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Abstract. We propose a very fast lattice-based zero-knowledge proof
system for exactly proving knowledge of a ternary solution �s ∈
{−1, 0, 1}n to a linear equation A�s = �u over Zq, which improves upon
the protocol by Bootle, Lyubashevsky and Seiler (CRYPTO 2019) by
producing proofs that are shorter by a factor of 8.

At the core lies a technique that utilizes the module-homomorphic
BDLOP commitment scheme (SCN 2018) over the fully splitting cyclo-
tomic ring Zq[X]/(Xd+1) to prove scalar products with the NTT vector
of a secret polynomial.

1 Introduction

Zero-knowledge proofs1 of knowledge are a central building-block in many cryp-
tographic schemes, especially in privacy-preserving protocols (e.g. group sig-
natures). In these protocols there are often underlying basic public-key primi-
tives, such as encryption and signature schemes, and one has to prove certain
statements about the ciphertexts and signatures produced by the underlying
primitives. In addition to their usefulness in privacy-preserving protocols, zero-
knowledge proof systems have also gained a lot of attention in recent years due
to their applications in blockchain protocols.

For post-quantum security the underlying public-key primitives have to be
built based on quantum-safe computational hardness assumptions, and lattice-
based primitives are a leading choice in this regard. Now, when proving state-
ments related to lattice-based primitives, one always ends up proving knowledge

1 We use the term “proof” instead of the slightly more precise “argument”, and mean
computationally sound zero-knowledge proof when we just write zero-knowledge
proof.
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of a short solution to a linear system of equations over some prime field Zq.
More precisely, we want to be able to prove knowledge of a ternary solution
�s ∈ {−1, 0, 1}n to the equation

A�s = �u, (1)

where the matrix A ∈ Z
m×n
q and the right hand side �u ∈ Z

m
q are public. There

is no loss of generality in Eq. (1) in the sense that it encompasses the situations
when the secret vector �s has coefficients from a larger interval, or when the equa-
tion in fact describes linear relations between polynomials in some polynomial
ring Rq of higher rank over Zq, which arise in important so-called ring-based
constructions. In the first situation the secret coefficients can be expanded in
base 3 and thereby the equation transformed to the above form. In the second
situation the matrix A has a certain structure that describes the linear relations
over Rq with respect to some Zq-basis of Rq. Then the equation is equivalent to
an equation

A�s = �u (2)

with polynomial matrix A, polynomial vector �u and short polynomial vector �s
with coefficients that are ternary polynomials.

We call a proof system that exactly proves knowledge of a ternary vector
�s as in Eq. (1), and hence does not have any knowledge gap, an exact proof
system. The goal of this paper is to construct an efficient exact lattice-based
proof system.

Currently the most efficient lattice-based protocols that include zero-
knowledge proofs utilize so-called approximate proof systems which are based
on the rejection sampling technique by Lyubashevsky [Lyu09,Lyu12]. Examples
are the signature schemes [Lyu12,BG14,DKL+18], the group signature schemes
[dPLS18,YAZ+19,EZS+19], and the ring signatures [ESLL19,EZS+19]. Effi-
cient approximate proofs work over polynomial rings Rq and the prover ends up
proving knowledge of a vector �s∗ over Rq fulfilling only the perturbed equation

A�s∗ = c̄�u,

where c̄ is a short polynomial. Moreover, the coefficients of the polynomials in
�s∗ are from a much larger range then the ternary coefficients in the vector �s
that the prover actually knows. The most important reason for the practical
efficiency of approximate proofs is that they achieve negligible soundness error
with only one repetition.

While approximate proofs are sufficient for many applications, their biggest
drawback is that one has to account for the longer vector �s∗ when setting parame-
ters for the underlying schemes so that these schemes are still secure with respect
to �s∗. Concretely, suppose that as part of a larger protocol one has to encrypt
some message and prove linear relations on the message. Then, when using an
approximate proof system, one cannot choose a standard and vetted lattice-
based encryption scheme such as Kyber [BDK+18], NTRU, or another scheme
in round 2 of the NIST PQC standardization effort. This is problematic for both
theoretical and practical reasons. Moreover, if some part of the protocol does not
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require zero-knowledge proofs, then the efficiency of this part still suffers from
the other parts involving zero-knowledge proofs because of the described effect
on parameters.

Finally, there are applications for which approximate proof systems are not
sufficiently expressive. Natural examples are range proofs for integers and proofs
of integer relations, which have applications in blockchain protocols. In these
protocols one wants to commit to integers, prove that they lie in certain intervals,
and prove additive and multiplicative relations between them. All these problems
can be directly solved with an exact proof system that is capable of proving
linear equations as above [LLNW18], but approximate proof systems alone are
not sufficient for this task. One reason is that one has to commit to the integers
in their binary or some other small-base representation and then prove that the
committed message really is a binary vector, i.e. that it does not have coefficients
from a larger set. This cannot directly be achieved with approximate proofs.

Coming back to exact proof systems, there is a long line of research using
Stern’s protocol [Ste93] in a lattice setting to exactly prove Equations as in (1)
[LLNW17]. But even for the smallest equations, which for example arise when
proving a Ring-LWE sample, the proofs produced by this approach have several
Megabytes in size and hence are not really practical. The reason behind this is
that a single protocol execution has a very large soundness error of 2/3, and
thus many protocol repetitions (in the order of hundreds) are required to reach
a negligible soundness error.

In [BLS19,YAZ+19], the authors use the BDLOP commitment scheme
[BDL+18] to construct an exact proof system and achieve proof sizes of several
hundred Kilobytes for proving Ring-LWE samples. The results in the present
paper can be seen as an extension of the results of [BLS19].

Now, for post-quantum security, even when relying on underlying lattice-
based primitives, it is of course not necessary to also built the zero-knowledge
proof system with lattice techniques, as long as the proof system does not intro-
duce computational assumptions that are known to be insecure against quantum
computers. In fact, there are PCP-type proof systems using Kilian’s framework
[Kil92], such as Ligero [AHIV17] or Aurora [BCR+19], that are capable of exactly
proving linear equations as above, and that are secure assuming only the security
of a hash function. These proof systems are even succinct and produce proofs
with sizes that are sublinear or even logarithmic in the size of the witness �s, but
they have a base cost in the order of 100 KB for Ligero and around 70 KB for
Aurora.

The proof system that we present in this paper scales linearly in the witness
size but produces proofs of only 47 KB for proving a Ring-LWE sample. So there
is a regime of interesting statements where linear-sized proof systems can beat
the best logarithmic PCP-type systems in terms of proof size.

For larger equations where we cannot quite achieve proof sizes as small
as the PCP-type systems, lattice-based systems still have one big advantage.
Namely, they are very computationally lightweight. Implementations of lattice-
based cryptography are generally known to be very fast. For example, the fastest
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lattice-based CCA-secure KEMs have encapsulation and decapsulation times in
the order of a few microseconds on standard laptop processors [LS19] and are
thus about one order of magnitude faster than a single elliptic curve scalar mul-
tiplication. The reason for this very high speed is essentially twofold. Firstly,
there is usually no multi-precision arithmetic needed since efficient lattice-based
schemes use finite field moduli q that are below 232. And secondly, the required
arithmetic has a high degree of data-level parallelism that is favourable to mod-
ern CPUs, which is especially true for schemes whose arithmetic natively sup-
ports the Number Theoretic Transform (NTT). The protocols that we present in
this paper are no exception to this; they use single-precision 32-bit moduli, are
NTT-friendly, and don’t introduce any computational tasks that are not also
present in standard lattice-based basic encryption or signature schemes. We
demonstrate the fast speed of our protocols with an optimized implementation
for Intel CPUs that achieves prover and verifier running times of 3.52 and 0.4
ms, respectively, for the case of proving a ternary solution to a linear equation
of dimensions 1024 × 2048 (see [ENS20, Appendix C] for more details).

Contrary to this, existing studies of using logarithmic PCP-type proof sys-
tems for proving the linear equations (1) that arise in lattice-based privacy-
preserving protocols show that one ends up with prover runtimes in the order
of several tens of seconds even for the smallest instances and on very powerful
processors [BCOS20]. This also seems to be the case for the logarithmic but not
quantum-safe Bulletproofs proof system [dPLS19]. For example, in [BCOS20]
the authors construct a lattice-based group signature scheme using Aurora as
the proof system. They found that proving a Ring-LWE sample takes 40 s on
a laptop computer. Even worse, they could not successfully run the full signing
algorithm, due to very large memory requirements, even with the help of Google
Cloud large-memory compute instances. This is especially problematic since for
privacy-preserving protocols to be used in practice, the prover would often need
to be run on constraint devices, possibly down to smart cards or TPM chips.
We summarize the above comparison in Table 1.

Table 1. Proof length comparison for proving knowledge of a Ring-LWE sample in
dimension 1024 modulo a prime q ≈ 232. Here the dimensions of the corresponding
Equation as in (1) are m = 1024 and n = 2048. The sizes for the Stern-type proof is
taken from [BLS19]. The sizes for Ligero and the scheme from [Beu20] are taken from
[Beu20] and are for the parameter m = 512.

Stern-type proofs 3522 KB

[BLS19] 384 KB

[Beu20] 233 KB

Ligero [AHIV17] 157 KB

Aurora [BCR+19,BCOS20] 72 KB

Our work 47 KB
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1.1 Our Approach

The proof system in the present work extends the system from [BLS19]. On a
high level, the approach entails committing to a polynomial š ∈ Rq whose NTT
basis representation is equal to the secret vector �s, NTT(š) = �s. Then, using
a product proof protocol that allows to prove multiplicative relations between
committed polynomials, the prover shows that š(1− š)(1+ š) = 0. This implies
that �s has ternary coefficients since the polynomial product is component-wise
in the NTT basis,

NTT(š(1 − š)(1 + š)) = �s ◦ (�1 − �s) ◦ (�1 + �s),

where �1 = (1, . . . , 1)T is the all-ones vector and ◦ denotes the component-wise
product. What remains is the linear part where the prover needs to show that �s
is a solution to Eq. (1). The linear part was the biggest obstacle to smaller proof
sizes in [BLS19]. The reason is that while the BDLOP commitment scheme makes
it very easy to prove linear relations over the polynomial ring Rq, one needs to
be able to prove linear relations between the NTT coefficients corresponding to
the committed polynomials when using the above encoding of the secret vector.

Essentially there are two ways to commit to vectors using the BDLOP com-
mitment scheme. Either one commits to polynomials whose coefficient vectors
are equal to the secret vectors, or one commits to polynomials whose NTT vec-
tors are the secret vectors. The first way makes it easy to prove structured linear
equations as in (2) by directly using the homomorphic property of the commit-
ment scheme. The second way allows for efficient range proofs with the help of
an efficient product proof. But we need to prove a linear equation and conduct
a range proof at the same time.

In [BLS19] the problem is side-stepped by reusing a masked opening z of the
committed polynomial š with scalar challenge c ∈ Zq,

z = y + cš,

which is sent as part of the product proof. The verifier can apply the NTT to
get a masked opening of the secret vector �s, NTT(z) = ŷ + c�s, and then check
that ANTT(z) = �w + c�u, where �w = Aŷ is sent by the prover before seeing the
challenge c. This approach crucially requires that the challenge c is an integer
from Zq and not a proper polynomial. Otherwise the masked opening NTT(z)
of �s would include a component-wise product that is incompatible with the
linear equation. But with only an integer challenge c the protocol is restricted
to soundness error 1/q and hence needs to be repeated multiple times.

The main new technique in this paper is a more efficient method to directly
prove linear relations among NTT coefficients of the message polynomials in the
BDLOP commitment scheme. Then the product proof can make use of proper
polynomial challenges and our proof system profits from further improvements
in the product proof presented recently in [ALS20].

We now go a bit more into detail and describe our method for the linear
proof. For concreteness, let us define Rq = Zq[X]/(Xd + 1), where d is a power
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of two and Xd + 1 splits fully into linear factors over Zq. Then the i-th NTT
coefficient of a polynomial š ∈ Rq is equal to the evaluation of š at the i-th

primitive 2d-th root of unity ri. Therefore, if �s = NTT(š) and �γ
$← Z

d
q is a

random vector, we have

〈A�s − �u,�γ〉 = 〈A�s,�γ〉 − 〈�u,�γ〉 = 〈�s,AT�γ〉 − 〈�u,�γ〉

=
d−1∑

i=0

š(ri)
(
NTT−1(AT�γ)

)
(ri) − 〈�u,�γ〉

=
1
d

d−1∑

i=0

f(ri) = f0,

where f = NTT−1(dAT�γ)š − 〈�u,�γ〉 ∈ Rq and f0 ∈ Zq is the constant coefficient
of f . The last equality follows from Lemma 2.1. The idea is then to prove that
f0, the constant coefficient of f , is zero. This proves that 〈A�s − �u,�γ〉 = 0. For a
uniformly random �γ ∈ Z

d
q , the probability that 〈A�s − �u,�γ〉 = 0 when A�s �= �u is

1/q. Therefore, allowing the verifier to choose a random �γ ∈ Z
d
q as a challenge,

proving f0 = 0 proves that A�s = �u with a soundness error 1/q.
To prove that f has vanishing constant coefficient, the prover initially com-

mits to š and a polynomial g with vanishing constant coefficient. The polynomial
g will be used to mask f . Upon receiving a challenge �γ ∈ Z

d
q , the prover com-

putes f and sets h = f + g. Using the given information, we show that the
verifier can compute a commitment to f (without requiring it to be sent by the
prover). This allows to prove that h is of the correct form and the verifier can
simply observe that h has a zero constant coefficient.

The above proof system has a soundness error of 1/q, which is not negligibly
small for typical choices of q. We show in Sect. 3.2 how to amplify the soundness
of this protocol at a low cost using Galois automorphisms. Informally, consider
k uniformly random vectors �γ0, . . . , �γk−1 such that 1/qk is negligible. Similarly
as before, we can write

fi := dNTT−1(AT�γi)š − 〈�u,�γi〉
and thus the constant coefficient of fi is 〈A�s − �u,�γi〉. For each i = 0, . . . , k − 1,
we will define maps Li : Rq → Rq which satisfies the following property. Denote
p = Li(fi) and (p0, . . . , pd−1) to be the coefficient vector of p. Then, p0 = . . . =
pi−1 = pi+1 = . . . = pk−1 = 0 and pi = 〈A�s − �u,�γi〉. We can observe that if
A�s = �u then f defined now as

f = L0(f0) + . . . + Lk−1(fk−1)

has the first k coefficients equal to 0. Therefore, we can construct a protocol
for proving this similarly as above. On the other hand, when A�s �= �u then the
probability that all the first k coefficients of f are equal to zero is 1/qk. The
advantage of this approach over the standard way of having k-parallel repetitions
is that the size of the commitment part of the non-interactive proof remains the
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same as that of a single protocol run. Therefore, the overall cost is significantly
reduced.

We believe that this protocol can be useful in other settings, where one wants
to switch from the the coefficient basis to the NTT basis.

Another obstacle against practical efficiency (as encountered in [BLS19,
YAZ+19]) is that a proof of such a non-linear relation as in (1) requires com-
munication of “garbage terms”. These garbage terms end up being a substantial
cost in the proofs in [BLS19,YAZ+19]. In [ALS20], a better product proof is
presented that reduces the cost of the garbage terms, also using Galois automor-
phisms.

Applications. Having an efficient proof system to prove knowledge of �s ∈
{−1, 0, 1}n satisfying (1) paves the way for various efficient zero-knowledge
proofs that can be used in many applications. In order to show the effective-
ness of our new techniques, we present two example applications with concrete
parameters in the full version of our paper [ENS20]. The first one is to prove
knowledge of secrets in LWE samples. This is an important proof system to be
used, for example, with fully homomorphic encryption (FHE) schemes. The goal
here is to prove that �u is a proper LWE sample such that �u = A′�s′ + �e mod q
for �s′, �e ∈ {−1, 0, 1}k, which is equivalent to proving �u = (A′ ‖ Ik) · �s mod q
for �s = (�s′, �e) ∈ {−1, 0, 1}2k. As shown in Table 1, our proof system achieves an
improvement of 8× in terms of proof length over the state-of-the-art result by
Bootle, Lyubashevsky and Seiler [BLS19], and is dramatically shorter than the
Stern-based proofs.

Our other example application is a proof of plaintext knowledge. In this case,
the goal is to create a ciphertext and a zero-knowledge proof to prove that the
ciphertext is a proper encryption of a message known by the prover. Proofs of
plaintext knowledge have applications, for example, in the settings of verifiable
encryption, verifiable secret sharing and group signatures.

Being a very core proof system, there are many other applications beyond
the two examples above, where our main protocol and our new techniques can
be useful. For example, one can apply our unstructured linear proof to prove
that one vector is a NTT representation of a polynomial (written as a vector of
coefficients). Indeed, the matrix A in (1) simply becomes a Vandermonde matrix.
Furthermore, one can see [YAZ+19] for various applications that all build on a
similar core proof system.

2 Preliminaries

2.1 Notation

Table 2 summarizes the notation and parameters that will appear in this paper.
Let q be an odd prime, and Zq denote the ring of integers modulo q. We write

[a, b[= {a, a + 1, . . . , b − 1} ⊂ Z for the half-open interval of integers between
a and b. For r ∈ Z, we define r mod q to be the unique element in the interval
[− q−1

2 , q−1
2 ] that is congruent to r modulo q. We write �v ∈ Z

m
q to denote vectors
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Table 2. Overview of parameters and notation

Parameter Explanation

d Degree of the polynomial Xd + 1, power of two

q Rational prime modulus

Zq = Z/qZ The field over which the linear system is defined

m ∈ Z The number of rows in the linear system

n ∈ Z The number of columns in the linear system

R = Z[X]/(Xd + 1) The ring of integers in the 2d-th cyclotomic
number field

Rq = Zq[X]/(Xd + 1) The ring of integers R modulo q

k ∈ Z Repetition rate

σ = σ2d/k+1 Automorphism in Aut(Rq) of order k

C ⊂ R Challenge set

C Probability distribution over C for challenges

T Bound for honest prover’s c�r in the infinity norm

δ1 Width of the uniform distribution for sampling �y

λ M-LWE dimension

κ M-SIS dimension

χ Error distribution on R in the M-LWE problem

over Zq and matrices over Zq will be written as regular capital letters M . By
default, all vectors are column vectors. We write �v ‖ �w for the concatenation of
�v and �w (which is still a column vector).

Let d be a power of two and denote R and Rq to be the rings Z[X]/(Xd +1)
and Zq[X]/(Xd + 1), respectively. Bold lower-case letters p denote elements in
R or Rq and bold lower-case letters with arrows �b represent column vectors with
coefficients in R or Rq. We also use bold upper-case letters for matrices B over
R or Rq. For a polynomial denoted as a bold letter, we write its i-th coefficient
as the corresponding regular font letter with subscript i, e.g. f0 ∈ Zq is the
constant coefficient of f ∈ Rq.

We write x
$← S when x ∈ S is sampled uniformly at random from the finite

set S and similarly x
$← D when x is sampled according to the distribution D.

Norms and Sizes. For an element w ∈ Zq, we write |w| to mean |w mod q|.
Define the �∞ and �2 norms for w ∈ Rq as follows,

‖w‖∞ = max
i

|wi| and ‖w‖2 =
√

|w0|2 + . . . + |wd−1|2.

Similarly, for �w = (w1, . . . ,wk) ∈ Rk, we define

‖ �w‖∞ = max
i

‖wi‖∞ and ‖ �w‖2 =
√

‖w1‖22 + . . . + ‖wk‖22.
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2.2 Prime Splitting and Galois Automorphisms

Let l be a power of two dividing d and suppose q − 1 ≡ 2l (mod 4l). Then, Zq

contains primitive 2l-th roots of unity but no elements with order a higher power
of two, and the polynomial Xd + 1 factors into l irreducible binomials Xd/l − ζ
modulo q where ζ runs over the 2l-th roots of unity in Zq [LS18, Theorem 2.3].

The ring Rq has a group of automorphisms Aut(Rq) that is isomorphic to
Z

×
2d,

i �→ σi : Z×
2d → Aut(Rq),

where σi is defined by σi(X) = Xi. In fact, these automorphisms come from the
Galois automorphisms of the 2d-th cyclotomic number field which factor through
Rq.

The group Aut(Rq) acts transitively on the prime ideals (Xd/l − ζ) in Rq

and every σi factors through field isomorphisms

Rq/(Xd/l − ζ) → Rq/(σi(Xd/l − ζ)).

Concretely, for i ∈ Z
×
2d it holds that

σi(Xd/l − ζ) = (Xid/l − ζ) = (Xd/l − ζi−1
)

To see this, observe that the roots of Xd/l − ζi−1
(in an appropriate extension

field of Zq) are also roots of Xid/l − ζ. Then, for f ∈ Rq,

σi

(
f mod (Xd/l − ζ)

)
= σi(f) mod (Xd/l − ζi−1

).

The cyclic subgroup 〈2l + 1〉 < Z
×
2d has order d/l [LS18, Lemma 2.4] and sta-

bilizes every prime ideal (Xd/l − ζ) since ζ has order 2l. The quotient group
Z

×
2d/〈2l + 1〉 has order l and hence acts simply transitively on the l prime ideals.

Therefore, we can index the prime ideals by i ∈ Z
×
2d/〈2l + 1〉 and write

(
Xd + 1

)
=

∏

i∈Z
×
2d/〈2l+1〉

(
Xd/l − ζi

)

Now, the product of the k | l prime ideals (Xd/l − ζi) where i runs over
〈2l/k + 1〉/〈2l + 1〉 is given by the ideal (Xkd/l − ζk). So, we can partition the l
prime ideals into l/k groups of k ideals each, and write
(
Xd + 1

)
=

∏

j∈Z
×
2d/〈2l/k+1〉

(
Xkd/l − ζjk

)
=

∏

j∈Z
×
2d/〈2l/k+1〉

∏
i∈〈2l/k+1〉/〈2l+1〉

(
X

d
l − ζij

)
.

Another way to write this, which we will use in our protocols, is to note that
Z

×
2d/〈2l/k + 1〉 ∼= Z

×
2l/k and the powers (2l/k + 1)i for i = 0, . . . , k − 1 form

a complete set of representatives for 〈2l/k + 1〉/〈2l + 1〉. So, if σ = σ2l/k+1 ∈
Aut(Rq), then

(
Xd + 1

)
=

∏

j∈Z
×
2l/k

k−1∏

i=0

σi
(
X

d
l − ζj

)
,

and the prime ideals are indexed by (i, j) ∈ I = {0, . . . , k − 1} × Z
×
2l/k.
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The Fully Splitting Case. In this paper our main attention lies on the setup
where q ≡ 1 (mod 2d) and hence q splits completely. In this case there is a
primitive 2d-th root of unity ζ ∈ Zq and

(Xd + 1) =
∏

i∈Z
×
2d

(X − ζi).

Then, for a divisor k of d and σ = σ2d/k+1 of order k, we have the partitioning

(Xd + 1) =
∏

j∈Z
×
2d/〈2d/k+1〉

∏

i∈〈2d/k+1〉
(X − ζij) =

∏

j∈Z
×
2d/k

k−1∏

i=0

σi(X − ζj)

2.3 The Number Theoretic Transform

The Number Theoretic Transform (NTT) of a polynomial f ∈ Rq is defined by

NTT(f) = (f̂i)i∈Z
×
2l

∈
∏

i∈Z
×
2l

Zq[X]/(Xd/l − ζi) ∼= (Fqd/l)l

where f̂i = f mod (Xd/l − ζi). We write NTT−1(f̂) = f for the inverse map,
which exists due to the Chinese remainder theorem. Note that for f , g ∈ Rq,
NTT(fg) = NTT(f)◦NTT(g) where ◦ denotes the coefficient-wise multiplication
of vectors.

The (scaled) sum of the NTT coefficients of a polynomial f ∈ Rq is equal to
its first d/l coefficients. This will be later used when proving unstructured linear
relations over Zq.

Lemma 2.1. Let f ∈ Rq. Then 1
l

∑
i∈Z

×
2l

f̂i = f0 + f1X + · · · + fd/l−1X
d/l−1,

when we lift the f̂i to Zq[X].

Proof. Write f(X) = f0(Xd/l) + f1(Xd/l)X + · · · + fd/l−1(Xd/l)Xd/l−1 Then,
it suffices to prove

1
l

∑

i∈Z
×
2l

fj(ζi) = fj

for all j = 0, . . . , d/l−1, which is the sum over the coefficients of a fully splitting
length-l NTT. We find

∑

i∈Z
×
2l

fj(ζi) =
∑

i∈Z
×
2l

l−1∑

ν=0

fνd/l+jζ
iν =

l−1∑

ν=0

fνd/l+j

∑

i∈Z
×
2l

ζiν

and it remains to show that for every ν ∈ {1, . . . , l − 1},
∑

i∈Z
×
2l

ζiν = 0. Indeed,

∑

i∈Z
×
2l

ζiν =
l−1∑

i=0

ζ(2i+1)ν = ζν
l−1∑

i=0

ζ2iν = ζν ζ2lν − 1
ζ2ν − 1

= 0

since ζ2lν = 1. ��
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2.4 Challenge Space

Let C = {−1, 0, 1}d ⊂ Rq be the set of ternary polynomials, which have coeffi-
cients in {−1, 0, 1}. We define C : C → [0, 1] to be the probability distribution on

C such that the coefficients of a challenge c
$← C are independently identically

distributed with Pr(0) = 1/2 and Pr(1) = Pr(−1) = 1/4.

In [ALS20] it is shown that if c
$← C then the distribution of c mod Xkd/l−ζk

is almost uniform.

Lemma 2.2. Let c
$← C. The coefficients of c mod Xkd/l−ζk are independently

identically distributed, say with distribution X. Then, for x ∈ Zq,

Pr(X = x) ≤ 1
q

+
2l/k

q

∑

j∈Z∗
q/〈ζk〉

l/k−1∏

i=0

∣∣∣∣
1
2

+
1
2

cos(2πjζki/q)
∣∣∣∣ . (3)

For example, by numerical computing the probability in Lemma 2.2, one finds
for d = 128, q ≈ 232 fully splitting, i.e. l = d, and k = 4, that the maximum
probability for the coefficients of c mod X4 − ζ4 is bounded by 2−31.4.

2.5 Module-SIS and Module-LWE Problems

We employ the computationally binding and computationally hiding commit-
ment scheme from [BDL+18] in our protocols, and rely on the well-known
Module-LWE (MLWE) and Module-SIS (MSIS) [PR06,LPR10,LS15] problems
to prove the security of our constructions. Both problems are defined over a ring
Rq for a positive modulus q ∈ Z

+. For the Module-SIS problem we use the
variant with respect to the infinity norm.

Definition 2.3 (MSISn,m,βSIS). The goal in the Module-SIS problem with

parameters n,m > 0 and βSIS > q is to find, for a given matrix A
$← Rn×m

q ,
�x ∈ Rm

q such that A�x = �0 over Rq and 0 < ‖�x‖∞ ≤ βSIS. We say that a PPT
adversary A has advantage ε in solving MSISn,m,βSIS if

Pr
[
0 < ‖�x‖∞ ≤ βSIS ∧ A�x = �0 over Rq

∣∣∣ A
$← Rn×m

q ; �x ← A(A)
]

≥ ε.

Definition 2.4 (MLWEn,m,χ). In the Module-LWE problem with parameters
n,m > 0 and an error distribution χ over R, the PPT adversary A is asked to
distinguish (A, �t) $← Rm×n

q × Rm
q from (A,A�s + �e) for A

$← Rm×n
q , a secret

vector �s
$← χn and error vector �e

$← χm. We say that A has advantage ε in
solving MLWEn,m,χ if

∣∣∣Pr
[
b = 1

∣∣∣ A
$← Rm×n

q ; �s
$← χn; �e

$← χm; b ← A(A,A�s + �e)
]

(4)

− Pr
[
b = 1

∣∣∣ A
$← Rm×n

q ; �t
$← Rm

q ; b ← A(A, �t)
]∣∣∣ ≥ ε.
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For our practical security estimations of these two problems against known
attacks, the parameter m in both of the problems does not play a crucial role.
Therefore, we sometimes simply omit m and use the notations MSISn,B and
MLWEn,χ. The parameters κ and λ denote the module ranks for MSIS and MLWE,
respectively.

2.6 Error Distribution, Discrete Gaussians and Rejection Sampling

For sampling randomness in the commitment scheme that we use, and to define
the particular variant of the Module-LWE problem that we use, we need to
specify the error distribution χd on R. In general any of the standard choices
in the literature is fine. So, for example, χ can be a narrow discrete Gaussian
distribution or the uniform distribution on a small interval. In the numerical
examples in Sect. 4.2 we assume that χ is the computationally simple centered
binomial distribution on {−1, 0, 1} where ±1 both have probability 5/16 and 0
has probability 6/16. This distribution is chosen (rather than the more “natural”
uniform one) because it is easy to sample given a random bitstring by computing
a1 + a2 − b1 − b2 mod 3 with uniformly random bits ai, bi.

Rejection Sampling. In our zero-knowledge proof, the prover will want to output
a vector �z whose distribution should be independent of a secret randomness
vector �r, so that �z cannot be used to gain any information on the prover’s secret.
During the protocol, the prover computes �z = �y +c�r where �r is the randomness
used to commit to the prover’s secret, c

$← C is a challenge polynomial, and �y is
a “masking” vector. To remove the dependency of �z on �r, we use the rejection
sampling technique by Lyubashevsky [Lyu08,Lyu09,Lyu12]. In the two variants
of this technique the masking vector is either sampled uniformly from some
bounded region or using a discrete Gaussian distribution.

Although the Gaussian variant allows to sample �y from narrower distribu-
tions for acceptable rejection rates, we use the uniform variant in this paper. The
reasons for this are that, firstly, uniform sampling is much faster in implemen-
tations and much easier to protect against side-channel attacks, and, secondly,
uniform sampling allows to be combined with the compression techniques from
[BG14,DKL+18], which make up for the disadvantage concerning the width of
the distribution.

The gist of uniform rejection sampling is the following. Let T be a bound on
the infinity norm of c�r and let the coefficients of the polynomials of �y be sampled
from the interval [−δ1, δ1[. Then, the conditioned distribution of the coefficients
of �z given that ‖�z‖∞ < δ1−T is the uniform distribution on ]− (δ1−T ), δ1−T [,
independent of c�r.

2.7 Commitment Scheme

In our protocol, we use a variant of the commitment scheme from [BDL+18],
which allows to commit to a vector of messages in Rq. Suppose that we want
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to commit to a message vector �m = (m1, . . . ,ml)T ∈ Rl
q and that module

ranks of κ and λ are required for MSIS and MLWE security, respectively. Then,
in the key generation, a uniformly random matrix B0

$← Rκ×(λ+κ+l)
q and vec-

tors �b1, . . . ,�bl
$← Rλ+κ+l

q are generated and output as public parameters. In
practice, one may choose to generate B0,�b1, . . . ,�bl in a more structured way
as in [BDL+18] since it saves some computation. However, for readability, we
write the commitment matrices in the “Knapsack” form as above. In our case,
the hiding property of the commitment scheme is established via the duality
between the Knapsack and MLWE problems. We refer to [EZS+19, Appendix C]
for a more detailed discussion.

To commit to the message �m, we first sample �r
$← χ(λ+κ+l)d. Now, there are

two parts of the commitment scheme; the binding part and the message encoding
part. Particularly, we compute

�t0 = B0�r,

ti = 〈�bi, �r〉 + mi for i = 1, . . . , l,

where �t0 forms the binding part and each ti encodes a message polynomial
mi. The commitment scheme is computationally hiding under the Module-LWE
assumption and computationally binding under the Module-SIS assumption; see
[BDL+18].

The utility of the commitment scheme for zero-knowledge proof systems
stems from the fact that one can compute module homomorphisms on com-
mitted messages. For example, let a1 and a2 be from Rq. Then

a1t1 + a2t2 = 〈a1
�b1 + a2

�b2, �r〉 + a1m1 + a2m2

is a commitment to the message a1m1 + a2m2 with matrix a1
�b1 + a2

�b2. This
module homomorphic property together with a proof that a commitment is
a commitment to the zero polynomial allows to prove linear relations among
committed messages over Rq.

2.8 Opening and Product Proof

We use the opening proof from [ALS20, Fig. 2] that we sketch now. Suppose that
the prover knows an opening to the commitment

�t0 = B0�r,

t1 = 〈�b1, �r〉 + m1.

As in previous opening proofs the prover gives an approximate proof for the first
equation. To this end, the prover and verifier engage in k parallel executions of
a sigma protocol with challenges σi(c), i = 0, . . . , k − 1, that are the rotations

of a global challenge c
$← C. Concretely, in the first flow, the prover samples

k short masking vectors �yi from the discrete Gaussian distribution D
(λ+κ+1)d
s
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and sends commitments �wi = B0�yi over to the verifier. The verifier replies with
the challenge c. Then the prover applies rejection sampling, and, if this does not
reject, sends �zi = �yi + σi(c)�r. The verifier checks that the �zi are short and the
equations B0�zi = �wi + σi(c)�t0.

Now, unlike in previous protocols, the algebraic setup is such that it is not
possible to extract a pair of accepting transcript with invertible challenge dif-
ference c̄ = c − c′. Instead, extraction works by piecing together l/k accepting
transcripts where for each ideal (Xkd/l − ζkj), there is a transcript pair with
challenge difference c̄j mod (Xkd/l − ζkj) �= 0. For this to work out it is required
that the maximum probability p over Zq of the coefficients of c mod (Xkd/l−ζk),
as given by Lemma 2.2, is such that pkd/l is negligible. For example, if d = 128,
q ≈ 232 fully splits so that l = d, and k = 4, then pkd/l = p4 ≈ 2−128.

Next, the analysis of the protocol given in [ALS20, Theorem 4.4] shows that
it is possible to extract a weak opening from a prover with non-negligible high
success probability, as given in the following definition.

Definition 2.5. A weak opening for the commitment �t = �t0 ‖ t1 consists of
l polynomials σi(c̄j) ∈ Rq, a randomness vector �r∗ over Rq and a message
m∗

1 ∈ Rq such that
∥∥σi(c̄j)

∥∥
1

≤ 2d and σi(c̄j) mod σi(Xd/l − ζj) �= 0 for all (i, j) ∈ I,
∥∥σi(c̄j)�r∗∥∥

2
≤ 2β for all (i, j) ∈ I,

B0�r
∗ = �t0,

〈�b1, �r
∗〉 + m∗

1 = t1.

The commitment scheme is binding with respect to weak openings,
c.f. [ALS20, Lemma 4.3]. Furthermore, in the extraction it is also possible to
obtain vectors �y∗

i such that every accepting transcript satisfies the following

�zi = �y∗ + σi(c)�r∗,

when it contains the same prover commitments �wi that were used in the extrac-
tion.

We also apply the product proof from [ALS20, Fig. 4], adapted to the case
of a cubic relation, to prove that our secret vector has ternary coefficients. In
addition to the opening proof, the product proof only requires two additional
commitments to garbage terms.

3 Proving Unstructured Linear Relations over Z
n
q

Our goal for this section is to construct an efficient protocol for proving unstruc-
tured linear relations among committed Zq-elements. By this we mean that we
want to be able to commit to a vector �s ∈ Z

n
q and prove that it fulfills an

arbitrary linear equation A�s = �u for a public matrix A ∈ Z
m×n
q and vector
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�u ∈ Z
m
q . We borrow LWE terminology and call the linear equation “unstruc-

tured” to highlight the fact that A can be an arbitrary matrix over Zq that does
not necessarily express linear relations over some ring of higher rank.

Proofs of linear relations are useful for applications in lattice cryptography
only if it is possible to amend them by a proof of shortness. So, we will also
want to be able to prove that the vector �s is short. As opposed to the so-called
approximate proofs that are ubiquitous in lattice cryptography and where the
prover only proves knowledge of a vector that is much longer than the one
it actually knows, we are interested in exact proofs of shortness. These have
the advantage that the parameters of underlying cryptographic schemes do not
have to account for the longer vectors that can be extracted from a prover,
i.e. the schemes do not need to be secure with respect to the longer vectors. This
results in more efficient schemes. For example, one interesting goal of this line of
research is to construct a proof of plaintext knowledge or a verifiable encryption
scheme for a standard unmodified lattice-based public-key encryption scheme. In
particular, for one of the schemes submitted to the NIST PQC standardization
effort.

The most efficient lattice-based exact proofs of shortness work by encoding
the vector �s in the NTT representations NTT(ši) of possibly several polynomials
ši ∈ Rq. In the first step, we restrict to the case where q splits completely in R.
Then NTT(ši) is a vector in Z

d
q .

Now, for simplicity, assume that n is divisible by d. Suppose the prover P
knows an opening to a commitment �t = �t0 ‖ t1 ‖ · · · ‖ tn/d to n/d secret
polynomials š1, . . . , šn/d ∈ Rq. More precisely,

�t0 = B0�r,

ti = 〈�bi, �r〉 + ši for i ∈ {1, . . . , n/d}.

Then, the goal of P is to prove that the vector

�s = NTT(š1) ‖ · · · ‖ NTT(šn/d) ∈ Z
n
q

satisfies the linear equation A�s = �u over Zq where A ∈ Z
m×n
q and �u ∈ Z

m
q are

public.
Firstly, we describe the main ideas and present a protocol which achieves

soundness error 1/q. Then, in Sect. 3.2 and [ENS20, Appendix A] we present
two methods to efficiently decrease the soundness error to negligible quantities.
The latter one, however, is only interesting when the secret vector �s is strictly
shorter than d. In that case, we make use of non-fully splitting rings Rq.

Although we present all of our protocols so that only non-aborting protocol
transcripts are simulatable, there is a standard generic method to simulate aborts
of an interactive protocol as given in [BCK+14], which is also used, e.g., in
[ESS+19]. In particular, for all but the last move of the prover, the prover sends
aCom(M) instead of the transmitted text M for an auxiliary commitment aCom.
In the last move, all of these committed texts are revealed unless aborted. In the
case of abort, the prover just sends an error message ⊥. The abort can easily
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be simulated in this case by relying on the hiding property of aCom. We refer
to [BCK+14,ESS+19] for more details. Also, note that the simulation of aborts
is not important for most of the practical applications as the protocol is made
non-interactive and the simulation of aborts is not needed in that case.

3.1 Basic Protocol

Let us assume that n = d and denote š := š1. We show how to deal with the case
n > d in Sect. 3.3. The first protocol relies on the following simple observation.
Suppose that A�s = �u. This means that for all �γ ∈ Z

m
q , we have 〈A�s − �u,�γ〉 = 0.

On the contrary, if A�s �= �u, then for a uniformly random �γ ∈ Z
m
q , 〈A�s − �u,�γ〉 = 0

only with probability 1/q. Hence, �γ will become a challenge generated from the
verifier. Using Lemma 2.1, we rewrite the inner product,

〈A�s − �u,�γ〉 = 〈A�s,�γ〉 − 〈�u,�γ〉 = 〈�s,AT�γ〉 − 〈�u,�γ〉
=

∑

j∈Z
×
2d

s(ζj)
(
NTT−1(AT�γ)

)
(ζj) − 〈�u,�γ〉 =

1
d

∑

j∈Z
×
2d

f(ζj) = f0,

where f ∈ Rq is the polynomial defined by f := NTT−1(dAT�γ)š − 〈�u,�γ〉 and
f0 ∈ Zq is the constant coefficient of f . So, by utilizing the polynomial product
in Rq, it is possible to compute a scalar product over Zq with a vector encoded
in the NTT representation of the polynomial. We observe that the verifier can
compute a commitment to f . Indeed, note that

NTT−1(dAT�γ)t1 − 〈�u,�γ〉 = 〈NTT−1(dAT�γ) �b1, �r〉 + f .

Hence, V can compute the commitment

τ = NTT−1(dAT�γ)t1 − 〈�u,�γ〉. (5)

Now, P needs to prove that f has a zero constant coefficient. The idea is to first
send a commitment t2 to a random polynomial g with a zero constant coefficient
before �γ is generated. Intuitively, g is introduced to mask f . After getting �γ, P
sends h = f + g and the verifier can check that h0 = 0. Note that by knowing
τ , t2 and h, the verifier can compute a commitment τ + t2 − h to the zero
polynomial 0. Hence, in the final stage, P needs to prove that this polynomial
is indeed a commitment to 0 in the usual way.

The full protocol is presented as follows. First, the prover P generates a
random polynomial g ∈ Rq with zero constant coefficient and computes a com-
mitment to g defined as t2 = 〈�b2, �r〉 + g. The prover also starts the opening
proof with soundness error 1/q for the commitments and samples a vector of
small polynomials �y and computes the commitment �w = B0�y. Then, P sends
t2 and �w to the verifier. Next, V generates and sends a uniformly random vector
�γ ∈ Z

m
q . P can then compute the polynomial f defined above and h = f + g.



Practical Exact Proofs from Lattices 275

Furthermore, it sets v = 〈NTT−1(dAT�γ) �b1 + �b2, �y〉 and sends h,v to V. Then,

the verifier generates a challenge c
$← C and sends it to the prover. Eventually,

P sends a response �z = �y + c�r.
The verifier V first checks that �z consists of small polynomials and that h

has constant coefficient equal to 0. Also, V checks that B0�z = �w + c�t0 and

〈NTT−1(dAT�γ) �b1 + �b2, �z〉 = v + c (τ + t2 − h)

where τ is computed as in Eq. (5).
One can observe that if A�s �= �u then the constant coefficient of f becomes a

uniformly random element of Zq, outside the control of the prover. Thus, also the
constant coefficient of h = f +g will be uniformly random because the constant
coefficient of g is independent of the constant coefficient of f . In particular, it
will be non-zero with probability 1−1/q and this can be detected by the verifier.
Therefore, the probability that a malicious prover manages to cheat is essentially
1/q.

3.2 Boosting Soundness by Mapping Down

More abstractly, in the above protocol we checked 〈A�s − �u,�γ〉 = 0 by investigat-
ing whether L(�γ) has a zero constant coefficient where L : Zm

q → Rq is defined
as

L(�γ) := NTT−1(dAT�γ)š − 〈�u,�γ〉. (6)

As we observed earlier, the constant coefficient of L(�γ) is indeed 〈A�s − �u,�γ〉.
Now, suppose we can define k functions L0, . . . , Lk−1 with the following prop-

erty. For any 0 ≤ μ < k and �γμ ∈ Z
m
q , p = Lμ(�γμ) ∈ Rq is a polynomial such that

p0 = . . . = pμ−1 = pμ+1 = . . . = pk−1 = 0 and pμ = 〈A�s − �u,�γμ〉. This would
mean that for 0 ≤ μ < k, the μ-th coefficient related to Xμ of the polynomial

f = L0(�γ0) + L1(�γ1) + . . . + Lk−1(�γk−1)

is equal to 〈A�s − �u, �γμ〉. In particular, if A�s = �u, then f0 = f1 = . . . = fk−1 = 0.
Thus, in order to decrease the soundness error, we can let the verifier V send
k independently uniformly random vectors �γ0, . . . , �γk−1 and then P proves that
f ∈ Rq has the first k coefficients equal to zero. Note that we still need to find
a way for V to compute a commitment to f from �t1 and �γ0, . . . , �γk−1.

Constructing Lμ. Let Sq be the Zq-submodule of Rq generated by Xk, i.e.

Sq = {p0 + p1X
k + · · · + pd/k−1X

d−k ∈ Rq} ⊂ Rq.

We have Sq
∼= Zq[X]/(Xd/k + 1). From Galois theory, there is a corresponding

subgroup H of Aut(Rq) of order k such that σ(p) = p for all σ ∈ H if and only if
p ∈ Sq. It is easy to see that this group is generated by σ = σ2d/k+1 ∈ Aut(Rq),
which is the same automorphism that we use in the automorphism opening proof.
In fact, this follows from the fact that ord(σ) = k and σ(Xk) = Xk(2d/k+1) = Xk.
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We have the trace map Tr : Rq → Sq given by

Tr(p) =
k−1∑

ν=0

σν(p).

Notice that the constant coefficient of Tr(p) is equal to kp0. Now define Lμ by

Lμ(�γ) =
1
k

XμTr(L(�γ)) =
1
k

Xμ
k−1∑

ν=0

σν
(
NTT−1(dAT�γ)š − 〈�u,�γ〉) .

If p = Lμ(�γ), then p is of the form

p = pμXμ + pk+μXk+μ + · · · + pd−k+μXd−k+μ

and thus has the property that the first k coefficients except the μ-th coefficient
are zero. Moreover, it is clear from above that pμ = 〈A�s − �u,�γ〉.

Finally, given the commitment t1 to s, the verifier can compute a commit-
ment to f = L0(�γ0) + · · · + Lk−1(�γk−1) via

τ =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
NTT−1(dAT�γμ)t1 − 〈�u,�γμ〉)

=
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
〈NTT−1(dAT�γμ)�b1, �r〉

)
+ f . (7)

The Protocol. We present the full protocol in Fig. 1 with the verification algo-
rithm given in Fig. 2.

It is natural to separate the commitment (�t0, t1) to the secret polynomial š
from our protocol for proving the linear relation. Then, (�t0, t1) is given as input
to the protocol, which also proves knowledge of an opening to the external com-
mitment. Now, for efficiency reasons, one wants to avoid sending a completely
fresh commitment to the masking polynomial g and instead reuse the top part
�t0 of the commitment to š, but this creates a problem with the standard notion
of a zero-knowledge proof. Namely, with this approach it is required that the
randomness vector �r, which is a part of the witness, is really random so that the
commitment to g is hiding, but the zero-knowledge definition demands simulata-
bility for any (fixed) witness. Hence, we don’t take this approach and also send
the commitment to š as part of our protocol. Then, our protocol only shows
knowledge of a solution �s to the linear equation A�s = �u. This in itself is not
a solution to a hard problem but our protocol is still useful because it can be
combined with a shortness proof that simultaneously shows that �s is short (see
Sect. 4). In isolation our protocol is best viewed as a so-called commit-and-proof
protocol [CLOS02], which is interesting even without involving a hard problem
because of the commitment that can later be used outside of the protocol.
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The Prover P starts by generating a uniformly random polynomial g satis-
fying g0 = . . . = gk−1 = 0 and then computes the commitment

�t0 = B0�r

t1 = 〈�b1, �r〉 + š

t2 = 〈�b2, �r〉 + g.

Now the prover needs to start an opening proof with soundness 1/qk. Also,
it is going to prove a relation which involves the k automorphisms σi. There-
fore, it uses the automorphism opening proof from [ALS20] and samples vectors
�y0, . . . , �yk−1 of short polynomials that are going to be used to mask �r k times
with challenges of the form σi(c). Also, P computes �wi = B0�yi. The prover
sends �t0, t1, t2 and �wi to V.

Next, the verifier selects uniformly random vectors �γ0, . . . , �γk−1 ∈ Z
m
q and

sends them to P. Then, the prover computes

f =
k−1∑

μ=0

Lμ(�γμ) =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
NTT−1(dAT�γμ)š − 〈�u,�γμ〉) .

By construction, f0 = . . . = fk−1 = 0. Note that V can compute a commitment
τ to f as explained above. Now the prover sets h = f + g and computes for
i = 0, . . . , k − 1,

vi =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
〈NTT−1(dAT�γμ)�b1, �yi−ν mod k〉

)
+ 〈�b2, �yi〉.

It sends h and v0, . . . ,vk−1. The verifier sends a random challenge polynomial

c
$← C. Eventually, P computes �zi = �yi + σi(c)�r for i = 0, . . . , k − 1 and sends

�z0, . . . , �zk−1.
The Verifier V first checks that for all i = 0, . . . , k − 1, �zi is short, and

B0�zi = �wi + σi(c)�t0.

Then, V checks that h0, . . . , hk−1 are all equal to zero and computes τ as in (7).
Finally, the verifier checks whether for all i = 0, . . . , k − 1,

k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
〈NTT−1(dAT�γμ)�b1, �zi−ν mod k〉

)
+ 〈�b2, �zi〉

= vi + σi(c)(τ + t2 − h)

to test whether τ + t2 − h really is a commitment to zero.
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Fig. 1. Automorphism proof of knowledge of a solution to an unstructured linear equa-
tion over Zq. Verification equations are described in Fig. 2.

Security Analysis

Theorem 3.1. The protocol in Fig. 1 is complete, computational honest verifier
zero-knowledge under the Module-LWE assumption and computational special
sound under the Module-SIS assumption. More precisely, let p be the maximum
probability over Zq of the coefficients of c mod Xk − ζk as in Lemma 2.2.

Then, for completeness, unless the honest prover P aborts due to the rejection
sampling, it always convinces the honest verifier V.

For zero-knowledge, there exists a simulator S, that, without access to secret
information, outputs a simulation of a non-aborting transcript of the protocol
between P and V for every statement A�s = �u. Then for every algorithm A that
has advantage ε in distinguishing the simulated transcript from an actual tran-
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Fig. 2. Verification equations for Fig. 1.

script, there is an algorithm A′ with the same running time that has advantage
ε in distinguishing MLWEλ,χ.

For soundness, there is an extractor E with the following properties. When
given rewindable black-box access to a deterministic prover P∗ that sends the
commitment �t in the first round and convinces V with probability ε ≥ q−k + pk,
E either outputs a weak opening for �t with message š∗ such that ANTT(š∗) = �u,
or a MSISκ,8dβ solution for B0 in expected time at most 1/ε + (d/k)(ε − pk)−1

when running P∗ once is assumed to take unit time.

Proof. Completeness. It follows by careful inspection that the verification equa-
tions are always true for the messages sent by P.

Zero-Knowledge. We can simulate a non-aborting transcript between the hon-
est prover and the honest verifier in the following way. First, in a non-
aborting transcript the vectors �zi are independently uniformly random in
] − (δ1 − T ), δ1 − T [(λ+κ+2)d and also independent from c�r. So the simulator

can just sample �zi
$←]− (δ1 −T ), δ1 −T [(λ+κ+2)d and c

$← C. The polynomial h
is such that h0 = · · · = hk−1 = 0 in honest transcripts and the other coefficients
are uniformly random because of the additive term g. Hence, the simulator sam-
ples h

$← {h ∈ Rq | h0 = · · · = hk−1 = 0}. Then, the challenges �γμ ∈ Z
m
q are

independently uniformly random and the simulator samples them in this way.
Now, we turn to the commitment �t. In the honest execution the randomness
vector �r is statistically independent from the �zi and the other messages already
handled, i.e. c, h, �γμ. So, it follows that the additive term B0�r ‖ 〈�b1, �r〉 ‖ 〈�b2, �r〉
is indistinguishable from uniform given �zi, c,h, �γμ if MLWEλ is hard. Hence �t
is indistinguishable from uniform since the committed polynomials š and g are
also independent from �r in the honest execution. Therefore, we let the simu-
lator sample a uniformly random �t ∈ Rκ+2

q . Now, in an honest transcript, the
remaining messages �wi and vi are all uniquely determined from the already
handled messages and the verification equations because of completeness. We
see that if the simulator computes these messages so that the verification equa-
tions become true, then the resulting transcript is indistinguishable from the
honest transcript. More precisely, if there exists some distinguisher that is able
to distinguish a simulated transcript from an honest transcript, then it must be
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able to distinguish the MLWE samples in the commitment �t from uniform with
the same advantage.

Soundness. First, the extractor opens the commitments t1 and t2. From [ALS20,
Theorem 4.4], unless E finds an MSISκ,8dβ solution, the extractor can compute
vectors �y∗ and �r∗ such that for every accepting transcript with first messages t2
and �wi,

zi = �y∗
i + σi(c)�r∗.

The expected runtime for this equals the runtime in the theorem statement.
Then let š∗ ∈ Rq and g∗ ∈ Rq be the extracted messages, which are defined by

t1 = 〈�b1, �r
∗〉 + š∗ and t2 = 〈�b2, �r

∗〉 + g∗.

Now substituting these expressions into τ gives

τ =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
〈NTT−1(dAT�γμ)�b1, �r

∗〉
)

+ f∗,

where

f∗ =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
NTT−1(dAT�γμ)š∗ − 〈�u,�γμ〉) .

From the discussion in this section we know that f∗
μ = 〈A�s∗ − �u,�γμ〉 for μ =

0, . . . , k − 1, �s∗ = NTT(š∗). Next we find from the last verification equations,
(

k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
〈NTT−1(dAT�γμ)�b1, �y

∗
i−ν mod k〉

)
+ 〈�b2, �y

∗〉 − vi

)

= σi(c) (f∗ + g∗ − h) . (8)

for all i = 0, . . . , k − 1. The coefficients of these linear polynomials in σi(c) are
independent from c in a random accepting transcript. We bound the success
probability ε of the prover under the assumption A�s∗ �= �u. In this case the
coefficients f∗

μ for μ = 0, . . . , k − 1 are uniformly random elements in Zq in a
random transcript. Hence, f∗

μ + g∗
μ is uniformly random since g∗ is independent

from the �γμ. Also we know that hμ = 0 in every accepting transcript. So, suppose
f∗

μ + g∗
μ − h∗

μ = f∗
μ + g∗

μ �= 0 for some μ. Then there exists some j ∈ Z
×
2d with

f∗+g∗−h mod (X −ζj) �= 0. Therefore, there is only one possible value modulo
(Xk − ζjk) for the challenge in such a transcript, otherwise Eq. 8 cannot be true
for all i. Since the maximum probability of every coefficient of c mod (Xk − ζjk)
is less than p we see that the success probability is bounded by

ε = Pr [accepting] <

(
1
q

)k

+ Pr
[
accepting

∣∣ f∗
μ + g∗

μ �= 0 for some μ
]

≤
(

1
q

)k

+ pk.

This is in contradiction to the bound in the theorem statement and thus it must
hold A�s∗ = �u. ��
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3.3 General Case

Previously, we assumed that n = d so that �s = NTT(š) = NTT(š1). When n > d,
we slightly modify our approach. We have �s = NTT(š1) ‖ · · · ‖ NTT(šn/d) and
now also define polynomials ψj such that

AT�γ = NTT(ψ1) ‖ · · · ‖ NTT(ψn/d).

Then the inner product 〈A�s,�γ〉 = 〈�s,AT�γ〉 can be written as a sum of smaller
inner products. We find

〈A�s − �u,�γ〉 =
n/d∑

j=1

〈NTT(šj),NTT(ψj)〉 − 〈�u,�γ〉

=
n/d∑

j=1

∑

i∈Z
×
2d

šj(ζi)ψj(ζi) − 〈�u,�γ〉 =
1
d

∑

i∈Z
×
2d

⎛

⎝
n/d∑

j=1

dšjψj − 〈�u,�γ〉
⎞

⎠ (ζi).

Next, similarly as before, we incorporate more challenges. So, for �γ0, . . . , �γk−1 ∈
Z

m
q we write

AT�γμ = NTT(ψ(μ)
1 )‖ · · · ‖NTT(ψ(μ)

n/d)

and then set

f =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν

⎛

⎝
n/d∑

j=1

dψ
(μ)
j sj − 〈�u,�γμ〉

⎞

⎠ .

It holds that for μ = 0, . . . , k − 1, fμ = 〈A�s − �u,�γμ〉. Now, note that τ defined
as

τ =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν

⎛

⎝
n/d∑

j=1

dψ
(μ)
j tj − 〈�u,�γμ〉

⎞

⎠

=
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν

⎛

⎝
n/d∑

j=1

〈dψ
(μ)
j

�bj , �r〉 + dψ
(μ)
j šj − 〈�u,�γ〉

⎞

⎠

=
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν

⎛

⎝
〈

n/d∑

j=1

dψ
(μ)
j

�bj , �r

〉⎞

⎠ + f

is indeed a commitment to f and can be computed by the verifier.

4 Main Protocol

In this section we present our main protocol for proving knowledge of a ternary
solution �s ∈ {−1, 0, 1}n to an arbitrary linear equation A�s = �u over Zq. The
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protocol is essentially an amalgamation of the linear proof from Sect. 3 and the
product proof from [ALS20]. We use a fully splitting prime q and automorphisms
to boost the soundness. So, at a high level the prover commits to n/d polynomials
šj whose NTT coefficients are the coefficients of �s. That is,

�s =

⎛

⎜⎝
NTT(š1)

...
NTT(šn/d)

⎞

⎟⎠ .

Then the prover uses a generalization of the product proof to many cubic rela-
tions to show that

šj(šj + 1)(šj − 1) = 0

for all j. This shows that NTT(šj) ∈ {−1, 0, 1}d since the polynomial product
in Rq is coefficient-wise in the NTT representation. This is the technique that
was used in [BLS19].

In parallel, the prover uses the linear proof for the general case from Sect. 3.3,
to show that the polynomials šj really give a solution to the linear equation. The
complete protocol is given in Fig. 3 and it is proven secure in Theorem 4.1.

4.1 Security Analysis

Theorem 4.1. The protocol in Fig. 3 is complete, computational honest verifier
zero-knowledge under the Module-LWE assumption and computational special
sound under the Module-SIS assumption. More precisely, let p be the maximum
probability over Zq of the coefficients of c mod Xk − ζk as in Lemma 2.2.

Then, for completeness, in case the honest prover P does not abort due to
rejection sampling, it always convinces the honest verifier V.

For zero-knowledge, there exists a simulator S, that, without access to secret
information, outputs a simulation of a non-aborting transcript of the protocol
between P and V for every statement A�s = �u, �s ∈ {−1, 0, 1}n. Then for every
algorithm A that has advantage ε in distinguishing the simulated transcript from
an actual transcript, there is an algorithm A′ with the same running time that
also has advantage ε in distinguishing MLWEλ,χ.

For soundness, there is an extractor E with the following properties. When
given rewindable black-box access to a deterministic prover P∗ that convinces
V with probability ε > (3p)k, E either outputs a solution �s∗ ∈ {−1, 0, 1}n to
A�s∗ = �u, or a MSISκ,8dβ solution for B0 in expected time at most 1/ε+(ε−pk)−1

when running P∗ once is assumed to take unit time.

We provide the proof of this theorem in the full version of this paper [ENS20].

4.2 Proof Size

We now look at the size of the non-interactive proof outputs via the Fiat-Shamir
transform of the protocol in Fig. 3. First, note that for the non-interactive proof
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Fig. 3. Proof of knowledge of a ternary solution to an unstructured linear equation
over Zq. Verification equations are defined in Fig. 4.
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Fig. 4. Verification equations for Fig. 3.

the messages wi, v and vi need not be included in the output as they are
uniquely determined by the remaining components. Further, the challenges can
be generated from a small seed of 256 bits, which itself is generated as the hash
of some components. Therefore, the contribution of the challenges to the total
proof length is extremely small and thus we neglect it.

As “full-sized” elements of Rq, we have �t0, tj , and h (in fact, h is missing k
coefficients, but that is a negligible consideration). Therefore, we have in total

κ + n/d + 3 + 1

full-sized elements of Rq, which altogether costs

(κ + n/d + 4) d�log q� bits.

Now, the only remaining part are the vectors �zi. Since the k vectors �zi of length
(λ + κ + n/d + 3)d over Zq are bounded by δ1 in infinity norm, they require

k(λ + κ + n/d + 3)d�log 2δ1� bits

in the proof. It is easy to see that no coefficient of the product σi(c)�r can exceed
d for any 0 ≤ i ≤ k − 1. Hence, we set T = d.

In conclusion, the overall proof length is about

(κ + n/d + 4) d�log q� + k (λ + κ + n/d + 3) d�log 2δ1� bits, (9)
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Proof Length Optimizations. The size of the non-interactive proof can be
reduced with a number of standard techniques. The first techniques are the two
compression techniques from the Bai-Galbraith [BG14] and Dilithium [DKL+18]
signature schemes. They reduce the size of the masked openings �zi and the top
part �t0 of the commitment. As we have mentioned in Sect. 2.7, the commitment
matrix B0 can be decomposed as B0 = (B′

0, I), where I is the identity matrix
of dimension κ. Then we can similarly decompose �r = �r1 ‖ �r2 and write

�t0 = B0�r = B′
0�r1 + �r2.

Now, we see that when we give an approximate proof for this equation that
proves c̄�t0 = B′

0 �̄z1 + �̄z2, we are essentially proving knowledge of a short vector
�̄z1 such that B1 �̄z1 is close to c̄�t0. But this can be achieved in zero-knowledge
without sending both masked openings �z1 and �z2 as follows. Let �y be the masking
vector for �r1, �z = �y + c�r1, and �w = B′

0�y. Then decompose �w as quotient and
remainder modulo α = 2δ2 ≈ δ1,

�w = α �w1 + �w0

where ‖ �w0‖∞ ≤ δ2. It follows that

B′
0�z − c�t0 = α �w1 + �w0 − c�r2.

Hence, when we keep the remainder �w0 secret, it can serve as the masking
vector for �r2. Moreover, by rejecting if ‖ �w0 − c�r2‖∞ ≥ δ2 − T , this doesn’t
leak information about �r2 and the equation can be checked by the verifier by
decomposing B′

0�z−c�t0. The second compression technique starts with the same
observation that it suffices to prove knowledge of a preimage of B′

0 that is close
to c̄�t0. When we decompose

�t0 = �t0,12D + �t0,0,

then it is actually sufficient to only send the high bits �t0,1, because the low bits
only introduce an additional noise term c̄�t0,0 in the verification equation that
can be handled with sending a few hint bits. We defer to the Dilithium paper
for the details.

Another optimization we employ is in the calculation of a maximum absolute
coefficient in σi(c)�r. In our applications, we aim to minimize d and set d = 128.
Now in this case, a coefficient of σi(c)�r is the sum of 128 coefficients with i.i.d.
P (−1) = P (1) = 5/32 and P (0) = 22/32.2 If we calculate the convolution of
this distribution, we find that a coefficient is bigger than 78 in absolute value
with probability less than 2−114. Hence, by a union bound the probability that
any of the coefficients in

(
σ0(c)�r, . . . , σk−1(c)�r

)
is bigger than 78 will still be

negligibly small. Therefore, we can set T = 78 instead of T = d = 128.

2 Recall that a coefficient of c is zero with probability 1/2 and a coefficient of �r is zero
with probability 6/16. The probabilities of ±1 are always equal to each other.
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The previous optimization can be combined with the following optimization.
Instead of using the k rotations σi(c) of one dense challenge for the masked
openings �zi, we can write c in the subring generated by Xk and fixed by σ,
i.e. c = c0 + c1X + · · · + ck−1X

k−1 where the polynomials cj are sparse with
only at most d/k nonzero coefficients. Then all the images σi(c) are just different
linear combinations of the cj . So it suffices to use these sparse challenges cj in the
masked openings that are transmitted and the verifier can then recombine them
to obtain the masked openings with challenges σi(c) as needed in the protocols.
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