precisely, the joint distribution of the
considered set of probes has to be independent of the joint distribution of all
sensitive inputs. This can be formally defined as:
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Definition 4 ( d-Probing Security.). A circuit C with secret input set X ∈
F
n
2 is d-probing secure, if and only if for any observation set Q containing d

wires, X is statistically independent of the observation set, i.e., the following
condition holds:

Pr[Q|X] = Pr[Q] (2)

Non-Interference. The notion of Non-Interference allows partial information
on the sensitive inputs becoming available to the adversary through probing the
circuit. In particular, if the observed circuit is d-NI, the adversary is not able
to successfully distinguish the circuit result from a simulator working on partial
information knowing, i.e., using at most d shares of each input.

More formally, each adversarial probe set should be perfectly simulatable
knowing only a subset of all shares of each input. Let S be a set over arbitrary
input shares Xj

i , i.e., S ⊂ Sh(X), and |S|i denote the number of shares in S that
correspond to input Xi. In order to guarantee d-NI, there exist a simulation set
S with |S|∀i ≤ d for which a probe in Q is perfectly simulatable, i.e., an attacker
is not able to distinguish between a simulation of C using only elements in S
from the observations of C even when knowing all input shares. This can be
directly translated into the condition that there has to exist a simulation set S
with |S|∀i ≤ d, for which the distributions Pr[Q|S] and Pr[Q|Sh(X)] are equal.

Definition 5 (d-Non-Interference). A circuit C with secret input set X ∈ F
n
2

provides d-Non-Interference if and only if for any observation set of t ≤ d wires
Q there exists a set S of input shares with |S|∀i ≤ t such that

Pr[Q|S] = Pr[Q|Sh(X)]. (3)

Strong Non-Interference. The notion of SNI has been introduced as exten-
sion to NI correcting deficiencies in terms of composability of secure gadgets
within a circuit. In contrast to NI, any probe on a circuit output (also, through
composition, considered as input to a subsequent gadget) is not allowed to give
information about any share in the input. This means, each probe on an output
wire must be perfectly simulatable without knowledge of any input shares in
order to stop the flow of sensitive information between composed gadgets.

More formally, each adversarial probe set again should be perfectly simulat-
able knowing only a subset of all shares of each input. However, for a set Q of
d probes with t1 probes on internal wires and t2 probes on output wires while
t1 + t2 ≤ d, the size of the set S is bounded by the internal probes only, i.e.,
|S|∀i ≤ t1. This directly translates into the following definition and condition.

Definition 6 (d-Strong Non-Interference). A circuit C with secret input set
X ∈ F

n
2 provides d-Strong Non-Interference if and only if for any observation

set of t = t1 + t2 ≤ d wires Q of which t1 are internal wires and t2 are output
wires, there exists a simulation set S of input shares with |S|∀i ≤ t1 such that
Eq. (3) holds.
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Probe-Isolating Non-Interference. Unfortunately, the security notion of
SNI in practice is often very conservative and inefficient as it introduces more
area and randomness than necessary to achieve certain security goals. To address
this issue, Cassiers et al. introduced the notion of Probe-Isolating Non- Inter-
ferencePINI [17] which offers trivial composition of any gadgets inspired by the
trivial composition of linear functions and the concept of sharing domain sepa-
rations as introduced in [29]. As the original SNI definition limits composability
to single-output gadgets, Cassiers et al. also introduced a generalization of SNI
to gadgets with multiple inputs and multiple outputs (Multiple-Input- Multiple-
Output SNI (MIMO-SNI)). This is a very strong notion which in fact already
implies security under the PINI notion, i.e., every gadget that provides d-MIMO-
SNI also provides d-PINI. As PINI already guarantees trivial composition, we
do not consider MIMO-SNI any further in this work.

In the context of PINI, each circuit input and output is assigned a unique
circuit share index (i.e., a share domain) and any probe set on these wires should
be perfectly simulatable knowing only the set of inputs that are assigned to the
same circuit share index. Further, any additional probe on internal wires gives the
adversary access to at most one additional circuit share, i.e., must be perfectly
simulatable knowing only the according set of inputs assigned to these circuit
shares. Eventually, this translates to the following definition.

Definition 7 (d-Probe-Isolating Non-Interference). Let P be the set of
internal probes with |P| = t1. Let further IO be the index set assigned to the
probed output wires O with |IO| = t2.

A circuit C with secret input set X ∈ F
n
2 provides d-Probe-Isolating Non-

Interference if and only if for every P and O with t1 + t2 ≤ d there exists a set
II of circuit indices with |II| ≤ t1 such that Q = P∪O can be perfectly simulated
by S = Sh(X)II∪IO , i.e., Eq. (3) holds.

Uniformity. The security of (Boolean) masking schemes relies on a fundamental
assumption: uniform sharing. For that, the initial sharing of any secret variable
X using d + 1 shares, such that X =

⊕d
0 Xi, can be done by assigning random

values to X0, . . . , Xd−1 and deriving Xd = X ⊕ ⊕d−1
0 Xi. Such a sharing then

is uniform if all random variables X0, . . . , Xd−1 are independent of each other
and have a uniform distribution over F2.

In practice, the uniformity of the output sharing of gadgets has been defined
as a fundamental requirement for (TIs), particularly for secure composition of
gadgets [39]. Otherwise, a non-uniform output sharing of a gadget becomes
the non-uniform input sharing of another gadget, hence violating the essential
assumption of uniformity for (Boolean) masking schemes. Note, however, that
a gadget can be probing secure, but it is not necessarily uniform. Likewise, a
uniform gadget does not automatically lead to a probing-secure construction.
This has been handled specifically in NI and SNI gadgets, e.g., by injecting fresh
randomness at the output thereby refreshing the output sharing, i.e., achieving
uniformity.
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Definition 8 formalizes the notion of a uniform sharing as it states that for
every unshared value, each valid sharing has to occur with the same probability.

Definition 8 (Uniform Sharing). Let Y be a set of binary random vari-
able and Sh(Y) its corresponding Boolean sharing. Then Sh(Y) is said to be a
uniform sharing iff for some constant p

Pr
[
Sh(Y) = y∗|Y = y

]
=

{
p if y∗ is a valid sharing for y
0 else

. (4)

3 Verification Concept

This section briefly elaborates our main idea and concept for our verification
model and approach.

3.1 Leakage Models

For verification, we additionally consider each security notion under two different
leakage models denoted standard respectively robust leakage model.

Standard Leakage Model. For our standard leakage model following the
concept of the traditional ISW d-probing model [31], we assume an ideal circuit
without any physical defaults such as glitches or transitions. In practice, this
leakage model relates to a software scenario where each result of an operation
(i.e., a gate in a circuit C) is stored in a register before it is used by subsequent
operations (gates). Note that in this model, the implementation platform’s spe-
cific effects like pipelines are entirely ignored. In this model, an adversarial probe
provides access to the field element carried on the probed wire. More precisely,
the adversary gains full access to the Boolean function represented by the driving
gate in order to derive the field element.

Robust Leakage Model. In contrast to our standard leakage model, for our
robust model following the leakage model in [26], we also take physical default
in terms of glitches into consideration, hence, in practice this model relates to a
hardware scenario. Since only circuit inputs and memory elements are assumed
to switch synchronous to a circuit clock, glitches will propagate through all
combinational gates between two synchronization points. Therefore, by probing
a wire, the adversary not only gains access to the field element of the driving gate
but also can access all stable field elements of the last synchronization points
which drive the probed gate (having a path to the driving gate in the circuit
graph). More precisely, the adversary gains full access to the set of these field
elements (and any subset) through so called glitch-extended probes.
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3.2 Verification Approach

Based on some fundamental observation, this section outlines our basic concept
and explains our main approach to verify different security notions starting from
a circuit model given as gate-level netlist.

Random Variables with Binary Events. According to our circuit model,
each edge in the circuit graph models a wire and carries an element from the field
F2 with two elements. Thus, we first observe each wire, and its associated field
element can be modeled as a binary random variable defined over the sample
space Ω = {0, 1} of two basic events given the assumption that all primary
circuit inputs are independent and identically distributed (i.i.d.). Based on this
observation, we can use the probability distributions of all random variables in
order to analyze and verify a circuit model against the security notions defined
in Sect. 2.4.

Probability Distribution and Satisfiability. In general, the probability of
an event is defined by the sum of the probabilities of all outcomes that satisfy
the event. In the context of our circuit model, an outcome can be considered
as a variable assignment to the primary circuit inputs that leads to the desired
element of the sample space at the observed random variable. For this, com-
puting the probability density function of a random variable associated with
a circuit wire reduces to enumerating and counting the primary input variable
assignments that satisfy the corresponding basic events for the observed random
variable.

Symbolic Simulation Using ROBDDs. As the naive approach of exhaustive
and literal simulation of the circuit model expeditiously becomes infeasible with
increasing circuit complexity and number of primary circuit inputs, symbolic
simulation and analysis is necessary to maintain the generation of all probabil-
ity distributions practicable even for large and complex circuit models. More
precisely, each gate in the circuit model represents a sub-circuit and is associ-
ated with a Boolean function given as ROBDD that computes the gate output
over the set of primary circuit inputs. Since ROBDDs are concise and canonical
representations of Boolean functions, counting the number of cubes, i.e., the sat-
isfying variable assignments, for each basic binary event can be done efficiently
using symbolic analysis. Knowing the total number of possible variable assign-
ments, computing the probability distribution for each random variable remains
feasible even for large and complex circuits.

Standard and Glitch-Extended Probes. Considering our two different leak-
age models, we also have to differentiate the capabilities and knowledge of the
adversary. Firstly, for the standard model we thus assume that an adversarial
probe gives access to the probability distribution of a field element carried on an
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arbitrary wire observed by the adversarial probe. More precisely, the adversary
in this case learns the Boolean sub-function associated with the driving gate in
order to compute the field element and its probability distribution as function of
the primary circuit inputs. Secondly, in contrast to the standard model, a robust
or glitch-extended probe extends the capabilities and knowledge of the adversary
as it also provides access to the joint distribution of all hindmost contributing
synchronization points (memory elements or primary inputs). Hence, in order
to model physical defaults and in particular glitches, the adversary also learns
the Boolean sub-functions associated with the corresponding synchronization
elements.

Statistical Independence and Security Checks. Eventually, depending on
the targeted security order d, an adversarial observation can consist of up to d
independently placed adversarial probes and the adversary is allowed to com-
bine the information and knowledge of all probes to learn details of the secret. In
order to verify security under the given security notions as defined in Sect. 2.4,
we perform an exhaustive exploration and check of all possible adversarial obser-
vations Q combining up to d probes. For this, the following section is dedicated
to a detail description and verification of our performed security checks.

4 Statistical Independence and Security Checks

Before formally analysis and verification of the correctness of our security checks,
we briefly recap the definitions of (joint) probability mass functions and statis-
tical independence for sets of random variables.

4.1 Statistical Independence

The probability mass function provides the probability of all possible values for
a set of discrete random variables based on their probability distribution.

Definition 9 (Probability Mass Function). Let X be a set of discrete ran-
dom variables. The probability mass function pX(x) is defined as:

pX(x) = Pr[X = x].

Based on this, given two arbitrary sets of discrete random variables, the
joint probability mass function between these two variable sets then is defined
as follows.

Definition 10 (Joint Probability Mass Function). Let X,Y be two sets
of discrete random variables. The joint probability mass function pX,Y(x,y) is
defined as:

pX,Y(x,y) = Pr[X = x and Y = y].
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Using the definitions of probability mass function and joint probability mass
function, we can express the notion of statistical independence of two sets of
discrete random variables according to the following definition.

Definition 11 (Statistical Independence). Let X,Y be two sets of discrete
random variables. X,Y are statistically independent if and only if the joint prob-
ability mass function for ∀x and ∀y satisfies

pX,Y(x,y) = pX(x) · pY(y).

Statistical Independence of Binary Random Variables. In the context
of our security notions, we are mainly interested in statistical independence
of binary random variables. As any binary random variable can only take two
different events, Theorem 1 states that checking statistical independence for one
event implies statistical independence for both events, even extending to the case
of sets of binary random variables.

Theorem 1. Let X,Y be two sets of binary random variables. Then X and Y
are statistically independent, if and only if pX′,Y′(a,b) = pX′(a) ·pY′(b) for any
fixed values a and b and every possible combination of X′ ⊆ X and Y′ ⊆ Y.

In order to proof correctness of Theorem 1, we start with the basic case of
two binary random variables (i.e., sets of cardinality one).

Lemma 1. Let X,Y ∈ F2 be two binary random variables. Then, a necessary
and sufficient condition for X to be statistically independent of Y is that, for
any fixed values a, b ∈ {0, 1}, it holds

pX,Y (a, b) = pX(a) · pY (b).

Proof. According to Definition 11, the necessity of this proposition is obvious,
hence, the proof focuses on the sufficiency. Without loss of generality, we now
assume Theorem 1 is true for a = b = 1, i.e., pX,Y (1, 1) = pX(1) · pY (1). Since
X = 0 and X = 1 are counter events for binary variables, both the fact pX(0) +
pX(1) = 1 and the fact pX,Y (0, 1) + pX,Y (1, 1) = pY (1) hold, and we have

pX,Y (0, 1) + pX,Y (1, 1) = pY (1)
⇔ pX,Y (0, 1) + pX(1) · pY (1) = pY (1)
⇔ pX,Y (0, 1) = (1 − pX(1)) · pY (1)
⇔ pX,Y (0, 1) = pX(0) · pY (1)

Proving the cases for a = 1, b = 0 and a = b = 0 is trivial as it follows the same
approach, hence is left out for brevity. �

In a next step, we extend the basic case through mathematical induction in
order to prove statistical independence between a single random binary variable
and a set of random binary variables.
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Lemma 2. Let X be a binary random variable and Y a set of n random binary
variables. Further, let X be statistically independent of the joint distribution of
Y. Now, the joint distribution Y+, with Y ⊂ Y+ and |Y+| = n+1 is statistically
independent of X, if and only if pX,Y+(a,b+) = pX(a) · pY+(b+) for any fixed
values a,b+.

Proof. We now give a formal proof using mathematical induction on n.
Base case: We first show that Lemma 2 holds for n = 0.

Clearly, if n = 0, Y is the empty set while Y+ is a single binary random
variable. Then, according to Lemma1, X and Y+ are statistically independent
if and only if for any fixed values a, b it holds that pX,Y+(a, b) = pX(a) · pY+(b).

�
Induction: If Lemma 2 holds for n = k, it also holds for n = k + 1 with k ≥ 0.

For this, we first show that, without loss of generality, for X,Y+ the following
fact pX,Y+(a,b+

i
) = pX(a) · pY+(b+

i
) with b+

i
= {y0, y1, . . . , yi, . . . , yk, yk+1}

holds, if:

(i) pX,Y(a,b) = pX(a) · pY(b) with b = {y0, y1, . . . , yi−1, yi+1, . . . , yk, yk+1},
(ii) pX,Y+(a,b+) = pX(a) · pY+(b+) with b+ = {y0, y1, . . . , yi, . . . , yk, yk+1}

Further, we note that for binary random variables it always holds that:

pX,Y(a,b) = pX,Y+(a,b+) + pX,Y+(a,b+

i
)

Given that (i), (ii) are conditions for Lemma2, we can state the following:

pX,Y(a,b) = pX(a) · pY(b)

⇔ pX,Y+(a,b+) + pX,Y+(a,b+

i
) = pX(a) · pY(b)

⇔ pX(a) · pY+(b+) + pX,Y+(a,b+

i
) = pX(a) · pY(b)

⇔ pX,Y+(a,b+

i
) = pX(a) · pY(b) − pX(a) · pY+(b+)

⇔ pX,Y+(a,b+

i
) = pX(a) · [pY(b) − pY+(b+)]

⇔ pX,Y+(a,b+

i
) = pX(a) · pY+(b+

i
)

As the sorting of variables in Y+ is not fixed, this approach also extends
to inversion of any other event and therefore can easily be extended to show
statistical independence for every combination of events. �

Eventually, this also proves Theorem1. In particular, knowing that X,Y are
statistically independent, we can argue that X+,Y with X ⊂ X+, |X| = n, and
|X+| = n + 1 must be statistically independent, if and only if pX+,Y(a+,b) =
pX+(a+) · pY(b) using the same approach as for Lemma 2.
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Algorithm 1: Explore d-Probing Security.

Input : X – Set of n secret variables.
Output: Q – Set of d + 1 successful probes.

1 d ← 1
2 while true do
3 foreach probing set Q with |Q| = d do
4 for t = 1 to n do
5 foreach X′ ⊆ X with X′ = t do
6 if pQ,X′(1,1) �= pQ(1) · pX′(1) then
7 return Q
8 end

9 end

10 end

11 end
12 d ← d + 1

13 end

4.2 d-Probing Security

Checking d-probing security according to Definition 4 requires to verify statistical
independence of the set of secret variables and any observation of at most d
probes. This section presents an exploration algorithm that allows to find and
verify the maximum security order of a given circuit with secret variables X.
Eventually, the algorithm will return the first set of d + 1 probes that is not
statistically independent of the secret variables.

Algorithmic Verification Approach. Algorithm 1 presents our algorithmic
approach to explore and verify d-probing security of a (CUT). In general, the
algorithm is initialized with d = 1, i.e., starts to explore and verify first-order
security before extending verification to higher orders. Since for |Q| = 1 each
observation set contains only a single binary variable (observed by a single probe
placed on a wire within the circuit C), according to Theorem 1 it is sufficient to
verify:

pQ,X′(1,1) ?= pQ(1) · pX′(1) (5)

for all possible combinations of secret variables X′ ⊆ X. If any of those checks
fails, the current observation is not statistically independent of the secret vari-
ables and Algorithm 1 terminates with returning the current set of observation
indicating the security of the CUT to be at most d = |Q| − 1.

If probing security is verified for all joint distributions of d probes, the algo-
rithm continues with all combinations of d+1 probes. However, for independence
of the current set of probes Q, it is still sufficient to check Eq. (5) for all com-
binations of secret variables (but only the current combination of probes), since
any subset of probes has already been verified during previous iterations (for
smaller d).
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Algorithm 2: Explore d-Non-Interference Security.

Input : Sh(X) – Set of all shares of n secret variables X.
Output: Q – Set of d + 1 successful probes.

1 d ← 1
2 while true do
3 foreach probing set Q with |Q| = d do
4 simulatable ← true
5 for t = 0 to d do
6 foreach S ⊆ Sh(X) with |S|∀i = t do
7 if pQ,Sh(X)(1,1) �= pQ,S(1,1) · pS(1) then
8 simulatable ← false
9 end

10 end

11 end
12 if not simulatable then
13 return Q
14 end

15 end
16 d ← d + 1

17 end

Eventually, all verification and statistical independence checks are performed
based on ROBDDs in order to generate all (joint) probability mass functions
pQ, pX, and pQ,X. In particular, evaluation of the probability mass functions
for 1 is very efficient for ROBDD-based representations, usually implemented as
satisfiability-check.

4.3 d-Non-Interference

Checking d-NI security using Definition 5 requires to verify Eq. (3) that every set
of at most d probes Q on a circuit C has to be perfectly simulatable using only
a subset S of all shares of the secret variables X. Using the concept of statistical
independence of two sets of random binary variables, we can express NI using
the following theorem.

Theorem 2. Let S := Sh(X) \ S. Since all input shares are i.i.d., Eq. (3) sim-
plifies to:

pQ,Sh(X)(q,x) = pQ,S(q, s) · pS(s). (6)

In particular, since Sh(X) = S∪S, we can simply verify statistical independence
of Q ∪ S and S (with x = s ∪ s).
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Algorithm 3: Explore d-Probe-Isolating Non-Interference Security.

Input : Sh(X) – Set of all shares of n secret variables X.
Output: Q – Set of d + 1 successful probes.

1 d ← 1
2 while true do
3 foreach probing set Q with |Q| = t1 + t2 ≤ d (t1 internal, t2 output probes)

do
4 simulatable ← true
5 for t = 0 to t1 do
6 foreach S ⊆ Sh(X) with |S|∀i = t do
7 if pQ,Sh(X)(1,1) �= pQ,S(1,1) · pS(1) then
8 simulatable ← false
9 end

10 end

11 end
12 if not simulatable then
13 return Q
14 end

15 end
16 d ← d + 1

17 end

Proof.

Pr[Q|S] = Pr[Q|Sh(X)]
⇔ Pr[Q,S] · Pr[Sh(X)] = Pr[Q, Sh(X)] · Pr[S]

i.i.d.Sh(X)⇔ Pr[Q,S] · Pr[S] = Pr[Q, Sh(X)]
⇔ pQ,S(q, s) · pS(s) = pQ,Sh(X)(q,x)

�

Algorithmic Verification Approach. Algorithm 2 explores and verifies d-NI
for increasing d and all possible observations Q of at most d probes. In particular,
the algorithm proceeds as soon as a successful simulation set S of input shares
is found for the current set of probes Q, such that Q is perfectly simulatable
using S. However, if the algorithm encounters a set of probes Q with |Q| = d+1
which is not simulatable for set of input shares (according to the definition of
NI), the algorithm terminates and returns the current set of probes indicating
d-NI with d = |Q| − 1.

4.4 d-Strong Non-Interference

Checking d-SNI is very similar to checking d-NI, except for stronger constraints
on the simulation set S due to stronger distinction between internal and output
probes.
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Algorithm 4: Explore d-Probe-Isolating Non-Interference Security.

Input : Sh(X) – Set of all shares of n secret variables X.
Output: Q – Set of d + 1 successful probes.

1 d ← 1
2 while true do
3 foreach probing set Q with |Q| = d do
4 simulatable ← true

5 foreach S ⊆ Sh(X)IO∪II do
6 if pQ,Sh(X)(1,1) �= pQ,S(1,1) · pS(1) then
7 simulatable ← false
8 end

9 end
10 if not simulatable then
11 return Q
12 end

13 end
14 d ← d + 1

15 end

Algorithmic Verification Approach. In contrast to NI, for SNI the number
of shares per input in each simulation set is bounded by the number of internal
probes (instead of the number of all probes). Hence, except for minor difference,
the algorithmic verification approach given in Algorithm3 (notation matching
the one given in Definition 6) has the same structure as the approach for NI, but
enforcing stronger constraints on the selection of shares (lines 5 and 6) for the
simulation set S.

4.5 d-Probe-Isolating Non-Interference

For the notion of PINI, the index of any input or output wires correspond to
the associated circuit share. In contrast to NI and SNI, the concept of PINI con-
strains the simulation set not by the number of (internal) probes, but according
to the associated circuit shares.

Verification Approach. The algorithmic verification approach in order to
explore and verify the security notion of PINI for increasing security order d
is given in Algorithm 4. Again, the algorithm is based on the concept of per-
fect simulatability of every Q with a set S, in conformity with the notions in
Definition 7.

4.6 Uniformity

In order to examine the uniformity of the output sharing of a gadget, we start
with the following observation.
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Lemma 3. Assume the function f with single output Y ∈ F2 whose shared ver-
sion is realized by a gadget with d + 1 output shares Sh(Y ) = (Y 0, . . . , Y d). The
gadget’s output sharing is uniform iff any selection of d output shares make a
balanced function.

Proof. We start with d = 1, i.e., 2 output shares. Let us denote the joint prob-
ability of the output shares by ρ0,0 = Pr[Y 0 = 0, Y 1 = 0], ρ0,1 = Pr[Y 0 =
0, Y 1 = 1], ρ1,0 = Pr[Y 0 = 1, Y 1 = 0], and ρ1,1 = Pr[Y 0 = 1, Y 1 = 1], assuming
that the gadget’s input is uniformly distributed, which is true since the gadget’s
input sharing should be uniform (essential assumption of Boolean masking, see
Sect. 2.4). Hence, the probability of the output shares can be written as

Pr[Y 0 = 0] = ρ0,0 + ρ0,1, P r[Y 0 = 1] = ρ1,0 + ρ1,1,

P r[Y 1 = 0] = ρ0,0 + ρ1,0, P r[Y 1 = 1] = ρ0,1 + ρ1,1.

1) If Sh(Y ) is uniform, (Y 0 = 0, Y 1 = 0) and (Y 0 = 1, Y 1 = 1) are equally
likely to occur, i.e., ρ0,0 = ρ1,1. The same holds for (Y 0 = 0, Y 1 = 1) and
(Y 0 = 1, Y 1 = 0), i.e., ρ0,1 = ρ1,0. Therefore, Pr[Y 0 = 0] = ρ0,0 + ρ0,1 =
ρ1,1 + ρ1,0 = Pr[Y 0 = 1], i.e., the gadget’s coordinate function f0 with output
Y 0 is balanced. The same trivially holds for Y 1. Hence, individual balancedness
of each output share is essential for uniformity.
2) If the coordinate functions of Y 0 and Y 1 are balanced, we can write

Pr[Y 0 = 0] = Pr[Y 0 = 1] ⇐⇒ ρ0,0 + ρ0,1 = ρ1,0 + ρ1,1,

P r[Y 1 = 0] = Pr[Y 1 = 1] ⇐⇒ ρ0,0 + ρ1,0 = ρ0,1 + ρ1,1.

These two equations directly translate into ρ0,0 = ρ1,1 and ρ0,1 = ρ1,0. This
means that (Y 0 = 0, Y 1 = 0) and (Y 0 = 1, Y 1 = 1) are equally likely to occur.
The same holds for (Y 0 = 0, Y 1 = 1) and (Y 0 = 1, Y 1 = 0), i.e., Sh(Y ) is a
uniform sharing. Hence, individual balancedness of each output share is also a
sufficient condition for uniformity.

For d = 2, we have Sh(Y ) = (Y 0, Y 1, Y 2). Assuming a uniform sharing for
the gadget’s input, similar to the above case for d = 1, we denote the joint
probability of the output shares by ρy0,y1,y2 = Pr[Y 0 = y0, Y 1 = y1, Y 2 = y2],
e.g., ρ1,0,1 = Pr[Y 0 = 1, Y 1 = 0, Y 2 = 1]. Exemplary, the joint probability of
two output shares (Y 0, Y 1) can be derived as

Pr[Y 0 = 0, Y 1 = 0] = ρ0,0,0+ρ0,0,1, P r[Y 0 = 0, Y 1 = 1] = ρ0,1,0 +ρ0,1,1,

P r[Y 0 = 1, Y 1 = 0] = ρ1,0,0+ρ1,0,1, P r[Y 0 = 1, Y 1 = 1] = ρ1,1,0 +ρ1,1,1.
(7)

1) In case Sh(Y ) is uniform, we have

ρ0,0,0 = ρ0,1,1 = ρ1,0,1 = ρ1,1,0, ρ0,0,1 = ρ0,1,0 = ρ1,0,0 = ρ1,1,1. (8)

Hence, it can be trivially seen that

Pr[Y 0=0, Y 1=0]=Pr[Y 0=0, Y 1=1]=Pr[Y 0=1, Y 1=0]=Pr[Y 0=1, Y 1=1],
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meaning that (Y 0, Y 1) are jointly balanced. The same holds for other output
shares (Y 0, Y 2) and (Y 1, Y 2).
2) If (Y 0, Y 1) are jointly balanced, all probabilities given in Eq. (7) are the same,
i.e.,

ρ0,0,0 + ρ0,0,1 = ρ0,1,0 + ρ0,1,1 = ρ1,0,0 + ρ1,0,1 = ρ1,1,0 + ρ1,1,1.

The same can be written for (Y 0, Y 2) and (Y 1, Y 2) as

ρ0,0,0 + ρ0,1,0 = ρ0,0,1 + ρ0,1,1 = ρ1,0,0 + ρ1,1,0 = ρ1,0,1 + ρ1,1,1,

ρ0,0,0 + ρ1,0,0 = ρ0,0,1 + ρ1,0,1 = ρ0,1,0 + ρ1,1,0 = ρ0,1,1 + ρ1,1,1.

Combination of these equations leads to the expressions given in Eq. (8), indi-
cating the uniformity of Sh(Y ).

The same procedure can be followed to trivially verify Lemma 3 for d > 2. �
Lemma 4. Assume the function f with n-bit output Y = (Y0, . . . , Yn−1) ∈ F

n
2

whose shared version is realized by a gadget with d + 1 output shares Sh(Y) =
(Y0, . . . ,Yd). The gadget’s output sharing is uniform iff any selection of up to
n · d output shares is balanced excluding the cases where all d + 1 shares of the
same output are involved in the selection.

Proof. For n = 1 it is the same as Lemma 3. Hence, we start with n = 2 and
minimum number of output shares, d + 1 = 2. Assuming a uniform sharing
for the gadget’s input, we denote the joint probability of the output shares by
ρ(y0

0 ,y
1
0),(y

0
1 ,y

1
1)

= Pr[Y 0
0 = y0

0 , Y
1
0 = y1

0 , Y
0
1 = y0

1 , Y
1
1 = y1

1 ], e.g., ρ(1,0),(1,1) =
Pr[Y 0

0 = 1, Y 1
0 = 0, Y 0

1 = 1, Y 1
1 = 1].

Exemplary, the joint probability of two output shares (Y 0
0 , Y 1

1 ) is written as

Pr[Y 0
0 = 0, Y 1

1 = 0] = ρ(0,0),(0,0) + ρ(0,0),(1,0) + ρ(0,1),(0,0) + ρ(0,1),(1,0),

P r[Y 0
0 = 0, Y 1

1 = 1] = ρ(0,0),(0,1) + ρ(0,0),(1,1) + ρ(0,1),(0,1) + ρ(0,1),(1,1),

P r[Y 0
0 = 1, Y 1

1 = 0] = ρ(1,0),(0,0) + ρ(1,0),(1,0) + ρ(1,1),(0,0) + ρ(1,1),(1,0),

P r[Y 0
0 = 1, Y 1

1 = 1] = ρ(1,0),(0,1) + ρ(1,0),(1,1) + ρ(1,1),(0,1) + ρ(1,1),(1,1).

(9)

1) If Sh(Y) is uniform, we have

ρ(0,0),(0,0) = ρ(0,0),(1,1) = ρ(1,1),(0,0) = ρ(1,1),(1,1),

ρ(0,0),(0,1) = ρ(0,0),(1,0) = ρ(1,1),(0,1) = ρ(1,1),(1,0),

ρ(0,1),(0,0) = ρ(0,1),(1,1) = ρ(1,0),(0,0) = ρ(1,0),(1,1),

ρ(0,1),(0,1) = ρ(0,1),(1,0) = ρ(1,0),(0,1) = ρ(1,0),(1,0).

This results in equal probabilities for all probabilities given in Eq. (9), such that

Pr[Y 0
0 =0, Y 1

1 =0]=Pr[Y 0
0 =0, Y 1

1 =1]=Pr[Y 0
0 =1, Y 1

1 =0]=Pr[Y 0
0 = 1, Y 1

1 = 1],
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i.e., the two output shares (Y 0
0 , Y 1

1 ) are jointly balanced. The same can be sim-
ilarly verified all other combinations (Y 0

0 , Y 0
1 ), (Y 1

0 , Y 0
1 ), and (Y 1

0 , Y 1
1 ).

2) If (Y 0
0 , Y 1

1 ) are jointly balanced, based on Eq. (9) we have

ρ(0,0),(0,0) + ρ(0,0),(1,0) + ρ(0,1),(0,0) + ρ(0,1),(1,0)

= ρ(0,0),(0,1) + ρ(0,0),(1,1) + ρ(0,1),(0,1) + ρ(0,1),(1,1)

= ρ(1,0),(0,0) + ρ(1,0),(1,0) + ρ(1,1),(0,0) + ρ(1,1),(1,0)

= ρ(1,0),(0,1) + ρ(1,0),(1,1) + ρ(1,1),(0,1) + ρ(1,1),(1,1) = 1/4.

(10)

This leads to

ρ(0,0),(0,0) + ρ(0,0),(1,0) + ρ(0,1),(0,0) + ρ(0,1),(1,0)

+ ρ(0,0),(0,1) + ρ(0,0),(1,1) + ρ(0,1),(0,1) + ρ(0,1),(1,1)

= ρ(1,0),(0,0) + ρ(1,0),(1,0) + ρ(1,1),(0,0) + ρ(1,1),(1,0)

+ ρ(1,0),(0,1) + ρ(1,0),(1,1) + ρ(1,1),(0,1) + ρ(1,1),(1,1) = 1/2,

(11)

meaning that Pr[Y 0
0 = 0] = Pr[Y 0

0 = 1], i.e., it is balanced. The same can be
written for Pr[Y 1

1 = 0] = Pr[Y 1
1 = 1], and similarly for (Y 0

0 , Y 0
1 ), (Y 1

0 , Y 0
1 ),

and (Y 1
0 , Y 1

1 ). In short, every single output bit is balanced, hence, according
to Lemma 3, the sharing of every output is individually uniform. Note that, in
general when a function with d output bits is balanced, any combination of
d′ < d output bits also makes a balanced function [34, §12.1.2].

According to Eqs. (9) and (10), we exemplary write

Pr[Y 0
0 = 0, Y 1

1 = 0] = 1/4.

On the other hand, according to Eq. (11) we have

Pr[Y 0
0 = 0] = 1/2, P r[Y 1

1 = 0] = 1/2,

which implies Pr[Y 0
0 = 0, Y 1

1 = 0] = Pr[Y 0
0 = 0] · Pr[Y 1

1 = 0]. The same can
similarly be seen for (Y 0

0 , Y 1
1 ) = (0, 1), (1, 0) and (1, 1), meaning that

Pr[Y 0
0 , Y 1

1 ] = Pr[Y 0
0 ] · Pr[Y 1

1 ]. (12)

In other words, Y 0
0 and Y 1

1 are statistically independent. In a similar way, sta-
tistical independence of (Y 0

0 , Y 0
1 ), (Y 1

0 , Y 0
1 ), and (Y 1

0 , Y 1
1 ) can be shown.

Now, let us denote conditional probability Pr[Y 0
0 = y0

0 , Y
1
0 = y1

0 , Y
0
1 =

y0
1 , Y

1
1 = y1

1 |Y0 = y0, Y1 = y1] by ρ(y0
0 ,y

1
0),(y

0
1 ,y

1
1)|(y0,y1). For the sharing Sh(Y)

to be uniform, according to Eq. (4) and exemplary for Y = (0, 0) we should have

ρ(0,0),(0,0)|(0,0) = ρ(0,0),(1,1)|(0,0) = ρ(1,1),(0,0)|(0,0) = ρ(1,1),(1,1)|(0,0) = 1/4. (13)

The same should hold for other values of Y = (0, 1), (1, 0), and (1, 1). Consid-
ering the statistical independence of (Y 1

0 , Y 0
1 ) explained above, We can write

ρ(0,0),(0,0)|(0,0) = Pr
[
Y 0
0 =0,Y 1

0 =0,Y 0
1 =0,Y 1

1 =0
∣
∣Y0=0,Y1=0

]

= Pr
[
Y 0
0 =0,Y 1

1 =0
∣
∣Y 1

0 =0,Y 0
1 =0,Y0=0,Y1=0

] · Pr
[
Y 1
0 =0,Y 0

1 =0
∣
∣Y0=0,Y1=0

]

= 1 · Pr
[
Y 1
0 =0

∣
∣Y0=0,Y1=0

] · Pr
[
Y 0
1 =0

∣
∣Y0=0,Y1=0

]
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Due to the balancedness of every individual output, we have

Pr
[
Y 1
0 = 0

∣
∣Y0 = 0, Y1 = 0

]
= Pr

[
Y 1
0 = 0

∣
∣Y0 = 0, Y1 = 0

]
= 1/2.

This leads to ρ(0,0),(0,0)|(0,0) = 1/4. The same can be shown for ρ(0,0),(1,1)|(0,0),
ρ(1,1),(0,0)|(0,0), and ρ(1,1),(1,1)|(0,0), satisfying Eq. (13). The same can be similarly
verified for Y = (0, 1), (1, 0), and (1, 1), hence the uniformity of Sh(Y).

The same procedure can be followed to verify Lemma 4 for n > 2 and
d > 2. �

Indeed, for a given circuit netlist we efficiently perform balancedness checks
directly based on the ROBDDs of the circuit.

5 Related Work

For formal verification of masked implementations, both in software and hard-
ware, several tools and frameworks have been proposed, each following a different
methodology and verification approach.

Formal Verification of Software Implementations. For automated mask-
ing of software implementations, the work of Moss et al. [38] was first to consider
a type-based methodology for security annotation while dynamically repairing
the masked implementation based on heuristics if leakage was detected at some
point in the program flow. As any type-based approach inevitably results in an
overly conservative verification, logic-based methods have been proposed as an
alternative approach. Here, the work by Byrak et al. Byrak [6] translates verifi-
cation to a set of Boolean satisfiability problems which can then be solved by a
SAT solver. Nonetheless, both approaches only consider verification of masking
against first-order attacks.

Later, an SMT-solver-based method for formally verifying even higher-order
security has been introduced in [24]. As for [6], this verification method is also
based on the notion of perfect masking as presented in [13]. Similarly, in [44]
another method for verifying perfect masking was introduced, this time aiming
to optimize the trade-off between accuracy (as offered by logic-based approaches)
and efficiency (as given in type-based verification). Eventually, a composition-
based verification approach in direct conformity with d-probing security (i.e.,
without any false negatives) is given by Beläıd et al. in [9].

Formal Verification of Hardware Implementations. Considering hard-
ware designs, the work of Bloem et al. [11,12] resulted in a seminal tool enabling
formal verification even in the presence of glitches, but with restriction to veri-
fication of probing security only. Most recently, the work of Cassiers et al. [16]
proposes a composition-based approach of verifying probing security of a con-
crete implementation composed of so-called Hardware Private Circuits.



808 D. Knichel et al.

Besides, the latest version of maskVerif – as presented in [2] – supports
efficient verification of d-probing security, d-NI, and d-SNI for arbitrary orders for
both software and hardware designs, even in the presence of glitches. Currently,
maskVerif is the state-of-the-art tool offering the widest-ranging verification
features which is not composition-based, hence, in the following we provide a
more detailed discussion and comparison to our developed tool.

5.1 Comparison to maskVerif

In general, maskVerif offers an efficient approach to verify security of masked
software and hardware implementations. In contrast to our approach, maskVerif
utilizes a symbolic representation of leakage defined by a given syntax and seman-
tic. For verifying security, the tool first assigns a symbolic leakage set to every
instruction. Depending on the security order, each combination of symbolic leak-
age sets, i.e., each possible observation, is exploited afterwards and tested for
the absence of secret dependency through performing a syntactical check and
applying semantic-preserving transformation on the sets.

Due to its language-based verification approach, security checks in maskVerif
follow a very conservative approach for particular designs. More precisely, it may
falsely reject some secure designs because the checks are not based on explicit
statistical properties in conformity with the actual definition of the security
notions. Due to these limitations of a purely syntactical verification, it more
likely fails to provide correct verification of probing security if an output of
a masked circuit is not non-complete (as used for TIs) but also does not rely
on fresh randomness. In other words, its computation is a result of all input
shares of at least one input without using any fresh randomness for blinding
purposes. In particular, a computation using all input shares not necessarily
implies statistical dependency on the corresponding input (e.g., due to blinding
with shares of different inputs). Nonetheless, since the verification approach of
maskVerif is mainly based on syntactical checks, it may falsely categorize the
design as not being probing secure although it is (i.e., resulting in false negative).

Examples for False Negatives in maskVerif. One small example is a shared
version of the 4-bit bijection quadratic class Q4

12 (based on the classification given
in [10]), utilizing two shares per input, as presented in Appendix of [42]. Using
maskVerif, this design is falsely categorized as not being first-order probing
secure although all possible probes are statistically independent of the secrets.
Hence, according to maskVerif, in order to gain successful verification, one possi-
ble solution would be to introduce additional randomness r ∈ F2 into the design,
such that:

x1 = F1(a,b, c,d) = a1

x2 = F2(a,b, c,d) = a2

y1 = G1(a,b, c,d) = a1c1 ⊕ b1 ⊕ r x̄1 = x1
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y2 = G2(a,b, c,d) = a1c2 x̄2 = x2

y3 = G3(a,b, c,d) = a2c1 ⊕ b2 ⊕ r ȳ1 = y1 ⊕ y2

y4 = G4(a,b, c,d) = a2c2 ȳ2 = y3 ⊕ y4

z1 = H1(a,b, c,d) = a1b1 ⊕ a1c1 ⊕ c1 z̄1 = z1 ⊕ z2

z2 = H2(a,b, c,d) = a1b2 ⊕ a1c2 ⊕ r z̄2 = z3 ⊕ z4

z3 = H3(a,b, c,d) = a2b1 ⊕ a2c1 ⊕ r t̄1 = t1

z4 = H4(a,b, c,d) = a2b2 ⊕ a2c2 ⊕ c2 t̄2 = t2

t1 = K1(a,b, c,d) = d1

t2 = K2(a,b, c,d) = d2

This new realization of Q4
12 is now correctly verified by maskVerif as being

first-order probing secure. However, introducing randomness is costly and not
necessary to gain independence of the secret input, i.e., fulfilling first-order prob-
ing security.

However, this given example based on Q4
12 is only a small design. For larger

and more complex circuits, this inaccurate determination of the security level will
lead to significantly more overhead being introduced during the design process.
An example for a more complex design, which is falsely classified as not begin
first-order probing secure, is the PRESENT S-box realized as a TI utilizing three
shares for every output and input bit as presented in [40].

In fact, in order to achieve a sufficient security level while only introducing
marginal overhead into the design, it is thus necessary to be in conformity with
the security notions. As our verification is based on actual statistical properties
between probes and inputs, i.e., in accordance with the formal definitions of the
security notions, we actually meet this need and completely avoid false nega-
tives. This eventually is expected to result in less overhead in terms of area and
randomness when designing and implementing masked implementations. More-
over, and in addition to features in maskVerif, our tool is extended to verify
dth-order PINI and the output uniformity of a given design while also returning
the first probe combination found which is not in conformity with the respective
security notion.

Hence, despite being slower and slightly less efficient for larger design com-
pared to a type-based approach, as used for instance in maskVerif, our tool is
assumed to close the gap between accuracy and efficiency by providing a com-
plete and sound verification framework for the security and composability of
both software and hardware designs.

6 Experiments and Evaluations

This section presents implementation, evaluation, and performance results of our
proposed tool1 for formal verification of masked circuits.

1 https://github.com/chair-for-security-engineering/silver.

https://github.com/chair-for-security-engineering/silver
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Implementation. For a practical evaluation of our proposed concepts
and methodologies, we opted to implement a formal verification tool using
Sylvan [22], a state-of-the-art BDD high-performance, multi-core decision
diagram package implemented in C/C++. Further, we also customized and
extended the native instructions of Sylvanin order to provide and support
dedicated operations computing pX(1) and pX,Y(1,1) based on [35], i.e., with-
out formal construction of new BDDs each time these operations are executed.
Eventually, our framework implements all verification algorithms presented in
Sect. 4 for both, standard and robust probing model, and is running in a 64-bit
Linux Operating System (OS) environment on an Intel Xeon E5-1660v4 CPU
with a clock frequency of 3.20 GHz and 128 GB of (RAM).

Our tool process a netlist file as the specification of the CUT. The user
can either make such a netlist manually, e.g., for software applications or a
sequence of operations, or can provide a verilog file as the result of a hardware
synthesis, e.g., Design Compiler or Yosys,2 using a restricted library (defined in
Sect. 2.3). It is beneficial to directly evaluate the circuit’s netlist as any user-
originated mistakes or flaws (e.g., not keeping design hierarchy, hence violating
non-completeness [39]) can be detected.

Experiments and Benchmarks. In Table 1, we summarize verification and
performance results for our tool using various different examples as a benchmark.
For this, the number d indicates the masking order of the circuit design (i.e.,
the number of input shares given as d + 1), while the number next to the tick
indicates the maximum security order found by our tool during security check
and verification (i.e., the number of probes that did not lead to a failing check).
For all designs, we provide analysis results for the security notions of d-probing,
NI, SNI, PINI, and uniformity of the output sharing. Except for uniformity, all
security checks are performed for the standard (i.e., without physical defaults
in terms of glitches) and robust (i.e., with glitches) leakage models as presented
in Sect. 3. Eventually, along with the number of potential probe positions, i.e.,
the number of distinct wires determined by the number of gates in the circuit,
the security parameter d yields the verification complexity in terms of possible
observations O =

∑d
i=1

(
pos
i

)
.

Examples. In Table 1, we list verification results for three different categories of
masked circuits. In the first category, denoted as Gadgets, we analyze different
variants to implement a masked field multiplication for F2. Note, that for the SNI
variant of Domain-Oriented Masking (DOM) multiplier [29], we simply added
additional registers at the output to achieve an SNI-secure circuit. Interestingly,
PARA1 [5] and PARA2 gadgets are up to d-SNI secure in both models, but
higher-order variants cannot achieve full security, and need design modifications
instead (although still SNI for smaller d). We should stress that maskVerif
reports PARA3 to be not SNI, while it is up to 2-SNI, which is correctly reported

2 http://www.clifford.at/yosys/.

http://www.clifford.at/yosys/
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Table 1. Verification of various masked circuits and security notions.

Scheme Pos.† d Probing NI SNI PINI Unif.

std. rob. std. rob. std. rob. std. rob.

Gadgets

DOM [29] 19 1 [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms]
DOM [29] 42 2 [3 ms] [4 ms] [6 ms] [19 ms] [8 ms] [0 ms] [0 ms] [0 ms] [0 ms]
DOM [29] 74 3 [98 ms] [1.2 s] [2.2 s] [23.7 s] [3.2 s] [0 ms] [0 ms] [0 ms] [0 ms]

DOM SNI [26] 21 1 [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms]
DOM SNI [26] 45 2 [3 ms] [5 ms] [6 ms] [30 ms] [7 ms] [29 ms] [0 ms] [0 ms] [0 ms]
DOM SNI [26] 78 3 [0.1 s] [1.5 s] [2.4 s] [39.4 s] [3.7 s] [39.4 s] [0.0 s] [0.0 s] [0.0 s]

PARA1 [5] 22 1 [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms]
PARA2 [5] 45 2 [3 ms] [6 ms] [5 ms] [32 ms] [8 ms] [37 ms] [0 ms] [0 ms] [0 ms]
PARA3 [5] 68 3 [61 ms] [0.5 s] [1.2 s] [12.1 s] / [0.6 s] [0 ms] [0 ms] [0 ms] [0 ms]

PARA3 SNI [5] 82 3 [0.2 s] [1.4 s] [2.8 s] [35.5 s] [4.1 s] [40.4 s] [0 ms] [0 ms] [0 ms]

PINI1 [17] 21 1 [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms]
PINI2 [17] 51 2 [7 ms] [0 ms] [10 ms] [0 ms] [12 ms] [0 ms] [22 ms] [0 ms] [0 ms]

HPC1 [16] 22 1 [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms]
HPC1 [16] 52 2 [5 ms] [7 ms] [7 ms] [23 ms] [9 ms] [0 ms] [16 ms] [46 ms] [0 ms]
HPC2 [16] 32 1 [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms]
HPC2 [16] 75 2 [6 ms] [12 ms] [11 ms] [37 ms] [13 ms] [0 ms] [19 ms] [61 ms] [0 ms]

ISW SNI REF [26] 26 1 [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms]
ISW SNI REF [26] 65 2 [5 ms] [8 ms] [7 ms] [36 ms] [9 ms] [34 ms] [16 ms] [59 ms] [0 ms]

CMS3 [36] 104 3 / [0.1 s] / [0.3 s] / [0.8 s] / [2.6 s] / [1.3 s] / [4.4 s] [0 ms] [0 ms] [0 ms]
UMA2 [36] 81 2 / [2 ms] / [0 ms] / [7 ms] / [4 ms] / [6 ms] / [3 ms] [0 ms] [0 ms] [0 ms]

DOM2 DEP‡ [36] 56 2 [4 ms] / [8 ms] [3 ms] / [20 ms] [4 ms] [0 ms] [4 ms] / [21 ms] [0 ms]

S-boxes

PRESENTTI [40] 177 2 [4 ms] [8 ms] [4 ms] [0 ms] [3 ms] [0 ms] [0 ms] [0 ms] [2 ms]
PRESENTTI [25] 377 2 [15 ms] [6 ms] [2 ms] [0 ms] [2 ms] [0 ms] [1 ms] [0 ms] [0 ms]
PRESENTTI [25] 161 2 [3 ms] [4 ms] [32 ms] [0 ms] [26 ms] [0 ms] [2 ms] [0 ms] [0 ms]

PRINCETI [37] 150 2 [2 ms] [10 ms] [2 ms] [0 ms] [2 ms] [0 ms] [0 ms] [0 ms] [0 ms]
PRINCECMS [14] 261 1 [3 ms] [97 ms] [7 ms] [2.8 s] [9 ms] [1 ms] [0 ms] [0 ms] [0 ms]

SKINNY8TI [7] 240 2 [51.2 s] [2 min] [2 min] [2.0 s] [2 min] [2.0 s] [77 ms] [1.3 s] [29.6 s]
SKINNY8CMS [8] 192 1 [20 ms] [0.3 s] [0.3 s] [17 ms] [0.3 s] [15 ms] [1 ms] [1 ms] [1 ms]

AESDOM [29] 884 1 [3.3 s] [21 min] [0.8 s] [0.4 s] [0.8 s] [0.4 s] [0.2 s] [40 ms] [0.1 s]
AESCMS [19] 938 1 [9.4 s] [2.9 h] [0.9 s] [0.5 s] [0.9 s] [0.5 s] [0.2 s] [42 ms] [1.8 s]

Functions

Ain [37] 18 1 [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms]
Am [37] 20 1 [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms]
Aout [37] 20 1 [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms]

Q4
12 [42] 48 1 [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms] [0 ms]

† Number of possible probe positions, i.e., output wires of gates. ‡ Assuming identical inputs, i.e., a = b.

by our tool. Also, our tool could identify and report all flaws described in [36]
including the probes as identified by the authors. Our second category lists
different masked S-boxes of lightweight and standard block ciphers implemented
following the concepts of (CMS) [42], TI [39], or DOM [29]. Eventually, our last
category Functions lists arbitrary masked functions with linear or quadratic
algebraic complexity.

Interestingly, besides the linear functions, only the Hardware Private Circuit
(HPC) gadgets [16] and the ISW-SNI gadget [26] extended by an additional
refresh of one input are secure in the robust, glitch-extended probing model
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under the notion of PINI. Since PINI gadgets [17] are not robust probing secure,
they are mainly useful in software applications (i.e., standard probing model).
Indeed, since all HPC gadgets are secure under the PINI notion (for both probing
models) and can be composed trivially, security under the SNI notion is no
longer compulsory (as confirmed by our evaluation results for the robust, glitch-
extended probing model). Also, besides Q4

12 we also analyzed other quadratic
functions provided in [42] and our tool revealed that the implementation of Q4

300

as given by the authors is not uniform.

Verification Complexity. In contrast to the language-based verification app-
roach of maskVerif, our framework heavily relies on statistical independence
verification of probability distributions in order to avoid false negatives. There-
fore, the overall run time of our verification approach is mainly governed by
construction of intermediate ROBDDs representing the logical conjunctions as
part of the statistical independence checks for the security notions. As already
shown in [41], the complexity of constructing ROBDDs increases mainly by the
number of product terms occurring in the minimal Disjunctive Normal Form
(DNF) of the represented Boolean function.

Generally speaking, when considering higher-order security verification, we
have to test for statistical independence of larger sets of random variables with
possible non-linear dependence on many of the inputs. As our test of statistical
independence is based on logical conjunctions of sets of random variables (and
every possible subset), this leads to a high number of product terms occurring
in the resulting DNF, and hence to an increased complexity of the constructed
ROBDDs. As a result, verification speed of our framework is mainly influenced
by the complexity, i.e., input dependencies of wires, and the maximum security
order of the CUT.

Further, with increasing security order, the combinatorial complexity O of
constructing all possible observations grows exponentially. However, as we opted
for accurate security verification without relying on heuristics, reducing the num-
ber of probe combinations is not trivial, but instead we have to check and verify
all of them. Although some joint distributions might be similar for different probe
combinations,3 we still have to analyze most combinations which is rather time
consuming for higher security orders and larger circuits. It is worth to mention
that if any of the combinations leads to a negative statistical independence, the
tool stops and reports the found leaking probes. Hence, the maximum run time
is taken only if the CUT passes all desired security checks.

7 Conclusion

In this work, we developed and presented a sound and accurate framework to
verify the security and composability of masked gate-level netlists and circuits
3 This case is caught by the internal caching scheme of the SylvanBDD package which

first checks if the current operation has been performed and cached recently before
executing the actual operation in case no cache entry was found.
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directly resulting from hardware logic synthesis processes. In particular, our app-
roach enables formal verification of all pertinent security notions in the domain
of physical security and is applicable to both, software and hardware designs,
even considering physical defaults in terms of glitches. More concretely, it sup-
ports sound, accurate, and immediate verification whether a masked implemen-
tation provides probing security, Non-Interference, Strong Non-Interference, and
Probe-Isolating Non-Interference even for higher security orders. In addition, we
proposed and integrated a novel methodology of verifying uniformity of the out-
put sharing of a masked gadget. Eventually, if verification fails, it reports the
failing set of probes being in non-conformity with the corresponding security
notion.

In contrast to common type-based methods, our approach is based on formal
verification of statistical properties in direct conformity with the fundamental
definitions of the security notions. As a result, our approach completely avoids
overly conservative decisions when falsely declaring designs as not being secure
(false negatives), ultimately leading to a reduction in design overhead as oth-
erwise introduced by additional (and expensive) fresh randomness. For this, all
verification checks of statistical properties are executed efficiently by reducing
statistical independence checks on joint distributions over multiple binary ran-
dom variables to checks of distributions over single binary random variables,
which can be efficiently done utilizing the concepts of ROBDDs. Eventually, this
results in a framework exceeding comparable tools in accuracy and functionality
while still being reasonable efficient for most applications and common use cases.

The current version of our tool is mainly beneficial to evaluate gadgets, par-
ticularly at higher orders, although we have given its capability to examine the
entire S-boxes (see Table 1). For future work, we will focus on extending capa-
bilities and improving efficiency of our tool, mainly with respect to larger and
more complex circuits and implementations and higher security orders. For this,
distinguishing univariate and multivariate leakages would be interesting, as it
would allow divide-and-conquer approaches based on partitioning complex cir-
cuits along register stages while security analysis then would be performed an
smaller circuits automatically. Certainly, verification then can be performed more
efficiently, even for large and complex designs and higher-orders as long as the
design is not entirely combinational but contains register stages. The future ver-
sion of our tool should receive the netlist of a complete cipher implementation,
unroll the loops, divide it into separate gadgets, and conduct security evaluation
respectively.

Acknowledgments. The work described in this paper has been supported in part by
the German Research Foundation (DFG) under Germany’s Excellence Strategy - EXC
2092 CASA - 390781972, and through the project 393207943 “Security for Internet of
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Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 18

4. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 116–129. ACM (2016)

5. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-
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Abstract. A new approach to the security analysis of hardware-oriented
masked ciphers against second-order side-channel attacks is developed.
By relying on techniques from symmetric-key cryptanalysis, concrete
security bounds are obtained in a variant of the probing model that allows
the adversary to make only a bounded, but possibly very large, number
of measurements. Specifically, it is formally shown how a bounded-query
variant of robust probing security can be reduced to the linear cryptanal-
ysis of masked ciphers. As a result, the compositional issues of higher-
order threshold implementations can be overcome without relying on
fresh randomness. From a practical point of view, the aforementioned
approach makes it possible to transfer many of the desirable properties
of first-order threshold implementations, such as their low randomness
usage, to the second-order setting. For example, a straightforward appli-
cation to the block cipher LED results in a masking using less than 700
random bits including the initial sharing. In addition, the cryptanalytic
approach introduced in this paper provides additional insight into the
design of masked ciphers and allows for a quantifiable trade-off between
security and performance.

Keywords: Linear cryptanalysis · Masking · Probing security ·
Side-channel analysis · Threshold implementations

1 Introduction

Side-channel attacks such as differential power analysis [29] are an important con-
cern for the security of implementations of cryptographic primitives in hardware
and software. Accordingly, several adversarial models and side-channel coun-
termeasures have been developed during the past two decades. Many of these
countermeasures attempt to achieve security in the probing model of Ishai, Sahai
and Wagner [28], or slight variants thereof.

A common theme among different countermeasures is that they rely on split-
ting all secret variables in the circuit into d + 1 or more random shares. As
demonstrated by Ishai et al. [28], this approach can be used to achieve prob-
ing security against adversaries who can observe the values of up to d wires
in the circuit. However, the probing security model is not quite sufficient for
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hardware-oriented countermeasures. Indeed, glitches may allow the adversary to
obtain more than one wire value from a single probe. To counter this, Nikova,
Rechberger, and Rijmen [35] introduced the threshold implementation approach.
From a formal point of view, the security of hardware-oriented countermeasures
should be analyzed in a glitch-extended or robust probing model as formalized
by Faust et al. [23] and it can be shown that threshold implementations achieve
such first-order robust probing security [21].

Unsurprisingly, achieving probing security often comes at a cost with respect
to area usage, latency, energy consumption, and so on. This paper is primar-
ily concerned with another important cost factor, namely the reliance of many
countermeasures on the availability of a large number of random bits. Creat-
ing these bits can be quite expensive, especially since their generation should
also be gray-box secure. In this regard, first-order threshold implementations
provide an efficient countermeasure. In particular, if one ensures that each cir-
cuit layer satisfies the so-called uniformity property, glitch-extended first-order
probing security can be achieved without using any randomness beyond what
is necessary to share the state. If instead good randomness is readily available,
threshold implementations allow trading this off for reduced area [7]. At ASI-
ACRYPT 2014, Bilgin et al. [6] proposed a higher-order variant of threshold
implementations. However, Reparaz [36] later demonstrated that it succumbs
to multivariate attacks. In further work at CRYPTO 2015, Reparaz et al. [37]
propose to use remasking with fresh randomness to address this issue. However,
as pointed out by Moos et al. [32], this and other schemes still lack a formal
security analysis in the robust probing model.

As proposed by Faust et al. [23], an alternative approach is to design sharings
based on a robust variant of the strong non-interference framework of Barthe
et al. [2]. This has the benefit of allowing formal security proofs, which rely on
establishing the composability of different gadgets in the shared circuit. However,
ensuring composability unfortunately comes at an inherent randomness cost.
Amortizing this cost is possible to some extend, but remains nontrivial – see
for instance the work of Faust, Paglialonga, and Schneider [24] in the context
of software-oriented masking. In addition, as for example pointed out by De
Meyer, Wegener, and Moradi [20], it is often desirable to mask Boolean functions
directly as opposed to falling back to a gate-level approach. Although verifying
larger gadgets directly is possible within the strong non-interference framework,
it requires nontrivial tools such as maskVerif due to Barthe et al. [1]. Of course,
this does not directly address how to design efficient sharings. Also, one might
hope to quantify to what extend verification fails; in the words of Barthe et al.:
“It would be interesting to extend our work beyond purely qualitative security
definitions, and to consider quantitative definitions that upper bound how much
leakage reveals about secrets – using total variation distance or more recent
metrics that directly or indirectly relate to noisy leakage security” [1, §7].

Contribution. This paper overcomes the composability problem for second-order
threshold implementations without relying on fresh randomness. As a result,
second-order probing secure masked ciphers that require no or almost no ran-
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domness beyond what is necessary to share the input are obtained. In order to
achieve these results, we introduce a variant of the probing model in which the
adversary can make only a bounded number of queries. Our approach is based
on a completely formal reduction from this model to the security of the masked
cipher against linear cryptanalysis and leads to concrete upper bounds on the
advantage (i.e. total variation distance) of such bounded-query adversaries.

From a practical point of view, our methods provide a means to reason about
and to correct potential flaws in the higher-order threshold implementations of
Bilgin et al. [6]. Importantly, the additional requirements imposed by our anal-
ysis are relatively easy to satisfy when the underlying cipher has been designed
with linear cryptanalysis in mind. As a result, one can benefit from the desirable
properties of first-order threshold implementations – in particular their low ran-
domness requirements – while simultaneously maintaining demonstrable security
in the second-order probing model with glitches.

From a theoretical point of view, this paper introduces a radically different
approach to the security-evaluation of masked ciphers. Rather than attempt-
ing to show perfect probing security against adversaries making an arbitrary
number of queries, we allow for a limited amount of leakage but show that it
can not be exploited unless the adversary makes an infeasibly large number
of measurements. In this approach, the concrete security bound of a masked
cipher directly depends on the maximum absolute correlation of certain linear
approximations over parts of the design. To estimate correlation upper bounds,
standard techniques from linear cryptanalysis can be used. In particular, one can
use the piling-up approximation. Although the latter is only a heuristic, it is an
integral part of the security argument of essentially all modern symmetric-key
primitives and is widely accepted to result in meaningful estimates if properly
used. In a sense, the piling-up lemma acts as a substitute for the strong com-
posability requirements that are typically imposed. An important advantage of
this approach is that it provides additional insight into the design of masked
ciphers, and allows for a quantifiable trade-off between performance and secu-
rity. In addition, one can benefit from the large literature on the theory and
practice of linear cryptanalysis.

After introducing a number of preliminaries in Sect. 2, a bounded-query vari-
ant of the glitch-extended probing model is formalized in Sect. 3. The reduction
to linear cryptanalysis is spread over Sects. 4 and 5. To limit the scope of the
paper, only second-order probing adversaries are considered. The possibility of
further extensions to higher orders is discussed in Sect. 9.

Section 6 presents a high-level overview of the properties the masked cipher
needs to satisfy and the cryptanalytic process that should be followed to obtain
concrete security bounds. Roughly speaking, for probes that are separated by
a small number of rounds of the cipher, zero-correlation linear approximations
can be exploited. If the adversary places its probes further apart, the analysis
relies on upper bounds for the absolute correlation of linear approximations.

In Sect. 7, the framework developed in Sects. 4 to 6 is illustrated by the
design and analysis of a second-order masking of the block cipher LED [27].
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The implementation requires a total 664 bits of randomness, i.e. 24 bits more
than what is needed to share the plaintext and key, but no serious attempt
was made to optimize this number. Note that the choice for LED was mainly
motivated by didactical reasons: LED is a classical wide-trail design with 4-bit
S-boxes, which results in a very transparent security analysis. A software-based
simulation, which allows experimenting with our security claims, is found on
GitLab [40].

The broader applicability of our approach is illustrated in Sect. 8. Finally,
Sect. 9 summarizes several directions for future work and concludes the paper.

2 Preliminaries

This section introduces key concepts related to linear cryptanalysis and thresh-
old implementations. The reader is assumed to have some, but not necessarily
extensive, familiarity with these concepts. For convenience, all random variables
in this paper are denoted in boldface. All other nonstandard notation will be
introduced as necessary.

2.1 Fourier Analysis

The relation between linear cryptanalysis and the Fourier transformation on
vector spaces over F2 is well-established [5,11,17]. This section introduces the
necessary notation for two important concepts that will be used throughout
this work. The first is the Fourier transformation of a probability distribution,
or more generally any complex-valued function, on a vector space V over F2.
The second is the notion of the correlation matrix of a function F : V → V ,
the coordinates of which coincide with the correlations of linear approximations
over F .

The definitions below are formulated for functions on an arbitrary subspace
V ⊆ F

n
2 , as opposed to functions on F

n
2 itself – as is commonly the case. Since

any vector space over F2 is isomorphic to F
n
2 for some n, this generalization is

mostly a matter of notation. Nevertheless, this extended notation will be very
beneficial later on in this work.

Recall that the orthogonal complement of a subspace V of Fn
2 is the vector

space V ⊥ = {x ∈ F
n
2 | ∀v ∈ V : v�x = 0}. The quotient space F

n
2/V ⊥ is

by definition the vector space of cosets of V ⊥. For convenience, an element
x + V ⊥ ∈ F

n
2/V ⊥ will simply be denoted by x. For x ∈ F

n
2/V ⊥ and v ∈ V , the

expression x�v is well-defined. Consequently, the following definition is proper.

Definition 1. Let V ⊆ F
n
2 be a vector space and f : V → C be a complex-valued

function on V . The Fourier transformation of f is a function ̂f : Fn
2/V ⊥ → C

defined by
̂f(u) =

∑

x∈V

(−1)u�xf(x),

where we write u for u + V ⊥. Equivalently, ̂f is the representation of f in the
basis of functions x �→ (−1)u�x for u ∈ F

n
2/V ⊥.
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Remark 1. Unlike in standard treatments of the Fourier transformation on finite
abelian groups [22,38], Definition 1 introduces ̂f as a function on F

n
2/V ⊥ rather

than on the Pontryagin dual group ̂V . Throughout this document, the isomor-
phism ̂V ∼= F

n
2/V ⊥ is used to simplify notation. Other choices are possible, but

this one is the most convenient.

As one often encounters transformations of random variables, it is convenient
to encode the action of a function F : V → V on probability distributions as a
linear operator. The coordinate representation of this operator with respect to
the standard basis {δx}x∈V may be called the transition matrix of F . Follow-
ing [4,5], the correlation matrix of F is then the same operator expressed with
respect to the Fourier basis. Note that correlation matrices were first introduced
by Daemen et al. [17], where their definition is given in terms of concepts from
linear cryptanalysis.

Definition 2 (Transition matrix). Let V be a set and F : V → V a function.
The transition matrix TF of F is a real |V |×|V | matrix such that, in the standard
basis, if x has probability mass function px : V → [0, 1], then F (x) has probability
mass function TF px. Equivalently, indexing the coordinates of TF by elements
of V , we have TF

y,x = δy,F (x).

Definition 3 (Correlation matrix). Let V ⊆ F
n
2 be an F2-vector space and

F : V → V a function. The correlation matrix CF of F is the coordinate repre-
sentation of the linear map defined by TF with respect to the basis of character
functions x �→ (−1)u�x for u ∈ F

n
2/V ⊥. Equivalently, indexing the coordinates

of CF by elements of Fn
2/V ⊥, we have

CF
v,u =

1
|V |

∑

x∈V

(−1)u�x+v�F (x).

The relation between Definition 3 and linear cryptanalysis is as follows: the
coordinate CF

v,u is equal to the correlation of a linear approximation over F with
input mask u and output mask v. That is, CF

v,u = 2Pr[v�F (x) = u�x] − 1 for
x uniform random on V .

2.2 Boolean Masking and Threshold Implementations

Boolean masking was independently introduced by Goubin and Patarin [25] and
Chari et al. [12]. It serves as a sound and widely-deployed countermeasure against
side-channel attacks. The technique is based on splitting each secret variable x
in the circuit into shares x̄ = (x1, x2, . . . , xsx) such that x =

∑sx

i=1 xi over a
finite field K. If the field K is binary, this masking approach is referred to as
Boolean masking. A random Boolean masking of a fixed secret is uniform if all
sharings of that secret are equally likely.

There are many ways to modify a given circuit in order to ensure that it
operates on shared inputs and intermediates. For example, this can be done
at the level of individual gates, or at a higher level involving generic Boolean
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functions. However, care must be taken to ensure that the sharing of the circuit
is not only correct but also secure. This is especially challenging in hardware
implementations due to the presence of glitches. Nikova et al. [35] introduced
threshold implementations as a particular approach to share circuits. This app-
roach achieves first-order glitch-extended probing security in the sense defined
in Sect. 3 below. Later Bilgin et al. [6] generalized the threshold implementation
approach in order to achieve higher-order univariate security. In the following,
the main properties of threshold implementations are reviewed.

A threshold implementation consists of several layers of Boolean functions,
as shown in Fig. 1. As for any masked implementation, a black-box encoder
function generates a uniform random sharing of the input before it enters the
shared circuit and the output shares are recombined by a decoder function. At
the end of each layer, synchronization is ensured by means of registers.
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Fig. 1. Schematic illustration of a threshold implementation assuming an equal number
of input and output shares.

Let F̄ be a layer in the threshold implementation corresponding to a part of
the circuit F : Fn

2 → F
m
2 . For example, F might be the linear layer of a block

cipher. The function F̄ : Fnsx
2 → F

msy

2 , where we assume sx shares per input bit
and sy shares per output bit, will be called a sharing of F . Sharings can have a
number of properties that are relevant in the security argument for a threshold
implementation; these properties are summarized in Definition 4.

Definition 4 (Properties of sharings [6,35]). Let F : Fn
2 → F

m
2 be a function

and F̄ : Fnsx
2 → F

msy

2 a sharing of F . The sharing F̄ is said to be

1. correct if
∑sy

i=1 F i(x1, . . . , xsx) = F (x) for all x ∈ F
n
2 and for all shares

x1, . . . , xsx ∈ F
n
2 such that

∑sx

i=1 xi = x,
2. dth-order non-complete if any function in d or fewer component functions F̄i

depends on at most sx − 1 input shares,
3. uniform if F̄ maps a uniform random sharing of any x ∈ F

n
2 to a uniform

random sharing of F (x) ∈ F
m
2 .

The correctness property from Definition 4 is an absolute minimum require-
ment to obtain a meaningful implementation. Furthermore, if all layers of a
threshold implementation are first-order non-complete and uniform, the result-
ing shared circuit can be proven secure in the first-order probing model consid-
ering glitches [21]. In the higher-order setting, the situation is more complicated.
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Using higher-order non-completeness and uniformity, one can secure a thresh-
old implementation against higher-order univariate attacks. Nevertheless, perfect
multivariate security can not be guaranteed using uniform sharings alone [36].
Instead, the threshold implementation approach was generalized to use fresh
randomness [37]. However, even this last work has been shown to exhibit flaws
against higher-order attacks [32].

In Sect. 3, a variant of the probing model – which we call the bounded-query
probing model – will be introduced. In the main body of this work, we will then
show that the issues surrounding higher-order threshold implementations can be
overcome if the bounded-query probing model is adopted.

3 A Bounded-Query Probing Model

Section 3.1 introduces a variant of the threshold probing model of Ishai et al. [28]
in which the adversary can make only a bounded number of queries. In addition,
Sect. 3.2 discusses a further extension of this model in order to account for the
effect of glitches.

3.1 Threshold Probing

Let � ≥ t be positive integers. A t-threshold-probing adversary on F
�
2 is an algo-

rithm A that interacts as follows with an oracle that holds an arbitrary sequence
(x1, ..., x�) ∈ F

�
2:

1. A may specify a set I = {i1, ..., i|I|} ⊂ {1, ..., �} of cardinality at most t,
2. A then receives (xi1 , . . . , xi|I|).

Note in particular that the adversary A is computationally unbounded, and
must specify the location of the probes before querying the oracle. However, the
adversary can change the location of the probes over multiple queries.

Ishai et al. [28] define a randomized stateless circuit C to be t-probing secure
if it can be simulated from scratch such that no t-threshold probing adversary
can distinguish Dec ◦ C ◦ Enc from the simulation. Importantly, the adversary’s
interaction with the circuit or simulator is mediated through the encoder and
decoder algorithms Enc and Dec, neither of which can be probed.

In this work, the security of a circuit C with input k against a t-threshold-
probing adversary will be quantified by means of a left-or-right security game as
depicted in Fig. 2. The challenger picks a random bit b and provides the oracle
Ob, to which adversary A is given query access. The adversary queries the oracle
by choosing up to t wires to probe, we denote this set by P, and sends it to the
oracle along with the inputs k0 and k1. Note that we consider the input of the
circuit to consist of both the plaintext and the key. The oracle responds by giving
back the probed wire values of C(kb). After a total of q queries, the adversary
responds to the challenger with a guess for b. For b ∈ {0, 1}, denote the result of
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the adversary after interacting with the oracle Ob using q queries by AOb

. For
left-or-right security, the advantage of the adversary A is then as defined as

Advt-thr(A) = | Pr[AO0
= 1] − Pr[AO1

= 1] |.

We refer to this security notion as the bounded-query probing model.

AC

Ob

Ob

b

k0, k1,P

(vb1, ..., vbt )

b ← $

q
queries

Fig. 2. The privacy model for t-threshold-probing security consisting of a challenger
C, an adversary A, a left-right oracle Ob, two inputs k0, k1, a set of probes P, and a
set of probed wire values (vb1, ..., v

b
t ) of the circuit C(kb).

If an arbitrary number of queries is allowed, the above security definition
is equivalent to the simulation-based definition of Ishai et al. [28] for stateless
circuits. Indeed, if the simulator simply evaluates the circuit for an arbitrary
choice of the secret inputs, no adversary can distinguish the simulation from the
real circuit with advantage higher than Advt-thr(A). We opt for the left-or-right
formulation as this leads to a slightly more direct proof of Theorem1 in Sect. 4.
However, note that there exist stronger notions of security such as the strong
non-interference model of Barthe et al. [2]. In the latter model, the adversary
controls not only the unshared input of the circuit but also some of its shares.
This is useful since probing security does not necessarily allow composition,
as illustrated by Coron et al. [14]. As the approach developed in Sects. 4 and
5 considers the circuit in its entirety, security under composition need not be
considered. In fact, as our approach allows for secure sharings that do not use
any randomness beyond what is necessary to encode the circuit input, it is clear
that arbitrary composability cannot be achieved.

3.2 Modeling Glitches

It has been shown that hardware glitches can result in significant leakage that
is not accounted for by the probing model, see for example the attacks of Man-
gard et al. on several masked AES implementations [31]. Consequently, it is
necessary to extend the capabilities of threshold probing adversaries in order
to capture the physical effect of glitches on a hardware platform. In this work,
we take a conservative approach to the modeling of glitches by bundling groups
of wires over which a glitch could carry information from one wire to another.
Whereas one of the adversary’s probes normally results in the value of a single
wire, a glitch-extended probe allows obtaining the values of all wires in a bundle.
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This extension of the probing model has been discussed in the work of Reparaz
et al. [37] and formalized by Faust et al. [23]. The formulation of the latter work
is as follows: “For any ε-input circuit gadget G, combinatorial recombinations
(aka glitches) can be modeled with specifically ε-extended probes so that probing
any output of the function allows the adversary to observe all its ε inputs.”

In the setting of threshold implementations, the above extension can be sim-
plified. Recall that each layer of a threshold implementation consists of Boolean
functions F̄i, for which the synchronization of the inputs is ensured by means
of registers. Thus, a glitch-extended probe placed in the circuit for F̄i yields at
most all of the input bits on which F̄i depends – but no more, since the layers
of a threshold implementation are separated by registers.

Note that, apart from the glitch extension of the probing model, other effects
such as transition leakage can be considered. More information on other leakage
effects can be found in the work of Faust et al. [23]. The scope of this work
is limited to the modeling of the effects that are traditionally considered in
threshold implementations, thus we only consider hardware implementations in
the presence of glitches.

4 Bound on the Advantage

This section connects the bounded-query probing model from Sect. 3 to the
cryptanalytic approach that will be developed in Sects. 5 and 6. The link is
established by means of Theorem 1 below, which provides an upper bound on
the advantage of threshold probing adversaries in terms of the nontrivial Fourier
coefficients of certain probability distributions associated with probed wire val-
ues. As a first step towards this result, the following lemma gives an upper bound
on the entropy of a probability distribution in terms of its Fourier transform as
defined in Definition 1 from Sect. 2.

Lemma 1. Let x be a random variable on F
m
2 with probability distribution px.

It holds that
m − H(x) ≤ ‖p̂x − δ0‖22/ log 2,

where H(x) denotes the information entropy of x with respect to the binary log-
arithm.

Proof. By definition, the binary information entropy of x is the quantity

H(x) = −E log2 px(x) ≤ m.

The goal is to upper bound the quantity m−H(x) in terms of the correlations of
x, or equivalently the coordinates of the Fourier transformation of px. It holds
that

H(x) ≥ − log2 E px(x) = − log2 ‖px‖22,
due to Jensen’s inequality. Note that the right-hand side is equal to the Rényi
entropy of x. Let p̂x denote the Fourier transformation of px, then

H(x) ≥ m − log2 ‖p̂x‖22.
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Remark that p̂x(0) = 1, since px is a probability mass function. Isolating this
coefficient, one obtains

m − H(x) ≤ log2
(

1 + ‖p̂x − δ0‖22
) ≤ ‖p̂x − δ0‖22/ log 2.

�
Note that the inequality in Lemma1 is rather sharp since ‖p̂x − δ0‖22 � 1 for

the purposes of this work. Indeed p̂x will typically have a small support, thereby
enabling the use of Fourier-analytic methods.

Before turning to the proof of Theorem1, we briefly consider the content of
its statement. The theorem essentially shows that for a bounded-query probing
secure circuit, all probed wire values either closely resemble uniform randomness
or reveal nothing about the secret input. The usefulness of the result comes
from the fact that it allows ‘bad’ probe values. These are values that might leak
information about the secret, but which nevertheless cannot be distinguished
from uniform random values unless a very large number of probing queries is
made. In practice, the ‘bad’ values will be shares of the state resulting from
probes placed far apart (i.e. separated by many rounds). The ‘good’ values then
correspond to probes that are placed in nearby locations, such as within an S-
box. As will be clarified in Sects. 6 and 7, the ‘good’ values can also play an
important role in the analysis of the key-schedule of a masked cipher.

Theorem 1. Let A be a t-threshold-probing adversary for a circuit C. Assume
that for every query made by A on the oracle Ob, there exists a partitioning
(depending only on the probe positions) of the resulting wire values into two
random variables x (‘good’) and y (‘bad’) such that

1. The conditional probability distribution py|x satisfies Ex‖p̂y|x − δ0‖22 ≤ ε,
2. Any t-threshold-probing adversary for the same circuit C and making the

same oracle queries as A, but which only receives the ‘good’ wire values ( i.e.
corresponding to x) for each query, has advantage zero.

The advantage of A can be upper bounded as

Advt-thr(A) ≤
√

2q ε

log 2
,

where q is the number of queries to the oracle Ob.

Proof. The first part of the proof consists of a standard game-hopping argument.
Consider the following two additional games:

1. Game ‘t-thr-good’ is a modification of the t-threshold probing game in which
the oracle Ob replaces the ‘bad’ values in each query by uniform random
values. In this game, A essentially only receives information about ‘good’
wire values.
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2. In the game ‘Δ-bad’, the adversary chooses a secret input k and is given
access to an oracle with the same t-threshold-probing interface as Ob. This
oracle is either a t-threshold-probing oracle for the real circuit with input k,
or a modification thereof in which the ‘bad’ values in each query are replaced
by uniform random bits. The goal is to distinguish between these two cases.

We construct an adversary B for the game ‘Δ-bad’ by running A. Specifically, B
picks a uniform random bit b and forwards the corresponding secret kb chosen
by A to its challenger. Adversary B reports the oracle as real if and only if A
correctly recovers b. Hence,

Advt-thr(A) ≤ Advt-thr-good(A) + 2AdvΔ-bad(B).

The factor two in front of AdvΔ-bad(B) is due to our definition of ‘advantage’,
i.e. the absolute difference between the winning and failure probabilities of B. It
is given that Advt-thr-good(A) = 0, so it suffices to upper bound AdvΔ-bad(B).

Since B makes exactly the same queries to its oracle as A, the result of
query i made by B can also be partitioned into ‘good’ and ‘bad’ wire values.
Denote these values by xi and yi respectively when B is interacting with the real
threshold probing oracle, and by x′

i and y′
i when B interacts with the (partially)

randomized oracle.
Let δTV(·, ·) denote the total variation distance and

⊗

the tensor product.
The distinguishing advantage of the adversary B is then upper bounded by

AdvΔ-bad(B) ≤ δTV
( ⊗q

i=1 pxi,yi
,
⊗q

i=1 px′
i,y

′
i

)

≤
√

1
2

DKL

( ⊗q
i=1 pxi,yi

‖ ⊗q
i=1 px′

i,y
′
i

)

≤
√

q

2
max
1≤i≤q

DKL

(

pxi,yi
‖ px′

i,y
′
i

)

,

where DKL denotes the Kullback-Leibler divergence and the second inequality is
due to Pinsker. By definition of ‘Δ-bad’, the random variables xi and x′

i have
the same probability distribution. Consequently,

DKL

(

pxi,yi
‖ px′

i,y
′
i

)

= Et DKL

(

pyi|xi=t‖ py′
i|x′

i=t

)

.

Finally, remark that y′
i is uniformly distributed and independent of xi. If the

number of bits of yi is denoted by mi, then

DKL

(

pyi|xi=t‖ py′
i|x′

i=t

)

= mi − H(yi|xi) ≤ ‖p̂yi|xi
− δ0‖22/ log 2 .

The inequality above follows from Lemma 1. Since it is given that, for all i,
Exi

‖p̂yi|xi
− δ0‖22 ≤ ε, we have

AdvΔ-bad(B) ≤
√

q ε

2 log 2
.
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Hence, we conclude that

Advt-thr(A) ≤ 2AdvΔ-bad(B) ≤
√

2q ε

log 2
.

�

5 Fourier Analysis of Shared Functions

Theorem 1 provides an upper bound on the advantage of t-threshold probing
adversaries in terms of the Fourier coefficients of the probability distribution
of observed wire values. This section clarifies why it is beneficial to express the
advantage upper bound in this particular form. Specifically, it will be shown that
this reveals a strong link with the linear cryptanalysis of shared functions.

5.1 Restrictions of Shared Functions

Remark that all probability distributions referred to in Theorem1 are with
respect to a fixed value of the secret inputs. Consequently, it is clear that the
relevant Fourier coefficients can not be directly related to the Walsh-Hadamard
coefficients (or equivalently, the correlation matrix) of the shared function itself.
Instead, the relevant properties are those of restrictions of the shared function to
sets of all valid sharings of a specific secret. Below, we argue that these restric-
tions are indeed well-defined and that they come with a natural notion of linear
cryptanalysis.

Recall from Sect. 2 that Boolean masking and threshold implementations are
based on linear secret sharing. In general, any F2-linear secret sharing scheme
can be thought of as an algorithm that maps a secret x ∈ F

n
2 to a random

element of a corresponding coset of a vector space V ⊂ F
�
2. The vector space V

consists of all possible sharings of 0 ∈ F
n
2 . Let ρ : Fn

2 → F
�
2 be a map that sends

secrets to their corresponding coset representative.

Example. In Boolean masking, a secret x ∈ F2 is shared as (x1, . . . , x�) where
x1, . . . , x�−1 is sampled uniformly at random and x� = x+

∑�−1
i=1 xi. In this case,

V corresponds to the parity bit code

V = {(x1, . . . , x�) ∈ F
�
2 | ∑�

i=1 xi = 0}.

Furthermore, one possible choice of ρ is ρ(x) = (x, 0, . . . , 0). �

Let F : Fn
2 → F

n
2 be any function. A function F̄ : F�

2 → F
�
2 is said to be a

correct sharing of F if, for all x ∈ F
n
2 ,

F̄ (ρ(x) + V) ⊆ ρ(F (x)) + V. (1)

If F̄ is a uniform sharing, then the above inclusion is in fact an equality. For
convenience, let Va = a + V. Due to (1), the restriction of F̄ to Va is a well-
defined function Va → Vb whenever a = ρ(x) and b = ρ(F (x)) for some x ∈ F

n
2 .
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By slight abuse of notation, the same notation will be used for F̄ and for its
restrictions.

Any random variable x on Va has a corresponding probability mass function
px : Va → [0, 1]. Since V is a vector space, the Fourier transformation p̂a+x of
pa+x is well-defined (see Definition 1). In addition, for any restriction F̄ : Va →
Vb, the correlation matrix of x �→ F̄ (a+x)+b is well defined by Definition 3. For
convenience, we introduce the following definition. Note that it does not depend
on the choice of the coset representatives a and b.

Definition 5. For V ⊆ F
�
2, let F̄ : Va → Vb be a well-defined restriction of a

shared function. Let F̄ ′(x) = F̄ (x+a)+b. The correlation matrix of F̄ is defined
as the matrix with coordinates

CF̄
u,v = (−1)u�a+v�bCF̄ ′

u,v,

for u, v ∈ F
�
2/V

⊥.

5.2 Correlations Between Probed Values

As shown in Sect. 4, the advantage of a probing adversary against the circuit can
be upper bounded in terms of ‖p̂z − δ0‖2 where pz is the probability distribution
of any measured set of ‘bad’ wire values, possibly conditioned on several ‘good’
wire values. Note that the conditioning on ‘good’ values simply corresponds to
fixing some variables in the circuit to constants before applying the results below.
This section provides the essential link between p̂z and the linear cryptanalysis
of the shared circuit that will enable us to upper bound the quantity ‖p̂z − δ0‖2
for a concrete masked cipher in Sect. 7.

For simplicity, from this point on, we only consider second-order probing
adversaries. For a brief outlook on how these results could be extended to third-
order security and higher, the reader is referred to Sect. 9. To obtain the desired
link with linear cryptanalysis, it will be shown that the coordinates of p̂z are
entries of the correlation matrix of the state-transformation between the specified
probe locations. This is illustrated in Fig. 3.

· · · F · · ·x y

xI yJ

I J

Fig. 3. Two probes giving the observation z = (xI ,yJ).

The main result is stated in Theorem 2. To obtain it, the following property
of correlation matrices will be used.
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Lemma 2. Let V ⊂ F
�
2 be a set of correct sharings and L : V → F

m
2 a linear

map. If x is a random variable with probability distribution px, then it holds that

p̂Lx(u) = p̂x(L�u),

where we write L�u = L�u + V
⊥ as usual.

Proof. The result is a well-known property, see [5, Theorem 3.5] for the general
case. For completeness, we provide a short derivation. Remark that pLx(z) =
∑

x∈V
px(x) δLx(z). Hence, by the definition of the Fourier transformation, it

holds that

p̂Lx(u) =
∑

z∈Fm
2

(−1)u�z pLx(z) =
∑

x∈V

px(x)

⎛

⎝

∑

z∈Fm
2

(−1)u�z δLx(z)

⎞

⎠ .

This simplifies to

p̂Lx(u) =
∑

x∈V

(−1)u�Lx px(x) = p̂x(L�u).

�
For an index set I = {i1, . . . , im}, we denote the restriction of x ∈ V to I by

xI = (xi1 , . . . , xim
) ∈ F

|I|
2 . Note that the maps x �→ xI and its restriction to V

are linear.

Theorem 2. Let F : Va → Vb be a function with V ⊂ F
�
2 and I, J ⊂ {1, . . . , �}.

For x uniform random on Va and y = F (x), let z = (xI ,yJ ). The Fourier
transformation of the probability mass function of z then satisfies

p̂z(u, v) = CF
ṽ, ũ,

where ũ, ṽ ∈ F
�
2/V

⊥ are such that ũI = u, ũ[�]\I = 0, ṽJ = v and ṽ[�]\J = 0.

Proof. Note that (a + x, b + y) is a well-defined random variable on V
2. Let

z′ = (aI , bJ ) + z, then p̂z(u, v) = (−1)u�aI+v�bJ p̂z′(u, v). Due to Lemma 2, the
distribution of z′ satisfies

p̂z′(u, v) = p̂a+x,b+y(ũ, ṽ).

The probability distribution of (a + x, b + y) satisfies

pa+x,b+y = (I ⊗ TG)pa+x,a+x,

where G(x) = F (x + a) + b. Taking the Fourier transformation, one obtains

p̂a+x,b+y = (I ⊗ CG)p̂a+x,a+x.
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Note that, by the definition of CF , it holds that CF
ũ,ṽ = (−1)ũ�a+ṽ�bCG

ũ,ṽ. Com-
bining the results above, one obtains

p̂z(u, v) =
∑

u′,v′∈F�
2/V⊥

δũ,u′ CF
ṽ,v′ p̂a+x,a+x(u′, v′)

=
∑

v′∈F�
2/V⊥

CF
ṽ,v′ p̂a+x,a+x(ũ, v′)

=
∑

v′∈F�
2/V⊥

CF
ṽ,v′ p̂a+x(ũ + v′).

Since pa+x is the uniform distribution on V, it holds that p̂a+x = δ0. It follows
that all terms except v′ = ũ in the sum above vanish, whence p̂z(u, v) = CF

ṽ,ũ. �
Theorem 2 relates the linear approximations of F to p̂z(u) and hence provides

a method to upper bound ‖p̂z − δ0‖2 based on linear cryptanalysis. However, it
should be noted that the result relates to linear cryptanalysis with respect to V

rather than F
�
2. The differences are mostly minor, but there is a subtle difference

in relation to the important notion of ‘activity’. In standard linear cryptanalysis,
an S-box is said to be active if its output mask is nonzero. The same definition
applies for linear cryptanalysis with respect to V, but one must take into account
that the mask is now an element of the quotient space F

�
2/V

⊥. In particular, if
the mask corresponding to the shares of a particular bit can be represented by
an all-one vector (1, 1, . . . , 1)�, it may be equivalently represented by the zero
vector. It is still true that a valid linear approximation for a permutation must
have either both input masks equivalent to zero or neither equivalent to zero.
More generally, this condition is ensured by any uniform sharing.

Finally, note that Theorem2 assumes that all intermediate states of the
shared implementation are uniformly distributed on a coset of V. This condi-
tion is guaranteed by the uniformity property of threshold implementations. In
fact, it corresponds to the fact that the approximation with – up to equivalence
– an all-zero input mask, must also have an all-zero output mask in order to
have nonzero correlation. In particular, this is achieved if all shared functions
are permutations. Accounting for a non-uniform distribution would require sim-
ilar modifications to Theorem2 as would be necessary to achieve higher than
second-order security. In addition, if non-uniform sharings are used, the stan-
dard wide-trail argument [18] that will be used in later sections breaks down.
For these reasons, our masking of LED in Sect. 7 relies on uniform sharings. A
complete assessment of the consequences of non-uniformity on first and second
order security is left as future work. Regarding this, we note that an analysis
of the security degradation for non-uniform mappings has been made by Dae-
men [15] and has been tested in practice by Wegener et al. [39]. An interesting
direction for future work would be to combine our methods in order to further
increase the efficiency of shared implementations.
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6 Cryptanalysis of Masked Ciphers

Theorems 1 and 2 provide the basic tools by which the security analysis of a
masked cipher can be reduced to its linear cryptanalysis. This section provides a
high-level overview of the analytic process. In addition, for each component of a
typical masked cipher, the cryptanalytical properties that play a prominent role
in the security analysis are discussed. This discussion can be useful not only to
determine an appropriate masking of a cipher, but also as a factor in the design
strategy of the cipher itself.

Our analysis of a masked cipher begins by partitioning the set of possible
probe positions into three parts. This is closely related to the labeling of wire
values as ‘good’ or ‘bad’ as required by Theorem1. Each part corresponds to a
different level of ‘locality’ and is analyzed by different methods. Specifically, the
following cases can be distinguished:

S-box level. If both probes are placed within an S-box, we ensure perfect prob-
ing security and consequently such wire values are labeled ‘good’ in the proof.
Hence, the S-box must be shared such that it is higher-order probing secure.
Based on this, one can verify the probing security of one cipher round.

Nearby rounds. If the probes are separated by a small number of rounds,
we rely on zero-correlation linear cryptanalysis. If the probe positions lead
to zero-correlation approximations, then the probed values are uniformly dis-
tributed. In this case, from the point of view of Theorem1, it does not matter
if the values are marked as ‘good’ or ‘bad’. Indeed, since the distribution of the
values is perfectly uniform in this case, one also has perfect probing security.
This part of the analysis strongly depends on the linear layer of the cipher.

Distant rounds. When the probes are separated by many rounds, we rely on
Theorem 2 and upper bound the absolute correlations of linear approxima-
tions. This is done using traditional techniques from linear cryptanalysis, in
particular the piling-up principle. As discussed in more detail in Sect. 7.5, this
is where we truly leave the realm of information-theoretical arguments and
enter the domain of statistical cryptanalysis. Needless to say, all such wire
values must be labeled as ‘bad’ from the point of view of Theorem1.

For the key-schedule, the situation is slightly more complicated. If the key-
schedule is sufficiently simple, as in the case of LED, one can label all key bits
as ‘good’. It then suffices – but is not necessary – to perform the analysis above
for a fixed key. Several reasons for using this simplified approach are mentioned
below. For more complicated key-schedules, a similar analysis as above for the
key-schedule is likely to be necessary.

A detailed example of the design of a secure sharing and its complete secu-
rity evaluation is given in Sect. 7 for the block cipher LED. The remainder of
this section briefly discusses how the analysis above translates to each of the
components of a masked cipher.

S-Box Sharing and Static Randomness. The S-box should be shared following
the threshold implementation approach. For efficiency reasons, the S-box is often



Cryptanalysis of Masked Ciphers: A Not So Random Idea 833

F̄ F̄ F̄ F̄

F̄ F̄ F̄ F̄

F̄ F̄ F̄ F̄

F̄ F̄ F̄ F̄

r̄

⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
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Fig. 4. The addition of static randomness with the S-box decomposed as S̄ = Ḡ ◦ F̄ .

decomposed into several lower degree functions. The sharing of these functions
should satisfy the uniformity property without using randomness, and be second-
order non-complete. If the S-box is decomposed, the security of the composition
must also be ensured. A simple way to achieve this is to add randomness between
the decomposed functions. This randomness can be re-used in every S-box. We
call this static randomness as it is generated by the black-box encoder and is
used throughout the masked cipher. This is illustrated in Fig. 4.

As discussed in Sect. 5.2, due to the uniformity of the shared S-box, the
wide-trail strategy can be applied. In order to lower the potential advantage
of the adversary, the sharing of the S-box is required to have strong nonlinear
properties.

Linear Layer. The linear layer of the cipher affects the security of the masked
cipher for two reasons. The first is the diffusion between shares, resulting in
zero-correlation trails. The second is that the layer ensures a minimum number
of active S-boxes when probing distant rounds, resulting in correlation upper
bounds.

Key Schedule. In our analysis, we opt for simplicity by analyzing the key-schedule
and state-transformation separately. This comes at a potential loss in the upper
bounds, since many linear approximations will have correlation zero when aver-
aged over some of the unknown key-bits. Nevertheless, there are several good
reasons for making such a simplification:

– It allows us to stick as closely as possible to the basic wide-trail approach.
Indeed, conventional linear cryptanalysis of block ciphers does not usually
consider the combined effect of the key-schedule and state-transformation.

– Although many trails have average correlation zero for a random sharing of
the key, this can be quite difficult to analyze as it depends not only on which
key-bits the adversary can measure but also on the details of the key-schedule
(the key-dependence of the sign of trail correlations can cancel out).

– No additional arguments are required for cryptographic permutations. In par-
ticular, the masked cipher can be used with a fixed key in order to obtain a
secure implementation of a cryptographically strong permutation – provided
of course that the cipher allows for such usage.
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7 Application to LED

This section applies the techniques developed in Sect. 4 to Sect. 5 to the block
cipher LED. This results in a masking requiring less than 700 bits of randomness
while attaining second-order probing security.

7.1 Description of LED

LED is a 64-bit block cipher designed by Guo et al. [27]. The cipher’s state is
divided into 16 four-bit cells. The variant considered here has a 128-bit master
key, from which subkeys are derived using a nibble-wise permutation. The cipher
consists of 12 steps, each comprising four rounds. The step function is shown in
Fig. 5. For further details, we refer the reader to the work of Guo et al. [27].
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4

Fig. 5. The step function of LED.

7.2 Sharing Second-Order LED

Following the principles outlined in Sect. 6, this section constructs a sharing of
the LED cipher. Figure 6 gives an overview of the shared round function.

Masking State and Key. For the sharing of LED we use classical Boolean mask-
ing. The 64-bit state is shared using seven shares per bit, requiring 384 random
bits. The 128-bit key is shared using three shares, which costs 256 random bits.

Sharing Affine Components. The masking of LED’s linear components such as
ShiftRows, MixColumns, and the key schedule are simply done share-wise. Con-
stants are added to the first share of the concerning variable. The key addition
is done by adding the key shares to the first three shares of the state.

Sharing the S-Box. LED uses the Present S-box. Following the decomposition
given by Kutzner et al. [30], this S-box can be decomposed into two quadratic
maps S1 = G ◦ C and S2 = B ◦ G where B and C are affine. Further details
on this decomposition are given in AppendixA.1. The sharing of the S-box is
constructed from the sharing of G which we detail in AppendixA.2 and has
been verified to be uniform and second-order non-complete. In between the two
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Fig. 6. One round of masked LED. The locations of the registers are indicated by
dashed lines. The round key addition is depicted in gray to show that it only happens
every four rounds.

G functions, a layer of static randomness consisting of zero sharings is added1.
This randomness is re-used in every S-box call and consists of 24 bits.

Alternative Sharings. The S-box could be shared using fewer shares. For example,
the work of Moradi et al. [34] constructs a uniform sharing using five input shares.
Additionally, a uniform three-sharing is presented in Appendix A.3. However,
both sharings achieve second-order probing security by first expanding their
inputs and then re-compressing the cross products. Due to this expansion phase,
there is an intermediate layer which is not uniform. As discussed in Sect. 5.2, the
use of non-uniform functions would require a more thorough security analysis.

The sharing of the S-box can also be adapted to give better linear properties
improving the security bounds. One such option based on composing with a
nontrivial sharing of the identity function, is explored in AppendixA.4.

Security. In Sects. 7.3 to 7.6 below, the following concrete security claim will be
established.

Security Claim 1. For the masked LED described in this section, the following
bound on the advantage of the adversary (assuming piling-up) in the probing
model is claimed:

Adv2-thr(A) ≤
√

q

2120
.

7.3 Probing Security of One Round

This section establishes the second-order probing security of one round of masked
LED, such that all wire values corresponding to such probing queries can be
labeled as ‘good’. Recall that, since each layer of the masked cipher is uniformly
shared, the input distribution to the round is uniform. To establish the probing-
security claim, it suffices to consider all possible probe positions. If both probes

1 The randomness can be avoided by using a second-order sharing of the entire S-box.
However, as this would increase the number of shares, we did not pursue this option.
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are placed in the same layer, the claim follows directly from the second-order
non-completeness of each function.

When both probes are placed in part a in Fig. 6, the only nontrivial new
case corresponds to placing one probe in S̄1 and one in S̄2. Due to the refreshing
layer R̄, the input to S̄2 is uniformly random even if S̄1 is probed. Since S̄2

is second-order non-complete, placing the second probe in S̄2 then reveals no
information about the secret.

If one probe is placed in part a and another in part b , then the second
probe reveals at most a single share (the same) of each variable by the lin-
earity of part b . Due to a consistent choice of the covering scheme used for
non-completeness, the previous arguments are not limited to the bit-level. Con-
sequently, the analysis is the same as for the case with two probes in part a .

Every four rounds, a round key is also added to the state. The effect of the
key-schedule and key addition is discussed in Sect. 7.6.

7.4 Probing Nearby Rounds: Zero Correlation

This section shows the distribution of any pair of measurements from probes
which are at most three rounds apart almost always conforms to one of two
cases: either the observations are uniformly distributed, or they do not reveal
anything about the secret. To prove the uniformity claim of our observations, we
rely on techniques from zero-correlation linear cryptanalysis. The latter case, i.e.
independence of the secret for possibly non-uniform observations, was discussed
in the previous section. For these cases, the advantage of the adversary is zero as
specified in the proof of Theorem1. All other cases will be considered in Sect. 7.5.

The argument consists of an analysis of all possible probe placements. As
noted above, the analysis in this section is restricted to probes that are at most
three rounds apart. This results in the following cases:

Rounds i and i+1. If the adversary probes in part a of round i, then the MDS
matrix ensures that a full column of the state will be active at the input of
round i+1. A measurement in part a of round i+1 can activate shares from
at most one cell of the state such that the corresponding approximations have
correlation zero. Similarly, due to the shift rows operation, by probing in part
b of round i+1, the adversary can never activate all cells of a single column
at the input of round i + 1. Hence, approximations with nonzero correlation
can only be obtained by probing in part b of round i. However, in this case
only a single share of each bit is learned, such that a second probe in part a
or b of round i + 1 reveals nothing about the secret by the same argument
for the case where both probes are placed in round i.

Rounds i and i + 2. If either part a or b of round i are probed, this results
(up to symmetry) in one of the four activity patterns shown in Fig. 7 for
rounds i + 1 and on. By probing anywhere in round i + 2, the adversary can
clearly activate at most four cells at the input of this round. In cases 1 – 3
in Fig. 7, at least eight S-boxes are active at the input of round i + 2 such
that the correlation of such approximations is zero. In the remaining case, i.e.
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activity pattern 4 , only a single column of the state is active at the input
of round i + 2. However, by probing in part a of round i + 2, only a single
cell can be activated. Probing part b allows activating four cells but never
from the same column due to the shift rows step.

Rounds i and i + 3. It is easy to see that activity patterns 2 - 4 in Fig. 7 lead
to correlation zero since at least eight S-boxes are then active at the input of
round i + 3. Indeed, if the second probe is placed anywhere in round i + 3,
at most four cells of the state can be activated. For pattern 1 in Fig. 7, the
correlation may be nonzero and will be bounded in Sect. 7.5.

The above case analysis shows that, when the probes are placed in nearby rounds,
perfect security is obtained. The only remaining cases are probes in rounds i and
i + r for r > 4 and the activity pattern 1 in Fig. 7 when probes are placed in
rounds i and i + 3. These cases are analyzed in Sect. 7.5.

SR MC

SR MC SR MC

SR MC SR MC

SR MC SR MC

1

2

3

4

i+ 1 i+ 2

Fig. 7. Activity patterns for masked LED, corresponding (up to symmetry) the four
possible patterns created by a probe placed in round i. SR is short for ShiftRows and
MC for MixColumns. White cells are inactive, cells in gray are active, and hatched cells
correspond to an example trail with a minimum number of active cells.

7.5 Five Rounds or More: Low Correlation

As discussed in Sect. 7.4, if the probes are placed in rounds that are far apart,
the observed values are usually not uniformly distributed. Nevertheless, it is



838 T. Beyne et al.

possible to show that they will be nearly uniform in the sense that all nontrivial
coordinates of the Fourier transform of their probability distribution are small.
To show this, we rely on standard techniques from linear cryptanalysis: we bound
the correlation of all linear trails whose activity pattern is compatible with the
probe positions.

Remark 2. The analysis in this section relies on the piling-up approximation, i.e.
we use upper bounds on the correlation of trails as an approximation for upper
bounds on the correlation of linear approximations. This heuristic is widely used
in symmetric-key cryptanalysis, and is an integral part of the security argument
of essentially all contemporary symmetric-key primitives. In addition, as detailed
in Sect. 7.6, our correlation upper bounds need not hold for all key and refreshing
variables but only in the average over the unobserved variables. Finally, any
adversary that can distinguish the probed wire values from uniform randomness
gives rise to a linear distinguisher. Consequently, we believe it is reasonable to
apply the piling-up heuristic in this setting.

To upper bound absolute trail correlations, we rely on the standard wide-
trail argument [18]. Specifically, the fact that any linear trail over four rounds of
(shared) LED activates at least 25 S-boxes will be used. Additionally, an upper
bound on the correlation of the best linear approximations over the shared S-
box from Sect. 7.2 is required. Since the shared S-box is quite large, a direct
calculation of its nonlinearity is nontrivial. Instead, the following lemma for
quadratic Boolean functions can be used. A slight restatement of this result can
be found in the book chapter by Carlet [11].

Lemma 3 (Proposition 16 [11]). Let f : Fn
2 → F2 be a quadratic Boolean

function. Denote the rank of its symplectic form by r. That is, r = rank(S) where
S ∈ F

n×n
2 is the symmetric matrix for which y�S x = f(x + y) + f(x) + f(y).

Then
1
2n

∣

∣

∣

∑

x∈Fn
2

(−1)f(x)
∣

∣

∣ ≤ 2−r/2.

Lemma 4. Let Ḡ : Va → Vb be any restriction of the sharing of G defined in
Sect. 7.2. Denote its correlation matrix by CḠ. For any u, v ∈ F

�
2/V

⊥ such that
uj

i �= 0 for some i �= 3, it holds that
∣

∣CḠ
u,v

∣

∣ ≤ 2−3.

Proof. Since Ḡ is a function of 28 variables, bounding all of its correlations is
nontrivial. However, one can use the fact that Ḡ is a quadratic function. Indeed,
if B ∈ F

�×d
2 is a basis matrix for V, then

∣

∣CḠ
u,v

∣

∣ ≤ max
w∈F�

2/V⊥

1
|V|

∣

∣

∣

∑

x∈V

(−1)u�Ḡ(x+a)+w�x
∣

∣

∣

≤ max
w∈F�

2/V⊥

1
2d

∣

∣

∣

∑

x∈Fd
2

(−1)u�Ḡ(Bx+a)+w�Bx
∣

∣

∣.
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Since u�Ḡ(Bx + a) + w�Bx is a quadratic Boolean function, Lemma3 is appli-
cable. Let Si,j denote the symplectic form matrix of Gj

i (Bx + a). Since S3,j = 0
for j = 1, . . . , 7, we must require that uj

i is nonzero for some i �= 3 to obtain
a nonzero minimum rank. Specifically, it suffices to verify that for all nonzero
u ∈ F

�
2/V

⊥ with uj
3 = 0 for j = 1, . . . , 7,

rank

(

4
∑

i=1

7
∑

j=1

uj
i Si,j

)

≥ 6.

Lower bounding the left-hand side above reduces to the MinRank problem. For
our purposes, a brute force search over all representative choices of u is feasible.
The verification code can be found on GitLab [40]. �
Theorem 3. Let S̄ = S̄2 ◦ S̄1 : Va1 → Va3 be the sharing of S = S2 ◦ S1 defined
in Sect. 7.2. Denote the correlation matrix of S̄i : Vai

→ Vai+1 by CS̄i . For
any u, v ∈ F

�
2/V

⊥ not both equal to zero and for all w ∈ F
�
2/V

⊥, it holds that
∣

∣CS̄2
u,wCS̄1

w,v

∣

∣ ≤ 2−3.

Proof. Since S̄ is affine equivalent to Ḡ ◦ Ḡ, it suffices to analyze the latter
function. By Lemma4, it holds that |CḠ

u,w| ≤ 2−3 unless uj
i = 0 for j = 1, . . . , 7

and for all i �= 3. However, for such u, |CḠ
u,w| = 0 whenever w also satisfies

wj
i = 0 for j = 1, . . . , 7 and for all i �= 3. Indeed, the ith-share of the third bit

Gi
3 does not depend on any shares from the third input variable. It follows that

|CḠ
u,wCḠ

w,v| ≤ 2−3. �
Remark 3. Experimentally, we find that the piling-up approximation gives the
correct upper bound 2−3 for the maximum absolute correlation of the shared S-
box. Due to resource constraints, the experiment was limited to the verification
for one choice of static randomness.

For probes placed in rounds i and i + r with r ≥ 4, the relevant linear
trails all have at least 25 active S-boxes. This is a consequence of the wide-trail
design strategy and can be derived in exactly the same way as for the AES [18].
Hence, by Theorem 3, the correlations of these trails are bounded by 2−75. By
Theorem 2, it then follows that the 2-norm of the nontrivial Fourier coefficients
of the observed bits z can be upper bounded by

ε := ‖p̂z − δ0‖22 ≤ |supp p̂z| ‖p̂z − δ0‖2∞ ≤ 222 2−150 = 2−128,

where we have used the inequality |supp p̂z| ≤ 222, which follows from the fact
that the observed value z consists of at most 22 bits in the glitch-extended
probing model: if an output coordinate of Ḡ is read, at most 10 shares are
learned; if an output of the shared linear layer is probed, at most 11 shares are
observed. The latter number of shares is due to the fact that LED’s MDS matrix
has at least five zeros per row when viewed over F2. Note that, in practice, the
upper bound above is not likely to be tight, because it is unlikely that a glitch
will reveal the exact value of all 11 bits in a single measurement.



840 T. Beyne et al.

The only remaining case is when the adversary probes in rounds i and i + 3,
assuming the activity pattern in case 1 from Fig. 7. In this case, only 24 S-boxes
are active. Furthermore, we again have |supp p̂z| ≤ 222. Hence,

ε := ‖p̂z − δ0‖22 ≤ 222 2−144 = 2−122.

Note that a more careful analysis results in slightly improved bounds. Never-
theless, since we believe the bound on ε is sufficiently small for all practical
purposes, we avoid such an analysis and opt for simplicity instead.

7.6 Influence of the Key-Schedule

The arguments in Sects. 7.4 and 7.5 directly establish the security of our pro-
posed masked LED design against an adversary which does not look at shares
of the key or the bits which are added in the refreshing layer. Indeed, for such
an adversary, we may mark all wire values for queries with probe positions con-
sidered in Sect. 7.4 as ‘good’ and all others (considered in Sect. 7.5) as ‘bad’.
Theorem 1 then provides the desired upper bound. However, showing the con-
ventional security where all wires in the circuit can be probed requires a slightly
more careful choice of ‘good’ and ‘bad’ wire values.

Fortunately, the LED key-schedule consists only of bit-permutations. Hence,
its sharing is perfectly secure against second-order threshold-probing adversaries.
The same holds for the random bits used in the refreshing layer. Hence, Theo-
rem 1 can be applied with the following labeling of wire values:

Probes discussed in Sect. 7.3–7.4. For all these probe positions, all wire val-
ues can be considered as ‘good’. This includes any key bits (and additional
randomness in the refreshing layer) that might be observed by the adversary.
Indeed, even with glitch-extended probes, the adversary can observe at most
two shares of each key bit.

Probes discussed in Sect. 7.5. For all these probe For these probe positions, all
wire values corresponding to state shares should be marked as ‘bad’; shares
of the key (or additional randomness used in the refreshing layer) are labeled
‘good’. The arguments in Sect. 7.5 then apply directly.

At least one probe in the key-schedule. In this case, all wire values may be
considered ‘good’. Indeed, recall that any non-complete subset of state bits
at a particular layer is uniformly distributed and the adversary observes at
most two shares of each key bit.

For the upper bound ε, the values derived in Sect. 7.5 may be used directly
– as the analysis of the trails there is valid for any choice of the key. Note
that the latter assumption is stronger than necessary; it suffices to assume that
the bounds derived in Sect. 7.5 are valid in the average over all unobserved
randomness and key variables.
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7.7 Simulation-Based Verification

This section verifies the assumptions of Theorem 1 using a software simulation
of the masked LED. Measurements of wire values are taken and their entropy
is estimated. In case a serious vulnerability would be present, there would be
probing positions where the estimated entropy would deviate from the number
of observed bits. For some choices of probe positions, the results are shown in
Fig. 8. The confidence intervals clearly converge to the number of observed bits
in each case. This software is found on GitLab [40]. More information on our
estimators and software can be found in Appendix C.

29 211 213 215 217 219
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Fig. 8. The solid lines show the entropy estimates, the dashed lines represent a 95% con-
fidence interval. The bottom curve corresponds to probing the first bit of MixColumns

in rounds i and i + 3. For the blue curve (squares), the third bits of MixColumns from
rounds i and i+4 are observed. For the yellow curve (triangles) a linear layer in round
i and an S-box in round i + 4 were probed. For the top curve, probes are in an S-box
in round i and the linear layer of round i + 4.

8 Application to Other Primitives

The approach developed in Sect. 3 to 6 of this paper was illustrated in Sect. 7 by
applying it to the block cipher LED. This section briefly discusses the broader
applicability of our techniques to various other block ciphers and cryptographic
permutations. In fact, as will be shown in Sect. 8.1 below, the analysis for LED
from Sect. 7 carries over to several other ciphers with only minor changes. How-
ever, for different ciphers, the arguments need to be adapted more significantly
or there are obstacles which prevent a direct application of our techniques. In
Sect. 8.2, the main difficulties for a number of relevant ciphers are identified.
This section may also be of relevance from the point-of-view of the design of
block ciphers and permutations.
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8.1 Immediate Applications

As discussed above, the security analysis and masking choice of LED can be
directly adapted to several other primitives. In general, our approach is often
directly applicable to primitives following the wide-trail design strategy. Two
illustrative examples, one permutation and one block cipher, are given below.

Photon. Photon is a family of lightweight sponge-based hash functions intro-
duced by Guo et al. [26] at CRYPTO 2011. The state of the Photon permu-
tation corresponds to a d × d array of four or eight bit cells. The design of
the permutation follows the wide-trail strategy: the linear layer consists of the
parallel application of d MDS matrices and a ShiftRows operation. For four
bit cells, the Present S-box is used. Using the S-box sharing introduced in
Sect. 7.2 and a straightforward splitting of the linear layer, a second-order prob-
ing secure sharing of the Photon permutation is obtained. The security analysis
is essentially the same as for LED, subject to the simplification that there is no
key-schedule. By verifying that at least (d + 1)2 − 1 S-boxes must be active
in any relevant trail with non-zero correlation, one directly obtains the bound
ε ≤ 24d−6[(d+1)2−1]. Note that the latter result assumes that each output bit of
the linear layer depends on at most 4d input bits – this is a rough bound which
can easily be improved. Accordingly, a rough upper bound on the advantage
of a second-order threshold probing adversary model making at most q queries
is 2

√
q/2d(3d+4). The sharing uses only 24 bits of randomness beyond what is

necessary to share the state.

Prince. Prince is a low-latency block cipher introduced by Borghoff et al. [10].
The Prince S-box can be decomposed into three quadratic functions in the
affine equivalence class Q294 [8]. In Appendix B, a uniform seven-sharing for this
class is given. By using similar techniques as in Sect. 7.5, it can be verified that
the sharing for this class has a maximal correlation of 2−3. Using the piling-up
principle, the same upper bound is obtained for linear trails through the shared
Prince S-box.

Contrary to LED and Photon, the linear layer of Prince is based on quasi-
MDS matrices rather than an MDS matrix. However, the zero-correlation argu-
ment still works for up to three rounds in most cases. For all other cases, the
wide-trail approach taken by Prince guarantees that at least 15 S-boxes are
active. Thus, a direct application of our approach would result in an advantage
of

√

q/264 which for a large number of queries admits a lower advantage than the
security achieved by the cipher in most modes of operation. The state sharing
would need a total of 408 random bits, including the initial sharing and static
randomness. In case more security is desired, techniques such as the one pre-
sented in Appendix A.4 can be applied in order to improve the properties of the
S-box sharing.

8.2 Applications Requiring Additional Techniques

Some ciphers do not follow the wide-trail strategy. Consequently, their linear
cryptanalysis will look somewhat different compared to the analysis in Sects. 7.5
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and 7.4 for LED. For example, automated tools might be necessary to find good
bounds on the minimum number of active S-boxes. As mentioned above, there
are also a number of ciphers that present some obstacles to a direct application
of our techniques. Two examples are given below.

Present. Since LED uses the same S-box as Present, an application to the
Present cipher by Bogdanov et al. [9] seems like the natural next step. How-
ever, due to the cipher’s linear layer and well-known weaknesses with respect to
linear cryptanalysis [13], it becomes challenging to design a sharing with reduced
randomness cost. Since the output bits of the Present S-box layer are piped
directly into the next layer using a bit-permutation, the zero-correlation argu-
ment covers fewer rounds. Furthermore, the linear layer of Present guarantees
only 10 active S-boxes over five rounds [9]. In order to securely reduce random-
ness costs, one would need to significantly improve the linear properties of its
S-box sharing. Alternatively, one could attempt to improve the diffusion of the
shared cipher without affecting correctness.

AES. Another natural application is the AES, due to Daemen and Rijmen [19].
Since AES is a wide-trail design, the security analysis would be very similar to the
analysis for LED in Sect. 7. However, currently we are not aware of any uniform
sharing of the AES S-box. Note that a direct application of the changing of the
guards method by Daemen [16] would alter the diffusion of the shared cipher
and consequently demand a more detailed security analysis. We thus wish to
re-highlight the merit of finding a uniform sharing of the AES S-box.

9 Conclusion and Future Work

This paper has tilted the security paradigm for side-channel countermeasures
from perfect security arguments in a simulation-based model to a bounded-query
cryptanalytic framework. It was shown that bounded-query probing security can
be reduced to the linear cryptanalysis of masked ciphers. As the security analysis
presented in our work is new, it allows for several directions for future work.

While the scope of this paper was limited to second-order protection, we
believe the theoretical framework for higher-order security would remain largely
the same. However, as the adversary gains the ability to place more probes, it
will be able to exploit non-zero correlations even over a small number of rounds.
Thus, to achieve adequate levels of security, a more detailed analysis of the trails
in the masked cipher will typically be required.

In addition to generalizing to higher-orders, it would be worthwhile to apply
our techniques to other ciphers. In Sect. 8 potential difficulties with AES and
Present were discussed. Overcoming these would require innovations in the
design and analysis of masked ciphers. One such technique involves finding shar-
ings with high non-linearity.

Finally, in our example of LED, we have carefully analyzed possible trails to
derive an upper bound on the advantage of the adversary. However, a more holis-
tic approach would involve the practical verification of this bound on hardware
and the real-world security level.
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A Sharings of the Present S-Box

This appendix gives a decomposition of the Present S-box and two possible
sharings. One uses seven shares and is detailed in the main text, the other uses
three shares and verifying its security would require more analysis. Appendix A.3
gives a construction to improve the non-linearity of the shared S-box.

Concerning the Present S-box, (x, y, z, w) denotes the input nibble from
most significant to least significant bit. Similarly, (G1, ..., G4) denotes the output
from most significant to least significant bit.

A.1 Decomposition

The Present S-box S can be decomposed as follows

S(x, y, z, w) = B′(G(G(C ′(x, y, z, w) + d)) + e) .

In the above, the nonlinear function G(x, y, z, w) is given as

G1 = x + yz + yw G2 = w + xy G3 = y G4 = z + yw,

the linear transformations as

B′ =

⎡

⎢

⎢

⎣

1 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1

⎤

⎥

⎥

⎦

, C ′ =

⎡

⎢

⎢

⎣

1 1 0 0
0 1 1 0
0 0 1 0
0 1 0 1

⎤

⎥

⎥

⎦

,

and the constants as
d =

[

0 0 0 1
]

, e =
[

0 1 0 1
]

.

A.2 Seven-Sharing of G(x, y, z, w)

For each share i ∈ {1, ..., 7}, the permutation G(x, y, z, w) is shared as

Gi
1 = xi + yizi + yizi+1 + yi+1zi + yizi+3 + yi+3zi + yi+1zi+3 + yi+3zi+1

+ yiwi + yiwi+1 + yi+1wi + yiwi+3 + yi+3wi + yi+1wi+3 + yi+3wi+1,

Gi
2 = wi + xiyi + xiyi+1 + xi+1yi + xiyi+3 + xi+3yi + xi+1yi+3 + xi+3yi+1,

Gi
3 = yi,

Gi
4 = zi + yiwi + yiwi+1 + yi+1wi + yiwi+3 + yi+3wi + yi+1wi+3 + yi+3wi+1,

where the convention is used that superscripts wrap around at seven.
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A.3 Three-Sharing of G(x, y, z, w)

For each share i ∈ {1, 2, 3}, the permutation G(x, y, z, w) is shared as

Gi
1 = xi + yizi + yizi+1 + yi+1zi + yiwi + yiwi+1 + yi+1wi,

Gi
2 = wi + xiyi + xiyi+1 + xi+1yi,

Gi
3 = yi,

Gi
4 = zi + yiwi + yiwi+1 + yi+1wi,

where the convention is used that superscripts wrap around at three. Whereas
the above sharing is verified to be uniform, it is not second-order non-complete.
Instead one can achieve second-order probing security by calculating each cross
product separately, XORing them with randomness, and finally registering the
result. Afterwards, one then re-compresses the cross products back to 3 output
shares. In case one uses static randomness, further analyses should be performed
to ensure the security of the construction.

The above sharing was verified to have a maximal absolute correlation of 2−2.
In case randomness is used to make the sharing second-order probing secure, one
should re-verify this correlation for all possible choices of the static randomness.

A.4 Improved Linear Properties

The following method can be used to improve the linear properties of the shared
S-box from Appendix A.2. A sharing P̄ of the identity function is composed with
the S-box such that S̄2 ◦ P̄ ◦ S̄1 is still a sharing of the Present S-box. One
can choose any permutation P̄ and verify the linear properties of S̄2 ◦ P̄ ◦ S̄1.
As an example, we consider a function which adds the first shared output bit
of S̄1 to the second and third bits. The addition of the shares is done such
that correctness still holds. More specifically, for each share i ∈ {1, ..., 7}, the
permutation P̄ (x̄, ȳ, z̄, w̄) is

P i
1 = xi P i

2 = yi + xi + xi+1 P i
3 = zi + xi + xi+1 P i

4 = wi,

where the convention is used that superscripts wrap around at seven.
Since P̄ is a permutation, it is clearly uniform. Additionally, P̄ is second-

order non-complete. This choice of P̄ ensures that one can not find an optimal
trail with 2−3 through the shared S-box. From experiments, we conclude that
the maximum absolute correlation of S̄2 ◦ P̄ ◦ S̄1 is 2−4.3. Again, due to resource
constraints, the experiment was limited to the verification for one choice of static
randomness.

Whereas the addition of P̄ significantly increases our security margin, it
requires an extra register stage as P̄ ◦ S̄1 nor S̄2 ◦ P̄ is second-order non-
complete. A more thorough search for a better permutation could result in a
further increase in security as well as potential performance improvements.
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B Seven-Sharing of the Prince S-Box

Moradi and Schneider [33] show that the inverse Prince S-box can be decom-
posed as

S−1 = D ◦ Q294 ◦ C ◦ Q294 ◦ B ◦ Q294 ◦ A,

with A,B,C,D affine layers and Q294 a representative of a particular affine
equivalence class. The affine layers with input (x, y, z, w) are given as follows

A1 = y A2 = x A3 = z A4 = 1 + x + w,

B1 = w B2 = z B3 = 1 + y B4 = 1 + x,

C1 = z C2 = z + w C3 = y C4 = x + y,

D1 = x + y D2 = 1 + x + z D3 = y + w D4 = z.

We can write S = E ◦ S−1 ◦ E with E,

E1 = 1 + x + y + w E2 = 1 + x E3 = z E4 = 1 + z.

The above affine layers are straightforwardly shares by applying the functions
to each share separately. The algebraic normal form of Q294(x, y, z, w) is given
by

Q1 = x Q2 = y Q3 = xy + z Q4 = xz + w.

This function is shared into 7 shares by

Qi
1 = xi,

Qi
2 = yi,

Qi
3 = zi + xiyi + xiyi+1 + xi+1yi + xiyi+3 + xi+3yi + xi+1yi+3 + xi+3yi+1,

Qi
4 = wi + xizi + xizi+1 + xi+1zi + xizi+3 + xi+3zi + xi+1zi+3 + xi+3zi+1,

for the shares i ∈ {1, ..., 7}, where the convention is used that superscripts wrap
around at seven. The above sharing is verified to be second-order non-complete
and uniform.

The sharing is made second-order probing secure by adding two layers of
static randomness between the nonlinear functions.

C Entropy Estimators and Software Details

On GitLab one can find software to measure the entropy of probed values in
a C simulation of the masked LED from Sect. 7 [40]. The software accepts six
arguments specifying which round, operation, and share each probe targets. The
best probing location, giving the most advantage to the adversary, is found by
searching for the best trails in the masked cipher. For example, the bottom curve
of Fig. 8 is related to the first activity pattern of Fig. 7. As discussed in Sect. 7.5,
this activity pattern would constitute a promising trail.
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Further-on, the entropy estimator used in the simulation is discussed. Since
the variance of the estimator scales exponentially with the number of observed
bits, significantly more samples are needed to get a narrow confidence interval
if more bits are observed. Note that in our experiments, we used 219 samples.
However, given sufficient computational power, this number is easily increased.

The reader is encouraged to verify our results using the C simulation for their
own choice of probe locations and sample size.

C.1 Entropy Estimation and Confidence Intervals

To estimate the entropy of an m-bit random variable given N samples with
replacement, we use the straightforward ‘plug-in’ estimator with first-order bias
correction. One first estimates the probability q(x) of each observation x ∈ F

m
2

by counting the number of occurrences of each x in the sample. Note that Eq = p
where p is the true probability distribution. The entropy can then be estimated
as

̂H = −
∑

x∈Fm
2

q(x) log2 q(x).

Unfortunately, this results in a negatively biased estimator with bias Ω(1/N).
Specifically, taking a Taylor series expansion, one gets

E ̂H = H − 1
2N

∑

x∈Fm
2

Var [q(x)]
p(x)

+ O(1/N2).

Since Var [q(x)] = p(x)(p(x) + 1), we obtain

E ̂H = H − 2m + 1
2N

+ O(1/N2).

For the variance, a similar but more technical argument [3] shows that

Var ̂H = −H2

N
+

1
N

∑

x∈Fm
2

p(x) log22 p(x) + O(1/N2).

For the bias-corrected estimator, the variance is thus

σ2 =
(2m + 1)2

4N2
− H2

N
+

1
N

∑

x∈Fm
2

p(x) log22 p(x) + O(1/N2).

Assuming asymptotic normality, an asymptotic two-sized 95% confidence inter-
val can be estimated obtained by adding ±1.96σ to the estimate.
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maskVerif: automated verification of higher-order masking in presence of physical
defaults. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019, Part I.
LNCS, vol. 11735, pp. 300–318. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29959-0 15

https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-030-29959-0_15


848 T. Beyne et al.
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and Gaëtan Cassiers4

1 School of Cyber Science and Technology, Shandong University,
Qingdao 266237, China

{wjwang,chun.guo}@sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security of Ministry

of Education, Shandong University, Qingdao 266237, China
3 State Key Laboratory of Information Security (Institute of Information

Engineering), Chinese Academy of Sciences, Beijing 100093, China
4 Institute of Information and Communication Technologies, Electronics and Applied

Mathematics (ICTEAM), UCLouvain, 1348 Louvain-la-Neuve, Belgium
{francois-xavier.standaert,gaetan.cassiers}@uclouvain.be

5 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

yuyu@yuyu.hk
6 Shanghai Qizhi Institute, Shanghai 200232, China

Abstract. Higher-order masking countermeasures provide strong prov-
able security against side-channel attacks at the cost of incurring signif-
icant overheads, which largely hinders its applicability. Previous works
towards remedying cost mostly concentrated on “local” calculations, i.e.,
optimizing the cost of computation units such as a single AND gate or
a field multiplication. This paper explores a complementary “global”
approach, i.e., considering multiple operations in the masked domain as
a batch and reducing randomness and computational cost via amorti-
zation. In particular, we focus on the amortization of � parallel field
multiplications for appropriate integer � > 1, and design a kit named
packed multiplication for implementing such a batch. For � + d ≤ 2m,
when � parallel multiplications over F2m with d-th order probing secu-
rity are implemented, packed multiplication consumes d2 +2�d + � bilin-
ear multiplications and 2d2 + d(d + 1)/2 random field variables, out-
performing the state-of-the-art results with O(�d2) multiplications and
�
⌊
d2/4

⌋
+ �d randomness. To prove d-probing security for packed multi-

plications, we introduce some weaker security notions for multiple-inputs-
multiple-outputs gadgets and use them as intermediate steps, which may
be of independent interest. As parallel field multiplications exist almost
everywhere in symmetric cryptography, lifting optimizations from “local”
to “global” substantially enlarges the space of improvements. To demon-
strate, we showcase the method on the AES Subbytes step, GCM and
TET (a popular disk encryption). Notably, when d = 8, our implemen-
tation of AES Subbytes in ARM Cortex M architecture achieves a gain
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of up to 33% in total speeds and saves up to 68% random bits than the
state-of-the-art bitsliced implementation reported at ASIACRYPT 2018.

1 Introduction

Side-channel attacks that exploit leakage emitting from devices pose an impor-
tant threat for cryptographic implementations. Masking [14,26] is one of the
most investigated protection techniques. The core idea is to randomly split each
secret-dependent variable into a vector of d + 1 shares called sharing, and then
implements the cryptographic algorithm over sharings instead of the raw secrets.
This ensures that the initial secret cannot be rebuilt from any less than d inter-
mediate variables in the implementation, which is called d-private security (a.k.a.
d-probing security).1

To have secure functionalities over sharings, a masking scheme, or a private
circuit, firstly constructs gadgets for various elementary calculations over shar-
ings, and then compose the gadgets to reach the desired functionality. Obviously,
to improve efficiency, it is crucial to have better gadgets (particularly for mul-
tiplications). This has motivated plenty of works concentrating on e.g., reduc-
ing the randomness complexity [5,6,12,28], and securing processing dependent
inputs [12,20].

Recently proposed masking schemes are typically accomplished by formal
proofs of the aforementioned d-private security notion. To establish this notion,
the naive method is to show that the possible tuples of intermediate variables
are all independent of the secret by enumeration. Though, such an enumeration
becomes intricate as the size of function grows, and it is only feasible for small
circuits such as a single multiplication gadget. This naturally motivates the com-
position approach, i.e., proving that under certain conditions, a large circuit built
upon d-private gadgets is d-private. In this respect, several composable security
notions have been introduced, such as the notions of d-Non-Inference (NI) and
d-Strong Non-Inference (SNI) [2]. Thanks to those security notions, a compo-
sition of gadgets with some refreshing added in-between, can be proved to be
globally d-private secure.

Besides the above foundational advances, the past two decades have also
witnessed the rapid efficiency improvement of masking schemes. Despite these,
higher-order masking with many shares remains of limited use due to the over-
head, especially in the resource-constraint environment [19,27]. It is still com-
pelling and challenging to decrease the complexity of masking schemes.

Local Versus Global Efficiency Optimization. As discussed before, the com-
munity has devoted to designing better gadgets [5,6,12,28] due to their fundamen-
tal influences on the high-level circuits. In fact, to our knowledge, modulo a few
exceptions that will be discussed later, most of the prior works only concentrated

1 While the leakages of all the d + 1 shares enable reconstruction of information the-
oretically, the intrinsic noise in the leakages renders secret recovery infeasible in
practice [14,17,21,33].
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on “local” optimizations, i.e., on reducing the complexity of individual elementary
calculation such as an S-box or even a single AND gate. This “local” approach con-
siderably simplifies the situation and enables pushing the limits of gadgets. At the
same time, by the aforementioned composition framework, this naturally results
in high-level circuits with better performance and provable security.

On the other hand, note that cryptographic algorithms typically consist of
executing a basic function for many times in parallel. For example, the AES
(more generally, virtually all the block ciphers except for the so-called ARX
designs) evaluates an S-box for 16 times within each round. And, at a higher level,
many modes of operations are explicitly designed to support running several
primitives in parallel. For instance, the Counter (CTR) mode encrypts several
blocks in parallel, and the Galois/Counter Mode (GCM) combines the CTR
mode with a structure consisting of several field multiplications in parallel.

Facing this situation, this paper takes a complementary “global” view, consid-
ers multiple such parallel functions as a batch, and seeks for optimizations within
such batches. This switch enables many possibilities of improvements that used
to be excluded in the classical “local” optimizations. In particular, the presence of
multiple calculations naturally motivates using the amortization technique, which
aims at reducing the averaged complexity for the masking of several operations.

While the idea of “global” optimization via amortizing appears natural, the
technique of security proof is quite non-trivial. Particularly, due to amortization,
various operations in the same batch now share randomness or intermediate vari-
ables, and thus cannot be analyzed independently. To cope with this difficulty,
in our security analysis, we will treat parallel operations in the same batch as
a whole, and consider the corresponding gadgets with multiple input and out-
put sharings (shorted as MIMO gadgets in the rest of the paper). This shift of
viewpoint clearly excludes NI/SNI as the security goal. Informally speaking, any
composition of d-NI and d-SNI gadgets is still d-SNI if each sharing is used
at most once as input of any d-NI gadget and the input sharings of a gad-
get come from different gadgets. Designing secure circuits under this condition
may requires many refresh gadgets, which are expensive. Therefore, new security
notions for MIMO gadgets are required.

1.1 Our Contributions

We investigate global optimizations within batches of several field multiplica-
tions.2 The concrete technique is to amortize the randomness and computational
costs of several parallel masked multiplications. As a result, we propose a new
construction named packed multiplication, which computes � masked multipli-
cations in parallel for any integer � ≥ 1. Then, in order to prove security for
our scheme, we introduce a new set of security notions for MIMO gadgets. We
finally demonstrate potential applications and showcase the packed multiplica-
tion method on AES, Galois/Counter Mode (GCM) [30], and a popular disk

2 Note that the AND gate can be viewed as the field multiplication in F2.
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encryption scheme TET (which is short for linear-Transformation; ECB; linear-
Transformation) [23]. We details these contributions below.

Packed Multiplication. To maximize the efficiency of linear gadgets, this paper
concentrates on Boolean sharings (a.k.a. additive sharings) over the finite field Fq

of characteristic 2, meaning that the XOR of the shares equals the initial secret. In
this setting, a packed multiplication scheme takes two vectors of � Boolean shar-
ings as inputs, which encode the 2� inputs of the � field multiplications, and gives
� Boolean sharings as outputs encoding the � multiplication results, as depicted in
Fig. 1 (right). Packed multiplication proceeds in two steps. First, each input vec-
tor is (re)encoded as a “packed” sharing using a randomized linear code. When
the field size q ≥ �+d, each resulted “packed” sharing consists of only �+d shares
in total, meaning that the size of data is compressed from �(d+1) to �+d. Second,
a multiplication over the packed sharings is calculated, resulting in Boolean shar-
ings (the number of result shares is �(d+1)). This step can be seen as a batch of �
masked local multiplications sharing some randomness and intermediate results.
Besides, our scheme is compatible even when the field size q ≤ �+d, at the cost of
raising the number of shares, say n, to n > d + 1 with security order d, as long as
the linear codes of length �+n − 1 with dual distance d + 1 exist.

In contrast, following the classical “local” approach, the two input vectors are
viewed as � pairs of sharings, and each of the � pairs is processed independently, as
shown in Fig. 1 (left). As mentioned before, such independence simplifies security
analysis at the expense of limiting optimizations to local. For a more complete
comparison, we consider the setting of masking � parallel multiplications, and
list the complexities of packed multiplication and some other popular schemes in
Table 1, where the complexity of our scheme is typical estimated when the field
size q ≥ �+d. In the comparison, we regard the number of bilinear multiplications
(i.e., of general multiplications of two non-constant variables in the finite field)
and the number of random elements as the metrics for computational [6] and
randomness complexities respectively.

Towards Provable Security. Packed multiplication schemes produce MIMO
gadgets. For their provable security, Cassiers el al. introduced a stronger variant
of SNI named Multiple-Inputs/Multiple-Outputs Strong Non-Inference (MIMO-
SNI) [13]. They also introduced Probe Isolating Non-Interference (PINI) [13]
notion that enables the building of more efficient gadgets. Unfortunately, both
MIMO-SNI and PINI are too strong and could not be achieved by ours. To rescue,
we identify a set of intermediate composable security notions for MIMO gadgets
that interpolates between the stronger MIMO-SNI and the weaker (S)NI. In addi-
tion, ours are orthogonal to PINI. We refer to Fig. 2 for an illustration. With the
new notions, our gadgets can be securely composed with each other, either by sat-
isfying our specialized composition theorem, or through direct proof in the probe
propagation framework introduced in [5,11].

Applications. As parall multiplications exist almost everywhere in symmetric
cryptography, our packed multiplication has potentially broad applicability and
deep impact. To demonstrate, we showcase the method on the AES Subbytes
step and the polynomial-evaluation hash.
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Table 1. Complexities of � parallel multiplications with security order d

Computational
complexity

Randomness
complexity

Our scheme Packing 0 d2

Multiplying d2 + 2�d + � d(d + 1)/2

Total d2 + 2�d + � 2d2 + d(d + 1)/2

Tight private circuits [26] �d2 + 2�d + � �d(d + 1)/2

Masking with reduced randomness [5] �d2 + 2�d + � �
(
d +

⌊
d2/4

⌋ )

Multiplication
over finite fieldsa

[6, Algorithm 4] 2�d + � �
(
2d2 + d(d + 1)/2

)

[6, Algorithm 5] �d2 + 2�d + � �d

Code-based masking [38] d2 + 2�d + �2 2d(d + �)
aDespite the small instantiations for d ≤ 4 [28], it requires large enough finite
fields, e.g., the field size q > d(d + 1)Δ(12d)d [6, Theorem 5.4]
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The AES Subbytes step consists of parallel S-boxes evaluations. Based on
the ARM Cortex M architecture, we implement 16 AES S-boxes by applying
the packed multiplication and report the performance results. Notably, when
the security order is of d = 8, our implementation achieves a gain of up to 33%
in speeds and saves up to 68% random bits compared with the state-of-the-art
bitsliced implementation [9].

The polynomial-evaluation hash involves a structure of several multiplica-
tions in parallel, and thus our packed multiplication is well suited. This benefits
the SCA resilience for two scenarios: GCM and TET.

1.2 Related Works

Previous Amortization. As mentioned before, global view and amortization
were only considered in very few early works. Roughly, they fall into three con-
crete approaches, i.e., randomness re-use, masking with robust Pseudorandom
Generator (PRG) and the code-based masking. The former two approaches aim
at amortization of randomness rather than reducing computational cost, while
the last addresses both.

Randomness Re-use. This approach aims at re-using random bits in different
gadgets. Faust et al. [18] introduce a security model allowing multiple gadgets
to securely re-use randomness, and proposed threshold implementation-based
gadgets in their model. This method provides a quite efficient scheme for small
values of security order.

Masking with Robust PRGs. Ishai et al. proposed to expand the randomness
using the so-called robust PRG [25] in the private circuits, where the number of
True Random Number Generator (TRNG) calls for seeds is independent of the
circuit size. A recent work of Coron et al. describes a quite practical construction
in this direction [15], where the number of random bits is only Õ(t2) for security
against t probes. This strategy can be regarded as a certain form of amortization
(of TRNG calls), but it is a bit of orthogonal to ours. In contrast, we consider
the amortization of both randomness and computational costs.

Code-Based Masking. It was recently shown by Wang et al. [38] that the general
type of masking called code-based masking is able to encode multiple secrets
together into one codeword and calculate parallel operations over these secrets
together in the masked domain. Admittedly, the packed multiplication proposed
in this paper shares some ideas with the code-based masking. But we give a
practical and much more efficient scheme. Notably, our scheme generally works
with Boolean sharings, which enables more efficient masked linear operations. In
contrast, the code-based masking proposed in [38] was a generic scheme, whose
further specification and optimization were left as an open problem. We give a
complexity comparison in Table 1 to highlight the improvement of our scheme.

Polynomial masking with packed secret sharing technique [22] can be
regarded as a variant of the code-based masking, and its multiplications are
performed based on the MPC protocol of Damg̊ard et al. [16]. This scheme
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however requires a heavy random generation process that becomes an efficiency
bottleneck.

Security Notions for MIMO Gadgets. Cassiers el al. introduced a stronger
variant of SNI named Multiple-Inputs/Multiple-Outputs Strong Non-Inference
(MIMO-SNI) [13].3 Though, MIMO-SNI gadget comes at a higher complex-
ity compared to the SNI ones. They also introduced the Probe Isolating Non-
Interference (PINI) [13] notion that enables the building of more efficient gad-
gets. Informally speaking, a composition of multiple gadgets is d-PINI (resp.,
d-MIMO-SNI) if every gadget is d-PINI (resp., d-MIMO-SNI). In addition, d-
PINI (resp., d-MIMO-SNI) alone implies the d-private security. Unfortunately,
these two notions are both too strong for our new multiplication gadget. For this
reason, we will propose in Sect. 3 a set of new security notions that bridge our
new gadgets to the probing security.

1.3 Organization

In the remainder of this paper, we present notations and necessary notions in
Sect. 2. We then introduce our new security notions in Sect. 3. We propose the
packed multiplication in Sect. 4, and in Sect. 5 propose a construction of the
linear operations that complies with the new security notions. Sect. 7 illustrates
the applications.

2 Preliminary

2.1 Notations

In the following, we denote by Fq a characteristic 2 finite field, where q = 2m for
any m ≥ 1, and denote field elements by lower-case letters. We use ⊕ to denote
plus over the finite field. For simplicity, we use

∑
for the summation over any

fields or rings. For a natural number n we denote by [n] the set of integers from 1
to n both included. Let calligraphies (e.g., I) be sets, and |I| denote the length
of the set I. Let bold lower cases (e.g., x) be the vectors over F

|x|
q , where |x|

denotes the length of the vector, x[i] denotes the ith element of vector x, and
x[i : j] denotes the vector made up of ith to jth elements of vector x. Unless
otherwise noted, we assume the vectors are row vectors in this paper, and the
column vectors are denoted as xT.

Let bold capital letters (e.g., A) be the matrices in F
r×c
q (or r×c matrix), for

row and column counts being r and c respectively. A[i, j] denotes the element
of A at ith row and jth column, A[i, ] (resp., A[, i]) denotes the ith row (resp.,
column) of matrix A, and A[i :j, ] denotes the matrix made up of ith to jth rows
of A. Let AT denote the transpose of the matrix A. For a r × c matrix A and

3 The notion of MIMO gadgets shall be distinguished from MIMO-SNI: the former
are gadgets with multiple input and output sharings, while the latter is a security
model for MIMO gadgets.
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a set I ⊆ [r] (resp., J ⊆ [c]), A[I, ] (resp., A[,J ]) denotes the submatrix of A
made up of the rows (resp., columns) indexed by I (resp., J ). For matrices A
and B, we denote their product as A × B, or in short AB in non-ambiguous
cases. Specifically, we use Or×c to denote the zero matrix in F

r×c
q and In the

identity matrix in F
n×n
q ; to ease understanding, when there is no ambiguity,

their superscripts will be omitted. For two matrices A and B, [A,B] is the
concatenation of A and B by columns, and [A;B] is the concatenation of A and
B by rows. A set of n variables can be represented as {xi}n

i=1
def= {x1, . . . , xn},

and this representation can be adopted for a set of vectors or matrices.

2.2 Private Circuits

We view a circuit C as a directed acyclic graph with gates and wires being
vertices and edges respectively. We assume that the wires carry variables in
Fq and the gates are elementary calculations over Fq. A randomized circuit is
a circuit augmented with random gates. A random gate is a gate that puts a
random variable in its output wire. Variables carried in the wires of a circuit C
are called intermediate variables of C. A probe to a circuit is an intermediate
variable whose value is assumed to be revealed to the adversary. For a circuit C

with input x ∈ F
�
q, C(x) produces the output y ∈ F

�′
q that we denote C(x) def= y.

And for a set P of probes, CP(x) returns the values of the probes by feeding x as
the input of C. We call a set (or vector) of variables (say, x) over Fq independent
of the other vector of variables y if Pr(x = α | y = β) = Pr(x = α) for any value
α of x and any value β of y, where the probability is taken over the random
coins used to generate these vectors.

We begin by recalling the notion of sharings, the basis of masking. We also
provide our new notion of packed sharing. It should be noted that, for the notion
of sharing, we let the number of shares be n (rather than d+1) for compatibility
(of any field sizes) reason. As mentioned in the introduction, our scheme is also
compatible with a small field size (i.e., q < �+d with � parallel multiplications),
at the cost of raising the number of shares in a sharing to n > d+1 with security
order d.

Definition 1 (Sharing and packed sharing). For a variable x ∈ Fq, we say
x̂ ∈ F

n
q is a sharing of x if there exists an encoder Enc : (Fq,F

n−1
q ) → F

n
q , a

decoder Dec : Fn
q → Fq and r ∈ F

n−1
q such that x̂ = Enc(x, r) and x = Dec(x̂).

Particularly, a sharing x̂ of x is called a Boolean sharing, if x = Dec(x̂) =∑n
i=1 x̂[i].
For � > 1 and a vector of variables x ∈ F

�
q, we say (x̃, û) ∈ (F�

q,F
n−1
q ) is a

packed sharing of x if there exists an encoder Enc : (F�
q,F

n−1
q ) → (F�

q,F
n−1
q ), a

decoder Dec : (F�
q,F

n−1
q ) → F

�
q and r ∈ F

n−1
q such that (x̃, û) = Enc(x, r) and

x = Dec(x̃, û). Moreover, an element of a packed sharing (x̃, û) is an element of
either x̃ or û.

Elements of a sharing or packed sharing are called shares.
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In the rest of the paper, unless explicitly stated, all sharings are Boolean
sharings. We next recall the notion of private circuit compiler [26] as follows.

Definition 2 (Private circuit compiler [26]). A private circuit compiler for
a circuit C with input in F

�
q and output in F

�′
q is defined by a triple (I,T,O) where

– I : Fq → F
n
q , is an encoder that randomly maps each input x ∈ Fq to a sharing.

– T is a circuit transformation whose input is circuit C, and output is a ran-
domized circuit C′ with � sharings as the input, and �′ sharings as the output.

– O : F
n
q → Fq is a decoder that maps each output sharing ẑ ∈ F

n
q to the

corresponding output z ∈ Fq.

We say that (I,T,O) is a private circuit compiler and C′ is a d-private circuit
(or d-probing secure) if the following requirements hold:

– Correctness: for any input x ∈ F
�
q, Pr

(
O◦(C′(I◦(x))

)
= C

(
x
))

= 1, where I◦

(resp., O◦) is a canonical encoder (resp., decoder) that encodes (resp., decodes)
each element of input secrets x (resp., each sharing of output sharings) by
repeatedly calling I (resp., O).

– Privacy: for any input x ∈ F
�
q and any set of probes P such that |P| ≤ d,

C′
P

(
I(x)

)
are independent of the input x, where d is called the security order.

We consider the circuit transformation T realized by the composition of gad-
gets. An gadget is a randomized circuit whose inputs (resp., outputs) are either
sharings or packed sharings. We say that a gadget G implements a function
f : F

�
q → F

�′
q , if and only if O◦

(
G

(
I◦(x)

))
= f(x) for any x ∈ F

�
q, where I◦

(resp., O◦) encodes (resp., decodes) each input (resp., output). Gadget compo-
sition builds bigger circuits from a number of gadgets, by connecting the output
wires of some gadgets to the input wires of the others. To cleanly pinpoint the
“pattern” of a composition, we appeal to an acyclic graph C. I.e., the resulted
bigger circuit is obtained by replacing the vertices of C with the gadgets. In
such a graph, the involved gadgets are called sub-gadgets, and the edges carry
sharings or packed sharings. An MIMO gadget is a gadget with multiple input
sharings or output sharings. Note that the composed gadget C′ is a gadget, and
thus a recursive composition of gadgets is also a gadget.

2.3 Composable Security Notions

While the notion of d-private security nicely protects against side-channel
attacks, it is not trivial to prove that large circuits such the AES fulfill it. The
difficulty stems from enumerating the probes within the circuit, the complexity
of which increases exponentially with the circuit size. The natural solution is to
use the composition method, so that one can focus on each individual gadget,
while the global d-private security is ensured by composition. Barthe et al. intro-
duced first composable security notions [2] for (small) gadgets that are sufficient
to result in provable probing security.
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Simulatability. We first recall the definition of simulatability introduced in [5]:

Definition 3 (Simulatability [5]). Let P = {p1, ..., pd} be a set of d probes
of a gadget G with input shares X . Let S ⊆ X be a subset of input shares. A
simulator is a randomized function S: F|X |

q → F
d
q . A distinguisher is a randomized

function D:
(
F

d
q ,F

|X |
q

) → {0, 1}. The set of probes P can be simulated with shares
in S if and only if there exists a simulator S such that for any distinguisher D
and any inputs shares X , we have:

Pr
[
D

(
GP(X ),X )

= 1
]

= Pr
[
D

(
S(S),X )

= 1
]

,

where the probability is over the random coins in G, S and D.

(Strong) Non-inference. We then recall the first set of composable security
notions introduced in [2]. The probes of a gadget are separated as follows:

– Output probes: output variables.
– Internal probes: variables except for the output probes.

Definition 4 (d-(Strong) Non-inference
(
(S)NI

)
[2]). Let G be a gadget

with sharings as inputs and outputs. G is d-NI (resp., d-SNI), if any probes
consisting of tint internal probes and tout outputs probes with tint + tout ≤ d can
be simulated with tint + tout (resp., tint) shares of each input sharing.

As shown in Lemma 1, both d-NI and d-SNI imply the d-private security.

Lemma 1 (NI/SNI implies probing security [2]). If a gadget G is d-SNI
or d-NI, then G is a d-private circuit if any d shares in each input sharing are
independent of the secrets and all input sharings are independently encoded.

More importantly, in the proof of probing security, NI and SNI can reduce the
elaboration from trying all tuples of probes of a full circuit to only verifying each
small gadget. Informally speaking, any composition of d-NI and d-SNI gadgets
is still d-NI if each sharing is used at most once as input of any d-NI gadget and
the input sharings of a gadget come from different gadgets.

2.4 Different Types of Gadgets

As gadgets can be used as building blocks of private circuits, it is necessary to
specify types of gadgets that are required for protecting cryptographic algorithms.

The first type of gadgets is linear gadgets that implement linear functions. As
the encoder is usually homomorphic (for example, the encoder of the Boolean
sharing) over linear functions, linear gadgets can be correctly constructed by
applying linear functions on the shares of the same index, which we will denote
as the trivial implementation of a linear function. It becomes more difficult for
(nonlinear) gadgets implementing nonlinear functions such as multiplication,
since the encoder is usually not homomorphic over nonlinear functions. The last
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type of gadgets is the refresh gadget (a.k.a, the refreshing) that re-randomizes a
sharing, which is usually needed for the composition of gadgets. Existing works
(e.g., [1,3,4]) have provided different refresh gadgets that are asymptotically
more efficient than multiplication gadgets. In the rest of the paper, we mainly
focus on a typical nonlinear gadget: multiplication gadget that implements the
multiplication over Fq in the masked domain.

3 New Security Notions for MIMO gadgets

To motivate, this section begins by recalling the limitation of NI/SNI with MIMO
gadgets. Then, to ease understanding, we serve intuition for our new security
notions in Subsect. 3.2. The core concept will be the notion of t-chunk that
describes a set of shares from the input or output sharings of a gadget. The
formal definitions are finally given in Subsect. 3.3.

3.1 Limitation of NI/SNI with MIMO Gadgets

The notions of NI and SNI are not perfectly suitable for MIMO gadgets. To see
this, let’s consider, for example, the compositions of two gadgets, as illustrated
in Fig. 3. In Fig. 3-(a), the composition of G1 and G2 subjects to the rule in
Lemma 1, and thus is 3-SNI. Figure 3-(b) shows an improper composition, where
two probes (one internal and one output) of G2 requires 4 input variables to
simulate, which cannot be further simulate with the input of G1 since G1 is 3-
SNI. Figure 3-(c) fixes the issue of Fig. 3-(b) by adding SNI refreshings, which
however comes at huge overheads. Note that a similar illustration can be found
in [13, Figure 5], where the authors considered a linear operation between two
outputs of a nonlinear gadget.

3-SNI3-SNI

1 probe

3-SNI

1 probe

3-SNI

1 probe

3-SNI 3-SNI

1 probe

3-SNI

3-SNI

3-SNI

(a) 3-SNI (b) improper compostion (c) a fix of (b)

G1

G2 G1 G2 G1 G2

Fig. 3. Limitation of (S)NI.

In the rest of this section, we investigate more suitable security notions for
gadgets with multiple input and output. However, for example, the packed mul-
tiplication that we will introduce in Sect. 4 is neither d-MIMO-SNI nor d-PINI,
but is d-SNI. It indicates that there should exist some security notions between
MIMO-SNI and SNI (stronger than SNI and weaker than MIMO-SNI) and more
suitable to the packed multiplication. In this respect, we put forward a set of
new security notions.
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3.2 Intuition Behind the New Security Notions

The notion of simulatability captures that a set of output shares and tint internal
shares can be simulated with some input shares called propagated shares. In this
respect, how to define the output shares and the propagated shares is critical in
different security notions. Let x̂1, . . . , x̂� be � sharings that can be either input
sharings or output sharings of a gadget. For an integer t, we define the types of
set X consisting of some shares in x̂1, . . . , x̂� as follows:

i. |X | = t, i.e., X consists of t shares in x̂1, . . . , x̂�.
ii. |X | = �t, and X consists of t shares in each sharing of x̂1, . . . , x̂�.

It can be seen that, in (S)NI, output and propagated shares relate to types i
and ii respectively. The only difference between SNI and NI is the values of the
parameters t for output and propagated shares. And in MIMO-SNI, output and
propagated shares relate to types ii and i respectively, which makes it a stronger
property than (S)NI. It is because, compared with (S)NI, MIMO-SNI allows that
a larger set of output shares can be simulated with a smaller set of propagated
shares. Examples can be found in Fig. 5-(a) (b) and (c).

For our new security notions, we introduce a new type of set X as follows:

iii. X consists of a t-chunk of x̂1, . . . , x̂�, where the t-chunk is defined below,
and we also depict an example in Fig. 4.

Definition 5. A t-chunk of sharings x̂1, . . . , x̂� ∈ F
n
q , . . . ,Fn

q is a subset of a set
made up of the following two parts:

1. (α part) {x̂k[i] | k ∈ K, i ∈ I} for K ⊆ [�], I ⊆ [n] and |K| + |I| = tα.
2. (β part) tβ shares from x̂1, . . . , x̂�.

such that t ≥ tα + tβ.

It should be noted that the t-chunk is only defined with sharings, rather than
the packed sharings.

The Rationale of the t-Chunk Definition. The t-chunk is defined in accor-
dance with the formalism of packed multiplication given latter in Sect. 4. We
will mostly consider an abstract computation that takes sharings x̂1, . . . , x̂� ∈
F

n
q , . . . ,Fn

q as inputs and sums (XOR) the rows of X def= X̂ ⊕ Q̂, resulting in

x̃ ∈ F
�
q, where X̂[, k] def= x̂k for k ∈ [�] and Q̂ ∈ F

n×�
q is a random matrix. During

the process, there also exist variables f(Q̂[i, ]) for any function f : F
�
q → Fq

and any i ∈ [n]. A specification of such abstract algorithm is the packing in
Gadget 1-P, and an example will be depicted in Fig. 6. In this case, a certain
amount of probes to f(Q̂[i, ]), X̂, X and x̃ can be simulated with a t-chunk of
x̂1, . . . , x̂� for some t ≥ 0. More concretely (but informally),

– Let I ⊆ [n] and K ⊆ [�], the probes to f(Q̂[i, ]) for i ∈ I can be simulated
by sampling the corresponding random distribution, and probes to x̃[k] for
k ∈ K can be simulated with the α part of x̂1, . . . , x̂� corresponding to I and
K. In the example of Fig. 4, the probes of this type relate to I = {2, 3, 4} and
K = {5, 6}.



Packed Multiplication: How to Amortize the Cost of Side-Channel Masking? 863

x̂1[1], x̂2[1], x̂3[1], x̂4[1], x̂5[1], x̂6[1], x̂7[1], x̂8[1], x̂9[1]
x̂1[2], x̂2[2], x̂3[2], x̂4[2], x̂5[2], x̂6[2], x̂7[2], x̂8[2], x̂9[2]
x̂1[3], x̂2[3], x̂3[3], x̂4[3], x̂5[3], x̂6[3], x̂7[3], x̂8[3], x̂9[3]
x̂1[4], x̂2[4], x̂3[4], x̂4[4], x̂5[4], x̂6[4], x̂7[4], x̂8[4], x̂9[4]
x̂1[5], x̂2[5], x̂3[5], x̂4[5], x̂5[5], x̂6[5], x̂7[5], x̂8[5], x̂9[5]
x̂1[6], x̂2[6], x̂3[6], x̂4[6], x̂5[6], x̂6[6], x̂7[6], x̂8[6], x̂9[6]
x̂1[7], x̂2[7], x̂3[7], x̂4[7], x̂5[7], x̂6[7], x̂7[7], x̂8[7], x̂9[7]

α part, tα = 5
β part, tβ = 3

Fig. 4. An examples of an 8-chunk of sharings x̂1, . . . , x̂7, where tα = 5 and tβ = 3.
Each column of the matrix corresponds to a distinct sharing.

– The probes to X̂ can be simulated with the β part of sharings x̂1, . . . , x̂�. In
the example of Fig. 4, the probes of this type are X̂[3,2], X̂[2,4] and X̂[3,6].

Below in Lemma 2, we show that the union of two t-chunks is a 2t-chunk.
Its proof is in the full version. This property enables merging several t-chunk
probes.

Lemma 2 (Closure of t-chunk under union). If S1 and S2 are t1-chunk
and t2-chunk of sharings x̂1, . . . , x̂� respectively, then S1 ∪S2 is a (t1 + t2)-chunk
of x̂1, . . . , x̂�.

Cautionary Note. By definition, a subset of a t-chunk is also a t-chunk. Thus,
a t-chunk should also be a t′-chunk for any t′ > t. Moreover, the partition of
S (into α and β parts) is not unique. For example, the set of share highlighted
in Fig. 4 can also be 9-chunk, if it is partitioned in a way that β part contains
all the highlighted shares and α part is empty. Also note that, there always
exists a minimum value of t for any set of shares. For example, the set of share
highlighted in Fig. 4 can not be t-chunk for any t < 8.

3.3 New Security Notion for MIMO Gadgets

In this sub-section, we formally introduce the new security notions. We begin
with the first one:

1. d-Chunk Strong Non-Inference and d-Chunk Non-Inference, abbreviated as
d-CNI and d-CSNI respectively.

They share a similar structure with NI/SNI, but output and propagated shares
are replaced with a t-chunk of the output and input sharings respectively, mak-
ing them to be positioned in-between d-(S)NI and d-MIMO-SNI. The formal
definition of d-C(S)NI is as follows.
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Definition 6 (d-C(S)NI). Let G be a gadget with sharings as inputs and out-
puts. G is d-CNI (resp., d-CSNI), if any probes consisting of tint internal probes
and a tout-chunk of output sharings with tint + tout ≤ d can be simulated with a
(tint + tout)-chunk (resp., tint-chunk) of input sharings.

In Fig. 5-(a)(b)(c)(d), we give examples to illustrate the differences of the d-
C(S)NI, (S)NI and MIMO-SNI. Also note that type iii shares cover type i shares
with the same value of t, and thus, as shown in Lemma 3, d-C(S)NI implies the
(S)NI security. The proof is given in the full version.

Lemma 3. d-CNI ⇒ d-NI, d-CSNI ⇒ d-SNI and d-CSNI ⇒ d-CNI.

3.4 New Security Notion for Gadgets with Packed sharings

While the d-C(S)NI meets the minimal requirement for protecting any crypto-
graphic algorithm, it is (by definition) only for gadgets with sharings as inputs
and outputs, and thus incompatible with packed sharings. Such compatibility
has the (obvious) advantage of enabling extension to any gadgets that are com-
posed of packing, multiplying and linear gadgets. For example the masked AES
S-box that we will present latter in Fig. 9, Sect. 6. The security proof of such
composition can be much simplified if there exist secure notions particularly
for packing and multiplying gadgets, more generally, for gadgets with packed
sharings as inputs or outputs.

Therefore, to facilitate the compositions for gadgets with packed sharings,
two other new notions are necessary:

2. For the gadgets with input sharings and output packed sharings, we pro-
pose d-Input-Chunk Non-Inference and d-Input-Chunk Strong Non-Inference,
abbreviated as d-ICNI and d-ICSNI respectively.

3. For the gadgets with input packed sharings and output sharings, we propose
d-Output-Chunk Non-Inference and d-Output-Chunk Strong Non-Inference,
abbreviated as d-OCNI and d-OCSNI respectively

The formal definitions are in Definitions 7 and 8. Also see Fig. 5-(e)(f) for the
corresponding illustrations.

Definition 7 (d-IC(S)NI). Let G be a gadget with sharings as inputs and packed
sharings as outputs. G is d-ICNI (resp., d-ICSNI), if any probes consisting of tint

internal probes and tout shares from output packed sharings with tint + tout ≤ d
can be simulated with a (tint + tout)-chunk (resp., tint-chunk) of input sharings.

Definition 8 (d-OC(S)NI). Let G be a gadget with packed sharings as inputs
and sharings as outputs. G is d-OCNI (resp., d-OCSNI), if any probes consisting
of dint internal probes and a dout-chunk of output sharings with tint + tout ≤ d
can be simulated with tint + tout (resp., tint) shares of each input packed sharing.
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d-MIMO-SNI

tint probes

d-CSNI

(b)

(c) (d)

d-SNI

d-ICSNI

(e)

d-OCSNI

(f)

(a)

d-NI
tint+tout shares tout shares of

tint probes tint probes

of each sharing all sharings
tint shares of
each sharing

tout shares of
all sharings

tint shares of
all sharings

tout shares of
each sharing

tint probes tint probes

tint probes

tout-chunk of
all sharings

input outputinput output

outputinput outputinput

tint-chunk of
all sharings

input

tint-chunk of
all sharings

tout shares of
all sharings

output

tint shares of
each sharings

tout-chunk of
all sharings

outputinput

Fig. 5. Difference between the security notions. (a) d-NI: tout output probes and tint

internal probes can be simulated with propagated shares that consist of tint + tout

shares of each input sharing. (b) d-SNI: output probes are the same as d-NI case, and
the propagated shares consist of tint shares of each input sharing. (c) d-MIMO-SNI:
the output probes consist of tout shares of each output sharing, and the propagated
share is only tint input share of all input sharings. (d) d-CSNI: output probes consists
of a tout-chunk of output sharings, and the propagated shares consist of a tint-chunk
of output sharings. (e) d-ICSNI: output probes are shares from packed sharings, and
the propagated shares are the same as d-CSNI case. (f) d-OCSNI: output probes are
the same as d-CSNI case, and the propagated shares are shares from packed sharings.

In Sects. 4 and 5, we will propose constructions for d-CSNI and d-CNI packed
gadgets that we will use in tailored analyzes of some relevant circuits in Sects. 6
and 7.1. We leave the proposition and proof of more generic composition rules
as an important goal for further research and present in the full version of the
paper first steps in this direction.

Composability of all the new notions
(
i.e., d-C(S)NI, d-IC(S)NI and d-

OC(S)NI
)

can be proved by using the probe propagation framework introduced
in [3,11] (see a description in the full version).
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4 Packed Multiplication Gadget

4.1 Construction

We consider the element-wise product (a.k.a., the entrywise product or the
Hadamard product) of two secret vectors. That is, for x def=

(
x[1], . . . ,x[�]

)
and

y def=
(
y[1], . . . ,y[�]

)
, we consider computing z = x
y def=

(
x[1]y[1], . . . ,x[�]y[�]

)

in the masked domain, where 
 denotes the element-wise multiplication over F�
q.

The inputs of the packed multiplication gadget are � × 2 Boolean sharings:

{x̂i}�
i=1

def=
{(

x̂i[1], . . . , x̂i[n]
)}�

i=1
and {ŷi}�

i=1
def=

{(
ŷi[1], . . . , ŷi[n]

)}�

i=1

And the outputs should also be � Boolean sharings {ẑi}�
i=1 such that:

n∑

i=1

ẑk[i] =
( n∑

i=1

x̂k[i]
)( n∑

i=1

ŷk[i]
)
, for any k ∈ [�].

The gadget requires an (n − 1) × � matrix A such that any d < n columns
of [I,A] are independent. In other words, [I,A] is the generating matrix

(
with

the size (n − 1) × (�+n − 1)
)

of a liner code with dual distance d + 1. A typical
example of A is an (n − 1) × � MDS matrix, and in this case, d = n − 1.

The packed multiplication can be divided into two sub-gadgets: Packing
and Multiplying. Generally speaking, the first gadget manipulates {x̂i}�

i=1 and
{ŷi}�

i=1 separately to compute the packed sharings (x̃, û) ∈ (F�
q,F

n−1
q ) and

(ỹ, v̂) ∈ (F�
q,F

n−1
q ), and the second gadget computes the result from the packed

sharings. More details are elaborated as follows:

– Packing: This sub-gadget packs the sharings {x̂i}�
i=1 into a packed sharing

that is a tuple (x̃, û) ∈ (F�
q,F

n−1
q ), such that for any k ∈ [�], xk can be

reconstructed from x̃[k] and û via xk = x̃[k] ⊕ ûA[, k]. The packed sharings
should also meet the requirement of security, that is, any d elements of (x̃, û)
are independent of the secret variables x.
Similarly, {ŷi}�

i=1 are also packed into a packed sharings (ỹ, v̂) in the same
vein.

– Multiplying: This sub-gadget computes the sharings of x
y from the packed
sharings (x̃, û) and (ỹ, v̂). At a high level, for each k ∈ [�], this sub-gadget
perform a calculation with two-stages that first calculates outer product of the
input shares (x̃[k], v̂)T × (ỹ[k], û), and then compresses the results with some
randomness. More importantly, the random matrix R and the calculation of
S are shared (amortized) for different values of k.

We give the packed multiplication gadget in Gadget 1, which is made up of
Gadget 1-P and Gadget 1-M for packing and multiplying respectively. We also
present examples of Gadget 1-P and Gadget 1-M in Figs. 6 and 7 respectively.
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[
Q[1,1],Q[1,2]
Q[2,1],Q[2,2]

]

A

⊕

∑∑

x̃[1] x̃[2]

∑∑

û[1] û[2]

Q̂

⎡

⎣
x̂1[1], x̂2[1], x̂3[1]
x̂1[2], x̂2[2], x̂3[2]
x̂1[3], x̂2[3], x̂3[3]

⎤

⎦

⎡

⎣
X[1,1],X[1,2],X[1,3]
X[2,1],X[2,2],X[2,3]
X[3,1],X[3,2],X[3,3]

⎤

⎦

∑

x̃[3]

⎡

⎣
Q̂[1,1], Q̂[1,2], Q̂[1,3]
Q̂[2,1], Q̂[2,2], Q̂[2,3]

0 0 0

⎤

⎦

$

input

output

Fig. 6. Illustration of Gadget 1-P for n = 3 and � = 3

[
ek = x̃[k]ỹ[k], kT

k = x̃[k]v̂
wT

k = ỹ[k]v̂T, S = ûTv̂

]

[
x̃[k], û

]T [
ỹ[k], v̂

]
×

[
ek, 0
wT

k , (S ⊕ R)

] [
1
aTk

]

=
[

ek

wT
k ⊕ (S ⊕ R)aTk

]

t̂k[1]

t̂k[2]

t̂k[3]

ẑk[1]

ẑk[2]

ẑk[3]

Output

⊕
[
akRdiagaTk

kT
k

]

[
x̃[�], û

]T [
ỹ[�], v̂

]
×

[
x̃[1], û

]T [
ỹ[1], v̂

]
×

... ... ... ...

·ak[1]

·ak[2]

[
e1 = x̃[1]ỹ[1], kT

1 = x̃[1]v̂
wT

1 = ỹ[1]v̂T, S = ûTv̂

]

[
e1, 0
wT

1 , (S ⊕ R)

] [
1
aT1

]

=
[

e1
wT

1 ⊕ (S ⊕ R)aT1

]

t̂1[1]

t̂1[2]

t̂1[3]

ẑ1[1]

ẑ1[2]

ẑ1[3]

⊕
[
a1RdiagaT1

kT
1

]

·a1[1]
·a1[2]

[
e� = x̃[�]ỹ[�], kT

l = x̃[�]v̂
wT

� = ỹ[�]v̂T, S = ûTv̂

]

[
e�, 0
wT

� , (S ⊕ R)

] [
1
aT�

]

=
[

e�

wT
� ⊕ (S ⊕ R)aT�

]

t̂�[1]

t̂�[2]

t̂�[3]

ẑ�[1]

ẑ�[2]

ẑ�[3]

⊕
[
a�RdiagaT�

kT
�

]

·a�[2]

·a�[2]

... ... ... ...

·1 ·1 ·1

aTk = A[, k] for k ∈ [�]
R is a 2 × 2 symmatric random matrix
Rdiag is the diagonal matrix of R

... ... ... ...

Fig. 7. Illustration of Gadget 1-M for n = 3



868 W. Wang et al.

Gadget 1. Packed Multiplication
Input: Boolean sharings {x̂i}�

i=1 ∈ (Fn
q , . . . ,Fn

q ) and {ŷi}�
i=1 ∈ (Fn

q , . . . ,Fn
q ).

Output: Boolean sharings {ẑi}�
i=1 ∈ (Fn

q , . . . ,Fn
q ).

1: The gadget ensures that:

ẑk[1] ⊕ . . . ⊕ ẑk[n] =
( n∑

i=1

x̂k[i]
)( n∑

i=1

ŷk[i]
)
, for any k ∈ [�].

2: A is an (n−1)×� matrix over Fq such that any d columns of [I,A] are independent.

Gadget 1-P: Packing

Input: Boolean sharings {x̂i}�
i=1

Output: Packed sharings (x̃, û) ∈ (F�
q,F

n−1
q )

The gadget ensures that: xk = x̃[k] ⊕ ûA[, k], for any k ∈ [�].

1: Randomly generate a matrix Q ∈ F
(n−1)×(n−1)
q

� Amortization: The size of Q is independent of �

2: Q̂ := QA
3: X := [x̂T

1 , . . . , x̂T
� ] ⊕ [Q̂;0�] � 0� denotes an �-length zero vector.

4: û :=
∑n−1

i=1 Q[i, ] and x̃ :=
∑n

i=1 X[i, ]

For the packing from {ŷi}�
i=1 to (v̂, ỹ): Repeat Gadget 1-P with input {ŷi}�

i=1. It
ensures that: yk = ỹ[k] ⊕ v̂A[, k], for any k ∈ [�].

Gadget 1-M: Multiplying

Input: Packed sharings (x̃, û) and (ỹ, v̂).
Output: Boolean sharings {ẑk}�

k=1.
The gadget ensures that

∑n
i=1 ẑk[i] =

(
x̃[k] ⊕ ûA[, k]

)(
x̃[k] ⊕ v̂A[, k]

)
, for any

k ∈ [�].

1: Randomly generate a symmetric matrix R ∈ F
(n−1)×(n−1)
q

2: Let Rdiag be the diagonal matrix such that Rdiag[i,i] = R[i,i] for i ∈ [n − 1]
3: for k = 1; k ≤ �; k++ do
4: Let aT

k = A[, k]
5: ek := x̃[k]ỹ[k],kk := x̃[k]v̂,wT

k := ûTỹ[k],S := ûTv̂

� Compute the outer product:

[
ek, kk

wT
k , S

]
=

[
x̃[k], û

]T × [
ỹ[k], v̂

]

� Amortization: S only need to be computed once for different values of k

6: t̂Tk :=

[
ek, 0
wT

k , (S ⊕ R)

] [
1
aT

k

]
⊕

[
akRdiaga

T
k

kT
k

]

� Amortization: R and Rdiag are re-used for different values of k

7: ẑk := t̂k � [1, ak]
8: end for

4.2 Correctness of Gadget 1

In the following, we claim the correctness of Gadget 1, and the proof is given in
the full version.
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Theorem 1. The correctness of Gadget 1-P and Gadget 1-M are ensured, i.e.,
for any k ∈ [�], xk = x̃[k] ⊕ ûA[, k], yk = ỹ[k] ⊕ v̂A[, k], and

∑n
i=1 ẑk[i] =(

x̃[k] ⊕ ûA[, k]
)(

x̃[k] ⊕ v̂A[, k]
)
.

4.3 Security of Gadget 1

We first describe some intuitions behind the construction with respect to the
security. Then, we give the security claim of Gadget 1 in Theorem 2, where the
proof will be given in the full version.

Gadget 1-P first generates a uniformly distributed matrix Q, which is then
multiplied by A. And, the result is used to mask the input sharings, resulting
in X. As any d columns of [I,A] are independent, any d columns of [Q,QA]
are uniformly distributed. We can see that all probes (at most d) to Gadget 1-P
should relate to no more than d columns of [Q,QA]. To ease the analysis, we can
consider a simple case that the entries of Q are unknown (and there is no probe
to the calculation of QA), the process of summing the rows of [Q,X] should be
randomized by uniform random elements, preventing the leaks of inputs. Then,
regarding the case that Q leaks, one can refer to the rationale of the t-chunk
definition in Sect. 3.2.

The intuition behind the construction of Gadget 1-M is similar, but analysis
will be more scrupulous, since the random matrix R is symmetric.

Theorem 2. Gadget 1-P is d-ICSNI, Gadget 1-M is d-OCNI, and Gadget 1 is
d-CSNI.

5 Linear Gadgets

In this section, we discuss how to implement a linear transformation L : F�
q → F

�′
q

with sharings. First, Subsect. 5.1 shows that the trivial implementation of a linear
function is d-NI. Though, such a trivial implementation suffers from limitations
in the composition with d-CSNI gadgets (e.g., the packed multiplication), which
is shown in Subsect. 5.2. This motivates the construction of a more secure d-CNI
linear gadget in Subsect. 5.3.

5.1 Trivial Implementation

Gadget 2 shows the trivial implementation of a linear operation with Boolean
sharings {x̂i}�

i=1. The gadget manipulates shares with different indices sepa-
rately. Each internal probe relates to at most one index of {x̂i}�

i=1, and any
tout shares of {ẑi}�

i=1 relates to at most tout indices of {x̂i}�
i=1, and in total any

tint internal probes and tout shares of {ẑi}�
i=1 can be simulated with at most

(tint + tout) shares of {x̂i}�
i=1. Thus, Gadget 2 is d-NI for any d ≤ n.

However, Gadget 2 is not d-CNI. For example, if L({x̂k[i]}�
k=1) =

∑�
k=1 x̂k[i]

for i ∈ [n], then for t ≤ d, any t shares of ẑ depend on t shares of each of x̂k[i]
for i ∈ [n], rather than a t-chunk of input sharings. An exception is when shares
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Gadget 2. Trivial linear operation
Input: Boolean sharings{x̂i}�

i=1 ∈ (Fn
q , . . . ,Fn

q )

Output: Boolean sharings {ẑ}�′
i=1 ∈ (Fn

q , . . . ,Fn
q )

1: for i = 1; i ≤ n; i++ do
2: ẑ1[i], . . . , ẑ�′ [i] = L(x̂1[i], . . . , x̂�[i])
3: end for

of input sharings are operated separately, which is shown in Lemma 4, and the
proof is given in the full version.

Lemma 4. Any gadget that manipulates the shares of input sharings separately
(i.e., there is no single variable related to more than one input shares), is d-CNI
for any d ≥ 0.

5.2 Why a d-CNI Linear Gadget Is Necessary?

While trivially implemented linear gadgets are quite efficient, its composition
with the d-CSNI packed multiplication gadget (described in Sect. 4) is not. Below
we elaborate with an example.

Figure 8-(a) shows an improper composition: G1 and G2 are 3-CSNI and 3-
NI respectively, and one probe of G2 can be simulated with one share of each
G2’s input sharing, which however cannot be simulated with the input of G2.
To fix this issue, one can rely on the strategy of adding refreshings between the
two gadgets in the same way as Fig. 3-(c) in Sect. 2.3. Note that a d-SNI refresh
gadget for one sharing of size n asymptotically requires up to O(n log n) random
elements [1,4], and with all the sharings, it leads to an inefficient composition.
Figure 3-(b) shows a more efficient solution, where G2 is changed with a 3-CNI
gadget to make the composition work. The latter solution (of Fig. 3-(b)) raises
the following question:

Can a d-CNI linear gadget be more efficient than the strategy of combining
a trivial linear gadget with d-SNI refreshings?

5.3 New Construction of Linear Operation

We answer the question affirmatively. In Gadget 3, we give a new construction
of linear operation for Boolean sharings. It first refreshes each input sharing
by using the so-called locality refreshing [15,25], which requires n − 1 random
elements. Then, it performs the linear operation on the refreshed sharings. In
total, Gadget 3 uses �(n−1) random elements for � input sharings. In Theorem3,
we claim the security of Gadget 3, and the proof is given in the full version.

Theorem 3. Gadget 3 is d-CNI for any d such that d ≤ n.
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3-CNI 3-NI

1 probe

3-CNI

(a) improper compostion of
d-CNI and d-NI gadgets

propagated shares: 4-chunk

3-CNI

1 probe
propagated shares: 2-chunk

(b) proper compostion of
two d-CNI gadgets

G1G2 G2G1

Fig. 8. An example to show the necessity of d-CNI linear gadget

Gadget 3. d-CNI Linear operation
Input: Boolean sharings {x̂i}�

i=1 ∈ (Fn
q , . . . ,Fn

q )

Output: Boolean sharings {ẑi}�′
i=1 ∈ (Fn

q , . . . ,Fn
q )

1: for k = 1; k ≤ �; k++ do
2: Generate a uniformly distributed vector rk ∈ F

n−1
q

3: ŷk[1 :n − 1] = x̂k[1 :n − 1] ⊕ rk

4: ŷk[n] = x̂k[n] ⊕ ∑n−1
i=1 rk[i]

5: end for
6: Call Gadget 2 with input sharings {ŷi}�

i=1 and output sharings {ẑi}�′
i=1

5.4 Linear Gadgets for Packed sharings

The linear gadget investigated above only considers (Boolean) sharings, which is
already sufficient to protect the cryptographic algorithms. For the packed shar-
ings, the linear gadget are more complicated and may come at high overhead.
The main reason is that, the trivial implementation of linear transformation
gadget is based on the premise that Boolean sharings encode each secret inde-
pendently, which however is not standing for the packed sharings. Besides, the
code-based masking also face this issue, and a similar reasoning can be found
in [38, Sect. 5.2].

An exception is that the addition over packed sharings can be trivially imple-
mented by manipulating shares with different indices separately. That is, for
input packed sharings (x̃, û) and (ỹ, v̂), the trivial addition is (x̃ ⊕ ỹ, û ⊕ v̂).
In Lemma 5, we give the security of this trivial addition, which can be regarded
as a variant of d-NI for the packed sharings (note that the d-NI is defined only
for gadgets with input and output sharings). The proof will be given in the full
version.

Lemma 5. For a trivial addition gadget with two input packed sharings, any
tout shares of output packed sharings and tint internal probes can be simulated
with tint + tout shares of each of input packed sharings.
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6 Application to AES SubBytes

6.1 Implementation Approach Using the Tower Field Method

AES-128, the internal states, including the round keys, are viewed as a set of 16
variables (say, {x1, . . . , x16}) in F28 . In its SubBytes step, an S-box is computed
over each of the 16 states. The S-box is a nonlinear function F28 → F28 that con-
sists of the inverse in F28 and an affine transformation. In the field inversion can
be decomposed into several multiplications in F24 (that can be fully tabulated)
and linear operations using the tower field method [29]:

1. (ah, al) := δ(x) ∈ (
F24 ,F24

)
2. a := λa2

h ⊕ al(ah ⊕ al) ∈ F24

3. a′ := (a2a)4a2 ∈ F24 4. a′
h := a′ah ∈ F24

5. a′
l := a′(ah + al) ∈ F24 6. S(x) := Aff

(
δ−1

(
(a′

h, a′
l)

)) ∈ F28

In detail, the input x ∈ F28 is mapped to ah, al ∈ F24 using a linear isomorphism
mapping δ : F28 → (F24 ,F24), and λ is a constant in F24 . After computations
over F24 in steps 2 to 5, the inverse isomorphism mapping δ−1 : (F24 ,F24) → F28

maps (a′
h, a′

l) back to an element in field F28 , and finally, an affine transformation
Aff : F28 → F28 yields the S-box output.

We use MDS matrices from the Reed-Solomon code [34], and thus n = d +
1. By the MDS conjecture [36], d × � MDS matrix over F24 shall satisfy � +
d ≤ |F24 | = 16. Thus, we set � = 8 and implement 8 S-boxes together by
using the packed multiplication (16 S-boxes can be achieved by invoking this
implementation twice). The input and output of masked S-boxes are 8 sharings.
The implementation is optimized by separating the packing and multiplying
gadgets to reduce the number of calls to packing, as well as to re-use the packed
sharings to the largest extent. The process is shown in Fig. 9, in which P and
M denote the packing and multiplying of Gadget 1-P and Gadget 1-M with
� = 8 respectively. The ()2, ()4, δ, λa2 and ⊕ are trivial implementations of the
corresponding linear operations, and the last gadget that is a combination of
inverse isomorphism and affine is implemented by Gadget 3.

In the security analysis, to be strictly consistent with the definition of circuits,
where all variables are in the same finite field, we map each variables (say a) in
F24 to a variable (say b) in F28 , such that the most significant 4 bits of b are
identical to the 4 bits of a, and the least significant 4 bits of b are zeros. Then,
each function over F24 is isomorphically mapped to a gate over F28 by which the
function is performed only over the most significant 4 bits of the variables. The
function δ : F28 → (F24 ,F24)

(
resp., δ−1 : (F24 ,F24

) → F28) is isomorphically
mapped to a gate F28 → (F28 ,F28)

(
resp., F28 → (F28 ,F28)

)
by which each

output (resp., input) is mapped to a variable in F28 by the same vein as before.
Note that these mappings are only for the security analysis and do not impact
the efficiency of the implementation.

Proposition 1 (The SubBytes implementation is d-CSNI). The com-
posed gadget in Fig. 9 is d-CSNI.

The full proof is given in the full version.
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δ

P

P

M

λa2

⊕

P

()2 P

M ()4 P M

P

M

M

δ−1

Inv

Aff.

⊕

⊕

M: Gadget 1-M
P: Gadget 1-P

Inv

ah

al

: � sharings
: 1 packed sharing

Fig. 9. Masked AES S-box with packed multiplication.

Though we adopt the tower field method [29] and separate the packing and
multiplying gadgets for the sake of reducing the cost to the utmost. We believe
a simpler implementation using the multiplication chain [35] in a larger field
F28 will be interesting as well. In this respect, we describe such a masked AES
implementation in the full version.

6.2 Implementation Results

It can be seen that, the implementation of 8 S-boxes contains 6 instances of
Gadget 1-P and 5 instances of Gadget 1-M. The random requirements of Gad-
get 1-P and Gadget 1-M are d2 and d(d + 1)/2 4-bit variables respectively. The
δ−1 and affine operation are implemented together by Gadget 3, which requires
8d� bytes of randomness. At last, the total random bits for 16 AES S-boxes is

((
d2 × 6 + (d(d + 1)/2) × 5

) × 4 + d� × 8
)

× 2 = 68d2 + 20d + 16d�.

For � = 8, the above result is 68d2 + 148d.
The S-boxes are implemented with security orders d = 4, 8 based on the ARM

Cortex M architecture. The multiplication by matrix A at line 2 of Gadget 1-P
and line 6 of Gadget 1-M are tabulated, which in total requires 16d� bytes of
memory. For the consistency with the state-of-the-art results, the randomness
in our implementations can be obtained from a constrained TRNG that outputs
32-bit of fresh randomness every 80 clock cycles, which is also used in [9] and
recommended in [27]. For the comparison with the state-of-the-art implementa-
tions, we consider the implementations of bitslice AES S-boxes reported in [9,19]
as the benchmarks.

The performance results are summarized in Table 2. Compared with the work
of [9], our implementation saves 55% and 68% cycles for the generation of ran-
domness for d = 4 and 8 respectively. The code sizes of our implementations
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are larger, which is due to the loop unrolling of our implementation. Indeed, our
implementations are slightly slower than the bitsliced methods in computation,
which is because that bitsliced methods perfectly fit the bitwise AND and XOR
instructions. By contrast, our implementations are based on the multiplication
in GF(24), which is not directly supported in microprocessors and can only rely
on pre-computed tables. Nevertheless, we emphasize that this computational loss
could be mitigated or eliminated via the following two approaches:

1. One can optimize the matrix A to make the corresponding multiplication
more efficient. Sometimes an MDS matrix is not needed: even though d <
n − 1, the ratio of cost to security order may be better (than using the MDS
matrix).

2. One can implement the masked AES on hardware, where the field multipli-
cation and linear transformation can be optimized in bit-level.

We refer to them as future works. Finally, despite the computational loss, our
implementation still achieves a gain of up to 33% in total speed when d = 8.

Regarding computational cost, the issue of field multiplication in software
indicates that bitsliced implementations may be more efficient. However, the
bitsliced consumes more randomness. With same value of security order d and
the number of parallel multiplications (say, �), larger field (say, F24 or F28) may
give a smaller number of shares n for a packed sharing. Generally, if �+d ≤ |Fq|,
we can choose A in Gadget 1 an MDS matrix, and then we have n = � + d.
But for bitsliced case, |Fq| = 2, and thus n > � + d. Therefore, the situation
of combining bitsliced implementation with the packed multiplication is more
complicated: operation can be more efficient (with the bitwise AND instruction)
at the cost of more randomness bits. We refer to this investigation as a future
work.

Last but not least, we make the source codes of our AES-Sboxes implemen-
tation available on https://github.com/wjwangcrypto/Packed mul.

Table 2. Summary of performances for 16 AES S-boxes

Cycles for

Computation

Cycles for

Generating

Randomness

Total

Cycles

Code

size

RAM

size

[19, R.-P. method], d = 4 19 232 34 944 54 176 4KB Unreported

[19, Bitsliced method], d = 4 11 502 17 472 28 974 3.1KB Unreported

[9, Bitsliced method], d = 4 9 222 9 282 18 504 Unreported Unreported

Our work, d = 4 15 998 4 200 20198 9.8KB 10.9KB

[19, R.-P. method], d = 8 70 840 163,072 233 912 4KB Unreported

[19, Bitsliced method], d = 8 34 798 81 536 116 334 3.1KB Unreported

[9, Bitsliced method], d = 8 27 028 43 316 70 344 Unreported Unreported

Our work, d = 8 33 142 13 840 46982 17KB 11.8KB

https://github.com/wjwangcrypto/Packed_mul.
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7 Application to GHASH, AES-GCM, and More

7.1 A Brief Description of GHASH and AES-GCM

Authenticated encryption aims at ensuring both confidentiality and integrity
simultaneously [10], and has became the de facto standard for secure data trans-
ferring. The authenticated encryption algorithm AES-GCM was proposed by
McGrew and Viega in [30] and standardized by NIST since 2007. It combines
an encryption based on the widely used AES algorithm in counter mode and
an authenticator based on the GHASH function involving multiplications in
F2128 . The authenticator mixes ciphertexts, potential associated data and a secret
parameter derived from the encryption key to produce a tag.

It is compulsory to seek for side-channel secure implementations for such a
standard. A crucial step is to secure the GHASH function, which is essentially
a polynomial-evaluation hash. Its takes ι + 1 variables s0, . . . , sι in F2128 as well
as an authentication key h ∈ F2128 as inputs, and evaluates Eq. 2 below.

tag = hιs0 ⊕ hι−1s1 ⊕ . . . ⊕ hsι . (1)

A sequential calculation of the polynomial-evaluation hash can be built by
the Horner’s rule [24]:

xi =

{
0 for i = 0
(xi−1 ⊕ si)h for i = 1, . . . , ι

, (2)

where the output tag = xι.
For the underlying block cipher AES, the implementation approach has been

discussed in Sect. 6. Here we concentrate on the other main indigent GHASH.
Note that various SCAs against GHASH have been reported in e.g., [7,8], which
enable recovering the key h and creating forgeries. It is thus unsurprising that
masking GHASH has received quite a lot attention, see e.g., [32,37]. However,
existing masked implementations of GHASH only considered protecting against
known SCAs, leaving out provable security. Here we will fill in the gap. In detail,
we study the case that h and s0, . . . , sι are encoded into sharings: ĥ and ŝ0, . . . , ŝι,
and the masked GHASH outputs the sharing of the tag. The crux is to masking
the polynomial-evaluation hash (Eq. 2), on which we will elaborate in the next
sub-section.

7.2 Provably Secure Masked Implementation of Polynomial-
Evaluation Hash

To mask the polynomial-evaluation hash, the most straightforward approach is
to apply ISW multiplication (more concretely, the generalized version for finite
field in [35]) in the sequential calculation of Eq. 2. This approach consumes ι+1
ISW multiplications, each of which consists of (d + 1)2 bilinear multiplications
and requires 64(d+1)d random bits. Based on the above, the cost of this approach
is estimated and summarized in Table 3.
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Note that the computation of polynomial-evaluation hash can be parallelized.
In detail, assuming � | ι, the parallelized version computes {x

(i)
1 , . . . , x

(i)
� } from

i = 0 to i = ι
� as follows:

x
(i)
k =

{
skhk for i = 0
(x(i−1)

k ⊕ sk+ik)hk for i = 1, . . . , ι
�

, for k ∈ [�] (3)

Finally, the summation
∑�

k=1 x
( ι

� )

k is taken as the tag. The computation of
{x

(i)
1 , . . . , x

(i)
� } for i ∈ [ ι

� ] can be parallelized and thus fits our packed multi-
plication of Gadget 1. In Fig. 10, we present our new approach based on packed
multiplication.

M: Gadget 1-M

P: Gadget 1-P

: � sharings

: 1 packed sharing

P

M

P

⊕P

P

M ... ...

... ...

... ...

P

⊕P M
∑

: 1 sharing

ĥ, ĥ2, . . . , ĥ�

ŝ1, . . . , ŝ� ŝ�+1, . . . , ŝ2� ŝι �+1, . . . , ŝι

the sharing of tag

∑
: Gadget 3: summing of � sharings

... ...

Fig. 10. Masked polynomial-evaluation hash with packed multiplication.

Based on the probing propagation framework, it is easy to see that the com-
posed gadget in Fig. 10 is d-CSNI. To estimate the cost, we use the MDS matrix
from the Reed-Solomon code for the matrix A of our packed multiplication gad-
gets, and thus n = d+1. By the MDS conjecture [36], � and d can be arbitrarily
large as long as � + d ≤ |F2128 | = 2128. The estimated cost of this approach is
also given in Table 3. It can be seen that, asymptotically, the new scheme with
packed multiplication achieves a gain of cost up to � times from the straightfor-
ward approach.

Table 3. Estimated costs of the masked polynomial-evaluation hash over F2128

Sequential implementation
with ISW multiplication

Figure 10 with
packed multiplication

Randomness complexity (in bits) 64(ι + 1)d(d + 1)
64(ι+1)d(d+1)+128(ι+1)d2

�

Computational complexitya (ι + 1)(d + 1)2
(ι+1)(d+1)2

�
aMetric: the number of bilinear multiplications
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7.3 More Applications of the Masked Polynomial-Evaluation Hash

Besides the GCM, polynomial-evaluation hashes have wide applications, see [31,
39]. We thus believe our approach have a great impact. To demonstrate, we take
disk encryption as another example. For this purpose, Halevi proposed a mode
named TET (short for linear-Transformation; ECB; linear-Transformation) [23].
The mode can be seen as the ECB encryption sandwiched between two layers
of “blockwise-universal hash”. An instance of such hashes proposed in [23] was
named Blockwise Polynomial-Evaluation (BPE). With inputs x1, . . . , xτ ∈ F

ι
2p

and key (β, τ) ∈ (F2p ,F2p), BPE firstly computes

s = x1τ ⊕ x2τ
2 ⊕ . . . ⊕ xιτ

ι. (4)

Then, the result is obtained by

yi = xi ⊕ s ⊕ αi−1β, for i ∈ [ι],

where α ∈ F2p is a constant. It is clear that BPE is essentially a polynomial-
evaluation hash following Eq. 1, and thus it can also be parallelized and imple-
mented in the same vein as that of Fig. 10.
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Abstract. This paper presents an attack based on side-channel infor-
mation and (ISD) on the code-based Niederreiter cryptosystem and an
evaluation of the practicality of the attack using an electromagnetic
side channel. We start by directly adapting the timing side-channel
plaintext-recovery attack by Shoufan et al. from 2010 to the constant-
time implementation of the Niederreiter cryptosystem as used in the offi-
cial FPGA-implementation of the NIST finalist “Classic McEliece”. We
then enhance our attack using ISD and a new technique that we call itera-
tive chunking to further significantly reduce the number of required side-
channel measurements. We theoretically show that our attack improve-
ments have a significant impact on reducing the number of required
side-channel measurements. For example, for the 256-bit security param-
eter set kem/mceliece6960119 of “Classic McEliece”, we improve the
basic attack that requires 5415 measurements to less than 562 measure-
ments on average to mount a successful plaintext-recovery attack. Fur-
ther reductions can be achieved at the price of increasing the cost of the
ISD computations. We confirm our findings by practically mounting the
attack on the official FPGA-implementation of “Classic McEliece” for
all proposed parameter sets.

Keywords: ISD · Reaction attack · Iterative chunking · SCA ·
FPGA · PQC · Niederreiter · Classic McEliece

1 Introduction

Many fields of research and industry are having high hopes on the power of
quantum computing, e.g., for artificial intelligence, drug design, traffic control,
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and weather forecast [24]. This growing interest in quantum computing has led to
a rapid development of quantum computers in the last decade. At the Consumer
Electronics Show (CES) in 2019, IBM announced their first commercial quantum
computer with 20 qubits [29]. Even larger experimental quantum computers are
operating in the labs of Google, IBM, and Microsoft. However, besides the high
hopes on a new area of quantum computing, quantum computers pose a severe
threat on today’s IT security: A sufficiently large and stable quantum computer
can solve the integer factorization and discrete logarithm problems in polynomial
time using Shor’s quantum-computer algorithm [35], thus completely breaking
most of the current asymmetric cryptography like RSA, DSA, and DH as well
as ECC schemes like ECDSA and ECDH.

As an answer to this threat on asymmetric cryptography, the research field of
post-quantum cryptography (PQC) has emerged in the last two decades, devel-
oping and revisiting alternative cryptographic schemes that are able to withstand
attacks by quantum computers. The most popular approaches are multivariate,
hash-, lattice-, code-, and isogeny-based cryptography. For details on the basic
ideas behind these approaches, we refer the reader to, e.g., [5,15]. Code-based
cryptography is often regarded as the most mature and reliable, but with a major
drawback of being much less efficient than, e.g., lattice-based cryptosystems. The
McEliece [27] and the Niederreiter [30] cryptosystems using binary Goppa codes
are typically considered as conservative but safe post-quantum solutions.

The National Institute of Standards and Technology (NIST) started a public
process for the standardization of PQC schemes [12] in November 2017; schemes
from all classes mentioned above have been submitted. Very recently, the stan-
dardization process entered its third and final phase. The “Classic McEliece”
cryptosystem [8] was chosen as one of the four finalists for the standardization
of key-encapsulation mechanisms (KEMs) [1]. It is highly expected by the com-
munity that “Classic McEliece” will become part of a NIST standard of PQC.

An important question in the standardization process besides the definition
of secure schemes and the choice of secure parameters is the impact of the imple-
mentation of a scheme on its security. A general requirement on the implemen-
tation of a scheme is that the runtime of the operations, e.g., key generation,
signing, or decryption, does not vary based on secret information like the private
key or the plaintext, i.e., that the scheme has a constant-time implementation.
(Constant time in regard to public input data like the public key or the ciphertext
is not required for this property.) However, there are more side channels besides
timing that might enable an attacker to get access to private information like
power consumption and electromagnetic, photonic, or acoustic emissions. For
many PQC schemes, it is still unknown what side-channel attacks are practi-
cally feasible and how to protect against them. A general overview of the state
of attacks on the implementation of PQC schemes is presented in [40].

In this work, we focus on the “Classic McEliece” cryptosystem, the well
understood and trusted KEM finalist in the NIST standardization process, and
describe a plaintext-recovery attack on its decryption algorithm using side-
channel information. The “Classic McEliece” cryptosystem—though honouring
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Robert J. McEliece, the pioneer of code-based cryptography, with its name—is
using the equivalent approach proposed by Harald Niederreiter as described in
Sect. 2.3.

Our Contributions. We start by directly adapting the side-channel attack from
Shoufan et al. [36] for plaintext recovery on the McEliece cryptosystem to a
side-channel attack on the Niederreiter cryptosystem. There are some important
differences that we overcome in this adaptation: The attack of Shoufan et al. is
aiming at a timing side channel present due to the non-constant time Patterson’s
decoder; in contrast, we attack the constant-time hardware reference implemen-
tation [41] of “Classic McEliece” that uses a constant-time implementation of
the Berlekamp-Massey (BM) decoder. Therefore, a timing side channel does
not exist any more—instead we perform an electromagnetic (EM) side-channel
attack.

Our attack is a reaction-based attack that makes use of decoding failures:
Adding more errors to the ciphertext leads to a failed decoding of the BM decoder
and the output error-locator polynomial has very few roots. This can be detected
over the EM side channel and used to learn the value of the error position.

Our main contribution is the optimization of the number of required side-
channel queries in our reaction-based attack:

1. We introduce a new technique that we call iterative chunking which enables
us to iteratively increase the number of learned error positions (chunks) in
one (cumulative) query. We analyze our approach and theoretically derive an
estimate for the optimal chunk size for an attack based on the system param-
eters. Our technique provides huge improvement in the number of required
queries of up to 90% for the “Classic McEliece” parameters [9].

2. We further improve our attack by introducing the possibility of a trade-off
between required queries and computational power. We do this by perform-
ing a certain amount of queries, reducing the problem to a smaller one, and
applying known information set decoding algorithms on the remaining prob-
lem. The trade-off strongly depends on the computational capabilities of the
attacker, but even for relatively small computational effort of 240 operations,
we can further reduce the necessary queries by around 15%.

We implement and demonstrate a practical attack on the official hardware
implementation [41] of “Classic McEliece” [9]. The practically achieved improve-
ments almost perfectly match our theoretical analysis.

Related Work. In [36] Shoufan et al. present a timing attack on the McEliece
cryptosystem that recovers the plaintext of a given ciphertext using a decryption
oracle (see Sect. 2.4). In this attack, a bit-flip error is added to the ciphertext,
which results in a shorter timing during decryption if the flipped bit was set in
the original error vector. Fault attacks on the variables used during encryption
by McEliece and Niederreiter schemes are examined in [10]. A differential power
analysis (DPA) attack is presented in [11] that recovers the secret key of a QC-
MDPC McEliece FPGA implementation by measuring the leakage of the carry
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occurring during the key rotation operation. A similar attack on a software
implementation is presented in [15], using the detection of counter overflows. An
attack described in [33] uses information gained by DPA about the positions of
set bits to recover the secret key in a cryptanalytic attack.

The attack in [36] by Shoufan et al. can be considered as a reaction-based
side channel attack. In a different scenario, reaction attacks have been success-
fully applied to several code-based cryptosystems [2,17,18,34]. In these attacks,
the attacker (typically) sends carefully chosen encrypted messages to a decryp-
tion oracle and observes whether these cause decryption failures. Based only on
observing whether there was a failure, these attacks can extract the secret key.

Information set decoding is a well known decoding technique that is dating
back to the work of Prange [31] in the 1960’s. The basic approach has been
improved throughout the years by the works of Lee and Brickell [21], Leon [22],
Stern [39] (and concurrently Dumer [14]) who first proposed to use collision
decoding (actually the term was introduced later [7]). All subsequent improve-
ments build on top of Stern’s algorithm by exploring more refined techniques for
collision search. The list is extensive and includes: [3,7,16,25,26].

We are not aware of a previous work that combines information set decoding
with side-channel analysis and cumulative reactions.

Structure of This Paper. Section 2 provides some background information on
information set decoding and on the code-based McEliece and Niederreiter cryp-
tosystems and gives a brief introduction to the side-channel attack from Shoufan
et al. [36]. Section 3 follows up with a description of our adaption of Shoufan et
al.’s attack to Niederreiter and our improvements for reducing the number of
queries with iterative chunking. Here, we mathematically estimate the optimal
parameter for our chunking strategy, describe an implementation using an ideal
decryption oracle, and discuss the first evaluation results. In Sect. 4, we provide
a leakage analysis of the FPGA implementation from [41] using EM leakage,
present a construction of a practical decryption oracle, and evaluate the entire
approach practically. We discuss the applicability of the iterative chunking app-
roach in Sect. 5 and conclude the paper in Sect. 6.

Notation. In the following, GF(q) denotes the Galois field of order q. Capital
bold letters like H denote matrices and small bold letters denote column vectors
over a Galois field, e.g., plaintext message m, ciphertext c, and error vector e.
The corresponding rows vectors are denoted as m�. The i-th column vector of
a matrix H is denoted as Hi and the j-th coordinate in a vector m as mj . The
function w(v) returns the Hamming weight (HW) of an input vector v.

2 Background

In this section, we briefly introduce information set decoding, the McEliece cryp-
tosystem, and its dual variant, the Niederreiter cryptosystem, which will be the
object of our attack, as well as the timing attack from Shoufan et al. [36].
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2.1 Information Set Decoding

Suppose we are given a parity check matrix H ∈ GF(2)(n−k)×n of a binary
[n, k] code of dimension k and length n, and a syndrome s ∈ GF(2)n−k. An
information set decoding (ISD) algorithm solves the decoding problem:

Find e ∈ GF(2)n,w(e) = w such that H · e = s. (1)

Basically, the algorithm guesses the error vector on k coordinates, and then uses
this information to obtain the remaining error coordinates. The set of k coordi-
nates is called information set, since it carries enough information to recover the
entire error vector. The decoding problem gives rise to a linear system with the
error coordinates e1, . . . , en as unknowns. If k coordinates are correctly guessed,
the system can be uniquely solved. We check the correctness of the solution by
measuring the weight of the error. If the guess was wrong, we guess again.

ISD was proposed by Prange [31]. In this simplest form, we assume an error-
free information set. The probability that we guess k error-free coordinates is(
n−k

w

)
/
(

n
w

)
. Stern’s variant [39] first introduced collision decoding that makes use

of the birthday paradox. In essence, we allow some errors in the information set
which increases the probability of success. The information set is split into sets
with equal amount of errors p. Then the algorithm searches for collisions on these
two sets, such that the sum of p columns restricted to � coordinates matches the
appropriate coordinates of the syndrome. It is the birthday decoding idea that
improves asymptotically with respect to the previous variants. This idea was
further generalized in the May-Meurer-Thomae (MMT) [25] and the Becker-
Joux-May-Meurer (BJMM) [3] variants that use the more elaborate generalized
birthday problem. Here instead of looking for collisions between two lists, the
collision search is between 4 or 8 lists in multiple layers. May and Ozerov [26]
noticed that Stern’s approach can be improved by using more sophisticated
algorithms for approximate matching. Their approach is general enough to be
applied to other variants such as BJMM.

2.2 McEliece Cryptosystem

In 1978, McEliece proposed a cryptosystem using error correcting codes [27].
The basic idea of this cryptosystem is to use an error correcting code with an
efficient error correction algorithm that can correct up to t errors as secret key
and an obfuscated generator matrix of the corresponding code as public key.
With code length n and code dimension k, the public key is a k × n generator
matrix G. Encryption works by computing a code word for the plaintext m
using the generator matrix and by adding an error e with w(e) ≤ t that is small
enough so that the error correction algorithm is able to correct the error. The
ciphertext c is therefore computed as c� = m�G + e�. The receiver simply
corrects the error by applying his secret error correction algorithm and recovers
the plaintext from the code word. The security of the system is based on the
hardness of decoding a general linear code, a problem known to be NP-hard [4],
and the difficulty to recover the secret structure of the code from the public
generator matrix.
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2.3 Niederreiter Cryptosystem

In 1986, Niederreiter proposed a dual variant of the McEliece cryptosystem using
a (n − k) × n parity-check matrix H instead of a generator matrix as public
key [30]. In this case, an error vector e of weight w(e) = t is the plaintext;
the syndrome s = He of the error vector is the ciphertext. Here, an efficient
syndrome decoding algorithm is used for decryption. Due to the format require-
ments on the plaintext of having a certain length and weight, this scheme is
usually used as a hybrid scheme with a random error vector that is used with
a key derivation function to obtain a symmetric key for the encryption of the
actual message.

In general, any error correcting code can be used for the McEliece and Nieder-
reiter cryptosystems; however, in order to obtain an efficient and secure system,
the code must be efficient to decode with possession of the secret key and hard
to decode given only the public key and a ciphertext. McEliece proposed to use
binary Goppa codes, which is still considered secure, while Niederreiter origi-
nally proposed to use Reed-Solomon codes, which turned out to be insecure [37].
Today, there are many variants of the McEliece and Niederreiter systems using
different codes with different properties. However, using binary Goppa codes
(for both McEliece and Niederreiter) is generally the most conservative choice.
A drawback of using binary Goppa codes is the large size of the public key of
around 1 MB for 256-bit security.

In the following, we will focus on the Niederreiter cryptosystem with binary
Goppa codes with parameters as defined in the NIST submission “Classic
McEliece” for Round 1 [8] and Round 2 [9] (see also [6]). We have summarized
the notation that we will use in Table 1.

Key generation of the Niederreiter cryptosystem using binary Goppa codes
works as follows (see [41]): Choose a random irreducible polynomial g(x) over
GF(2m) of degree t and a list (α0, α1, . . . αn−1) ∈ GF(2m)n of distinct elements
of GF(2m) (the support). From g(x) and (α0, α1, . . . αn−1), compute the t × n
matrix H̃ over GF(2m). Transform H̃ into a mt×n binary matrix H by replacing
each GF(2m)-entry by a m-bit column. Finally, compute the systematic form
H′ = [Imt|K] of H (where Imt ∈ GF(2)mt×mt denotes the identity matrix)
and return g(x) and (α0, α1, . . . αn−1) as private key and K as public key. The
last step of computing the systematic form H′ of the parity-check matrix H
compresses the size of the public key from mtn bits to mt(n − mt) bits, because
the preceding identity matrix Imt does not need to be stored or communicated.

Encryption works as follows: The sender constructs the mt×n binary parity-
check matrix H′ = [Imt|K] by appending K to the identity matrix Imt and
encrypts the error vector e ∈ GF(2)n (i.e., the plaintext) with w(e) = t to the
syndrome s ∈ GF(2)mt as s = H′e (i.e., the ciphertext).

Decryption of the syndrome depends on the error-correcting algorithm
used. Examples are Patterson’s algorithm and the BM algorithm. Using the BM
algorithm as in [6,41], decryption works as follows: First, use the idea attributed
to Sendrier in [19] and compute the double-size 2t×n matrix H̃(2) over GF(2m).
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Table 1. Symbols for “Classic McEliece” (Niederreiter) [9,41].

Symbol Description

m ∈ N Size of the binary field

t ∈ N Correctable errors

n ∈ N Code length

k ∈ N Code dimension (k = n − mt)

g(x) Goppa polynomial over GF(2m) of degree t

(α0, α1, . . . αn−1) ∈ GF(2m)n Support of n distinct elements of GF(2m)

H ∈ GF(2)mt×n Parity-check matrix

H′ = [Imt|K] ∈ GF(2)mt×n Parity-check matrix in systematic form

K ∈ GF(2)mt×(n−mt) Public key

e ∈ GF(2)n Error vector (plaintext)

s ∈ GF(2)mt Syndrome (ciphertext)

σ(x) Error-locator polynomial over GF(2m) of degree t

Table 2. Parameter sets of “Classic McEliece” [9].

kem/mceliece-

348864 460896 6688128 6960119 8192128

m 12 13 13 13 13

t 64 96 128 119 128

n 3488 4608 6688 6960 8192

k = n − mt 2720 3360 5024 5413 6528

Compute the double-size syndrome s(2) = H̃(2) · (s|0) by appending n − mt
zeros to the syndrome s. Now, we can use the BM algorithm to compute the
error-locator polynomial σ(x) of s(2). The roots of σ(x) correspond to the error-
positions. Therefore, the error-vector bits can be determined by evaluating σ(x)
at all points in (α0, α1, . . . αn−1). If σ(αi) = 0, 0 ≤ i < n, the i-th bit of the
error vector ei = 1, otherwise ei = 0.

A KEM is constructed in “Classic McEliece” from the basic encryp-
tion/decryption primitives using a standard transformation. Table 2 shows the
parameters proposed by [9].

2.4 Timing Side-Channel Attack on McEliece

Shoufan et al. in [36] describe a plaintext-recovery attack on the McEliece cryp-
tosystem that is based on distinguishing the number of added error bits during
the decoding step: The idea of the attack is to add (xor) an additional error bit
to a given ciphertext at a certain position. If previously there had not been an
error added to the code word on that position, in total, there is now one more
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error in the code word. If previously there had already been an error at that
position, the error is extinguished and there is now one error less. If the attacker
is able to distinguish these two cases based on some side channel, he is able to
mount the following attack: By iteratively adding an error to each position of
the ciphertext and determining via the side channel if in total the number of
errors has increased or decreased, the attacker is able to determine the position
of all error bits, to correct the errors, and to decode the ciphertext.

Patterson’s algorithm is a popular decoding algorithm for binary Goppa
codes. However, the runtime of Patterson’s algorithm depends on the number
of errors that have been added to the code word. Shoufan et al. are using these
timing variations in Patterson’s algorithm as side-channel information to mount
their attack: If an error is added to a previously error-free position, Patter-
son’s algorithm has a slightly longer runtime; if an error is extinguished by the
additional error bit, the runtime of Patterson’s algorithm is slightly shorter. Pre-
cisely measuring and categorizing the runtime of Patterson’s algorithm gives the
required information to recover the error positions.

3 Reaction-based Side-Channel Analysis

In this section, we describe our reaction-based plaintext-recovery attack on the
Niederreiter cryptosystem. In Sect. 3.1, we explain how to adapt the timing
attack by Shoufan et al. [36] introduced in Sect. 2.4 on the McEliece cryptosystem
to an EM side-channel attack on the Niederreiter cryptosystem. We describe how
to reduce the number of queries required for a side-channel attack when using
ISD in Sect. 3.2 and we improve our basic attack in Sect. 3.3 using the iterative
chunking technique. Further, we mathematically estimate the optimal param-
eter for our query strategy and evaluate its implementation with a simulation
using an ideal decryption oracle. Finally, we explain how to combine the ISD
techniques with our improved attack in Sect. 3.4.

3.1 Side-Channel Attack on Niederreiter

In the attack by Shoufan et al. in [36] on the McEliece cryptosystem, the number
of errors in the ciphertext is modified simply by adding one more error on varying
positions to the original ciphertext. However, the Niederreiter cryptosystem is
not operating with erroneous code words as ciphertext but with syndromes.
Here, the equivalent of adding an error to a code word in McEliece, is to add
a column of the parity-check matrix (i.e., the public key) to the syndrome (i.e.,
the ciphertext). Therefore, the attack from [36] can trivially be adapted to the
Niederreiter cryptosystem by systematically adding columns of the public key
one by one to the original syndrome. If the bit corresponding to the column was
not set in the original error vector (i.e., the plaintext), the number of errors in
the modified syndrome is increased. Accordingly, if the corresponding bit was
set, an error in the original error vector is effectively removed from the syndrome,
reducing the number of errors. If an attacker can find a side channel that enables
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Algorithm 1: Iterative Reaction-based SCA
input : “Classic McEliece” parameters n, m, t ∈ N

+,
parity-check matrix H′ = [Imt|K] ∈ GF(2)mt×n,
syndrome s ∈ GF(2)mt.

output: Error vector e ∈ GF(2)n.
1 e ← (0, . . . , 0);
2 for i ∈ E = {1, . . . , n} do
3 s′ ← s ⊕ H′

i ;
4 if Oracle(s′) = true then ei ← 1 ;

5 end
6 return e;

him to distinguish these two cases, he is able to mount an attack. Algorithm 1
shows the general approach for this attack. In order to distinguish the cases with
a reduced number of errors from the cases with an increased number of errors,
a query to an oracle is required (line 4 in Algorithm1) that returns true if the
number is reduced and thus an error position has been found.

This decryption oracle can practically be achieved by having the victim
decrypt the manipulated ciphertext and by measuring the side channel dur-
ing the decryption. Therefore, when a non-constant time decoding algorithm
like Patterson’s algorithm is used, a timing side-channel attack as in [36] can be
mounted on Niederreiter as well.

Attacking Constant-Time Implementations. Modern implementations typically
avoid timing side channels by providing a constant-time implementation of crit-
ical algorithms. Thus, in this case another side channel is required to mount the
attack. In Sect. 4, we investigate the EM side channel in the reference hardware
implementation by Wang et al. [41] using a constant-time implementation of the
BM algorithm to demonstrate a practical attack. Another side channel could for
example be a response in a communication protocol if adding an error results in
a decoding failure and if this failure is reported over the network.

For a side-channel attack based on EM, the attacker needs to be in possession
of the device under attack, e.g., a smart card or a security token, that has
physical measures protecting secret information such as private and secret keys,
but no explicit countermeasures prohibiting the exploitation of the side channel.
Furthermore, the attacker needs to be in possession of a ciphertext that he
intends to decrypt, e.g., intercepted on a communication channel. Under these
requirements, the attacker can perform a series of measurements of EM emissions
of the device under attack while decrypting manipulated ciphertexts.

The number of side-channel measurements that is needed for this basic iter-
ative attack algorithm is the number of columns n in the parity check matrix,
which ranges from 3488 to 8192 queries for the NIST parameters of “Classic
McEliece” (cf. Sect. 2.3). However, depending on the attack scenario, the attacker
might only be able to take a limited amount of measurements, e.g., due to the
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Algorithm 2: ISD-supported Iterative Reaction-based SCA
input : Same as Algorithm 1
output: Same as Algorithm 1

1 ̂E ⊂ E = {1, . . . , n}, | ̂E| � k;

2 Same as Algorithm 1 lines 1-5 with ̂E instead of E

3 s̃ ← s − H′ · e;
4 ẽ := (ei)i∈E\ ̂E ; ê := (ei)i∈ ̂E ;

5 H̃′ := (H′
i)i∈E\ ̂E ;

6 ẽ ← ISD(n − | ̂E|, k − | ̂E|, w − w(ê), H̃′, s̃);
7 e ← Reconstruct(ê, ẽ);
8 return e;

cost of each measurement, limited access to the device, or additional counter-
measures on the device. In the next sections, we describe improvements to this
basic algorithm that allow the attacker to significantly reduce the number of
decoding operations that he needs to query from the device under attack.

3.2 Reducing the Number of Queries with Information Set
Decoding

In the reaction attack described in Algorithm 1, we clearly do not have to recon-
struct the entire error vector (all error coordinates) using side-channel informa-
tion. We can recover an information set of size k < n, instead, and use basic
linear algebra to recover the rest of the error vector (cf. Sect. 2.1). We can do
even better if the attacker is in a position to trade-off queries for computational
power—first collect a number of queries less than k, use them to reduce the
problem to a smaller one, and then solve the smaller problem using some of the
ISD algorithms described in Sect. 2.1.

In more detail, let ISD(n, k, w,H, s) be any ISD algorithm, such as Stern’s
or Ball Collision decoding, that on input of a parity check matrix H ∈
GF(2)(n−k)×n and syndrome s ∈ GF(2)n−k outputs an error vector e ∈ GF(2)n

with w(e) = w—a solution to the decoding problem (1).
Suppose we are given an oracle as in Algorithm 1 that we can use to learn the

value of a coordinate ei of the error vector. Using the oracle, we learn a subset of
error indices Ê ⊂ E = {1, . . . , n} where |Ê| � k. We denote the corresponding
subvector of e by ê = (ei)i∈ ̂E and its complement by ẽ = (ei)i∈E\ ̂E . Similarly

Ĥ = (H′
i)i∈ ̂E and H̃′ = (H′

i)i∈E\ ̂E . From the obtained information, setting

s̃ = s − Ĥ · ê, the decoding problem (1) transforms to:

H̃′ · ẽ = s̃. (2)
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Fig. 1. Time-queries trade-off when using ISD decoding algorithms.

So, we have reduced our initial problem to a smaller decoding problem with
parameters k′ = k − |Ê|, n′ = n − |Ê|, w′ = w − w(ê). We solve this problem
by calling the available ISD algorithm ISD(n′, k′, w′, H̃′, s̃). If |Ê| = k, we have
recovered an entire information set and we only need to solve a linear system
using Gaussian elimination. Thus, for convention, we assume ISD(n, 0, w,H, s)
simply performs Gaussian elimination. Algorithm2 details the whole procedure.

The performance of Algorithm 2 depends directly on the size of the set Ê,
i.e., on the number of queries to the oracle. There is a clear trade-off between the
running time and the queries to the oracle, which is depicted in Fig. 1. Basically,
the attacker is free to choose the number of queries that he performs based on his
computational resources. In our depiction of the trade-off, for simplicity, we used
only two ISD algorithms—Stern’s and MMT. We did not use the state of the
art BJMM variant, because there is no compact representation of the concrete
complexity of this algorithm.

3.3 Reducing the Number of Queries with Iterative Chunking

For the approach that we describe here, we need to slightly change the oracle
from the previous section. In particular, we assume the oracle returns true if
the number of errors has not increased (instead of reduced as in Sect. 3.1) and
false otherwise. Note that the real oracle that we construct in Sect. 4.2 actually
captures both cases.

To get some intuition on how our iterative chunking works, we first present
a simpler variant that already reduces the number of needed queries by more
than 35%.

Iterative Chunking with Chunks of Size β = 2. Suppose that instead of a
single error index, we query two error indices (a chunk of size β = 2) at once. We
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Table 3. All cases of the response of the decryption oracle when querying chunks of
size two at once (s′ = s ⊕ H′

i ⊕ H′
j). The first column shows the initial state of the

queried chunk, the second shows the state of the pair after ‘flipping’ the values, the
third shows the total number of errors in the new state, and the last column shows the
oracle’s answer.

(ei, ej) (e′
i, e

′
j) w(e′) Oracle

(0, 0) (1, 1) w + 2 false

(0, 1) (1, 0) w true

(1, 0) (0, 1) w true

(1, 1) (0, 0) w − 2 true

first randomly select a chunk (i, j) of error indices, i, j ∈ {1, . . . , n}, i �= j. We
add both columns H′

i and H′
j to the syndrome s to obtain the new syndrome s′.

We give the input s′ to the decryption oracle. Note that the decryption oracle
will output false only in the case when the values at the corresponding error
indices in the error vector were (ei, ej) = (0, 0) (which we call a ‘low’ chunk).
In all the other cases (we refer to them as ‘high’ chunks, to indicate that there
is at least one ‘1’ in the chunk) the decryption oracle will output true. Indeed,
if (ei, ej) = (0, 0), after adding the pair of columns (H′

i,H
′
j) to the syndrome,

we obtain (e′
i, e

′
j) = (1, 1), and in total w + 2 errors. Hence, the number of

errors has increased beyond w and the decryption oracle will output false. If
(ei, ej) = (0, 1) or (ei, ej) = (1, 0), we get (e′

i, e
′
j) = (1, 0) and (e′

i, e
′
j) = (0, 1)

respectively, and in this case the number of errors does not change (it remains
w) so the decryption oracle returns true. In the last case, (ei, ej) = (1, 1), after
adding the columns we obtain (e′

i, e
′
j) = (0, 0). So in this case, the number of

errors reduces to w − 2, and the decryption oracle returns true as well. Table 3
summarizes the above.

What we can conclude from the previous is that if false is returned, we can
be sure that the corresponding error positions in the error vector were (ei, ej) =
(0, 0). We perform the procedure for new random pairs of positions (i, j) until
we find k/2 pairs whose initial state was (0, 0), i.e., until we encounter k/2 false
oracle answers. Note that after a pair has been queried, we need to undo the
changes made, i.e., return the pair to its initial state.

The improvement using chunks of two is easy to see: Since the length of
the error vector is much bigger than its Hamming weight, most of the time the
randomly chosen chunk will be (ei, ej) = (0, 0), and we can confirm these values
by only one query, instead of two as in the approach from the previous section.

Iterative Chunking for β > 2. This simple strategy for β = 2 is already
significantly better than the näıve approach from the previous section, but we
can do much better by extending this idea to chunks (ei1 , . . . , eiβ

) of size β. We
keep the convention of calling the all-zero chunk (0, . . . , 0) ‘low’ chunk and all
other chunks containing 1s ‘high’ chunks.
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Table 4. Overview of the oracle answers for β = 3 when the number of errors in the
syndrome s are reduced to w(e′) − 1 (s′ = s ⊕ H′

i) with the knowledge of an error
position i in the original error vector e.

s s′ = s ⊕ H′
i

(ei, ej , ek) (e′
i, e

′
j , e

′
k) w(e′) Oracle w(e′) − 1 Oracle

(0, 0, 0) (1, 1, 1) w + 3 false w + 2 false

(0, 0, 1) (1, 1, 0) w + 1 false w true

(0, 1, 0) (1, 0, 1) w + 1 false w true

(1, 0, 0) (0, 1, 1) w + 1 false w true

(1, 1, 0) (0, 0, 1) w − 1 true w − 2 true

(1, 0, 1) (0, 1, 0) w − 1 true w − 2 true

(0, 1, 1) (1, 0, 0) w − 1 true w − 2 true

(1, 1, 1) (0, 0, 0) w − 3 true w − 4 true

First, note that we cannot directly use the same approach for chunks of size
β > 2. For example for β = 3 we have Table 4 analogous to Table 3. Table 4
shows (columns 3 and 4) that there is ambiguity in the oracle answers, so if
the oracle answers false we cannot distinguish whether the chunk was (0, 0, 0),
(0, 0, 1), (0, 1, 0), or (1, 0, 0). However, we can remedy this situation if we reduce
the initial number of errors from w to w − 1 as columns 5 and 6 from Table 4
show. This requires knowledge about the position of one 1 in the error vector.
Adding the corresponding column of the matrix H′ to the syndrome reduces the
number of errors to w − 1. So how can we find the position of one 1? Well, this
can easily be done by first querying chunks of size β = 2 until a ‘high’ chunk
is found. Querying both positions within the ‘high’ chunk of size β = 2 reveals
the position of one 1. The same reasoning extends to any chunk size β: If the
number of errors before we start querying β size chunks is w− (β −2), the oracle
answers false only for low chunks, and we can use this information to distinguish
low chunks. To summarize, the procedure informally goes as follows:

Part I: For a chunk size β, starting at β = 2:
1. Query random chunks of size β without replacement until the oracle

returns true which indicates a ‘high’ chunk.
2. Inspect the positions within the ‘high’ chunk and locate the 1 s.
3. Use these 1s to increase the size of the chunks that we query: by adding

to the syndrome a column H′
i of the matrix H′ corresponding to a 1 at

position i in the error vector we reduce the number of errors by one.
4. Increase the chunk size to β + 1 and repeat from step 1 until β = βT .

Part II: When a threshold βT is reached, change the procedure to:
1. Query random chunks of size βT without replacement. If the oracle

returns true save the ‘high’ chunk in a bucket of capacity n − k.
2. End the whole procedure when k error positions have been learned.
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The threshold βT is an optimization parameter—the optimal value for the
chunk size β at which we need to stop increasing. We determine its value so that
the number of necessary queries to recover an information set is minimized.

Note that, in Part II, we only care about finding enough ‘low’ chunks so that
we recover an information set. So in principle, we can throw away the ‘high’
chunks, unless there are too few chunks remaining—not enough to recover an
information set. This is why we save them in a bucket. After the bucket has been
filled, we start inspecting ‘high’ chunks as well, because we will not be able to
recover an information set otherwise.

Remark 1. Typically there will be only one 1 in a ‘high’ chunk, so to simplify
our analysis, in Part I we will always increase the size of the queried chunks
only by one, although in theory, it is also possible to increase by more than one,
precisely by the weight of the ‘high’ chunk.

Remark 2. We could continue Part I, i.e., increase the size of the queried chunks,
until we have learned k error positions—enough to recover an information set.
However, the increase only makes sense as long as there is a good probability that
the queried chunk is ‘low’—in which case one can learn β zeros in the error vector
in only one query. In contrast, if the chunk size is ‘high’, since we want to increase
the chunk size further, a more expensive inspection with additional queries is
required (around O(log β) queries using a divide-and-conquer strategy). Thus, if
the chunk is ‘high’ with big probability, the advantage from the increased chunk
size quickly diminishes.

The details of the procedure are given in Algorithm3. The algorithm for
inspecting the ‘high’ chunks is given in Algorithm4. It uses a divide-and-conquer
strategy to reduce the number of needed queries.

Finding the Optimal βT . We next analyze the approach in order to determine
the best threshold value and estimate the number of queries needed for the
attack. First let us make some simple but important observations.

The process of querying chunks of size β can be modeled as a sequence of
independent and identical Bernoulli trials in which success means querying a
‘high’ chunk. Indeed, since we assume uniform distribution of the error vectors,
the success probability of all the trials is the same, and depends only on the
number of 1s in the error vector and the size of the queried chunks. As a result,
the number of queries needed to find a ‘high’ chunk follows the geometric dis-
tribution. Based on these observations, we have the following results.

Proposition 1. Suppose we query chunks of size β without replacement, until
we find a ‘high’ chunk.

a. The probability that a queried chunk is high is pβ = 1 −
(
n−w

β

)

(
n
β

) .
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Algorithm 3: Iterative Chunking with β ≥ 2
input : “Classic McEliece” parameters n, m, t ∈ N

+,
binary parity-check matrix H′ = [Imt|K] ∈ GF(2)mt×n,
syndrome s ∈ GF(2)mt,
threshold βT .

output: Partial error vector e′ ∈ GF(2)n,
bucket of chunks containing an error position,
list of remaining column indices.

1 e′ ← [0, . . . , 0] ; // initialize with zero vector

2 β ← 2 ; // start with chunk size 2

3 s′[1] ← s; s′[β] ← s ; // list of syndromes s′[i] for each chunk size 0 < i ≤ βT

4 indices ← [n, . . . , 0] ; // column indices in reverse order

5 bucket ← [];

6 while Len(indices) > β do
7 chunk ← Pop(indices, β) ; // pop β-many indices

8 s′′ ← s′[β] + Sum([H′[i] for i in chunk]) ; // add columns in chunk to s′
9 if Oracle(s′′) = true then // a ‘high’ chunk is found

10 if β < βT or |bucket| > n − k then // conditions for inspecting

11 eid ← FindErrorPositions(chunk, s′,H′); // inspect ‘high’ chunk

12 for i in eid do
13 ei ← 1 ; // update e′ with found errors from ‘high’ chunk

14 if β < βT then

15 s′[β + 1] ← s′[β] − H′[i] ; // remove found errors from s′
16 β ← β + 1 ; // increase chunk size, up to βT

17 end

18 else
19 bucket ← bucket + chunk ; // collect chunks with remaining errors

20 end

21 return e′, bucket, indices;

b. The probability that the weight of the chunk is j under the condition that it
is a ‘high’ chunk is given by

Pr(w(β) = j|High) =

(
w
j

)(
n−w
β−j

)

(
n
β

) − (
n−w

β

) . (3)

c. The expected number of queries until we find a ‘high’ chunk of size β is

E(β) =
1
pβ

. (4)

d. The expected weight of a ‘high’ chunk of size β is

E(w(β)) =
w

(
n−1
β−1

)

(
n
β

) − (
n−w

β

) . (5)
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Algorithm 4: FindErrorPositions
input : chunk ∈ N

i,
list of temporary syndromes s′ with s[i] ∈ GF(2)mt,
binary parity-check matrix H′ = [Imt|K] ∈ GF(2)mt×n.

output: List with error indices.

1 stack ← [Left(chunk), Right(chunk)];
2 eid ← [];
3 while stack not empty do
4 chunk ← Pop(stack);
5 s′′ ← s′[Len(chunk)] + Sum([H′[i] for i in chunk]);
6 if Oracle(s′′) = true then next ← chunk ; // there is an error

position

7 else next ← Pop(stack) ; // continue search in the stack head

8 if Len(next) = 1 then // found an error position

9 Push(eid, next[0]);
10 stack ← [Flatten(stack)]; // inspect entire stack

11 else // split the next chunk directly

12 Push(stack, Left(next));
13 Push(stack, Right(next));

14 end
15 return eid;

Proof. a. Directly, since the probability of hitting a low chunk is

Pr(Low) =

(
n−w

β

)

(
n
β

) .

b. Let Pr(w(β) = j|High) denote the probability that the weight of the chunk
is j under the condition that it is a high chunk. Then,

Pr(w(β) = j|High) =
Pr(w(β) = j)

pβ
.

Since Pr(w(β) = j) = (w
j )(n−w

β−j )
(n

β)
we obtain (3).

c. Since the querying of chunks of size β follows the geometric distribution, we
immediately obtain the claim.

d. From a. we can directly calculate

E(w(β)) =
β∑

j=1

j · Pr(w(β) = j|High) =
1

(
n
β

) − (
n−w

β

)
β∑

j=1

j ·
(

w

j

)(
n − w

β − j

)

=
1

(
n
β

) − (
n−w

β

)
β∑

j=1

w ·
(

w − 1
j − 1

)(
n − w

β − j

)
=

w · (
n−1
β−1

)

(
n
β

) − (
n−w

β

) .

��
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Now that we know the expected weight E(w(β)) of a ‘high’ chunk from
Proposition 1, we should also estimate the number of queries to inspect a ‘high’
chunk, i.e., to determine all error positions within the ‘high’ chunk. Various
strategies can be applied for this task. The simplest one is to just query all posi-
tions, which requires β queries, but this would make sense only if many 1s are
expected within the chunk. In our problem we typically have a ‘high’ chunk of
weight only 1, so a divide-and-conquer approach is more suitable: We split the
chunk in half and query the left half depth first. When one 1 is identified, we
collect all remaining unknown positions (denoted as “Flatten(stack)” in Algo-
rithm4), and query them at once as one chunk. The probability is high that this
chunk will be ‘low’, so we do not need any more queries. If it happens that the
chunk is high, we repeat the same procedure for this smaller chunk. The details
are given in Algorithm 4. Proposition 2 estimates the number of queries needed
to inspect a ‘high’ chunk using this algorithm.

Proposition 2. Suppose we inspect a ‘high’ chunk of size β. Then, the expected
number of queries to learn all positions within the ‘high’ chunk of size β using
Algorithm4 is bounded from above by

EHigh(β) �
β∑

j=1

(

(
w
j

)(
n−w
β−j

)

(
n
β

) − (
n−w

β

) ) · (j − j

β
+

j−1∑

i=0

log2 (β − i)). (6)

Proof. To estimate EHigh(β), we will first write it as

EHigh(β) =
β∑

j=1

Pr(w(β) = j|High) · EHigh(β|w(β) = j),

where EHigh(β|w(β) = j) denotes the expected number of queries to learn all
positions within a high chunk of size β under the condition that there are exactly
j 1s in the chunk.

We consider first EHigh(β|w(β) = 1). Note that we need log2 β queries
to locate the 1, and on average 1 − 1/β additional queries for the remaining
unqueried positions. Here, −1/β comes from the case where the 1 is on the last
β-th position of the chunk. Hence EHigh(β|w(β) = 1) = log2 β + 1 − 1/β. Next,

EHigh(β|w(β) = 2) =

=
1

(
β
2

)
∑

1�i,j�β

j �=β

(log2 β + log2 (β − i) + 2) +
1

(
β
2

)
∑

1�i,j�β

j=β

(log2 β + log2 (β − i) + 1)

=
1

(
β
2

)
∑

1�i,j�β

(log2 β + log2 (β − i)) + 2 −
(
β−1

1

)

(
β
2

)

� 1
(
β
2

)
∑

1�i,j�β

(log2 β + log2 (β − 1)) + 2 − 2
β

= log2 β + log2 (β − 1) + 2 − 2
β
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where the second sum in the first row comes from the fact that if the second 1 is
on the last position, we need one less query. We bound EHigh(β|w(β) = 2) from
above, instead of calculating it exactly, in order to simplify the expression and
the analysis. It is a rather tight bound, which can be confirmed by the simulation
and experiments we have performed (see Table 5).

Using induction it is easy to show that

EHigh(β|w(β) = j) =
j−1∑

i=0

log2 (β − i) + j − j

β
.

Finally, Pr(w(β) = j|High) can be easily calculated from Proposition 1, which
gives the final expression. ��

Using Propositions 1 and 2 we can now estimate the number of queries
required in Algorithm3.

Proposition 3. The number of queries required to recover k error positions
using Algorithm3 is given by

Q(βT ) =
βT −1∑

i=2

(E(i) + EHigh(i)) + N1 · E(βT ) + N2 · (E(βT ) + EHigh(βT )), (7)

where N1 and N2 are given by

N1 = min{n − k

βT
,

k−
βT −1∑

i=2

i · E(i)

βT ·(E(βT )−1)
}, N2 =

k −
βT −1∑

i=2

i · E(i)+N1 · βT

βT · E(βT )
−N1. (8)

The optimal βT is then the one that minimizes the number of queries Q(βT ).

Proof. With the notation introduced so far, the number of error positions I1(βT )
that we learn before we reach the threshold βT and the required queries Q1(βT )
in the process is

I1(βT ) =
βT −1∑

i=2

i · E(i), and Q1(βT ) =
βT −1∑

i=2

(E(i) + EHigh(i)). (9)

When we reach the threshold value βT , we change the strategy and continue
to query only chunks of size βT . Recall that we do not inspect ‘high’ chunks,
but save them in a bucket of capacity n − k and only start inspecting them if
the bucket is full and we have not yet recovered k error positions. Suppose we
query N1 · E(βT ) chunks while the bucket is sill not full and N2 · E(βT ) chunks
after the bucket is full, for some unknown N1, N2. The number of learned error
positions I2(βT ) and the required number of queries Q2(βT ) is

I2(βT ) = N1 · βT · (E(βT ) − 1) + N2 · βT · E(βT ),
Q2(βT ) = N1 · E(βT ) + N2 · (E(βT ) + EHigh(βT )). (10)
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Fig. 2. The expected number of queries needed for threshold values from 2 to 25 both
for the theoretical prediction and averaged simulations. The minima are marked.

The algorithm stops when k error positions have been learned, i.e., when the
condition

I1(βT ) + I2(βT ) � k (11)

is satisfied. Since the bucket has capacity n − k, we also have the condition

N1 · βT � n − k. (12)

From (11) and (12) we find the expressions in (8) for N1 and N2. Now, (7) follows
by combining (9) and (10). ��

Evaluation. Using the estimate from Proposition 3 we get the expected number
of queries for βT ∈ {2, . . . , 25} for all the parameter sets kem/mceliece348864,
kem/mceliece460896, kem/mceliece6688128, kem/mceliece6960119, as well
as kem/mceliece8192128 of “Classic McEliece” (see Table 2).

In order to evaluate our findings, we implemented the described iterative
chunking strategy using Python and SageMath1 and ran the implementation
as a simulation with an ideal oracle that always returns the correct response.
The simulation was applied to ten different key pairs using ten different plain-
text/ciphertext pairs for each key pair (100 in total) per parameter set and βT

value. We generated the key pairs as well as the plain- and ciphertext pairs
using the SageMath scripts that are enclosed with the publicly available FPGA
implementation of the Niederreiter cryptosystem from Wang et al.

The optimal threshold values for the parameter sets together with the number
of needed queries are given in Table 5 and depicted in Fig. 2. The results of

1 http://www.sagemath.org/.

http://www.sagemath.org/
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Fig. 3. Time-queries trade-off when using optimal iterative chunking and ISD.

the simulation and the later experiments in Sect. 4.3 show that the estimate
matches very well (see Fig. 2). For the parameter set kem/mceliece460896, in
the simulation βT = 18 turned out to be slightly more efficient than the expected
βT = 19. However, we believe that this is only because the number of queries for
βT = 18 and βT = 19 in the theoretical estimate are very close to each other.

Compared to recovering the information set without iterative chunking (the
case of aquiring k traces from the oracle in Algorithm 2) the number of traces
is decreased by approximately 87.7% for kem/mceliece348864 and 90% for
kem/mceliece8192128.

3.4 Combining Iterative Chunking with Information Set Decoding

The number of needed queries can be further decreased by combining iterative
chunking with some non-trivial ISD algorithm. Instead of recovering an entire
information set from queries, we can stop early, when we have learned only
δ < k error coordinates. Assume at this point we have n′ columns remaining,
the weight of the error vector on these coordinates is w′ and we need to recover
k′ = k − δ more elements from the information set.

Then we are left with the decoding problem with parameters (n′, k′, w′) which
we can solve using any ISD algorithm. Of course this comes at a price, since ISD
algorithms are exponential in time. Finding the right trade-off depends on the
computational power (CPU hours) the attacker has at hand. Figure 3 gives the
trade-off when using Stern’s or MMT algorithm.

In order to express the trade-off more accurately, but at the same time avoid
complicated expressions due to in-between or corner cases, we will discretize the
possible values for the number of performed queries and learned error positions.
This discretization is quite natural, since it follows exactly the steps of our
algorithm. Using the notation from the proof of Proposition 3 we consider the
partial sums of the number of performed queries Q(βT ) defined as
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Qi(βT ) =

{
Qi−1(βT ) + E(i) + EHigh(i), i ∈ {2, . . . , βT − 1}
Qi−1(βT ) + E(βT ) + b · EHigh(βT ), i ∈ {βT , . . . , βT + N1+N2−1}

with Q1(βT ) = 0 and b = 0 if i < βT + N1 and b = 1 otherwise.
Similarly, we define the partial sums of the learned error positions I(βT ) as

Ii(βT ) =

{
Ii−1(βT ) + iE(i), i ∈ {2, . . . , βT − 1}
Ii−1(βT ) + βT (E(βT ) − (1 − b)), i ∈ {βT , . . . , βT + N1+N2−1}

with I1(βT ) = 0 and b = 0 if i < βT +N1 and b = 1 otherwise. Let I ′
i(βT ) be the

same as Ii(βT ) except b = 1 for all i ∈ {βT , . . . , N1+N2−1}. Finally, let w1 = 0
and wi = wi−1 + E(i) for i ∈ {2, . . . , βT + N1+N2−1}.

Now it is not difficult to verify that the trade-off between performed queries
and computational power is given by the following proposition.

Proposition 4. An attacker performing Qi(βT ) queries to the decryption oracle
can recover the secret message by solving the ISD(n−I ′

i(βT ), k−Ii(βT ), w−wi)
problem. The case of i = 1 corresponds to the case of no side-channel informa-
tion, and the case of i = βT + N1+N2−1 corresponds to recovering an entire
information set using side-channel information.

4 Attack Evaluation

For the practical attack evaluation we adapted the implementation presented
in [41] for field programmable gate arrays (FPGAs). In Sect. 4.1 we describe our
approach for a preliminary leakage analysis of the decryption module design and
in Sect. 4.2 we construct a practical decryption oracle. Finally, in Sect. 4.3 we
evaluate the practical attack.

4.1 Leakage Analysis

To construct a decryption oracle for our attack approach we investigated the
implementation by Wang et al. from [41] in detail to find a proper point of interest
at which we can find significant leakage. The selected implementation uses a
constant-time implementation of the BM algorithm for the error correction. The
BM algorithm returns an error-locator polynomial that has roots at the points
that correspond to an error position. Thus, if there are t′ ≤ t errors, t′ input
points to the error-locator polynomial evaluate to zero. If the number of errors is
larger than t, a random polynomial is returned by the BM algorithm, which most
likely has a very small number of roots. Thus, in order to distinguish whether
the number of errors has increased or decreased, we need to distinguish cases
where the reconstructed error vector has a low HW (for cases with an increased
error number where error correction failed) and where it has a high HW (for
cases with a decreased error number where error correction succeeded).

The FPGA implementation of the decryption module in [41] consists of five
major steps: First, an additive (FFT) evaluates the secret Goppa polynomial.
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Fig. 4. Simulated power consumption based on a Hamming-distance model for success-
ful decoding (high HW in the resulting error vector) and unsuccessful decoding (low
HW) using a small parameter set with m = 12, t = 66, and n = 3307. The different
parts of the algorithm can clearly be seen (marked with alternating blue background
color). In the first block, an additive FFT is performed for evaluating the secret Goppa
polynomial. In the second block, the double syndrome is computed. In the third block,
BM is performed. In the fourth block, another additive FFT is performed in order to
evaluate the error-locator polynomial. Finally, the error vector is constructed. A clear
difference in the simulation is visible in the last step for the low and high HW results.
(Color figure online)

Then the double syndrome is computed. Afterwards the BM algorithm is per-
formed and another additive FFT is applied to evaluate the error-locator poly-
nomial. In the final step, the error vector is constructed.

In addition to the analysis of the source code we simulated the implemen-
tation for a preliminary leakage analysis in order to find possible leakage in a
noise-free simulated environment. We wrote a Python script that computes a
simulated power trace from a VCD-file (value change dump) of an Icarus Verilog
(iverilog) simulation using a simple Hamming-distance model. This results in a
simulated power trace with cycle accuracy. Figure 4 shows the resulting graphs
of the simulation for two different simulated power traces, one for a successful
decoding (high HW error vector) and one for an unsuccessful decoding (low HW
error vector). The five steps of the decryption are highlighted.

The first point at which side-channel information may be leaked is at the
last round of the second additive FFT operation that evaluates the error-locator
polynomial returned from the BM decoder. The result of this evaluation equals
to zero if there is a root and results in other values if not. Thus, it should be
distinguishable in general. However, because the implementation of the additive
FFT uses several multiplicator instances in parallel, the logical noise added to
the exploitable leakage is quite high.

The second point of possible leakage is at the last step, the error vector
construction. Here, the graph of the high HW error vector (blue) increases during
the construction in contrast to the low HW error vector (red) such that there is
a growing distance between them. The reason for the increasing number of bit
flips at this stage is that the result of the error vector construction is shifted
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Fig. 5. Example p-values of the t-tests of consecutive oracle queries. For each query a
trace Ti is compared to a known faulty (Tlow) and a known decodable trace (Thigh). If
a trace is similar to the faulty trace (i.e., due to a higher p-value), a decoding failure
is detected (light blue background). In the opposite case (light red background) the
syndrome could be decoded. (Color figure online)

into a large flip-flop shift-register step by step. To lower the effort compared to
the analysis of the second FFT we exploit the significant leakage of the iterative
reconstruction at the end of the decryption process. Therewith, the side-channel
information enables the construction of a decryption oracle.

4.2 Building an Oracle in Practice

We decided to use the (EMR) leakage emanated by the FPGA during the decryp-
tion and developed a (DEMA). Power leakage could be exploited in the same
way.

In order to get a response for individual queried syndromes, we apply Welch’s
t-test [42] to compare the means of the traces from the error-vector construc-
tion range against two known reference traces. The reference traces stem from
deciphering the original syndrome for which we know that it is decodable, and
from a faulty syndrome that includes more than t errors so that it cannot be
decoded. This has the disadvantage that it adds an overhead of two traces to
the total number of required traces. Alternatively, we could statistically deter-
mine a threshold to compare it to the result of a t-test with just one of the
reference traces, which would save one trace. However, we decided to spend one
additional trace and avoid the statistical computation. The faulty syndrome is
constructed by adding five columns randomly chosen from the public key matrix
H′. The probability that this results in a syndrome with more errors than can
be corrected is high; nevertheless, we use a t-test comparison to the trace of the
original syndrome to ensure this requirement. Algorithm5 details the prepara-
tion procedure. Now, we compute the difference pΔ of the p-values of the t-tests
comparing a trace Ti against the original syndrome trace Thigh and against the
faulty syndrome trace Tlow as

pΔ = t-test(Ti, Thigh) − t-test(Ti, Tlow). (13)

Thus, if the difference of the p-values pΔ is positive, the acquired trace is similar
to the original syndrome trace and interpreted as decodable. Otherwise, if pΔ
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Algorithm 5: GetReferences
input : “Classic McEliece” parameters n, m, t ∈ N

+,
binary parity-check matrix H′ = [Imt|K] ∈ GF(2)mt×n,
syndrome s ∈ GF(2)mt.

output: Reference traces T ′
high, T ′

low.

1 Decrypt(s) � Thigh, Clkhigh;
2 T ′

high ← Compress(Thigh, Clkhigh);

3 s∗ ← s;
4 repeat
5 for i ← 1 to 5 do s∗ ← s∗ ⊕ H′

j , j ∈R {0 . . . n − 1} ;
6 Decrypt(s∗) � Tlow, Clklow;
7 T ′

low ← Compress(Tlow, Clklow);

8 until t-test(T ′
high, T ′

low) ≈ 0;

9 return T ′
high, T ′

low;

Algorithm 6: DEMA-based Oracle
input : Manipulated syndrome s′ ∈ GF(2)mt, reference traces T ′

high, T ′
low.

output: Oracle response.

1 Decrypt(s′) � Tj , Clkj ;
2 T ′

j ← Compress(Tj , Clkj);
3 pΔ ← t-test(T ′

j , T
′
high) − t-test(T ′

j , T
′
low);

4 return

{

true if pΔ > 0

false otherwise
;

becomes negative it is interpreted as not decodable. Figure 5 gives an example
section of p-values of consecutive oracle queries. The response when used as
decryption oracle therefore is

response =

{
true (decodable), if pΔ > 0
false (not decodable), otherwise

. (14)

Algorithm 6 shows a query process. This approach requires just a single trace
per query plus two traces for the reference traces at the beginning. In detail,
we cannot apply the t-test to the raw traces directly because of misalignment
between the signals. To handle this, we apply a trace compression similar as
described in [23]. We reduce the raw signal to the maximum peak-to-peak dif-
ference of the amplitudes of the EM signal in each first clock half-wave and take
it as the new value for the entire clock cycle. We just need to know the clock
frequency to identify the clock cycle ranges in the raw signal.

Optimization. The quality metric of the side-channel oracle is the difference of
the p-values pΔ. The greater the absolute value is the better is the differentia-
bility of the ‘low’ and the ‘high’ case. The more errors are removed from the
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syndrome during the iterative chunking process the less 1s are in the resulting
error vector and its weight decreases. Since we are using the Hamming weight
of the error-vector construction as the exploitable leakage, |pΔ| decreases during
the attack as well. Therefore, we optimized our side-channel oracle by updating
the reference trace Thigh by the trace which is recorded if a single 1 is recovered.

4.3 Practical Evaluation

To evaluate the attack in practice, we ported the FPGA design of [41] to a Xil-
inx Kintex-7 (XC7K160T) on a SAKURA-X2 board running at 24MHz clock fre-
quency. We added a UART communication interface, a control unit that handles
the storage of the secret key parts (g(x), (α0, α1, . . . αn−1)), and a trigger signal
to one of the output ports that indicates the start and the end of a decryption
operation. We acquired the EMR profiles and the trigger signal using a Pico-
Scope 5244D MSO oscilloscope at 500MSamples/s and a near-field probe from
Langer (RF-U 5-2). We added a 10 MHz high-pass filter to remove noise in the
lower frequency range and used a customized Python script for an automatic
acquisition and analysis process. The ISD-support was implemented using the
GF(2) arithmetic of SageMath.

We analyzed the design of the Niederreiter decryption for all parameter sets
proposed for “Classic McEliece” in the second round of the NIST PQC com-
petition (see Table 2). Corresponding to the simulated trace in Fig. 4, the five
individual parts of the decryption process were identifiable.

We evaluated the ISD-supported iterative approach (Sect. 3.2) and the chunk-
based approach (Sect. 3.3) using the oracle described in Algorithm6 for all
parameter sets. We are using plain ISD (Prange) as ISD algorithm, replacing
the “guessing” with queries to our oracle, effectively implementing the ISD as
Gaussian elimination on n − k columns that are collected in the bucket. If an
attacker is able to invest additional computing power, he is able to reduce the
number of traces even further, trading in a higher complexity of the ISD.

We are using the same implementation of the iterative chunking as the sim-
ulation described in Sect. 3.3—however, we substituted the ideal oracle with the
real side-channel oracle described in Algorithm 6. We examined the same data
sets as used for the simulation, i.e., ten different key pairs using ten different
plaintext/ciphertext pairs for each key pair (100 in total) per parameter set. To
demonstrate the feasibility of the side-channel-based oracle, we ran the practical
evaluation of the plaintext-recovery attack for the optimal chunk size threshold
(βT ) that was determined from the simulation (see Table 5).

For each “Classic McEliece” parameter set we were able to recover the entire
plaintexts with our iterative chunking approach. Since the responses of the side-
channel oracle and the ideal oracle in the simulation are equal, we get the same
average number of traces for the same value of βT in the simulation as well as
the experiments.

2 http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html.

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html
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Table 5. Statistical data for the required number of queries for a successful recovery of
an entire error vector. The data for the simulation and the experiments was gathered
from the same sets of ten different key pairs and ten different plaintext/ciphertexts per
key pair (100 in total) for each parameter set. We also give the theoretical prediction
and the number of required queries for applying ISD at a cost of around 240 operations.
For comparison, we also give the number of traces when no chunking is used, i.e., β = 1
for all queries.

kem/
mceliece-

Approach Simulation Theory Experiment

min. avg. max. plain cost ≈ 240

348864

β = 1 – 2722 (k + 2) –

βT = 17 281 335.89 483 346.17 — —
βT = 18 275 334.51 481 345.16 — —
βT = 19 273 334.16 481 345.06 287.26 334.16
βT = 20 279 337.36 494 345.74 — —
βT = 21 282 337.92 482 347.09 — —

460896

β = 1 – 3362 (k + 2) –

βT = 16 353 397.01 523 404.41 — —
βT = 17 343 391.72 513 400.00 — —
βT = 18 337 389.33 514 396.95 — 389.33
βT = 19 333 390.33 515 395.06 337.66 —
βT = 20 329 392.14 517 396.62 — —
βT = 21 326 399.59 532 403.45 — —

6688128

β = 1 – 5026 (k + 2) –

βT = 15 505 553.56 608 556.73 — —
βT = 16 480 540.10 598 544.22 — —
βT = 17 468 532.11 595 534.14 470.91 532.11
βT = 18 456 534.30 604 535.31 — —
βT = 19 448 540.46 617 543.39 — —

6960119

β = 1 – 5415 (k + 2) –

βT = 15 529 584.15 708 585.21 — —
βT = 16 518 569.93 692 571.24 — —
βT = 17 505 561.29 680 559.87 493.90 561.29
βT = 18 508 562.15 679 561.61 — —
βT = 19 499 567.68 685 567.58 — —

8192128

β = 1 – 6530 (k + 2) –

βT = 15 618 679.41 788 676.59 — —
βT = 16 596 661.87 771 658.28 — —
βT = 17 587 653.97 760 648.66 576.96 653.97
βT = 18 571 654.86 760 652.85 — —
βT = 19 586 658.33 778 657.53 — —
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5 Application Perspectives of Iterative Chunking

In general, our iterative chunking approach requires a) a controllable decryption
failure using public information (the public key) to manipulate the syndrome and
b) a reliable decryption oracle for the feedback. The feedback can be, e.g., some
side-channel information or an explicit protocol response. Thus, any decryption
implementation, hardware or software, with these two characteristics is vulnera-
ble to our iterative chunking approach if a reliable feedback can be established.

As presented in this work, the Berlekamp-Massey decoding algorithm exhibits
the first required property. If also the second property, i.e., a side channel as
feedback exists, then the following implementations of “Classic McEliece” are
vulnerable to our attack: The NIST reference C implementation [9] which is
based on the work of “McBits revisited” [13] and the implementation found in
the project PQClean [20] which is included in several projects, e.g., the library
from the Open Quantum Safe project [38]. The code-based scheme HQC [28]
also uses the Berlekamp-Massey decoder and is attackable as well if a detectable
difference is revealed when the decoding fails.

Furthermore, the attack of Shoufan et al. in [36] can be improved using
iterative chunking when exploiting the distinguishable behavior of the deployed
Patterson’s decoder since it shows a timing side-channel information when the
syndrome exceeds its decoding capacity.

Further open research questions are whether iterative chunking is applicable
to rank-based schemes or if it can improve reaction attacks revealing the private
key, as for example shown for CCA-secure lattice-based KEM schemes in [32].

6 Conclusion

In this paper, we showed that side-channel attacks on code-based cryptosystems
can significantly be improved using our new iterative chunking approach and that
the cost of an ISD attack can be significantly reduced when it is combined with
this improved side-channel attack, revealing the plaintext of a given message.

If “Classic McEliece” is used as a basis for a KEM scheme in a key exchange,
the plaintext is used to derive a session key even if the long-term decryption key
is protected. Therefore, we suggest to research proper countermeasures against
decryption leakage.
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